MAI_PIbd-33_Tikhonenkov_A_E/backend/service.py
2024-11-22 22:56:37 +04:00

60 lines
2.1 KiB
Python

import io
import os
import pathlib
from typing import BinaryIO, Dict, List
import pandas as pd
from matplotlib.figure import Figure
from werkzeug.datastructures import FileStorage
from werkzeug.utils import secure_filename
class Service:
def __init__(self, dataset_path: str | None) -> None:
if dataset_path is None:
raise Exception("Dataset path is not defined")
self.__path: str = dataset_path
def __get_dataset(self, filename: str) -> pd.DataFrame:
full_file_name = os.path.join(self.__path, secure_filename(filename))
return pd.read_csv(full_file_name)
def upload_dataset(self, file: FileStorage) -> str:
if file.filename is None:
raise Exception("Dataset upload error")
file_name: str = file.filename
full_file_name = os.path.join(self.__path, secure_filename(file_name))
file.save(full_file_name)
return file_name
def get_all_datasets(self) -> List[str]:
return [file.name for file in pathlib.Path(self.__path).glob("*.csv")]
def get_dataset_info(self, filename) -> List[Dict]:
dataset = self.__get_dataset(filename)
dataset_info = []
for column in dataset.columns:
items = dataset[column].astype(str)
column_info = {
"name": column,
"datatype": dataset.dtypes[column],
"items": items,
}
dataset_info.append(column_info)
return dataset_info
def get_column_info(self, filename, column) -> Dict:
dataset = self.__get_dataset(filename)
datatype = dataset.dtypes[column]
items = sorted(dataset[column].astype(str).unique())
return {"datatype": datatype, "items": items}
def get_hist(self, filename, column) -> BinaryIO:
dataset = self.__get_dataset(filename)
bytes = io.BytesIO()
plot: Figure | None = dataset.plot.hist(column=[column], bins=80).get_figure()
if plot is None:
raise Exception("Can't create hist plot")
plot.savefig(bytes, dpi=300, format="png")
return bytes