forked from Alexey/DAS_2024_1
122 lines
3.6 KiB
Python
122 lines
3.6 KiB
Python
|
import itertools
|
||
|
from collections.abc import Callable
|
||
|
from concurrent.futures import ThreadPoolExecutor
|
||
|
from queue import Queue
|
||
|
from typing import Tuple, List
|
||
|
import numpy as np
|
||
|
|
||
|
_SUPLYER_TYPE = Callable[[], int | float] | int | float
|
||
|
_QUEUE_TYPE = Queue[Tuple[List[float | int], List[float | int], int]]
|
||
|
|
||
|
|
||
|
class Matrix:
|
||
|
def __init__(self, size: int, suplyer: _SUPLYER_TYPE = 0):
|
||
|
self.__size = size
|
||
|
self.__matrix = self._generate_matrix(suplyer)
|
||
|
|
||
|
def _generate_matrix(self, suplyer: _SUPLYER_TYPE):
|
||
|
if suplyer:
|
||
|
match suplyer:
|
||
|
case int() | float():
|
||
|
return [[suplyer for _ in range(self.__size)] for _ in range(self.__size)]
|
||
|
case Callable():
|
||
|
return [[suplyer() for _ in range(self.__size)] for _ in range(self.__size)]
|
||
|
return [[0 for _ in range(self.__size)] for _ in range(self.__size)]
|
||
|
|
||
|
def from_flat(self, numbers: List[int | float]):
|
||
|
if len(numbers) != self.__size ** 2:
|
||
|
raise Exception(f"Invalid matrix size {self.__size} ^ 2 != {len(numbers)}")
|
||
|
x, y = 0, 0
|
||
|
for number in numbers:
|
||
|
self.__matrix[y][x] = number
|
||
|
x += 1
|
||
|
if x >= self.__size:
|
||
|
x = 0
|
||
|
y += 1
|
||
|
|
||
|
@property
|
||
|
def rows(self):
|
||
|
return self.__matrix
|
||
|
|
||
|
@property
|
||
|
def columns(self):
|
||
|
return [[self.__matrix[i][j] for i in range(self.__size)] for j in range(self.__size)]
|
||
|
|
||
|
@property
|
||
|
def size(self):
|
||
|
return self.__size
|
||
|
|
||
|
@staticmethod
|
||
|
def random(*, size: int):
|
||
|
import random
|
||
|
return Matrix(size=size, suplyer=random.random)
|
||
|
|
||
|
def to_numpy(self):
|
||
|
return np.array(self.__matrix)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return (isinstance(other, Matrix)
|
||
|
and self.__size == other.__size)
|
||
|
|
||
|
def __str__(self):
|
||
|
return f"Matrix {self.__size}x{self.__size} \n" + "\n".join([str(
|
||
|
" ".join([f"{element:.5f}" for element in row])
|
||
|
) for row in self.__matrix])
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self.__matrix)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
return self.__matrix[index]
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
match other:
|
||
|
case Matrix():
|
||
|
return mul_matrixs(self, other)
|
||
|
case tuple():
|
||
|
other_matrix, count_threads = other
|
||
|
return mul_matrixs(self, other_matrix, count_threads)
|
||
|
return None
|
||
|
|
||
|
|
||
|
def mul_row_and_column_in_thread(queue: _QUEUE_TYPE) -> list[tuple[int | float, int]]:
|
||
|
result = []
|
||
|
while queue.qsize():
|
||
|
local_result = 0
|
||
|
row, column, place = queue.get()
|
||
|
for k in range(len(row)):
|
||
|
local_result += row[k] * column[k]
|
||
|
result.append((local_result, place))
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def mul_matrixs(m1: Matrix, m2: Matrix, threads: int = 0):
|
||
|
if m1.size != m2.size:
|
||
|
return None
|
||
|
|
||
|
if threads == 0:
|
||
|
threads = 1
|
||
|
|
||
|
result = Matrix(size=m1.size, suplyer=0)
|
||
|
|
||
|
thread_queues = [Queue() for _ in range(threads)]
|
||
|
thread_iterator = 0
|
||
|
|
||
|
for row_m1, column_m2 in itertools.product(m1.rows, m2.columns):
|
||
|
thread_queues[thread_iterator].put((row_m1, column_m2, thread_iterator))
|
||
|
thread_iterator += 1
|
||
|
if thread_iterator >= threads:
|
||
|
thread_iterator = 0
|
||
|
|
||
|
with ThreadPoolExecutor(max_workers=threads) as executor:
|
||
|
flat = []
|
||
|
|
||
|
for item in executor.map(mul_row_and_column_in_thread, thread_queues):
|
||
|
flat += item
|
||
|
|
||
|
flat.sort(key=lambda x: x[1])
|
||
|
result.from_flat([*map(lambda x: x[0], flat)])
|
||
|
|
||
|
return result
|