2024-12-11 15:35:02 +04:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Бизнес-цель\n",
"Анализ ключевых факторов, влияющих на диабет. Предсказание вероятности развития диабета на основе медданных. Актуальность для планирвоания лечения.\n",
"1. Уровень давления(BloodPressure) и возраст(Age) - с возрастом артериальное давление может увеличиться, что является фактором риска для диабета.\n",
"2. Уровень инсулина(Insulin) и уровень глюкозы(Glucose) - уровень инсулина напрямую влияет на уровень с а х а р а в крови.\n",
"3. Индекс массы тела(BMI) и возраст(Age) - с повышением возраста зачастую увеличивается индекс массы тела.\n",
"4. Уровень глюкозы(Glucose) и индекс массы тела(BMI) - как индекс массы тела влияет на уровень глюкозы."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n",
"0 6 148 72 35 0 33.6 \n",
"1 1 85 66 29 0 26.6 \n",
"2 8 183 64 0 0 23.3 \n",
"3 1 89 66 23 94 28.1 \n",
"4 0 137 40 35 168 43.1 \n",
"\n",
" DiabetesPedigreeFunction Age Outcome \n",
"0 0.627 50 1 \n",
"1 0.351 31 0 \n",
"2 0.672 32 1 \n",
"3 0.167 21 0 \n",
"4 2.288 33 1 \n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.cluster.hierarchy import dendrogram, linkage, fcluster\n",
"from sklearn.cluster import KMeans\n",
"from sklearn.decomposition import PCA\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.metrics import silhouette_score\n",
"\n",
"df = pd.read_csv(\"data/diabetes.csv\")\n",
"df = df.head(1500)\n",
"print(df.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Очистка данных"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Glucose BloodPressure SkinThickness Insulin BMI Age Outcome\n",
"0 148 72 35 0 33.6 50 1\n",
"1 85 66 29 0 26.6 31 0\n",
"2 183 64 0 0 23.3 32 1\n",
"3 89 66 23 94 28.1 21 0\n",
"4 137 40 35 168 43.1 33 1\n"
]
}
],
"source": [
"df_cleaned = df.drop(columns=['Pregnancies', 'DiabetesPedigreeFunction'], errors='ignore').dropna()\n",
"print(df_cleaned.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Визуализация парных взаимодействий"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAASgCAYAAABWngGUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb9b0//pekoy1LtuVtJ3HiLMgw2QmQwd75lVFomZdCyyhlj3LhFrgUCoWywiijFMooo3BZ5duyobQkJGGFTJLYGd5TsqSjcaTz+8ORYtmyLclax349H48+aM45OudzzudY47w/789bJcuyDCIiIiIiIiIiIiIiohyiznYDiIiIiIiIiIiIiIiI+mMAg4iIiIiIiIiIiIiIcg4DGERERERERERERERElHMYwCAiIiIiIiIiIiIiopzDAAYREREREREREREREeUcBjCIiIiIiIiIiIiIiCjnMIBBREREREREREREREQ5hwEMIiIiIiIiIiIiIiLKOQxgEBERERERERERERFRzmEAg4goA8455xxMmzYt6n/z58/Hueeeiy+//DKy3eGHH45f//rXGWnT3r17MW3aNLz++utR/+77v+nTp2POnDk45ZRT8Le//S0j7VKi+vp6TJs2DYsWLYLf7892c4iIiIiI4rZq1SpMmzYt48c955xzcM4550T+PW3aNKxatSptx2tubsa9996LE088EXPmzMGcOXNw8skn44knnoAoilHbprstREQUPyHbDSAiGisOPPBA3HLLLQCAYDCIrq4u/PWvf8UFF1yA119/HVOmTMlyC3tdcsklWLFiBQBAlmW43W68+uqruOmmmyBJEn7yk59kt4E56LXXXkNNTQ127dqFf/zjH1i5cmW2m0REREREpCgvv/wyysrK0rLvNWvW4PLLL4fNZsOZZ56JadOmIRQKYc2aNXjsscfw3nvv4YUXXoBer0/L8YmIKHkMYBARZYjFYsFBBx0Utezggw/GkiVL8Prrr+OGG27ITsP6GT9+fMx2btmyBc888wwDGP0Eg0G88cYbOOOMM/D111/jpZdeYgCDiIiIiChB/X+DpEpnZyeuuuoqVFdX489//jNMJlNk3SGHHIIjjjgCP/3pT/Hss8/iF7/4RVraQEREyeMUUkREWWQ0GqHX66FSqWKu7+npwe9+9zsceeSRmDVrFk488cQBUzkFg0G88MILOOmkkzB79mysWLEC9957L3w+X9R27733HlauXInZs2fj5JNPxpYtW+Jup1qtxgEHHIDGxkYA+6eb+vOf/4xjjz0WtbW1eO211wAA27Ztw0UXXYS5c+di7ty5+OUvf4k9e/ZE7e/ZZ5/Fsccei1mzZmHp0qW49dZb4XK5Iuv//e9/4/TTT8ecOXOwYMECXHLJJdixY0dkfayptl5//XVMmzYNe/fuBdCbCn/UUUfh4YcfxsKFC3HooYfC4XAAAF599VWccMIJmDlzJlasWIFVq1YhGAzGfT36+vzzz9Ha2ooVK1Zg5cqVWL9+PbZv3z5gux07duDnP/855s6di4MPPhj3338/brzxxqi0+VAohCeeeAJHHXUUZs6ciWOOOQbPPfdcUu0iIiIiIkrU66+/jgMPPBDffvstzjjjDMyaNQuHHXYY/vSnP0Vt984770R+WyxevBjXXnstWlpaIutjTcE03FRVfV+zZs0aTJs2DV988QV+9rOfoba2FocccgjuueeehL+3v/jii+jo6MBvf/vbqOBFWG1tLc4777yY64CBvzPC+v8m8fv9eOCBB3DEEUdg9uzZOPHEE/F///d/Ua959913ccopp2DOnDk45JBD8Jvf/CbyGwUAvF4vbr31VixbtgwzZ87EscceO+Dad3d34ze/+Q0OPvhgzJo1C6effjq++OKLhK4JEZGSMAODiChDZFmGJEmR/9/d3Y1nn30Wfr8fp5566oDtvV4vzjzzTHR0dODyyy9HZWUlPvjgA9x0001ob2/HxRdfDAD4zW9+gzfffBM///nPMX/+fGzatAmPPPIINm/ejKeeegoqlQofffQRLr/8cpx00km47rrrsHnzZlx33XUJtb+urg7jx4+PWrZq1SrcdNNNsFgsqK2tRV1dHX7yk59g0qRJuPvuuyFJEh577DH89Kc/xZtvvgm73Y533nkH99xzD2644QZMmzYNO3fuxN133w1RFHH33Xdjz549uPTSS3Hqqafi6quvhtPpxH333Ydf/OIXeP/996FWxx97b2xsxKeffor7778f3d3dsNlsePzxx3H//ffj7LPPxo033ojNmzdj1apVaGpqwp133pnQNQF6p4+aMmUKZs6ciZqaGtx222146aWXcPPNN0e26ezsxNlnnw273Y7f/e53CAaDePDBB9HY2Bg10uzWW2/F66+/josuughz5szB2rVrceedd8LpdOKXv/xlwm0jIiIiIkpUKBTClVdeif/6r//ClVdeib/97W/4/e9/j6lTp2Lp0qVYv349rr/+elx66aVYsGABmpubcc899+Caa67B888/n9K2XHvttTjzzDPx85//HJ988gmeeuopjBs3LqGs8A8//BDTpk0bcsreVGTDX3vttfj0009xySWXoLa2Fp9++il+/etfQ6vV4sQTT8Sjjz6Khx56CGeeeSauuuoq7NmzBw8++CC++eYbvPLKKzAYDLjzzjvx+eef44YbbkBRURE+++wz/P73v0d+fj5OPfVU+Hw+nHfeeWhvb8dVV12FkpISvPbaa7jwwgvx1FNPYcmSJSM+DyKiXMMABhFRhqxduxYzZswYsPzqq69GTU3NgOWvv/46tm3bhpdeeglz5swBACxduhSSJOHRRx/FT37yE7S3t+Nvf/sbrrnmmki68yGHHIKSkhJcf/31+Oyzz7B8+XI88sgjmD17Nu65557IfgDgD3/4w4DjhkKhSKAlFAqhpaUFzz33HLZs2YJbb701atvjjjsuKvhyzTXXwGg04plnnoHFYgEALFmyBEceeSSeeuop3HDDDfjyyy9RVVWFs846C2q1GgsXLoTJZIqMPPruu+/g9Xpx0UUXobS0FABQVlaGDz/8EB6PJ7LfeEiShBtuuAHz588H0JvR8uijj+KMM86IBBgOPfRQ5Ofn4+abb8b555+fUC2Srq4ufPTRR7j66qsB9GbUHH/88XjzzTcj1wIAnnvuObjdbrzxxhuRc6qtrcUxxxwT2VddXR1eeeUVXH311ZG+PPTQQ6FSqfD444/jzDPPREFBQdxtIyIiIiJKhizLuPTSS/HjH/8YADBv3jy8//77+OSTTyIBDIPBgF/84hfQ6XQAgPz8fGzYsAGyLA+aXZ6MH//4x5GBPEuWLMEHH3yATz75JKEAxu7du3HIIYcMWB7+zdOXICT3mGzbtm345z//if/+7//GeeedF2lvQ0MD1qxZg6VLl+Kxxx7D6aefjt/85jeR102dOhVnnXUWXnvtNZx11ln48ssvccghh+CEE04AACxatAgmkwl2ux0A8Oabb2LLli145ZVXUFtbCwBYtmwZzjnnHNx7772RrHgiotGEAQwiogyZMWMGbrvtNgC9PwqcTic+++wz3H///fB4PLjqqquitv/yyy9RWVkZCV6ErVy5En/729/w7bffoqGhAQAiX3DDTjjhBNx4441Ys2YNFi1ahI0bN+KKK66I2ua4446LGcC46aabcNNNN0Uty8vLwyWXXIIzzjgjavkBBxwQ9e/Vq1dj4cKFMBgMkR8EFosF8+fPx3/+8x8AwOLFi/Hyyy/jlFNOwZFHHonly5fjpJNOivzQqa2thV6vx2mnnYZjjz0Wy5Ytw6JFizB79uxBruzQ+rbx66+/htfrxeGHHx71g+Xwww8H0Dt1VSIBjLfeegvBYBArVqyA0+kEABx11FF49dVX8e6770aCO6tXr8acOXMiwQsAA/p29erVkGU5Ztsee+wxrF+/HkceeWSCZ09ERERElLi+31N1Oh0KCwvh8XgAAAsWLMD999+PE088EccccwyWL1+OQw89FMuXL09rO4DegU3hdsQrFAoNWCZJUszBZVu3bk2sgfusX78eAHD00UdHLQ9
"text/plain": [
"<Figure size 1600x1200 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sns.set(style=\"whitegrid\")\n",
"\n",
"plt.figure(figsize=(16, 12))\n",
"\n",
"# Визуализация взаимосвязи уровня давления и возраста\n",
"plt.subplot(2, 2, 1)\n",
"sns.scatterplot(x=df_cleaned['BloodPressure'], y=df_cleaned['Age'], alpha=0.6)\n",
"plt.title('BloodPressure_Age')\n",
"\n",
"# Визуализация взаимосвязи уровня инсулина и уровня глюкозы\n",
"plt.subplot(2, 2, 2)\n",
"sns.scatterplot(x=df_cleaned['Insulin'], y=df_cleaned['Glucose'], alpha=0.6)\n",
"plt.title('Insulin_Glucose')\n",
"\n",
"# Визуализация взаимосвязи индекса массы тела и возраста\n",
"plt.subplot(2, 2, 3)\n",
"sns.scatterplot(x=df_cleaned['BMI'], y=df_cleaned['Age'], alpha=0.6)\n",
"plt.title('BMI_Age')\n",
"\n",
"# Визуализация взаимосвязи уровня глюкозы и индекса массы тела\n",
"plt.subplot(2, 2, 4)\n",
"sns.scatterplot(x=df_cleaned['Glucose'], y=df_cleaned['BMI'], alpha=0.6)\n",
"plt.title('Glucose_BMI')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Стандартизация данных для кластеризации"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"scaler = StandardScaler()\n",
"data_scaled = scaler.fit_transform(df_cleaned)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Агломеративная (иерархическая) кластеризация"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAJxCAYAAABMnFMWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQhklEQVR4nOzdeZxT1fnH8W8myewrszEMMOybyCKiUhUUELViLdRaq1K19eeGS12qVuu+1oKKola6qCDuULV1R6zaiii44I6I7DvDLCwzyST39wfNJckkmZtMZpIwn/fr5cshy70n99wk98lzznNshmEYAgAAAAC0KC3RDQAAAACAVEEABQAAAAAWEUABAAAAgEUEUAAAAABgEQEUAAAAAFhEAAUAAAAAFhFAAQAAAIBFBFAAAAAAYBEBFAAAAABYRAAFwJJrrrlG/fv3D/nfNddck+jmAfBTW1urESNGaNmyZaqtrdUFF1ygv//974luFgDsFxyJbgCA1FFaWqqZM2cG3HbRRRclqDUAwikoKNDZZ5+tU045RYZhqH///vrjH/+Y6GYBwH6BAAqAJR6PR9nZ2Ro2bFjA7enp6YlpEICILrroIp166qmqq6tTVVWV7HZ7opsEAPsFhvABsKSpqUmZmZmWHrtkyRKdccYZGjp0qA455BBdffXVqq6uNu+fP3+++vfvr3Xr1gU8b+zYsQHDAd1ud9hhg8Hb+uyzzzRp0iQNGTJEJ554ol577bWAbdfX1+vOO+/U+PHjdeCBB2rixIl6/vnnm+0/eD/r1q3TlClTdM011+jPf/6zfvSjH2nEiBG68MILtX79+oDnL1iwQKeddpqGDx+uwYMH67jjjtPcuXPN+xcvXmxud+nSpQHPfeKJJ9S/f3+NHTu2WXv+8Ic/BDy2trZWgwcPVv/+/bV48WLL+w/nueee0+TJkzVs2DANGTJEJ510kl599dVmxzjUsM1w/TNlypSAfbzyyiuaPHmyhg8frsMPP1w33HCDamtrzfsfeOAB9e/fX8OHD5fL5Qp47iWXXNJsqGhjY6PuvvtujRkzRoMHD9aJJ56oV155JeB5Y8eO1b333qs77rhDI0eO1KGHHqqrrrpKNTU1ll9/pKGr8+fPN/vUvx+2b9+ugw8+OGRf9u/fXwMGDNDIkSN18cUXa8eOHeZj+vfvrwceeCCgbb7jEsuxlKSSkhL16tVL77//fovDbYP39fLLL2vkyJGaPn26pMDzN/g//3Z/8803uuiii3TYYYfpgAMO0JFHHqnbbrtNDQ0N5mNcLpfuu+8+jRs3TkOGDNHEiRP1j3/8w9Ixl6QNGzbo8ssv1yGHHKKhQ4fqzDPP1FdffWVuf926derfv79efvllnX/++Ro6dKiOOuooPfjgg/J6vQH9EnxMLr/88oA+NQxDM2bM0JFHHqkRI0bo/PPP18aNG83HezwezZo1SxMnTtSQIUM0bNgwnXrqqfrggw8i9qPUvM+D/20Yhk499dSAz8trrrkm4NySpKeffjrk+QOgbZCBAmDJnj17VFBQ0OLjPvroI5199tk67LDDdN9996m2tlYzZszQr371Kz3//POWgzBp70WyJD388MPq1KmTpL0Xu8GBjySdd955OuOMM3TZZZfp+eef129/+1s98sgjGjNmjBoaGnTaaadp+/btuuSSS1RZWakFCxbouuuu07Zt23T++eeb2xkzZowuvPBC899lZWWSpLfeektFRUX6wx/+IK/Xq+nTp2vKlCl6+eWXlZWVpX//+9+aOnWqfvWrX+niiy9WQ0ODnnzySd1yyy0aPHiwhg4dam4zJydHCxcu1IgRI8zbXnnlFaWlNf9NKycnR//+979lGIZsNpsk6Y033pDH4wl4XDT79zd37lzddtttuvjiizVixAjV1tbqL3/5i6688koNHz5cnTt3Nh87c+ZMlZaWSpLZH5J08skn6+c//7n575tvvjlgHw899JDuv/9+nXbaabrsssu0du1azZgxQ59++qmeffbZgHPCZrNp0aJFGjNmjCRp165deueddwKOjWEYmjp1qj7++GNdcskl6t27t958801ddtllcrlc+ulPf2o+9sknn1RVVZXuvPNOVVdXa/r06Vq9erWefvpp2Wy2Fl//hRdeqFNPPVXS3ozOoEGDzPOje/fu+u6775od0+nTp6u+vl75+fkBt/vOLbfbre+//1533323br/9dk2bNi1k34QSzbH0cbvduuOOOyzvQ5IaGhp0yy236JxzztGJJ54YcN8NN9ygAw44wPz3L37xC/PvLVu26PTTT9ewYcN01113KT09Xe+++64effRRlZWV6dxzz5UkXXnllXrnnXd0wQUXaOjQoXrnnXd0zTXXyOl0tnjMq6urdeqppyorK0vXX3+9srKy9Pjjj+v000/X888/r969e5vtuemmmzRmzBg98MADWrp0qWbOnKndu3frd7/7XcjXvWTJEr388ssBtz322GN65JFHdNVVV6lnz5666667dOmll+rZZ5+VJE2bNk1PPfWUrrjiCvXv31+bN2/Wgw8+qEsvvVT//ve/lZWVFdWx9/fiiy/qk08+ifiY2tpa3XfffTHvA0D0CKAAWFJTU2MGE5FMnz5dPXv21COPPGIOGRo6dKhOOOEEzZs3T6effrrlfe7evVuSNHz4cBUVFUmS3nvvvZCPnTJliqZOnSpJOvLIIzVp0iQ9+OCDGjNmjObPn6/ly5fr6aef1vDhw83HNDU16aGHHtKpp56qwsJCSXsDg+BhitLeAHL+/Pnq1q2bJKlXr16aNGmSXnjhBf3yl7/UihUrNGnSJF133XXmc4YPH65DDz1UixcvDghgRo8erbfeesu8iNu0aZM++eQTHXzwwc2yWqNGjdI777yjzz77zGzXq6++qpEjRwZkPaLZv7+1a9fqN7/5TUDQWFlZqcmTJ2vp0qU64YQTzNsHDhyorl27NttG586dA45Zbm6u+Xdtba0efvhhnXLKKbrhhhvM2/v166fTTz+92TnhOza+AGrhwoUqLS0NyBq8//77eu+993Tvvffqxz/+saS9/blnzx5NmzZNEydOlMOx9+stLS1Njz76qPLy8iTt7d+pU6fqvffe0+jRoy29/u7du0vaO1w13Pnh8/nnn+vFF1/UwIEDVVdXF3Cf/3NHjhyp999/X19++WXYbQWL9lj6zJkzR7t371ZJSYnlff3rX/+S0+nUOeec02zoX58+fcIeg+XLl2vgwIGaMWOGeR786Ec/0n//+18tXrxY5557rpYvX67XX39d1157rc4880xJe8/z9evXa/HixZo4cWLEY37vvfeqpqZGTz31lCorKyXtPW9+/OMfa8aMGbr//vvNxx5wwAFmgDp69Gjt3r1bjz/+uC644IKA81SSvF6vbrvtNh1wwAEB/bJ7925deOGFOuussyTtzW7dcsstqqurU35+vrZs2aLLLrssIOuakZGhiy++WN9++23E8yWSXbt2adq0ac3aE+z+++9Xly5dArKZANoWQ/gAWLJlyxaVl5dHfMyePXv02WefacyYMTIMQ01NTWpqalK3bt3Uu3dv/fe//w14vNfrNR/T1NTUbHubNm1SWlpaswudUCZNmmT+bbPZdMwxx2jZsmVqaGjQhx9+qMrKSjN48vnJT36ixsZGffbZZy1u/6CDDjKDJ0kaNGiQunXrpo8++kiSdM455+iuu+7Srl279MUXX+iVV17RI488IknNhqSNHTtWq1at0sqVKyVJr732moYOHWpeDPrLy8vTIYccorfeekuSVF1drcWLFwcENtHu398111yjK6+8UnV1dfr000/14osvmsP+Ij3Pqk8//VQul0sTJ04MuP3ggw9WZWWlPvzww4Dbx40bp4ULF8owDEl7M3O+IMln0aJFstlsGjNmTMD5M3bsWG3dujUgKzR27FgzePL92+FwmP0Wz9dvGIZuu+02nXzyyRowYEDI+5uamuRyubRs2TItXbpUgwcPDnhM8HvCP3CM9lhK0rZt2/Tggw/q6quvVkZGhqXXsXnzZv3lL3/RaaedFvW8qSOOOEJPPPGEMjIytGLFCr311lt
"text/plain": [
"<Figure size 1000x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 4 15 6 15 2 15 2 14 1 17 8 6 7 1 3 13 4 6 10 2 12 8 6 2\n",
" 3 2 6 15 7 8 7 3 15 15 10 10 8 2 2 4 12 8 7 3 8 4 15 15\n",
" 2 16 15 15 15 3 12 15 3 10 8 10 16 6 15 11 6 10 2 8 15 11 2 11\n",
" 6 12 10 9 8 10 13 15 15 16 10 15 6 10 10 10 4 15 15 11 10 5 11 12\n",
" 10 15 15 4 6 15 8 15 8 11 8 12 10 2 3 1 10 8 3 5 6 8 15 15\n",
" 4 10 10 7 6 2 10 10 2 5 3 6 3 10 15 11 10 15 8 12 7 10 15 6\n",
" 12 17 10 10 7 15 12 8 3 1 6 4 15 15 15 4 12 10 12 15 6 2 11 15\n",
" 15 15 6 2 14 10 15 3 8 4 8 6 15 11 9 15 8 4 1 4 4 3 15 10\n",
" 6 13 15 4 15 2 2 3 15 8 15 15 12 15 3 6 10 4 15 10 12 4 2 4\n",
" 2 10 2 6 1 5 14 7 15 10 8 4 1 10 6 4 15 8 15 6 3 4 4 15\n",
" 15 10 6 2 12 5 8 1 12 15 8 8 15 10 2 2 10 15 11 3 12 13 10 7\n",
" 6 10 13 10 15 13 2 15 8 10 8 10 2 15 7 11 6 12 11 5 5 7 1 4\n",
" 15 10 10 2 4 2 7 12 3 11 2 7 13 2 10 6 8 10 3 11 2 2 15 10\n",
" 3 15 2 11 15 6 10 5 11 2 2 3 10 11 2 8 4 10 7 10 13 8 15 12\n",
" 14 6 3 6 11 10 9 8 8 12 15 14 15 9 8 8 10 15 8 5 2 13 10 3\n",
" 3 7 7 5 12 10 6 15 15 3 1 17 10 10 10 4 15 10 6 10 10 15 11 15\n",
" 11 15 2 2 3 10 10 6 11 15 6 11 10 2 15 4 6 7 4 10 6 10 6 15\n",
" 6 1 10 11 12 11 2 1 15 4 15 2 12 15 10 15 4 3 16 3 12 2 14 10\n",
" 15 8 15 13 12 8 15 8 4 10 11 6 2 4 15 10 2 11 15 6 10 14 10 4\n",
" 7 10 4 7 7 15 10 10 8 15 15 10 13 12 10 10 10 7 15 7 4 15 10 7\n",
" 3 10 15 10 13 4 1 12 15 7 10 10 10 2 16 7 15 15 3 12 11 10 9 10\n",
" 10 8 4 11 15 7 2 11 7 15 15 3 3 8 8 7 15 11 16 6 15 15 15 11\n",
" 11 15 15 8 10 14 10 13 8 7 12 4 4 2 2 10 10 3 3 11 12 12 15 10\n",
" 7 15 10 10 10 7 10 8 6 3 10 15 8 15 10 10 12 2 8 8 15 11 12 10\n",
" 15 6 8 4 4 15 7 8 1 15 6 15 3 14 2 12 6 15 12 3 8 14 6 15\n",
" 15 14 10 3 13 10 3 15 12 11 15 3 3 10 3 15 8 15 2 13 12 15 8 10\n",
" 15 10 15 8 8 15 6 10 15 11 15 6 8 15 4 15 15 8 5 14 11 1 3 4\n",
" 3 15 15 11 10 15 10 1 15 12 8 2 7 4 3 4 2 12 5 2 10 12 12 15\n",
" 10 12 7 6 5 8 6 11 15 4 10 6 17 11 15 15 11 4 15 6 10 4 15 1\n",
" 3 14 11 8 11 2 4 14 11 10 16 11 5 2 11 10 2 11 15 3 3 7 10 2\n",
" 10 10 3 12 8 10 11 11 8 15 2 6 4 15 7 10 11 10 11 6 4 15 15 5\n",
" 12 10 4 10 3 5 6 10 15 1 4 4 12 6 8 5 15 4 15 12 10 11 6 10]\n"
]
}
],
"source": [
"linkage_matrix = linkage(data_scaled, method='ward')\n",
"plt.figure(figsize=(10, 7))\n",
"dendrogram(linkage_matrix)\n",
"plt.title('Дендрограмма агломеративной кластеризации')\n",
"plt.xlabel('Индекс образца')\n",
"plt.ylabel('Расстояние')\n",
"plt.show()\n",
"\n",
"# Получение результатов кластеризации с заданным порогом\n",
"result = fcluster(linkage_matrix, t=10, criterion='distance')\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Визуализация распределения кластеров"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAASgCAYAAABWngGUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wc1dXw8d/sbC/SqnfJtlzkJiHcAWPjQOgklAChpZAHEiCElgQCb0geHkgIJCShJJQQCIQOoQdCJwZsY+MCuNuyrd779pl5/xBaey3JVdKu5PP9JB+subM7Z2dmy9wz9x7FMAwDIYQQQgghhBBCCCGEEEKIBGKKdwBCCCGEEEIIIYQQQgghhBC7kwSGEEIIIYQQQgghhBBCCCESjiQwhBBCCCGEEEIIIYQQQgiRcCSBIYQQQgghhBBCCCGEEEKIhCMJDCGEEEIIIYQQQgghhBBCJBxJYAghhBBCCCGEEEIIIYQQIuFIAkMIIYQQQgghhBBCCCGEEAlHEhhCCCGEEEIIIYQQQgghhEg4ksAQQgghhBBCCCGEEEIIIUTCkQSGEEIMgwsvvJBJkybF/H/mzJlcdNFFLFu2LLreokWLuP7664clpqqqKiZNmsQLL7wQ8/eu/y8pKaG8vJwzzjiD5557bljiGom2bdvGpEmTmDNnDqFQKN7hCCGEEEIIsc/uvvtuJk2aNOzbvfDCC7nwwgujf0+aNIm77757yLZXV1fHnXfeySmnnEJ5eTnl5eWcfvrpPPDAA/j9/ph1hzoWIYQQ+84c7wCEEOJQMWXKFG6++WYANE2jtbWVJ598kosvvpgXXniBCRMmxDnCHj/60Y9YuHAhAIZh0N3dzbPPPsuNN95IJBLh3HPPjW+ACej555+nuLiY7du388Ybb3DaaafFOyQhhBBCCCFGlKeffprs7Owhee6lS5dy5ZVXkpyczHnnncekSZPQdZ2lS5fyl7/8hf/85z/885//xGazDcn2hRBCHDhJYAghxDBxu90cdthhMcuOOOII5s2bxwsvvMDPf/7z+AS2m8LCwn7jXL9+PY888ogkMHajaRovvvgi55xzDitXruSpp56SBIYQQgghhBD7afdrkMHS0tLC1VdfzZgxY/j73/+O0+mMth155JF87Wtf49vf/jaPPvool1xyyZDEIIQQ4sDJFFJCCBFHDocDm82Goij9tnd2dvKb3/yGY489lunTp3PKKaf0mcpJ0zT++c9/cuqpp1JaWsrChQu58847CQaDMev95z//4bTTTqO0tJTTTz+d9evX73OcJpOJyZMnU1NTA+ycburvf/87J5xwAmVlZTz//PMAbNy4kUsvvZTDDz+cww8/nMsvv5zKysqY53v00Uc54YQTmD59OvPnz+dXv/oVXV1d0faPPvqIs88+m/LycmbNmsWPfvQjtmzZEm3vb6qtF154gUmTJlFVVQX0DIU/7rjjuOeee5g9ezZHHXUU7e3tADz77LOcfPLJTJs2jYULF3L33Xejado+749dLV68mIaGBhYuXMhpp53GihUr2Lx5c5/1tmzZwv/8z/9w+OGHc8QRR3DXXXdxww03xAyb13WdBx54gOOOO45p06Zx/PHH89hjjx1QXEIIIYQQQuyvF154gSlTprB69WrOOeccpk+fzjHHHMPf/va3mPVeffXV6LXF3Llzue6666ivr4+29zcF096mqtr1MUuXLmXSpEl88sknfP/736esrIwjjzySO+64Y79/tz/xxBM0Nzfzf//3fzHJi15lZWV85zvf6bcN+l5n9Nr9miQUCvHHP/6Rr33ta5SWlnLKKafwr3/9K+Yxr7/+OmeccQbl5eUceeSR/PKXv4xeowAEAgF+9atfcfTRRzNt2jROOOGEPvu+ra2NX/7ylxxxxBFMnz6ds88+m08++WS/9okQQowkMgJDCCGGiWEYRCKR6L/b2tp49NFHCYVCnHnmmX3WDwQCnHfeeTQ3N3PllVeSl5fH22+/zY033khTUxM//OEPAfjlL3/JSy+9xP/8z/8wc+ZM1q5dy7333su6det46KGHUBSFd999lyuvvJJTTz2Vn/70p6xbt46f/vSn+xV/RUUFhYWFMcvuvvtubrzxRtxuN2VlZVRUVHDuuecybtw4br/9diKRCH/5y1/49re/zUsvvURaWhqvvvoqd9xxBz//+c+ZNGkSW7du5fbbb8fv93P77bdTWVnJZZddxplnnsk111xDR0cHf/jDH7jkkkt46623MJn2PfdeU1PDBx98wF133UVbWxvJycncf//93HXXXVxwwQXccMMNrFu3jrvvvpva2lpuu+22/don0DN91IQJE5g2bRrFxcX8+te/5qmnnuKmm26KrtPS0sIFF1xAWloav/nNb9A0jT/96U/U1NTE3Gn2q1/9ihdeeIFLL72U8vJyPv30U2677TY6Ojq4/PLL9zs2IYQQQggh9peu61x11VV897vf5aqrruK5557jd7/7HRMnTmT+/PmsWLGCn/3sZ1x22WXMmjWLuro67rjjDq699loef/zxQY3luuuu47zzzuN//ud/eP/993nooYcoKCjYr1Hh77zzDpMmTdrjlL2DMRr+uuuu44MPPuBHP/oRZWVlfPDBB1x//fVYLBZOOeUU7rvvPv785z9z3nnncfXVV1NZWcmf/vQnVq1axTPPPIPdbue2225j8eLF/PznPyc9PZ0PP/yQ3/3ud3i9Xs4880yCwSDf+c53aGpq4uqrryYzM5Pnn3+eH/zgBzz00EPMmzfvoF+HEEIkGklgCCHEMPn000+ZOnVqn+XXXHMNxcXFfZa/8MILbNy4kaeeeory8nIA5s+fTyQS4b777uPcc8+lqamJ5557jmuvvTY63PnII48kMzOTn/3sZ3z44YcsWLCAe++9l9LSUu64447o8wD8/ve/77NdXdejiRZd16mvr+exxx5j/fr1/OpXv4pZ98QTT4xJvlx77bU4HA4eeeQR3G43APPmzePYY4/loYce4uc//znLli0jPz+f888/H5PJxOzZs3E6ndE7j9asWUMgEODSSy8lKysLgOzsbN555x18Pl/0efdFJBLh5z//OTNnzgR6RrTcd999nHPOOdEEw1FHHYXX6+Wmm27ie9/73n7VImltbeXdd9/lmmuuAXpG1Jx00km89NJL0X0B8Nhjj9Hd3c2LL74YfU1lZWUcf/zx0eeqqKjgmWee4Zprrokey6OOOgpFUbj//vs577zzSElJ2efYhBBCCCGEOBCGYXDZZZfxrW99C4AZM2bw1ltv8f7770cTGHa7nUsuuQSr1QqA1+vl888/xzCMAUeXH4hvfetb0Rt55s2bx9tvv83777+/XwmMHTt2cOSRR/ZZ3nvNsyuz+cC6yTZu3Mibb77JL37xC77zne9E462urmbp0qXMnz+fv/zlL5x99tn88pe/jD5u4sSJnH/++Tz//POcf/75LFu2jCOPPJKTTz4ZgDlz5uB0OklLSwPgpZdeYv369TzzzDOUlZUBcPTRR3PhhRdy5513RkfFCyHEaCIJDCGEGCZTp07l17/+NdBzUdDR0cGHH37IXXfdhc/n4+qrr45Zf9myZeTl5UWTF71OO+00nnvuOVavXk11dTVA9Adur5NPPpkbbriBpUuXMmfOHL788kt+8pOfxKxz4okn9pvAuPHGG7nxxhtjlnk8Hn70ox9xzjnnxCyfPHlyzN9Llixh9uzZ2O326AWB2+1m5syZfPzxxwDMnTuXp59+mjPOOINjjz2WBQsWcOqpp0YvdMrKyrDZbJx11lmccMIJHH300cyZM4fS0tIB9uye7RrjypUrCQQCLFq0KOaCZdGiRUDP1FX7k8B4+eWX0TSNhQsX0tHRAcBxxx3Hs88+y+uvvx5N7ixZsoTy8vJo8gLoc2yXLFmCYRj9xvaXv/yFFStWcOyxx+7nqxdCCCGEEGL/7fo71Wq1kpqais/nA2DWrFncddddnHLKKRx//PEsWLCAo446igULFgxpHNBzY1NvHPtK1/U+yyKRSL83l23YsGH/AvzKihUrAPj6178es7x3SqwPPviAUCjEKaecEtM+c+Z
"text/plain": [
"<Figure size 1600x1200 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sns.set(style=\"whitegrid\")\n",
"\n",
"plt.figure(figsize=(16, 12))\n",
"\n",
"# Визуализация взаимосвязи уровня давления и возраста\n",
"plt.subplot(2, 2, 1)\n",
"sns.scatterplot(x=df_cleaned['BloodPressure'], y=df_cleaned['Age'], hue=df_cleaned['Outcome'], palette='Set1', alpha=0.6)\n",
"plt.title('BloodPressure_Age')\n",
"\n",
"# Визуализация взаимосвязи уровня инсулина и уровня глюкозы\n",
"plt.subplot(2, 2, 2)\n",
"sns.scatterplot(x=df_cleaned['Insulin'], y=df_cleaned['Glucose'], hue=df_cleaned['Outcome'], palette='Set1', alpha=0.6)\n",
"plt.title('Insulin_Glucose')\n",
"\n",
"# Визуализация взаимосвязи индекса массы тела и возраста\n",
"plt.subplot(2, 2, 3)\n",
"sns.scatterplot(x=df_cleaned['BMI'], y=df_cleaned['Age'], hue=df_cleaned['Outcome'], palette='Set1', alpha=0.6)\n",
"plt.title('BMI_Age')\n",
"\n",
"# Визуализация взаимосвязи уровня глюкозы и индекса массы тела\n",
"plt.subplot(2, 2, 4)\n",
"sns.scatterplot(x=df_cleaned['Glucose'], y=df_cleaned['BMI'], hue=df_cleaned['Outcome'], palette='Set1', alpha=0.6)\n",
"plt.title('Glucose_BMI')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## KMeans (неиерархическая кластеризация) для сравнения"
]
},
{
"cell_type": "code",
2024-12-11 15:47:49 +04:00
"execution_count": 24,
2024-12-11 15:35:02 +04:00
"metadata": {},
2024-12-11 15:47:49 +04:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Центры кластеров:\n",
" [[103.03726708 33.13167702 72.86335404 29.18322981]\n",
" [105.31168831 25.04350649 45.6038961 25.57792208]\n",
" [136.91472868 29.89457364 78.20155039 53.64341085]\n",
" [158.21472393 37.96809816 76.68711656 32.34969325]]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABi8AAASgCAYAAACAO9vxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVfo/8M+901tmkknvJCGhhyJFERAsKGJb2dVdlAVRUexl1f25rrKKuq69Ioh9FXXdRb92UewUQVCQUJNAem+T6TP390fMwJCZAMmUJHze+/IFuefOPU/OzCz3nOeecwRJkiQQERERERERERERERH1EWK0AyAiIiIiIiIiIiIiIjoUkxdERERERERERERERNSnMHlBRERERERERERERER9CpMXRERERERERERERETUpzB5QUREREREREREREREfQqTF0RERERERERERERE1KcweUFERERERERERERERH0KkxdERERERERERERERNSnMHlBRER+JEmKdghERERERDQAsG9BRES9weQFEUXdpZdeiksvvbTLcYvFgj/84Q8YMWIE1qxZ4zu3oKAAF198cdDr3XTTTSgoKMAdd9wRtpjDxeFw4OWXX8aFF16IcePGYcKECbj44ouxevVqvxv/p556CgUFBSGt2+l04v7778f//d//heR6wd7XSPvkk09w5ZVXYsqUKRgxYgROPvlk3HDDDfjll1/8zgtHmw5Ene106H+jR4/Geeedh1WrVvmd+9///td3TklJScDrffPNN75zOm3YsAEFBQXYsGFDWH8XIiIiGnjYtziIfYvQY98iPL7//nsUFBTgnHPOiXYoRNTHyKMdABFRIBaLBZdffjl27tyJZ555BtOmTfOViaKIrVu3orq6GsnJyX6vs1qtWLt2baTDDYn6+npcfvnlqKqqwqWXXopRo0bB6/Vi7dq1uOOOO7Bp0ybce++9EAQhLPXX1tbilVdewQMPPBCS6919990huU5Pud1u3HLLLfj8889x7rnn4q677kJsbCwqKyvx9ttv4+KLL8bDDz+MWbNmRTXO/uqtt94CAHi9XlgsFnzzzTe4++67IZPJ8Pvf/97vXFEU8cknn+Dqq6/ucp2PPvooIvESERHR8Yt9C/Yteot9i/B69913kZ+fj927d2Pz5s0YN25ctEMioj6CyQsi6nM6OxdFRUV47rnnMHnyZL/yYcOGYe/evfjkk08wf/58v7K1a9dCo9EgJiYmghGHxu23347q6mq89dZbyM7O9h0/5ZRTkJqaikcffRTTp0/HqaeeGr0gj0FeXl5U61+2bBk++eQTPPnkk5g5c6Zf2TnnnINrrrkGS5YswYwZM6BWq6MUZf81evRov5+nTp2KnTt3YtWqVV2SF2PHjsXHH3/cJXnhdDqxZs0aDB06FEVFReEOmYiIiI5D7FuwbxEK7FuET2trK9asWYMlS5bg+eefx6pVq5i8ICIfLhtFRH1Ke3s7rrjiCuzatQvLly/v0rkAAK1Wi2nTpuGTTz7pUvbRRx9h5syZkMv9c7NerxfLly/H6aefjhEjRmDmzJl47bXX/M7xeDxYvnw5Zs+ejVGjRmH06NG4+OKLsX79et85Tz31FE4//XR89dVXOOecc3zXWr16td+1XnnlFZx55pkYOXIkpkyZgnvuuQcWiyXo711UVITvvvsOCxcu9OtcdJo/fz7mzp0LrVYb8PUzZszoMpW9c8me8vJyAIDdbsc999yDqVOnYsSIETjzzDOxcuVKAEB5ebmv4/LXv/4VM2bM8F1n06ZNuOSSS1BYWIgJEybg9ttvR2Njo189w4YNwzvvvIPJkydjwoQJ2Lt3b5ep3QUFBfj3v/+NO++8ExMmTMCYMWNwww03oL6+3i/ulStX4tRTT8WoUaNw8cUX48svv/RbQqi8vBwFBQV46qmngranzWbDypUrceaZZ3bpXAAdT9jdeOONmDhxIhoaGnrcpgCwdetWXHbZZRg7diwmTZqEm2++GTU1Nb7y2tpa/PWvf8W0adMwatQozJkzB1988YXfdb///nv84Q9/wJgxYzB+/HhcffXV2Ldvn985a9aswe9+9zuMHDkSkydPxn333Qer1Rq0De666y5MnjwZHo/H7/jSpUsxceJEuFyubj8TPRETExPw6b1Zs2Zh165dXZaO+uabbyAIAqZOndrjOomIiIiCYd+CfQv2Lfp+3+L//u//4Ha7MWXKFJx77rn49NNP0dzc3OW8LVu2YO7cuRg9ejROOeUUvPLKK5g/f75fuzocDjz00EOYNm0aRowYgXPOOYczvYn6OSYviKjPsFqtuPLKK7Fjxw6sWLECEydODHrurFmzfNO7O3UuXTN79uwu599zzz148sknce6552LZsmU488wzcf/99+OZZ57xnfPwww/j2WefxUUXXYQXXngB9957L5qbm3HDDTfAZrP5zqurq8M//vEPzJs3D8uXL0d6ejpuv/123w3hBx98gH/961+YO3cuVq5ciWuuuQbvvfce7r333qC/z7fffgsAfjf2h1KpVPj73/+OE088Meg1juT+++/HN998g9tvv913E//QQw/h3XffRWJiIp5++mkAwNVXX+37+48//oj58+dDrVbj8ccfx//7f/8PGzduxLx582C3233X9ng8ePHFF7F06VL89a9/RW5ubsAYHnvsMXi9Xjz66KO47bbbsHbtWtx///2+8qeffhoPP/wwzjrrLDz77LMoLCzEjTfe6HeNxMREvPXWW12e7j/UDz/8AKvVGvCz0KmgoABPPvkk0tLSjth2wezYsQOXXHKJ7yZ5yZIl2L59OxYuXAi32436+nrMmTMHmzZtwk033YSnnnoKaWlpuOaaa/D+++8DAMrKyrB48WKMGDECzz33HJYuXYqSkhJceeWV8Hq9ADpu6K+55hrk5OTgmWeewbXXXov3338fixcvDroJ4nnnnYf6+nq/fSO8Xi8+/vhjnH322VAoFN1+Jo7E7Xb7/mttbcUHH3yAb775BpdcckmXcydPngyj0dhlUOCjjz7C6aefDoVCcdRtTkRERHQ02Ldg34J9i/7Rt3j33XcxZcoUxMfH4/zzz4fL5cL//vc/v3P27dvnmxn16KOP4rrrrsPy5cuxefNm3zmSJOGaa67BqlWrsGDBAjz33HMYM2YMbrrppi4JQSLqP7hsFBH1CZ2di86bj+6e+gA6pjtrNBq/6d2ff/45zGZzlymmJSUlePvtt3HzzTfjyiuvBACcfPLJEAQBzz//PP70pz8hNjYWtbW1uOmmm/ye6FGpVLjuuuuwa9cu3zI5NpsNS5cu9d3sZ2dnY/r06fj666+Rm5uLjRs3Ij09HXPnzoUoipgwYQK0Wi1aWlqC/j5VVVUAgPT09KNvtGO0ceNGTJ48GWeffTYAYOLEidBqtTCbzVAqlRg6dCgAIDMzE8OGDQMAPPLIIxg0aBCef/55yGQyAEBhYSHOPvtsvPvuu5g7d67v+ldddRVOOeWUbmPIz8/3W/f2l19+8Q1oW61WrFixAnPnzsWtt94KoON9stlsvv0VAECpVHZZsuhwZWVlANDlSTOv1+u7ae8kiiJEsWe5/GXLlsFkMuHFF1+ESqUC0NEBuuWWW7Bnzx588MEHaGxsxKeffurryEybNg3z58/HQw89hNmzZ+OXX36B3W7HokWLkJSUBABITk7GF198AavVCp1Oh4cffhhTpkzBww8/7Ks7Ozsb8+fPx9dffx2w3ceNG4e0tDR88MEHOOmkkwB0bIRdV1eH8847D0D3n4kjGT58eJdjM2bMCLjOr1wux2mnnea3dJTNZsPatWvxzDPP+HU6iIiIiHqLfQv2Ldi36B99i127duHXX3/Fk08+CQBITU3FpEmT8NZbb2HBggW+855//nkYDAa88MIL0Gg0AICcnBxcfPHFvnN++OEHfPvtt3jsscd8fZIpU6bAZrPh4YcfxuzZs7vMoiKivo8zL4ioT9i+fTv27NmDf//738jKysIdd9yBurq6oOer1WrMmDHD70nuDz/8EGeddVaXZWvWr18PSZIwY8YMv6fFZ8yYAYfD4evUPPL
"text/plain": [
"<Figure size 1600x1200 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2024-12-11 15:35:02 +04:00
"source": [
"from sklearn.cluster import KMeans\n",
"from sklearn.preprocessing import StandardScaler\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"# Масштабирование данных\n",
"scaler = StandardScaler()\n",
"data_scaled = scaler.fit_transform(df_cleaned[['Glucose', 'BMI', 'BloodPressure', 'Age']])\n",
"\n",
"# Обучение K-Means\n",
"random_state = 17\n",
"kmeans = KMeans(n_clusters=4, random_state=random_state)\n",
"labels = kmeans.fit_predict(data_scaled)\n",
"centers = kmeans.cluster_centers_\n",
"\n",
"# Обратная стандартизация центров кластеров\n",
"centers = scaler.inverse_transform(centers)\n",
"print(\"Центры кластеров:\\n\", centers)\n",
"\n",
"# Визуализация кластеризации\n",
"plt.figure(figsize=(16, 12))\n",
"\n",
"# Взаимосвязь Glucose и BMI\n",
"plt.subplot(2, 2, 1)\n",
"sns.scatterplot(x=df_cleaned['Glucose'], y=df_cleaned['BMI'], hue=labels, palette='Set1', alpha=0.6)\n",
"plt.scatter(centers[:, 0], centers[:, 1], s=300, c='red', label='Centroids')\n",
"plt.title('KMeans Clustering: Glucose vs BMI')\n",
"plt.legend()\n",
"\n",
"# Взаимосвязь Glucose и Age\n",
"plt.subplot(2, 2, 2)\n",
"sns.scatterplot(x=df_cleaned['Glucose'], y=df_cleaned['Age'], hue=labels, palette='Set1', alpha=0.6)\n",
"plt.scatter(centers[:, 0], centers[:, 3], s=300, c='red', label='Centroids')\n",
"plt.title('KMeans Clustering: Glucose vs Age')\n",
"plt.legend()\n",
"\n",
"# Взаимосвязь BloodPressure и BMI\n",
"plt.subplot(2, 2, 3)\n",
"sns.scatterplot(x=df_cleaned['BloodPressure'], y=df_cleaned['BMI'], hue=labels, palette='Set1', alpha=0.6)\n",
"plt.scatter(centers[:, 2], centers[:, 1], s=300, c='red', label='Centroids')\n",
"plt.title('KMeans Clustering: BloodPressure vs BMI')\n",
"plt.legend()\n",
"\n",
"# Взаимосвязь BloodPressure и Age\n",
"plt.subplot(2, 2, 4)\n",
"sns.scatterplot(x=df_cleaned['BloodPressure'], y=df_cleaned['Age'], hue=labels, palette='Set1', alpha=0.6)\n",
"plt.scatter(centers[:, 2], centers[:, 3], s=300, c='red', label='Centroids')\n",
"plt.title('KMeans Clustering: BloodPressure vs Age')\n",
"plt.legend()\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
2024-12-11 15:47:49 +04:00
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PCA для визуализации сокращенной размерности"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABi8AAAJHCAYAAADoqsXxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1fk/8M+9d/Yl+x4SCISENSRsgshatIr70toKWqtW/UqLrbut4t5qpW7g/tNqXalLi0sV911kEZBVgYQlQPZlJrPP3PP7Y8iQIZMQkslkAp/368Wr5Z479z4zcwfvuc8555GEEAJERERERERERERERERxQu7rAIiIiIiIiIiIiIiIiNpi8oKIiIiIiIiIiIiIiOIKkxdERERERERERERERBRXmLwgIiIiIiIiIiIiIqK4wuQFERERERERERERERHFFSYviIiIiIiIiIiIiIgorjB5QUREREREREREREREcYXJCyIiIiIiIiIiIiIiiitMXhARUZcIIfo6BOpl/I6JiIiIqKv6471jf4yZjgy/Y6KjC5MXRNShCy+8EMXFxWF/Ro0ahRkzZuCOO+5Ac3Nzu9dUVFTg9ttvx+zZs1FSUoIZM2bgmmuuwdatWzs8z4MPPoji4mLcdddd3Y5r2LBhGDt2LM455xwsW7as2++5re+++w7FxcX47rvvonK8nqqsrERxcTHefPPNDvdZvHhxu8+mpKQEP//5z3HfffehqanpiM9rs9lwww03YPXq1T2IPrLO3tOKFStQWlqK008/HfX19aF9i4uLsXTp0ojHs9vtGD16dFx9b0eiq7+fWbNm4aabborqubdt24Zf//rXUTlWV65VIiIi6n/YP2D/AOjd/kErr9eLF154Ab/4xS8wduxYjB07FmeffTaeffZZuFyubh3zsccewzPPPBPlSPvO8uXLcemll+L4449HaWkpTjvtNDz22GNoaWkJ7dNX1+yFF16ICy+8MPT3H3/8EWeddRZGjRqFOXPm4M0330RxcTEqKyujet5Dv+PW65+I+i9NXwdARPFtxIgRuO2220J/9/l82LRpEx544AFs2bIFr7zyCiRJAgB88MEHuOGGGzB06FD83//9HwYMGICqqio8//zz+OUvf4nHH38cU6ZMCTu+qqr473//i6KiIixbtgzXXXcdjEbjEccVCARQVVWF5557DjfccAOSkpIwffr0KH0K/U/rw30hBJxOJzZs2ICnn34an3zyCV555RWkpKR0+VhbtmzBsmXLcO655/ZWuO2sXLkSV155JQoKCvDss88iOTk5dGMryzLef/99nH/++e1e9+GHH8Lr9cYszmjqzu8nmt5//32sXbs2KsfKyMjA0qVLkZ+fH5XjERERUfxg/6B/6k/9A7vdjt/97nfYunUrfv3rX2PBggWQJAmrV6/G448/jv/85z94+umnkZWVdUTHffjhh/H73/++V2KOJVVVcf311+P999/Hueeei1//+tcwm81Yt24dnnnmGXz00Ud47rnnkJCQ0Gcxtv0tAsCjjz6Kffv24dFHH0VKSgpyc3OxdOlSZGRkRPW8h37Hv/jFLzB16tSonoOIYovJCyLqlMViQWlpadi2CRMmwOFw4JFHHsH69etRWlqK3bt348Ybb8TUqVPx0EMPQVGU0P4nnXQSfv3rX+PGG2/EJ598Ap1OF2r76quvUFVVhQceeADz5s3DO++8g1/84hfdigsApk2bhsmTJ+PNN988pjsnh342U6ZMwfHHH48LLrgADzzwAO6+++6+CawLVq1ahSuuuAKFhYV49tln2910jx07Ft999x0aGhradbLeffddDB8+HFu2bIllyD3W3d9PvNLpdBF/n0RERNT/sX/QP/Wn/sFf/vIXbNu2Da+++iqGDRsW2n7CCSfgzDPPxK9//Wtcd911eOGFF0KJsmPJ//t//w/vvPMOlixZghNPPDG0ffLkyZg4cSLmzp2LRx99FDfffHOfxVhYWBj298bGRhQVFYX9Bo8kYdZdWVlZR5zkIqL4wmWjiKhbRo0aBQDYt28fAOCFF16A1+vFLbfcEtYxAQCj0Ygbb7wR5557brup5G+88QaKioowbtw4HHfccR0uB9RVer0eOp0u7CZWVVU89dRTOPHEEzFq1Cj8/Oc/xwsvvNDuta+++ip+/vOfo6SkBPPmzQu9t1YdTTktLi7G4sWLQ39vaWnBXXfdhalTp6K0tBTnnnsuPvvss7DXvPbaazj11FND0+wXL16MQCAQts8HH3yAM844AyUlJTj77LM7nVrfFSUlJTjppJPw3//+N2yq9WuvvYZzzjkHpaWlKCkpwZlnnon33nsPQHCa8UUXXQQAuOiii0JTfwOBAJ566imcdtppKCkpQWlpKX71q19hxYoVoeO2TmNv+9kczurVq3H55ZejuLi4w9FCJ554ImRZxocffhi2vbGxEStWrMCpp57a7jX79u3DNddcg4kTJ2LMmDH4zW9+g82bN4ftU1lZiRtuuAEnnHACRo4cicmTJ+OGG25AY2NjaJ9Zs2bhkUcewX333Yfjjz8eJSUluPTSS7Fz587QPg0NDbj22msxZcoUjB49GmeeeSb++9//dvq+u/v7ATqeCn7oVO2NGzfiN7/5DcaNG4eysjJcfPHFWLduHYDgtb1kyRIA4ddzV347F154Ia677josWLAApaWl+O1vf9tuCYM333wTI0aMwPr163H++edj9OjRmDlzZrtp+zU1NfjTn/6EiRMnYsKECVi4cCEefPBBzJo1q9PPj4iIiPoe+wcHsX/Q/f7Btm3bsHz5clxxxRVhiYtWBQUFuPrqq7Fq1arQsbvyPbS2L1myJGzfdevW4ZJLLsHYsWMxadIkXHPNNaiurg6119TU4Oabb8b06dNRUlKC8847Dx9//HG787zyyiu46aabMG7cOEycOBF333033G437rvvPkyaNAnHHXcc/vKXv8Dj8YRe19XrsC2fz4dnn30W06ZNC0tctBo3bhwWLFjQLnnQ1kcffYQLLrgAZWVlGDVqFE4++WS89NJLYfs8//zzOPnkkzF69GhMnToVt99+e9hyVF9//TV++ctfoqysDBMmTMD//d//YceOHaH2tn2R4uJirFy5EqtWrQr1ESItG/X555/jV7/6FUpLS3HCCSdg4cKFsNlsofZVq1bh0ksvxYQJEzBq1CjMmjULixcvhqqqofMA4d9xpGvjf//7H8455xyUlZVhypQpWLhwYdi/Q4sXL8aJJ56Izz77DKeffnrouzlcn46IegeTF0TULRUVFQCAvLw8AMCXX36JESNGIDMzM+L+kydPxp/+9Cekp6eHtjU1NeGTTz7BWWedBQA4++yzsWHDBmzatOmw5xdCwO/3h/54PB6Ul5fj5ptvhsPhwJlnnhna9/bbb8cjjzyCM844A0888QROPvlk/PWvf8Wjjz4a2ufFF1/EbbfdhunTp+Oxxx7DmDFjcOuttx7x5xIIBHDJJZfg7bffxhVXXIHHHnsMgwcPxvz580Nrwj755JO49dZbMXnyZDzxxBOYO3cunn766bDzffLJJ1iwYAGKi4vx6KOP4pRTTsH1119/xPEcasqUKfD5fNiwYQMA4KWXXsLChQsxe/ZsPPnkk1i0aBF0Oh2uu+46VFVVYeTIkVi4cCEAYOHChaHpv4sWLcJjjz2G888/H//v//0/3HXXXWhqasLVV18d6vi0Lh3UlZFyALBmzRr87ne/Q3FxMZ555hlYLJaI+yUkJGDKlCl4//33w7YvX74cOTk5KCkpCdve0NCAX/3qV9i0aRNuvfVW/OMf/4Cqqpg7d27oBtvlcuGiiy7Cjh07cNttt+GZZ57BRRddhHfffRcPPvhg2PH+9a9/oby8HH/7299w9913Y+PGjbjxxhtD7ddffz127NiBO+64A08//TRGjBiBG2+8Mazjdqju/H6OREtLCy677DIkJydj8eLFePDBB+FyuXDppZfCbrfjF7/4Bc477zwACPvOuvLbAYD33nsPZrMZjz/+OC677LKIMaiqij/+8Y+YM2cOnnrqKYwdOxZ///vf8eWXXwIIrmv8m9/8Bt9
"text/plain": [
"<Figure size 1600x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from sklearn.decomposition import PCA\n",
"\n",
"# Снижение размерности с использованием PCA\n",
"pca = PCA(n_components=2)\n",
"reduced_data = pca.fit_transform(data_scaled)\n",
"\n",
"# Визуализация сокращенных данных\n",
"plt.figure(figsize=(16, 6))\n",
"\n",
"# Визуализация для KMeans кластеризации\n",
"plt.subplot(1, 2, 1)\n",
"sns.scatterplot(x=reduced_data[:, 0], y=reduced_data[:, 1], hue=labels, palette='Set1', alpha=0.6)\n",
"plt.title('PCA Reduced Data: KMeans Clustering')\n",
"\n",
"# Визуализация для исходных данных с категорией Outcome\n",
"plt.subplot(1, 2, 2)\n",
"sns.scatterplot(x=reduced_data[:, 0], y=reduced_data[:, 1], hue=df_cleaned['Outcome'], palette='Set2', alpha=0.6)\n",
"plt.title('PCA Reduced Data: Outcome Classification')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Выбор количества кластеров на основе инерции\n",
"Инерция -- сумма квадратов расстояний выборок до ближайшего центра кластера, взвешенная по весам выборок, если таковые имеются."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAImCAYAAABD3lvqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8+0lEQVR4nO3deVhV1f7H8c9hngSZwXlAUQIHFM1+OZGZlXVTm9PKW2pmeVO7ll3rXm12TDMrs8EsK0sbLZtHpxwTxQkRxYF5Epnh/P5ATh5BQATOAd6v5+ER9l57n+85revl49prLYPRaDQKAAAAAFBnbCxdAAAAAAA0dgQvAAAAAKhjBC8AAAAAqGMELwAAAACoYwQvAAAAAKhjBC8AAAAAqGMELwAAAACoYwQvAAAAAKhjBC8AAAAAqGMELwAAAACoYwQvAKgFY8aMUXBwsG6//fYLtpkyZYqCg4P1+OOP12NlAGrq+PHjCg4O1tq1ay1dCoBGgOAFALXExsZGu3btUkJCQrlzOTk5+vnnny1QFQAAsAYELwCoJSEhIXJ0dNT69evLnfv555/l7Owsf39/C1QGAAAsjeAFALXExcVFAwcOrDB4ff3117rmmmtkZ2dX7twPP/ygkSNHKiwsTP/3f/+nZ555Rjk5OZKkyMhIBQcHV/h1/PhxSdKGDRt05513qlevXurbt6+mTZumU6dOmb3GtGnTKrxHVY9QlT1CWdHXuaKionTfffepb9++Cg8P1wMPPKBDhw6Zzm/ZskXBwcHasmWLJOngwYMaMmSIbr/9dr388ssXfI2XX35ZkvTxxx/r2muvVWhoqNn5qh7bXL16dYX3Pfe6ssfJqmpX0xqq+9lU9voXOl/23+Hxxx9XZGSk2et++OGHZp/hua+zfft2s7bvvfeegoODze6Rl5en+fPna+jQoQoNDVV4eLjGjh2rffv2mV17obrGjBlj1qasjoqc3z/KjBkzxuw++fn5euWVVzRs2DCFhYVp6NChWrZsmUpKSsyuOb+WLVu2VOvaqhiNRs2YMUPdunXTH3/8Ue3rAECSyv8GAACoseuuu06PPPKIEhISFBAQIEnKzs7Wb7/9prffflu//fabWfsvv/xSjz76qG644QY98sgjOnHihBYuXKiYmBi9/fbbWrJkiQoKCpScnKyHHnpIEydO1KBBgyRJfn5++uyzz/TYY49p+PDhmjBhgtLT07V48WLddttt+vTTT+Xt7S2p9BfW2267TSNHjpQk0/2qIyQkRP/9739NP3/88cf65JNPTD9v3rxZ999/v/r27avnnntO+fn5ev3113X77bdr9erV6tixY7l7zp07V6GhoZo4caI8PDzUv39/SdKsWbMkyfR6AQEB2rp1q2bOnKmbb75ZM2fOlKurqyRVq/68vDyFhYVp5syZpmMXuu7cz/b8djWt4WI+m6eeekqXXXZZha//0UcfSZL27t2r2bNnl2t7vszMTL300ksVnnN1ddVPP/2kXr16mY59/fXXsrEx/7fY6dOna9u2bZo6daratGmjo0ePatGiRZo2bZrWrVsng8FganvzzTfrlltuMf1c9t+xNhmNRj3wwAPatWuXHnroIXXp0kVbtmzRSy+9pPj4eD399NOmtuf32Y4dO1b72so888wz+uqrr/TKK6/oyiuvrPX3CKBxI3gBQC0aNGiQnJ2dtX79et17772SpO+//17e3t5mv+hKpb9Izps3T/3799e8efNMx9u1a6d7771Xv/76qykIlI1utWnTRj169JAklZSUaN68ebryyis1f/580/Xh4eG67rrr9Oabb2r69OmSpNzcXLVr1850bdn9qsPNzc10nST9/vvvZufnz5+vtm3batmyZbK1tZUkXXnllbr66qu1ePFiLVq0yKz90aNH9ccff+iLL75Qp06dJMkUUt3c3CTJ7PXWrVsnSXriiSdMgUeSHBwcqqw9NzdXPj4+Zve70HXnfrbnt9u9e3eNariYzyYoKOiCr192PD8/v8K251u8eLFatGih9PT0cucGDBigH3/8Uf/+978lSQkJCdq5c6d69+6tEydOSJIKCgp05swZzZw5U9ddd50kqU+fPsrOztYLL7yglJQU+fr6mu4ZEBBgVk/Zf8fa9Ntvv2njxo1asGCBrr/+eknS//3f/8nJyUmLFi3S3XffbepP5/fZX3/9tdrXXsj8+fP10UcfacmSJRowYECtvz8AjR+PGgJALXJyclJkZKTZ44br1q3TtddeazZCIEmxsbFKSEhQZGSkioqKTF8RERFyc3PThg0bKn2tI0eOKDk5WcOHDzc73qZNG/Xs2VN//vmn6dipU6fUrFmzWniH5nJychQVFaVrr73WFCwkyd3dXYMHDzaroaz9woUL1bdv3yp/0S3TrVs3SdJbb72lpKQkFRQUqKioqFrX1tb7rkkNF/vZ1JaDBw/qo48+0pNPPlnh+cjISMXFxSk2NlaStH79enXv3l0tW7Y0tXFwcNCbb76p6667TomJidq8ebM+/PBD0wIxBQUFF11XSUmJioqKZDQaq2xT9nVu2z///FN2dnYaNmyY2TU33nij6fyFXMq1kvT+++9r2bJluv76681GRQHgYjDiBQC17Nprr9VDDz2khIQEOTo6atOmTXrkkUfKtcvIyJBU+lhWRY9mJSUlVfo6Zdf7+PiUO+fj46Po6GhJpSNrJ0+eVKtWrS7ujVTD6dOnZTQaL1jD6dOnzY498MADcnd3N3tUsSoRERGaOXOmli1bpiVLllxUfSdOnKj0kby6rOFiP5va8swzz+j6669Xz549Kzzv7++v0NBQ/fjjj+rQoYO+/vprDR8+3NRfyvz+++967rnnFBsbK1dXV3Xp0kUuLi6SVGl4upClS5dq6dKlsrW1lY+Pj6688kr961//MltwpmyU+Fx9+vSRVPr4pKenp1mIlWQaeavs87yUayVp//79uvLKK/XVV1/pnnvuUUhISKXtAaAiBC8AqGUDBgyQq6ur1q9fLxcXF7Vq1UqhoaHl2rm7u0sqnUtT9svluTw8PCp9nebNm0uSUlJSyp1LTk6Wp6enJGnfvn3Ky8srtyBGbWjWrJkMBsMFayirscz06dO1fv16TZ48We+//361H0m79dZb9ccff6ioqEhPPfWUWrVqpYkTJ1Z6TUlJif766y+NGjWqWq9x/ojkpdZwsZ9Nbfjmm2+0Z88es0dPK3LVVVfpxx9/1LXXXqs9e/ZoyZIlZsHr2LFjmjRpkoYMGaLXX39drVu3lsFg0Pvvv1/uUVOp6s9OKv38br31VpWUlOjkyZNauHChxo0bpy+++MLUZtasWWZB+dx5Wh4eHkpPT1dxcbFZgCr7B4qy/l6RS7lWkv71r3/p7rvv1vXXX6+ZM2fq448/LhfiAKAqPGoIALXMwcFBQ4YM0bfffqtvvvnGNKfkfB06dJC3t7eOHz+usLAw05e/v7/mz59fbgTifO3bt5evr6+++uors+Px8fHatWuXwsPDJUm//PKLunbtKi8vr4t+LyUlJZX+guni4qLQ0FB98803Ki4uNh0/ffq0fvnll3Lz2kJDQ7VkyRKdOHFCc+fOrXYdixYt0i+//KIXXnhB1157rcLCwqqcX7Vjxw7l5OSob9++lbYrG705f3GJS63hYj+bS1VQUKA5c+Zo0qRJZvOvKjJkyBD99ddfeu+999SrVy/5+fmZnd+zZ4/y8/M1fvx4tWnTxhSsykJX2WdWtiJgVZ+dVLoYTFhYmLp3765rr71Wd911lw4cOKDMzExTm/bt25v9b+Hc+XR9+vRRUVFRuVVDy4JbZZ/npVwrlY5QOjk56amnntLevXv19ttvV/l+AeB8jHgBQB247rrrNGHCBNnY2JitqHcuW1tbTZkyRU899ZRsbW01ePBgZWVlaenSpUpMTKzyETkbGxtNnTpVM2bM0LRp03TjjTcqPT1dS5YskYeHh8aOHau9e/fq/fff1/XXX69du3aZrk1OTpZUOrKRlpZWLpSlpaUpJiZGR48eNQW4C5k2bZruu+8+jR8/XnfeeacKCwu1bNkyFRQUaNKkSeXa+/v765FHHtGzzz6
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"inertias = []\n",
"clusters_range = range(1, 23)\n",
"for i in clusters_range:\n",
" kmeans = KMeans(n_clusters=i, random_state=random_state)\n",
" kmeans.fit(data_scaled)\n",
" inertias.append(kmeans.inertia_)\n",
"\n",
"\n",
"plt.figure(figsize=(10, 6))\n",
"plt.plot(clusters_range, inertias, marker='o')\n",
"plt.title('Метод локтя для оптимального k')\n",
"plt.xlabel('Количество кластеров')\n",
"plt.ylabel('Инерция')\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"+- после 18-г о кластера функция принимает линейный вид, что говорит о следующем: создание более 18-г о кластера - не самое оптимальное решение, дальнейшее разбиение данных становится избыточным.\n",
"\n",
"Расчитаем коэффициенты силуэта"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAImCAYAAABKNfuQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAM0lEQVR4nOzdeVjUVdsH8O/MMMOw7zsqKrIJaCoguKZmPa1mZZvappZZPG1apI+2mPa6ZGXhlpZLZYtmZVZmlpUooriwIyDKvu/bwMy8f+BMIogMzjDD8P1cF5fyW+/fYcS555xzH4FSqVSCiIiIiIiItEao7wCIiIiIiIiMDRMtIiIiIiIiLWOiRUREREREpGVMtIiIiIiIiLSMiRYREREREZGWMdEiIiIiIiLSMiZaREREREREWsZEi4iIiIiISMuYaBEREREREWkZEy0i6jNmzZqFWbNmtdl28uRJ3H333QgICMA333yj0/u/9tprmDRpksbnTZo0Ca+99poOIiIiXfH19cX69ev1HQYR6ZGJvgMgItKXsrIyPPPMMxg6dCi2bt0KX19ffYdERERERoKJFhH1WZ9++ikaGxuxatUquLi46DscIiIiMiIcOkhEfVJFRQW++OIL3HXXXe2SrOzsbERGRmLMmDEYPnw4Zs2ahVOnTrU55s8//8T06dMxbNgwREREYNmyZaipqWlzzOeff46bb74Zw4YNw4svvoja2loAwIYNGxAeHo5Ro0Zh2bJlkMlk6nNkMhnefPNNhISEICwsTD30qK6uDgsXLsTw4cMxYcIEfP755+pzcnNz4evri71796q3NTU1YfLkyW166ToaOhkbGwtfX1/ExsZ2+D3Q2vM3atSodsMev/nmG9xxxx0IDAzExIkTsX79esjlcvX+joZKXhmr6l4dfanivN6wyY6e6WrFxcV49dVXER4ejptuugkzZ87E6dOn1fuvHuKlVCrx0EMPwdfXF7m5uW2O6yzWyMhIjB8/HgqFos39Fy9ejFtvvRUAUFhYiJdeegmjR4/GsGHDMGvWLJw5cwYAsH79+mveQxVfamoqnnvuOYwePRpDhw7FuHHjsHz5cjQ2NnbaBkePHu009q4+IwD8/vvvuPfeezFs2LBOr3WlvXv3wtfXF2fPnsW9996L4OBg3HXXXfjll1/aHJebm4tFixZh7NixGDp0KMLDw7Fo0SJUVFSoj0lJScGjjz6Km266CVOmTMHu3bvV+zp6/QLtXyfXG9Z35etux44d7f59HT9+HH5+fvj444+veY2rffjhh/D398d3333X5XOIqHdjjxYR9SlKpRIFBQVYvnw5Wlpa8PTTT7fZn5GRgRkzZsDLywtLliyBWCzGjh078Nhjj2Hbtm0IDQ1FXFwc5s+fj7vvvhsvv/wyzp8/j/fffx/p6enYtWsXRCIRDh06hLfeeguzZs3C+PHj8dVXX+HQoUMAgAMHDmD58uXIy8vDmjVrIJVKERUVBQBYvXo19uzZg0WLFsHV1RXr1q1DXl4e8vLycNttt+HDDz/EX3/9hbfeeguurq6YPHlyh8/5ySeftEkSbsTatWtRU1MDa2tr9bZNmzZh3bp1mDlzJqKiopCSkoL169ejoKAAK1as6NJ1hw4diq+++gpAa9L27bffqr+3tLTUSux1dXV4+OGHIZfLsXDhQri4uGDbtm148skn8d1338HLy6vdOd9//32bROxK999/Px544AH192+++Wabfb/++itiY2MRHh4OAGhsbMQvv/yCuXPnQiaTYc6cOWhubsayZcsgFosRHR2NWbNm4euvv8YDDzyAcePGtbnusmXLAACurq4oLi7Go48+iuHDh+Pdd9+FRCLBX3/9hU8//RTOzs6YN2/eNduhsbERrq6u+OCDDzqMvavPeOnSJfz3v//FuHHj8OKLL6pfE9e61tWefvppzJw5Ey+++CK+/fZbvPDCC9i0aRMmTJiAhoYGzJ49G3Z2dli2bBmsrKxw+vRpfPTRR5BKpXjrrbfQ0NCAuXPnwsPDA+vXr0d8fDyWLVsGd3d3jB8/vksxaGrWrFk4ePAg/u///g8TJ06ERCLB66+/juHDh+OZZ57p0jW2bt2K6OhoLF++HPfee69O4iQiw8NEi4j6lLi4OEycOBFisRhbtmxp90b7o48+gkQiwY4dO9Rv9idOnIg777wTq1atwrfffot9+/bBy8sLK1euhFAoxJgxY2BmZoalS5fiyJEjmDRpEjZu3IiwsDAsWbIEABAWFoYxY8agpqYGK1euRGBgIACguroaW7ZswbPPPguFQoGvvvoK8+bNw8yZMwEAjo6OePDBB2Fra4s1a9ZALBZj/PjxSE9Px6ZNmzpMtAoKCrBlyxYMHToUSUlJN9ReCQkJ+P777+Hv74/q6moAQE1NDaKjo/Hggw+qn2/s2LGwtbXFkiVL8MQTT2DIkCHXvbalpSWGDx8OAPj7778BQP29tnz33XfIy8vDd999B39/fwDAiBEjMG3aNMTFxbX7+dfV1WHNmjXXbDtXV9c2MV6ZEI4dOxaurq7Yt2+fOtH67bffUF9fj2nTpuHMmTPIysrC559/jptuukkdyy233ILo6GisX78erq6uba575b3++ecf+Pv744MPPlDvj4iIwNGjRxEbG9tpotXQ0ABra+trxt7VZ0xOTkZzczNefPFF+Pj4XPdaV5s1axYWLFgAABg3bhzuvfdefPzxx5gwYQKys7Ph6uqK//u//0O/fv0AAKNHj8bZs2dx4sQJAEBeXh6CgoLw+uuvo1+/fhg7diy++OIL/P333zpLtAQCAVauXIm7774bq1evhkgkQmVlJbZv3w6RSHTd87/88kusXr0ab731Fu6//36dxEhEholDB4moTwkICMC7774LGxsbREVFtev1OXHiBG6++eY2bxxNTExwxx13IDExEXV1dXjnnXewb98+CIVCtLS0oKWlBbfeeiuEQiHi4uLQ0tKC5ORkjB07Vn0NU1NTDBs2DGZmZuokC2h9c97Y2Ii0tDSkpaWhqalJ3asBtL7RNjU1RXBwMMRicZvzkpKS2gzVU/m///s/jBo1CjfffPMNtZVSqcTy5ctx//33w8/PT7399OnTaGxsxKRJk9TP39LSoh4mePTo0TbXufKYq4fVdTWO7p576tQpeHp6qpMsADAzM8Ovv/7aptdGJTo6GnZ2dnj44Yc1vpdQKMS9996LgwcPoqGhAUBrohcREQFXV1eEhobizJkzGD58OORyOVpaWmBtbY0xY8YgLi7uutcfO3Ysdu3aBVNTU2RkZOD333/Hhg0bUF5e3mb4aUcKCgpgZWWl8TNdbejQoTAxMcGuXbuQl5cHmUyGlpYWKJXKLp1/ZW+OQCDALbfcgnPnzqGxsRH+/v744osv4OHhgezsbBw5cgRbt25FVlaW+vm8vb2xYcMG9OvXDzKZDH/99ReqqqowePDgNvdRKBRtXncdxac6piux9+vXD6+88gq+++47fPPNN1iyZIk6GezMH3/8gTfffBOjRo3CjBkzrns8ERkX9mgRUZ9iaWmJe++9F4MGDcLDDz+MF154AV999ZX6k+mqqio4Ojq2O8/R0RFKpRK1tbWwsLCAqakpgNY3nleqrq5GWVkZ5HI57Ozs2uyztbWFjY1Nm22qoVelpaXqpOnq82xsbGBra9vuvJaWljZzV4DWRPHQoUP44Ycf8NNPP3WlSa5p3759yM7OxsaNG/F///d/6u2VlZUAcM0elOLiYvXf8/Ly2rVRd+LYt28fBAIBHBwcMHLkSPz3v/9t9+a6I5WVlXBwcOjSfbKzs7F9+3Z88sknyM/P71as9913HzZu3IiDBw9i9OjROHbsGNasWaPeL5FIALTO27pyrk5XekYUCgXee+89fP7556ivr4ebmxuCg4PVr8XO5OXlwcPDoxtP1Fa/fv2wevVqvPfee+phniqhoaHXPd/Z2bnN9w4ODlAqlaiuroZUKsWnn36KjRs3orKyEo6OjggMDISZmVm7+Y/V1dUICQkBADg5OeE///lPm/2PP/54u3tfHV90dDSio6MhEong6OiIsWPH4r///e81C+Pcfvv
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"silhouette_scores = []\n",
"for i in clusters_range[1:]: \n",
" kmeans = KMeans(n_clusters=i, random_state=random_state)\n",
" labels = kmeans.fit_predict(data_scaled)\n",
" score = silhouette_score(data_scaled, labels)\n",
" silhouette_scores.append(score)\n",
"\n",
"# Построение диаграммы значений силуэта\n",
"plt.figure(figsize=(10, 6))\n",
"plt.plot(clusters_range[1:], silhouette_scores, marker='o')\n",
"plt.title('Коэффициенты силуэта для разных k')\n",
"plt.xlabel('Количество кластеров')\n",
"plt.ylabel('Коэффициент силуэта')\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Средний коэффициент силуэта (silhouette score) используется для оценки качества кластеризации. Е г о значение лежит в диапазоне от -1 до 1. Что означают различные значения:\n",
"\n",
"0.7– 1.0 : Кластеры хорошо разделены и компактны. Это отличный результат кластеризации.\n",
"0.5-0.7 : Кластеры четко различимы, но есть некоторое пересечение между ними. Это хороший результат.\n",
"0.25-0.5 : Кластеры перекрываются, что указывает на менее четкую границу между группами. Качество кластеризации удовлетворительное, но может потребоваться уточнение числа кластеров или доработка данных.\n",
"Близко к 0.0: Кластеры сильно перекрываются или распределение данных не позволяет выделить четкие группы. В этом случае нужно пересмотреть выбор числа кластеров, алгоритм или исходные данные.\n",
"Меньше 0.0: Плохая кластеризация: точки ближе к центрам чужих кластеров, чем к своим. Это сигнал о том, что данные плохо структурированы для текущей кластеризации."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Средний коэффициент силуэта: 0.213\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAJzCAYAAADulpkjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVf7/8df0kmTSey+QEBIIvUuxYAEVe9ddu65+7auru+uu5acr6q69rWvBghUbCIIUQaT3TnpCek8mmf77I2TIkAkkkJCAn+fj4WPNvTP3nrm5We97zjmfo3C5XC6EEEIIIYQQQnSJsq8bIIQQQgghhBAnEwlRQgghhBBCCNENEqKEEEIIIYQQohskRAkhhBBCCCFEN0iIEkIIIYQQQohukBAlhBBCCCGEEN0gIUoIIYQQQgghukFClBBCCCGEEEJ0g4QoIYQQQgghhOgGCVFCiGN27bXXkpqa6vHPyJEjue6661i7dm1fN08IcYpLTU3l5Zdf7rB97969jBs3jsmTJ5OXl9fp+19++WVSU1PJzMyksbHR62s++eQTUlNTmTZtWk81WwhxCpAQJYQ4Lunp6cydO5e5c+fy8ccf88wzz6DRaLjxxhvZt29fXzdPCPE7s2/fPm644QYMBgNz5swhISHhqO+x2+38/PPPXvfNnz+/h1sohDgVSIgSQhwXX19fsrKyyMrKYsSIEZxxxhm8/PLLKJVKvvrqq75unhDidyQ7O5vrr78eHx8f5syZQ2xsbJfeN3z4cBYsWNBhe1lZGevXr2fQoEE93VQhxElOQpQQoscZDAZ0Oh0KhcK97dprr+Xaa6/1eN3zzz9PamqqR9iaM2cOp59+OsOGDeOaa65h7969AHz00UekpqaSm5vrcYxvvvmGQYMGUVJSAsDixYu56qqrGDZsGBkZGZx99tl89NFHHu95+OGHOwxDbPunqKjI/ZrDh+98+umnHYYPzZ8/n3PPPZesrCwuuugi1q9f7/Geo7VnzZo1pKamsmbNGo/3HX69unL9rFYrzz77LJMnT2bQoEEen+tIgfbwYz/11FNkZmayYsUK4NCQJ2//tG93V659eXk5f/7znxk3bpz7d7xp0yYApk2bdtTfy/r167nmmmsYOnQoo0eP5s9//jPV1dXu43/11VekpqayZcsWZs2axZAhQ5g5cyY//vijRzsaGhr4f//v/3HGGWeQmZnJjBkz+OKLLzxe0749aWlpjBo1irvuuouamppOryVATk4Of/rTnxg9ejSjRo3i1ltvJTs7u9PXH+n6tv+95eXlcffddzNhwgSysrK49tpr2bBhg3t/UVGR+33ffvutxzmWLl3q3tfe/Pnzueiiixg2bBgTJkzgb3/7G3V1dR3a1p63e3HatGk8/PDDnf58uLa2tv98Gzdu5PLLLyczM5MJEybwxBNP0NLS0ukxDpednc11112Hn58fc+bMISoqqsvvPffcc1m5cmWHIX0//vgjiYmJpKWldXjP4sWLueiii9ztffLJJzGbzR1e05W//9WrV/PHP/6RoUOHMmHCBJ577jkcDof7datWreKyyy5j2LBhjBo1ittvv/2I95QQovdJiBJCHBeXy4Xdbsdut2Oz2aioqOD555/HarVy8cUXd/q+goIC3nvvPY9tixYt4oknnuC8887j1VdfxeFwcNttt2G1Wpk5cyY6nY5vvvnG4z3z5s1j3LhxREZGsmzZMu68804GDx7Ma6+9xssvv0xsbCz//Oc/2bJli8f7QkND3cMQ586dy+23337Ez1lXV8e///1vj21bt27lgQceICsri9dff53IyEhuu+02KisrAbrVnu7ydv3efvtt3n//fa6//nref/995s6dyyuvvNKt427dupVPPvmEf//73wwbNsxjX/vr9be//c1jX1c+a1NTE1deeSVr1qzhwQcf5JVXXkGn0/HHP/6RvLw8XnnlFY8233777e7zhYWFsW7dOm644Qb0ej3//ve/+ctf/sLatWu57rrrOjxs33rrrZx++um88sorJCYmcs8997B8+XIAWlpauOqqq/juu++46aabeO211xgxYgSPPvoob7zxhsdxJk+ezNy5c/nwww+5//77WbVqFU899VSn16+srIzLL7+cvLw8Hn/8cZ577jkqKyu5/vrrqa2tPeK1b399D/+97d+/n4suuoiioiIee+wxZs+ejUKh4Prrr+8w/9DHx6fD0LT58+ejVHr+J/+1117jvvvuIysri5deeok777yThQsXcu2113YrvPSEkpISbrzxRgIDA3nllVe4++67+eabb3jooYe69P6cnByuv/56fH19mTNnDuHh4d06//Tp03E4HF6v23nnndfh9d999x133nknSUlJvPrqq/zpT3/i22+/5Y477sDlcgHd+/t/4IEHGDFiBG+88QYzZszgnXfe4fPPPwegsLCQO+64g4yMDF5//XWeeuopcnNzueWWW3A6nd36nEKInqPu6wYIIU5u69atY/DgwR2233fffSQnJ3f6vqeffpoBAwawY8cO97bq6mquuuoq7rvvPqC1Z6XtW/xBgwZx5pln8u233/J///d/KBQKSktL+e2333juueeA1gfNWbNm8eijj7qPOWzYMMaMGcOaNWsYOnSoe7tWqyUrK8v9c05OzhE/50svvURUVJRHL0RpaSnTp0/nySefRKlUEhISwowZM9i8eTNnnHFGt9rTXd6u39atW0lLS+OPf/yje1tbD05XtfUEnn766R32tb9eFovFY19XPuvXX39NcXExX3/9tXt41PDhw7nwwgtZt24dl156qUeb4+LiPM75/PPPk5iYyJtvvolKpQJg6NChnHfeeXz55ZdcffXV7tdee+213HnnnQBMmjSJWbNm8eqrrzJ58mS++uor9u7dy6effuoOipMmTcJut/Paa69xxRVXEBAQAEBQUJC7DaNGjeLXX3/1uOaHe++997Barfzvf/8jNDQUgLS0NK688kq2bNnC5MmTO31v+896+O/tlVdeQavV8sEHH+Dr6wvAlClTmDFjBv/61788etFOO+00fvnlF6xWK1qtFovFwpIlSxg1apS757Curo7XX3+dyy67zCMQDxw4kKuvvrrD9extb7/9NoGBgbz66qvu361SqeSxxx5jz549HXrD2svLy+O6666jsrISm812TMEiJCSEUaNGsWDBAs4//3wAiouL2bJlC//61794/fXX3a91uVzMnj2bSZMmMXv2bPf2hIQEbrjhBpYvX86UKVO69fd/6aWXuu/XcePGsXjxYpYtW8YVV1zB1q1baWlp4dZbb3WHw4iICJYsWYLZbHbfD0KIE0tClBDiuAwePJh//OMfQOvDRX19PStWrODFF1/EbDZz7733dnjPihUr+PXXX3n77be57rrr3NuvuOIKAJxOJ2azmUWLFqHX64mOjgbgkksu4fvvv2f9+vWMGjWKefPm4ePjw5lnngnATTfdBLT2eOTm5lJQUMC2bduA1kB2rPbu3evujWhrI8BZZ53FWWedhcvlwmw2s2DBApRKJYmJib3ans6uX2ZmJm+99RYLFy5k7Nix+Pj4dPmB0uVysWnTJubPn9+hh6sruvJZN2zYQExMjMf8EoPBwMKFC496/ObmZrZs2cKNN97o7v0EiI2NJTk5mVWrVnk89M+aNcv97wqFgjPPPJOXX36ZlpYW1q5dS3R0dIeetvPPP58vvvjCI+y0ncvpdLJ79242bNjA+PHjO23nhg0byMrKcgcoaH3gXbp06VE/45GsXbuWqVOnejwwq9Vqd69tU1OTe/vYsWNZsWIFa9asYdKkSaxYsQJfX19GjhzpDlGbN2/GarUyY8YMj/OMHDmS6Oho1q5de9whqu3aKZXKDr1gbZxOJ3a7nfXr1zNx4kR3gILWMAit1/RIIer7778nIyODF198kT/+8Y88+OCDvPfeex7ndDgc7h4iaL0n2p8LWof0PfnkkzQ2NuLr68sPP/zA4MGDiY+P93hdTk4OpaWl3Hrrre77EFpDtq+vL6tWrWLKlCnd+vs//F6MiIhwDw0cOnQoOp2OSy65hLPPPpvTTjuNMWP
"text/plain": [
"<Figure size 1000x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.metrics import silhouette_score\n",
"from sklearn.cluster import KMeans\n",
"from sklearn.decomposition import PCA\n",
"\n",
"scaler = StandardScaler()\n",
"data_scaled = scaler.fit_transform(df_cleaned[['Glucose', 'BMI', 'BloodPressure', 'Age']])\n",
"\n",
"# Применение K-Means\n",
"kmeans = KMeans(n_clusters=4, random_state=42) \n",
"df_clusters = kmeans.fit_predict(data_scaled)\n",
"\n",
"# Оценка качества кластеризации\n",
"silhouette_avg = silhouette_score(data_scaled, df_clusters)\n",
"print(f'Средний коэффициент силуэта: {silhouette_avg:.3f}')\n",
"\n",
"# Визуализация кластеров\n",
"pca = PCA(n_components=2)\n",
"df_pca = pca.fit_transform(data_scaled)\n",
"\n",
"plt.figure(figsize=(10, 7))\n",
"sns.scatterplot(x=df_pca[:, 0], y=df_pca[:, 1], hue=df_clusters, palette='viridis', alpha=0.7)\n",
"plt.title('Визуализация кластеров с помощью K-Means')\n",
"plt.xlabel('Первая ко мпо не нтa PCA')\n",
"plt.ylabel('Вторая ко мпо не нтa PCA')\n",
"plt.legend(title='Кластер', loc='upper right')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"В нашем случае, результат соответствует удовлетворительному состоянию. Н а графике видно, что кластеры имеют некоторую степень пересечения, что приемлемо. Это может указывать на сложность четкого разделения групп пациентов из-за схожести их характеристик (например, уровня глюкозы, индекса массы тела или давления)."
]
2024-12-11 15:35:02 +04:00
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}