лаба 4
This commit is contained in:
parent
01c27ac023
commit
0e9d03446d
2773
data/Medical_insurance.csv
Normal file
2773
data/Medical_insurance.csv
Normal file
File diff suppressed because it is too large
Load Diff
130
lec3.ipynb
130
lec3.ipynb
File diff suppressed because one or more lines are too long
2407
lec4.ipynb
Normal file
2407
lec4.ipynb
Normal file
File diff suppressed because one or more lines are too long
1593
lec4_reg.ipynb
Normal file
1593
lec4_reg.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
1469
poetry.lock
generated
1469
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -20,9 +20,6 @@ imbalanced-learn = "^0.12.3"
|
||||
featuretools = "^1.31.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
ipykernel = "^6.29.5"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
82
utils.py
Normal file
82
utils.py
Normal file
@ -0,0 +1,82 @@
|
||||
from typing import Tuple
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def split_stratified_into_train_val_test(
|
||||
df_input,
|
||||
target_colname="z",
|
||||
stratify_colname="y",
|
||||
frac_train=0.6,
|
||||
frac_val=0.15,
|
||||
frac_test=0.25,
|
||||
random_state=None,
|
||||
) -> Tuple[DataFrame, DataFrame, DataFrame, DataFrame, DataFrame, DataFrame]:
|
||||
"""
|
||||
Splits a Pandas dataframe into three subsets (train, val, and test)
|
||||
following fractional ratios provided by the user, where each subset is
|
||||
stratified by the values in a specific column (that is, each subset has
|
||||
the same relative frequency of the values in the column). It performs this
|
||||
splitting by running train_test_split() twice.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_input : Pandas dataframe
|
||||
Input dataframe to be split.
|
||||
stratify_colname : str
|
||||
The name of the column that will be used for stratification. Usually
|
||||
this column would be for the label.
|
||||
frac_train : float
|
||||
frac_val : float
|
||||
frac_test : float
|
||||
The ratios with which the dataframe will be split into train, val, and
|
||||
test data. The values should be expressed as float fractions and should
|
||||
sum to 1.0.
|
||||
random_state : int, None, or RandomStateInstance
|
||||
Value to be passed to train_test_split().
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_train, df_val, df_test :
|
||||
Dataframes containing the three splits.
|
||||
"""
|
||||
|
||||
if frac_train + frac_val + frac_test != 1.0:
|
||||
raise ValueError(
|
||||
"fractions %f, %f, %f do not add up to 1.0"
|
||||
% (frac_train, frac_val, frac_test)
|
||||
)
|
||||
|
||||
if stratify_colname not in df_input.columns:
|
||||
raise ValueError("%s is not a column in the dataframe" % (stratify_colname))
|
||||
|
||||
if target_colname not in df_input.columns:
|
||||
raise ValueError("%s is not a column in the dataframe" % (target_colname))
|
||||
|
||||
X = df_input # Contains all columns.
|
||||
y = df_input[[target_colname]] # Dataframe of just the column on which to stratify.
|
||||
z = df_input[[stratify_colname]]
|
||||
|
||||
# Split original dataframe into train and temp dataframes.
|
||||
df_train, df_temp, y_train, y_temp = train_test_split(
|
||||
X, y, stratify=z, test_size=(1.0 - frac_train), random_state=random_state
|
||||
)
|
||||
|
||||
if frac_val <= 0:
|
||||
assert len(df_input) == len(df_train) + len(df_temp)
|
||||
return df_train, pd.DataFrame(), df_temp, y_train, pd.DataFrame(), y_temp
|
||||
|
||||
# Split the temp dataframe into val and test dataframes.
|
||||
relative_frac_test = frac_test / (frac_val + frac_test)
|
||||
df_val, df_test, y_val, y_test = train_test_split(
|
||||
df_temp,
|
||||
y_temp,
|
||||
stratify=df_temp[[stratify_colname]],
|
||||
test_size=relative_frac_test,
|
||||
random_state=random_state,
|
||||
)
|
||||
|
||||
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
|
||||
return df_train, df_val, df_test, y_train, y_val, y_test
|
Loading…
Reference in New Issue
Block a user