import pickle import numpy as np import tensorflow as tf from keras.src.legacy.preprocessing.text import Tokenizer from keras.src.utils import pad_sequences from enums import TypeMood, TypeModel # Загрузка модели model_lstm_negative = tf.keras.models.load_model('.//neural_network/models/model/best_model_lstm_negative.keras') model_gru_negative = tf.keras.models.load_model('.//neural_network/models/model/best_model_gru_negative.keras') model_cnn_negative = tf.keras.models.load_model('.//neural_network/models/model/best_model_cnn_negative.keras') model_lstm_positive = tf.keras.models.load_model('.//neural_network/models/model/best_model_lstm_positive.keras') model_gru_positive = tf.keras.models.load_model('.//neural_network/models/model/best_model_gru_positive.keras') model_cnn_positive= tf.keras.models.load_model('.//neural_network/models/model/best_model_cnn_positive.keras') # Загрузка токенизатора with open('.//neural_network/tokenization/tokenizer_negative.pickle', 'rb') as handle: tokenizer = pickle.load(handle) # Загрузка названий классов with open('.//neural_network/classification/class_names_negative.txt', 'r', encoding='utf-8') as file: class_names = [line.strip() for line in file.readlines()] def preprocess_text(text: str): # Токенизация текста sequences = tokenizer.texts_to_sequences([text]) # Преобразование последовательностей в фиксированной длине padded_sequences = pad_sequences(sequences, maxlen=90) # 90 - длина последовательности, используемая при обучении return padded_sequences def predict_answer(question: str, type_mood: TypeMood, type_model: TypeModel) -> str: if type_model == TypeModel.LSTM and type_mood == TypeMood.NEGATIVE: model = model_lstm_negative elif type_model == TypeModel.LSTM and type_mood == TypeMood.POSITIVE: model = model_lstm_positive elif type_model == TypeModel.GRU and type_mood == TypeMood.NEGATIVE: model = model_gru_negative elif type_model == TypeModel.GRU and type_mood == TypeMood.POSITIVE: model = model_gru_positive elif type_model == TypeModel.CNN and type_mood == TypeMood.NEGATIVE: model = model_cnn_negative elif type_model == TypeModel.CNN and type_mood == TypeMood.POSITIVE: model = model_cnn_positive else: raise ValueError("Unsupported model type") # Предобработка вопроса input_data = preprocess_text(question) # Предсказание prediction = model.predict(input_data)[0] # Получение имени класса predicted_index = np.argmax(prediction) predicted_class = class_names[predicted_index] return predicted_class, prediction