2024-09-14 02:46:13 +04:00
{
"cells": [
{
"cell_type": "code",
2024-09-14 08:27:12 +04:00
"execution_count": 8,
2024-09-14 02:46:13 +04:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-09-14 08:27:12 +04:00
"Index(['Store_Area', 'Items_Available', 'Daily_Customer_Count', 'Store_Sales'], dtype='object') \n",
2024-09-14 02:46:13 +04:00
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4u0lEQVR4nO3dfZyNdf7H8fcx5pa5wTQzBpNJGkOW3KShddc8GmWF7Ial2NpsRe1gJdWo2AwqyU20+xMq3eiGrKx+fuOuGGJC2aahX+rYNGMPZgbTGcN8f3/I+XUYzM2ZOWcur+fjcT0enev6Xtf1+WDOvLtubcYYIwAAAIuq4+0CAAAAqhNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWFpdbxfgC0pLS3Xo0CGFhobKZrN5uxwAAFAOxhgdP35csbGxqlPn4sdvCDuSDh06pGbNmnm7DAAAUAkHDx5U06ZNL7qcsCMpNDRU0tk/rLCwMC9XAwAAyqOwsFDNmjVz/R6/GMKO5Dp1FRYWRtgBAKCWudwlKFygDAAALI2wAwAALI2wAwAALI1rdgAAKMOZM2dUUlLi7TKuaP7+/vLz86vydgg7AAD8gjFGubm5ys/P93YpkBQREaGYmJgqPQePsAMAwC+cCzpRUVEKCQnhYbNeYoxRUVGRDh8+LElq3LhxpbdF2AEA4GdnzpxxBZ1GjRp5u5wrXnBwsCTp8OHDioqKqvQpLS5QBgDgZ+eu0QkJCfFyJTjn3N9FVa6fIuwAAHAeTl35Dk/8XRB2AACApXHNDgAA5WC32+VwOGpsf5GRkYqLi6ux/VkZYQcAgMuw2+1KTEhQkdNZY/sMCQpSdk5OrQ88GzduVK9evXTs2DFFRER4pQbCDgAAl+FwOFTkdOoNSYk1sL9sScOdTjkcjgqHnczMTN18883q06ePPvroo+opsJYh7AAAUE6Jkjp4u4jLWLRokR5++GEtWrRIhw4dUmxsbI3s99SpUwoICKiRfVUUFygDsDy73a7PP/+83JPdbvd2yUClnDhxQu+8844efPBB9e3bV0uWLJEkrV69WhERETpz5owkaffu3bLZbHrsscdc6/7xj3/U8OHDJUlHjhzR0KFD1aRJE4WEhKht27Z666233PbVs2dPjRkzRqmpqYqMjFRKSookac2aNbruuusUHBysXr166bvvvqv+xi+DIzsALM1utyshIVFOZ1G51wkKClFOTnatv1YCV57ly5erVatWSkhI0PDhw5WamqpJkybp17/+tY4fP65du3apU6dO2rRpkyIjI7Vx40bXups2bdLEiRMlSU6nUx07dtTEiRMVFhamjz76SHfffbdatGihG2+80bXO0qVL9eCDD2rLli2SpIMHD+rOO+/U6NGjNWrUKO3cuVPjx4+v0T+DshB2AFiaw+H4OeiU92qLbDmdwyt1rQTgbYsWLXIdnenTp48KCgq0adMm9ezZU+3bt9fGjRvVqVMnbdy4UWPHjtUzzzyjEydOqKCgQN9884169OghSWrSpIn+8pe/uLb78MMP6+OPP9by5cvdwk7Lli01c+ZM1+fHH39cLVq00AsvvCBJSkhI0JdffqkZM2bURPsXRdgBUCMqetuu52+7rQ1XWwCVl5OTo88++0wrVqyQJNWtW1eDBw/WokWL1LNnT/Xo0UMbN27U+PHj9cknnyg9PV3Lly/Xp59+qqNHjyo2NlYtW7aUdPa1GdOmTdPy5cv1ww8/6NSpUyouLr7gydIdO3Z0+5ydna0uXbq4zUtKSqrGrsuHsAOg2nEqCah+ixYt0unTp90uSDbGKDAwUPPmzVPPnj316quvas+ePfL391erVq3Us2dPbdy4UceOHXMd1ZGk5557Ti+99JJmz56ttm3bql69ekpNTdWpU6fc9lmvXr0a668qCDsAqh2nkoDqdfr0ab322mt64YUXdOutt7otGzBggN566y0NHjxYx48f14svvugKNj179tT06dN17Ngxt2trtmzZov79+7tOiZWWlmrfvn1q3br1JetITEzUqlWr3OZt27bNEy1WCWEHQA3iVBJqt2wf3c/q1at17Ngx3XfffQoPD3dbNmjQIC1atEgPPPCAfvWrX2nZsmWaN2+eJKl79+666667VFJS4nZkp2XLlnrvvfe0detWNWjQQLNmzVJeXt5lw84DDzygF154QRMmTNAf//hHZWVlue4I8ybCDgAAlxEZGamQoCANr+EnKEdGRpZr7KJFi5ScnHxB0JHOhp2ZM2fqiy++UI8ePbR792717NlTktSwYUO1bt1aeXl5SkhIcK3z5JNP6ttvv1VKSopCQkI0atQoDRgwQAUFBZesIy4uTu+//77Gjh2ruXPn6sYbb9S0adN07733lr/xamAzxhivVuADCgsLFR4eroKCAoWFhXm7HMByPv/8858vZMxS+Y7sfC6po7KystShQ9WOBHlz36h9nE6nDhw4oPj4eAUFBbkt491Y3nGpv5Py/v7myA4AAOUQFxdH+KileIIyAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNJ6zAwBAOfBQQc/buHGjevXqpWPHjikiIqLa9kPYAQDgMux2uxISEn9+oW3NCAoKUU5OdrkDz8iRI7V06VKlp6frsccec81fuXKlBg4cqCv5hQmEHQAALsPhcPwcdN7Q2RfaVrdsOZ3D5XA4KnR0JygoSDNmzNCf/vQnNWjQwCOVnDp1SgEBAR7ZlrdwzQ4AAOWWqLPvWKvuqXKBKjk5WTExMUpPT7/omPfff19t2rRRYGCgmjdvrhdeeMFtefPmzTV16lTdc889CgsL06hRo7RkyRJFRERo9erVSkhIUEhIiH7729+qqKhIS5cuVfPmzdWgQQM98sgjOnPmjGtbr7/+ujp16qTQ0FDFxMTo97//vQ4fPlyp3qqCsAMAgEX4+flp2rRpmjt3rv79739fsDwrK0t33XWXhgwZoi+//FJPP/200tLStGTJErdxzz//vNq1a6ddu3YpLS1NklRUVKQ5c+bo7bff1tq1a7Vx40YNHDhQa9as0Zo1a/T666/rlVde0XvvvefaTklJiaZOnao9e/Zo5cqV+u677zRy5Mjq/CMoE6exAACwkIEDB6p9+/Z66qmntGjRIrdls2bN0i233OIKMNddd52++uorPffcc24hpHfv3ho/frzr8yeffKKSkhItWLBALVq0kCT99re/1euvv668vDzVr19frVu3Vq9evbRhwwYNHjxYknTvvfe6tnHNNddozpw56ty5s06cOKH69etX1x/BBbx6ZGfz5s3q16+fYmNjZbPZtHLlSrflxhhNnjxZjRs3VnBwsJKTk7V//363MUePHtWwYcMUFhamiIgI3XfffTpx4kQNdgEAgG+ZMWOGli5dquzsbLf52dnZ6tatm9u8bt26af/+/W6nnzp16nTBNkNCQlxBR5Kio6PVvHlzt9ASHR3tdpoqKytL/fr1U1xcnEJDQ9WjRw9JZy/4rkleDTsnT55Uu3btNH/+/DKXz5w5U3PmzNHChQu1fft21atXTykpKXI6na4xw4YN07/+9S+tW7dOq1ev1ubNmzVq1KiaagEAAJ/TvXt3paSkaNKkSZVav169ehfM8/f3d/tss9nKnFdaWirp7O/4lJQUhYWFadmyZdqxY4dWrFgh6exFzzXJq6exbrvtNt12221lLjPGaPbs2XryySfVv39/SdJrr72m6OhorVy5UkOGDFF2drbWrl2rHTt2uFLo3Llzdfvtt+v5559XbGxsjfUCAIAvmT59utq3b6+EhATXvMTERG3ZssVt3JYtW3TdddfJz8/Po/v/+uuvdeTIEU2fPl3NmjWTJO3cudOj+ygvn71A+cCBA8rNzVVycrJrXnh4uLp06aLMzExJUmZmpiIiItwOtyUnJ6tOnTravn37RbddXFyswsJCtwkAACtp27athg0bpjlz5rjmjR8/XhkZGZo6dar27dunpUuXat68efrLX/7i8f3HxcUpICBAc+fO1bfffqtVq1Zp6tSpHt9PefjsBcq5ubmSzp7
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd \n",
"import matplotlib.pyplot as plt\n",
"\n",
2024-09-14 08:27:12 +04:00
"df = pd.read_csv(\"..//static//csv//Stores.csv\", index_col=\"Store ID \")\n",
2024-09-14 02:46:13 +04:00
"\n",
2024-09-14 08:27:12 +04:00
"print(df.columns, \"\\n\")\n",
2024-09-14 02:46:13 +04:00
"\n",
"df[\"Gr\"] = df[\"Store_Sales\"].apply(lambda x: \"Award\" if x > 70000 else \"Normal\")\n",
"\n",
"award_data = list(df[df[\"Gr\"] == \"Award\"][\"Store_Area\"])\n",
"normal_data = list(df[df[\"Gr\"] == \"Normal\"][\"Store_Area\"])\n",
"\n",
"colors = ['red', 'blue']\n",
"names = [\"Award\",\"Normal\"]\n",
"\n",
"plt.hist([award_data, normal_data], bins=15, edgecolor=\"black\", color=colors,label=names)\n",
"plt.legend()\n",
"plt.xlabel(\"Площадь\")\n",
"plt.ylabel(\"Частота\")\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Гистограмма \"Распределение Store_Area\"</h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Данная гистограмма позваляет оценить связь между площадью магазина и е г о продажами. Award - магазины с более высокой выручкой, Normal - все остальные. Если бы большинство магазинов из категории \"Award\" находилось в правой части графика, то это означала, что прибыль напрямую магазина зависит от е г о площади. Исходя из полученного графика, видно, что такой явной корреляции нет."
]
},
{
"cell_type": "code",
2024-09-14 08:27:12 +04:00
"execution_count": 9,
2024-09-14 02:46:13 +04:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAIjCAYAAABYuxm0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADx30lEQVR4nOydeXwU5f3HP7thc5KTCJsoQuSSGAVBEeRQMQiCcmgPDn+1ilgVFNAqXigUFfEoYFEoHmCrQLUqKGDacFQkhpuIIaiACSomIDkhkIPs/P4Is+wxx/PMsTu7+b5fL18tm9nZZ2aemfl+nu9lEwRBAEEQBEEQBEEQBBF22IM9AIIgCIIgCIIgCMIcSPARBEEQBEEQBEGEKST4CIIgCIIgCIIgwhQSfARBEARBEARBEGEKCT6CIAiCIAiCIIgwhQQfQRAEQRAEQRBEmEKCjyAIgiAIgiAIIkwhwUcQBEEQBEEQBBGmkOAjCIIgCIIgCIIIU0jwEQRBEARBEARBhCkk+AiCIEKA5cuXw2azKf6XlZUV7GESBEEQBGExWgV7AARBEAQ7f/nLX5CRkeH3+fPPPx+E0RAEQRAEYXVI8BEEQYQQN998M6666iq/z9966y2cOHEiCCMiCIIgCMLKUEgnQRBEmGKz2TBlyhS8//776NatG6Kjo9G7d29s2bLFb9u9e/fi5ptvRkJCAlq3bo0bb7wR27Ztk9zvH//4R8mQ0j/+8Y9e261ZswYjRoxAeno6oqKi0KlTJ8yZMwdNTU3ubRoaGnDdddfhkksuwa+//ur+fNasWbDZbF77e+WVV9CqVSusX7/e/dn111+P66+/3mu7nTt3usekxvXXX68YJltSUuK1/RtvvIHLLrsMUVFRSE9Px+TJk1FVVaX6O1LHs3nzZkRFReG+++7z+pznWsiNf/ny5apj6tixo3t7u90Op9OJ3//+9/jxxx+9tqutrcUjjzyC9u3bIyoqCt26dcMrr7wCQRAU9692bj3Px9mzZzFnzhx06tQJUVFR6NixI5588knU19drGvMrr7yCa6+9Fm3atEFMTAx69+6Nf//7335jZL1Hjhw5ggceeADdunVDTEwM2rRpg9/+9rd+84MgCMKKkIePIAgijPniiy/wr3/9Cw899BCioqLwxhtvYNiwYdixY4c752///v0YOHAgEhIS8Nhjj8HhcODvf/87rr/+enzxxRe45ppr/PYbFRWFt956y/3ve+65x2+b5cuXo3Xr1nj44YfRunVrbNq0Cc888wxqamrw8ssvAwAiIyPx8ccfo2/fvhgzZgw2btyIqKgov32tWbMGM2bMwIIFCzB8+HDFY54xYwbXObroooswd+5cr8/Wr1+PlStXen02a9YszJ49G9nZ2bj//vvx3XffYfHixdi5cyfy8vLgcDiYf/Prr7/G6NGjMXz4cLz++uvuz7Vci0svvRRPPfUUAODEiROYPn068zgGDhyIe++9Fy6XC4WFhViwYAF++eUXfPnllwAAQRAwcuRIbN68GRMnTkTPnj3xn//8B48++iiOHj2K+fPny+77qaeecs8LcVz33nsvBg4c6LftPffcg3fffRe/+c1v8Mgjj2D79u2YO3cuDhw4gE8++YRrzACwcOFCjBw5EhMmTEBDQwNWrVqF3/72t1i7di1GjBjhtT+We2Tnzp346quvMHbsWFx00UUoKSnB4sWLcf3116OoqAixsbHM55wgCCLgCARBEITlWbZsmQBA2Llzp+Tfr7vuOuGyyy7z+gyAAEDYtWuX+7MjR44I0dHRwpgxY9yfjR49WoiMjBQOHz7s/uyXX34R4uPjhUGDBvn91vjx44XWrVt7fRYXFyfceeedXp+dPn3a77t/+tOfhNjYWKGurs7r8++++05ITk4W7rjjDkEQBOHZZ58VxFfU3r17hbi4OGHy5MmSx33ddde5/71+/XoBgDBs2DCB5RUndd4EQRBefvllAYBQXFwsCIIgHD9+XIiMjBRuuukmoampyb3dokWLBADCO++8o/g7nsdTUlIipKWlCQMGDBDOnDnjtR3vtejfv79www03uP9dXFwsABCWLVumeuwdOnTwu2bjx48XYmNj3f9evXq1AEB47rnnvLb7zW9+I9hsNuHQoUOqv6M2roKCAgGAcM8993h9/uc//1kAIGzatIlrzILgP/caGhqErKwsYfDgwV6fs94jUnM5Pz9fACD84x//kD5ogiAIi0AhnQRBEGFMv3790Lt3b/e/L774YowaNQr/+c9/0NTUhKamJvz3v//F6NGjcckll7i3S0tLw/jx47F161bU1NR47bOurg7R0dGqvx0TE+P+/ydPnsSJEycwcOBAnD59Gt9++63Xtl27dsVHH32E999/H88995z789LSUtx6663o168fFi5cqPh7giDgiSeewO233y7pCdPDhg0b0NDQgGnTpsFuP//qnDRpEhISErBu3Tqm/ZSXl2Po0KGIj4/Hp59+6nUetVyLhoYGSY8oK/X19Thx4gSOHz+O3NxcbNq0CTfeeKP77+vXr0dERAQeeughr+898sgjEAQBn3/+uebf9vwNAHj44Yf9fgOA37lVGzPgPfcqKytRXV2NgQMHYs+ePX6/r3aP+O6vsbER5eXl6Ny5M5KSkiT3SRAEYSVI8BEEQYQxXbp08fusa9euOH36NH799Vf8+uuvOH36NLp16+a3Xffu3eFyufDTTz95fX7ixAkkJiaq/vb+/fsxZswYJCYmIiEhARdccAHuuOMOAEB1dbXf9r/++isEQcAzzzzjNvJHjRqFn3/+GcePH1f9vffffx/79+/HCy+8oLotL0eOHAEAv/MUGRmJSy65xP13NW655RZ89913qKqq8suB03Itqqqq0Lp1a9nfO3XqFMrKytz/eeZJAsCqVatwwQUXoF27drjpppvQvn17r1DdI0eOID09HfHx8X7jEf+ulyNHjsBut6Nz585enzudTiQlJfn9htqYAWDt2rXo27cvoqOjkZKSggsuuACLFy+WnHdq9wgAnDlzBs8884w7jzE1NRUXXHABqqqqJPdJEARhJUjwEQRBEFyUlJSgY8eOittUVVXhuuuuw9dff42//OUv+Oyzz5Cbm4t58+YBAFwul9f2p06dwsMPP4xx48Zh+vTp2LVrl/u31qxZg6KiIvztb3+T/b2GhgbMnDkTEydORNeuXfUdoIl8++23+Pzzz3HmzBm3B0sPZWVlcDqdsn9/5ZVXkJaW5v7v6quv9vr7TTfdhNzcXOTm5mLZsmU4efIkbrjhBpw5c0b32HhhKbIDqI/5yy+/xMiRIxEdHY033ngD69evR25uLsaPH69aaEaOBx98EM8//zx+97vf4YMPPsB///tf5Obmok2bNn5zmSAIwmpQ0RaCIIgw5uDBg36fff/994iNjcUFF1wAAIiNjcV3333nt923334Lu92O9u3buz/79ddf8eOPP2LcuHGKv/u///0P5eXl+PjjjzFo0CD358XFxZLbP/vsszh58iReffVVtGvXDvv378d//vMfrF69Gtdeey2mTp2KZ599Fr///e+Rlpbm9/033ngDx48fx6xZsxTHpZUOHToAAL777juvcMuGhgYUFxcjOzubaT+ffvopBg4ciLlz52LKlCm444473OGIF1xwAde1+Pnnn3Hy5Em3t02KP/zhDxgwYID7356hiUBzuKjn2Lt164Zrr70Wq1evxrhx49ChQwds2LABJ0+e9PLyiSG54nnRQ4cOHeByuXDw4EGvYzl27Biqqqr8fkNtzB999BGio6Pxn//8xyvcddmyZZK/z3KP/Pvf/8add96JV1991b1NXV0dU4VWgiCIYEMePoIgiDAmPz/fK8fop59+wpo1a3DTTTchIiICERERuOmmm7BmzRqvEvPHjh3DihUrMGDAACQkJLg///DDDwE0h1oqERERAQBeHpWGhga88cYbftsWFhbitddew+zZs5GWlga73Y6+ffsCAK699loAzRUy4+Pj/fK8gOb8wOeffx7Tp09X9HbpITs7G5GRkXjttde8juntt99GdXW1X+VHOcQKlQ888ACuvfZa/Ol
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(10, 6))\n",
"\n",
"# Диаграмма рассеяния между площадью магазина и продажами\n",
"plt.scatter(df['Items_Available'], df['Store_Sales'])\n",
"plt.xlabel('Товар')\n",
"plt.ylabel('Продажи')\n",
"plt.title('Продажи по кол-во товара')\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Диаграмма рассеяния</h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Данная диаграмма отображает зависимость между количеством товара в магазине и е г о продажами. Н а диаграмме точки не выстраиваются в ряд, что позволяет сделать вывод о том, что между количеством товара и продажами нет явной связи."
]
},
{
"cell_type": "code",
2024-09-14 08:27:12 +04:00
"execution_count": 10,
2024-09-14 02:46:13 +04:00
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAIjCAYAAAB/FZhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACR7ElEQVR4nOzde1yT1eMH8M82xgYM2LiroFJqamrkJfOSVpJUdvFalt80M+1bWpq/r5ldNLUyzRRvadrFLO1C3zLLMklTK/malyg1L6h4QQVFLhMGY2zn9wcyGZcxcLBn2+f9evmS59nZdrbDM57PznnOkQkhBIiIiIiIiEhy5K6uABEREREREVWPgY2IiIiIiEiiGNiIiIiIiIgkioGNiIiIiIhIohjYiIiIiIiIJIqBjYiIiIiISKIY2IiIiIiIiCSKgY2IiIiIiEiiGNiIiBpJYWEhzpw5g9zcXFdXhYiIiNwEAxsRUQNKSkpCv379EBgYCI1Gg+bNm2PevHmurlaDefPNN2GxWAAAFosFc+bMcXGNiMiT/fbbb9i2bZt1e9u2bfj9999dVyGiBsDARkRVrF69GjKZrMZ/GRkZjVofjUaDxx9/vFGf0xlefPFFPPTQQwgMDMSqVauQnJyMn3/+Gc8884yrq9ZgPv74Y8yfPx8ZGRl455138PHHH1/T47322mt2fxdlMhnuu+8+J9WeiNzNmTNn8Mwzz2D//v3Yv38/nnnmGZw5c8bV1SJyKh9XV4CIpGvWrFmIjY2tsj8kJMQFtXEv27dvx9y5czFnzhy8+OKLrq5Oo5k1axZGjhyJqVOnQqVS4dNPP3XK4y5fvhwajabK/ueff94pj09E7mnw4MFITExEp06dAAA9evTA4MGDXVwrIudiYCOiGt1zzz3o2rWrq6vhlubPn4+ePXt6VVgDgIcffhh33HEHjh07htatWyM8PNwpjzt06FCEhYVV2f/KK6845fGJyD2pVCrs3LkTBw4cAAB06NABCoXCxbUici4OiSSieisfOrljxw489dRTCA0NRVBQEEaOHFllYo1vv/0WAwYMQNOmTaFSqXD99ddj9uzZMJvNNuUsFgumTJmC4OBgtGzZEps2bbLeNnXqVAQGBqJ169b48ccfbe73+OOPo2XLljb7zpw5Az8/P8hkMpw8edK6v2XLllWGWI4bNw5qtdrmWoiabN26FbfddhsCAgKg1Wrx4IMP4tChQzZl/ve//6FDhw4YPnw4QkJC4Ofnh27dumH9+vXVPubjjz9e7XC/1157zVrm77//xuOPP47rrrsOarUaUVFReOKJJ3Dp0qUqj3f27FmMGTPG+n7Hxsbi6aefRklJSa1DXmUyGVavXm19rMOHD2Po0KEICQmBWq1G165dsWHDBpvnK3/MkydPIiIiAj179kRoaCg6depU5fFMJhMOHz6M8+fP1/pe19XJkychk8kwf/58LFy4EC1atICfnx/69u1rPaGryJG2LHf77bfX2kYA8NFHH+HOO+9EREQEVCoV2rdvj+XLl9uUycvLQ7t27XDLLbegqKjIur+63+MJEyZAo9Fg37591n3V/Q4nJSVBJpNVuX91WrZsabf9KyotLcXs2bNx/fXXQ6VSoWXLlnjppZdgNBprfZ7qXs+nn34KuVyOt956y2Z/XdqipvpXPH4dfY8q/u5WdPvtt+P222+32Wc0GjFjxgy0atUKKpUKMTExeOGFF6p9Lz799FPccsst8Pf3h06nQ58+fbB582a79S//V16/8t/n8n9KpRItW7bElClTUFJSAgA4ceIEZDIZFi5cWKUOO3fuhEwmw2effVbt+1iRI59B5UOUK1q7di3i4uKgVqsRGhqKRx55BKdPn672OWp63RU/H4CyvwOJiYm48cYboVarERkZiaeeeqrK35XyNlYoFLjppptw00034euvv3b4OCByF+xhI6JrNmHCBGi1Wrz22ms4cuQIli9fjlOnTmHbtm3WP+6rV6+GRqPB5MmTodFosHXrVkyfPh16vR5vv/229bHmzp2L+fPn47HHHkOXLl3w/PPPo6SkBBs3bkRcXBzeeOMNvP/++xg8eDD++eefaodslps+fTqKi4trrf+MGTPwwQcf4IsvvqhyglbZzz//jHvuuQfXXXcdXnvtNRQVFWHJkiXo1asX9u3bZz1JuHTpElauXAmNRoPnnnsO4eHh+PTTTzF48GCsXbsWjzzySJXHDgsLsznpeuyxx2xuT05OxokTJzB69GhERUXh4MGDWLlyJQ4ePIj//e9/1vf63LlzuOWWW5CXl4dx48ahbdu2OHv2LL766isYDAb06dMHn3zyifVx33jjDQDAyy+/bN3Xs2dPAMDBgwfRq1cvNGvWDC+++CICAgLw5ZdfYuDAgfjvf/+LQYMG1fheffLJJ9i/f3+V/WfPnkW7du0watSoKidqzrJmzRpcvnwZ48ePR3FxMRYtWoQ777wT+/fvR2RkJADH27Ki6Oho60QqBQUFePrpp6uUWb58OW688UY88MAD8PHxwXfffYdnnnkGFosF48ePBwBotVp8//33uPXWWzFq1Ch88cUXVU6EAWDJkiVYvnw5vv76a3Tu3LnG11taWmrTfo6Ii4vD//3f/9nsW7NmDZKTk232Pfnkk/j4448xdOhQ/N///R927dqFOXPm4NChQ/jmm2/q9JybN2/GE088gQkTJtj0PtenLW677TaMGzcOAHDo0CG8+eabdp+7Pu9RRRaLBQ888AB+++03jBs3Du3atcP+/fuxcOFCHD161ObLmJkzZ+K1115Dz549MWvWLPj6+mLXrl3YunUr+vfvj8TERBQUFNjU/aWXXkK7du0AoMrw33HjxuG2226D0WjETz/9hPnz50OtVmP27Nm47rrr0KtXL6xdu7bKEOG1a9ciMDAQDz74oEOvsbbPoMrWrVuHf/3rX7jpppswZ84cXLp0CYsXL8Zvv/2GP//8s9pe8Yq/d+np6Zg+fXqVMk899RRWr16N0aNH47nnnkN6ejqWLl2KP//8E7///juUSmW19bnWNiaSLEFEVMlHH30kAIjdu3c7VK5Lly6ipKTEun/evHkCgPj222+t+wwGQ5X7P/XUU8Lf318UFxcLIYQoLi4WERER4pFHHrGW+euvv4RCoRA33XSTMBqNQgghsrOzRWBgoJg4caK13KhRo0SLFi2s2wcOHBByuVzcc889AoBIT0+33taiRQsxatQoIYQQ7733ngAglixZUuv7IoQQcXFxIiIiQly6dMmmjnK5XIwcOdK6D4AAILZt22bzHrRr105ERUXZvF9CCDFixAgRGxtrsw+AmDFjhs39K/vss88EALFjxw7rvpEjRwq5XF5t+1kslir7+vbtK/r27Vvt6+3Xr5/o2LGjtY3KH6Nnz56idevW1n3lvwvl73NxcbFo3ry59f3/6KOPrGXT09MFAGsb2DNjxgwBQFy8eLHa21u0aCEGDBhQ5bH9/PxERkaGdf+uXbsEAPH8889b9znaluV69uwpOnToYN2+ePFilTYSovp2SkhIENddd12V/b/++qtQqVTi5ZdfFkLY/h7/+OOPQqFQiLfffrva113x/Xv33XeFSqUSd9xxh81xUJPK71u58ePHi4qnBqmpqQKAePLJJ23K/ec//xEAxNatW+0+T8XXs2fPHqHRaMSwYcOE2Wy2KVfXtmjWrJkYPXq0dfuXX34RAMQvv/xi8xodeY8+/vhjAUCcOHHC5jkqHxeffPKJkMvl4tdff7Upt2LFCgFA/P7770IIIdLS0oRcLheDBg2q8jqrO/6qq3u58t/nisePEEI0bdpU3Hvvvdbt8s+xQ4cOWfeVlJSIsLAwh44zIRz7DCo/HoUQorS0VERGRorrr79eFBQUWMts27ZNABD/93//V+U5mjZtKu677z7r9u7du6u8vl9//VUAEGvXrrW576ZNm6rsv9bjgMhdcEgkEV2zcePG2Xzj+fTTT8PHxwc//PCDdZ+fn5/158uXLyM7Oxu33XYbDAYDDh8+DADYv38/Lly4YHPBeKdOnaBWqxEXFwdfX18AQGhoKPr06YMtW7bUWKdp06ahc+f
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Построение графика областей для продаж по площади магазина\n",
"plt.figure(figsize=(10, 6))\n",
"\n",
"df_sorted = df.sort_values('Daily_Customer_Count')\n",
"\n",
"df_filter = df_sorted.iloc[300:350]\n",
"\n",
"plt.fill_between(df_filter['Daily_Customer_Count'], df_filter['Store_Sales'], color='skyblue')\n",
"plt.plot(df_filter['Daily_Customer_Count'], df_filter['Store_Sales'], marker='o', color='Slateblue')\n",
"plt.xlabel('Кол-во клиетов')\n",
"plt.ylabel('Продажи')\n",
"plt.title('График областей: Продажи по количеству людей')\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>График областей</h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Данная диаграмма отображает зависимость между количеством клиентов и продажами. Для посторение данной диаграммы используется срез данных. Как итог, как и в прошлых диаграммах кол-во людей на прямую не влияет на продажи магазина."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "aimenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}