forked from Alexey/DAS_2024_1
118 lines
3.1 KiB
Python
118 lines
3.1 KiB
Python
|
import random
|
|||
|
import time
|
|||
|
import copy
|
|||
|
from multiprocessing import Pool
|
|||
|
import concurrent.futures
|
|||
|
from copy import deepcopy
|
|||
|
|
|||
|
|
|||
|
class Matrix:
|
|||
|
def __init__(self) -> None:
|
|||
|
self.matrix_100 = [[0] * 100 for _ in range(100)]
|
|||
|
self.matrix_300 = [[0] * 300 for _ in range(300)]
|
|||
|
self.matrix_500 = [[0] * 500 for _ in range(500)]
|
|||
|
|
|||
|
def str_matrix(self, type_list: str):
|
|||
|
_str = ""
|
|||
|
|
|||
|
current_matrix = getattr(self, type_list)
|
|||
|
|
|||
|
for i in range(len(current_matrix)):
|
|||
|
_str += "[ "
|
|||
|
|
|||
|
for j in range(len(current_matrix[0])):
|
|||
|
_str += str(current_matrix[i][j]) + " "
|
|||
|
|
|||
|
_str += " ]\n"
|
|||
|
|
|||
|
return _str
|
|||
|
|
|||
|
|
|||
|
def init_matrix(matrix: Matrix, size: int):
|
|||
|
for i in range(size):
|
|||
|
for j in range(size):
|
|||
|
matrix.__dict__[f"matrix_{size}"][i][j] = random.randint(0, 5)
|
|||
|
|
|||
|
|
|||
|
def parallel_det(matrix, num_threads=1):
|
|||
|
n = len(matrix)
|
|||
|
m = deepcopy(matrix)
|
|||
|
det_value = 1
|
|||
|
|
|||
|
for i in range(n):
|
|||
|
if m[i][i] == 0:
|
|||
|
for j in range(i + 1, n):
|
|||
|
if m[j][i] != 0:
|
|||
|
m[i], m[j] = m[j], m[i]
|
|||
|
det_value *= -1
|
|||
|
break
|
|||
|
else:
|
|||
|
return 0
|
|||
|
|
|||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|||
|
futures = [executor.submit(process_row, i, j, m, n) for j in range(i + 1, n)]
|
|||
|
concurrent.futures.wait(futures)
|
|||
|
|
|||
|
det_value *= m[i][i]
|
|||
|
m = [list(row) for row in m] # Обновляем строки матрицы
|
|||
|
|
|||
|
return det_value
|
|||
|
|
|||
|
|
|||
|
def process_row(i, j, m, n):
|
|||
|
factor = m[j][i] / m[i][i]
|
|||
|
for k in range(i, n):
|
|||
|
m[j][k] -= factor * m[i][k]
|
|||
|
return m[j]
|
|||
|
|
|||
|
|
|||
|
def det(matrix):
|
|||
|
n = len(matrix)
|
|||
|
m = [row[:] for row in matrix]
|
|||
|
det_value = 1
|
|||
|
|
|||
|
for i in range(n):
|
|||
|
if m[i][i] == 0:
|
|||
|
for j in range(i + 1, n):
|
|||
|
if m[j][i] != 0:
|
|||
|
m[i], m[j] = m[j], m[i]
|
|||
|
det_value *= -1
|
|||
|
break
|
|||
|
else:
|
|||
|
return 0
|
|||
|
|
|||
|
for j in range(i + 1, n):
|
|||
|
factor = m[j][i] / m[i][i]
|
|||
|
for k in range(i, n):
|
|||
|
m[j][k] -= factor * m[i][k]
|
|||
|
|
|||
|
det_value *= m[i][i]
|
|||
|
|
|||
|
return det_value
|
|||
|
|
|||
|
|
|||
|
def benchmark():
|
|||
|
matrix = Matrix()
|
|||
|
init_matrix(matrix, 100)
|
|||
|
init_matrix(matrix, 300)
|
|||
|
init_matrix(matrix, 500)
|
|||
|
|
|||
|
sizes = [100, 300, 500]
|
|||
|
for size in sizes:
|
|||
|
current_matrix = getattr(matrix, f'matrix_{size}')
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
seq_result = det(current_matrix)
|
|||
|
seq_time = time.time() - start_time
|
|||
|
print(f"Последовательный детерминант {size}x{size}: {seq_result}, Время: {seq_time:.6f}с")
|
|||
|
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
par_result = parallel_det(current_matrix, num_threads=4) # Измените число потоков по необходимости
|
|||
|
par_time = time.time() - start_time
|
|||
|
print(f"Параллельный детерминант {size}x{size}: {par_result}, Время: {par_time:.6f}с")
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
benchmark()
|