forked from Alexey/DAS_2024_1
77 lines
2.5 KiB
Python
77 lines
2.5 KiB
Python
|
import numpy as np
|
|||
|
from concurrent.futures import ProcessPoolExecutor
|
|||
|
import time
|
|||
|
|
|||
|
# Функция последовательного поиска детерминанта
|
|||
|
def det_sequential(matrix):
|
|||
|
n = len(matrix)
|
|||
|
det = 1
|
|||
|
|
|||
|
for i in range(n):
|
|||
|
if matrix[i][i] == 0:
|
|||
|
for j in range(i + 1, n):
|
|||
|
if matrix[j][i] != 0:
|
|||
|
matrix[i], matrix[j] = matrix[j], matrix[i]
|
|||
|
det *= -1
|
|||
|
break
|
|||
|
else:
|
|||
|
return 0
|
|||
|
|
|||
|
for j in range(i + 1, n):
|
|||
|
factor = matrix[j][i] / matrix[i][i]
|
|||
|
for k in range(i, n):
|
|||
|
matrix[j][k] -= factor * matrix[i][k]
|
|||
|
|
|||
|
det *= matrix[i][i]
|
|||
|
|
|||
|
return det
|
|||
|
|
|||
|
# Функция поиска детерминанта с numpy
|
|||
|
def det_numpy(A):
|
|||
|
return np.linalg.det(A)
|
|||
|
|
|||
|
# Функция параллельного поиска детерминанта
|
|||
|
def det_parallel(A, num_threads):
|
|||
|
n = len(A)
|
|||
|
C = []
|
|||
|
step = n // num_threads
|
|||
|
|
|||
|
with ProcessPoolExecutor(max_workers=num_threads) as executor:
|
|||
|
futures = []
|
|||
|
for i in range(num_threads):
|
|||
|
start_row = i * step
|
|||
|
end_row = (i + 1) * step if i != num_threads - 1 else n
|
|||
|
a_slice = A[start_row:end_row, start_row:end_row]
|
|||
|
|
|||
|
futures.append(executor.submit(det_sequential, a_slice))
|
|||
|
for future in futures:
|
|||
|
C.append(future.result())
|
|||
|
|
|||
|
return np.prod(C)
|
|||
|
|
|||
|
# Пример использования
|
|||
|
if __name__ == "__main__":
|
|||
|
matrix_sizes = [100, 300, 500]
|
|||
|
num_threads = [2, 4, 5, 10]
|
|||
|
for n in matrix_sizes:
|
|||
|
A = np.random.rand(n, n)
|
|||
|
|
|||
|
# Поиск с numpy
|
|||
|
start_np = time.time()
|
|||
|
nump = det_numpy(A)
|
|||
|
end_np = time.time()
|
|||
|
print(f'Детерминант матрицы {n}x{n} с numpy: {(end_np - start_np):.3f} с.')
|
|||
|
|
|||
|
# Последовательное умножение
|
|||
|
start_seq = time.time()
|
|||
|
sequential = det_sequential(A)
|
|||
|
end_seq = time.time()
|
|||
|
print(f'Детерминант матрицы {n}x{n} последовательно: {(end_seq - start_seq):.3f} с.')
|
|||
|
|
|||
|
# Параллельное умножение
|
|||
|
for thread in num_threads:
|
|||
|
start_par = time.time()
|
|||
|
parallel = det_parallel(A, thread)
|
|||
|
end_par = time.time()
|
|||
|
print(f'Детерминант матрицы {n}x{n} параллельно для {thread} потоков: {(end_par - start_par):.3f} с.')
|
|||
|
print('')
|