MII_Salin_Oleg_PIbd-33/visual.py

243 lines
6.2 KiB
Python
Raw Permalink Normal View History

2024-11-20 19:19:56 +04:00
from typing import Any, Dict, List
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from pandas import DataFrame
from scipy.cluster import hierarchy
from sklearn.cluster import KMeans
def draw_data_2d(
df: DataFrame,
col1: int,
col2: int,
y: List | None = None,
classes: List | None = None,
subplot: Any | None = None,
):
ax = None
if subplot is None:
_, ax = plt.subplots()
else:
ax = subplot
scatter = ax.scatter(df[df.columns[col1]], df[df.columns[col2]], c=y)
ax.set(xlabel=df.columns[col1], ylabel=df.columns[col2])
if classes is not None:
ax.legend(
scatter.legend_elements()[0], classes, loc="lower right", title="Classes"
)
def draw_dendrogram(linkage_matrix: np.ndarray):
hierarchy.dendrogram(linkage_matrix, truncate_mode="level", p=3)
def draw_cluster_results(
df: DataFrame,
col1: int,
col2: int,
labels: np.ndarray,
cluster_centers: np.ndarray,
subplot: Any | None = None,
):
ax = None
if subplot is None:
ax = plt
else:
ax = subplot
centroids = cluster_centers
u_labels = np.unique(labels)
for i in u_labels:
ax.scatter(
df[labels == i][df.columns[col1]],
df[labels == i][df.columns[col2]],
label=i,
)
ax.scatter(centroids[:, col1], centroids[:, col2], s=80, color="k")
def draw_clusters(reduced_data: np.ndarray, kmeans: KMeans):
h = 0.02
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(
Z,
interpolation="nearest",
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired, # type: ignore
aspect="auto",
origin="lower",
)
plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
centroids = kmeans.cluster_centers_
plt.scatter(
centroids[:, 0],
centroids[:, 1],
marker="x",
s=169,
linewidths=3,
color="w",
zorder=10,
)
plt.title(
"K-means clustering (PCA-reduced data)\n"
"Centroids are marked with white cross"
)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
def _draw_cluster_scores(
data: List,
clusters_range: range,
score_name: str,
title: str,
):
plt.figure(figsize=(8, 5))
plt.plot(clusters_range, data, "bo-")
plt.xlabel("$k$", fontsize=8)
plt.ylabel(score_name, fontsize=8)
plt.title(title)
def draw_elbow_diagram(inertias: List, clusters_range: range):
_draw_cluster_scores(inertias, clusters_range, "Inertia", "The Elbow Diagram")
def draw_silhouettes_diagram(silhouette: List, clusters_range: range):
_draw_cluster_scores(
silhouette, clusters_range, "Silhouette score", "The Silhouette score"
)
def _draw_silhouette(
ax: Any,
reduced_data: np.ndarray,
n_clusters: int,
silhouette_avg: float,
sample_silhouette_values: List,
cluster_labels: List,
):
ax.set_xlim([-0.1, 1])
ax.set_ylim([0, len(reduced_data) + (n_clusters + 1) * 10])
y_lower = 10
for i in range(n_clusters):
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters) # type: ignore
ax.fill_betweenx(
np.arange(y_lower, y_upper),
0,
ith_cluster_silhouette_values,
facecolor=color,
edgecolor=color,
alpha=0.7,
)
ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
y_lower = y_upper + 10 # 10 for the 0 samples
ax.set_title("The silhouette plot for the various clusters.")
ax.set_xlabel("The silhouette coefficient values")
ax.set_ylabel("Cluster label")
ax.axvline(x=silhouette_avg, color="red", linestyle="--")
ax.set_yticks([])
ax.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
def _draw_cluster_data(
ax: Any,
reduced_data: np.ndarray,
n_clusters: int,
cluster_labels: np.ndarray,
cluster_centers: np.ndarray,
):
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) # type: ignore
ax.scatter(
reduced_data[:, 0],
reduced_data[:, 1],
marker=".",
s=30,
lw=0,
alpha=0.7,
c=colors,
edgecolor="k",
)
ax.scatter(
cluster_centers[:, 0],
cluster_centers[:, 1],
marker="o",
c="white",
alpha=1,
s=200,
edgecolor="k",
)
for i, c in enumerate(cluster_centers):
ax.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
ax.set_title("The visualization of the clustered data.")
ax.set_xlabel("Feature space for the 1st feature")
ax.set_ylabel("Feature space for the 2nd feature")
def draw_silhouettes(reduced_data: np.ndarray, silhouettes: Dict):
for key, value in silhouettes.items():
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
n_clusters = key
silhouette_avg = value[0]
sample_silhouette_values = value[1]
cluster_labels = value[2].labels_
cluster_centers = value[2].cluster_centers_
_draw_silhouette(
ax1,
reduced_data,
n_clusters,
silhouette_avg,
sample_silhouette_values,
cluster_labels,
)
_draw_cluster_data(
ax2,
reduced_data,
n_clusters,
cluster_labels,
cluster_centers,
)
plt.suptitle(
"Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
% n_clusters,
fontsize=14,
fontweight="bold",
)