{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# загрузим датасет" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IDPriceLevyManufacturerModelProd. yearCategoryLeather interiorFuel typeEngine volumeMileageCylindersGear box typeDrive wheelsDoorsWheelColorAirbags
045654403133281399LEXUSRX 4502010JeepYesHybrid3.5186005 km6.0Automatic4x404-MayLeft wheelSilver12
144731507166211018CHEVROLETEquinox2011JeepNoPetrol3192000 km6.0Tiptronic4x404-MayLeft wheelBlack8
2457744198467-HONDAFIT2006HatchbackNoPetrol1.3200000 km4.0VariatorFront04-MayRight-hand driveBlack2
3457691853607862FORDEscape2011JeepYesHybrid2.5168966 km4.0Automatic4x404-MayLeft wheelWhite0
44580926311726446HONDAFIT2014HatchbackYesPetrol1.391901 km4.0AutomaticFront04-MayLeft wheelSilver4
.........................................................
19232457983558467-MERCEDES-BENZCLK 2001999CoupeYesCNG2.0 Turbo300000 km4.0ManualRear02-MarLeft wheelSilver5
192334577885615681831HYUNDAISonata2011SedanYesPetrol2.4161600 km4.0TiptronicFront04-MayLeft wheelRed8
192344580499726108836HYUNDAITucson2010JeepYesDiesel2116365 km4.0AutomaticFront04-MayLeft wheelGrey4
192354579352653311288CHEVROLETCaptiva2007JeepYesDiesel251258 km4.0AutomaticFront04-MayLeft wheelBlack4
1923645813273470753HYUNDAISonata2012SedanYesHybrid2.4186923 km4.0AutomaticFront04-MayLeft wheelWhite12
\n", "

19237 rows × 18 columns

\n", "
" ], "text/plain": [ " ID Price Levy Manufacturer Model Prod. year Category \\\n", "0 45654403 13328 1399 LEXUS RX 450 2010 Jeep \n", "1 44731507 16621 1018 CHEVROLET Equinox 2011 Jeep \n", "2 45774419 8467 - HONDA FIT 2006 Hatchback \n", "3 45769185 3607 862 FORD Escape 2011 Jeep \n", "4 45809263 11726 446 HONDA FIT 2014 Hatchback \n", "... ... ... ... ... ... ... ... \n", "19232 45798355 8467 - MERCEDES-BENZ CLK 200 1999 Coupe \n", "19233 45778856 15681 831 HYUNDAI Sonata 2011 Sedan \n", "19234 45804997 26108 836 HYUNDAI Tucson 2010 Jeep \n", "19235 45793526 5331 1288 CHEVROLET Captiva 2007 Jeep \n", "19236 45813273 470 753 HYUNDAI Sonata 2012 Sedan \n", "\n", " Leather interior Fuel type Engine volume Mileage Cylinders \\\n", "0 Yes Hybrid 3.5 186005 km 6.0 \n", "1 No Petrol 3 192000 km 6.0 \n", "2 No Petrol 1.3 200000 km 4.0 \n", "3 Yes Hybrid 2.5 168966 km 4.0 \n", "4 Yes Petrol 1.3 91901 km 4.0 \n", "... ... ... ... ... ... \n", "19232 Yes CNG 2.0 Turbo 300000 km 4.0 \n", "19233 Yes Petrol 2.4 161600 km 4.0 \n", "19234 Yes Diesel 2 116365 km 4.0 \n", "19235 Yes Diesel 2 51258 km 4.0 \n", "19236 Yes Hybrid 2.4 186923 km 4.0 \n", "\n", " Gear box type Drive wheels Doors Wheel Color Airbags \n", "0 Automatic 4x4 04-May Left wheel Silver 12 \n", "1 Tiptronic 4x4 04-May Left wheel Black 8 \n", "2 Variator Front 04-May Right-hand drive Black 2 \n", "3 Automatic 4x4 04-May Left wheel White 0 \n", "4 Automatic Front 04-May Left wheel Silver 4 \n", "... ... ... ... ... ... ... \n", "19232 Manual Rear 02-Mar Left wheel Silver 5 \n", "19233 Tiptronic Front 04-May Left wheel Red 8 \n", "19234 Automatic Front 04-May Left wheel Grey 4 \n", "19235 Automatic Front 04-May Left wheel Black 4 \n", "19236 Automatic Front 04-May Left wheel White 12 \n", "\n", "[19237 rows x 18 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "df = pd.read_csv(\"..//static//csv//car_price_prediction.csv\", sep=\",\")\n", "df\n" ] } ], "metadata": { "kernelspec": { "display_name": "laba", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.6" } }, "nbformat": 4, "nbformat_minor": 2 }