modified_db #2
@ -1,7 +1,11 @@
|
||||
import hashlib
|
||||
from typing import Sequence
|
||||
|
||||
import pandas as pd
|
||||
from fastapi import HTTPException
|
||||
from sqlalchemy.future import select
|
||||
|
||||
from db.crud import create
|
||||
from db.models.experiment_parameters_model import ExperimentParameters
|
||||
from db.postgres_db_connection import async_session_postgres
|
||||
|
||||
@ -19,3 +23,34 @@ async def get_exp_parameters_by_exp_hash(exp_hash: str) -> Sequence[ExperimentPa
|
||||
select(ExperimentParameters).where(ExperimentParameters.experiment_hash == exp_hash)
|
||||
)
|
||||
return result.scalars().all()
|
||||
|
||||
|
||||
def generate_experiment_hash(data: dict) -> str:
|
||||
"""Генерация уникального хеша на основе данных эксперимента"""
|
||||
hash_input = f"{data['outer_blades_count']}_{data['outer_blades_length']}_{data['outer_blades_angle']}_{data['middle_blades_count']}_{data['load']}_{data['recycling_level']}"
|
||||
return hashlib.sha256(hash_input.encode()).hexdigest()
|
||||
|
||||
|
||||
async def save_experiment_to_db(df: pd.DataFrame):
|
||||
for _, row in df.iterrows():
|
||||
try:
|
||||
# Преобразуем load и recycling_level в соответствующие id
|
||||
load_id = int(row['load'])
|
||||
recycling_id = int(row['recycling_level'])
|
||||
|
||||
# Генерация хеша для experiment_hash
|
||||
experiment_hash = generate_experiment_hash(row)
|
||||
|
||||
await create(
|
||||
ExperimentParameters,
|
||||
outer_blades_count=int(row['outer_blades_count']),
|
||||
outer_blades_length=float(row['outer_blades_length']),
|
||||
outer_blades_angle=float(row['outer_blades_angle']),
|
||||
middle_blades_count=int(row['middle_blades_count']),
|
||||
load_id= None,
|
||||
recycling_id=None,
|
||||
experiment_hash=experiment_hash
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Ошибка при сохранении данных: {e}")
|
||||
raise HTTPException(status_code=500, detail=f"Ошибка при сохранении данных: {e}")
|
17
main.py
17
main.py
@ -3,6 +3,7 @@ from fastapi import FastAPI, HTTPException, BackgroundTasks
|
||||
from pyDOE3 import pbdesign, lhs
|
||||
|
||||
from db.csv_to_db import csv_to_db
|
||||
from db.repositories import save_experiment_to_db
|
||||
from network.routes import (ch_experimentdb_experiment_data_router, experiment_data_router,
|
||||
experiment_parameters_router, experiment_category_router)
|
||||
from network.routes import load_parameters_router, recycling_parameters_router
|
||||
@ -76,7 +77,7 @@ async def init_db_data(background_tasks: BackgroundTasks):
|
||||
# }
|
||||
|
||||
@app.post("/pyDOE3_screening_design")
|
||||
def generate_screening_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, float]]:
|
||||
async def generate_screening_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, float]]:
|
||||
param_ranges = request.param_ranges
|
||||
|
||||
# Создаем screening design и масштабируем его
|
||||
@ -84,13 +85,17 @@ def generate_screening_design(request: ExperimentParametersPyDOE3) -> List[Dict[
|
||||
screening_design = pbdesign(num_factors)
|
||||
scaled_screening_design = scale_design(screening_design, param_ranges)
|
||||
|
||||
# Преобразуем в DataFrame и возвращаем результат
|
||||
# Преобразуем в DataFrame
|
||||
df_screening = pd.DataFrame(scaled_screening_design, columns=param_ranges.keys())
|
||||
|
||||
# Сохраняем результаты в базу данных
|
||||
await save_experiment_to_db(df_screening)
|
||||
|
||||
return df_screening.to_dict(orient="records")
|
||||
|
||||
|
||||
@app.post("/pyDOE3_lhs_design")
|
||||
def generate_lhs_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, float]]:
|
||||
async def generate_lhs_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, float]]:
|
||||
param_ranges = request.param_ranges
|
||||
count_exp = request.count_exp
|
||||
round_rules = request.round_rules
|
||||
@ -103,6 +108,10 @@ def generate_lhs_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, f
|
||||
# Округляем значения
|
||||
round_scaled_lhs_samples = round_by_index(scaled_lhs_samples, round_rules)
|
||||
|
||||
# Преобразуем в DataFrame и возвращаем результат
|
||||
# Преобразуем в DataFrame
|
||||
df_lhs = pd.DataFrame(round_scaled_lhs_samples, columns=param_ranges.keys())
|
||||
|
||||
# Сохраняем результаты в базу данных
|
||||
await save_experiment_to_db(df_lhs)
|
||||
|
||||
return df_lhs.to_dict(orient="records")
|
Loading…
x
Reference in New Issue
Block a user