Compare commits

...

3 Commits
main ... lab2

Author SHA1 Message Date
f249d643dc Merge branch 'main' into lab2
merge main into lab2
2024-11-10 15:10:02 +04:00
0b9d379e16 feat(lab-2): do lab-2, part 1 2024-11-10 14:56:44 +04:00
e3ad2174f2 feat(lab1): do lab1 2024-10-26 13:07:42 +04:00
9 changed files with 46014 additions and 1 deletions

19238
data/car_price_prediction.csv Normal file

File diff suppressed because it is too large Load Diff

244
data/dollar.csv Normal file
View File

@ -0,0 +1,244 @@
"my_date","my_value","bullet","bulletClass","label"
"28.03.2023","76.5662","","",""
"31.03.2023","77.0863","","",""
"01.04.2023","77.3233","","",""
"04.04.2023","77.9510","","",""
"05.04.2023","79.3563","","",""
"06.04.2023","79.4961","","",""
"07.04.2023","80.6713","","",""
"08.04.2023","82.3988","","",""
"11.04.2023","81.7441","","",""
"12.04.2023","82.1799","","",""
"13.04.2023","82.0934","","",""
"14.04.2023","81.6758","","",""
"15.04.2023","81.5045","","",""
"18.04.2023","81.6279","","",""
"19.04.2023","81.6028","","",""
"20.04.2023","81.6549","","",""
"21.04.2023","81.6188","","",""
"22.04.2023","81.4863","","",""
"25.04.2023","81.2745","","",""
"26.04.2023","81.5499","","",""
"27.04.2023","81.6274","","",""
"28.04.2023","81.5601","","",""
"29.04.2023","80.5093","","",""
"03.05.2023","79.9609","","",""
"04.05.2023","79.3071","","",""
"05.05.2023","78.6139","","",""
"06.05.2023","76.8207","","",""
"11.05.2023","76.6929","","",""
"12.05.2023","75.8846","round","min-pulsating-bullet","мин"
"13.05.2023","77.2041","","",""
"16.05.2023","79.1004","","",""
"17.05.2023","79.9798","","",""
"18.05.2023","80.7642","","",""
"19.05.2023","80.0366","","",""
"20.05.2023","79.9093","","",""
"23.05.2023","79.9379","","",""
"24.05.2023","80.1665","","",""
"25.05.2023","79.9669","","",""
"26.05.2023","79.9841","","",""
"27.05.2023","79.9667","","",""
"30.05.2023","80.0555","","",""
"31.05.2023","80.6872","","",""
"01.06.2023","80.9942","","",""
"02.06.2023","80.9657","","",""
"03.06.2023","80.8756","","",""
"06.06.2023","81.3294","","",""
"07.06.2023","81.2502","","",""
"08.06.2023","81.4581","","",""
"09.06.2023","82.0930","","",""
"10.06.2023","82.6417","","",""
"14.06.2023","83.6405","","",""
"15.06.2023","84.3249","","",""
"16.06.2023","83.9611","","",""
"17.06.2023","83.6498","","",""
"20.06.2023","83.9866","","",""
"21.06.2023","84.2336","","",""
"22.06.2023","84.2467","","",""
"23.06.2023","83.6077","","",""
"24.06.2023","84.0793","","",""
"27.06.2023","84.6642","","",""
"28.06.2023","85.0504","","",""
"29.06.2023","85.6192","","",""
"30.06.2023","87.0341","","",""
"01.07.2023","88.3844","","",""
"04.07.2023","89.3255","","",""
"05.07.2023","89.5450","","",""
"06.07.2023","90.3380","","",""
"07.07.2023","92.5695","","",""
"08.07.2023","91.6879","","",""
"11.07.2023","91.4931","","",""
"12.07.2023","90.5045","","",""
"13.07.2023","90.6253","","",""
"14.07.2023","90.1757","","",""
"15.07.2023","90.1190","","",""
"18.07.2023","90.4217","","",""
"19.07.2023","90.6906","","",""
"20.07.2023","91.2046","","",""
"21.07.2023","90.8545","","",""
"22.07.2023","90.3846","","",""
"25.07.2023","90.4890","","",""
"26.07.2023","90.0945","","",""
"27.07.2023","90.0468","","",""
"28.07.2023","90.0225","","",""
"29.07.2023","90.9783","","",""
"01.08.2023","91.5923","","",""
"02.08.2023","91.7755","","",""
"03.08.2023","92.8410","","",""
"04.08.2023","93.7792","","",""
"05.08.2023","94.8076","","",""
"08.08.2023","96.5668","","",""
"09.08.2023","96.0755","","",""
"10.08.2023","97.3999","","",""
"11.08.2023","97.2794","","",""
"12.08.2023","98.2066","","",""
"15.08.2023","101.0399","","",""
"16.08.2023","97.4217","","",""
"17.08.2023","96.7045","","",""
"18.08.2023","93.7460","","",""
"19.08.2023","93.4047","","",""
"22.08.2023","94.1424","","",""
"23.08.2023","94.1185","","",""
"24.08.2023","94.4421","","",""
"25.08.2023","94.4007","","",""
"26.08.2023","94.7117","","",""
"29.08.2023","95.4717","","",""
"30.08.2023","95.7070","","",""
"31.08.2023","95.9283","","",""
"01.09.2023","96.3344","","",""
"02.09.2023","96.3411","","",""
"05.09.2023","96.6199","","",""
"06.09.2023","97.5383","","",""
"07.09.2023","97.8439","","",""
"08.09.2023","98.1961","","",""
"09.09.2023","97.9241","","",""
"12.09.2023","96.5083","","",""
"13.09.2023","94.7035","","",""
"14.09.2023","95.9794","","",""
"15.09.2023","96.1609","","",""
"16.09.2023","96.6338","","",""
"19.09.2023","96.6472","","",""
"20.09.2023","96.2236","","",""
"21.09.2023","96.6172","","",""
"22.09.2023","96.0762","","",""
"23.09.2023","96.0419","","",""
"26.09.2023","96.1456","","",""
"27.09.2023","96.2378","","",""
"28.09.2023","96.5000","","",""
"29.09.2023","97.0018","","",""
"30.09.2023","97.4147","","",""
"03.10.2023","98.4785","","",""
"04.10.2023","99.2677","","",""
"05.10.2023","99.4555","","",""
"06.10.2023","99.6762","","",""
"07.10.2023","100.4911","","",""
"10.10.2023","101.3598","round","max-pulsating-bullet","макс"
"11.10.2023","99.9349","","",""
"12.10.2023","99.9808","","",""
"13.10.2023","96.9948","","",""
"14.10.2023","97.3075","","",""
"17.10.2023","97.2865","","",""
"18.10.2023","97.3458","","",""
"19.10.2023","97.3724","","",""
"20.10.2023","97.3074","","",""
"21.10.2023","95.9053","","",""
"24.10.2023","94.7081","","",""
"25.10.2023","93.5224","","",""
"26.10.2023","93.1507","","",""
"27.10.2023","93.5616","","",""
"28.10.2023","93.2174","","",""
"31.10.2023","93.2435","","",""
"01.11.2023","92.0226","","",""
"02.11.2023","93.2801","","",""
"03.11.2023","93.1730","","",""
"04.11.2023","93.0351","","",""
"08.11.2023","92.4151","","",""
"09.11.2023","92.1973","","",""
"10.11.2023","91.9266","","",""
"11.11.2023","92.0535","","",""
"14.11.2023","92.1185","","",""
"15.11.2023","91.2570","","",""
"16.11.2023","89.4565","","",""
"17.11.2023","88.9466","","",""
"18.11.2023","89.1237","","",""
"21.11.2023","88.4954","","",""
"22.11.2023","87.8701","","",""
"23.11.2023","88.1648","","",""
"24.11.2023","88.1206","","",""
"25.11.2023","88.8133","","",""
"28.11.2023","88.7045","","",""
"29.11.2023","88.6102","","",""
"30.11.2023","88.8841","","",""
"01.12.2023","88.5819","","",""
"02.12.2023","89.7619","","",""
"05.12.2023","90.6728","","",""
"06.12.2023","91.5823","","",""
"07.12.2023","92.7826","","",""
"08.12.2023","92.5654","","",""
"09.12.2023","91.6402","","",""
"12.12.2023","90.9846","","",""
"13.12.2023","90.2158","","",""
"14.12.2023","89.8926","","",""
"15.12.2023","89.6741","","",""
"16.12.2023","89.6966","","",""
"19.12.2023","90.4162","","",""
"20.12.2023","90.0870","","",""
"21.12.2023","90.4056","","",""
"22.12.2023","91.7062","","",""
"23.12.2023","91.9389","","",""
"26.12.2023","91.9690","","",""
"27.12.2023","91.7069","","",""
"28.12.2023","91.7051","","",""
"29.12.2023","90.3041","","",""
"30.12.2023","89.6883","","",""
"10.01.2024","90.4040","","",""
"11.01.2024","89.3939","","",""
"12.01.2024","88.7818","","",""
"13.01.2024","88.1324","","",""
"16.01.2024","87.6772","","",""
"17.01.2024","87.6457","","",""
"18.01.2024","88.3540","","",""
"19.01.2024","88.6610","","",""
"20.01.2024","88.5896","","",""
"23.01.2024","87.9724","","",""
"24.01.2024","87.9199","","",""
"25.01.2024","88.2829","","",""
"26.01.2024","88.6562","","",""
"27.01.2024","89.5159","","",""
"30.01.2024","89.6090","","",""
"31.01.2024","89.2887","","",""
"01.02.2024","89.6678","","",""
"02.02.2024","90.2299","","",""
"03.02.2024","90.6626","","",""
"06.02.2024","91.2434","","",""
"07.02.2024","90.6842","","",""
"08.02.2024","91.1514","","",""
"09.02.2024","91.2561","","",""
"10.02.2024","90.8901","","",""
"13.02.2024","91.0758","","",""
"14.02.2024","91.2057","","",""
"15.02.2024","91.4316","","",""
"16.02.2024","91.8237","","",""
"17.02.2024","92.5492","","",""
"20.02.2024","92.4102","","",""
"21.02.2024","92.3490","","",""
"22.02.2024","92.4387","","",""
"23.02.2024","92.7519","","",""
"27.02.2024","92.6321","","",""
"28.02.2024","92.0425","","",""
"29.02.2024","91.8692","","",""
"01.03.2024","90.8423","","",""
"02.03.2024","91.3336","","",""
"05.03.2024","91.3534","","",""
"06.03.2024","91.1604","","",""
"07.03.2024","90.3412","","",""
"08.03.2024","90.7493","","",""
"12.03.2024","90.6252","","",""
"13.03.2024","90.8818","","",""
"19.03.2024","91.9829","","",""
"20.03.2024","92.2243","","",""
"21.03.2024","92.6861","","",""
"22.03.2024","91.9499","","",""
"23.03.2024","92.6118","","",""
"26.03.2024","92.7761","","",""
1 my_date my_value bullet bulletClass label
2 28.03.2023 76.5662
3 31.03.2023 77.0863
4 01.04.2023 77.3233
5 04.04.2023 77.9510
6 05.04.2023 79.3563
7 06.04.2023 79.4961
8 07.04.2023 80.6713
9 08.04.2023 82.3988
10 11.04.2023 81.7441
11 12.04.2023 82.1799
12 13.04.2023 82.0934
13 14.04.2023 81.6758
14 15.04.2023 81.5045
15 18.04.2023 81.6279
16 19.04.2023 81.6028
17 20.04.2023 81.6549
18 21.04.2023 81.6188
19 22.04.2023 81.4863
20 25.04.2023 81.2745
21 26.04.2023 81.5499
22 27.04.2023 81.6274
23 28.04.2023 81.5601
24 29.04.2023 80.5093
25 03.05.2023 79.9609
26 04.05.2023 79.3071
27 05.05.2023 78.6139
28 06.05.2023 76.8207
29 11.05.2023 76.6929
30 12.05.2023 75.8846 round min-pulsating-bullet мин
31 13.05.2023 77.2041
32 16.05.2023 79.1004
33 17.05.2023 79.9798
34 18.05.2023 80.7642
35 19.05.2023 80.0366
36 20.05.2023 79.9093
37 23.05.2023 79.9379
38 24.05.2023 80.1665
39 25.05.2023 79.9669
40 26.05.2023 79.9841
41 27.05.2023 79.9667
42 30.05.2023 80.0555
43 31.05.2023 80.6872
44 01.06.2023 80.9942
45 02.06.2023 80.9657
46 03.06.2023 80.8756
47 06.06.2023 81.3294
48 07.06.2023 81.2502
49 08.06.2023 81.4581
50 09.06.2023 82.0930
51 10.06.2023 82.6417
52 14.06.2023 83.6405
53 15.06.2023 84.3249
54 16.06.2023 83.9611
55 17.06.2023 83.6498
56 20.06.2023 83.9866
57 21.06.2023 84.2336
58 22.06.2023 84.2467
59 23.06.2023 83.6077
60 24.06.2023 84.0793
61 27.06.2023 84.6642
62 28.06.2023 85.0504
63 29.06.2023 85.6192
64 30.06.2023 87.0341
65 01.07.2023 88.3844
66 04.07.2023 89.3255
67 05.07.2023 89.5450
68 06.07.2023 90.3380
69 07.07.2023 92.5695
70 08.07.2023 91.6879
71 11.07.2023 91.4931
72 12.07.2023 90.5045
73 13.07.2023 90.6253
74 14.07.2023 90.1757
75 15.07.2023 90.1190
76 18.07.2023 90.4217
77 19.07.2023 90.6906
78 20.07.2023 91.2046
79 21.07.2023 90.8545
80 22.07.2023 90.3846
81 25.07.2023 90.4890
82 26.07.2023 90.0945
83 27.07.2023 90.0468
84 28.07.2023 90.0225
85 29.07.2023 90.9783
86 01.08.2023 91.5923
87 02.08.2023 91.7755
88 03.08.2023 92.8410
89 04.08.2023 93.7792
90 05.08.2023 94.8076
91 08.08.2023 96.5668
92 09.08.2023 96.0755
93 10.08.2023 97.3999
94 11.08.2023 97.2794
95 12.08.2023 98.2066
96 15.08.2023 101.0399
97 16.08.2023 97.4217
98 17.08.2023 96.7045
99 18.08.2023 93.7460
100 19.08.2023 93.4047
101 22.08.2023 94.1424
102 23.08.2023 94.1185
103 24.08.2023 94.4421
104 25.08.2023 94.4007
105 26.08.2023 94.7117
106 29.08.2023 95.4717
107 30.08.2023 95.7070
108 31.08.2023 95.9283
109 01.09.2023 96.3344
110 02.09.2023 96.3411
111 05.09.2023 96.6199
112 06.09.2023 97.5383
113 07.09.2023 97.8439
114 08.09.2023 98.1961
115 09.09.2023 97.9241
116 12.09.2023 96.5083
117 13.09.2023 94.7035
118 14.09.2023 95.9794
119 15.09.2023 96.1609
120 16.09.2023 96.6338
121 19.09.2023 96.6472
122 20.09.2023 96.2236
123 21.09.2023 96.6172
124 22.09.2023 96.0762
125 23.09.2023 96.0419
126 26.09.2023 96.1456
127 27.09.2023 96.2378
128 28.09.2023 96.5000
129 29.09.2023 97.0018
130 30.09.2023 97.4147
131 03.10.2023 98.4785
132 04.10.2023 99.2677
133 05.10.2023 99.4555
134 06.10.2023 99.6762
135 07.10.2023 100.4911
136 10.10.2023 101.3598 round max-pulsating-bullet макс
137 11.10.2023 99.9349
138 12.10.2023 99.9808
139 13.10.2023 96.9948
140 14.10.2023 97.3075
141 17.10.2023 97.2865
142 18.10.2023 97.3458
143 19.10.2023 97.3724
144 20.10.2023 97.3074
145 21.10.2023 95.9053
146 24.10.2023 94.7081
147 25.10.2023 93.5224
148 26.10.2023 93.1507
149 27.10.2023 93.5616
150 28.10.2023 93.2174
151 31.10.2023 93.2435
152 01.11.2023 92.0226
153 02.11.2023 93.2801
154 03.11.2023 93.1730
155 04.11.2023 93.0351
156 08.11.2023 92.4151
157 09.11.2023 92.1973
158 10.11.2023 91.9266
159 11.11.2023 92.0535
160 14.11.2023 92.1185
161 15.11.2023 91.2570
162 16.11.2023 89.4565
163 17.11.2023 88.9466
164 18.11.2023 89.1237
165 21.11.2023 88.4954
166 22.11.2023 87.8701
167 23.11.2023 88.1648
168 24.11.2023 88.1206
169 25.11.2023 88.8133
170 28.11.2023 88.7045
171 29.11.2023 88.6102
172 30.11.2023 88.8841
173 01.12.2023 88.5819
174 02.12.2023 89.7619
175 05.12.2023 90.6728
176 06.12.2023 91.5823
177 07.12.2023 92.7826
178 08.12.2023 92.5654
179 09.12.2023 91.6402
180 12.12.2023 90.9846
181 13.12.2023 90.2158
182 14.12.2023 89.8926
183 15.12.2023 89.6741
184 16.12.2023 89.6966
185 19.12.2023 90.4162
186 20.12.2023 90.0870
187 21.12.2023 90.4056
188 22.12.2023 91.7062
189 23.12.2023 91.9389
190 26.12.2023 91.9690
191 27.12.2023 91.7069
192 28.12.2023 91.7051
193 29.12.2023 90.3041
194 30.12.2023 89.6883
195 10.01.2024 90.4040
196 11.01.2024 89.3939
197 12.01.2024 88.7818
198 13.01.2024 88.1324
199 16.01.2024 87.6772
200 17.01.2024 87.6457
201 18.01.2024 88.3540
202 19.01.2024 88.6610
203 20.01.2024 88.5896
204 23.01.2024 87.9724
205 24.01.2024 87.9199
206 25.01.2024 88.2829
207 26.01.2024 88.6562
208 27.01.2024 89.5159
209 30.01.2024 89.6090
210 31.01.2024 89.2887
211 01.02.2024 89.6678
212 02.02.2024 90.2299
213 03.02.2024 90.6626
214 06.02.2024 91.2434
215 07.02.2024 90.6842
216 08.02.2024 91.1514
217 09.02.2024 91.2561
218 10.02.2024 90.8901
219 13.02.2024 91.0758
220 14.02.2024 91.2057
221 15.02.2024 91.4316
222 16.02.2024 91.8237
223 17.02.2024 92.5492
224 20.02.2024 92.4102
225 21.02.2024 92.3490
226 22.02.2024 92.4387
227 23.02.2024 92.7519
228 27.02.2024 92.6321
229 28.02.2024 92.0425
230 29.02.2024 91.8692
231 01.03.2024 90.8423
232 02.03.2024 91.3336
233 05.03.2024 91.3534
234 06.03.2024 91.1604
235 07.03.2024 90.3412
236 08.03.2024 90.7493
237 12.03.2024 90.6252
238 13.03.2024 90.8818
239 19.03.2024 91.9829
240 20.03.2024 92.2243
241 21.03.2024 92.6861
242 22.03.2024 91.9499
243 23.03.2024 92.6118
244 26.03.2024 92.7761

3756
data/ds_salaries.csv Normal file

File diff suppressed because it is too large Load Diff

21614
data/kc_house_data.csv Normal file

File diff suppressed because it is too large Load Diff

848
notebooks/lab1.ipynb Normal file

File diff suppressed because one or more lines are too long

89
notebooks/lab2_1.ipynb Normal file
View File

@ -0,0 +1,89 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Загрузка данных в DataFrame"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"../data/kc_house_data.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Получение сведений о пропущенных данных"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(df.isnull().sum())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(df.isnull().any())"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"for i in df.columns:\n",
" null_rate = df[i].isnull().sum() / len(df) * 100\n",
" if null_rate > 0:\n",
" print(f\"{i} процент пустых значений: {null_rate:.2f}%\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

89
notebooks/lab2_2.ipynb Normal file
View File

@ -0,0 +1,89 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Загрузка данных в DataFrame"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"../data/car_price_prediction.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Получение сведений о пропущенных данных"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(df.isnull().sum())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(df.isnull().any())"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"for i in df.columns:\n",
" null_rate = df[i].isnull().sum() / len(df) * 100\n",
" if null_rate > 0:\n",
" print(f\"{i} процент пустых значений: {null_rate:.2f}%\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

133
poetry.lock generated
View File

@ -467,6 +467,17 @@ files = [
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "cloudpickle"
version = "3.1.0"
description = "Pickler class to extend the standard pickle.Pickler functionality"
optional = false
python-versions = ">=3.8"
files = [
{file = "cloudpickle-3.1.0-py3-none-any.whl", hash = "sha256:fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e"},
{file = "cloudpickle-3.1.0.tar.gz", hash = "sha256:81a929b6e3c7335c863c771d673d105f02efdb89dfaba0c90495d1c64796601b"},
]
[[package]]
name = "colorama"
version = "0.4.6"
@ -675,6 +686,41 @@ files = [
[package.extras]
devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"]
[[package]]
name = "featuretools"
version = "1.31.0"
description = "a framework for automated feature engineering"
optional = false
python-versions = "<4,>=3.9"
files = [
{file = "featuretools-1.31.0-py3-none-any.whl", hash = "sha256:87c94e9ae959c89acd83da96bd2583f3ef0f6daaa9639cbb6e46dbde2c742a18"},
{file = "featuretools-1.31.0.tar.gz", hash = "sha256:01bfb17fcc1715b4c3623c7bc94a8982122c4a0fa03350ed478601bb81f90155"},
]
[package.dependencies]
cloudpickle = ">=1.5.0"
holidays = ">=0.17"
numpy = ">=1.25.0"
packaging = ">=20.0"
pandas = ">=2.0.0"
psutil = ">=5.7.0"
scipy = ">=1.10.0"
tqdm = ">=4.66.3"
woodwork = ">=0.28.0"
[package.extras]
autonormalize = ["autonormalize (>=2.0.1)"]
complete = ["featuretools[dask,nlp,premium]"]
dask = ["dask[dataframe] (>=2023.2.0)", "distributed (>=2023.2.0)"]
dev = ["black[jupyter] (>=23.1.0)", "featuretools[dask,docs,test]", "pre-commit (>=2.20.0)", "ruff (>=0.1.6)"]
docs = ["Sphinx (==5.1.1)", "autonormalize (>=2.0.1)", "click (>=7.0.0)", "featuretools[dask,test]", "ipython (==8.4.0)", "jupyter (==1.0.0)", "jupyter-client (>=8.0.2)", "matplotlib (==3.7.2)", "myst-parser (==0.18.0)", "nbconvert (==6.5.0)", "nbsphinx (==0.8.9)", "pydata-sphinx-theme (==0.9.0)", "sphinx-copybutton (==0.5.0)", "sphinx-inline-tabs (==2022.1.2b11)"]
nlp = ["nlp-primitives (>=2.12.0)"]
premium = ["premium-primitives (>=0.0.3)"]
sklearn = ["featuretools-sklearn-transformer (>=1.0.0)"]
sql = ["featuretools-sql (>=0.0.1)", "psycopg2-binary (>=2.9.3)"]
test = ["boto3 (>=1.34.32)", "composeml (>=0.8.0)", "graphviz (>=0.8.4)", "moto[all] (>=5.0.0)", "pip (>=23.3.0)", "pyarrow (>=14.0.1)", "pympler (>=0.8)", "pytest (>=7.1.2)", "pytest-cov (>=3.0.0)", "pytest-timeout (>=2.1.0)", "pytest-xdist (>=2.5.0)", "smart-open (>=5.0.0)", "urllib3 (>=1.26.18)"]
tsfresh = ["featuretools-tsfresh-primitives (>=1.0.0)"]
[[package]]
name = "flask"
version = "3.0.3"
@ -833,6 +879,20 @@ files = [
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "holidays"
version = "0.60"
description = "World Holidays Framework"
optional = false
python-versions = ">=3.9"
files = [
{file = "holidays-0.60-py3-none-any.whl", hash = "sha256:d857949c5ee35655215a10c5a26e6a856bdc3beccc4fbbc8debef98dfba17b82"},
{file = "holidays-0.60.tar.gz", hash = "sha256:495fc5123f5d92b92673237375eb8c15a03d21c647b089db509b7d9612267556"},
]
[package.dependencies]
python-dateutil = "*"
[[package]]
name = "httpcore"
version = "1.0.5"
@ -914,6 +974,25 @@ examples = ["keras (>=2.4.3)", "matplotlib (>=3.1.2)", "pandas (>=1.0.5)", "seab
optional = ["keras (>=2.4.3)", "pandas (>=1.0.5)", "tensorflow (>=2.4.3)"]
tests = ["black (>=23.3.0)", "flake8 (>=3.8.2)", "keras (>=2.4.3)", "mypy (>=1.3.0)", "pandas (>=1.0.5)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "tensorflow (>=2.4.3)"]
[[package]]
name = "importlib-resources"
version = "6.4.5"
description = "Read resources from Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "importlib_resources-6.4.5-py3-none-any.whl", hash = "sha256:ac29d5f956f01d5e4bb63102a5a19957f1b9175e45649977264a1416783bb717"},
{file = "importlib_resources-6.4.5.tar.gz", hash = "sha256:980862a1d16c9e147a59603677fa2aa5fd82b87f223b6cb870695bcfce830065"},
]
[package.extras]
check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"]
cover = ["pytest-cov"]
doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
enabler = ["pytest-enabler (>=2.2)"]
test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"]
type = ["pytest-mypy"]
[[package]]
name = "ipykernel"
version = "6.29.5"
@ -2708,6 +2787,11 @@ files = [
{file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd"},
{file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6"},
{file = "scikit_learn-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1"},
{file = "scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5"},
{file = "scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908"},
{file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3"},
{file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12"},
{file = "scikit_learn-1.5.2-cp313-cp313-win_amd64.whl", hash = "sha256:b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f"},
{file = "scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9"},
{file = "scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1"},
{file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8"},
@ -2939,6 +3023,27 @@ files = [
{file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"},
]
[[package]]
name = "tqdm"
version = "4.67.0"
description = "Fast, Extensible Progress Meter"
optional = false
python-versions = ">=3.7"
files = [
{file = "tqdm-4.67.0-py3-none-any.whl", hash = "sha256:0cd8af9d56911acab92182e88d763100d4788bdf421d251616040cc4d44863be"},
{file = "tqdm-4.67.0.tar.gz", hash = "sha256:fe5a6f95e6fe0b9755e9469b77b9c3cf850048224ecaa8293d7d2d31f97d869a"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[package.extras]
dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"]
discord = ["requests"]
notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "traitlets"
version = "5.14.3"
@ -3110,7 +3215,33 @@ files = [
{file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"},
]
[[package]]
name = "woodwork"
version = "0.31.0"
description = "a data typing library for machine learning"
optional = false
python-versions = "<4,>=3.9"
files = [
{file = "woodwork-0.31.0-py3-none-any.whl", hash = "sha256:5cb3370553b5f466f8c8599b1bf559584dc0b798cc1f2da26bbd7029d256c6f9"},
{file = "woodwork-0.31.0.tar.gz", hash = "sha256:6ef82af1d5b6525b02efe6417c574c810cfdcc606cb266bd0d7fb17a1d066b67"},
]
[package.dependencies]
importlib-resources = ">=5.10.0"
numpy = ">=1.25.0"
pandas = ">=2.0.0"
python-dateutil = ">=2.8.2"
scikit-learn = ">=1.1.0"
scipy = ">=1.10.0"
[package.extras]
complete = ["woodwork[updater]"]
dev = ["click (>=8.1.7)", "pre-commit (>=2.20.0)", "ruff (>=0.1.6)", "woodwork[docs,test]"]
docs = ["Sphinx (==5.1.1)", "ipython (==8.4.0)", "jupyter (==1.0.0)", "myst-parser (==0.18.0)", "nbconvert (==6.5.0)", "nbsphinx (==0.8.9)", "pyarrow (>=14.0.1)", "pydata-sphinx-theme (==0.9.0)", "sphinx-copybutton (==0.5.0)", "sphinx-inline-tabs (==2022.1.2b11)"]
test = ["boto3 (>=1.34.32)", "moto[all] (>=5.0.0)", "pyarrow (>=14.0.1)", "pytest (>=7.0.1)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=2.1.0)", "smart-open (>=5.0.0)"]
updater = ["alteryx-open-src-update-checker (>=3.1.0)"]
[metadata]
lock-version = "2.0"
python-versions = "^3.12"
content-hash = "a7e3d516bde2d6e4173d8a9770fb5337a0c806dadaeda355084b262c1995f7ea"
content-hash = "09433ce7624fd6af995c85e9e980c57cd417491975e280f0a844931df35e5085"

View File

@ -17,8 +17,12 @@ apiflask = "^2.2.0"
flask-cors = "^5.0.0"
scikit-learn = "^1.5.2"
imbalanced-learn = "^0.12.3"
featuretools = "^1.31.0"
[tool.poetry.group.dev.dependencies]
ipykernel = "^6.29.5"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"