forked from Alexey/DAS_2024_1
208 lines
6.9 KiB
Python
208 lines
6.9 KiB
Python
import random
|
||
import time
|
||
import copy
|
||
from multiprocessing import Pool
|
||
import concurrent.futures
|
||
from copy import deepcopy
|
||
|
||
|
||
class Matrix:
|
||
def __init__(self) -> None:
|
||
self.matrix_100 = [[0] * 100 for _ in range(100)]
|
||
self.matrix_300 = [[0] * 300 for _ in range(300)]
|
||
self.matrix_500 = [[0] * 500 for _ in range(500)]
|
||
|
||
def str_matrix(self, type_list: str):
|
||
_str = ""
|
||
|
||
current_matrix = getattr(self, type_list)
|
||
|
||
for i in range(len(current_matrix)):
|
||
_str += "[ "
|
||
|
||
for j in range(len(current_matrix[0])):
|
||
_str += str(current_matrix[i][j]) + " "
|
||
|
||
_str += " ]\n"
|
||
|
||
return _str
|
||
|
||
# Глобальный объект класса для хранения результата работы потоков
|
||
result_matrix = copy.deepcopy(Matrix())
|
||
|
||
def init_matrix(matrix: Matrix, size: int):
|
||
support_list_main = []
|
||
|
||
for i in range(size):
|
||
support_list_column = []
|
||
|
||
for j in range(size):
|
||
support_list_column.append(random.randint(0, 5))
|
||
|
||
support_list_main.append(support_list_column)
|
||
|
||
if size == 100:
|
||
matrix.matrix_100 = support_list_main
|
||
elif size == 300:
|
||
matrix.matrix_300 = support_list_main
|
||
elif size == 500:
|
||
matrix.matrix_500 = support_list_main
|
||
|
||
# Функция параллельной обработки строк
|
||
def process_row(args):
|
||
i, j, m, n = args
|
||
|
||
factor = m[j][i] / m[i][i]
|
||
|
||
for k in range(i, n):
|
||
m[j][k] -= factor * m[i][k]
|
||
|
||
return m[j]
|
||
|
||
def parallel_det(matrix, num_threads=1):
|
||
n = len(matrix)
|
||
|
||
# Создаем копию матрицы, чтобы не изменять исходную
|
||
m = deepcopy(matrix)
|
||
|
||
det_value = 1
|
||
|
||
# Функция для параллельной обработки строк
|
||
def process_row(i, j):
|
||
factor = m[j][i] / m[i][i]
|
||
for k in range(i, n):
|
||
m[j][k] -= factor * m[i][k]
|
||
|
||
for i in range(n):
|
||
# Поиск ненулевого элемента в текущем столбце для обмена строк
|
||
if m[i][i] == 0:
|
||
for j in range(i + 1, n):
|
||
if m[j][i] != 0:
|
||
m[i], m[j] = m[j], m[i]
|
||
|
||
# Меняем знак определителя при обмене строк
|
||
det_value *= -1
|
||
|
||
break
|
||
else:
|
||
# Если все элементы в столбце равны 0, то определитель равен 0
|
||
return 0
|
||
|
||
# Приведение матрицы к треугольному виду с использованием потоков
|
||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||
# Параллельно обрабатываем строки ниже текущей (от i+1 до n)
|
||
futures = [
|
||
executor.submit(process_row, i, j) for j in range(i + 1, n)
|
||
]
|
||
concurrent.futures.wait(futures)
|
||
|
||
# Умножаем на диагональный элемент
|
||
det_value *= m[i][i]
|
||
|
||
return det_value
|
||
|
||
def det(matrix):
|
||
n = len(matrix)
|
||
# копия матрицы для сохранения исходной
|
||
m = [row[:] for row in matrix]
|
||
det_value = 1
|
||
|
||
for i in range(n):
|
||
# Поиск ненулевого элемента в текущем столбце для обмена строк
|
||
if m[i][i] == 0:
|
||
for j in range(i + 1, n):
|
||
if m[j][i] != 0:
|
||
m[i], m[j] = m[j], m[i]
|
||
|
||
# Меняем знак определителя при обмене строк
|
||
det_value *= -1
|
||
|
||
break
|
||
else:
|
||
return 0 # Если все элементы в столбце равны 0, то определитель равен 0
|
||
|
||
# Приведение матрицы к треугольному виду
|
||
for j in range(i + 1, n):
|
||
factor = m[j][i] / m[i][i]
|
||
|
||
for k in range(i, n):
|
||
m[j][k] -= factor * m[i][k]
|
||
|
||
# Умножаем на диагональный элемент
|
||
det_value *= m[i][i]
|
||
|
||
return det_value
|
||
|
||
def run_program():
|
||
matrix = Matrix()
|
||
init_matrix(matrix, 100)
|
||
init_matrix(matrix, 300)
|
||
init_matrix(matrix, 500)
|
||
|
||
start_time = time.time()
|
||
print(f"100x100:{det(matrix.matrix_100)}")
|
||
end_time = time.time()
|
||
print("Time 100x100: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"100x100:{parallel_det(matrix.matrix_100, 3)}")
|
||
end_time = time.time()
|
||
print("Time 100x100: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"100x100:{parallel_det(matrix.matrix_100, 5)}")
|
||
end_time = time.time()
|
||
print("Time 100x100: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"100x100:{parallel_det(matrix.matrix_100, 8)}")
|
||
end_time = time.time()
|
||
print("Time 100x100: ", end_time - start_time)
|
||
|
||
# ----------------------------------------------------------------------------------------------------
|
||
print("\n" + "-" * 50 + "\n")
|
||
|
||
start_time = time.time()
|
||
print(f"300x300:{det(matrix.matrix_300)}")
|
||
end_time = time.time()
|
||
print("Time 300x300: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"300x300:{parallel_det(matrix.matrix_300, 3)}")
|
||
end_time = time.time()
|
||
print("Time 300x300: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"300x300:{parallel_det(matrix.matrix_300, 5)}")
|
||
end_time = time.time()
|
||
print("Time 300x300: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"300x300:{parallel_det(matrix.matrix_300, 8)}")
|
||
end_time = time.time()
|
||
print("Time 300x300: ", end_time - start_time)
|
||
|
||
# ----------------------------------------------------------------------------------------------------
|
||
print("\n" + "-" * 50 + "\n")
|
||
|
||
start_time = time.time()
|
||
print(f"500x500:{det(matrix.matrix_500)}")
|
||
end_time = time.time()
|
||
print("Time 500x500: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"500x500:{parallel_det(matrix.matrix_500, 3)}")
|
||
end_time = time.time()
|
||
print("Time 500x500: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"500x500:{parallel_det(matrix.matrix_500, 5)}")
|
||
end_time = time.time()
|
||
print("Time 500x500: ", end_time - start_time)
|
||
|
||
start_time = time.time()
|
||
print(f"500x500:{parallel_det(matrix.matrix_500, 8)}")
|
||
end_time = time.time()
|
||
print("Time 500x500: ", end_time - start_time)
|
||
|
||
run_program() |