{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Бизнес цели"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование цен на акции Tesla на основе действий инсайдеров: Одна из ключевых бизнес-целей состоит в создании модели для прогнозирования динамики акций Tesla, используя данные о транзакциях инсайдеров. Поскольку инсайдеры обладают глубоким знанием внутреннего состояния компании, их действия могут предсказывать изменения в стоимости акций. На основе анализа паттернов и частоты инсайдерских покупок и продаж можно разработать предсказательную модель, которая поможет инвесторам и аналитикам принимать более обоснованные решения.\n",
"2. Анализ влияния транзакций инсайдеров на динамику цены акций Tesla для оценки краткосрочных и долгосрочных рисков: Цель – исследовать, как действия инсайдеров (особенно крупных акционеров и ключевых лиц) влияют на цену акций Tesla. Выявление корреляций между объёмом, типом и частотой инсайдерских сделок и изменениями цены акций позволит оценить риски и тенденции в динамике акций.\n",
"\n",
"Цель технического проекта: Разработка модели машинного обучения для прогнозирования будущих продаж акций топ-менеджментом компании, а также анализ влияния транзакций инсайдеров на динамику цены акций Tesla для оценки краткосрочных и долгосрочных рисков."
]
},
{
"cell_type": "code",
"execution_count": 228,
"metadata": {},
"outputs": [],
"source": [
"from typing import Any\n",
"from math import ceil\n",
"import time\n",
"\n",
"import pandas as pd\n",
"from pandas import DataFrame, Series\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import MinMaxScaler, StandardScaler\n",
"from sklearn.model_selection import train_test_split, cross_val_score\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import root_mean_squared_error, r2_score, mean_absolute_error\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from imblearn.over_sampling import SMOTE\n",
"import featuretools as ft\n",
"from featuretools.entityset.entityset import EntitySet\n",
"import matplotlib.pyplot as plt\n",
"\n",
"df: DataFrame = pd.read_csv(\"static/csv/TSLA.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Конвертация данных:"
]
},
{
"cell_type": "code",
"execution_count": 229,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Выборка данных:\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Insider Trading
\n",
"
Relationship
\n",
"
Date
\n",
"
Transaction
\n",
"
Cost
\n",
"
Shares
\n",
"
Value ($)
\n",
"
Shares Total
\n",
"
SEC Form 4
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Kirkhorn Zachary
\n",
"
Chief Financial Officer
\n",
"
2022-03-06
\n",
"
Sale
\n",
"
196.72
\n",
"
10455
\n",
"
2056775
\n",
"
203073
\n",
"
Mar 07 07:58 PM
\n",
"
\n",
"
\n",
"
1
\n",
"
Taneja Vaibhav
\n",
"
Chief Accounting Officer
\n",
"
2022-03-06
\n",
"
Sale
\n",
"
195.79
\n",
"
2466
\n",
"
482718
\n",
"
100458
\n",
"
Mar 07 07:57 PM
\n",
"
\n",
"
\n",
"
2
\n",
"
Baglino Andrew D
\n",
"
SVP Powertrain and Energy Eng.
\n",
"
2022-03-06
\n",
"
Sale
\n",
"
195.79
\n",
"
1298
\n",
"
254232
\n",
"
65547
\n",
"
Mar 07 08:01 PM
\n",
"
\n",
"
\n",
"
3
\n",
"
Taneja Vaibhav
\n",
"
Chief Accounting Officer
\n",
"
2022-03-05
\n",
"
Option Exercise
\n",
"
0.00
\n",
"
7138
\n",
"
0
\n",
"
102923
\n",
"
Mar 07 07:57 PM
\n",
"
\n",
"
\n",
"
4
\n",
"
Baglino Andrew D
\n",
"
SVP Powertrain and Energy Eng.
\n",
"
2022-03-05
\n",
"
Option Exercise
\n",
"
0.00
\n",
"
2586
\n",
"
0
\n",
"
66845
\n",
"
Mar 07 08:01 PM
\n",
"
\n",
"
\n",
"
5
\n",
"
Kirkhorn Zachary
\n",
"
Chief Financial Officer
\n",
"
2022-03-05
\n",
"
Option Exercise
\n",
"
0.00
\n",
"
16867
\n",
"
0
\n",
"
213528
\n",
"
Mar 07 07:58 PM
\n",
"
\n",
"
\n",
"
6
\n",
"
Baglino Andrew D
\n",
"
SVP Powertrain and Energy Eng.
\n",
"
2022-02-27
\n",
"
Option Exercise
\n",
"
20.91
\n",
"
10500
\n",
"
219555
\n",
"
74759
\n",
"
Mar 01 07:29 PM
\n",
"
\n",
"
\n",
"
7
\n",
"
Baglino Andrew D
\n",
"
SVP Powertrain and Energy Eng.
\n",
"
2022-02-27
\n",
"
Sale
\n",
"
202.00
\n",
"
10500
\n",
"
2121000
\n",
"
64259
\n",
"
Mar 01 07:29 PM
\n",
"
\n",
"
\n",
"
8
\n",
"
Kirkhorn Zachary
\n",
"
Chief Financial Officer
\n",
"
2022-02-06
\n",
"
Sale
\n",
"
193.00
\n",
"
3750
\n",
"
723750
\n",
"
196661
\n",
"
Feb 08 06:14 PM
\n",
"
\n",
"
\n",
"
9
\n",
"
Baglino Andrew D
\n",
"
SVP Powertrain and Energy Eng.
\n",
"
2022-01-27
\n",
"
Option Exercise
\n",
"
20.91
\n",
"
10500
\n",
"
219555
\n",
"
74759
\n",
"
Jan 31 07:34 PM
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Insider Trading Relationship Date \\\n",
"0 Kirkhorn Zachary Chief Financial Officer 2022-03-06 \n",
"1 Taneja Vaibhav Chief Accounting Officer 2022-03-06 \n",
"2 Baglino Andrew D SVP Powertrain and Energy Eng. 2022-03-06 \n",
"3 Taneja Vaibhav Chief Accounting Officer 2022-03-05 \n",
"4 Baglino Andrew D SVP Powertrain and Energy Eng. 2022-03-05 \n",
"5 Kirkhorn Zachary Chief Financial Officer 2022-03-05 \n",
"6 Baglino Andrew D SVP Powertrain and Energy Eng. 2022-02-27 \n",
"7 Baglino Andrew D SVP Powertrain and Energy Eng. 2022-02-27 \n",
"8 Kirkhorn Zachary Chief Financial Officer 2022-02-06 \n",
"9 Baglino Andrew D SVP Powertrain and Energy Eng. 2022-01-27 \n",
"\n",
" Transaction Cost Shares Value ($) Shares Total SEC Form 4 \n",
"0 Sale 196.72 10455 2056775 203073 Mar 07 07:58 PM \n",
"1 Sale 195.79 2466 482718 100458 Mar 07 07:57 PM \n",
"2 Sale 195.79 1298 254232 65547 Mar 07 08:01 PM \n",
"3 Option Exercise 0.00 7138 0 102923 Mar 07 07:57 PM \n",
"4 Option Exercise 0.00 2586 0 66845 Mar 07 08:01 PM \n",
"5 Option Exercise 0.00 16867 0 213528 Mar 07 07:58 PM \n",
"6 Option Exercise 20.91 10500 219555 74759 Mar 01 07:29 PM \n",
"7 Sale 202.00 10500 2121000 64259 Mar 01 07:29 PM \n",
"8 Sale 193.00 3750 723750 196661 Feb 08 06:14 PM \n",
"9 Option Exercise 20.91 10500 219555 74759 Jan 31 07:34 PM "
]
},
"execution_count": 229,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Преобразование типов данных\n",
"df['Insider Trading'] = df['Insider Trading'].astype('category') \n",
"df['Relationship'] = df['Relationship'].astype('category') \n",
"df['Transaction'] = df['Transaction'].astype('category') \n",
"df['Cost'] = pd.to_numeric(df['Cost'], errors='coerce') \n",
"df['Shares'] = pd.to_numeric(df['Shares'].str.replace(',', ''), errors='coerce') \n",
"df['Value ($)'] = pd.to_numeric(df['Value ($)'].str.replace(',', ''), errors='coerce') \n",
"df['Shares Total'] = pd.to_numeric(df['Shares Total'].str.replace(',', ''), errors='coerce')\n",
"\n",
"print('Выборка данных:')\n",
"df.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проблема пропущенных данных:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверка на отсутствие значений, представленная ниже, показала, что DataFrame не имеет пустых значений признаков. Нет необходимости использовать методы заполнения пропущенных данных."
]
},
{
"cell_type": "code",
"execution_count": 230,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Присутствуют ли пустые значения признаков в колонке:\n",
"Insider Trading False\n",
"Relationship False\n",
"Date False\n",
"Transaction False\n",
"Cost False\n",
"Shares False\n",
"Value ($) False\n",
"Shares Total False\n",
"SEC Form 4 False\n",
"dtype: bool \n",
"\n",
"Количество пустых значений признаков в колонке:\n",
"Insider Trading 0\n",
"Relationship 0\n",
"Date 0\n",
"Transaction 0\n",
"Cost 0\n",
"Shares 0\n",
"Value ($) 0\n",
"Shares Total 0\n",
"SEC Form 4 0\n",
"dtype: int64 \n",
"\n",
"Процент пустых значений признаков в колонке:\n",
"\n"
]
}
],
"source": [
"# Проверка пропущенных данных\n",
"def check_null_columns(dataframe: DataFrame) -> None:\n",
" # Присутствуют ли пустые значения признаков\n",
" print('Присутствуют ли пустые значения признаков в колонке:')\n",
" print(dataframe.isnull().any(), '\\n')\n",
"\n",
" # Количество пустых значений признаков\n",
" print('Количество пустых значений признаков в колонке:')\n",
" print(dataframe.isnull().sum(), '\\n')\n",
"\n",
" # Процент пустых значений признаков\n",
" print('Процент пустых значений признаков в колонке:')\n",
" for column in dataframe.columns:\n",
" null_rate: float = dataframe[column].isnull().sum() / len(dataframe) * 100\n",
" if null_rate > 0:\n",
" print(f\"{column} процент пустых значений: {null_rate:.2f}%\")\n",
" print()\n",
" \n",
"\n",
"# Проверка пропущенных данных\n",
"check_null_columns(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проблема зашумленности данных"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Зашумленность – это наличие случайных ошибок или вариаций в данных, которые могут затруднить выявление истинных закономерностей.\n",
"В свою очередь выбросы - это значения, которые значительно отличаются от остальных наблюдений в наборе данных\n",
"Представленный ниже код помогает определить наличие выбросов в наборе данных и устранить их (при наличии), заменив значения ниже нижней границы (рассматриваемого минимума) на значения нижней границы, а значения выше верхней границы (рассматриваемого максимума) – на значения верхней границы."
]
},
{
"cell_type": "code",
"execution_count": 231,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Проверка наличия выбросов в колонках:\n",
"Колонка Cost:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 0.0\n",
"\tМаксимальное значение: 1171.04\n",
"\t1-й квартиль (Q1): 50.5225\n",
"\t3-й квартиль (Q3): 934.1075\n",
"\n",
"Колонка Shares:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 25\n",
"\tМинимальное значение: 121\n",
"\tМаксимальное значение: 11920000\n",
"\t1-й квартиль (Q1): 3500.0\n",
"\t3-й квартиль (Q3): 301797.75\n",
"\n",
"Колонка Value ($):\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 23\n",
"\tМинимальное значение: 0\n",
"\tМаксимальное значение: 2278695421\n",
"\t1-й квартиль (Q1): 271008.0\n",
"\t3-й квартиль (Q3): 148713213.25\n",
"\n",
"Колонка Shares Total:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 21\n",
"\tМинимальное значение: 49\n",
"\tМаксимальное значение: 455467432\n",
"\t1-й квартиль (Q1): 25103.5\n",
"\t3-й квартиль (Q3): 1507273.75\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPOCAYAAADgBVF+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQjElEQVR4nOzdeVyUVfvH8S8MCSqBKwilQlq5gFr6JFBTkJSaGIS0aWVm2aI9ubVg5VbJo2HaYpmWS0+iFhEVlmUqOdVkhVliahtkJWBmApqCzty/P3xmfo4wLoUMwuf9es2r5pzrnvuaceAw15z7HC/DMAwBAAAAAAAAAIAqvD2dAAAAAAAAAAAAdRVFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAACoRbfeeqv8/f09nQYAADiG2NhYxcbGeuz8n3/+uRo1aqSff/652v5bb71Vubm51fZ9++238vHxUX5+/inMsGGhiI4TlpmZKS8vr2pvERERnk4PaDBiY2N16623Sjo8aFY3qB84cECzZs1S7969FRgYKD8/P5133nkaNWqUvvvuu1OSV0ZGhmbPnl2lvbCwUF5eXs7B3cvLS4sWLTolOQD1FWMwUDccbwzeu3evJk2apIiICDVt2lQtW7ZUjx49dN9992nHjh21n3ANW7Rokby8vCRJubm58vLyUmFhoWeTAmoB4zBQN7gbh7OysuTl5aWXXnrJ7bGrVq2Sl5eXnnnmmVrItGY8/PDDuvHGG9W+ffuTPrZLly4aMGCAJk6cWKXvyNdu8uTJCgsL+4eZNgw+nk4Ap58JEyaoc+fOzvtPPPGEB7MBcLRdu3apX79+ysvLU0JCggYPHix/f39t27ZNy5Yt07x581RZWVnj583IyFB+fr5Gjx5d448N4DDGYKDuOnjwoC699FJt3bpVQ4cO1b333qu9e/dq8+bNysjI0DXXXKPQ0FBPpwngH2AcBuqmAQMGKDAwUBkZGbr99turjcnIyJDJZNINN9xQy9n9PRs3btSHH36oTz/91G3MoUOHVFFR4bb/rrvu0lVXXaUff/xRHTp0OBVpNigU0XHSrrjiCpdZNy+99JJ27drluYQAuLj11lv11VdfKTMzU4MGDXLpe+yxx/Twww97KDMA/xRjMFB3ZWdn66uvvtKSJUs0ePBgl74DBw6cki+wj8Vut6uyslJ+fn61el6gPmMcBuomX19fpaSkaOHChdqxY0eVL60PHDigN998U1dccYWCgoI8lOXJWbhwodq1a6eoqCiX9tLSUo0ePVqZmZnau3evlixZIn9/f8XExGj58uVq1qyZMzY+Pl7NmzfX4sWLNXXq1Fp+BvUPy7nghDn+8Pf2Pv7bxnGp55GXd9rtdnXr1q3KUg7ffPONbr31Vp1zzjny8/NTmzZtdNttt+mPP/5weczJkydXe/mcj8//fxcUGxuriIgI5eXlKSYmRo0bN1Z4eLjmzp1b5blMnDhRPXv2VGBgoJo2bSqz2ay1a9e6xDmWofDy8lJ2drZL34EDB9S8eXN5eXkpPT29Sp5BQUE6ePCgyzFLly51Pt6Rf2y99dZbGjBggEJDQ+Xr66sOHTrosccek81mO+5r7Tjf1q1bdd111ykgIEAtW7bUfffdpwMHDrjELly4UJdffrmCgoLk6+urLl266IUXXqjymImJiQoLC5Ofn5+CgoJ09dVXa9OmTS4xjudR3fIdnTp1kpeXl0aNGuVs2717t8aPH6/IyEj5+/srICBA/fv319dff+1y7NChQ+Xn56ctW7a4tPft21fNmzd3uRT6p59+0rXXXqsWLVqoSZMmioqK0ooVK1yOc1xq7Lj5+vrqvPPOU1pamgzDOPaL+z/u3nvVLaNy5Hvm6NuRdu7cqeHDh6tdu3YymUzOmH+6Pur69eu1YsUKDR8+vEoBXTr8x8WR71dJWrNmjcxms5o2bapmzZopMTGxyutfXl6u0aNHKywsTL6+vgoKCtIVV1yhDRs2SDr8s7dixQr9/PPPzufCJWFAzWEMznbpYwxmDK6LY/CPP/4oSbr44our9Pn5+SkgIKBK+2+//aakpCT5+/urdevWGj9+fJX3Xnp6umJiYtSyZUs1btxYPXv2VGZmZpXHcvy7L1myRF27dpWvr69WrlzpPM9tt92m4OBg+fr6qmvXrlqwYEGVx3j22WfVtWtXNWnSRM2bN1evXr2UkZHxt14PoD5hHM526WMcZhyui+PwTTfdJLvdrmXLllXpW7FihUpLSzVkyBBJJ/5+OFp1P9/S/7/WR69Pvn79evXr10+BgYFq0qSJLrvsMn3yyScn9Hyys7N1+eWXV3n97rvvPi1ZskRjx47VFVdcoalTp2ry5Mnau3ev9u3b5xJ7xhlnKDY2Vm+99dYJnRPHxkx0nDDHHw6+vr5/6/j//ve/VQYf6fC6VD/99JOGDRumNm3aaPPmzZo3b542b96szz77rMovjBdeeMHll+vRf8j8+eefuuqqq3Tdddfpxhtv1Guvvaa7775bjRo10m233SZJKisr00svvaQbb7xRd9xxh8rLy/Xyyy+rb9+++vzzz9WjRw+Xx/Tz89PChQuVlJTkbMvKyqoyMB+pvLxcOTk5uuaaa5xtCxculJ+fX5XjFi1aJH9/f40dO1b+/v5as2aNJk6cqLKyMj355JNuz3Gk6667TmFhYUpLS9Nnn32mZ555Rn/++adeeeUVl9eua9euuvrqq+Xj46N33nlH99xzj+x2u0aOHOnyeCNGjFCbNm20Y8cOPffcc4qPj1dBQYGaNGlS5XU5cvmOTz/9tNpNL3766SdlZ2fr2muvVXh4uEpKSvTiiy/qsssu07fffuv8pvjpp5/WmjVrNHToUFmtVplMJr344ov64IMP9N///tcZV1JSopiYGP3111/697//rZYtW2rx4sW6+uqrlZmZ6fK6S/9/6eX+/fu1fPlyTZgwQUFBQRo+fPgJvb6O18/x3ktNTT1m7IgRI2Q2myUdfq+8+eabLv1Dhw7Vhx9+qHvvvVfdu3eXyWTSvHnznEXpv+vtt9+WJN18880nFP/hhx+qf//+OuecczR58mTt379fzz77rC6++GJt2LDBWQi/6667lJmZqVGjRqlLly76448/9PHHH2vLli268MIL9fDDD6u0tFS//vqrZs2aJUlsmAbUIMZgxmDG4Lo/BjvWK33llVf0yCOPVPn5OZrNZlPfvn3Vu3dvpaen68MPP9TMmTPVoUMH3X333c64p59+WldffbWGDBmiyspKLVu2TNdee61ycnI0YMAAl8dcs2aNXnvtNY0aNUqtWrVSWFiYSkpKFBUV5SzqtG7dWu+9956GDx+usrIy53to/vz5+ve//62UlBRnAeqbb77R+vXrq8ysBxoaxmHGYcbhuj8OX3rppTr77LOVkZGhsWPHuvRlZGSoSZMmzvfxybwf/q41a9aof//+6tmzpyZNmiRvb29n8d5iseiiiy5ye+xvv/2m7du368ILL6zSt2LFCt16662aMmWKbr31VpnNZsXGxmrcuHHVPlbPnj311ltvqaysrNov9HESDOAEzZ4925BkfP311y7tl112mdG1a1eXtoULFxqSjIKCAsMwDOPAgQNGu3btjP79+xuSjIULFzpj//rrryrnWrp0qSHJWLdunbNt0qRJhiTj999/d5vjZZddZkgyZs6c6WyrqKgwevToYQQFBRmVlZWGYRjGoUOHjIqKCpdj//zzTyM4ONi47bbbnG0FBQWGJOPGG280fHx8jOLiYmdfnz59jMGDBxuSjCeffLJKnjfeeKORkJDgbP/5558Nb29v48Ybb6zyPKp7De68806jSZMmxoEDB9w+3yPPd/XVV7u033PPPVX+vao7T9++fY1zzjnnmOd47bXXDEnGl19+6WyTZKSkpBg+Pj4u7cOHD3e+LiNHjnS2HzhwwLDZbC6PW1BQYPj6+hpTp051aX///fcNScbjjz9u/PTTT4a/v7+RlJTkEjN69GhDkmGxWJxt5eXlRnh4uBEWFuY819q1aw1Jxtq1a11y8fb2Nu65555jPm+HCRMmGJKMXbt2Odu6du1qXHbZZVViv//+e0OSsXjxYmeb49/IYf/+/Ya3t7dx5513uhw7dOhQo2nTpieUkzvXXHONIcn4888/Tyje8bPxxx9/ONu+/vprw9vb27jlllucbYGBgS7/ntUZMGCA0b59+7+TNoDjYAxmDGYMrvtj8F9//WWcf/75hiSjffv2xq233mq8/PLLRklJSZXYoUOHGpKqvP4XXHCB0bNnzyqPe6TKykojIiLCuPzyy13aJRne3t7G5s2bXdqHDx9uhISEuLyGhmEYN9xwgxEYGOh8/MTExCq/TwAcxjjMOMw4XPfHYcMwjPvvv9+QZGzbts3ZVlpaavj5+Rk33nijs+1E3w+XXXaZy3M9+ufb4ejX2m63G+eee67Rt29fw263u5w3PDzcuOKKK475PD788ENDkvHOO+9U6QsODjaGDBliGMbh1+3If9/qZGRkGJKM9evXHzMOx8dyLjhhjkvKWrdufdLHzpkzR3/88YcmTZpUpa9x48bO/z9w4IB27drlXPPp73wT6ePjozvvvNN5v1GjRrrzzju1c+dO5eXlSZJMJpMaNWok6fCldbt379ahQ4fUq1evas954YUXqmvXrvrvf/8rSfr555+1du1a567Q1bntttu0cuVKFRcXS5IWL16s6OhonXfeeVVij3wNysvLtWvXLpnNZv3111/aunXrCT3vo78tvffeeyVJ7777brXnKS0t1a5du3TZZZfpp59+Umlpqcvxf/31l3bt2qWNGzdq/vz5Cg4OrpJ7cHCwBgwYoIULFzqPee211zRs2LAq+fn6+jpnSthsNv3xxx/y9/fX+eefX+U1v/LKK3XnnXdq6tSpSk5Olp+fn1588UWXmHfffVcXXXSRLrnkEmebv7+/RowYocLCQn377bcu8Y7nu337ds2YMUN2u12XX355Na9kVY7ZEieypuiJzFLZt2+f7Ha7WrZseULnPxllZWWSpDPPPPO4sUVFRdq4caNuvfVWtWjRwtnerVs3XXHFFS7vnWbNmmn9+vUulxACqD2MwYzBjMF1fwxu3Lix1q9fr/vvv1/S4dmVw4cPV0hIiO69995qN/666667XO6bzWb99NNPVR7X4c8//1RpaanMZnO1Py+XXXaZunTp4rxvGIbeeOMNDRw4UIZhaNeuXc5b3759VVpa6nycZs2a6ddff9UXX3zx918EoJ5iHGYcZhyu++OwdHhJF0kuS5G98cYbOnDggHMpF+nk3g9/x8aNG/X9999r8ODB+uOPP5xj7759+9SnTx+tW7dOdrvd7fGO3znNmzev0jds2DBlZGTouuuu07fffnvcz+iOx2D/hn+OIjpO2M8//ywfH5+T/sOhtLRU06ZN09ixYxUcHFylf/fu3brvvvsUHBysxo0bq3Xr1goPD3cee7JCQ0PVtGlTlzbHgHfkulWLFy9Wt27d5Ofnp5YtW6p169bOdbKqM2zYMOcAuWjRIsXExOjcc891m0ePHj0UERGhV155RYZhaNGiRdUOqJK0efNmXXPNNQoMDFRAQIBat27t/OV/oq/B0bl06NBB3t7eLs/5k08+UXx8vHPt69atW2vChAnVnmfq1Klq3bq1LrjgAhUWFio3N7fawqzjF3hFRYVef/11NW/evNoB2W63a9asWTr33HPl6+urVq1aqXXr1vrmm2+qfY7p6elq0aKFNm7cqGeeeabK5h8///yzzj///CrHde7c2dl/pKSkJLVu3Vrt27fX5MmT9cgjj1S7Znh1du3apTPOOMPl8j139uzZI+nYS5m0bNlS5557rl566SV98MEH2rlzp3bt2nXMXbVPlOPyrPLy8uPGOl4jd6+jY5CXpBkzZig/P19t27bVRRddpMmTJ1f5kA/8XevWrdPAgQMVGhpa7bqbx+Nurcajx4LTGWMwYzBjcN0fgyUpMDBQM2bMUGFhoQoLC/Xyyy/r/PPP13PPPafHHnvMJdbPz6/Kz3Tz5s31559/urTl5OQoKipKfn5+atGihVq3bq0XXnih2n87x8+vw++//649e/Zo3rx5at26tcvN8TOxc+dOSdKDDz4of39/XXTRRTr33HM1cuTIE163FfXfPx2rJem1115Tjx491KRJE7Vv3/6El+qoCxiHGYcZh0+Pcbhbt26KiIjQ0qVLnW0ZGRlq1aqV+vbt62w7mffD3/H9999LOrx0zdHj70svvaSKiooTOo9Rzdr1TzzxhF544QUVFBQoLy9PQ4YMUZs2bfTkk09WW5h3PMbxlpnD8VFExwnbtm2bzjnnHJfNS07E9OnT5e3t7ZyVc7TrrrtO8+fP11133aWsrCx98MEHzk2QjvXN3D/x6quv6tZbb1WHDh308ssva+XKlVq1apUuv/xyt+e86aab9MMPP+izzz7T4sWL3f4RcKTbbrtNCxcu1EcffaTi4mJdd911VWL27Nmjyy67TF9//bWmTp2qd955R6tWrdL06dMl/f3X4OhfkD/++KP69OmjXbt26amnntKKFSu0atUqjRkzptrz3H777frggw+0YMEC+fn5adCgQdX+kh8wYIAaNWqk7OxsLVy4UEOHDq12wx3HH4+XXnqpXn31Vb3//vtatWqVunbtWu1z/Oqrr5wf6qpbP/Bkpaena9WqVXr33Xc1adIkTZ8+XVOmTDmhYwsLC9WuXbsTGnQcsy3atGlzzLjly5erZcuW6tu3r4KDg9W6detqN0A5WZ06dZJUM6/Zka677jr99NNPevbZZxUaGqonn3xSXbt21XvvvVej50HDtG/fPnXv3l1z5sz5W8ePHz9eRUVFLrcuXbro2muvreFMPYcxmDGYMbjuj8FHa9++vW677TZ98sknatasmZYsWeLSbzKZjvsYFotFV199tfz8/PT888/r3Xff1apVqzR48OBqP1gfObNO+v/31k033aRVq1ZVe3NshNq5c2dt27ZNy5Yt0yWXXKI33nhDl1xySbWzZ9Hw/NOx+r333tOQIUN01113KT8/X88//7xmzZql5557roYzPTUYhxmHGYdPn3H4pptu0nfffacvv/xSxcXFWrt2ra677jrnz+/Jvh+O5O51OHojXMdjPPnkk27H3+N92SCpyhfr0uG9EO6880598cUXuvnmm5WWlqZLL71UDzzwgGbMmFEl3vEYrVq1cns+nBg2FsUJqaio0MaNG102EzkRO3bs0NNPP620tDSdeeaZVXYZ//PPP7V69WpNmTJFEydOdLY7vrX7O3bs2KF9+/a5fAP/3XffSZJzk8TMzEydc845ysrKcvkleKwPCS1bttTVV1/tvBzuuuuuO+7lMEOGDNH999+v++67TykpKdV+e52bm6s//vhDWVlZuvTSS53tBQUFJ/R8Hb7//nuX2Uc//PCD7Ha78zm/8847qqio0Ntvv6127do5447ehd2hY8eO6tixoyQpPj5e7dq1U0ZGhstGV9LhSwZvvvlmPfHEE9q8ebMWLFhQ7eNlZmYqLi5OL7/8skv7nj17qvwy37dvn4YNG6YuXbooJiZGM2bM0DXXXKN//etfzpj27dtr27ZtVc7juOTPsbmXQ8+ePZ07iPfv31+//fabpk+frkcffbTaP3QcDh06pK+//lr9+vVzG3Okb7/9Vl5eXtXODDjSBRdcoPnz58tsNmvq1KmKiorSk08++Y9nfA0cOFBpaWl69dVXnZu5uON4jdy9jq1atXL5OQoJCdE999yje+65Rzt37tSFF16oJ554Qv3795fEN9v4+/r37+98H1WnoqJCDz/8sJYuXao9e/YoIiJC06dPd/5M+/v7u/wR+vXXX+vbb7/V3LlzT3XqtYIxmDGYMfj0GIPdad68uTp06KD8/PyTPvaNN96Qn5+f3n//fZfL4x0zQo+ndevWOvPMM2Wz2RQfH3/c+KZNm+r666/X9ddfr8rKSiUnJ+uJJ55QamrqCV3Kj/rrn47V//3vf5WUlORcwuicc85Ramqqpk+frpEjR9bpvyMZhxmHGYdPr3H4xhtvVGpqqjIyMtS+fXvZbDaXpVxO9v1wJMfSKI5Z9w5Hz/7v0KGDpMNXip/I+Hs0x+S4E/lZiIqK0kMPPaRu3bopMzNTDz30kEt/QUGBvL29q11OCSeHmeg4IY5LlPr06XNSx02ZMkXBwcFV1nt0cMzAOXomzezZs/9WntLhX/RHrhlWWVmpF198Ua1bt1bPnj3dnnf9+vWyWq3HfOzbbrtN33zzja699tpjfmvo0KJFCyUmJuqbb75x7oZ+tOpyqays1PPPP3/cxz/S0bNCnn32WUly/rFb3XlKS0tP6EOY4w8kd5dY3Xbbbdq0aZMuvfRSnXPOOdXGmEymKv/Or7/+un777bcqsQ8++KC2b9+uxYsX66mnnlJYWJiGDh3qcv6rrrpKn3/+ucu/2b59+zRv3jyFhYW5rAdanf379+vQoUM6dOjQMeM++OADlZaWKjEx8Zhx0uH33htvvKGLLrrouO+PsrIy3Xzzzbr66qv1yCOPKD4+XiEhIcc9x/FER0erX79+eumll6q9zLayslLjx4+XdLgo3qNHDy1evNjlj4D8/Hx98MEHuuqqqyQd/lb96JkXQUFBCg0Ndfk3adq0aY1c+gYcbdSoUbJarVq2bJnzd3C/fv3cfsh86aWXdN555x33i6TTBWPwYYzBjMHHUhfG4K+//rraotLPP/+sb7/99rhFheqYTCZ5eXm5zHArLCw84aU0TCaTBg0apDfeeKPaIv7vv//u/P+jC3yNGjVSly5dZBiGDh48eNK5o2E53lhdUVFR5YuYxo0b69dff61SfKprGIcPYxxmHD6WujAOO7Rr105ms1nLly/Xq6++qvDwcMXExDj7/8n7wVEcX7dunbPNZrNp3rx5LnE9e/ZUhw4dlJ6err1791Z5nCPH3+qcddZZatu2rb788ssqfdXNTjcMQzabrcoVaZKUl5enrl27KjAw8JjnxPExEx3HtG/fPj377LOaOnWq8xf/q6++6hJTUlKivXv36tVXX9UVV1zhstbbBx98oCVLljg3LjlaQECALr30Us2YMUMHDx7UWWedpQ8++OCkv3k+UmhoqKZPn67CwkKdd955Wr58uTZu3Kh58+bpjDPOkCQlJCQoKytL11xzjQYMGKCCggLNnTtXXbp0qfYXnEO/fv30+++/n9AfDQ6LFi3SnDlz3F46ExMTo+bNm2vo0KH697//LS8vL/33v/+t9hLdYykoKNDVV1+tfv36yWq16tVXX9XgwYPVvXt3SYc3KGnUqJEGDhyoO++8U3v37tX8+fMVFBSkoqIi5+O8++67eumllxQTE6MWLVrop59+0vz589W0aVNdc8011Z7bsX52db+wHRISEjR16lQNGzZMMTEx2rRpk5YsWVLlD401a9bo+eef16RJk3ThhRdKOjzbKjY2Vo8++qjz8qSHHnpIS5cuVf/+/fXvf/9bLVq00OLFi1VQUKA33nijyjfqq1at0q+//qqDBw/qiy++0JIlS3T11Ve7fW9Khy8zGz9+vHx9fbV//36X935paalsNpuys7OVlJSkDz/8UI8++qi++eYbvfPOO24f02HkyJHav3+/XnrppePGnqxXXnlFV155pZKTkzVw4ED16dNHTZs21ffff69ly5apqKhI6enpkg5fXta/f39FR0dr+PDh2r9/v5599lkFBgZq8uTJkg6vr3722WcrJSVF3bt3l7+/vz788EN98cUXmjlzpvO8PXv21PLlyzV27Fj961//kr+/vwYOHFjjzw8Ny/bt27Vw4UJt375doaGhkg4v37Jy5UotXLhQ06ZNc4k/cOCAlixZUmUGxumIMdgVYzBjsENdHYNXrVqlSZMm6eqrr1ZUVJT8/f31008/acGCBaqoqHCOqydjwIABeuqpp9SvXz8NHjxYO3fu1Jw5c9SxY0d98803J/QY//nPf7R27Vr17t1bd9xxh7p06aLdu3drw4YN+vDDD7V7925Jh9+nbdq00cUXX6zg4GBt2bJFzz33nAYMGHBCG5aj4TqRsbpv374aM2aMbr31VsXFxemHH35w/h1ZVFTknDFclzAOu2IcZhx2qKvj8JFuuukmjRgxQjt27NDDDz/s0nei74fqdO3aVVFRUUpNTdXu3bvVokULLVu2rMoXEt7e3nrppZfUv39/de3aVcOGDdNZZ52l3377TWvXrlVAQMBxX6vExES9+eabMgzD5aqRDh06aNiwYYqNjdXOnTuVm5urZ555Rt9++61eeOEFl8c4ePCgPvroI91zzz0n8rLheAzgGAoKCgxJJ3xbu3atYRiGsXDhQkOS0aNHD8Nut1d5vIULFzrbfv31V+Oaa64xmjVrZgQGBhrXXnutsWPHDkOSMWnSJGfcpEmTDEnG77//7jbfyy67zOjatavx5ZdfGtHR0Yafn5/Rvn1747nnnnOJs9vtxrRp04z27dsbvr6+xgUXXGDk5OQYQ4cONdq3b18l3yeffPKYr8+R/cfLs7r+Tz75xIiKijIaN25shIaGGg888IDx/vvvu7ym7jge79tvvzVSUlKMM88802jevLkxatQoY//+/S6xb7/9ttGtWzfDz8/PCAsLM6ZPn24sWLDAkGQUFBQYhmEY+fn5xpVXXmm0bNnSaNSokdG2bVvjhhtuML755huXx5JkjBw50m1eR/cfOHDAGDdunBESEmI0btzYuPjiiw2r1WpcdtllxmWXXWYYhmGUlZUZ7du3Ny688ELj4MGDLo83ZswYw9vb27Barc62H3/80UhJSTGaNWtm+Pn5GRdddJGRk5PjctzatWtd3qM+Pj5G+/btjX//+9/Gn3/+eczXtn379sd9zzveL/fee69x6aWXGitXrqzyOI5/I4elS5caXl5eVWKHDh1qNG3a9Jg5nai//vrLSE9PN/71r38Z/v7+RqNGjYxzzz3XuPfee40ffvjBJfbDDz80Lr74YqNx48ZGQECAMXDgQOPbb7919ldUVBj333+/0b17d+PMM880mjZtanTv3t14/vnnXR5n7969xuDBg41mzZq5vDbAyZBkvPnmm877OTk5hiSjadOmLjcfHx/juuuuq3J8RkaG4ePjYxQXF9di1qcGYzBjMGPw6TUG//TTT8bEiRONqKgoIygoyPDx8TFat25tDBgwwFizZs0Jne/ofA3DMF5++WXj3HPPNXx9fY1OnToZCxcurDbuWO+LkpISY+TIkUbbtm2NM844w2jTpo3Rp08fY968ec6YF1980bj00kuNli1bGr6+vkaHDh2M+++/3ygtLf27Lwnqqb8zVtvtduOBBx4w/Pz8DJPJZDRv3tyYPHmyIcn47LPPPPRMjo1xmHGYcfj0GoePtHv3bsPX19f5/jjaibwfDMNw+Tdy+PHHH434+HjD19fXCA4ONiZMmGCsWrWq2vfsV199ZSQnJzvH1vbt2xvXXXedsXr16uM+hw0bNhiSDIvF4tI+b948o0+fPkabNm0MLy8vo3HjxkZERESVz+eGYRjvvfeeIcn4/vvvj3s+HB9FdByTY2A83uB1onGnmuMPh4bkRP6gwt/Tvn17lz9yj7Z27VoKxUANO/qD+bJlywyTyWRs3brV+P77711uRUVFVY6//PLLjaSkpFrM+NRhDK77GINPHcZgoO76J2P1oUOHjF9//dWoqKgw3n33XUOSsXPnzlp+BieGcbjuYxw+dRiH64bLL7/cuOmmm9z2Dx069Ji/exITE+vNZ6O6gOVcAABAnXXBBRfIZrNp586dx13jvKCgQGvXrtXbb79dS9kBAICTGatNJpPOOussSdLSpUsVHR2t1q1b10aaAHDamTZtmsxmsx5//PEqG8Yez5YtW5STk6ONGzeemuQaIIroOCZ/f38NGTLEZW23fxIHnE6uueYa58Yh1QkODna7Nh6AE7d371798MMPzvsFBQXauHGjWrRoofPOO09DhgzRLbfcopkzZ+qCCy7Q77//rtWrV6tbt24aMGCA87gFCxYoJCTEuYnU6Y4xGA0ZYzBQt/zTsXrXrl3KzMxUbGysDhw4oIULF+r111/XRx995MFndWyMw2jIGIfrht69e6uystJtf1JSkts9JTp37nzczWNxcrwM4yR3bADqsNjYWO3atUv5+fmeTqXWTJ48WVOmTNHvv//udsMWAKjLcnNzFRcXV6V96NChWrRokQ4ePKjHH39cr7zyin777Te1atVKUVFRmjJliiIjIyVJdrtd7du31y233KInnniitp8CxBjMGAygPvunY/WuXbs0cOBAbdq0SYZhKDo6Wk888YR69+7tgWdTPzEOMw4DOLUoogMAAAAAAAAA4Ia3pxMAAAAAAAAAAKCuoogOAABqnWEYKisrExfEAQDqM8Y7AADqh3q7sajdbteOHTt05plnysvLy9PpAABwShiGofLycoWGhsrb+/T5brysrEzNmjXTL7/8ooCAAE+nAwDAKVFWVqa2bdtqz549CgwM9HQ6J4XP1ACAhuBEP1PX2yL6jh071LZtW0+nAQBArfjll1909tlnezqNE1ZeXi5JjNUAgAahvLz8tCui85kaANCQHO8zdb0top955pmSxAw3AEC95pjh5hj3TheM0wCAhuB0HaclxmoAQMNwomN1vS2iOy43CwgIYMAHANR7p9tl1ozTAICG5HQbpyXGagBAw3K8sfr0WTwVAAAAAAAAAIBaRhEdAAAAAAAAAAA3TrqIvm7dOg0cOFChoaHy8vJSdna2s+/gwYN68MEHFRkZqaZNmyo0NFS33HKLduzY4fIYu3fv1pAhQxQQEKBmzZpp+PDh2rt3r0vMN998I7PZLD8/P7Vt21YzZsz4e88QAAAAAAAAAIC/6aSL6Pv27VP37t01Z86cKn1//fWXNmzYoEcffVQbNmxQVlaWtm3bpquvvtolbsiQIdq8ebNWrVqlnJwcrVu3TiNGjHD2l5WV6corr1T79u2Vl5enJ598UpMnT9a8efP+xlMEAAAAAAAAAODvOemNRfv376/+/ftX2xcYGKhVq1a5tD333HO66KKLtH37drVr105btmzRypUr9cUXX6hXr16SpGeffVZXXXWV0tPTFRoaqiVLlqiyslILFixQo0aN1LVrV23cuFFPPfWUS7EdAAAAAAAAAIBT6ZSviV5aWiovLy81a9ZMkmS1WtWsWTNnAV2S4uPj5e3trfXr1ztjLr30UjVq1MgZ07dvX23btk1//vlnteepqKhQWVmZyw0AAAAAAAAAgH/ilBbRDxw4oAcffFA33nijAgICJEnFxcUKCgpyifPx8VGLFi1UXFzsjAkODnaJcdx3xBwtLS1NgYGBzlvbtm1r+ukAAAAAAAAAABqYU1ZEP3jwoK677joZhqEXXnjhVJ3GKTU1VaWlpc7bL7/8csrPCQAAAAAAAACo305JEd1RQP/555+1atUq5yx0SWrTpo127tzpEn/o0CHt3r1bbdq0ccaUlJS4xDjuO2KO5uvrq4CAAJcbAAA4vnXr1mngwIEKDQ2Vl5eXsrOzjxmflZWlK664Qq1bt1ZAQICio6P1/vvv106yAAAAAADUshovojsK6N9//70+/PBDtWzZ0qU/Ojpae/bsUV5enrNtzZo1stvt6t27tzNm3bp1OnjwoDNm1apVOv/889W8efOaThkAgAZt37596t69u+bMmXNC8evWrdMVV1yhd999V3l5eYqLi9PAgQP11VdfneJMAQAAAACofT4ne8DevXv1ww8/OO8XFBRo48aNatGihUJCQpSSkqINGzYoJydHNpvNuYZ5ixYt1KhRI3Xu3Fn9+vXTHXfcoblz5+rgwYMaNWqUbrjhBoWGhkqSBg8erClTpmj48OF68MEHlZ+fr6efflqzZs2qoacNAAAc+vfvr/79+59w/OzZs13uT5s2TW+99ZbeeecdXXDBBTWcHYCaYLPZZLFYVFRUpJCQEJnNZplMJk+nBQAA/oexGqjbTrqI/uWXXyouLs55f+zYsZKkoUOHavLkyXr77bclST169HA5bu3atYqNjZUkLVmyRKNGjVKfPn3k7e2tQYMG6ZlnnnHGBgYG6oMPPtDIkSPVs2dPtWrVShMnTtSIESNONl0AAHCK2e12lZeXq0WLFm5jKioqVFFR4bxfVlZWG6kB0OElmMaNG6fCwkJnW1hYmGbOnKnk5GTPJQYAACQxVgOng5NeziU2NlaGYVS5LVq0SGFhYdX2GYbhLKBLh2elZ2RkqLy8XKWlpVqwYIH8/f1dztOtWzdZLBYdOHBAv/76qx588MF//GQBAEDNS09P1969e3Xddde5jUlLS1NgYKDz1rZt21rMEGi4srKylJKSosjISFmtVpWXl8tqtSoyMlIpKSnKysrydIoAADRojNXA6cHLMAzD00mcCmVlZQoMDFRpaSmbjAIA6q2aHu+8vLz05ptvKikp6YTiMzIydMcdd+itt95SfHy827jqZqK3bduWcRo4hWw2mzp27KjIyEhlZ2fL2/v/58/Y7XYlJSUpPz9f33//PZeLA6fI6fy59HTOHThdMFYDnnei491JL+cCoH7666+/tHXr1n/0GPv371dhYaHCwsLUuHHjv/04nTp1UpMmTf5RLgBOvWXLlun222/X66+/fswCuiT5+vrK19e3ljIDIEkWi0WFhYVaunSpy4dySfL29lZqaqpiYmJksVhcrhoFAAC1g7EaOH1QRAcgSdq6dat69uzp6TQkSXl5ebrwwgs9nQaAY1i6dKluu+02LVu2TAMGDPB0OgCqUVRUJEmKiIiott/R7ogDAAC1i7EaOH1QRAcg6fDs77y8vH/0GFu2bNFNN92kV199VZ07d/5HuQCoPXv37tUPP/zgvF9QUKCNGzeqRYsWateunVJTU/Xbb7/plVdekXR4CZehQ4fq6aefVu/evVVcXCxJaty4sQIDAz3yHABUFRISIknKz89XVFRUlf78/HyXOAAAULsYq4HTB2uiA6gxGzZsUM+ePZlJDtSimhjvcnNzFRcXV6V96NChWrRokW699VYVFhYqNzdX0uFNxj/66CO38bWVN4BjY51VwPNO5/HudM4dOF0wVgOex5roAADghMTGxupY36kfXRh3FNMB1G0mk0kzZ85USkqKkpKSlJqaqoiICOXn5ystLU05OTnKzMzkQzkAAB7CWA2cPiiiAwAAAPVUcnKyMjMzNW7cOMXExDjbw8PDlZmZqeTkZA9mBwAAGKuB0wNFdAAAAKAeS05OVmJioiwWi4qKihQSEiKz2cysNgAA6gjGaqDuo4gOAAAA1HMmk0mxsbGeTgMAALjBWA3Ubd7HDwEAAAAAAAAAoGGiiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC44ePpBAAAAAAAAICGrLKyUs8//7x+/PFHdejQQffcc48aNWrk6bQA/A9FdAAAAAAAAMBDHnjgAc2aNUuHDh1ytt1///0aM2aMZsyY4cHMADiwnAsAAAAAAADgAQ888ICefPJJtWzZUvPnz1dRUZHmz5+vli1b6sknn9QDDzzg6RQBiCI6AAAAAAB1Wlpamv71r3/pzDPPVFBQkJKSkrRt27bjHvf666+rU6dO8vPzU2RkpN59991ayBbAiaqsrNSsWbMUHBysX3/9VbfffrvatGmj22+/Xb/++quCg4M1a9YsVVZWejpVoMGjiA4AAAAAQB320UcfaeTIkfrss8+0atUqHTx4UFdeeaX27dvn9phPP/1UN954o4YPH66vvvpKSUlJSkpKUn5+fi1mDuBYnn/+eR06dEiPP/64fHxcV1z28fHR1KlTdejQIT3//PMeyhCAA2uiAwAAAABQh61cudLl/qJFixQUFKS8vDxdeuml1R7z9NNPq1+/frr//vslSY899phWrVql5557TnPnzj3lOQM4vh9//FGSlJCQUG2/o90RB8BzmIkOAAAAAMBppLS0VJLUokULtzFWq1Xx8fEubX379pXVaq02vqKiQmVlZS43AKdWhw4dJEk5OTnV9jvaHXEAPIciOgAAAAAApwm73a7Ro0fr4osvVkREhNu44uJiBQcHu7QFBweruLi42vi0tDQFBgY6b23btq3RvAFUdc8998jHx0ePPPKIDh065NJ36NAhTZw4UT4+Prrnnns8lCEAB4roAAAAAACcJkaOHKn8/HwtW7asRh83NTVVpaWlztsvv/xSo48PoKpGjRppzJgxKikp0dlnn6158+Zpx44dmjdvns4++2yVlJRozJgxatSokadTBRo81kQHAAAAAOA0MGrUKOXk5GjdunU6++yzjxnbpk0blZSUuLSVlJSoTZs21cb7+vrK19e3xnIFcGJmzJghSZo1a5buvPNOZ7uPj4/uv/9+Zz8Az2ImOgAAAAAAdZhhGBo1apTefPNNrVmzRuHh4cc9Jjo6WqtXr3ZpW7VqlaKjo09VmgD+pqioKIWGhrq0hYaGKioqykMZATgaRXQAAAAAAOqwkSNH6tVXX1VGRobOPPNMFRcXq7i4WPv373fG3HLLLUpNTXXev++++7Ry5UrNnDlTW7du1eTJk/Xll19q1KhRnngKANzIyspSSkqKunfvLqvVqvLyclmtVnXv3l0pKSnKysrydIoA9DeK6OvWrdPAgQMVGhoqLy8vZWdnu/QbhqGJEycqJCREjRs3Vnx8vL7//nuXmN27d2vIkCEKCAhQs2bNNHz4cO3du9cl5ptvvpHZbJafn5/atm3L5SsAAAAAgAbphRdeUGlpqWJjYxUSEuK8LV++3Bmzfft2FRUVOe/HxMQoIyND8+bNU/fu3ZWZmans7OxjbkYKoHbZbDaNGzdOCQkJys7OVlRUlPz9/RUVFaXs7GwlJCRo/Pjxstlsnk4VaPBOuoi+b98+de/eXXPmzKm2f8aMGXrmmWc0d+5crV+/Xk2bNlXfvn114MABZ8yQIUO0efNmrVq1yrme24gRI5z9ZWVluvLKK9W+fXvl5eXpySef1OTJkzVv3ry/8RQBAAAAADh9GYZR7e3WW291xuTm5mrRokUux1177bXatm2bKioqlJ+fr6uuuqp2EwdwTBaLRYWFhZowYYK8vV1LdN7e3kpNTVVBQYEsFouHMgTgcNIbi/bv31/9+/evts8wDM2ePVuPPPKIEhMTJUmvvPKKgoODlZ2drRtuuEFbtmzRypUr9cUXX6hXr16SpGeffVZXXXWV0tPTFRoaqiVLlqiyslILFixQo0aN1LVrV23cuFFPPfWUS7H9SBUVFaqoqHDeLysrO9mnBgAAAAAAANQKx9Uj7q4QcbQfeZUJAM+o0TXRCwoKVFxcrPj4eGdbYGCgevfuLavVKkmyWq1q1qyZs4AuSfHx8fL29tb69eudMZdeeqkaNWrkjOnbt6+2bdumP//8s9pzp6WlKTAw0Hlr27ZtTT41AAAAAAAAoMaEhIRIkvLz86vtd7Q74gB4To0W0YuLiyVJwcHBLu3BwcHOvuLiYgUFBbn0+/j4qEWLFi4x1T3Gkec4WmpqqkpLS523X3755Z8/IQAAAAAAAOAUMJvNCgsL07Rp02S321367Ha70tLSFB4eLrPZ7KEMATjUaBHdk3x9fRUQEOByAwAAx3e8TcOrk5ubqwsvvFC+vr7q2LFjlTVYAQAAABybyWTSzJkzlZOTo6SkJFmtVpWXl8tqtSopKUk5OTlKT0+XyWTydKpAg1ejRfQ2bdpIkkpKSlzaS0pKnH1t2rTRzp07XfoPHTqk3bt3u8RU9xhHngMAANSM420afrSCggINGDBAcXFx2rhxo0aPHq3bb79d77///inOFAAAAKhfkpOTlZmZqU2bNikmJkYBAQGKiYlRfn6+MjMzlZyc7OkUAehvbCx6LOHh4WrTpo1Wr16tHj16SDq8wef69et19913S5Kio6O1Z88e5eXlqWfPnpKkNWvWyG63q3fv3s6Yhx9+WAcPHtQZZ5whSVq1apXOP/98NW/evCZTBgCgwTvWpuHVmTt3rsLDwzVz5kxJUufOnfXxxx9r1qxZ6tu376lKEwAAAKiXkpOTlZiYKIvFoqKiIoWEhMhsNjMDHahDTrqIvnfvXv3www/O+wUFBdq4caNatGihdu3aafTo0Xr88cd17rnnKjw8XI8++qhCQ0OVlJQk6fAH7X79+umOO+7Q3LlzdfDgQY0aNUo33HCDQkNDJUmDBw/WlClTNHz4cD344IPKz8/X008/rVmzZtXMswYAAH+b1Wp12URcOrwB+OjRo90eU1FRoYqKCuf9srKyU5UeAAAAcNoxmUyKjY31dBoA3DjpIvqXX36puLg45/2xY8dKkoYOHapFixbpgQce0L59+zRixAjt2bNHl1xyiVauXCk/Pz/nMUuWLNGoUaPUp08feXt7a9CgQXrmmWec/YGBgfrggw80cuRI9ezZU61atdLEiRM1YsSIf/JcAQBADXC3AXhZWZn279+vxo0bVzkmLS1NU6ZMqa0UAQAAAACoMSddRI+NjZVhGG77vby8NHXqVE2dOtVtTIsWLZSRkXHM83Tr1k0Wi+Vk0wMAAHVQamqq84t36fBM9LZt23owIwAAAAAATkyNrokOAADqP3cbgAcEBFQ7C12SfH195evrWxvpAQAAAABQo7w9nQAAADi9REdHa/Xq1S5tq1atUnR0tIcyAgAAAADg1KGIDgBAA7d3715t3LhRGzdulPT/m4Zv375d0uGlWG655RZn/F133aWffvpJDzzwgLZu3arnn39er732msaMGeOJ9AEAAAAAOKVYzgUAgAbueJuGFxUVOQvqkhQeHq4VK1ZozJgxevrpp3X22WfrpZdeUt++fWs9dwAnxmazyWKxqKioSCEhITKbzTKZTJ5OCwAAADgtUEQHAKCBO96m4YsWLar2mK+++uoUZgWgpmRlZWncuHEqLCx0toWFhWnmzJlKTk72XGIAAADAaYLlXAAAAIB6KisrSykpKYqMjJTValV5ebmsVqsiIyOVkpKirKwsT6cIAAAA1HkU0QEAAIB6yGazady4cUpISFB2draioqLk7++vqKgoZWdnKyEhQePHj5fNZvN0qgAAAECdRhEdAAAAqIcsFosKCws1YcIEeXu7/tnv7e2t1NRUFRQUyGKxeChDAAAA4PRAER0AAACoh4qKiiRJERER1fY72h1xAAAAAKpHER0AAACoh0JCQiRJ+fn51fY72h1xAAAAAKpHER0AAACoh8xms8LCwjRt2jTZ7XaXPrvdrrS0NIWHh8tsNnsoQwAAAOD0QBEdAAAAqIdMJpNmzpypnJwcJSUlyWq1qry8XFarVUlJScrJyVF6erpMJpOnUwUAAADqNB9PJwCg5mzfvl27du3y2Pm3bNni8l9PadWqldq1a+fRHAAAqAuSk5OVmZmpcePGKSYmxtkeHh6uzMxMJScnezA7AAAA4PRAER2oJ7Zv367zO3XWgf1/eToV3XTTTR49v1/jJtq2dQuFdAAAdLiQnpiYKIvFoqKiIoWEhMhsNjMDHQAAADhBFNGBemLXrl06sP8vtUwYpzNatvVIDsahSh0qLZFPYLC8fBp5JIeDf/yiP3JmateuXRTRAQD4H5PJpNjYWE+nAQAAAJyWKKID9cwZLdvKt01HzyVwdhfPnRsAAAAAAACoYWwsCgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwo8aL6DabTY8++qjCw8PVuHFjdejQQY899pgMw3DGGIahiRMnKiQkRI0bN1Z8fLy+//57l8fZvXu3hgwZooCAADVr1kzDhw/X3r17azpdAAAAAAAAAADcqvEi+vTp0/XCCy/oueee05YtWzR9+nTNmDFDzz77rDNmxowZeuaZZzR37lytX79eTZs2Vd++fXXgwAFnzJAhQ7R582atWrVKOTk5WrdunUaMGFHT6QIAAAAAAAAA4JZPTT/gp59+qsTERA0YMECSFBYWpqVLl+rzzz+XdHgW+uzZs/XII48oMTFRkvTKK68oODhY2dnZuuGGG7RlyxatXLlSX3zxhXr16iVJevbZZ3XVVVcpPT1doaGhNZ02AAAAAAAAAABV1PhM9JiYGK1evVrfffedJOnrr7/Wxx9/rP79+0uSCgoKVFxcrPj4eOcxgYGB6t27t6xWqyTJarWqWbNmzgK6JMXHx8vb21vr16+v9rwVFRUqKytzuQEAAAAAAAAA8E/UeBH9oYce0g033KBOnTrpjDPO0AUXXKDRo0dryJAhkqTi4mJJUnBwsMtxwcHBzr7i4mIFBQW59Pv4+KhFixbOmKOlpaUpMDDQeWvbtm1NPzUAAOq1OXPmKCwsTH5+furdu7fzKjJ3Zs+erfPPP1+NGzdW27ZtNWbMGJel2QAAAAAAqA9qvIj+2muvacmSJcrIyNCGDRu0ePFipaena/HixTV9KhepqakqLS113n755ZdTej4AAOqT5cuXa+zYsZo0aZI2bNig7t27q2/fvtq5c2e18RkZGXrooYc0adIkbdmyRS+//LKWL1+uCRMm1HLmAAAAAACcWjW+Jvr999/vnI0uSZGRkfr555+VlpamoUOHqk2bNpKkkpIShYSEOI8rKSlRjx49JElt2rSp8qH90KFD2r17t/P4o/n6+srX17emnw4AAA3CU089pTvuuEPDhg2TJM2dO1crVqzQggUL9NBDD1WJ//TTT3XxxRdr8ODBkg7vgXLjjTe6XXYNAAAAAIDTVY3PRP/rr7/k7e36sCaTSXa7XZIUHh6uNm3aaPXq1c7+srIyrV+/XtHR0ZKk6Oho7dmzR3l5ec6YNWvWyG63q3fv3jWdMgAADVplZaXy8vJc9ivx9vZWfHy8c7+So8XExCgvL8+55MtPP/2kd999V1dddVW18exdAgAAAAA4XdX4TPSBAwfqiSeeULt27dS1a1d99dVXeuqpp3TbbbdJkry8vDR69Gg9/vjjOvfccxUeHq5HH31UoaGhSkpKkiR17txZ/fr10x133KG5c+fq4MGDGjVqlG644QaFhobWdMoAADRou3btks1mq3a/kq1bt1Z7zODBg7Vr1y5dcsklMgxDhw4d0l133eV2OZe0tDRNmTKlxnMHAAAAAOBUq/GZ6M8++6xSUlJ0zz33qHPnzho/frzuvPNOPfbYY86YBx54QPfee69GjBihf/3rX9q7d69WrlwpPz8/Z8ySJUvUqVMn9enTR1dddZUuueQSzZs3r6bTBQAAf0Nubq6mTZum559/Xhs2bFBWVpZWrFjhMt4fib1LAAD4+9atW6eBAwcqNDRUXl5eys7OPmZ8bm6uvLy8qtyKi4trJ2EAAOqZGp+JfuaZZ2r27NmaPXu22xgvLy9NnTpVU6dOdRvTokULZWRk1HR6AADgKK1atZLJZFJJSYlLe0lJidu9SB599FHdfPPNuv322yUd3gNl3759GjFihB5++OEqS7uxdwkAAH/fvn371L17d912221KTk4+4eO2bdumgIAA5/2goKBTkR4AAPVejRfRAQDA6aVRo0bq2bOnVq9e7VxazW63a/Xq1Ro1alS1x7jbA0WSDMM4pfkCANDQ9O/fX/379z/p44KCgtSsWbOaTwgAgAamxpdzAQAAp5+xY8dq/vz5Wrx4sbZs2aK7775b+/bt07BhwyRJt9xyi1JTU53xAwcO1AsvvKBly5apoKBAq1at0qOPPqqBAwc6i+kAAMCzevTooZCQEF1xxRX65JNPjhnLJuAAALjHTHQAAKDrr79ev//+uyZOnKji4mL16NFDK1eudG42un37dpeZ54888oi8vLz0yCOP6LffflPr1q2dm4sDAADPCgkJ0dy5c9WrVy9VVFTopZdeUmxsrNavX68LL7yw2mPYBBwAAPe8jHp6zXVZWZkCAwNVWlrqsgYcUF9t2LBBPXv2VJuhs+XbpqOn0/GYiuIfVLx4tPLy8tx+QADqk9N1vDtd8wYA4GScivHOy8tLb775pnMJthN12WWXqV27dvrvf/9bbX9FRYUqKiqc98vKytS2bVvGagBAvXaiYzUz0QEAAAAAqOcuuugiffzxx2772QQcAAD3WBMdAAAAAIB6buPGjQoJCfF0GgAAnJaYiQ4AAAAAQB22d+9e/fDDD877BQUF2rhxo1q0aKF27dopNTVVv/32m1555RVJ0uzZsxUeHq6uXbvqwIEDeumll7RmzRp98MEHnnoKAACc1iiiAwAAAABQh3355ZeKi4tz3h87dqwkaejQoVq0aJGKioq0fft2Z39lZaXGjRun3377TU2aNFG3bt304YcfujwGAAA4cRTRAQAAAACow2JjY2UYhtv+RYsWudx/4IEH9MADD5zirAAAaDhYEx0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALjh4+kEAAAAAAAAgIbMZrPJYrGoqKhIISEhMpvNMplMnk4LwP9QRAcAAADqOT6YAwBQd2VlZWncuHEqLCx0toWFhWnmzJlKTk72XGIAnFjOBQAAAKjHsrKy1LFjR8XFxWnw4MGKi4tTx44dlZWV5enUAABo8LKyspSSkqLIyEhZrVaVl5fLarUqMjJSKSkpjNdAHUERHQAAAKin+GAOAEDdZbPZNG7cOCUkJCg7O1tRUVHy9/dXVFSUsrOzlZCQoPHjx8tms3k6VaDBo4gOAAAA1EN8MAcAoG6zWCwqLCzUhAkT5O3tWqLz9vZWamqqCgoKZLFYPJQhAAeK6AAAAEA9xAdzAADqtqKiIklSREREtf2OdkccAM+hiA4AAADUQ3wwBwCgbgsJCZEk5efnV9vvaHfEAfAciugAAABAPcQHcwAA6jaz2aywsDBNmzZNdrvdpc9utystLU3h4eEym80eyhCAA0V0AAAAoB7igzkAAHWbyWTSzJkzlZOTo6SkJJdNwJOSkpSTk6P09HSZTCZPpwo0eBTRAQAAgHqID+YAANR9ycnJyszM1KZNmxQTE6OAgADFxMQoPz9fmZmZSk5O9nSKACT5eDoBAAAAAKeG44P5uHHjFBMT42wPDw/ngzkAAHVEcnKyEhMTZbFYVFRUpJCQEJnNZr7oBuoQiugAAABAPcYHcwAA6j6TyaTY2FhPpwHADYroAAAAQD3HB3MAAADg72NNdAAAAAAAAAAA3GAmOgAAAAAAAOBBNpuNpdeAOoyZ6AAAAAAAAICHZGVlqWPHjoqLi9PgwYMVFxenjh07Kisry9OpAfgfiugAAAAAAACAB2RlZSklJUWRkZGyWq0qLy+X1WpVZGSkUlJSKKQDdQRFdAAAAAAAAKCW2Ww2jRs3TgkJCcrOzlZUVJT8/f0VFRWl7OxsJSQkaPz48bLZbJ5OFWjwKKIDAAAAAAAAtcxisaiwsFATJkyQt7dric7b21upqakqKCiQxWLxUIYAHCiiAwAAAAAAALWsqKhIkhQREVFtv6PdEQfAcyiiAwAAAAAAALUsJCREkpSfn19tv6PdEQfAcyiiAwAAAAAAALXMbDYrLCxM06ZNk91ud+mz2+1KS0tTeHi4zGazhzIE4EARHQAAAAAAAKhlJpNJM2fOVE5OjpKSkmS1WlVeXi6r1aqkpCTl5OQoPT1dJpPJ06kCDZ6PpxMAAAAAAAAAGqLk5GRlZmZq3LhxiomJcbaHh4crMzNTycnJHswOgANFdAAAAAAAAMBDkpOTlZiYKIvFoqKiIoWEhMhsNjMDHahDKKIDAAAAAAAAHmQymRQbG+vpNAC4cUrWRP/tt9900003qWXLlmrcuLEiIyP15ZdfOvsNw9DEiRMVEhKixo0bKz4+Xt9//73LY+zevVtDhgxRQECAmjVrpuHDh2vv3r2nIl0AAAAAAAAAAKpV40X0P//8UxdffLHOOOMMvffee/r22281c+ZMNW/e3BkzY8YMPfPMM5o7d67Wr1+vpk2bqm/fvjpw4IAzZsiQIdq8ebNWrVqlnJwcrVu3TiNGjKjpdAEAAAAAAAAAcKvGl3OZPn262rZtq4ULFzrbwsPDnf9vGIZmz56tRx55RImJiZKkV155RcHBwcrOztYNN9ygLVu2aOXKlfriiy/Uq1cvSdKzzz6rq666Sunp6QoNDa1y3oqKClVUVDjvl5WV1fRTAwAAAAAAAAA0MDU+E/3tt99Wr169dO211yooKEgXXHCB5s+f7+wvKChQcXGx4uPjnW2BgYHq3bu3rFarJMlqtapZs2bOArokxcfHy9vbW+vXr6/2vGlpaQoMDHTe2rZtW9NPDQCAem3OnDkKCwuTn5+fevfurc8///yY8Xv27NHIkSMVEhIiX19fnXfeeXr33XdrKVsAAAAAAGpHjRfRf/rpJ73wwgs699xz9f777+vuu+/Wv//9by1evFiSVFxcLEkKDg52OS44ONjZV1xcrKCgIJd+Hx8ftWjRwhlztNTUVJWWljpvv/zyS00/NQAA6q3ly5dr7NixmjRpkjZs2KDu3burb9++2rlzZ7XxlZWVuuKKK1RYWKjMzExt27ZN8+fP11lnnVXLmQMAAAAAcGrV+HIudrtdvXr10rRp0yRJF1xwgfLz8zV37lwNHTq0pk/n5OvrK19f31P2+AAA1GdPPfWU7rjjDg0bNkySNHfuXK1YsUILFizQQw89VCV+wYIF2r17tz799FOdccYZkqSwsLDaTBkAAAAAgFpR4zPRQ0JC1KVLF5e2zp07a/v27ZKkNm3aSJJKSkpcYkpKSpx9bdq0qTLz7dChQ9q9e7czBgAA1IzKykrl5eW5LLXm7e2t+Ph451JrR3v77bcVHR2tkSNHKjg4WBEREZo2bZpsNlu18RUVFSorK3O5AQAAAABwOqjxIvrFF1+sbdu2ubR99913at++vaTDm4y2adNGq1evdvaXlZVp/fr1io6OliRFR0drz549ysvLc8asWbNGdrtdvXv3rumUAQBo0Hbt2iWbzXbMpdaO9tNPPykzM1M2m03vvvuuHn30Uc2cOVOPP/54tfHsXQIAAAAAOF3VeBF9zJgx+uyzzzRt2jT98MMPysjI0Lx58zRy5EhJkpeXl0aPHq3HH39cb7/9tjZt2qRbbrlFoaGhSkpKknR45nq/fv10xx136PPPP9cnn3yiUaNG6YYbblBoaGhNpwwAAE6S3W5XUFCQ5s2bp549e+r666/Xww8/rLlz51Ybz94lAAAAAIDTVY2vif6vf/1Lb775plJTUzV16lSFh4dr9uzZGjJkiDPmgQce0L59+zRixAjt2bNHl1xyiVauXCk/Pz9nzJIlSzRq1Cj16dNH3t7eGjRokJ555pmaThcAgAavVatWMplMx1xq7WghISE644wzZDKZnG2dO3dWcXGxKisr1ahRI5d49i4BAAAAAJyuaryILkkJCQlKSEhw2+/l5aWpU6dq6tSpbmNatGihjIyMU5EeAAA4QqNGjdSzZ0+tXr3aeVWY3W7X6tWrNWrUqGqPufjii5WRkSG73S5v78MXtn333XcKCQmpUkAHAAAAcGw2m00Wi0VFRUUKCQmR2Wx2mbACwLNqfDkXAABw+hk7dqzmz5+vxYsXa8uWLbr77ru1b98+DRs2TJJ0yy23KDU11Rl/9913a/fu3brvvvv03XffacWKFZo2bZpz+TYAAAAAJyYrK0sdO3ZUXFycBg8erLi4OHXs2FFZWVmeTg3A/5ySmegAAOD0cv311+v333/XxIkTVVxcrB49emjlypXOzUa3b9/unHEuSW3bttX777+vMWPGqFu3bjrrrLN033336cEHH/TUUwAAAABOO1lZWUpJSXFZ4lg6vLRiSkqKMjMzlZyc7KHsADhQRAcAAJKkUaNGuV2+JTc3t0pbdHS0Pvvss1OcFQAAAFA/2Ww23X333TIMQ3369NHDDz+siIgI5efn64knnlBOTo7uvvtuJSYmsrQL4GEs5wIAAAAAAADUstzcXO3cuVOXXHKJ3nrrLUVFRcnf319RUVF66623dPHFF2vnzp3VTmgBULsoogMAAAAAAAC1zFEcnzJlisvSiZLk7e2tyZMnu8QB8ByK6AAAAAAAAAAAuEERHQAAAAAAAKhlsbGxkqRJkybJbre79Nntdk2ZMsUlDoDnUEQHAAAA6jmbzabc3FwtXbpUubm5stlsnk4JAIAGLzY2Vq1bt9bHH3+sxMREWa1WlZeXy2q1KjExUR9//LGCgoIoogN1gI+nEwAAAABw6mRlZWncuHEqLCx0toWFhWnmzJlKTk72XGIAADRwJpNJc+fO1aBBg7R69Wrl5OQ4+5o0aSJJeuGFF2QymTyVIoD/YSY6AAAAUE9lZWUpJSVFkZGRLrPbIiMjlZKSoqysLE+nCABAg5acnKw33nhDQUFBLu1BQUF64403+MIbqCOYiQ4AAADUQzabTePGjVNCQoKys7Pl7X14/kxUVJSys7OVlJSk8ePHKzExkRluAAB4UHJyshITE2WxWFRUVKSQkBCZzWbGZ6AOoYgOAAAA1EMWi0WFhYVaunSps4Du4O3trdTUVMXExMhisbDWKgAAHmYymRiPgTqM5VwAAACAeqioqEiSFBERUW2/o90RBwAAAKB6FNEBAACAeigkJESSlJ+fX22/o90RBwAAPMdmsyk3N1dLly5Vbm6ubDabp1MCcASK6AAAAEA9ZDabFRYWpmnTpslut7v02e12paWlKTw8XGaz2UMZAgAA6fBG4B07dlRcXJwGDx6suLg4dezYkQ3AgTqEIjoAAABQD5lMJs2cOVM5OTlKSkqS1WpVeXm5rFarkpKSlJOTo/T0dDYtA04D69at08CBAxUaGiovLy9lZ2cf95jc3FxdeOGF8vX1VceOHbVo0aJTnieAk5eVlaWUlBRFRka6jNWRkZFKSUmhkA7UERTRAQAAgHoqOTlZmZmZ2rRpk2JiYhQQEKCYmBjl5+crMzNTycnJnk4RwAnYt2+funfvrjlz5pxQfEFBgQYMGKC4uDht3LhRo0eP1u23367333//FGcK4GTYbDaNGzdOCQkJys7OVlRUlPz9/RUVFaXs7GwlJCRo/PjxLO0C1AE+nk4AAAAAwKmTnJysxMREWSwWFRUVKSQkRGazmRnowGmkf//+6t+//wnHz507V+Hh4Zo5c6YkqXPnzvr44481a9Ys9e3b91SlCeAkWSwWFRYWaunSpfL2dp3n6u3trdTUVMXExMhisSg2NtYzSQKQRBEdAAAAqPdMJhMfvoEGxGq1Kj4+3qWtb9++Gj16tNtjKioqVFFR4bxfVlZ2qtID8D9FRUWSpIiIiGr7He2OOACew3IuAAAAAADUI8XFxQoODnZpCw4OVllZmfbv31/tMWlpaQoMDHTe2rZtWxupAg1aSEiIJCk/P7/afke7Iw6A51BEBwAAAACggUtNTVVpaanz9ssvv3g6JaDeM5vNCgsL07Rp02S321367Ha70tLSFB4eLrPZ7KEMAThQRAcAAAAAoB5p06aNSkpKXNpKSkoUEBCgxo0bV3uMr6+vAgICXG4ATi2TyaSZM2cqJydHSUlJslqtKi8vl9VqVVJSknJycpSens4+JkAdwJroAAAAAADUI9HR0Xr33Xdd2latWqXo6GgPZQTAneTkZGVmZmrcuHGKiYlxtoeHhyszM1PJyckezA6AA0V0AAAAAADqsL179+qHH35w3i8oKNDGjRvVokULtWvXTqmpqfrtt9/0yiuvSJLuuusuPffcc3rggQd02223ac2aNXrttde0YsUKTz0FAMeQnJysxMREWSwWFRUVKSQkRGazmRnoQB1CER0AAAAAgDrsyy+/VFxcnPP+2LFjJUlDhw7VokWLVFRUpO3btzv7w8PDtWLFCo0ZM0ZPP/20zj77bL300kvq27dvrecO4MSYTCbFxsZ6Og0AblBEBwAAAACgDouNjZVhGG77Fy1aVO0xX3311SnMCgCAhoMiOgAAAAAAAOBBNpuN5VyAOszb0wkAAAAAAAAADVVWVpY6duyouLg4DR48WHFxcerYsaOysrI8nRqA/6GIDgAAAAAAAHhAVlaWUlJSFBkZKavVqvLyclmtVkVGRiolJYVCOlBHUEQHAAAAAAAAapnNZtO4ceOUkJCg7OxsRUVFyd/fX1FRUcrOzlZCQoLGjx8vm83m6VSBBo8iOgAAAAAAAFDLLBaLCgsLNWHCBHl7u5bovL29lZqaqoKCAlksFg9lCMCBIjoAAAAAAABQy4qKiiRJERER1fY72h1xADyHIjoAAAAAAABQy0JCQiRJ+fn51fY72h1xADyHIjoAAAAAAABQy8xms8LCwjRt2jTZ7XaXPrvdrrS0NIWHh8tsNnsoQwAOFNEBAAAAAACAWmYymTRz5kzl5OQoKSlJVqtV5eXlslqtSkpKUk5OjtLT02UymTydKtDg+Xg6AQAAAAAAAKAhSk5OVmZmpsaNG6eYmBhne3h4uDIzM5WcnOzB7AA4UEQHAAAAAAAAPCQ5OVmJiYmyWCwqKipSSEiIzGYzM9CBOoQiOgAAAAAAAOBBJpNJsbGxnk4DgBusiQ4AAAAAAAAAgBvMRAcAAADqOZvNxiXiAADUYYzVQN3GTHQAAACgHsvKylLHjh0VFxenwYMHKy4uTh07dlRWVpanUwMAAGKsBk4HFNEBAACAeiorK0spKSmKjIyU1WpVeXm5rFarIiMjlZKSwodzAAA8jLEaOD1QRAcAAADqIZvNpnHjxikhIUHZ2dmKioqSv7+/oqKilJ2drYSEBI0fP142m83TqQIA0CAxVgOnD4roAAAAQD1ksVhUWFioCRMmyNvb9c9+b29vpaamqqCgQBaLxUMZAgDQsB05VhuGodzcXC1dulS5ubkyDIOxGqhD2FgUAAAAqIeKiookSREREdX2O9odcQAAoHY5xuAff/xRN954owoLC519YWFhevzxx13iAHgOM9EBAACAeigkJESSlJ+fX22/o90RBwAAapdjDL755purXRP95ptvdokD4DkU0QEAAIB6yGw2KywsTNOmTZPdbnfps9vtSktLU3h4uMxms4cyBACgYYuJiZGPj4+CgoKUlZXlsiZ6VlaWgoKC5OPjo5iYGE+nCjR4FNEBAACAeshkMmnmzJnKyclRUlKSy+y2pKQk5eTkKD09XSaTydOpAgDQIH366ac6dOiQSkpKlJyc7DJWJycnq6SkRIcOHdKnn37q6VSBBo8iOgAAAFBPJScnKzMzU5s2bVJMTIwCAgIUExOj/Px8ZWZmKjk52dMpAgDQYDnWOn/11VerHatfffVVlzgAnsPGogAAAEA9lpycrMTERFksFhUVFSkkJERms5kZ6AAAeJhjrfMOHTpo27Ztev755/Xjjz+qQ4cOuueee5SXl+cSB8BzTvlM9P/85z/y8vLS6NGjnW0HDhzQyJEj1bJlS/n7+2vQoEEqKSlxOW779u0aMGCAmjRpoqCgIN1///06dOjQqU4XAAAAqHdMJpNiY2N14403KjY2lgI6AAB1gGP/knvvvVfnn3++xowZo+eee05jxozR+eefr3//+9/sXwLUEae0iP7FF1/oxRdfVLdu3Vzax4wZo3feeUevv/66PvroI+3YscPlUlKbzaYBAwaosrJSn376qRYvXqxFixZp4sSJpzJdAAAAAAAAoFaYTCZde+21+vLLL7V//37NmzdPO3bs0Lx587R//359+eWXSklJ4ctvoA44ZUX0vXv3asiQIZo/f76aN2/ubC8tLdXLL7+sp556Spdffrl69uyphQsX6tNPP9Vnn30mSfrggw/07bff6tVXX1WPHj3Uv39/PfbYY5ozZ44qKytPVcoAADRoc+bMUVhYmPz8/NS7d299/vnnJ3TcsmXL5OXlpaSkpFObIAAAAFCP2Gw2vf766+rVq5d8fX01YsQIhYaGasSIEfLz81OvXr2UmZkpm83m6VSBBu+UFdFHjhypAQMGKD4+3qU9Ly9PBw8edGnv1KmT2rVrJ6vVKkmyWq2KjIxUcHCwM6Zv374qKyvT5s2bqz1fRUWFysrKXG4AAODELF++XGPHjtWkSZO0YcMGde/eXX379tXOnTuPeVxhYaHGjx/PJaYAAADASbJYLCosLNSgQYPk7e1aovPy8lJycrIKCgpksVg8lCEAh1NSRF+2bJk2bNigtLS0Kn3FxcVq1KiRmjVr5tIeHBys4uJiZ8yRBXRHv6OvOmlpaQoMDHTe2rZtWwPPBACAhuGpp57SHXfcoWHDhqlLly6aO3eumjRpogULFrg9xmazaciQIZoyZYrOOeecWswWAAAAOP0VFRVJklJTUxUZGSmr1ary8nLn5NIJEya4xAHwnBovov/yyy+67777tGTJEvn5+dX0w7uVmpqq0tJS5+2XX36ptXMDAHA6q6ysVF5enstVYt7e3oqPj3deJVadqVOnKigoSMOHDz/uObhiDAAAAHAVFBQkSbrkkkv0xhtv6MCBA3rnnXd04MABvfHGG7r44otd4gB4jk9NP2BeXp527typCy+80Nlms9m0bt06Pffcc3r//fdVWVmpPXv2uMxGLykpUZs2bSRJbdq0qbIOa0lJibOvOr6+vvL19a3hZwMAQP23a9cu2Wy2aq8C27p1a7XHfPzxx3r55Ze1cePGEzpHWlqapkyZ8k9TBQAAAOqdP/74Q+eee65+/vlnZ1v79u3VuHFjD2YF4Eg1PhO9T58+2rRpkzZu3Oi89erVS0OGDHH+/xlnnKHVq1c7j9m2bZu2b9+u6OhoSVJ0dLQ2bdrksg7rqlWrFBAQoC5dutR0ygAA4CSUl5fr5ptv1vz589WqVasTOoYrxgAAAABXjrrXli1bdODAAc2bN087duzQvHnzdODAAeeEluPtUwTg1KvxmehnnnmmIiIiXNqaNm2qli1bOtuHDx+usWPHqkWLFgoICNC9996r6OhoRUVFSZKuvPJKdenSRTfffLNmzJih4uJiPfLIIxo5ciSzzQEAqGGtWrWSyWRyXvXlcORVYkf68ccfVVhYqIEDBzrb7Ha7JMnHx0fbtm1Thw4dXI7hijEAAADAlWOZlk6dOunAgQMaMWKEsy88PFydOnXS1q1bWc4FqANqvIh+ImbNmiVvb28NGjRIFRUV6tu3r55//nlnv8lkUk5Oju6++25FR0eradOmGjp0qKZOneqJdAEAqNcaNWqknj17avXq1UpKSpJ0uCi+evVqjRo1qkp8p06dtGnTJpe2Rx55ROXl5Xr66afZ3BsAAAA4Ca1atdKaNWv0ySefqKioSCEhIbr44ot1+eWXezo1AP9TK0X03Nxcl/t+fn6aM2eO5syZ4/aY9u3b69133z3FmQEAAEkaO3ashg4dql69eumiiy7S7NmztW/fPg0bNkySdMstt+iss85SWlqa/Pz8qlx15tjn5Oh2AAAAANVzLNPyySefaNCgQUpNTVVCQoLy8/M1aNAgffLJJy5xADzHIzPRAQBA3XL99dfr999/18SJE1VcXKwePXpo5cqVzs1Gt2/fLm/vGt9KBQAAAGiwQkJCJEnTpk3Tiy++qJiYGGdfeHi4nnjiCU2YMMEZB8BzKKIDAABJ0qhRo6pdvkWqelXZ0RYtWlTzCQEAAAD1mNlsVlhYmD799FN99913VZZzGTRokMLDw2U2mz2dKtDgMaUMAAAAAAAAqGUmk0kzZ85UTk6OBg0aJF9fXyUkJMjX11eDBg1STk6O0tPTZTKZPJ0q0OAxEx0AAAAAAADwgOTkZGVmZmrs2LEuy7mEhYUpMzNTycnJHswOgAMz0QEAAAAAAAAP8vLy8nQKAI6BIjoAAAAAAADgAVlZWUpJSVFkZKSsVqvKy8tltVoVGRmplJQUZWVleTpFAKKIDgAAAAAAANQ6m82mcePGKSEhQdnZ2YqKipK/v7+ioqKUnZ2thIQEjR8/XjabzdOpAg0eRXQAAAAAAACgllksFhUWFmrChAny9nYt0Xl7eys1NVUFBQWyWCweyhCAA0V0AAAAAAAAoJYVFRVJkiIiIqrtd7Q74gB4DkV0AAAAAAAAoJaFhIRIkvLz86vtd7Q74gB4DkV0AAAAAAAAoJaZzWaFhYVp2rRpstvtLn12u11paWkKDw+X2Wz2UIYAHHw8nQAAAAAAAADQ0JhMJs2cOVMpKSlKTExUv3791LhxY+3fv18rV67UihUrlJmZKZPJ5OlUgQaPIjoAAAAAAADgAcnJyRo/frxmzZqlnJwcZ7uPj4/Gjx+v5ORkD2YHwIEiOgAAAAAAAOABWVlZSk9P14ABA9S/f3/nTPT33ntP6enpioqKopAO1AEU0QEAAIB6zmazyWKxqKioSCEhITKbzVwaDgCAh9lsNo0bN04JCQnKzs6Wt/f/b1141113KSkpSePHj1diYiLjNuBhbCwKAAAA1GNZWVnq2LGj4uLiNHjwYMXFxaljx47KysrydGoAADRoFotFhYWFmjBhgksBXZK8vb2VmpqqgoICWSwWD2UIwIEiOgAAAFBPZWVlKSUlRZGRkbJarSovL5fValVkZKRSUlIopAMA4EFFRUWSpIiIiGr7He2OOACeQxEdAAAAqIeOvkQ8KipK/v7+ioqKUnZ2thISEjR+/HjZbDZPpwoAQIMUEhIiScrPz1dlZaVmz56te++9V7Nnz1ZlZaXy8/Nd4gB4DmuiAwAAAPWQ4xLxpUuXur1EPCYmRhaLRbGxsZ5JEgCABsxsNissLEw33XSTCgsLXb7YHj9+vMLCwhQeHi6z2ezBLAFIzEQHAAAA6iUuEQcAoG4zmUzq3r27fvzxR5lMJj300EP6/vvv9dBDD8lkMunHH39Ut27d2FQUqAMoogMAAAD10JGXiFeHS8QBAPCsyspKrVixQoGBgQoNDdV//vMfnXvuufrPf/6js846S4GBgVqxYoUqKys9nSrQ4FFEBwAAAOohxyXi06ZNk91ud+mz2+1KS0vjEnEAADzo+eef16FDh5Senq4ffvhBa9euVUZGhtauXavvv/9eM2bM0KFDh/T88897OlWgwWNNdAAAAKAeMplMmjlzplJSUpSUlKTU1FRFREQoPz9faWlpysnJUWZmJpeIAwDgIT/++KMkKSEhQSaTqcoeJQkJCS5xADyHmegAAABAPZWcnKzMzExt2rRJMTExCggIUExMjPLz85WZmank5GRPpwgAQIPVoUMHSVJOTo5sNptyc3O1dOlS5ebmymazKScnxyUOgOcwEx0AAACox5KTk5WYmCiLxaKioiKFhITIbDYzAx0AAA+75557dP/992v8+PF64oknVFhY6OwLCwvTn3/+KR8fH91zzz2eSxKAJGaiAwAAAPWe4xLxG2+8UbGxsRTQAQCoAxo1aqQBAwaotLRUO3bs0IMPPqjvvvtODz74oHbs2KHS0lINGDBAjRo18nSqQIPHTHQAAAAAAACgltlsNn399dfq0KGDCgsLNX36dE2fPl3S4S/AO3TooG+++UY2m40vwAEPYyY6AAAAAAAAUMssFosKCwt1++2366yzznLpO+usszR8+HAVFBTIYrF4KEMADsxEBwAAAAAAAGpZUVGRJCk1NVUJCQl68MEH1bhxY+3fv1/vvfeeJkyY4BIHwHMoogMAAAAAAAC1LCgoSJLUqVMn5efnKycnx9kXFhamTp06aevWrc44AJ7Dci4AAAAAAACAh2zdulURERGyWq0qLy+X1WpVRESEtm7d6unUAPwPRXQAAAAAAACglhUXF7vcNwzDeTtWHIDaRxEdAAAAqOdsNptyc3O1dOlS5ebmymazeTolAAAavN9//12SdPfddys/P18xMTEKCAhQTEyMNm/erDvvvNMlDoDnUEQHAAAA6rGsrCx17NhRcXFxGjx4sOLi4tSxY0dlZWV5OjUAJ2HOnDkKCwuTn5+fevfurc8//9xt7KJFi+Tl5eVy8/Pzq8VsAZyI1q1bS5IKCwv13Xffae3atcrIyNDatWu1bds2bd++3SUOgOdQRAcAAADqqaysLKWkpCgyMtJlndXIyEilpKRQSAdOE8uXL9fYsWM1adIkbdiwQd27d1ffvn21c+dOt8cEBASoqKjIefv5559rMWMAJ+Kss86SJL333nsaNGiQfH19lZCQIF9fXw0aNEjvvfeeSxwAz/HxdAIAAAAAap7NZtO4ceOUkJCg7OxseXsfnj8TFRWl7OxsJSUlafz48UpMTJTJZPJwtgCO5amnntIdd9yhYcOGSZLmzp2rFStWaMGCBXrooYeqPcbLy0tt2rSpzTQBnCSz2aywsDC1atVK33zzjWJiYpx9YWFh6tWrl/744w+ZzWYPZglAYiY6AAAAUC9ZLBYVFhZqwoQJzgK6g7e3t1JTU1VQUCCLxeKhDAGciMrKSuXl5Sk+Pt7Z5u3trfj4eFmtVrfH7d27V+3bt1fbtm2VmJiozZs3H/M8FRUVKisrc7kBOLVMJpNmzpypvLw8RUZG6rnnntPLL7+s5557ThEREcrLy1N6ejpfdgN1ADPRAQAAgHqoqKhIkhQREVFtv6PdEQegbtq1a5dsNpuCg4Nd2oODg7V169Zqjzn//PO1YMECdevWTaWlpUpPT3duVHj22WdXe0xaWpqmTJlS4/kDOLbk5GRlZmZq3LhxysnJcbaHh4crMzNTycnJHswOgANFdAAAAKAeCgkJkSTl5+crKiqqSn9+fr5LHID6Izo6WtHR0c77MTEx6ty5s1588UU99thj1R6TmpqqsWPHOu+XlZWpbdu2pzxXAIcL6YmJibJYLCoqKlJISIjMZjMz0IE6hCI6AAAAUA851lmdNm2ay5rokmS325WWlqbw8HDWWQXquFatWslkMqmkpMSlvaSk5ITXPD/jjDN0wQUX6IcffnAb4+vrK19f33+UK4C/z2QyKTY21tNpAHCDNdEBAACAesixzmpOTo6SkpJktVpVXl4uq9WqpKQk5eTksM4qcBpo1KiRevbsqdWrVzvb7Ha7Vq9e7TLb/FhsNps2bdrElScAAPxNzEQH6pE2/l6KbLRDZ3g13A/DBxvtkPy9PJ0GAAB1wpHrrMbExDjbWWcVOL2MHTtWQ4cOVa9evXTRRRdp9uzZ2rdvn4YNGyZJuuWWW3TWWWcpLS1NkjR16lRFRUWpY8eO2rNnj5588kn9/PPPuv322z35NAAAOG1RRAfqkTt7NtLk0LmeTsOzQqXJPRt5OgsAAOoM1lkFTn/XX3+9fv/9d02cOFHFxcXq0aOHVq5c6dxsdPv27S5LNv3555+64447VFxcrObNm6tnz5769NNP1aVLF089BQAATmsU0YF65MW8Sn163n06o2XD3QDo4B+/aFPek7ra04kAAAAANWjUqFEaNWpUtX25ubku92fNmqVZs2bVQlYAADQMFNGBeqR4ryFVhsrXCPd0Kh5TUWk7/DoAAABJUlZWlsaNG6fCwkJnW1hYmGbOnMlyLgAAAMAJYGNRAAAAoJ7KyspSSkqKIiMjXTYWjYyMVEpKirKysjydIgAAAFDnUUQHAAAA6iGbzaZx48YpISFBS5cu1auvvqpBgwbp1Vdf1dKlS5WQkKDx48fLZrN5OlUAAACgTmM5FwAAAKAeslgsKiwsVNu2beXv7+9s/+CDDzRnzhyZzWYVFBTIYrEoNjbWc4kCAADZbDY2AQfqMGaiAwAAAPVQUVGRpMPF9Oo42h1xAADAM7KystSxY0fFxcVp8ODBiouLU8eOHVl2DahDKKIDAAAA9VCzZs1qNA4AANQ89i8BTg8U0QEAAIB66PXXX3f+f79+/Vw+mPfr16/aOAAAUHuO3L8kOztbUVFR8vf3V1RUlLKzs9m/BKhDaryInpaWpn/9618688wzFRQUpKSkJG3bts0l5sCBAxo5cqRatmwpf39/DRo0SCUlJS4x27dv14ABA9SkSRMFBQXp/vvv16FDh2o6XQAAAKBeeuONN5z/7+PjI8MwnDcfH59q4wAAQO1x7F8yYcIEeXu7lui8vb2Vmprq3L8EgGfVeBH9o48+0siRI/XZZ59p1apVOnjwoK688krt27fPGTNmzBi98847ev311/XRRx9px44dSk5OdvbbbDYNGDBAlZWV+vTTT7V48WItWrRIEydOrOl0AQDA/8yZM0dhYWHy8/NT79699fnnn7uNnT9/vsxms5o3b67mzZsrPj7+mPEAal9lZaUkqXv37srPz1dMTIwCAgIUExOjzZs3q1u3bi5xAACgdjn2JYmIiKi239HO/iWA5/kcP+TkrFy50uX+okWLFBQUpLy8PF166aUqLS3Vyy+/rIyMDF1++eWSpIULF6pz58767LPPFBUVpQ8++EDffvutPvzwQwUHB6tHjx567LHH9OCDD2ry5Mlq1KhRTacNAECDtnz5co0dO1Zz585V7969NXv2bPXt21fbtm1TUFBQlfjc3FzdeOONiomJkZ+fn6ZPn64rr7xSmzdv1llnneWBZwDgaGeddZZ+/PFHffPNN9q3b5/Wr1+voqIihYSEqHfv3mratKkzDgAA1L6QkBBJUn5+vqKioqr05+fnu8QB8JxTviZ6aWmpJKlFixaSpLy8PB08eFDx8fHOmE6dOqldu3ayWq2S5NxAITg42BnTt29flZWVafPmzdWep6KiQmVlZS43AABwYp566indcccdGjZsmLp06aK5c+eqSZMmWrBgQbXxS5Ys0T333KMePXqoU6dOeumll2S327V69epazhyAOzNnzpQkGYahgIAAvffee+rZs6fee+89BQQEyDAMlzgAAFC7zGazwsLCNG3aNNntdpc+u92utLQ0hYeHy2w2eyhDAA6ntIhut9s1evRoXXzxxc5LUIqLi9WoUSM1a9bMJTY4OFjFxcXOmCML6I5+R1910tLSFBgY6Ly1bdu2hp8NAAD1U2VlpfLy8ly+4Pb29lZ8fLzzC+7j+euvv3Tw4EHnl+ZH48tuoPYlJCQ41z4/dOiQZsyYofPPP18zZsxw7jXk4+OjhIQET6YJAECDZTKZNHPmTOXk5CgpKcllE/CkpCTl5OQoPT1dJpPJ06kCDd4pLaKPHDlS+fn5WrZs2ak8jSQpNTVVpaWlztsvv/xyys8JAEB9sGvXLtlstmq/wHb35fXRHnzwQYWGhroU4o/El91A7TOZTFq+fPkxY5YvX84HcwAAPCg5OVmZmZnatGmTy/4l+fn5yszMdNlDEIDnnLIi+qhRo5STk6O1a9fq7LPPdra3adNGlZWV2rNnj0t8SUmJ2rRp44wpKSmp0u/oq46vr68CAgJcbgAA4NT7z3/+o2XLlunNN9+Un59ftTF82Q14RnJyst544w2Xv8clqW3btnrjjTf4YA4AQB2QnJysH374QWvXrlVGRobWrl2r77//nnEaqENqfGNRwzB077336s0331Rubq7Cw8Nd+nv27KkzzjhDq1ev1qBBgyRJ27Zt0/bt2xUdHS1Jio6O1hNPPKGdO3c6NzNbtWqVAgIC1KVLl5pOGQCABq1Vq1YymUzVfoHt7strh/T0dP3nP//Rhx9+qG7durmN8/X1la+vb43kC+DkJCcnKzExURaLxbmxqNlsZgY6AAB1iMlkUmxsrKfTAOBGjRfRR44cqYyMDL311ls688wznZeBBwYGqnHjxgoMDNTw4cM1duxYtWjRQgEBAbr33nsVHR3t3In4yiuvVJcuXXTzzTdrxowZKi4u1iOPPKKRI0fyARwAgBrWqFEj9ezZU6tXr1ZSUpIkOTcJHTVqlNvjZsyYoSeeeELvv/++evXqVUvZAvg7+GAOAAAA/H01XkR/4YUXJKnKH+kLFy7UrbfeKkmaNWuWvL29NWjQIFVUVKhv3756/vnnnbEmk0k5OTm6++67FR0draZNm2ro0KGaOnVqTacLAAAkjR07VkOHDlWvXr100UUXafbs2dq3b5+GDRsmSbrlllt01llnKS0tTZI0ffp0TZw4URkZGQoLC3N+ae7v7y9/f3+PPQ8AAAAAAGraKVnO5Xj8/Pw0Z84czZkzx21M+/bt9e6779ZkagAAwI3rr79ev//+uyZOnKji4mL16NFDK1eudG42un37dnl7//9WKi+88IIqKyuVkpLi8jiTJk3S5MmTazN1AAAAwOP++usvbd269R89xv79+1VYWKiwsDA1btz4Hz1Wp06d1KRJk3/0GAD+X40X0QEAwOlp1KhRbpdvyc3NdblfWFh46hMCAAAAThNbt25Vz549PZ2GU15eni688EJPpwHUGxTRAQAAgHrOZrOxsSgAAKdQp06dlJeX948eY8uWLbrpppv06quvqnPnzv84HwA1hyI6AAAAUI9lZWVp7Nix+vnnn51t7du311NPPaXk5GQPZgYAQP3RpEmTGpv53blzZ2aRA3WM9/FDAAAAAJyOsrKyNGjQIO3cudOlfefOnRo0aJCysrI8lBkAAABw+qCIDgAAANRDNptNd911lySpT58+slqtKi8vl9VqVZ8+fSRJd999t2w2myfTBAAAAOo8iugAAABAPZSbm6vff/9dl1xyid566y1FRUXJ399fUVFReuutt3TJJZdo586dVTYOBgAAAOCKIjoAAABQDzmK41OmTJG3t+uf/d7e3po0aZJLHAAAAIDqUUQHAAAAAAAAAMANiugAAABAPRQbGytJmjRpkux2u0uf3W7X5MmTXeIAAAAAVI8iOgAAAFAPxcbGKigoSB9//LESExNdNhZNTEzUJ598oqCgIIroAAAAwHH4eDoBAAAAADXPZDLphRdeUEpKilavXq2cnBxnX5MmTeTl5aUXXnhBJpPJg1kCAAAAdR8z0QEAAIB6Kjk5WZmZmQoODnZpDw4OVmZmppKTkz2UGQAAAHD6YCY6AAAAUI8lJycrMTFRFotFRUVFCgkJkdlsZgY6AAAAcIKYiQ4AAAAAAAAAgBsU0QEAAIB6LCsrSx07dlRcXJwGDx6suLg4dezYUVlZWZ5ODQAAADgtUEQHAAAA6qmsrCylpKQoMjJSVqtV5eXlslqtioyMVEpKCoV0AAAA4ARQRAcAAADqIZvNpnHjxikhIUHZ2dmKioqSv7+/oqKilJ2drYSEBI0fP142m83TqQIAAAB1GkV0AAAAoB6yWCwqLCzUhAkT5O3t+me/t7e3UlNTVVBQIIvF4qEMAQAAgNODj6cTAAAAAFDzioqKJEkRERGy2WyyWCwqKipSSEiIzGazIiIiXOIAAAAAVI8iOgAAAFAPhYSESJKee+45vfjiiyosLHT2hYWFacSIES5xAAAAAKrHci4AAABAPWQ2mxUUFKTU1FRFRES4bCwaERGhCRMmKCgoSGaz2dOpAgAAAHUaM9EBAACAesowDOd/8/Ly9O2332r//v3OdgAAAADHRxEdAAAAqIcsFot+//13DRkyRMuXL9eKFSucfT4+Pho8eLAyMjJksVgUGxvruUQBAACAOo7lXAAAAIB6yLFhaEZGhnx8XOfO+Pj4aOnSpS5xAAAAAKpHER0AAACoh4KCgiQdXsolPj7eZU30+Ph455IujjgAAAAA1aOIDgAAANRDdrtdktS8eXNlZmbqwIEDeuedd3TgwAFlZmaqefPmLnEAAAAAqsea6AAAAEA9tG7dOknSn3/+qebNm2v//v3OvsaNGzvvr1u3TldccYVHcgQAAABOB8xEBwAAAOq5AwcOHPM+AAAAAPeYiQ4AAADUQ2az2fn//fv314ABA5wz0FesWKF33323ShwAAACAqpiJDgAAANRDXl5eLv9/wQUXKCUlRRdccEGVPgAAAADuMRMdAAAAqIcca6JL0po1a7RixQrn/SZNmrjEsSY6AADS9u3btWvXLo+df8uWLS7/9ZRWrVqpXbt2Hs0BqGsoogMAAACngb/++ktbt2494fiioiJJ0p133qm3337bZWPRZs2aaciQIZo/f76Kioq0YcOGk8qlU6dOLoV4AABOd9u3b9f5nTrrwP6/PJ2KbrrpJo+e369xE23buoVCOnAEiugAAADAaWDr1q3q2bPn/7V35+FWlXX/+N8HkJlzkFkSRHEWnHCkBwGjgFBAMMyhQCktUUvz+RY+OWCDqWlpUo6B5jxFZaWSivIo5ZTzrOAQqIB6GERQzv794Y/zeISlzIfh9bqufcm+173W+ux19jm313vf+14rvN8ll1yyVNv06dNz2WWXJUmuuOKKXHHFFSt0zEceeSS77777CtcCAOuqWbNm5YMF76flAT/IJi071EoNpY8W5aPKt1Kvom3K6tWvlRo+nP16Zt92XmbNmiVEh08QogMAwHpg++23zyOPPLLc/RcvXpy+ffvm3XffTY8ePbL//vtnzJgxOf3003P33Xdn8uTJadGiRW6//fbUrVt3hWsBgA3RJi07pEG7rWuvgM13rL1zA4WE6AAAsB5o3LjxCs/+vvzyyzN06NA8/PDDmTx5cpJkzJgx1UuxXHbZZdlzzz1Xe60AALAhqVPbBQAAAGvGkCFDcsstt6RNmzY12tu0aZNbbrklQ4YMqaXKAABg/SFEBwCADdiQIUPy8ssvV6+Nfskll+Sll14SoAMAwHISogMAwAaubt262WOPPZIke+yxxwqvgQ4AABsza6LDBubD2a/X2rnXlTuJAwAAAMDqIkSHDUSrVq3SsFHjzL7tvNoupdY1bNQ4rVq1qu0yAAAAANgACNFhA9GxY8c8/9yzmTVrVq3V8Oyzz+aII47I1VdfnR122KHW6mjVqlU6duxYa+cHAAAAYMMhRIcNSMeOHdeJ8HiHHXbI7rvvXttlAAAAAMAqc2NRAAAAAAAoIEQHAAAAAIAClnMBAIC14LXXXqv1e5d88r+1yf1LAABYnwjRAQBgDXvttdey3fY75IMF79d2KTniiCNqu4Q0bNQ4zz/3rCAdAID1ghAdAADWsFmzZuWDBe+n5QE/yCYtO9RKDaWPFuWjyrdSr6JtyurVr5UakuTD2a9n9m3nZdasWUJ0AADWC0J0AABYSzZp2SEN2m1dewVsvmPtnRsAANZTbiwKAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAXW6RB97Nix6dSpUxo2bJi99947Dz74YG2XBAAbrBUdd2+66aZsv/32adiwYbp27Zq//e1va6lSANj4GKcBoPassyH6DTfckJNOOimnn356Hn300eyyyy7p27dv3n777douDQA2OCs67j7wwAM59NBDM3LkyPz73//O4MGDM3jw4Dz11FNruXIA2PAZpwGgdpWVSqVSbRexLHvvvXf23HPPXHTRRUmSqqqqdOjQIccff3x+9KMfLdV/4cKFWbhwYfXzOXPmpEOHDqmsrEx5eflaqxvWV++//36ee+65VTrGs88+myOOOCJXX311dthhh5U+zvbbb5/GjRuvUi2wsZgzZ04qKipWebxb0XH3kEMOyfz583PbbbdVt+2zzz7Zddddc/HFFy/V3zjNxu7RRx/NgJ57ZIf+30y95m1X6hilxR9m8dx3VnNlK6dusxYpq7vJSu370Xtv5dm/X5W/3vtwdt9999VcGaxb1pdxOjFWw6qO1evSOJ2s/FhtnGZjs7xjdb21WNNyW7RoUR555JGMHj26uq1OnTrp06dPpkyZssx9zjrrrIwZM2ZtlQgbnOeeey7dunVbLcc64ogjVmn/Rx55xGANa9HKjLtTpkzJSSedVKOtb9++mTBhwjL7G6fZ2LVq1Sqj9mmSH+/4x9oupfa1T376bpO0atWqtiuB9cLaGKcTYzUYq/9/xmlYpnUyRJ81a1YWL16ctm1rfvLXtm3bwpmyo0ePrvE/CUs+NQeWz/bbb59HHnlklY6xYMGCTJs2LZ06dUqjRo1WqRZg7VmZcffNN99cZv8333xzmf2N02zsOnbsmBG/mZRnp7+40sdYuHBhpk+fvvqKWgXt27dPgwYNVnr/EV/fJpt37LgaK4IN19oYpxNjNazqWL0ujdPJqo3VxmlY2joZoq+MBg0arNL/yMPGrnHjxqtl9vcXv/jF1VANsKExTkOy+fbdku1X7Vtfu66eUgCWYqyGVR+rd119pQDrmHXyxqKtWrVK3bp189Zbb9Vof+utt9KuXbtaqgoANkwrM+62a9fOOA0Aa4FxGgBq3zoZotevXz/dunXLXXfdVd1WVVWVu+66K/vuu28tVgYAG56VGXf33XffGv2TZOLEicZpAFjNjNMAUPvW2eVcTjrppAwfPjx77LFH9tprr/z617/O/Pnzc+SRR9Z2aQCwwfm8cfeb3/xmvvCFL+Sss85Kknzve99Lz549c95552XAgAG5/vrr8/DDD+fSSy+tzZcBABsk4zQA1K51NkQ/5JBDMnPmzJx22ml58803s+uuu+b2229f6uYoAMCq+7xx97XXXkudOv/3Bbbu3bvn2muvzY9//OOccsop2WabbTJhwoR06dKltl4CAGywjNMAULvKSqVSqbaLWBPmzJmTioqKVFZWpry8vLbLAYA1Yn0d79bXugFgRazP4936XDsALK/lHe/WyTXRAQAAAABgXSBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoUK+2C1hTSqVSkmTOnDm1XAkArDlLxrkl4976wjgNwMZgfR2nE2M1ABuH5R2rN9gQfe7cuUmSDh061HIlALDmzZ07NxUVFbVdxnIzTgOwMVnfxunEWA3AxuXzxuqy0vr4kfhyqKqqyvTp09OsWbOUlZXVdjmwUZgzZ046dOiQ119/PeXl5bVdDmwUSqVS5s6dm/bt26dOnfVnlTbjNKx9xmlY+9bXcToxVkNtMFbD2re8Y/UGG6IDa9+cOXNSUVGRyspKAz4ArGOM0wCwbjNWw7pr/fooHAAAAAAA1iIhOgAAAAAAFBCiA6tNgwYNcvrpp6dBgwa1XQoA8CnGaQBYtxmrYd1lTXQAAAAAAChgJjoAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDq+y+++7LgQcemPbt26esrCwTJkyo7ZIAgE8wVgPAuss4Des+ITqwyubPn59ddtklY8eOre1SAIBlMFYDwLrLOA3rvnq1XQCw/uvfv3/69+9f22UAAAWM1QCw7jJOw7rPTHQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoUK+2CwDWf/PmzctLL71U/Xzq1Kl57LHH0qJFi3Ts2LEWKwMAEmM1AKzLjNOw7isrlUql2i4CWL9NmjQpvXv3Xqp9+PDhGT9+/NovCACowVgNAOsu4zSs+4ToAAAAAABQwJroAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAADrobKyskyYMKG2ywAACvTq1Svf//7318q5Tj311Bx99NHL3DZixIhltu+zzz655ZZb1mBVsOEQogOF3nzzzRx//PHZaqut0qBBg3To0CEHHnhg7rrrrlU+9vjx49O8efNVLxIANlAzZ87Md7/73XTs2DENGjRIu3bt0rdv39x///21XRoAbNAOPPDA9OvXb5nbJk+enLKysjzxxBNruapib775Zi644IL8z//8zwrt9+Mf/zg/+tGPUlVVtYYqgw2HEB1YpmnTpqVbt265++67c+655+bJJ5/M7bffnt69e2fUqFG1XR4AbPCGDh2af//737nyyivzwgsv5M9//nN69eqV2bNnr7FzLlq0aI0dGwDWFyNHjszEiRPzxhtvLLVt3Lhx2WOPPbLzzjvXQmXLdvnll6d79+7ZYostqttmzZqV4cOHp2PHjrnuuuuy9dZb52tf+1qNsb5///6ZO3du/v73v9dG2bBeEaIDy3TsscemrKwsDz74YIYOHZptt902O+20U0466aT885//TJK89tprGTRoUJo2bZry8vIMGzYsb731VvUxHn/88fTu3TvNmjVLeXl5unXrlocffjiTJk3KkUcemcrKypSVlaWsrCxnnHFGLb1SAFj3vPfee5k8eXLOPvvs9O7dO1tssUX22muvjB49OgMHDqzuN2vWrBx00EFp3Lhxttlmm/z5z3+u3rZ48eKMHDkyW265ZRo1apTtttsuF1xwQY3zjBgxIoMHD87PfvaztG/fPtttt12S5PXXX8+wYcPSvHnztGjRIoMGDcq0adOq95s0aVL22muvNGnSJM2bN88Xv/jFvPrqq2v2ogDAWnLAAQekdevWGT9+fI32efPm5aabbsrIkSMze/bsHHroofnCF76Qxo0bp2vXrrnuuus+87jLWoqtefPmNc7zeWPwslx//fU58MADa7SdeOKJ+ec//5k//OEP+epXv5rLLrssW221VY1Z53Xr1s1Xv/rVXH/99Z95fECIDizDO++8k9tvvz2jRo1KkyZNltrevHnzVFVVZdCgQXnnnXdy7733ZuLEiXnllVdyyCGHVPc7/PDDs/nmm+ehhx7KI488kh/96EfZZJNN0r179/z6179OeXl5ZsyYkRkzZuTkk09emy8RANZpTZs2TdOmTTNhwoQsXLiwsN+YMWMybNiwPPHEE/nqV7+aww8/PO+8806SpKqqKptvvnluuummPPPMMznttNNyyimn5MYbb6xxjLvuuivPP/98Jk6cmNtuuy0ffvhh+vbtm2bNmmXy5Mm5//7707Rp0/Tr1y+LFi3KRx99lMGDB6dnz5554oknMmXKlBx99NEpKytbo9cEANaWevXq5Zvf/GbGjx+fUqlU3X7TTTdl8eLFOfTQQ/PBBx+kW7du+etf/5qnnnoqRx99dL7xjW/kwQcfXOnzft4YvCzvvPNOnnnmmeyxxx412v/973/nm9/8Znr27JmKior07t07Z599dho2bFij31577ZXJkyevdM2wsahX2wUA656XXnoppVIp22+/fWGfu+66K08++WSmTp2aDh06JEmuuuqq7LTTTnnooYey55575rXXXst///d/Vx9nm222qd6/oqIiZWVladeu3Zp9MQCwHqpXr17Gjx+fb3/727n44ouz++67p2fPnvn6179e4+vjI0aMyKGHHpok+fnPf54LL7wwDz74YPr165dNNtkkY8aMqe675ZZbZsqUKbnxxhszbNiw6vYmTZrk8ssvT/369ZMkV199daqqqnL55ZdXB+Pjxo1L8+bNM2nSpOyxxx6prKzMAQcckM6dOydJdthhhzV+TQBgbTrqqKNy7rnn5t57702vXr2SfDweDh06NBUVFamoqKgxGez444/PHXfckRtvvDF77bXXSp3zhhtu+Mwx+Ctf+cpS+7z22msplUpp3759jfYvfvGLGTduXHbZZZfPPGf79u3z+uuvp6qqKnXqmGsLRfx2AEv55CftRZ599tl06NChOkBPkh133DHNmzfPs88+myQ56aST8q1vfSt9+vTJL37xi7z88strrGYA2NAMHTo006dPz5///Of069cvkyZNyu67717jK9+fDNSbNGmS8vLyvP3229VtY8eOTbdu3dK6des0bdo0l156aV577bUa5+natWt1gJ58vBzbSy+9lGbNmlXPiG/RokU++OCDvPzyy2nRokVGjBiRvn375sADD8wFF1yQGTNmrLkLAQC1YPvtt0/37t3z+9//PsnHk80mT56ckSNHJvl42bSf/OQn6dq1a1q0aJGmTZvmjjvuWGqcXRGfNwYvy4IFC5JkqRnm559/fg455JCceOKJueqqq7Lrrrvm4osvXmr/Ro0apaqq6jO/+QYI0YFl2GabbVJWVpbnnntulY5zxhln5Omnn86AAQNy9913Z8cdd8wf//jH1VQlAGz4GjZsmC9/+cs59dRT88ADD2TEiBE5/fTTq7dvsskmNfqXlZVVr3V6/fXX5+STT87IkSNz55135rHHHsuRRx651NfBP71027x589KtW7c89thjNR4vvPBCDjvssCQfz4qbMmVKunfvnhtuuCHbbrtt9T1TAGBDMXLkyNxyyy2ZO3duxo0bl86dO6dnz55JknPPPTcXXHBBfvjDH+aee+7JY489lr59+37mTbrLysqWmrT24YcfVv97ecbgT2vVqlWS5N13363R3qRJk/zsZz/Liy++mIEDB+a73/1uTjrppFx66aU1+r3zzjtp0qRJGjVqtPwXBjZCQnRgKS1atEjfvn0zduzYzJ8/f6nt7733XnbYYYe8/vrref3116vbn3nmmbz33nvZcccdq9u23XbbnHjiibnzzjszZMiQjBs3LklSv379LF68eM2/GADYgOy4447LHJuX5f7770/37t1z7LHHZrfddsvWW2+9XN8K23333fPiiy+mTZs22XrrrWs8KioqqvvttttuGT16dB544IF06dIl11577Uq/LgBYFw0bNix16tTJtddem6uuuipHHXVU9TIr999/fwYNGpQjjjgiu+yyS7baaqu88MILn3m81q1b1/j21osvvpj333+/+vnyjsGf1Llz55SXl+eZZ54pPG/z5s1zzDHHpH///kutf/7UU09lt912+9xrARs7ITqwTGPHjs3ixYuz11575ZZbbsmLL76YZ599NhdeeGH23Xff9OnTJ127ds3hhx+eRx99NA8++GD1TUv22GOPLFiwIMcdd1wmTZqUV199Nffff38eeuih6jVTO3XqlHnz5uWuu+7KrFmzavyPAwBs7GbPnp39998/V199dZ544olMnTo1N910U84555wMGjRouY6xzTbb5OGHH84dd9yRF154Iaeeemoeeuihz93v8MMPT6tWrTJo0KBMnjw5U6dOzaRJk3LCCSfkjTfeyNSpUzN69OhMmTIlr776au688868+OKL1kUHYIPTtGnTHHLIIRk9enRmzJiRESNGVG/bZpttMnHixDzwwAN59tlnc8wxx+Stt976zOPtv//+ueiii/Lvf/87Dz/8cL7zne/U+FbZ543By1KnTp306dMn//u//1uj/cQTT8y9996bysrKLF68OPfcc0/uvffedOvWrUa/yZMnL3OtdaAmITqwTFtttVUeffTR9O7dOz/4wQ/SpUuXfPnLX85dd92V3/3udykrK8uf/vSnbLrpptlvv/3Sp0+fbLXVVrnhhhuSJHXr1s3s2bPzzW9+M9tuu22GDRuW/v37V9/grHv37vnOd76TQw45JK1bt84555xTmy8XANYpTZs2zd57751f/epX2W+//dKlS5eceuqp+fa3v52LLrpouY5xzDHHZMiQITnkkEOy9957Z/bs2Tn22GM/d7/GjRvnvvvuS8eOHTNkyJDssMMOGTlyZD744IOUl5encePGee655zJ06NBsu+22OfroozNq1Kgcc8wxq/qyAWCdM3LkyLz77rvp27dvjZt3/vjHP87uu++evn37plevXmnXrl0GDx78mcc677zz0qFDh/To0SOHHXZYTj755DRu3Lh6++eNwUW+9a1v5frrr69e0i1JOnbsmJNOOikdOnTItddem29+85s56qijcvzxx1f3+c9//pMHHnggRx555EpcGdi4lJWW5w6CAAAAAMA6p1QqZe+9986JJ56YQw89dKntI0aMqHFj8iV++MMf5t13311qnXRgaWaiAwAAAMB6qqysLJdeemk++uijFdqvTZs2+clPfrKGqoINi5noAAAAAABQwEx0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0gFoyYsSING3atLbL2OCUlZXljDPOqO0yAAAAgA2EEH09cvPNN6esrGyZjy5dutR2ebDR6NWrV0aMGJHk4yC8V69eNbbPmzcvp59+erp06ZImTZqkZcuW2XXXXfO9730v06dPX/sFr2G9evUq/Nv0ycfyBNvXXnttfv3rX6/W+saPH5+ysrIkyaRJk1JWVpZp06at1nMAAAAAG656tV0AK+6UU07JDjvsUP38Zz/7WS1WA3zShx9+mP322y/PPfdchg8fnuOPPz7z5s3L008/nWuvvTYHHXRQ2rdvX9tlrlb/8z//k29961vVzx966KFceOGFS/2t2nnnnT/3WNdee22eeuqpfP/7318TpQIAAACsMCH6eujLX/5yjZmvl19+eWbNmlV7BQHVJkyYkH//+9+55pprcthhh9XY9sEHH2TRokVrtZ6qqqosWrQoDRs2XGPn+PKXv1zjecOGDXPhhRcu9bcKAAAAYH1kOZf1yJLwrU6dz/+xLVm+4JNLFlRVVWXnnXdOWVlZxo8fX93+xBNPZMSIEdlqq63SsGHDtGvXLkcddVRmz55d45hnnHHGMpdoqFfv/z6L6dWrV7p06ZJHHnkk3bt3T6NGjbLlllvm4osvXuq1nHbaaenWrVsqKirSpEmT9OjRI/fcc0+NftOmTas+z4QJE2ps++CDD7LpppumrKwsv/zlL5eqs02bNvnwww9r7HPddddVH++THzz86U9/yoABA9K+ffs0aNAgnTt3zk9+8pMsXrz4c6/1kvM999xzGTZsWMrLy9OyZct873vfywcffFCj77hx47L//vunTZs2adCgQXbcccf87ne/W+qYgwYNSqdOndKwYcO0adMmAwcOzJNPPlmjz5LXsaylL7bffvuUlZXluOOOq2575513cvLJJ6dr165p2rRpysvL079//zz++OM19h0+fHgaNmyYZ599tkZ73759s+mmm9ZYjuSVV17J1772tbRo0SKNGzfOPvvsk7/+9a819luyfMaSR4MGDbLtttvmrLPOSqlU+uyL+/8reu8tK6D95Hvm049PevvttzNy5Mh07NgxdevWre6zqmuUv/zyy0mSL37xi0tta9iwYcrLy5dq/89//pPBgwenadOmad26dU4++eSl3nu//OUv071797Rs2TKNGjVKt27dcvPNNy91rCU/92uuuSY77bRTGjRokNtvv736PEcddVTatm2bBg0aZKeddsrvf//7pY7xm9/8JjvttFMaN26cTTfdNHvssUeuvfbalboen/Tb3/62uqb27dtn1KhRee+996q39+rVK3/961/z6quvVv88OnXqlGT5/2YAAAAArG5moq9HloToDRo0WKn9//CHPywVxCbJxIkT88orr+TII49Mu3bt8vTTT+fSSy/N008/nX/+859LhY+/+93vagSNnw7133333Xz1q1/NsGHDcuihh+bGG2/Md7/73dSvXz9HHXVUkmTOnDm5/PLLc+ihh+bb3/525s6dmyuuuCJ9+/bNgw8+mF133bXGMRs2bJhx48Zl8ODB1W233nrrUiH1J82dOze33XZbDjrooOq2cePGpWHDhkvtN378+DRt2jQnnXRSmjZtmrvvvjunnXZa5syZk3PPPbfwHJ80bNiwdOrUKWeddVb++c9/5sILL8y7776bq666qsa122mnnTJw4MDUq1cvf/nLX3Lsscemqqoqo0aNqnG8o48+Ou3atcv06dNz0UUXpU+fPpk6dWoaN2681HX55NIXDzzwQF599dWl6nvllVcyYcKEfO1rX8uWW26Zt956K5dcckl69uyZZ555pnqJkQsuuCB33313hg8fnilTpqRu3bq55JJLcuedd+YPf/hDdb+33nor3bt3z/vvv58TTjghLVu2zJVXXpmBAwfm5ptvrnHdk/9bhmjBggW54YYbcsopp6RNmzYZOXLkcl3fJddvyXtv9OjRn9n36KOPTo8ePZJ8/F754x//WGP78OHD849//CPHH398dtlll9StWzeXXnppHn300eWuZ1m22GKLJMlVV12VH//4x0v9/nza4sWL07dv3+y999755S9/mX/84x8577zz0rlz53z3u9+t7nfBBRdk4MCBOfzww7No0aJcf/31+drXvpbbbrstAwYMqHHMu+++OzfeeGOOO+64tGrVKp06dcpbb72VffbZpzpkb926df7+979n5MiRmTNnTvV76LLLLssJJ5yQgw8+uPqDoCeeeCL/+te/lppZvyLOOOOMjBkzJn369Ml3v/vdPP/88/nd736Xhx56KPfff3822WST/M///E8qKyvzxhtv5Fe/+lWSVP+8V/RvBgAAAMBqU2K98etf/7qUpPT444/XaO/Zs2dpp512qtE2bty4UpLS1KlTS6VSqfTBBx+UOnbsWOrfv38pSWncuHHVfd9///2lznXdddeVkpTuu+++6rbTTz+9lKQ0c+bMwhp79uxZSlI677zzqtsWLlxY2nXXXUtt2rQpLVq0qFQqlUofffRRaeHChTX2fffdd0tt27YtHXXUUdVtU6dOLSUpHXrooaV69eqV3nzzzeptX/rSl0qHHXZYKUnp3HPPXarOQw89tHTAAQdUt7/66qulOnXqlA499NClXseyrsExxxxTaty4cemDDz4ofL2fPN/AgQNrtB977LFL/byWdZ6+ffuWttpqq888x4033lhKUnr44Yer25KUDj744FK9evVqtI8cObL6uowaNaq6/YMPPigtXry4xnGnTp1aatCgQenMM8+s0X7HHXeUkpR++tOfll555ZVS06ZNS4MHD67R5/vf/34pSWny5MnVbXPnzi1tueWWpU6dOlWf65577iklKd1zzz01aqlTp07p2GOP/czXvcQpp5xSSlKaNWtWddtOO+1U6tmz51J9X3zxxVKS0pVXXlndtuRntMSCBQtKderUKR1zzDE19h0+fHipSZMmy1VTkffff7+03XbblZKUtthii9KIESNKV1xxRemtt95aqu/w4cNLSZa6/rvttlupW7duSx33kxYtWlTq0qVLaf/996/RnqRUp06d0tNPP12jfeTIkaXNNtusxjUslUqlr3/966WKiorq4w8aNGipvycr6qabbqrxM3/77bdL9evXL33lK1+p8R686KKLSklKv//976vbBgwYUNpiiy2WOuby/s0olT6+BqeffvoqvQYAAACAJSznsh5ZsrxK69atV3jfsWPHZvbs2Tn99NOX2taoUaPqf3/wwQeZNWtW9tlnnyRZqVm59erVyzHHHFP9vH79+jnmmGPy9ttv55FHHkmS1K1bN/Xr10/y8TIz77zzTj766KPsscceyzzn7rvvnp122il/+MMfkiSvvvpq7rnnnowYMaKwjqOOOiq333573nzzzSTJlVdemX333TfbbrvtUn0/eQ3mzp2bWbNmpUePHnn//ffz3HPPLdfr/vRM8uOPPz5J8re//W2Z56msrMysWbPSs2fPvPLKK6msrKyx//vvv59Zs2blsccey2WXXZa2bdsuVXvbtm0zYMCAjBs3rnqfG2+8MUceeeRS9TVo0KD6WwOLFy/O7Nmz07Rp02y33XZLXfOvfOUrOeaYY3LmmWdmyJAhadiwYS655JIaff72t79lr732yn/9139VtzVt2jRHH310pk2blmeeeaZG/yWv97XXXss555yTqqqq7L///su4kktb8s2B5VnXe3m+sTF//vxUVVWlZcuWy3X+FdGoUaP861//yn//938n+fhbDiNHjsxmm22W448/PgsXLlxqn+985zs1nvfo0SOvvPLKUsdd4t13301lZWV69OixzN+Xnj17Zscdd6x+XiqVcsstt+TAAw9MqVTKrFmzqh99+/ZNZWVl9XGaN2+eN954Iw899NDKX4RP+cc//pFFixbl+9//fo1vrnz7299OeXn5UksALcuK/s0AAAAAWF2E6OuRV199NfXq1VvhEL2ysjI///nPc9JJJ6Vt27ZLbX/nnXfyve99L23btk2jRo3SunXrbLnlltX7rqj27dunSZMmNdqWhL+fXKP9yiuvzM4775yGDRumZcuWad26df76178WnvPII4+sDovHjx+f7t27Z5tttimsY9ddd02XLl1y1VVXpVQqZfz48csMl5Pk6aefzkEHHZSKioqUl5endevWOeKII5Is/zX4dC2dO3dOnTp1arzm+++/P3369EmTJk3SvHnztG7dOqeccsoyz3PmmWemdevW2W233TJt2rRMmjQpzZo1W+q8Rx55ZK699tosXLgwN910UzbddNNlhtNVVVX51a9+lW222SYNGjRIq1at0rp16zzxxBPLfI2//OUv06JFizz22GO58MIL06ZNmxrbX3311Wy33XZL7bfDDjtUb/+kwYMHp3Xr1tliiy1yxhln5Mc//nGGDh261P7LMmvWrGyyySY1lrIpsmSN7c9a27xly5bZZpttcvnll+fOO+/M22+/nVmzZi0z4F4ZFRUVOeecczJt2rRMmzYtV1xxRbbbbrtcdNFF+clPflKjb8OGDZf6nd50003z7rvv1mi77bbbss8++6Rhw4Zp0aJFWrdund/97nfL/Nkt+f1dYubMmXnvvfdy6aWXpnXr1jUeS34n3n777STJD3/4wzRt2jR77bVXttlmm4waNSr333//Kl2PJe+FT79f6tevn6222mqZyw8ty4r+zQAAAABYHTb4EP2+++7LgQcemPbt2y/z5pTL44477sg+++yTZs2apXXr1hk6dGiNYHRtef7557PVVlvVuJHn8jj77LNTp06d6pmxnzZs2LBcdtll+c53vpNbb701d955Z/WNCKuqqla57mW5+uqrM2LEiHTu3DlXXHFFbr/99kycODH7779/4TmPOOKIvPTSS/nnP/+ZK6+8sjAQ/6Sjjjoq48aNy7333ps333wzw4YNW6rPe++9l549e+bxxx/PmWeemb/85S+ZOHFizj777CQrfw0+vRb2yy+/nC996UuZNWtWzj///Pz1r3/NxIkTc+KJJy7zPN/61rdy55135ve//30aNmyYoUOHLjMsHDBgQOrXr58JEyZk3LhxGT58+DJvPrvkg5T99tsvV199de64445MnDgxO+200zJf47///e/qYHVZa+mvqF/+8peZOHFi/va3v+X000/P2WefnTFjxizXvtOmTUvHjh0/d33xJNXfPGjXrt1n9rvhhhvSsmXL9O3bN23btk3r1q1z/fXXL1c9K2KLLbbIUUcdlfvvvz/NmzfPNddcU2N73bp1P/cYkydPzsCBA9OwYcP89re/zd/+9rdMnDgxhx122DJvzvrJWevJ/723jjjiiEycOHGZjyU3Qt1hhx3y/PPP5/rrr89//dd/5ZZbbsl//dd/LfNbLGvTyvzNAAAAAFgdNvgbi86fPz+77LJLjjrqqAwZMmSF9586dWoGDRqUk046Kddcc00qKytz4oknZsiQIWt1CYGFCxfmscceq3FjzeUxffr0XHDBBTnrrLPSrFmz6iVhlnj33Xdz1113ZcyYMTnttNOq21988cWVrnX69OmZP39+jdnoL7zwQpKkU6dOSZKbb745W221VW699dYawehnBXUtW7bMwIEDq5eGGTZsWGbNmvWZtRx++OH57//+73zve9/LwQcfvMyZ3JMmTcrs2bNz6623Zr/99qtunzp16nK93iVefPHFGjOAX3rppVRVVVW/5r/85S9ZuHBh/vznP6djx47V/e65555lHm/rrbfO1ltvnSTp06dPOnbsmGuvvbbGzSaTj5fP+cY3vpGf/exnefrpp/P73/9+mce7+eab07t371xxxRU12t977720atWqRtv8+fNz5JFHZscdd0z37t1zzjnn5KCDDsqee+5Z3WeLLbbI888/v9R5lix/s+QGm0t069YtvXr1SpL0798///nPf3L22Wfn1FNPXWbov8RHH32Uxx9/PP369Svs80nPPPNMysrKljlL/pN22223XHbZZenRo0fOPPPM7LPPPjn33HNXedZ1kU033TSdO3fOU089tcL73nLLLWnYsGHuuOOOGsvULPlmxudp3bp1mjVrlsWLF6dPnz6f279JkyY55JBDcsghh2TRokUZMmRIfvazn2X06NHLtaTOpy15Lyz5IHCJRYsWZerUqTVqKvqgZGX+ZgAAAACsDhv8TPT+/fvnpz/9aQ466KBlbl+4cGFOPvnkfOELX0iTJk2y9957Z9KkSdXbH3nkkSxevDg//elP07lz5+y+++45+eST89hjj+XDDz9cS68i1ct1fOlLX1qh/caMGZO2bdsutebyEktmwX56Nuuvf/3rlaoz+Tj0/OT62YsWLcoll1yS1q1bp1u3boXn/de//pUpU6Z85rGPOuqoPPHEE/na1772mct1LNGiRYsMGjQoTzzxRI466qhl9llWLYsWLcpvf/vbzz3+J40dO7bG89/85jdJPn4PFp2nsrJyuYLQJR8WFC03ctRRR+XJJ5/MfvvtVyOk/KS6desu9XO+6aab8p///Gepvj/84Q/z2muv5corr8z555+fTp06Zfjw4TXO/9WvfjUPPvhgjZ/Z/Pnzc+mll6ZTp0411uRelgULFuSjjz7KRx999Jn97rzzzlRWVmbQoEGf2S/5+L13yy23ZK+99vrc98ecOXPyjW98IwMHDsyPf/zj9OnTJ5ttttnnnuPzPP7448v8cOfVV1/NM88887nh/rLUrVs3ZWVlWbx4cXXbtGnTlvubNXXr1s3QoUNzyy23LDPEnzlzZvW/P/1BW/369bPjjjumVCqt9N+8Pn36pH79+rnwwgtrvAevuOKKVFZWZsCAAdVtTZo0WeY3Llb2bwYAAADAqtrgZ6J/nuOOOy7PPPNMrr/++rRv3z5//OMf069fvzz55JPZZptt0q1bt9SpUyfjxo3LiBEjMm/evPzhD39Inz59sskmm6zx+ubPn5/f/OY3OfPMM6tD0KuvvrpGn7feeivz5s3L1VdfnS9/+cs11j2/8847c80111TfkO/TysvLs99+++Wcc87Jhx9+mC984Qu58847V3gW9ie1b98+Z599dqZNm5Ztt902N9xwQx577LFceuml1dfsgAMOyK233pqDDjooAwYMyNSpU3PxxRdnxx13zLx58wqP3a9fv8ycOXO5AvQlxo8fn7Fjxy4123qJ7t27Z9NNN83w4cNzwgknpKysLH/4wx+WuUzGZ5k6dWoGDhyYfv36ZcqUKbn66qtz2GGHZZdddkny8c0669evnwMPPDDHHHNM5s2bl8suuyxt2rTJjBkzqo/zt7/9LZdffnm6d++eFi1a5JVXXslll12WJk2aFH4YtMMOO2TWrFlLLePxSQcccEDOPPPMHHnkkenevXuefPLJXHPNNUuF7nfffXd++9vf5vTTT8/uu++e5OMZz7169cqpp56ac845J0nyox/9KNddd1369++fE044IS1atMiVV16ZqVOn5pZbbllqdvnEiRPzxhtv5MMPP8xDDz2Ua665JgMHDix8byYfL7ly8sknp0GDBlmwYEGN935lZWUWL16cCRMmZPDgwfnHP/6RU089NU888UT+8pe/FB5ziVGjRmXBggW5/PLLP7fvipg4cWJOP/30DBw4MPvss0+aNm2aV155Jb///e+zcOHCnHHGGSt8zAEDBuT8889Pv379cthhh+Xtt9/O2LFjs/XWW+eJJ55YrmP84he/yD333JO999473/72t7PjjjvmnXfeyaOPPpp//OMfeeedd5J8/D5t165dvvjFL6Zt27Z59tlnc9FFF2XAgAHL/CbH8mjdunVGjx6dMWPGpF+/fhk4cGCef/75/Pa3v82ee+5Zff+B5ONvLNxwww056aSTsueee6Zp06Y58MADV/pvBgAAAMAqK21EkpT++Mc/Vj9/9dVXS3Xr1i395z//qdHvS1/6Umn06NHVzydNmlRq06ZNqW7duqUkpX333bf07rvvrpWap06dWkqy3I977rmnVCqVSuPGjSslKe26666lqqqqpY43bty46rY33nijdNBBB5WaN29eqqioKH3ta18rTZ8+vZSkdPrpp1f3O/3000tJSjNnziyst2fPnqWddtqp9PDDD5f23XffUsOGDUtbbLFF6aKLLqrRr6qqqvTzn/+8tMUWW5QaNGhQ2m233Uq33XZbafjw4aUttthiqXrPPffcz7w+n9z+eXUua/v9999f2meffUqNGjUqtW/fvvT//t//K91xxx01rmmRJcd75plnSgcffHCpWbNmpU033bR03HHHlRYsWFCj75///OfSzjvvXGrYsGGpU6dOpbPPPrv0+9//vpSkNHXq1FKpVCo99dRTpa985Sulli1blurXr1/q0KFD6etf/3rpiSeeqHGsJKVRo0YV1vXp7R988EHpBz/4QWmzzTYrNWrUqPTFL36xNGXKlFLPnj1LPXv2LJVKpdKcOXNKW2yxRWn33XcvffjhhzWOd+KJJ5bq1KlTmjJlSnXbyy+/XDr44INLzZs3LzVs2LC01157lW677bYa+91zzz013qP16tUrbbHFFqUTTjjhc3+Ptthii899zy95vxx//PGl/fbbr3T77bcvdZwlP6MlrrvuulJZWdlSfYcPH15q0qTJZ9b0eV555ZXSaaedVtpnn31Kbdq0KdWrV6/UunXr0oABA0p33333cp3v0/WWSqXSFVdcUdpmm21KDRo0KG2//falcePGLbPfZ70v3nrrrdKoUaNKHTp0KG2yySaldu3alb70pS+VLr300uo+l1xySWm//fYrtWzZstSgQYNS586dS//93/9dqqysXO5rcNNNNy3zd+eiiy4qbb/99qVNNtmk1LZt29J3v/vdpd4D8+bNKx122GGl5s2b1/j5Lu/fjCXX4JN/uwAAAABWRVmptILTbddjZWVl+eMf/1i9rvhf//rXHHDAATXW7k4+XjJjyJAhueGGG/Lmm29mv/32y+DBg3PooYdm7ty5Oe2001KvXr1MnDhxuW50uCqmTZuWLbfcMvfcc0/1etKr0m9N69WrV2bNmrVS6z6vr84444yMGTMmM2fOLJztzsrp1KlTzjjjjIwYMWKZ2ydNmpQRI0bUyo1+AQAAANg4bNTLucybNy9169bNI488Ur3e7hJLlgsZO3ZsKioqqpewSJKrr746HTp0yL/+9a/ss88+a7VmAAAAAADWno06RN9tt92yePHivP322+nRo8cy+7z//vtLre28JHCvqqpa4zU2bdo0hx9+eI11zlelH6xPDjrooHTu3Llwe9u2bQvXiQcAAACA1WGDX85l3rx5eemll5J8HJqff/756d27d1q0aJGOHTvmiCOOyP3335/zzjsvu+22W2bOnJm77rorO++8cwYMGJC77747ffr0yRlnnFG9nMspp5yS5557Ls8+++xn3shxY2Q5F8u5AAAAAMCGZIMP0SdNmpTevXsv1T58+PCMHz8+H374YX7605/mqquuyn/+85+0atUq++yzT8aMGZOuXbsmSa6//vqcc845eeGFF9K4cePsu+++Ofvss7P99tuv7ZcDAAAAAMBatMGH6AAAAAAAsLLqfH4XAAAAAADYOG2wNxatqqrK9OnT06xZs5SVldV2OQCwRpRKpcydOzft27df6kbYAAAAwKrbYEP06dOnp0OHDrVdBgCsFa+//no233zz2i4DAAAANjgbbIjerFmzJB+HCuXl5bVcDQCsGXPmzEmHDh2qxz0AAABg9dpgQ/QlS7iUl5cL0QHY4Fm6DAAAANYMi6cCAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFKhX2wUAG4bFixdn8uTJmTFjRjbbbLP06NEjdevWre2yAAAAAGCVmIkOrLJbb701W2+9dXr37p3DDjssvXv3ztZbb51bb721tksDAAAAgFUiRAdWya233pqDDz44Xbt2zZQpUzJ37txMmTIlXbt2zcEHHyxIBwAAAGC9VlYqlUq1XcSaMGfOnFRUVKSysjLl5eW1XQ5skBYvXpytt946Xbt2zYQJE1Knzv99LldVVZXBgwfnqaeeyosvvmhpF1hDjHcAAACwZpmJDqy0yZMnZ9q0aTnllFNSKpUyadKkXHfddZk0aVJKpVJGjx6dqVOnZvLkybVdKgAAAACsFDcWBVbajBkzkiQvv/xyDj300EybNq16W6dOnfLTn/60Rj8AAAAAWN+YiQ6stM022yxJcsQRRyxzTfQjjjiiRj8AAAAAWN9YEx1YaYsWLUqTJk3SsmXLvPHGG6lX7/++3PLRRx9l8803z+zZszN//vzUr1+/FiuFDZfxDgAAANYsy7kAK+2BBx7IRx99lLfffjsHHXRQ+vXrl0aNGmXBggW5/fbb8/bbb6dUKuWBBx5Ir169artcAAAAAFhhQnRgpS1Z6/yEE07I2LFjc9ttt1Vvq1evXk444YRccMEF1kQHAAAAYL0lRAdW2pK1zi+44IIMGDAgW2+9dRYsWJBGjRrlpZdeygUXXFCjHwAAAACsb6yJDqy0JWuiN2nSJBUVFXnttdeqt3Xs2DGVlZWZP3++NdFhDTLeAQAAwJpVp7YLANZfS9ZEr6yszMKFC3PppZdm+vTpufTSS7Nw4cJUVlbmo48+ygMPPFDbpQIAAADASrGcC7DS/vOf/yRJdtttt7z77rs5+uijq7dtueWW2W233fLvf/+7uh8AAAAArG/MRAdW2syZM5Mkxx57bF566aXcc889ufbaa3PPPffkxRdfzHe+850a/QAAAABgfWMmOrDSWrdunSS59dZbc9RRR6VXr17V26qqqjJhwoQa/QAAAABgfWMmOrDSvvCFLyRJbr/99gwePDhTpkzJ3LlzM2XKlAwePDi33357jX4AAAAAsL4pK5VKpdouYk2YM2dOKioqUllZmfLy8touBzZIixcvztZbb51WrVpl1qxZmTZtWvW2LbfcMi1btszs2bPz4osvpm7durVXKGzAjHcAAACwZlnOBVhpdevWzXnnnZeDDz44AwYMyMknn5xGjRplwYIFuf322/PXv/41N998swAdAAAAgPWWEB1YJUOGDMnNN9+cH/zgB7ntttuq27fccsvcfPPNGTJkSC1WBwAAAACrxnIuwGqxaNGi/Pa3v83LL7+czp0759hjj039+vVruyzY4BnvAAAAYM0yEx1YZbfeemt+8IMf1FgT/YILLsh5551nJjoAAAAA67U6tV0AsH679dZbc/DBB6dr166ZMmVK5s6dmylTpqRr1645+OCDc+utt9Z2iQAAAACw0iznAqy0xYsXZ+utt07Xrl0zYcKE1Knzf5/LVVVVZfDgwXnqqafy4osvurkorCHGOwAAAFizzEQHVtrkyZMzbdq0nHLKKTUC9CSpU6dORo8enalTp2by5Mm1VCEAAAAArBprogMrbcaMGUmSLl26ZPHixZk8eXJmzJiRzTbbLD169EiXLl1q9AMAAACA9Y0QHVhpm222WZLkoosuyiWXXFLjxqKdOnXK0UcfXaMfAAAAAKxvLOcCrLQePXqkTZs2GT16dLp06VLjxqJdunTJKaeckjZt2qRHjx61XSoAAAAArBQhOrBKPnlv4lKpVP0AAAAAgA2BEB1YaZMnT87MmTNz1lln5amnnkr37t1TXl6e7t275+mnn87Pf/7zvP32224sCgAAAMB6S4gOrLQlNww97rjj8tJLL+Wee+7Jtddem3vuuScvvvhijjvuuBr9AAAAAGB948aiwEpbcsPQp556Kvvss0969epVY/tTTz1Vox8AAAAArG/MRAdWWo8ePdKpU6f8/Oc/T1VVVY1tVVVVOeuss7Llllu6sSgAAAAA6y0hOrDS6tatm/POOy+33XZbBg8enClTpmTu3LmZMmVKBg8enNtuuy2//OUvU7du3douFQAAAABWiuVcgFUyZMiQ3HzzzfnBD36Q7t27V7dvueWWufnmmzNkyJBarA4AAAAAVk1ZqVQq1XYRa8KcOXNSUVGRysrKlJeX13Y5sMFbvHhxJk+enBkzZmSzzTZLjx49zECHtcB4BwAAAGuWmejAalG3bt2lbiwKAAAAAOs7a6IDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABRYL0L0X/ziFykrK8v3v//92i4FAAAAAICNyDofoj/00EO55JJLsvPOO9d2KQAAAAAAbGTW6RB93rx5Ofzww3PZZZdl0003re1yAAAAAADYyKzTIfqoUaMyYMCA9OnT53P7Lly4MHPmzKnxAAAAAACAVVGvtgsocv311+fRRx/NQw89tFz9zzrrrIwZM2YNVwUAAAAAwMZknZyJ/vrrr+d73/terrnmmjRs2HC59hk9enQqKyurH6+//voarhIAAAAAgA1dWalUKtV2EZ82YcKEHHTQQalbt2512+LFi1NWVpY6depk4cKFNbYty5w5c1JRUZHKysqUl5ev6ZIBoFYY7wAAAGDNWieXc/nSl76UJ598skbbkUceme233z4//OEPPzdABwAAAACA1WGdDNGbNWuWLl261Ghr0qRJWrZsuVQ7AAAAAACsKevkmugAAAAAALAuWCdnoi/LpEmTarsEAAAAAAA2MmaiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUWCdD9N/97nfZeeedU15envLy8uy77775+9//XttlAQAAAACwkVknQ/TNN988v/jFL/LII4/k4Ycfzv77759Bgwbl6aefru3SAAAAAADYiJSVSqVSbRexPFq0aJFzzz03I0eOXK7+c+bMSUVFRSorK1NeXr6GqwOA2mG8AwAAgDWrXm0X8HkWL16cm266KfPnz8++++5b2G/hwoVZuHBh9fM5c+asjfIAAAAAANiArZPLuSTJk08+maZNm6ZBgwb5zne+kz/+8Y/ZcccdC/ufddZZqaioqH506NBhLVYLAAAAAMCGaJ1dzmXRokV57bXXUllZmZtvvjmXX3557r333sIgfVkz0Tt06ODr7QBs0CznAgAAAGvWOhuif1qfPn3SuXPnXHLJJcvVX6gAwMbAeAcAAABr1jq7nMunVVVV1ZhpDgAAAAAAa9o6eWPR0aNHp3///unYsWPmzp2ba6+9NpMmTcodd9xR26UBAAAAALARWSdD9Lfffjvf/OY3M2PGjFRUVGTnnXfOHXfckS9/+cu1XRoAAAAAABuRdTJEv+KKK2q7BAAAAAAAWH/WRAcAAAAAgLVNiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUGCdDNHPOuus7LnnnmnWrFnatGmTwYMH5/nnn6/tsgAAAAAA2MiskyH6vffem1GjRuWf//xnJk6cmA8//DBf+cpXMn/+/NouDQAAAACAjUhZqVQq1XYRn2fmzJlp06ZN7r333uy3337L7LNw4cIsXLiw+vmcOXPSoUOHVFZWpry8fG2VCgBr1Zw5c1JRUWG8AwAAgDVknZyJ/mmVlZVJkhYtWhT2Oeuss1JRUVH96NChw9oqDwAAAACADdQ6PxO9qqoqAwcOzHvvvZf//d//LexnJjoAGyMz0QEAAGDNqlfbBXyeUaNG5amnnvrMAD1JGjRokAYNGqylqgAAAAAA2Bis0yH6cccdl9tuuy333XdfNt9889ouBwAAAACAjcw6GaKXSqUcf/zx+eMf/5hJkyZlyy23rO2SAAAAAADYCK2TIfqoUaNy7bXX5k9/+lOaNWuWN998M0lSUVGRRo0a1XJ1AAAAAABsLNbJG4uWlZUts33cuHEZMWLEch3DjdYA2BgY7wAAAGDNWidnoq+DuT4AAAAAABuhOrVdAAAAAAAArKuE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAF6tV2AcCGYfHixZk8eXJmzJiRzTbbLD169EjdunVruywAAAAAWCVmogOr7NZbb03nzp3Tu3fvHHbYYendu3c6d+6cW2+9tbZLAwAAAIBVIkQHVsmtt96aoUOH5tVXX63R/uqrr2bo0KGCdAAAAADWa2WlUqlU20WsCXPmzElFRUUqKytTXl5e2+XABmnx4sVp3LhxFi1aVNinQYMGmT9/vqVdYA0x3gEAAMCaZSY6sNLuvPPOzwzQk2ThwoW5884711JFAAAAALB6CdGBlfajH/2o+t+bbLJJDjvssJx//vk57LDDsskmmyyzHwAAAACsTyznAqy0TTbZJB999FGSpEOHDnn99dert33yeb169fLhhx/WSo2woTPeAQAAwJplJjqw0qqqqqr/PXPmzBrbPvn8k/0AAAAAYH0iRAdWWtOmTav/3axZs1x66aWZPn16Lr300jRr1myZ/QAAAABgfVKvtgsA1l/77rtv7rjjjiQfzzw/+uijC/sBAAAAwPrITHRgpe2yyy6rtR8AAAAArGuE6MBKq1+//mrtBwAAAADrGiE6sNJ69eqVJGnRosUyty9pX9IPAAAAANY31kQHVlqvXr3SunXrzJw5M/3790+jRo3y3nvvpXnz5lmwYEH+/ve/p02bNkJ0AAAAANZbQnRgpdWtWzcXX3xxhg4dmkmTJmXBggXV2xo3bpwk+d3vfpe6devWVokAAAAAsEos5wKskiFDhuSWW25JmzZtarS3adMmt9xyS4YMGVJLlQEAAADAqisrlUql2i5iTZgzZ04qKipSWVmZ8vLy2i4HNniLFy/O5MmTM2PGjGy22Wbp0aOHGeiwFhjvAAAAYM2ynAuwWtStW9fa5wAAAABscCznAgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAF1tkQ/b777suBBx6Y9u3bp6ysLBMmTKjtkgAAAAAA2MissyH6/Pnzs8suu2Ts2LG1XQoAAAAAABuperVdQJH+/funf//+tV0GAAAAAAAbsXU2RF9RCxcuzMKFC6ufz5kzpxarAQAAAABgQ7DOLueyos4666xUVFRUPzp06FDbJQEAAAAAsJ7bYEL00aNHp7Kysvrx+uuv13ZJAAAAAACs5zaY5VwaNGiQBg0a1HYZAAAAAABsQDaYmegAAAAAALC6rbMz0efNm5eXXnqp+vnUqVPz2GOPpUWLFunYsWMtVgYAAAAAwMZinQ3RH3744fTu3bv6+UknnZQkGT58eMaPH19LVQEAAAAAsDFZZ0P0Xr16pVQq1XYZAAAAAABsxKyJDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQQIgOAAAAAAAFhOgAAAAAAFBAiA4AAAAAAAWE6AAAAAAAUECIDgAAAAAABYToAAAAAABQoF5tF/BZxo4dm3PPPTdvvvlmdtlll/zmN7/JXnvtVdtlwQbp/fffz3PPPbdKx1iwYEGmTZuWTp06pVGjRit9nO233z6NGzdepVoAAAAAYHVYZ0P0G264ISeddFIuvvji7L333vn1r3+dvn375vnnn0+bNm1quzxYJ7322muZNWvWSu377LPP5ogjjljNFa2cq6++OjvssMNK79+qVat07NhxNVYEAAAAwMaqrFQqlWq7iGXZe++9s+eee+aiiy5KklRVVaVDhw45/vjj86Mf/ehz958zZ04qKipSWVmZ8vLyNV0u1LrXXnst222/Qz5Y8H5tl1LrGjZqnOefe1aQzkbBeAcAAABr1jo5E33RokV55JFHMnr06Oq2OnXqpE+fPpkyZcoy91m4cGEWLlxY/XzOnDlrvE5Yl8yaNSvN6y7Itl/plzpNW6zw/qWqj1L1/qr93pRKi1P1wfzUadgkZWV1V/o4dRqXp6zOyv15qpr3Tl544I7MmjVLiA4AAADAKlsnQ/RZs2Zl8eLFadu2bY32tm3bFq7ZfNZZZ2XMmDFrozxYJ7Vq1Sqj9mmSH+/7QG2XUut+WtUkrVq1qu0yAAAAANgArJMh+soYPXp0TjrppOrnc+bMSYcOHWqxIli7OnbsmBG/mZRnp7+4UvsvXLgw06dPX71FraT27dunQYMGK73/iK9vk83NQgcAAABgNVgnQ/RWrVqlbt26eeutt2q0v/XWW2nXrt0y92nQoMEqhW6wIdh8+27J9t1Wev9dV18pAAAAALBBqFPbBSxL/fr1061bt9x1113VbVVVVbnrrruy77771mJlAAAAAABsTNbJmehJctJJJ2X48OHZY489stdee+XXv/515s+fnyOPPLK2SwMAAAAAYCOxzobohxxySGbOnJnTTjstb775ZnbdddfcfvvtS91sFAAAAAAA1pSyUqlUqu0i1oQ5c+akoqIilZWVKS8vr+1yAGCNMN4BAADAmrVOrokOAAAAAADrAiE6AAAAAAAUEKIDAAAAAEABIToAAAAAABQQogMAAAAAQAEhOgAAAAAAFBCiAwAAAABAASE6AAAAAAAUEKIDAAAAAEABIToAAAAAABSoV9sFrCmlUilJMmfOnFquBADWnCXj3JJxDwAAAFi9NtgQfe7cuUmSDh061HIlALDmzZ07NxUVFbVdBgAAAGxwykob6NS1qqqqTJ8+Pc2aNUtZWVltlwMbhTlz5qRDhw55/fXXU15eXtvlwEahVCpl7ty5ad++ferUsUobAAAArG4bbIgOrH1z5sxJRUVFKisrhegAAAAAbBBMWQMAAAAAgAJCdAAAAAAAKCBEB1abBg0a5PTTT0+DBg1quxQAAAAAWC2siQ4AAAAAAAXMRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHVtl9992XAw88MO3bt09ZWVkmTJhQ2yUBAAAAwGohRAdW2fz587PLLrtk7NixtV0KAAAAAKxW9Wq7AGD9179///Tv37+2ywAAAACA1c5MdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAAChQr7YLANZ/8+bNy0svvVT9fOrUqXnsscfSokWLdOzYsRYrAwAAAIBVU1YqlUq1XQSwfps0aVJ69+69VPvw4cMzfvz4tV8QAAAAAKwmQnQAAAAAAChgTXQAAAAAACggRAcAAAAAgAJCdAAAAAAAKCBEBwAAAACAAkJ0AAAAAAAoIEQHAAAAAIACQnQAAAAAACggRAcAAAAAgAJCdNjAlJWVZcKECbVdxjpp/Pjxad68eW2XAQAAAMB6RIgO65GZM2fmu9/9bjp27JgGDRqkXbt26du3b+6///7aLm2FjB8/PmVlZZ/5mDZtWuH+Z5xxRnbddde1Vi8AAAAAG696tV0AsPyGDh2aRYsW5corr8xWW22Vt956K3fddVdmz569Rs+7aNGi1K9ff7Ud75BDDkm/fv2qnw8ZMiRdunTJmWeeWd3WunXr1XY+AAAAAFhZZqLDeuK9997L5MmTc/bZZ6d3797ZYoststdee2X06NEZOHBgjb6zZs3KQQcdlMaNG2ebbbbJn//85+ptixcvzsiRI7PlllumUaNG2W677XLBBRfU2H/EiBEZPHhwfvazn6V9+/bZbrvtkiSvv/56hg0blubNm6dFixYZNGhQjRnjkyZNyl577ZUmTZqkefPm+eIXv5hXX311qdfSqFGjtGvXrvpRv379NG7cuPr5okWLMmTIkDRt2jTl5eUZNmxY3nrrrSQfz2IfM2ZMHn/88epZ6+PHj0+SnH/++enatWuaNGmSDh065Nhjj828efNWx+UHAAAAYCMlRIf1RNOmTdO0adNMmDAhCxcu/My+Y8aMybBhw/LEE0/kq1/9ag4//PC88847SZKqqqpsvvnmuemmm/LMM8/ktNNOyymnnJIbb7yxxjHuuuuuPP/885k4cWJuu+22fPjhh+nbt2+aNWuWyZMn5/7770/Tpk3Tr1+/LFq0KB999FEGDx6cnj175oknnsiUKVNy9NFHp6ysbIVeZ1VVVQYNGpR33nkn9957byZOnJhXXnklhxxySJKPZ7H/4Ac/yE477ZQZM2ZkxowZ1dvq1KmTCy+8ME8//XSuvPLK3H333fl//+//rdD5AQAAAOCTLOcC64l69epl/Pjx+fa3v52LL744u+++e3r27Jmvf/3r2XnnnWv0HTFiRA499NAkyc9//vNceOGFefDBB9OvX79ssskmGTNmTHXfLbfcMlOmTMmNN96YYcOGVbc3adIkl19+efUyLldffXWqqqpy+eWXVwfj48aNS/PmzTNp0qTsscceqayszAEHHJDOnTsnSXbYYYcVfp133XVXnnzyyUydOjUdOnRIklx11VXZaaed8tBDD2XPPfdM06ZNU69evbRr167Gvt///ver/92pU6f89Kc/zXe+85389re/XeE6AAAAACAxEx3WK0OHDs306dPz5z//Of369cukSZOy++67Vy9nssQnQ/UmTZqkvLw8b7/9dnXb2LFj061bt7Ru3TpNmzbNpZdemtdee63GMbp27VpjHfTHH388L730Upo1a1Y9K75Fixb54IMP8vLLL6dFixYZMWJE+vbtmwMPPDAXXHBBZsyYscKv8dlnn02HDh2qA/Qk2XHHHdO8efM8++yzn7nvP/7xj3zpS1/KF77whTRr1izf+MY3Mnv27Lz//vsrXAcAAAAAJEJ0WO80bNgwX/7yl3PqqafmgQceyIgRI3L66afX6LPJJpvUeF5WVpaqqqokyfXXX5+TTz45I0eOzJ133pnHHnssRx55ZBYtWlRjnyZNmtR4Pm/evHTr1i2PPfZYjccLL7yQww47LMnHM9OnTJmS7t2754Ybbsi2226bf/7zn6v7EizTtGnTcsABB2TnnXfOLbfckkceeSRjx45NkqVeGwAAAAAsL8u5wHpuxx13zIQJE5a7//3335/u3bvn2GOPrW57+eWXP3e/3XffPTfccEPatGmT8vLywn677bZbdtttt4wePTr77rtvrr322uyzzz7LXd8OO+yQ119/Pa+//nr1bPRnnnkm7733XnbcccckSf369bN48eIa+z3yyCOpqqrKeeedlzp1Pv588NPrvAMAAADAijITHdYTs2fPzv7775+rr746TzzxRKZOnZqbbrop55xzTgYNGrTcx9lmm23y8MMP54477sgLL7yQU089NQ899NDn7nf44YenVatWGTRoUCZPnpypU6dm0qRJOeGEE/LGG29k6tSpGT16dKZMmZJXX301d955Z1588cUVXhe9T58+6dq1aw4//PA8+uijefDBB/PNb34zPXv2zB577JHk4/XOp06dmsceeyyzZs3KwoULs/XWW+fDDz/Mb37zm7zyyiv5wx/+kIsvvniFzg0AAAAAnyZEh/VE06ZNs/fee+dXv/pV9ttvv3Tp0iWnnnpqvv3tb+eiiy5a7uMcc8wxGTJkSA455JDsvffemT17do1Z6UUaN26c++67Lx07dsyQIUOyww47ZOTIkfnggw9SXl6exo0b57nnnsvQoUOz7bbb5uijj86oUaNyzDHHrNDrLCsry5/+9Kdsuumm2W+//dKnT59stdVWueGGG6r7DB06NP369Uvv3r3TunXrXHfdddlll11y/vnn5+yzz06XLl1yzTXX5KyzzlqhcwMAAADAp5WVSqVSbRcBAAAAAADrIjPRAQAAAACggBAdAAAAAAAKCNEBAAAAAKCAEB0AAAAAAAoI0QEAAAAAoIAQHQAAAAAACgjRAQAAAACggBAdAAAAAAAKCNEBAAAAAKCAEB0AAAAAAAoI0QEAAAAAoMD/B34gqskc7INlAAAAAElFTkSuQmCC",
"text/plain": [
"
"
],
"text/plain": [
" Cost Cost_category\n",
"0 195.79 medium\n",
"1 923.57 medium\n",
"2 0.00 low\n",
"3 748.11 medium\n",
"4 18.44 low\n",
"5 875.23 medium\n",
"6 992.27 high\n",
"7 1073.00 high\n",
"8 6.24 low\n",
"9 250.50 medium"
]
},
"execution_count": 237,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print('Обучающая выборка:')\n",
"df_train_oversampled[['Cost', 'Cost_category']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"«Ручной» синтез признаков – процесс создания новых признаков на основе существующих данных. Это может включать в себя комбинирование нескольких признаков, использование математических операций (например, сложение, вычитание), а также создание полиномиальных или логарифмических признаков."
]
},
{
"cell_type": "code",
"execution_count": 238,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Year
\n",
"
Quarter
\n",
"
Month
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
2022-03-06
\n",
"
2022
\n",
"
1
\n",
"
3
\n",
"
\n",
"
\n",
"
1
\n",
"
2022-03-06
\n",
"
2022
\n",
"
1
\n",
"
3
\n",
"
\n",
"
\n",
"
2
\n",
"
2022-03-06
\n",
"
2022
\n",
"
1
\n",
"
3
\n",
"
\n",
"
\n",
"
3
\n",
"
2022-03-05
\n",
"
2022
\n",
"
1
\n",
"
3
\n",
"
\n",
"
\n",
"
4
\n",
"
2022-03-05
\n",
"
2022
\n",
"
1
\n",
"
3
\n",
"
\n",
"
\n",
"
5
\n",
"
2022-03-05
\n",
"
2022
\n",
"
1
\n",
"
3
\n",
"
\n",
"
\n",
"
6
\n",
"
2022-02-27
\n",
"
2022
\n",
"
1
\n",
"
2
\n",
"
\n",
"
\n",
"
7
\n",
"
2022-02-27
\n",
"
2022
\n",
"
1
\n",
"
2
\n",
"
\n",
"
\n",
"
8
\n",
"
2022-02-06
\n",
"
2022
\n",
"
1
\n",
"
2
\n",
"
\n",
"
\n",
"
9
\n",
"
2022-01-27
\n",
"
2022
\n",
"
1
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Year Quarter Month\n",
"0 2022-03-06 2022 1 3\n",
"1 2022-03-06 2022 1 3\n",
"2 2022-03-06 2022 1 3\n",
"3 2022-03-05 2022 1 3\n",
"4 2022-03-05 2022 1 3\n",
"5 2022-03-05 2022 1 3\n",
"6 2022-02-27 2022 1 2\n",
"7 2022-02-27 2022 1 2\n",
"8 2022-02-06 2022 1 2\n",
"9 2022-01-27 2022 1 1"
]
},
"execution_count": 238,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Date'] = pd.to_datetime(df['Date']) # Преобразование в datetime\n",
"df['Year'] = df['Date'].dt.year # Год\n",
"df['Quarter'] = df['Date'].dt.quarter # Квартал\n",
"df['Month'] = df['Date'].dt.month # Месяц\n",
"\n",
"df[['Date', 'Year', 'Quarter', 'Month']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ну и наконец, масштабирование признаков на основе нормировки и стандартизации – метод, который позволяет привести все числовые признаки к одинаковым или очень похожим диапазонам значений либо распределениям."
]
},
{
"cell_type": "code",
"execution_count": 239,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Cost
\n",
"
Shares
\n",
"
Value ($)
\n",
"
Shares Total
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
-0.630340
\n",
"
-0.607179
\n",
"
-0.583446
\n",
"
-0.528366
\n",
"
\n",
"
\n",
"
1
\n",
"
-0.632418
\n",
"
-0.635043
\n",
"
-0.594307
\n",
"
-0.604905
\n",
"
\n",
"
\n",
"
2
\n",
"
-0.632418
\n",
"
-0.639117
\n",
"
-0.595883
\n",
"
-0.630945
\n",
"
\n",
"
\n",
"
3
\n",
"
-1.069956
\n",
"
-0.618748
\n",
"
-0.597637
\n",
"
-0.603067
\n",
"
\n",
"
\n",
"
4
\n",
"
-1.069956
\n",
"
-0.634624
\n",
"
-0.597637
\n",
"
-0.629977
\n",
"
\n",
"
\n",
"
5
\n",
"
-1.069956
\n",
"
-0.584816
\n",
"
-0.597637
\n",
"
-0.520567
\n",
"
\n",
"
\n",
"
6
\n",
"
-1.023228
\n",
"
-0.607022
\n",
"
-0.596122
\n",
"
-0.624074
\n",
"
\n",
"
\n",
"
7
\n",
"
-0.618541
\n",
"
-0.607022
\n",
"
-0.583003
\n",
"
-0.631906
\n",
"
\n",
"
\n",
"
8
\n",
"
-0.638653
\n",
"
-0.630565
\n",
"
-0.592643
\n",
"
-0.533148
\n",
"
\n",
"
\n",
"
9
\n",
"
-1.023228
\n",
"
-0.607022
\n",
"
-0.596122
\n",
"
-0.624074
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Cost Shares Value ($) Shares Total\n",
"0 -0.630340 -0.607179 -0.583446 -0.528366\n",
"1 -0.632418 -0.635043 -0.594307 -0.604905\n",
"2 -0.632418 -0.639117 -0.595883 -0.630945\n",
"3 -1.069956 -0.618748 -0.597637 -0.603067\n",
"4 -1.069956 -0.634624 -0.597637 -0.629977\n",
"5 -1.069956 -0.584816 -0.597637 -0.520567\n",
"6 -1.023228 -0.607022 -0.596122 -0.624074\n",
"7 -0.618541 -0.607022 -0.583003 -0.631906\n",
"8 -0.638653 -0.630565 -0.592643 -0.533148\n",
"9 -1.023228 -0.607022 -0.596122 -0.624074"
]
},
"execution_count": 239,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# scaler = MinMaxScaler()\n",
"scaler = StandardScaler()\n",
"\n",
"# Применяем масштабирование к выбранным признакам\n",
"df[numeric_columns] = scaler.fit_transform(df[numeric_columns])\n",
"\n",
"df[numeric_columns].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"FeatureTools - библиотека для автоматизированного создания признаков из структурированных данных."
]
},
{
"cell_type": "code",
"execution_count": 240,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n",
"e:\\aim\\aimenv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n",
" pd.to_datetime(\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Insider Trading
\n",
"
Relationship
\n",
"
Transaction
\n",
"
Cost
\n",
"
DAY(Date)
\n",
"
MONTH(Date)
\n",
"
WEEKDAY(Date)
\n",
"
YEAR(Date)
\n",
"
\n",
"
\n",
"
Id
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
154
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1019.03
\n",
"
10
\n",
"
11
\n",
"
2
\n",
"
2021
\n",
"
\n",
"
\n",
"
155
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1048.46
\n",
"
10
\n",
"
11
\n",
"
2
\n",
"
2021
\n",
"
\n",
"
\n",
"
156
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1068.09
\n",
"
10
\n",
"
11
\n",
"
2
\n",
"
2021
\n",
"
\n",
"
\n",
"
152
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1098.24
\n",
"
11
\n",
"
11
\n",
"
3
\n",
"
2021
\n",
"
\n",
"
\n",
"
153
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1072.22
\n",
"
11
\n",
"
11
\n",
"
3
\n",
"
2021
\n",
"
\n",
"
\n",
"
151
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1029.67
\n",
"
12
\n",
"
11
\n",
"
4
\n",
"
2021
\n",
"
\n",
"
\n",
"
148
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Option Exercise
\n",
"
6.24
\n",
"
15
\n",
"
11
\n",
"
0
\n",
"
2021
\n",
"
\n",
"
\n",
"
149
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
992.72
\n",
"
15
\n",
"
11
\n",
"
0
\n",
"
2021
\n",
"
\n",
"
\n",
"
150
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Sale
\n",
"
1015.85
\n",
"
15
\n",
"
11
\n",
"
0
\n",
"
2021
\n",
"
\n",
"
\n",
"
145
\n",
"
Musk Elon
\n",
"
CEO
\n",
"
Option Exercise
\n",
"
6.24
\n",
"
16
\n",
"
11
\n",
"
1
\n",
"
2021
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Insider Trading Relationship Transaction Cost DAY(Date) \\\n",
"Id \n",
"154 Musk Elon CEO Sale 1019.03 10 \n",
"155 Musk Elon CEO Sale 1048.46 10 \n",
"156 Musk Elon CEO Sale 1068.09 10 \n",
"152 Musk Elon CEO Sale 1098.24 11 \n",
"153 Musk Elon CEO Sale 1072.22 11 \n",
"151 Musk Elon CEO Sale 1029.67 12 \n",
"148 Musk Elon CEO Option Exercise 6.24 15 \n",
"149 Musk Elon CEO Sale 992.72 15 \n",
"150 Musk Elon CEO Sale 1015.85 15 \n",
"145 Musk Elon CEO Option Exercise 6.24 16 \n",
"\n",
" MONTH(Date) WEEKDAY(Date) YEAR(Date) \n",
"Id \n",
"154 11 2 2021 \n",
"155 11 2 2021 \n",
"156 11 2 2021 \n",
"152 11 3 2021 \n",
"153 11 3 2021 \n",
"151 11 4 2021 \n",
"148 11 0 2021 \n",
"149 11 0 2021 \n",
"150 11 0 2021 \n",
"145 11 1 2021 "
]
},
"execution_count": 240,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df: DataFrame = pd.read_csv(\"static/csv/TSLA.csv\")\n",
"\n",
"# Создание уникального идентификатора для каждой строки\n",
"df['Id'] = range(1, len(df) + 1)\n",
"\n",
"# Создание EntitySet\n",
"es = ft.EntitySet(id=\"Id\")\n",
"\n",
"# Добавляем таблицу с индексом\n",
"es: EntitySet = es.add_dataframe(\n",
" dataframe_name=\"trades\", \n",
" dataframe=df, \n",
" index=\"Id\", \n",
" time_index=\"Date\"\n",
")\n",
"\n",
"# Генерация признаков с помощью глубокого синтеза признаков\n",
"feature_matrix, feature_defs = ft.dfs(\n",
" entityset=es, \n",
" target_dataframe_name='trades', \n",
" max_depth=1\n",
")\n",
"\n",
"# Выводим первые 10 строк сгенерированного набора признаков\n",
"feature_matrix.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Оценка качества набора признаков:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Предсказательная способность: Способность набора признаков успешно прогнозировать целевую переменную. Это определяется через метрики, такие как RMSE, MAE, R², которые показывают, насколько хорошо модель использует признаки для достижения точных результатов.\n",
"\n",
"Скорость вычисления: Время, необходимое для обработки данных и выполнения алгоритмов машинного обучения.\n",
"\n",
"Надежность: Устойчивость и воспроизводимость результатов при изменении входных данных.\n",
"\n",
"Корреляция: Степень взаимосвязи между признаками и целевой переменной, а также между самими признаками. Высокая корреляция с целевой переменной указывает на потенциальную предсказательную силу, тогда как высокая взаимосвязь между самими признаками может приводить к многоколлинеарности и снижению эффективности модели.\n",
"\n",
"Цельность: Не является производным от других признаков."
]
},
{
"cell_type": "code",
"execution_count": 241,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Время обучения модели: 0.01 секунд\n",
"Среднеквадратичная ошибка: 190.15\n"
]
}
],
"source": [
"# Разбить выборку на входные данные и целевой признак\n",
"def split_dataframe(dataframe: DataFrame, column: str) -> tuple[DataFrame, DataFrame]:\n",
" X_dataframe: DataFrame = dataframe.drop(columns=column, axis=1)\n",
" y_dataframe: DataFrame = dataframe[column]\n",
" \n",
" return X_dataframe, y_dataframe\n",
"\n",
"\n",
"# Разбиение обучающей выборки на входные данные и целевой признак\n",
"df_train_oversampled: DataFrame = pd.get_dummies(df_train_oversampled)\n",
"X_df_train, y_df_train = split_dataframe(df_train_oversampled, \"Cost\")\n",
"\n",
"# Разбиение контрольной выборки на входные данные и целевой признак\n",
"df_val_oversampled: DataFrame = pd.get_dummies(df_val_oversampled)\n",
"X_df_val, y_df_val = split_dataframe(df_val_oversampled, \"Cost\")\n",
"\n",
"# Разбиение тестовой выборки на входные данные и целевой признак\n",
"df_test_oversampled: DataFrame = pd.get_dummies(df_test_oversampled)\n",
"X_df_test, y_df_test = split_dataframe(df_test_oversampled, \"Cost\")\n",
"\n",
"\n",
"# Модель линейной регрессии для обучения\n",
"model = LinearRegression()\n",
"\n",
"# Начинаем отсчет времени\n",
"start_time: float = time.time()\n",
"model.fit(X_df_train, y_df_train)\n",
"\n",
"# Время обучения модели\n",
"train_time: float = time.time() - start_time\n",
"\n",
"# Предсказания и оценка модели\n",
"predictions = model.predict(X_df_val)\n",
"mse = root_mean_squared_error(y_df_val, predictions)\n",
"\n",
"print(f'Время обучения модели: {train_time:.2f} секунд')\n",
"print(f'Среднеквадратичная ошибка: {mse:.2f}')"
]
},
{
"cell_type": "code",
"execution_count": 242,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RMSE: 134.73396019154637\n",
"R²: 0.9090517989509861\n",
"MAE: 71.95763423238986\n",
"\n",
"Кросс-валидация RMSE: 141.69564978570725\n",
"\n",
"Train RMSE: 46.69276439077218\n",
"Train R²: 0.9906750460946525\n",
"Train MAE: 18.74249758908302\n",
"\n"
]
},
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Фактическая стоимость по сравнению с прогнозируемой')"
]
},
"execution_count": 242,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIjCAYAAAD1OgEdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACp3ElEQVR4nOzdd1xT1/sH8E8GIRAgiLJEFBVQca9at61WtO5ardXWPeoAt3Xvuhdq1dr2q7baVmvVVtu6994DxYGjWlkisgkhyf394Y9bY1AJBsL4vF+vvDTn3uQ+uRnkyTnnORJBEAQQERERERGRRUmtHQAREREREVFhxGSLiIiIiIgoFzDZIiIiIiIiygVMtoiIiIiIiHIBky0iIiIiIqJcwGSLiIiIiIgoFzDZIiIiIiIiygVMtoiIiIiIiHIBky0iIiIiIqJcwGSLiIiIiIqcjRs34sGDB+L19evX4/Hjx9YLiAolJltEuah3795wcHCwdhhERET0kmPHjmHcuHF48OAB9uzZg6FDh0Iq5Vdjsiy5tQMgKmyePn2KTZs24dixYzh69CjS0tLQqlUr1KxZE127dkXNmjWtHSIREVGRN3LkSDRr1gxly5YFAIwaNQqenp5WjooKG4kgCIK1gyAqLH755RcMGDAAycnJ8PHxQUZGBqKiolCzZk1cuXIFGRkZ6NWrF9auXQuFQmHtcImIiIq0lJQUhIaGokSJEihfvry1w6FCiH2lRBZy4sQJfPbZZ/Dw8MCJEydw//59tGjRAkqlEufOnUNERAQ+/fRTbNiwASNHjjS67aJFi9CgQQMUL14cdnZ2qF27NrZu3WpyDIlEgunTp4vXdTodPvzwQ7i4uODGjRviPq+7NGvWDABw+PBhSCQSHD582OgYbdq0MTlOs2bNxNtlevDgASQSCdavX2/UfvPmTXz88cdwcXGBUqlEnTp18Mcff5g8lvj4eIwcORI+Pj6wtbVFqVKl0LNnT8TGxr4yvoiICPj4+KBOnTpITk4GAGi1WkydOhW1a9eGWq2GSqVC48aNcejQIZNjxsTEoF+/fihdujRkMpl4TrI71PPvv/9G06ZN4ejoCCcnJ9StWxc//fSTeI7edO4z6XQ6zJo1C+XLl4etrS18fHwwceJEpKenGx3Px8cHvXv3Nmr79ddfIZFI4OPjI7ZlPhcSiQQ7duww2l+j0aBYsWKQSCRYtGiR0bZLly6hdevWcHJygoODA5o3b47Tp0+bPO7XPVeZz9PrLpmvpenTp0MikYjPsTkyb/uqy8uvw4MHD6Jx48ZQqVRwdnZGhw4dEBYWlq1jaTQaTJ8+Hf7+/lAqlfD09MRHH32Eu3fvAvjvfC9atAhLly5FmTJlYGdnh6ZNmyI0NNTovq5evYrevXujXLlyUCqV8PDwQN++ffH06dPXPj5HR0e88847Js9ns2bNUKVKFZOYFy1aBIlEYjT/BHj+ms08D46OjmjTpg2uX79utM+rhjtv3brV5D2Y1WfBuXPnTF7jgOnrNykpCcOGDYOXlxdsbW3h5+eHefPmwWAwmBw7K2fOnMGHH36IYsWKQaVSoVq1aggJCXntbdavX5+t1ybw33Nw8+ZNdO3aFU5OTihevDiGDx8OjUZjdL/mvIezOm7//v0BGL+WXlalShWTc535Gebu7g6lUonq1atjw4YNRvvcunUL77//Pjw8PGBrawtvb2988cUXiIuLE/cx5/M/u+eladOmqF69epbPQ4UKFRAYGCheNxgMWLZsGSpXrgylUgl3d3cMGjQIz549y/L8jRgxwuQ+AwMDIZFI0LZtW7PP0Yt/v1QqFerVq4fy5ctj6NChkEgkJp+7RG+DwwiJLCTzS8Mvv/yC2rVrm2wvUaIEfvjhB9y4cQPffPMNpk2bBjc3NwBASEgI2rdvjx49ekCr1eKXX35Bly5dsGvXLrRp0+aVx+zfvz8OHz6Mffv2ISAgAADw448/ituPHTuGtWvXYunSpShRogQAwN3d/ZX3d/ToUfz11185evwAcP36dTRs2BBeXl4YP348VCoVtmzZgo4dO+K3335Dp06dAADJyclo3LgxwsLC0LdvX9SqVQuxsbH4448/8O+//4qxvighIQGtW7eGjY0N/vrrL/HLYWJiIr777jt8+umnGDBgAJKSkvD9998jMDAQZ8+eRY0aNcT76NWrF/bv34+goCBUr14dMpkMa9euxcWLF9/42NavX4++ffuicuXKmDBhApydnXHp0iXs3r0b3bt3x6RJk8QvULGxsRg5ciQGDhyIxo0bm9xX//79sWHDBnz88ccYPXo0zpw5g7lz5yIsLAzbt29/ZQw6nQ6TJk165XalUol169ahY8eOYtu2bdtMvigCz5+rxo0bw8nJCePGjYONjQ2++eYbNGvWDEeOHEG9evUAvPm5qlSpktFrbu3atQgLC8PSpUvFtmrVqr36xJpp9erVRonB/fv3MXXqVKN99u/fj9atW6NcuXKYPn060tLSsGLFCjRs2BAXL140SlRfptfr0bZtWxw4cADdunXD8OHDkZSUhH379iE0NNTol+8ffvgBSUlJGDp0KDQaDUJCQvD+++/j2rVr4vts3759uHfvHvr06QMPDw9cv34da9euxfXr13H69GmTBCXzXMbGxmLVqlXo0qULQkNDUaFCBbPP1Y8//ohevXohMDAQ8+fPR2pqKlavXo1GjRrh0qVLrz0P5vjyyy+ztV/nzp2xb98+9OzZE++88w4OHTqECRMm4MGDB1izZs1rb7tv3z60bdsWnp6eGD58ODw8PBAWFoZdu3Zh+PDhbzz2zJkzxaFiwPPX9eDBg7Pct2vXrvDx8cHcuXNx+vRpLF++HM+ePcMPP/wg7mPOe7hGjRoYPXq0UZuvr+8bY35ZWloamjVrhvDwcAwbNgxly5bFr7/+it69eyM+Pl48DykpKShVqhTatWsHJycnhIaG4uuvv8bjx4+xc+fOV97/mz7/33RePv/8cwwYMAChoaFGPwicO3cOt2/fxuTJk8W2QYMGYf369ejTpw+Cg4Nx//59rFy5EpcuXcKJEydgY2Mj7qtUKrFp0yYsXLhQbP/3339x4MABKJXKHJ2jrISHh+Pbb7995XaiHBOIyCJcXFyEMmXKGLX16tVLUKlURm1TpkwRAAg7d+4U21JTU4320Wq1QpUqVYT333/fqB2AMG3aNEEQBGHChAmCTCYTduzY8cqY1q1bJwAQ7t+/b7Lt0KFDAgDh0KFDYlu9evWE1q1bGx1HEAThvffeE5o0aWJ0+/v37wsAhHXr1oltzZs3F6pWrSpoNBqxzWAwCA0aNBD8/PzEtqlTpwoAhG3btpnEZTAYTOLTaDRCs2bNBDc3NyE8PNxof51OJ6Snpxu1PXv2THB3dxf69u0rtqWlpQlSqVQYNGiQ0b5ZPUcvi4+PFxwdHYV69eoJaWlpWcb7oqzOTabLly8LAIT+/fsbtY8ZM0YAIBw8eFBsK1OmjNCrVy/x+qpVqwRbW1vhvffeM3qtZR7v008/FeRyuRAVFSVua968udC9e3cBgLBw4UKxvWPHjoJCoRDu3r0rtkVERAiOjo5Gz3V2nqsX9erVy+R9kGnatGkCAOHJkydZbn+dV9323LlzJue6Ro0agpubm/D06VOx7cqVK4JUKhV69uz52uP873//EwAIS5YsMdmW+Xgzz7ednZ3w77//itvPnDkjABBGjhwptr383hYEQfj5558FAMLRo0dNHt+L9u7dKwAQtmzZIrY1bdpUqFy5ssl9Lly40Oi9npSUJDg7OwsDBgww2i8qKkpQq9VG7a96D/z6668mnxFNmzYVmjZtKl7/66+/BABCq1atTOJ/8fW7c+dOAYAwfvx4o3169+4tABCuXbtmcvxMOp1OKFu2rFCmTBnh2bNnRtuyeg2+KPMz8Ny5c0btT548Mfmcy3wO2rdvb7TvkCFDBADClStXBEEw/z3cpk2bV8aX+Vp68b2ZqXLlykbnetmyZQIAYePGjWKbVqsV6tevLzg4OAiJiYmvPM6QIUMEBwcH8bo5n//ZPS/x8fGCUqkUvvzyS6P9goODBZVKJSQnJwuCIAjHjh0TAAibNm0y2m/37t0m7WXKlBE++OADoUSJEsLWrVvF9lmzZgkNGjQwOb/ZPUdZfUZ37dpVqFKliuDt7W30uUv0tjiMkMhCkpKSxJ6q18n8xTsxMVFss7OzE///7NkzJCQkoHHjxq/scVm5ciXmzp2L5cuXo0OHDm8Z+XPbtm3DuXPnMG/ePJNtbm5u+Pfff197+7i4OBw8eBBdu3ZFUlISYmNjERsbi6dPnyIwMBB37twRS+r+9ttvqF69utjT9aKXf+k3GAzo2bMnTp8+jb/++stkTL1MJhPnvxkMBsTFxUGn06FOnTpG5y8lJQUGgwHFixfP3gl5wb59+5CUlITx48eb/JL6crxvkvnL8ahRo4zaM3/5/vPPP7O8XWpqKmbOnIlhw4ahdOnSWe5Tq1YtVK5cWewd+eeff3Do0CGTITF6vR579+5Fx44dUa5cObHd09MT3bt3x/Hjx8XXpznPVXbFxcUhNjYWKSkpObr960RGRuLy5cvo3bs3XFxcxPZq1arhgw8+eGPP7W+//YYSJUogKCjIZNvLj7djx47w8vISr7/zzjuoV6+e0TFefG9rNBrExsbi3XffBYAs39+Z75uwsDCsWbMGKpVK3D+TXq8X98u8pKamGu2zb98+xMfH49NPPzXaTyaToV69elkOs335PpOSkl53qiAIAiZMmIDOnTuLPaEvS09PR2xsLH7//XcAMBlC/abXPfB8uOv9+/cxYsQIODs7G23L6WvwdYYOHWp0PfO1kPm85vQ9/Dqpqakm51+v1xvt89dff8HDwwOffvqp2GZjY4Pg4GAkJyfjyJEjRvsnJCQgOjoaBw4cwJ9//okmTZq88viv+/zP9Kbzolar0aFDB/z8888Q/r8cgF6vx+bNm9GxY0eoVCoAz4dCq9VqfPDBB0aPt3bt2nBwcDB5bSoUCvTo0QPr1q0T2zJ7xV5m7jnKdOHCBfz666+YO3cuqxGSxfEVRWQhJUuWFOd0vE54eDgAGH1J27VrF959910olUq4uLjA1dUVq1evRkJCgsnt//77b3EoxItj8N+GXq/HxIkT0aNHjyyHfDVo0AD37t3DsmXLEBUVhdjYWJOx9eHh4RAEAVOmTIGrq6vRZdq0aQCej6UHgLt372Y57yQrkyZNwpYtW5Cenm7yhTLThg0bUK1aNSiVShQvXhyurq74888/jc5f8eLF4efnh++++w579+5FTEwMYmNjTeZYZCXzec1uzK/zzz//QCqVmgwj8vDwgLOzM/75558sb7dkyRJoNBpMnDjxtfffp08f8UvJ+vXr0aBBA/j5+Rnt8+TJE6SmpmY5NK1SpUowGAx49OgRAPOeq+yqUKECXF1d4eDgAHd3d0yePNnki2VOZZ6/Vz22NyV5d+/eRYUKFSCXv3mU/cvnFQD8/f2N5k3FxcVh+PDhcHd3h52dHVxdXcXhbFm9vzPfMwEBAdi/fz82bdoEb29vo31u3rz5yvdYpjt37gAA3n//fZN9M1//L0pJSTHZr2/fvq99/Js2bcL169cxZ86cV+7zyy+/wNXVFd999x2KFStm8oNUhQoVIJVKTeaavciS77/sePl5LV++vFGMOX0Pv860adNMzv/NmzeN9vnnn3/g5+dnkgxUqlRJ3P6iwMBAeHh4oEWLFqhUqRI2b96c5bHf9Pmf6U3nBQB69uyJhw8f4tixYwCeD+mNjo7G559/Lu5z584dJCQkwM3NzeQxJycnm7w2geefa7t370ZkZCSOHDmCyMhIdO3a1WQ/c89RpvHjx6Nx48Ym87+ILIFztogspG3btvj666/x/fffo1+/flnuEx0djQ0bNsDV1VX8tfrYsWNo3749mjRpglWrVsHT0xM2NjZYt26dWHzhRWfPnsWAAQOgUqkwe/ZsdOnSJUfzOV70/fffi+uMZGXgwIHYs2cPRo4cafLLdKbMSe5jxowxmgj9opzMUzhz5gzWr1+PlStXYuDAgbh8+TJsbW3F7Rs3bkTv3r3RsWNHjB07Fm5ubpDJZJg7d65J8rt582b06NHDJL7MX1zzkjm/yMfGxmLhwoWYMGGCUW9NVj777DOMGzcOp0+fxoYNG4zmSeQXv/32G5ycnJCamort27fjq6++EueOFTZdu3bFyZMnMXbsWNSoUQMODg4wGAxo1apVloUh9u3bB+B58vPbb7+ha9eu2LVrFz744ANxHx8fH5O5Jb/++ivWrl0rXs+87x9//BEeHh4mx3k5mVQqlSbzeY4dO4aZM2dm+bi0Wi2mTJmCfv36wd/f/5WPv2XLlhg7dixmzJhhUpijoHjVe9WSvWoDBw5Ely5djNoGDBjwVve5YsUKxMbG4saNG5g7dy6++OILbNy40WS/N33+v0pWjz8wMBDu7u7YuHEjmjRpgo0bN4oJXyaDwQA3Nzds2rQpy/t1dXU1aatevTqqV6+OH374AWFhYejcuTOcnJzMivdV9u7di/379+PUqVMWuT+ilzHZIrKQyZMnY8eOHRg8eDBu3ryJ7t27i7/WP3z4EAcOHMDUqVPx7Nkz/PTTT2LC8Ntvv0GpVGLPnj1GScSLQyZe9MEHH2D16tXQaDTYsWMHBg4cKFaWyonU1FTMmDEDQ4YMQZkyZbLcR6lU4s8//8Tt27fx6NEjCIKA6OhofPbZZ+I+mcPRbGxsjP6wZqV8+fImVdteZcaMGejVqxdq1KiBOnXqYPbs2Zg1a5a4fevWrShXrhy2bdtmdA5e/qUfAGrWrIlvv/0WjRs3xsyZM/Huu+9i4cKFOHHixBvjBYDQ0NAcJYwvKlOmDAwGA+7cuSP+2go8T8Tj4+OzfA5mz54NR0fHbBUCKF68ONq3b49BgwYhJiYGXbt2Nan+5+rqCnt7e9y6dcvk9jdv3oRUKhV7U8x5rrKrSZMmYhGU9u3b48SJE9i9e7dFkq3M8/eqx1aiRInXJtfly5fHmTNnkJGRYTRJPyuZvUcvun37tlh44tmzZzhw4ABmzJhhVMQjq9tlevG906FDB5w5cwaLFi0ySrZUKpXJe+zy5csmjwN4PgT4Te9H4Plw3Jf3i4+Pf+X+q1atQkxMjFHVuqx4enqiRYsW2L59O44fP44nT54YfZm+ffs2DAbDa4t1vPj+y85jeVt37twxKqYRHh5uFGNO3sNv4ufnZ/LYXn6dlilTBlevXoXBYDDqucnsAXv5uHXr1gUAtG7dGm5ubujZsycmTZpkFHN2Pv8zvem8AM9fR927d8f69esxf/587NixAwMGDIBMJhP3KV++PPbv34+GDRsaDbN9k759+2Lp0qWIiop6ZaEPc8+RIAgYP348OnXqZDJcl8hSOIyQyEI8PDxw6tQptG7dGosXL0atWrWwceNGpKSkoEyZMujbty/s7Oywc+dOo/HkmSXIXxxG9eDBA5OSz5kaNGgAmUwGlUqFNWvW4OjRo29VQSkkJAQpKSmvrXKXyd/fH82bN0eLFi3QsGFDo21ubm5o1qwZvvnmG0RGRprc9smTJ+L/O3fujCtXrmRZeU94aem/zGp+1atXx5gxYzB//nyjL/+Zf8RfvN2ZM2ey/JUyMTERn3/+Odq3b4/JkyejRYsW2VrAsmXLlnB0dMTcuXNNKvu9HO+bfPjhhwCAZcuWGbUvWbIEAEyqTz548ACrV6/G9OnTs/3FpG/fvrh69Sq6dOmSZUlvmUyGli1b4vfffzcaAhQdHY2ffvoJjRo1En81Nue5yglBECAIgtGXsbfh6emJGjVqYMOGDUbJQmhoKPbu3Sue/1fp3LkzYmNjsXLlyixjfdGOHTvEeYjA817nM2fOoHXr1gCyfm0Cps/9q+j1emi12mwNdX1ZYGAgnJycMGfOHGRkZJhsf/H9aK6kpCR89dVXGDlyZJa9Zllp1aoVgOy/7l9Uq1YtlC1bFsuWLTNJAC3xGnzZ119/bXR9xYoVACA+r+a+hy3lww8/RFRUlNFwQJ1OhxUrVsDBwQFNmzZ95W0zf3B5+bVkzuf/m85Lps8//xzPnj3DoEGDkJycbPSjHPC8t1ev1xv9aPbi43lVkt+9e3c8fvxY/FuTFXPP0S+//IKrV69i7ty5Wd4fkSWwZ4vIgry9vfH7778jMjISJ06cwMKFC3H58mWsWbMGNWrUQI0aNUx6oNq0aYMlS5agVatW6N69O2JiYvD111/D19cXV69efe3xAgMDxWFj7dq1y1bi8LK9e/fiq6++ylHhiJd9/fXXaNSoEapWrYoBAwagXLlyiI6OxqlTp/Dvv//iypUrAICxY8di69at6NKlC/r27YvatWsjLi4Of/zxB9asWfPKtVqmTZuG3377DQMGDMCJEycglUrRtm1bbNu2DZ06dUKbNm1w//59rFmzBgEBAeJaXJmGDh2KtLQ0fPfdd2Y9LicnJyxduhT9+/dH3bp10b17dxQrVgxXrlxBamqqyRour1O9enVxYev4+Hg0bdoUZ8+exYYNG9CxY0e89957RvsfOXIElSpVynIy+Ku0atUKT548ee36YbNnz8a+ffvQqFEjDBkyBHK5HN988w3S09OxYMECcb+cPlevc/DgQaNhhOHh4Vmuo5NTCxcuROvWrVG/fn3069dPLP2uVqvf2BPTs2dP/PDDDxg1ahTOnj2Lxo0bIyUlBfv378eQIUOMCtL4+vqiUaNGGDx4MNLT07Fs2TIUL15c7KFzcnJCkyZNsGDBAmRkZMDLywt79+7F/fv3X3n8zGFeKSkp2LFjBx48eJCjc+Pk5ITVq1fj888/R61atdCtWze4urri4cOH+PPPP9GwYcMsE8rsuHjxIkqUKGFWT2Tbtm3x/vvvY86cOXj8+DHeeecdHD58GL/++isGDRr02vlYUqkUq1evRrt27VCjRg306dMHnp6euHnzJq5fv2728Lc3uX//Ptq3b49WrVrh1KlT2LhxI7p37y6+1s19D1vKwIED8c0336B37964cOECfHx8sHXrVpw4cQLLli2Do6MjgOdl7h8/fowqVarA1tYWFy9exLp161CtWjWTOVnmfP6/6bxkqlmzJqpUqYJff/0VlSpVQq1atYy2N23aFIMGDcLcuXNx+fJltGzZEjY2Nrhz5w5+/fVXhISE4OOPPzY5frFixRAZGSn+QPk25+jFxz9gwIC3HopP9FrWKIFIVFRkp6y4IAjC999/L/j5+Qm2trZCxYoVhXXr1mVZChovleQVBEGIjY0VXF1dhU6dOpncb3ZKv3t6egopKSlvPM7LXlXe/O7du0LPnj0FDw8PwcbGRvDy8hLatm1rVLZXEATh6dOnwrBhwwQvLy9BoVAIpUqVEnr16iXExsYaxfdiaWJBEITDhw8LEolECAkJEQTheennOXPmCGXKlBFsbW2FmjVrCrt27TIpQf7zzz8LEolE2L17t9H9Zfc5EgRB+OOPP4QGDRoIdnZ2gpOTk/DOO+8IP//8c7bPTaaMjAxhxowZQtmyZQUbGxvB29tbmDBhglHJfEF4XvYYgLB9+3aTmLMq/Z5V+ejXbb948aIQGBgoODg4CPb29sJ7770nnDx50uT2b3quXhfbizJf05kXOzs7ISAgQFi6dGmW+2d12+yUfhcEQdi/f7/QsGFD8blq166dcOPGjTceRxCel2ufNGmS+Px4eHgIH3/8sVgm/8XzuXjxYsHb21uwtbUVGjduLJbBzvTvv/8KnTp1EpydnQW1Wi106dJFiIiIeGV57azOzYvlzbNb+j3ToUOHhMDAQEGtVgtKpVIoX7680Lt3b+H8+fPiPuaWfgdg8pxl9Xn18tIFSUlJwvDhw4WSJUsKNjY2Qvny5YU5c+YIOp3O5NhZOX78uPDBBx8Ijo6OgkqlEqpVqyasWLHitbfJSen3GzduCB9//LHg6OgoFCtWTBg2bJjJkg/mvIctVfpdEAQhOjpa6NOnj1CiRAlBoVAIVatWNXntb926Vahbt67g5OQk2NnZCb6+vsLo0aON3jvmfP6bc14yLViwQAAgzJkz55WPfe3atULt2rUFOzs7wdHRUahataowbtw4ISIiQtznTecvq+3ZOUcvLt/w+PFjk/tk6XeyJIkg5EIfPBERUSH14MEDlC1bFgsXLsSYMWOsHQ5ZyPTp0zFjxgw8efIky4XVi6qcnJeQkBCMHDkSDx48eOVSFURFBedsEREREZFFCIKA77//Hk2bNmWiRQTO2SIiIiKit5SSkoI//vgDhw4dwrVr18SFrImKOiZbRERERPRWnjx5gu7du8PZ2RkTJ05E+/btrR0SUb7AOVtERERERES5gHO2iIiIiIiIcgGTLSIiIiIiolzAOVvZYDAYEBERAUdHx1cupEdERERERIWfIAhISkpCyZIlIZW+vu+KyVY2REREwNvb29phEBERERFRPvHo0SOUKlXqtfsw2coGR0dHAM9PqJOTk5WjISIiIiIia0lMTIS3t7eYI7wOk61syBw66OTkxGSLiIiIiIiyNb2IBTKIiIiIiIhyAZMtIiIiIiKiXMBki4iIiIiIKBcw2SIiIiIiIsoFTLaIiIiIiIhyAZMtIiIiIiKiXMBki4iIiIiIKBcw2SIiIiIiIsoFTLaIiIiIiIhyAZMtIiIiIiKiXMBki4iIiIiIKBcw2SIiIiIiIsoFTLaIiIiIiIhygdzaARARERER0asZDAIex6chRauDSiGHl7MdpFKJtcOibGCyRURERESUT4XHJGFPaDTuPkmGRqeHUi5DeVcHBFZxh6+bo7XDozdgskVERERElA+FxyRh3YkHiEvRwlOthL3CDqlaHUIjEhCRkIZeDcrAzkbOHq98jMkWEREREVE+YzAI2BMajbgULXxdVUhO1+NZqhYKmRS+ripcehSPSdtD4aiUwyAAxexs4OvmaNEeLw5ffHtMtoiIiIiI8pnH8Wm4+yQZdjZSXPgnHnGpWugMBsilUkAQEJ2UDk2GHi4qBRxs5UhKy0BsihYRCWno09DnrRMuDl+0DCZbRERERET5TIpWh9jkdDxNSUd6hgEOSjlsZHIkpmnxIDYVOkGAUi6Fs70CNjIJEtIykK7TAwD2Xo9GuRIOOe6FetPwRUskc0UFS78TEREREeUz9jYyxCanI0Wjg4tKAVu5DBIACakZMOD5l3hBAORSCWzlMrioFNBkGJCq1eFOdBIex6fl6LgvDl/0c3OAo9IGMqkEjkob+Lk5IC5Fi73Xo2EwCJZ8uIUWky0iIiIionzmeSojgYD/eqe0OgPSdAZIAUjEfZ6TSCRwUMqRpNEhPi0DKVpdjo6bOXzRU62ERGLcMyaRSOCpViI8JjnHyVxRw2SLiIiIiCifScvQo4SDAg5KOeJStEjX6ZFhEGAwCDAIAqRSCWxkUhiE/1IuG5kUWp0eUgmgUuRstlCKVgeNTg/7V9zeTiFDuk6f42SuqOGcLSIiIiKifEalkKOEgy1KOCgQmZCOZ6lapGU8T3BsbZ4PKZRLJZBJXuz50kOrE1DezQFeznY5Pq5SLkOqVgdHpY3J9jStHrZyWY6TuaKGPVtERERERPmMl7Mdyrs6IC3DgDplnFG/XHE0LF8Cfu6OKGaneD7ET/J8KKFBEKDJ0CMqMR1ujrb4uJZ3jotjZB43MkEDQTCelyUIAiITNPB9i2QuJ8LDw/Htt9/m2fEsickWEREREVE+I5VKEFjFHS4qBcKfpEAiAYqpFPApbg9IAHuFDB5OSqRl6PEkKR1PktLh4aREUHM/+HvkvFLgi8e9E5OMJE0GdAYDkjQZuBOTDBeVAi0ru+fJelvJycmYMGECKleujC+++AJXr17N9WNamkR4OWUlE4mJiVCr1UhISICTk5O1wyEiIiKiIuLF9a7Sdc+H8BWzt4EA4FmKFvFpWkglUvi6OaBzbS/4u1vmu2pWx/V1c0DLyrm/zpYgCPj5558xduxYREREiO1du3bF5s2bc/XY2WFObsDBlkRERERE+ZSvmyPKNXPAo2epuB+bAgAoV0KFkmo7RCZqkKLVQaWQw8vZzqK9TZnHfRyflmvHyMq1a9cwePBgnDhxQmxTKBQYPXo0Jk6cmKvHzg1MtoiIiIiI8rF7scliL5NGp4dSLkN5VwcEVnFHRY/cG3UllUrg7WKfa/eflSdPnhglWu3atcOSJUvg6+ubp3FYCpMtIiIiIqJ8KjwmCetOPEBcihaeaiXsFXZI1eoQGpGAiIQ09Gnok+vD+vLS+++/j48//hhXr17FsmXL0Lp1a2uH9FZYIIOIiIiIKB8yGATsCY1GXIoWfm4OcFTaQCaVwFFpAz83B8SlaLH3ejQMhoJZguHw4cMYMGCASdXDb775BteuXSvwiRbAZIuIiIiIKF96HJ+Gu0+S4alWPi/1/gKJRAJPtRLhMcl4HJ9m8WMbDAIexaXiZlQiHsWlWjShe/jwIT755BO89957+O677/DTTz8ZbXdxcYFCobDY8ayJwwiJiIiIiPKhFK0OGp0e9grjNa0EQUCSRoe0DD2epWqRpMmw2DENBgEn78Zi/40YRCakQSoF7Gzk4hyxtxmymJaWhkWLFmHu3LlIS/svQdyyZQt69OhhifDzHSZbRERERET5kEohh61MiphEDWzkUihkUmToDbj3JAVxqVqkZehgMAA7LkVAIZe+9dyt8Jgk/HTmIQ7djEFqhh4OtnK4OthCqZbi7IOnuB6ZgO7vlEaD8iXMqkooCAJ27NiBUaNG4cGDB2K7q6sr5s6diz59+rxV3PkZky0iIiIionwoLUOH2GQt7j5Jhp1CCoMApKbrYWsjRTF7G2TopHB2ssHDuBSsO/HgrYplhMck4X/HH+D8gzgIggDvYnbQGYCI+DTcf5oCexsZUjP0+Cc2Ba2reqJVFY9sHevGjRsYPnw49u/fL7bJZDIEBQVh2rRpcHZ2zlG8BQWTLSIiIiKifCY8JgkbTv4DAHBUyqHTC0jRZCA5XYcMvQwAoLZTIMBTjWL2NrgTk4y916NRroTDa3udDAbBZO0sANgTGo3H8amQSABnlQIyqRRanR5pGXqkavWQSCRwd7RFilaPcw/iEJmgeWNy9+jRI9SoUQMZGf8Nc2zevDmWL1+OgIAAS5ymfI/JFhERERFRPvJiFcKapZ3xLDUD1yMS8CQ5HTYyKbR6AwCgeik1XFTPC0m8WCzjVWtjhcckZbleV3VvNe4+SYaLvQKP49NgI5NCEATEpaRDZxCgspUhQ/f8mFIJ4OVsJ1ZCfF1y5+3tjW7duuHHH3+Ej48PlixZgo4dO5oU+8jO+cjrxZUthckWEREREZGVZJVIvFyF0EWlQEUPRzxNToeD0gYGQYDBIMBG9l9hcTuFDNGJGqRodVke53XrdV2PTECyRgef4irIpc/nhUEA0jIMsJVLIZVIkKHXI11ngEwqha1cBk+1zCS5u3TpEqpVqwaZTCYed/78+ahQoQJGjRoFOzu7LGN7nVcliG9brCOvMNkiIiIiIrKCVyUSfh4OJlUIbeUy2CnksJFJYSOTID5VK/ZwAUCaVg9buQwqhenX+5fX68rsWXJU2sDBVo4r/8bjaXI6ypdwgIu9AjFJGihtZDAIAqQSCfSCAKkE0GTo4VXMHo5KOfSCICZ3UVFRmDBhAtavX49vv/0W/fv3F4/t6emJSZMm5fj8FPQFnbnOFhERERFRHstMJEIjEuBsb4NyJRzgbG+D0IgE/HklElqdAakv9FI5KuUoZq9AsiYDWp0eMunz6oTA82p/kQka+Lo5iHOwXvSm9brKlVBBgAT3niajnKs97BQysZy8ziBAo9VDwPPkrLyrChKJBGlaPeQwYNO3X8Pf3x/r168HAEyYMAHPnj176/NTWBZ0Zs8WEREREVEeykwkniZr4eFki3SdAYKgg6NSDj83B9yOTkZ6hgER8Wnwd5dDIpFAIpHA180BSZoMRCWmo1QxOzEpikzQwEWlQMvK7lnOZXrVel2Z7G3lKOGggMpWjqcpGfBzc8DjZ2lI1CQjIS0DSrkMZVzsUcVLDReVLQRBwNljh3D+l6WIfnRPvB9nZ2dMmzYNjo5v39tkzoLOr5qjlh8w2SIiIiIiykOP49Nw6dEzPEvR4sHTFOgMBsilUrjYK1DeTYWSzko8jEuFrY0Md2KeJxx2ChlsZBIUs1dAJn3+7z9PU2Arl6GqlxotK796DpNKIYdSLkOqVgdHpY3J9jStHiUcbNGhZkmcuBP7/6Xm5ajk6YTY5HSo7WxQpaQT7G3l+Of+Xfz+zTw8uHhUvL1EIsGAAQMwe/ZsuLq6WuQcvSlBfNMctfyCyRYRERERUR4Ki0zE7agk2MgkcLSzgY1Mjgy9ATFJGiSlZ6Cqlxq2cinaVPXEnehk3H2SjOhEDWzlMtQvXxwtAtxgZyPPdnU+L2c7lHd1QGhEAhxs5UY9RZlDEEuqlbj2bwKeJKVDLwiQSaWo4q7GO2WL4VZUMsJjkrBrXQgu7doAve6/Uu4NGjTAihUrUKtWLYueo+wkiK+ao5af5O/oiIiIiIgKEYNBwPkHz6AzCHBRKWArf165z1Yug0IlRVyKFreik1C6mD0qeTqhRSX3ty57LpVKEFjFHREJaUY9ZWlaPSITNJBJJYhOSkdEggaeaiW8itkjVavDo2epSNHq0KtBGbSvURKRf+lx/v8TLU9PTyxcuBDdu3c3u5R7dmQnQazqpc5yjlp+wgIZRERERER55HF8Gp4kPU9qktN1EIT/CjxIJBKobGWIjNfA1clWTKy8XexR0cMJ3i72OV5fytfNEX0a+qBKSTXiUzPwIDYF8akZqFLSCW6OttAbhFcWoth/IwZeznZYuWQB3N3dMX78eNy6dQs9evTIlUQL+C9BdFEpcCcmGUmaDOgMBiRpMnAnJvm1c9TyE/ZsERERERHlkRStDul6Ayp4OOHa4wTEpWjhoHxe0j1Db0CyRg+5TII6Pi4WTyR83RxRrpmDUU+ZIAhYtv+OUSGKlMRn+Ht9CNzL+KJG4Cf/FaIoUQL37t2DvX3eFKTITBAzy+NnDqV80xy1/ITJFhERERFRHsmci6S0kaKGtzPCY5LxLFWL5HQd5FIpnFU2KGavQCUPp1w5fmZPWaabUYliIQq9XofTf27GXxtCkJaUAKXKEVUbt0K6zlYsRJFXiVamrBLEnAyltBYmW0REREREeeTFuUh+bg6o61MMSRodtHoDbKQSRCVqUK2Uc57NRcpM/m5cPIXd381D5L1b4jaDXo97YdfgWqmeVQtRvJwgFiRMtoiIiIiI8khWxSrsbWWQaIHIBA2KO9jm6VwkQ1IsjqyZjIuH/zRqr928Pdr0G40YveqViyXTmzHZIiIiIiLKQ/lhLpJGo8GiRYswd+5cpKamiu2e5QPQacgkuPtVf+NiyfRmTLaIiIiIiPKYtecizZ8/H9OnTxevFyteHK16jYRbnVbIMADxqRkFqhBFfiURXqw3SVlKTEyEWq1GQkICnJxyZ7IiEREREVFeSUhIgL+/P54+fYqhQ4di+vTpUKudC2whirxkTm5g1XW2jh49inbt2qFkyZKQSCTYsWOH0XZBEDB16lR4enrCzs4OLVq0wJ07d4z2iYuLQ48ePeDk5ARnZ2f069cPycnJRvtcvXoVjRs3hlKphLe3NxYsWJDbD42IiIiIKF9ITEzEwYMHjdrUajU2bNiAS5cuISQkBMWKFbPYml70H6smWykpKahevTq+/vrrLLcvWLAAy5cvx5o1a3DmzBmoVCoEBgZCo9GI+/To0QPXr1/Hvn37sGvXLhw9ehQDBw4UtycmJqJly5YoU6YMLly4gIULF2L69OlYu3Ztrj8+IiIiIiJrMRgMWL9+Pfz9/dG+fXs8fvzYaHurVq1QtWpVK0VXNOSbYYQSiQTbt29Hx44dATzv1SpZsiRGjx6NMWPGAHje3enu7o7169ejW7duCAsLQ0BAAM6dO4c6deoAAHbv3o0PP/wQ//77L0qWLInVq1dj0qRJiIqKgkKhAACMHz8eO3bswM2bN7MVG4cREhEREVFBcvbsWQQFBeHs2bNiW69evbB+/XrrBVVIFJhhhK9z//59REVFoUWLFmKbWq1GvXr1cOrUKQDAqVOn4OzsLCZaANCiRQtIpVKcOXNG3KdJkyZiogUAgYGBuHXrFp49e5blsdPT05GYmGh0ISIiIiLK76Kjo9G3b1/Uq1fPKNHq3LmzUUEMyhv5NtmKiooCALi7uxu1u7u7i9uioqLg5uZmtF0ul8PFxcVon6zu48VjvGzu3LlQq9Xixdvb++0fEBERERFRLsnIyMCSJUvg7++PdevWie0BAQHYv38/tm7dCh8fH+sFWETl22TLmiZMmICEhATx8ujRI2uHRERERESUpVu3bqFatWoYPXq0OCJLrVYjJCQEly9fRvPmza0cYdGVb9fZ8vDwAPC8K9TT01Nsj46ORo0aNcR9YmJijG6n0+kQFxcn3t7DwwPR0dFG+2Rez9znZba2trC1tbXI4yAiIiIiyk2lSpVCUlISgOd1EPr164c5c+bA1dXVypFRvu3ZKlu2LDw8PHDgwAGxLTExEWfOnEH9+vUBAPXr10d8fDwuXLgg7nPw4EEYDAbUq1dP3Ofo0aPIyMgQ99m3bx8qVKiAYsWK5dGjISIiIiKyDIPBYHRdpVJh0aJFqF+/Ps6ePYtvv/2WiVY+YdVkKzk5GZcvX8bly5cBPC+KcfnyZTx8+BASiQQjRozA7Nmz8ccff+DatWvo2bMnSpYsKVYsrFSpElq1aoUBAwbg7NmzOHHiBIYNG4Zu3bqhZMmSAIDu3btDoVCgX79+uH79OjZv3oyQkBCMGjXKSo+aiIiIiMh8giBgy5YtqFSpEu7fv2+07ZNPPsHx48eNCseR9Vm19Pvhw4fx3nvvmbRnlqUUBAHTpk3D2rVrER8fj0aNGmHVqlXw9/cX942Li8OwYcOwc+dOSKVSdO7cGcuXL4eDg4O4z9WrVzF06FCcO3cOJUqUQFBQEL788stsx8nS70RERERkTVevXkVwcDCOHDkCAOjUqRO2bdtm5aiKJnNyg3yzzlZ+xmSLiIiIiKwhLi4OU6dOxerVq42GD7Zu3Rrbtm2DUqm0YnRFU6FYZ4uIiIiIqKjS6/VYs2YN/P398fXXX4uJVvny5bFz5078+eefTLQKgHxbjZCIiIiIqCg6fvw4goKCxLoGwPMiGJMnT8bIkSNZNbsAYbJFRERERJRP6HQ69OrVC/fu3RPbunfvjgULFsDLy8uKkVFOcBghEREREVE+IZfLsWTJEgBAjRo1cOzYMWzatImJVgHFZIuIiIiIyAoEQcDOnTtx69Yto/b27dvj999/x/nz59GoUSMrRUeWwGSLiIiIiCiP3bp1Cx9++CHat2+P4cOH48UC4RKJBO3bt4dMJrNihGQJTLaIiIiIiPJIYmIixo4diypVqmD37t0AgD179uDo0aNWjoxyA5MtIiIiIqJcZjAYsGHDBvj7+2PRokXQ6XQAgFKlSmHz5s1o0qSJlSOk3MBqhEREREREuejcuXMIDg7G6dOnxTZbW1uMGzcOX375JVQqlRWjo9zEZIuIiIiIKJfMmjUL06ZNM5qT1bFjRyxZsgRly5a1YmSUF5hsERERERHlknfffVdMtCpWrIiQkBC0bNnSylFRXmGyRURERERkIampqbC3txevf/DBB+jduzeqVauGYcOGwcbGxorRUV5jskVERERE9JYePHiA0aNHIzY2FocPH4ZEIhG3rVu3zoqRkTWxGiERERERUQ6lpqZi2rRpqFSpErZt24ajR49i8+bN1g6L8gn2bBERERERmUkQBPz2228YPXo0Hj58KLa7u7tzqCCJ2LNFRERERGSGa9euoXnz5ujSpYuYaMnlcowZMwa3b99G586drRwh5Rfs2SIiIiIiyoZnz55h2rRpWLVqFfR6vdgeGBiIZcuWoWLFilaMjvIjJltERERERNlw/fp1rFixQrxerlw5LF26FO3atTMqiEGUicMIiYiIiIiyoVGjRujevTvs7e3x1Vdf4fr162jfvj0TLXolifDictaUpcTERKjVaiQkJMDJycna4RARERFRLouIiMA333yDadOmQSr9r38iKioKOp0OpUqVsmJ0ZE3m5AYcRkhERERE9P/S09OxbNkyzJo1CykpKfDx8UGfPn3E7R4eHlaMjgoaDiMkIiIiIgLw119/oWrVqhg/fjxSUlIAAAsXLoTBYLByZFRQMdkiIiIioiLtzp07aNu2Ldq0aYM7d+4AAKRSKYYMGYJjx44ZDSMkMgeHERIRERFRkZSUlISvvvoKS5YsQUZGhtjepEkTLF++HNWrV7didFQYMNkiIiIioiInKSkJlSpVwuPHj8U2Ly8vLFq0CJ988gkrDJJFsE+UiIiIiIocR0dHtG7dGgCgUCgwadIk3Lp1C926dWOiRRbDni0iIiIiKvRiY2Ph7OwMufy/r79fffUVUlNTMXPmTJQvX96K0VFhxZ4tIiIiIiq0dDodVqxYAT8/P3zzzTdG29zc3LBp0yYmWpRrmGwRERERUaF08OBB1KhRA8HBwYiPj8eUKVMQGxtr7bCoCGGyRURERESFyj///IOPP/4YzZs3x/Xr18X29u3bQxAEK0ZGRQ3nbBERERFRoZCWloYFCxZg3rx50Gg0YnvdunWxYsUK1KtXz4rRUVHEZIuIiIiICrzt27dj5MiR+Oeff8Q2V1dXzJs3D7179+bCxGQVTLaIyOoMBgGP49OQotVBpZDDy9kOUinL7hJRwcfPtzez1Dk6fPiwmGjJ5XIEBQVh6tSpcHZ2tnDERNknEThw9Y0SExOhVquRkJAAJycna4dDVKiExyRhT2g07j5Jhkanh1IuQ3lXBwRWcYevm6O1wyMiyjF+vr2ZJc/Rs2fP4O/vjxo1aiAkJAQBAQG5FDUVdebkBuzZIiKrCY9JwroTDxCXooWnWgl7hR1StTqERiQgIiENfRr68AsJERVI/Hx7s5yeI4PBgHXr1kGn02HQoEFie7FixXDhwgV4e3tzUWLKNzh4lYiswmAQsCc0GnEpWvi5OcBRaQOZVAJHpQ383BwQl6LF3uvRMBjY+U5EBQs/394sp+fo1KlTeOedd9C/f3+MGTMGkZGRRttLly7NRIvyFSZbRGQVj+PTcPdJMjzVSpM/jBKJBJ5qJcJjkvE4Ps1KERIR5Qw/397M3HMUGRmJXr16oUGDBrhw4QIAIDk5Gdu3b8/z2InMwWSLiKwiRauDRqeHvSLr0cx2ChnSdXqkaHV5HBkR0dvh59ubZfccPUtOxcKFC+Hv748ffvhB3F61alUcPnwYQ4YMyauQiXKEc7aIyCpUCjmUchlStTo4Km1Mtqdp9bCVy6B6xR9iIqL8ip9vb5adcxRx7RQ6TfsU9+7eEduLFSuGWbNmYdCgQZDLi+75o4KDPVtEZBVeznYo7+qAyAQNXi6KKggCIhM08HVzgJeznZUiJCLKGX6+vdmbztGhnb9ix/wgMdGSSCT44osvcPv2bQwdOpSJFhUYTLaIyCqkUgkCq7jDRaXAnZhkJGkyoDMYkKTJwJ2YZLioFGhZ2Z3r0RBRgcPPtzd70zmq06w13D08AQCNGjXChQsXsHr1apQoUcLKkROZh+tsZQPX2SLKPS+usZKuez60xtfNAS0rcx0aIirY+Pn2ZuExSdh9LQpnL12Fo6eP0TkKPXkAqamp+PTTT1lhkPIVc3IDJlvZwGSLKHcZDAIex6chRauDSiGHl7Ndkf7Fl4jyRl589vDz7fUuX76MoKAgnDt/Hn8ePQf/8uV4jijf46LGRFSgSKUSeLvYWzsMIipCXux10uj0UMplKO/qgMAqlu114udb1mJjYzFlyhSsXbsWBoMBALBmwQz8+uuvVo6MyLKYbBEREVGREh6ThHUnHiAuRQtPtRL2CjukanUIjUhAREIa+jT04TC/XKLT6fDNN99gypQpePbsmdju5+eHPn36WDEyotzBAhlERERUZBgMAvaERiMuRQtfVxUEAXiWqoUgAL6uKsSlaLH3ejQMBs6ysLTDhw+jVq1aGDZsmJhoOTg4YMGCBQgNDcWHH35o5QiJLI89W0RERFRkPI5Pw90nybCzkeL8P/F4lqqFTm+AXCZFMXsFPNW2CI9JxuP4tEI9/C8v55I9ffoUQ4YMwZYtW4zae/bsiXnz5sHT0zNXjkuUHzDZIiIioiIjRatDbHI6nqZokZ6hh4PSBjZKOTL0Ap4kaZCoyUBxlQIpWp21Q801eTVfLZO9vT3OnDkjXq9duzZWrFiB+vXrW/xYRPkNhxESERFRkWFnI0NsshbJGh1cVArYyqWQSiSwlUvholIgWaNDbLIWdjYya4eaKzLnq4VGJMDZ3gblSjjA2d4GoREJWHfiAcJjkix+TDs7OyxZsgSurq747rvvcPbsWSZaVGQw2SIiIqIi4/lAOQESvGpO1vNthbHw+Ivz1fzcHOCotIFMKoGj0gZ+bg4Wma8WFhaGNm3a4M6dO0btnTp1wt27d9GvXz9Ipfz6SUUHhxESERFRkZGaoUcJB1s8lQBxKVo4KOWwkUmRoTcgWaODg1KO4ipbpGborR2qxWXOV/NUK00WCZZIJPBUK3M8Xy0hIQEzZszAihUroNPpIJFIsGvXLqP7d3RkhUcqephsERERUZGhUshRwsEWJRwUiEpIR1yqFinpOsikUrg5KeHhZAtAApWi8H1FStHqoNHpYa+wy3K7nUKG6ESNWfPVDAYD1q9fjwkTJiAmJkZsv3btGmJiYuDm5vbWcRMVZIXvk4SIiIjoFbyc7VDe1QGhEQmoXcYZyel6aPUGKGRSONjKEP4kBVW91PByzjohKchUCjmUchlStTo4Km1Mtqdp9bCVy7KdaJ4+fRrBwcE4d+6c2KZUKjF+/HiMHTsW9vaFt5ojUXZx0CwREREVGVKpBIFV3OGiUiD8SQokEsDZ3gYSCRD+JAUuKgVaVnbPtTLo1pSZaEYmaCAIxvOyBEFAZIIGvm4Ob0w0o6Ki0Lt3b9SvX98o0fr4449x8+ZNTJs2jYkW0f9jzxYREREVKb5ujujT0Ecsfx6dqIGtXIaqXmq0rJw75c/zg8xEMyIhDXdins/dslPIkKbVIzJBk61EUxAEtG/f3ijJqly5MpYvX473338/Lx4GUYEiEV7+aYNMJCYmQq1WIyEhAU5OTtYOh4iIiCwgLxf2zU9eXGcrXfd86KCvm0O2E83du3ejdevWcHZ2xsyZMzF48GDI5fz9nooOc3IDJlvZwGSLiIiICpPsJpr37t2DXq+Hn5+fUfvKlSvxySefwNXVNa9CJso3zMkNOGeLiIiIqIiRSiXwdrFHRQ8neLvYmyRaKSkpmDx5MgICAjBo0CCTOV7Dhg1jokWUDUy2iIiIiAjA8zlZv/zyCypWrIivvvoK6enpOHToELZv327t0IgKJA6wJSIiIiJcuXIFQUFBOHbsmNhmY2ODUaNG4YMPPrBiZEQFF5MtIiIioiLs6dOnmDp1KtasWQODwSC2t2nTBkuXLjWZr0VE2cdki4iIiKiI2rp1KwYNGoS4uDixzdfXF8uWLUObNm2sGBlR4cA5W0RERERFlKurq5hoOTg4YP78+QgNDWWiRWQh7NkiIiIiKiIEQYBE8l/lwaZNm6Jbt26Qy+WYP38+SpYsacXoiAofJltEREREhZxGo8GSJUtw6NAh7NmzB1Lpf4ObfvzxRy5KTJRLOIyQiIiIqJASBAF//PEHKleujEmTJmH//v3YuHGj0T5MtIhyT75OtvR6PaZMmYKyZcvCzs4O5cuXx6xZs4wW1hMEAVOnToWnpyfs7OzQokUL3Llzx+h+4uLi0KNHDzg5OcHZ2Rn9+vVDcnJyXj8cIiIiojxz8+ZNtG7dGh06dMC9e/cAADKZDPfv37dyZERFx1slW48fP0b79u1RunRptGnTBo8ePbJUXACA+fPnY/Xq1Vi5ciXCwsIwf/58LFiwACtWrBD3WbBgAZYvX441a9bgzJkzUKlUCAwMhEajEffp0aMHrl+/jn379mHXrl04evQoBg4caNFYiYiIiPKDxMREjB07FlWrVsWePXvE9vfeew+XLl3CtGnTrBgdUdEiEV7sJjJTt27dcOfOHfTr1w9bt26Fk5MTduzYYbHg2rZtC3d3d3z//fdiW+fOnWFnZ4eNGzdCEASULFkSo0ePxpgxYwAACQkJcHd3x/r169GtWzeEhYUhICAA586dQ506dQAAu3fvxocffoh///03y4mg6enpSE9PF68nJibC29sbCQkJcHJystjjIyIiIrIUg8GAH3/8EV9++SWio6PF9tKlS2Px4sXo3LmzUXEMIsqZxMREqNXqbOUGb9WzdfLkSaxYsQJDhgzBunXrjFYct4QGDRrgwIEDuH37NoDnK5sfP34crVu3BgDcv38fUVFRaNGihXgbtVqNevXq4dSpUwCAU6dOwdnZWUy0AKBFixaQSqU4c+ZMlsedO3cu1Gq1ePH29rbo4yIiIiKytGvXrqF3795ioqVUKjFt2jSEhYXh448/ZqJFZAVvlWzFx8fDw8MDAODh4YH4+HhLxCQaP348unXrhooVK8LGxgY1a9bEiBEj0KNHDwBAVFQUAMDd3d3odu7u7uK2qKgouLm5GW2Xy+VwcXER93nZhAkTkJCQIF4sPTySiIiIyNKqV6+OPn36AAA++ugjhIWFYfr06bC3t7dyZERFl9nlZ65evSr+32Aw4ObNm0hOTjYadmcpW7ZswaZNm/DTTz+hcuXKuHz5MkaMGIGSJUuiV69eFj9eJltbW9ja2uba/RMRERG9jYyMDGzcuBE9e/aETCYT2+fOnYvu3bsbjfohIusxO9mqUaMGJBKJWBGwbdu24nVLd0+PHTtW7N0CgKpVq+Kff/7B3Llz0atXL7FXLTo6Gp6enuLtoqOjUaNGDQDPe9xiYmKM7len0yEuLk68PREREVFBsW/fPgwfPhxhYWFIT0/HF198IW5zd3c3GfFDRNZj9jDC+/fv4969e7h//754ybyeWVbUUlJTU40W3QOelyw1GAwAgLJly8LDwwMHDhwQtycmJuLMmTOoX78+AKB+/fqIj4/HhQsXxH0OHjwIg8GAevXqWTReIiIiotxy7949dOrUCS1btkRYWBgAYMqUKUhLS7NyZET0Kmb3bP3zzz9o0KBBniyA165dO3z11VcoXbo0KleujEuXLmHJkiXo27cvAEAikWDEiBGYPXs2/Pz8ULZsWUyZMgUlS5ZEx44dAQCVKlVCq1atMGDAAKxZswYZGRkYNmwYunXrlmUlQiIiIqL8JCUlBfPmzcPChQuNpm3Uq1cPK1asgJ2dnRWjI6LXMbv0u0wmQ2RkpEnRidyQlJSEKVOmYPv27YiJiUHJkiXx6aefYurUqVAoFACeL2o8bdo0rF27FvHx8WjUqBFWrVoFf39/8X7i4uIwbNgw7Ny5E1KpFJ07d8by5cvh4OCQrTjMKe9IREREZAmCIODXX3/FmDFjjIp1ubu7Y8GCBfjss89MRgARUe4zJzcwO9mSSqVZVvgrzJhsERERUV7S6XRo1aqV0VQJGxsbjBgxApMnT+b3ESIrMic3yNFYwFOnTqFYsWJZbmvSpElO7pKIiIiI/p9cLkfFihXFZCswMBAhISGoUKGClSMjInPkqGfrlXcmkUCv1791UPkNe7aIiIgoN+n1egiCYDQnPi4uDq1bt8bkyZPF6s9EZH3m5AY5GugbFRUFg8FgcimMiRYRERFRbjp+/Djq1KmD5cuXG7W7uLjg9OnTaNeuHRMtogLK7GSLb3YiIiKit/f48WP06NEDjRs3xuXLlzF9+nRERUUZ7cPvXUQFm9nJlpmjDomIiIjoBenp6Zg3bx4qVKiAn376SWwvX748nj59asXIiMjSzC6QkbmgMBERERFlnyAI+PPPPzFixAjcvXtXbC9evDi++uor9O/fHzKZzIoREpGlmd2zNXfuXPzvf/8zaf/f//6H+fPnWyQoIiIiosLk1q1baNOmDdq1aycmWlKpFEOHDsXt27cxaNAgJlpEhZDZydY333yDihUrmrRXrlwZa9assUhQRERERIXJ999/j7///lu83rRpU1y6dAkrV66Ei4uLFSMjotxkdrIVFRUFT09Pk3ZXV1dERkZaJCgiIiKiwmTy5Mnw8PBAqVKlsHnzZhw6dAjVqlWzdlhElMvMnrPl7e2NEydOoGzZskbtJ06cQMmSJS0WGBEREVFBdOHCBYSFheGzzz4T25ycnPDXX3/B398fKpXKitERUV4yO9kaMGAARowYgYyMDLz//vsAgAMHDmDcuHEYPXq0xQMkIiIiKghiYmIwadIkfP/997Czs0PTpk3h7e0tbq9Zs6YVoyMiazA72Ro7diyePn2KIUOGQKvVAgCUSiW+/PJLTJgwweIBEhEREeVnGRkZWL16NaZOnYqEhAQAQGpqKpYtW4bFixdbOToisiaJkMOFs5KTkxEWFgY7Ozv4+fnB1tbW0rHlG4mJiVCr1UhISICTk5O1wyEiIqJ84sCBAxg+fDiuX78utjk5OWH69OkYNmwYbGxsrBgdEeUGc3IDs3u2Mjk4OIiFMgpzokVERET0sgcPHmDMmDH47bffjNr79u2LOXPmwN3d3UqREVF+YnY1QoPBgJkzZ0KtVqNMmTIoU6YMnJ2dMWvWLC54TERERIXeoUOHUKlSJaNE65133sGZM2fw/fffM9EiIpHZPVuZEz/nzZuHhg0bAgCOHz+O6dOnQ6PR4KuvvrJ4kERERET5Rb169eDq6opHjx7Bzc0N8+fPR8+ePSGVmv0bNhEVcmbP2SpZsiTWrFmD9u3bG7X//vvvGDJkCB4/fmzRAPMDztkiIiIqup4+fYrixYsbtW3btg0nT57ElClToFarrRQZEVmDObmB2T/BxMXFoWLFiibtFStWRFxcnLl3R0RERJQvPXv2DMHBwShdujTu3r1rtO2jjz7CokWLmGgR0WuZnWxVr14dK1euNGlfuXIlqlevbpGgiIiIiKxFr9fj22+/hb+/P1asWIHU1FSMGjXK2mERUQFk9pytBQsWoE2bNti/fz/q168PADh16hQePXqEv/76y+IBEhEREeWVkydPIigoCBcvXhTb7O3t8c4778BgMHBeFhGZxexPjKZNm+L27dvo1KkT4uPjER8fj48++gi3bt1C48aNcyNGIiIiolwVERGBzz//HA0bNjRKtLp164abN29i0qRJTLSIyGw5XtS4KGGBDCIiosJJq9Vi6dKlmDVrFlJSUsT2atWqYcWKFWjSpIkVoyOi/ChXFzU+evToa7fzQ4mIiIgKCkEQ8N1334mJVrFixTB79mwMHDgQcrnZX5OIiIyY/SnSrFkzSCQSAM8/oF4kkUig1+stExkRERFRLrO1tcWyZcvQvn17DBo0CLNmzTIp805ElFNmJ1vVq1dHbGws+vXrh549e/IDiYiIiAqE5ORkfPXVV/j8888REBAgtrdp0wa3bt2Cr6+vFaMjosLI7Jmely5dwrZt2/D48WPUq1cPQ4YMweXLl6FWq7nWBBEREeU7giBg06ZNqFChAubNm4fhw4ebjM5hokVEuSFHZXXq1q2Lb7/9Fvfu3UODBg3QoUMHLFu2zMKhEREREb2dixcvolGjRvjss88QEREB4Pn881u3blk5MiIqCnJcw/TRo0dYtGgR5s2bh1q1aqFRo0aWjIuIiIgox548eYJBgwahTp06OHnypNjeoUMH3LhxAxUrVrRidERUVJidbO3YsQMffvgh3nnnHaSlpeHgwYM4ePAg6tSpkxvxEREREWWbTqfDihUr4O/vj7Vr14rDBStUqIDdu3djx44dKF++vJWjJKKiwux1tqRSKUqVKoX27dtDoVCYbF+yZInFgssvuM4WERFRwfDJJ59gy5Yt4nVHR0dMmzYNQUFBWX5vISIyV66us9WkSRNIJBJcv37dZFtmSXgiIiIiaxg0aJCYbPXu3Rtz586Fh4eHlaMioqLK7J6toog9W0RERPlPWloaYmNj4e3tbdQ+depUfPjhh3j33XetFBkRFWbm5AY5LpBBREREZA2CIGD79u0ICAjAp59+alLGfebMmUy0iChfMHsY4UcfffTa7du2bctxMERERESvc+PGDQwfPhz79+8HADx48AA///wzunfvbuXIiIhMmZ1s7dixA46OjujQoQNkMlluxERERERkJD4+HjNmzMCKFSug1+vF9hYtWqBmzZpWjIyI6NXMTrb27duH0aNH48KFC1iwYAHatGmTG3ERERERwWAwYN26dZgwYQKePHkitvv4+GDp0qXo0KEDC3QRUb5l9pyt5s2b49KlSxgzZgwGDRqEFi1a4OrVq7kRGxERERVhly5dQr169dC/f38x0bKzs8PMmTNx48YNdOzYkYkWEeVrOSqQIZFI0KdPH9y5cwdNmjRBkyZN0LdvX0RERFg6PiIiIiqiNBoNzp8/L17v2rUrbt68iSlTpsDOzs6KkRERZY/Zpd+XL19u0hYREYGvv/4aAJCUlGSZyPIRln4nIiKyjl69euHSpUtYvnw5mjVrZu1wiIjMyg3MTrbKli372u3379835+4KBCZbREREuWv37t1Yv349Nm3aZFSAKzExEfb29pDLzZ5mTkSUK8zJDcz+5CqMyRQRERFZR3h4OEaNGoWdO3cCeF5dsH///uJ2/shJRAXZWy1qLAiCyUKCRERERG+SnJyMiRMnonLlymKiBQB//vmnFaMiIrKsHCVbP/zwA6pWrQo7OzvY2dmhWrVq+PHHHy0dGxERERUygiDgp59+QoUKFTB37lxotVoAQMmSJbFp0yZs27bNyhESEVmO2cMIlyxZgilTpmDYsGFo2LAhAOD48eP44osvEBsbi5EjR1o8SCIiIir4Ll26hODgYBw/flxsUygUGDVqFCZNmgQHBwcrRkdEZHk5KpAxY8YM9OzZ06h9w4YNmD59eqGc08UCGURERG8nIiICPj4+yMjIENvatm2LJUuWwM/Pz4qRERGZx5zcwOxhhJGRkWjQoIFJe4MGDRAZGWnu3REREVERULJkSfTr1w8A4Ofnhz///BM7d+5kokUWZTAIeBSXiptRiXgUlwqDgbUFyLrMHkbo6+uLLVu2YOLEiUbtmzdv5gcmERERAQBOnjyJunXrwsbGRmybNWsWfH19ERQUBIVCYcXoqDAKj0nCntBo3H2SDI1OD6VchvKuDgis4g5fN0drh0dFlNnJ1owZM/DJJ5/g6NGj4pytEydO4MCBA9iyZYvFAyQiIqKC49GjRxg7diw2b96MkJAQBAcHi9tKlCiB0aNHWzE6KqzCY5Kw7sQDxKVo4alWwl5hh1StDqERCYhISEOfhj5MuMgqzB5G2LlzZ5w5cwYlSpTAjh07sGPHDpQoUQJnz55Fp06dciNGIiIiyuc0Gg1mz56NChUqYPPmzQCAqVOnIjY21sqRUWFnMAjYExqNuBQt/Nwc4Ki0gUwqgaPSBn5uDohL0WLv9WgOKSSryNFy7LVr18bGjRstHQsREREVMIIg4Pfff8eoUaOMimS5urpi7ty5cHFxsWJ0VBQ8jk/D3SfJ8FQrIZFIjLZJJBJ4qpUIj0nG4/g0eLvYWylKKqrM7tmSyWSIiYnJjViIiIioAAkLC0OrVq3QqVMnMdGSyWQYPnw4bt++jX79+kEqzdGSnkTZlqLVQaPTw16RdR+CnUKGdJ0eKVpdHkdGlIOeLTMrxRMREVEhNH78eCxevBg63X9fYN9//30sX74clStXtmJkVNSoFHIo5TKkanVwVNqYbE/T6mErl0H1imSMKDfl6Oeml7toiYiIqGjRarViolWmTBn89ttv2L9/PxMtynNeznYo7+qAyASNSaeAIAiITNDA180BXs52VoqQirIcJVseHh6QyWRZXoiIiKjweflL7LRp0+Dj44Pp06fjxo0b+Oijj/hjLFmFVCpBYBV3uKgUuBOTjCRNBnQGA5I0GbgTkwwXlQItK7tDKuXrk/JejvpTt27dygmvRERERUB0dDQmTJiAChUq4MsvvxTb1Wo1bt26xfWyKF/wdXNEn4Y+4jpb0Yka2MplqOqlRsvKXGeLrEcimDkJSyaTITIyEm5ubrkVU76TmJgItVqNhIQEODk5WTscIiKiXJeRkYEVK1ZgxowZSExMhEqlwq1bt+Dl5WXt0IheyWAQ8Dg+DSlaHVQKObyc7dijRRZnTm7AAhlERERkZO/evRg+fDhu3rwptsnlcoSGhjLZonxNKpWwvDvlK2bP2Tp06BCHEBIRERVC9+7dQ8eOHREYGCgmWhKJBAMGDMCdO3cQGBho5QiJiAoWs5OtlJQUHDhwwKR9z549+Pvvvy0SFBEREeWdlJQUTJkyBQEBAfj999/F9vr16+PcuXNYu3YtXF1drRghEVHBZHayNX78eOj1epN2QRAwfvx4iwRFREREeSckJASzZ89Geno6AMDT0xM//vgjTpw4gdq1a1s5OiKigsvsZOvOnTsICAgwaa9YsSLCw8MtEhQRERHlneHDh8PLyws2NjYYN24cbt26hc8++4yl3ImI3pLZBTLUajXu3bsHHx8fo/bw8HCoVCpLxUVERES54OnTpzh16hTatm0rtqlUKmzcuBElS5aEv7+/FaMjIipczO7Z6tChA0aMGIG7d++KbeHh4Rg9ejTat29v0eCIiIjIMvR6PVavXg1/f398/PHHuH//vtH2Zs2aMdEiIrIws5OtBQsWQKVSoWLFiihbtizKli2LSpUqoXjx4li0aFFuxEhERERv4ejRo6hduzaGDBmCuLg4pKenY9KkSdYOi4io0MvRMMKTJ09i3759uHLlCuzs7FCtWjU0adIkN+IjIiKiHPr3338xbtw4/Pzzz0btPXr0wPz5860UFRFR0WF2zxbwfM2Nli1bYuzYsRg2bFiuJlqPHz/GZ599huLFi8POzg5Vq1bF+fPnxe2CIGDq1Knw9PSEnZ0dWrRogTt37hjdR1xcHHr06AEnJyc4OzujX79+SE5OzrWYiYiIrEmj0WDOnDmoUKGCUaJVs2ZNHD9+HBs3buTixEREeSBHyVZeefbsGRo2bAgbGxv8/fffuHHjBhYvXoxixYqJ+yxYsADLly/HmjVrcObMGahUKgQGBkKj0Yj79OjRA9evX8e+ffuwa9cuHD16FAMHDrTGQyIiIspVt27dQuXKlTFp0iSkpqYCAIoXL45vvvkG586dQ8OGDa0cIRFR0SERBEGwdhCvMn78eJw4cQLHjh3LcrsgCChZsiRGjx6NMWPGAAASEhLg7u6O9evXo1u3bggLC0NAQADOnTuHOnXqAAB2796NDz/8EP/++y9Kliz5xjgSExOhVquRkJAAJycnyz1AIiIiC9NoNKhcuTLu3bsHqVSKIUOGYMaMGXBxcbF2aER5zmAQ8Dg+DSlaHVQKObyc7SCVckkDejvm5Ab5umfrjz/+QJ06ddClSxe4ubmhZs2a+Pbbb8Xt9+/fR1RUFFq0aCG2qdVq1KtXD6dOnQIAnDp1Cs7OzmKiBQAtWrSAVCrFmTNnsjxueno6EhMTjS5ERET5kU6nM7quVCqxdOlSNGvWDJcvX8aKFSuYaFGRFB6ThNWH72LpvttYfuAOlu67jdWH7yI8JsnaoVERkq+TrXv37mH16tXw8/PDnj17MHjwYAQHB2PDhg0AgKioKACAu7u70e3c3d3FbVFRUXBzczPaLpfL4eLiIu7zsrlz50KtVosXb29vSz80IiKit2IwGLBhwwaUK1cON2/eNNrWrl07HDx4EFWrVrVSdES5x2AQ8CguFTejEvEoLhUGg+kgrfCYJKw78QChEQlwtrdBuRIOcLa3QWhEAtadeMCEi/KM2dUIr169+trt1apVy3EwLzMYDKhTpw7mzJkD4PnE3tDQUKxZswa9evWy2HFeNmHCBIwaNUq8npiYyISLiIjyjXPnziEoKEgcoTFixAj8/fffkEieD4/K/JeosAmPScKe0GjcfZIMjU4PpVyG8q4OCKziDl83RwDPk7E9odGIS9HCz81BfD84Km3gYCvHnZhk7L0ejXIlHDikkHKd2clWjRo1IJFIkDnVK/MFLAgCJBIJ9Hq9xYLz9PREQECAUVulSpXw22+/AQA8PDwAANHR0fD09BT3iY6ORo0aNcR9YmJijO5Dp9MhLi5OvP3LbG1tYWtra6mHQUREZBExMTGYOHEi/ve//+HFKdcqlQoajQZ2dnZWjI4od2X2VsWlaOGpVsJeYYdUrQ6hEQmISEhDn4Y+8HVzxOP4NNx9kgxPtdLkhweJRAJPtRLhMcl4HJ8Gbxd7Kz0aKipyNIzwzJkzuH//Pu7duwc7OzscOnRIvG5JDRs2xK1bt4zabt++jTJlygAAypYtCw8PDxw4cEDcnpiYiDNnzqB+/foAgPr16yM+Ph4XLlwQ9zl48CAMBgPq1atn0XiJiIhyQ0ZGBpYtWwY/Pz98//33YqIVEBCAffv24bfffmOiRYXay71VjkobyKQSOCpt4OfmgLgULfZej4bBICBFq4NGp4e9Ius+BTuFDOk6PVK0uiy3E1mS2T1bAFC6dGlxHpREIoG9vb2YAFnSyJEj0aBBA8yZMwddu3bF2bNnsXbtWqxdu1Y89ogRIzB79mz4+fmhbNmymDJlCkqWLImOHTsCeN4T1qpVKwwYMABr1qxBRkYGhg0bhm7dumWrEiEREZE17d+/H8HBwQgLCxPb1Go1ZsyYgSFDhsDGxsaK0RHlDXN6q1QKOZRyGVK1OjgqTd8faVo9bOUyqF6RjBFZktk9W25ubrh9+zYAICIiAikpKWjdujV2795t8eDq1q2L7du34+eff0aVKlUwa9YsLFu2DD169BD3GTduHIKCgjBw4EDUrVsXycnJ2L17N5RKpbjPpk2bULFiRTRv3hwffvghGjVqJCZsRERE+ZVerzdKtCQSCfr164fbt29j+PDhTLSoyDCnt8rL2Q7lXR0QmaDByyscCYKAyAQNfN0c4OXM3mDKfWavs9W7d2/s378fbdu2xeHDh1G6dGkMHz4cvXr1wrBhwzB9+vRcCtV6uM4WERFZy759+9CyZUu8++67WL58OerWrWvtkIjy3KO4VCzddxvO9jZZ9lYlaTIQn5qBkR/4w9vF3mR+l51ChjStHpEJGrioFOL8LqKcyNV1tr7++mv07NkTjx49QosWLbBx40a0adMGZ8+exR9//JHjoImIiIoyQRCwdetWk6q/H3zwAfbv348TJ04w0aIiy9zeKl83R/Rp6IMqJdWIT83Ag9gUxKdmoKqXmokW5Smze7ZeR6PRGA3fKyzYs0VERLnp2rVrGD58OA4dOoQmTZrg8OHDLN9O9JKc9FYZDAIex6chRauDSiGHl7Mdy73TWzMnN7BoslVYMdkiIqLc8OzZM0ybNg2rVq0yWjrlwIEDeP/9960YGVH+9OI6W+m654UufN0c0LKyO3urKM+YkxvkqAzL+fPnsWXLFjx8+BBardZo27Zt23Jyl0REREWGXq/H999/j4kTJ+Lp06die7ly5bBs2TK89957VoyOKP/ydXNEuWYO7K2iAsPsOVu//PILGjRogLCwMGzfvh0ZGRm4fv06Dh48CLVanRsxEhERFRqZc68GDRokJlr29vaYM2cOrl+/jnbt2nEIIdFrSKUSeLvYo6KHE7xd7JloUb5mdrI1Z84cLF26FDt37oRCoUBISAhu3ryJrl27onTp0rkRIxERUaEwc+ZMNGrUCJcuXRLbPv30U9y6dQsTJkwolPOeiYiKMrOTrbt376JNmzYAAIVCgZSUFEgkEowcOZJrVxEREb3Gi/OwqlevjqNHj+Knn35CqVKlrBgVERHlFrPnbBUrVgxJSUkAAC8vL4SGhqJq1aqIj49HamqqxQMkIiIqqBITE40mTzdq1AhBQUEICAjAgAEDIJPJrBgdERHlNrOTrSZNmmDfvn2oWrUqunTpguHDh+PgwYPYt28fmjdvnhsxEhERFSi3b9/GiBEjEBsbi9OnT0Mq/W8gyfLly60YGRER5SWzk62VK1dCo9EAACZNmgQbGxucPHkSnTt3xuTJky0eIBERUUGRlJSE2bNnY+nSpcjIyAAAbNiwAX369LFyZEREZA1mJ1suLi7i/6VSKcaPH2/RgIiIiAoag8GATZs2Ydy4cYiKihLbS5UqZfR3k4iIihazk62HDx++djsrEhLlDYNB4DojRPnAhQsXEBQUhFOnTolttra2GDt2LMaPHw+VSmXF6IiIyJrMTrZ8fHzE9T8EQQAASCQSCIIAiUQCvV5v2QiJyER4TBL2hEbj7pNkaHR6KOUylHd1QGAVd/i6OVo7PKIi4cmTJ5g4cSK+//578e8hAHTo0AFLlixBuXLlrBgdERHlB2YnW66urlAoFOjXrx/atWsHudzsuyCitxAek4R1Jx4gLkULT7US9go7pGp1CI1IQERCGvo09GHCRZQHHj58aJRoVahQASEhIQgMDLRyZERElF+Yvc7W48ePsWTJEpw4cQIdOnTAli1b4OTkhOrVq6N69eq5ESMR/T+DQcCe0GjEpWjh5+YAR6UNZFIJHJU28HNzQFyKFnuvR8NgEN58Z0T0VmrXro3+/fvD0dERixcvxtWrV5loERGREbOTLblcji5dumDfvn04evQo9Ho9atWqhe+//z434iOiFzyOT8PdJ8nwVCvF4byZJBIJPNVKhMck43F8mpUiJCqc/vnnH4wZMwY6nc6ofe7cubh9+zZGjRoFhUJhpeiIiCi/yvEYwLS0NBw5cgRHjhxB8eLF4ePjY8GwiCgrKVodNDo97BV2WW63U8gQnahBilaX5XYiMk9aWhoWLFiAefPmQaPRoGzZshg6dKi4vXjx4laMjoiI8juze7YuX76MIUOGoEyZMvj7778xa9YshIeHc0FjojygUsihlMuQ+opkKk2rh61cBpWCcymJ3oYgCPjtt99QqVIlTJ8+XVxfcuXKlTAYDFaOjoiICgqzv5HVqlULpUqVwoABA+Du7o4bN27gxo0b4vbg4GCLBkhE//FytkN5VweERiTAwVZuNJRQEAREJmhQ1UsNL+ese76I6M2uX7+O4OBgHDx4UGyTy+UYPnw4pkyZAqnU7N8piYioiDI72SpdujQkEgl++uknk20SiYTJFlEukkolCKzijoiENNyJeT53y04hQ5pWj8gEDVxUCrSs7M71tohy4NmzZ5g+fTq+/vpro2VMWrZsiZCQEFSsWNGK0RERUUFkdrL14MGDXAiDiLLL180RfRr6iOtsRSdqYCuXoaqXGi0rc50topxISUlB5cqVERkZKbaVLVsWS5cuRfv27U0K0hAREWVHjid2aLVa3L9/H+XLl+daW0R5zNfNEeWaOeBxfBpStDqoFHJ4OduxR4soh1QqFbp06YLly5fD3t4eEydOxOjRo6FUKq0dGhERFWBmZ0mpqakICgrChg0bAAC3b99GuXLlEBQUBC8vL4wfP97iQRKRKalUAm8Xe2uHQVQgRUZGonjx4kbl2mfMmIHU1FRMnToV3t7eVoyOiIgKC7Nn+U6YMAFXrlzB4cOHjX7xa9GiBTZv3mzR4IiIiCxJq9Vi4cKF8Pf3R0hIiNE2Z2dnfPvtt0y0iIjIYsxOtnbs2IGVK1eiUaNGRmPYK1eujLt371o0OCIiIkv5+++/UbVqVYwbNw7JycmYOXOm0RwtIiIiSzM72Xry5Anc3NxM2lNSUjiBmIiI8p3w8HC0a9cOH374IW7fvg0AkEql+Pzzz2Fra2vl6IiIqDAzO9mqU6cO/vzzT/F6ZoL13XffoX79+paLjIiI6C0kJydjwoQJqFy5Mnbt2iW2N27cGBcuXMCqVavg4uJixQiJiKiwM7tAxpw5c9C6dWvcuHEDOp0OISEhuHHjBk6ePIkjR47kRoxERERm2bx5M0aNGoWIiAixzcvLCwsXLkS3bt04EoOIiPKE2T1bjRo1wuXLl6HT6VC1alXs3bsXbm5uOHXqFGrXrp0bMRIREZnl8uXLYqKlUCgwceJE3Lx5E59++ikTLSIiyjMSQRAEaweR3yUmJkKtViMhIQFOTk7WDoeIiN4gOTkZFSpUQO3atbF06VKUL1/e2iEREVEhYU5uYHbPVtOmTfHDDz8gLS0txwESERFZgk6nw8qVK7F06VKjdgcHB1y8eBF//PEHEy0iIrIas5OtmjVrYsyYMfDw8MCAAQNw+vTp3IiLiIjotQ4dOoSaNWsiKCgIEydOxD///GO03d3d3UqRERERPWd2srVs2TJERERg3bp1iImJQZMmTRAQEIBFixYhOjo6N2IkIiISPXz4EF27dsX777+P0NBQAIBGozGqlEtERJQfmJ1sAYBcLsdHH32E33//Hf/++y+6d++OKVOmwNvbGx07dsTBgwctHScRERVxaWlpmDlzJipWrIhff/1VbK9duzZOnjyJIUOGWDE6IiIiUzlKtjKdPXsW06ZNw+LFi+Hm5oYJEyagRIkSaNu2LcaMGWOpGImIqAgTBAHbtm1DpUqVMG3aNHHOsKurK7777jucPXuW6zwSEVG+ZHY1wpiYGPz4449Yt24d7ty5g3bt2qF///4IDAwUy+keP34crVq1QnJycq4EnddYjZCIyHo2bNiA3r17i9dlMhmCgoIwbdo0ODs7Wy0uIiIqmszJDcxOthQKBcqXL4++ffuid+/ecHV1zTKADh064NChQ+ZFnk8x2SIisp60tDQEBATgwYMHaN68OZYvX46AgABrh0VEREVUriZbx44dQ+PGjd8qwIKGyRYRUd4wGAy4ePEi6tSpY9S+Z88epKSkoFOnTlyUmIiIrCpXk61MMTExuHXrFgCgQoUKcHNzy8ndFAhMtoiIct/p06cRFBSEK1eu4Pr16/Dz87N2SERERCZydVHjpKQkfP755/Dy8kLTpk3RtGlTeHl54bPPPkNCQkKOgyYioqIpKioKvXv3Rv369XH+/HlkZGRgxIgR1g6LiIjorZmdbPXv3x9nzpzBrl27EB8fj/j4eOzatQvnz5/HoEGDciNGIiIqhLRaLRYtWgR/f39s2LBBbK9atSrGjh1rxciIiIgsw+xhhCqVCnv27EGjRo2M2o8dO4ZWrVohJSXFogHmBxxGSERkWbt378bw4cNx+/Ztsc3Z2RmzZs3CF198AblcbsXoiIiIXs2c3MDsv2bFixeHWq02aVer1ShWrJi5d0dEREVIbGws+vXrhz/++ENsk0gkGDhwIGbPno0SJUpYMToiIiLLMnsY4eTJkzFq1ChERUWJbVFRURg7diymTJli0eCIiKhwcXJyEosrAUDDhg1x/vx5rFmzhokWEREVOmYPI6xZsybCw8ORnp6O0qVLAwAePnwIW1tbk8pRFy9etFykVsRhhERElrN792707dsXCxcuRPfu3VnKnYiICpRcHUbYsWPHnMZFRERFyOXLlzFq1CgsX74cVapUEdtbtWqFu3fvws7OzorRERER5b4cr7NVlLBni4go+54+fYopU6bgm2++gcFgwHvvvYcDBw6wB4uIiAqFXF1ni4iIKCs6nQ6rVq2Cn58fVq9eDYPBAAD4999/ERMTY+XoiIiI8p7ZwwhdXFxeuz0uLi7HwRARUcF05MgRBAcH4+rVq2Kbg4MDpkyZghEjRkChUFgxOiIiIuswO9kSBAEGgwEjR45E2bJlcyMmIiIqIB49eoRx48bhl19+MWr//PPPMW/ePJQsWdJKkREREVmf2cnW3bt3MX36dCxevBhffPEFJk+enOW6W0REVPh98sknOHXqlHi9Vq1aWLFiBRo0aGDFqIiIiPIHs+dsubi4YPny5bhw4QLCw8Ph6+uLFStWQK/X50Z8RESUj82dOxcAUKJECaxduxZnz55lokVERPT/3roa4dGjRzF69GgkJiZi/vz5hbI0PKsREhEBYWFhMBgMqFy5slH7+vXr0aFDBxQrVsxKkREREeUdc3IDs5Otjz76yKTNYDDgwIEDSE1NLZQ9XEy2iKgoS0hIwMyZM7F8+XLUrVsXx48fh1TKYrZERFQ05eqixq+an/Xxxx+be1dERJSPGQwGbNiwAePHjxdLt586dQqbN2/Gp59+auXoiIiI8j+zk61169blRhxERJSPnDlzBsHBwTh79qzYplQq8eWXX6JDhw5WjIyIiKjgyNE4kIyMDKSmpor/v3jxIpKSkiwaGBER5b3o6Gj06dMH7777rlGi1blzZ4SFhWH69Omwt7e3YoREREQFh9nJ1u7du+Hs7Ax3d3fs3bsXderUQZ06dVCqVCmcOHEiN2IkIqI8sHnzZvj7+2P9+vViW0BAAPbv34+tW7fCx8fHarEREREVRGYnW5MnT0ZwcDCWLFmC7t27o2HDhoiPj0fXrl0xefLk3IiRiIjyQNmyZZGYmAjg+fzcZcuW4fLly2jevLmVIyMiIiqYzK5GaG9vjxs3bsDHxwe2trY4d+4cqlWrhuvXr6Nx48aIi4vLrVithtUIiagwMhgMJlUF+/fvD4lEgq+++gpubm5WioyIiCj/ytVqhAqFQizv7ufnJ66rYm9vj4yMjByES0REeSklJQXz5s3D/v37cfz4cchkMnHb2rVrWdadiIjIQsz+i1qhQgVcv34dABAaGgpvb28AwI0bN+Dn52fZ6IiIyGIEQcDmzZtRsWJFzJ49G6dPn8a3335rtA8TLSIiIssxu2dr7969UCgUJu1eXl74+uuvLRIUERFZ1pUrVxAcHIyjR4+KbTY2NoVy6DcREVF+YbFFjWvUqPG2sRARkYXFxcVhypQpWLNmDQwGg9jeunVrLFu2DP7+/laMjoiIqHDL0XiRI0eOoF27dvD19YWvry/at2+PY8eOWTo2IiLKIb1ejzVr1sDPzw+rVq0SEy1fX1/s2rULf/31FxMtIiKiXGZ2srVx40a0aNEC9vb2CA4ORnBwMOzs7NC8eXP89NNPuREjERGZ6datWxg6dKg4TFClUmHu3LkIDQ1FmzZtrBwdERFR0WB2svXVV19hwYIF2Lx5s5hsbd68GfPmzcOsWbNyI0bRvHnzIJFIMGLECLFNo9Fg6NChKF68OBwcHNC5c2dER0cb3e7hw4do06YN7O3t4ebmhrFjx0Kn0+VqrERE1hQQEIDBgwcDAHr06IFbt25h/PjxsLW1tXJkRERERYfZyda9e/fQrl07k/b27dvj/v37FgkqK+fOncM333yDatWqGbWPHDkSO3fuxK+//oojR44gIiICH330kbhdr9ejTZs20Gq1OHnyJDZs2ID169dj6tSpuRYrEVFe0mg0+Prrr02W35g5cyaOHTuGjRs3wsvLy0rRERERFV1mJ1ve3t44cOCASfv+/fvFMvCWlpycjB49euDbb78V1/UCgISEBHz//fdYsmQJ3n//fdSuXRvr1q3DyZMncfr0aQDPqyfeuHEDGzduRI0aNdC6dWvMmjULX3/9NbRaba7ES0SUFwRBwM6dO1GlShUMGzYMK1euNNru4uKCRo0aWSk6IiIiMjvZGj16NIKDgzF48GD8+OOP+PHHH/HFF19gxIgRGDNmTG7EiKFDh6JNmzZo0aKFUfuFCxeQkZFh1F6xYkWULl0ap06dAgCcOnUKVatWhbu7u7hPYGAgEhMTxfXCXpaeno7ExESjCxFRfnLr1i18+OGHaN++Pe7evQsAmD17NlJTU60cGREREWUyu/T74MGD4eHhgcWLF2PLli0AgEqVKmHz5s3o0KGDxQP85ZdfcPHiRZw7d85kW1RUFBQKBZydnY3a3d3dERUVJe7zYqKVuT1zW1bmzp2LGTNmWCB6IiLLSkxMxOzZs7Fs2TKjYYPNmjVDSEgI7O3trRgdERERvcjsZAsAOnXqhE6dOlk6FhOPHj3C8OHDsW/fPiiVylw/XqYJEyZg1KhR4vXExMRcGyJJRJQdBoMBGzduxJdffmn0Q5G3tzcWL16Mjz/+GBKJxIoREhER0ctylGzllQsXLiAmJga1atUS2/R6PY4ePYqVK1diz5490Gq1iI+PN+rdio6OhoeHBwDAw8MDZ8+eNbrfzGqFmfu8zNbWlhW7iCjf0Ov1aN68OY4cOSK22draYty4cfjyyy+hUqmsGB0RERG9itlztooVKwYXF5dXXiypefPmuHbtGi5fvixe6tSpgx49eoj/t7GxMSrYcevWLTx8+BD169cHANSvXx/Xrl1DTEyMuM++ffvg5OSEgIAAi8ZLRJQbZDIZ3nnnHfF6p06dEBYWhpkzZzLRIiIiysfM7tlatmwZgOdVsAYPHoyZM2fCzc3N0nEBABwdHVGlShWjNpVKheLFi4vt/fr1w6hRo+Di4gInJycEBQWhfv36ePfddwEALVu2REBAAD7//HMsWLAAUVFRmDx5MoYOHcreKyLKlzIyMiAIAhQKhdg2efJkXLhwAePHj8cHH3xgxeiIiIgou8xOtnr16iX+PygoCJ07d0a5cuUsGpQ5li5dCqlUis6dOyM9PR2BgYFYtWqVuF0mk2HXrl0YPHgw6tevD5VKhV69emHmzJlWi5mI6FX279+P4OBg9OjRA5MmTRLbnZycslx2g4iIiPIviSAIQk5v7OjoiCtXrlg12coLiYmJUKvVSEhIgJOTk7XDIaJC6P79+xg9ejS2b98OALC3t8fNmzdZnIeIiCifMSc3eOsCGax+RUSUc6mpqZg/fz4WLFgAjUYjtletWhXJyclWjIyIiIjeltnJ1kcffST+X6PR4IsvvjCaoL1t2zbLREZEVIgJgoCtW7di9OjRePTokdju7u6O+fPn4/PPP4dUanYNIyIiIspHzE621Gq1+P/PPvvMosEQERUF165dQ3BwMA4fPiy2yeVyDB8+HFOmTDH6nCUiIqKCy+xka926dbkRBxFRkfHbb78ZJVotW7ZESEgIKlasaL2giIiIyOLMHqOyatUqo3kFRERknnHjxqF06dIoV64cfv/9d+zevZuJFhERUSFkdjVCmUyGyMjIXFtbKz9iNUIiyqkTJ07g+vXrGDhwoFH7jRs3UK5cOSiVSitFRkRERDlhTm5gds/WW1SKJyIqMh4/fozPPvsMjRo1QlBQEO7evWu0PSAggIkWERFRIcdSV0REFpSeno758+ejQoUK2LRpEwBAq9Vi5cqVVo6MiIiI8lqO1tnas2fPK6tltW/f/q0CIiIqqP7880+MGDEC4eHhYpuLiwtmz55tMoyQiIiICr8cJVu9evXKsl0ikUCv179VQEREBc3t27cxcuRI/PXXX2KbVCrFF198gZkzZ6J48eJWjI6IiIisxexky2Aw5EYcREQF0pEjR/DBBx8gIyNDbGvSpAmWL1+O6tWrWzEyIiIisjbO2SIiegvvvvsufHx8AABeXl74+eefcfjwYSZaRERElLNk68iRI2jXrh18fX3h6+uL9u3b49ixY5aOjYgo34mMjDS6bmtri5CQEEycOBG3bt1Ct27dIJFIrBQdERER5SdmJ1sbN25EixYtYG9vj+DgYAQHB8POzg7NmzfHTz/9lBsxEhFZ3ZMnTzBw4ED4+Pjgxo0bRttat26Nr776CiqVykrRERERUX5k9qLGlSpVwsCBAzFy5Eij9iVLluDbb79FWFiYRQPMD7ioMVHRpdPpsHr1akydOhXx8fEAgBYtWmDv3r3swSIiIiqCcnVR43v37qFdu3Ym7e3bt8f9+/fNvTsionzr4MGDqFmzJoKDg8VEy9HREa1bt+YC70RERPRGZidb3t7eOHDggEn7/v374e3tbZGgiIis6Z9//kGXLl3QvHlzhIaGiu29e/fG7du3MWrUKEilrC9EREREr2d26ffRo0cjODgYly9fRoMGDQAAJ06cwPr16xESEmLxAImI8kp6ejrmz5+PefPmIS0tTWyvW7cuVqxYgXr16lkxOiIiIipozE62Bg8eDA8PDyxevBhbtmwB8Hwe1+bNm9GhQweLB0hElFdkMhm2bNkiJlpubm6YN28eevXqxZ4sIiIiMpvZBTKKIhbIICo6Dh06hJYtWyI4OBhTp06FWq22dkhERESUj5iTG5jds5Xp/PnzYuXBgIAA1K5dO6d3RUSU5549e4bp06ejV69eqFWrltj+3nvv4f79+yhVqpQVoyMiIqLCwOxk699//8Wnn36KEydOwNnZGQAQHx+PBg0a4JdffuEXFCLK1/R6PdatW4cJEyYgNjYWFy5cwLFjx4zKuPNzjIiIiCzB7EkI/fv3R0ZGBsLCwhAXF4e4uDiEhYXBYDCgf//+uREjEZFFnDx5EvXq1cOAAQMQGxsLALh48aLJIsVERERElmB2snXkyBGsXr0aFSpUENsqVKiAFStW4OjRoxYNjojIEiIjI9GzZ080bNgQFy5cENs/+eQT3Lx5E5UrV7ZidERERFRYmT2M0NvbGxkZGSbter0eJUuWtEhQRESWoNVqERISgpkzZyI5OVlsr1q1KlasWIGmTZtaMToiIiIq7Mzu2Vq4cCGCgoJw/vx5se38+fMYPnw4Fi1aZNHgiIjeRs+ePTFu3Dgx0SpWrBhWrlyJixcvMtEiIiKiXGd26fdixYohNTUVOp0OcvnzjrHM/6tUKqN94+LiLBepFbH0O1HBdOrUKTRo0AASiQSDBg3CrFmzUKJECWuHRURERAVYrpZ+X7ZsWU7jIiLKNcnJyYiOjkb58uXFtvr162P+/Pn44IMPULNmTStGR0REREURFzXOBvZsEeVfgiDg559/xtixY+Hp6YkzZ85AJpNZOywiIiIqpHKlZysxMTFb+zEZIaK8cunSJQQFBeHEiRMAgIiICPzvf//DgAEDrBwZERERkRnJlrOzs9Giny8TBAESiQR6vd4igRERvUpsbCwmT56MtWvX4sXO+Xbt2uG9996zYmRERERE/zFrztbWrVvh4uKSW7EQEb2WTqfDmjVrMGXKFMTHx4vt/v7+WLZsGVq3bm294IiIiIheYlay1bBhQ7i5ueVWLEREr3T+/Hn07dsX165dE9scHBwwdepUDB8+HAqFworREREREZkyuxohEZE1yGQyhIaGitd79uyJefPmwdPT04pREREREb0aky0iKhBq1qyJgQMH4vz581ixYgXq169v7ZCIiIiIXkua3R0lEslrC2QQEVmCIAjYsWMH2rVrh4yMDKNtS5YswdmzZ5loERERUYGQ7Z4tQRDQu3dv2Nravna/bdu2vXVQRFQ0hYWFYfjw4di3bx8AYPXq1QgODha329vbWys0IiIiIrNlO9nq1atXbsZBREVYQkICZsyYgRUrVkCn04ntR48eNUq2iIiIiAqSbCdb69aty804iKgIMhgMWL9+PSZMmICYmBix3cfHB4sXL0anTp2sGB0RERHR22GBDCKyijNnziAoKAjnzp0T25RKJSZMmICxY8fCzs7OitERERERvT0mW0SU56KiotC4cWOjAhhdunTBwoULUaZMGStGRkRERGQ52a5GSET0NgwGAY/iUnEzKhEZCicMHToUAFClShUcPHgQW7ZsYaJFREREhQp7togo1/2wdSfiHMrhYUIGNDo9lHIZvN7riemepTFpVBDkcn4UERERUeHDni0iyjV3795Fi1Zt0KtLe/yybg2c7W1QroQDnO1tcDfRAK1fCzyIS7N2mERERES5gskWEVlccnIyJk2ahICAABzY8xcA4NIf/4OQGg+ZVAJHpQ383BwQl6LF3uvRMBgEK0dMREREZHkcu0NEFiMIAn755ReMHTsWjx8/FtsdXVzRrv9YOBYrIbZJJBJ4qpUIj0nG4/g0eLtwwWIiIiIqXJhsEVmZwSDgcXwaUrQ6qBRyeDnbQSqVWDsss125cgVBQUE4duyY2GZjY4Mqgd3xUd8gqBwcTW5jp5AhOlGDFK3OZBsRERFRQcdki8iKwmOSsCc0GnefJIuFI8q7OiCwijt83UyTk/xq1KhRCAkJgcFgENvatGmDcdPmYMc9Awxymyxvl6bVw1Yug0rBjyIiIiIqfDhni8hKwmOSsO7EA4RGJBgVjgiNSMC6Ew8QHpNk7RCzzd7eXky0fH19sWvXLuzatQuNaldFeVcHRCZoIAjG87IEQUBkgga+bg7wcuYCxkRERFT4MNkisgKDQcCe0GjEpWjh5+YAR6VNgSoc8XLiNGHCBFSsWBHz589HaGgo2rRpAwCQSiUIrOIOF5UCd2KSkaTJgM5gQJImA3dikuGiUqBlZfcCOWySiIiI6E04dofICh7Hp+Huk2R4qpWQSIwTjfxcOOLRo0cYN24c/P39MWPGDLFdpVIhNDQUMpnM5Da+bo7o09BHHC4ZnaiBrVyGql5qtKxcsIZLEhEREZmDyRaRFaRoddDo9LBXZD18Lr8VjtBoNFi8eDHmzJmD1NRU2Nraonfv3ihbtqy4T1aJViZfN0eUa+ZQKAqBEBEREWUXky0iK1Ap5FDKZUjV6uCoNC0ekV8KRwiCgJ07d2LkyJG4d++e2O7o6Ijw8HCjZOtNpFJJvuqlIyIiIsptnLNFZAVeznb5vnDEzZs30bp1a3To0EFMtGQyGYKDg3H79m188MEHVouNiIiIqCBgzxaRFWQWjohISMOdmOdzt+wUMqRp9YhM0Fi1cERiYiJmzpyJkJAQ6HT/DWN87733EBISgqpVq+Z5TEREREQFEZMtIisxp3BEXi58vHbtWixevFi8Xrp0aSxevBidO3c2KeZBRERERK8mEV4ew0QmEhMToVarkZCQACcnJ2uHQ4XMmxKpvF74WKPRoHLlyoiIiMCXX36JcePGwd6ec62IiIiIAPNyA/ZsEVnZ6wpHZC58HJeihadaCXuFHVK1OoRGJCAiIQ19Gvq8VcIVHR2No0ePokuXLmKbUqnEpk2b4OHhAR8fnxzfNxEREVFRxwIZRPlUbi58nJGRgaVLl8Lf3x/du3fHzZs3jba/++67TLSIiIiI3hKTLaJ8ypyFj82xb98+VK9eHaNGjUJiYiJ0Oh0mT55sydCJiIiICEy2iPKt/xY+znq0r51ChnSdPtsLH9+/fx8fffQRWrZsibCwMADPk7b+/ftj1apVFoubiIiIiJ7jnC2ifMpSCx+npqZi3rx5WLBgAdLT08X2d999FytWrECdOnUsHjsRERERMdkiyrcyFz4OjUiAg63caChh5sLHVb3Ur134+Pbt22jRogUePXoktnl4eGDBggXo0aMHpFJ2bhMRERHlFn7TIsqnMhc+dlEpcCcmGUmaDOgMBiRpMnAnJjlbCx+XLVsWDg4OAAAbGxuMHTsWt2/fxueff85Ei4iIiCiX8dsWUT6WufBxlZJqxKdm4EFsCuJTM1DVS51l2XeNRmN03cbGBsuXL0erVq1w7do1LFiwAI6Oll+bi4iIiIhM5etka+7cuahbty4cHR3h5uaGjh074tatW0b7aDQaDB06FMWLF4eDgwM6d+6M6Ohoo30ePnyINm3awN7eHm5ubhg7dix0uuwVFSCyNl83RwxuVh4jP/BHUHM/jPzAH180LW+UaOn1eqxZswZlypTBlStXjG7fokUL/P3336hQoUJeh05ERERUpOXrZOvIkSMYOnQoTp8+jX379iEjIwMtW7ZESkqKuM/IkSOxc+dO/Prrrzhy5AgiIiLw0Ucfidv1ej3atGkDrVaLkydPYsOGDVi/fj2mTp1qjYdElCOZCx9X9HCCt4u90dDBY8eOoU6dOhg8eDBiYmIQHBwMQTB/7S0iIiIisiyJUIC+lT158gRubm44cuQImjRpgoSEBLi6uuKnn37Cxx9/DAC4efMmKlWqhFOnTuHdd9/F33//jbZt2yIiIgLu7u4AgDVr1uDLL7/EkydPoFAo3njcxMREqNVqJCQkwMnJKVcfI1F2PX78GGPHjsXPP/9s1N69e3esXbsWKpXKSpERERERFV7m5Ab5umfrZQkJCQAAFxcXAMCFCxeQkZGBFi1aiPtUrFgRpUuXxqlTpwAAp06dQtWqVcVECwACAwORmJiI69evZ3mc9PR0JCYmGl2I8ov09HTMnTsXFSpUMEq0atSogaNHj2LTpk1MtIiIiIjygQKTbBkMBowYMQINGzZElSpVAABRUVFQKBRwdnY22tfd3R1RUVHiPi8mWpnbM7dlZe7cuVCr1eLF29vbwo+GyHyCIGDnzp2oXLkyJk6cKA6nLV68ONasWYPz58+jcePGVo6SiIiIiDIVmGRr6NChCA0NxS+//JLrx5owYQISEhLEy4trFBFZiyAImDZtGu7evQsAkEqlGDp0KG7fvo1BgwZBJpNZOUIiIiIielGBSLaGDRuGXbt24dChQyhVqpTY7uHhAa1Wi/j4eKP9o6Oj4eHhIe7zcnXCzOuZ+7zM1tYWTk5ORhcia5NKpVi+fDkAoGnTprh06RJWrlwpDqslIiIiovwlXydbgiBg2LBh2L59Ow4ePIiyZcsaba9duzZsbGxw4MABse3WrVt4+PAh6tevDwCoX78+rl27hpiYGHGfffv2wcnJCQEBAXnzQIjMZDAY8MMPP+DcuXNG7Y0aNcLJkydx6NAhVKtWzUrREREREVF25OtqhEOGDMFPP/2E33//3WiNILVaDTs7OwDA4MGD8ddff2H9+vVwcnJCUFAQAODkyZMAnpd+r1GjBkqWLIkFCxYgKioKn3/+Ofr37485c+ZkKw5WI6S8dP78eQQHB+PUqVOoW7cuTp8+Dak0X/8uQkRERFRkmJMb5OtkSyKRZNm+bt069O7dG8DzRY1Hjx6Nn3/+Genp6QgMDMSqVauMhgj+888/GDx4MA4fPvx/7d15XFTl/gfwzyzMMDDsCIiCkBIq4IKm1yWxxLVrml018ypq2bX0immu/NSya1iauZRL5XKvdvXWdWm5WiruG66omAEqpiGbCDIsw2zP7w/z1AQRFsOwfN6vF69X5znPnPk+c56Uj+fMc+Ds7IyYmBgsWrQISqWySnUwbFFNyMnJQVxcHNatW2f1nKw9e/agd+/edqyMiIiIiB6oN2GrtmDYIlsyGo1YtWoV5s+fLz3eAABatWqF5cuXM2gRERER1SIPkw2qdmmHiGwiISEBkydPxrfffiu1ubq64vXXX8ekSZPg4OBgx+qIiIiI6I/gF0GI7OT1119HdHS0VdAaN24cUlNT8eqrrzJoEREREdVxDFtEdjJw4EDpe4mdOnVCYmIi1q1bV+4h3ERERERUN/E2QqIaIIRAXl4evL29pbYOHTpg5syZCA0NxejRo7niIBEREVE9wwUyqoALZNAfkZycjNjYWOTm5uLcuXNVXgWTiIiIiGqfh8kG/Kd0IhvJz89HbGws2rVrh/379+PSpUtYu3atvcsiIiIiohrCf2InqmZmsxnr16/HnDlzcOfOHak9ODgYwcHBdqyMiIiIiGoSwxZRNTp+/Dj+/ve/49y5c1Kbk5MT5syZg2nTpsHR0dGO1RERERFRTWLYIqoGmZmZmDFjBjZv3mzVPmLECLzzzjto2rSpnSojIiIiInth2CKqBnl5ediyZYu03aZNG6xcuRI9evSwY1VEREREZE9cIIOoGoSHh2PixInw9PTEqlWrcPbsWQYtIiIiogaOYYvoIaWlpWHChAkwGAxW7QsWLEBqaipefvllLu9ORERERLyNkKiqdDodFi5ciKVLl8JoNKJ58+aYPn26tN/Nzc2O1RERERFRbcMrW0S/QQiBzZs3IzQ0FG+//TaMRiMAYP369TCbzXaujoiIiIhqK4YtokqcO3cO3bt3x6hRo5CZmQkAUKlUiIuLw+nTp6FQKOxcIRERERHVVryNkKgCubm5+L//+z989NFHEEJI7U8//TSWLl2K5s2b27E6IiIiIqoLGLaIfqGkpAQRERHIzs6W2kJDQ7Fs2TL069fPjpURERERUV3C2wiJfsHJyQljx44FALi4uGDJkiW4ePEigxYRERERPRRe2aIG7+bNm2jUqBE0Go3UFhcXh5KSEsyePRt+fn52rI6IiIiI6ipe2aIGq7S0FAsWLEDLli2xePFiq31arRbLly9n0CIiIiKi341hixocIQS2b9+OVq1aYf78+SgtLUV8fDy+//57e5dGRERERPUIbyOkBuXy5cuIjY1FQkKC1KZUKvHyyy/D3d3dfoURERERUb3DsEUNQkFBAd544w2sXLnS6kHE0dHRWL58OVq3bm3H6oiIiIioPmLYonpv06ZNmDZtGnJzc6W2oKAgvPfeexg0aBBkMpkdqyMiIiKi+ophi+q9GzduSEFLo9Fg9uzZeO2116xWHyQiIiIiqm4yIYSwdxG1XWFhIdzc3HDv3j24urrauxx6SKWlpWjdujU6deqExYsXIzAw0N4lEREREVEd9TDZgFe2qN4wGAxYsWIFSktLMXfuXKldo9Hg3Llz8PDwsGN1RERERNTQMGxRvfD1118jNjYWqampcHBwwHPPPYeQkBBpP4MWEREREdU0PmeL6rSrV6/i6aefRv/+/ZGamgoAMJlM2Ldvn50rIyIiIqKGjmGL6qSioiLExcUhLCwMX375pdTerVs3nD17Fi+//LIdqyMiIiIi4m2EVMcIIbB161ZMnz4dGRkZUru/vz8WL16MESNGcCl3IiIiIqoVGLaoTvnkk08watQoaVulUmHatGmYM2cOtFqtHSsjIiIiIrLG2wipThk2bBhCQ0MBAAMHDsTly5fx1ltvMWgRERERUa3DK1tUa5lMJhw/fhw9evSQ2lQqFdauXYuSkhL079/fjtUREREREVWOV7aoVjp48CAiIyPx5JNP4tKlS1b7oqKiGLSIiIiIqNZj2KJa5ebNmxg+fDieeOIJXLp0CWazGVOmTLF3WURERERED423EVKtoNfrsXjxYsTHx6O0tFRq79ChA9588007VkZERERE9PswbJFdCSHw+eefY+rUqUhPT5favb29ER8fj7Fjx0KhUNixQiIiIiKi34dhi+zmzp07GDlyJPbs2SO1KRQKTJo0CfPnz4eHh4cdqyMiIiIi+mMYtshu3N3dkZmZKW0/+eSTWLFiBcLCwuxYFRERERFR9eACGVRjhBBW20qlEitXrkSzZs2wbds27Nu3j0GLiIiIiOoNhi2qdiaTBafS87A7OROn0vNgMlmQmJiILl264MyZM1Z9o6KikJaWhiFDhkAmk9mpYiIiIiKi6sfbCKlaJVzJxsZjN3AjrxhGswWipAB3DmzE9eP/AwD8/e9/x7FjxyCX/5TzHRwc7FUuEREREZHNMGxRtUm4ko343d9BpzfCQy3D7VM78e3/NsBcViL10el0yM7ORuPGje1YKRERERGR7TFs0e9isQhkFJSi2GCCs0oJX60aG4/dgE5vhCrzIo5/thy67JtSf4WjM9oPfgmH18dDo1HbsXIiIiIioprBsEUP7WqODt8kZ+NabhH0JjMclQqolXJc+i4Vmd98iJzkoz91lsnwSLeBCOr3AgxKLS5lFaFTMMMWEREREdV/DFv0UK7m6LDh2A3cLTagsZsjnFQalBhMOH8zH6mfvYPSm8lSX69HwtF++FR4NmsJk8WCjPxS5BUb7Fg9EREREVHNYdiiKrNYBL5JzsbdYgNCfLTS6oEujg54xFsLn14v4PsNr8LR1QtthryCZp36QvbjQhilBjMcFHJ4OavsOQQiIiIiohrDsEVVllFQimu5RWjs5ojb11MgLGY0Dbn/XCx/d0f4h4TD8MwstOvSEy6urtLrLBYL8ooNCPV1QWSAh73KJyIiIiKqUQxbVGXFBhMK8vNwcvN6nNy1Ff7BoXj1/W2QKxSQy+VoF+iBQn0UsvUyQGWERqVAqcGMvGIDXB0dENM1CEolH+1GRERERA0DwxZVidlsxvbNG7DljfnQF90DAGRcu4IzCZ+jU58hAAA/V0dENHGDyWxBVmEZ7hYb4KCQI9TXBTFdg9Crla89h0BEREREVKMYtug3HT58GJMnT8aFCxekNpWjE3qPfBmRPf8MABBCIPOeHo+HNMKL3YKRlFGAvGIDvJxViAzw4BUtIiIiImpwGLboV/3www+YMWMGtmzZYtUe1uPPiPzLRLQICgCUCuj0RmTe08PTWYU+Yb5QqRToFOxlp6qJiIiIiGoHhi2q0JYtW/Diiy+ipKREavNuFoonx81CWLvHABlQUGJEdqEeaqUCEU3c0CfMFy18XOxYNRERERFR7cGwRRVq3bo19Ho9AMDRxR29R09B9wFDoTffv13Qw8kBQyKbwNtFDWeVEk3cNZDLZXaumoiIiIio9mDYIgCA0WiEg4ODtB0R0QY9Bo/CHZ0ew/82Fc6u7gAABwdAq1YiLacIF3+4hwlRzRmyiIiIiIgqwLDVwBUWFmLBggXYu3cvzpw5IwWujIJStBsaCw9nFZwdHaxeI5PJ0NjNEVdzipBRUIoATyd7lE5EREREVKtxibgGwGAw46uLGfj4yHV8dTEDBoMZFosF//znP/Hoo4/i3XffxcWLF/H+++9Lryk2mFBmtsBJVXEe16gUKDOZUWww1dQwiIiIiIjqFF7Zquc2nbiBj49cR7auDGaLgEIug1PB5yg88BGuXU6S+qnVahiNRlgsAhkFpci6p4fZLFBcZoSrRlXuuKUGM9RKBZx/JYwRERERETV0/E25Htt04gbe/joFpQYTFDLAXJyPnIP/QuHFvVb9nnlmCKbNfRPFKk8s2v0dcnV66E0W3MovQXpeMToFecJLq5b6P3imVkQTNzRx19T0sIiIiIiI6gSGrXrKYDBj9cGrKDGYoLCYUJi0C7mHNsNS9tNS7ppGgVi5YgX0PmHYcDEfqVlZMFkEGrs5ItTPFRoHOU7fyMeh1Fw8FuSBxu4alBrMVs/U4uIYREREREQVY9iqp765koUcXRlkAjDrcpC9bx1gMQMA5GpneD7+PFzbP4X9Rb5wMd5DfrEBSoUMzmolcnRlKCq7i8eCPBH1qDdOpefju6wi6I1mODoo+UwtIiIiIqIqYNiq4/R6E/5z7iYy8vVo4uGI4ZGBcHRU4vi1PJgsP3Zy9Ydrx0EoPLUDLm17w+eJGMg1bjBYgKwCPUJCtEjJLoTeYMa9UhPMFgsKSgw4lJqLqEcboVsLL9y+p8ewxwLRvJGWz9QiIiIiIqoChq067N09KfjX8e9RVGaERQByGbDkf8nw+eEg5OH9pH4yAG5dn4NTy+5QN34UJgD4MYhpVArcKTYgr8gAhUwGlYMcaqUSBrMF+SUGnL6Rj8hm7lDKZfBzc+Qy70REREREVcSwVUe9uycFaw5dg8kioJLLIJcJ3Lt8FN8nrEOyLhe+T+RB02kYxI/95WonqBs/Wu44eqMJ13OLYBECGgc5lD9esVIpZDBb5CgxmJCarUOghxNXHiQiIiIiegh8zlYdY7EIpOUUYsOxdJjMAk5KGSx53+PW5jnI3LkIZl0uACDn+DZoZAYAkALXL2kc5CgxWpCjK4NWrYTBLCB+7GwWgFwmg1atRGaBHj6ujlx5kIiIiIjoITSosPXBBx8gKCgIjo6O6Ny5M06dOmXvkh7K1RwdVh+8htf+cwFFZWaYS3XI2L0aVz+chOLvL0r9HIMj0XjUEri5uMBJVfEpdpADgZ5OgAD0BhPcNA5wUMhQajTDaLagzGSBg1KGMqMJSoUMHZp58HtaREREREQPocHcF/af//wHU6dOxZo1a9C5c2csW7YMffv2RUpKCnx8fOxd3m+6mqPDhmM3cLfYAKPZDF3SbhQc3gRLaaHUx8HDD359/gZFs44QMhlMFoEm7hrculsKs8UiXeFSyGXwcXFE68auSL5diLslBpjMFvi4qHGnyIDiMhPkMhk0Dgp4OKvg4aRCq8au9hk4EREREVEd1WDC1tKlSzF+/HiMHTsWALBmzRr873//w/r16zFr1iw7V1c5i0Xgm+Rs3C02oLm3E7a9PhZ3r12S9ssc1PDsOhw+3Z6FXOGAEsP9YCWEgJODAs5qBWRQQiYDyoxmKJVyNPXQSItdFJQYoSszQSaTwV3jAH93DfzdNfB2ViGrsAxtmvLhxURERERED6tBhC2DwYCzZ89i9uzZUptcLkd0dDROnDhRrn9ZWRnKysqk7cLCwnJ9alJGQSmu5RahsZsjFAoF2nbujn0/hi1t6yh4PzEOClcvyBQKCGGBBYCDXAZHBwUKSo1QKuQoLTNBBgAyGbyc1dIzsvQmCwa28cOdYiPuFpehsZsjGrmooTdakHlPDy8tH15MRERERPR7NIiwdefOHZjNZvj6+lq1+/r64rvvvivXPz4+Hm+88UZNlfebig0m6E1mOKnuX12Kfu5vuHzpItBmIFRNwyEDYLYABpMZJnF/JcGhHQOgVshxMv0uSo16mCwCCrkMAR4atA1wh4NChrScIng6q/D8n5oBAL5Jzsa13CJ8n1cCtVLBhxcTEREREf0BDSJsPazZs2dj6tSp0nZhYSECAgLsVo+zSglHpQIlBhNcHB2gctRg+rvrceLaHVy4VYAy8/1vY5kF4ObogFFdmmFan1BYLAK38kuQfqcYtwtKkX6nGHd0ZSgsNaLMaCkXph7pqUVGQSmKDSY4q5R8eDERERER0R/QIMKWt7c3FAoFsrOzrdqzs7Ph5+dXrr9arYZara6p8n5TE3cNmjfSIvn2PWjVSshk9wNQl+be6BjohgOpd6BVO+CpNn54rkMgHB3vn1a5XIZmXs5o5uUM4P53vyoLU3K5jA8tJiIiIiKqJg1i6XeVSoUOHTogISFBarNYLEhISECXLl3sWFnVyOUy9A33haezCmk5RdDpjTBZLNDpjUi/q0dkM0/EPxuBMd0ekYLWrx0nwNMJLf1cEeDpxKtWREREREQ21CCubAHA1KlTERMTg44dO6JTp05YtmwZiouLpdUJa7sWPi4Y2y1I+l5VdqGe36siIiIiIqrFGkzYGj58OHJzczFv3jxkZWWhXbt2+Prrr8stmlGbtfBx4feqiIiIiIjqCJkQQvx2t4atsLAQbm5uuHfvHlxd+XBfIiIiIqKG6mGyQYP4zhYREREREVFNY9giIiIiIiKyAYYtIiIiIiIiG2DYIiIiIiIisgGGLSIiIiIiIhtg2CIiIiIiIrIBhi0iIiIiIiIbYNgiIiIiIiKyAYYtIiIiIiIiG2DYIiIiIiIisgGGLSIiIiIiIhtg2CIiIiIiIrIBhi0iIiIiIiIbUNq7gLpACAEAKCwstHMlRERERERkTw8ywYOMUBmGrSrQ6XQAgICAADtXQkREREREtYFOp4Obm1ulfWSiKpGsgbNYLLh9+zZcXFwgk8nsXQ4KCwsREBCAW7duwdXV1d7lkJ1wHtADnAsEcB7QTzgXCOA8sCUhBHQ6Hfz9/SGXV/6tLF7ZqgK5XI6mTZvau4xyXF1d+T8PcR6QhHOBAM4D+gnnAgGcB7byW1e0HuACGURERERERDbAsEVERERERGQDDFt1kFqtxvz586FWq+1dCtkR5wE9wLlAAOcB/YRzgQDOg9qCC2QQERERERHZAK9sERERERER2QDDFhERERERkQ0wbBEREREREdkAwxYREREREZENMGzVMR988AGCgoLg6OiIzp0749SpU/YuiapRfHw8HnvsMbi4uMDHxweDBw9GSkqKVR+9Xo+JEyfCy8sLWq0Wzz77LLKzs6363Lx5E0899RScnJzg4+OD6dOnw2Qy1eRQqBotWrQIMpkMU6ZMkdo4DxqOjIwM/PWvf4WXlxc0Gg0iIiJw5swZab8QAvPmzUPjxo2h0WgQHR2NtLQ0q2PcvXsXI0eOhKurK9zd3fHCCy+gqKiopodCf4DZbMbcuXMRHBwMjUaD5s2b480338TP1znjXKh/Dh8+jIEDB8Lf3x8ymQw7d+602l9d5/zixYt4/PHH4ejoiICAALzzzju2HlrDIajO2Lp1q1CpVGL9+vXi8uXLYvz48cLd3V1kZ2fbuzSqJn379hUbNmwQycnJIikpSQwYMEAEBgaKoqIiqc+ECRNEQECASEhIEGfOnBF/+tOfRNeuXaX9JpNJhIeHi+joaHH+/Hmxa9cu4e3tLWbPnm2PIdEfdOrUKREUFCTatGkjYmNjpXbOg4bh7t27olmzZmLMmDEiMTFRXL9+XXzzzTfi6tWrUp9FixYJNzc3sXPnTnHhwgXx9NNPi+DgYFFaWir16devn2jbtq04efKkOHLkiGjRooUYMWKEPYZEv9PChQuFl5eX+Oqrr0R6err47LPPhFarFcuXL5f6cC7UP7t27RJxcXFi+/btAoDYsWOH1f7qOOf37t0Tvr6+YuTIkSI5OVls2bJFaDQasXbt2poaZr3GsFWHdOrUSUycOFHaNpvNwt/fX8THx9uxKrKlnJwcAUAcOnRICCFEQUGBcHBwEJ999pnU58qVKwKAOHHihBDi/h/McrlcZGVlSX1Wr14tXF1dRVlZWc0OgP4QnU4nQkJCxN69e0VUVJQUtjgPGo6ZM2eK7t27/+p+i8Ui/Pz8xOLFi6W2goICoVarxZYtW4QQQnz77bcCgDh9+rTUZ/fu3UImk4mMjAzbFU/V6qmnnhLjxo2zahsyZIgYOXKkEIJzoSH4ZdiqrnO+atUq4eHhYfV3w8yZM0VoaKiNR9Qw8DbCOsJgMODs2bOIjo6W2uRyOaKjo3HixAk7Vka2dO/ePQCAp6cnAODs2bMwGo1W86Bly5YIDAyU5sGJEycQEREBX19fqU/fvn1RWFiIy5cv12D19EdNnDgRTz31lNX5BjgPGpIvvvgCHTt2xNChQ+Hj44P27dvjo48+kvanp6cjKyvLai64ubmhc+fOVnPB3d0dHTt2lPpER0dDLpcjMTGx5gZDf0jXrl2RkJCA1NRUAMCFCxdw9OhR9O/fHwDnQkNUXef8xIkT6NGjB1QqldSnb9++SElJQX5+fg2Npv5S2rsAqpo7d+7AbDZb/eIEAL6+vvjuu+/sVBXZksViwZQpU9CtWzeEh4cDALKysqBSqeDu7m7V19fXF1lZWVKfiubJg31UN2zduhXnzp3D6dOny+3jPGg4rl+/jtWrV2Pq1KmYM2cOTp8+jcmTJ0OlUiEmJkY6lxWd65/PBR8fH6v9SqUSnp6enAt1yKxZs1BYWIiWLVtCoVDAbDZj4cKFGDlyJABwLjRA1XXOs7KyEBwcXO4YD/Z5eHjYpP6GgmGLqJaaOHEikpOTcfToUXuXQjXs1q1biI2Nxd69e+Ho6GjvcsiOLBYLOnbsiLfeegsA0L59eyQnJ2PNmjWIiYmxc3VUkz799FN88skn+Pe//42wsDAkJSVhypQp8Pf351wgqsV4G2Ed4e3tDYVCUW61sezsbPj5+dmpKrKVSZMm4auvvsKBAwfQtGlTqd3Pzw8GgwEFBQVW/X8+D/z8/CqcJw/2Ue139uxZ5OTkIDIyEkqlEkqlEocOHcKKFSugVCrh6+vLedBANG7cGK1bt7Zqa9WqFW7evAngp3NZ2d8Nfn5+yMnJsdpvMplw9+5dzoU6ZPr06Zg1axaee+45REREYNSoUXj11VcRHx8PgHOhIaquc86/L2yLYauOUKlU6NChAxISEqQ2i8WChIQEdOnSxY6VUXUSQmDSpEnYsWMH9u/fX+6yfocOHeDg4GA1D1JSUnDz5k1pHnTp0gWXLl2y+sN17969cHV1LfdLG9VOvXr1wqVLl5CUlCT9dOzYESNHjpT+m/OgYejWrVu5xz+kpqaiWbNmAIDg4GD4+flZzYXCwkIkJiZazYWCggKcPXtW6rN//35YLBZ07ty5BkZB1aGkpARyufWvbQqFAhaLBQDnQkNUXee8S5cuOHz4MIxGo9Rn7969CA0N5S2E1cHeK3RQ1W3dulWo1WqxceNG8e2334qXXnpJuLu7W602RnXbyy+/LNzc3MTBgwdFZmam9FNSUiL1mTBhgggMDBT79+8XZ86cEV26dBFdunSR9j9Y8rtPnz4iKSlJfP3116JRo0Zc8ruO+/lqhEJwHjQUp06dEkqlUixcuFCkpaWJTz75RDg5OYnNmzdLfRYtWiTc3d3F559/Li5evCgGDRpU4dLP7du3F4mJieLo0aMiJCSEy33XMTExMaJJkybS0u/bt28X3t7eYsaMGVIfzoX6R6fTifPnz4vz588LAGLp0qXi/Pnz4vvvvxdCVM85LygoEL6+vmLUqFEiOTlZbN26VTg5OXHp92rCsFXHrFy5UgQGBgqVSiU6deokTp48ae+SqBoBqPBnw4YNUp/S0lLxyiuvCA8PD+Hk5CSeeeYZkZmZaXWcGzduiP79+wuNRiO8vb3FtGnThNForOHRUHX6ZdjiPGg4vvzySxEeHi7UarVo2bKl+PDDD632WywWMXfuXOHr6yvUarXo1auXSElJseqTl5cnRowYIbRarXB1dRVjx44VOp2uJodBf1BhYaGIjY0VgYGBwtHRUTzyyCMiLi7OarluzoX658CBAxX+XhATEyOEqL5zfuHCBdG9e3ehVqtFkyZNxKJFi2pqiPWeTIifPXqciIiIiIiIqgW/s0VERERERGQDDFtEREREREQ2wLBFRERERERkAwxbRERERERENsCwRUREREREZAMMW0RERERERDbAsEVERERERGQDDFtEREREREQ2wLBFRERERERkAwxbREQNwOjRozFw4EB7l0FERNSgMGwREdVTly9fxvDhw9G0aVNs2rQJX331FVxcXNC/f3/s3bvX3uURERHVewxbRET10I4dO9C2bVuUlZVh8+bNGDZsGPr164fdu3fDz88Pffr0wQcffCD1P336NHr37g1vb2+4ubkhKioK586dszqmTCbDzp07AQBCCIwePRpt2rRBfn4+Nm7cCJlMVuFPUFAQAOD1119Hu3btpOMZDAa0aNECMpkMBQUFAIAxY8Zg8ODBv/q+AHDr1i0MGzYM7u7u8PT0xKBBg3Djxg2r16xfvx5hYWFQq9Vo3LgxJk2aVKVxAMC1a9cwaNAg+Pr6QqvV4rHHHsO+ffusjp+ZmYkhQ4bAy8vLaqwPxlGRH374ASNGjICnpyecnZ3RsWNHJCYmVumzA4DVq1ejefPmUKlUCA0NxaZNmyr9nNatWweZTIYpU6ZIbUFBQZDJZFbn1mg0wtfXFzKZzOpz3LZtm/QZBgUF4d1337V6v7KyMsycORMBAQFQq9Vo0aIF1q1bhxs3bvzqeB68x8GDB3/z8yIiqg8YtoiI6qEpU6agZ8+e2LlzJ3r27AmNRgO1Wo3u3btjw4YNGDNmDGbMmIHi4mIAgE6nQ0xMDI4ePYqTJ08iJCQEAwYMgE6nq/D4kydPxvHjx7Fnzx54eHhg+PDhyMzMRGZmJpYtW4amTZtK26dPn67wGO+//z6ys7MfalxGoxF9+/aFi4sLjhw5gmPHjkGr1aJfv34wGAwA7oeSiRMn4qWXXsKlS5fwxRdfoEWLFlUaBwAUFRVhwIABSEhIwPnz59GvXz8MHDgQN2/elF43bdo0pKam4uuvv0ZmZia2bdtWad1FRUWIiopCRkYGvvjiC1y4cAEzZsyAxWKp0me3Y8cOxMbGYtq0aUhOTsbf/vY3jB07FgcOHKjw/YqLizF37lxotdpy+5o0aYIPP/xQ2t6xYwccHBys+pw9exbDhg3Dc889h0uXLuH111/H3LlzsXHjRqnP6NGjsWXLFqxYsQJXrlzB2rVrodVqERAQINV/6tQpAMCpU6ektoCAgEo/KyKiekUQEVG9kpWVJQCI9957T2qLiYkRgwYNkra3b98uAIiTJ09WeAyz2SxcXFzEl19+KbUBEDt27BBxcXGiSZMmIj09vcLXbtiwQTRr1qxc+/z580Xbtm2FEELk5eUJDw8P8eabbwoAIj8/XwghxIQJE0SfPn2sXvfgfYUQYtOmTSI0NFRYLBZpf1lZmdBoNOKbb74RQgjh7+8v4uLiKqztYcbxc2FhYWLlypXSdqtWrcTChQul7QMHDliN45fWrl0rXFxcRF5eXqXv82ufXdeuXcX48eOt2oYOHSoGDBhQblxCCDFv3jzRq1cvERUVJWJjY6U+zZo1E7NmzRJeXl6iqKhICCFEr169xNy5cwUA6bN4/vnnRe/eva3eb/r06aJ169ZCCCFSUlIEALF3795Kx5Oenm513Ad+6/MiIqoveGWLiKieUalUAICSkpJf7fNgn6OjIwAgOzsb48ePR0hICNzc3ODq6oqioiKrqznA/atRCxcuRGhoqNUtbg9rwYIFeOKJJ9C9e3er9vDwcJw8eRLp6ekVvu7ChQu4evUqXFxcoNVqodVq4enpCb1ej2vXriEnJwe3b99Gr169Kn3/ysZRVFSE1157Da1atYK7uzu0Wi2uXLli9VkEBwdj165duHv3bpXGm5SUhPbt28PT07NK/X/pypUr6Natm1Vbt27dcOXKlXJ9b9++jaVLl5a77e8BX19f9OzZE1u3bsW1a9fw7bfflls85dfeLy0tDWazGUlJSVAoFIiKivpd43mgadOmcHFxQXBwMMaPH4979+79oeMREdU2DFtERPWMh4cHOnfujH/961/SbYI/ZzKZsHbtWjRt2hTh4eEAgJiYGCQlJWH58uU4fvw4kpKS4OXlJd2a98CpU6ewa9cuJCcnY+3atb+rvrS0NHz88cd4++23y+0bN24cHnvsMTzyyCNSmPq5oqIidOjQAUlJSVY/qampeP7556HRaKpUQ2XjeO2117Bjxw689dZbOHLkCJKSkhAREWH1Wbz33nsoKyuDt7c3tFot+vfvX+n7VbWu6hAXF4ehQ4eibdu2v9rnpZdewkcffYQPP/wQMTEx5W4j/C3VNZ4jR47g/Pnz+Oijj7B3717ExcVVy3GJiGoLhi0ionro448/hl6vR6tWrfDGG28gPT0dGRkZeOuttxAeHo7k5GR88sknUCgUAIBjx45h8uTJGDBggLQowp07d8odd9myZejfvz9WrVqF6dOnl7vyVRUzZ87Eiy++WOH3qDQaDfbt24esrCwpSP1cZGQk0tLS4OPjgxYtWlj9uLm5wcXFBUFBQUhISKi0hsrGcezYMYwZMwbPPPMMIiIi4OfnV24BjkcffRRjxoxBUFAQEhMT8fHHH1f6fm3atEFSUlKVr4T9UqtWrXDs2DGrtmPHjqF169ZWbUlJSfjvf/+Lf/zjH5Uer3fv3sjNzcWaNWvw4osvVvn9Hn30USgUCkRERMBiseDQoUO/azwPBAcHo0WLFoiOjsbQoUPLnW8iorqOYYuIqB4KDw9HSkoK5syZg7S0NFy5cgVXr17FiRMnMG7cOKSkpKBHjx5S/5CQEGzatAlXrlxBYmIiRo4cWeHViwe3wT377LMYMGBAhb+oV+bq1as4ePAg5s2bV2k/X19fKUT93MiRI+Ht7Y1BgwbhyJEjSE9Px8GDBzF58mT88MMPAO6vevjuu+9ixYoVSEtLw7lz57By5coqjyMkJATbt29HUlISLly4gOeffx4Wi8Xq9SdPnsScOXPw3//+F2FhYWjSpEml4xkxYgT8/PwwePBgHDt2DNevX8e2bdtw4sSJyj+wH02fPh0bN27E6tWrkZaWhqVLl2L79u147bXXrPotWbIEU6dOhb+/f6XHk8lkWLNmDZYsWYLmzZuX2z9t2jQkJCTgzTffRGpqKv75z3/i/fffl94vKCgIMTExGDduHHbu3Cmdh08//bRK43mgrKwMer0e3333HXbv3i1daSUiqi8YtoiI6im1Wo0JEyZg8+bNGDBgAKKiovDll19ixowZaNSokVXfdevWIT8/H5GRkRg1ahQmT54MHx+fSo///vvv48KFC1Yr2/2W4uJixMXF/e7vLjk5OeHw4cMIDAzEkCFD0KpVK7zwwgvQ6/VwdXUFcP+WyGXLlmHVqlUICwvDn//8Z6SlpVV5HEuXLoWHhwe6du2KgQMHom/fvoiMjJT65+bmYujQoVi6dKlVe2VUKhX27NkDHx8fDBgwABEREVi0aJF0ZfG3DB48GMuXL8eSJUsQFhaGtWvXYsOGDejZs6dVPxcXF8yYMaNKx+zduzfGjx9f4b7IyEh8+umn2Lp1K8LDwzFv3jwsWLAAY8aMkfqsXr0af/nLX/DKK6+gZcuWGD9+fIW3rVbGz88PGo0Gjz/+ONq2bYv4+PiHej0RUW0nE0IIexdBRERERERU3/DKFhERERERkQ0wbBEREREREdkAwxYREREREZENMGwRERERERHZAMMWERERERGRDTBsERERERER2QDDFhERERERkQ0wbBEREREREdkAwxYREREREZENMGwRERERERHZAMMWERERERGRDfw/KBcco/r44K8AAAAASUVORK5CYII=",
"text/plain": [
"