forked from Alexey/DAS_2024_1
56 lines
1.7 KiB
Python
56 lines
1.7 KiB
Python
import multiprocessing
|
|
import time
|
|
from time import time
|
|
|
|
import numpy as np
|
|
|
|
|
|
def matrix_multi(first, second, res, start_i, stop_i, size):
|
|
for i in range(start_i, stop_i):
|
|
for j in range(size):
|
|
res[i][j] = 0
|
|
for k in range(size):
|
|
res[i][j] += first[i][k] * second[k][j]
|
|
|
|
|
|
def do(first, second, size, threads):
|
|
offset = int(size / threads)
|
|
offset_last = size % threads + offset
|
|
|
|
processes = []
|
|
res = np.zeros((size, size))
|
|
start_test = time()
|
|
for i in range(threads):
|
|
start_ = i * offset
|
|
stop_ = start_ + offset_last if i == threads - 1 else start_ + offset
|
|
|
|
process = multiprocessing.Process(target=matrix_multi, args=(first, second, res, start_, stop_, size))
|
|
processes.append(process)
|
|
process.start()
|
|
|
|
for p in processes:
|
|
p.join()
|
|
stop_test = time()
|
|
print(f'{size}x{size}, time: {stop_test - start_test}')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sizes = [100, 300, 500]
|
|
threads_counts = [1, 4, 6, 8, 12]
|
|
for threads in threads_counts:
|
|
print('-------------------------------------------------')
|
|
print(f'Threads:{threads}')
|
|
for n in sizes:
|
|
first_matrix = np.random.randint(3, size=(n, n))
|
|
second_matrix = np.random.randint(3, size=(n, n))
|
|
if threads == 1:
|
|
res = np.zeros((n, n))
|
|
start = time()
|
|
matrix_multi(first_matrix, second_matrix, res, 0, n, n)
|
|
stop = time()
|
|
print(f'{n}x{n}, time: {stop - start}')
|
|
else:
|
|
do(first_matrix, second_matrix, n, threads)
|
|
|
|
print('-------------------------------------------------')
|