Добавление pyDOE3
This commit is contained in:
parent
de0e04fb3a
commit
a233bbf903
50
main.py
50
main.py
@ -1,4 +1,6 @@
|
||||
import pandas as pd
|
||||
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
||||
from pyDOE3 import pbdesign, lhs
|
||||
|
||||
from db.csv_to_db import csv_to_db
|
||||
from network.routes import (ch_experimentdb_experiment_data_router, experiment_data_router,
|
||||
@ -6,6 +8,7 @@ from network.routes import (ch_experimentdb_experiment_data_router, experiment_d
|
||||
from network.routes import load_parameters_router, recycling_parameters_router
|
||||
from network.schemas import *
|
||||
from new_experiment_planner import run_experiment
|
||||
from new_experiment_planner_pyDOE3 import scale_design, scale_design_lhs, round_by_index
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
@ -56,3 +59,50 @@ async def init_db_data(background_tasks: BackgroundTasks):
|
||||
except Exception as e:
|
||||
print(str(e.with_traceback()))
|
||||
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
||||
|
||||
# Пример запроса
|
||||
# {
|
||||
# "param_ranges": {
|
||||
# "outer_blades_count": [12, 48],
|
||||
# "outer_blades_length": [44, 107.5],
|
||||
# "outer_blades_angle": [30, 75],
|
||||
# "middle_blades_count": [9, 36],
|
||||
# "load": [315, 465],
|
||||
# "recycling_level": [0, 20],
|
||||
# "oxidizer_temp": [471, 493]
|
||||
# },
|
||||
# "count_exp": 1440,
|
||||
# "round_rules": [0, 1, 1, 0, 1, 1, 1]
|
||||
# }
|
||||
|
||||
@app.post("/pyDOE3_screening_design")
|
||||
def generate_screening_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, float]]:
|
||||
param_ranges = request.param_ranges
|
||||
|
||||
# Создаем screening design и масштабируем его
|
||||
num_factors = len(param_ranges)
|
||||
screening_design = pbdesign(num_factors)
|
||||
scaled_screening_design = scale_design(screening_design, param_ranges)
|
||||
|
||||
# Преобразуем в DataFrame и возвращаем результат
|
||||
df_screening = pd.DataFrame(scaled_screening_design, columns=param_ranges.keys())
|
||||
return df_screening.to_dict(orient="records")
|
||||
|
||||
|
||||
@app.post("/pyDOE3_lhs_design")
|
||||
def generate_lhs_design(request: ExperimentParametersPyDOE3) -> List[Dict[str, float]]:
|
||||
param_ranges = request.param_ranges
|
||||
count_exp = request.count_exp
|
||||
round_rules = request.round_rules
|
||||
|
||||
# Создаем lhs design и масштабируем его
|
||||
num_factors = len(param_ranges)
|
||||
lhs_samples = lhs(num_factors, samples=count_exp)
|
||||
scaled_lhs_samples = scale_design_lhs(lhs_samples, param_ranges)
|
||||
|
||||
# Округляем значения
|
||||
round_scaled_lhs_samples = round_by_index(scaled_lhs_samples, round_rules)
|
||||
|
||||
# Преобразуем в DataFrame и возвращаем результат
|
||||
df_lhs = pd.DataFrame(round_scaled_lhs_samples, columns=param_ranges.keys())
|
||||
return df_lhs.to_dict(orient="records")
|
@ -1,7 +1,11 @@
|
||||
from typing import Optional
|
||||
from typing import Optional, Dict, Tuple, List
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
class ExperimentParametersPyDOE3(BaseModel):
|
||||
param_ranges: Dict[str, Tuple[float, float]]
|
||||
count_exp: int
|
||||
round_rules: List[int]
|
||||
|
||||
class ExperimentParameters(BaseModel):
|
||||
outer_blades_count: str
|
||||
|
36
new_experiment_planner_pyDOE3.py
Normal file
36
new_experiment_planner_pyDOE3.py
Normal file
@ -0,0 +1,36 @@
|
||||
import numpy as np
|
||||
|
||||
# Функция для масштабирования значений дизайна
|
||||
def scale_design(design, param_ranges):
|
||||
scaled_design = []
|
||||
for row in design:
|
||||
scaled_row = []
|
||||
for i, val in enumerate(row):
|
||||
min_val, max_val = param_ranges[list(param_ranges.keys())[i]]
|
||||
scaled_val = (val + 1) / 2 * (max_val - min_val) + min_val
|
||||
scaled_row.append(scaled_val)
|
||||
scaled_design.append(scaled_row)
|
||||
return np.array(scaled_design)
|
||||
|
||||
|
||||
def scale_design_lhs(design, param_ranges):
|
||||
scaled_design = []
|
||||
for row in design:
|
||||
scaled_row = []
|
||||
for i, val in enumerate(row):
|
||||
min_val, max_val = param_ranges[list(param_ranges.keys())[i]]
|
||||
scaled_val = val * (max_val - min_val) + min_val
|
||||
scaled_row.append(scaled_val)
|
||||
scaled_design.append(scaled_row)
|
||||
return np.array(scaled_design)
|
||||
|
||||
|
||||
# Функция для округления значений
|
||||
def round_by_index(array, rules):
|
||||
rounded_array = np.zeros(array.shape)
|
||||
for i in range(array.shape[0]):
|
||||
for j in range(array.shape[1]):
|
||||
rounded_array[i, j] = round(array[i, j], rules[j])
|
||||
return rounded_array
|
||||
|
||||
|
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
Loading…
Reference in New Issue
Block a user