forked from Alexey/DAS_2024_1
81 lines
2.5 KiB
Python
81 lines
2.5 KiB
Python
|
import numpy as np
|
|||
|
from concurrent.futures import ProcessPoolExecutor
|
|||
|
import time
|
|||
|
|
|||
|
#Функция умножения матриц
|
|||
|
def multi(A, B):
|
|||
|
n = len(A)
|
|||
|
k = len(B)
|
|||
|
C = np.zeros((n, n))
|
|||
|
|
|||
|
for i in range(n):
|
|||
|
for j in range(n):
|
|||
|
C[i][j] = sum(A[i][p] * B[p][j] for p in range(k))
|
|||
|
|
|||
|
return C
|
|||
|
|
|||
|
# Функция последовательного умножения матриц
|
|||
|
def multi_sequential(A, B):
|
|||
|
n = len(A)
|
|||
|
C = np.zeros((n, n))
|
|||
|
for i in range(n):
|
|||
|
for k in range(n):
|
|||
|
temp = A[i][k]
|
|||
|
for j in range(n):
|
|||
|
C[i][j] += temp * B[k][j]
|
|||
|
return C
|
|||
|
|
|||
|
# Функция умножения матриц с numpy
|
|||
|
def multi_numpy(A, B):
|
|||
|
return np.dot(A, B)
|
|||
|
|
|||
|
# Параллельное умножение матриц
|
|||
|
def multi_parallel(A, B, num_threads):
|
|||
|
n = len(A)
|
|||
|
C = np.zeros((n, n))
|
|||
|
step = n // num_threads
|
|||
|
|
|||
|
with ProcessPoolExecutor(max_workers=num_threads) as executor:
|
|||
|
futures = []
|
|||
|
for i in range(num_threads):
|
|||
|
start_row = i * step
|
|||
|
end_row = (i + 1) * step if i != num_threads - 1 else n
|
|||
|
|
|||
|
a_slice = A[:, i*step: (i+1)*step]
|
|||
|
b_slice = B[start_row:end_row]
|
|||
|
|
|||
|
futures.append(executor.submit(multi, a_slice, b_slice))
|
|||
|
|
|||
|
for future in futures:
|
|||
|
C += future.result()
|
|||
|
|
|||
|
return C
|
|||
|
|
|||
|
# Пример использования
|
|||
|
if __name__ == "__main__":
|
|||
|
matrix_sizes = [100, 300, 500]
|
|||
|
num_threads = [2, 4, 5, 10]
|
|||
|
for n in matrix_sizes:
|
|||
|
A = np.random.rand(n, n)
|
|||
|
B = np.random.rand(n, n)
|
|||
|
|
|||
|
# Умножение с numpy
|
|||
|
start_np = time.time()
|
|||
|
nump = multi_numpy(A, B)
|
|||
|
end_np = time.time()
|
|||
|
print(f'Умножение матриц {n}x{n} последовательно с numpy: {(end_np - start_np):.6f} с.')
|
|||
|
|
|||
|
# Последовательное умножение
|
|||
|
start_seq = time.time()
|
|||
|
sequential = multi_sequential(A, B)
|
|||
|
end_seq = time.time()
|
|||
|
print(f'Умножение матриц {n}x{n} последовательно: {(end_seq - start_seq):.6f} с.')
|
|||
|
|
|||
|
# Параллельное умножение
|
|||
|
for thread in num_threads:
|
|||
|
start_par = time.time()
|
|||
|
parallel = multi_parallel(A, B, thread)
|
|||
|
end_par = time.time()
|
|||
|
print(f'Умножение матриц {n}x{n} параллельно для {thread} потоков: {(end_par - start_par):.3f} с.')
|
|||
|
|
|||
|
print('')
|