From ae37834c492e53d81cee0b7477ab063dfaa9e3ff Mon Sep 17 00:00:00 2001 From: LuizaAparyan Date: Fri, 11 Oct 2024 18:44:04 +0400 Subject: [PATCH] =?UTF-8?q?=D0=97=D0=B0=D0=B3=D1=80=D1=83=D0=B7=D0=B8?= =?UTF-8?q?=D1=82=D1=8C=20=D1=84=D0=B0=D0=B9=D0=BB=D1=8B=20=D0=B2=20=C2=AB?= =?UTF-8?q?/=C2=BB?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- diabetes.csv | 769 ++++++++++++++++ lab1.ipynb | 2387 ++++++++++++++++++++++++++++++++++++++++++++++++++ new.csv | 769 ++++++++++++++++ test.csv | 892 +++++++++++++++++++ 4 files changed, 4817 insertions(+) create mode 100644 diabetes.csv create mode 100644 lab1.ipynb create mode 100644 new.csv create mode 100644 test.csv diff --git a/diabetes.csv b/diabetes.csv new file mode 100644 index 0000000..db6f317 --- /dev/null +++ b/diabetes.csv @@ -0,0 +1,769 @@ +Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome +6,148,72,35,0,33.6,0.627,50,1 +1,85,66,29,0,26.6,0.351,31,0 +8,183,64,0,0,23.3,0.672,32,1 +1,89,66,23,94,28.1,0.167,21,0 +0,137,40,35,168,43.1,2.288,33,1 +5,116,74,0,0,25.6,0.201,30,0 +3,78,50,32,88,31,0.248,26,1 +10,115,0,0,0,35.3,0.134,29,0 +2,197,70,45,543,30.5,0.158,53,1 +8,125,96,0,0,0,0.232,54,1 +4,110,92,0,0,37.6,0.191,30,0 +10,168,74,0,0,38,0.537,34,1 +10,139,80,0,0,27.1,1.441,57,0 +1,189,60,23,846,30.1,0.398,59,1 +5,166,72,19,175,25.8,0.587,51,1 +7,100,0,0,0,30,0.484,32,1 +0,118,84,47,230,45.8,0.551,31,1 +7,107,74,0,0,29.6,0.254,31,1 +1,103,30,38,83,43.3,0.183,33,0 +1,115,70,30,96,34.6,0.529,32,1 +3,126,88,41,235,39.3,0.704,27,0 +8,99,84,0,0,35.4,0.388,50,0 +7,196,90,0,0,39.8,0.451,41,1 +9,119,80,35,0,29,0.263,29,1 +11,143,94,33,146,36.6,0.254,51,1 +10,125,70,26,115,31.1,0.205,41,1 +7,147,76,0,0,39.4,0.257,43,1 +1,97,66,15,140,23.2,0.487,22,0 +13,145,82,19,110,22.2,0.245,57,0 +5,117,92,0,0,34.1,0.337,38,0 +5,109,75,26,0,36,0.546,60,0 +3,158,76,36,245,31.6,0.851,28,1 +3,88,58,11,54,24.8,0.267,22,0 +6,92,92,0,0,19.9,0.188,28,0 +10,122,78,31,0,27.6,0.512,45,0 +4,103,60,33,192,24,0.966,33,0 +11,138,76,0,0,33.2,0.42,35,0 +9,102,76,37,0,32.9,0.665,46,1 +2,90,68,42,0,38.2,0.503,27,1 +4,111,72,47,207,37.1,1.39,56,1 +3,180,64,25,70,34,0.271,26,0 +7,133,84,0,0,40.2,0.696,37,0 +7,106,92,18,0,22.7,0.235,48,0 +9,171,110,24,240,45.4,0.721,54,1 +7,159,64,0,0,27.4,0.294,40,0 +0,180,66,39,0,42,1.893,25,1 +1,146,56,0,0,29.7,0.564,29,0 +2,71,70,27,0,28,0.586,22,0 +7,103,66,32,0,39.1,0.344,31,1 +7,105,0,0,0,0,0.305,24,0 +1,103,80,11,82,19.4,0.491,22,0 +1,101,50,15,36,24.2,0.526,26,0 +5,88,66,21,23,24.4,0.342,30,0 +8,176,90,34,300,33.7,0.467,58,1 +7,150,66,42,342,34.7,0.718,42,0 +1,73,50,10,0,23,0.248,21,0 +7,187,68,39,304,37.7,0.254,41,1 +0,100,88,60,110,46.8,0.962,31,0 +0,146,82,0,0,40.5,1.781,44,0 +0,105,64,41,142,41.5,0.173,22,0 +2,84,0,0,0,0,0.304,21,0 +8,133,72,0,0,32.9,0.27,39,1 +5,44,62,0,0,25,0.587,36,0 +2,141,58,34,128,25.4,0.699,24,0 +7,114,66,0,0,32.8,0.258,42,1 +5,99,74,27,0,29,0.203,32,0 +0,109,88,30,0,32.5,0.855,38,1 +2,109,92,0,0,42.7,0.845,54,0 +1,95,66,13,38,19.6,0.334,25,0 +4,146,85,27,100,28.9,0.189,27,0 +2,100,66,20,90,32.9,0.867,28,1 +5,139,64,35,140,28.6,0.411,26,0 +13,126,90,0,0,43.4,0.583,42,1 +4,129,86,20,270,35.1,0.231,23,0 +1,79,75,30,0,32,0.396,22,0 +1,0,48,20,0,24.7,0.14,22,0 +7,62,78,0,0,32.6,0.391,41,0 +5,95,72,33,0,37.7,0.37,27,0 +0,131,0,0,0,43.2,0.27,26,1 +2,112,66,22,0,25,0.307,24,0 +3,113,44,13,0,22.4,0.14,22,0 +2,74,0,0,0,0,0.102,22,0 +7,83,78,26,71,29.3,0.767,36,0 +0,101,65,28,0,24.6,0.237,22,0 +5,137,108,0,0,48.8,0.227,37,1 +2,110,74,29,125,32.4,0.698,27,0 +13,106,72,54,0,36.6,0.178,45,0 +2,100,68,25,71,38.5,0.324,26,0 +15,136,70,32,110,37.1,0.153,43,1 +1,107,68,19,0,26.5,0.165,24,0 +1,80,55,0,0,19.1,0.258,21,0 +4,123,80,15,176,32,0.443,34,0 +7,81,78,40,48,46.7,0.261,42,0 +4,134,72,0,0,23.8,0.277,60,1 +2,142,82,18,64,24.7,0.761,21,0 +6,144,72,27,228,33.9,0.255,40,0 +2,92,62,28,0,31.6,0.13,24,0 +1,71,48,18,76,20.4,0.323,22,0 +6,93,50,30,64,28.7,0.356,23,0 +1,122,90,51,220,49.7,0.325,31,1 +1,163,72,0,0,39,1.222,33,1 +1,151,60,0,0,26.1,0.179,22,0 +0,125,96,0,0,22.5,0.262,21,0 +1,81,72,18,40,26.6,0.283,24,0 +2,85,65,0,0,39.6,0.93,27,0 +1,126,56,29,152,28.7,0.801,21,0 +1,96,122,0,0,22.4,0.207,27,0 +4,144,58,28,140,29.5,0.287,37,0 +3,83,58,31,18,34.3,0.336,25,0 +0,95,85,25,36,37.4,0.247,24,1 +3,171,72,33,135,33.3,0.199,24,1 +8,155,62,26,495,34,0.543,46,1 +1,89,76,34,37,31.2,0.192,23,0 +4,76,62,0,0,34,0.391,25,0 +7,160,54,32,175,30.5,0.588,39,1 +4,146,92,0,0,31.2,0.539,61,1 +5,124,74,0,0,34,0.22,38,1 +5,78,48,0,0,33.7,0.654,25,0 +4,97,60,23,0,28.2,0.443,22,0 +4,99,76,15,51,23.2,0.223,21,0 +0,162,76,56,100,53.2,0.759,25,1 +6,111,64,39,0,34.2,0.26,24,0 +2,107,74,30,100,33.6,0.404,23,0 +5,132,80,0,0,26.8,0.186,69,0 +0,113,76,0,0,33.3,0.278,23,1 +1,88,30,42,99,55,0.496,26,1 +3,120,70,30,135,42.9,0.452,30,0 +1,118,58,36,94,33.3,0.261,23,0 +1,117,88,24,145,34.5,0.403,40,1 +0,105,84,0,0,27.9,0.741,62,1 +4,173,70,14,168,29.7,0.361,33,1 +9,122,56,0,0,33.3,1.114,33,1 +3,170,64,37,225,34.5,0.356,30,1 +8,84,74,31,0,38.3,0.457,39,0 +2,96,68,13,49,21.1,0.647,26,0 +2,125,60,20,140,33.8,0.088,31,0 +0,100,70,26,50,30.8,0.597,21,0 +0,93,60,25,92,28.7,0.532,22,0 +0,129,80,0,0,31.2,0.703,29,0 +5,105,72,29,325,36.9,0.159,28,0 +3,128,78,0,0,21.1,0.268,55,0 +5,106,82,30,0,39.5,0.286,38,0 +2,108,52,26,63,32.5,0.318,22,0 +10,108,66,0,0,32.4,0.272,42,1 +4,154,62,31,284,32.8,0.237,23,0 +0,102,75,23,0,0,0.572,21,0 +9,57,80,37,0,32.8,0.096,41,0 +2,106,64,35,119,30.5,1.4,34,0 +5,147,78,0,0,33.7,0.218,65,0 +2,90,70,17,0,27.3,0.085,22,0 +1,136,74,50,204,37.4,0.399,24,0 +4,114,65,0,0,21.9,0.432,37,0 +9,156,86,28,155,34.3,1.189,42,1 +1,153,82,42,485,40.6,0.687,23,0 +8,188,78,0,0,47.9,0.137,43,1 +7,152,88,44,0,50,0.337,36,1 +2,99,52,15,94,24.6,0.637,21,0 +1,109,56,21,135,25.2,0.833,23,0 +2,88,74,19,53,29,0.229,22,0 +17,163,72,41,114,40.9,0.817,47,1 +4,151,90,38,0,29.7,0.294,36,0 +7,102,74,40,105,37.2,0.204,45,0 +0,114,80,34,285,44.2,0.167,27,0 +2,100,64,23,0,29.7,0.368,21,0 +0,131,88,0,0,31.6,0.743,32,1 +6,104,74,18,156,29.9,0.722,41,1 +3,148,66,25,0,32.5,0.256,22,0 +4,120,68,0,0,29.6,0.709,34,0 +4,110,66,0,0,31.9,0.471,29,0 +3,111,90,12,78,28.4,0.495,29,0 +6,102,82,0,0,30.8,0.18,36,1 +6,134,70,23,130,35.4,0.542,29,1 +2,87,0,23,0,28.9,0.773,25,0 +1,79,60,42,48,43.5,0.678,23,0 +2,75,64,24,55,29.7,0.37,33,0 +8,179,72,42,130,32.7,0.719,36,1 +6,85,78,0,0,31.2,0.382,42,0 +0,129,110,46,130,67.1,0.319,26,1 +5,143,78,0,0,45,0.19,47,0 +5,130,82,0,0,39.1,0.956,37,1 +6,87,80,0,0,23.2,0.084,32,0 +0,119,64,18,92,34.9,0.725,23,0 +1,0,74,20,23,27.7,0.299,21,0 +5,73,60,0,0,26.8,0.268,27,0 +4,141,74,0,0,27.6,0.244,40,0 +7,194,68,28,0,35.9,0.745,41,1 +8,181,68,36,495,30.1,0.615,60,1 +1,128,98,41,58,32,1.321,33,1 +8,109,76,39,114,27.9,0.64,31,1 +5,139,80,35,160,31.6,0.361,25,1 +3,111,62,0,0,22.6,0.142,21,0 +9,123,70,44,94,33.1,0.374,40,0 +7,159,66,0,0,30.4,0.383,36,1 +11,135,0,0,0,52.3,0.578,40,1 +8,85,55,20,0,24.4,0.136,42,0 +5,158,84,41,210,39.4,0.395,29,1 +1,105,58,0,0,24.3,0.187,21,0 +3,107,62,13,48,22.9,0.678,23,1 +4,109,64,44,99,34.8,0.905,26,1 +4,148,60,27,318,30.9,0.15,29,1 +0,113,80,16,0,31,0.874,21,0 +1,138,82,0,0,40.1,0.236,28,0 +0,108,68,20,0,27.3,0.787,32,0 +2,99,70,16,44,20.4,0.235,27,0 +6,103,72,32,190,37.7,0.324,55,0 +5,111,72,28,0,23.9,0.407,27,0 +8,196,76,29,280,37.5,0.605,57,1 +5,162,104,0,0,37.7,0.151,52,1 +1,96,64,27,87,33.2,0.289,21,0 +7,184,84,33,0,35.5,0.355,41,1 +2,81,60,22,0,27.7,0.29,25,0 +0,147,85,54,0,42.8,0.375,24,0 +7,179,95,31,0,34.2,0.164,60,0 +0,140,65,26,130,42.6,0.431,24,1 +9,112,82,32,175,34.2,0.26,36,1 +12,151,70,40,271,41.8,0.742,38,1 +5,109,62,41,129,35.8,0.514,25,1 +6,125,68,30,120,30,0.464,32,0 +5,85,74,22,0,29,1.224,32,1 +5,112,66,0,0,37.8,0.261,41,1 +0,177,60,29,478,34.6,1.072,21,1 +2,158,90,0,0,31.6,0.805,66,1 +7,119,0,0,0,25.2,0.209,37,0 +7,142,60,33,190,28.8,0.687,61,0 +1,100,66,15,56,23.6,0.666,26,0 +1,87,78,27,32,34.6,0.101,22,0 +0,101,76,0,0,35.7,0.198,26,0 +3,162,52,38,0,37.2,0.652,24,1 +4,197,70,39,744,36.7,2.329,31,0 +0,117,80,31,53,45.2,0.089,24,0 +4,142,86,0,0,44,0.645,22,1 +6,134,80,37,370,46.2,0.238,46,1 +1,79,80,25,37,25.4,0.583,22,0 +4,122,68,0,0,35,0.394,29,0 +3,74,68,28,45,29.7,0.293,23,0 +4,171,72,0,0,43.6,0.479,26,1 +7,181,84,21,192,35.9,0.586,51,1 +0,179,90,27,0,44.1,0.686,23,1 +9,164,84,21,0,30.8,0.831,32,1 +0,104,76,0,0,18.4,0.582,27,0 +1,91,64,24,0,29.2,0.192,21,0 +4,91,70,32,88,33.1,0.446,22,0 +3,139,54,0,0,25.6,0.402,22,1 +6,119,50,22,176,27.1,1.318,33,1 +2,146,76,35,194,38.2,0.329,29,0 +9,184,85,15,0,30,1.213,49,1 +10,122,68,0,0,31.2,0.258,41,0 +0,165,90,33,680,52.3,0.427,23,0 +9,124,70,33,402,35.4,0.282,34,0 +1,111,86,19,0,30.1,0.143,23,0 +9,106,52,0,0,31.2,0.38,42,0 +2,129,84,0,0,28,0.284,27,0 +2,90,80,14,55,24.4,0.249,24,0 +0,86,68,32,0,35.8,0.238,25,0 +12,92,62,7,258,27.6,0.926,44,1 +1,113,64,35,0,33.6,0.543,21,1 +3,111,56,39,0,30.1,0.557,30,0 +2,114,68,22,0,28.7,0.092,25,0 +1,193,50,16,375,25.9,0.655,24,0 +11,155,76,28,150,33.3,1.353,51,1 +3,191,68,15,130,30.9,0.299,34,0 +3,141,0,0,0,30,0.761,27,1 +4,95,70,32,0,32.1,0.612,24,0 +3,142,80,15,0,32.4,0.2,63,0 +4,123,62,0,0,32,0.226,35,1 +5,96,74,18,67,33.6,0.997,43,0 +0,138,0,0,0,36.3,0.933,25,1 +2,128,64,42,0,40,1.101,24,0 +0,102,52,0,0,25.1,0.078,21,0 +2,146,0,0,0,27.5,0.24,28,1 +10,101,86,37,0,45.6,1.136,38,1 +2,108,62,32,56,25.2,0.128,21,0 +3,122,78,0,0,23,0.254,40,0 +1,71,78,50,45,33.2,0.422,21,0 +13,106,70,0,0,34.2,0.251,52,0 +2,100,70,52,57,40.5,0.677,25,0 +7,106,60,24,0,26.5,0.296,29,1 +0,104,64,23,116,27.8,0.454,23,0 +5,114,74,0,0,24.9,0.744,57,0 +2,108,62,10,278,25.3,0.881,22,0 +0,146,70,0,0,37.9,0.334,28,1 +10,129,76,28,122,35.9,0.28,39,0 +7,133,88,15,155,32.4,0.262,37,0 +7,161,86,0,0,30.4,0.165,47,1 +2,108,80,0,0,27,0.259,52,1 +7,136,74,26,135,26,0.647,51,0 +5,155,84,44,545,38.7,0.619,34,0 +1,119,86,39,220,45.6,0.808,29,1 +4,96,56,17,49,20.8,0.34,26,0 +5,108,72,43,75,36.1,0.263,33,0 +0,78,88,29,40,36.9,0.434,21,0 +0,107,62,30,74,36.6,0.757,25,1 +2,128,78,37,182,43.3,1.224,31,1 +1,128,48,45,194,40.5,0.613,24,1 +0,161,50,0,0,21.9,0.254,65,0 +6,151,62,31,120,35.5,0.692,28,0 +2,146,70,38,360,28,0.337,29,1 +0,126,84,29,215,30.7,0.52,24,0 +14,100,78,25,184,36.6,0.412,46,1 +8,112,72,0,0,23.6,0.84,58,0 +0,167,0,0,0,32.3,0.839,30,1 +2,144,58,33,135,31.6,0.422,25,1 +5,77,82,41,42,35.8,0.156,35,0 +5,115,98,0,0,52.9,0.209,28,1 +3,150,76,0,0,21,0.207,37,0 +2,120,76,37,105,39.7,0.215,29,0 +10,161,68,23,132,25.5,0.326,47,1 +0,137,68,14,148,24.8,0.143,21,0 +0,128,68,19,180,30.5,1.391,25,1 +2,124,68,28,205,32.9,0.875,30,1 +6,80,66,30,0,26.2,0.313,41,0 +0,106,70,37,148,39.4,0.605,22,0 +2,155,74,17,96,26.6,0.433,27,1 +3,113,50,10,85,29.5,0.626,25,0 +7,109,80,31,0,35.9,1.127,43,1 +2,112,68,22,94,34.1,0.315,26,0 +3,99,80,11,64,19.3,0.284,30,0 +3,182,74,0,0,30.5,0.345,29,1 +3,115,66,39,140,38.1,0.15,28,0 +6,194,78,0,0,23.5,0.129,59,1 +4,129,60,12,231,27.5,0.527,31,0 +3,112,74,30,0,31.6,0.197,25,1 +0,124,70,20,0,27.4,0.254,36,1 +13,152,90,33,29,26.8,0.731,43,1 +2,112,75,32,0,35.7,0.148,21,0 +1,157,72,21,168,25.6,0.123,24,0 +1,122,64,32,156,35.1,0.692,30,1 +10,179,70,0,0,35.1,0.2,37,0 +2,102,86,36,120,45.5,0.127,23,1 +6,105,70,32,68,30.8,0.122,37,0 +8,118,72,19,0,23.1,1.476,46,0 +2,87,58,16,52,32.7,0.166,25,0 +1,180,0,0,0,43.3,0.282,41,1 +12,106,80,0,0,23.6,0.137,44,0 +1,95,60,18,58,23.9,0.26,22,0 +0,165,76,43,255,47.9,0.259,26,0 +0,117,0,0,0,33.8,0.932,44,0 +5,115,76,0,0,31.2,0.343,44,1 +9,152,78,34,171,34.2,0.893,33,1 +7,178,84,0,0,39.9,0.331,41,1 +1,130,70,13,105,25.9,0.472,22,0 +1,95,74,21,73,25.9,0.673,36,0 +1,0,68,35,0,32,0.389,22,0 +5,122,86,0,0,34.7,0.29,33,0 +8,95,72,0,0,36.8,0.485,57,0 +8,126,88,36,108,38.5,0.349,49,0 +1,139,46,19,83,28.7,0.654,22,0 +3,116,0,0,0,23.5,0.187,23,0 +3,99,62,19,74,21.8,0.279,26,0 +5,0,80,32,0,41,0.346,37,1 +4,92,80,0,0,42.2,0.237,29,0 +4,137,84,0,0,31.2,0.252,30,0 +3,61,82,28,0,34.4,0.243,46,0 +1,90,62,12,43,27.2,0.58,24,0 +3,90,78,0,0,42.7,0.559,21,0 +9,165,88,0,0,30.4,0.302,49,1 +1,125,50,40,167,33.3,0.962,28,1 +13,129,0,30,0,39.9,0.569,44,1 +12,88,74,40,54,35.3,0.378,48,0 +1,196,76,36,249,36.5,0.875,29,1 +5,189,64,33,325,31.2,0.583,29,1 +5,158,70,0,0,29.8,0.207,63,0 +5,103,108,37,0,39.2,0.305,65,0 +4,146,78,0,0,38.5,0.52,67,1 +4,147,74,25,293,34.9,0.385,30,0 +5,99,54,28,83,34,0.499,30,0 +6,124,72,0,0,27.6,0.368,29,1 +0,101,64,17,0,21,0.252,21,0 +3,81,86,16,66,27.5,0.306,22,0 +1,133,102,28,140,32.8,0.234,45,1 +3,173,82,48,465,38.4,2.137,25,1 +0,118,64,23,89,0,1.731,21,0 +0,84,64,22,66,35.8,0.545,21,0 +2,105,58,40,94,34.9,0.225,25,0 +2,122,52,43,158,36.2,0.816,28,0 +12,140,82,43,325,39.2,0.528,58,1 +0,98,82,15,84,25.2,0.299,22,0 +1,87,60,37,75,37.2,0.509,22,0 +4,156,75,0,0,48.3,0.238,32,1 +0,93,100,39,72,43.4,1.021,35,0 +1,107,72,30,82,30.8,0.821,24,0 +0,105,68,22,0,20,0.236,22,0 +1,109,60,8,182,25.4,0.947,21,0 +1,90,62,18,59,25.1,1.268,25,0 +1,125,70,24,110,24.3,0.221,25,0 +1,119,54,13,50,22.3,0.205,24,0 +5,116,74,29,0,32.3,0.66,35,1 +8,105,100,36,0,43.3,0.239,45,1 +5,144,82,26,285,32,0.452,58,1 +3,100,68,23,81,31.6,0.949,28,0 +1,100,66,29,196,32,0.444,42,0 +5,166,76,0,0,45.7,0.34,27,1 +1,131,64,14,415,23.7,0.389,21,0 +4,116,72,12,87,22.1,0.463,37,0 +4,158,78,0,0,32.9,0.803,31,1 +2,127,58,24,275,27.7,1.6,25,0 +3,96,56,34,115,24.7,0.944,39,0 +0,131,66,40,0,34.3,0.196,22,1 +3,82,70,0,0,21.1,0.389,25,0 +3,193,70,31,0,34.9,0.241,25,1 +4,95,64,0,0,32,0.161,31,1 +6,137,61,0,0,24.2,0.151,55,0 +5,136,84,41,88,35,0.286,35,1 +9,72,78,25,0,31.6,0.28,38,0 +5,168,64,0,0,32.9,0.135,41,1 +2,123,48,32,165,42.1,0.52,26,0 +4,115,72,0,0,28.9,0.376,46,1 +0,101,62,0,0,21.9,0.336,25,0 +8,197,74,0,0,25.9,1.191,39,1 +1,172,68,49,579,42.4,0.702,28,1 +6,102,90,39,0,35.7,0.674,28,0 +1,112,72,30,176,34.4,0.528,25,0 +1,143,84,23,310,42.4,1.076,22,0 +1,143,74,22,61,26.2,0.256,21,0 +0,138,60,35,167,34.6,0.534,21,1 +3,173,84,33,474,35.7,0.258,22,1 +1,97,68,21,0,27.2,1.095,22,0 +4,144,82,32,0,38.5,0.554,37,1 +1,83,68,0,0,18.2,0.624,27,0 +3,129,64,29,115,26.4,0.219,28,1 +1,119,88,41,170,45.3,0.507,26,0 +2,94,68,18,76,26,0.561,21,0 +0,102,64,46,78,40.6,0.496,21,0 +2,115,64,22,0,30.8,0.421,21,0 +8,151,78,32,210,42.9,0.516,36,1 +4,184,78,39,277,37,0.264,31,1 +0,94,0,0,0,0,0.256,25,0 +1,181,64,30,180,34.1,0.328,38,1 +0,135,94,46,145,40.6,0.284,26,0 +1,95,82,25,180,35,0.233,43,1 +2,99,0,0,0,22.2,0.108,23,0 +3,89,74,16,85,30.4,0.551,38,0 +1,80,74,11,60,30,0.527,22,0 +2,139,75,0,0,25.6,0.167,29,0 +1,90,68,8,0,24.5,1.138,36,0 +0,141,0,0,0,42.4,0.205,29,1 +12,140,85,33,0,37.4,0.244,41,0 +5,147,75,0,0,29.9,0.434,28,0 +1,97,70,15,0,18.2,0.147,21,0 +6,107,88,0,0,36.8,0.727,31,0 +0,189,104,25,0,34.3,0.435,41,1 +2,83,66,23,50,32.2,0.497,22,0 +4,117,64,27,120,33.2,0.23,24,0 +8,108,70,0,0,30.5,0.955,33,1 +4,117,62,12,0,29.7,0.38,30,1 +0,180,78,63,14,59.4,2.42,25,1 +1,100,72,12,70,25.3,0.658,28,0 +0,95,80,45,92,36.5,0.33,26,0 +0,104,64,37,64,33.6,0.51,22,1 +0,120,74,18,63,30.5,0.285,26,0 +1,82,64,13,95,21.2,0.415,23,0 +2,134,70,0,0,28.9,0.542,23,1 +0,91,68,32,210,39.9,0.381,25,0 +2,119,0,0,0,19.6,0.832,72,0 +2,100,54,28,105,37.8,0.498,24,0 +14,175,62,30,0,33.6,0.212,38,1 +1,135,54,0,0,26.7,0.687,62,0 +5,86,68,28,71,30.2,0.364,24,0 +10,148,84,48,237,37.6,1.001,51,1 +9,134,74,33,60,25.9,0.46,81,0 +9,120,72,22,56,20.8,0.733,48,0 +1,71,62,0,0,21.8,0.416,26,0 +8,74,70,40,49,35.3,0.705,39,0 +5,88,78,30,0,27.6,0.258,37,0 +10,115,98,0,0,24,1.022,34,0 +0,124,56,13,105,21.8,0.452,21,0 +0,74,52,10,36,27.8,0.269,22,0 +0,97,64,36,100,36.8,0.6,25,0 +8,120,0,0,0,30,0.183,38,1 +6,154,78,41,140,46.1,0.571,27,0 +1,144,82,40,0,41.3,0.607,28,0 +0,137,70,38,0,33.2,0.17,22,0 +0,119,66,27,0,38.8,0.259,22,0 +7,136,90,0,0,29.9,0.21,50,0 +4,114,64,0,0,28.9,0.126,24,0 +0,137,84,27,0,27.3,0.231,59,0 +2,105,80,45,191,33.7,0.711,29,1 +7,114,76,17,110,23.8,0.466,31,0 +8,126,74,38,75,25.9,0.162,39,0 +4,132,86,31,0,28,0.419,63,0 +3,158,70,30,328,35.5,0.344,35,1 +0,123,88,37,0,35.2,0.197,29,0 +4,85,58,22,49,27.8,0.306,28,0 +0,84,82,31,125,38.2,0.233,23,0 +0,145,0,0,0,44.2,0.63,31,1 +0,135,68,42,250,42.3,0.365,24,1 +1,139,62,41,480,40.7,0.536,21,0 +0,173,78,32,265,46.5,1.159,58,0 +4,99,72,17,0,25.6,0.294,28,0 +8,194,80,0,0,26.1,0.551,67,0 +2,83,65,28,66,36.8,0.629,24,0 +2,89,90,30,0,33.5,0.292,42,0 +4,99,68,38,0,32.8,0.145,33,0 +4,125,70,18,122,28.9,1.144,45,1 +3,80,0,0,0,0,0.174,22,0 +6,166,74,0,0,26.6,0.304,66,0 +5,110,68,0,0,26,0.292,30,0 +2,81,72,15,76,30.1,0.547,25,0 +7,195,70,33,145,25.1,0.163,55,1 +6,154,74,32,193,29.3,0.839,39,0 +2,117,90,19,71,25.2,0.313,21,0 +3,84,72,32,0,37.2,0.267,28,0 +6,0,68,41,0,39,0.727,41,1 +7,94,64,25,79,33.3,0.738,41,0 +3,96,78,39,0,37.3,0.238,40,0 +10,75,82,0,0,33.3,0.263,38,0 +0,180,90,26,90,36.5,0.314,35,1 +1,130,60,23,170,28.6,0.692,21,0 +2,84,50,23,76,30.4,0.968,21,0 +8,120,78,0,0,25,0.409,64,0 +12,84,72,31,0,29.7,0.297,46,1 +0,139,62,17,210,22.1,0.207,21,0 +9,91,68,0,0,24.2,0.2,58,0 +2,91,62,0,0,27.3,0.525,22,0 +3,99,54,19,86,25.6,0.154,24,0 +3,163,70,18,105,31.6,0.268,28,1 +9,145,88,34,165,30.3,0.771,53,1 +7,125,86,0,0,37.6,0.304,51,0 +13,76,60,0,0,32.8,0.18,41,0 +6,129,90,7,326,19.6,0.582,60,0 +2,68,70,32,66,25,0.187,25,0 +3,124,80,33,130,33.2,0.305,26,0 +6,114,0,0,0,0,0.189,26,0 +9,130,70,0,0,34.2,0.652,45,1 +3,125,58,0,0,31.6,0.151,24,0 +3,87,60,18,0,21.8,0.444,21,0 +1,97,64,19,82,18.2,0.299,21,0 +3,116,74,15,105,26.3,0.107,24,0 +0,117,66,31,188,30.8,0.493,22,0 +0,111,65,0,0,24.6,0.66,31,0 +2,122,60,18,106,29.8,0.717,22,0 +0,107,76,0,0,45.3,0.686,24,0 +1,86,66,52,65,41.3,0.917,29,0 +6,91,0,0,0,29.8,0.501,31,0 +1,77,56,30,56,33.3,1.251,24,0 +4,132,0,0,0,32.9,0.302,23,1 +0,105,90,0,0,29.6,0.197,46,0 +0,57,60,0,0,21.7,0.735,67,0 +0,127,80,37,210,36.3,0.804,23,0 +3,129,92,49,155,36.4,0.968,32,1 +8,100,74,40,215,39.4,0.661,43,1 +3,128,72,25,190,32.4,0.549,27,1 +10,90,85,32,0,34.9,0.825,56,1 +4,84,90,23,56,39.5,0.159,25,0 +1,88,78,29,76,32,0.365,29,0 +8,186,90,35,225,34.5,0.423,37,1 +5,187,76,27,207,43.6,1.034,53,1 +4,131,68,21,166,33.1,0.16,28,0 +1,164,82,43,67,32.8,0.341,50,0 +4,189,110,31,0,28.5,0.68,37,0 +1,116,70,28,0,27.4,0.204,21,0 +3,84,68,30,106,31.9,0.591,25,0 +6,114,88,0,0,27.8,0.247,66,0 +1,88,62,24,44,29.9,0.422,23,0 +1,84,64,23,115,36.9,0.471,28,0 +7,124,70,33,215,25.5,0.161,37,0 +1,97,70,40,0,38.1,0.218,30,0 +8,110,76,0,0,27.8,0.237,58,0 +11,103,68,40,0,46.2,0.126,42,0 +11,85,74,0,0,30.1,0.3,35,0 +6,125,76,0,0,33.8,0.121,54,1 +0,198,66,32,274,41.3,0.502,28,1 +1,87,68,34,77,37.6,0.401,24,0 +6,99,60,19,54,26.9,0.497,32,0 +0,91,80,0,0,32.4,0.601,27,0 +2,95,54,14,88,26.1,0.748,22,0 +1,99,72,30,18,38.6,0.412,21,0 +6,92,62,32,126,32,0.085,46,0 +4,154,72,29,126,31.3,0.338,37,0 +0,121,66,30,165,34.3,0.203,33,1 +3,78,70,0,0,32.5,0.27,39,0 +2,130,96,0,0,22.6,0.268,21,0 +3,111,58,31,44,29.5,0.43,22,0 +2,98,60,17,120,34.7,0.198,22,0 +1,143,86,30,330,30.1,0.892,23,0 +1,119,44,47,63,35.5,0.28,25,0 +6,108,44,20,130,24,0.813,35,0 +2,118,80,0,0,42.9,0.693,21,1 +10,133,68,0,0,27,0.245,36,0 +2,197,70,99,0,34.7,0.575,62,1 +0,151,90,46,0,42.1,0.371,21,1 +6,109,60,27,0,25,0.206,27,0 +12,121,78,17,0,26.5,0.259,62,0 +8,100,76,0,0,38.7,0.19,42,0 +8,124,76,24,600,28.7,0.687,52,1 +1,93,56,11,0,22.5,0.417,22,0 +8,143,66,0,0,34.9,0.129,41,1 +6,103,66,0,0,24.3,0.249,29,0 +3,176,86,27,156,33.3,1.154,52,1 +0,73,0,0,0,21.1,0.342,25,0 +11,111,84,40,0,46.8,0.925,45,1 +2,112,78,50,140,39.4,0.175,24,0 +3,132,80,0,0,34.4,0.402,44,1 +2,82,52,22,115,28.5,1.699,25,0 +6,123,72,45,230,33.6,0.733,34,0 +0,188,82,14,185,32,0.682,22,1 +0,67,76,0,0,45.3,0.194,46,0 +1,89,24,19,25,27.8,0.559,21,0 +1,173,74,0,0,36.8,0.088,38,1 +1,109,38,18,120,23.1,0.407,26,0 +1,108,88,19,0,27.1,0.4,24,0 +6,96,0,0,0,23.7,0.19,28,0 +1,124,74,36,0,27.8,0.1,30,0 +7,150,78,29,126,35.2,0.692,54,1 +4,183,0,0,0,28.4,0.212,36,1 +1,124,60,32,0,35.8,0.514,21,0 +1,181,78,42,293,40,1.258,22,1 +1,92,62,25,41,19.5,0.482,25,0 +0,152,82,39,272,41.5,0.27,27,0 +1,111,62,13,182,24,0.138,23,0 +3,106,54,21,158,30.9,0.292,24,0 +3,174,58,22,194,32.9,0.593,36,1 +7,168,88,42,321,38.2,0.787,40,1 +6,105,80,28,0,32.5,0.878,26,0 +11,138,74,26,144,36.1,0.557,50,1 +3,106,72,0,0,25.8,0.207,27,0 +6,117,96,0,0,28.7,0.157,30,0 +2,68,62,13,15,20.1,0.257,23,0 +9,112,82,24,0,28.2,1.282,50,1 +0,119,0,0,0,32.4,0.141,24,1 +2,112,86,42,160,38.4,0.246,28,0 +2,92,76,20,0,24.2,1.698,28,0 +6,183,94,0,0,40.8,1.461,45,0 +0,94,70,27,115,43.5,0.347,21,0 +2,108,64,0,0,30.8,0.158,21,0 +4,90,88,47,54,37.7,0.362,29,0 +0,125,68,0,0,24.7,0.206,21,0 +0,132,78,0,0,32.4,0.393,21,0 +5,128,80,0,0,34.6,0.144,45,0 +4,94,65,22,0,24.7,0.148,21,0 +7,114,64,0,0,27.4,0.732,34,1 +0,102,78,40,90,34.5,0.238,24,0 +2,111,60,0,0,26.2,0.343,23,0 +1,128,82,17,183,27.5,0.115,22,0 +10,92,62,0,0,25.9,0.167,31,0 +13,104,72,0,0,31.2,0.465,38,1 +5,104,74,0,0,28.8,0.153,48,0 +2,94,76,18,66,31.6,0.649,23,0 +7,97,76,32,91,40.9,0.871,32,1 +1,100,74,12,46,19.5,0.149,28,0 +0,102,86,17,105,29.3,0.695,27,0 +4,128,70,0,0,34.3,0.303,24,0 +6,147,80,0,0,29.5,0.178,50,1 +4,90,0,0,0,28,0.61,31,0 +3,103,72,30,152,27.6,0.73,27,0 +2,157,74,35,440,39.4,0.134,30,0 +1,167,74,17,144,23.4,0.447,33,1 +0,179,50,36,159,37.8,0.455,22,1 +11,136,84,35,130,28.3,0.26,42,1 +0,107,60,25,0,26.4,0.133,23,0 +1,91,54,25,100,25.2,0.234,23,0 +1,117,60,23,106,33.8,0.466,27,0 +5,123,74,40,77,34.1,0.269,28,0 +2,120,54,0,0,26.8,0.455,27,0 +1,106,70,28,135,34.2,0.142,22,0 +2,155,52,27,540,38.7,0.24,25,1 +2,101,58,35,90,21.8,0.155,22,0 +1,120,80,48,200,38.9,1.162,41,0 +11,127,106,0,0,39,0.19,51,0 +3,80,82,31,70,34.2,1.292,27,1 +10,162,84,0,0,27.7,0.182,54,0 +1,199,76,43,0,42.9,1.394,22,1 +8,167,106,46,231,37.6,0.165,43,1 +9,145,80,46,130,37.9,0.637,40,1 +6,115,60,39,0,33.7,0.245,40,1 +1,112,80,45,132,34.8,0.217,24,0 +4,145,82,18,0,32.5,0.235,70,1 +10,111,70,27,0,27.5,0.141,40,1 +6,98,58,33,190,34,0.43,43,0 +9,154,78,30,100,30.9,0.164,45,0 +6,165,68,26,168,33.6,0.631,49,0 +1,99,58,10,0,25.4,0.551,21,0 +10,68,106,23,49,35.5,0.285,47,0 +3,123,100,35,240,57.3,0.88,22,0 +8,91,82,0,0,35.6,0.587,68,0 +6,195,70,0,0,30.9,0.328,31,1 +9,156,86,0,0,24.8,0.23,53,1 +0,93,60,0,0,35.3,0.263,25,0 +3,121,52,0,0,36,0.127,25,1 +2,101,58,17,265,24.2,0.614,23,0 +2,56,56,28,45,24.2,0.332,22,0 +0,162,76,36,0,49.6,0.364,26,1 +0,95,64,39,105,44.6,0.366,22,0 +4,125,80,0,0,32.3,0.536,27,1 +5,136,82,0,0,0,0.64,69,0 +2,129,74,26,205,33.2,0.591,25,0 +3,130,64,0,0,23.1,0.314,22,0 +1,107,50,19,0,28.3,0.181,29,0 +1,140,74,26,180,24.1,0.828,23,0 +1,144,82,46,180,46.1,0.335,46,1 +8,107,80,0,0,24.6,0.856,34,0 +13,158,114,0,0,42.3,0.257,44,1 +2,121,70,32,95,39.1,0.886,23,0 +7,129,68,49,125,38.5,0.439,43,1 +2,90,60,0,0,23.5,0.191,25,0 +7,142,90,24,480,30.4,0.128,43,1 +3,169,74,19,125,29.9,0.268,31,1 +0,99,0,0,0,25,0.253,22,0 +4,127,88,11,155,34.5,0.598,28,0 +4,118,70,0,0,44.5,0.904,26,0 +2,122,76,27,200,35.9,0.483,26,0 +6,125,78,31,0,27.6,0.565,49,1 +1,168,88,29,0,35,0.905,52,1 +2,129,0,0,0,38.5,0.304,41,0 +4,110,76,20,100,28.4,0.118,27,0 +6,80,80,36,0,39.8,0.177,28,0 +10,115,0,0,0,0,0.261,30,1 +2,127,46,21,335,34.4,0.176,22,0 +9,164,78,0,0,32.8,0.148,45,1 +2,93,64,32,160,38,0.674,23,1 +3,158,64,13,387,31.2,0.295,24,0 +5,126,78,27,22,29.6,0.439,40,0 +10,129,62,36,0,41.2,0.441,38,1 +0,134,58,20,291,26.4,0.352,21,0 +3,102,74,0,0,29.5,0.121,32,0 +7,187,50,33,392,33.9,0.826,34,1 +3,173,78,39,185,33.8,0.97,31,1 +10,94,72,18,0,23.1,0.595,56,0 +1,108,60,46,178,35.5,0.415,24,0 +5,97,76,27,0,35.6,0.378,52,1 +4,83,86,19,0,29.3,0.317,34,0 +1,114,66,36,200,38.1,0.289,21,0 +1,149,68,29,127,29.3,0.349,42,1 +5,117,86,30,105,39.1,0.251,42,0 +1,111,94,0,0,32.8,0.265,45,0 +4,112,78,40,0,39.4,0.236,38,0 +1,116,78,29,180,36.1,0.496,25,0 +0,141,84,26,0,32.4,0.433,22,0 +2,175,88,0,0,22.9,0.326,22,0 +2,92,52,0,0,30.1,0.141,22,0 +3,130,78,23,79,28.4,0.323,34,1 +8,120,86,0,0,28.4,0.259,22,1 +2,174,88,37,120,44.5,0.646,24,1 +2,106,56,27,165,29,0.426,22,0 +2,105,75,0,0,23.3,0.56,53,0 +4,95,60,32,0,35.4,0.284,28,0 +0,126,86,27,120,27.4,0.515,21,0 +8,65,72,23,0,32,0.6,42,0 +2,99,60,17,160,36.6,0.453,21,0 +1,102,74,0,0,39.5,0.293,42,1 +11,120,80,37,150,42.3,0.785,48,1 +3,102,44,20,94,30.8,0.4,26,0 +1,109,58,18,116,28.5,0.219,22,0 +9,140,94,0,0,32.7,0.734,45,1 +13,153,88,37,140,40.6,1.174,39,0 +12,100,84,33,105,30,0.488,46,0 +1,147,94,41,0,49.3,0.358,27,1 +1,81,74,41,57,46.3,1.096,32,0 +3,187,70,22,200,36.4,0.408,36,1 +6,162,62,0,0,24.3,0.178,50,1 +4,136,70,0,0,31.2,1.182,22,1 +1,121,78,39,74,39,0.261,28,0 +3,108,62,24,0,26,0.223,25,0 +0,181,88,44,510,43.3,0.222,26,1 +8,154,78,32,0,32.4,0.443,45,1 +1,128,88,39,110,36.5,1.057,37,1 +7,137,90,41,0,32,0.391,39,0 +0,123,72,0,0,36.3,0.258,52,1 +1,106,76,0,0,37.5,0.197,26,0 +6,190,92,0,0,35.5,0.278,66,1 +2,88,58,26,16,28.4,0.766,22,0 +9,170,74,31,0,44,0.403,43,1 +9,89,62,0,0,22.5,0.142,33,0 +10,101,76,48,180,32.9,0.171,63,0 +2,122,70,27,0,36.8,0.34,27,0 +5,121,72,23,112,26.2,0.245,30,0 +1,126,60,0,0,30.1,0.349,47,1 +1,93,70,31,0,30.4,0.315,23,0 \ No newline at end of file diff --git a/lab1.ipynb b/lab1.ipynb new file mode 100644 index 0000000..058e16c --- /dev/null +++ b/lab1.ipynb @@ -0,0 +1,2387 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Лабораторная работа №1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Основные возможности библиотеки Pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tЗагрузка и сохранение данных" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"diabetes.csv\")\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"new.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Получение сведений о датафрейме с данными" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
count768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000
mean3.845052120.89453169.10546920.53645879.79947931.9925780.47187633.2408850.348958
std3.36957831.97261819.35580715.952218115.2440027.8841600.33132911.7602320.476951
min0.0000000.0000000.0000000.0000000.0000000.0000000.07800021.0000000.000000
25%1.00000099.00000062.0000000.0000000.00000027.3000000.24375024.0000000.000000
50%3.000000117.00000072.00000023.00000030.50000032.0000000.37250029.0000000.000000
75%6.000000140.25000080.00000032.000000127.25000036.6000000.62625041.0000001.000000
max17.000000199.000000122.00000099.000000846.00000067.1000002.42000081.0000001.000000
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n", + "count 768.000000 768.000000 768.000000 768.000000 768.000000 \n", + "mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n", + "std 3.369578 31.972618 19.355807 15.952218 115.244002 \n", + "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n", + "50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n", + "75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n", + "max 17.000000 199.000000 122.000000 99.000000 846.000000 \n", + "\n", + " BMI DiabetesPedigreeFunction Age Outcome \n", + "count 768.000000 768.000000 768.000000 768.000000 \n", + "mean 31.992578 0.471876 33.240885 0.348958 \n", + "std 7.884160 0.331329 11.760232 0.476951 \n", + "min 0.000000 0.078000 21.000000 0.000000 \n", + "25% 27.300000 0.243750 24.000000 0.000000 \n", + "50% 32.000000 0.372500 29.000000 0.000000 \n", + "75% 36.600000 0.626250 41.000000 1.000000 \n", + "max 67.100000 2.420000 81.000000 1.000000 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 768 entries, 0 to 767\n", + "Data columns (total 9 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Pregnancies 768 non-null int64 \n", + " 1 Glucose 768 non-null int64 \n", + " 2 BloodPressure 768 non-null int64 \n", + " 3 SkinThickness 768 non-null int64 \n", + " 4 Insulin 768 non-null int64 \n", + " 5 BMI 768 non-null float64\n", + " 6 DiabetesPedigreeFunction 768 non-null float64\n", + " 7 Age 768 non-null int64 \n", + " 8 Outcome 768 non-null int64 \n", + "dtypes: float64(2), int64(7)\n", + "memory usage: 54.1 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tПолучение сведений о колонках датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',\n", + " 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],\n", + " dtype='object')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tВывод отельных строки и столбцов из датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeInsulin
0500
1310
2320
32194
433168
.........
76363180
764270
76530112
766470
767230
\n", + "

768 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Age Insulin\n", + "0 50 0\n", + "1 31 0\n", + "2 32 0\n", + "3 21 94\n", + "4 33 168\n", + ".. ... ...\n", + "763 63 180\n", + "764 27 0\n", + "765 30 112\n", + "766 47 0\n", + "767 23 0\n", + "\n", + "[768 rows x 2 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[[\"Age\", \"Insulin\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
318966239428.10.167210
40137403516843.12.288331
55116740025.60.201300
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "5 5 116 74 0 0 25.6 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + "5 0.201 30 0 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.iloc[3:6]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
40137403516843.12.288331
82197704554330.50.158531
131189602384630.10.398591
145166721917525.80.587511
160118844723045.80.551311
..............................
7483187702220036.40.408361
7530181884451043.30.222261
7551128883911036.51.057371
76310101764818032.90.171630
7655121722311226.20.245300
\n", + "

243 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "4 0 137 40 35 168 43.1 \n", + "8 2 197 70 45 543 30.5 \n", + "13 1 189 60 23 846 30.1 \n", + "14 5 166 72 19 175 25.8 \n", + "16 0 118 84 47 230 45.8 \n", + ".. ... ... ... ... ... ... \n", + "748 3 187 70 22 200 36.4 \n", + "753 0 181 88 44 510 43.3 \n", + "755 1 128 88 39 110 36.5 \n", + "763 10 101 76 48 180 32.9 \n", + "765 5 121 72 23 112 26.2 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "4 2.288 33 1 \n", + "8 0.158 53 1 \n", + "13 0.398 59 1 \n", + "14 0.587 51 1 \n", + "16 0.551 31 1 \n", + ".. ... ... ... \n", + "748 0.408 36 1 \n", + "753 0.222 26 1 \n", + "755 1.057 37 1 \n", + "763 0.171 63 0 \n", + "765 0.245 30 0 \n", + "\n", + "[243 rows x 9 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df['Insulin'] > 100]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tГруппировка и агрегация данных в датафрейме" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Insulin
Pregnancies
081.675676
198.674074
285.844660
387.453333
469.441176
557.298246
663.580000
784.466667
892.815789
962.428571
1034.791667
1165.454545
12112.555556
1327.900000
1492.000000
15110.000000
17114.000000
\n", + "
" + ], + "text/plain": [ + " Insulin\n", + "Pregnancies \n", + "0 81.675676\n", + "1 98.674074\n", + "2 85.844660\n", + "3 87.453333\n", + "4 69.441176\n", + "5 57.298246\n", + "6 63.580000\n", + "7 84.466667\n", + "8 92.815789\n", + "9 62.428571\n", + "10 34.791667\n", + "11 65.454545\n", + "12 112.555556\n", + "13 27.900000\n", + "14 92.000000\n", + "15 110.000000\n", + "17 114.000000" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "group = df.groupby(['Pregnancies'])['Insulin'].mean()\n", + "group.to_frame()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Сортировка данных в датафрейме" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
66111997643042.91.394221
5610198663227441.30.502281
2284197703974436.72.329310
82197704554330.50.158531
57921977099034.70.575621
..............................
342106835032.00.389220
349508032041.00.346371
502606841039.00.727411
1821074202327.70.299210
75104820024.70.140220
\n", + "

768 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "661 1 199 76 43 0 42.9 \n", + "561 0 198 66 32 274 41.3 \n", + "228 4 197 70 39 744 36.7 \n", + "8 2 197 70 45 543 30.5 \n", + "579 2 197 70 99 0 34.7 \n", + ".. ... ... ... ... ... ... \n", + "342 1 0 68 35 0 32.0 \n", + "349 5 0 80 32 0 41.0 \n", + "502 6 0 68 41 0 39.0 \n", + "182 1 0 74 20 23 27.7 \n", + "75 1 0 48 20 0 24.7 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "661 1.394 22 1 \n", + "561 0.502 28 1 \n", + "228 2.329 31 0 \n", + "8 0.158 53 1 \n", + "579 0.575 62 1 \n", + ".. ... ... ... \n", + "342 0.389 22 0 \n", + "349 0.346 37 1 \n", + "502 0.727 41 1 \n", + "182 0.299 21 0 \n", + "75 0.140 22 0 \n", + "\n", + "[768 rows x 9 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_df = df.sort_values(by='Glucose', ascending = False)\n", + "sorted_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tУдаление строк/столбцов" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "df_dropped_columns = df.drop(columns=['Insulin', 'BMI']) # Удаление столбцов 'Insulin' и 'BMI'" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessDiabetesPedigreeFunctionAgeOutcome
0614872350.627501
118566290.351310
281836400.672321
318966230.167210
4013740352.288331
........................
7631010176480.171630
764212270270.340270
765512172230.245300
76611266000.349471
76719370310.315230
\n", + "

768 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness \\\n", + "0 6 148 72 35 \n", + "1 1 85 66 29 \n", + "2 8 183 64 0 \n", + "3 1 89 66 23 \n", + "4 0 137 40 35 \n", + ".. ... ... ... ... \n", + "763 10 101 76 48 \n", + "764 2 122 70 27 \n", + "765 5 121 72 23 \n", + "766 1 126 60 0 \n", + "767 1 93 70 31 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + ".. ... ... ... \n", + "763 0.171 63 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[768 rows x 7 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dropped_columns" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
55116740025.60.201300
637850328831.00.248261
..............................
76310101764818032.90.171630
76421227027036.80.340270
7655121722311226.20.245300
7661126600030.10.349471
7671937031030.40.315230
\n", + "

766 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "5 5 116 74 0 0 25.6 \n", + "6 3 78 50 32 88 31.0 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + "5 0.201 30 0 \n", + "6 0.248 26 1 \n", + ".. ... ... ... \n", + "763 0.171 63 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[766 rows x 9 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dropped_rows = df.drop([0, 1]) # Удаление строк с индексами 0 и 1\n", + "df_dropped_rows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tСоздание новых столбцов на основе данных из существующих столбцов датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "df['Glucose-BP'] = df['Glucose'] - df['BloodPressure']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcomeGlucose-BP
061487235033.60.62750176
11856629026.60.35131019
28183640023.30.672321119
318966239428.10.16721023
40137403516843.12.28833197
.................................
76310101764818032.90.17163025
76421227027036.80.34027052
7655121722311226.20.24530049
7661126600030.10.34947166
7671937031030.40.31523023
\n", + "

768 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome Glucose-BP \n", + "0 0.627 50 1 76 \n", + "1 0.351 31 0 19 \n", + "2 0.672 32 1 119 \n", + "3 0.167 21 0 23 \n", + "4 2.288 33 1 97 \n", + ".. ... ... ... ... \n", + "763 0.171 63 0 25 \n", + "764 0.340 27 0 52 \n", + "765 0.245 30 0 49 \n", + "766 0.349 47 1 66 \n", + "767 0.315 23 0 23 \n", + "\n", + "[768 rows x 10 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tУдаление строк с пустыми значениями" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pregnancies 0\n", + "Glucose 0\n", + "BloodPressure 0\n", + "SkinThickness 0\n", + "Insulin 0\n", + "BMI 0\n", + "DiabetesPedigreeFunction 0\n", + "Age 0\n", + "Outcome 0\n", + "Glucose-BP 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df.isna().sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcomeGlucose-BP
061487235033.60.62750176
11856629026.60.35131019
28183640023.30.672321119
318966239428.10.16721023
40137403516843.12.28833197
.................................
76310101764818032.90.17163025
76421227027036.80.34027052
7655121722311226.20.24530049
7661126600030.10.34947166
7671937031030.40.31523023
\n", + "

768 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome Glucose-BP \n", + "0 0.627 50 1 76 \n", + "1 0.351 31 0 19 \n", + "2 0.672 32 1 119 \n", + "3 0.167 21 0 23 \n", + "4 2.288 33 1 97 \n", + ".. ... ... ... ... \n", + "763 0.171 63 0 25 \n", + "764 0.340 27 0 52 \n", + "765 0.245 30 0 49 \n", + "766 0.349 47 1 66 \n", + "767 0.315 23 0 23 \n", + "\n", + "[768 rows x 10 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dropna() #Тк.пустых строк нет, мы ничего не удалили" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tЗаполнение пустых значений на основе существующих данных" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "df.fillna(df.mean(), inplace=True)\n", + "df.fillna(df.median(), inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Мы обрабатываем пустые значения для каждого столбца отдельно\n", + "\n", + "Мы можем заполнить пропуски средним или медианой, если это числовой столбец\n", + "\n", + "Мы заполняем средним, если в колонке нет выбросов\n", + "\n", + "Если столбец категориальный, то мы можем заполнить пропуски модой (самым часто встречающимся значением)\n", + "\n", + "Если пропусков мало, то их можно просто удалить." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 8. Возможности визуализации" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHDCAYAAADvBGFkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZwdRbn20+fMkj0QIOw7CILAFVREFoOigIobXj8Vr4obKm5wFS/3ioLojcp1QxF3cQFBFEFBdgIICUuAAGEJSUjIviczmSSznNP9/dGnut+qemvpc87MnJnU8/tB5nRXV1VX1/Lub5QkSYKAgICAgICAgICAgIDtHKXh7kBAQEBAQEBAQEBAQEArIDBHAQEBAQEBAQEBAQEBCMxRQEBAQEBAQEBAQEAAgMAcBQQEBAQEBAQEBAQEAAjMUUBAQEBAQEBAQEBAAIDAHAUEBAQEBAQEBAQEBAAIzFFAQEBAQEBAQEBAQACAwBwFBAQEBAQEBAQEBAQACMxRQEBAQEBAQEBAQEAAgMAcBQQEBIw4LF68GFEU4aqrrhrurhhx1VVXIYoiLF68eEja6+npwdSpU3H11Vc3VM9HPvIR7Lfffs3pVIvgtttuw4QJE7B27drh7kpAQEBAyyMwRwEBAQEtBMFUzJ49e7i7wuLiiy9GFEXZf+PGjcNhhx2Gr371q+ju7m5KG9dccw1++MMfFnrmRz/6ESZOnIj3ve992r2nnnoKZ599Nvbff3+MGTMGEyZMwL/927/hggsuwIsvvtiUPrcyTjvtNBx00EGYPn36cHclICAgoOXRNtwdCAgICAgohn333Rfbtm1De3v7sPXhyiuvxIQJE9DT04M77rgD3/rWt3DPPffgwQcfRBRFDdV9zTXXYO7cufjiF7/oVX5gYAA/+tGPcN5556FcLkv3fvnLX+LTn/40dt55Z5x11lk49NBDUalUMHfuXPz+97/HD3/4Q2zbtk17brThnHPOwZe+9CVccsklmDhx4nB3JyAgIKBlEZijgICAgBGGKIowZsyYYe3De97zHuy8884AgE996lM488wzccMNN+Chhx7CcccdN6R9ufnmm7F27Vq8973vla7PnDkTn/70p3H88cfj5ptv1piC733ve/jWt741lF0dNpx55pn43Oc+h+uvvx4f/ehHh7s7AQEBAS2LYFYXEBAQMMLA+Rx95CMfwYQJE7B8+XK8853vxIQJE7DLLrvgS1/6EqrVqvR8HMf44Q9/iMMPPxxjxozBrrvuinPOOQcbN26su09veMMbAACLFi2ylvvpT3+Kww8/HJ2dndhjjz1w7rnnYtOmTdn9adOm4ZZbbsFLL72Ume65fIBuvPFG7LfffjjwwAOl65dccgmiKMLVV1/NakvGjBmDSy+91Ko1uvfeexFFEe69917pusnv6/nnn8d73/te7LLLLhg7diwOOeQQ/M///I9U5oknnsDpp5+OSZMmYcKECXjjG9+Ihx56SCozMDCASy65BAcffDDGjBmDnXbaCSeccALuvPNOrb33vOc9mDJlCsaMGYNXvepV+Pvf/669x9SpU3HkkUfipptuMr5rQEBAQEDQHAUEBASMGlSrVZx66qk49thj8X//93+466678L3vfQ8HHnggPv3pT2flzjnnHFx11VU4++yz8fnPfx6LFi3CT37yEzzxxBN48MEH6zLXW7hwIQBgp512Mpa5+OKLcckll+CUU07Bpz/9acybNw9XXnklHn300azd//mf/0FXVxeWLVuGH/zgBwCACRMmWNueOXMmjj76aOna1q1bcc8992DatGnYa6+9Cr9PPXjqqadw4oknor29HZ/85Cex3377YeHChfjHP/6RaaieeeYZnHjiiZg0aRIuuOACtLe34+c//zmmTZuG++67D8ceeyyAdKymT5+Oj3/843jNa16D7u5uzJ49G48//jje9KY3ZXUdf/zx2HPPPfFf//VfGD9+PP785z/jne98J/7617/iXe96l9S/Y445BjfeeOOQjEVAQEDASEVgjgICAgJGCXp7e/H//t//w0UXXQQgNXc7+uij8etf/zpjjh544AH86le/wtVXX40PfOAD2bMnn3wyTjvtNFx//fXSdRM2bNgAAJnP0U9/+lPsuuuuOPHEE9nya9euxfTp0/HmN78Zt956K0ql1HDh0EMPxWc/+1n88Y9/xNlnn403velN2HPPPbFx40Z88IMfdPajUqlg4cKFeMc73iFdX7BgASqVCl7xilewfY/jOPs9adIkdHR0ONty4XOf+xySJMHjjz+OffbZJ7v+7W9/O/v7q1/9KgYGBvDAAw/ggAMOAAB86EMfwiGHHIILLrgA9913HwDglltuwVve8hb84he/MLb3hS98Afvssw8effRRdHZ2AgA+85nP4IQTTsBXvvIVjTk64IADsG7dOqxZswZTp05t+H0DAgICRiOCWV1AQEDAKMKnPvUp6feJJ54oRWS7/vrrMXnyZLzpTW/CunXrsv+OOeYYTJgwATNmzPBq55BDDsEuu+yC/fffH+eccw4OOugg3HLLLRg3bhxb/q677kJ/fz+++MUvZowRAHziE5/ApEmTcMstt9TxtimjkyQJdtxxR+m6iJzHaZ0OOOAA7LLLLtl/nBlaUaxduxb3338/PvrRj0qMEYAsQEW1WsUdd9yBd77znRljBAC77747PvCBD+CBBx7I+r3DDjvgmWeewfz589n2NmzYgHvuuQfvfe97sXnz5uw7rl+/Hqeeeirmz5+P5cuXS8+IMVq3bl3D7xsQEBAwWhE0RwEBAQGjBGPGjMEuu+wiXdtxxx0lX6L58+ejq6vLqDlYs2aNV1t//etfMWnSJLS3t2OvvfbS/H1UvPTSSwBSpoqio6MDBxxwQHa/XiRJIv0WPkY9PT1a2ZtuugkDAwN48skn8aUvfamhdgUEA8ppqgTWrl2LrVu3amMAAC9/+csRxzGWLl2Kww8/HN/4xjfwjne8Ay972cvwile8Aqeddhr+4z/+A0ceeSSAVDOWJAkuuuiiTFOoYs2aNdhzzz2z32KMGo0mGBAQEDCaEZijgICAgFECn3DUcRxbk6WqzJUJJ510UhatbjgxZcoURFGkBZM46KCD0NbWhrlz52rPvP71rwcAtLW5j0ATI6EGuWg2TjrpJCxcuBA33XQT7rjjDvzqV7/CD37wA/zsZz/Dxz/+8cws8Etf+hJOPfVUto6DDjpI+i3GqBW+W0BAQECrIjBHAQEBAdsRDjzwQNx11104/vjjMXbs2CFrd9999wUAzJs3TzIp6+/vx6JFi3DKKadk14poNtra2nDggQdqUfLGjx+fBTlYvny5pEEpAmGKRiPqAdA0XeKdOGZMYJdddsG4ceMwb9487d7zzz+PUqmEvffeO7s2ZcoUnH322Tj77LPR09ODk046CRdffDE+/vGPZ+21t7dLY2fDokWLsPPOO3szwAEBAQHbI4LPUUBAQMB2hPe+972oVqu49NJLtXuVSkVjApqFU045BR0dHbj88sslE7hf//rX6Orqwlvf+tbs2vjx49HV1eVd93HHHYfZs2dr17/2ta+hWq3igx/8IGtep5ricdh3331RLpdx//33S9d/+tOfSr932WUXnHTSSfjNb36DJUuWsO2Uy2W8+c1vxk033YTFixdn91evXo1rrrkGJ5xwAiZNmgQAWL9+vVTHhAkTcNBBB6Gvrw9AGpp72rRp+PnPf46VK1dq/V67dq127bHHHhvyHFQBAQEBIw1BcxQQEBDQgvjNb36D2267Tbv+hS98oaF6X//61+Occ87B9OnTMWfOHLz5zW9Ge3s75s+fj+uvvx4/+tGP8J73vKehNjjssssuuPDCC3HJJZfgtNNOw9vf/nbMmzcPP/3pT/HqV79aikx3zDHH4LrrrsP555+PV7/61ZgwYQLOOOMMY93veMc78Ic//AEvvPACXvayl2XXTzzxRPzkJz/B5z73ORx88ME466yzcOihh6K/vx8vvPACrr76anR0dGC33XYz1j158mT8+7//O3784x8jiiIceOCBuPnmm1nfrMsvvxwnnHACjj76aHzyk5/E/vvvj8WLF+OWW27BnDlzAADf/OY3ceedd+KEE07AZz7zGbS1teHnP/85+vr68N3vfjer67DDDsO0adNwzDHHYMqUKZg9ezb+8pe/4LOf/WxW5oorrsAJJ5yAI444Ap/4xCdwwAEHYPXq1Zg1axaWLVuGJ598Miu7Zs0aPPXUUzj33HPtHyogICBge0cSEBAQENAy+O1vf5sAMP63dOnSZNGiRQmA5Le//W323Ic//OFk/PjxWn1f//rXE26r/8UvfpEcc8wxydixY5OJEycmRxxxRHLBBRckK1assPZP1Ld27Vqv91i0aJF0/Sc/+Uly6KGHJu3t7cmuu+6afPrTn042btwolenp6Uk+8IEPJDvssEMCINl3332tbfX19SU777xzcumll7L3n3jiieRDH/pQss8++yQdHR3J+PHjkyOPPDL5z//8z2TBggVS2Q9/+MNae2vXrk3OPPPMZNy4ccmOO+6YnHPOOcncuXO1b5AkSTJ37tzkXe96V7LDDjskY8aMSQ455JDkoosukso8/vjjyamnnppMmDAhGTduXHLyyScnM2fOlMp885vfTF7zmtckO+ywQzJ27Njk0EMPTb71rW8l/f39UrmFCxcmH/rQh5LddtstaW9vT/bcc8/kbW97W/KXv/xFKnfllVcm48aNS7q7u61jGRAQELC9I0oSD7uCgICAgICAFsall16K3/72t5g/f75XYIrtDa985Ssxbdq0LLFuQEBAQACP4HMUEBAQEDDicd5556GnpwfXXnvtcHel5XDbbbdh/vz5uPDCC4e7KwEBAQEtj6A5CggICAgICAgICAgIQNAcBQQEBAQEBAQEBAQEAAjMUUBAQEBAQEBAQEBAAIDAHAUEBAQEBAQEBAQEBAAIzFFAQEBAQEBAQEBAQACAEZoENo5jrFixAhMnTkQURcPdnYCAgICAgICAgICAYUKSJNi8eTP22GMPlEqN6X5GJHO0YsUK7L333sPdjYCAgICAgICAgICAFsHSpUux1157NVTHiGSOJk6cCCAdgEmTJg1zbwICAgICAgICAgIChgvd3d3Ye++9Mx6hEYxI5kiY0k2aNCkwRwEBAQEBAQEBAQEBTXG3CQEZAgICAgICAgICAgICEJijgICAgICAgICAgIAAAIE5CggICAgICAgICAgIABCYo4CAgICAgICAgICAAACBOQoICAgICAgICAgICAAQmKOAgICAgICAgICAgAAAgTkKCAgICAgICAgICAgAEJijgICAgICAgICAgIAAAIE5CggICAgICAgICAgIAFCQOZo+fTpe/epXY+LEiZg6dSre+c53Yt68eVKZ3t5enHvuudhpp50wYcIEnHnmmVi9erVUZsmSJXjrW9+KcePGYerUqfjyl7+MSqXS+NsEBAQEBAQEBAQEBATUiULM0X333Ydzzz0XDz30EO68804MDAzgzW9+M7Zs2ZKVOe+88/CPf/wD119/Pe677z6sWLEC7373u7P71WoVb33rW9Hf34+ZM2fid7/7Ha666ip87Wtfa95bBQQEBAQEBAQEBAQEFESUJElS78Nr167F1KlTcd999+Gkk05CV1cXdtllF1xzzTV4z3veAwB4/vnn8fKXvxyzZs3Ca1/7Wtx6661429vehhUrVmDXXXcFAPzsZz/DV77yFaxduxYdHR3Odru7uzF58mR0dXVh0qRJ9XY/ICAgICAgICAgIGCEo5m8QUM+R11dXQCAKVOmAAAee+wxDAwM4JRTTsnKHHroodhnn30wa9YsAMCsWbNwxBFHZIwRAJx66qno7u7GM888w7bT19eH7u5u6b+AgICAgICAgICAgIBmom7mKI5jfPGLX8Txxx+PV7ziFQCAVatWoaOjAzvssINUdtddd8WqVauyMpQxEvfFPQ7Tp0/H5MmTs//23nvversdEBAQEBAQEBAwghHHCeav3ow4rtv4KSDAiLqZo3PPPRdz587Ftdde28z+sLjwwgvR1dWV/bd06dJBbzMgICAgICAgIKD1cNkd8/CmH9yP794+z104IKAg6mKOPvvZz+Lmm2/GjBkzsNdee2XXd9ttN/T392PTpk1S+dWrV2O33XbLyqjR68RvUUZFZ2cnJk2aJP0XEBAQEBAQENAK6B2o4k+PLMHyTduGuyvbBa68dyEA4Gf3LRzmngSMRhRijpIkwWc/+1n87W9/wz333IP9999fun/MMcegvb0dd999d3Zt3rx5WLJkCY477jgAwHHHHYenn34aa9asycrceeedmDRpEg477LBG3iUgICAgICAgYMhx+d3zceENT+O0H9w/3F0JCAhoEIWYo3PPPRd//OMfcc0112DixIlYtWoVVq1ahW3bUknJ5MmT8bGPfQznn38+ZsyYgcceewxnn302jjvuOLz2ta8FALz5zW/GYYcdhv/4j//Ak08+idtvvx1f/epXce6556Kzs7P5bziM2LilH+dfNwczF6wb7q4EBLQsegeq+PL1T+L2Z3ifw4CA4cAfH3oJl978LBoI6BqwHeG+F9YCADb31Z+z8cYnluO///Y0qsGPJiBgWFGIObryyivR1dWFadOmYffdd8/+u+6667IyP/jBD/C2t70NZ555Jk466STstttuuOGGG7L75XIZN998M8rlMo477jh88IMfxIc+9CF84xvfaN5btQi+fevzuOGJ5fjArx4e7q4EBLQsfvvgYlz/2DKc84fHhrsrAQEZvnrjXPz6gUWY/dLG4e5KwAhAM3joH909H9c8vARzl3c1XllAQEDdaCtS2EeCNmbMGFxxxRW44oorjGX23Xdf/POf/yzS9IjE0o1bCz/z0Ivrcd51c/DNd74Cb3z5ru4HAgKGGI8u3oDP/+kJXPz2w3Hq4byfYBGs7Ao2+qMd5/95Dhas6cFfPvU6dLQ1lEFiyLFp68BwdyFgO0F/JU7/rcbD3JOAgO0bI+uUGmGIouLPfOCXD2FlVy8+9rvZze9QQEAT8JHfPIKVXb1N0/TEwWxp1OOGx5fjqWVdeGDB2uHuSmFU40CoNopVXb0Z4T9a0YxdTAigg1nd4KAaJ1hWh9A6YPtDYI4GEfXQfGFPDGh1NFuqGeb89oONW0aeFqYSJmhDWLxuC1737bvx+T89MdxdGVQ0wzdNTLWQu2dw8Plrn8AJ35mBm59aMdxdCWhxBOYoIGA7wJL1W3HTnOVNOcCjelSiFgRCoLlY1dWLvz2xrCUl9Zu2jTzmKEjx7ejuHcBfH1uG7l7+2760YSviBFi0bssQ92zkQWjRq0GbPii45amVAICfzgjhvwPsKORzFFAMTaYhAwLqxkmXzQAAVKoJzjxmL0dpO8rNZo4CIdBUvOXyf2HDln4s3bANn3/jwcPdHQldW/uHuwuFUamG+WnDedfOwd3Pr8G0p3bBVWe/RrsvBDKVYJ7ohODDA0M+uAhnToALQXMUELAd4cGFjYeVLzWZ6R/qc+rhF9fjwhueNkq6Rzo2bEkZkBnz1jhKDj1aRXMUxwm+efOzXuY1gVC14+7n03l27zzen0yMXhhGNwTRHoj3wUUY3gAXguZoEBEhqI4CWgt9TTC1KjWZOxpqE5L/94uHAADt5QjfeMcrhrTtoUQrEgBdLcIc3f7MKvzqgUUAgLcduYe1bPA5ahDbiTakGestM6sLSrZBRWA+A1wImqOAgO0IzfBDKTXZrG64zqnR7gPRisd/q4TFXtvT5102RKtrDAm2jwhsSRNWnPC/HO1jNdwIzFGAC4E5CgjYjtAMzVG5yZqj4Tqo+ioxNm4ZeT4wIxmtYlZXBIFQbQyCtwzj6IbYCgPxPrgIUzHAhcAcBQRsR+gbqDZcR7N9jobroHpk0Qa88tI7saqrd3g6sB1iRAZkCJRUQxCjN9rHsblmdaN7rIYbgfkMcCEwRwEB2xGaoTlqeijvYT6o7nuh9QIXNAUtSAC0is+RCzTk/Wgn6gcbSQgy4I04aI6GBGF8/bG1v4Kbn1qBzaM0gJEJgTkKCNiO0ByfoyZ0hKAZuZcaQQicMrig37dVzOpcX5xOySDFbwyZ5miURxloxiwJmqOhQXAj9Md//fVpfPaaJ0Z9EmcVgTkaRHAC9pkL1+HSm59FbxPMmwICiqKv0gyzuiZHqxtuQiDwRoMKymgkyfAzwz6gPRzKPEdL1m/F12+ai6Ubtg5Zm4ON3I9mePtRDzZs6cfFf38Gc5d3Ocs2Y16LKoZ9TxzlGAl7UKvg70+m6Q5mGEL1j1aEUN5DjA/88mEAwI7j2vHZN7RWgsaA0Y+mhPJuulldU6srjNHKG7XK8a/2Y0t/FRM6W/vooWY3Qxlq/qxfP4SlG7bh/vnrMONL04as3cHFyNWGXHTjXNzy9EpcNXMxFn/7rdayzdQcBbOvwcUInIoBQ4ygORomvDjKwwgHmLG5dwDvvOJB/Py+hUPednPyHDWhIwTDLcVrtg9VgAyV0BsJ5lW0y0PZ36UbtgEYXWHm4xGsDXnaQ2PUTNSb52igGuP9v3gI3771+UHo1ehDYD4DXAjM0TAhbtGDort3oGX7Nlrwu5mLMWfpJkwfhoOsGT5H5aA5CigAlQ4ZCQEOaM6akUjUtxIyU7ERRJBu6asgjpMh//ZxnWN193NrMOvF9fjZMAjcRiJaiTkaqMbY0lcZlrZHSoCc4UBgjoYJQ2jG7o0Fa3pw5MV34OyrHh3uroxqbO0fPn+zVvQ5Gu6DKiiOBhdqcsyWYDYcHz0EZGgeaBLY4dYS++DFtT04/jv34OyrHkWliOd+g69Gx6aogLJ/BGhjWwmttKRP++H9OPzrtw85o/Krf72Ioy65AzOeH6XRWhtEYI6GCa2Ydf2ah5cAAO57YftyvNue0JxQ3k3oCMFwH1SjlTlqFTpU7cdAKxByjsGRzOqGe4KOcNCxHAlD+bk/PYFNWwdw3wtrC5m3NfpqlAkvypCPBKazlTDcAjmKhWtTE9qHX1w/pO0+u6IbAPDcqu4hbXekIDBHw4QW5I0CtgM040woNzmW93CbcYZQ3kOLkaCJkQIyjID+tjKkyH8tfvBt7h3AMytyYrEIEd0ogxJLTGSYc4OJ4T5zODRDcFkEeYj91huLVkBgjoYJrWh/PVol6K2GkT7Oo82sLmBwoQVkaAXCxGVWR/5uif6OYMjmYsPYEQ9Qk+fJY9uHNBgHXSdF51zYQouhFcdryJmj2iC0hCa/BdHa8VRHOGxRsII0cvtFK27MRTDamKORzqyaoPr6DBe0gAwjQFKZSJqjQDw0Asl/q8U3v0TR3gxldxvxcxvuPXSkoRXHqxn+wEUgRmBgBOzHw4GgORommDa/0UqoBYwe0FDef3tiGd5z5Uys6e6tu75G5QR3PLMK7/rpg3hpfX3hj0Mo78GF+nlb3bQKkOdkPZqj9T19eM+VM3H97KVN7NXIhBT5r8UJsVjSciWF5mqjb6a2XQQtSOu3NFpRNt2MSLJFIMZgJKRWGA4E5qhJiOMEvQP+nL9JchHItIDBRqNqdBrK+7zrnsTslzY2lF+jUVv9T/7hMTyxZBO+fP1TdT0f1tzgQv2+I0Jr3mC0uocXbcDslzbi+tnLmtipkYkRpTkif8dJsW/f6Ks1knjYp3RRGoXDtmGMtNpMtOI8HC6zumA2zCMwR03CWb96GIdedBvW9/R5lW9FAiEQidsHtjV4QHKalu7e+vM0NGsp1BsKtfVWYnPQKue/+n1HghlHI/4fQC6AaEXznaGGHPmvtaXUicKgFGKOGtxJpIAMgxCt7pN/mI3jpt+N7t769sknlmzEy792Gy7++zN1Pd9KaMXofn0DwxOQIYSB5xGYoyZhVi0M423PrPIq34rMUcDoBY0w16j0r8nB6pq2Fuq1jmvFyEX1oK9SxYML1mW/W+b8V/rRCnufa6rQHtZjCibecfjfdPghaWNanA6jayZJkiE1v1IZs0LPepR5YskmbNw6gKUbthbsWYrv3fECAOCqmYvren4wUdxHa5A60gCG2udITJpgVscjBGQYJhjN6qJo2Kia4HoxekHnW+PMkT5RGpk7wy3FGy3S/a/d+Ayua0EfF1Wi3uraA0Cek/VojsQzo2VuNQJZC9fa376RnEyNm9Xlfw8GvSrm5GickpU4RrlU9i7fiutyqM3qxBiMhAA5w4GgORpE2OjFYOcZMFRIlKhLjZrVNTtanWsl3PnsavzOQ1pZb79aQZPRDKiMUau81UiMVicHZChOtAht5Pqefnz/zhfqltaPCkjmYsPXDR8MZ34rKSBDUeLdo7jQEPzlsWX4+5MritXf4iieNHeQOtIAhjxaXW0MBsjY3TRnOf72RPCTBILmaNjQiqY8IWrX0EA2M0lQaradmgJ1qjXMHDVZpOI62D7x+9kAgAN3mYATDt7ZWK5us7pWPClHEdTxHQnMKNV21RPARAi/lmzYisvvno/rHl2Ch//7lKb1byRBilbX4mutkd41NSBDUWLfo+diTl41czGumrkYpx2+GzraRod8fKQKm6mGeuh9jtK2B2oaq/5KjC9d/yTiBDj9FbtjTLu/Jm40YnSsjBYC3SBtxNpgHhKX3f48zr9uTrbwVnX14gO/fAi3e/pDBQwdhoJYUInTRhnz5uc5Mt+jh8c9z6+x1lO/5qiux0YNbpqzHB/81cPYsKV/UOpXP+9IIGTokqkngIRK3K7u9gvUw+H7d76AL1z7xLCbn9YLOX+PvtiumLEAn7n6sZZgmodzjOnQDIYmRF13I1kopJ5hrR4i3gT6GkNvVpf+KzTjlTjGQDUNQtJoVMPRgMAcDSJse4+JIGsG2XnFjIW44YnleGZFNwDgopvmYubC9TjnD481ofaAZqIZBEEcJ1anSrWNRpssGzRdrn6YYCNIaMb6p5ZtstZTL8/W6tLsemEaV1UT8oVr5+CBBevwvTvmDVI/5N8jwQFYirDWgOaoGbj87vm4ac4KPPbSxqbVOZSQglswQ/mbBxbhn0+vwqJ1PUPWJxOGkz9rxKzOVTopGHlvOFBEQ6vu2SNB4MKBfudhM6ur6r5oIyGi6GAjMEfDhKEwqxOSiLWb/aSWwahu6NGMTf3Mn83Ea6ffY5T2qOdso4ekyfzy3VfOxInfnVE4mR3tj0rQb+nLQ4TPXdFlPUDrnb8jVSJfD+at2oyXffVWTL/1Oe3epq31hfh1QQ/IMPzjTacw9/1ls7p6NEfNZwCHWrLcLLhCeYv50BoEWf19aHQfaciszlG8FdacDY+9tBGHXnQbfnbfQq/y6vi0eqAPE+h3G/r1XQvIEOtpBxrNhTgaEJijQcRwmdXlCBGTWh3NkOY9sWQT1vX0Ye7yLr4N5fs3eohziqMIwJylm7CyqxfPr+ouVB+dn2rXNhPmqHcgtucy2s4DMvjgstufR5IAP7/vRWfZJEnw5NJNdedFyeuRf7faeHPLgXaxEZ+jAEUjwgyl2I9a4ZxqpAuN9l6OlNdcnyMuCEorjLfAf9/wNKpx4p1MXGOOWoKxLg5JczTUPkdCc1QR6y+/N1LHs5kIzFGT4UufmQiERt05OMLXmxgJqqMhx1AQippDfIOHYpmZpPQ1ooITifZG7SvVHAGw2kLXG9ei1Yj1VsGdz67GO654EG+7/IGG6lGnW6tJJTkisdFQ3oPhAzFSt2c6EpyEX9xvBeF/q5jVNV9zxIx7C217RU3K1DNsNOzhQ21WJ+bbQG1u0D1voBUW4zAjMEdNhu+GM1hSGzmJnWhrUJoKqBODlffD9JlVE85G5wPHwLvMiJZu2Iqf3ruA1ULQ/ql969GYo+ab1bWSBHWwYXtVVfr8j6dWAkgjrjXUJlqbkOF6I9vft4jmaMRyRw5fmtqlVvD984n6Zny2we43kufI1XSra46KmpSpwoeRqqmVfY6GOlpdCjE3guZIRmHm6P7778cZZ5yBPfbYA1EU4cYbb5TuR1HE/nfZZZdlZfbbbz/t/re//e2GX6bVoJ5liYdkqKjUXYVkoiSujdCNY7SCbuxDozlSfjfYJnem0sOJY57e9dOZ+O5t8/DVv8219k8lTnp6i2iOQrS6ZqJZxJMWkKHF9iOWXm+QUGje2LXWWNUD+gbcWhNj1QpM83AOd0N5jhzgNAHDP9o5ijIG6h7SCnOnHgynz1EekCH4HHEonOdoy5YtOOqoo/DRj34U7373u7X7K1eulH7feuut+NjHPoYzzzxTuv6Nb3wDn/jEJ7LfEydOLNqVEQdZMjQ4i1kiNDPNkb2t6bc+NyT5dgJSVD2Y5Ka21+QQrtzzrjrX9aRBQf41f631WbWaLf0yc2QzPQh5jtywvak6DM0Sqqjj2wrR6qgQijWra1Keo0YhpYYYoaojV0CGJCs3/Ouwkb2gEa0T4Cc8feyljfjxPfNx0dsOw4G7TKAPS/WoQXO4+pLhX4YZ+gqGjla/00gl5oc1Wl3tXzF28jod/rU43CjMHJ1++uk4/fTTjfd322036fdNN92Ek08+GQcccIB0feLEiVrZ0Q66QQ0ecyRvkuo1FT19lcw5+9+P2WtQ+hQgYyjmAYVKdDTaJvc0jTRlY1I4KbzNEbmnTz4wrGZ1dXJHo1WzymtE/N+1WXOz1TVHHBoNyNCssStCrLeqgIvOOT4gQ/pvK0j/GwrI0EyzOkNlZ145EwDw0vrZmPGlaXnbSj1lZRqw+24L6Y62V82RlOfIMyBDkiRIEjS81sW6FGMp+VmOUGazmRhUn6PVq1fjlltuwcc+9jHt3re//W3stNNOeOUrX4nLLrsMlUqFqSFFX18furu7pf9GIrzU5g0HZCB/Z235PTtSQ8WONNCNvVFC0YfYVQ/aRs8R7nk5HLf5Wc68w6Y5KmJWV+/SaQVfh1bEYNEbrUbIOAMy1GFW1yybfd+h+t4d83D0N+/E0gb9wwYDki8DqzmqmdW1wDo0Hssem0ujvZej+tlrW75xm9y2ZDGiP8sx+K20DIueg+r4jASBC4s6zOrO+tXDeMvl/2pcyFl7nPM5ao2w+sOLQWWOfve732HixIma+d3nP/95XHvttZgxYwbOOecc/O///i8uuOACYz3Tp0/H5MmTs//23nvvwez2oEF2xB8KzZF+TQXd81vhcNoeQH2OGtVa+Dyu+Rw1+J1dERFtmza36dqEBnq0OpvmyHjLitGqOeJQ5E2bZebU6pojZyjvOoKmNCvPEV0Ptvn943sWYNPWAfzgzhea0m4zIWs1uPVf+7cFZHMmbUrbEGjk6Ps7CV+lO5yvMQVrVpfkGoO5y7sK56cbTowezVExs7o4TjBz4Xo8v2ozFq5NkybPW7UZ2/qLm+SJuc75HI3UvFHNRGGzuiL4zW9+g7POOgtjxoyRrp9//vnZ30ceeSQ6OjpwzjnnYPr06ejs7NTqufDCC6Vnuru7RwSDRM181AzVg0WQyZuk26yuiLQqoDkYas2RHq2uORInCok5stTPHWJUqOmOVmfTHNVpVjdKpz1H6Fmj1TWZiTb1o9UiIfG9ya/WI0UdDJ8jH7Si/5xTC1e71ArCOVMX6g32UgRFAjLowZ74vwV4oVT6728eXIxLb34Wbz9qD1z+/lf6dndYoQofRioxT79KXyVm/cUo6L5SiiLMmLcGZ//2URw8dQLuPP/1xdquVcUyRy22Rw8HBk1z9K9//Qvz5s3Dxz/+cWfZY489FpVKBYsXL2bvd3Z2YtKkSdJ/Iw1xIhNhprOz0S1YqtdDIkeLj1Tpy2ChGif4w0MvYd6qzU2uNyZ/N8io0L8NVWl5jhrWVtnNNorn6KAnu3xPY44s0rVSnbtZKxBlrQCViWnWdqDWY9OqPL2sC9c+smRInfN5s7r872qcSP3ZtLUfv3lgEdZu7jPW2ay9lM5Nn7NhKGdyX6WKqx5cVOgZW/CLVmDsTH3w0Rw17nPkp31n2yZ/bxtIvws1sWQ1R7WnfvWv1Of470+uKNTmcEK1EhyptItq6eMSxNDypQj42+PLAQDz1/TU3bZghOj8HakBLpqJQWOOfv3rX+OYY47BUUcd5Sw7Z84clEolTJ06dbC6M+yIk0SS4A+apIOhM22HTiJJ7UfmBjNYuO7Rpbjoxrk49Yf3N7Veuv81rjnyaE9po9HP7NQcFbUfb5ZZXb2aoxF6sA42Bisc9YBlvM/4yQP4rxuext3PrWlK2yZQ4azLrA6QiZbzrpuDb9z8LD561aPG+pulOZLN6tzzeyin8hUzFuLifzzrLCczmvr93Kxu+NehqQd+zu+NCp3yv4sK7uka++5tz+PifzyL08i5xYbyrj2y47iOYo21AFT6aaRqOtS9xyb8A+R9pdxwQIb03zwJLN/O9orCZnU9PT1YsGBB9nvRokWYM2cOpkyZgn322QdAavZ2/fXX43vf+572/KxZs/Dwww/j5JNPxsSJEzFr1iycd955+OAHP4gdd9yxgVdpPdCpGyeJJAU08UaNau85nyMbsUqlxSNV+jJYeHr5pkGpt5maIx8CVpfcN7/NRkxGZY2q/KzQHLWXIwxUE7tZXZ1rZ7TOezZaXYHnm2dWJ8NnvOet3oxTDtu1Ke1zkF6NHSeFoavG6GhLZYkz5qXh6J9e3mWsv1mEftFwy0OpcXvoxfVe5ehYsgEZan1uhXVoGj4fQrSZmiPX/LHtdQ8uWAcA2EL8UGxRQneaMPKYI3UajVRiXl2vrvVO/ZVLUdQQOy6eHcgCMuS1Bc1RHczR7NmzcfLJJ2e/hS/Qhz/8YVx11VUAgGuvvRZJkuD973+/9nxnZyeuvfZaXHzxxejr68P++++P8847T/IpGi1QTZ6kyRe77UvrgepzlCSJVZooRxIamRsMh8EY22ahMuRJYFVzqQa1Vcy1RvyoKCFg8jmaMr4Dq7v7rBF96v3eo9Wsjnurlgjl7SHlHcqlywYJUImvgpLpwdAc+WAop7LvXLIJPwA/C4ehgumdvMzqmti2y7KkqJacq0+MdytpjoQAwgX1fZoVAGWoUTRYEn3vhvdIIjxP6UQy/0aoJq6ZKMwcTZs2zbkpfvKTn8QnP/lJ9t7RRx+Nhx56qGizIx5JIh+4SZJOyjY1IUGDoIuta9sAXn/ZvVkCTr5fo09zdPXDL+EHd76A3330NTh8j8kN1DQ4FFo19j8EXfChJ5rOHLmi1RWsnxKSqsRemNXtNL4zZY4GIZR3C9BkLQE9IEOz6pUr8pnzg53wVDKrY+6r87BoTpjByHPkQwwNJYPh+4qSuY5Fg9EKwmrTKzVqwuQDiYksrDEkfzP3+TxHKaaMz5mj3oEqxrSXizXeIOj+0OnJHKnra6QKdnU/T/t7qCkzGtEUy5qiRBGUt8BiHGYMaijv7R02szqAX9CNEgV0sfzt8eVY4sh7MRo1R//zt7lY19OP//zzkw3VQ4mRBWt6mkbw0HFudA/yIYbUfjdKhLjyHFULSp1sOZKEpmjy2HYA9mh19dIvo0Uo0Gw0zTRM+e2zzwyl5ogjMBplFJtFXNB2feigoWT0fRkxSgCqz0gJYltASmHqwmAz64C83lwCJnV90DF2+YSq7Y3vzJmh9Vv6fbraVFBrgM42P8ZMP9OGf+7UA7XbrreoWM7KoqCPV2qWTAKmwBAvri0e+GGkIjBHTYBXOGUlIAMA9A+CqIw24WNmJNmDt4LoromwEdJFccr378NX/vpUU+pqZj4Bn/1RJ/SarzmqFDjY9WfzMdCJp/TfcR3poakGZKBrKpjVyfAh+qV7yu/mBWSQf/swz4NNitI+cXRVo2umeSaJxZiHohquRuDLPNscveXvMPzr0NQHr7FvsP9SQIbCET/J38wcsPmQ0GfXW6xMBgs06E7dmqMRagamzplCmqMGV7vEDFXkuky04Bu+dx9ufGJ5A62OHATmqAlwqbQBEcpbvjswCEnXaBsdbcWcSEeL5kig0aR26uj95bFlDdUn0EyfI7rBmQ5ntY1GiRCuy5U6g0yoPnFq18SWPUYwR0o0H8rY+GiOuDFqhShZrYimmdWpwQ18zOoGmTuSJO1cPqiC5i4qmudzlP/tZ0LblGa9UE9b6lqjv1pB+m8aY5+uNdr7IoywludIqkcvz81H0Qa9tb5n6DVHW0ngCF8GU30fXyGjHKWysS/WV6ni2keWYPmmbXXXoZ13ji5JVidN1BwNxLEitDVX/usHFjXW8AhBYI6aANM0UheiuvlzqstmRqtrL+ufV4uOQpmjESp9MWEwNHPNgOxz1CBz5NOeKp0ahDbrDeXtYtzEmTeuXWiOFOZIer6+iFKtQJQNFYrIGpsV+UylW3zGe7DNmFxMh2buUnAoBiPPkc/3GO78UBxsfq2t5vNqGj+/sW+s7WZpjjjwzJF4Nr+31qI5GiyBxTayp/uehz4uChxoMt9Gp9tP7lmA/7rhaZzeQKqPohrqqmpl0cA7SC4V1UTap+tJfD3aEJijJsDnkHhqWRe+cO0c6dpghEukXeGYI1t0FCp9GcpDdrDQsOZokA4DyYysUUbF4xXVb9novucKyMCthw5mLgJ2MxuKsQazOtpuvQ7rLUCTDQqKvtagBWRAcUJm0H2OJKYj/Xfu8i588donsHzTNqsQyQfNEjTZIjlyGFqfo+Ll1G9fVDM22DB1YShM/ookgVVNiF0+R5yZlJjjtN3h1hz5jrNqmuvLTJbJuDVq0j5jXpqLrbtXzsV3w+PLcNGNc73OdpMZuQnN9DmiFQxUFc2RhTZt0SDATUfhaHUBOnwm6Yd+84h2bTCYIzWDsopKHKNcKrPl1YU30hdBo5qjwZJeN1dz5H5eHYZGGV+X2QZHGLaVI/QzLmCuBLWir2NNmiPyQL1pGlvB12GoUORVBy+U9/BrdBPp7/TX2378AABg8fqt+NoZh0nlC/scDYK/ls9aH8q57LuP2PyKpDx7LbAOGzGraxS2ZNgqNLM6F1HN7MnindQIt0ONrf05c+G752iaI09hBKVpGo2ZYtrGzq8FgnrdgTvh9CN2t9ZRNJIsfc+Gz3Hy90A1luaQLVH39oKgOWoCTIeWa36xZnUN9sUVfc5GjFJmbTQsjVZVDUvBCxr2OXKXUTfcwU4CyxE5pjwhuiSZlyxnmiNFG6gmxXPB1ffhxEA1xtt/8gC+8pfmBP7gYJ8vxQ7qeuFlVjfIkhmZYJfvLVjTU9hRWsVghPIeCr+XIvB9RzkJrPn8aYV1aPrOQ2HSWERzVBS8EE7XHA2Hxcg2IjXzZo7qjFZXaqLmyKUZ2rDVrYVTa3ANvxyQobEALKpg3FdztL0gMEdNgFnaZJ+4g6054qQptsOJlh8N0vRGD5jBos/q9c/h4POd1E280XOXe971Tm0GszqXz5HY/IXmSM1zVFTazPoctchcn7lwPZ5a1oXrZi9tToUNf+fmE/iAp1ldE9pNkgRLN2w1RO0zE4RJkhR2lFYxGElgvdb6EE5lV3+6ewfQtXVAZkRbPFqdqQc+XWu095RWL/odXYF5+CSwojy9NvTfYItkVuf3jLq+fK1ESs3UHDnGymvONGBW13jU2fzvgWqshPYe/rU43AjMURNgmqOuucst6EYlpq4s26qtLpU8DEgq24a6MSowWLLrZjJHPk/b/MzqatPpNFpEcyTPUfVJTXNkCcjgI0Xjut4q/nVDYcVaRNLYNJ8jpR7TnKffoRmCiR/c+QJO/O4M/PTehdo9m69LnDS+ZqqDkOfI59MN5Vy2NVWNExx58R046ht3SOecZuKL5u2FzYBp/Ly+fxOFEc6xKLg+bMl3i2onm42e3uJmdSqT7WtWRzVHjQrFmhHlVN97/M/WOG6MTlMF47TtRv21RwMCc9QE1JsbYTBCCNMqObMym0OsFgklYFDQVJ8jSuSZ2lNNhAbZlI874GhwkFjZ4OW6eUnamHY+IAMdv4Vrt+CfT6+0EoitbFZXJgzkYBG5rmofX7IRMxesA9CYuc2GLf244fFl6B2oavPSpDGXgmsUao3H5fcsAABcdvs87Z7Ec6haIiSMWV2xtpsVkKFwnqMW0RzRCGRruvMIaCrTaDNvHA4Mr89R/nfzo9VxmqNE+reedpsBmufIl2FRz01uT0mSBDc/tQKL120x1NEYA+DUHHnUUVQIo+U5aoQ5In+nPkd2wfr2hsAcNQGm+emauIOxD7nsRm2hVIMqVcZg+T3IPkeNJoF1E0+az1HDjpx1aI7K+VhSSbK6CeuPpheygAxKniPKaC1Y04PPXP14FkWIA88cGYsPKSSpZjOkkkXLJ8C7fzoTH/jVw1jX0yeNbdEp84FfPoTz//wkvnnLs3q0RMO70XUx+D5HZo1jknAazKKao+bspbQaP5+jodvDbf2hX08K162ZzZL6WuD8MfsPezCmjbZdgBFWV0dVelYvzwlKxSOSgG0YhKKbCXPkOwfUcpwVzq1zV+Gz1zyBaf93b/4cHaeGAzI0Y482rwdXm+k+VX8fpCSwVTnf4GhL61IPAnPUBBhzIzgmLrcBNhyQgSx4jtmxEaOjzeeoVdFUszpJBM6XGQqfI/k+wxyVeObIFa1O3B5nMKvj5vicpV2Wvvn1dzhANUeDFUzEVisdh7Wb+2RJdsExen7VZgDAzU+t1No0CWGG6zuo3UkSLsTu8DBHMjHkrnMoBb62d5SiglkEcLGFcRoO1Gsi3wwU0RypwgPXdOPq45LADgd/2gzNEWcG9mBNA05Bn2pUO+LsKinQ3TuA//7b03h08QapiMtyQkWlidY9klldHEt0QqsGsxpKBOaoCTBtKK61NxjEgCsgg75J0oOL5jlqetcCahgsszrjPFQZjobbdG3gHHOUbzX0IHNFqxNtCbM69RAsTIQyxVvRrG5gsKhcy6uqfjjNYOKTRJ8vJqmkrDmqqzlv2KTlCXTVUWGzukEJyFCs/GDDtg+Y9iVbQIZWWIemLvj5MzbW/6LBN0xtc321RR8rarrZbFDmKEn8zifV4oIzq9vG5I6Q5uUQao6+c+vzuObhJfj3n82Srpuis/q0me6t3l3QIEWRVDVHwawuMEdNgZEotc/cwdiHVGmACpvP0cAI0Bx97455OOPHD0gb6mBh8JLA6kTnTXOW443fuxfzV28uVJeU/M8wEV0R4YqiHp8j2jfK4Lij1aUQjINaNXtAFfQ5apW5LjFHw+AQGysEVjOIpjjR7eKNmqMm+xzZIL+req8ZARmaM6eKmjwN5Uy2tWUi9LVv7/F+Nz+1Am/43r2Yt6rY3lgPzAEZPJ5tsO1GfH+c+XGsmqNiDHizsVk5y320R+r4sMzRAMMcGYTB9aCIpnPh2h6vckW+YzPP8f5qrDFLPs+NZgTmqAkwEaWuOcRO7gapAlP0OQGXGVNeT2vix/cswNPLu3Dto+Zwx6bIaCrW9fQNi401lXqJDfYL187BwrVb8IVr5xSqS5X2c9B8Ppoo4eTAm3Dkf9uYI82srnbfFKygGUREqzBHtB/NMGtgQ1hbVnaizCWXH4NfJ/S9xORnJ33LwfY5on8z2kp1nIrSUYOR58inxqHcz2zrxrQvaZojKVodX9dtc1fhxbVb8K/5a+vqZxGYte+DP65FtGjq8nCdAxxzJMrJzw79XqgKOn3Wjh6QQX+GY45kE8L8R9fWgcIR2oqscd95VUTwmKAxOk21MqJtD0aamZGGwBw1AUZVvGOmD05AhvxvVnOkbCLGpHctvjZsmqN2Q04dij89sgSv+uZd+P6dLxjLRIMkv5Y0R8r32OiROI7CR7rf9Gh1jvs2+3agmM+R+EmZo0bMvbjSrWDOA6gOso0vwKJvpWvxzPd8wWqODIxfUf+aRqAyghRxws1DvT82/m248hwNJW1rfUUDEartRXSOmc6i2mXfXDaNwdwH15xsdOyLaHDUqediorn9hNccDf1eSEN5+/ZBLcPNDc6sjg6OeGRdTx+O+sYdmHbZDHdnCdhzzvDhjH7p2t5jf/dKE/dI+nQlju0aXoLBNnluFQTmqAlIDCeta+4OSkAGRRqgwldz1CrSdBNsUp6ONve0vujGuQBSTZQJQ5EEVt2E1IADLkhTz1BGNxEq1ARTn4vpN0spgYJmdbWfVBvYSKAAVnPURJprVVcv7nhmlZMB3bilH/98eqUyFvl9ethv2pqW7asUmxscbMNlC0JQL0OdmqjJz5oO3moT2vOFbI6qw0eiW7JsEIOR56jVfI5s38hEcNuipZrqE88MRe4V2/C5hrbRSIGNCCPqM3XWnx0OhUFPHZojtZ+cGTJ3lnJmdbMWrgcArOjqdbZLwc1XuofRu83THNGADA0y5ORZNVqdTTjX4qRh0xCYoyYgMfzt9jlq/ixzSZ91yZ1BotHcbjUdNkLRhzkaTnA+RwJqHp8iMNrLK200NUIeA5t9OwD0VWL2OqDPO/FOlBCVia1i48X1vZkE5YnfvQef/MNjuHHOcmu5D/76YXzm6sfx43vms/2ggo0P/eYRfObqx/G9O8xaTg7ca9neVM5rpGjo6hwjLheHaf7J7dXVnDckUy/W/FAGV8ZmvdsszZHkaO8lUW9Ks16wrRsTYagxR+Rv0xwT7QwFc2Qbv8FmPOMC602LVqc46qvgQ3mn1xrJZ9YMbOlXNEcen1kwOWIN+vocycFB0n/rFYJy38gnwbV0XStnb5OeC41+Kvr4QDU2nj/bK1qbihwhUImK/LrjuUHY62WzOm7x+jXa6pojGxPRQczqKtUY1z6yBL/614tSGZ8NcbC0x7ZDkNvQrXV5aCobDUuswqkRdZnVVWTpl6kckG/gNE9SI5JOru/NDCEsiJAH5uthZCmeWdENAPjrY8uya3Io1fzFnlqWhib/2xN2hktFUUm25HuARA7tXyfVnSR6P3ySwA6+WZ193fgkgbXlYipicmODj08hxVDu2r6MhC2Xno9Jl3hkSDRHNp8817MNDr6cg6f+tcuBi1YnmjP54QwVVLM6n/1YFOlsS6OYcswfRyNwiU7rNZ93mY/L1/k69H3G/u60zbRs/d9LzYnpmwR2ezGraxvuDowKSAdYwl1m4aNZKpoMkW6qHPfv7XPU2ryRt+aotxLjv254GgBw2it2w147jgMgNsShf8kkSayao+L18X9TqG00nAS2gF20QGwwGXMxbuI+Naurem7iHHizuubPg5JnUBDKDEtBKzgfgSab2mj1KwzDQGxmYgv1QXnWS3M02GZ1jnWjXmuG5qiaJCgVJMQK+4MMpVmdTXNkENJpc1iS5Nul7kPhc1TE7NReTx1nNxX6FPyOct84oShHyOvPDof75ZY++Sz3WftirnS0lbBtoMr7HLFmdaSO2nvXS+xz80ENtZ3/7cc0FfM58uikBfT5AS0gg9/aHs0ImqMmwGQX3mhAhnomoctu1DtaXYuvAJsUsZ1oGahT5sYtA4XaGAwJifrNG1Vfc5u9VkbbgPO/V3Ztwxk/fgB/nm2O/qfCNW9Z+3aT5sgVkKH222RWx/FGtu6xB9ogzHVP3kiSbkrR6pj5XTz3CXfNXIesOZIPyHrHKE5yW3axLn2SwA42keZaN/o85Jgj80dm/RHq0RwVJIaGkri19ccUUVL99vSXifcZWrO6+olCiT2p6+yWv7VNGKLOPNd5PWDZk4czz1FfRWdsvAKP1P7trAlC68lz1OjZy2uH+bKmlrR9pkCbSaKbLBeB6n8lWx21eESuIUBgjpoAk3NvPT5HkYEIpNjcO+AVFYUjQlxJN7N62Kutgz7LQUnV5NQps79apYWcKCr584G66TR6GPmE+rVFq5v+z+fx9PIuXPCXpwCkmbyLtMm2Z5FSAi6zOvm3+EmTyNJIikU3cdasbhDOARvhTEGlm/Q7cZK7ooSvjy+NdE8hkiQTjnrN6pDvjyKKpCkhZTNzeGj9SBJsJnPbVb3aPvf6pm+saod92+T7Ye4TX775O7c6dj5t0TsVS/68xOP9htKszgbn2Cbsn94oknKhaChvzpw+0xyRW0MtE6VaIxGR1EtzVOtoh405UjRHpvH1PeX7K7HEcHHdlAIyGJhOesYWNXmX90h3n21QNUXB50hGYI6aAJP61H0A69fopsfdX7phK464+A584FcPOesUG8ax+0/BK/acBMDuECvX09qLw8Yc0b5T5qivgWAHzYI6/o1KaPxU92aGmIZEv2LGAhx58R244fFlsMEp3eJM16jmiDCpLpvrLCBDiS8z2NqUelEPYy0FU+GImcJ+CMXK07mpaq6aEcpbmEZyUmy1jWabOl7wl6dwzKV3Ycn6rVm/aB9VqFe4/pi0g6au16N98/EppBiMbfvjv5uNIy6+AwvWyIksbXPCFL7bFp3SVJ8o0zfsZnVF6qnnW8u/7WtOCcjgEJKxARlqJYczlLc4f8a2lzPNsh9zlP6baY4q+jPuHHrpv75b9QnfuQcv/9pt1oiyVQPzQts+8uI78NsHF/F9crw6ZXL1bGzFIDNHss9RyHMUmKOmoO6ADE6zO/3+DY+nTtkPvbjB+Yzg/qeM78ilttqGwfehxXkjq88RHQMqPbIxVBwGw+9Q8/+p/a5fSeUmnvRodfnflIi/7PZ5AID/+uvT9hZd89bhqDpQ5Q+QtG7+d9nkc1RQwuWyE28WPFJtMf3I/26GWZ36Wo8u3oClG7Z6lVdNXeqOVpfkM1TsQeaoinxfmoG5K7rRX42xYO3mtA9KH1U0EpDBJPCoy6xOInp9iMbmz+W7n18DALjm4SXSdV9GQgpAYxHOucyCh9usrpDPURPaLtLeSA3IsLkWjGF8ZxvKkT9zJDovAjL4+KOptRYVTK7Z3AcAeGH1ZmMZPWCCfh0ALvnHs2mfLFYdHJqrOZLPUdmsrsUJwCFACMjQBJhMA9w+R82fgBJzVFv8pSgiG4+8IRgJ6hbnjmwHJe06VYNTiY8XLzII3JGmOaoR92Pby9jKJa1zwIcZ1xmQ/AIn/XYRYa6pwYfyJn9TYslhViDmYdnkc8RJ/a1EG8McDcJc9zWrozAxkPn9YvXRsXxh9Wb8+89meZdXtayNaNeyb+gwm6HESrO/iZhz2bg6JO06k66XMmmOjBqQOgiOIsK2wYb6vnb/HHoOWZgjD63FUPoc2aad26rO/S42FNMcKW076A6bmafsH+bdZFOwtRbGe0JnORN4+qx98TrCrM5nbpiZT/de7WsRVDXMe9Mz6mXXm8s+iElD+zJ9ckBNAhvM6oLmqNlwSSThuE+XKW/u4U+4isUZRTlhovsc+fdtuEE3BpsWiHa9Ec3RYOA3DyySfovNdEx7ua76ZCd6/qPZotVxNLzr2zs1ng7Nkc23xORzBDKHuTnuC670oESrq4c5omZtloz23vWR4nOXd2n3bSaN6lppiGiqVSu+n5mJtxN4azb3Yvqtz2WmcUUg5rxYC7R2L7M6ps+mb+yT5NYFUXVRk6fBFGrpfi425ogvp1su5H87zeqakATZBV+Gj7/P/+0LXYtgLlvkWwA8sSueKSLQbTaEsKKtXMr3B4/9WJx1poAM3Huol8SY+GzVUiAESzmTltR0NhfVFg5atLqKGq1u+Gml4UZgjpoAs1mdg4h03ve75upLKYqyPDE2m2+KVmSOKHFh8x8y+RxR6dJwxOpfu7kPl9+zQLomvseYOhPXSsFAPIjO9Hf+N0fguT696z4fypsn8tRDTD1E6BwuMQRj8UzyevnB0BzVM79sZm3p/aLMkZ0JtkmqpeAlKD7OFHnCRqL9Y+qjr8y199mrn8DP73sR//7zmV7tUk2HaE/MTRchq/m+MbPeFK69apC6DlaeI1n7UrgJb6h7ha0tSYDhGZDBHK0u/Xdo8hyZ4RrbRodeHZsi+5IsJNPBRhBlnh1qixExd8tRlPkkFtEcdbaLPEfy3KDCHbFM1TWchfL26Ke8Ds39M/lN+lt12Puhmu3R4kUZW9XKyCbE2B4RmKMmwMQQuaZXoz5JvnWWIqBcEpGizIdTo20PNujGUJ/PETWr81GlF+2hHZw0RmxCYzpyzVERIsqHGdeYI1K/bz4e0/McuMPNSCwpQ2I6hCLkPh60TFGinRU4DALNVY4ifP2muTjvujnsoTWmXd96XWYNqmnip//4GKbf+pyxD/Q7cfPdxjSrCRQb2Q/EozSRL1dfxZFX6ZHFqZ/l6u4+r3YpMS/WmfC9kNu3z1dTf0xLpymao6xdsyAhvw5nmWagSJARkwBDO3/gfj8xj4ciz5Ht0C4Sfbaez1DErE79Eq7AHWyAF0Zz5LudNmueZRHjony9cu99wV+exIU35L6wos+55kh+hgYaElYZPmvaJ6iR7c1NZnVmIbQfPcbV6fM+NtDiep6joDkKzFETYJqTjWqO2Nt11FmiUhmLzbd03drK8EBmjiyaI3KLapiKmtXVa25limbD50WoMUdtOXPEJa8zwYdoVfc5SaPAlC9iPsK2ZzHhsP2t/qa3Iqo5svgwuOCjJWgG4gT43ayX8LcnlmPphm3afWpGKd5H9jmya47mLNuEW+euws/ve9HYB3n8+Psmn48+ZQ42MkbiE9GgGi4mtRnEF31nMU8yzRHTP6kvHuYuJgGLaawazXPkZY5YsG5b5C0VRbShtB9Vy3qXNEcOwnRkBWSQy1bjxGkW6GvVATBmdYovigrWhyQR5f3alB5t0pZJ94bcrE4us3ZzH/48exn+9MiSPKR87TnBHKmMM/XfFUOlMxOCMbPvS4A5uav2PiaGyPCMqU8maJqjOr4d13alGnyOVATmqAmQiL0CNqGuPEes3ayjL6Y6TT5H9TJ2wwHJrM7zoDQ943PQ18MbzZi3BodedBuumLFAu8dLy9NrHcSsrkhghno0R3SDrcc3xjUsfCjv/G+rRM1wnpSiPChDI2Z14tkdx7Xjdx99TV11+KCihFxVMZYwR1trBKqLOaJDxRGKRf0QbIer7nNU/xiJPamt5K85asY34XLGZT5HdJ55NCXeQdK6FtQc1aOh9DHn8TG94/Ch3zyCoy65A11b/ZJjF9kpTGu0vlDe6b/DbVZXhPNUX+Wtl/8Lx1x6l5UZ1fLwFFgDLrM6PkiOLpTxnT/Nog/EekrNpnmzOnkvldsX0erUUNRb+nPNkXh13awu/dfl561fN797Yc2RwdTPBMq0qCWLM0fyeSOf0UFzFJijJsAkIHBHq9OvRY77rvlvMv/INUd+5jItyBvJARksh4yJWbU946rHFxfWwmCLsNgU3GHHXeMye/vA1F0xBpyTNx+tzo5GAzKYckGo5WQNV354SmZ1Bb+RqLO9XMKukzq1dhqBHFDBzoBSEzNhAkL5oWaYENFx4kyikkTRoND2K377hA/EkyWGWTG1we6NBfn4Eqc5qo2rK7KYJtGtDQedb0V9jooFZNAFASZaud4oaQ8sWIe+Sow7n1vtVb6IIEXSCFmYI2n+Gc+i9PpwR6sr4nOknv3Pr9qMnr4KnmYCo5jqL8YcuYhqWyjv4vOnWeSBaK9ENEdF8hwJoWKSqHna9HfS5HCZ5kjvj9aeZ6Jck8+R6RGVB3G9uZTnKFF9juzPJkmCRxZtwIYt/VpbA7GcBDY1s2tBInAIEZijJsBkmlKPT5HPYVG0zlJk3nhMTbTiwqCSGN8ksL7PcGj2GHDfJpdk5/e2DlS0cibIkn9Tu+m/7TW/M1qODcjg3GTt921hYwGL6YHSN3orKvHMHe9obO6geJSGt2+W4oi+N0eMUNBDsafGHEmHE5PUkIJ+NR87eY6sjRP5QJRCeTcxWp2oljKEvKBA7luj4Jix7BsZ5pmpfVXzpNZPMVh5jnwEWfWMm68ZbyGzOpPmSOmfiYmiyDRHQ+AH0YhZnUlIKtVhmQM+ppwCqklnPXtyrjnya9O3b0Ugvnkpcof6B/L3FP92EosLKpCqSvta+q/P+BoFjLQ+Y+/kfd0Wwt5Ul4vmsOU5cn2Tu59bg/f+fBbe9P37tLYq1VjrzGBYVIwkBOaoCTBx726zFqYuh4q7nhw0pVKuOdJDefst2lYAPVgqcWKUJEqaBQNzVDRCTTNAz/YTDtq5dq3GHJFyRczqfBy2xUHBRiysK6qaa16bD2LAvsGbBA0Rckm9y+fIRkOJKqMol8436xAwmYVx9dOyPbVEiPL8thOCVBOUJRJWyoh3/ceTK/C3J5ZrdSRQ96v8b9U/orExSp8VQWHUtvI2aECG5jJHYs6J95CJHTeRJPpL527RPEf1CFt8HqnHLIrCplFXg6L4wrQH674M5r0gv57eGIpUDFbCt8DgmolsW/3yb2tABpsJLfMYt5/84v4X8dCL6+U913OImyU3zHyOiE+pTYCbmbfW/qXMEWWeOaGC2mVR3EdzxDFbHExngA/TBbjHX62zSKTKf85dCQBYz2iO0iSwcgVcrr3tCYWZo/vvvx9nnHEG9thjD0RRhBtvvFG6/5GPfARRFEn/nXbaaVKZDRs24KyzzsKkSZOwww474GMf+xh6enoaepHhhGlfcm0gnBRJft5fspHVyRRIfY7ST20za3DVM9xQpY4m8zOTNLKouVqzx0BsnFMnduK9r95bukbbKtLPxPC3VEYwR1meGUrgNd/nyJZTQ/1bz7XD1xlFBrM6ljlyaxWpNrVZeY7oYTKgMPJ6H/NrWzLNUX6/iJTcZK5VTVIn8M/96Qnc8/wa7b6qObL5HDWWBDb9t0yJEAdT2xyfI72+ukN5F9IcuQksF7hodWZ/CNpP7yYy2PYb+i5FotVRhtM3r5lpHWaao6HIU2cZwEJjyxD06t96/erY+DdYxFdFYPZLG/G+XzxUl+aoecwRsx9bKlctLdrLVHMkm5ypbegCj/QC1cIZGXQPLZDadx/BZdFvbl9L9mfVPZ2+U7/icwTwEQ63JxRmjrZs2YKjjjoKV1xxhbHMaaedhpUrV2b//elPf5Lun3XWWXjmmWdw55134uabb8b999+PT37yk8V73yIwLQK3zxFDRFqk6oCbMGU1R5FZc+QTHrZVoG5K1OmSwpSdvZeG8vY46Js9BGKvKZd0ky66DxULyOCeb2LcxEFC5125HubIMTm2DVTx8d/NxlUPLsqu0U9nMzcwaU5LJNSry6zOqjmq/RuRAA/NynNETekGKnYtCB2DzfWY1UmMhrim5qFJrNK/xBLFUCVEGxkj8WibpDlivptDClp0pkr+m5rPkd4/CvWS6E9VYhb4dk3EU31mdfzfchn/M4eDzayu4vCdMyGWGN38hzUJrIOA7Fec7gcDds1OfcyKSTvrqt+2j+mhvPO/uSZseWvq8zlqznfIfY5gFOByrgriSqkUoaOsJ4KVTXQhPyR+ZmYEfFtyH/K/beuYtmuzkMj7oPw21qy3rQlwHLyMmhuSPs1pjrb3iHVtRR84/fTTcfrpp1vLdHZ2YrfddmPvPffcc7jtttvw6KOP4lWvehUA4Mc//jHe8pa34P/+7/+wxx57FO3SsMMkhXSdhS7mp6k+R7XgWL4+Ry2pOVL6bor8YwrIsI0J72lDXWYwHpFspISmjJlPkfC6PlJjUUaY1VHCpdFkpRzmLN0EALjrudX4yPH769Ixm1md1A4hRMEngbXZ0vN9T+9FUXogA80zqzPl4eIOGeq0v2lrv9Q3ID/offJNmIlKt5TT5COpaq6akQRWNl/Ry6nOxo1CMj2s1cdqjrg1q1zKfZbc36O50ep4IpuiyJnDQc1pRUGlx8VCefMCDFU7ZCpHQSX/lThBe7mOTcsTds1OgXrI37ZQ5hRFzOq09pyaI5s23dwHn2caQe5zFEEogdT9LJYYHfm8jAC0lyP0V/kgDAJJohP/LP1lGCbap2qSeAlA5IAMbqZL9NMGXyaXg2aNQIpXYl3w4PKbHe0YFJ+je++9F1OnTsUhhxyCT3/601i/fn12b9asWdhhhx0yxggATjnlFJRKJTz88MNsfX19feju7pb+ayWYogW5/YP0+/KhzT1j7wu3dmieI93nyNQ3ezvDAXVDMhIhCV+mSP4goD5ixgbR/3IpyvxnquTgz9qt037DJVkWknu60RcxlclaLDg5bIe+zTSA3qFJAqWxcpisqRB9p2YczZrr1JSOEpy8z1F+TSQ1laPdxbj/hbV42VdvdbZre1+bKVICswmqqnFqRFgiHpWEApzmqMlmdSVGu5b7+NnXjU9ABtOQGAmnAmMYKcITrk95P/zPnKwug0ZdBWXsi+wUJobNFpDBR2o/2KZ19WqO9GSeJprAv/5imipzXwC7FqCItUvRcu560n8lawrlI3DMJd1T2plcRxwjpPaYMlim57LrkrVDLAmtTD5LXpojQ3hxE1S/zCJ0g+pbSEsPVBPGrK4FicAhRNOZo9NOOw2///3vcffdd+M73/kO7rvvPpx++umoVtMPs2rVKkydOlV6pq2tDVOmTMGqVavYOqdPn47Jkydn/+29997N7nZDMDE0bs0Rxxzxkgfuvm+dkRQJxs+XoBWZI91h0BSQgW5k+d+qWrloez6wPSLqK5d0/5l6w/E6JeDI55GQuEpO1oOgOdLLm5lam8+R2k/OYZdjkO3StfRfW16NekElbZQR5+qn77C6u7dWLr/fX43x6T8+ZpxP9LOZAjIAds1TnCTKfpX/6tcCMhircYJq62x+BT4JT4ugxGiOBNOXGOZZds1QJyUyjc7bg2RW55PnyLcJydzY5nNE/Thom46GaFclJ3UL020SRtnMPZsNO/NieU65lxju2Rks+bc9IINuQsu3nf7yN6szFlOe8SvnQrZ3RURgaDGrywOqpL9LUW4uTueGOpdSRoI/a7h8aCokpqeaSONJTdONmiOPtZuWy/+uVGM89tJG6b2kPEdJsW+n+RyRZ9U8UaL97RmFzepceN/73pf9fcQRR+DII4/EgQceiHvvvRdvfOMb66rzwgsvxPnnn5/97u7ubikGST5o+b85uMzq6qHZuEVYjqKMCPbWHLVgvDp1rRqlYeQyJUwLa46aPARUcyRMCGJls0/L+dfpM1/yaHW6TXfRYAT1SAxtElGbWQG9FyE/PF028rZ3EsUj5MRzs8zqqLaFmkZyASIowSiYo0Q5gG1aPdrjejVHqlkdHcpmao4E8giBvFmKT9LEYu3pRIv4FrK2RYeX5sjQrsn0rsg7CSdxH7O6enyO6HvYNEemwCIugYJJQGUN5e0htR/scN5FAiZQ6GZc/D1rHRaNiQsyEy1fL0d2c1DObM2JJp2NeUAGPsk3oDIZ4l/BVIH1OeLWr+ms8Yn4plo7UMahXNKFMIAqBOTrtQVkuOz2efj5/S/izKP3wvfee5R2P06KrX09yE7+d4XTHG3nPkeDHsr7gAMOwM4774wFCxYAAHbbbTesWSNHTqpUKtiwYYPRT6mzsxOTJk2S/msV/OGhl/D1v8/NfjcckEE6tPX7runKmtWVSLQ6SyhVVz3DDXWD9yFCJCKAMkceGpP6fI7MyJgjKfJaIv0L6BKn381cjMeXbGTr9JFOict5tLr8nk2iOHPBOlz36BK2riJQn7EHZKA/8j/lgAx8XVmdHkQM1WIAxZlEDnQ+0rmmMvFxLB9Eq4TmSDGrs01RzjSR46VsxGSSmIk4VePUyPjkDGluOsN9Il/fDF9w45H5HEn9Y/ZZ5RKXBLbZmiO+H27CTWIw4gR3PrsaNz+1wtoWnavWaHWSk7vdVFTqk9SWeb1TuKLVAUOgObK8lt3kTq2H/242U221DtuaU+e2ybRSjdLIgd7x1xw1h0DIrCkkzZFcpsqc59meEkWZRYQUkIFhVjUTNqWu9G/3HKzEcqAbOTgO6avHXqHtM+TCz+9/EQDw18eXSW3TsjJjyzaRQbUGoOMxEMeMhUfQHA0qli1bhvXr12P33XcHABx33HHYtGkTHnvsMRxzzDEAgHvuuQdxHOPYY48d7O40HXc+uxqPL9mU/ZY3GtdhaL/GapbqYLgiS7Q604JqxYAM6lo1STakjYyUoZojvzxHzR2DzPmUmNWpm73a7p3PrsbX//4MAGDxt9+q1WngJdh2uWh1NmLlA79KfQAP230yjthrsrUNG+ySQHU+8gdKRPxVTAkmufpNfaFJYIH0ICvVk/SJoCJpjswHtfo78zkil12BGHxDy1p9jhLzWGpJYBtYCzQggymXCeD/Tr7g8hBVWLM6vZx6idMcmWgHc0CG4ueBbDJnIrAoU5vgc396HAPVBNMOmYoJnfwRLwuNLAEZDBHAbMS22leVeTOVM2qOEvO8bDZsFhM+gV7yevh7ReoosgZs5mDVOLEyfS5TfvYZ757ZQU3bTNFDOUEQFQhlZnWGUN5ZeY0RqZUt4Lcr+kMZB9P89jETLkpjSHMi8Z9bgFtzpAkxg+aoGHp6ejBnzhzMmTMHALBo0SLMmTMHS5YsQU9PD7785S/joYcewuLFi3H33XfjHe94Bw466CCceuqpAICXv/zlOO200/CJT3wCjzzyCB588EF89rOfxfve974RGalOPYDlCCV28D5F5H6S4M+zl+IzVz+WSaJda4nVHBHnc99odS3IG2mbpmnxyhsZleYX9TkqVJzFLU+txCd/PxvdvQNZ/8slaMEAJCKV/L1w7RZr/dJ8MUpe0+tZtDpP5khg+aatWl1FYAukYbO5prdMZnAu8ywNtVulKEJEdr9mMMKm4B9qH9Xf63r6MFCVJXf91cTKwctmmBbmyOVzZGASVOasEWaFhhoX33BVdy8+/cfHcM/zq7NyPmYoRcCFns41R3bCRXewrz0v2fzzndS187XrhvI9fRV88vezcdOTJFEvE7jCNCSqZqV3IEY1TrC5d8DwhDzWWy3mxlQAVbX4DqkwjY0tlLePZmw4NUdF5qRpX7Zrn5R9wtKglgSWDIu6pp2Cljo0to3ulz+48wV8/aa5xNTc5hettyvGsRRF6GgTZnWUMVH7axZ4mASTFOqZo/r+cOV8zIRtmiMOqs9jEW07ZY4+etWj0m/1/BHXtmcU1hzNnj0bJ598cvZb+AJ9+MMfxpVXXomnnnoKv/vd77Bp0ybsscceePOb34xLL70UnZ2d2TNXX301PvvZz+KNb3wjSqUSzjzzTFx++eVNeJ2hh3oA0+nlksKwhzLooktwwV+eAgAcu/9SfPh1+zn7wx1KtjxHPg6INsRxkqnDBxsqgWZavLSU5Hg8UCzPUTMCMpx7zeMAgJ/cswDH7j8FgOwDVlU2e0CeN65uunwn0rrTO+1ZHon8XlGit54xsZmL2PyRtIAMjFkgm+fIKp3N66OaI6MzuOf8jmPZDl0yq7Mwh0A6Z9Zu7pOj1VUcZnUMg5v6qch1F/E5sjm+N0ILiUcj5N/wfb94CADwyKINeOyiN6XtO4iJKIoKdYRjjgThJQlgmTpNRIufz5FpT+XLX373fNzx7Grc8exq7Z6rn7RvgBx62yYM4pIQc6hIzBG57jC5MX0mPZS3+V52XRIatGa0Ol1zxDNERfyWilg1Wc9xx5Lx0U6q9xrZD+I4wY/ung8A+NgJ+wOoBcgxmdUxzKUYXxqQgeaW08KBJ1wob3/mSArIECdG/yaJWfEQ9hT95ur+I88t+7M0Wp2aFJyLVufSDo92FGaOpk2bZl3gt99+u7OOKVOm4JprrinadEtC0xwV2EC4hWiS5AopoGu6cgcM3XjUCCSm+v79Z7Pw7Xcfgfe9Zh9jW4vXbcE7f/ogPnr8/vj8Gw929KxxeDNHBoJPMqvz8jkq2EEL1vf0S2Z1qvOpSZvjossl4sJIkKT/tjHR6oraFdczJup+YUv2aZIkN9usLiLaVLVPAtfPXopv3Pwsfv3hV+M1NcaWw4x5a/D5a57Au4/eM7tGpXKqlJ3+3nVSJ1Z392FVd69i1x6zDHw1TlAuRUbbdhVOszpaNyWym5nnKBtzfT5LkZiabFbH+hxxZnXMs6bIVnS9FPU5Ms3LFy3aYdNeJveNP3OsvkSezNGA5GdkJj71PvHXdV8Q9ze3Me3Nhs2szvbK9n3Mb62qdRQxZbUR364t3pdmkWmT+tcnZXAFPVIq5elGbIEpNJ8j8ElgNc1vzAk8xL8eTAz17YkTo1bIpDky+gM7fqtQ9x+fUP8CNpPUShxrc5+LYLc9YdADMox2qASM69CVyzKEnYFw3LBlAMs3bXNuUNz5QglBfRM39/K/bnjaeA8Avn3r89i0dQDfv/MFa7lmoa48R1V542qGHXc9iKK8/20kzxHnFEq76MpK73Ng2aLV+QhiTQy7L2wSKVtSSDV5KB+QQX8Ba54jiLqUUM/MM1/+y1PY3FvBp/74mLE+ADj7t49ic18Fv5v1EntfMwclfd5pfKpR39xbkcr1VxOWuBcEABvAgwvI4PQ5kn/n7ZgJlKLIx1xmSAHgsD3y4Dqmva9e2MzqoGjoAXuSWtbnyJMByK4bHuhmzN9EV3zyKpmu26JzUga9x1NzJMZu6YatWFPzkzPBuBdplgv0b/d+PrwBGWyMjfpebuJZb1tZcxauJlIWu8n8Mk7cAjBfArsIbWMDZY4E/WRLrcAJCCSfo7Yoq3fDln4s3bCVDeqg9jnTHDHXVNg1R3w5n/3M5nPLQd1/igjjbVpXk8/RdswbDX5AhtEOm2TfNdF5szr++d88uAi/eXAR3vuqvaTn1WThXJslIrHVk46NnNnvaxNrk9QNVGOUS+W62msEEekLPQg46ZUaiMAGn5DruVkd53PkJjYS6e/iY2ILyKATFXrDYqwi5vDkgnJYI2KRQ5US6oMpITMx9eUSsZevyFK6AQMROFCNMaa9bA2PTOH2OeKfVYnQxqLV1cYc9vwstuTA9YBbOlwAlITMsywps/KceAeZWTExAPyYm75T9zazb5BMePFlTEOlJn2koATzlr4KkoQPHV9RzIc2bOnHid+dYazX1Vd9bboZBzrO/dVi6RiKoojZm/Sc8slNQgd7tD75t01wpfkcmTQTSeI0j/JJVqq20cj6pHuLeI9yhCy9he6jSfpQ+5uuWZrn6OhL7wQAfP2Mw7S+a4K4RP43Lcf3WfXtUf2dxfqRTE89cqKpl13nkPQtk6TQnmm73V+NtfFJtUnbL4LmqEGo0skiG4jLrI67v2zjNu/naR9FP/XFaO3isGJrfwW/+teLWNmVvrPmu0E2n639FVz14CJNu6ZutEVs1uujB/mHqOYoTQIr98/UZ5dZnZfkVWisyjJDBhSPrFV0TJJEt/W2HcactE0MgRgLlyTWxiyIw6dEzPRM9Qg06lFn8jkql3KTkP5q7BXKWzCDvtLoIklgKZoarU58R8XPCyjmwOzzHapxgj889BLmr97M3hfjwUnBaf0mszra33U9/fjdzMWa+ZoxUIxJc8QwRxEz1318jiismiNlDZrKSnmOqgleXNtjrJPCmJA6kd/Ddd6JZwSKJvIuCrvmyHbPj6nyTcYKFDMtlaacQuy7HOt9iHil2oboBsocZabmknWLeRw4zVFbSbeIeGZFt1QH91651Yb9/Z9Z0YWrH8pTWqRJYBXhUSLXCch7pmm49PPPUFDUqaxbH8bOB5VqrD2f+iG1MIE4yAiaowahOmubJEYcXCZu3PMuSYFJcxRF/MbTyILy8dtpBOdf9yRue2YVZsxbg6s//lpWsiHwv/98Dn98aAl+fM8CqYzmp1TbmH263mxtghj7NAms7P9j0na5+mkiNOR20395szr+IRMxXHRM1A0csGuOZKI1PzgBaGMG8Ae/3XQl/TeKotp/6bVGiP/2cmRNmKfZ0NfKthHNUX9FPpwGqrzPkZDkc0E1uLliszNPYCaGtDxHDSwFOptVZp8OWzNCeV/zyBJcdGOad26fKeO0+6JeTohVivKAFtqcrV1Qiduv//0ZLNmwFRe9LZdUF11T3b1ms7YiAVdU2AIyqO+xubeCcR06OTCgELJcGQ625VSNk9z/kVw3ffJWCchgMyZT75iIVrtWW/2t7o3mc8GU5yhO3KbkkomYp9lfszRHYt/k0ltwbama3VKU+ypRRp4TAutrGlJdaTn9vd56+QPS72qcaPt9nCQoI4I5IAM/Xrbzj4PqxyQxYA18kzjRNd7bu1ld0Bw1CJvmyDWxXMzQZ65+XHvGVT+3t0VRbqHsYshaCbc9swoA8OCC9QC4gAz57/teWAsAWL+lXypjesYvWl3BDsP8zUtE5c7ZVyva8vw5h+kXvVKJE3z5+ifx59lLpTKiDd6szkDINUlzVI3tmiN9DdADuPZHbQgyBt9gukDbNEHVRpWZOotC9aNRoWuO4uw5yhyp787V2s/4HNWf58h8+A1KEthIX3emEPb1bktPvLQx+5sj4PgksHn/smsKuds7EOPzf3oCH/rNI1qdDy5Yx7ahwvSdbD4/kma44Jr01RwBwKatvGlfRQnCIOarC7bvZ/I59AlkMbx5jszPWaPVGbSjyzZuxWeufixL8K37HOW/V3Ztw6f/qNMDXPuqANUmuAFg9J9RUUTwawMbkCGCMd0Ipz2lfoLlsh5sivPlMbkU2LQv3JlbTXSzOs4n0cdcUb3ciM9RIwIsAOhT9vwKkxgWqM+0fiQiMEcNQqWLpEPXMYlsTpwAsGTDVqhwOejymiM+0pepjlYANVU5qpaAlPMfckElVIrE7m92QIbMvK2k+xyZojZRYpIjHuhz/3hyBa5/bFkW/l0tIzRHPgSJaZ4V1xzpIUKpr4v6OWKmLZtZXdGADLmWoFZnSWZS64Ew6zBBlcjRpLwiu7tqVpeAD8hQYczqbPPUHsrbX3PUULQ6EnZXZSRNWsxmrD2b5l0miHJCK78mP/fo4g34+5Mr2HZUhs8n6poLQpzlR/zwN3qtPkfyMxu39rPlBpSADL7r39fMjJYy+xzlfw9rQIYCJnExM78AoErW1ReunYN/Pr0K7/7pTEMd+e8vX/9UJiwEGN896pejMDGugAw++XjUew0xR0yEyjITwVWACyBEc6cJoR+tl/seJs2cqmmjWNujBx5Rk8AC+XiYAzKY5rZKj9kHtt5odT50j7q2BoLmKKARaHmOCnDympTCo72qYdO1oRTlRKCmbm5ACjCYZnWPEQnwXjXzGM2x3ZCIjUI90ITUyqfrjUpiVIiDoFSKIOjpzO6ZlDP5HHESafreG7bwBE5OjPv7HJnN6tjLRlRi3RH2X/PX4eT/uxc9fRVtDn/978/gL48tk9oSa6zEHJ6cVNRqN58xRzVTvdq/p/3wfnzuT094vxdFcc1RThB0tKXBQVSzuvQM1OsdyMzqdIKBe22nz5FhqDizkXqRa+sYszoDc8QRyl7h96V29ToynyNm36N7ufqojdFQu2XWHBmrMEIidC1+PBxsfdY1R/zeIWmOmFwoJtiKFRW8SFEcB5050vsg/AJ9tSpqPab99qX1cgh3tX46Ti9tsCcDN61PNWEpB2/NkfR3/fuBmnwUqKVq8MjFqDI0qcClpNWrvnLMMPa5/xItJz+3dMM2qODGNDO7pcIEB32S9km+5hpVNS2EiQlXYdMiC6hrq1LVw3sDeqTE0YrAHDUI9cDmJJImFLU3TcvYJQWmPEeN+hxt669i2UZdkzVYWEwODi5SFCDn4DCNnbrRig3AL89R8QPA/ERuj1yO7HmOpGh1ZCPiCF2JuDC0LB7LHFc9JFp0E7ZJ1lyoMgcAACxevxU3zVnOjvGXrn8ybVcQ1VlEI465q9fnKP1XEOubeyv4h0Ez4EK7GjJSgeZzRDSINCCDj/N9P8sc6XMoK+8I5e2LhjQ5RDOj+miazIGaIbHk+py1IRHl6b+0Z+qzRTTOpmh13N68ZnOvtS4/n0L+RhHmaKPBrI4yydXE30HbVs4U8c8kkBlKnyOuB+1MfjgVulkdf08WfCkaR4vGRIXuc2Tulyta3UCV/x56XfzfRcEFZChHljxHklZMZmgiRNn36atUtXICScKZsIl75vNtKWO9U4n1MXVpjjhw68llvqxq+Xz3TFvOMwFNcxTzwpBgVhfgBV1zxP/NQb3vc/C48mxw12jyxXoYMgB4w/fuxQnfmYEXSBSowZQgdJEITibizyUR455pxKzOFTnOBmpWVy7lzGr2bgb1OJ1erFkd/ZseXgwBwiaBNYyhKVFr0W0xjs0EVYTIIamsEdWiPDOHi4fyFnXVtFFaQJXiG39jmqOaM3ElVg5W/ySmuTRVh81HIy5A7DZCk+ZjzhCEJs1RE7gjbhpUmL1EDsig9wWwM5nqdzKNlTrWPX0VvOZbd7P1cHPd9K1MVlM2abEqVDCZ1al54nzni20dyeaj9Dpfnn6KoTKro9+izUNzpFmBSHQA2W9JQXXfsOW80c5a5afZbMvMrHOwfl8P4Y0PKIObBWQgghPd1JqsgUxLnj8nxpEGIFGZDGrKzdUroF7imKMq44vj8jniwAkOXUynHq3OjxnzYo5Un6OQBDagEah0Ue7kV5xw94Erz4bJ5yi3Ya+vDyu7Ugnnnc+u9u1qQ6CJEUWfdbM6D58jhXguxBwpRX2COJgQIe9/SYpWB+lfwEwkFDEh62WkaO1FotXRTdjTrpmtx0KAl0v2+kSzulldXoabA/Ys9PmhmvZB/qauA42D2+coUX7HtefMobzjJDGE8q5pjhiCi9UcWeZ7kvgLR4p+d7pUqOmMGspbmvfMQZ8kCf72xDJJKGODrGnR+yyYAk6oQLumzqt+D0GMgG+eozXdstaIjowoSrth+gQmSe62fvO3rycgQ2oia6xS7pNluEzSbh+/jMFmjkQf6DwV+6ZNYq7PNV64ZNMc2fIcuY4eI+OcuAMyyOX97jVLcyTmV4n4HKnrhDt/RBGa58imOeJMiLmzV9McMdYy1dhsgWOKVsehwggbXMNK6ZckMQsxVdRnVsdrjrYXs7oQyrtBaJqj2r8+m0c9WhxXBBSOIJCSwKobhLtJuf0CG20joLk/xCajBVfwGGRdAlzkoJDLNqw5yg5eaAeBSUIsS6IcZnXkx7b+ahZ2V1SRmS1Q5sJEyBkYqKL8fGxQzQNy0k0O2ftkwRPyOgU4ZsbG/4rSqs+RQH8lzg5bX7Q5zOpMvnJqtDqV+OC6IQgdjnnlhtIekKGI5qggc4R8rMU3isBoWQzEhPh77vJunHfdkzh6nx0KtQ8YNEeM5k38SYUfRQK5qO/kmztMF1TRPuXMYX7fxDzw/aICEhVaQAaDv6Lk5F5Ac2SbLnL+F36fMdU1VGZ1NKx7B+OrqT1n+ZYmbYIqU9ECERTYbE1F46TYmW3111S8juqFxBxlmqMo2+80szp6HqrnpUFzpEe8Y8zqLFpkASEUlvoTx1r9WUqOAtrvVDMjXyuSBDbdvyH9NsHGHJVLEapxwpjV8ZqjYFYX4AWTDb2f5kj97X7GFpGFq1P0MU8Cyy9qX5gW/HnXzcFzK7vZe/WAmtXFzMYD2EN3Cpgj3FHnaz+iw0diYqorQkTMqUqa2Qx9yhS1iz/k8mvUx4BuhqIOatN92e3P46oHFxkP/GYxR7YIV6UostanMjI0IMOazb04/89z8NSyLu05n1wdYvxVbWA9kum2gmZ1uc9RKc/urpgwJEnCzrc8ian8fVw+ShwShmAwQSUG/vrYMnz9prnGseZM1CISwp6rlxP8rN+SRovaxCRK5UB7Y/M54srZgp9YzepgfifT9aseXITv3va8sU5RVDW15MvyN3otpjSqY7fRrE4RzjTDrE5OOgryd/qjp6+CL1//ZJaeQfI5GoZode1twqzO/E42Qacs7Mr7r6cBUeokF9SdQP1t0xy5otWZ2tTv0Xq9q9TQX83npdjPyiU9vQXXVp4XMP1diqJMOEVNiFVNL5e2QNQhfyu5DGeWXLGYw9Ht1sWUVmJzeHHjM2pABoclkU9faMRU9Zmi5/1oQtAcNQiNLsoONfMze0wegxVdvTqj4tGemznSr5VqyS65+0Unv8lk5G9PLMfNT63A/G+9pViFBkg+R2Lj0RgdsjEY6jFJgKWcJglvtqCNZYOao8z5tJRLu8Rw+mmOGCkOubSVMESUURJlRFSfzX0VXDFjIQBg7ylj2f6aidaCzLRFc1QuRebcLYTgz4Mn5BLc//nbXKOJp40YUP1LVO1MPZLpomZ1ss9RrjnSzOo4n6OYCciQmMfYpTnyFY6o5f6zFjTjpJftgje+fFetPJW8Z2sOuhkjpy0SfQNy4qSePEvcM1meI0Z1RInVIua4vpojWuXF/3jWWB/tk1yViQDmqyikOTKZ1VVlabzrMyRJgiiy+xKaAo+I7/Xju+fj+seW4frHlmHR9LdIe9yg5zli1kNmVmdljpR6QN8xvy75HFki3QLFtLWmoknijlbnUw9g9m8tCi6UdxTBqDmSU0/IfSlFuXCKnnkDyjyJE97UjtYF+H2DONYT62Y+Rx6aXlq3TXusIkkS6XxSNbm2Z21nYke5hN6BWFtbA1V/YchoRNAcNQizWR0/qa7/1HH4wLH7pGUsjocm9Cs2pwBw05zlOOE79+CZFV285kiKVle8TQqbT0YR22YXurfliREz9bfF1MVoVuBhHuMTJQloiDdCRPpCpWRq9B1APQwIk8L0XZaq5X9v7Wc0R4z5lypBzq6Tyv77b0/j3FpC4qJf2Ga6lZoa8s9t7qtoUcRoUBE1DK7cprk/WZ0Gs7p5qzbjxO/egz8+9JK5EgVFAzJkmqOy3ayOgzALrSrzxag5cuQ58l3+pjXSZdLoSP47giHlfDT5NsQYiQO7ngAN3COZz5HEG8lMeNq+Tij4wieZqQuiT5wzulavYWxsTth6tDp3niObhlIgv20uZwzIUHt42aY8fLLa3KBrjrJ/84bbs/xw5ue8NUdkPG2RG9XfqoZby3NkPMPy/afDw1x420AVJ373Hixep++vvs7/LvQxzFGJhPLWfTT1dqngrI0J5a0KuTifI87KR12i3JnL+Qpx1i0VA91C76t9or/1QC9qm2bfYK0tC20mziCdOdpeDOh4BOaoQajMUde2ASmYgFwWePV+UzIJfj1aHE5z9IVr52DZxm344rVz3D5Hyr2ie5y0AOvkFpIkwbKNW60HLWdWp0X98mDGNPOY2jO06z627kDxPCvys7l/TXoQ1NpmNmiT9IljPs3O2LrmiDP/MmlK1DG55emVqaSqoATfFuGqXIqM97q3DRjN6pIk0dadre8U4lbGcClj8vW/P4OlG7bhqzfONdahwuVzpJmDUs2RIZS3KyCDegjXozlKLBonFXJggPyhNkJwre7uzYgJ2vdcOhxp480FlkjbkPtvYuJVmIjSrD3hc0TWzaquvtqcyfum+jOKfkwZ36HVqX4nVwRIH22dKOJ6H7UMBfXBUCGYxJ0ndAKQAzKs2LSN+HnKmiOXNkPctRWT6pCYfL2s+s6D7XPE+e/l+eHML2VLrk5f16Y5UsdMSgautKcZrBi6Rs3qXCkHBJZu2IaL//GMdl0SKDRANcs+RzWzusgckIHzSxSXSiQEuKQ54pgjgwmbbY1xwmBO4Cd+cn01CXbSvGFmhliFFj4ciXGeaW1ZbmZnkHJWLN+0bdCFEa2MwBw1CJVGu+f5NTjy4jvYTTwn8tLf2nz12HBoRBZ1HfVVeDVoKTL7HBU3kypUnMUP7pqPE74zA1fet9BYhgvlbctzZIImAWbyHJmGwHbg1QNOc5QkOpEqSdOpDbMjIAMF53PEaThMBBS3mdYTyS1OzBGuypGZOeraNpDdU/2DqrGdIbEzR4JBrfVBGZM+j6g+Kor7HJFodTWpnWrCkCR8dMSMOVIYKdM42jQeCfyda01MushOP2fpJhz7v3fj//3ioaxuAcow6RG6dGICyAkKsd9VE94Hy95n/doAQ/z+4K4X8Kk/Pib1WmXGxDufePDOmHXhG6ztGqPVMW2bkGuUyZwwlDUxWzYnbNGXnSekzN6mrf2I4wS3zV2F1337HnzxujkAlKSWHmZ1HMGptW0Q/ojr9Cur7fVbTAWbAa7bWWRR23PKTR8zaZPmSDAxRbSlRs1RnH9Dsdf4oI85F2yBC4qgjw3IkO+jpmAHabt6+2XO50gh6tNzVu6HqMuWx489B6uJMdw4Z45uOo84+sUmONG1YUpwkwKMFQU9gyj+8eQKvP+XDxmfG+0IzFGDMEmwN23RtUecBJzCZ8OhhIlvQIYo4vNm1AN68NdrZnb53fMBAN+9bR4A4IXVmyX/kThOJO1bwmyIgJKB2nB0aQxVIbM6+bfP0EmSHFLBcyu7cc+8NQDSw5ZKDeOEt71P7/FEKXefgvM54qKwmRJF8syR2waZy/lSxJFZoHvbABlL2T8oTpJM+8rBKt2u3VLXooBKsPjA7XOkOLpymiPG54jDlv6cWcjr9z9QKbgM7SrE8NA2KNEtCMfrHl0CAHjspY0A5PmcHcyRLi03aY7E+2eaozqEMtaADMqtO59djXU9uWmZSriIfaOtVMLY9rL8sCOZZ9YfYWaj3Ock+qKED0Fq+vy2JLBirCeNbc/q+MdTK3D+n+cAAP5eS4hcr1mdVQIuJR3Nr+fCkEi7JjBUARloq2XDeU1hN+Xl57i61YhiYj+xWWn4ahxSzVFx5ohDY5RDDvoNxTorlWxmdeRvRWhQiiK0C7M6l+ZIO8/1vaBvIMaNTyzPkjPz0VA5jU9+L7uWaV/NtIlqVWBbXppGOvH3ObLlumpXNEd0Xr60Xg9lvr0gBGRoECZaipMKCBrKGByhYNvcQnJpjurxc6JoRnJGFZ//0xN4ftVm3Pfladh3p/Ho6a9I7ybaVAkkqkkxdcuLOTKa1RVnXqV6SfmHF23I/i4rUbtUx0xjYswCmhtfnyPbxs2VdXWhvVzS8liYxs0WSKBr2wAmj0sJN7HGqFDBpq3xyXOUB3mQ77v8h+qBOuW4aHV9lRidbTnRbRqznt7UF0/1SzOVtyeBdc9p8T1pOYnxFv9aBAlZLhMSGIb2PesP83cWkKGOfYd7RGixXBozUxCNNpLAWUCdMcZodRlhJ19vK5UwUJUZGdF3nzxHPgISrS+1TozryOfcF66do5Wj+6VXQAbGV0qFSRsmtOimssAQmNUZzs/0nv9z0vlFiXtyZmnBSeg+PSA/p5nRae2b+yXmfKPMUbM0R/Qb0lDe4h017Q2jHRGX0hDguuZIFSTGCVCKlGtKcAcA+Om9C/Do4o3Yb6dxuPfLJ7Nrmcvdl5nQMdpv037A5RFS+WF6W2f4ZHrO9k1s/uC5z1E1+20zyd1eEDRHDcIkaeaIcFsyS8DPFp2CWwxcFaWShSEruMcVzXfigw21HBvi3y4lclJuVqc7DAqYeqUSyhyxaBp37fsY2jDVZRqrcimSclzYDgNXQAbT97OF8vYBx2CkoT3to9CpHMBxbD64bZLo7t5cc8RFq7MxMdZwtFmdQhsl11MPc+QKlatpjpg8R6pZXZzwPm6baxrVqnIomj6L1ecIbs1RZ1mXYlPGW7yLTZBQIX5+WgAbRgiSPp/+K8x7qnHipaqmvbBpjlzbmEloUC7rDJ4Wrc5AiJg0RyYT0TT8sJsg9dkDVIj362wrWX0pVZ8jF1Hsc57YNKSc0znFcPhA+Fhd6IJO/h3pvDIFVciSddsG05N2iJPclNQnIIMVpIlGZKT0G+YRXKPMPM4WrlrV/EZRrnl1+hxpjIi+Hh9dvBEAsLimMeH29opF48N9a1tof1sob3V+cO/ky7Da6DahCRd+yg3Pk1GCMAoNwmRWN8AkG9V9juwHgQtceafPkUcdNlQtm3u9EHWKzUSNgCU2frE3CIKSYxa0ug2+A9R/wbRxNOqfZSpP804BjKMl+SmZ1TH99AnIIB5zmX9RmM3q7M+pzFE1MTNAqVkBXw+dA2KsqIlXo5ojVRsloJp9+cAVK8Cc58gcyjsNiazXtVlojiQG2jzXrD5HiZvIETle6JjSuZXnXZKfo68sh+tVTNAMmtHMrK6mUakrlDfzcpzPEQfT3tJe0nM1qXBrjuT7JmIkSRQti6HPpvVlk/5WhZlguWQlhiSzOkZirvcl/deXUFOL6Tlu5N+Db1ZnPrftpnPm35ygAEiTgVOIvZDmoxNwRaezaY6qmeaozBfyhEvw4AvJrI6k1hDmcep+yZmO0X28zEWr03yOzKZwtlfhAsHEcaLt+eIc5s3q+DnLnae2UVWZxgSqVs3yrI05qmmPhTCl0XkyWhCYowZhotH6GMfRjCATDp6GBeYL3udIv5YmX6y1YZFw+aCiEHDNgKhTbJTdCnOUqadr/3Zm0nZ3+6Y8R7Jkj392sLRsZWIKAOgbsIlgFATbrU+vxCnfvw/Pr+o2MhdytLoaMe4ZrcjU9/SafRBUQstmilONE2uI6MwErnaNhj+3aXhskc3EHZPPUT2aI5s9d3pf7o85Wl1eJjYwLkJzJDNHZqbVmefI83tSXmEbI6GltZhyhURgzOoMWtLMrK5G4NcXDES/lrdhr8+s9S0Z93wBs6kq3y+j5kgpS7/5cyu7ccr378OtT680fntrQIZMYBJpAg2KimICRfvwwFdOZvrsZj7lsdX3WDoaiTJ9BzvPETeWkeHslJ8zE/SSdpQ0oCeBTe9xmiOXWZ1NwNcsnyOf4CA+4PIclUkyV5MwCcj3BXElIs9RzREXvEDtc2aiZ+krt5a5xOYq00afNR0Pv7j/xcz/Wu0TB5c2zO7nZ143Y2qaI0FP2faDtI/W26MGgTlqECYpIreJC6YoIkQeRdFJpy4kU96YUkTbVOtwt7G+py/7PRhmdZmEpbY41UM9S5RaK5cvZrfPkTrGebQvc5n8un6tCENoGqtSSSYSVf80iWBkNttPX/04Fqzpwef/9IRxY5fN6tJ/G9YcMTbSKtpVszoiseNs7E1jv60/JqYTsglcktiZGJvmSE0s2wwfI5cCU3cwFlJ7YlZX0U0kOG2J0BxpDLSJObIFZEjcmuP2Nt0ZXdYc6cSwOvxizZVKzBwwao7Sf4vmOXKtT2HK6arOJHhpK+uaI1+fI86MBzCvS1XaTR/73J+ewII1Pfj01Y8b11B/JTZq3MQcTE07zZLiAeX7iK3qqL13wF47jmP6nP5rm1dWzZFFawAMvs9RztzpTIxtzuiCzhwywZz33xWtzqYt1TW15jMsM6Fs0FxKXuP10wH0G2Z7AwnJrRLynOkYFZxxobxVoRAXfCar11PLSa8Zk8Cq1+PEqDm6de4q7ZrRPzdOtD1JFQLa1pxNuDRGCTDjYqK3F+YoBGRoECbTMk5i6zKrKzrpfIl3m7Ojy1zlK399Cn+evSz77TKrExnSi0AsXLGJqF0SfRblxrRz6nf+PfQ8R8IMiCfKuHYpksQv3xHXtkCbEq2O21C5v1W1+pa+qvGQ8g3lbYIpIINtjpYYs6lKNddOtJcjhai3M7XiVh7KO79nNauzzGkxnmKOqgSKzYnd3F4xzdFA5nNUys3qmFDenBllblZH6k/Mh6orz5GLyMmk2KRBVnPEEDAC+bzVGYvYsA4FMyT6H8dJXZEEOXBJHFWY5hA379T9zkQMZf5OSt0mYkTVHlIt35Y+kiTb8i69lSrGdejHPA0w4as5omZ1pk8hemKbV5xvGXcvva/s30MUrY6iLp+jhN7L/5Y1R7R8LnhqY9aceuaoGl/jPhrnARmEoKNe+Jh4+kDOc1SbT6Uoe28umIKAGtSkFOXP0XJc8AKVRhDNGDWv/VVjtDp1nqqm/wKV2Gw6zsHUl0oca/uKzfxQhWk/iyJgjLL+XfmwGjGpHEkImqMGYTokOCLLGZChGWZ1zEJMk8Ca2rSDMkaAW3NUj9lD5nNUNUhfFGmRiOpV8dAcaYRpRd5cgTR55e3PrNLKcnU6be5pWwYpJ81zxJVT/UkE1M2xVDK/dy+rOWqQOaraQ3nTsKp52zlDpd6jxJZNq6QGZKgmdrM6Wx/FHVGXeg7QYAO+cK0Jm89RuyGUN8CbQmzu032O4ti8c9iZI/f672BMfFxmdepwUJ8jnTnKCQuZ+Er/lvMcueGzg1Yt45X3mR+3NsbnyFdzZAoGYVqXCRRtoiF6me1djHnMCINuZ45k5pUSpWyfa/21bZOSabbqkK7t/fKzjTBHSZLg7udWY/mmbcYyvOWF2+dIvyevTwEpCWyJngFJ9m6c8E/N8SXmwoI1mzFz4Tqr5kgwG4062nMM38qubbj9mVWFNEl9SjRTQBasqcImTqMMcjZw60e3kOEiwyXZPQ4bt/YbNUe6Fkquk7bhCtgj9zP/m75Vqjkyj0v6rPkbmGiRCEBnuzwvguYoRdAcNYhCZnWR/K/JbtUXPhnFAZGZHqJRZ3kb5A1bx7b+qqamdUEQXqJuk8+C+LeIz5EplDd973f9dCYA4FvvegXOOnbf7DqrOXK2SNpignIAtQAZ1OdII57zv6WADMr7RoiMDPVWxueo3KDPkUviXiL237QesUS0e8TPplyKlEMwP4AEYZCvG7uJoM2EIM7qzNulsPlpmOBijlQpI+dz1FeJtUOHi3qWR6sjRGti/i52szq35kgclJTA6+3XbfutmqPaRhWBFybFScqk0tcV7yf20SRp3qHs0oAC5ohznM+RLTw5d12PVmcLyJD/NkerM7+MaT5TzZGNGJLDLsdZWybZhOivjf2kc0ntOt0v0vtygUZ8ju58djU++YfHAACLv/1WQ6mE/D+FydJDesqqOZIZzLze/EUrcYzemiBAaPp8zuZTvn+/9X6S5CZgDec5YoQXZ/z4Qazr6cOP3vdveMe/7elVjzSnyF7YbvA54iwpKJPuYxGhamHpO5hGeePWfpaxsZnVcYKwIq4IdIzpOqjEulmdrjky12s08Y8ijFHMal1MdFEh/khF0Bw1CNO6tJnVmf1/ik06X+I9zS9Sn8+R1qZjoW9VDuOrHlyEax9ZYixPN2/BuAhiUmx6okmVOfKRyBiZI+Y97iKJaNN29TLOA4vcNhGmYu8Rc8ekHv/tg4twDRk7VZNQiszfTw7IkP6ram5sMIfyNj8TRTqhR3MZqUloq0n+HVTpX2pyJxNi2XyI7ZqjlJC2E5LicdUkals9miOXiZYWcKNm5lI2h/IG+Plj8jmqx6yOIxhU5Jqj/NrW/tykSzARtBqO4AV4zRG9Lyc/1vvv5XfkUeR3MxfjvhfWWssYTWIZnyPfZzOTIOV+h0VoITES5LqUKNWyDZrmMw2hbNMcifQKQPpNqtn6sdvV+RJqarE4kYVuzdQcPfTiBmcZ3vJC97vTnkvMv+nflOmWrAcqSRZ8ZHwtepjVrM7z4I6T3Ke1udHq0n/X1fyR//n0Su96+iv62RRFUSbwUgUTshmm2G/yPcVlBiae04TRsdwHFRu3DBg1R7p7gvhXZ2CK5IY0+hxVE31clMlqDchgWJBRVNznqKgQf6QiMEcNwmQHz0WrEwQdjbpF0QzJKB/K29ZmsUZdUaPoYbx2cx8u/sez+K8bnjYeanI0NlkqlIU0rfVRlBWLWcq0buiPurn1Z5ojvax2UDNdLjJcJlV2ZtJlzAieYE13Ly75x7NsZB+BKIo8AzLUCJoCq90Uytv2/tSpNmubHCQqc0TvqSG0k4T6HOlCBZeJoDl6U95Xrt16oqLZouNxdbLR6jizOqYvPX0VzVfIFpDBJmnnTE1UtGf2/HnBbcRUiwtwokoWqdM1x9RygQrUJLBA84LBXHb7PGcZm1mdy+fQqDlS9resToOkVg1YYs5lYx4Xkw+dr+ZofU/OHNHQw0azOo8ksGrIegpb1DegsYAMPlbFov+v3X+n7Fruc2R+znaumjVHefn+apx9q3Gdbs2R71JIQ3mnhYuY1XHaATlanXy/h/jAucDRAmUakEEj+vO/c0FK+juKoiyUtw2xxazONM6p5og/B3XzT5lGya7HOlNjg6xxpG3qZnVFNEemPkSIMjNOARcTHXyOArxQxKwu951I/21Yi8Npjpg65IAMSvliTUptcq9OD2NbUjYBusCzgAyxTExnZnW1tjuJE7uAiXDQQ3mbN0QfTV4zmKM2hUnmfI62MBJfVXMUwbxR9XIBGUhIdxeMARksM6bE2H+L6GCALuGTfI6Ue5JZnbZu7JojUTeHbLwUbVQjcDFUJhv6NiUgg0njol7b2l/VQmDXwzekmiP7g+2MWd02JmSuTAzKddAksNyewREW4honZBoK0ES9FOVSpGkbVX8Qp+ZIGXPTHEzN6szjmpXjLwMwM0dZtLpylPlw6u0nWL9FjlSaaV4NlIPorm1a2XKzuKLVqWZK63v68I4rHsTvZy02N1iDz1oXzZ34sp1x1dmvxgNfOTn73rZ30ky2pHv5ry39Fbz357Nw+d3zJW1sJc6ZI05zpLUHt0ksIHxeasxRgwEZaHNJIu8JQqPtA47BLRGrAy0gQ6zPFxoYpN3zu+oJV+3PfO5PT7DfPA2Ao9ef3pNv+AR/4fpELWrSemKNTrjh8eVKH2wCCYNQgdMcuZjo7YM3CsxRozDnObJFq+PV9MUDMnDX9IvUnKXRxKYuKcjq7t7sb6pVM2mO5DCnMpEkfFSyDdGiOfKFUOnzjKX6Pez9HajGmtkKfcYWkAEgAQYcBIGARnRZzOro/Mu0JR4JLAXqCeVdiiLddC7Oo/VoJneEqOfM6mi4VlE/4MkcxQm29leYsLByXT4R0FxD5ox8pjILVHPUlgsA1JDuFG2lXOuyubei+aXVI83z0RyJg5LOPUnoUfOro9WofdlUy1sWGTRHYq5xUtOiZlTNsoenZmcUuWBDLk8l58bol0LqrTJHBqFFAkUjZxBM2YgiU0AGH81Rd29FTgIb02h1Js2Ru0+yWZ3O/FBwS2JLfyXbd3/74GI8uXQTvnbTM8b2BFSmNkkSLeE43R+mHTIVe+04rgk+R/nfz6zoxiOLNuD7d74gEf0DlSTbs4XPEV3jet/9tGhxkmscTEywL+S5CHT35mNXiDkypDkRa0uzpDBo4YAiPkeJdqD7BA/hsLl3gMmjVFvbzFlexBrBpIGqVN311GNWV4qAToU5cg1n0BwFeMGoOWKj1aX/mkKDFpX++mg/RB+pMztF0XnuMm352O9mY+bCdbW687KmjVzSHClaHVVzlOVrKOBzpGLAYNpC2zX9BuT99dQf3I+Xf+02o0mBKWCEIMjFps45cXKzSq2vZDGr46TwpciPGVCfF0jN6niiERA+R2btEGdWZ6qP5qKJFKGCDzOwcesADvva7Xjr5Q/I9SIfC0CPVlcP6tccRZI2zUTIAum8mzgmJZp6+ga0/ED1HFepNZ79SRHJiLZHfY4yAQAlnJTXWLCmJ/ub2y/F8HD5vQY76acJNDklhWDw6Xs8sngDXvH127F0w1bpWVOd6rbF5X8CxBqg65jvq236mQIy5MxfySgpXkfy24l2Mi1gZuqq9kVnlk1tA/pYxImcCiKPUJr38bj/vRuHff02bOuvFmKG1df8yT0LcNQld+BO4mua+bKQcvX4HPmkiqDXeyt52OjxneVanYQZZtrzERzEcd5OowEZ6FeNkwQbt+bM0aquXm8TfZM/tjg7NEuKWN8XqODMZJYq1aHzRk6zOhNeXLsFv7j/RbYuTnNUjzmwWg8XrU6FjRwy+hwh0kJ5u5ju7YM1CsxRwzDl9LElgTVpDIr6/3DluYVOTUEaZchsOSoErpixIC1LChh9jgjBr0aSE+pyVSqjZnQG/Bcsl5dFQD+o9efp+L24bgsA4A+zXsLCtT1avUbNkUJYcNJS7n1UIjuCec5w4U+jJpjVicsq0QgI6Z9ZO6Sa1dGDQ3suSTRGhobUdQlN/1VzuJ+3erN0PdOiKQxXI6Bahkvfcbh2n2o4+ypV/H3Oiqw8JVg4gYpAnCQZc9TdW5H9GBI+YawLqWmOvUwnozna1q+H4pXNv0xSSl5zyZmb5aG8izFHdchLWIj3MmmOuGlz7aNp8BSTCYvJrI4GzKGIE3kPMpk0N+pzpIbyFRD+RlPGd2jPmYQKqpafggtAoxOs6m+dsN/SX0WSAC+s3owdxuZ9c+UoU+fe9+58AQDwjZufwb/mr03nXKKX9QvlrZzllnsC9CzdTLQwuebItjj16GWmfolyrsAFLg2MpDlC6pMjsG2ginXEP23mgnVY1dULDqzPUSk/A2yWFLlZXfpvxPi58n3XBWpi+JpB7Iv+cOkYijBHRs1R7P7eVs2RyeeIMavrswjpXO2MJgTmqEE0N89RMTBWViyxnJrViWfUTbxYqxWJ6Oaf3Xen8QDkBW4icugBkUlWa5faFGdw1efIJ8+RiiyppIPxSevUC3HtfOe25/HG790n9RGwBGRQNEeczxFHYGmhvC1mdZzmKALP1HBgk99VzZoewBCQgUi/uXsZs6XdI5GMlFDeXOQhFaaxz5PA1vrcBJ8jMdYz/nMaXrnPjnqbpK9/nr0Mq2qmp2Pay5LU3kXcTexsBwB0bRuQtSx1mJem/XKvmyyUNykoZ6JPr9N6TFXSfYiCi1YnrhU1q6snoAZbj8XnCOCFYoJpNBEiRrO6UsSvy8SPEKlLc0Tez6Q5Wl/THE2d2Jldo8E1OIjzhOtStp9T5oiRkNOa6f7AaT7oNWrSzYH2eSOJwrd0wzb8x68fwa1zV+V7Je2Eh1mdLbiS6TGTz87YGrFK17gerc5Tc5TkjH5H2WxWF0Xus0ENMrGJMEcAsvxR/5q/Fh/41cN47fS72Xp4n6Ncc6RbUtC/xX6TfyfVWoFDaqXAvw/3fT73hoOcdSq1pe0olXGBdmwQz3PWJFzeO6kHlmZMApsIOnO04/h2ex+HR5k/5CjMHN1///0444wzsMceeyCKItx4443ZvYGBAXzlK1/BEUccgfHjx2OPPfbAhz70IaxYsUKqY7/99kNUk5aJ/7797W83/DLDgWbmOSocyptZdKZQpCan0uJmdXkDJmn13juOq5XN7/tFq4ula2LT0/IcCc2R5ZA1gctzlNWh/OZez9UOHf9+Q56jssIkczbWpig5FKUoMmuOGGlbKYoyB3sXOOaiEsfZGPHMEWNWFxNml9Uq8UQoPcxURiaO3eFRTVI2KnEE/JlFGzLNkSHMM/2Wq4k09d1H74koyk3reh0JW3efPAYAsGLTNs3UpF6fI6dZXSaIyMtxZnWJYnLDIQK/X2bZ5RmttCkgQz2R24qA+oVRtGdmdfoz2wb0BL1cnerSNvlNpElg89+meu0+R3bNUdmiORJmdbtOGpNdE/t4Zland7rWV72+zKeE7k1KGZOAqhRFmRZTIIrkc2V1t2wGqIKO8awX12v3Zzy/xpgKI+2buW71ls96kDVH6dzpbCtleyhd4xpzBD/mKEloQAbz3q+uS67L0vsnaahrCqH5/tf8ddY+cXsz1QDZkqL3V2J8/455WLh2S9ZvW8472nfTXFP3wDHtpcK5Gqf/83ms7NqmneV9ldhLYKNGRFQFXgNVPSCDivp8jvRoddMOmYpzXn+At5XJaEVh5mjLli046qijcMUVV2j3tm7discffxwXXXQRHn/8cdxwww2YN28e3v72t2tlv/GNb2DlypXZf5/73Ofqe4NhRj15jjIir0FGxUf7IdrNGDLlXlGGjJPiqBALnS5IL58jRSok8vKoKmtOc+SLgZr2g3ttn2AVNrORqkK0G8MBl2XmiEt6x0mfuWumryfnjMkJDN9wrjxzlJtv8T5HXECGOM+NojRdJd9BrY6aQaj+DalZnX3emsZe8zlqouaoHEVsFK8qsw4+edIB2KsmRBDfxKU52ntKWn7Jhq0y0RzXF60uSdxmtTRghMA2JgolXSpG5ijiNXV5/h/5ehwnRhMP07bVLM2RKSCDbb6IxMumPpg0R6nwSi+fJMo6pg76hC2xbeGuaHVtpcioURBmUrtOopojef1ofc76pHeKc7g3JfwWiMn+wBH39P1WOTVH+d/PrujW7lNNvGxWx/eVwjcgAwWlEYTf6pj2slFoRhEniWdAhvyctDNHbisSVXO0UdEcZb7BDk02d7aUCZNjM6v71QMv4vJ7Fkj99tIcMQIkU56j8R1tXqZ6FLNf2oiPXTWbZY6MkeIIhJBO9IXTHLnM6mx3jd+EMasrRREuPP3lOPPovdhHthezuraiD5x++uk4/fTT2XuTJ0/GnXfeKV37yU9+gte85jVYsmQJ9tlnn+z6xIkTsdtuuxVtvuVgMsvpZSSeulldPsnWbO7Fv/98VqG2eZ8jpo8RzRHDHz6+kDRHhmc5u1ljtDpJcyQ/p0rQ1DxHcZJGzPnUHx5DtyNaTlspynIFmPqtDiermTOovYF006fv7MpzJKaOKiVKTSEY5ki5FkWR8V24CD+RgcDgwB28lWp+fHKHBx/KW5b+UtA8R1r/Y5LnqPZvmcxh1wbt1BxBZrgaAU1azGmi6MEk1gG1/+9oK2FLf9VoAiUgmKNlG7ZJIvuqh5khBx/zRBHhijKbXJ4jWoupSiqkocjM6hjhRJ/JPDJJUGLCltTje8VBEJRaQIYSr4EHcubIRNRWDO9ZNgRkUOc5JV59fY6ofxjXF5vmSITxppqjimJWFym2vZk0numSGmCHKxcniTy3MzPYiPWZoRYaqw0+LgL0rOYiQ0aIWLO6UmT+5lm/mcAS3N8UdL0Ln6POthJJfk6+tzLX/c3qcr9O294fRZFT4KSaCm7aKmuO8miz9n5xhDplctS9WwpcoQhLIubM4cBFq8vnqnxjXGdZE/L54NmV3Th6nx2ka/2VONsXbCiVIiDO92Pe58itOZrx/BpcMWMBvvueI3HALhOk5zlEgJYEWgynSXtGx+2L183BlPEd+PoZuq/tSMeg+xx1dXUhiiLssMMO0vVvf/vb2GmnnfDKV74Sl112GSoV/1CQrQRztDouIIN4Jv2XztcHF6zTNhsXfM2+qCO+zTbaB5wvi9YvIUHyYI5omYHMuTv9rfoccZGLfnX/i5i5UDeRUEFzIxn77TE2CVJpJXeQqKaUAyazOi1anR7NjDtgVE1ZKbKYF5GiVBrqyxxxfac5GzihQGo3Lte/tT8PHqASgDQgg9panBCmKls3OZHiEsbR+UbHKGfUwPaJh7kMNf/jcuAA8rwSBxyV1ouD2LUW995xLICa5oia1cX8XuBCOsb2MpzmqE/SHOnEsLHOyMAExKI/ClGUJJYUAPnflWqclWtWolhjKG/xrZhnhBbD6HNk0JCVIp6pTqAS2fk9Wtr2ypyQjvalzeJzJMymdhzXkTELQmhiy82UJAnL6Ktm0gCz7g1MhklzRM0u3ZqjvM+cn14UQRPIiOu0LxxsARlMe3QvIZp7enPNkZgLdJx0nyNfzVGuceiwaFhS2tzBHCn1bjBpjhxrkGNMSyRyp3r22fplSg+gIuWN+POd0xz5mp+rUKdVfzXG1j5+DU7ozHUTVPCX1qMziO5Q3sDZVz2K2S9txHl/flJ53uz/zGmOAGBshyn/Wfrv08u7cNOcFfjtg4vrEs61Ogprjoqgt7cXX/nKV/D+978fkyZNyq5//vOfx9FHH40pU6Zg5syZuPDCC7Fy5Up8//vfZ+vp6+tDX19uT9zdravEhwtGszqD6jh9RhB5+YTqMSwgG7hNgzerI5oji4TLBzbmqKNcQn81zkzv6ILsr9rNOwA9lLfYzMVGofocAZDCidrQ2V7Glv5qTXNkIl7U33q5//3nc7jh8eX448eO1e6p0cZMh5eqQdQzXfNmdQNKOZvWg4tWVyr5Z0lnzeqqeRg9XnOkB2T45i3PYY+ar4zKOFDGQh1qKZQ3E5DB7XOU978aJ1rOrGb5HNF+lEv8Qc0JCdpJQkZfKeU+O6Wao6Ubt2b+R4BYQ8UPpzhx+xx1ZGHz83KSQCMbZ7fQJALvk5VrmuXrttDmtI33/GwWlm3chge+cnLTmCOx1lQzyVxzpLfj0hyZNGQlA1OdJPKeVI+flZqHTSAPOFGy5DlK99bxnSnBXiEEuWnZJAA+/rvZuPv5Ndo9zmxK7Xo1SSQtCQ0Aoe5dESJpjriYI7rWub05Ij6cVPjjF61OuUB+m3gYykB2Z8xRKWvbZkWVJGbLBLVcFpDB4XPkIgVkLSbQZdAc2czqqjFv0p763en+jeIZW7999s840dvNfY5kjOsoWxlJaztKX1PNkS74v+nc43HbM6tw5b0LAeTCBtFHlXnnksCqoPsDDTgC6LSDQARgjJL/SiwTNcS3gKiKRiOMk+akxWglDBpzNDAwgPe+971IkgRXXnmldO/888/P/j7yyCPR0dGBc845B9OnT0dnZ6daFaZPn45LLrlksLraEIyhvJmDXfedyCfsNmYBuZCA85PRy5ls2usBJYzUTWvfncZh/pqe3PSMMSey1Sc0I7lUU0Q3kstSx1xf5k4crAMVc/hiTYrJlBNZqb95y7PaPZWYcyaBrb2GFpDBICVSNUfUDESFHJBBSF8jTYVugtHnSDBazIQyRQ5aUdtEVb6BBhLgtAZZzpFI1J9LVF3mUyoxL/Z/1Wym0Wh19NuVS3azMYBqjvLv4GMzD+SBTjZtHZCSV9arOULi1sB1Mpoj7n3o57P6HDHz5oEF67Db5DHaXmbzwcqZ6gRzlm4CkEoyXUyzL6gfGYVKxFBsU3yOyiXZVMlkVpcShnp9aah1npGQzh3LK1PNSu9AFY8v2YhX7zdFyrVl2hMEwT62ow3lmllypZrvJYCuU02ShGWMAD6vm7buGXMi0Z6qlX5uZTdeXJfn0NpqyDcnQIeMO4+ohaCkOWL6urJrG9b39OMVe05m38MnIINsVkc0R7XXFHvcYy9txAaF2E0M76CCCtpsTIQWkIEpI2uHde2gEHTaNBzmMzEXPKiaJdveFsFP+x8nej2ms2dMe31mdUAaLAdIIw5uG6imzBGzj+2149gsVQkAYkqZ/uasSdx5jvL30M5aYyhvPSCDmAtjjJqjtC4aur0SxyiXGksy3GoYFLM6wRi99NJLuPPOOyWtEYdjjz0WlUoFixcvZu9feOGF6Orqyv5bunTpIPS6Ppij1ZmTwGaSKDLXtxg0R99g8qYIUHtiQPig6IuA5hfh7PqLgHP0F2hXQ29TUxyfaHWZzXL6O/M5UjYxKgHzJQqFXb3NrM4nIAPXbwHVhMUkQRP7bqY50nyOTMyRSlSZTZj4gAyN+hzlY8cR9C4pnrpWUqK+Jr3TDi5Gy0MOEBcRTAkHzjRJ9MVPc+Q3D9pKsmYk8ymjmiPGOdrX+Xd8Z1uWc0YkHAX8fLA4pJojOzizuoqkEdYJDPHn2PYyTj181+x6KeI17V+9cS7++29Pa9/UpPUASBAH8sjGLf2DHpDB9q0EMyeIRC4CI6DvWeWIn4eq5sjXHJiCjuF//vlJfOCXD+P/bp8n+xwZ9gThBzOuvaylHTAGZLAMPxeFTRdIyVcGiKZKbfOCvz6FBxfkJtWuiPb0e7DMEUj/pXWsawuPm34P3vbjB/BiLb+dnrOQ/s13jArTevrSsR7TJgdkmLlgHc68ciaWbdym1G82OaWIEzmnlQnq9OPON3WNq2vNx+fI6PsSRazZJaBrYyhKUZQFbrKB86/M8hyp67GkM+K+WL+lH1EEHL5HSvP2V6vsPpZaGZSk32lfdNoJSM9+cf6bviN9RBX6WX2ODGZ1qkZJQNREk0Q3S2PfSmg6cyQYo/nz5+Ouu+7CTjvt5Hxmzpw5KJVKmDp1Knu/s7MTkyZNkv5rFZj2Gz6Ut2xORTcbTvVKy3KgYTrFb24fjiKz3XRRmkqS+imv2K4QUpTY8QvlneBPjyzBnc+uSusTDrzKhkEPOV9bVxopybSOi4wNyxx5mtWJTVEQRKqUKE74A0bb4KLISNxyYZGjIj5HBs2RqJVNAhvZD2AtIh35FiqZTu+Jx2jUKNdmTA8kOelkzigCutkUB1tTtO5SFEmHkrDllgOT6FLcIlJKkQNlC3k/k6mKCykDan9QBGSQNEc0cXNFD8hAmXG6ViOY/QNueHy59k1tASo4AcymrQNNC8ggUMTnSI1WpwUnMUiq7WZ1+jpWYXtlSoDf8vRKAMBVMxdLQW86DUSQ0GaM6+SYI/472qaTIGKrMucglYnjRCLUqabKpSFwBQKgT3OBPqJInrsCYo/g3u3p5V1pvy0WHD5TMgvl3Z4HZKgmCWbM47VwcWI+X6RyxAqhrVTCJW8/3GgSTcER0/Ia18fbx+fIFGGWRqsTEWUfe2kjrpixwGgSBtTyM3lo3tdu7sMP75ovXcvyHCll28ulus3qAGC/ncZj0tg0V5ApIANlBgHCgNd+c4zngEMDSOeg/j35cec0R+JRk8+RaGc9YY6aJZRqJRQ2q+vp6cGCBXkoxUWLFmHOnDmYMmUKdt99d7znPe/B448/jptvvhnVahWrVqWE7pQpU9DR0YFZs2bh4Ycfxsknn4yJEydi1qxZOO+88/DBD34QO+64Y/PebIhQKM+RMKfKiLz8nimiie1AiGN72Evax5w5grO8DRKRpDzbkWl60t90wZg0RzQyzfOrunHd7FwrSCNDJUmSMWNtNd8OmifHhdxEz/yMySaZ7Tez2Xib1SnmlVx0Hi7amp7nSO9z5vdFns8P/AKhvB0BGYxJYC31qwSgZFbH+MKpwRNoxEXXZ+8hwgY56WTeV/qvDdaQuormiDKNnW0lbO2vSt9NzIn2OszqAD5xcL15jlKNk71MJ+NzRIkVzqyOjjGVjqZCGpuwR/5ti/KUZH6NhDna1jzNkYA6P7hIYgKCmTOFu1cTWNI2fPIc0adoaavmiGEwx3e2ZXPSlFwVALprppvjSGjjLJS3KSCDRRfJaQbUz6WeKaKfqdbRxRzZvz29bUq1IYpQv6d83+HqrDEEyn6thr12gYbyzpzzLYK8BL6aozx5aLkc4cOv2w9b+iv47m3zpHKaGRZHTEtzURdQqfkIOdj8cGk0wjgBzrxyprEegcghkBO47PZ52rXsuyjfp1zy82My4WW7Tsjmj4k5UgVHmSmlQXNUJT5Hne0ldl3T19C/J/9NoiilGahJaR6tzsCE1eqiZnX1JiJvZRRmjmbPno2TTz45+y38hz784Q/j4osvxt///ncAwL/9279Jz82YMQPTpk1DZ2cnrr32Wlx88cXo6+vD/vvvj/POO0/yQxpJMO3XqnM+wBN5AiZCwLbu563ejMvvkaUhLHNE5riWj8FcPQtJI6EsOHHIZgvcw+eImh8u3yQ71LZLvkXkoKwRoVX453dpI8EdEsOZ4sNoZmWZzUA1pTSG8q69ViYhZA4ZbjNTGaaI6WN7OUJ/VfU5ysuzWeZrDJWr79U4ySYMn+eomOaIMrfqvJy5cH0WhTBSGJkqIxRQsYX4H0jEmKKO8rJXjxNc9eAiPLhwPa74wNHSGEqaI8XnKJXID7Ah7WkdRQ5ijjnisr/7gJebyqBmdf+avxY/u28h1m7WJYayVDkfY8r3RbDvZ+o3tfkcZUQpIeIGQ3OkMq62UN6czxFFTjzKz5UNzJGq2TNp+WxvzBFR4zrKks+RybRUCLTGdeSaIzF/87NM6YulMz55jlSafKCQ5kiu6zcPLMJDL67HT2prlu6VLrM6SXNksLqg/VWZOnk9WLsNQI5WlwdksPjHJr4+RznjJjR3HJOpaRqY803VYpr8w+yaI/5eSQln7xNsAuCDAPkij5IpX29rkDk6ZLdJWLwuTVLbV4lZf3K1322GnI4ClTjJA2vUozky+Ryhpj1qK2d7hThvTRrlBMDP71uYaaJF/0YbCjNH06ZNs5piuMw0jj76aDz00ENFm21ZmDZsLtu9mt+GTuYtBmdSm7RMlYaY8t7QOtTPUzgJLKOREFDzWJiSwFIpBQ1coUqr2iRJUpLZCGfJNqv+ZoH0YDb5q6gMgm29c6p+XXPEV6BGLVQ3FtVcUkALyMDMDZEzh4sqmIby1je8CWPaNIdfTsJHI/2ZNUc25kgnFk0HFIV4SjKrU77hq/fbEY8u3pj93tzLM0fir0KaoyTBxf9IA3D8/ckVeM8xeXI8GhIZgGJWp/vr5AEZ8nI+NvMCono6tyr1MkcemiPKHP3Hrx/R7gsCLVEIp7SvspkhDIEH8ueKM0d0bDduHdDmBd1r6oGW58gyv8WaoYwHhTlaHS9kU81HpeciuZwKkdeNE9JN6GwjDByXLUrGWNbnqKb9TlmKvC+WetrK+npQy2uaI6KpctHAKkH5jZvTNXvL0yvwrlfu5WaOojxaHf0enM+R2n+VKadFfRj2LFpdW4lo6Sz+sfBjIFL/1bScmLvcMGpafYdZHT2jxBrz0RwZmSPFX9XHZFC0XW8ib6FVU7WdbeVSQ8zRwVMnYGUtMEN/1aQ5kpmjkqI5siWBNZvV5X+r39NsVpf+O4Zoo8R8N/kiJgkw/dbntf6NNgx6nqPRDnOeI94JD8gJKLrvmezriyz8OElYyT51hNZso/32oAz08FL3OVtABnoY0TeiBJC6IbQRorEa5+YBbeWIZJT2W5Q0Z5LpwDHlxrnhM6/TVMzcZqB+Q5NkL5sHmSZEsd0mphAUlViO0hZBf3/1G9C/o4jf8Gi+BQGT5khUa7JbtxH6GnNEvoXNHCcLnkBMmlSC45pPvBb/uuBknHjwzgBykyDRjoDqU1DUrE7VDmbRtJRvCuTfghMSSAEZ6jCro7CZiqr47UdejTcdtmv2nOuxTuYdKHizunyMKXNRiuxmdeo72MzqONPdjVv6tXU5zpDI0Bd6QAb7kUmJRpPmiI1W5xGQwcAbscT3uJq/gI/myLUExnWUJX8QwPwdbfOQ05SrxdX9uRlmdXmI9fwaH8obvFld1je9bhMxS1kJP7O6WkAGojmau7wbV81czJb3zXNE52Mbs0cJqNsKt97VgAxZclllj7AxbZw5OlALgkA6sY5op21IXQbq0x49v2ozjv/OPVowrLZShI624vUJ7DNlXLa/m32OgDJhcrL1XxtiLiBDZlZnDLGdP+PzPdNyaUGa60g8a9IccfPZxHyNZATmqEGY1qQpjwJ9plHNkYpKNT9YqP1uFEUw2U2741UpbVhMIsQmmSeBJVGtKHNE3on6IqlSpXZVcxTnkpMSIZR9IAdkMDNHKzZtw8K1PdI47b/TeI3o5w4AVdLtCuWdS2NVKRG/mVWqskYpdSCWy3BZ6DNJvsG/gGeOuA3QngQ2iuyEvjqVbXmO5AfF8/kcViXM7eUS9p4yLiMKRY4WQJ5XucWX+AaWdkU/SVuqSUOsEB5lhjnihASyz1ERzZE+vmnYcz/sPWVsdhDGiXv9dGbaL5PPoAjIoGsDVE1iBLMJl+gPhS0gAxfVaQPDHI3taCxbhcrguIRVdN9XGaksIINqVlcym4xxGrm5y7skzShH94yvrWkuV9T4zjaS58h9vozraMsk265odTYJslgjtlDeL6zaLJltFjKrM5ggqgk2AbPgitMciX2HW2WifKMBGcR36mwreUXQrMesTuwzXPU+DvySAAR59LQs3L+iOQV0xt2sOZLnoitnFX0OKCZgoljd3Yf7XlgrXWsrRU4hiA17a8yR26xO9WVUx78Sx9nYmXwEpTlfq29VVy9eXNtj9jmq/SszRzXNkcHniDsybLmtRioGNQns9gCTBI0jLnWfo/ye0eeooOYoC3ddLmUbbomYC9g2cR+Y8p0AOTOjRpcDZKKB9kHWHNnM6vKDmRITvv1vI8EiTEKO/mqMN33/Pmzpr+JfF5ycXefyRHGbjaotNIfylplkzteJ9zmKpTFKzUDkMrnfV7pZRkQcWop4e+UJY/w0R2kob1EXrzmyEfqcWR0XklmFeCobL4s5mIjm1r2NEo86MZZpjjzWF/0W6sGUaQmEmRG5rUZvBPiADO0efdhtUpr0lSMQiwQmScP6p38ncPscCumhWXOUXpfMiDICUw5tHkW8SY9AMZ8j/Zl1W/qMe1K9UOesqz6af0qlr/JQ3nIfhfRbhapFSZIEsxaux/t/+ZBWToWqOaKE07iOMtYQ7ZYtxV4UpSY3ueYo34M52Aj2NkarrUI314lr/XAzR3S/pUK33FLDzhyViFk6/R5qElgu95QtlHeRYCljiAmjDQk8o9VRs7pavdxc0/xBLQEmgPQMFe/V2V4Geiusz1ElTtDh4UtENUCVOMFqT+ZI7Cjp/OS+qX62qPnH1G/XVjb7HH3jHYfjstvnScIJFTuOa3dqjvSADDJzxPkcDTBWBxScWd1rp98NAFLScApRbizVsGeaI74djnEejT5HQXPUIFyaHTrBVF8Tn4AMfnlYUtAkndS3RDJJUOZwUXt8O3MkOxVK5kS1w0g15aEEkMpQamZ1meaImNV59pvWZVIB91fiLEQydTaMSpwNr96yb7S6zN9FSFI1Xyfe5yiNfJZfL0W6NJMSbz+770Us27hV8jnyNavjiIe07Rrhy71Xqf6ADLYvqfoHJYxZncBYxpxI1nam/2a5kzzWF21KHb8svHxZr6+Dic5Vj1ndW4/YHX/8+GvSsqzjvr/PUZqoNh9Hl1kql+eIgk0CW5s6qj9AhGLCHp88RxJztFlnjopo3jkU1RxRc05V+lw4CWyim9XdNnelVu7n97+oXVO1lnRvGt/Rlpk3uXwrxrWXJcZEC+WtDIfNpEoIAWxmdSpyzZHdJBMwn6c0kIsAa9kBalaXQ7X04LTyGnNENamFmKOS15yNkwJ5jjLNUY05YsrZzrcbHl+GexXtSkLKqImibTSC60zMNR6+ZnWQnlPBCetM5q7ZM6WSZFan+p+59oAoijJz5P5qzGrANZ+jbE/m+1SlzJHyThNr57dqVkfn3cpaInbT+UzDduc+R7xZHaXTuCThowVBc9QgXGf92I5yJsUSiyx3LM/LcarX01+xm7N+itQnRN6w0vbyEKV6Lp/6J7X6qJCUZxJSsmDEGKjmUKYQ34BM6CcJTYJWv1kdYNboUEZt1sI8uSCVtud1uM3qzHmOZGKfc77k6t/SX5EkehF0zREldr5z2/P47YOLJJ8jX7M6k1mfU3NkZY6UQ4kQ9VbNkaLlUUPYH7X3DtnfYxgfEy4hbuQ4VE1Qxy9jjhQGjpat1NZlFEVZiHR6wNkI1IOnTsAVZx2d/eaYi0rVzeRkz0c0rL+bqVL9CVSIA9uknZOS4paiQsyKNc8RI6Xu7q1oh3SDvFFhn6MuorE0JYFVx7xcMiSBhT6uXCCYtYx/hsocbSZmpp3tZaLBjLD3lHHG9xFmiaJ//VV5/ai9tmuOGObIId6qEGbMpQSkc4GaqXNzlA/IQPzlyGdWfYQ5H0a75sjebwpvzVHiZ1Yn+xyJaHV6OXVai/dZtG4Lzv/zk1p5at2ghvuXNUcxgDL5zQ+GeOf2cgl9ldhbcyT2E5NGt60Uod9xTaUh1FDenW25FU65ZDcNFvDxOaKMm2oJw/kcibGjZ9DbjtwdU8Z34PezXpLmWSmKWPqjXNPMqRjL+hy5dSfjavRt8DkK0OA67KlDMLWfBoDlm7bhm7WIOnQBTR7bjkvefji+854jC0laqdkTXUClkjnPUT2skTjk9TxHlmh1gjnSTGfcZhjiOZqbo3hABsIcGRYy7dqsFylzpEvWuD2+1zOUd+ZzFOnEApCOLyeJ2dJXkbUg0IlildBes7lPYmgaMqsjWj9u2keRPQRqFEW447yT8Jr9pgCQNUc2JpeL8ijKv+mwXfHrD78qKzuOSVzHJcTNom0VpJ4500CABlvJ79GxFt+tnzOrs4yZprkwml+Z+9yp7gU1kvaJJZvwxevmmB9Ebndu0tTFSU0oQ66JMeGY5SK8qN3nSLQlz9MtCiHSbM2RS8tHTWtNSWA57RafBDZRiGxeaMIhNyNOK+gmZkBJkmRMenu5hEN2m4gfv/+V2GvHsVo9Yj2JcaiomiMFNlMvQZzb8hypyAKeRG5BBp2jW4iwUQitJObI0E/VJxEgCdQZzYj4S4s4SvtVQADZ2V728oMEfH2OSCAjq1kdrzla1WVgUpL8HO1QEkXTNamHZrdHTRPz1pc5cgm5OGGduodyprgycyQzDrZ5KJgMQX+lobwNSWBJPXmKAJ12En3kzOpUSwDaT07wXERz5JMwnkt0PloQmKMG4Tp7x5BJ169okADgVw8swopN2yTmaKfxHfjw6/bDpDHthczq4iTfiClhVopg1LTUkzwyMw9RFgT1dwF4cyJ10asMBQVdyNVEDsiQSVo8BRayWZ37nenBw2mOOPiG8s4Jc7k/4nfVYFa3WZGMx7HO3NqSvKahvBswqyOhZXmnXrvZVCkCXrbrRJz12n3S/id+vjK5xjWXronnzj5+P+w8oTMrO5bRHMmawpzYAoqZrYo+U6jMkZwElkhMa30YYPIc2RgIlRjnxpdqjDlMJMxvmczlW+euMj4jwEXcUzFQlSeiYAJUExTVzM7cZlpma5/N54gnIlQUVAxq0EJ5OyqkDJ2JkdZDeZvyHCk+R/B3fBYBZMQeTTVHlNAS3/eMo/bAq2tCCwrBHIl5qAZkUJePzayO1Rx5Mkeq/5qtLCBrjsS+7NIcpdNY398Eo8Sda5kvr6Y5ovu0/xk7tr3szdD7+BxV4zzthBh/VnOkMkfVGHFsjogXJ0lmxdChao6kNANKYAGHH65YX/4BGcRz/LnHmdWpe6iuOSpJ+26HYoVj28MufMuh6TPCrI4EZFDPZimisGCOar81c8Q4zuiJDkXjRC0BBKIoYue42ncxT+m5KepzaY46yvk4BZ+jAA2uw55O5H6D1E3NMUMl3UWCplRig+YoyuVg6mFUj1Wd2PC4BKT0uqw5EuFUVc2RmQCitu5JkjMb5VKk5QXQn5V/0+9UNLJKWpf7wPKNVpdFNlOksRlBk/Bme32VWGqDSxLYbglBGsHfrM4Yyrv2t8mszrYcVN8hmufIhxygmiOqnaBgzeokQqXWXmbj7tEwgTosYq2qppKAHO1HrP1cc0SkhkonJHML5f04Zq6a2CXwE8e0Z3+XSv7aFDW8rgn9Sq6QKmH2KSESQdaQmPZOQbBbzeoMWhgVjWqOVELKtd8LQpwbt5w5UtqI+O96yvfvx0vrt2a/k4TPr8ahTQmOo0a3G2DmIQchURbjmFk/GMahv2LuX7bf1WVW5/6WYnwvv3s+zrxyVnZd7JmSzxFDOKYpAtK/5YAMcl8pvW+yoqjXrG5Cp59ZHSDnCDSB7pUZA8GMo3plS38VJ3znHizdsFUrC5h8juQ9Lr0mv7zJakNlcowaKwNMGl1uLNW1qRL27WXZwkKNKmf6PtPffQQ+eOy+AHJtWnfvQPb9xypWDVK9meCPF/pUqrkGsEPxY1eZd3Gd1RwpZ414ZCwbrc6eBqG9HLHa4NGCwBw1iCKHb55dXH5m09YB6Tcl3ovUTyXIdAFF5GBRD6N6NEfigOTCKYt+pP/mi9NkVmfzOaJSbuqHQwMyuBiQ7DfZPH0TzAn4ao7Ud3GZ1ak+R7k2jNccAXI0LE7zUo/maCJrVqe3P0Dml0lzFFnYHHE2U62f6P/XzzgcO45rxxsPncr2m/5LzcjUg2ocE7qZCx2s+jH5QtccydG7aH30WwxUYyk3iexzZNZO+AQEiB2ao/Gd+SFXjtx5bQSqceJFqFFfNPEcULOrl5yOIfmNmAhzMUdtARlMtvkqivJGbaVIZlwL+hwJhs4UVRDQTYF9v0lK6Pqa1QnNUfpbZo7cCSUFMs1R7X1MZ5iAPSBD7Xyg2jDH8VMolHecYMn6rfj+nS9I14V1ghStjjUbzpl82pLqLE8JfJOkn56zRc7YCZ3t3me+mnONAzXRtmmOuCZXdPXi6oeX8PWSs0f1OZISuyvv7rKmEN+YnnM2iP3WJMThIoGqe7767VSfI8lv0jIPj9hzcla32MPoe6gm33y0uvS3qm3c0lfJ/P3UYD5UaJi/Iy8AMPWdMm6ihEtz1N5WIgLewBwFKHDtY3RhmXJErOuRHWrpYi3iME59ODqUxZ0vIPmZeqa0YFLUc1pNQMolv1QlRzbNEZUW0ghubSTPkSvogYBPQAZzP/yIF11zZDgIFEKaJmQEZBNCFZsocxTrclerz0+JZ57Ge2uOcrM67gCPHExkpByAFVLfQVMn4PGL3oRPTTuQeQ5Sm8LPhevH2A79/ehBo2q+CpvVabbg6b/cOk2zvudMPE2iK5vVKZojyRZdvscGZGDmAcW4dmJWV+L9W0yw2fJTgpkSnvTbqKG8af9Nc1Vc32KJMW2yzVdRVHNUiiJMkjRtZiELh14P5kglGE1mdSqo9tyF9lK+bwJmszqXX8HY2tzRo9Wl91VhiM0PRmi1aVAZl88ojY7nEmRU4wS/m7VYu97HmNVx+2s1zhkgmSCWn6ky9TQrIMP4IpojD58juo8L5pQTYJnWCRcoCkjfL9cc1fxOat/VlrvQlucIyAUmYh25CHTxnEloUWbWq8vnqE1hjmhx21rlTPGE4LujTY9CSPucW8jw+9q6nn42Wh1dF3TOlQxmdSqzKJ6RfI4cDKdAR7kk5Y8cbQjMUYNwHb50zeY+R/IzarQhyayuoM9RFu5aNatT1LYC9USrM4Wk7VCYI3oIGjVHFtMAuhHFcd5uW4lojgxmHOpmWaY+R4U1R37fwT+Ut/xvzvTlm5yJ6aOSKM6sLnXQ5Ptn1Bx5MkcDVRqQgTtg7cKCssKQUHMwMUdZpkvUX+t6QphH9aDifI5kB3BBuOftFoF6BmRBQrjxKOWE/kAlkQhbKSCDYgpJTR/UM5+jzeNY1yDSYaGHdskyPziYCIFyKZIiMtHWKXMkh/KWv69Jyymu232O5LZMRFQpivCbj7wKbzpsV7z76D2N9WV9jNKAOAIqgeBipq3MURZ8RO+jD0FcJCCDqE+02UN8cGhahDbp++gQWkdjKG8FVp+jku6/5utzlJqD2stWkwRrmMh9nFkd+3wcswFnSspYUvlexcDw0p9FztiJY9qayhz1kZcuF/A5EjBpbxPic5Qlik4Ec0RMv1XfGUco7zwXVnqdmgRzEIyeSWihJm8H9LWpMhFt5ZKkPVYZZdMeQGkOsYdt2pq6THCBgmifqfsAoAeaWdfTh9U1U8NdJ+U5i9pKxOeIjHUURaxmURUwCLEaF63OJURrl3yOQrS6AAUu4opKafoqstRNwKY5Kkq8CckMlRBQojVJ+CR2RSA2OGMSWOGYKfkcmczqbJqjnJii2pQ2wjSZmAh1jFMGp9Z/h5RDJbR8nIEB/V1MUlQ1/HMWTYiaYRmYvq6tuX8adSAWsEm2ShFPRHLR6niH5dx8imshHSPzOIluUfNBNXSu7eCmvkriOfWg4nyOOAdwsS6LmtWpRJA4E8yaoxpzFMfSmFImVT3AaV06k88T3eo6PuXlu7LPlD3m8ikvz00bTRLZ9nIpm0t9larUPjWrUwMy0LZNBI0Ym60DZs1Rpp2u7XcmIiqKgDccuit++aFXSUSFCVEETCLMUVkhjFzzRRDibD6q2ufXzOo8tXlUWu+CmHdiv6dmdXSfokI0bunq0erEt41q/8rlbSbL+fmgm6WZUKFmdS6fo2qS+bZScNHq2OdpQAap36WsfkAmBMXerSZN5ULb+2B8Z1tTzeronpNHq9PLmZo0WXYkIJojxZyetqnOV5epubpuJjFnE4UobtKAcvulek3tY5uyHunYlBVBBu0vZajE3iiiRHJCOy7PkWp1I5isBWt6sLkm4KCh92l6BPoapYg/w43R6qSADH7zr6OtlAmdg+YoQIOLtqILySR1UzVHVDpYNA8Ll8FcJe5llX8dmqMqLwHN8hwlet19BubIFsq7TKSF8iafq6iNPkeKVJpKZ13SV5cdvgm+ARlU7Qsnxf3Ng4ukZ8Tm1aWa1amaIwvxa9Ic8WZ1+ryoUGbGwMTY9lXxvtScUGUUufku6qTaT8GkqO1xPkeyj4P8nCt3igoqndu0tR+fufoxY78l5qgaS4SjZDqndIIKNtR6uW9LNUdTxnfgv99yKC7796PYOmh0IxNOPHgXfPc9R+Lqjx9r3N/KpSgzp+kzmNVF4PYh8p7MOouifGxsmiPVnGnSWJ6Ikpgxj700QiRLUaXv5N4XNluIIVMgG58cPkAtBHfBUN6AbEYHyBoHm48ikJvVZSaU4nwxTCJ7niNdc+Q6f8SYeZnVJXxiVC5aHfu8pDnS1+DMF9fh3Gsel4IFmPxvZU2qtVkJEzoLaI48AjJIZnW18fcJ5S1gSk5PfZmE5uj3s17CZbc/L80vdcxNzL1oXt0LOcGd/Fxafv+dxrP3uTXr2gf06KGEiVGEj5z2B9CZNW6v45gsNdDM1ElpJNblm7YBAHaZ2ClpodpKBp+jiA/IoEerS//lQnm7QM3qRmO0upAEtkG4uGw6GU3R6tYqmiNVAlAEnKNtKQISUg+dxvVojsR7qBtftsA5zZEplLfV5yg/ECXmqEw0R4bDWN0Ecql14rTbZwldD35Jja5lamenCR21dtLfqsMsh8lj27FtoMqY1elSaNPhGkVAR1kn2nzN6ipVnnig9ds2VtXPhwZWyBgntl71ObOvD0+U5mMkxk9omIoKH+ic/+Fd8zPJIJtPoxShQ/gcVeRgDHT81IOzbDhwTf2lmqM9dhiDT54k+23J2g+35qgUAe991d7Z77aSnjiwrRRlRFGfYlaX56aRpf0RZGaDY9SpZNbuc5T+K4hS7rsD8rr1+dalSCYUuFwkNoj5MIYxo4kTYRKqt+lnVufvL0k1ftTcGpCJajr3zjhyD9zw+HKpHlVzZPKbFbDtrYLpLxLKeyDTVLlNGitxwhKEIiCDkzlK9IAtQP7dl27YhqUbtuG5ld2kTeF/q9RdpwByfEcbNkZ+wQh8zOrklBTpv9woms43E9GbIF97NGXBFTMWys9rPkf287qsdIQLFkQhvtMhu01k73NBX1xMdlnZj9Vpp2v2RaAoYlan7G1tpYjxbaLm02mdWdCP2rjtOmkMlm3clpXbZ8o4OVgI0RxRjabJ50i1BBA94szqXGhvy/fqoDkK0FBEc8TlOQIYzRGd5HVqjtoUm1lKjMkq/0LVA+AdXEU7QL5p0gXz4totmH7rc9ohYstzRImr/ipJrljOmSbfaHWS5shhH6uG8gTsUdgEVC2YehC8fPdJuP/LJ2faDTW0rS0SlpCM08iGMWNOZTM/MeY5Yg4g7lBMHf/tmiPbdFXN6ipE4yHuWX2Oan8kJFKSxhwZAjI8/OJ6HHPpnZgxby0A4OCpE9K6C5qt0jlNJcjcOo2iXHLZX43ZHEeAPlfbGUddWzuVKv0udmLAR3OkjgnXZsr42c3qVGm/yjxzWotSFGV7l0lqDVAJa22/K0WsyShtz0cjHEURxrTrRAvgx8B01wIfcD4Gab+5vCp+Zrs0KI0LlCiMFY2T2HNVpmzaIbvg5s+dgGP23TG7JohTNZqWGBe119aADIzmyG1WRzVH+v2JnW247Ysnpn2LTZqjAj5Htb/pe6nffdG6LaR/uiAQkM2dfX2O2mvnmm/6Dh+zulxYGlkFUPX4Xrr8/QDO54gfC9G+GjCASzPBPfcyA3PkE8pbhdoHLZ2Csqdx9dpyGnHX8qT26W8xbrtO6pSe2XvHsdL+TE0AqSl+FPHzw0dz5EPrADWfo1GsOQrMUYNwHZh0wWRSN+UZlTmitHvRaFoZc0SlEgrRKh/OxSd1ryFnkXqAqlKjn9/3oraIrAEZopxQ61PM6sTZb9psOc1R7uPj1hzRHDWiLy6oWrB+pZ29dhyLfXbK7YUzszolgzkH4SSuRqtT96RyycxQG5kjxwEkkCaBzXrP1G8PyCD6Jfsc5X1Ly+jP6WZ15mh1nM9RJU7wvTtewHqST0xIGhvRHFEimvt2arQ6U24Z1fTDZNMO8PvBpq39eHFtSrBxb6OG03ZrjpT+Me/WXi4pmiNiVkek7/RVI+TaUlGH1nYplx77MEdiLZdLEfvtffIqSeUhzyGXGaCK7tr6HNteZnfWShxrxLLLp1HMswR2wY7J3CdNg5C3KfYp9X2iKMIr9pyMHYjPlfDlUgU3pu7ak8Ay/glOs7pceMKN0cv3mISdxndmZTmfJ3F2uJgU6lNpM8ek1QxkJuaJsYwv3ahG83TBxoiqZUwEvdq2L6jgz8ocaWZ1roAMcj/cARlSHGpgjkz7sg02U+YksQRksGiOuG9KzwFhLaD6HI3vaJPO532mjJP2JJruhK69UsRrFnVNmq55950KHeU8lLdvioGRhMAcNYgiCy3P2SCXWa8kgaUbSFHirUIkRQJRJG9+9YYZFcgcXJWHM8fAzB+Ad+qnsOY5KkUZMdVHtG7lUp58zPS8xhzBrW0SaCuVNELL5/BwRaszJfRU8xxxEOGFu7YqZnUKCWYzqytF/EHGEZUCP/vg0fjlh16VtsdoeuT6I9bnR0A8kpkTJrS+GmFgkWqKNm394NqP4ySz3QZSafgO4zqM7dlApy8dN47uKkWQfI7EXFWJ0g7lwKLfzycJ6Zb+Kr55y3MA+HlKAxFEkVsuqDZhknpmPkcDMZsYsxRFkolKqRRJUknOjLQU5SHCbaYaarS6tlLJoDnK//byOYrk78qF27VB+ByZ1lSa20u+Vo7sdQvBSJIkVsGOKZBHqnHSfY5MzB6tR2iO1Hko1qQ636x5jrLIVv6WC5KJJkvoyv3lzLT9fY6SbCFLGgELUyzGVZ2rsXTG+h2y2f7ouSepdAOH7FsrwlIVBckM6TvbwsGrNIBZc5T+qzLhLrM68S67GYKtcNYYrnWsCw3yv5PEnPuN0lw+zBGrOar9rhALoJ1rZvgAsNeUcYrAJ/e/liITlobA56iNaI5CnqMAFa55ZHLUtoFurAVpt9xhVpIWy5qjesOMCuSHjXxdzdujaon2mDymmM9RiZjVVWTtitjzXNFvsrrIIepSAadSaD9JKUWfIyAD1ycgHy+bZFpE0Hpk8YbsWhzrRLktLHBk0BzZDuO2Uil7hobyNplvvWa/KXjnv+3B1iX6RaPOZRqgUt5Hvd/y80mSZAS4VyjvJMHuk/PDk0buKhytjswdStxvYpIWlkr5eFeq5twyUuhuhYG1OQdzoMW/8Y7D8abDdsWFbzkU/+9Ve+OzJx+U9csGtQmOqaBmbH2VqkQAivWl+omotbBOysz85czv1HwgpRLPkBQOyBBFbLZ4wOzXRCHM6kxluRxm5ZI92IAQjMSJK1Q2/65xLBOlQltvSsJL57UgTn1Dmtui1eVML41W59AcVYVQjNeuqfud6vcJ5Puy26wu701JIkDN32bAw6zOdtyo5zTgvyfRfcyEfsbMnvt0Rc3q6HyiPkcqVKLZGa2uqOaInBtfe9thOP6gnaT7nADGxRzpViduAZV6Xd2z+D1UF7yomqNyKcLi9VuzcscftLOsOSJBqwYIMxRFDfgceXIFqeYoRKsLMMCpObIQez6gC87ncBZQAzLQfjbqc5TZcKu285G8wMWCecsRuwFIF3wRzRH1lcqZo/S9VAdhFepmRP0dXNHq2koRxigbvs8nU/2n1INBk74qzJrtUKS5VwS4Dalc4n2OxCXWz8PSbqqlMzMzUj1RWtcP3/dKfPKkA7T7ggmwmtUxXcnCblOzOkXjJNDZVtLWVxqtKx+rtx65O3k/vT0bqDCBmn1t2qpLcWm0uv5qHsrbdnCO62iz+rmo/Z06UbZJpwf5h47bD7/80KvQ2VbGd95zJL506iG1Mub3U+tI22QiPpUpcxRLc7FKIoxJ/Y0iiWjkiPMo0teuKqgA9IiYqbbXrjlSHa05lCLFXJL0kYvqqKJ7W0qwmnyOqlU9iIorebJgUBKHz5EUVpgw2NVEzo8k9imz5ii/LohTzkyZg1e0OikJrLE4ANnagjtr6f4E8Hl5xHnlEgRSH0i64duY6jwhutmsztauJDyI9GuNQoQ2p9/UlKOuCKgmUjVBp9DM6gzWM6JPRUN509IfPWF//PrDr5bumwLl2KDuS5Jg2fI81c6pWmxWc8TkUuI04ie9bBcAwPEH7YQ9dxgrhxYv5cF9VFqIW4vqVi7mZj2aI+pz5EqPMhIRotU1iKL2qz7PSM+TsiJimQ/GKNLPKKIMEf+3L8xmdXKdaqz+mJGa2jRHVIqcMUdZIjs7c6QSdFR75hOtTpVC+3wztV5ViqpOBZVZs4Xz5d6TmqXROm1zjm7an3r9gTjx4J3NjSJldvINMM6SSXJ+StRkiuuvcHSlgTs0szqm72LoIzK/TPmFSqUIO0/olPz4qsQXob0c4X/feUReviAhQudvD5Hc0kAZed1QfI54DSH9PbajLEutHVLL/XYaLyW+9CFymuFzVC6VpFDelAgSn14laNVaTMSu+o7jO9uyKHAC9fgcNao54qI6qtgsNEcm5ijh/ATtOXw6SIoEm/kKnUf0XatxIhEvueaIJ2rps4I4VfuXmdUpz9oDMuRCFgG3WZ2B0a4hUjVHNeZo+ruPwCOLNuBvTyxHr0gj4TjraIAb+l42Yvr6x5bhZbtOhPpZ6E+bVL1UAlCV2yyizT5wl/FYuHaL8X5/Jd/3BLjai/scUc1RgYAMca49p2bomeZIObd9AzLQvkRRzpxygh0X88k9I5Akynwgr2eLxMmZ99F1ls3tWscHSKCZS95+OP759Ep85HX7AdD3NLHkKL2RJHrkxlJkDrYg+RyxJXS0t5VyQXiRePUjBEFz1CBc+1hbOcL7X7MPAOB9r9679oz/RkQXAqc9MIFKP6nWBKhPW0QhDhuNMFfM6gTzlJkWxYnmkGnTHKX9Tv/OzANKMhFtDsigVkbN6hyao3JJ09IVJaLZPqmEbiSPl62NYw/YSbvG5jkq8dGOxDjSTfujx++H4w+yM0dtpTx6WDVOslDY3Fyk3eeYIyE5pvV5RavLtEr6cxzhokb4qZAoVue/6RBMHpf3vTBzRMabhprmJPpqniOzWV3eh3EdZdlPRpNiyr93Ud7VJ9KQq4Q6pKaIT1lAhoGqJCjJAzJEmjmPSxbDMUcco5H7NQoJq67tVd/FhzkCZMES3UfGd7o192I/030WkfVXM6uL7GZ1uVRZ3z+lekp0rPNxTAyaI5/EmZnmyCJNp7D7HOkmOG6zulxTzY1RKZL7u7UmbHv1flPwxVMOBkCTwFqbSqM+MmbDtiiiAPCtfz6HbWrYeU/rDFlzZBYQmdBhMWkD8vORM99rBP2ZuaN9fNR9UXxP1RRPdK+oWZ36Lqpwox7NkdoHKX4IEi/NXmGfo8ysLv0tkgqXyxH233k8zj35oExzreZdys3qqIBKj9zIfafMrM4gzLFhtOc5CsxRg3BJXEpRyvn/6ROvxSXvOLx2zb9+uoCKMUdyxmPaZMJojopsyBfdOBcv+59bGcdieYFXFOaoGicoEtSE2uILu/HMNKug9Ifmd3FpjtpKkZanpBmWDrpZXfrvk8u6sj6acMrLp+LjJ+wvXYtNARlsDAaVKHtoDVMH+dwcRgSEcDFHnIRbSC/LEpNj7l/eh7wvQEp3mJLAArpzbhzn/j6qyUTRgCd07fRYkpSK/mbMUSUhjvBym/TQGttetkZY035rxIHrDYprjljmiJjV9VcVzRHJhSMd5B6di6JII2g4c+I4Ab5/xzxc8Nensj5y5j0SkeuRaTVJEoU5yuuc4CDUKFSzOnnOq2Z19jMheweH5kiPSpj+XVUCOYjmTcwiZaQmGHyOsnWqVGHbW7kksK5gqQPE54jb18rKdfFunW15UJ3egarkp2hCTDTZtCmfeaMGR5AD8tk0R4Q5Uv71gRrMRcU2JjIhtww5s2AbxHyiwjMOVWU+iLmlapuyaHXKPHMngdWvScwR0zfX99SjE8qMrs+Zwe3b6jxoZ5gV1eqGK0NrTpPApleo5ihO9FDe3HtnARnImNn8Bik6Qp6jABt8Qnl3tJVw3IE7ZdKSIipsuvG/6bBdvUw7AGCMYfMBVHtovR0fcAtIrGPV50i8d8xojmygDI2qOXKZHuiO7ERzVNuw95jMR7gplyJt/IqaHbD1GkxT8kYsz5YivOHlU6VrlLmgddoYjAkdbdhvp3HYc4exmDqRf3+KXSZ2SBo34XA+ycGosz5HyrejRFLOAOl1iUtiftGkp9y83VVhjqokz4vpUPaFbFZnT9ZIQ3mv6NqGrTXpsipV7GjL+6Bqjlxz5sOv29d6n++X/b5ahSkgg3gPNVpdHpBB1gJF8NAcMWahnP9OnCS4/J4F+XOliHUMlx3r3cddAplQoOM/wUNzJKBpngURweQms0WYBGRzUp9Q2YC8d6pmdQImszrqSze+NvbqvDLNMxthxSaBNZZOkTmmR3xAhqi236m3OtpKmSYxDWShM6WmtgBZA+ujcVynJHLnBJAcuBDb4zrKOGCX8c42AXd4+QVregDojLOKNUo6ERde2rC1Vpd97qoCuAFFYJr3qcYcKe/jmwSWwpTEWW3LBPV9uLxkLqhMTbkUaXOdamNFE+t6+tA7UM3WiMstg859Slslia454syOxTyl93ySCwMhz1GAA651wh3IRYTVdB1PHtuO2Redkpnp2WAy6wB4nyPfCCU20MMYyBcrNasrImFgo9Up2gcTuFDeqlmdCOesoq2k+y80zhoxmiON4DA/W46iLGqVAIk8m5cr8WNDIyHddf7rce+Xpzk3+V0mduLAXSbkyRurDrM6MkoH7DIBz196mnRf1fpRQk/0xar1igRzaw91r2qOqImBSkwU1RzR6bvFoTmaMKYta++Hd83H+X9+ku0D1RyN62izEvScz9F9X56W/fbi9ZqgOZJCeVdifk+JdIdz1+ovRbr5x1gmPLvqe8lFmBRtCqjJHU0YY5A8j7eEqbfVAeREWsxojkoGwl9A7FNxYmc+ygoBnAc+4dMqtBvM6ujYmhzljcyRT0AG0heXNqdCtZDsPKz9q/Sng+ThAlJTQhdzJAeIoW14MEebZc0LbcnXrG73yWMBpGN+xxdPwtnH7+ds1+Y3ts+UPKee/A76+3A+k1lp5vXvf2Ft1o6NedR8jiq8kCr3OZLrcgVk4OahrDlifI4c31MdU1UL6DMfVIbdJGDK603/Xd3dhzd+775sjXDPqfWWFBpJ9FllcnYY1240Yy0zfQHMES2BEK0uwAG3FKL4M/LzspSgs63sJcni8vTkEsj8em5i0fhU0OxmM81RHpBBSBj23GGssz56IGbErRKtztgXhvEQjwgCw/TKHKFVZHhMDqrqXNBDe5vfqVyKNOfUdHx1/wWXtKmtXPJKaPm6A3eSbLi39Fcy5ojVHCnNjmkvy8SpYGwVDR6QE2G2UN6cWSRHMO2iRHBLAzLUzBSU9y7IG0kElghOsfOEDvz2I3mUpK+97TCcePDO+MBr9mGjA2rR6sgBpAZkUE0huDlDmXwfCZ7rnX2Yo/ZySQrlLUerS//VNUe6aYnWNqNFGcdIPC+/e770mxNoqO/iQ9QkCTC2Q9bACLhMfChUG36a00yVppdKZuZorx3H4lOvT7WwMeNkLfddXk/UV4kzdzOZZHHJd00+R2oNds2WLDwD3MxyHq2ON6szBXLpaCtJkStTaby9LXO0OvdeqTLr9BPbmLJKnOAPH3sNjtl3R/zkA6/M22T8XjmYGNz2cglvPmxX6bdA0T2P8+UTSLWeBXyOMs1Rc3yOuFdxa46sVWpzSd2zJEbCUg/VHrl8jiiWb9qWmy0y5wddBnISWFlApQoqdmSEwbT/n5l2IE5/xW545d47ZNe480ugvW10a45CtLoG4eJzeM1RfcyRmKc+j7ORm5AuBrrYOUlZvcgO40xzJKvQK3Fu973b5DFY29NnlTTShS8SnGW5clxmderBTwi1CjlwTc/qmiO/AfrWu16BOUs24frHlmn3XP4htnkRRZFmYsCZ6JgIrXqsAo8/MA3WINrtHYixoWZbz2uOdLSVomzTVsOw+5vVRdI9KUky82JTxsuHQDVOMomlZs5RcOILwi5Jkiwgw61fOEliyD56wv74aM0/jLPztkWrG99RliI4usyZSiXZAVnNtcWhSK4koLjmKA/lrZsN0enKSRtTHzeFOWLM6p5Z0a30xx3K29vniBBu9FO5ImdRqH2mwWo0ba/FNOkvn3pdxkz1V2OrWSJlusqlfO9UQ3kL+JjV0T5SmOaQNSBDKT8HBFxmlmKOpIy2ft/GHEVR6hfXOxCjbyB2MuY0zxHd74tqlwFVc2Rut78S48SDd8GJB++i3fMRYJkY3FIEjCPztZGADDZhbBsxreKgaga5oDRRRDWUjUWrA9SAKvp915xTTeKO2muHLCLg1IljvF0QyqUoi0TI5luirg4KmyXWiMsskPplU1qKRmgV2HFcu54bizR7wWmHam21t5UAZj8A0vmZ+xyNvmh1gTlqEPVojorsTbRsngvGXkEU8dqLUhTVnPhziF/1HABc/UB+SIuDTUgfkkT2Hdprx7F40RKGlEqeRfjZ3DTL3hddwq6bZZWiCHedfxJueHw5lm3chr8/uaLWNy5anb09geMP3BlP1wIsqFAJ8aLO9KoUjTPRKUe8g2w9X/d1tYR6VGK+sqsXADQTPxPSMRdSMJ6Qycvx9zLNEaNx4tYCxxzlobwVcw7yfHs5cgbr+M2DizCuo4y1m/uyQ9Z2gHMEjvp96AE4tqMNJWLioiXfZLSPlNCg4XFNcM1lVXtnTAKbRauT8xxlebsi2f8timTNkTFPl9KeTySltpLb58hXOz7GkPPDJ8+RgLp/ZGZ1TGAAujepKJcixFXBkNvbpPSJbFbH50fipNIAn16ByxuX/itf9wrlTYNDOHRHA4TRZvPzlPR9I4ry/naUU+ZIDRrCgYueSfvtgzS0spzLykY3qk7zFKZogj5loiiSGHQplHfBw8CVB89GO5ij1fHaWWoKWVYEPxy4d5Hf2xyhzQTxPneedxL+9sRynHPSgTjjqD0wb/VmvPaAKbjh8VzwaWO428oRMCDqZOgxMm7q8hT+qex5qPQ1ywUphfLW59YO4zo05sg1FjbNUeco1xwFs7oG4WJUuAO53jxHuemR/Zn2cgkH7zrB2C6XBLYZzFG5JNefbYRkg8u0COUIe+04DjZwC7/+gAzU5yg/AA+aOhEXnHaoJPlPCT9lU/b8ZvvuNM7YN036qhEc9jbUgzAuoDkqqiEBkH2fdsbEg49Wx2sYBMRBxfbPYlaXa5XSP6h0mqN3D5oqz30akIEGP1D757MGNm0dwDdveQ4/v//F7BqnsRDgDmeb5kgLyOBgqNXfNmJLwB1hU/7Nh/K2mdUJab+yfwHSaczRFaVIZx59zIvKZZPPEWWO3N83ARTNUf5MEc2RlieNMPZaEJWSOQlsm2E9c6D7Ot3vREACFWazuop2zeX7JtDvEa1uIJaJOBuolp8Xquj96SjniTHFnjlQjZ2hvKtJks1PW8RIG/Lw6fk1m+bI1icbYSpg0i5FkcwkUDqEzifhv3wUMaVSYXv/MqPppVA1CkLrT5kjukdQAUdbyR7iHuD3srFOzZF9IghG8uBdU9pg8rh2nHzoVHzq9QdqpsI2SHmMHI+oXRLJpDnGXE0SLvyyaG4/zqxOFRr64H0W//b2cpSZ26pRCUcDAnPUIFzrxLah+0CN9pQ+7yCiyyXsteM43Hju8bj3S9Py52uPXffoUpz+o39hyfqt2UbRHM1R+m+Wg6RWdyfZwMWCLZdK2GWC7BvC1Sf2hqIBGbT8B9B9XUy+HazPkWN4rjzraPzrgpOt2e5dPkZFP0Gc6IerSZLXaG4L1aRv0lguCawO2hc1R5XUv5JePq+3xhDXblEpFTcPdhjXgZs/dwKO2XdHAOnGLeZPR9kcqIQLm+oDG7PBSXZVYkLPc2QmzFQiVWUkfDRHrqmgJ4HlnZpls7r8Hs3bRd9VbZeT5HNEMGdWp/Uncuc58t3jTD4LRZgjlaHL0xwwPkcWgqtcNu8nKigRnvqY1giXuAlmdUpRc0AGM3POJYF1EaoV4h9qCuUNyN+JrjnBYAxU3KG8qVkdHfMi/riiH1QjVq9Q3UdjZfqGpSgyh7Qmf37shP3x27Nfjd+f/RrpeUpIu3xhi2iOBhjNEa2eXhfvdvd/vh6X1tKg+MCV58gFpz8zuW/7tFQz6xMpk0JEhXUF9CqXIrz5sN00P1vOP3GHcbpA07X+PveGg3DV2a9m74VodQFWuKSwjRKqNkm6CeJw+Le9d8B+O+chQUW7P7xrPp5b2Y1v/fPZXHPUIPEMELt61ayujTJHtXxFpQg7T7BLMqgWpGhABi15JqlrgGRdF6CEcVs5wrteuScA4PiaaZmttUlj2vCmw3bF3rXoQKax1KPVKffr+AacWR3vuFysXnVDpMzRmPYSa8LEgdMcWaPpMf0UnyY3i5R9Kzi8Ys/JOHS3iQDS+Zib1SnMBmVECpjP+IIjcNS5SQmcsR2uPEdKXcr9Xg/NkY9ZrtwmI31FkofyrshmdTQJLJ3zpShSiEberK5NcWT28b0olyKcecxe2vWieY6QyJpA2v8iZnXjlMh2uW1+wjh4mzW7baXI2ya2qprVEYaMI15M43rZe44EAHz51ENIH+WypilkM0vNol4yARlM+xMNC8+1qUayBBQCO8vF5Y5WV6nyeY6KCA4FQSyny6iPcCw3rDnK52Cbsg7z5yOcfMhUTB7Xji+8MU2a+7MPHo0TSHJwWzfayrwZt0g5snzjNry0Pjedz1Mq8KarXKTIA3eZgH/be0dzJxRQs1ivNa/Atd/UozlqK0VWLalqXioCH/HMnXw+jO0oaxGMuWh1O47r0Jg518xsL5cw7ZCp7L2OttEdrS74HDWIIlIGAdPBEkVcaGZd8uoibkwSJ/WxhWu35FmXm2FWJw7j2ppUAzIA+YItRRF2cjFHke5s6BuQgZO4qJojSWugSHl2nzwWz1xyaiaFMo35Z6YdiC+ccrAkJTIxzOpVzi+qKFSip1SKWFOzInmanrr4zZpPEU2AaUpGzDVRZohTrn92fzr5HjXLsb1XGyFIsySwlszl9UgZXeCkzuo1ypiPay8rUmudyaf31Pfva4LPkaY5MuwnWRLYSlVJApubrXL7lwAnyVfNVjrKJeNa33encXhpfZpvpa0UYY8d0jX7q38twg/ueiHtAxlqHw1AAlnyTPfjQpqjDn6eSRHRaig5tM2+QhNKhFNtFJ3/FCYi8LRX7I6nL36z5ONoCuWtds0akKE2j5Ik/falUpSNRVupxIYppybQNiuMNmXO5G2KOerOc5SaKYt6CjLVomymOZLrrQc+rZoDMsg+R9L5pJQTOO9NL8PHT9wfE8e047a5q/JnLevGFK1uh/Ht2NxXwU/vXYif3rsQ33jH4fjQcftlZy+lCeh35TRHQDE/Kclkj+mbr89RvfcFJGsUp12d/DNjjjizOsq41wZGFTTHTG6zHRnNUSMImqMAK5xmdcyqpgQNVYdyZj1c9u+ivikC6iG7aN0WbN4m1LeNE4aqT1OVsS/OzONKEXZ2mNVRLUjmc+RpVscd5rlZlq45opuQyIcyvrMtI8xMBMq4jrKmRTGNpVoFMzO0K1PGd+BTrz+QrQ/QbbrLDiLCB1ywBZpvwsgcMddk5qMk/cv1zxZpT8zrLAGs46VohLDcrM4cra6ecPZffevLrfe5taj2WzarU/McyWU5ZpPCR3PkgvoJuG+SJCA+R7HE6GTSfuZZSidyZnXlkrx228tmsx1qliuIj/GdbdK4FA3lDcjSa0rsN+JzRP0xucTNpv2srVTyZo6qEnOUM4ZxkkjaVgGb2ZYa/MWUo02twRrKm6wvMUeyVBKGvgwQYZotHDLtH2dW11+NrYERRJ+EBN8moLBBvAfn11sUPp/dqDmC6nPErwn1u4rvLml8S+bzw5TnaIexMrE+d3kXgFyw1WFgfCTmqE6ahJ7HXB2u7+Fihn2tbOh8d80htUsicAIvXNeZLjUHG+dzxOV1rJNvB1ALyJCZyoZodQEK6jGrozhyz8m4+/k1eVmFtuGqd+0ZNlU7RTVO8OK6LV799IHYC7IksExuGcHklMsRdvLwORJ1CkfzzDTLRRgz/jy5iV4i9Tet10FEGSW7dptguQr5hqr25p7748eOxWF7TOIrhG7GYpI0N9PnyMQccSgrhC7Aa45y8xj9nrhmyh1jbJv4XAwwEku1jqImGF9968vx8RMPsJbhCFD1mpbniHRRN6ujTDwjFfU47FZ19Vnv6z5HBuaoxgD0DciRwPKIX6rPUYRdSYJe7jxVieCOtrLxO9NcW6oJC/cuvqG8KYFGfbjGd/qZkgKMzxFh1FWNGQ3Hq6KAVZ1ULzUjTs3q/DVHHFxREwWs0erIuGYh8bP6DMwREWTxgpNI618HY1Y3oISb5xDHSTYn5UAeRcZJN6urX3Pk/vL2aHXErM7AjBg1lpQAjyK0lUvsty2XSuy3U/1bRMLsPEgTrzkaY0jgWsRsS9IcMWveZebo+t6+tFKR8OmmPtkEiUD+ndQcbKlZnUxM7jiuQ+PCXNEibQiaIwX3338/zjjjDOyxxx6Iogg33nijdD9JEnzta1/D7rvvjrFjx+KUU07B/Plywr4NGzbgrLPOwqRJk7DDDjvgYx/7GHp6ehp6keGCa524JAanHr4bvnjKwfjZB4+2SsYAs1nd2cfvh313yiO/maLcWB0rm+BzRKMjAfmG1kacijPzuCjCTo7oKZzPUSYpLKg5iiJq2sL4HJExc6myKdjcG56bp+r4zL2Ti6BTDw0uiaap7iKY2JkfdiKTuwreP44Sp7zPkStinCAStPDqjt0ri6RD8xxpSWB5otoHLrNQwBTK22xWlybONfdJmrMeoX45zF+z2XrfJwkskBMhvZWqrBGSctNQAgGYdsgu+MIbD8Yv/uMYlmhUGaoOi+aIMukSMae0KeBrVkfHf9O2/uzvIklgNZ8jwqjzZnX8O0aWeypotVQbVY15X6AizJH6DUxCQc40LmuP1CH2YJcWmAbP4cZBvIJZc5ReH/AI5U0JPNpSEV9Ebr+umzlimj37+P2k3+aADObAIjJzxL+btIZKkVGLo2p6BVQtxeZawuwsaijpNw2kQhkbOpaUuXdF8aOMF9c3F6PlYn7o3Ld9WpPAhoOpGtdZLupVtdoJqzniAjJYu2VFmudo9PocFT5dt2zZgqOOOgpXXHEFe/+73/0uLr/8cvzsZz/Dww8/jPH/v703j7OjqPe/P33OmTNLMksy+yQz2SD7QkhgkrCTGAhcZVXEqEEUBIKyKEKuC+JV46P35UV9EB+vCs/9SeSqF1C5ikLAIF7WSARcEBABlYDATUICmWRm+vfHme5TVV3VyzndZ8vn/XoF5pzuU11dXV1V3/pu48bhhBNOwN69e91z1q5di9/97ne48847cfvtt+Pee+/F+eefX/hdlJHAhIoBL0VdxsKlq2bixPm9euFIu+AUjqcsXP3WeRiYKAhHxt2k/N+HTZ0gXycRs7q8PbmzMBkSzOrUCCu68jwBGdxcOf518WZ09yaBtTQL91zZ5gW65zoRQrWrX3uEI809qYPqqjnd0md1xyaT0pvoFCv7ipojsa9J19B8J05wpmh14ke/ACRq1LLQmiPbdpMIqwKFSUtz8oJe37IBBJqFAgbhyMesri4tLwI9ubEiTLgmjpmZSzhpigKnFqtb8NnIa1jeVPpxPlqd/C5YyPlIXfaWmVg9r8cYkEG857qMfmcakE09xfdQar+Iwq9apWZh0RE2CIllefPMiSaeXrM6//HXCjlLe83q8tfURqvLhO8/QZE2Hfw0RzpNgLNjbno2ss+R97hTD5PPUdYNyBAcyntUCJZR6KZJPpS3oEkdlY+FRXf21W+dJ43FfnO9yaxOnMtMQ6hkumVZxo0Yk+ZovKJl3TM0DNu28epYEnHRbFMU4kTNkbhpJJqFBkXxk8OBe+sdtJAPKj/sXBrF52ixIZR6UF2ctleFoxHbdv2WHKJYfIQhK+Y5qsFQ3pHN6tasWYM1a9Zoj9m2jWuvvRaf+MQncMoppwAA/uM//gPd3d247bbb8M53vhN/+MMfcMcdd+Dhhx/G0qVLAQBf+9rXcNJJJ+Ff//Vf0dfXV8TtlJ6oGgzvcf9dDp1wpdtZlgaVEJqjIw/qxMN/+V/3c5zCkTP4OJN1bsEDYEQwq0tZOTWvD+lUvl5DQghwIFjo9Mss7exeieOOuDOmVWUbFii664TVwr25X84nYlkWfvWx4/Dgs6/hoz/4rVRnh2vfeQju/dM/cNFNvwHgtfU15wMp7vmKk1n/RL3mSDeby0lWc43oRJ4K60PnHPcsOEO+e1JABjVaXcpbPwD40tsX4q2LenHBd39jLL99XBjhyFtHT0AGcTGXToUOyBBl51/kvcunYvKERkzrGI8Trr3Xc1x9HlqnZju/CFGFfDEJrF9ABt0iJWV5F7qmd12c7NVQ/Lp7CTPGqWYmTdkMfnjB8kiR6poFX0W3fk5ftG3PfadT+khsDmHfXLFcMaWAbXuds4FweXTEOoo4H9W+4rfuFMvw+BwFaPWM+dtcc1yhz2ic+vcpfnE6hgXBVbxUlLmxzsesLpOyIu2wGwUX8XohAzKYyjXNVWLXUCNIimQUS4VjZnbiyhNnY9NDz0nn7d47jGf+sRv/eH0I9ZkUFkzOm4qLFgFmzZEcbMSPrKEMhyBNXqDmyPdonjA+R/decRz+8uoeYw6ioLncOa6OTy/u2IvX9w4jnbLwvfOWobEu7fGDBIKDU/gh+oPqzHarnVgDMjz77LPYvn07Vq1a5X7X2tqKwcFB3H///QCA+++/H21tba5gBACrVq1CKpXCgw8+GGd1SkLQmjPoRRMXOGHNscRrOi+dKRu2iFh8V0u9tMgNMwGE3cVQk8BmhMHVyb6eSVuBGcDFCd4NxexoH4I0dspxfRJY/UIziuZI98xMz1H9Vl1UWgD6JzbhpAU97neqZmh8fQYnCVoNdcfGlHeiWM2RaFLUH5C8V0QKeKDRIql/+2FZcu6OoPfFOT60f9RdrNSnzdonNTDCifN7sXYwFyJV1bQC3ghBOvRmdZbxnLpMSpn84vORcshmUjhxfq9Uf6ldlWJNl8kGaI5EU1bA2//1SWDl6Fd16VQonyPVDChfXv78KMLk/Em5xdvqed1YOnUi5vSa/f7U67RqzFdcLc6IN5S3ZVnYP5z/zs+U0g/VrM7drLKj5TnSYYxWF7qEXH8QNyyAvDAabMrkv1AU34WsoDlw8xyNBEerG7FtrQ9GYQEZ8t85ly10M8MPv4AMokZGDJSh9hMd4juXsizj3K/ON8tntGNuX4tHmNo9NIxfP/0qAGDp1AlorMvPJ2I96w0+RwsmtwLIBbAKeh0kAasQzVGAoC5e389nR0oCayhzoL0JR8/sND4HXf11gruqOXI0dNM6xuHwaRPd9vPUt6iADGnP+1xLxBqQYfv2XPjH7m7Z9Ke7u9s9tn37dnR1yXHTM5kMJk6c6J6jMjQ0hKGhvBPxrl274qx2UQRNXEGDfkOAfWzQNZ0BRLRxzxrMP9RdVDHCSZgJuLEujf0jOW3HuGwaezw+M7n/u0lgRwXN0dgxRzgKY6KSFiZ4J0SxG60uoK10O51unhzBJ8JBWrhrJgJT80TSHCnfm3yORBtsk6NmemwXUrcLrRXYipSORDOJfqNZnfcaUuQxj+lTru6qL5GKWPembBpvjvWhoD7gXNs5H/CaEgU5Xn/21Pm4/C0zcfPDL0iaVgCYECLjeBizOjWUrTz5QTlXX05d2vLNMaNDXHw0Cu3qNeXTaI4ghPJWFt4jRs2RXK4pCazqXG9aU5p8KkwBGUJpjsaqdNtFR2DP0IhW0NFRl0652m1dtEdnSBnRRKtLpyypjzbUpbF7KK9VDvvuNtTlw2GLpnq5/D3e86MI157xtABLA6c/DI/aoaPVib/Va47G6idqjpTNBmAs3HyIJLDOKbo5Ngz6JLB539somOZI8bWRNlctCJovS2oHky+YqW+Jzzed0ucyAuSNTyDf9mp/2bNvGP/zzCsAgBUzOqTNBHH8F9dDYpjyloY6PP7p1chmUjj8c5u1dcmX4Z8ENmiYjCOtCWDeDNRfM7gM91zNmGbyh5zV3Sx9blR8IYsJyNCUTXs2nGuJ+LcyEmDjxo1obW11//X395e7Si5hF2gq56yYimXTJ0rJ1sJOgjqzG1FzZM59IP9OXFyI99HWVIcT5skCLiAvRkQ17sFd4/HVsxdLO5VA/oXJDa65ruYIBM7C6qo1szG3twVLp3h35sXFVd4cL+Ue8yMnDOU/55zDc38PCwsIBykgg1bzYt45837nWzWXvfv1wmUqZeHMJZNx7KxOHNQ1Xn9dSz8opSxLuxtUrOZI1A70tjZoz9FdwxQtTNQa6tT9pnIbJA1H0ISTOy62syqs6KLpydfORVVUr/WOpZND7QSHCcjglHf0zE7M72v11RyZtJ1h/WGkegj33pCRF1mm8xxy0er0959PAisvWtXHZfI5kqLVCU6/KlmDtnfZ9HZMbW9CZ3M9VgvjWCifI+fcdCq0YKTWRWfb7ywgf/nky553Nm1ZeHNfXhhSN0Qa6lKBWvuDu8Zj4+kL82UK7ahGxdTVOQg/P8GwWBA0R2MrVDcJedDi0fLX0qsbDA6i5ki3z3TuEdNck6Zcgt6xumrm2DA47/Y9T/4De/eP4KVde/HIc/87Vk605daJ83tw6ECb53vxvckatCSWJc9Z+wTNpLggNvmzqX6PprHO875m9MLR7r3DeOJvuU3tJVMmSM+yQTKrM/sLNTfUoT6TDpzLxH6t6zOFJuV1CBNFEJDrn05ZvoKIWXNk3hBwygVy+fF0zOqRhaPPnjIfM7v1a4qoNGXTQihvCke+9PTkzIFeeukl6fuXXnrJPdbT04OXX35ZOj48PIzXXnvNPUdlw4YN2Llzp/vvhRdeiLPaRRE0bpp2IT79tnm4+fzl0kLJL2QzkH8pdRoP2azOpGqXd8PEHRtxMPvFpUfjPcumen4vaqdEG9k7Lz8Gb1vUJ5jV5b53/GEyqfyunyMcOYPoBcfMwE8vOUrr3J7LrzAmHHkCMgTvNKpRq5zPe4a8OQTUJLDe8vTXCesnBnhNUKZ1jJM+i+PLv759EW583+FGocypomrraxqEi9UcidGHouykSgEEJLM1/W6hDrHmooAe9O45C3NnV14061HPUeuqIh6aPKERXzxzkf/Fx8hqnN51feaLZy7Cf5x7+JhvhflcU3seYnDo9UMKoSu0q8fnyJQENq2fkEeECGPib9VS1F3N3LWVABUZy7jZYEokOa1jHH55xXF4+OOrsFIIYFKoGWIYxLId4UhKyjpW1e899AJ+8tu/S7+1LFmLrGrULMtCV7N+Q8LhzsuPwfTO/HiS8+uTN5ZU4jCrCzI3FBFN49xodfAPyCBeTx+cyDsfGPMcaRbFpx86CZsvP8b9PKKJZBrF58g597cv7MBnbv89LvvPbUJdovW/hro0brnoCCxWBCSxf5g2CNTxXso/JTSD2edIuH/L39RMp7VV22x41MbfdrwJIPfeq9YADiafI5GgVpTDhHuPF7uQF5tsfl/OXE3XRVQ/SD+ZzHRPQSbybvReQx89WNlcHWhvwi8uy/f3YuTExmzaXSsxIEMA06ZNQ09PDzZv3oxDDjkEQM4E7sEHH8SFF14IAFi+fDl27NiBrVu3YsmSJQCAu+++G6OjoxgcHNSWW19fj/r6YOfnchDkTB5l12nj6QvQ2VyPsw8b0B7PJ6gTB6Nc5xQXjeYksHK9xEFJGiQtfRmZlIXPnDIPb+wbwW+e+1/8cbscEtiNVufkORI0R84g9aaiOXLL1gyEoomYGso7cMJyd87yW4FO/f7y6hsA5Ik9SAUeJuSp+11IQeRT/zQXKcvCrY/+DUA0p0bXRFAZlFKWfhAu1lLgnxb24rd/3YHl09uN5+guITaFOMGKgrmav0hFHPhNAr0O57ijOapLpzzvqzjnB2WCz58XvjHD+BypmKKtqfUQy/7yWYvwb3c+hXcv048dQXUTTTnD5DkCzKYgUoQxSXMkl7Px9IXouutPeOX1Ifzi97kNNZ3myPTu1RuEIxOhdu4LnOPrAjRHYv1EkznnmGhWp1u79bQ2uItLE57NoLGPQ4qGWlfnINRn4Hz88jsW4drNT+H23/4du/YOa34p/AZ5CwJ3gepqjvzrMr4+o13oumZ1Sp9xcMxo9w3rQ3mnLNkMOR/JNH9OlDQXooZv04PPS+GTo2wqqXUUEfuHJwXFfuc3chliFEGxFYxmdYpwaBqzRm1b2gBx2tI0ZnQ112PCuCxSr+5xv5PN6oLH96A1lzwuRPc5CkK8+tfetRhfu/tprFs+1XNeFL9a0z3p3lG/VA8qLQER6oppiaZspqZ9jiK/rbt378a2bduwbds2ALkgDNu2bcPzzz8Py7Jw6aWX4rOf/Sx+/OMf4/HHH8d73/te9PX14dRTTwUAzJkzByeeeCLOO+88PPTQQ/j1r3+Niy++GO985zurLlJdGIIGfZGO8fX4/GkLXOc5E5KQ42iOQkSrU32OTAORyQHTsnKRri44ZoZWeHKTwPqE8n5jzHxE/b2uzjk789zfbkCGdFizOnkHXtQcOayYkV/o16X8F1pRdnbC7jS2j6/HF8/Mm8JE2X1xJmx1N9S0Q1Ws5iiTTuHqt87D6nl67S6gN6sT6yJOsGLfawgwCROLlTVHYYUjfY4j8Ry1fp46KGYmxRBlovTNcyT02a7mBmw8fQHm9fmPHXJZ+b9F7Z1aO31/to3tP+qa1VmSAKWe3dmcG+8WD0zIX0vxOapLp4zjmWxSFPxM4ojIaUKsi25B4meKk05ZktmqLqpad0vw5qAqVAeZ1QWZ6omo74Zzra6WBnz+tAWBVg+AqjlyzOrCaY5aGuu0C0jdZpkuWt3+kVH9uJiSr+36o0rnRGgnZb7f8UY+nLLY3o4ZeZh0AOrVRY2kWKb4nqhttd+gPTQNofLcaRkFu5FRWw48MFagaWxwzLzE59Vo0ByZ1ttBT2Nqe16DqutXheadylcgX2ZvayM+f9oCj/la7trhN29Mh4PWIsX6vBdjYthYJ/oc1V60usiao0ceeQTHHXec+/nyyy8HAKxbtw433ngjPvaxj2HPnj04//zzsWPHDhx55JG444470NCQNwu46aabcPHFF2PlypVIpVI444wz8NWvfjWG26k84gxQ40ywOpW/HJDBoDlSnLlNkb8smIUVv2s4A6Nt5146V3OUzi+SnEWAulA1RSISkyc69c6dr71F4bdyfS3IZhnjsmksEkyR6gI0R5byWycYRRQtk+5r3cQcBud5eaPV6Z0sg3bb4kC3AByVJnJBc5QNrzkS6x5Fc6QGZND1WcnU1E9zJG5IRFgs6RYlgWGLxV1rn9DjxZqJie3q58tl2jk3dSkpWp2Pz5GD+O7lfAPFnf+UsX9k02JfCB5ow/kcFbZYCPI5emX3kOc7h5Tlb1YHAN0t/mZ1gFdzpJokq0RLAus/XofdfPFGq9OXp9LaWGfI3+bMB4IpXcb79/6RUUPoeFlT6SzyCh0v/fqY2N7nHT0d79k/gmU+mnixjiLifZiirKrV3xc1Wp0o8KTMSWBHRm25341Vx9QOs8eECPG6JuFITVPhEPRs+toacdMHBtHckMH2nXs9x+PUHPmRDlhTSGVG8jkKN2eFuW4xpFNWTWuOIgtHxx57rK+0aVkWPvOZz+Azn/mM8ZyJEydi06ZNUS9dNYiRo6JojkxMHJfFa3v24bBpud0m8T1yAzII0cRMjrbiQjCdsoz+G5ZleczeVHTHxZd21M7vgIoRbd5wotUpDoS6XcyU5R008sJR0AJTSaaplDW3r0UxSdD/7SBWo7O5HnvGTPN0k4vRHEAzrIp1iiIcmaLEJGVWVyhi9cSBusmQ+E+H2MRRhCNHgHQE8qCdcr/j8mIh/DutiyAXxaxOXRAWGkUrCPEZqItznc+RbZu1IWK0OnHyNnVv2QxG7if16ZQUVVP6XcRIn2E0AGE3Us8/ejq+ee+f3c/iWKLTHPmZxKUsC+cfPR33//lVnLSgBz993Bu1tUcQjrLplNaPSB3DXeEoBp8jbz+Uj4eRJdR0CrZt51M7hBCOdEKea1Yn/FyOeDbmczSs9zlSLQr2a8zqguhtbcCLY4twvzFJDUhzgo8WXkSti/geSXnPlA1OEdmsLl+Aqb5hzepymiMhAIIjrEpWAilXez9zzM/QNKbrEgWrhHk2R4wFunpl90ueY8Wu48P2DSlqZoGaI90YLwfL8K9DoObI/+eBMFodiYSkTo1hx/5/rjoeWz+xynXK1e0cRM1zVJdOGU2ULITQHOmOCxcYEcK1iqG8TZoj3Q6I6KvknueECg1oVgvyIJabmPOf1QW5WJ+gCDGiKYQ21GaBkoguF4kJNzKgJpS3bpwq1qwuDHqzOv1EbLIz15Yr/N0kBQ7wr4/zHEWfIz/86hHFzjuIKJojv4AMpt3cQhAXlGreIm20Opjbf9h1apcnb5M5SzYjL65UvypTMsugqFSFEHaK37BmNv7nquPdz2KI+BZNWN3XffxxUpaF42Z34f4Nx+P/PftQ7Tmi5qilUS8sqkK1a1a3v3izOnWRpW5ahYngZVmi5mgUV//4d/j57/K+Zn60NNRpn7Ezv4obFmIkVTcJ7IitNVe0LH2ghzAt855lU7DtU2+RgtX4jTGFrgv8TjVpmT1+g8IxWXOkL9drZm82q5PqMPZBvEZnc36+nN3T4inflMrBZKkV5U1PwucoLGGSwDpEiVYnb44HaY78jxdrYeiUX4uaIwpHCSAn/yp+0m6oS6NdWJBLi6exQU9MqmYOyCDXy5T40bLy+SFExJdSa1anMU8AHD+C3PmO/bsaBtgUz19tP1NABnVsEXdOc1/Iv/ELCKG3881/1yOEstYNvlHNkBwi+RyNXdYTrc5wkSQ0R1955yFSIuEgnyOTGVdjQLQ68Tk2mIKI+Pxur49ZnciHjj8I0zrG4WMnzvIcU81MwnLsrE43oahDkOZI9Q2U6xG+nCiIbayGmNfmObJtY392uqT6/posDiThKKX4HGUsT4JD3e/CCqynHzrJ93hYG3zLstDXlu/74uLRpOky4bRRb2ujUchrFgQuXR4lsRwgJ5S6SZCHx/JXKUXrxngTJp8jhzBrfUuo49DwKP7j/ueM5au0NtZpxzBdAIDmeu9cmNMc6euUSlme+ofZTGpuyKCtKSv3Q5/7kIT5CMKR37lSUmiNBuffzlqUi655hj66pjEaqiLwmISj4VFb9se08s/XwdnUtSzg4LEw0qYxXURnXuqUE5YkfI7Ch/IWx/HCltpB0eqK1RwVCzVHJBJRkn8VgjiB6vIcmQMy5P9WfY7EAU5NIKf7/eQJ3kSg4q2Kavycz5HcDl7NkUY4SlmewdvZ7VTLu/eK47BqTj65sDcggywseQNC+D8zcRCaJCyKtElgDW9VUE8oJFqdumOTaxfdKiD+fnjKIZPwq48d73uOaSKKpDkSql5ItDrX50jzYMR+0N3SgHs+eiwuOvYgb1k+Aosf9Zk0bv/QUZjSnn9fouwi+vl2xGlWJz4m9XnohND+iU3GRULeb8NraqujTlk0ypHH0pLJsIgplLcfX37HIfjC6QtCnRsF8R50mi6/6oXReomaI9UkOX8NeQx3inU3pDJmbXkQ6gK9kGnNEjbJHvvrTulY0A63yedIF8pbpznabwjl7f6+AGHPeY+zARtr7vlSVLfg8tU6ao8ZNm2cn5y2eDLuu/J4KWBGmGWsWK6amFnEM/+4wlF+g2XCWMS+qe3j3LFFLM6Uo8doVhdBd6QVjmIM5e17bWVN4XdVU8CMoLlCfG90m0hJpi8Qy6fmiITC5CQZF2KJerO6cJqjJqPPkcFsTvj9uwYHcPbhA/jGuw/VHheFo4zGPE6d4PW2td5Jy7lf9fu0Ikg11MkhgMVdS8B7f0HPTByQxR3jOCPDRQrIYOl3bMzR6gqqUkS8FzHdkdj3TGYVulKbCohW5zSRTnM0cVwWV5wwC1etmS0tqjx1UHZSoyKFdQ1YlOrMVHSfoyxugxgZtfHFMxfi3COmYdn0icb6AMD0jnH4yOpZxj7lKEAtZVFlNKsT3z1LntDrMpZRExNkCmtCfJYnL+jFt9671P1c6BQvaqKbNP3ovy5cIWl/RMJUfV5fCy48dgaueds84/niglsMZuOMxWr/j5Tc1EdI1312UJT3bv+990//kM4LeqfGN2T0SWAt7+/HaTRHgcKRaokQYgGe11rl29U3H1CBmiN/szr9pp5f0IIw2lF5M8i8ptCZdQPy/O8s2sW8ZqaADH5l53/rV3MZnXBg0khNaKrD9Wv1Zq0iYS8fxYLIFFFSN1eI1Ref0y0XrcBcJe9Y6TRHjFZHQpC4cCTtHuf+FidkUzAF1VbVFKHKgsGsTvi7Lp3CRmUHVrxX0Qk45zskl+cRTgz25OrXGYPmKJdoNv+5KZtWwi8rPlMeszp/0wix7USzut1D+z3nmvMzaL92iWZWN7Zjo8tzpDm/XD5HpgWxaEph2gnPlysKvdE1Rw6mCX79cV5NkV9ZhWiD5QWU/+9lzbBc57RhMVQsI7aNdyztD6wPAHzp7QvR2lhnXLyMCD5HYruZZH/VrE7sq/VKsmqRqHmOHMSF7xfOWIBmwUytUIsb8Vn0teXGh+Nmd+GP21/HhKY6LB6YgG++ZynO/vcHPL8N439iWRauPHE2AOAHW/VJ0NPKGK6a1anzQhSzuqDodKZbqEvlg0dYguD76PM7fMsXaW7IQM1/pdZDPCaZ1aXzi3WtWd3YzzIpC0Oa7/1w2lsyyfbZqRff+0j91c+szmBm61d6mC6umhEbAzIoL8zUMQ25KBw5Wk8xRYkkHEXVHEWYy6L4HH3+tAVYs6A3sMzwmqPwmzcTx2W13+v6iTiniv1tZnczrn3nIVj9b/eGvm6hOD6qGcM6pBagcJQAhfonhEUbytsnFK/pd8aADJY+z1HQqGDWHKU8ARS8Pkc6Mz6vOZ5Jc6QuqhqzGY9ZnSkXBiBPXDoTD7FscQdYl/jQLBz5t1+U3RfnGvtVn6OUpd0ZLI3myItpsSklgS3QrC7ontSJIYoDuoqfqVsYgnzaRPxsyiXBKUbNUTRTE0v4r5cRwedI7PNGnyNlR10SJNMpo9lZkA+ZCUmbEdOmgWVZ+M/zl+HN/SOuj8UlKw/GtPZxOGpmLnKWSXMUtQ4mrYZHy6j4f6hjbhTNo0c4Un5quoNM2oIT38MSxuC9w7Jfm9+76YRG13UDp28EmdXtM4XyTuk320IJR2nvtf0Wo9J7HcnnyO+YOK6Imwyhi9ei+hGJ7+T/c8YCXPlfjwPICxq3rT8CL+3ai4PHtEOiJuT8o6djoL0JpxwySSrTwWRWXXQ+Iph8jvTnhn0kYd/XKNHqulsacMM5hyGbSWHttx7UluEwatAcAd6+kpTmyHlm9DkikYiyECoEsUhn8BcFnTA7LnVp/zxH+l268PUSQxinLK/AESbPUVoReAAxlLd3ISCe25RNe36r+jKIyAn0PFWRvmvKZtAxPrfTs1yTp6Jgs7oIuy/OrXjMGix9tLrS5DnyYloQy2Z14QMySGZ1QRoY5Z6zAclmfcsqWnMUXqjxy2MhR3KL75maTE3U+gD5d8HUpRzNkXo4TLQ6McoaYNZuXHHCLOl3URZSqpY8Lgant+PYWXm/x4a6NN5xWD96W3NmuKbAElHnCFO7q++403VcszofU+IggszqxGuLmhuP9nasUurj8nNYdwJQ6MZV16xOOBbNrC73/6D70+FqjoTfquNxn2RlkN9Ii/LI37t8CoDguUbc4POtf4hXRRxa0ikLWSEa41mHDbh/O3PWIf1tUmhycXO0fXw91g5Okfq/+LhN0ShNC+4ogp/WrG7UlvyG88Q7R6o+Rx9eeTAA4PTF+qAwx83ukhLTq2U4SJojj1Cv30yOG2ft6JRfi8IRNUcJINodJxKQQbOLLZpMqNqE/O/yf/vnOdIvpoPuxHECHrXzg2MmZY1pgORzPSYehjxH6svvTHbqwjiVkrVMjdl0pIAMplCn4u8dmrJp3Pux4/C/b+zXDrKFCsSx5DlK6ee+UmiO9GZ1+nMLDeXdGCFanTqxZIsQJmQbBDZ01AAARldJREFU/OgTThSzPPU9lY+ZBadi8HOoVZvZcr/X34fTJ9XjJsWobFYnPzd1QZ/NpHDHJUdhWsc4qc6RNhaEIkuwZ+Bi0hxFTfdgOluKDAjROd7xOQrOLWfCM94a+gSQy/P0+pggoApgprHRryqO5sjPrE6sn9jOruZoeFSrHTX6HIVoGl3kVDUX05T2cfj7WA6kvftHPb8Nw/Gzu7HlimMlX1ddOWHN6sLIAJL1i2V5gnk4FKrdCeNzZCo7joAMmz9yDF7ZPYT33fAwnnp591idQhcbCnGeSKcsvHtwAEce1IGBid5gVg5RhZsgc9ekNUf9Exux6QODHq10LUDhKAHkqDTxd06x/zsTh/hSmew/1YVVo8EUL4xZnomUZWHUtl07c+flVF9ydbDVmrKlvFFynMnOG6hB9jkal80oEfhk+2xvtLr8Z13rSQv0ujSashk0GRzFC9UcRYn44lzDuwNrMqtLfhWom7SMPkeiWZ1hcnTLFYptMGg7daj37BdwIQhZYIn++yCfNvla3s0P3ec4NUd+ixz1Kup7pf7UWYSq7W+6hl+0OlVztG94FNM7c+GAxXaMskgT+2lc70WYUsabzOqi9idDncUx0bZtIWy2E63Rkp5XYpoj4T7V35n6vt+GQ96sTiMcOZtEgo+rpDkau8c/vbQbe5T8Xbl6O9dX7ifEE9XNbWrC3YGJTZjeOQ7/88yrWD2vG9te2GG8Fz+mtI/Tfm/aLPGzFDhiRgdm9zRjdk+z8RzZX9fC+uMOwi9+tx1nKn6Jpg29j66ehQeffRXnHjEtsN7mPEdxhPLW+BzZNhrq0pg8oUmJ8Beu4LDXV031LcvCtA79czShm+KmtY/DkikT0NZYZzSlzV83WeGoKZvBirGEu7UGhaMEiOKIVwjiwKLbhdgfYlBJp2XNUZhahhkUUmOqI1Fz5H4v4BdK2y3L8uZXqHPtvOVzVRO8pmzaGL0J0GmuBOFIs9ASvzGZAYh1KQRTOE8dpsnVnOeohFvkAkafIzEgQ4C5mzhpjdcsfEyoz0FM3hsVvyAJYZBy9wTU2y/hrBSQIU7hyKfr+YVxTlmWxyTP+ay+Bqa+oCaBFe85rLYvwquTiLYoTJn1mTSy6ZRnAV3su+mMR2q3dH2OxjQWmXQKacvC8NiDiCIcRQnI4AgzumuYxkY/Qb+tKdis7k0hN5fof+v0LdGkTf792HwS4LuhQ6c5UhMoD7Q3Yf1xB8G2bXz3gec81y0W8ZnrQnnryGZS+NklRwUEepA1R53N9fj1VcdrtMH6l3qgvQkPbFhpvIb4tWlzrN+gYYnScrr+JgqahZjYhtVcpQt0r3CsbwC9wJZKWfjhBcv11j3KV34BQoohyBS+FqBwlAChbX8LRBwQdcLRsGGloC66mupEG+DggTXUbtrYj50FgOswq/zUm4TV+7KlLcsrRDlmdZ7JzPIMuLI2TL5H9frBoTaFyTcgyaMxz1FA8xViVqeSSulDeZdCNtJdI5TPUQTN0dKpE3DKIX14cedevP9I/a6kg9pG7eP1EYHCUGieIwexfwf93s+sLh1ByIqCn8+R16zOf0HxwmtvAvBuiIQK5Z3yD5xiwq/+KqrmKx7CFTS+IYPX9uyL7UonLejBh47P+TKI452N/H06Y3HG3UByhKPwNx8oHAl/t0jCUbidbN078Za53Xhz3wjeNThgPMd5L8XExakI74grHKltEWYjUONzJAppa+b34LQx/xI1uFBcFrHiuCS2ddC6I0hLIpbr1Fv3G785y+8aovmhqjn64QXLccOv/4KPnzwncrkq6gbSqjnd+OQ/5ctNF/BMwl4+Sihvkbp0yhjaO18H8/wvEtVkNyxBpvC1AIWjBJAc8RKQ3MWBr3+i1w55jhLr3kGsSSZlwcqmtMdMQlAozdHYOfsVzZEnlHcI4cSyND4HjlmdZtHoH5DB3+dIRLfOEncEGyIEEBDxM2MAImqOjLb7FmyNYWC5AjKY5s6GCNHqROozaXzlnYtDnis/p+I0R/m/iw3I4JcLBYhiVleaaHVq3xE/iottFTUAQahQ3pY3Wl0YpvjY8atI/pUxOWGHfb3G13uFo6jmkeK1vr52ifu3tBCy85s0juYoF/kPwNhQVkwob4/ALHxuEUKj+/VfEd079e9C/qncb72/c94VUSgRCWpb57LqOxmmX+iCAw0JfkXXv3uJdL60wRKb5kg/VhRbulyu9/j0jnH48yt7cPzsLu/BEIimj+pCe+nUiVg6daLxt1HuTdXyf+Pdh8r5pqQ2C1fyrIB5XHftuIUjE+plkvI5ijJnVysUjhKgLmGzOtE3RVQ9/+ySo/Do8ztwsiFWv7g2yaRSEGQjaQfIqDkKIxyl5N1KRyjyJIENYVaXTnlDihsDMlhyuzTVZZRFnBqtzrww0O1wi860gbtuSt3+/3MPx0s79+K4Wf4TSRSfI9OcnzZojhIaIyV07aIT1AA1IIP/Iq3QiK5OlDCHjiI0R0WH8jY4Tuuvlf/bu7jUl1ksvpojvx/6HHz3sinS5zCaIxt2JAHwlotW4LlX92BRf5vveSKS5qsE74WIKDCevngS3nZIX6BZqYqpyp5dY8XnKJ2STYujhPJWF5me0NdCrfzM6kwmqWGCnPiZEanmbA5Bmken3hPGZYFX9rjfh3m13CSwwj2ahDTxfPXvYjD5HBVrsSJWT/fMbj5/GX76+Is4Y8nkgsqfOC6Lb75nCRqz6diiNerwmCV7NCtiweHKPHZmJ7545kLM6dFvQrvXVqLVhaWYDXVTdN+4oeaIFMSs7mb86qlXACRjVvfiWPQbAOgUdsPn9LYYtUaAvDucTltoECYO0WzMOPmGuBdn8FF9juSB22tGZ8otpO5u6gIypFO5iHiiaUVjNu3JGF6U5shn0lNRdwUXTmrFhJmdgb9L0qyuXD5Hxmh12cI0R1HobmlAXdpyw8q3jytcc1Rs7rIoE6Wfz5G0GCqZ5sj82XQn71424ElsaMxzJLyLI6O27HM0dqw+o99NPXRgAg4dmGCsuw6v5qt4wpYiBmVYNbdbCv0d+lqhHccd4cjRHFnKYjr8vatjmjfPXP5vx0cI8C70jJqjEAtCnbbFKe/N/fqd9iAB0AmG0a701TBtrAvl7TdPSKZqMfU7k7lvscVL5maawrpaGnCOIdhCWFYLob+jECkJrNKv1N8Wom2zLMuYMFukGM1RoXh8jhISjt5xWPD9Vzu171VVQk4/dBJ+9bHj0NmcX4QlEWf+1d15s4woA4WomcikLGlxJZoDmAbucGZ1quYo91n29/Euhk2hvL25OSypXEBvd57NqNH4/KPVieiWcHsjCEe6MONhiJKI0y8gg05bUxrNkfc7k0JC9HcL2oWKlqA0TzplSaHWO5qLMKsrUnNkRRBqJF85X7O60miOvP4lwYs8bZQow3MUFwPDo7ZWwxvklxYF2awuHsIOw2IOoELfyTA/s2Hn/T/djaqU4D8SrR+ri0z1p2Kf6BLeM6/myDBuhaiLXyhv0/gcpDlyft+umNyGaZmMZi4yabDE84E4zer05ReaINktVxrviioqdqK0XHDahPgFVt21o2iD6oqYrGUBPBlz+l9cdjSOCbHZW+1UWLevbiY2ZdE/UQ4PmUS0kHNWTMXEcVl86PiDIv1Olzxs9dxuTO8ch0On5HdfiwnI4Awwjv+MMyjodoNFdGYVliYgg7NY0i1W9yq7hw1KqHJJc6QZ8U8/dBImtTVizXzvjlYU4Sisnb3D185ejOb6DG5432Ghr2EOt64XSErhc6THFMo73/5BORKKSS/X1pTfEVZ3h6NQ6I67jigBGXw1R7HmOTIf89UcGW5FFNzOPnwAva0NON1ggiOeOzwyql3kNcWqXYxvhz1fYriCRM1RoYuxMD+zbVGrMhbKO5Nyv6tLp6I5tnt8jjzSkUtXiyAc+SQx9itfh26TyfnOJJQEB2TI/b9TMLm1LKCpPri/6QIy+M0TUmS0mPqdnAQ2f69RTCZ1yIEKyjV36IlmVhc+omncU2ThZnWFP7ukhL1rzzoEzQ0ZbDpvEDO7w/lcVTs0q4sRZxGn02rEyUB7Ex75+KrIg5a4aHZe1v/vPUtg28C37vuzeyxM+E0Tznvt7Fa6miPhx6q/EWDeWfGG8vYGZFBt6x2kkNvKTqlOQPvyOw7B6KitbdcoZnWeRGwBDffWRX04eUFvpOdp3ImygB4hK3u+TqGLLhh9niP9uWL7B03khSYaBOQ+UIydtOwHVNzCI9hJ3KylMiV9LJbuFrNWzS8gg6kGYhttPH2B8b1Sy1c1R877Pq0zn0yzWCTNUVxmdSGLGV8fXjgyvbNhBTGn/DfGBIfGunxi7KiLZ79w7ipdzfnxR+2jpj4bLoee+bue1gZs3+XtH2Gj1Ymao96WhlB+YG5ABuGeelob8KohGmGxprmBZaa9702hSONd2TbW9BSbBFZENquL9z6DTBNNxOVzFKdwdOriSXjbor6KE5SThJqjGHEWcUkMgiqFdFJxkeksCpwQo2EGhih22PtH1Gh1+XN0gokpgpfHrC7jDfDgNIWqORJNcdTkkiazA1O7qmX7UUi29ajP05RrKWVZ+MTJcyXTTuf7pNGb1ekFm7amLD54zHR88OjpknZHRxGyUWBOqrDEKZQE7WZaPguTuM3qbvrAIFbN6cLG0xeY6+P5HDwBq3WLYloqto8zfnzpzEVYObsLN31gMFQ5fpTL/w5QNEcBs69x7gipOVJ/LqY3iNp3gpLA7npzv/u3OPZE1aL7oVukO/W49qxDcPzsLvzwguXS8cCADGNFimH+J4eMfOgGZBDu6WtnL8bxs7vwXxeuMNZV/bsYTBrtKJEIg8pNag1TKFGaLkqi8LiHBTkwV/jnERTN1A8xoXTc93MgCUYANUeJIHahShpYouQy0Z4T4hpubo0xzZGbR0JU+UfRHBmi2mnN6hTNkagpsJTf6LRXfkTTHMmfk+gDYkQo+doWJo7P4lvvXYpTrvu19H3S6K7g5y60YY0+j4VKMWZ1K2Z04K4/vFxECTlMIXMLIYodvF9+mTjM6o44qANHBGQ49zOrMw0KBSdCHrW1TuZ9bY349jnhzU79SOJVCFumGOY6aLPJ6PsZ4jq9bQ2eZ1BfJ5vVRSHIj1IMT97go3Upps9qzerG2mhqxzh8R9M/gsZ5V3MkBGvR5Q7UkdbMbdM7x2vrkTtPEI5i2paWNdrxbZwUqvUoBXGaiCdpVleoe0VcmqMKe2xVB4WjGNHJHpUkHBXq2O4Q5lY80epcp9X8OTqTBdOCMUyeI2dy2qvYnTfW+WiO0tE0Cvsi5B2IalZXCOIiS762vg7lGiiLMYlzMGmfwvDe5VMwMmoHCgBBSAJLIY0p3ELwbubYdVKWb3SlpMK0euuj9CXD3yKFmvWMjNjSQiKJhVk5Fw2iWV1QPzLNHX4/2/SBQfx1x5uY19eK2x97UTqWM6srTDhSUasmBgkSF/5hNUehTLa1miP/3zTUpXH92kNx4U2/0R532qOzOa85Ci0cafxpfc8X2yWmTmgyCyvW56iiNUcxliUJEzGb1dUV6HNUzLuZRETEAxWa1cWAkz9l9dxuz7FSLWDCUKRsFM6szhGORhwTw1wXywRqjgxmdRn5mnWagAyOc/9eRYARTaosSx44io3m40chZnVRMWmOmrIZ7TWDBsoPHDkNAPD2AvNW6K4JAOcdNR0AtEEuwlKMgJVJp3De0dMxt88/J0UQppC5SeAIT9rQxdLOYGnGFvUq4nVNgl6h496wEso7iUhZSbRb6IAMkXyOTJoj8+9WHNThhhlW+09DXdoVXArRLLT4BJMQNUd+WgdTv4gS7CfoO5U1C3qxaHKroczc/0XNUU+L12dTx56hYQBw89cFpSQIY44aBcuS3z+xaYsWfkvgGlAocQYAFpspdjO0AueMYrR+4j1QOCoOao5i4O6PHovnX30D8yd5B+BKGliK3cUPcyvO+6jmOQoMyGAoPExAhskTcuGah/abNUfqRFIq4ShlJbMYa22ShaN/OXU+jp3ZabyvoCpctWY2TlrYiwWaPhwW3X2uP+4gHHVwR1HCSQzKp6KRQuYm/E477agNXazxtUsaPy2kqQqFjnsjo6OJhtdNqsywm85ytLqAIg3Hw1bf43NUl3YFpkIWz+esmIqv3v30WNly4ftG9Kkg4jQx1i2Kw5ZnHhdzvxc3m8Rn5Mc/Xh8CACyY3Iqffvgo9GoC4ZiIw38jbckRWMUyixWOKlkDEaeGp5A8R2Ep1NqgKNNTmtXFBjVHMdDSUKcVjIAKE458Ez166+l10g6hOVICMjj3L5vVaQIyGDVHwXmO+ifkzCBUzVGDJyCDudwgvr72UGTTKVz3rkMDzy2FSYJqVjcwsQn9gjlIVM1RJp3CoQMTip5UVdIpC4sHJoSK/mSiAmQj+ZkmEJ5fvlbu/zohrCy+AJb5o0nwL7QfDY/aqEtbWNTfhumd40KbOEWhnEOymOcoaNOkGBM0wLsAb6hLFWVWd8GxMzCntwWHDrRJofg91/VZWJvuaUbXOExtb8KktkaMy6ZxpkaDrftt2LYIzHeUsnDcrE70tTZoc7j869sXIZ2y8O11S3HW0n60Ntbh5IW97vG5fS2YEJQqQNrVD1dv3zpblqxJFo4VnedIMo0sqqiKJowWvPCy839HmTOKCaaRkvpY5aw9qxFqjhJAXMxVUhhMP7M6XS3PPnwACya14p++dl/unBC34kxg3mh1/qGbTZOmOInXpfM+GOKL7yyguprr8aIQ7rfRJyBDVJvskxb04i1zu0MtKkqxgFXN6tTmU3fXStENk7pEJWiOSunr4/QZPwf03PFEq+Gi1kJaUBiaotBNgeERG5Zl4dYLV8Auohw/4vYtAHI57sIgaiWC7i2seZcJvVndmHBUwAKsKZvB7R860lcbPqDk+fNqHfW/y6RS2PyRY2EhFzhIN87qxtLQmqMQ4/Z3zjkMI6O21sT7zCWTccohfahLp7ByTjc+e9r8yAKmWNM4+nXOGkL8LM5vxZWftPa2GOIcEkzCZdxEmTO6Y0pWXmGPreqo4T2ByqCSwh8WYlYn7kCFM6vLnaTmORLnkXH1XpncZGeblYSj/N+S5mhMOPr2usOwYkY7brkoF0ZV9DlKpSzp/gvZWQs7GZbCJKFFEY6ChKGSTHAJXaKYgAxxUcodubCao1L5HPkFZDA99ELt5p2ImqmUlZjWNc5m++rZi3H0zE5c/paZoc6XfY7052w6bxBHHNSOr6/Va6lD5zlSLiCZ1RXYtrogIQDwvfOWYcWMdnznnMPkd0UZMk1Xtaxc2amUZRxnC/U5AsKN95Zl+SbgrDPMRWGxYp4X1MTmYpWKNqurYJ+jOF/gJKPVie9plDa8as1sHHVwRygrFZWUz8YEiQY1RwcQfsKR6T0S3+kwk7IzJg/5aI6aNTbd5oAMBuFIqLAjHM3ta8Gm85a536uhvIdH8vcfNZR3FPyiNcVFa6Pchurz8wpHiVSjJMQR8a5YTPlEksDP56gcvgB+fctUhULt5odHwkeFLJSuInZmVd62qA9vW9QX+nxRc2QSblfM6MCKGeboiov6W3Hf068EXkvtHw11afd5xW0+u3xGO5bPaPd8r95jMeHJizOriyffWVzEIxzJ44Foal3LeY7irI78HJK7zyjjYfv4evyf98eRz63oIg5oKBwdQEQ1q1OPhDKrc3yOXM1RSvoe0Du8mnYy5URq+XNswXixf2Kj9rdyQAYLI0IDFBvq1A81IEMSeDRHAZqi0uQ5SuYaFSAbKTkrklW4p3yEIymKVNk0R8H9u9BcHSPFhtQMwcHdzfj8aQvQ3RKfkBSW5vr8e1voovNDxx+MhkwaqzTRUUXUbtqYTefzHCW4OSQSNqVAmPFJ11xh34Ekx/tCiEPgSFk5TdvX1x6KN/aNJKY5qjQNRJy10SWTjwux2cojqFTWc6s2KmvEIIlSyMIjqjmRa1bnBmTIfS8ulnQ5ekyaI5N5Tltj3sa/c7x+keOEtQZy9zEs3H+S5o6lCPus+hx5zOqU85M0wXKekc6ROQ4qQDYqqebIKT6o75RqwvXVHBkm4KiaIydK4umHFh5KPgrvGhzAyjn+wkUSNAiJWAt9fg11aXxo5cGY0+sfAdKjOcrkhaNifVLCsri/TamT/rwww5NuDAs7jtf7BJAoFWJNYwnIMFbISQt6ceaSyUqeo+IuINav0jRHySWBjfc+JZ1UGQRMv8fmpOw4ayzsP/FCzdEBRCHmSZa8EgrEkwQ25c1LpDOrEwepTecN4qDO8QDMtuKtTXX42SVHoSmbNg48jdn8b1XNUZKUwu63PpNGQ10Ke/fn2rmcZnUPbFiJv7z6BpZMmZBI+RVhVlekDb4dQcRz+kyQEFaOCddbB/33Udvoe+cvwxN/24nDp06MoVaVi2VZaG7IYMcb+0vguyaX35hNuX0mbrM6Ewd1jcdPLj4SnWOmjKY+W+jQHNrnqMI0R3G8u54gPMLn4pP8ll5DHZY4ayMngY2ZMjeb32P77GnzcdqhkxKbs2uByhoxSKL4rTFNg3VUzVGYUN464ai5PoODu8ZjVnczlk1rR9dYpKY6YQdarf6c3hZMaR9nrIvoc6RqjpJETtSZ3HVEDZz3MqUzq2sfX5/oIFsBspH0TJP3Ocr937QrPq+vBc31GRyi7MonhZ9plKlfRQ3IML4+g2XT2ysqgE1SHDZ1IiY01Umh95NAFVDrM2k4j8Uv8EAcLJzcisa6NJZMmYAFk1vRM5YDyDQMFeprFra7JOljGpa4h2C/MT1Ws7oKeyc3nDQHAPDBo6cXXVaSARkW909Ac30G84pMQF4ofv2jPpPGihkdRaXYqHWoOTqA8NOcmN4jUVUfZuxwylGTwEoBGeq9ZnWplIWfXnKU+7f4faHIobytkjh7A3Kdk1zYtzbW4eWxRIRqOwVpkqqJSotWl7SZSZDm6McXH4nh0dGSTWyFRD5MevFdzXzzPUswNDwqbd4kgSdanehzlLBZ3W0XHYH9mj5q6jv7C9y4ijNaXbWhbmiKn+MNyFBUUbGzZMoE/PFfTozl/UkyZHljNo1HPrmqqKSuxVBpvmLVRoV1e5IkIwWZ1en/NpFyNUe5a7maI+G3Os0RkNvt8tvxirpIFn2OrFJqjkq009Yt5EFRr6h+rqaB8qYPDOLQgTb3c/lFo9KGSM0HZNC/C+mUVdIdP1/NkeF1TVq7Vs1YlpW4YATo8xw5C+ikzcxShj5q6hWFblzFmecoaeIOWKPeklh6sT5HcqCCynuX43p/kp6r6wU/v1JTgY+tqij/iFGDTGrTR08rN4XswIcxoRFxFkvDo2Oao7FBWozwpYtWlwSi5mjUtjF5QmmeS6lstEWzHK+myF+TVMkccVAHbrnoCPdzBSiOig6yMas7vGlFPiBD5MskglfwtrR/i1A4Kj/qI2jIpPJ5jsrUuUxziJhmIQrhQ3mX/2XqaA6XKDgsfpsWsfoc1fC7nKRZXbmpRKG2moh9lTp16lQ899xznu8vuugiXHfddTj22GOxZcsW6dgHP/hBfOMb34i7KmXj+NlduOKEWZg/FoGpUigklHdUh0Wz5ij/a120uiRoEAIy7N0/ircu7MNfXnkDh01N1gmxVFp0MYS5RxhSzq3mgbIiAjIU6bj7wWOmY//IaGD4ZUDMc1T+BR3gL2ibuhXN6sqPqO2sS+cSnObN6srzfEz9Zf9ooT5H1WNWN7unBZ/6p7nobW0IPjkEfukaYk0CW8VzRxDyuF5b91nDj60kxC4cPfzwwxgZGXE/P/HEE3jLW96Ct7/97e535513Hj7zmc+4n5uaknVMLTWWZWH9cQeVuxoefBeZhjdJ+jrEy+aG8lai1YnXNpnVBRF1iSyaUuzdP4JUysIlqw4u6NpRECeTJJf1A6LmSDnmnTgTrEjClF80kgXeQiadhro0PnrCrFDndo7tMJtC1Jcaj1ZS+Nu0OKXmqPyI45BjhuR8lbTPkQlT4J9CNUdhtRqHVUgUxHOPnBZbWX7vZZyao0oLyBAVyzJbH0jmg+WXn2OlmjdEK4HYhaPOTjnXyRe+8AXMmDEDxxxzjPtdU1MTenp64r40CaCQDfioDovOGU60Ouc3b+7LC8zj60tjVidOxHv3j/icGS+lMkPonyCa1fmb0VXzQFkZARki7hIUwaEDE/B/3n84ZveUJ8qRiuduLZ9jYxSaBJbEh7jYc0yMy605Mg2N+xOOVjd/Uiu+/8Hl6G1twFFfvKega1Ua6jwjDlHZTHHvXzmSTSeFBfMGW5qaI2Ig0RFy3759+O53v4tzzz1XWrzddNNN6OjowPz587Fhwwa88cYbSVaDhMD0HkVdEjpjqhP8wFkkvSEIR6U0uZnV3QwAGJzeXrJrlir/jKg5cjR1JiohJ06hVIBsVFLbdMuycNTBnW5umHLj8W0IIR2VK0ITyZPSaI7K7XNkenX2h9QczZ8kbxhE2fQ5fNrExMOnlxLvvec/Z9PFBSwoRSLzUuHXR1L0OSIGEt3Cv+2227Bjxw6cc8457nfvete7MGXKFPT19eGxxx7DlVdeiSeffBK33HKLsZyhoSEMDQ25n3ft2pVktQ9IjKG8I2qOXJ+jYTnP0Rv7housYWGL5P/+8JEYGh7FuBJpq1SS1Hq0NeV9t3a9uV865tUcJVaNxKkE4SjJkK+Vjl9YeKNZHTVHZUdc1Da6ZnVjwlGRmoVCMZlohTXz+9H6I/HYX3fgtK//T668A+xdFPF7L4t9vinJ3Ky62zjXR/STSFoa10tUoRJRa/dTahJdMX7729/GmjVr0NfX5353/vnnu38vWLAAvb29WLlyJZ555hnMmDFDW87GjRtxzTXXJFlVYiBqKG/nHMfBNuMKR6UzaxPJpFM16xxuWRY+fPxBePDZ13DUzA7PMZFqXkRURkCG/N/V25KF4dUc6f8WqaPmqOzIPke55+EMheUKba32lxPn9eAfu4dw9uEDoX6fTlmSz2o1j2vFopq7JeVzVPVmdT7VlwW/6r5PlQP53YiDxISj5557DnfddZevRggABgcHAQBPP/20UTjasGEDLr/8cvfzrl270N/fH19liZGoL5izKB9WotVNKlEY7QONy1frnfy9ARqSr0tSTO0YV+4q1HTI10A8O9TBbZGm5qjsWJJwlNMcORqkxmzp8mSZ6gQAFxw7A4f0txVcxoEsg3tDeYtmdUVGq6shjYrfGuaAHteJL4kJRzfccAO6urpw8skn+563bds2AEBvb6/xnPr6etTXV4b9fa1ickaMOl54fI7GvjhnxVS8unsIq+YEhzImxeM1R6++kf8/z1+GzX98Ge+PMcJToUQ1L60lzJ4N5raoq/YVVQ0gLvymtuc2GM4/egYmjqvHSfPN822S+GkhCynjQHsXRRKNVldD76/frcgBGWqLA/ndiINEhKPR0VHccMMNWLduHTKZ/CWeeeYZbNq0CSeddBLa29vx2GOP4bLLLsPRRx+NhQsXJlEVEpIFhpxMkTVHyhDj5GppqEvj4yfPLaxyVUy5DMLU51CNc93g9PaSBtIITRW2ZTH45VMxUe1O3LWAuD6e1ZMLTDO3rwWf6ivfOBxHFE2xaxXSz/xCO1cD0zrG4dlX9uDkBWYBt9hQ7bX0+voFIxKFwFoTJmrsdkpOIsLRXXfdheeffx7nnnuu9H02m8Vdd92Fa6+9Fnv27EF/fz/OOOMMfOITn0iiGiQCCya34v+8/3BMalPM3yK+YKqZQ5z5TiohpHO1oDZ7rQ38pHT4BMUyLjxq1c+vmhDfeUc4KjfquFTIsCQl7izg92b3/Orgvy5cgYeefQ0r53RJ348I82NdkUlv0zXkZOnXR9JWuPOqEc75xZGIcLR69WrtQra/vx9btmxJ4pIkBo46uNPzXVTZRl0scQe5THiEo/JUoxY50CYdr2+DeEz/m3IlGS2UT5w8B5/97z/gyhNnl7sqsTEkhPevFOFI1WgXJNxI/a8QzVF1q44mjsvixPnePJFiIt1ifY5qaYwL7XNU7VKgAuf84ihPfGNSNUTNj6OeHadw1NxQF3wSAaBbhHCkjIsDzZ/Gz+fIGJChytroA0dNx6mLJ6FjfO34tv7vnn3u35VyX14/mQKFmzEKiaRWXT0zPMOjeWG4WJ+jant//fC7lVrOc1R7N1RaaPtwALHpvEFM7xyH7523LPRvoo6R6i5NHIPsN9+zBDM6x+Eb715SdFmlplwblHHY9hOZdy8bwLLpEyvTDypJ/KLVGZaa1RjKu1IEiLhYs6AXc3tbcOmqg8tdFRc/LWRYRKuUwjRH0a9ZDYiJdIudd1Mh3vFqwVdzVKSJZiVTQ/JtWaDm6ABixYwO3P2RYyP9JurAqL6QcfgcrZ7Xg9XzvGYExIza6hwoi+ezpy4odxXKgl+EMVO/qqVoV9VKa2MdfnrJUeWuhkTcmzZWATK4VfVeR3r2j4wGnxSSWnp9wwZkqDXrCm6IFkf1be+RkiK+X2G0IElojkh0aikJLCkvHrO6MHZ1hGiIQ3NUdFj9Gu2ywzEKR7UkKBy4obzLXYPqhsIR8SXyGKlqjqrMMTtuyhVhz3dBS0gEVC2QqE1mtyJR8GqOopchjqmF9L9a7bOiWR3J4xutroZ9jmpJwC0HFI6IL1F35ryaI3axcuBxfOZASQrET9Dm7iSJgnccKtKsjv3PRQzIECfV3sZ+a5iaznNU7gpUOVy5El+ivmBJ+ByR6HjN6spUEVL1+K0ZKHSTKHjzr0Uvo7M5HzijPpOO/Pta7bJxa46ccPxzelpiLbfUfGT1LADAWUv7Pcdq26yu1u6otDAgA/El6gumBnCgz1F5YLQ6Ehd+/mt8vUkU4kgxUJ9J47efWg0rVdj8Uu3R10zEPcRv+9RqDA2PorWpulNonLlkMpbPaEdvS4PnmBTxvMa6BY12ioPCEfEl6oCrvpCF5KEgxcNodSQu/MzqanWhSZJBHYcK7T3FLNhrdUpaOzgF/7X1r1gzvzeW8sbVZzCuRqLbT2pr1H5fSyHLVbghWhwUjogvkZPAqj5HB3hAhnKhPgeaP5FC8QvlXWPrCZIw1GgnR2tjHTZHTNVxoJNO1a4WnHN+cVDxRmJFfR3pc1QevJojPgdSGH7BPfh6kyh4N23KUIfSX5JUKJLmqMbmyNq6m9JD4YiExg6ROI95jiqDOELmEgJo/ER8jhHiRxx5joql1hbBpHBkE+Ha4oiD2stdhaqGZnUkVrzR6g5s+btcmSfURSs1R6RQvJoj8zFC/PD6r5W+A7HLEgdZc1TGisTIrz52HO5/5lWcduikclelqqFwRGLF43NElUVZ8FvQEhIFf7M6diwSHnWvrCy9h12WjCFv9NRGx+if2IT+iU3lrkbVc2Bv65PYUccX+hyVBzo+k7jw6zvsViQKlaDRZpclDrWoOSLxQOGIxAp9jhTKZFfnzSdSnnqQ6odmdCQuKkGjXSsaAlI8texzRIqDwhGJFVUWOuCFozJBzRGJC1HQZhREUgwVEa2OXZaMIY5tHMuICIUjEiv0OaoM/BJ3EhKFlKQ5Kv/illQv3iSwNKsj5SNFrTgxQOGIxApDSFcG6iKWu2KkUMSu413c+p9PiIg6DpVjfqBZHXFIpUStOPsFycNodSQ0dgj/GW8eiwN7wClfKG8ZCkekUMR32M+h/j3LpuDg7vE4ZmZnyepGqotKCOVNiAM1R8QEhSMSK+r4kuaIUxaowSNxYRk/yP2soS6F9y6fWoIakWrFY5ZZjjqU4ZqkUmG0OqKHZnUkVrxmExxxyoHXN4TPgRSGFO7Wc5QOzSQ8lRAoht2UOEiaI4rNRIDCEYkVj08Cx5uy4ecrQkhY/EJ5S/2KfYwE4BGGmAWWlBHmOSImKByReFE1Rwf4qtwO46iVEGLLc1efFIocytscrY59jAShTgcH+PRAyoy/VpwcyFA4IrHCya9ysLgrRmLAT3PklwOJEBVvElia1ZHywc0dYoLCEYkV+hzlmNTWCAA46uDyRe6i5ojEgV8W+ZQwg7CPkSC8KQZKX4cjD+oAALQ11ZX+4qSi8Nv4IQc2jFZHYoXJR3P84ILl+NG2v+Ndhw+UrQ4c+EkcyHb5arQxaidJeDzzQxn0jdecMg+zeppx8oLekl+bVBZ+Yxs5sKFwREITxntG9TE6UEN597U14sJjZ5S1DrmFR+6pcVefFIqf5sjvGCEq3jx4pa9DS0MdLjimvGMzqQz6xiw8CFGhcERipRJCtZIxaE9NYsBPO2Rx55VEoBKEI0IcWhvrcM9Hj0U2Qw8TIkPhiMSKaibBRXn5kH2OylYNUuXIWeTNSTz5qpMg/AJ6EFIOpnWMK3cVSAVCcZnEiifPEXtY2aA9NYmFkHmOuBFCgvDNk0UIIRUCl64kVhitrnJgElgSB365QCyfY4SoePNksdcQQioPCkckVrgzWDlIZnV8EKRAZNM5s1kd+xgJIqWsONhlCCGVSOzC0ac//WlYliX9mz17tnt87969WL9+Pdrb2zF+/HicccYZeOmll+KuBikT3jwWnP3KhfgsuAghhSL2I9u2jccICYKaI0JINZCI5mjevHl48cUX3X/33Xefe+yyyy7DT37yE/zgBz/Ali1b8Pe//x2nn356EtUgZUBdhFM4Kh/mPX5CwuMnWDPDPIkCN2kIIdVAItHqMpkMenp6PN/v3LkT3/72t7Fp0yYcf/zxAIAbbrgBc+bMwQMPPIBly5YlUR0SE3aIREden6OEKkOCoc8RiQFxt18dAhitjkSB2mxCSDWQiOboqaeeQl9fH6ZPn461a9fi+eefBwBs3boV+/fvx6pVq9xzZ8+ejYGBAdx///1JVIWUGOY5qhzkUN58DqQw/CJOprjYJRGQkgZzTCKEVCixa44GBwdx4403YtasWXjxxRdxzTXX4KijjsITTzyB7du3I5vNoq2tTfpNd3c3tm/fbixzaGgIQ0ND7uddu3bFXW0SEx6Hbc5/ZUN0kKdwRApF7Dmq9lha7NJ0kwRAYZoQUg3ELhytWbPG/XvhwoUYHBzElClT8P3vfx+NjY0Flblx40Zcc801cVWRJIicMJK7g+WEJk8kDvzeYcvS/02IDmlMojBNCKlQEg/l3dbWhpkzZ+Lpp59GT08P9u3bhx07dkjnvPTSS1ofJYcNGzZg586d7r8XXngh4VqTQhEnPGoryots389nQQrDPyADEw2T8KRkVSMhhFQkiQtHu3fvxjPPPIPe3l4sWbIEdXV12Lx5s3v8ySefxPPPP4/ly5cby6ivr0dLS4v0j1Qm4kIqzcVSWZFz0JStGqTK8dvhtwx/E6KDiakJIdVA7GZ1H/3oR/HWt74VU6ZMwd///ndcffXVSKfTOPvss9Ha2or3v//9uPzyyzFx4kS0tLTgQx/6EJYvX85IdTVCStpJLmNFCMMsk1jw6zpc7JIo0EeNEFINxC4c/fWvf8XZZ5+NV199FZ2dnTjyyCPxwAMPoLOzEwDwb//2b0ilUjjjjDMwNDSEE044AV//+tfjrgYpF1yQVxB0fibFI77GahLYFM3qSAQYkIEQUg3ELhzdfPPNvscbGhpw3XXX4brrrov70iRhbE+WEy+c/CoHea3Kh0EKI6xZHd93EgRDeRNCqgF6IpBYSVFzVDFw4UriIGxABtrRkiBodk0IqQYoHJFY4eRXOaQYrY7EgCgAqbpj+hyRKDBYHSGkGqBwRGJFnPzSXC2VFQZkIHHgqzkSlrh0sCdBSP2FYxIhpEKhcERihbl1KgcmgSVxIC1iFdVRipojEgE1STghhFQiFI5IIM6EduRBHaHPBbgzWG4kQZUrV5IAdDkiUZCSBpexHoQQ4kfs0epI7fE/V63Eb/+6A2+Z0x14rsXw0RUJnwVJAnmxy05G/OE4RAipBigckUB6WhvQ09oT6lxGq6sc6HNEkoaaIxIFv+AehBBSKdCsjsSK7HNUxooQLlxJ4tDBnkSBXYQQUg1QOCKxwiR/lYNs4shnQYqHobxJMXAcIoRUAxSOSKyIkx9DeZcXKThG+apBahhGHyNRYBchhFQDFI5IrDC0b+XAsOokbmxb1h1RO0miwD5CCKkGKByRWGEQgMpBbH0+C5IE7FYkClLKLEZkIIRUKBSOSKxIoX25cCovoskT33SSANROkiiwixBCqgEumUispLhYqhioOSJx4wnIIP7NLkYC4DhECKkGKByRWGGeo8qBYdVJ0tCMlkSBPYQQUg1QOCKxIjloc0VeVqg5InGj+omI/Yo9jATBcYgQUg1QOCKxwmh1lQOTwJKkoVkdiQL7CCGkGqBwRGKFDtqVA/2/SNyo3YhJn0kU2EcIIdUAhSMSKxY1RxUJhSMSB6pZnUWzOlIgas4sQgipFCgckViRfBC4IC8rXLiSpGFABkIIIbUGhSMSK/Q5qhzoD0LixlaCeYsBWNjHCCGE1AIUjkiscCe5cnCa37KoxSPJwND9hBBCag0KRyRWpIAMVB2VFedRcNFKkkLqWuxmhBBCagAKRyRW5AhpZawIcU2e+BxIXPjlOaIQTqLAcAyEkEqFwhGJFSYerRzyZnV8DiR52MsIIYTUAhSOSKxwJ7lycIQiao5IXKi7/VJERPYzQgghNQCFIxIrclLI8tWD5HfyKaSSpGBABkIIIbUGhSMSK9QcVQ4MyECShvEYCCGE1BoUjkisiOvwNO25yoql/J+QuJHN6tjTSAQYkYEQUqFQOCKxwmh1lYOzWOWalSRFima0hBBCagwKRyRW5MUSV0vlxPU5opRK4sIbkcH9k+abhBBCagEKRyRWLMlBu3z1IPQ5Iskj+RyxmxFCCKkBKByRWLG4k1wxMAksiRtbUR3RjJYQQkitEbtwtHHjRhx22GFobm5GV1cXTj31VDz55JPSOcceeywsy5L+XXDBBXFXhZQBRqurHJgEliSN3LXYzwghhFQ/sQtHW7Zswfr16/HAAw/gzjvvxP79+7F69Wrs2bNHOu+8887Diy++6P774he/GHdVSBkQl0f0dSkvebO68taD1C7S+85+RgghpAbIxF3gHXfcIX2+8cYb0dXVha1bt+Loo492v29qakJPT0/clydlhmY2lUPerI4PgsSDrQRkSDGUNykQRvImhFQqifsc7dy5EwAwceJE6fubbroJHR0dmD9/PjZs2IA33ngj6aqQEiAHZOBiqZwwIANJHEv7JyGEEFK1xK45EhkdHcWll16KI444AvPnz3e/f9e73oUpU6agr68Pjz32GK688ko8+eSTuOWWW7TlDA0NYWhoyP28a9euJKtNikBch3NNXl7yPkflrQepXWSzOnY0Qggh1U+iwtH69evxxBNP4L777pO+P//8892/FyxYgN7eXqxcuRLPPPMMZsyY4Sln48aNuOaaa5KsKokJBmSoHByzOj4GkhSyWV0ZK0IIIYTERGJmdRdffDFuv/123HPPPZg8ebLvuYODgwCAp59+Wnt8w4YN2Llzp/vvhRdeiL2+JB7oc1Q50KyOJA01xYQQQmqN2DVHtm3jQx/6EG699Vb88pe/xLRp0wJ/s23bNgBAb2+v9nh9fT3q6+vjrCZJiBR9jioGx0Gez4HEhepELwlH9DoiEbDV6B6EEFIhxC4crV+/Hps2bcKPfvQjNDc3Y/v27QCA1tZWNDY24plnnsGmTZtw0kknob29HY899hguu+wyHH300Vi4cGHc1SGlRhSOqDoqK07rUzYiSSFpiplSnBBCSA0Qu3B0/fXXA8glehW54YYbcM455yCbzeKuu+7Ctddeiz179qC/vx9nnHEGPvGJT8RdFVIGaFZXOdCsjsSN324/NUeEEEJqgUTM6vzo7+/Hli1b4r4sqRAkB20ulsqK0/oUUklScDOEEEJIrUFDCBIrXB9VDvQ5InHj63PEbkYIIaQGoHBEYoWhfSuHvM8RHwRJBlE7zH5GCCGkFqBwRGLFYo+qGPI+R+WtB6ldxL7FbkYIIaQW4FKWxIpl+JuUAyaBJckim9Wxo5HwMJA3IaRSoXBEYkU2q+NiqZykXM0RnwNJCgZkIIQQUltQOCKxwoV45eA8CgqpJC7UYKSyWR37GSGEkOqHwhGJFa7DKwdnscodfZIUFgOwEEIIqTEoHJFY4QKpcmASWJI0ko8huxkhhJAagMIRiRUuxCsHRqsjSZMSZhC++4QQQmoBCkckVrhAqhwsN1odnwlJBjnPURkrQgghhMQEhSMSKzSzqSCoOSJJI/QtboyQKKjBPQghpFKgcERixWL0qorBaX0uWklSSKH7y1gPQgghJC4oHJFYoQlX5eAsXCkckaSQNcXsZ4QQQqofCkeE1Cj5PEflrQepXSRNMfsZIYSQGoDCEUkMLpbKi9P83NEnpYC9jBBCSC1A4YiQGsVyzerKXBFyQEDzTUIIIbUAhSOSGFwqlRcGZCClhN2MEEJILUDhiCQGF0tlhqG8SQmh+SaJgg3G8iaEVCYUjgipUZgElpQSdjNCCCG1AIUjQmoUi5ojkjBiIk+abxJCCKkFKByRxKDGorykXOGIz4EkD3sZIYSQWoDCESE1imNWR+GIJIXYtdjPCCGE1AIUjgipUdy1KtespARQNiJRsBmPgRBSoVA4IonBtVJ5sWhWRwghhBASCQpHJDm4Ji8zTAJLkoUBGQghhNQaFI4IqVGoOSKlhN2MEEJILUDhiJAaxXU54qKVlAAK4YQQQmoBCkckMSza1ZUVao5IKWEvI4QQUgtQOCKkRnGEIvockVJAGZxEgcHqCCGVCoUjkhhcLJUXp/mpOSKlgEmfCSGE1AIUjkhicKlUXpzFKhetJCm4+08IIaTWoHBESI1DszpCCCGEkHBQOCKkRnEURlQcEUIIIYSEo6zC0XXXXYepU6eioaEBg4ODeOihh8pZHRIzXJSXF8tNAssHQQipMGiTSQipUMomHP3nf/4nLr/8clx99dX4zW9+g0WLFuGEE07Ayy+/XK4qEVJTMJQ3IYQQQkg0yiYcffnLX8Z5552H973vfZg7dy6+8Y1voKmpCd/5znfKVSVCagomgSWEEEIIiUZZhKN9+/Zh69atWLVqVb4iqRRWrVqF+++/vxxVIgnAJLDlJZWiWR0hhBBCSBQy5bjoK6+8gpGREXR3d0vfd3d3449//KPn/KGhIQwNDbmfd+3alXgdSfG0NdWVuwoHNOkx4SjDcHUkJjrGZ6XPTdl0mWpCqp2+toZyV4EQQrRURbS6jRs3orW11f3X399f7ioRH7545kKsntuNdy+bUu6qHND808JeHD2zE29d1FfuqpAq58cXH4GjZ3biux8YlL5fOmUCzlwyGVecMKtMNSPVxn9duALHzOzEt9YtLXdVCCFEi2Xbdsljxuzbtw9NTU344Q9/iFNPPdX9ft26ddixYwd+9KMfSefrNEf9/f3YuXMnWlpaSlVtQgghhBBCSIWxa9cutLa2xiIblEVzlM1msWTJEmzevNn9bnR0FJs3b8by5cs959fX16OlpUX6RwghhBBCCCFxUhafIwC4/PLLsW7dOixduhSHH344rr32WuzZswfve9/7ylUlQgghhBBCyAFM2YSjs846C//4xz/wqU99Ctu3b8chhxyCO+64wxOkgRBCCCGEEEJKQVl8joolTrtCQgghhBBCSPVS9T5HhBBCCCGEEFJpUDgihBBCCCGEEFA4IoQQQgghhBAAFI4IIYQQQgghBACFI0IIIYQQQggBQOGIEEIIIYQQQgBQOCKEEEIIIYQQABSOCCGEEEIIIQQAhSNCCCGEEEIIAUDhiBBCCCGEEEIAAJlyV6AQbNsGAOzatavMNSGEEEIIIYSUE0cmcGSEYqhK4ej1118HAPT395e5JoQQQgghhJBK4PXXX0dra2tRZVh2HCJWiRkdHcXf//53NDc3w7KsstZl165d6O/vxwsvvICWlpay1uVAgO1dWtjepYXtXVrY3qWF7V062Nalhe1dWnTtbds2Xn/9dfT19SGVKs5rqCo1R6lUCpMnTy53NSRaWlr4QpQQtndpYXuXFrZ3aWF7lxa2d+lgW5cWtndpUdu7WI2RAwMyEEIIIYQQQggoHBFCCCGEEEIIAApHRVNfX4+rr74a9fX15a7KAQHbu7SwvUsL27u0sL1LC9u7dLCtSwvbu7Qk3d5VGZCBEEIIIYQQQuKGmiNCCCGEEEIIAYUjQgghhBBCCAFA4YgQQgghhBBCAFA4IoQQQgghhBAAFI6K5rrrrsPUqVPR0NCAwcFBPPTQQ+WuUlVy77334q1vfSv6+vpgWRZuu+026bht2/jUpz6F3t5eNDY2YtWqVXjqqaekc1577TWsXbsWLS0taGtrw/vf/37s3r27hHdRHWzcuBGHHXYYmpub0dXVhVNPPRVPPvmkdM7evXuxfv16tLe3Y/z48TjjjDPw0ksvSec8//zzOPnkk9HU1ISuri5cccUVGB4eLuWtVAXXX389Fi5c6CarW758OX72s5+5x9nWyfGFL3wBlmXh0ksvdb9je8fLpz/9aViWJf2bPXu2e5ztHS9/+9vf8O53vxvt7e1obGzEggUL8Mgjj7jHOVfGx9SpUz1927IsrF+/HgD7dtyMjIzgk5/8JKZNm4bGxkbMmDED//Iv/wIxblzJ+rdNCubmm2+2s9ms/Z3vfMf+3e9+Z5933nl2W1ub/dJLL5W7alXHT3/6U/vjH/+4fcstt9gA7FtvvVU6/oUvfMFubW21b7vtNvu3v/2t/ba3vc2eNm2a/eabb7rnnHjiifaiRYvsBx54wP7Vr35lH3TQQfbZZ59d4jupfE444QT7hhtusJ944gl727Zt9kknnWQPDAzYu3fvds+54IIL7P7+fnvz5s32I488Yi9btsxesWKFe3x4eNieP3++vWrVKvvRRx+1f/rTn9odHR32hg0bynFLFc2Pf/xj+7//+7/tP/3pT/aTTz5p//M//7NdV1dnP/HEE7Zts62T4qGHHrKnTp1qL1y40L7kkkvc79ne8XL11Vfb8+bNs1988UX33z/+8Q/3ONs7Pl577TV7ypQp9jnnnGM/+OCD9p///Gf75z//uf3000+753CujI+XX35Z6td33nmnDcC+5557bNtm346bz33uc3Z7e7t9++23288++6z9gx/8wB4/frz9la98xT2nVP2bwlERHH744fb69evdzyMjI3ZfX5+9cePGMtaq+lGFo9HRUbunp8f+0pe+5H63Y8cOu76+3v7e975n27Zt//73v7cB2A8//LB7zs9+9jPbsiz7b3/7W8nqXo28/PLLNgB7y5Yttm3n2raurs7+wQ9+4J7zhz/8wQZg33///bZt54TZVCplb9++3T3n+uuvt1taWuyhoaHS3kAVMmHCBPtb3/oW2zohXn/9dfvggw+277zzTvuYY45xhSO2d/xcffXV9qJFi7TH2N7xcuWVV9pHHnmk8TjnymS55JJL7BkzZtijo6Ps2wlw8skn2+eee6703emnn26vXbvWtu3S9m+a1RXIvn37sHXrVqxatcr9LpVKYdWqVbj//vvLWLPa49lnn8X27dultm5tbcXg4KDb1vfffz/a2tqwdOlS95xVq1YhlUrhwQcfLHmdq4mdO3cCACZOnAgA2Lp1K/bv3y+19+zZszEwMCC194IFC9Dd3e2ec8IJJ2DXrl343e9+V8LaVxcjIyO4+eabsWfPHixfvpxtnRDr16/HySefLLUrwL6dFE899RT6+vowffp0rF27Fs8//zwAtnfc/PjHP8bSpUvx9re/HV1dXVi8eDH+/d//3T3OuTI59u3bh+9+97s499xzYVkW+3YCrFixAps3b8af/vQnAMBvf/tb3HfffVizZg2A0vbvTBw3dCDyyiuvYGRkROr0ANDd3Y0//vGPZapVbbJ9+3YA0La1c2z79u3o6uqSjmcyGUycONE9h3gZHR3FpZdeiiOOOALz588HkGvLbDaLtrY26Vy1vXXPwzlGZB5//HEsX74ce/fuxfjx43Hrrbdi7ty52LZtG9s6Zm6++Wb85je/wcMPP+w5xr4dP4ODg7jxxhsxa9YsvPjii7jmmmtw1FFH4YknnmB7x8yf//xnXH/99bj88svxz//8z3j44Yfx4Q9/GNlsFuvWreNcmSC33XYbduzYgXPOOQcAx5IkuOqqq7Br1y7Mnj0b6XQaIyMj+NznPoe1a9cCKO1akMIRIQcw69evxxNPPIH77ruv3FWpaWbNmoVt27Zh586d+OEPf4h169Zhy5Yt5a5WzfHCCy/gkksuwZ133omGhoZyV+eAwNnVBYCFCxdicHAQU6ZMwfe//300NjaWsWa1x+joKJYuXYrPf/7zAIDFixfjiSeewDe+8Q2sW7euzLWrbb797W9jzZo16OvrK3dVapbvf//7uOmmm7Bp0ybMmzcP27Ztw6WXXoq+vr6S92+a1RVIR0cH0um0JzLJSy+9hJ6enjLVqjZx2tOvrXt6evDyyy9Lx4eHh/Haa6/xeRi4+OKLcfvtt+Oee+7B5MmT3e97enqwb98+7NixQzpfbW/d83COEZlsNouDDjoIS5YswcaNG7Fo0SJ85StfYVvHzNatW/Hyyy/j0EMPRSaTQSaTwZYtW/DVr34VmUwG3d3dbO+EaWtrw8yZM/H000+zf8dMb28v5s6dK303Z84c14yRc2UyPPfcc7jrrrvwgQ98wP2OfTt+rrjiClx11VV45zvfiQULFuA973kPLrvsMmzcuBFAafs3haMCyWazWLJkCTZv3ux+Nzo6is2bN2P58uVlrFntMW3aNPT09EhtvWvXLjz44INuWy9fvhw7duzA1q1b3XPuvvtujI6OYnBwsOR1rmRs28bFF1+MW2+9FXfffTemTZsmHV+yZAnq6uqk9n7yySfx/PPPS+39+OOPS4PQnXfeiZaWFs/kTbyMjo5iaGiIbR0zK1euxOOPP45t27a5/5YuXYq1a9e6f7O9k2X37t145pln0Nvby/4dM0cccYQn7cKf/vQnTJkyBQDnyqS44YYb0NXVhZNPPtn9jn07ft544w2kUrJYkk6nMTo6CqDE/buIwBIHPDfffLNdX19v33jjjfbvf/97+/zzz7fb2tqkyCQkHK+//rr96KOP2o8++qgNwP7yl79sP/roo/Zzzz1n23YufGNbW5v9ox/9yH7sscfsU045RRu+cfHixfaDDz5o33ffffbBBx/M8KQaLrzwQru1tdX+5S9/KYUpfeONN9xzLrjgAntgYMC+++677UceecRevny5vXz5cve4E6J09erV9rZt2+w77rjD7uzsZIhSDVdddZW9ZcsW+9lnn7Ufe+wx+6qrrrIty7J/8Ytf2LbNtk4aMVqdbbO94+YjH/mI/ctf/tJ+9tln7V//+tf2qlWr7I6ODvvll1+2bZvtHScPPfSQnclk7M997nP2U089Zd900012U1OT/d3vftc9h3NlvIyMjNgDAwP2lVde6TnGvh0v69atsydNmuSG8r7lllvsjo4O+2Mf+5h7Tqn6N4WjIvna175mDwwM2Nls1j788MPtBx54oNxVqkruueceG4Dn37p162zbzoVw/OQnP2l3d3fb9fX19sqVK+0nn3xSKuPVV1+1zz77bHv8+PF2S0uL/b73vc9+/fXXy3A3lY2unQHYN9xwg3vOm2++aV900UX2hAkT7KamJvu0006zX3zxRamcv/zlL/aaNWvsxsZGu6Ojw/7IRz5i79+/v8R3U/mce+659pQpU+xsNmt3dnbaK1eudAUj22ZbJ40qHLG94+Wss86ye3t77Ww2a0+aNMk+66yzpLw7bO94+clPfmLPnz/frq+vt2fPnm1/85vflI5zroyXn//85zYATxvaNvt23Ozatcu+5JJL7IGBAbuhocGePn26/fGPf1wKe16q/m3ZtpB6lhBCCCGEEEIOUOhzRAghhBBCCCGgcEQIIYQQQgghACgcEUIIIYQQQggACkeEEEIIIYQQAoDCESGEEEIIIYQAoHBECCGEEEIIIQAoHBFCCCGEEEIIAApHhBBCCCGEEAKAwhEhhBBCCCGEAKBwRAghhBBCCCEAKBwRQgghhBBCCAAKR4QQQgghhBACAPi/dNdzQfZbDscAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Линейная диаграмма\n", + "plt.figure(figsize=(10, 5))\n", + "df['Glucose'].plot(title='Line Plot (Glucose)')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGdCAYAAAAIbpn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr8klEQVR4nO3de3QUZZ7/8U9DrlzSAZRchgSiRgJiGAGFFhgVMiKyDkjWVQfWoJnxFhAIjpJxlPGCQT1y8chF3RhkHUQyi4zICmLEuGi4RQEZdwNKJGgucEaTJmHSien6/eGP1iYJJE2H6grv1zl1Dv081dXffk558vHpp6pshmEYAgAAsKBOZhcAAADgK4IMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwrCCzC2hvbrdbZWVl6t69u2w2m9nlAACAVjAMQ8ePH1dsbKw6dWp53qXDB5mysjLFxcWZXQYAAPDBkSNH1KdPnxb7O3yQ6d69u6QfByIiIsLkagAAQGs4nU7FxcV5/o63pMMHmZM/J0VERBBkAACwmDMtC2GxLwAAsCyCDAAAsCyCDAAAsKwOv0YGAIBzyTAM/fDDD2psbDS7lIDWuXNnBQUFnfWtUQgyAAD4SX19vcrLy3XixAmzS7GELl26KCYmRiEhIT4fgyADAIAfuN1ulZSUqHPnzoqNjVVISAg3Ym2BYRiqr6/XsWPHVFJSosTExNPe9O50CDIAAPhBfX293G634uLi1KVLF7PLCXjh4eEKDg7W4cOHVV9fr7CwMJ+Ow2JfAAD8yNeZhfORP8aK0QYAAJZFkAEAAJbFGhkAANpZv7kbz9lnfb1ggs/vLSws1KhRo3TDDTdo48ZzV/PZYEYGAABIknJycjRjxgx99NFHKisrM7ucViHIAAAA1dTU6M0339R9992nCRMmaOXKlV79b7/9thITExUWFqbrrrtOr732mmw2m6qqqjz7bNu2TaNHj1Z4eLji4uL0wAMPqLa2tl3rJsgAAACtXbtWSUlJ6t+/v6ZOnapXX31VhmFIkkpKSvSv//qvmjRpkvbu3at77rlHjzzyiNf7v/rqK91www1KTU3Vvn379Oabb2rbtm2aPn16u9bNGpl20NJvoWfzuyUAAO0pJydHU6dOlSTdcMMNqq6uVkFBga699lq99NJL6t+/v5577jlJUv/+/bV//37Nnz/f8/7s7GxNmTJFs2bNkiQlJibqhRde0DXXXKPly5f7fJ+YM2FGBgCA81xxcbF27typ22+/XZIUFBSkW2+9VTk5OZ7+K6+80us9V111ldfrvXv3auXKlerWrZtnGzdunOeOx+2FGRkAAM5zOTk5+uGHHxQbG+tpMwxDoaGhevHFF1t1jJqaGt1zzz164IEHmvTFx8f7rdZTEWQAADiP/fDDD1q1apWef/55XX/99V59kyZN0htvvKH+/fvrv//7v736du3a5fV6yJAh+uKLL3TJJZe0e80/R5ABAOA89s477+j7779Xenq67Ha7V19qaqpycnK0du1aLVy4UA8//LDS09O1Z88ez1VNJx+M+fDDD2vEiBGaPn26fve736lr16764osvtGXLllbP6viCNTIAAJzHcnJylJKS0iTESD8Gmd27d+v48eP661//qnXr1ik5OVnLly/3XLUUGhoqSUpOTlZBQYEOHDig0aNH64orrtBjjz3m9XNVezB1RqZfv346fPhwk/b7779fS5cuVV1dnebMmaM1a9bI5XJp3LhxWrZsmaKiokyoFgAA3wTyVasbNmxose+qq67yXIKdnJys3/zmN56++fPnq0+fPl5XI1155ZV677332q/YZpg6I7Nr1y6Vl5d7ti1btkiSbrnlFknS7NmztWHDBuXl5amgoEBlZWWaPHmymSUDAHBeWrZsmXbt2qVDhw7pP//zP/Xcc88pLS3N7LLMnZG58MILvV4vWLBAF198sa655hpVV1crJydHq1ev1pgxYyRJubm5GjBggLZv364RI0aYUTIAAOelgwcP6qmnntJ3332n+Ph4zZkzR1lZWWaXFTiLfevr6/X6668rMzNTNptNRUVFamhoUEpKimefpKQkxcfHq7CwsMUg43K55HK5PK+dTme71w4AQEe3aNEiLVq0yOwymgiYxb7r169XVVWVpk2bJkmqqKhQSEiIIiMjvfaLiopSRUVFi8fJzs6W3W73bHFxce1YNQAAMFPABJmcnByNHz/+rFc3Z2Vlqbq62rMdOXLETxUCAIBAExA/LR0+fFjvv/++1q1b52mLjo5WfX29qqqqvGZlKisrFR0d3eKxQkNDPZeCAQBwrp28ygdn5o+xCogZmdzcXPXu3VsTJvx0edrQoUMVHBys/Px8T1txcbFKS0vlcDjMKBMAgBYFBwdLkk6cOGFyJdZxcqxOjp0vTJ+Rcbvdys3NVVpamoKCfirHbrcrPT1dmZmZ6tmzpyIiIjRjxgw5HA6uWAIABJzOnTsrMjJSR48elSR16dLFc9dbeDMMQydOnNDRo0cVGRmpzp07+3ws04PM+++/r9LSUt11111N+hYtWqROnTopNTXV64Z4AAAEopNLH06GGZxeZGTkaZeLtIbN6OA/5jmdTtntdlVXVysiIuKcfGa/uRubbQ/kOzsCAPynsbFRDQ0NZpcR0IKDg087E9Pav9+mz8gAANDRdO7c+ax+LkHrBcRiXwAAAF8QZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGUFmV2AlfWbu9HsEgAAOK8xIwMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACzL9CDz7bffaurUqerVq5fCw8N1+eWXa/fu3Z5+wzD02GOPKSYmRuHh4UpJSdHBgwdNrBgAAAQKU4PM999/r5EjRyo4OFjvvvuuvvjiCz3//PPq0aOHZ59nn31WL7zwglasWKEdO3aoa9euGjdunOrq6kysHAAABAJTHxr5zDPPKC4uTrm5uZ62hIQEz78Nw9DixYv1pz/9SRMnTpQkrVq1SlFRUVq/fr1uu+22c14zAAAIHKbOyLz99tsaNmyYbrnlFvXu3VtXXHGFXnnlFU9/SUmJKioqlJKS4mmz2+0aPny4CgsLmz2my+WS0+n02gAAQMdkapA5dOiQli9frsTERG3evFn33XefHnjgAb322muSpIqKCklSVFSU1/uioqI8fafKzs6W3W73bHFxce37JQAAgGlMDTJut1tDhgzR008/rSuuuEJ33323fv/732vFihU+HzMrK0vV1dWe7ciRI36sGAAABBJTg0xMTIwGDhzo1TZgwACVlpZKkqKjoyVJlZWVXvtUVlZ6+k4VGhqqiIgIrw0AAHRMpgaZkSNHqri42KvtwIED6tu3r6QfF/5GR0crPz/f0+90OrVjxw45HI5zWisAAAg8pl61NHv2bF199dV6+umn9W//9m/auXOnXn75Zb388suSJJvNplmzZumpp55SYmKiEhIS9Oijjyo2NlaTJk0ys3QAABAATA0yV155pd566y1lZWXpiSeeUEJCghYvXqwpU6Z49nnooYdUW1uru+++W1VVVRo1apQ2bdqksLAwEysHAACBwGYYhmF2Ee3J6XTKbrerurra7+tl+s3d2Kb9v14wwa+fDwBAR9Xav9+mP6IAAADAVwQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWaYGmT//+c+y2WxeW1JSkqe/rq5OGRkZ6tWrl7p166bU1FRVVlaaWDEAAAgkps/IXHbZZSovL/ds27Zt8/TNnj1bGzZsUF5engoKClRWVqbJkyebWC0AAAgkQaYXEBSk6OjoJu3V1dXKycnR6tWrNWbMGElSbm6uBgwYoO3bt2vEiBHnulQAABBgTJ+ROXjwoGJjY3XRRRdpypQpKi0tlSQVFRWpoaFBKSkpnn2TkpIUHx+vwsLCFo/ncrnkdDq9NgAA0DGZGmSGDx+ulStXatOmTVq+fLlKSko0evRoHT9+XBUVFQoJCVFkZKTXe6KiolRRUdHiMbOzs2W32z1bXFxcO38LAABgFlN/Who/frzn38nJyRo+fLj69u2rtWvXKjw83KdjZmVlKTMz0/Pa6XQSZgAA6KBM/2np5yIjI3XppZfqyy+/VHR0tOrr61VVVeW1T2VlZbNrak4KDQ1VRESE1wYAADqmgAoyNTU1+uqrrxQTE6OhQ4cqODhY+fn5nv7i4mKVlpbK4XCYWCUAAAgUpv609OCDD+qmm25S3759VVZWpnnz5qlz5866/fbbZbfblZ6erszMTPXs2VMRERGaMWOGHA4HVywBAABJJgeZb775Rrfffrv+8Y9/6MILL9SoUaO0fft2XXjhhZKkRYsWqVOnTkpNTZXL5dK4ceO0bNkyM0sGAAABxGYYhmF2Ee3J6XTKbrerurra7+tl+s3d2Kb9v14wwa+fDwBAR9Xav98BtUYGAACgLQgyAADAsggyAADAskx/1hLaprl1Oay9AQCcr5iRAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlsUN8QJUWx9ICQDA+YgZGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFk+BZlDhw75uw4AAIA28ynIXHLJJbruuuv0+uuvq66uzt81AQAAtIpPQebTTz9VcnKyMjMzFR0drXvuuUc7d+70d20AAACn5VOQ+eUvf6klS5aorKxMr776qsrLyzVq1CgNGjRICxcu1LFjx/xdJwAAQBNntdg3KChIkydPVl5enp555hl9+eWXevDBBxUXF6c77rhD5eXl/qoTAACgibMKMrt379b999+vmJgYLVy4UA8++KC++uorbdmyRWVlZZo4caK/6gQAAGjCp6dfL1y4ULm5uSouLtaNN96oVatW6cYbb1SnTj/mooSEBK1cuVL9+vXzZ60AAABefAoyy5cv11133aVp06YpJiam2X169+6tnJycsyoOAADgdHwKMgcPHjzjPiEhIUpLS/Pl8AAAAK3i0xqZ3Nxc5eXlNWnPy8vTa6+9dtZFAQAAtIZPQSY7O1sXXHBBk/bevXvr6aefPuuiAAAAWsOnIFNaWqqEhIQm7X379lVpaelZFwUAANAaPgWZ3r17a9++fU3a9+7dq169ep11UQAAAK3hU5C5/fbb9cADD2jr1q1qbGxUY2OjPvjgA82cOVO33Xabv2sEAABolk9XLT355JP6+uuvNXbsWAUF/XgIt9utO+64gzUyAADgnPEpyISEhOjNN9/Uk08+qb179yo8PFyXX365+vbt6+/6AAAAWuRTkDnp0ksv1aWXXuqvWgAAANrEpyDT2NiolStXKj8/X0ePHpXb7fbq/+CDD/xSHAAAwOn4tNh35syZmjlzphobGzVo0CANHjzYa/PFggULZLPZNGvWLE9bXV2dMjIy1KtXL3Xr1k2pqamqrKz06fgAAKDj8WlGZs2aNVq7dq1uvPFGvxSxa9cuvfTSS0pOTvZqnz17tjZu3Ki8vDzZ7XZNnz5dkydP1scff+yXzwUAANbm04xMSEiILrnkEr8UUFNToylTpuiVV15Rjx49PO3V1dXKycnRwoULNWbMGA0dOlS5ubn65JNPtH37dr98NgAAsDafgsycOXO0ZMkSGYZx1gVkZGRowoQJSklJ8WovKipSQ0ODV3tSUpLi4+NVWFjY4vFcLpecTqfXBgAAOiafflratm2btm7dqnfffVeXXXaZgoODvfrXrVvXquOsWbNGn376qXbt2tWkr6KiQiEhIYqMjPRqj4qKUkVFRYvHzM7O1uOPP96qzwcAANbmU5CJjIzUzTfffFYffOTIEc2cOVNbtmxRWFjYWR3r57KyspSZmel57XQ6FRcX57fjAwCAwOFTkMnNzT3rDy4qKtLRo0c1ZMgQT1tjY6M++ugjvfjii9q8ebPq6+tVVVXlNStTWVmp6OjoFo8bGhqq0NDQs64PAAAEPp/WyEjSDz/8oPfff18vvfSSjh8/LkkqKytTTU1Nq94/duxYff7559qzZ49nGzZsmKZMmeL5d3BwsPLz8z3vKS4uVmlpqRwOh69lAwCADsSnGZnDhw/rhhtuUGlpqVwul37961+re/fueuaZZ+RyubRixYozHqN79+4aNGiQV1vXrl3Vq1cvT3t6eroyMzPVs2dPRUREaMaMGXI4HBoxYoQvZQMAgA7G5xviDRs2TN9//73Cw8M97TfffLPXDMrZWrRokf7lX/5Fqamp+tWvfqXo6OhWLyQGAAAdn08zMv/zP/+jTz75RCEhIV7t/fr107fffutzMR9++KHX67CwMC1dulRLly71+ZgAAKDj8mlGxu12q7GxsUn7N998o+7du591UQAAAK3hU5C5/vrrtXjxYs9rm82mmpoazZs3z2+PLQAAADgTn35aev755zVu3DgNHDhQdXV1+u1vf6uDBw/qggsu0BtvvOHvGgEAAJrlU5Dp06eP9u7dqzVr1mjfvn2qqalRenq6pkyZ4rX4F976zd3YpO3rBRNMqAQAgI7BpyAjSUFBQZo6dao/awEAAGgTn4LMqlWrTtt/xx13+FQMAABAW/gUZGbOnOn1uqGhQSdOnFBISIi6dOlCkAEAAOeET1ctff/9915bTU2NiouLNWrUKBb7AgCAc8bnZy2dKjExUQsWLGgyWwMAANBe/BZkpB8XAJeVlfnzkAAAAC3yaY3M22+/7fXaMAyVl5frxRdf1MiRI/1SGAAAwJn4FGQmTZrk9dpms+nCCy/UmDFj9Pzzz/ujLgAAgDPyKci43W5/1wEAANBmfl0jAwAAcC75NCOTmZnZ6n0XLlzoy0cAAACckU9B5rPPPtNnn32mhoYG9e/fX5J04MABde7cWUOGDPHsZ7PZ/FMlAABAM3wKMjfddJO6d++u1157TT169JD0403y7rzzTo0ePVpz5szxa5EAAADN8SnIPP/883rvvfc8IUaSevTooaeeekrXX389QcaCmnsyt8TTuQEAgc2nxb5Op1PHjh1r0n7s2DEdP378rIsCAABoDZ+CzM0336w777xT69at0zfffKNvvvlG//Vf/6X09HRNnjzZ3zUCAAA0y6efllasWKEHH3xQv/3tb9XQ0PDjgYKClJ6erueee86vBQIAALTEpyDTpUsXLVu2TM8995y++uorSdLFF1+srl27+rU4AACA0zmrG+KVl5ervLxciYmJ6tq1qwzD8FddAAAAZ+RTkPnHP/6hsWPH6tJLL9WNN96o8vJySVJ6ejpXLAEAgHPGpyAze/ZsBQcHq7S0VF26dPG033rrrdq0aZPfigMAADgdn9bIvPfee9q8ebP69Onj1Z6YmKjDhw/7pTAAAIAz8WlGpra21msm5qTvvvtOoaGhZ10UAABAa/g0IzN69GitWrVKTz75pKQfn6nkdrv17LPP6rrrrvNrgTgz7soLADhf+RRknn32WY0dO1a7d+9WfX29HnroIf3973/Xd999p48//tjfNQIAADTLp5+WBg0apAMHDmjUqFGaOHGiamtrNXnyZH322We6+OKL/V0jAABAs9o8I9PQ0KAbbrhBK1as0COPPNIeNQEAALRKm2dkgoODtW/fvvaoBQAAoE18WiMzdepU5eTkaMGCBf6uB+dAS4uDAQCwGp+CzA8//KBXX31V77//voYOHdrkGUsLFy70S3EAAACn06Ygc+jQIfXr10/79+/XkCFDJEkHDhzw2sdms/mvOgAAgNNoU5BJTExUeXm5tm7dKunHRxK88MILioqKapfiAAAATqdNi31Pfbr1u+++q9raWr8WBAAA0Fo+3UfmpFODTVstX75cycnJioiIUEREhBwOh959911Pf11dnTIyMtSrVy9169ZNqampqqysPKvPBAAAHUebgozNZmuyBuZs1sT06dNHCxYsUFFRkXbv3q0xY8Zo4sSJ+vvf/y7px6dsb9iwQXl5eSooKFBZWZkmT57s8+cBAICOpU1rZAzD0LRp0zwPhqyrq9O9997b5KqldevWtep4N910k9fr+fPna/ny5dq+fbv69OmjnJwcrV69WmPGjJEk5ebmasCAAdq+fbtGjBjRltIBAEAH1KYgk5aW5vV66tSpfiuksbFReXl5qq2tlcPhUFFRkRoaGpSSkuLZJykpSfHx8SosLCTIAACAtgWZ3Nxcvxfw+eefy+FwqK6uTt26ddNbb72lgQMHas+ePQoJCVFkZKTX/lFRUaqoqGjxeC6XSy6Xy/Pa6XT6vWYAABAYzmqxrz/0799fe/bs0Y4dO3TfffcpLS1NX3zxhc/Hy87Olt1u92xxcXF+rBYAAAQS04NMSEiILrnkEg0dOlTZ2dkaPHiwlixZoujoaNXX16uqqspr/8rKSkVHR7d4vKysLFVXV3u2I0eOtPM3AAAAZjE9yJzK7XbL5XJp6NChCg4OVn5+vqevuLhYpaWlcjgcLb4/NDTUczn3yQ0AAHRMPj1ryV+ysrI0fvx4xcfH6/jx41q9erU+/PBDbd68WXa7Xenp6crMzFTPnj0VERGhGTNmyOFwsNAXAABIMjnIHD16VHfccYfKy8tlt9uVnJyszZs369e//rUkadGiRerUqZNSU1Plcrk0btw4LVu2zMySAQBAADE1yOTk5Jy2PywsTEuXLtXSpUvPUUU4Vb+5G5u0fb1gggmVAADQVMCtkQEAAGgtggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALCsILMLQMfXb+7GJm1fL5hgQiUAgI6GGRkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZ3NkXCADN3f1Y4g7IAHAmzMgAAADLIsgAAADLIsgAAADLIsgAAADLMnWxb3Z2ttatW6f/+7//U3h4uK6++mo988wz6t+/v2efuro6zZkzR2vWrJHL5dK4ceO0bNkyRUVFmVg5mtPSglUAANqLqTMyBQUFysjI0Pbt27VlyxY1NDTo+uuvV21trWef2bNna8OGDcrLy1NBQYHKyso0efJkE6sGAACBwtQZmU2bNnm9XrlypXr37q2ioiL96le/UnV1tXJycrR69WqNGTNGkpSbm6sBAwZo+/btGjFihBllAwCAABFQa2Sqq6slST179pQkFRUVqaGhQSkpKZ59kpKSFB8fr8LCQlNqBAAAgSNgbojndrs1a9YsjRw5UoMGDZIkVVRUKCQkRJGRkV77RkVFqaKiotnjuFwuuVwuz2un09luNQMAAHMFzIxMRkaG9u/frzVr1pzVcbKzs2W32z1bXFycnyoEAACBJiCCzPTp0/XOO+9o69at6tOnj6c9Ojpa9fX1qqqq8tq/srJS0dHRzR4rKytL1dXVnu3IkSPtWToAADCRqUHGMAxNnz5db731lj744AMlJCR49Q8dOlTBwcHKz8/3tBUXF6u0tFQOh6PZY4aGhioiIsJrAwAAHZOpa2QyMjK0evVq/e1vf1P37t09617sdrvCw8Nlt9uVnp6uzMxM9ezZUxEREZoxY4YcDgdXLAEAAHODzPLlyyVJ1157rVd7bm6upk2bJklatGiROnXqpNTUVK8b4gHtqbmb+/EkagAIPKYGGcMwzrhPWFiYli5dqqVLl56DigAAgJUExGJfAAAAXxBkAACAZRFkAACAZQXMnX0BtE5LTxlnMTKA8xEzMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLJY7AtL4E67AIDmMCMDAAAsiyADAAAsiyADAAAsiyADAAAsi8W+MEWg3J22pTrasi+LjgHAPMzIAAAAyyLIAAAAyyLIAAAAyyLIAAAAy2KxLwAP7qAMwGqYkQEAAJZFkAEAAJZFkAEAAJZFkAEAAJbFYl9YFnfaBQAwIwMAACyLIAMAACyLIAMAACyLIAMAACyLxb7AOdTSAuX2PPbZLn5mUTWAQMaMDAAAsCyCDAAAsCyCDAAAsCyCDAAAsCwW+wLtpD0X9gIAfsSMDAAAsCyCDAAAsCyCDAAAsCyCDAAAsCxTg8xHH32km266SbGxsbLZbFq/fr1Xv2EYeuyxxxQTE6Pw8HClpKTo4MGD5hQLAAACjqlBpra2VoMHD9bSpUub7X/22Wf1wgsvaMWKFdqxY4e6du2qcePGqa6u7hxXCgAAApGpl1+PHz9e48ePb7bPMAwtXrxYf/rTnzRx4kRJ0qpVqxQVFaX169frtttuO5elAgCAABSwa2RKSkpUUVGhlJQUT5vdbtfw4cNVWFjY4vtcLpecTqfXBgAAOqaAvSFeRUWFJCkqKsqrPSoqytPXnOzsbD3++OPtWhsCG09rBoDzR8DOyPgqKytL1dXVnu3IkSNmlwQAANpJwAaZ6OhoSVJlZaVXe2VlpaevOaGhoYqIiPDaAABAxxSwQSYhIUHR0dHKz8/3tDmdTu3YsUMOh8PEygAAQKAwdY1MTU2NvvzyS8/rkpIS7dmzRz179lR8fLxmzZqlp556SomJiUpISNCjjz6q2NhYTZo0ybyiAQBAwDA1yOzevVvXXXed53VmZqYkKS0tTStXrtRDDz2k2tpa3X333aqqqtKoUaO0adMmhYWFmVUyAAAIIKYGmWuvvVaGYbTYb7PZ9MQTT+iJJ544h1UBAACrCNg1MgAAAGdCkAEAAJZFkAEAAJYVsHf2BeAfzd3pONDvctyWmlu6k3NzAv17A2g7ZmQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlsdgXAAKEFRdmA2ZjRgYAAFgWQQYAAFgWQQYAAFgWQQYAAFgWi30B+KSlO+p2lMWpHf37AR0FMzIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyWOwLoN21tHD2XAuUBbztOR7cHRjnG2ZkAACAZRFkAACAZRFkAACAZRFkAACAZbHYFwDaIFAWDPtDWxYGt+f3ZoEyzgYzMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLJY7AsAftBeC1atuLjYHzVb8XvDHMzIAAAAyyLIAAAAyyLIAAAAyyLIAAAAy2KxLwB0cC0tnO3oWDB8fmBGBgAAWBZBBgAAWBZBBgAAWBZrZAAAPjvX62/a62Z7bV03c74+sTsQv7clZmSWLl2qfv36KSwsTMOHD9fOnTvNLgkAAASAgA8yb775pjIzMzVv3jx9+umnGjx4sMaNG6ejR4+aXRoAADBZwAeZhQsX6ve//73uvPNODRw4UCtWrFCXLl306quvml0aAAAwWUCvkamvr1dRUZGysrI8bZ06dVJKSooKCwubfY/L5ZLL5fK8rq6uliQ5nU6/1+d2nTjrY7RUVyAf24o1t3Rsaj43x6Zm6xzbijW3dOy2HLetfyOaO3Z7/J0JNOfye588rmEYp9/RCGDffvutIcn45JNPvNr/8Ic/GFdddVWz75k3b54hiY2NjY2Nja0DbEeOHDltVgjoGRlfZGVlKTMz0/Pa7Xbru+++U69evWSz2dp0LKfTqbi4OB05ckQRERH+LrVDYaxaj7FqPcaqbRiv1mOsWs+ssTIMQ8ePH1dsbOxp9wvoIHPBBReoc+fOqqys9GqvrKxUdHR0s+8JDQ1VaGioV1tkZORZ1REREcGJ3kqMVesxVq3HWLUN49V6jFXrmTFWdrv9jPsE9GLfkJAQDR06VPn5+Z42t9ut/Px8ORwOEysDAACBIKBnZCQpMzNTaWlpGjZsmK666iotXrxYtbW1uvPOO80uDQAAmCzgg8ytt96qY8eO6bHHHlNFRYV++ctfatOmTYqKimr3zw4NDdW8efOa/FSFphir1mOsWo+xahvGq/UYq9YL9LGyGcaZrmsCAAAITAG9RgYAAOB0CDIAAMCyCDIAAMCyCDIAAMCyzvsgk52drSuvvFLdu3dX7969NWnSJBUXF3vtU1dXp4yMDPXq1UvdunVTampqk5v0nQ+WL1+u5ORkz02RHA6H3n33XU8/49SyBQsWyGazadasWZ42xusnf/7zn2Wz2by2pKQkTz9j5e3bb7/V1KlT1atXL4WHh+vyyy/X7t27Pf2GYeixxx5TTEyMwsPDlZKSooMHD5pYsTn69evX5Lyy2WzKyMiQxHn1c42NjXr00UeVkJCg8PBwXXzxxXryySe9nnMUsOeVHx6JZGnjxo0zcnNzjf379xt79uwxbrzxRiM+Pt6oqanx7HPvvfcacXFxRn5+vrF7925jxIgRxtVXX21i1eZ4++23jY0bNxoHDhwwiouLjT/+8Y9GcHCwsX//fsMwGKeW7Ny50+jXr5+RnJxszJw509POeP1k3rx5xmWXXWaUl5d7tmPHjnn6GauffPfdd0bfvn2NadOmGTt27DAOHTpkbN682fjyyy89+yxYsMCw2+3G+vXrjb179xq/+c1vjISEBOOf//yniZWfe0ePHvU6p7Zs2WJIMrZu3WoYBufVz82fP9/o1auX8c477xglJSVGXl6e0a1bN2PJkiWefQL1vDrvg8ypjh49akgyCgoKDMMwjKqqKiM4ONjIy8vz7PO///u/hiSjsLDQrDIDRo8ePYz/+I//YJxacPz4cSMxMdHYsmWLcc0113iCDOPlbd68ecbgwYOb7WOsvD388MPGqFGjWux3u91GdHS08dxzz3naqqqqjNDQUOONN944FyUGrJkzZxoXX3yx4Xa7Oa9OMWHCBOOuu+7yaps8ebIxZcoUwzAC+7w6739aOlV1dbUkqWfPnpKkoqIiNTQ0KCUlxbNPUlKS4uPjVVhYaEqNgaCxsVFr1qxRbW2tHA4H49SCjIwMTZgwwWtcJM6r5hw8eFCxsbG66KKLNGXKFJWWlkpirE719ttva9iwYbrlllvUu3dvXXHFFXrllVc8/SUlJaqoqPAaL7vdruHDh5+X43VSfX29Xn/9dd11112y2WycV6e4+uqrlZ+frwMHDkiS9u7dq23btmn8+PGSAvu8Cvg7+55Lbrdbs2bN0siRIzVo0CBJUkVFhUJCQpo8eDIqKkoVFRUmVGmuzz//XA6HQ3V1derWrZveeustDRw4UHv27GGcTrFmzRp9+umn2rVrV5M+zitvw4cP18qVK9W/f3+Vl5fr8ccf1+jRo7V//37G6hSHDh3S8uXLlZmZqT/+8Y/atWuXHnjgAYWEhCgtLc0zJqfe/fx8Ha+T1q9fr6qqKk2bNk0S/w2eau7cuXI6nUpKSlLnzp3V2Nio+fPna8qUKZIU0OcVQeZnMjIytH//fm3bts3sUgJW//79tWfPHlVXV+uvf/2r0tLSVFBQYHZZAefIkSOaOXOmtmzZorCwMLPLCXgn/69PkpKTkzV8+HD17dtXa9euVXh4uImVBR63261hw4bp6aefliRdccUV2r9/v1asWKG0tDSTqwtcOTk5Gj9+vGJjY80uJSCtXbtWf/nLX7R69Wpddtll2rNnj2bNmqXY2NiAP6/4aen/mz59ut555x1t3bpVffr08bRHR0ervr5eVVVVXvtXVlYqOjr6HFdpvpCQEF1yySUaOnSosrOzNXjwYC1ZsoRxOkVRUZGOHj2qIUOGKCgoSEFBQSooKNALL7ygoKAgRUVFMV6nERkZqUsvvVRffvkl59YpYmJiNHDgQK+2AQMGeH6KOzkmp159c76OlyQdPnxY77//vn73u9952jivvP3hD3/Q3Llzddttt+nyyy/Xv//7v2v27NnKzs6WFNjn1XkfZAzD0PTp0/XWW2/pgw8+UEJCglf/0KFDFRwcrPz8fE9bcXGxSktL5XA4znW5AcftdsvlcjFOpxg7dqw+//xz7dmzx7MNGzZMU6ZM8fyb8WpZTU2NvvrqK8XExHBunWLkyJFNbhFx4MAB9e3bV5KUkJCg6Ohor/FyOp3asWPHeTlekpSbm6vevXtrwoQJnjbOK28nTpxQp07ekaBz585yu92SAvy8MnWpcQC47777DLvdbnz44Ydel+mdOHHCs8+9995rxMfHGx988IGxe/duw+FwGA6Hw8SqzTF37lyjoKDAKCkpMfbt22fMnTvXsNlsxnvvvWcYBuN0Jj+/askwGK+fmzNnjvHhhx8aJSUlxscff2ykpKQYF1xwgXH06FHDMBirn9u5c6cRFBRkzJ8/3zh48KDxl7/8xejSpYvx+uuve/ZZsGCBERkZafztb38z9u3bZ0ycODEgLpM1Q2NjoxEfH288/PDDTfo4r36SlpZm/OIXv/Bcfr1u3TrjggsuMB566CHPPoF6Xp33QUZSs1tubq5nn3/+85/G/fffb/To0cPo0qWLcfPNNxvl5eXmFW2Su+66y+jbt68REhJiXHjhhcbYsWM9IcYwGKczOTXIMF4/ufXWW42YmBgjJCTE+MUvfmHceuutXvdFYay8bdiwwRg0aJARGhpqJCUlGS+//LJXv9vtNh599FEjKirKCA0NNcaOHWsUFxebVK25Nm/ebEhq9vtzXv3E6XQaM2fONOLj442wsDDjoosuMh555BHD5XJ59gnU88pmGD+7bR8AAICFnPdrZAAAgHURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGX9P6QBSsyFjcY+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Гистограмма\n", + "plt.figure(figsize=(8, 5))\n", + "df.plot.hist(column=[\"Age\"], bins=80)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAHaCAYAAACtoplJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDZklEQVR4nO3deXQUZdr+8as7O4QkEAghkgQEJKCDIrIEF5aJRkQWiSK+MuIMKPKCDOCMA+4iCs64jiIoL0ZFQEERRQcUUHFjkSjoiGAQEBQTcCGBYAKS+/eHJ/WjSQKpJAUJfj/n1IGquvvJ091V1VdX91PtMzMTAAAA4BH/ie4AAAAATm4ETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAKiEa6+9Vs2aNTtuf2/NmjUKDQ3VN998c9z+5rEMGjRIAwcOPNHdAFALEDgB1AjPPPOMfD5fwBQXF6cePXpo8eLFx60f3bt3D+hDgwYN1LFjRz399NMqLi6ulr9x3333aeHCha5uc+utt+qqq65ScnJymes7deokn8+nadOmVUMPK+Yf//iHXn75Za1fv/64/U0AtROBE0CNMnHiRM2aNUvPPfecbr75Zu3evVuXXHKJXn/99ePWh6ZNm2rWrFmaNWuWbr/9dv36668aOnSobrnllmpp323gXLdunZYtW6YbbrihzPXZ2dn6+OOP1axZM82ePbta+lgR7du31znnnKMHH3zwuP1NALUTgRNAjdKrVy8NHjxYf/rTn/S3v/1N77//vkJCQjR37txqab+4uFiFhYVHrYmOjtbgwYM1ePBgjR07Vh9++KGaNm2qxx9/XAcPHqyWfriRmZmppKQkdenSpcz1zz//vOLi4vTggw/qo48+0rZt245b3wYOHKgFCxZo3759x+1vAqh9CJwAarSYmBhFREQoODg4YPkDDzygrl27KjY2VhEREerQoYNeeumlUrf3+XwaNWqUZs+erdNPP11hYWFasmSJqz7UqVNHXbp0UUFBgXbv3l1uXUFBgW666SYlJiYqLCxMrVu31gMPPCAzC+hPQUGBnn32Wedj+2uvvfaof3/hwoXq2bOnfD5fmevnzJmjyy+/XJdeeqmio6M1Z86cMuveffddnXPOOQoPD1eLFi305JNP6q677iqz3eeff14dOnRQRESEGjRooEGDBmnHjh2l6i688EIVFBRo6dKlR70PAH7fgo9dAgDHT15enn744QeZmXbt2qXHHntM+/bt0+DBgwPqHn30UfXt21dXX321Dhw4oBdeeEFXXHGFXn/9dfXu3Tug9u2339a8efM0atQoNWzYsFKDfbZs2aKgoCDFxMSUud7M1LdvX73zzjsaOnSozjrrLL355pv6+9//ru+++04PP/ywJGnWrFkaNmyYOnXqpOuvv16S1KJFi3L/7nfffaft27fr7LPPLnP96tWrtXnzZmVmZio0NFQDBgzQ7NmzS338/+mnn+riiy9WkyZNdPfdd+vQoUOaOHGiGjVqVKrNe++9V7fffrsGDhyoYcOGaffu3Xrsscd0wQUX6NNPPw14DNq2bauIiAh9+OGHuuyyy472EAL4PTMAqAEyMzNNUqkpLCzMnnnmmVL1+/fvD5g/cOCAnXHGGdazZ8+A5ZLM7/fbF198UaF+dOvWzVJSUmz37t22e/du+/LLL2306NEmyfr06ePUDRkyxJKTk535hQsXmiSbNGlSQHuXX365+Xw+27x5s7Osbt26NmTIkAr1Z9myZSbJFi1aVOb6UaNGWWJiohUXF5uZ2VtvvWWS7NNPPw2o69Onj9WpU8e+++47Z1l2drYFBwfb4S8F27Zts6CgILv33nsDbv/5559bcHBwqeVmZqeddpr16tWrQvcHwO8TH6kDqFGmTp2qpUuXaunSpXr++efVo0cPDRs2TAsWLAioi4iIcP7/888/Ky8vT+eff74++eSTUm1269ZNbdu2rXAfNm7cqEaNGqlRo0Zq06aNHnvsMfXu3VtPP/10ubf5z3/+o6CgII0ePTpg+U033SQzq/RI+x9//FGSVL9+/VLrfv31V7344ou68sornY/Fe/bsqbi4uIDBQ4cOHdKyZcvUv39/JSQkOMtbtmypXr16BbS5YMECFRcXa+DAgfrhhx+cKT4+Xq1atdI777xTqh/169fXDz/8UKn7B+D3gY/UAdQonTp10jnnnOPMX3XVVWrfvr1GjRqlSy+9VKGhoZKk119/XZMmTdK6detUVFTk1Jf1fcTmzZu76kOzZs00Y8YM+Xw+hYeHq1WrVoqLizvqbb755hslJCSoXr16AcvbtGnjrK8KO+x7oCXeeust7d69W506ddLmzZud5T169NDcuXN1//33y+/3a9euXfrll1/UsmXLUm0cuSw7O1tmplatWpXZj5CQkDL7Vt73SwFAInACqOH8fr969OihRx99VNnZ2Tr99NP1/vvvq2/fvrrgggv0xBNPqEmTJgoJCVFmZmaZA2YOPxtaEXXr1lVaWlp13YUqiY2NlfTbWdwjlZzFLO/i6ytWrFCPHj1c/b3i4mL5fD4tXrxYQUFBpdZHRkaWWvbzzz+XG1ABQCJwAqgFfv31V0lyLr3z8ssvKzw8XG+++abCwsKcuszMzBPSP0lKTk7WsmXLtHfv3oCznBs3bnTWl3BzNjAlJUWStHXr1oDlBQUFevXVV3XllVfq8ssvL3W70aNHa/bs2erRo4fi4uIUHh4ecBa0xJHLWrRoITNT8+bNddpppx2zf7/++qt27Nihvn37Vvg+Afj94TucAGq0gwcP6q233lJoaKjz8XRQUJB8Pp8OHTrk1G3bts31r/dUp0suuUSHDh3S448/HrD84Ycfls/nC/iuZN26dbVnz54KtXvKKacoMTFRa9euDVj+yiuvqKCgQCNHjtTll19earr00kv18ssvq6ioSEFBQUpLS9PChQu1c+dOp43NmzeX+m7pgAEDFBQUpLvvvrvUx/hm5nyntMSGDRtUWFiorl27Vuj+APh94gwngBpl8eLFzlnBXbt2ac6cOcrOztb48eMVFRUlSerdu7ceeughXXzxxfqf//kf7dq1S1OnTlXLli312WefnZB+9+nTRz169NCtt96qbdu26cwzz9Rbb72lV199VWPGjAm49FGHDh20bNkyPfTQQ0pISFDz5s3VuXPnctvu16+fXnnllYDvSs6ePVuxsbHlBr2+fftqxowZeuONNzRgwADdddddeuutt3TuuedqxIgRTjg+44wztG7dOud2LVq00KRJkzRhwgRt27ZN/fv3V7169bR161a98soruv766/W3v/3NqV+6dKnq1KmjCy+8sIqPIICT2okbIA8A/19Zl0UKDw+3s846y6ZNm+Zc9qfEzJkzrVWrVhYWFmYpKSmWmZlpd955px15WJNkI0eOrHA/unXrZqeffvox6468LJKZ2d69e23s2LGWkJBgISEh1qpVK/vXv/5Vqu8bN260Cy64wCIiIkzSMS+R9Mknn5gke//9983MLDc314KDg+1Pf/pTubfZv3+/1alTxy677DJn2fLly619+/YWGhpqLVq0sP/7v/+zm266ycLDw0vd/uWXX7bzzjvP6tata3Xr1rWUlBQbOXKkbdq0KaCuc+fONnjw4KP2HwB8ZmUMfQQA1Ch//OMflZCQoFmzZlVru/3799cXX3yh7Oxs17ddt26dzj77bH3yySc666yzqrVfAE4uBE4AqAVWr16t888/X9nZ2QEDkNz45ZdfAkbsl4z6HzJkiGbMmOG6vUGDBqm4uFjz5s2rVH8A/H4QOAHgd6JJkya69tprdeqpp+qbb77RtGnTVFRUpE8//ZTLGgHwFIOGAOB34uKLL9bcuXOVk5OjsLAwpaam6r777iNsAvAcZzgBAADgKa7DCQAAAE8ROAEAAOCpGvcdzuLiYu3cuVP16tVz9fNvAAAAOD7MTHv37lVCQoL8/mOfv6xxgXPnzp1KTEw80d0AAADAMezYsUNNmzY9Zl2NC5z16tWT9NsdKPkZOwAAANQc+fn5SkxMdHLbsdS4wFnyMXpUVBSBEwAAoAar6NcfGTQEAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAU8EnugPH0mz8G2Uu3zal93HuCQAAACqDM5wAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPuQqczZo1k8/nKzWNHDlSklRYWKiRI0cqNjZWkZGRysjIUG5uricdBwAAQO3gKnB+/PHH+v77751p6dKlkqQrrrhCkjR27FgtWrRI8+fP14oVK7Rz504NGDCg+nsNAACAWsPVdTgbNWoUMD9lyhS1aNFC3bp1U15enmbOnKk5c+aoZ8+ekqTMzEy1adNGq1atUpcuXaqv1wAAAKg1Kv0dzgMHDuj555/XX/7yF/l8PmVlZengwYNKS0tzalJSUpSUlKSVK1eW205RUZHy8/MDJgAAAJw8Kh04Fy5cqD179ujaa6+VJOXk5Cg0NFQxMTEBdY0bN1ZOTk657UyePFnR0dHOlJiYWNkuAQAAoAaqdOCcOXOmevXqpYSEhCp1YMKECcrLy3OmHTt2VKk9AAAA1CyV+i31b775RsuWLdOCBQucZfHx8Tpw4ID27NkTcJYzNzdX8fHx5bYVFhamsLCwynQDAAAAtUClznBmZmYqLi5OvXv3dpZ16NBBISEhWr58ubNs06ZN2r59u1JTU6veUwAAANRKrs9wFhcXKzMzU0OGDFFw8P+/eXR0tIYOHapx48apQYMGioqK0o033qjU1FRGqAMAAPyOuQ6cy5Yt0/bt2/WXv/yl1LqHH35Yfr9fGRkZKioqUnp6up544olq6SgAAABqJ5+Z2YnuxOHy8/MVHR2tvLw8RUVFqdn4N8qs2zald5nLAQAA4K0j89qx8FvqAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATwWf6A5Ut2bj3yhz+bYpvY9zTwAAACBxhhMAAAAeI3ACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTrgPnd999p8GDBys2NlYRERH6wx/+oLVr1zrrzUx33HGHmjRpooiICKWlpSk7O7taOw0AAIDaw1Xg/Pnnn3XuuecqJCREixcv1oYNG/Tggw+qfv36Ts0///lP/fvf/9b06dO1evVq1a1bV+np6SosLKz2zgMAAKDmC3ZTfP/99ysxMVGZmZnOsubNmzv/NzM98sgjuu2229SvXz9J0nPPPafGjRtr4cKFGjRoUDV1GwAAALWFqzOcr732ms455xxdccUViouLU/v27TVjxgxn/datW5WTk6O0tDRnWXR0tDp37qyVK1eW2WZRUZHy8/MDJgAAAJw8XAXOLVu2aNq0aWrVqpXefPNNjRgxQqNHj9azzz4rScrJyZEkNW7cOOB2jRs3dtYdafLkyYqOjnamxMTEytwPAAAA1FCuAmdxcbHOPvts3XfffWrfvr2uv/56XXfddZo+fXqlOzBhwgTl5eU5044dOyrdFgAAAGoeV4GzSZMmatu2bcCyNm3aaPv27ZKk+Ph4SVJubm5ATW5urrPuSGFhYYqKigqYAAAAcPJwFTjPPfdcbdq0KWDZV199peTkZEm/DSCKj4/X8uXLnfX5+flavXq1UlNTq6G7AAAAqG1cjVIfO3asunbtqvvuu08DBw7UmjVr9NRTT+mpp56SJPl8Po0ZM0aTJk1Sq1at1Lx5c91+++1KSEhQ//79veg/AAAAajhXgbNjx4565ZVXNGHCBE2cOFHNmzfXI488oquvvtqpufnmm1VQUKDrr79ee/bs0XnnnaclS5YoPDy82jsPAACAms9V4JSkSy+9VJdeemm5630+nyZOnKiJEydWqWMAAAA4OfBb6gAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnXAXOu+66Sz6fL2BKSUlx1hcWFmrkyJGKjY1VZGSkMjIylJubW+2dBgAAQO3h+gzn6aefru+//96ZPvjgA2fd2LFjtWjRIs2fP18rVqzQzp07NWDAgGrtMAAAAGqXYNc3CA5WfHx8qeV5eXmaOXOm5syZo549e0qSMjMz1aZNG61atUpdunSpem8BAABQ67g+w5mdna2EhASdeuqpuvrqq7V9+3ZJUlZWlg4ePKi0tDSnNiUlRUlJSVq5cmW57RUVFSk/Pz9gAgAAwMnDVeDs3LmznnnmGS1ZskTTpk3T1q1bdf7552vv3r3KyclRaGioYmJiAm7TuHFj5eTklNvm5MmTFR0d7UyJiYmVuiMAAAComVx9pN6rVy/n/+3atVPnzp2VnJysefPmKSIiolIdmDBhgsaNG+fM5+fnEzoBAABOIlW6LFJMTIxOO+00bd68WfHx8Tpw4ID27NkTUJObm1vmdz5LhIWFKSoqKmACAADAyaNKgXPfvn36+uuv1aRJE3Xo0EEhISFavny5s37Tpk3avn27UlNTq9xRAAAA1E6uPlL/29/+pj59+ig5OVk7d+7UnXfeqaCgIF111VWKjo7W0KFDNW7cODVo0EBRUVG68cYblZqaygh1AACA3zFXgfPbb7/VVVddpR9//FGNGjXSeeedp1WrVqlRo0aSpIcfflh+v18ZGRkqKipSenq6nnjiCU86DgAAgNrBVeB84YUXjro+PDxcU6dO1dSpU6vUKQAAAJw8+C11AAAAeIrACQAAAE8ROAEAAOApAicAAAA85WrQ0Mmo2fg3yly+bUrv49wTAACAkxNnOAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4Knf/S8NucUvEwEAALjDGU4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4qkqBc8qUKfL5fBozZoyzrLCwUCNHjlRsbKwiIyOVkZGh3NzcqvYTAAAAtVSlA+fHH3+sJ598Uu3atQtYPnbsWC1atEjz58/XihUrtHPnTg0YMKDKHQUAAEDtVKnAuW/fPl199dWaMWOG6tev7yzPy8vTzJkz9dBDD6lnz57q0KGDMjMz9dFHH2nVqlXV1mkAAADUHpUKnCNHjlTv3r2VlpYWsDwrK0sHDx4MWJ6SkqKkpCStXLmyzLaKioqUn58fMAEAAODkEez2Bi+88II++eQTffzxx6XW5eTkKDQ0VDExMQHLGzdurJycnDLbmzx5su6++2633QAAAEAt4eoM544dO/TXv/5Vs2fPVnh4eLV0YMKECcrLy3OmHTt2VEu7AAAAqBlcBc6srCzt2rVLZ599toKDgxUcHKwVK1bo3//+t4KDg9W4cWMdOHBAe/bsCbhdbm6u4uPjy2wzLCxMUVFRARMAAABOHq4+Uv/jH/+ozz//PGDZn//8Z6WkpOgf//iHEhMTFRISouXLlysjI0OStGnTJm3fvl2pqanV12sAAADUGq4CZ7169XTGGWcELKtbt65iY2Od5UOHDtW4cePUoEEDRUVF6cYbb1Rqaqq6dOlSfb0GAABAreF60NCxPPzww/L7/crIyFBRUZHS09P1xBNPVPefAQAAQC1R5cD57rvvBsyHh4dr6tSpmjp1alWbBgAAwEmA31IHAACApwicAAAA8BSBEwAAAJ6q9kFDCNRs/BtlLt82pfdx7gkAAMCJwRlOAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAngo+0R1AoGbj3yhz+bYpvY9zTwAAAKoHZzgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApfmmoluOXiQAAQE3HGU4AAAB4isAJAAAATxE4AQAA4CkCJwAAADzFoKHfGQYZAQCA440znAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE+5CpzTpk1Tu3btFBUVpaioKKWmpmrx4sXO+sLCQo0cOVKxsbGKjIxURkaGcnNzq73TAAAAqD1cBc6mTZtqypQpysrK0tq1a9WzZ0/169dPX3zxhSRp7NixWrRokebPn68VK1Zo586dGjBggCcdBwAAQO3g6jqcffr0CZi/9957NW3aNK1atUpNmzbVzJkzNWfOHPXs2VOSlJmZqTZt2mjVqlXq0qVL9fUaAAAAtUalv8N56NAhvfDCCyooKFBqaqqysrJ08OBBpaWlOTUpKSlKSkrSypUry22nqKhI+fn5ARMAAABOHq4D5+eff67IyEiFhYXphhtu0CuvvKK2bdsqJydHoaGhiomJCahv3LixcnJyym1v8uTJio6OdqbExETXdwIAAAA1l+vA2bp1a61bt06rV6/WiBEjNGTIEG3YsKHSHZgwYYLy8vKcaceOHZVuCwAAADWP699SDw0NVcuWLSVJHTp00Mcff6xHH31UV155pQ4cOKA9e/YEnOXMzc1VfHx8ue2FhYUpLCzMfc8BAABQK1T5OpzFxcUqKipShw4dFBISouXLlzvrNm3apO3btys1NbWqfwYAAAC1lKsznBMmTFCvXr2UlJSkvXv3as6cOXr33Xf15ptvKjo6WkOHDtW4cePUoEEDRUVF6cYbb1Rqaioj1AEAAH7HXAXOXbt26ZprrtH333+v6OhotWvXTm+++aYuvPBCSdLDDz8sv9+vjIwMFRUVKT09XU888YQnHcfx0Wz8G2Uu3zal93HuCQAAqK1cBc6ZM2cedX14eLimTp2qqVOnVqlTAAAAOHnwW+oAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICngk90B3ByaTb+jTKXb5vS+zj3BAAA1BSc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKf4pSGcUPwyEQAAJz/OcAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkGDaHWYIARAAC1k6sznJMnT1bHjh1Vr149xcXFqX///tq0aVNATWFhoUaOHKnY2FhFRkYqIyNDubm51dppAAAA1B6uAueKFSs0cuRIrVq1SkuXLtXBgwd10UUXqaCgwKkZO3asFi1apPnz52vFihXauXOnBgwYUO0dBwAAQO3g6iP1JUuWBMw/88wziouLU1ZWli644ALl5eVp5syZmjNnjnr27ClJyszMVJs2bbRq1Sp16dKl+noOAACAWqFKg4by8vIkSQ0aNJAkZWVl6eDBg0pLS3NqUlJSlJSUpJUrV5bZRlFRkfLz8wMmAAAAnDwqHTiLi4s1ZswYnXvuuTrjjDMkSTk5OQoNDVVMTExAbePGjZWTk1NmO5MnT1Z0dLQzJSYmVrZLAAAAqIEqHThHjhyp//73v3rhhReq1IEJEyYoLy/PmXbs2FGl9gAAAFCzVOqySKNGjdLrr7+u9957T02bNnWWx8fH68CBA9qzZ0/AWc7c3FzFx8eX2VZYWJjCwsIq0w0AAADUAq7OcJqZRo0apVdeeUVvv/22mjdvHrC+Q4cOCgkJ0fLly51lmzZt0vbt25Wamlo9PQYAAECt4uoM58iRIzVnzhy9+uqrqlevnvO9zOjoaEVERCg6OlpDhw7VuHHj1KBBA0VFRenGG29UamoqI9QBAAB+p1wFzmnTpkmSunfvHrA8MzNT1157rSTp4Ycflt/vV0ZGhoqKipSenq4nnniiWjoLuMEvEwEAUDO4Cpxmdsya8PBwTZ06VVOnTq10pwAAAHDyqNJ1OAEAAIBjIXACAADAUwROAAAAeKpS1+EETkYMMgIAwBuc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMMGgIqiUFGAABUDGc4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIOGgOPE7SAjr+sBADheOMMJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFKPUgd8pRrUDAI4XznACAADAUwROAAAAeIrACQAAAE8ROAEAAOApBg0BqBAGGQEAKosznAAAAPAUgRMAAACeInACAADAUwROAAAAeIpBQwA84XaQkdf1AIAThzOcAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4ikFDAH4XGGQEACcOZzgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACech0433vvPfXp00cJCQny+XxauHBhwHoz0x133KEmTZooIiJCaWlpys7Orq7+AgAAoJZxHTgLCgp05plnaurUqWWu/+c//6l///vfmj59ulavXq26desqPT1dhYWFVe4sAAAAah/X1+Hs1auXevXqVeY6M9Mjjzyi2267Tf369ZMkPffcc2rcuLEWLlyoQYMGVa23AAAAqHWq9TucW7duVU5OjtLS0pxl0dHR6ty5s1auXFnmbYqKipSfnx8wAQAA4ORRrb80lJOTI0lq3LhxwPLGjRs76440efJk3X333dXZDQCoEn6VCACq1wkfpT5hwgTl5eU5044dO050lwAAAFCNqjVwxsfHS5Jyc3MDlufm5jrrjhQWFqaoqKiACQAAACePag2czZs3V3x8vJYvX+4sy8/P1+rVq5WamlqdfwoAAAC1hOvvcO7bt0+bN2925rdu3ap169apQYMGSkpK0pgxYzRp0iS1atVKzZs31+23366EhAT179+/OvsNAACAWsJ14Fy7dq169OjhzI8bN06SNGTIED3zzDO6+eabVVBQoOuvv1579uzReeedpyVLlig8PLz6eg0AAIBaw3Xg7N69u8ys3PU+n08TJ07UxIkTq9QxAAAAnBxO+Ch1AAAAnNwInAAAAPAUgRMAAACeqtZfGgKA3yO3v0xU0+oBwGuc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMMGgKA3zkGGQHwGmc4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIOGAACu8MtHANziDCcAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTjFIHANQoXo+Cr2n1wO8BZzgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUg4YAADhBatoAJgY8wSuc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMMGgIAAJVS0wYxMeip5uIMJwAAADxF4AQAAICnCJwAAADwFIETAAAAnmLQEAAA+F1iUNLxwxlOAAAAeIrACQAAAE8ROAEAAOApAicAAAA8xaAhAAAAD9SkX1Y60QOkPDvDOXXqVDVr1kzh4eHq3Lmz1qxZ49WfAgAAQA3mSeB88cUXNW7cON1555365JNPdOaZZyo9PV27du3y4s8BAACgBvMkcD700EO67rrr9Oc//1lt27bV9OnTVadOHT399NNe/DkAAADUYNX+Hc4DBw4oKytLEyZMcJb5/X6lpaVp5cqVpeqLiopUVFTkzOfl5UmS8vPzJUnFRfvL/Dsl649E/clbX5P6Qv3JXV+T+kL9yV1fk/pC/cldX91tl/xrZmXWlWLV7LvvvjNJ9tFHHwUs//vf/26dOnUqVX/nnXeaJCYmJiYmJiYmplo27dixo0L58ISPUp8wYYLGjRvnzBcXF+unn35SbGysfD6fszw/P1+JiYnasWOHoqKijtku9SdvfU3qC/Und31N6gv1J3d9TeoL9Sd3fXW1bWbau3evEhISjtmG5MFH6g0bNlRQUJByc3MDlufm5io+Pr5UfVhYmMLCwgKWxcTElNt+VFRUhR4g6k/++prUF+pP7vqa1BfqT+76mtQX6k/u+upoOzo6usK3r/ZBQ6GhoerQoYOWL1/uLCsuLtby5cuVmppa3X8OAAAANZwnH6mPGzdOQ4YM0TnnnKNOnTrpkUceUUFBgf785z978ecAAABQg3kSOK+88krt3r1bd9xxh3JycnTWWWdpyZIlaty4caXbDAsL05133lnq43fqf3/1Nakv1J/c9TWpL9Sf3PU1qS/Un9z1XvelPD6zio5nBwAAANzz7KctAQAAAInACQAAAI8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8NQJ/y31oykuLpbfXzoTFxcX69tvv1VSUlKF2vn555+1aNEiXXPNNeXWbN26VZs3b1aTJk10xhlnVKjdnj17KjMzU8nJyaXWmZm2bdumxMREBQcH68CBA3rllVdUVFSkSy65RA0bNgyoX79+vbKystS9e3edeuqp+uKLLzR16lQVFxfrsssuU3p6ulNbVFQkv9+vkJAQSdLXX3+tp59+Wtu3b1dycrKGDh2q5s2bO/Uvv/yyevXqpTp16lTofpV4++239cEHH+j777+X3+/Xqaeeqr59+6pVq1au2nGjIs+VF6prW6uNKrPtl8Xtdim5308kac2aNVq5cqVycnIkSfHx8UpNTVWnTp0q3feT2dGOU25U9jjiVkWPO26OmcfLgQMHtHDhwlLbZ9euXdWvXz+FhoZKkr799luFh4c72/f777+v6dOnO/vKyJEjS/0y348//qjPPvtMZ555pho0aKAffvhBM2fOVFFRka644gq1adOmVH++/fZbxcTEKDIyMmD5wYMHtXLlSl1wwQWVup8PPvigLr/88ipvU14xM7377rvOcS09Pd05LpX45ZdfNHfu3FLbWv/+/fXHP/7R1d/Lzc3Vk08+qTvuuKM674br9k899VS9+eabVX6Nfv3117VmzRqlp6fr3HPP1dtvv60HHnhAxcXFGjBggK6//vrKNWw1UF5enl1xxRUWHh5ucXFxdvvtt9uvv/7qrM/JyTG/31/h9tatWxdQP2LECNu7d6+Zme3fv98yMjLM7/ebz+czv99vPXr0cNabmb366qtlTkFBQfb444878yU2btxoycnJ5vf7rWXLlrZlyxbr0KGD1a1b1+rUqWMNGza0r776yql/+eWXLSgoyGJjYy0yMtKWLl1qMTExlpaWZunp6RYUFGSzZ8926rt162bz5883M7MPPvjAwsLCrF27dnbllVda+/btrU6dOvbRRx859T6fz6Kiouy6666zVatWHfPxys3NtU6dOpnf77fg4GDz+/3WoUMHi4+Pt6CgIPv73/9e4cfezOynn36yZ599tkK1Rz5Xh1u9erU98sgjNn78eBs/frw98sgjtnr16oCal156yQoKCirct8psa8XFxbZlyxY7ePCgmZkVFRXZCy+8YM8++6zt3r27zPs0c+ZM+/rrr83M7L///a+NGDHChg8fbkuWLAmoLSwstAMHDjjzmzdvtltuucUGDx5st956q23ZsqXM+3Ho0KFyl3/zzTfOvNttvzw9evSwbdu2BSxzu1263U9yc3PtvPPOM5/PZ8nJydapUyfr1KmTJScnm8/ns/POO89yc3PL7O/y5cvt7rvvthtuuMH+93//1x544IGAto9my5Yt9tZbb9nnn39e5vqKbJcVUd5+UtHn1u1xyszdtun2OFKesrYdM3fHHbfHTDP3xwYzd/t6dna2nXrqqRYeHm7dunWzgQMH2sCBA61bt24WHh5uLVu2tOzsbDMz69Spky1atMjMzBYuXGh+v9/69u1r//jHP+yyyy6zkJAQZ73Zb9tYdHS0+Xw+q1+/vq1du9aaN29urVq1shYtWlhERIRlZWU59Tt37rSOHTua3++3oKAg+9Of/hSwX1fkNfRo273P57OgoCBLS0uzF154wYqKio7aVmWPaxXdb3v16mV79uwxM7Mff/zROnfubD6fzxo1amR+v99SUlJs165dTn12drYlJydbXFycJSYmms/ns969e1vnzp0tKCjIrrjiCuc5r4jyXrcquu+6bf/RRx8tcwoKCrIJEyY480eqyLFq+vTpFhwcbB06dLCoqCibNWuW1atXz4YNG2bDhw+3iIgIe+SRRyrc98PVyMA5evRoO+2002z+/Pk2Y8YMS05Ott69ezsbdU5Ojvl8Pqc+Ly/vqNP7778f8GT5/X7nhWnChAnWtGlTe/vtt62goMA++OADa9GihY0fP96pL3kx9vl85U6Ht9+vXz/r27evffbZZzZmzBhr06aN9evXzw4cOGCFhYXWp08fGzx4sFN/9tln26RJk8zMbO7cuRYTE2MTJ0501j/wwAN21llnOfNRUVHOTtetWzcbO3ZswON322232bnnnhvQ/4kTJ1r79u3N5/PZ6aefbg8//LD98MMPZT7+V155pfXv39/y8vKssLDQRo0aZddcc42Z/XYAiI2NdbXBHb6zuH2uzNwFDbcvim63tZr2ZsJtYHa77bsJMW63S7f7SUZGhqWmptrGjRtLPY8bN260rl272uWXXx6w3O2bJzeBvCoBuCxHvqi4fW7dHqfcbptujyNuA7Cb447bY2ZJ/90cG9zu62lpadavXz/Ly8sr1VZeXp7169fPLrroIjMzq1u3rhOyOnfubFOmTAmof+yxx6x9+/YBbQ8bNszy8/PtX//6lzVt2tSGDRvmrP/zn/9s/fv3d+avueYa69y5s3388ce2dOlS69Chg51zzjn2008/mVnp45rbN6I+n88yMzOtX79+FhISYrGxsfbXv/613Ddlbo9rbvdbn8/n7GsjRoywtm3bOo/vjh07rEOHDnbDDTc49b169bLhw4dbcXGxmZlNmTLFevXqZWZmX331lTVr1szuvPNOp379+vVHnV588cUq7btu2/f5fNa0aVNr1qxZwOTz+eyUU06xZs2aWfPmzQMez4oeq9q2bWtPPfWUmZm9/fbbFh4eblOnTnXayszMtDZt2pT5PB9LjQycSUlJ9s477zjzu3fvtk6dOtlFF11khYWF5R5oy5uOPNAevnGeccYZNmfOnIC//+qrr9ppp53mzF988cXWu3fvUi8ewcHB9sUXX5Tqf6NGjezTTz81M7N9+/aZz+ez999/31n/4YcfWlJSkjNft25d27p1q5n99o46JCTEPvvsM2f9119/bZGRkQH1X375pZmZNW7c2NatWxfw9zdv3hxQf/j9Xbt2rY0YMcJiYmIsLCzMrrjiCnvrrbcCbh8VFWX//e9/nfl9+/ZZSEiIcyCdNWuWtW7d2lnvJkS6fa7M3AUNty+Kbre1mvZmwm1gdrvtuwkxbrdLt/tJZGSkffLJJ1aetWvXBrRv5v7Nk5tA7jYAu32z5fa5dXuccrttuj2OuA3Abo47bo+ZJf1xc2xwu69HRESUG7jMzD777DOLiIgwM7Po6Ghbv369mZnFxcU5/y+xefNmq1OnjjNfv35927Bhg5mZHThwwPx+f8CZqaysLDvllFOc+YSEhID1Jf0966yz7Mcff6zyG9HDt4Xc3Fy7//77LSUlxfx+v3Xs2NGeeuopy8/Pd+rdHtfc7reH96d169alzuQvW7YsIIDVqVMn4M1CUVGRhYSEONvCwoULrVmzZgHtl7ctl/W6VZnjspv2hw8fbmeddZazTZQob193c6yKiIgIOPsaEhISsF1v3bo1YNt0o0YGzoiIiFKn2PPz8y01NdV69uxpW7ZsKXWguv/+++3dd98tc5oxY0apwFlyer1hw4YBBzkzs23btjkHhhIPPfSQJSYmBnzMUd6Te+QTFhkZaZs3b3bmt2/fbmFhYc58fHy8rV271sx++1jN5/MFhKA1a9ZYfHy8M9+zZ0/75z//aWZmXbt2LfUx3EsvvRTwQn34zljil19+seeee866d+9ufr8/YOdq1KhRwP3av3+/+f1++/HHH83st4P54f13EyLdPlclj19Fg4bbF0W321pNezNRmTdnbrZ9NyHG7Xbpdj+JjY21d99918rzzjvvWGxsbMAyt2+e3ARytwHY7Zstt8+tmbvjlNtt0+1xpDJv1Ct63HF7zDyy/xU5Nrjd15s0aRLwuB/ptddesyZNmpiZWd++fZ0Al56eXurjzxkzZlirVq2c+cOfK7Pftr2Sr0GYmX3zzTcWHh4eUH/kR88HDx60/v37W7t27eyzzz6r0kmYsrYFM7P33nvPhgwZYnXr1rW6desG9MfNca0y+23JcS0uLq7M49rhx5KEhISAryD8/PPP5vP5nJC8ZcuWUseemTNn2rZt28qc3njjjSrtu27bNzNbsGCBJSYm2mOPPeYsK2/fcnOsatq0qb333ntmZvbdd9+Zz+ezN954w6l99913rWnTpuW2dTQ1MnC2bt064A6W2Lt3r6WmptqZZ54Z8OB3797d7r///nLbW7duXal3E8OHD7exY8daXFxcqQNNVlaWNWzYsFQ7n376qbVt29auv/56KygoKPfJbdGiRcCB6Yknngh4t5eVlRVwMBw8eLB17tzZnn/+eevTp4+lp6dbly5d7Msvv7SNGzdat27dAs6UfPTRRxYdHW133nmnPfbYY9awYUO77bbbbPbs2XbHHXdYTExMwONx+LvXsmRnZ9stt9zizF922WWWkZFh+/btswMHDtiYMWOsZcuWzvpVq1YF9N9NiHT7XJm5CxpuXxTdbms17c2E28BcmW2/oiHG7Xbpdj/53//9X0tOTrYFCxYEfGyZl5dnCxYssGbNmtmoUaMC+lSZN08VDeRuA7DbN1tun9sSFT1Oud023R5HzNwFYDfHHbfHTDP3xwa3+/rtt99u9evXt4ceesjWr19vOTk5lpOTY+vXr7eHHnrIGjRo4HxMu2HDBouNjbVrrrnG7rnnHouMjLTBgwfbvffea9dcc42FhYVZZmam03ZKSootX77cmX/99ddt//79AY/N4SHgD3/4g7300kulHuOS0JmUlFSlN6LH2hby8vKcj2XN3B/XKrPfXnLJJXbZZZdZ/fr1SwX/VatWWePGjZ35IUOGWLdu3ezLL7+0LVu2OB/tl3j33XctMTHRmb/ooovsnnvuKff+Hvm65Xbfddt+iW+//dZ69uxpF198sX3//ffl7ltujlUjR460Vq1a2aRJk6xTp042ZMgQS0lJscWLF9uSJUvsD3/4g/3lL38pt62jqZGB88Ybbyx1sCiRn59vnTt3DniynnrqqTK/IFsiJyfH7rrrLme+W7du1r17d2eaMWNGQP0999xj3bp1K7Ot/fv32/Dhw61Vq1YWFBRU5pM7fPjwUm0ebvLkyXbJJZcE9O/CCy+0yMhIS09Ptz179tioUaOcMx6tWrUKONCZ/fbi3qVLl1Kn30855ZRS368s791oeb7++mtr0aKFBQcHW0hIiMXExNjSpUud9ZmZmQEfr7gJkW6fKzN3QcPti6Lbba2mvZlwG5gru+1XNMS42S7d7ieFhYV2ww03WGhoqPn9fgsPD7fw8HDz+XwWGhpqI0aMsMLCwoA23L55chPI3QZgt2+23D63h6vIccrttun2OFKiotuOm+NOZY6Zbo8Nbvd1s9++C9ikSZOAs9k+n8+aNGlS6rnfvHmzDRo0yOrVq+fsJyEhIda1a1d75ZVXAmrvuusumzt3brl9v+WWW2zAgAHO/M033+x8X/RIBw8etL59+1bpjajbbcHtcc3tfnvttdcGTC+++GLA3//73/9u6enpznxubq5znPL7/ZacnBxwBnD+/Pn273//25lfsGCBzZo1q9z799NPP9kzzzzjzLvdd922f7ji4mK77777nO+3lrVvuTlW7du3z6677jo744wz7Prrr7eioiL717/+ZaGhoebz+ax79+6VOg6Y1dDA+dNPP5V6h3W4/Pz8o6b1qvr6669tx44dR6159dVXbcyYMZV64Lds2WI7d+6sUD8+//zzo46W27Vrl61atco++uijgI9cDrdt2zbny9EVVVBQYG+++aYtWrSozJHXh3vqqaeOOoiorBB5pKP1r7yg4ff7SwUNtwfC8ra1kv4cua1V55sJn89X5TcTbgNzeUru79G2/YqEmBKHb5fljUA9Vl/K20/y8vJs+fLlNmfOHJszZ44tX768zIEaJffHzZsnN4HczXZp5v7NVnU8t6+++qqNHj26zH3CbWjbtm1bmaNuK3Jsqei2U9Zxx82x62jHTLfHBrf7+uG2bNliH330UYW2/+LiYsvJybGdO3cGjOR2o6CgIGBbO3jwYLn7RMn6w68UUJWTMBXl5rhW1n57eAg+cr89ln379tkvv/xSavlXX311zNfYyhg1alS1HJfdWLt2rT3yyCPOwLDDuT1WleWXX34JeMNVGT4zsypdsAmoBqGhoVq/fn2Z15IrkZ+fr6ysrIDr23Xo0EFRUVFOzTfffKOkpCT5fD7P+1OWrVu3Kjw8XE2aNDlq3ZYtW7R//36lpKQoOLjsy+Hu3r1bW7ZsUXFxsZo0aaJmzZqVqvn555+1c+dOnX766WW2sXfvXn3yySfq1q3bUfvj5v6+9tpreueddzRhwgTFxcUds97tY1nd9fv379eHH36ooqIidenSpcxre1bUli1bFBoaqqZNmzrLKrJdVsaJeG6lim2blW1/0aJFevvttyu87bht/2i11XVsKFHRff1kUNZ2X1kVOa5J1bvfHm/Vte9Wt/z8fK1du1a5ubmSqu9YVVE19sLvv/zyi7KystSgQQO1bds2YF1hYaHmzZsXcHFw6k9s/ZdffqlVq1YpNTVVKSkp2rhxox599FEVFRVp8ODB6tmzpyRp3LhxKsuhQ4c0ZcoUxcbGSpIeeuihgPWHt9+jRw+n/VmzZgW0n5ycXOG+VLY/bto/vL5r165q3bq1q/rOnTtr48aNuv/++8usr1+/vnJycpSZmXnc7u9pp52m//znPxo/fnyVnluv60t88803+vbbb5WamqqGDRtW+/MVFRWlHj16qKCgQPPmzdOyZcu0YcMGDRo0yOlTWUrqSy5OfdVVVwXU169fX/Xr1z9q/eEvWJV9fMpqPyEhQU2aNAnoT3W0/8MPP6hOnTqaN29eqfvrpv3K9OXIi5Qf6/Evq/9Hq//kk09Uv35958cNZs2aFXAx91GjRmnQoEGua49HvZf39UiNGjVytoHXX39dCQkJZe4rderU0YUXXuj0JzMzs9r643X9HXfcoYEDB5b7+NarV69U2Hz88ce1Zs0aXXLJJRo0aJBmzZqlyZMnOxdbnzhxovMG0G1/brzxRg0cOFDnn39+qePXkaq67RxVlc6PemTTpk3O9aH8fr9dcMEFAR+tHTnCi/oTW7948WILDQ21Bg0aWHh4uC1evNgaNWpkaWlp1rNnTwsKCnK+8O7z+eyss84K+Pime/fu5vP5rGPHjta9e3fr0aOHHc5N+25qK9Mft+3XtHov76/btr2u9/rxbNOmjTOIYfv27dasWTOLjo62jh07WoMGDSwuLi7g41Sv690+Pke2n5ycXGvar8y24PXj365dO+frGjNmzLCIiAgbPXq0TZs2zcaMGWORkZE2c+ZM17XHo97tc1XV9t0+9tXdH6/rD/9aypQpU+z777+3o7nnnnusXr16lpGRYfHx8TZlyhSLjY21SZMm2X333WeNGjWyO+6447j0x23bbtTIwNm/f3/r3bu37d6927Kzs613797WvHlzZ8TgkYGH+hNbn5qaarfeequZ/XY9v/r16wd8+X78+PF24YUXmtlv33tq3rx5wIu8WfkjV92276a2Mv1x235Nq/fy/rpt2+t6t/13W3/4dwKvvvpq69q1q/NrJ3v37rW0tDS76qqrnNt6Xe/28anN7VdmW/D68Y+IiHC+F9m+ffuAUdpmZrNnz7a2bdu6rj0e9V7e18q073V/jsfjuWzZMvvrX/9qDRs2tJCQEOvbt68tWrSozO9Bt2jRwl5++WUz+23wYFBQkD3//PPO+gULFgQMmvKyP27bdqNGBs64uLiA68EVFxfbDTfcYElJSfb111+XCjzUn9j6qKgo5yfbDh06ZMHBwQEj/j7//POAS1KsWbPGTjvtNLvpppucL8kf7YXCTftu++K2P27br2n1Xt9ft8+t1/VePp6HvyieeuqppUb2fvjhhwGXVvG63u3jU9vbd7steP34x8bGOpeZiouLK/Nak4dfUquitcej3sv7Wpn2ve7P8Xw8Dxw4YC+++KLz610JCQl2yy23OMcZs7Ivtn74YNZt27YFXGzdy/64bdsNf+U+iPfWL7/8EvBldZ/Pp2nTpqlPnz7q1q2bvvrqK+prUH1JjST5/X6Fh4crOjraWVevXj3l5eU58x07dlRWVpZ2796tc845R//973+P+UV+N+27qa1Mf9y2X9Pqvby/btv2ut5t/93Wl9QWFhaWGjxyyimnaPfu3WW27VV9ZZ/b2th+VbYFLx7/Xr16adq0aZKkbt266aWXXgqonzdvnlq2bOm69njUe3lfK9O+1/05Ho9niZCQEA0cOFBLlizRli1bdN1112n27Nlq3bq1UxMfH68NGzZIkrKzs3Xo0CFnXpK++OKLgEF2XvanKm0fU6Viqsc6duxozz33XJnrRo4caTExMQFn2Kg/sfXt2rWzxYsXO/NHXmbivffeC/hZscPNnTvXGjdubH6/v9wzE27ar0pfKtIft+3XtHqv76+bto9HvZePp8/nsz/84Q/Wvn17i4yMLHWh7RUrVgT83KDX9W4fn9revttarx//7777zpo1a2YXXHCBjRs3ziIiIuy8886z6667zi644AILDQ11rs3opvZ41Ht5X2vaY3+8Hs+jXYKruLg44KztbbfdZo0aNbJhw4ZZ8+bNbfz48ZaUlGTTpk2z6dOnW2JiYsDPgXrZH7dtu1EjR6lfdtllmjt3rv70pz+VWvf444+ruLhY06dPp76G1I8YMUKHDh1y5s8444yA2yxevLjckXGDBg3Seeedp6ysrFKjSCvTflX6UpH+uG2/ptUfqbrvr5u2j0e9l4/nnXfeGbAuMjIyYH7RokU6//zznXmv6490rMentrfvttbrxz8hIUGffvqppkyZokWLFsnMtGbNGu3YsUPnnnuuPvzwQ51zzjmua49HvZf3taY99sejPjk5WUFBQSqPz+dzRuBL0t13362IiAitXLlS1113ncaPH68zzzxTN998s/bv368+ffronnvuOS79cdu2G1yHEwAAAJ6qkd/hBAAAwMmDwAkAAABPETgBAADgKQInAAAAPEXgBIAqWLlypYKCgtS7d+8T3RUAqLEYpQ4AVTBs2DBFRkZq5syZ2rRpkxISEk50lwCgxuEMJwBU0r59+/Tiiy9qxIgR6t27t5555pmA9a+99ppatWql8PBw9ejRQ88++6x8Pp/27Nnj1HzwwQc6//zzFRERocTERI0ePVoFBQXH944AgMcInABQSfPmzVNKSopat26twYMH6+mnn1bJh0Zbt27V5Zdfrv79+2v9+vUaPny4br311oDbf/3117r44ouVkZGhzz77TC+++KI++OADjRo16kTcHQDwDB+pA0AlnXvuuRo4cKD++te/6tdff1WTJk00f/58de/eXePHj9cbb7yhzz//3Km/7bbbdO+99+rnn39WTEyMhg0bpqCgID355JNOzQcffKBu3bqpoKBA4eHhJ+JuAUC14wwnAFTCpk2btGbNGl111VWSpODgYF155ZWaOXOms75jx44Bt+nUqVPA/Pr16/XMM88oMjLSmdLT01VcXKytW7cenzsCAMdBjfwtdQCo6WbOnKlff/01YJCQmSksLEyPP/54hdrYt2+fhg8frtGjR5dal5SUVG19BYATjcAJAC79+uuveu655/Tggw/qoosuCljXv39/zZ07V61bt9Z//vOfgHUff/xxwPzZZ5+tDRs2qGXLlp73GQBOJL7DCQAuLVy4UFdeeaV27dql6OjogHX/+Mc/9Pbbb2vevHlq3bq1xo4dq6FDh2rdunW66aab9O2332rPnj2Kjo7WZ599pi5duugvf/mLhg0bprp162rDhg1aunRphc+SAkBtwHc4AcClmTNnKi0trVTYlKSMjAytXbtWe/fu1UsvvaQFCxaoXbt2mjZtmjNKPSwsTJLUrl07rVixQl999ZXOP/98tW/fXnfccQfX8gRw0uEMJwAcJ/fee6+mT5+uHTt2nOiuAMBxxXc4AcAjTzzxhDp27KjY2Fh9+OGH+te//sU1NgH8LhE4AcAj2dnZmjRpkn766SclJSXppptu0oQJE050twDguOMjdQAAAHiKQUMAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPDU/wPLJlpMS1AiXwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df['Age'].value_counts().plot(kind='bar', title='Bar Plot (Age)')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHDCAYAAABrp9FjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAstUlEQVR4nO3de3xU9Z3/8fckIZcmmUFCbpQEUuIKyEVFC0GogNFAwYdZglpvILBeINCSCJawVopVom4RoRugspjYIkWhQAEXvGQFqU1Q02VLqouIwURJBlAyQ7JkoMn8/uDH6Mh1kvlmkvB6Ph7n0eackzOf9A/2tefMOcfidrvdAgAAAAwICvQAAAAA6LiITQAAABhDbAIAAMAYYhMAAADGEJsAAAAwhtgEAACAMcQmAAAAjCE2AQAAYAyxCQAAAGOITQAAABhDbAIIKLvdroceekjJycnq1KmTLBaLZ+nZs2egxwMAtFBIoAcAcPlqaGjQj370Ix04cECTJ0/W4MGDFR4eLklatGiRjh07FuAJAQAtRWwCCJhNmzbpk08+UV5enhYuXOi1be3atcQmAHQAXEYHEDAHDhyQJA0bNuyS9rdYLJoxY4bXunHjxp11uX39+vWyWCzasWOHZ11RUZEsFosOHjzoWdfU1KQBAwbIYrGoqKjIs/6BBx4465irV69WUFCQnnnmmYvOWVtbq5ycHPXs2VNhYWHq3r27Jk6cqKNHj573d2666SYNHDjwnNuuuuoqZWRkeM29ZMkS9e/fX+Hh4YqNjdXo0aP14YcfevYpLCzUqFGjFBcXp7CwMPXt21fLly8/69g9e/aUxWLRrFmzztqWkZEhi8WicePGedbt2LHjrP9tJWns2LGyWCz65S9/ed6/EcDlidgEEDBdunSRJK8AbE2///3vtXfv3ovu9+abb2rKlCmaMWOG5s6de8F96+rqNHz4cP3mN7/RrbfeqiVLluiRRx7R//7v/+qLL7447+/df//9+tvf/qby8nKv9R988IE++eQT3XfffZ51U6dO1axZs5SUlKRnn31Wc+fOVXh4uEpLSz37LF++XD169NC8efO0aNEiJSUlafr06SooKDjrs8PDw/XKK6/o1KlTnnVffPGFiouLPV9ruJB3331X//mf/3nR/QBcnriMDiBgbr/9ds2dO1dPPvmk4uPjvb6z+e3wMcHlcumJJ57QmDFjtG3btvPuV1ZWpqysLGVmZuqFF1646HH/7d/+TeXl5dqwYYP++Z//2bP+8ccfl9vtPu/v3XHHHZo5c6ZWr17tdfZ09erVioyM1Pjx4yVJ77zzjoqKivTTn/5US5Ys8ez36KOPeh1/586dioiI8Pw8Y8YMjR49Ws8//7yys7O9Pnv48OH67//+b23evFlZWVmSTp8JHjx4sL788suL/s2PPfbYRf93BHD54swmgIDp1q2b/vKXv6h///6aMGGCkpKSFBsbq9jYWL355ptGP7ugoEBfffWV5s+ff959PvvsM40dO1bXXHONfv/73yso6OL/ZP7xj3/UwIEDvULzDIvFct7fs9lsuv322/WHP/zBE42NjY169dVXlZmZqcjISM/xLRbLOef+9vG/HZoOh0NHjx7VTTfdpM8++0wOh8Pr90JDQ3XvvfeqsLDQs66oqEiTJ0++6N+7YcMGffDBB5f09QIAlydiE0BAXX311dq2bZt69eql7t2766233tJbb72lwYMHG/tMh8OhhQsXKjc3V/Hx8efcp76+XhkZGbLb7fr6668vGIrfduDAAfXr169Zc02cOFGVlZXatWuXJOntt9+W3W7X/fff73X8bt26eb6CcD7vvfee0tPTFRkZqc6dOys2Nlbz5s2TpLNiU5ImT56s7du3q7q6Wjt37lR1dbXuvPPOC35GY2Oj5s2bp3vvvVcDBgzw9c8FcJkgNgEE3IoVK3TgwAHl5+crPT1d6enp6tq1q7HPe/bZZxUUFKQ5c+acd5+jR4/q1KlT2rJli/bt26f8/Hxj85yRkZGh+Ph4rV69WtLpS+gJCQlKT0/36TgHDhzQzTffrKNHj+r555/X66+/rrfeeks5OTmSTt9g9F0DBw7UwIED9bvf/U6FhYXKysqS1Wq94OesWrVKBw8e1K9+9Suf5gNweSE2AQSUw+HQggULdMMNN+jee+81/nmHDh3SkiVL9Pjjjys6Ovq8+33ve9/T9u3bNW7cOOXk5GjhwoX6+OOPL3r8Xr16nXWTz6UKDg7WPffco/Xr1+vYsWPatGmT7r77bgUHB3sd/9ChQ/r666/Pe5wtW7bI5XJp8+bNevjhh/XjH/9Y6enpXpfWz2XKlClauXKl1q9ff9FL6P/3f/+nBQsWaPr06erRo4dvfyiAywqxCSCgFi5cqKNHj2rx4sWXfKm6JRYsWKD4+Hg98sgjF9wvNjZWvXv3liQ9+eST6t69ux588MEL3uQjSVlZWfqf//kfbdy48axtF/td6fRd6ceOHdPDDz+suro6r7vQzxzf7XZrwYIF5z3+mTj99uc5HA6v72Seyz333KMvv/xScXFxGjFixAX3XbJkierr6/Wv//qvF/2bAFzeuBsdQMB8/vnnWrp0qe68807deOONl/Q7lZWV2r59u+fnI0eO6MSJE17r9uzZI0l6//33deWVV+r73/++Z9ubb76pV155RaGhoZc8Z0REhF588UWlp6dr+fLlmj59+nn3nTNnjtavX6877rhDU6ZM0aBBg/T1119r8+bNWrFixXmfpXnGtddeq379+mndunXq06ePrrvuOq/tI0eO1P3336+lS5dq//79Gj16tJqamrRr1y6NHDlSM2bM0K233qrQ0FDddtttnmhduXKl4uLiVF1dfd7PvuKKK1RdXa3g4OCLhv+bb76pp59+WjExMRfcDwCITQABM2/ePLndbj377LOX/DtbtmzRli1bzlo/ZsyYs9b9/Oc/V1xcnB544AHPumuuuUZ33323z7PefPPNmjx5svLy8nT77bd7Bey3RUVFadeuXZo/f742btyol19+WXFxcbr55pvVvXv3S/qsiRMn6rHHHvO6MejbCgsLNWDAAK1atUpz5syRzWbT9ddfr6FDh0o6/RD49evX6/HHH9fs2bOVkJCgadOmKTY2VlOmTLngZ3fu3PmSZkxMTDzng+AB4Lss7ku5rgMA7dCIESP0wAMPeMVme7BkyRLl5OTo4MGDSk5ODvQ4ANAifGcTANoQt9utVatW6aabbiI0AXQIXEYH0GH98Ic/PO/l7ramvr5emzdv1jvvvKO9e/fqT3/6U6BHAgC/4DI6ALQBBw8eVEpKijp37qzp06fr6aefDvRIAOAXxCYAAACM4TubAAAAMMan2OzZs6csFstZS3Z2tiSpoaFB2dnZiomJUVRUlLKysmS3240MDgAAgLbPp8voR44cUWNjo+fn8vJy3XLLLXrnnXc0YsQITZs2Ta+//rqKiopks9k0Y8YMBQUF6b333rvkgZqamnTo0CFFR0e3yttEAAAA4Bu3263jx4+rW7duCgq6yLlLdwv87Gc/c/fq1cvd1NTkrq2tdXfq1Mm9bt06z/aPP/7YLcldUlJyycesqqpyS2JhYWFhYWFhYWnjS1VV1UXbrtmPPjp58qRWr16t3NxcWSwWlZWV6dSpU0pPT/fs07t3byUnJ6ukpERDhgy5pONGR0dLkqqqqmS1Wps7HgAAAAxxOp1KSkrydNuFNDs2N23apNraWs+bOWpqahQaGnrWq87i4+NVU1Nz3uO4XC65XC7Pz8ePH5ckWa1WYhMAAKANu5SvPDb7bvRVq1ZpzJgx6tatW3MPIUnKz8+XzWbzLElJSS06HgAAANqOZsXm559/rrffflv/8i//4lmXkJCgkydPqra21mtfu92uhISE8x4rLy9PDofDs1RVVTVnJAAAALRBzYrNwsJCxcXFaezYsZ51gwYNUqdOnVRcXOxZt2/fPlVWViotLe28xwoLC/NcMufSOQAAQMfi83c2m5qaVFhYqEmTJikk5Jtft9lsmjp1qnJzc9WlSxdZrVbNnDlTaWlpl3xzEAAAADoWn2Pz7bffVmVlpaZMmXLWtsWLFysoKEhZWVlyuVzKyMjQsmXL/DIoAAAA2p829250p9Mpm80mh8PBJXUAAIA2yJde493oAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGBMs19XCQC4uMbGRu3atUvV1dVKTEzU8OHDFRwcHOixAKDVcGYTAAzZsGGDUlNTNXLkSN1zzz0aOXKkUlNTtWHDhkCPBgCthtgEAAM2bNigCRMmqH///iopKdHx48dVUlKi/v37a8KECQQngMsGz9kEAD9rbGxUamqq+vfvr02bNiko6Jv/v76pqUmZmZkqLy/X/v37uaQOoF3iOZsAEEC7du3SwYMHNW/ePK/QlKSgoCDl5eWpoqJCu3btCtCEANB6iE0A8LPq6mpJUr9+/c65/cz6M/sBQEdGbAKAnyUmJkqSysvLz7n9zPoz+wFAR0ZsAoCfDR8+XD179tTChQvV1NTkta2pqUn5+flKSUnR8OHDAzQhALQeYhMA/Cw4OFiLFi3S1q1blZmZ6XU3emZmprZu3apf//rX3BwE4LLAQ90BwIDx48dr/fr1evTRRzV06FDP+pSUFK1fv17jx48P4HQA0Hp49BEAGMQbhAB0RL70Gmc2AcCg4OBgjRgxItBjAEDA8J1NAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGONzbH755Ze67777FBMTo4iICPXv318ffvihZ7vb7dYTTzyhxMRERUREKD09Xfv37/fr0AAAAGgffIrNY8eO6cYbb1SnTp20bds2ffTRR1q0aJGuuOIKzz7PPfecli5dqhUrVmj37t2KjIxURkaGGhoa/D48AAAA2jaL2+12X+rOc+fO1Xvvvaddu3adc7vb7Va3bt306KOPavbs2ZIkh8Oh+Ph4FRUV6Sc/+clFP8PpdMpms8nhcMhqtV7qaAAAAGglvvSaT2c2N2/erOuvv1533HGH4uLidO2112rlypWe7RUVFaqpqVF6erpnnc1m0+DBg1VSUuLjnwEA7V9jY6N27NihP/zhD9qxY4caGxsDPRIAtCqfYvOzzz7T8uXLdeWVV+qNN97QtGnT9NOf/lQvv/yyJKmmpkaSFB8f7/V78fHxnm3f5XK55HQ6vRYA6Ag2bNig1NRUjRw5Uvfcc49Gjhyp1NRUbdiwIdCjAUCr8Sk2m5qadN1112nhwoW69tpr9dBDD+nBBx/UihUrmj1Afn6+bDabZ0lKSmr2sQCgrdiwYYMmTJig/v37q6SkRMePH1dJSYn69++vCRMmEJwALhs+xWZiYqL69u3rta5Pnz6qrKyUJCUkJEiS7Ha71z52u92z7bvy8vLkcDg8S1VVlS8jAUCb09jYqEcffVTjxo3Tpk2bNGTIEEVFRWnIkCHatGmTxo0bp9mzZ3NJHcBlwafYvPHGG7Vv3z6vdZ988ol69OghSUpJSVFCQoKKi4s9251Op3bv3q20tLRzHjMsLExWq9VrAYD2bNeuXTp48KDmzZunoCDvf2aDgoKUl5enioqK895sCQAdSYgvO+fk5Gjo0KFauHCh7rzzTr3//vt68cUX9eKLL0qSLBaLZs2apaeeekpXXnmlUlJS9Itf/ELdunVTZmamifkBoM2prq6WJPXr1++c28+sP7MfAHRkPsXmDTfcoI0bNyovL09PPvmkUlJS9MILL+jee+/17PPYY4+pvr5eDz30kGprazVs2DBt375d4eHhfh8eANqixMRESVJ5ebmGDBly1vby8nKv/QCgI/PpOZutgedsAmjvGhsblZqaqv79+2vTpk1el9KbmpqUmZmp8vJy7d+/X8HBwQGcFACax9hzNgEAFxccHKxFixZp69atyszM9LobPTMzU1u3btWvf/1rQhPAZcGny+gAgEszfvx4rV+/Xo8++qiGDh3qWZ+SkqL169dr/PjxAZwOAFoPl9EBwKDGxkbt2rVL1dXVSkxM1PDhwzmjCaDd4zI6AAAA2gRiEwAM4XWVAEBsAoARvK4SAE7jO5sA4Gc8+ghAR8d3NgEggHhdJQB8g9gEAD/jdZUA8A1iEwD87NuvqzwXXlcJ4HJCbAKAnw0fPlw9e/bUwoUL1dTU5LWtqalJ+fn5SklJ0fDhwwM0IQC0HmITAPyM11UCwDd4XSUAGMDrKgHgNB59BAAG8bpKAB2RL73GmU0AMCg4OFgjRowI9BgAEDDEJgAYxJlNAJc7bhACAEN4NzoAEJsAYATvRgeA07hBCAD8jHejA+joeDc6AAQQ70YHgG8QmwDgZ7wbHQC+QWwCgJ/xbnQA+AaxCQB+xrvRAeAbxCYA+BnvRgeAb/BQdwAwgHejA8BpnNkEAIO++3S5715WB4COjjObAGDAmYe6jx07Vo899pgiIiJ04sQJbdu2TRMmTODsJoDLBg91BwA/O/NQ965du+ro0aM6ePCgZ1vPnj3VtWtXffXVVzzUHUC7xUPdASCAzjzUvays7JyvqywrK+Oh7gAuG8QmAPjZl19+KUkaPXq0XnvtNZWWliovL0+lpaV67bXXNHr0aK/9AKAj4zubAOBnR44ckXT6ZqDo6Gj94x//8GybM2eORo4c6bUfAHRknNkEAD+LjY2VJL3xxhuKiYnRypUrVV1drZUrVyomJkZvvfWW134A0JERmwDgZ3FxcZ7/fv311+vqq69WZGSkrr76al1//fXn3A8AOipiEwD8bO/evZKkHj16qLy8XEOHDpXVatXQoUP197//XT169PDaDwA6Mr6zCQB+VlFRIUmqrKzU2LFjNWfOHM9zNrdv367XX3/daz8A6MiITQDws169ekmSHnnkEW3btk1bt271bEtJSdFDDz2k3/72t579AKAj46HuAOBnJ0+eVGRkpGJiYvT555+rpKRE1dXVSkxMVFpamnr06KGvvvpK9fX1Cg0NDfS4AOAzHuoOAAEUGhqqnJwc2e129ejRQ5988oluuukmffLJJ+rRo4fsdrtycnIITQCXBS6jA4ABzz33nCRp8eLFevjhhz3rQ0JCNGfOHM92AOjouIwOAAadPHlSy5Yt04EDB9SrVy9Nnz6dM5oA2j1feo3YBAAAgE/4ziYAAADaBJ9i85e//KUsFovX0rt3b8/2hoYGZWdnKyYmRlFRUcrKypLdbvf70AAAAGgffD6zefXVV6u6utqz/PnPf/Zsy8nJ0ZYtW7Ru3Trt3LlThw4d0vjx4/06MAAAANoPn+9GDwkJUUJCwlnrHQ6HVq1apTVr1mjUqFGSpMLCQvXp00elpaUaMmRIy6cFAABAu+JzbO7fv1/dunVTeHi40tLSlJ+fr+TkZJWVlenUqVNKT0/37Nu7d28lJyerpKTkvLHpcrnkcrk8Pzudzmb8GQDQMidONurAkTojx2441agvjp1Q9ysiFN4p2MhnSFKv2ChFhJo7PgA0h0+xOXjwYBUVFemqq65SdXW1FixYoOHDh6u8vFw1NTUKDQ1V586dvX4nPj5eNTU15z1mfn6+FixY0KzhAcBfDhyp07jf/PniO7ZhW2cOU7/v2wI9BgB48Sk2x4wZ4/nvAwYM0ODBg9WjRw+99tprioiIaNYAeXl5ys3N9fzsdDqVlJTUrGMBQHP1io3S1pnDjBz708N1mvXqHr1w1zVKjYsy8hnS6b8BANqaFr1BqHPnzvqnf/onffrpp7rlllt08uRJ1dbWep3dtNvt5/yO5xlhYWEKCwtryRgA0GIRocHGzwqmxkVx5hHAZadFz9msq6vTgQMHlJiYqEGDBqlTp04qLi72bN+3b58qKyuVlpbW4kEBAADQ/vh0ZnP27Nm67bbb1KNHDx06dEjz589XcHCw7r77btlsNk2dOlW5ubnq0qWLrFarZs6cqbS0NO5EBwAAuEz5FJtffPGF7r77bn311VeKjY3VsGHDVFpaqtjYWEnS4sWLFRQUpKysLLlcLmVkZGjZsmVGBgcAAEDb51Nsrl279oLbw8PDVVBQoIKCghYNBQAAgI6Bd6MDAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAmBbF5jPPPCOLxaJZs2Z51jU0NCg7O1sxMTGKiopSVlaW7HZ7S+cEAABAO9Ts2Pzggw/029/+VgMGDPBan5OToy1btmjdunXauXOnDh06pPHjx7d4UAAAALQ/zYrNuro63XvvvVq5cqWuuOIKz3qHw6FVq1bp+eef16hRozRo0CAVFhbqL3/5i0pLS/02NAAAANqHZsVmdna2xo4dq/T0dK/1ZWVlOnXqlNf63r17Kzk5WSUlJec8lsvlktPp9FoAAADQMYT4+gtr167VX//6V33wwQdnbaupqVFoaKg6d+7stT4+Pl41NTXnPF5+fr4WLFjg6xgAAABoB3w6s1lVVaWf/exneuWVVxQeHu6XAfLy8uRwODxLVVWVX44LAACAwPMpNsvKynT48GFdd911CgkJUUhIiHbu3KmlS5cqJCRE8fHxOnnypGpra71+z263KyEh4ZzHDAsLk9Vq9VoAAADQMfh0Gf3mm2/W3r17vdZNnjxZvXv31s9//nMlJSWpU6dOKi4uVlZWliRp3759qqysVFpamv+mBgAAQLvgU2xGR0erX79+XusiIyMVExPjWT916lTl5uaqS5cuslqtmjlzptLS0jRkyBD/TQ0AAIB2wecbhC5m8eLFCgoKUlZWllwulzIyMrRs2TJ/fwwAAADagRbH5o4dO7x+Dg8PV0FBgQoKClp6aAAAALRzvBsdAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMMbv70YHAJMqjtar3vWPQI/hk08P13n9Z3sTGRailK6RgR4DQDtFbAJoNyqO1mvkr3cEeoxmm/XqnkCP0GzvzB5BcAJoFmITQLtx5ozmC3ddo9S4qABPc+kaTjXqi2Mn1P2KCIV3Cg70OD759HCdZr26p92dTQbQdhCbANqd1Lgo9fu+LdBj+OT6noGeAAACgxuEAAAAYAyxCQAAAGOITQAAABhDbAIAAMAYYhMAAADGEJsAAAAwhtgEAACAMcQmAAAAjCE2AQAAYAyxCQAAAGOITQAAABhDbAIAAMAYYhMAAADGEJsAAAAwhtgEAACAMcQmAAAAjCE2AQAAYAyxCQAAAGOITQAAABhDbAIAAMCYkEAPAAC+sIQ4VeHcp6DwqECPclmocNbJEuIM9BgA2jFiE0C70qnzbs17f2Ggx7isdOp8s6QfB3oMAO0UsQmgXTlVO1iLxt6jXnGc2WwNBw7X6aevHAj0GADaMWITQLvi/odVKdar1DfGFuhRLgtNDQ65/3Ek0GMAaMe4QQgAAADGEJsAAAAwhtgEAACAMT7F5vLlyzVgwABZrVZZrValpaVp27Ztnu0NDQ3Kzs5WTEyMoqKilJWVJbvd7vehAQAA0D74FJvdu3fXM888o7KyMn344YcaNWqUbr/9dv3973+XJOXk5GjLli1at26ddu7cqUOHDmn8+PFGBgcAAEDb59Pd6LfddpvXz08//bSWL1+u0tJSde/eXatWrdKaNWs0atQoSVJhYaH69Omj0tJSDRkyxH9TAwAAoF1o9nc2GxsbtXbtWtXX1ystLU1lZWU6deqU0tPTPfv07t1bycnJKikpOe9xXC6XnE6n1wIAAICOwefY3Lt3r6KiohQWFqZHHnlEGzduVN++fVVTU6PQ0FB17tzZa//4+HjV1NSc93j5+fmy2WyeJSkpyec/AgAAAG2Tz7F51VVXac+ePdq9e7emTZumSZMm6aOPPmr2AHl5eXI4HJ6lqqqq2ccCAABA2+LzG4RCQ0OVmpoqSRo0aJA++OADLVmyRHfddZdOnjyp2tpar7ObdrtdCQkJ5z1eWFiYwsLCfJ8cAAAAbV6Ln7PZ1NQkl8ulQYMGqVOnTiouLvZs27dvnyorK5WWltbSjwEAAEA75NOZzby8PI0ZM0bJyck6fvy41qxZox07duiNN96QzWbT1KlTlZubqy5dushqtWrmzJlKS0vjTnQAAIDLlE+xefjwYU2cOFHV1dWy2WwaMGCA3njjDd1yyy2SpMWLFysoKEhZWVlyuVzKyMjQsmXLjAwOAACAts+n2Fy1atUFt4eHh6ugoEAFBQUtGgoAAAAdA+9GBwAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGJ9fVwkAgXLiVKMkqfxLR4An8U3DqUZ9ceyEul8RofBOwYEexyefHq4L9AgA2jliE0C7ceD/h8/cDXsDPMnlJzKM/3MBoHn41wNAu3Hr1QmSpF5xUYpoR2cIPz1cp1mv7tELd12j1LioQI/js8iwEKV0jQz0GADaKWITQLvRJTJUP/lhcqDHaLbUuCj1+74t0GMAQKviBiEAAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGCMT7GZn5+vG264QdHR0YqLi1NmZqb27dvntU9DQ4Oys7MVExOjqKgoZWVlyW63+3VoAAAAtA8+xebOnTuVnZ2t0tJSvfXWWzp16pRuvfVW1dfXe/bJycnRli1btG7dOu3cuVOHDh3S+PHj/T44AAAA2r4QX3bevn27189FRUWKi4tTWVmZfvSjH8nhcGjVqlVas2aNRo0aJUkqLCxUnz59VFpaqiFDhvhvcgAAALR5LfrOpsPhkCR16dJFklRWVqZTp04pPT3ds0/v3r2VnJyskpKScx7D5XLJ6XR6LQAAAOgYmh2bTU1NmjVrlm688Ub169dPklRTU6PQ0FB17tzZa9/4+HjV1NSc8zj5+fmy2WyeJSkpqbkjAQAAoI1pdmxmZ2ervLxca9eubdEAeXl5cjgcnqWqqqpFxwMAAEDb4dN3Ns+YMWOGtm7dqnfffVfdu3f3rE9ISNDJkydVW1vrdXbTbrcrISHhnMcKCwtTWFhYc8YAAABAG+fTmU23260ZM2Zo48aN+q//+i+lpKR4bR80aJA6deqk4uJiz7p9+/apsrJSaWlp/pkYAAAA7YZPZzazs7O1Zs0a/elPf1J0dLTne5g2m00RERGy2WyaOnWqcnNz1aVLF1mtVs2cOVNpaWnciQ4AAHAZ8ik2ly9fLkkaMWKE1/rCwkI98MADkqTFixcrKChIWVlZcrlcysjI0LJly/wyLAAAANoXn2LT7XZfdJ/w8HAVFBSooKCg2UMBAACgY+Dd6AAAADCG2AQAAIAxzXr0EQB0NCdONurAkTojx/70cJ3Xf5rSKzZKEaHBRj8DAHxFbAKApANH6jTuN382+hmzXt1j9PhbZw5Tv+/bjH4GAPiK2AQAnT4ruHXmMCPHbjjVqC+OnVD3KyIU3sncmcdesVHGjg0AzUVsAoCkiNBgo2cFr+9p7NAA0KZxgxAAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY3yOzXfffVe33XabunXrJovFok2bNnltd7vdeuKJJ5SYmKiIiAilp6dr//79/poXAAAA7YjPsVlfX6+BAweqoKDgnNufe+45LV26VCtWrNDu3bsVGRmpjIwMNTQ0tHhYAAAAtC8hvv7CmDFjNGbMmHNuc7vdeuGFF/T444/r9ttvlyT97ne/U3x8vDZt2qSf/OQnLZsWAAAA7Ypfv7NZUVGhmpoapaene9bZbDYNHjxYJSUl/vwoAAAAtAM+n9m8kJqaGklSfHy81/r4+HjPtu9yuVxyuVyen51Opz9HAgAAQAAF/G70/Px82Ww2z5KUlBTokQAAAOAnfo3NhIQESZLdbvdab7fbPdu+Ky8vTw6Hw7NUVVX5cyQAAAAEkF9jMyUlRQkJCSouLvasczqd2r17t9LS0s75O2FhYbJarV4LAAAAOgafv7NZV1enTz/91PNzRUWF9uzZoy5duig5OVmzZs3SU089pSuvvFIpKSn6xS9+oW7duikzM9OfcwMAAKAd8Dk2P/zwQ40cOdLzc25uriRp0qRJKioq0mOPPab6+no99NBDqq2t1bBhw7R9+3aFh4f7b2oAAAC0Cxa32+0O9BDf5nQ6ZbPZ5HA4uKQOAADQBvnSawG/Gx0AAAAdF7EJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgjLHYLCgoUM+ePRUeHq7Bgwfr/fffN/VRANBmVVRUKCIiQkFBQYqIiFBFRUWgRwKAVmUkNl999VXl5uZq/vz5+utf/6qBAwcqIyNDhw8fNvFxANAmBQcH6wc/+IEaGhrkdrvV0NCgH/zgBwoODg70aADQaozE5vPPP68HH3xQkydPVt++fbVixQp973vf00svvWTi4wCgzQkODlZTU5MkyWq1aunSpbJarZKkpqYmghPAZcPvsXny5EmVlZUpPT39mw8JClJ6erpKSkr8/XEA0OZUVFR4QtNut8vhcGjmzJlyOByy2+2STgcnl9QBXA78HptHjx5VY2Oj4uPjvdbHx8erpqbmrP1dLpecTqfXAgDtWd++fSWdPqMZFxfntS0uLk7R0dFe+wFARxbwu9Hz8/Nls9k8S1JSUqBHAoAWcblckqSnnnrqnNvnz5/vtR8AdGR+j82uXbsqODjYc6noDLvdroSEhLP2z8vLk8Ph8CxVVVX+HgkAWlVYWJgk6fHHHz/n9gULFnjtBwAdmd9jMzQ0VIMGDVJxcbFnXVNTk4qLi5WWlnbW/mFhYbJarV4LALRnH330kSTJ6XSe9RSOw4cP6/jx4177AUBHZuQyem5urlauXKmXX35ZH3/8saZNm6b6+npNnjzZxMcBQJuSkpKioKDT/7zGx8fLarVq0aJFslqtnu+zBwUFKSUlJZBjAkCrCDFx0LvuuktHjhzRE088oZqaGl1zzTXavn37WTcNAUBH1djY6Hn80fHjxzV79mzPtqCgIDU2NgZwOgBoPRa32+0O9BDf5nQ6ZbPZ5HA4uKQOoN2rqKhQ37595XK5FBYWpo8++ogzmgDaPV96zciZTQDAaSkpKTpx4kSgxwCAgAn4o48AAADQcRGbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxrS5NwideXum0+kM8CQAAAA4lzOddilvPW9zsXn8+HFJUlJSUoAnAQAAwIUcP35cNpvtgvtY3JeSpK2oqalJhw4dUnR0tCwWS6DHAYAWczqdSkpKUlVVlaxWa6DHAYAWc7vdOn78uLp166agoAt/K7PNxSYAdDROp1M2m00Oh4PYBHDZ4QYhAAAAGENsAgAAwBhiEwAMCwsL0/z58xUWFhboUQCg1fGdTQAAABjDmU0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBIBmeuCBB2SxWDxLTEyMRo8erb/97W+efc5sKy0t9fpdl8ulmJgYWSwW7dixw2v/TZs2tdJfAADmEZsA0AKjR49WdXW1qqurVVxcrJCQEI0bN85rn6SkJBUWFnqt27hxo6KiolpzVAAICGITAFogLCxMCQkJSkhI0DXXXKO5c+eqqqpKR44c8ewzadIkrV27VidOnPCse+mllzRp0qRAjAwArYrYBAA/qaur0+rVq5WamqqYmBjP+kGDBqlnz5764x//KEmqrKzUu+++q/vvvz9QowJAqyE2AaAFtm7dqqioKEVFRSk6OlqbN2/Wq6++qqAg739ep0yZopdeekmSVFRUpB//+MeKjY0NxMgA0KqITQBogZEjR2rPnj3as2eP3n//fWVkZGjMmDH6/PPPvfa77777VFJSos8++0xFRUWaMmVKgCYGgNZFbAJAC0RGRio1NVWpqam64YYb9B//8R+qr6/XypUrvfaLiYnRuHHjNHXqVDU0NGjMmDEBmhgAWhexCQB+ZLFYFBQU5HUz0BlTpkzRjh07NHHiRAUHBwdgOgBofSGBHgAA2jOXy6WamhpJ0rFjx/Tv//7vqqur02233XbWvqNHj9aRI0dktVpbe0wACBhiEwBaYPv27UpMTJQkRUdHq3fv3lq3bp1GjBhx1r4Wi0Vdu3Zt5QkBILAsbrfbHeghAAAA0DHxnU0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMOb/AZTESzFxkTucAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[\"BMI\"].plot(kind = \"box\", title='Ящик с усами')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxdR3Un/q3X3WrJkmVb3mRjMMZm8+AAIQwBEpZAzE7AEEIIiwODE2KTAGHCMD8IGEg82ZkJi8knCSHBBAIxITCBYGIwGbYACfGGjSVLlmSppd67X7/13jq/P2o7tdz77ut+LXXb93zUeu/dW3Xq1HbOqVOnTgkiItRQQw011FBDDTVsQmicaAJqqKGGGmqooYYaVgu1IlNDDTXUUEMNNWxaqBWZGmqooYYaaqhh00KtyNRQQw011FBDDZsWakWmhhpqqKGGGmrYtFArMjXUUEMNNdRQw6aFWpGpoYYaaqihhho2LdSKTA011FBDDTXUsGmhVmRqqKGGGmqooYZNC7UiU0MN93F42tOehqc97WnHrby/+7u/w65du9BsNteERwiBd7/73aMhqobKcO211+JBD3oQut3uiSalhhoqQa3I1FBDAj70oQ9BCIEnPOEJJ5qUQnjwgx8MIYT9O+uss/DTP/3T+OxnPzsS/K1WC+9+97vxta99rXKePM/xrne9C2984xuxY8cO752UEn/913+Nn/3Zn8UZZ5yBiYkJnHXWWbj00kvxZ3/2Z7XgDID3rRAC27dvx8UXX4z3ve99aLVaXtrLL78cQgjs3LkT7XY7wnXXXXdZPH/4h39on3/ta1+DEAKf+cxnPFy9Xg8f+chH1q9yNdQwQqgVmRpqSMB1112HBz/4wfi3f/s37Nmz50STUwiPecxj8Dd/8zf4m7/5G7z1rW/F4cOHcdlll+Haa69dM+5Wq4Wrr756KEXm85//PO68805cccUV3vN2u43nPve5eM1rXoNWq4W3vvWt+LM/+zO87W1vw9atW/Frv/Zr+LVf+7U103xfg5/92Z+1/ftHf/RHeOxjH4t3vvOdeM1rXhOlHR8fR6vVwuc///no3XXXXYetW7dWKnPr1q14zWtegz/+4z9GfRVfDZsBxk80ATXUsNFg3759+OY3v4nrr78ev/Irv4LrrrsO73rXuwbmy7IMUkps2bLlOFCp4AEPeABe+cpX2t+vfvWrcdFFF+FP/uRP8Ku/+qvHjQ4DH/3oR/HkJz8ZD3jAA7znb37zm/HP//zPeP/734/f+I3f8N795m/+Ju666y7ccMMNx5PUTQEPe9jDvP791V/9VfR6PVx//fXodDqecjI5OYknP/nJ+Nu//Vu87GUv8/B84hOfwPOe9zz8/d//faVyX/ayl+H3f//38dWvfhU/8zM/M5rK1FDDOkFtkamhhgCuu+46nHbaaXje856Hl770pbjuuuuiNPv377dm+ve///248MILMTk5idtvvx0AcMcdd+ClL30pdu3aha1bt+InfuIn8I//+I8ejrm5Obz1rW/FJZdcgh07dmDnzp14znOeg//8z/9cNe27d+/GIx/5SOzbt6803bFjx/C6170OZ599NrZu3YpHP/rR+NjHPubV78wzzwQAXH311XZbosxnpdPp4Etf+hKe+cxnes8PHjyIP//zP8ezn/3sSIkx8NCHPnSgRebyyy/Hgx/84Oj5u9/9bgghoucf//jH8V//63/FSSedhNNOOw1PecpT8OUvf9lL86EPfQj/5b/8F0xOTuLcc8/FlVdeiYWFBS/NXXfdhZe85CXYvXs3tm7divPOOw8vf/nLsbi4GJX3uMc9Dtu2bcOuXbvw8pe/HAcPHiyt02pg9+7dEEJgfDxeh77iFa/AF7/4Ra8O3/3ud3HXXXfhFa94ReUyHve4x2HXrl343Oc+NwqSa6hhXaG2yNRQQwDXXXcdLrvsMmzZsgW/+Iu/iA9/+MP47ne/i8c//vFR2o9+9KPodDq44oorMDk5iV27duG2226zVon/8T/+B7Zv346/+7u/w4te9CL8/d//PV784hcDAO6++278wz/8A37+538eF1xwAY4ePYqPfOQjeOpTn4rbb78d55577tC09/t9HDx4EKeffnphmna7jac97WnYs2cPrrrqKlxwwQX49Kc/jcsvvxwLCwv4jd/4DZx55pn48Ic/jDe84Q148YtfjMsuuwwA8GM/9mOFeL///e+j1+vhx3/8x73nX/ziF5HnuWdZWG+4+uqr8e53vxtPetKT8J73vAdbtmzBd77zHdx444249NJLASgF6Oqrr8Yzn/lMvOENb8Cdd95p+/ob3/gGJiYm0Ov18KxnPQvdbhdvfOMbsXv3btx77734whe+gIWFBZxyyikAgN/5nd/BO9/5TrzsZS/Df/tv/w3T09P40z/9UzzlKU/Bf/zHf+DUU09dVT06nQ5mZmYAACsrK/jGN76Bj33sY3jFK16RVGQuu+wy/Oqv/iquv/56vPa1rwWgrDGPeMQjon4ZBD/+4z+Ob3zjG6uiu4YajitQDTXUYOF73/seAaAbbriBiIiklHTeeefRb/zGb3jp9u3bRwBo586ddOzYMe/dM57xDLrkkkuo0+nYZ1JKetKTnkQPfehD7bNOp0N5nkd4Jycn6T3vec9AWs8//3y69NJLaXp6mqanp+k///M/6eUvfzkBoDe+8Y023VOf+lR66lOfan+///3vJwD08Y9/3D7r9Xr0xCc+kXbs2EFLS0tERDQ9PU0A6F3vetdAWoiI/vzP/5wA0C233OI9f/Ob30wA6Ac/+IH3vNvtWtqnp6dpZmbGex+W/ZrXvIbOP//8qNx3vetdxFnZXXfdRY1Gg1784hdH7SulJCKiY8eO0ZYtW+jSSy/10nzgAx8gAPSXf/mXRET0H//xHwSAPv3pTxfWe//+/TQ2Nka/8zu/4z2/5ZZbaHx8PHpeFQAk/170ohd5Y4tItc327duJiOilL30pPeMZzyAiojzPaffu3XT11VfbMfsHf/AHNt9Xv/rVwvpdccUVtG3btlXRXkMNxxPqraUaamBw3XXX4eyzz8bTn/50AOrkyC/8wi/gk5/8JPI8j9K/5CUvsVswgNouuvHGG/Gyl70My8vLmJmZwczMDGZnZ/GsZz0Ld911F+69914Ayqeh0VBTMM9zzM7OYseOHXj4wx+Of//3f69E75e//GWceeaZOPPMM/HoRz8an/70p/GqV70Kv/d7v1eY55/+6Z+we/du/OIv/qJ9NjExgV//9V9Hs9nETTfdVKnsEGZnZwEAp512mvd8aWkJAKJTTP/0T/9kaT/zzDNx/vnnr6rcEP7hH/4BUkr89m//tm1fA2YL6itf+Qp6vR7e9KY3eWle//rXY+fOnfi///f/AoC1uPzzP/9zdFLIwPXXXw8pJV72spfZ/p6ZmcHu3bvx0Ic+FF/96ldXXZef+7mfww033IAbbrgBn/vc5/D2t78dX/rSl/CKV7yi0BH3Fa94Bb72ta9hamoKN954I6ampobaVjJw2mmnod1uF9a7hho2CtRbSzXUoCHPc3zyk5/E05/+dM/H5AlPeAL+6I/+CP/yL/9ityUMXHDBBd7vPXv2gIjwzne+E+985zuT5Rw7dgwPeMADIKXE//7f/xsf+tCHsG/fPk9RKtsa4vCEJzwB73vf+yCEwEknnYRHPvKRA7cx7rnnHjz0oQ+NhPwjH/lI+34tEArYk08+GQCiuDJPfvKTrYPvH/zBH4xsG2Pv3r1oNBq4+OKLC9OYOj784Q/3nm/ZsgUPechD7PsLLrgAb3nLW/DHf/zHuO666/DTP/3TeOELX4hXvvKVVsm56667QER46EMfmixrYmJi1XU577zzPJ+jF77whTj99NPx1re+FV/4whfwghe8IMrz3Oc+FyeffDI+9alP4Qc/+AEe//jH46KLLsL+/fuHKtv0Y8r/qIYaNhLUikwNNWi48cYbceTIEXzyk5/EJz/5yej9ddddFyky27Zt835LKQEAb33rW/GsZz0rWc5FF10EAPjd3/1dvPOd78RrX/tavPe978WuXbvQaDTwpje9yeIZBGeccUbkXHuiwChf8/PzOO+88+zzRzziEQCAW2+9FY9+9KPt8zPPPNPS/vGPf3wg/iKBmrKUjRL+6I/+CJdffjk+97nP4ctf/jJ+/dd/Hddccw2+/e1v47zzzoOUEkIIfPGLX8TY2FiUP7RErRWe8YxnAAC+/vWvJxWZyclJXHbZZfjYxz6Gu+++e9VBBefn53HSSSdFY7yGGjYa1IpMDTVouO6663DWWWfhgx/8YPTu+uuvx2c/+1lce+21pYz9IQ95CAC1Ch+kYHzmM5/B05/+dPzFX/yF93xhYQFnnHHGKmpQDc4//3zcfPPNkFJ6Vpk77rjDvgeGX4kbhWXfvn245JJL7PPnPOc5GBsbw3XXXYdf+qVfWjXdp512WnSiCIgtSBdeeCGklLj99tvxmMc8JonL1PHOO++0fQYAvV4P+/bti/rukksuwSWXXIJ3vOMd+OY3v4knP/nJuPbaa/G+970PF154IYgIF1xwAR72sIetun5VIcsyALGFi8MrXvEK/OVf/iUajQZe/vKXr6qcffv2WStdDTVsZKh9ZGqoAeokz/XXX4/nP//5eOlLXxr9XXXVVVheXo6OUIdw1lln4WlPexo+8pGP4MiRI9H76elp+31sbCzahvn0pz9tfWjWC5773OdiamoKn/rUp+yzLMvwp3/6p9ixYwee+tSnAgBOOukkAEgqDyl43OMehy1btuB73/ue9/xBD3oQXvva1+KLX/wiPvCBDyTzFvl7cLjwwguxuLiIm2++2T47cuRIFMn4RS96ERqNBt7znvdEli1TzjOf+Uxs2bIF/+f//B+v7L/4i7/A4uIinve85wFQ/j1GcTBwySWXoNFo2EjEl112GcbGxnD11VdH9SAi6zs0KjAB77h1K4SnP/3peO9734sPfOAD2L1796rK+fd//3c86UlPWlXeGmo4nlBbZGqoAcA//uM/Ynl5GS984QuT73/yJ38SZ555Jq677jr8wi/8QimuD37wg/ipn/opXHLJJXj961+PhzzkITh69Ci+9a1v4dChQzZOzPOf/3y85z3vwS//8i/jSU96Em655RZcd911noVgPeCKK67ARz7yEVx++eX4/ve/jwc/+MH4zGc+g2984xt4//vfb31atm3bhosvvhif+tSn8LCHPQy7du3Cox71KDzqUY9K4t26dSsuvfRSfOUrX8F73vMe79373/9+7Nu3D2984xvxyU9+Ei94wQtw1llnYWZmBt/4xjfw+c9/PvJXCeHlL3853va2t+HFL34xfv3Xfx2tVgsf/vCH8bCHPcxzjr7ooovw//1//x/e+9734qd/+qdx2WWXYXJyEt/97ndx7rnn4pprrsGZZ56Jt7/97bj66qvx7Gc/Gy984Qtx55134kMf+hAe//jH26PiN954I6666ir8/M//PB72sIchyzL8zd/8DcbGxvCSl7wEgFKw3ve+9+Htb3879u/fjxe96EU4+eSTsW/fPnz2s5/FFVdcgbe+9a0A1JUAT3/60/Gud72r0pbPj370I7vt1mq18O1vfxsf+9jHcNFFF+FVr3pVYb5Go4F3vOMdA/EXwfe//33Mzc3h537u51aNo4YajhucmMNSNdSwseAFL3gBbd26lVZWVgrTXH755TQxMUEzMzPJo6wc9u7dS69+9atp9+7dNDExQQ94wAPo+c9/Pn3mM5+xaTqdDv3mb/4mnXPOObRt2zZ68pOfTN/61rei49JFcP7559Pznve8gelS+I4ePUq//Mu/TGeccQZt2bKFLrnkEvroRz8a5f3mN79Jj3vc42jLli2VjmJff/31JISgAwcORO+yLKOPfvSj9DM/8zO0a9cuGh8fpzPOOIOe8Yxn0LXXXkvtdttLnyrvy1/+Mj3qUY+iLVu20MMf/nD6+Mc/Hh2/NvCXf/mX9NjHPpYmJyfptNNOo6c+9an2WL2BD3zgA/SIRzyCJiYm6Oyzz6Y3vOENND8/b9/ffffd9NrXvpYuvPBC2rp1K+3atYue/vSn01e+8pWovL//+7+nn/qpn6Lt27fT9u3b6RGPeARdeeWVdOedd9o0n//85wkAXXvttaXtaOrP/8bGxui8886jK664go4ePeql5cevi2CY49dve9vb6EEPepA9rl5DDRsZBFF9mUYNNdQwGsjzHBdffDFe9rKX4b3vfe+JJmfDwW/91m/hb//2b7Fnzx5MTk6eaHKS0O128eAHPxj/43/8j8JIzDXUsJGg9pGpoYYaRgZjY2N4z3vegw9+8IOlzqj3V/jqV7+Kd77znRtWiQFUtOqJiYkTcldXDTWsBmqLTA011FBDDTXUsGmhtsjUUEMNNdRQQw2bFmpFpoYaaqihhhpq2LRQKzI11FBDDTXUUMOmhVqRqaGGGmqooYYaNi1syoB4UkocPnwYJ598cn2hWQ011FBDDTVsEiAiLC8v49xzz40url0tbEpF5vDhw3jgAx94osmooYYaaqihhhpWAQcPHvQul10LbEpFxoRQP3jwIHbu3HmCqamhhhpqqKGGGqrA0tISHvjAB1o5PgoYSpG55pprcP311+OOO+7Atm3b8KQnPQm/93u/592R8rSnPQ033XSTl+9XfuVXcO2119rfBw4cwBve8AZ89atfxY4dO/Ca17wG11xzDcbHq5FjtpN27txZKzI11FBDDTXUsMlglG4hQykyN910E6688ko8/vGPR5Zl+J//83/i0ksvxe23347t27fbdK9//eu9S+PMLbqACmH+vOc9D7t378Y3v/lNHDlyBK9+9asxMTGB3/3d3x1BlWqooYYaaqihhvsLrCmy7/T0NM466yzcdNNNeMpTngJAWWQe85jH4P3vf38yzxe/+EU8//nPx+HDh3H22WcDAK699lq87W1vw/T0NLZs2RLl6Xa76Ha79rcxTS0uLtYWmRpqqKGGGmrYJLC0tIRTTjllpPJ7TS7Di4uLAIBdu3Z5z6+77jqcccYZeNSjHoW3v/3taLVa9t23vvUtXHLJJVaJAYBnPetZWFpawm233ZYs55prrsEpp5xi/2pH3xpqqKGGGmqoAViDs6+UEm9605vw5Cc/GY961KPs81e84hU4//zzce655+Lmm2/G2972Ntx55524/vrrAQBTU1OeEgPA/p6amkqW9fa3vx1vectb7G9jkamhhhpqqKGGGu7fsGpF5sorr8Stt96K//f//p/3/IorrrDfL7nkEpxzzjl4xjOegb179+LCCy9cVVmTk5Mb+rbYGmqooYYaaqjhxMCqtpauuuoqfOELX8BXv/rVgefAn/CEJwAA9uzZAwDYvXs3jh496qUxv3fv3r0acmqooYYaaqihhvspDKXIEBGuuuoqfPazn8WNN96ICy64YGCeH/zgBwCAc845BwDwxCc+EbfccguOHTtm09xwww3YuXMnLr744mHIqaGGGmqooYYa7ucw1NbSlVdeiU984hP43Oc+h5NPPtn6tJxyyinYtm0b9u7di0984hN47nOfi9NPPx0333wz3vzmN+MpT3kKfuzHfgwAcOmll+Liiy/Gq171Kvz+7/8+pqam8I53vANXXnllvX1UQw011FBDDTUMBUMdvy4KYPPRj34Ul19+OQ4ePIhXvvKVuPXWW7GysoIHPvCBePGLX4x3vOMd3jGre+65B294wxvwta99Ddu3b8drXvMa/K//9b8qB8Rbj+NbNdRQQw011FDD+sJ6yO81xZE5UVArMjXUUEMNNdSw+WDDxZGpoYYaaqihhhpqOJFQKzI11FBDDTXUUMOmhVqRqaGGGmqooYYaNi3UikwNNdRQQw01pKA9D8zvB6Q80ZTUUAKrjuxbQw011FBDDfdpmN8PzO4F+l3grIefaGpqKIDaIlNDDTXUUEMNRZBnwPKRE01FDSVQKzI11FBDDYOg3lq4HwPpvxo2KtSKTA011FBDGczvB+79PtBrnWhKNga0F4CpW4Hu8ommpIYaANSKTA011FBDObTngbm9wJEfnGhKNgbM7wOO3gbs/eqJpqSGGgDUikwNNdRQQzXot080BRsICMjuL+1Rby1tdKgVmRpqqKGGQVDLMR/uV+1xv6rspoRakamhhhpqqKGGFNTGmE0BtSKzVui3gekfAZ2lE03J5oKFg8CRWwCZn2hKaqihAtTSzAcCIE40EccJCNh8dyvfr6BWZNYKc/uAmTuBu758oinZXLAyAxy7DZi+40RTUkMNNdRQDLUSs+Ghjuy7VpAZ0Fs50VRsPiBSi7pu80RTUkMNNdSQhlqJ2RRQW2RGBfV4XwWcgEYjUtagYU6g5H0Vpry9sG5k1VBDDRsUqN5a2uhQKzI13L+gNQfM7gHu+Wb1PEv3AnN3A3tuWD+67otQM/8aNj3UY3gzQL21NDKoB/xwcIKOA/RbSjHJ+9XzyBxozdZdPAz028CxO4CTTgdOe9CJpmYEQIC4vzi3VoH70WSoFfIND7VFpoYTCCeAQRhhNEzRNSMbHpaPAEuHgANDWL5quO/B/D3KmrmpoZ7/Gx1qRaaGEwTa2feEMYnVlFsztOog1N1EtRK4+aC3UuGSzAr9SgQsTwEH/01t6W5KqAPJbAaoFZkaThzQCG4UJlrFZX71FsG6g2iov/uMELiv1GMANKfVPUpHbx0Nvryrmq4+2VnDOkKtyNRwgmBEgmF+H3DkP1WAvUpglJih9pZWked+DkKopq4tMpsLVqbVVtDR28vT3W+69X5T0U0NtSIzMqgH/NAwCiHXWQQW7gEOfmfYwldRWN3HlUE0AAhldbsvKDP3gSpUAmslHUGFyUT/3eyNV28vbXSoFZkaTgxYI8eoGGZFEALWKjNs2TUvGwKEVmYwmi3EEPI+0F0ePd4U3K/63VR2xH22mZXZzUz7/QRqRWYQdBZVMLSBx3XrwT40jJRBrEIpqVo+1VtLQ4O1yKxTMLGjtwL3/jvQmh897vszGKVzYJ+tZmt2E8IoF1w1rBvUiswgmLtb+WDc+x8nmpL7GIzSXLua7YtVlF0zs+oghPojuT4WGUAd8T5ud3XdT/rebAWOZKyzBcBmnjubmfb7CdSKTBXIe0DzSPrdauKS1KBhRAxuKBR8W6nutHUDY5EBre8N51Tfnj56GOG82PQuMgP4RJ6po+XrOcZrGAi1IlMFNvVE3KAw6m2ldV011QNgeBDs+PU6WWSOZ7fcn1blVep6PCygGwoK6J/fBxy7DTj2w+NLziiBCJjZo2L+bFKoFZmNBllPRcMcOjbKJoL1EApVcZotj9XQcX8SZmsF0XDHr2V2oqlZG9zf+n3kW4GbvP3KyO81gcV7Rxd353iCsSK159W1LXd/rUIgxI0JtSJTCapMxFHFRdkPzPxIDar7NNDoGOZqtonqraX1B+Mjs26KTN1/6wKjUtwMnvWea3lf3Ux/ohZIm3EYLhwA7v2+OsxCBHSX1PP18mdbZ6gVmY0GWVtdUGgG1n0R1mWFOwzOISP7egyZQa+lLke8r8LivUpArBqE3lk6jv4Do1pRdpsqyOL90fdhpMLsOETRPvZDYOpmYOnwaPF6pxXL+Msm0WQ6S2oLKesqGTN3N3Dwu+79JqlGCurbr0cFoxbOm3hQVYKRH8utiottK61ln1/mwPSdStBf9PQh8WwCaM+rLc7mUeBRL14FAoJaJ9HxM1e35hRzPuVBwMlnrQ3X7F3A4iG1YrVwf7naYsRzc72O4Fv8uVJiuk3glAeMGrn+uA8w5Lm9an4sHQa2nqyq1r9vuDDUFpkTBctHlXnvfgnrEJdlaFSrMXez9FlXKTHNo0B7sTBHBFlXCcisN2TZxxnyPtCa0XflrLKfBNZvaylF0sI9wOwe4O4bR1NGb0U5c27248PDAOn/xChEAxV8XwcgrOMJNrrvLCyzPtCa1j/CSm3eStaKTCVYhw5ePATc802l0ByvMjcajLSKwzr7riKAnvdbApQp5jnMQn12r4p9cvDfhiv/RMFa+sicWjreR6QHKR1EKirwwHSjI2nTgIkjIyoM6uPRPv32iVP6+fgYVNf1aguZ3z+3N4eEWpE5UZD31OCPrre/H5ivT+SppVXlSaSjXFsbcgzVZ3kXaM4AS4eq59nMQCN06o6RB79NPwwob+EAMHUrMHPXehC1ycEEMBwVH1pDdOesBxz9IXDgWyOiZRVwIqN6EynfnwPfGSHPvO9YYTjUikwlWK/Ovm8MolWBPckwgjYYepJrJj3UlkdQhsyV78d9NiAbuyV8LUyUaJ0D4jHaRAOVrp5oz6ltqMP/Pgj5WqmrDlLqKOK3+D5FrTng8A+Uo+bxANLbKIMsMkONiQHzvLOk/M1Cx/msDbRnVQTnfqdCGaOGE+wfk/eV38/igTU63RfBfUf+1IrMMNBrqa2gcGDfd8bDcYKqpwGGQTmksy8AHPmBOpmz6vL06rWqxcEKqPvQnnsR8JXs8VL2jF9HFefijdT+UgJT/6mcMI/dppysDSzco7Yij1c4hlEela5qzZjbC0zdAtx9U/xOZppNnOhjwYNOLa3DgBINtQggAuSgu/6qwnH0WzqOUCsyVcD098ydytQ3t290iKvsRd8nYR1ORgxb/uIhYP+/rg633Voa4p6n2T1A7z58XDsJ6+koG+BtjOnHVcob0qKwnqvyrKOsEot6u7HfjIpH3l2/8m05Q/iEVEdaLZnMykNOnGg+eaKsMsafb5D1ePko0JwuTzMQNq9iUysylUFPpJVZpdCEsKqBPkjLv4+CxzDXa++3AIRwEWfXgl9mbGup4mqxv6LMxBsFpBzOkXL+HmCp4M6xFBTF3xkFpHDakzYnevU+LJDzmUs21fHkBcyKMnA7Zxi0a3GsPkG80KP5RPJjKrcy5n3l97XvJnUqaRAuOy/tf5seakVmaBjB6owPpBO90jhhMGpz7CpxrZYEqS0y4XiQUu33LxY481rmsQEYyLHbgEPfrXYdRq+ltj723aQYZ1U4nhGUrSIzgPGbNEPBBuiv4wl5X229DqO4RsAXLOutXK6yf/JM/RWiNbz6BCnHQgyeQyTVKTyZAb3lcnyU+nECHZpHBLUiUwlG7OndNEeuN+/AWRvwlfpmaIMEnVIzwPBUTmdBMf/9/69AmG6g+uYZsHgwbWEE4K4u1n+9pvqaDbtSX6c6h2gFC8A3EsFzvPuqZD5wZbl5zPejWRc6oK5LWfOJoapz/ATMCyLg6C3AwaJTQcMI+PWiXysyI/P7Wg9r+ImHWpEZGsoGfAXot5UZcOGeAQPpvjPI0kDex9pQDbOFsdoLI4Oysi6QdxAxaiLl40BAsZPrBulbc0JloDkarL0IQx3NJRw/hskvAx2oyNAQ3bDO9A9sn+D9wkGlYIw6JH9Y5ijvXFrX8AirBJnrSx8PqpD9aSIqIFovOslZZKjqCctBW3ghvwqzbhDeNCTUikwViPZK19DZMtcXnK2RpuMNy0dV3I1RhJv3TrSsFd+wx4R52cOWxRSmfsv5NchhEK2m3BMJq13B8XY+XorMGNy1CAOUM0NS6bHmcN6v9zZwUTuF1kBdt0Lhu9riE+UXbX1XukxxVP2+jspEnus5vNaTdetskanEJzcVYxkp1IrMsLCWFSaRv0ovw7PRxuTyYXVb6syPRoPPyrk1KjJ8FT6Mw69NWpUhs3RZRzlCWl8RLuzz+JmPrBqNxw0Cevqdcp+BoegfxjS/GgjwmqjNJCv48ei8ewdcZ3C8fNiG2mYV69ik0RJ9RDhH7bM0CmDjM9XP3qGEE+lALtfnvrJI/oxiYXlioFZkhoY1TLiZH6mbWj08wQTaqM6/htz2/OiQjYR3sesGjsfKn0j7x/T0yphN/u6yMvuXbdVY8+1GU2igI6neHvtFeEJ2WAvLejHHAhoa2iJT1SG57GTOceuiQdsBq8izZjB9XsaPqiwCKqZba/5VFzFoLlZEvO5jZYRzqExZPfRvx8+COkKoFZlhYS2d3F1RDnTtuQq4NuBgGilJBtmIJuiwK1oOR25RPi8D8XsPXJnm3fJRtd9eGvPjOG61DITQGrOiLopculcpaiZJ86hWDPS22FDK9jrWt8hBs8pY2DB9wGBYob/eVhmiEe6mDSK2wCpiYR0WeFUD9q337d1l5aovFbe+hqQzlXbxXuVMvslg/EQTsCmgStyTSgNIskXOBl2VHw/wfGTWiEsM6SPjMS/9/dhtSog/6CeLMgV5SyDrlAukE3l3C4fZvVBKZECHzGP6Z/esnu61rsjXHSosJo4L+QMsICdUkCZfVkFQPWkFNCNIVJy19NQSULrgWtcxrvnaKK2aRaSaNhgmvMIGgdoic1yB37q8GRWZEdI7bLC0flsJ3yjmiW7ToZkJ+V87i+53c1oFPhwIxj+HXT1gPzdw3+aZWnXN7kWazsD0vHwEaE7pnxXrVtavWU/dIVMVeq2Cvi8svEKSjdpHg/rjeJe9VkuIxjmUQ7yGromJsp5KwiD8gdV1EKzMqL9RAlW9060ijZxf3Ueu26kVmWFhZEcSB+DbiKbvkcEqBP7sHnXnzN5/8Z9zi0xlhzgRtC9bCecZsLAf2Pd139fFsyKFFro1mnNPBAzaSgvBW7VWFG5GSISryWO3Kcfx7oDgXQZm9wDTPwTu/mq19K7wzQFVlHr+zoStX+86UomFaDhEwydpzwPLU+p4dKUiVtEW3hbaAGffKnWQOTC/D9j3r8NFzB4EhNE5+95HFJcQakVmaBhCOx+EZzPBugnginhlpgRfb6UEz2onO8tHEug0laDvLBRnsWSLhNmXSszV+vlG6P7VyMJVjYNw+0oqK8/snorZc2XBSSk+oVI5aIEwiLYi3MdFaShNsL7lJ4ssEPDD5FdfMJj+4H1nUfmbreuFo9zaUjRXq6LSCnu3qXzkynjHUPTpz7J24JHih9nyO6HWv9FCrchUgYEMbRimyVdf7LeUOk5L1cBHJwJGZY0KLRojIqEyLr7Fp78ahm3uYkJFGvm9TVUY90axyHir+pLxnfKNGfrUUpheKxzDxu6gwh8l6YrSlDHz1SAcAQyl4B4Pmkon2+ppkDK9IJE5cO8PnI+GNJGz16muVfEShtgaG/XReK0gjbQNCub7RuFNq4Da2XcYoOhL6mVVJP6KpzUDLBwCVo6ms20UGGW0z/XANzhh4lGRJScxyT0Tv0kyjLmWEClSGw6KaFuFUCl0VBxB/ZO0GL8l/b49D0zuBMZCVjeC8vNMCduJrWtEtFplasRjKKVwjgJnOAZmfqSC+Z1+EXDy2X7ZM3eoLtx26trLrkZgiQI5AqveSIAqbi2tgo6NzIaGgNoiUwlGaGIOTd/8s7u0wQfWqIgLrVIjomFkKwqBSkGowr70TMGbwCoDIO0HMYqV+IjN1ymFcRAsH1EXeN7778U0DERZcqXF0Vv0pZvt4ehKQkl7pco+XkNoZEeiGcFZW20bJfsFyqmbgjm0LnOmilXO0FBFkWD+eiOH9QpUt4F40RqgVmSGAarK/AoR+JkL42CsFv96wqiJMm05yglakUa+HQTznTFlG/mXMzpujQgtMEEdBh5b3WgdPKxFaQj6jWUkBWI92Q+pq0AW7gHm7y5PV/hqQD1lpmLulOIfAtZ83HnUNBDWJiIGKAqp+4OipBWtgGtx9h3FgiNyoh2hxZEqXoJadRtuIy2kRgS1IjMsjOrYZugjY8Kre+83GIzMIDNImVs14lWkLZr8VMA8RmFhqMhw1h2GYXqroXfEVplK5fH5udaFh0FTIugIa/drKzoRV55pncfQiPGv9rSMTSdVMNGRBmtLjJUoyVrG/whh3XwnEwcVNiHUikwIUgLH7lARDi2QCnTGfjoY8iikx7RCPBvdd2KEQNGXEeAc0lJgy+anlopM2SW/zRYUz7ueToqjhCIlLvXMDt0h67Ue98QMhNCyUJRsLX10HOfrcR1KrLBRXJlSxYk5tT3LFxP9NrB4GNhzo7K0jRQGEjfg9Tp2jmVRZY7xq1hIeT+LeN7mgVqRCaE1CywdAfb/qz8BSQIrZjWwziuhDQsjM8m4j7VuLYWWrUrpK6YLFZTCMtbISE4YrMakvgoFLbkaX2ubDaCj9F2F8ocy7o3CQjtkoevqM2J+yrVt/5We9lwF/VlXHcGf37d6mjwS+MIjmYB9HZJPjbp/qqAbhreFiNdjYXkcoVZkIiCgVxCoy8QGWK3wJQRCkTFjc+x3M46jPCuJ71IEqzDZDlw4VeyXSGgEiO0qtGo/J1Y4ZRaZjbLyKdVXVrkVkMxflPl4XZBasAINv0fZgnTrdqFrJSm1TmUXFWeE+xrrvNateD6PGg1A9ka4zcLn6BqtLpXG+yqhkpK7ynpQ4Y9NBbUiUwRVLe4bv5DhYPkocPgHypTrQYlgPnY7cPjfgdbckIVpq0ev5V8RMBSK1bZXkZAaYGYNn3uOw0WfCRwnVJmpKMhT+VYjmFIKJsG1uZTA0duAmb2Dy69WoP4osaCNzE/rOPVjit7jYZUZydZSAm+Fov13a1Q0yvJUnetVyhipsrua/j1ei4ONBbUiMxSswooQoQgZkvktEs9OACwfVlcBHPh29TyUK5+iqVsrpud1JGDmTuDQ94a7f8chq76qSuU1+T0GZO5vCreWEP+mxO+BW10bZeVTQCdXtMK2HWp8mjwph0KGo7MALB8D7v3ukEHyqlpaShSaSvgH1HkkCsWQyslxUYQlRndFwTBjJhx//PcIyPHKGkBfZd4SjrchCF2r/8vIFHHyFxibCGpFphAKGEtqP7XyOCphruGppRMJRNXvwTEXpBGQPE5ZXpASclkPWJmuuPc9IoFStiI3kX09RSbsd/5DJp6XMcfqZN4nINUv4bNMXwg5UqfGomwVLDLDnB4aGaxGEV9HIFLbOasuls2FNVtOCeVK9FoWlyinjzQvWA/lceGAundsFA7MwyjBxL6vFs8GgqEUmWuuuQaPf/zjcfLJJ+Oss87Ci170Itx5551emk6ngyuvvBKnn346duzYgZe85CU4etSPVnvgwAE873nPw0knnYSzzjoL//2//3dk2UYKzR8GwSr6XA0MWNker0HUb6tJVHi5WUU65u9hd+ZUVcSCugvhWwFWA5XzD0hTtJIvWpklryhI4RqChuMF4RgsO8HEnaqH7qeCdgkV95E3S9F8HVTnVRSxJhxDWmPWC9bar2VpItxFcyWVruq8GhKGceKnsnRB+kppNbRmgbm7gQPfKcdb2f9vyLYZ1C+bBIZSZG666SZceeWV+Pa3v40bbrgB/X4fl156KVZWnKPnm9/8Znz+85/Hpz/9adx00004fPgwLrvsMvs+z3M873nPQ6/Xwze/+U187GMfw1/91V/ht3/7t0dXqzVD2cAeYlANwh0J3+MYR2b6TuWXcO/3Ey8lkgwlRVPW0avo1dAb4lwFjlXlD60rYUA7/Z8cwOjsyfthnIz1lxNpfVuLv8Gg1WsKV2H7DBNROJW0okKSdHDkfVsy3wduaYxqng6yCJwIZYdQvDhZD6WnLHtomRkRhFtXcQL9Mcgis5ZFGIC8k3g+BD+rTMMa+e0GhaHuWvrSl77k/f6rv/ornHXWWfj+97+PpzzlKVhcXMRf/MVf4BOf+AR+5md+BgDw0Y9+FI985CPx7W9/Gz/5kz+JL3/5y7j99tvxla98BWeffTYe85jH4L3vfS/e9ra34d3vfje2bNkyutqNBKows6qoQsbLcAsdR+a4MSoC2ot6C+mJMZ3DMG77qKJw9trB7MNThXgj68VIEgy7ii9I8nUF4XrCnX2rwFrbOuxj830NArkoy+xe5Wi+7bQKicPXFegYSOvx7kuqNj5XixsYzfgs7euCZ9HjMmWKo1rDIqiSs+8a2zvvA2IsvVU3SIldV9jofKgarMlHZnFRnTTZtWsXAOD73/8++v0+nvnMZ9o0j3jEI/CgBz0I3/rWtwAA3/rWt3DJJZfg7LPPtmme9axnYWlpCbfddluynG63i6WlJe9v/aFs8o2i86lgAh7vFVfq8bCTdhWTnCtL9rbp42WR0WnLFBHPkjCgj6qms882CPMoW4UWOvkOOy5S5aym/iW0theAub3Awn6/zEKFPOy/qoI2kaZM0LTmgGM/BPqJ1XYS3QZTcFMKvn1eFYf5XMUihXhZ3Eo8qjbi47mIF5rih+mbIF3eVwchDv1b9Tyrgoo4ysbZRhp/Q8CqFRkpJd70pjfhyU9+Mh71qEcBAKamprBlyxaceuqpXtqzzz4bU1NTNg1XYsx78y4F11xzDU455RT798AHPnC1ZA8JgyZXSbooX8g8w3xhZN/jMaA2kMWg8qoq0fbDrPIjAW3+S6y+uIJSeXV5PPsvAUtH1F9lGFaIr0YRY+mLtlLXBFIVYaJvD3TcHKKP1rIF2FkAjvyn2sItgyr0HE9fhmHaZ2icg1APKHNd+FIxv8uI0O7rNKULv5JnvSbQmlFXLOR9FXdrqAXYgDk39GKuaD5uXli1InPllVfi1ltvxSc/+clR0pOEt7/97VhcXLR/Bw8eXPcyk7AW3wKVAJHQG+mliUPCsHu+yfQs/spqmb5RJtbk7Itqc9gv1EG4rRUpViWChOe1MiDRt+vt5yAlsHgI2HfTKgIUhjBCJTc8iVSIo8r8SYE5Ll9VoUwprquEQdZLggukWZqIhlDmh0k3DCSUjdKVe9Wt5BI8hXmCdl2POWOtdkW4CffMdXD3Uo7lfu7meb8DzO1LxNoqoTXvq+r028DULUrBZeUUlT96KFOIN69SsypF5qqrrsIXvvAFfPWrX8V5551nn+/evRu9Xg8LCwte+qNHj2L37t02TXiKyfw2aUKYnJzEzp07vb/1hXW0jJStdo67/2eZsKqQ1HPAG6ZYzqAKYrVUR1bwvWqekB5eJwqSDxDAqzU9jwwI6Le08CwLMMiUzkFOjt6j1dBdojQMNd6HLbtAwVi1tWEV7bGq7bgB5SfH6iiBt096cdLq5zi4LNHNhtkuqsJQMGB+laVZDQR1TYAkwlI7w+GFPuyhgLm96rDEvq8H6Cq0R2cBaE6pWF0hGcNC3lenRlcbVf0+Yo0BhlRkiAhXXXUVPvvZz+LGG2/EBRdc4L1/3OMeh4mJCfzLv/yLfXbnnXfiwIEDeOITlUPpE5/4RNxyyy04dszdYnrDDTdg586duPjii9dSl3WBLCcs9wjknRyoeisyf52YyNFq4ATcUVBUXNLxdoQrh5RAWZUDaIGwWD4KHLlZ3c+SzMfLTik2ZPuZiLDcA/rJ1XfKElDCKGyfr2c/l60yA1pSeQfirkJCBTxDl12eVhKw3JPusFmSlnDeDVBO1wwV4o+s2s9rvSFNy70LLdy72MUtRwf7/nSyDO0MIxgPJflXK5DtPC/Ar/ESlEJjeWLeUwpJax6eRbqUJuGSZT34ViqWVg4Rr2bhgAp9Uep7MwRsYsVmqFNLV155JT7xiU/gc5/7HE4++WTr03LKKadg27ZtOOWUU/C6170Ob3nLW7Br1y7s3LkTb3zjG/HEJz4RP/mTPwkAuPTSS3HxxRfjVa96FX7/938fU1NTeMc73oErr7wSk5OTo6/hakEPtIPzbTQX+zgbGc7ayl+uBidXhsqE6BrKWC09/gtUv2cIxYygPIOfJ7UVMzQwfMuH1aqp1wTOf9LgbNEevmubhXaGqeUMJAkXI0grAuXT698RKn7DwiiZUtQ+Q+JOnVoCIT4pNghPWQLC0WaG+fkWTpI5HlwVx8Dt1QHzcdBWW1Wl1UuXMlWtUeFfNaTNZjIH2r3yKMxEhIMLXbQXMlz8gGw4YaMwJPrL/jc47SBozTh8Ay2TQT+m6CjEEYbVCHFpZSrPgKO3AGIcOOeSAjoYZF0VSJQATJyE0kVGFC+sYLG1SZWZoSwyH/7wh7G4uIinPe1pOOecc+zfpz71KZvmT/7kT/D85z8fL3nJS/CUpzwFu3fvxvXXX2/fj42N4Qtf+ALGxsbwxCc+Ea985Svx6le/Gu95z3tGV6sRQiYlllsZ9s93k0ypneXYt9DHcrfqRAonA/txQmKLFNFcZJEZ1UAPGERlhg9g9u4EHqTbP9hi6ec57lnoYa6bKj+kS7VBq5dhfqWPBeX1l6CpqvJ5HJiEVawqjsUiRbboKHxFS08vl9g/18N8NxFSYORbA+p7sycx1+rhyFLGFIzilXYaT9WiK/Z5JZ+ijSY8iCmv6XFAFcdXp9XESjfHwlKw1Tlsm8hUbKs1QHdZ3fHWXUQVJYiihVbJmC5VikrK6S6pAHnHblNKTRH+JN4Cugwcuw3opE77JmjahMrMUEoyVajg1q1b8cEPfhAf/OAHC9Ocf/75+Kd/+qdhij4BQMXfWDscWehgermPw/0enlwRn/cs3Fo6noOoTHmI7fMF+fW7YehO+tYMgePQvwGnP8ThKlpVJdDNrvQwu7CAwws9PPF0nrC4fo5ps3S8rMhROLHqSuBdN1jrVkbp+wHMeOkIsHQIs+0JzCwsYmqxj588t0ApihT3sjYrLtJlJfu1WNFgfWOTVOin1Ww/GSWmcn/H6fqSsNKV2LmF1v8+mfUYl6TmT/Um4G1eIc1qIe8rX5UKFjk7qiJFRiCThGZX4uQxwljVhYzd0krwkqyri62yxTSkArLMTzNuPmWlDIa39t3vwWe2kgj9XFb3W+SCu1AbPtGDLJy0g5KvZUWLeGIPWR5RkQE8xkcAOv1UfyX6ISwnqWgKeA7LljnFdJaQNRogxVxRZlEJCCluuzit/Sjrp+YUMLsXojOBTj/HGG8fjsfSO1oYaCmobB2qSmeFOgzqCybQSI0yC4fmW2gu9nHKJPAgr7yg3PaCElSnPRiY2DaYpkJaqqQJqSxMVhFhERGBwmmepfpj2LEkGipA3SCFgeDqGm6RCoHDi10sLmXYPpbhIYPo8eZOxTE1cNtyEK402gEPNx3Ul0YWAVMo3P8JDXpthcAbSBtqa6liHb3TL8PctYREO1Zd0TiGstjuY8+ixErRlVEBeK55njIVnp7i/V1Ana1uVaVvSMYTZSdgeWrwLeEVx+fUisSehRxZUtAmnlUVTASMyS4aDQGilAN7BQtIFUj1FQCvlyOUodK8yoXDULQmfEl6rWj74MgKYe9CDsnGd5YTFjsZ7l3olpc5v085t+/71yHoGgCEigrxIBBpPEmLnPkaKCxZmWPxKvqvMaaUGZL+uJZSWRV7K0phI2IG1lgh7/ZzLLb7mFrsl/ePcHlU9sRCjtdlKFlABd81RPwiJcsouXjbLFArMquF1ZiaeRqzJRKZF4/jQLLbMgXvBiPwf1adfIVWp4plkrSM8dhyF9PLXdwx262Yv4Ae2XcnnAL/CoqYDiO3rMpBG3YzibmO9ATVUNCeV/ErwmOfHIZQrpZ7hOnlHg4em/dfFDJZoHBF7CNAQyhSpAByLrC9cc4bb9BxcP9du5thrhM6EVft/xHNsaqm/7C/+20V8ffAt7x0S13C0cUu7p065iVPL6QLrBLdsmP3FaGarrq2RJWtr/q/ubthx/RIhK1Qyoy5J87gXDmmjldbhZAL+nC8CS+FsdLERfGxnarDAEU/8s8J0lGQNsw7cxewMsPSl/D9TQr11tIgoMBYzRUPNmgH87RQUQkVGATvTzAUmeBHYdbNe3AmXfZXdfVHBFAOo4dLAJmsSAeRf8jd5Om1gYPfAXb/mHkRHIVke+Upesy7kpX+gbkWmgsZOhM5zj0JxYyvCLKOssgUHSn3xtSgthBWQev0y0+fONzV+1kAaAggQwNSEsZCXEMLIz/9oYUOluYzZDtaOOvMk0rSF4xjLgTKHJtHMR1DIdRtAs2jyrnTlE2A1EKul+VK2Zm5K6FUlhY0AmJHh8/nm2u8vbmzoCwoZeNwKHJJby3lfrn9NrB4r0VGybkNN3eT6zGmsCSJHCQLEmO3lO8O4M29ZeVEHNIR7SsXzJlNALVFZigoWGGhYteHq/lSoXg8oEw4JWdoCaoh6M57WhjzFcIQ+Sl30WK1opnej49xOr1B+MlkH1g6rARMYf4CpaN0deVDu5vhWLPg9FMZ5H31N7AMUaE9A3qrWgWH6KOGDZshgq2rkrYacux3exmOLcfXEkRYIqW8AvKBaSowfdMPkeM81PhNLA6ssrxwUAU7W7ynuJjUImhN/KP6OB5G2FVuyug5UzYJ1ZWhqiBE4jQUeR8qnXmVCiPAodpCqjh/6vkQONMv0/ygMM/mU2KAWpEZDoYQWINxEPs7UTCsIhMmWSXteV9FoG2MBxO7Kj5SypCFgqBUg7AUrs7N5C+6DJJD0aV66foQgHYm0BvmEjoi4OitwOKBCvTo91VW71SAiaCEb+TCUHXFRmgIgYYQkBDI8iGY8yC6m9M2TenILRQYCUFVuno2n2tR7sosXuHihkE/jNiaUjoLcK0aQh63dsWommErHFtrGCPDgLHIFC2CLPHhnNLfkxbVkrFCBcfIZck4KISwYQcpLGsZwxsbakWmCEItNhrn6oGIgh0VIox/FzKjAVr7KKGsjKO36b3VkrS2naj6NknWVYpIYxwe46pqOpdSWVBY+tSit3DiRoePWB04BFtLpTgBH0eBVYQACCLcOVO0PZTCK1Vgv8V7gbyLwrYq2dYqRZ/4FuNk7yv2kxBCW2SYIC/Ymk1Rk4Spm4FFdtdaoqrDCc3jMMfSgxOpMZXUu8hPU5i4KN2qYdCcLC/L9y1bhTUlKYRH3GeySJFx5TvKA3pEw39T1FbdJrzIvsm0vF6pdq8+hga+p7isviS9y7k5lZpakRkGBpkFOSxPqSORPgJEk+FEa8NlJsb5fcCer1QUXBXrIaXy9chzYGw8mGcVmJ1REKwDKcXvkoGfFAjmoOeqVbBqCZgv+ZnSeQaAaaml1hABvoi0UsWRDMhb0d9oXUYfAeaALhGQh/5LqynU5F+ZBo7ennxv1aIq7cMbs+g6jqp0lprpCW7VnyqDK9EpYZoop9B6OQTNpTBaZYFCV5KwfwoV8JJ6Jn8PQbNty8DZN4nZXEoq+cOShRvD15oDlu5V1jUiuCsrSni/GRODxnCVLVMPV6LNidDLJPbPd3HnfJZAsDmgVmSGgOUe4UiTkA8KFtddVle27/v6gMGayFvZfL/OQKRWEpXosTO7CmLFECiP01dW6iTzFwnyL08pS1K/U0AylfB78j6cI2CinFK6Bym8qxAUnrWnihJU8t5uzZTRVyTcq9Cu2b8ApGggz1M+MimhPQC3t0cRUs9+8WFVxMAHQLOb48gKofBexGEWNUXWCIK6L2f5sPu9VliLHwmrSzsjHGkCvTyhhNl0A+a7bSP7XwAF1uzK1og1QkpJDF8SQZlwAT9elEykTrR9ex5YuMfxq9R2dkQM1FUFleZZ1TRc3vg0rPQyLDdXML/SRx4qmZsEakVmCJhaIRxY6ODAUobSAZT3lZd4v5UYwKg2gdYbymQYkB7MI6Q1I0In1zgGrVAiOiQgMyaQGQtpzSjGMb8/mVWIhEeNnbxBH4UmWJEIiCeKthbL269aiPcQV0WmRXIIgTZIyKfeD6DDq6dAHl2EV6DEF9JQQM9q00VCM26rI4sdHFjsYt9cuxhXFcWrUCnUNLZmgdm9ilcUp4rba53ZxKEm4dByH3dOrf44tyOxfAuRQGhnhDjMQcF8SlnQVi18hbrbKAnkz1NbBi8/OIKdAuvYbRSgAXyUSF0G2Zyu1s9lfKeiwp1bHW3zKTFArcgUQ4FwzaGCsFXDMfBBPMBKlZxRQxWNvsLV9KuAfYvAnukW2n0zsYfAYxSZiAoCxnVU06yDQcoRpRhl6cqwIF0Rwy2pkyjEXwas7LUKfKYEDmSs9vFq/Bwq0CMi1XI41PqXqNT2VZVCIM8JczzS4mrnY5FjN+cxg7orWX4q0xpP9rAyslxisVW03SCGihxQVr2pxQ72LUpMrWjrj4c4scAYCZS1JSuTSLcowXP+J+l8ZOyQIjhfmDKLZqLMcE4T/CCApdbdIvzmmclPLotXVpVDDRsbakVmKKABMqQCo7HMC/7g0tDNJQ4u5Wj113lQpfZN3Uv33KvwKmjqt4Hlo8mVQbPdwdQyFxQD4plwhiFDq5hmIOOT6ntq62kQFAjdkggyfnq7H83o9ECg2vZbiJ6NGf6bv+erVN5nskqMmER5nj9AqGxXU5JMzsKAgoUnvgoRM1pigbDqwNgFK/zyWnKhMODUE+XpeiXnlfb1Ycod2f/DtAl8a2QbvVziUJPscCv2AiniHQHYahSNAaDZy7DQ7OHumW7yvSlxMAxb+RLF1+MFJqQB31oCgj3MimUFSkOZggtgqtnDsRbPV1KF5HuHq9mVOLgs1YnJsvI3IdSKTCE4YcDZshvfiQEwcxe7mXmQUhMMJP15eAWYWuri5qk2MPOjVZJeqm0V0FOCK/XpfTcTI8H2pu9QJ03m7vbyGRJzbmqtPKkYUwlpFQIY2xKdajIgiCAE2W1vD2e0ugm2RAh+MDqh/0sJpIK6mAv0KgsCD2+BMDv2Q+DwvyNaWbXmgMP/oQN8pdCGgm+AEhFd41CSWmkwzk5Sum3Ay68wbtdyD1glOirgMbRUzVvoJ0ND0DFgHAxDUwEcmO/i2EqGuZZaCAixenzkKfXR2+BXeHsT4wkDx+k6CeOwXMMPSsdvITL3oeeGVw5/r7/3c4m55Rb2znXR7hbdwVKijHnlEo40JQ4udPCj2Z56Tn6azazS1IrMUGCCrxUExGseVTczZ2zQRWZS/j1msjkB3YzUnuWRH6yOzKO3AYe+X1ExKGH05nforZ/KX1ZWaxaYvjPOF/qXVFVkPEZiJiEPBFcBD5XFfynJcvj7Ls1AmTsihmsYKleYuMWlswjM7FGOzpZRSuUrNLsH2B/evzOgzwufrW7bwt93p+TXiphK8ritJYJQTpa2kEH1LanXQBoJaB5TbV+YJE8jspa2snYtEjIF82VNK2yClIRmH+hJoLL1kEiNwaGtf6lrKcy4LnFoH4UVoUzB1XSQ18a6n6z/GVUzAdoFoPldIQAfe9DvtkBQ15tUqkdyrBPUGCeQBNo9Ph6L0m8uqBWZMohM+Cjv435bvbfB2sq09oa6pTZkYqEFYFiQUh0/ntujjqoWQmqlw2gonHgF6Uvfxz+sXObvhmGEgQOpu3igykRkDDTJ0MwzvTvO03SWfUXV5lFUDNqGIwhtxFkrs9D5874ab7IfxMTg46iorFRbDWjDSroxTySUIJehrwUVyMmB2mFJOmZma8/7MZCKaKykDAygqb8C3P21ePxyIZYc23yFX1Z+6vn6CJss66FHE8NlWrpXHYmfujX5mgCIAUpwsjbrXt+iMeiX7X3zxk3RqcsK8yrqd55HfReQUCJaVPN8Sioh/jPlrkV+UdJ6AW1aqBWZQijoVpF+z8RzGkc4aIUAGg2UD59VDi3KVNZQ4CZxJxhpmG6QD8BggtI47Y2wvuIwGJ1ZYYRb8JxJIF0vFpdqsSuRFe7dx+2i+IRU7ZvoZyLCYo901N6q9RgAeaaC4UWrQ6PI9HSAwMx3mq0UR4bMvwQ9ZW1RVdkApLGUHfxOYVj+SuDlo4SuwcWNUBaCldkErYSMCAs9uKPVBXFkJEpsEqHCSkjcgcXHVpnVp6QtyPsYDGtQkIkJQidnixU9+6Y1q6x/0z8MkqVDyZXWZsBCoPjdanllUC4fR17bk7MSeYu7QQFRA8XFu2NuMF0No5sXLfIGzafwecRzgVW33QaCWpEphURnkxhscC2JkxSBZaI+x1q79XTAZDFMKhL4/LsIaCzCNUgZCtLa74OiXUaZHROQTpGxalCeOyWmAhxayrF/sQ+/rULFxjF2XUihgji/0se9SznunDWKTkAIuTFUGY7drnxg2HFzr73zvlKs8swx2II99xDMq3Jq1srwtNKxdFjdHWToL0y+ijJ0HhHRl8Y1tdTFoWaOe2zfa+i3FZ1JoWEEWPisRPBys77nyB6OsdTJPb9X7CHf1SqCqwCC8ikbKkP1x+VpChcVZXxtmDapMFZIbS+5N4HPXLS1RAGtPi4/zSA6XBoJILrlI4k7+dIpUOxntGXGaduEUCsyAWS5xN1zXRxpFmjA4eAVnOVwAVImUBPafGm6dYLCyaRBCLjgdUXpKtIY+AoRUvJ8GGVI/Rm0JICU71Iis/4TaHYzTC2x001WQfCFk3/qJg/ueXLpWv0MC60eljsZozNFgRkjVSIZ58p0356DN7bM97ynBK+3tRSWXaFdiXQZ+nsqrL6nKJUi81bzEqQUrvb8AFoq0jngORGzTBnIXZ+0+4TlVo4jSz2dRPfD9B3Kv+xoeoukAnHFtBUpRwPrbPhIxbYZoYJTHVPZ8Xk9h4ZUZ3q5xN6FHMdaZQH5FMw1e7hrXqKbDVv3kjlCwVlFgr/oLLO+JNAZnEhZa1PbTOa3ZnCrPlQfWWRCv6TNq7xwqBWZABbaPSw2m7h7rgvSzIexSDcOC7VuJSRN+qQJ2s8UfI8F6XBQNQ+fdEV59LaA599QNIGpPGR36mmkSA1RX61c8RKlNE5sxXj4FQXcmpP0i0iZxknGiky0Ki+mgYDhzwmn8NsVllFiMngrK+97jG+5q/vUkNKaVb5V3WaKYp+OSsLSMWJldOjrLTLzbrBCUow6JYD8Uy/+qhNqa4u99AOdsYwrM/FpwSRJifFSRmdKkTH8oswPjT8OrbcDMwwLcd7Y6FAd/3A6lV/QXLODhVYPe+bKtscVzK70ML3cw53T7WEK9CFBLNntIPsE/nwI/RtL8LLFV5pPSITzi0jqa+RFSUzFYC5E1vOgfFsdPjbDyNubT7EpCml4/4SVGYwtH0EvK2AYFIm/GDgDLVw9ajSpSLG85DWNpwGZLY0lTNRcllMUMMnfRB6erpBJFl6ul8BhJp+5BoUAMg7AdtIO24BBHr5SMt0ucxujJidgzKTzsCRWqDaNWPui2Rtj0jk+m+2nlFIGqCPw/Q7kzvNweLGDJRPYkSTQXVLh8l0BBQUPR6bj05lylPYSUOKz6riN2DE7taSnGBc09qLJlMIaCCfyrYclxLD3BUKEby8l6xIKy3SZ4eFkS2uSphFCJSWu6LmpWzjmQ4VA/faCRBLQ1bG0SEp/i6tgAqngmhWh4iT0DRf8h/6mNb1IcS5UdCv2md0uFbrosjYvWRhZZSyYLwTkRBiDcSrejOqLg9oiE8KSuveEx/lgw1btZkeDlsMgxhd+LRrwg3ANgjJly5udJfmMj0zJZWKVSCSAciUoeytwrRuaOfUkz3rKWbMQndvicCqDgCyjU0N6ygcMKlRMuKDRW0tzrT7ums+w3GVWGxmPl7Acn59XZbypVRYPziXVb0/hTJjBV2aAqZshl6fQaS4h8+5AMtuIoVBF0DwVlA2WyZsqspfGPxQUKFiUSMUVowJF4cjKAMVmKLIK8pVtLdm2reJQH66cRwuUqEO57VC/rRKZecg2JT3HiYC9SyFPTCl6VcdlAU0hfYHVLpzZ5rsgmbAsI0pn+7pIWecKeqSsN5CXyptB9XY0mHlxtNnBXfM5VvrkKeCbVZmpFRkPBJAx8+TSYajOFxB2vMST1ueRFMx+93a5m2OmrSboUg+Y6xghhMRE9zXpylDFSsLNnCmlzLwXAgBb8Q+ipWjLhAD0WupOmQPfZGUEK1+D/9htwOEf6FMnBQi1YBDCTWWy1qXBJvjoTXILMNHHMgfyLmZbGeZWuvjh4QWfdsYs0iAGSYdiYimhnNjYFnAKp9enjI5c+4T0O/ZdYQsRYXolw3KPK0wJnAMhFSsk8du9GICPtJApLEmnGjReBQiEfXNdv0zPAqlgpZdhukXwfLAGbEV6aYgS1hq/2JSFKU6vRvpyJ8NsJ6Rh0OmZijBE1moubhTffg2U9z+5OUwAji310B94Cm+1YZ1ZuVXScLp7K/41At5CiKLH6rv003lJudLj46jm/lfK9Nk3wlInw9xKH3fz8b9ZtRjUikwhkARw+D+DUPdU3tlhWPxA459a7ODu+T5mWxmmViT2Hl3E0oq/rxufvFgNDNj+CmkrTJvykfGQsM8ywaGVlubR2AejiI7lI0qhYdDjrvsJBZAk/x0Ip6AMfjNP31ssJwSU91Nax9EcDWRlYcoLma8R7lWPmycEZOQPw4XloL4IweHv5zkkSSx3M0wvNPHDmcE+CqWk8zID5RBEajyY4HWFyrLZgq3GqB3IeDwMHB/w21sAhxd72L/Qx6G50H+I5R0kRAqv39AtFL5PLQp0GUcWO9gz28F8s5lIP0iBWyOU4U4qcsNcj1o8ZiXfdi4KSLoKyEj9pcok6ZRmyRcHfCguH2JZBrX9APnBkgFOca5kxCxaZNitJa6EuzL6ueIbm1iHAVArMgVAOrYWAXkYG8JMTdX1HrvJy03nUkpkUmKp3Uee58glYaFdcindaiwylSBYORQqNdYxZACuIWgkaAZRgUSmCMyt9HD3QoYjK1qp4pE/7aI/Iaz6beDe/7Bh+gXitdueRUKzn2gLI1wo+ANhTChMfYy7Y982cao+fEW0SkhtCZptCxvfJnyPwnFkXomsA3QW0Cdg/0KGO+cJvVxiudNHlksmigYprCF2BbHrE6Nvfr/y3Rl0z1ZhCWlayilMzDMAbivVRT7VHgro5xLTzdDJm+FKWHLSzte8PNOWVCEYpJuHWdZHLoH5Fc6buOVrlSMssAqpjdsqyvYga0iIx8zbgnxCwMS0iYfO6HgiEbBvCfjRTEf51/lvlRIT9Vs4dpKYC/LoccDHTeHCyfSFsmjZrSUp2Qm8knK9ZzFO9WkOPgQHA9ZTEV4nqBUZDgNOk3gTPNXZA1dnjlGYO3eS5tlKq7wBVKYmfNZT22UFx4fTeGT14GpFDK1AUYocGGU6HaBOJswsd7F3tqvbyDF+11wJYSAzYPGACtNfEEZ+od3HgYWuluqDmLJSoBo6XY4GeiauTDH5AVTwKeBQZkXg24RcGBaecHGMzbxpyB4wtx+dvkSzm2F+pQfZDxVswnSbMBdtaZSRTQFfZGPSMPPeijoxpX2nylf8hvYih0kKmiqlsKTUH/2rMc5+h3OwQp2LeEK0tcTmloFVXHLqjVR+cGAkgkj1nSiYD5VLCBOW+b6Z9FwpJKDKtlEJ9ymETBK6vR6W2hmWlhcSOEPFpXgsqOFWtvXIUyb6qWzs8IjVR28BDv4bGy8DFNck71C0KgM2obJleANDfWppaIhXCb6cDgZqZNrmmMSA4NMDBulAUoO8c3uBpSPqUkVzBX1SeOjfxgFFZv7zEP+QjNOuCIwil8w/aIImjj4W4ck66v3dXwOd8bgkw7OOr6SsESIHJhLKIBFBkHIElGio5pGGAP4Zfk+RVkU4snTEfnur/dwpd5aMYAyWCmRSlkcCci1wpfQVxV4OzLQyLMz38Pi8X8w4Cod72C7mt97+qXokPTXmwj7iz4nAHNxsCj+LUWTGNEm5zsOTpIKfsapQSsHiNIZKdlCP3ATnK/Ez8244LxhdVa4UKYCoFYcJ3Agk5gr7Yr7P3g0sHEI6YTFFa/WAKcJPpA9wZClF0qkykgC0ZlScIU4b7wdPSQdLV2Uupp6T/d/uqmddtTDbcTYb3+boZrqOaf2LPSy76X6TQG2RKQM26Lw+9nwxOIRMJEhjjuq5B4VXHhQ/qwgp+rKOuuBuyTCSlBIT4pCeqX1AoRUeMSESnXYYHM/AMY08QbupT0FbBsqOPWXEskiSuGeuizsWcmtWppBJENQ7AkACMuAUlGQICWFbWQFMCUjDHI0jtnQWmWiVFTBTuEjlnlUsyuNIlAR09HHYbqc1gN6gXoWWtrhdi8dZuj25gBOgYIel6MgzfMXJPGvoO4ZklrhuYBBNiblkBlZIS7hFSACx8nydLoUTCcluKo6YjqHA9TsJJBZaCdxCFHSbrh9/T5lWmgfQaK8DMGO0hK8OC+0FYGVmIBZHIrvBfXYPO4RQMscLrNDpQtJ4SEq9Kcd4jLnmI++l8YbWczsGnWyi8D3JdVIUjx/UikwRkBZg/iOopwXOtJYRFztdEoRTgIVz7pWScO9Sj7GNgtMeA+keNIEofhc6gnE8yZVmWN4AGr09NNeKhbkqoLQTNuIdoRAPkSYmM0OQ5RKdlUU0OxlWOkyY2S5XOfNcq63C8NzUeChgUKnIs0Xg4XDM3SoHfNvC87MoOKpbNJ4SwyJ+r7cbBlPNgInCMBS6XSgUjC+Zq1u9I/rTRBq6nMkcSFYsMbcVAqG2l7rLQGfRsyiQqGA9LbJsQqL4rhz9Obm9BLeB4JgsVxAF50lrEPRs3hOKrmMpGkPpOUDkH2FY7hIOLmtHU75Q9L6tQimoCrN3A7N3gbIM1gMstccf1kfqxQvzmxRhnkLw+U/E5PjhBXJp1RAOA+IxHFX5PQVPzJaV/k6J2mwmqBWZMuDjJTHVoqQphcD+JrvKSLGb+XYPs3PzmGl29buCSSFlxdViESR8JwZFqKSStIWZEnntI8O82CoywjGAYaVuUy5bIdkJHU9s7rMioJyyCdAnJVI4CZJyKDVUoPBqhAKlIRncrBQC2r1nErZPJbvMUko/T6ofkk9kSZoKaozp20KFKKGUeGnZj+UpfRnhneVl8nI9LAH3LmyDsK0qbM8QoZtLtDKelqI0VplKWLs8pWxim/0qViW4mXJcyactBSNQEjxsjGeyOk01Mxyc7+BHM22bcm0FDaHAEQFZC+gsg7pLevipG6aTwK22kSLiPgtnF99WsygS/R9iCeZtnriri4iw3CP/4tuIDKZAcdYXWgXDcjcZ1IpMKSQYE6hw6Prp0jiU4HN4zJpHEqHdT+2jB+Ucux049D21auTQZ/EMTETeFI18Ynlmx2RFtAI26Pj1EGDnZ6DEpMzypZPKtCGboPq4ZHplqP7zX5kfjBZhHBwFpBWOjCFLdZJBSgmpp09ufWT4yEjRbiSV/tmaUfF1egO2akJmyPvMCF0h/H4qUa64UPGjELMx46Xxvw280ypQUCR/5uFOfHqKTq7ufwrr7ukE7iVf99utpQIFxmPqpS/i9jBwYLaNvfM52llxGouCC6ISQVY6o8xFqdYlgqX2tmlXp8ikoseWhYZiqZDkVXoMhFcvGljqFPMVu9gR0NFzWf6BJ7xKgFs7yFEdOTWTf1+Yn9fRWU0JKBgfYcT0AoXMDuFg3Myv9HBoOcfd83mCtpBG8h+xHhGGb6bqtEmgVmSSwAZMERMs3EooHwT+20a0evJ5dgKX7Ktw60dvd8+WDgNTN+vbhdOTIcaZoDXrxs+s0CzBm7Ry8Pwhs9YaQ1RUHBumEJIXWQbCMlIomaBjjEsCEILlS2B2D0kpOCS1Umr4AmuDUAhGeHXZx36o+u3gd9Qx8WS9w/4ySoLREjQTE8Idy0xCsTAf+AxOyCmmX1LMIEQOoRtXhQpAUPcgndfu/DtB+xSE/V8AyasxwmdxpbM8w3I3w7GmmTclgqx0u3N4IPa/R1/pwmPVBbHfZfQWvYvbzl2cmuA3ieIkEQ4uZZhuA+iv2HAKw4OZsBLS/kwFZeAQKvvBKzM0k4oIBbwo+F029o3jvdnU5HlIYrmjThhON3s4vNzHkZZKHeFJ8kL+bQ2K4QaBWpHhkOTQoZAuj4bqGLTJ5Aaw+iZ8fUd4H2mcKZIk87JvHlWxOA58y0/Ub6sJH92KTIwsTW/zGHDk5uBodkKABIpXuy/R7A86eRIIm1xtgbhDEQXKURnTlC5YFKMU3sMIH8/gaPWmNUl7v4mNaAyABxlUCxh3zQJxfxUPdUCHpsEqMt0VFUdl+ShwzzeBw/9RXN8iMGNNNNSYCJUoCvowsu7ARPsCCPpEFvx7ilCcNUFQMp/SLtS7TkZY7idoQ6UCEFqVDAQXrENKicUeoe8FU/MnXqwaJfosWasgCRM8Pj5DTLA1ENC/0g+yBDh0WLYSKkzasKzhwNMLoe8sTJbDIJz37XnFT9jcrLJdlhOw1NNzhA02ImClT5hv5dg714fMpQqnEBJcBazyzFtWgHjbWpSOx0gh4GLA2IoHv1PjrOA9T2M/wwUjawN+MlLPG743ML/cxP7ZLjrt0Lob8PoUffbeutpH5j4JLsCa+WBMLbU6LLwYzk9phmDaVyJxmiJGWukRlg8DR28Fpm5l6VKOvRJYulcdz14Mj0YCLjBcPBEPLXRw11yOTj6IybJ6tWaUsCcj9IMJnWD0Ybnu1BKf7PpZBWtZfJqWCVVz6ty8ktw0rk3Skmz/yaQlrozBhs6+ObAyHd+67KUhvw789muSSpFJ+WHYFWBKuU5B2kLosddKFjM3V8KRcXChi7sXciy2OlG2mNkHNIW/g8SGF0sCZtuEe5dz3DWXBW0XSGsPP3snhMWnrilJCGMrdIvGHOD5MXllqHx9kjiyLLHSrWJJKeZBFveat16i4oaD2X3AgW8D7cWkDAWKF4N3L/SxsNKKCm4A6OYSEkL5iyT1hIrj0lhUebeVLX7M64HzPJwtqaQcBx8TBeEkdNLcK8ZXdoiAfq8LAtALTxR6c98vwM1lYk82J9SKTCGUDMZwz9Z7zwROgdnUDB1it8J6p0FDrTxFVpGlJnzemlcKSowg+Ate2zKKJoKCbqeFdi/DcqcsBLtPkzOKJBS5pHnWPOF0+hYZP09x37CdYZWOwM4i85YXcVNoGoiUs6+6N7ZRcPw6Ii6wHrF2SZzAijMaBsx+A3CrxAZ75hERfRJPxyiCl5L9DkyIRWdZfJoDTKxNZJ6h1c1wdHpGF120pZiiM1mQ+ia1kinUPUorfcJCq4eFlSyRfhDTLj1Xl6ajaPuIUHAsVkGWA+3WEvo5Wyo5DUp9SIq2wNJym1avyIRjhhDH06kCeVf5fbWm0/gJCJV5U0qrm+HQvH9ti/JbU9YhgkCW8xzh9wFgwxU4fzlp/RbT5DpSGU/X3wfOBV9bKqeX0Rams4oUEWzsJZumjIbicelYH7MEFSnlGxxqRcaDOOiVP8ADQRVBSjGQ6ghp85jOKNDsaTzMGiGgHM6i4qqYKMNnSeEePPekqnvRzQhzHbKOrlaAloJJU2ECaGGsnHRNfcN2q4DLbi2xdDLAE5pSybW1L1yDPQkjQ/o9pELnSy2YpFDKg7mHhTykQfmeohBYZCTz9ylq6xA3SJ3qMTF+jOnbpAlPtsmAWRXhD6yQqW4oHw5FuIHw+LBIFlJlvLvfY/1ljyARpiJ+xUKQ3zwOT3h5kDjlx9D4J+8K+l4gGEdxujK1qZpY4X27SmffoDR15LwglUdUyopMXth/Mn4YrOlTm7vuiXpmdlQEgIYQkBDlp3QGguYPZDaTUnNCvbd9Qoa1yLDiLL8IxlEFn6gC/sRpKJwbJNkCo2T+DLI0MUXHPt6Eikwd2bcUygRqYkCyAWJ/t+bUdk1zCkTbAKhjvcudDMSbn82HtdGb+m4eScTbD8J7dmApw8pKD91twDk7iOUpk2yB6bOQJv1EK3RkT1d5L8vrYF9pAc7lRXsG6J1eQkeJJS0sUysnOHIznKJgXrnVnFI+faYVBZK1qB2DE+Y331orFeIB05JSXaxpHLxFw2+7vKfGni3XcqmSckJRFlOhfgxY8Qd9Kj0hz5WlBC0pQREqVyE0jwQPhK2JkDnk2ER15pwqi3yxa54JEeYp8pEpeMfN+pXmD3lf03FtaG0+Mt6PYZiRUxDcsaqUEslKCbtePxCe5ZEp/QIgNBIWmcGz2iU0FkxmRyVEfm4+TWVxn9wzIhlsP+r3hVaO1HOmOPcDyxRXXDyePKifKEE653OmzLRlajNAbZFJARnDf2JQmv+9Di8JXkeZul/EMnOBTMaYhWCnpnl5BTfKIu8X3M8STkiOUCIWHvFkanVzTC33XfYBN/cCwL1NQrtfYY/fClV2UiASBIweKdUdUV6RjGmyxyRzYDblZwKbXkRC3WNFelWlbNlEpE6IeVhIZzc+MsLD5XdswmFWX2vgGDUqWGQC4c/Lk331rMFPwOk6Nqf83yZ/KcTjxraSOak1AEOUPzkWDU4+Hqsy0aDfgvDyrjgCKHfpPIES2W4StA2mymulcIVtnotGwuGef3c0RZYO+6rkIIL3iEZ0aom8KVoti18vwfopuj26YDySVjJYQvtN2T8FskHWxYE0arrIXAmaFoNm3EodLyplkfGbp4iW1LiAP0YAeBdKEgHdxaAvOd+jgtN2JWVzqUbayZngyZg98xKbUZmpFRkOUSwBuDFmrheg4uFqMyQv7CMvjTFJl4uFUOlgjzuLwKHvluRj3/l+O2nGyt8HVhA3wM2jwYKm289x99Rs/MJMzPBICYraMijr6K2qnpHlRsKYf+0jSzP5n06SFTA+ZkIv0BeibSNoJiaATPqZk63EaLWMM1TgEmX4XcnaxipBUjM7ARv5F1CCM9P39xC8raXktoAR8p61JFGN4lcJgvkTjrdI6IcZU7QoBu5nUXXz4uNoBi2M5S6gyD7xLGIhhCvxoo0W8y3sO5YvJZACDGVApg8HthUGddDgshi+yMKQwh3NbWWR4Un9bSRCJUUyKNfEVs5kKRMuB2vJcM6uFG7ps/JVSuH94jR5PwcpFqTaZLol0czCOZA6KOLo8D6JLUgJ8E5gJpsyJUPStC52+phfmCuvxwaEWpEZANY2wwYpn+hBYtgBl5LS5BQYs/oyaIT9L86TLCjvqqO7nSVWeEI4cGXETmJRyuyYyGP5YnqI/HNXvawYJ6e9qEqR0CZSR7UXD6rAaGF6SJCnBHhfwsTeO180csuQYXLCnkaiAtyGyfGOpES6iJbo1CZTfIvGVZlAyfuBcgolOPM+SxcoEh5yJN75ypU/5hNMt7PojUWHNaHAAsr/IuXkOwTTdbqcRJ8fT/WqEo73sB0BSsYk0jlZ2eGRdHeqUfdb8oZrQhSskBPPxlZ6dIYUGZxFgpNGGEdmgEkmVDCBwE+EOc9XVDz8cUbBC0CioRcORfy3SgmklYryOWt5i0j0TZS8wMuJ8RQAaPYyTLdy3H7MRHCX6qoGAL7Fh9i4hHtvypbu5Jb03LQSfIIpbzF5pI7Ls6xZrx2l2+hQ+8gMAgIAgYyAfqYtKFxh8SCxdWMYGR9IRMpcmbpszeP7KcHGnvXbQdwX+EyA02J8XUKlxDqJ8gpzuvREoJTOqxkCytgdozfgS8lmjBRAchM3Ql3Agkq5psnjC1gXVSRkWea3sXgwBqeBH9N2eSmxX65KcopToMCU0W3axfapBMYm1XeryHCmBbXt1Jh0z30zGycqLTyC8k1/WbKXp5TQPPkcYGavilS87VSO1MfojUeoIISRYpWod6R4+Xj2L/TRaeU4abuPR45NAhh0wWWInviH/l6gMFR6BiiLTHEsJ0qOY3+VLViK9DAxD0M/uOrgWx2LttcLCYh5z1CLjOAZ62ZzKIKg+Ka6FaJsjpcAu2RVDXuKWQ5XGDX/J0ov/jxjlBy8IOlnhOVOjlxHCJ9a6mFhUeLckyVO4UqSQLx1ZOkxfJeQID4uNPiu/s/dd+Yjs1mhtsiUQbCqaHb7MI6eyTDtZvA2j8XPIrag7+mxv1gyH2kxbf0OO53CmTv56QD42n5wyqBA0XBL3lFGfnSRfaM4OpHlp0DoemnD9ilxuCykyB3FdvvijpV7xbJP4yOTy4K2jwoyuFLOgyn/JZ4mcLgmclaY0x4ENMYAIsyu9DFrwrPIDF7/W8JdGX6JjCkWWUHM/1IqS9n+/6duE+4uKquZuTojKMNvBu1hZJlyUZmJ/k9AXxIWOn3MtQKfsQZfpxmpGIssigLZFZCTTMC2HYoUCNFA5GcWrNSBglqmrB5Fac2LQc7YJRDrHFWEmyfNdX7f4kEp61vBuSVR0E8m+5p8OBivk5LgrkqJ28wmFY1EyxslwvHU9NUdQf91FgAtQ0ASzW6G+ZU+7p7vxicLI75rxrBE2v+uqG1ChUj4ShKz4K2laU8k1IqMB4EplczTYFIJF801dvYi5WSZteENIEr99Ae/YP9b6LeB6R+5EygWgVSTL7TIBLT7gkxPFGshMvWVXr5IfHtCMD2BSiHa3lAOdPZJxKxTAp2BcBYNCtrU48QeCoXTWU1STNRnoJavlK1wjVUtVYekEGI+SCF5CPEUgC1P/41v1fRKHFtq40ezPbSz3E+XENZmDEY0DCpaSjXuuitqDPaafpeZNrPd7W+/Aexwrd9pSSIIhHZGBcIQVhEJYzKSVvQijERcnrE5omlky2zrHJ4ENYes4C3YgoUQvsN61FjsEWumtnO+CuaJnp3RgsX09Vq2lsIJVfCe2Mk7RyDrZ2+DOjmuBfWjC0FTafkze1ddgaJTCTR9RIbK9HwU/Ra8UJhRueR/C+Ox2M+YF1GQP89Nm3GMju9KGeIjPw3DGtVVpxWWjCCsCL9sdpNCrciUgmNOlvXogWG/y4QikTTT+wyRb2YAJQf8Zu4EZu8C7voyo8kMZglknQB9wYBkJtXku7B0Tm4BYzRKga1DmZUq8pXgeQlh+0TCugBi/hgzuYi5JDCKFA0AXLyG+JWAAEh4MXcc00uV4goX3Mk0Yk48LR9LvG6srfUll0RA1mkCIHR60qWL8BcwPK7WBELZdaMKNoe8C1CmHIrFGKMxpBvwfDm4ZdC2EatjQuDNtCT2L2Q43NR5Zd+jL7WFx2kIhUZcRsK3xUpq9ijc9vVel/WdAPotJ7TDPoVLZmCh3cc9Cxn6uVuVk3Q+YYU7CiSTSmshSKkWSSYqNrwWiOvEi0pNMwr6GoCtWHAIYixr29AUIaLQslCs3w8pgO0WuynD58Mezs68/ZlUdmKqB5BH6mSl/eleWqWQLRojC4+ncBedLiqa2wxYyAgCfItMAuNmgNpHJgmxxqxAT0gh1ICc3+e2dsJJHGL0bhgFCI3QMul/MUJn6bDD7yE0ikwQ+IyV4PCATWCJ2NvUh4gNVmSM0QnRpEIHzyoS6yEliogriT0LemqAUDPxI6wimWxXStNmS3RlCqExBndUzXcIqYg2KhowZ0j+2zT9Bc/NM8GPsgPqWCnrdwh4l2yS3UzjqpfX9kRkbwQ+tJxjq9fc5I7/y8wTwMvdHAvLhIkxCbVO4tY/XgfmN1YqIQgLHcLcSg/zlOMBOybV46zNO70AhQg+bQUUWAMP6VNeHZs+NQLTT9nXAgucGiQSuPc/gDMfrstmWzAJyhdaPcw0u2j0Mzg2HeD0SOFjqsLWUmtOKVdZV/k6nbQLtO2sotqVQ+JEolVGLFkFyltnwR8ClEgT0TOIP5QAU+b5Bk1yti9N2beONEInI0w3CWeMczr5WODPfQdeY7UhIFoIRgvK8HRW6lAA/yicSuqhHyya/S/VGHNZV+djdSKhtshwKGAOpoOzxiTIrD5JqpMaS1MeQ1V/vue+faeZliA/tVdk4lv024xWmauVcRJbMMH4PUSRwhGvSH35mjrCWpI+fJ+Uzan6BBytwCzrfbWCgF3eWNR2FODn3+xjckUa65tHU0A7AOQ5MH8PqN+yaH4014cMbqP2r0fwKsHqmmgXAOit+OmlUUpJ+WAYC0/IrEwas09G7FmSOl+JJwDHljMcmO/CKniSlOImM+aHo/6mlns4uNDBkSXnr+L5LEZ9wMat1xFB/RlNIFL+YbaO4akqjTUc5zN7gN5KYiVLwLHbdRsH48trkzS4ti6gVzQAIzaXE7F9AhAQgPbL8M7LFF5KGZRvVtitOWApDBaoYf4e4OC/qQtLFw4AR27RaDjOAv+YMl8Qvv1Hzh8upLdoSvPrX/h49IdQ3Nb21/KUqksyxpamT89h5TOcsMjY4akdYoWx1yql5N7lHEebfdw85d8VRoPumyOwsce29M24J4l2X6Jnfe4CvmvqTQRfQYLDWbiYdKisSwPp1h3GgrdBoVZkKoIaWkLdgmoYn30DJ/BSgg7smeE1EAAa0fNyChwl6qsE+jxYHJvgocC2Fhn4jEik6ZU8b8HlZoNJTjN25yFRFL8hbJOUcNGYuPAybR8JRJfApvcvt3II7IpJuH3povroM/M55crRte9fdpdzBhEKiMLGKxCGY1vcySTz3Pb3GCJfp7Bcb6uIvw9PqJGjT+ftS4lc95odFzJXR+PNpZUMMQFo9zLYIPDekLWORzqCayCMUw1jFxShk7r5kXb8jpzJZ34ETN0aCS1lkcmi4IcmQbqrwtMurnUKgSRw99f8rdpifSYqzyutKOou37qb268ub1yZSafLekB7VlllxrYEpRUQVcqv2JhkfSsTiowP/kLK3MDuY2a2kyTP0J/LR4Cjtw2IseXoyw3OxFF2w8+VFdUpWBKEfq5uVRc6jLcb+awMwO8P85unJdLHpwndLMeBxT7unI0Xwu5//SfzckNmos7eiOEnLEd2XP/EQa3IlIIfG8BjU515fUIjZMSIlQgPn3kuvHMoqbLtRyiYPSGdBWUG3y0OY0hVU3e5l2H/MtDuJ9KHj3K2LQEoITZ3t/bAB6Ad8JLm2aKtEg0SwPRKHweb2pkz6/hpmED1IDTLlpYHr0/cEXr9RAhrJgtSwSk3AU0arKuLzH3TQ4puw9ijgIT8e0r5IWDbaYhXtvqz0YCNRGxotxYewxS5Y21RG7FiC7kkvx8rcNb1hihjlMw52yVkW01lHLnwFYW2cvslPRVIbUdpZdObyzKg3+P45COUEpjbZ53vvaYqUlyNAip1e+XauVK3HR9z/LdXNSC2yLAyljt97F+U6OZwipLsq/lktqcjIGVZy/ueIkOigd7YDtcQKX4CMIsXG5f26hA/j++ord5FVzwEFbbzj5kZJUzwypIxk3WVQpMCa42U8A4bhnMKUHUhVz9PpSCvKvpZyv+lqB0EyDiA60HU6WVY7vSw3O2z2DIh/abwIumRzGC/u28qSne/sQNoTOinVaN2bzyofWQS4O3mB5PMOBYSwfeLMOMltHBY4eKPepkwA6oDMCLKa/FziCwvRQnNY+Psq/JMLfUws9jGXFPgxyPu4YIsGWq7WY5ej3AyoMy3c/d4K710qXwys1NCBM+SMrfSw+x8F5MTYzhr+k61ZafLTU5M76x6yILKJ7LfE5wjO8Hi6DTC2qffl3iJmpMR3qlWYaZzkj7r8JQm9gyAvcPCPpeOJu4jI/jRcVNlXQ9bRtGY4UfjXQvxIU22bF5Z06IsD2O0vtUskZcz/ZLxnOxfu4UB14X2sUhY3lwZprZkM/J+jYsCoGLlLBwALR0GsNWnIzn2ND7FMOCPR8CfxwVWFoav6Ojx1GIb0wtdLFKORz9YKzJmS0sWbLMAOmhiBoxNWLpyMYlsbCsmstmi4V1AP+Arq4EADa05SR4Wbi2ZJHwcpPgrbzupbt9OAesnKRUflhCBkqhx6utKVHBMwN5gmUKrP1d6OURGOKm3ohZ7dlzpP6M0CwEs3OP3DTvp5/KEyrEeq9JtO4UzBICyts3drX3J1HPLawxPILOoSls0NxPUiowHTCAAAO94wAkMAryVrk1OamVfYIUgckJYogEiCckmkOfCGpk6A1p4mUlgdBgBKXPwUywEgV4mEVkcwnJI4sBcByuLGR58cgunyj7QmgHlGYQYTxBVBE6AALC7GlJ78nd6uVoxt+d9AZc0Zxe3c5qe9HMKf1nGGLFhl4qlAfiCPiGgGG6br0i4JoWhxuUNDiY0iJyPTLIbcgBj8KJ7cmXcq60WBwkljNfY+ihY2vlqG1b5Ue+ZqhaQ7Zc9BHirXcbcwySCggdmqytMXOLzEaaXWSIUQkogs2cN7ew7xoRGMoxBYHEj/gwgmVvbgH3Or54QOro2F8pSlvhA6J7S/MFfN/nbKXE+Vl9rGeNjmOXj73n+IiCf//ntYvqxYK4ZM4vsq3o3wk0Hsr54ZltJoUjwWzJ3i8WLy/iKGYE8lzi82MHKbIZLzlzE2Mo0MD7JSFW0k54XaB4FWrn33kwp9TM8mcTaz5y8KmrLpUPqMEpnkc1VS6odE3EsL/jtuUmg3loqg6hDEysmNpjcatNn7C5t+JMxqcJr3xktgwZYxCh4fi09AqZG5h17QhQ4aGpFo9XNMbXUg2uHXM+RwStJ73vEgxSzyM0kKlmhx0qFwS+QFCQuUVB/1vbC4fF4IsOWNyaUud2aYRUOkTyxofEXxZ/x5EBAcyrMPYADi4T9S9y3QjHz5R7htmmJ5Y6+aVj77UACK33CngXCUld6p+uK/R+MQ3CCsXvVDARVclymHVN9vLIiroK2ir4FIBrBkIhTkqGJv0tc0Oh8xpy1xrempShhgt5sO1gl0Al83wE0RWHRIwkcvUU57ZJM3yFIVBg+wcNtLAPBHKJIsLnv6Y2IhOUv6OLkd28IsHyeUlcOdgOojFeydzlRibLG6LALLqdAWXsoU0KklGg1l9Hq5WguzqsYYNa6bOgyJZJyLmd9I8K5z6yNZGg3v5LKKRs/UrLLihlOi0GpaCTGNOvc3A6/tSJTAI7XMIYp2NS1xye9XMmvxoeEg0ylS/rE6YFbKOA9qeh/egPft8b44izBTQDMtXN0JTyBTIDb5uCbzAAapMuZ2aO2nSigmzwsthrqCHMJEy9QKEOfgXifm9FnH5H3M1kmbzrNzEk0kDcm7Aovyh9d9ZBikIYphf4hCcbNICfCYquLI4s9LHdZ8CqSmFohTE3di9v33+uXT8DhFWC22cVtR9va1G7K4iva8MSPw+2NETMMUxQWXR+hE7rDZM6nxht7pQr6oAmiKRKAZ1lMWkd0naLySkzrZRZP05+mDwdG9vUGloc/LiWeD0lh02upLQodUTnCRnnBCZ5AM+guQcze5Z5527dx1kKwPIGUf06BEuR/Y2mEDjAY9ju59xE5Ib8stfw43MplKfTfYgi5gkkhNhG7aEV8J1bmSaoFB5EA5ZlKYw1W/pwj73/WriCYbUplrHUp05Yl9Uzw6aPra1wcjH1ps0KtyHAQwZ56AZN1zJ0P1oTwBNwEIcA5RwKExgBn39RLwzBjRlhAoE+H9EvkuwMxCBxpZrhzju0DkClPbbG5icfabGUaWDgI7PlKSb1MG/ETCPyUkC94yhgSn8QmjywVPmwfmozPU4iFRd/VfRzySkWxf82E19xJgWnelTCMBEMlAJm+yTrLY4dCSZohkWNFdlQSKWFmjxZTwlGago/Y3BzV0QpvxlwLLWLcETmcHzxL0F7BNgXvHTfuCsoEwDg0ooUAT+091+8M82fPfM5AwdDkW7QMp9mO5uEPKGd1g+U5fAfAsaFifx01PTI9rDOXzFvwSBTHlQn4yPx+/2lCaSgghZXHLE8ARNbSzVTG7eJ+p+A9H3+lxoNQUUymcY6+BGGcEwvq4sZKuLAVCJSD0EoSBAAEy28dpSXjLaFSS8FM5GNYmi0qtxBJ19rbx9VlC9ZOAkBj0x/BrhWZCmDGXzi51AcF34NnPL0dbIYJC3Ct3axF0nK7RFAUUe1mn5r9hSbmeBBLAHMrfbT6jkETBMaylnJ4BOAC7Km3Y70ldVpAB7kqagNDlxFH/H4jTyAWKSRRvB9YhWKpS7hrntx9QxZPKftlX5j1KaCD4DM8AvwdLe9dsNVVpBB7ZcRMx7MIslWgJ+SF2cd37chzgQjorwD8WfiNKSYUKSWW2Bhvsm4iirbrypFWkfK2AhK0JYpnZXK6+W/+IeAFk+Ent7wiZfAsJcDZM+1DREQOfSDkHBFGULItF5nDU2aitipoAxkq1OHAMwsDrlBJfUoqwhbkp/SabCCEY4BsG5OEtgaxBUvEx3zLtlV0U/PAn6hB+awe4dgI8UC7yYDgrkopSEvGaiEgg2sXhPAbim+J+UoPefVWX/V89XyTTBphv8fXULC6ltQvbhfmMkaOVrIHBZx/ztjK0fSR/Q0MtSKTAjMGwq0LL3aDm/VmaLujdRKzLYnlXigU2XTRwse79Z6VHf8IVzTEnttCkBrA6rdmnuYlmWnPBK5XthncjmlbmL6TrTDhw/Sd+jRXwCQDyp0oE5aHEvG3nKEVM3aAmGmWcHRFYnalgx/N9DDdptjKI2NaAHg8wbasZUYF5UcCL2Qi6ZVwwUF1+Ba+AK1gxt+AkZEw8Y18VHLLTrS3nK6S9VYsMy28dK/wSKcjw4+vE9QzYdlQv8j7Fh8wLpGYwTiebpO1uPm5RPA9sBTyciR5yYstZwka+H5CJDQS/k0EvbVklFSlWMy0cyz3/VqUtILDnxqo+oc7qcY+CeWnlmx2M9/8x843KEgX5TUZmGJCBCNiQmtGsg5WwKsf+dhWyye8ZOGkNdYfIjeGi8a4GYGG/2lrTGrbzvotCkBZFR29Satq6ni8pmO2Q1jOWMRtg4qkVnTJziMCsNAF+PlDRV7cD2Eto2qzOc2tfE5qNfR2Hs8iyy3qGxBqRcaDxP5r8NqOZTtpeCr1udIDjrUy3DHTd5MhEPqSBCbGGgyXGZhl2w7kTQ77zH6GgiRIl1iZqfmRmMQm4qWnXHCGpJkyPwZsGSF/F9DvpbNYVQ6SzremiC7vG7EksQf/PQs9HF5mcXYoTBPNer/JUqSXpgvrK33/BNJ74/an9NskKogzK+G/Z9tuamhxZm+UHkLe2KJ+9lb88RpzPGTS/63+FwxlMJ6sNPCddt1t4k4MEs/nYfKkQ5IuXq17Fns40qy2VaIEFS/btJkEp4LCLYBQKTSFJ/qGVSlhnie21+e2KZbbbRxrKv5gxkRxfdjoCugUCd8e21/tBfcuaZFBoq0l+zbAOlyIL/S/snY3Lx/vk7jLwzHCXiVeuGd6HFqeVEynBCCJIDFmn6HfZnfXkZ7mBECwAwFSD2uBhkCgAITXxaj2aPUljrUId872Ha3mCwtsR6xye2f76GSOP7iLSXXmqnFkEvxFGYPUb2kXk8VK2GaAWpGJgO9JxzNGhGZS/lL/lCTR7GQq+mOv76UpHRoE/2huVH6C4Q5YeRQrOmHa4Em0R58IDSjJMSIy/J8LpfRkc1Qwoa7vnvImkFc3J5x9PCyN7+uKXiYxvdyL6u7rlPwHP7VkLoMkz4qjeHXuSPKOUhOrPiml7ND3opgWhEZQPiW+8wwpxu4YnD0iSvypTtWYUMw66yhGTX59DK5WD5jukL6FNyFYTd8AaPSWge4Sa1c+rkpGuNTbMfpYq62bN43COeWX0csIsyv6ugQuqyLlg0KnloJxxcaRN/bc+9h+JgK+b/IUBETbcTb4tlaW5Vjp9pFJQOYsDL1XBeF9GrHjShTeL6/YvAfM7gVa0+phaks5GgJp3pC+X6qMj7B5xmeoJ8H1KGUC1Udj2so1SDwDgnyhn0uhbqjKV9Gc9U9zquzYHcDKbKItjE+go0IyOWGXGq05CARKNhFyUpGuMxkuFgB7/ikxJlvdgi3BYJ6ppg39cVJjndWHeN34O0ZXrcjct8DJOTax7L1AiYlrBlW4ik1AfHNvwQzk/ijE0wZCJGmtYe9D5YczeE4rCefBoy0ZfuwKAMjhHRv3lyeI980UzLVcuzkGHZ/s8gVZAiJFiacVwe/wfQpfWV+xeBL62ntf7sQrT5JSnSg59kNY5sko8B1fU33AmVUQY0KPP6GrSmwqq206UlsaUEfHkekor6E6REp5W+xJLLV6yJMCLaA776tgW1I5IJfHKYFri6h0WKXqWCvHYm8A4yTAmvit1mZoI4vcYYmPX5Mkb0j5QqAc2OYejDhjxcant0zh205Vyox55q12+fHauEyf/FA4xcJPTdpMXZnRVTeh2+jfEfKgwbhw08iSLWMWNdzTlTmv+vTFCzP/7rLwHjfns+J1MwPv0lWGV1grcNk4Um1vxhDpOSLynopflYgILARz+WYLukhPljKIgk7maBQjl28BQllkPCwMc1R31rYyUDSsBSlRX5aEUWY5WEJ3Vw/n74mwbVSoFZkkpAeFZ6a26bhdITTP8a+BgDUykVJZCgRu6eWNBQUbZpF1wLeBLA+KrDpBxU2dA4HgfXplcuWF1UMXKInQlTnavdxHBR0905qHyQmGlLIXzkrhCHUMg9eJMYCgHgTTD6TzO4Zr9qZTtjTDPsl/wGjUfkRZN05QtBJNbE+QVZIEejlUvB1buqGBbwUI69+jukE5K/YloZcTKFw1asisNYYSsl1AbYHods64pTEwhYU18BooPF4q0ewD0ys5bp/uQg6wHnjOteYLMbqh2onHAOF0mh4nz9eF44mIRiyQXXr3pmDOGiLMosY63UfntwrKZtX1AqRpXPaleSzi50kFPVE67/RAeJfR5qP0LQPEr/7gijlp51PyHZjDNZb7HvDPlFLH/WOIVHTbqVvUpZgRocETguoXytHJyI4Ude+TEfjk9FBERsCA46R4pGOLbk3M6Te81/CUYF55dQ7xa4qTgVT9vuZbmSSMddjjlooPHfoO410bG2pFhkPy+DX/5SwgyuqS0P7tYNQTIFh5hRAxinQKlcbbIyc9p+N9co8Oglo5txeckyNbERJBbRMU0EEILlRjzCpaZUfbBIFPhmYE/Yyccyq5D+dcm3CaTJAXRz+WML1kzMEhnnhaA55/Sb+lMfl9F4FmOMJqeprRefSZLShGh7D/2XHi40z0Aavn4ZbEXQuOYSvzvLAryxQYob1/McOP5iVyY5Xw6qZaxSorSUSmDQ031p+pIItxZo0imDP6KGxLK7ZZFigyXqcL23muDylOZh57MX8YvQGFlIqDE6diZLDx4sWWytLpDe32se8/ZkbsQFsC8VoLfQrF9wWp0hPJ98xK4VFdpFSxfO5hom29z0T7yzxNplVOOepUJzNaeR8TVCiIpSPAPd/08eo06n/BdqVI3Vm1lGHvQs5KEI6F6YeuKzh/YiPSC46q0zA+QKY+YYwu840cvnCOam7ptYeIFh6MF4ftJtxru83Nu9HQT6S2ozcB1IpMGSRWpayn+WjWr/mND2zweVtMouB7sHXgmZ/Ni3DfMuUjE+bRsGQCpvkWGYIA9VZUEDuWh00RpeuHJzKI0QzHjN2MUBN4uZPhUJOQsXqNNYAM4yrAIOPvZhvLFUP+ZwgrU44Cy2FS7NI9jINtBdmDVaN56zktBt9c4pBt61oJE3PHALcGMIZjxxQvw2+DlU6GhXZm+0MAoIbQBixpk5qtQO5z1c8Uo56fm/Np5z5A0UrRtQBgnEB5H4HRnBZifJx49bV5E33Ovkcm/Ai7ShXfxxMrs1ZYG2d2kdrSDDxDvCnn+/b43eUzjOVejoNNgZ40CyRNvfUB0f0UCBGR99HoBH1EsP3kygwsEIBbqNh8BXMnAjPHw9ZNpAug289wcFmiFVyP4PdHihZCeLKP8wPo8RtRFK1o+CEJ3ikE9JrJ9A4aKq/aj0Wzm2Gh1cd001kcjaJDOkaVsdekwuy46RPO3cSWJqAXKfH4AwDJoohbB12TXIZqb57ouTSvs3fLAYw/hAttx7s2A9SKTAq4tcJCgrkFsotPW+ENYjBh4TPnMHhbmoFo5JIfnybGHAvS89gVhoHrgdlwKdVx2sJVKWckhsu4EzM+BFYMKTG11MOB+R72Ty+y+hFyajjeTBwta1j+3bNq6O9ze4E88/QAXv3oofcZvjc//T1r63sRdKdhnnq6a+BMXLDFmD/NJrafVtzPKa8E4aexqznWO7kYA3GfDd5kZlvPtj7Z/+1/jNla03nE2rgyx9+x7cBAeFm5ylfKPDdfkQ6UuZQom+cNB0BskTPvvPAyyI2k0k/8eaXaI95a8i1wwRwiwtRiF4cWOrh132HYuUESlOcAyUILTKO/AtGaTdTRb9u0Z4+/OCqESPFm35m/V7q9/U48vNDB0eUebj2mwy5wHkBszFACW+RXFH1Rv1gQR5ckUb+If6QgNY50b0jpwgswOWACZPI+b4igXtxCbbVTxiv5IoHz7mDBRoBSMIR/eavXZwX8WnTmgalb3ekrAN2c0MlcXcn73yx2Qj6ot7lLLL0bCepLIz1I7IPzX95YNKuhNCYnDDg2NyyJoGZCyDSTTin6N1dMioAzggGre/NUUoYxXp7+2oD2x/C4B+yqi+IswUOneC21c+CUhk2TkztpY/LkAPxYGaHUC6pKgOCOjIwhhG2fqrtDzCxtrGwZPoryRTqG/VDVkgHtmiovHKiPL7WaDktT7aZWSw0BqCPdDRbfRSstQvgGH8RNKVg5ggsx6drGWndCgecx61QZcccJE1m5QGDFDJVjI+1XYcp3yUlof4ZgyITjUvULrwOvKyGcG7bk5BjU/cniR4WQE7C8vAjs5H1OLq9XDrN2dZbienjzv3g+x2Syp90mMLYlfs5zlw0Y8PZS0JcS3X4OkROwPOXTaIQxQV1i6JVBsdMqo5kA795PAyLoJ49Mb/4YJSL2izN9auPImHeMt9kRI8aighTfjGl2i70coIY/JqwlRHh4BA8HQG6BYWlS1AY1DdpA81oh+8DRW4HJk1UuKXFgidBZkdi+1eDVVkhitHhhNEwDxO28UWFodevrX/86XvCCF+Dcc8+FEAL/8A//4L2//PLLIYTw/p797Gd7aebm5vBLv/RL2LlzJ0499VS87nWvQ7PZXFNFRgvpziO2RURasRCpmUZ88oTMwQ0WYR1cOXMN87CBq5mbKyPlgBg7i/qf/tYSgISZkoEQ2pzKJxRbZVj0Ni6x/m0YlH7mOf0ZisbgngZ79HZylUwk8msXbhF4v+zqym8HLzGR5y/BaYMAc7o1KIwTIDjnQ29su06nH0Q38LLtDE+oJhgHASYKqG0f6xvFBLeApV23JuuPhtcWUvrWhE4OOEt6QbA+8La2XNbR7RoirKqHgbKeplefPpJsQRBZsX18ka+W/yXKm4rJ5JpXuM9Qcea+DH4mm4eIIKLYG7EiIxEckyaCcdr3hrtHF29ThsujQ9jrNULaovoYaB5TJ+gO/yCik4tKS2oiVQq350ezfMRG/jYWDAudJWDxXh8xcV8U2PqoKeW2Bud6jge53avEeLNtx9558yoYU3ZOm+f6qge2g2joMgcCUgEUzZyzdQmLIwq2zTQ0xoL5o0BGCYFonqWuxDD5ussACJKATpah2cmx0stMVSxqGcx3N63cON0MMLQis7Kygkc/+tH44Ac/WJjm2c9+No4cOWL//vZv/9Z7/0u/9Eu47bbbcMMNN+ALX/gCvv71r+OKK64Ynvp1htgLnTtrMcFjJ46v0fKJHO5AukM24YmPgj1JImD5MAsdTbChz4mlsZ/BZOZMmsiudAh+LAvPYU1oRpyHwjUQYNE7/WmcH9lktvUHYXzbyZ6gsMVwRznGFfzSHKd1DMKYdk1fpBS9mENLCHQksJLBZ3qSPPp8Ic+eGQaHHIBAf2ybu8/Emp1ZuVYBCrboPA6I4DnLB2HN2I0GNGNq+GeRHHkBY3XlZY1tAIC+JMytdBA6KxdCyKkTW43KWpbI2zyq8zifkQK3nFggFaYDvL0i81CkxgAbosbalFLAwjwWjZNGXg7L+H0ipWGxvJLWCsEUYZOI/Pw+EfzUElMgilbNtp/0+6V7gdm7gOk7EM3fhOJUyIs8bpjgDdbp2aWSBHVNBpnxYtpx0PUJCpZbOXoZP1xASlhP3QqiYMud85Hk4kD6bW5qZKKVh3UVwvpSeWuzMGXYnsH4VaT5/mKdMx+jwiN4CpgpOdx+Yn9E3vaRYdjhYpAAx0YFx+uq74r1VreMpo0PQ28tPec5z8FznvOc0jSTk5PYvXt38t0Pf/hDfOlLX8J3v/td/MRP/AQA4E//9E/x3Oc+F3/4h3+Ic889d1iS1gV8AWaexV4DoIARE+CLgzSzMVPcCwwGd/eHl9cg7i7ry//Yq1BRCfMY3D7X9XY3ZC6BsZhGA8ENL7DKk8z0dQRALI00YyeCH+SPpfJ21bTQ8e7DCesUg2rrhpcmTk2cp7qnrA2JgD0LOc7fqpmsfxtcQekBoyHzyY+uFuUN+Jb5kTx+7dNLAEhKvc2i2o0gkLNTt0pOFinF6j/JQpPn0h+P3JTtGwKEjWHjBIf08BbyPiKQ9v1wikGwteBlTvRkodYT0EgU158p6cTTDlTf1Hsh+8DSoaB8bl1L9TU/tm7aKxCYRfoC4Oln7mqG8jaKeQGDrItYaLK5pj8lhIp5SyjpE90uIsCV2NTlc83Dwe6P4kJYxUFydSWQHd8WmkeBxUPAyoJN4+ZrIPTNeLB9kKha3oM/yfQXoRL68aAHAEmEfMnu4vBk45MgE12Y1SAsyJZs6yGBbpMpJXy730kXzwJtkbuTqBKNJH+2PjIVYyydaFgXT56vfe1rOOuss/Dwhz8cb3jDGzA76xzXvvWtb+HUU0+1SgwAPPOZz0Sj0cB3vvOdJL5ut4ulpSXvb11ACN+oEqktbIWXMl9yVOZUSWe5ABvYajnBKJL8yRz5Dp8nBIEVqpzBuO/OhbcBibQJ0U0RvhVhBJcWujLj88OnP/LpMQyECwGXx93K6lUu8Yy9Y5RLKrzFKKpfmConQrsvsdRxpxXsVoapXIoZe17/PtNwbMnfqnABtkKBE7K5BL2WFrY9AUBiDBmz+ix2gX6WAeRizAg7fhmdpp6mf0XYgm68F3dDObPz3obWrfB6gAFiwltxRi9LswblsxKDecJXrCoCbB8ggQb1lUW0z24S5/M6cPY1kFvF2Bes4cWi8QgN2zxIEVoiAKU0peadX2FEixtmQfDHgU6Uddl1GyVjNOQ/oTQuXJz4Y9KCZ1UzddRfxyaVVSJrwVq4+HZ04LTr4UhVQGY2vzfMjOOtN0b84/Kq+cKtnpB3peOS278gLU/nt53mL96aVybyOLd+gmNVUitYpo5k87PsFCwwNjiMXJF59rOfjb/+67/Gv/zLv+D3fu/3cNNNN+E5z3kOch3xcGpqCmeddZaXZ3x8HLt27cLU1FQS5zXXXINTTjnF/j3wgQ8cNdmFQNEX85trqwkBZGKtZB1nRYEb3wLQ/icBeuap7kYZGPPhQ58xwqSZmTORNKMgECjnjNDP6XgRN4nqQT427syWEUi1Jw/Ai7/DKPNv+yY2eRiLKJlMTrUSuma8fcJKmBWLZ9xV4K3Kpffe738/+F10H43uLrUAZ4oPUw7KWQMFDKWgT6CPc5sXQkCSQD9z7ZFLYHapHRXKTyw5a6BWkImPvAKGbxkfr1HQ7kGdhVcJd7KqMET9yixw+D+BvjGdl7RaqQUncnRI1Ir7dsXlCMBXUFqz3nT3bkSPQhSoF96BxUAYemuQpDWWP6KC17x+emwkV9l8fEUMzZEd5pMZcPR24MC3VURnkzphZQ7bIDrpFiq9BVZDyQPl6bmXXOSMbYnvkrINawcrvFoxPEKovVnLAx0jZlQbi5rHBTlxIVqkGCMBnp9XmrU5mv36K1jp5ljsa9rIn2N24cSraozndtGocfPxm3LIsZbDzWGRGfmppZe//OX2+yWXXIIf+7Efw4UXXoivfe1reMYznrEqnG9/+9vxlre8xf5eWlpaF2Um13dhWL22iH9amae3TkIGxj5Fvxlo8+atmxxFEKwNdXmcEXkbnDHBXLmx1g6zL68Hsz1VkGDi2vciCxzaHc0N9kh4LAtEwOwegE6O1ALidNin3BSmnNQaKQEZgBXIwsfLyZREaDCpkWC/lmS+TUJB+YYncquAYIH9jIpkgtMpP5YG1BHGBBPn5ScVUf+3L7uYv4AA8sYY+ta6odtWmD+hLuSM6s4FDLy8MZk5iF+wxxFwq4qnfHm7/DZvXA/evgQsHlC3qI9vtThccSmbm+p3i7mwLszUzpBIuyeXwExBYpuZO8CrsScSK3J1J5KxKoTOwUrpiGMUJYoEmAUGflwRXlMBUC59B9ykFSScV+G4M1uWBGRtdeVBcxqY3K6vPoBVQgRvo6Asd4GoHv98IWHnqz/GCdD+aQVb0jZ/4jAAf5ZS2rj1jci/Nd7D548TAQIlvXX5b14Ph4erG5GFzUxgXb7iH+a/sCzC4eUemvN9PGxrHliAcrg73JxsMGOTb/17KBsN2BHI2SePkrwJYN0PiT/kIQ/BGWecgT17VMC13bt349ixY16aLMswNzdX6FczOTmJnTt3en/rAQvtPubaJugRQMGk9NQVOxliBz+VOPE8GhO+9cWdBtGJPT6jpzi/v8jslXqQMG/a70isgEIli9gbOJ9Mi1cC4L4vgQcNbzOZR/f7eGWJRrCVp/AfWSHcOU/oZsGKwCgXZpKST6tqE85AgU5GuGteYqoVtlNQMCHw/ygBI0CCEw8U+beYtGl8Vkh6n7FSTIDn2GlX3QxPTkrhJFt35m9FYOm5BYG3gyciWNwOJdBEpIBw4TB41cavfbAFBUqCL6RIX6thFAKTxgnGUE3yT82RrmqBZSIqs2iO+ukV+PVd6gH7lmHp4hUkQXCLFrLdLOB8n1KWjYQ3Huw9URHt8FwgCFJbjsi2H5YOw4v3EyoyoZKvTMZsvmnBpm9RT6m7ZPDYpjTu1A32zp+fRUDk2q1wNsocPDIwRXON1TPsFw8R2/az1mC+IBqDu/aibJy4bILCclPZdFtYY5M/Lj1Dif7sd7voZhILbX3PmYnTk1Rc4Wgm5w/nx7AJtvdtRmPxHcALNwisuyJz6NAhzM7O4pxzzgEAPPGJT8TCwgK+//3v2zQ33ngjpJR4whOesN7klIIQAnMrPWSRV5mD8KIt46EvxRjm5TYs9VSqMpO3pyAn3icK1ThzxD4yfLAxIeARGeP3tw7IYzJ+Orea9ypgFKkQNy8778Hs3UoCptsSvdyULfztF5a/2SfMr/RwYKGLyDEyJlAzShE8g9pyAbDQ6mHffL8AAWs98hkC32RKsT8/P7Fv2geGt5PFK5wVxxTKiUji920SKtie21oiCORooB8FttCOpuUywwkZEKSY8OniqcivpRtvidVbMDRmuwLdTKWxp8u8KaKxhjFZWnNBmmC7KGllg1rRC771VyxQ+OjuE3Cs7RPnCwmAW5UIQJ4Tji1n6OfSp4tIb1wF5kzb5cIPipdoD1/XMHX1y+AjROGkoLqkjj3P7jUVsPXw6UoMQu9Rwp8pOTedEFc9pinOuxYHga2pkizE5zlxLxP87f0EwZIrbg6WejkWuowPQbctj2lD6r0lsTGuLkst5UWU+O5/8nWSnnFJ2pOlsJALdlfWU5xY2cJf7Pn8UXhfEzMd9uj1fXVrqdlsWusKAOzbtw8/+MEPsGvXLuzatQtXX301XvKSl2D37t3Yu3cvfuu3fgsXXXQRnvWsZwEAHvnIR+LZz342Xv/61+Paa69Fv9/HVVddhZe//OUb4sRSlkun3UUaaeCkaawxBCxvPQfHestoN1u46PStUGbCsUjT5lOS8/qIbxkZyCabGpgSmSRMNOBbV5LKCx/c0g3wAOxljWjEXJXMyoBNOTPIA0bkmZhBau9aT4RORphaztHr9zBprCap8OOMOWZ9w6hiAR2CALTTavCOlKCJIi1HYJ6HcWRY6Z4jrN5MS4X4poaTV0RArwmaucta6fh2lIE+EcaJIMJ7i4iUEy9/JgwDdMfDCePIpN4pJyf0AH0yIVKs422XlcmzgDyDkG3bL57yRjnAQyd6q3v2LPxOwNGVHPN5hvPPcBSkVqEejUTA2JaY0gErRUt7Yiy4r2a7h9WDCFNNwsLCCjoT44zQBJXsmaFGbVH540yasqzkCQSrJ9FDC1NQzeBeHq8fOJilvHme52p7yAvVEC5O+G9zdYhWQfi1DLoefFy4WFrcsgHvmdfVflHxPLM9qPltmMYqu8Ziy1QOj3/xvnDfjzQllpZ7ENvJ9Y3NZhivmUtqrmSNbaB8AcC4196ho7gBaUKWR2OO/WZBJ71mI54+dUhEWci8yx9Ne/me9Wr8SfVuuZMBGIsi+Rqnc+KP81yfZA0L35gwtEXme9/7Hh772MfisY99LADgLW95Cx772Mfit3/7tzE2Noabb74ZL3zhC/Gwhz0Mr3vd6/C4xz0O//qv/4rJyUmL47rrrsMjHvEIPOMZz8Bzn/tc/NRP/RT+7M/+bHS1WjU45hYLWJOEWWSCC+66rSaynJDlLg6qSmxWBmDMX5WXlqvq4f6lYJuIJA4uSeyZl+j0C7auylZITH2yp5CoIIsGCYFc+hPSZKTweCEjxVpkZAbTpkvtHrp9Z2ERqfpznwnyTccefjbz3amcSBTGTQBTPGcqrs95fB3P51in49M/2oEnAglzhxSzwnSWgfn9Sph4JCmiujmwbyHH3Uva6ZbhO7TYw+EmgXJ3l4py0Iv9YZy1yzw3TNq1Mx8ibBRCooG8sRXSs2L4lBrrmh/Mj5gQ5Fxbc0XdzCt9YLatLIqG6Tocfln2ucz8YIKFYzsqnfWJ8H7H2w8A30Lu5ISVfo5OxudX4NRPhJTFQBrr4fx+5edDSpnyj8jqvGxbksfvKZMbTp+NU6WMmx7NUmqn2KCV+Hz1sDM+F67wyxiGy2SxOXxsq5jxQHipzRgtUNrsd9KHKPx5EPMj3mcASKKfq8VBp2+c/0KFN5ogWJo8R9Xfu0sqzMbHhNuaUXzFnWH0Ai5KNhfg0ifBWi0Bo3iQy8bSmXpZr71olvBj2ZKAqN3Gxrz0Gx2Gtsg87WlPC1Z3PvzzP//zQBy7du3CJz7xiWGLXndQPD9eqTrBrUeOANQEClfP6vVMB3bCFq8e2QT2zOPmucDRZoaHMDIAoJsR5lt9bAVwwWkTbDaFrIARFRebEOYORyRa7EBnmWUOZcEpMj1qQVQYg0UpMkHRsaS1Vi/2TCTyCdNDPK+hOnkOyUJ74lScnLVUbhbN0vdZCoskV66hmQjNybNhvGwt6xIAKPOVD4Z6uU9Y6mTI2n1cuHQYOP2hwJaTAACdfo75Vh9C9uAtTaXU/FkLSiHQJ4EJMqKSxb0QnkFf58/ZSpvTZW6MNu2o0vTHToIQY/qIajDmbMwMAEGbmZ7qYQInNfR84ALZG5+BNJYZlKO0UyT4fOFgnwuXkgxNrLwoJ2fi5sPODT6XQgHshIrTBaRS3penlDKTj8Fs70kplcO5XXwrv5HlLmGxmyTKlRHSyX/qcScYD3HzleEhgovUyrc6Xbv57mgJBZIpA6qFXLv5Jy2dw7zXpqnrCIx1wLNy6LTBjlykqszv13FoyE9ov5otT/7IKRRax3dJWD1DfkFj45iZOB+Qi34ZvOTkY84DQgtKQDHpQKVCsPBKmoOROVSipQTlKBbfMf/3RzKnQ9i68zSwQfo2x9bS5rgR6gRBZI0PVuRqgIYWHIH5lR6y3I8p4fNLPbBFMFOLVqfedzWwMmvmlUGyYPXIKZZAO9OrCnJin3TEUH6xmOGI4WrB1lb2vbqHE98yThm+jQ+7+rVmzJutalLg5lhDW7wdRo9ZhbQFv6QYQ298RyqJxmUeMgZg07ln+cR25I0Je1oochw2R0q5Vc/kNQy5swjc/bU0vTzOEWWaNvVAiLGgHwT7C3DJDMj7wegKtxF8BtYd34msscXvZ8N040YJLmX0mbU/l0rGvMzRzeMQBd6nk9zRPJCNcVv9nPu9pXy++E9mTTPzI6XA+FQrZQUyA/ptGIukuZRP2iPuCoXaVhWYaUvMNHvIek6bcQLMbxU11YOCmzpkhdfNjFabPGdKaEKM2vqm6xdrOnykJWZyokt45Nx03/vjxNsuCoeZGUcy9y2x3tHzmH96dwzp+RP7iUiew9aynRMOz8yjm/EgfkHZJjVTOnqGrwo2/AP8dpyxqoXj0CitZLaW4Kx9FLaoWa9EYkXXPdI12dzlY32Q9W2DQK3IJCBtcfKFmeJLEu52UH8/M7oZt4A5RUzUfBGKOUaMx5oXw9kd4w/pn+5I7F/IcKzlO4ERAXMdiX2L2mExoMdZlQSshcQwxVCI8NWYlIDMmTLkyFRHAhvc04NLJqfIyBxe/RP1LTymKcIHrG89nivQmtgVOCX4p7lcv8LVOWh/N/2NAuHajYwkigg1ko0R1FkM6qJtV55FJgd6K3DGY79Mz5HRlqPBRHc1tZBOwZLWTyocS4nGtEyxgPGlLCe6vvxElfdeOgvcSi/D/iWygqBsVoZCB3p8mSc/mmdtL3Nw6094CaKkVF3VMX7POhGMIQJcUDXKIXS/2SslmCOzmtsqwmpOosASHDZO7s05d6qFjVN9N1rUWjKYS7Em5ufxmoBtVXj9G+Sxz3VvSIIJaOcoDvyuLKrUWAm3fBRhvuIUz2c3R2L/OoosxA0ADT0GFL3mqLW5TV7lE9aao7b13VWPYcH8VOFyjzDdJmRa+fF4iseLfF7j5iybx/027GMzhpMUuF9GKU52t/5C/NM8LIoKvkGhVmQYiEbZ+p0xK/OWafYmvRkw5vSHz2ADdutdTlcmOBhiyt0gtxp7IDw8jdo9X+wCC8027p7twtks1P9zbcJcs4ulFotsq4j0p77ZHsnZtlFy0JtVrD/dvRYomit2chH84+3q5aEmfAdYa+GgIgOBd+Gny8N/N9Rlj7r92hOn+upToo6C/U9Ezjhmtg9C5hEqrYyBeVtiUY15Hdiz3opuJwE0fAuH2XKy2Mn4YghlTQNAaCBrbAUg0R/fASJAGsU8YR2MFMbQ+sc4YtK4aPwsiipqQZXT7GZYXl7EQqvHnvrt5hXBCj3WIhvPBwAW2sY/hMDv96FEPaKQ7dwB28yvhGCQOTlFRkrrtyKhLG6mfexZnsgSwHhD9LxIaCla7DYtaUXGm3Tkjiqb31HJzDcNxqTISzIWmXArR6dgvh6z7RxTLVOUwalomGv785nc2ePguWT94NfdTf3EYQDLkk0dzbxSn1IrN7ZHw/u4xJhafIVDvcGtqEUKTPCIJBY6wGKrj75kG98eu3aKiqdMBBG2CVB3ZYFgwlb0t/mBZZ1yYix/ToHhc0GPcvc7Ou0IsNmWeLfxoFZkSoHAJ71/hE0/ZwIx73WDbudn9H0cbtAB6C3Df1hGkjfag0zxxPVBIsMYtoyZejkh7DDEHNrxCqH3ZqH9Xxp2srhtD1O+Xn0xISC8SmvmS3xiEXtv7LDxvvqhuWUcWM48q5IrMwDS9RZbFJMqgECdQCa2oCcbyKXfIhk37zcCDJbxGj8TvgpX+9pqR1Gl61jZapQPgPh1EZ4Z3tGnsuj2NUkxrhg8jxzKPpmOAXepH9Cc3I2VybPQHd8JsxVFrGxXtHA3BZP/vGgfnbHoGJIn1vRvq0xJ5WgeGG88+pJCGcjyDIePTSOMNaOGVKYtQgyjh0cEz1NbKinhSyqMv7bINLRVlaiBzPazHu1MgEqLNoGz5Bd/ZncERYjLtFMGP5RB/Mmx+4sXpgAllDi1qHI/Z1o59s13sdgNI+5KzLQJCyu9dH28YW8ZQ5yAl0uBtSHc/rK4KJEn5HZ6DttuNwQo2xqZxaOF9GKTWJk5ESQRcs0TpCR2d5pO3whniaHBt2STDkTYmTgN3dMeDjr5HPaWb4fxGnGLrXni4+1sPw+OORgShG2rzQC1IhNBScBys9I2b4ltLdk+D7ZRgGiyqRKYU+WBbyfISJiaGU73NhD0fCJ33Z0w/Vwiy4E+xrBlXA9wY/bV2QXBH+SMl5jJKWSuHFEf9F+BrTvhNlvDVWzgpJuoC287RbphMqYOEikhSQQstzM/L8ZUWxaVV2Aq9Y1XJsqxaQeBPQuOQRAE9s11EjjI/tm8nuZghDOBHe7HoWaGhR7bihNAdGkkaadVYqoe4zl2yPH6eas5t4Wh6iZA0p1eIdFANnGy0WFs/6ciUftjIdWubOvBClbhfdqVvyfYmVXTbEcQqSOgtpKurVnpplTvCUGtvJdpO0JQfcStqP7ihIggic1pwI1l1UERToNHWR2MUzep1T8BUgj0tj8A2Hk2HBPhfCbFhuMtGF9g89p6EsiGS/CeyxxOkTEKCUtD8NK7cSBVhG6DMzG/fEuZtj4BaPdduym9W/pXDwCxZRTcrS5sl3C7PqCHAOd4ToDsMdxGyTDj0ywolTXTLgCscznvH3bqj+L6Wtosc3aO/uFCiM+f8CBI9Dusvba0KJrHo/HhCHZ9TDofx+wrMgKyMQEa2+LT4c3XjQ+1IsNAJJojGoT2R4IJ61cS8E2WQcAw+78Z8N1lIOt7OAz2viQcWMyx2NUKCwHSs3ww6jhzakzo44kqQS6BTObIMYYxofbsTfh0GTI1r8YCuX6nBHSuGPXkTsaAnQLgzJoSGN8CKop8DFGorFmILqJSP1K3tXpNYqxN5N66EywxI/ZjipgsipGp2AsahxDo5dIyavucHIu1gtv+Z7bfGkDeRy7GbL3bvRyHF3sOlVY4ANIX9BF8a0DAq+CUG2FNx7FQJ6bY9Ma3g8SYY4hBkxgnVG+skt9G/hywpfgEamhOno3m5JkufRCpGcEqV3Wd6avc9lvM3n3BFF2GQGpryVmseLE8jxMgy311NYYsWkTI4JknQ/U8yvvgvl3UUKeW+lIA288EGhMgIuTM6qTmQkBnSmELrQ/2pc9b3GWnbE5T7tLGVUO8om84FEv3Au0ZVZ+kRYq3BaMD/mmq0GclVmF8fH78mNAaHtSPf5r+a06zNGa8OL8XAdi0bqup4CSmuWbE4ytuHsZVUH0iSfuDpSuqk5q4Uz5/dHPPJFR0mfHpkem1v2sLfvGtGzvBNjQr00eW3vbbiFArMhEwpupsvup3GEFWOg/5yKGVf0sOMgbJR2qwzbQkjjV7+OG0EWx8ZJuBxhEwwWl8AcgxIEnCnXjUrCRgSdFvg0N95kBjLE4QBnk75QHA9jNgVgWeaCDykweMgXT9BelVpD8LnTNmyOyJ9wIXjsxCEcRy4cn5ystDzJ5JY2KGccF1yoCiQYAED2mu84sGkHXRHd8Jflmm5HUQgA3Id+h7SsGFc4y1jM1cpQAj2AQwNhYIc//Uh4n2SqLhBcSyF1/qupi2pbDijkCvDDXOUqPG4GkgGzsJfrQt16ztjLCScYWKgMa4omBsS6TsWlN5IDgj0Aw8Z9uJto8AH69GdnQFmF1hiqXBn7puJFGuCrxtnH3NnFOLBXVqyrUtt8JIYzVL18QQDHv8lisqia1XMxe8+lkzR0oJAOxiy/wM28fc81a04PEMc7r/w21Oq0zpJ95WDEsH00a+5SCanJ71VoO9wgXKqd1Tenhhgn0yMSjUdRwem9XPSZopEHE02EWkVz/zjSvj5GXx07u62IUhkyFeDJ9QtIAlJ8AsKJXvnuYh1jrKMxTwPKNc14rMJoWQVyNk6pzhSLUS1mNOImRGjPmw/AonX90GE95+V8HoOv0cZtvE499eDAbO3Ax5jsnlZoUArv0LZ8ZPUOAbt5UFJxvbBpz5CK+WnkWD13X7mUDWVttRAfrU9HD3grD3WT9KHTuuwQ+chpARkFvl9zu+glFQcwUikt2S+HFgt5pz20oMaXD2sTd5GkSjwZQ4HuFG+xqZ4IPTdwCLhzRvSynLZLveHMP0GBmUMDJjUuYU4IiFHwGgBrNcRUHJBEfPmKpkv/1WDOUhXxUCwKEm4dhy17WDGbOigfzUByN0Ng+XC14t2LghvT3gFDP+v29ZkrpDx4Sawx2a8NrGm1O6EiF/l2ZLR/Z1HXIY52oJ4cIxkHG6dvSG638/1g57nrrLK8xD/BBZMK9tYE7ety6fBeErER4OLlhNGZ7+TKYlEN3vJUPHfbAOdbjVN21Ri+jgv+NTSWqu6zTSLeRcXC9pHxkMENwiMwb7y0OtthVDC4yj2M0rsqYkFdZCUsK6wik2yR37Y3ON9bl0wSRzFiPHjXmGBAAo91rI8RpnISK48c8oYh8pijce1IoMB+Z0Fbp82FUGZ4J6P58ANXmEYZKhtu60Y5PZ32dNDRaVwl+QOqYz31WrWT8vY1BCZ9ZbOwRCrqvgJohAJHzDakMPdAL6Y5PobT8H2H66a4MUIzEE7DgbvV2PjASiTZPYIlJtxMzcObNEAVZwe9j0Nt5CF+hxgc2sPh6fRrzCJr0yi7cdOA61vZRrBUUIt8o5sNiHZBFblV8Ai9tBjjG7e8IFI84xHwBAr2mPYUe9w4LtSVvcGNwFcGCCxtBo6tVIIFT0KsXbKTLCXhypB45tdtU/h1cI+5aMb5Dpn9SoUAqhXcwaIULqWGqrL9URa8EUO3vkN6w7ECoRSTAWyGBrKrkzAsJ0s4eetpr0scW2lqKXXS2RQGC+SSKtxLBtYDQgIdC3AQidoha2j4/Wb0epBWkIh5cz7FvMg/SJRopi4Zh2dp9+Dt6fRrBLUKrx7SMmsMNJhxzhCUS14E8pTJpCClMzkr2JyerOjorzuDU+/5AB7zHzg9DfeR6jwT9uLo0ICBeU9n2w10MESdKeBKTAak1gJ9gCZP4JWVNv4+Df0NVm6Ym3EZtDdigQK9fnc+Excl//rTLZTjzUikwA/gqAr7zMKoWv5nKP1yoTohYI9hkw3yW0E4uROHCTmSkJxmt/6JKlxI8Oz8GtsELGBLUFZC611MqIZRzMe96F5Y+Zs1rVmofFqzSKiE3V02Xxg1iF+MCYYXBFAVwfUfCs288xtxKeHHPQznSe3GcAlmlYPkOWbq5jqK8NZLnPpTMCWu0OltoqtoNi/QIubofBKSxe82ylDzT7OpdwzApEKqBaZwENabY72NI3aOuGvUncKK6A0R48xsVOH4Xg1coG3GMvWUoCYbErcXSxjYWVlUgAD8LvPt0JEgD6aLhJKTz/nlQJkXmepZLaGmKYuBGA5LWher/Q7mN2pZcU5tY3IS4wrhvpwHMgvW2o/LPyLIf1syDTJ7DWGb95KVFEwgpEwGInx5HlHpZbLZ1KeDzLfobRdnmhQgCTJ/nj3PhK2TobumREG7+wUFmNZNJWYq1ZSL3kNdX/8YCb5PhUJ9cLlvDoNQAeqBMsSjeIgPa87X9DsoBQFl7DQ4WzxvH2FvCPyxdbrNI1snVi7NnhMv5I4QkssJOeZqwYPqHxRs7SXBbkbAanVnX6R5IVB32/waFWZEqA2P8AMNEAdpz1QDezdCf7qg8fWAKtHmFqJcc9i2Z1boRZUFBkNhZeMrJpHFW9PMUuCAQJ2rIDOPkca6pXRgQumMgKcGP/SB2IdU9KJqkX4MQpATEO03SxuOiNbfPex0eq3RpCQjBaibWUo9NFvTTCROCOGXPiKIhlofOrGCvxNo6fVsDqMUwP7efsDiEy9LBw/sm+V0JnvtPXfSDYHr9Ue/y2z5mvjNCtQQTjW2HuSLIyUPJ2MC4S5NqFjADy+9xsLSknQbY1IIzDtNteynNlas9y6TFh057+eOL942iznyb/yjG7BUEBd1K5oo2Y5FejcOQpFsd4t2qWxMk4D02BzTJ3/jREZlwzQaIFTQ6BPM8ht+xQzr55xyoKalg0kPPLOAF2ESOrVmJrKdcdnuWuUt6FhZ6JTikZ0XwenwS2nppuANsI7CGfv6057zi/b2F2Fg3VNL5DsW9F4MVxARsySmX5unMui543pL6d2gh3NnfQmgNm7gJ1lzw90V2OqYE765tHRqEmAGh4yoVJLDkzsHULlT6/rnznDbp9eNN6fNPgA+fUgKddIWj/koWlHddCINpZAiFeZG9sqBUZBsJsx2g41AQsY5IEajQgoJwH1Xjh8RXU6QQrzHSqXk5otvvOz4WXFZoCEQwbPeHcASi2beRlYLmkxP6FHu6YzUCnXwTsOMuRCKmdVQ2zMNsJCkd6yCacwVJFU+qhecTqSWqVIRIMw88ltX9oYr+ajMMvm+p630JN0MCqpcvv9HPHJBHX2PmZGJHJmYSwz8yesupCt71kfMMJQH9sq/Z3YdFU7e6Mz3w6fYLM7WaRkYraNM6PmZtMIjpYIRpjHoMzbWK2w6JTPYhX+Cq/do7V5Sa7XjJ/Uy009s93scdscXhKLLNiUsJUH5YgpVo5+7UDAWhuOdtVTuNp9tjRWN2juRhHZ8tpAASEdhwO8TnLJ+tzT/Cr7wRCtuU0v/KA6lt7ozQBaGgF12wtwc5fwhh6ucTt8+O4i85BLiaRC/+enJxZc10l+fATbGzoFNJLytqK/Idet5sfMvjtJzT9xueDtchwWDwIsXRQ59Ezymy5mwjGBhr+Nh+AYLvFjBPYtvMc3Vn9ltv94DnQyDrwFgws8CG6S8DCAVB7HgHnUDiTQeF0rayTrHEcN1s86XZ2SkboQA1XMfOMXTWQosHrHimtBdnqqoaVsPaLa1D0TtHS6XaCtJzAYr+sjQS1IuOBYyIEoNXN0c8p8R4wyo23dxucYIoESxqTHa0UphCCKcYChlWQLcO3QkBKyP4K2q0OZpbbODK3iOm2RCaVf4yydDQ8Nhfybg8IABr+Hmok/MJHjjmk6g1dC+GliZGqJ+YoZFCCiOnujbOYIbyb7NRk9gHptl+8264jYR8RrnZ87CqTn3bwP1e2nAFqTNhVtDnurkSer4lyJu1Hkc1tyP4w5k/oi2KZrPR9SwyTM6t05ewtdBv7gkul0FYXduu46WOzzWPkNRhTXWmtYKaZodfvg/er8MaBys0VD8WMWXv0Wox8fv0HlKN5oKRKAIudvi0NABa2nof++A6MjTWwZccuWwlC2GbcfE4Rr7ez2/NYZuOR34RsAgOyu8WMH5poNDDXEVhanMP+mRY6Z10C0oqMoSmHf7oqCakXwTP/wAF7Z2llW5e+GsBy6X72zMGq7pQ753v7P/HeNc8CMp2DiX0WWTY8qk3MJT/R0uTuIDGhUNEiCWQd912q+RSNA49PB6tEMmsVAXd7i3MY9vQM9n2uK2CDpNs+KrJSm+ehcz3PCx2VmM9V1aaGenfthysv5s9+fQGg21pG3mc3lwbK/GaAWpEpARLwYoZ4RhQQcPZ/8dJLbxKI5KSWIbd0pfFS2GM9ZAWcUCRlXvUZFgF5F2jNIc/UXv/+2R4OHZ3DwUUVBVdKn64wjgY/QeORYBeYCdrJTamQnRVBq5+jP7bNj7liywosMOx+GkW9n8Gwx+VtD3TkhCQK85/gcsbDEVIutRXD+EWY2A1S6JV3SAQA2HgQArIxjmzHucDENriW0e3XYH40tlaJtrdWGSDsbdUk0m4XyrGtiulqfxreXxKcCavds2RPE/OfMWZ5L7qoUz8VfnWPFpEL/OUFAEso6HG5fs0o7zEha6wUGk8QfE/VTd2sbYD7a6iFgM4T8HivNbVESo1agmtL4oKSIix6XLCtUGsdaKDXbWFlYVopwpl//xhAyCgQ2rG5DL6o5CX5CeNTKCxV2cknL59gSj6z3kjfshxT4NrI30I21plYoQnbkUnxoJgMfbG1kH6HgVl5jCLTb8H2iTcIBZwvXNxupu4CwvlcJYU7sXELNHtQVnE24Cgswj4z28I+cwoVLs6hlP4m/aog8DcD9MnJ3GtJ1fqO9+bR3ScmVYBrA0OtyBSAGXR84PH9diIAO85EahXPmSW/cNHhIj9tqNoDLNR4cTrpj2JANHTsEdi4Ad1+D9MrfRXoK1GGzZ4Yr1aox6/Ye3KMwBIKZkYOVhn6dWsLP/mkeWSgKDnmErJqcyzTUMC3CjgfZEyN5RZRjUKrQaqexiFPIMsNwxDefE/fomsGA7GSOPLgGjt7RFULBOOsLdiWpsXNfjfG0Jw8A5Qxvw0YhamhjwaTrwwI6C0AsjwdBH3nVMo7XSXy/WGKtx4jWWWOlns/nYCz7R9MPF5Gyt88s9thpPGoRNby5eFiZLHBZ6xDidrCN/Ex9YFbIkz2IOAfCWFu8tD0+4sdU2jSl8cjEmwispHqtRWfi8G8YVYVRqz6LqBPbCa2lyn4kYdxdqBvelb1sb4Xpije4TFCpHxgLOWi4fw5AIi8p2NYCUd7OGtJn0gy705SsaywMsPqH1LBLPH8NFkwZ5VTsLBlFHlWZWMnYWnidKzQFoOVpQhnMHSfMauQzzJcPk27WYjwJvWUHuJfoI9t83nP56y6KDaawzZWWNHk3lhQKzIMBF/BMeBTxb0n3xdAD6600GdMpBA7YwYmvT7S7SxBzrTIPy3+xjgo9+83MXxKKQrumSuLT670oPUUs4KqBfs5KSz2W29sB6gxbrcdVHa+zaT/iLDUzXG0BcscAdXWOYDQabiIduMnYveVC5w7/TgpvI058zExHPzcyujDgssRQOboM1NmeQ7Xrg2HhR+TJYJRKFoTZ6LfmERvbId+xU/fqHHZH9uB5R0XsPGq6RDsoBb5Vg6DC+ySydb4KaCxIJaKrSXnk27ziBLpXCvyL45uJ4eCsdNdUt8brjz1xViYvKdueoWUCE4Li+nk6RL+9m+oZkjy60OSMLUi0ez7s90IbtM6zsoJAGNq19CML11n7oMlMc4wpb9S4AxqsLiSmIQzCg4XaGc8DDjjIp3OV7hC8PUX3kL+xiijTn8jON8YH7Gvn7pt8rT1Ca4+GjoTpzBcbAxx8LZWWV/39amucHuGGkCDCXLBms08EuZ4vMLnndIK4ryAlPU8G9uG5S1no3PKhQ5ZwED56SlTGXfIIVx4ChdjSr+L6m5PMDn5odqX8ysCxBgzWvmnGN1wiRcBGxlqRaYIWGcyVuhzusY4sh0PQGfiVEDHCPHGqh0VZtSxt6RMzs7SEqoJStB1rQQyjDggMVq9BmC2RNgqmi/sYnrdV/NTzZ+iAZ16rhgeAJAM2Z7DNJ53fAy6LkTaAiGAoy3C/vkeur0uwyAQHWnxShDhA8983B87yZXHlAHTHsIqTeZkiTvtI1nYe2V0CkWfQHiCQYFZKSKpLFtFzVvx5/Z3PjaBpa3noj9uTncZwcFGZ0oJF8oJPdfbg3ZbiQs4Pa7tiSYhkIrEyxvU5owDoMC0m5fZyFU+xijEqsd4d8Vrl7CNTc0THz5+wYMPMsHnRS/WuQnBM/jl6M+FTo7plRx3z/VcYaTGu720k5v8tTLrpri20LBCCMDWU43vBzvyb/8M7QTRPOI3DaPQfC/cPGo04C5OpeDTKQ3O64ITAmByJ3DSafGMZ43vb224MUogYGzc/i5kJ4C9Cyy8KiJjfnDF2SMveJU662oSjeLHFTKzhRxXy2yvCW2NoVQZKkHEd2RjHL3JU9M0e7xWj0emMBKAfreNbt9ZRp1fHLca+TjDAKzELLwGfXdiB0DCWnllqAYQuUV6rchsVuBbFmDRNFnnwiZBtv0sdPVKwQ5knswoDxSoAt6Yp2jAmF+tnrQWebLHCYW1sngFsYd+QDcjJF1Sd8Q5VpDCCc334qNxrZcvbgXm6pIOjqaEq7eON0sg1r5LW88BUUNviRFavdzDlWLW7S2nI29MQIoJhI1tJqtEKBgZXQ0ulJ11hXjfs65SYVq4k2QYcVjwH0G57Di5DUInEG3pkEQmxsGPPkPJSmuVISHQaHBGC9e00HFMvAEQfI+0gNQpJ/NGtYdRwKXemgoSpb5afNYiQabrtW3OSnvf8mhzc96aGgDCs2d6Fj9uveRVhqXBzRWvTDsulTKSk0Sr19fz2eG3m4jMGdjUU4gGCA0bHM/MP0eLgLfNG3yzlct7QLcJFWvHo9L8g2lXh4PNMY3G+83xs+++FUom0oS0eszFZAQgMLftQWhu3Q25dZeXL6nPA4DM3DiPyjLFkE1g+YzhfykhnPf9fLaqpANVGggCKLJak7HwsVNpfC6F22iSGqA89w6BcJJMSARr/eVjB8766KanPi1lrcuOh9gtsch/IAx3B/THT8by5G4sbX0A1FQqUWQSPGAjQq3IMAhXyqFDnmK4gbkbfNAz0673UisZLER3Q4Dts/JMZrWihNJim11ayOIw9Ma3O2HDBZBWaMhGf2UMKVjCKYXC0RiRHvBAAJjvCkw1VT3kyedBNibQnjjVH+4Ut44vPJT91ra3viXY8RgCiXG0J88ItmYceuOEa3ALCGTj27G89VxIeyLEUeBtw4UcVECfOnFChvvdQDLHaG17js6GMEHiCzL49Aszztw44mZrT6kgCSKB5uTZzMrTiJi8WuU3tEM4W4HpAiX0iVid31LN2s9aYrhV0bP0BatNJrDC0PnObO/UwZUtZ0ZC2qyCbUh309fsSLPwtlPSpzCCwuFHzfVfuVN/8NsahKCKNpdXd09Q+PMrZ/Fb7AKiober9Xx3crCkFpF1ls2izgK8eCypBVB0/5LB58bdfCfDkZWQjuL+BqDaVSsLbuwpUejyEfvf5BtD1tjK+kUN9JyAwyt+uQAgZOYpkECJlSmAxU6Oe5vEYl7qsZX3Nd3k0a8uWw0sRDzIHHtudcECKwW5jgcA5KKhb0D3uYX7zniAxh/2qTt+7ssIsk/N4rlhn7nxYxYZvnImhEA+Pmn7w/hTehZK71LTjQ+1IhOAZ6qHGZww3wrW8i5fMmoqKXxxqH6WpCQol2APzEmI7vhOb9uo2Zf+ZDeLEmFoJxBTm2wdBdgEjcsG/FVB1u/hlh/+EP1eD5g4CSu7HoF+Y9JumziBHVsHzA81cfg7dR6AAPSYr2s+vg39XY+IFA8uKL3nAe/xc3GLCl+p6zf6xA4l2kD1fMP6OKTXp4ouCbPFw/xlLPNs6Cf+aseMnayxFbRlu6pIYwzUXUF/YgeIBUxzCpW5TFMwWvxjlZymnAhui4zXzqVTCqJhjIFFhhzDY1NC53HCK2oXPSy64zsgGxO2k1zbysCBl8ADP8rGBLwMQLKP1I+gRxrGH4j1eULwW0uMrk+8VOEZ9KoYBG9bTbh7nTxBDzAFUf3l5r0RHsmiiP2xurLtRj7fPHWEwieGRsfuZ5oZ9s91caypr06wd2yFuXzhnD65CO80VGfnRUpxIaA7vh3COv77yNsZML/cxELbtzCRuXgzMZ7ThTs41pI4eHQah5bCgHnacV4mshb5PRJ/rfpQbUsn+DhnSHb904CU3JKcqg9fJKXexgtRa9lhCq+NKs93ELadhu55T0LemAisVIKVCWcRZhRZ1aDeWtqkEPBv/13cXObIorHGEBkrC189mq0dxTRSY8PcuIqgeM7KiPhq25lDjy33cGCJcO9C16a2WnZRXYxyxfx0itK6y3aNUAA63I8hIlraieMrF+x0DNgXZl49uAJ0spw9TtVB2BWXy6lpDcWQEd6WHsmYldA0jcGoqcTycDyehYbR4fRevkoN24R0HBneTKHQI8egAOWPcOoD0T/5QQB4wDRYZcTE5iABiIY+yRUIUfW9gVyausbWZ0OHM8+JoN8ikgECehPbYe9uIsd0laUlPZH4ExMQz9/GItjtNSHQndiJvLEFrYlTPabe6cdXV4TgOZMbjYrYb1sieYI4XKAbISa4oCOysWAMOIdq2yAgatjVshFmmZRK6dE6QtrSm+wkUC7hnbwhP4cW2UywMkVEuDEk9ZHcZs8/HODX2eDVbeM55Pt0qacqgng+vhXLk7vRPOmByMd3AGCXP3K9iIBOny+u/JGbVJqgrHu2fRP5JDWw1DHjg1vTzBx0lz+aKwrc7pmw70x7cnbV3HImmlvPCeZyeiDmaAB5jubkmcjGtkVBEG1u0YCEP1/yxiRaE6cjwxbXHvZYO/Oj0vmktciwbS8hgLGJiDrRMNvUzu/Powdgl/DWisymg5SoSnLyVOeSOZUgEE5HK6iTuHTmCuOFJMNlcBCw3M2w0Orj3oU2XJwEtrImH7+7qVnAOfbF4s+lD+jQe7RJkplZ08cW/A4VH/2gn0t0+5rhBDFATGZ12oMrAg0W3Cws15VfFANCLbi4k65hD9qCwvaMvdYnd7u0eqkcC1ULaOVJsDYxzCHYfybSYc85hxcN0GnnA1u2AwRk5AKm2azOfAChFVundErWzg17RUXYaZYhm2B35oSGkzvqU7jxa45r98d32KsRYGvuWs98NwyTyAkJriz5BDklAADysW1oTp6FvLHFI72f+xZMRbtPBQnTvhx9cBQ1nPEUjlZXE6kXIqbtu5OnW58XgG93mrbX/ktagTBjpZ9lICQExQAeYK+NCKxa4Tezcp9uSRxqBopH6PtgG8eJAgHCSdtOwvi2kzXvCPJ7DcqtQwIHl/UPISDHT1IxSuzpswBXqtolbWCyZo1JJDi1WkRKqbZ0vECaptzcDnjuzygEH5dxebbe0PO6EZ/os7QTWcucit+Uoz++HSuTZyP0OzOXrXpKHgjd8Z1objkbvfGTsXzSAzyCbNwoSdY6D8D5yPBI4roMf6eSAOYTRAjiyLgKp+u4QaFWZErAG3j6o3PSOQARMuO4pjlozP5SCFlEWQiPKXrmSjbR3MpYwNua0hMr4wM0WQf3xa391f9u/FL8GfJXghJ2RuAFfFAJUfVjuSvRyZiFxwt8R4iGnU6YayfdTEzarQ1Vtr+2hlCtFd3aahQHMEYFAokxi4ff4+SvLM1K1eBybaxYoPvu7Vd7K3SXBwC6mcRyz6dR6CxcaXIh0P34DgqtepAF+9yOOylfI+Xs66VQ9YGAaIzZcWLLID+pzUqubBE0D4mGnRFSM1U1VMLNNuHahXWcPb3Cp5RnkdL/Wz8fJzxshgHjnYPviA10MpcvGDnJJwyRGv5E1irb3XIK8pPOdKkp4WdpsDSM4BBW2HIFOLRwmHYB+7T/UwZ42xUELzkEmn2gJwlzXcLBxR5mWsbCFVdQErDQ9W8f2zIOXPjwR2Fsy7aAMoH4tmqfV8ytdLE0PxNY9MYifYi/TSm0RFzgErwFSgmbJSJkGPOuMLEgc7gtfM1PhbFOGKuT8wMy0LBhOQTCaNNui8fPY4LndVtNlzZQAiNndijrcGvL6ZCNceTCWLICJ2FmjTeWnMycDiVScoYpOR19xYZlx/CduWWAH0T6hBvSnbMBoVZkQgjP1HM2IwR6W8/AwrYHQ55yvpdN+SKYH5wBsxmsnVo5dsesy52q1HzxfVwkhLqMUjMTyywEmLlQ+EgAZqBhwtITgoEwDB7HVic92QAs9wmHljPccnjRZUoITTISHYBSEwjLk2eju/V0tLaeqesjGA8LpS6sk6lCZVZBDZ962Ud3bAeU1Ub1Zh75XTiLgfkFXkcj3AU3d5N6xIuy52rV04WewP7pFSy2OxqJKseqZUTojW1nypFfQcsfhbBB3/zVm+kLxWgJsOZzr34NpfASzx98N+WQ/lTlx21u6OJjUOZ+Hxs8ecgEE/qrU6pMndl8iXyjeD5f0Tff+cgUYKYlAHfNZVbZ5jjN3Cpm2Zrxk9TOoWpQhnM2PhkGuPmtA49BQOa5H05euPFrM/vLaAB6HsocdtETmUrVGGv3CXfM6iCYEGj3jHVCBZjj3T7fBQ4u9XFgdikqz9FihLx5wuqY0IolmTFEXj41ZhMbU8zaZ9Ca7emgGU2GRL21L59UW2ZZYP2AbjuC2uaVEIFPIMXtqd9wG1asx5F7x+pGUNdOdMSk45cEdDOy310X60MGLASOZOPFYORhMMh+VwtGe/JI5vaEloH+2Da0x3ey5vNniclr5rX1kSHTqhsfakWGQeynyyeD1hAAdVzPRlqlID306pVbLszNxRKtidNAaKA1eYbNRSTt1iYHJ5CMNA8HlcCRZXf3iXXQZKtc/3/+GyA0tHXAfx8S4pVKzpeDWw/M104usNTuodnu4+7Znn3P8UZ733rLjBrj6O04T8c3YCvWkF8Hz9ICSD1d2XKmXWWZ1ROJMSxsfYCXzk1i84SvWvSWghGM2lwrzAqNwnY13Iiw0s8xtbCSoFE9aW05w+bxfGSCLYDGlu0ebZIICx1CnqvSGmMNi8NvMwHChDV3c2ff+OSVqyNZL3ByeKjhulK/C49uEgCSxb5ZTjlyzvR2m8V0bHjZnqYtVKC9994vtgK2INDNJNo9qZUgrqjmvMFg9eZgOgiSNuJpyiqg6HTCRdVOAMIJJBICUubIMe7TENaDO23yd9IpFvb4riftBbI8R1P7iEgIZNYI4Z/QMS0138pwZGoac+7uQDW2zZaQVSxTN4n752qknSN6YUEEIRrwezTEQbExm2+5wCgRhr+Gi02HRm2lNNCnBrIcuHshw7EWoBisVmS4NbPR8KP5wlk2fXrZ/Oc0eTTzrwIZxq0lNZmepXVzwY0Jfv+W7TOCF9zTvLTDN2N3JjWY/yMbgw0vJo6w1mZXFrm+ri0ymxXCTk18Fe4oNM/nHdENM5E6adSZOBVLJz0Q/fGT9WtKj26mQ1krS+4ztQwNxXCMEC7giinnToJjHoNO2HF5ZgWu3YMJyDYTh4D9++9C1g9iXiRojVb+bLXN6WSlwDsuKHh6lsawaqH7RCizPkEgFxOWMRodxVk7yAbASuPVhPp8DZ7yBVZP/UVai49flVBg8qYw7bHr7AfZDMac3MsllroSXRrTtzz7opG0349oNJwFIFJf2LgVvqJjPjhdhlwi7o/js31iFkHBchpzP28jQU5AGWbuLABhxwdWi4BOpWMyaht8nKj/c761wFCR9C0yBo9klx3ysei2LtwGtHTnyVl9hBbkDftb5n0lKxyKBKQmLYFvTwctYE/LsdGHnMZUnRMCyRzL7+uowocXjRAM+JeZAIIrnLyd9B+/kV5XThKxU0tanfHXNYgtLI4+sHHrXvtbIwZUtG8JKQRyamC+R1hcnMfeWX0Igthq0Wxdk8LtLyAU7pWMW5WMYubGKoesMRnMfYHGlpP8+SM43YSVTB+P5vyLbQll8P3i+DhWW+Tu4IIUDX2hJgHjk9EY9KDx/7f35vG2HVWd+Ldq7zPeeXh3ePOQ4WUGEghR/NndpA2YRlR+3UpHO4BKY4OCsVVwAOf4a/tnI/4QtBGQBjqCH0FEBjHMdggQCTKGhAQSSF5ekjfde98dztl7/f6oaVXtfc6597073/om951z9q5d065aa9Vaq1Yxn0KmkfHg+fdtfkRBpgDHIHP23UgTVoUPdtmm7ZQjcLY2jsXmtHrG44Dmk0kTpCcrI+TzlWHQ4LQTBCDQpgSJZKUyHkslq6fZ2rRXkoluWbbtj6OoESnb5ssJU2Z9MdrtlqNTvpKBVVv3Hu9Lw1QDTZVTrfocVliBhRfkvrst2x1a63EF4rVy+etvPAfXJLJl26w8buXSt6pDAJRPEDcVtWU9EDL0N8FaZPm2WllmkBgbn0Ka8hW+iQ+kyhZJirY+I8aZNIItpMRaQ4KZ8zTxdItsd5XcdmIOAb6l0xeDiLSwq7+bvAQBzmfMOCz6TEOxwe7+aPyqid3qTIXlmqLcaoFKMmE1oDyHioxrxqDfQiXHGP2mYejQO8pcWspzHbm6OE7DMvl9zx+DpSsbz7y8zEicQhSEwyzP0ELizWlR0Hiw2V3Ylk/g6mQbyZgvCkLJpdA0/z3zwHZl79o39rirs7VJLDSm7eIhzwmthXk3vvMsELoJEAmEENrk6FdssZ2hnSkftJDu26rrz7OVUa9vSC8g3NxiNEg/8/jZDETkhFwmxACEFiXwa2XGFPcdMqKrRCtpotW3B7k0u6McD1hIBwAId8QJBBIB7D18CZJqs7BGMLS3+LI2J6IgwyBKiCORmTjkEQEi4PhchsV2SzNQZzHPiacjtJM6ltJ+WGkamrgyX4TCOSrBpFeCjQQXstpIkEhdGZDWyruJxLMiqJgchkYYxisEMNNyxE4xFUuV+IfK0wgYnJaBTSw9uSic+Lzv2DZQN4E9qcR+qq4s2R7ofdGMl/iKJ2ASdrurMS3AcWYmAOmehA/Sq9GS7fd8145w5g8jF5g+BpFV1S/VRnGmPo2Z+jQAgZONfZitT6ClT7C2eTOiKyT3XzHqcfUu0kpDvdcSlTtBQCYVFVWWvWMfwqs7X5W6XtHXzFZixsSd6cFda3tx+N2OsJBdcEJv30futl+zSnRoX2ewxa4a/xBo24Mz2XsKBBkBuND0gD0UUX1KdyMo3I1Lf97YIvT3PM+RS37QpShJ500wRzMK5fkCKfcnJcqRmajOpjOCw0eJ1Dbh0vhXXjmsnsQ/jBBDTPhlNAfC7tZj4YGCMUCFvgzN6DkLeFViFAUBaMk6lhqTlh4VZb7czW1SZQhzbEJISwDtW+QPQ6/epP7asm5/OzFEOdmHQhp38s8JWDx72s6BLNgK6mtkiKlAneXR62cAjy0A3ziZ42zL19yRqOBUY79yaWBzOElSQKbgqxQiwn2nCd86vVTSiZsTUZAJIYJ3Fxxtb0AgPDqX4YmHv2XvdYp70Er7mYRrCuEpCCIPDnt0XNw+kwfmnAwJOFkqmAVMPnCPcWd+ayYCcHJuKSBI8J7zflM5w59ZAs601IH3JsCcba+XkWaN5kgAFnqb7F4k43zbYyKRapMQ0goz4T0A6owhIVA4AZocTyIIb/eGWikRzOmxnoOmpevuWsF5lvLCOwQUbWsnDUdQRIq2bAAkGTPwHfLCPIzsp05XFh5j5XIBARBpRTkPGm1UgQELyywdgwszFPaPE09PqGXJy9TV6lphNHljlkjt9npsPkdGEp6MS8WnfPjjTbCAeLYOgSZPlVm2B85MBz6XSAm0BDiBRtj+USFetDbJnivijiiAZnyUtQvRp3m92xlhdokKTMT1M+sxLwkXFs13gSXuIyMTNlZ8AYp/Kcg1XCrkL3r2uH+Nz/U8M5PTq2ZoyS7uhFLMVMB/f8Tap/qy6FiYU8ZCAhCcppSURiYnj6Zbc1zJyy8sxlgdWDLM1qe8upEdfwmsL4oddm5eqd1Ceq4LgZxrTBEIMmTmqfZFImcW8/qGgFNnZnDfE8rhSTnimwWboT++cAVDOzUWc8LM3Fk8emYB8/NBvLBNiijIdEAnEwRbdACAt9IEI9SOBvFc2He7KtSUevYYuy/Y/HUigxVkLMMWqCTC3rfqFgCh1sRrm/1HE1lO2zvJDURI8pab4DZz53OQE/DEXEurS7VgJ4oZct5k4mL4Yb/VsMxQrJjwnuSEzAhljkh4T7JDPe11T/Gg+nGxlaPdzsEJjuJHJZIC3LPu/eu+hwDlIiDahpBILw/fRwUe0yDKNa/kOziEJeQEtT0UAEiWTWeB1GhkyDlqK4JItq6GmJcJ49wXSdiy1XVHjE1iAoQJ4KdgfHrUrhKfQdtxAqCdqOBfD83k+M7pNo49cQrw3mOR8fqCeiAWsK3xpqw8p+AZ/W+wI5Dn1U6byGQVmaxr7YIbZX4/qXeS5c6B3vrIsC32OVFBM8Ilh7kWML/UDlpTIgR2mqumbN3uVm6eFUqYEcK2V7B+LH33eqxkeW5Ne+ZQVUFtoL3AZkmwaNK0QthQ+EwAA5/LvCFOELKOw6VN7uD4TQS3o01RmhwAUQZUG16/gAAhUje3jFChb+fBIqTQPwLBfdNoV/fQHMtNrmTmpF4858T4iRBo7DpYIkgZp2o44YjYbk09jlptAvcj9DXFztRptpbzN5ET0G4tqrq0zYaNzY0oyDAo2SIknDmWkj6cqe8uFUn4xPImcqgWZz/86cwyyjP/UqmCxzF3gdCRVzNbcrtJbD0Zkyr6vPAfHY5KoAySMtiJHq4WoVaS7TxX54vABR4ra6+TT6hwUU04vvovdkTBgdnY5Tv4MBHpoGR2j2OJlsNob/TBREZTYez84Wm8wvxLYMIbb6nKx9uJyrLw2qbHXigTwGu/roMRYsgwSm0ULTEPEATSVDmbZjaIHIWvwwpR7s+t4gzjsg7TXHgUEuHRF2oXktTMjveGwImFYBaR094spMOgxjCICHOtNmbOnHS7/2yd/NWlD6HfFfvtSlL9V7ZAyXOrdXNP+SLN6cZeLNTHtUZGM+3AVJeTQJZluP90jgfOqDkgBACptIvGfKdMHGa1rUydM337bXlAjrOtsE/NKlzNb8409ZQH80YBQaCVO78tJz1ILUT5gQGzpFagP657CPefbOPLj5rT6nWu2SIo08cJkGOC9jmjpdSC+3fO5GibMWjnpfeT1Sn3tIwcpJvEYfyuzCGJ/jwEgARojNraq/5Tu9CML0u4scD4GRY0GF7+3mw3tQFIeBF0nVOuE65zmYCyttrBJiQ7H0pBBmdTaTEL0AIQ93bk38hIN4aeuEFh22MXNMLQTNfGLDdb1FVU6q2ArVHLdQUjZqQk2nZS15FFAy4EJ2ETBERSZRNUeOnKmLkNS04E5G3wgUn2RGT34ZTfwufF5OdOIBebgYB2DqteLjjehQyhRI1DAJBnMIYXgju5mLfGfjKtUNmWKVtPUdX9bP4xE9b0C5/A7lknnJFNL+xkDGatXRmxEN5BnVUXOI2EACBk4jMRXxrlT7N2scBnMM6pishaFXKBTZpPPrZ84ugLKa59VjgVKjZNyMAtY9amDTMuiGduiyuuON3KNXdtE9JqK+2fx5sUR7PKIU0IjWB/ZqHtG3HMVmtqo5U0kNWGdRl8IeCE2qAk71OBCSRCYKbvoE2jNDLFWeh5lBOstsSWxsxHgIAQjBmyxwhAO8uxmOU4Pd/GUluPTZio0np85rnWnrk2ttM+zOit+LBmA9jfwtPI6PaTXw/DeM3v+cXMyjqqqdL9MVMoQaAtG8pUk7fgRraaf4s5YW6pjRMzC1haUrsQF0xckmwJYY+aPG2xul4L83P2FHtHLgKNHmuz1NojV39Dl3kvuBIBOOHS0Ceb1okB/sB38+bxs+QFsFTMXlMVNv+sxoYPG8/spgUituXZ898jtctJHbWgjnRQ88iM3SKfsfOdzzVuIuOsXJh47cIudnwIGJOXhHk/vH2qLLXAiHFktiws/fbGk1s58x1BxKRZCD6BFfFbzNz3gAz5ZYY+MqI4oCmYlAZu4eLUm0oQchGWHp9btFzRlG8PAWR1CpmznZ7Zku0TArTWBWwyGeEDtlynsvWapgmEwEz/QdYX+hs7KiS3BZZpGsK9Q44ol+3Yslt880Bo8PL0CZM65NBsGWU7T8iUxB/O0BYV+x4Aqf0l/LFSLNCNlxwSi7kTIPh4cYtv3/4PElo9DOTBdk1A96FXbHE3AgluiuOJSxiUNkUu2aOOuKM3LHOYr46hlTSwVB1m+RTNAe20iVwkaIkqSCRskJMTHhnjyju8O153xyMF2mnTu595S1QzFsvaW+bzVFIkl8kgQHmGXAdly7UmD2b7tWC7G2UCf56pMQMIdiSGGwHM19VeD7yLrKwliKdyfZ4RsJDrs5/YKemA2ggAAS3IFEQ9u4kgz9vufYhEBV/LlR+grath9Fmm66R9QDJtLrNj3hfYXH1VY/uqAgNTR/xuFsIK43znYihU8l/2PDCgsLASeityRsDj84RHH/qmfS2cGiqTaniMCeHU2XLTi1tcmb7SxevnZ+q70RY1ZBAQaUOlsdKXboRgfobExgLTthvxLLem83AjBp/nKi8pJSc7CAgEFjNCmwRasmF9uTY7tkYt1xOMsZvVuXG8tQOELc7DFbaBGSiLWY5WJkGJcOprw5QMcaIcyPygXH5m5GzrbGUvYJh9QIB1etImEugizA4gN7iFbYwvZJUgz5FJpUGxdTG37IqVNCFVSwdPwCM2XcxcTSreBVU/J3xx32guRThhgbEbobdLk3tvtmwwBmiYBPlttTZtK3kJtEUNAjlEThCJe9cZoA7vgybmIIg8s4H8TMGmzUK4PAsioupQW5eHz7SwQBXsHXXRNv0VoesxE+LE+MgEkpX+Vwfqt31YzIdxCVYvX4hwiQXm28DsYo48Dwmn0GNVYq42iVpCyCp9EPMnXX97+REyUcHJxj5UxUn3XnXZOYQWzQIToykwkGnmahNYQtVu/bfsUrjxZLbEGxZlGaLNUNfCmwi+YCwIUBqqYGcNgCzTWhB9rIYQhlma/jEf7v0WkRevd1LxMwbnLyZYV+uOv/cUYXZ+FpeYscHKyI1glRsTMi9Dp2HCvHomBbJFAIlrG2A1WJbRMm2FHYLemON01KX1xzxf1LEAg2F38O9MM6zMRkrbkFthluCOKAAW2220hERWm0I7y5C0T/lxwvUjVqvpulyXJxztNQ/YBpsx7MxFuZDIkEKmda+/XHkuc743jcdGNenbYOc/GWHWHlZq5o29YeuRSGlpp2sHMC9qmKkPI68PYysgamR6oEw7o5BDBeRlTJcLOPrL3IJW1bLRR0z158ZPuW+K2y7oq2C5mtKbTPoZ7rvgzQ69ovbyMOWUUVVbTI6Z6i4rKLjdRQBBbzO0wguhlTR1WucMrMrIrRaLB/OzMM6Ymhk4zUuJipM1z56FIuwFL6k97iAMRc+ovXN4VBcXk6Z6b9mSR4TyLFfbH4URxjKAch0XBmq3AkxZTMhDSb0YAScCzs7P48GTwSqP/PRCC6lkfCCsScFbZrG+CcvzSaYJnOecK7lAB/h+U2rknjq7pLfs+0KtV34YPKywg8UQ1cLk0nf9wF383XD2bYpfSprIkprqH2379/MzWRGrovIXcWkoqCN7vkyjxr+QOtla+UtBDUfNKMy8sf2so00rOTaIuZNnmpZwASCY5IXKKVrEFwvKedT1WCsnnHrsERx77HF/rtu5BoAySK4dtvYZvktGPauO+jARc01yYvSF9LrBBZe01Wd0tdPb97SZOrF6t6xqjkIWP/UCSvU9H8usRCGsHVQAaFGKLKljvjJi8xF6JWD6MVg36g+BOU+prs4/I/gO7aEGKoOErKhgelRihjfmSPdeybUNOc7U9mAhHcRiMuAyZTsOcyvMsUJNKAfdaKNtMlhYylQMG/I3JWxmREGmI4yI7CTYcHWc59yEIvxnudMwmYFnLoRM1ggRbtCF5hGu/jfE1i70AVcP7SNnzv2hMBNHG/W9cItr7prtTVgCCRN0TWJmidR2UwCoNlCpVgAQFtMBzDb2KCJXtqoHGHOHpovuB5n7gDV9EQREXiLIBLKBaXOZ+YGv4LjznesapokAICDRllXM1KcxV5sCMZ8ZQxbV/E8U4c9dELfDFz8JaXPI7sCV+ZIVajwGLIwvjbBEhTXL9jvMaj6QlE2eQgpdbek9Z0Lx2/Zbn4pghWzTESrNYYi0YvOwNTLjRXK1thaYPRUAIdemLidX6fcqjW+Vy9ej3cSaa/slZ9PFrGyJZc4f981/ggkzZkyHp19nInW7AW0xZXmr58+2A8YQIMuMNoWHUHT0w9RNWuGTbJHSCARZ29EIVpB19i3UjH121GKo8dBGonb75XwhIu0YE1ojowQsLjHkViAzWtPFdAhUHUAma35VzXglAUBaH5nW4rxXLyPolCHPyT5n6aIZ410cUK3juR1LTAuEgBwZ05+hnURYEk6zYfwU3XENnekKACy22lhoZ+yVhT5xJsK2FjIg0IZEtVaz5Rt6YMoNoklA9Zqjq62kifnqKDLnlGafmWnBW4O4sFnCH6Pe9mt1bVY0Fc/p9II2GaIgwyDYgh6AN+gIQM4nA6lJkzNV4VI6CIDQkk3wQZ9rQsalaQNF+/Vky3P/OhyhM6tkKtyHtqkz5mKl8jJwD33pYrl4JXd61q0qnpht4YHHTuvLCQAJQZna4aJNLDmkR3g9ficE+G4Axtrs71wzHoWik65vZOIEg0uNfEWPYGYXW26JhF5NtZMa8mq/xyT5E4uVIU+oAIQeR8KpsIn0QW5lTMaqBuw7M/3jnJmLUATPtNa4+vp5ut7hDEGJuW5cCy0kM8aFoo+2G4XModQI9N64Jl0e33Hht5kLG1y4g85TDclcOdL7N3GqsccKVWSlK11nW5bWdlh5zQjGibLiMmdeFb+HtG+Iq4PfdvX7bCYxu9BCy0rwnDrod6JNxNbka/2XAj8kqc+7IdfvxqQjkJVM3xItEQELLefrQrbf3RwC+1SHOZZFXGbtzDNkMvWuKltajgzmFHl9R6bAnqeiPXkVqyXcOLayjLDakRzwtzWLsCZOeJLe2GHbqssECq+xWpPraYEM7dI7L81VvuDMcyxRaulAuEtRzRVhBTXy7ilkbXL3pOEfZOtlYHhCjgSVSlXnwedlMAzJtJGPOJfIatR0X8y3gftPLGHh7CwbC0aS4ecu8Y0Sjue14J93t9kRBZme0AOH2GTR142ZwgySudokZqsTmK3u8gd5EA0VEL623hTjFRBOIsmi9pokAZMwldERPfnq00rzQlqWR9q50DMj6Osdh7BQg33x7AxOPfYI7ApIJJ7WxDCoYsyqEtVszraa+h1nGaoodBjwuDnkTsBzrCt2rUAmEhitRKmgRn4P2IzNL4GgL9XdVnUIs7UJzFfcOxdaXe0ET1K7Owoyo+W0nH7bFoQMXl0zwpGrqTQB8Upi9ow1UxWCPKy5pwGUbGeO+sjSPvtdkDHqCKtZNA7brs4a2heLE0fTgfbID1MOgYVTd8NXaoEot/F2XMdlxinYdqHwnmc3AkaosFgZUMEIdflto03IWpyF8Iy850+ffBzmffmmXl0/MsZQ5YtmcuJmuxzCLfBZXJuFdBC5SJEjDeakYrjkc2sAUEKVbgyFu60A+GNF2EWG3d5sIZQDatrEWb2bxkOWIZM1y+isUCYEYKLjmvmhaYQ6rsBpUAobGEz92GdbpIrBiwSUlLtwmtYvtDM8eMa00n8Xgv3rzu6SvvmGyO1YhHqfbX1cAy8oFCj4D0tyefvNc/p9G81r6OeWk0CbJGSqtNcuyF2xf3zBlPl2FczK9hGcOHUKs6eO28vWednbMdehcXaObg1RJgoyBbjByM0zzoNd/Te7BOejoO/IagNLaZ+ahCY9haYOYVckgjOnkFHzkWu/BoRTC0h2fSGYUCK0sMQHoiYkdtsm9wXQzwk4wYvX3PctUVdbooJMb8dUE4rgDrUTXp396VA2idxvIwCoSLxmp4NzQDRNPHV2CUvtDPYsFHLM1qQ03ZjLBLPVXVio7QLfpuqzBsecFfSED459EPDb006ayKp9AARG69yRVJsjKUM+fBDEtud7bYHZ6uh2bPiSjesvJ0wxMwNzXuU5J1LgwNGnIKmkrDCrbPf6gGv7AIH5xiRmWWwTp51k79Wn94wBCPDYFCxbrz9lvoSWd9ieGpsJd84NsuBb3EPYkAX6OeWL5sZDLhIs1KdA2mndXINMvG3HhTccMmC9lXZpftYUbPvBiKCmvwSAaiUFkDitjACEFToymAVFLlUY+YX6eNjoon+Ou6Xqlmd2DAHkOfab2pGJHGsExIC+ZLKC+f4DyCpNHZvIdBxBoA2SgaBE/qe7boQcVRspTAwn37RqP/nzQmKm7wDm+vYhS+t+xoI/BDwyB5xcaGFmoQ0ugJLeaZOlNUcPCcDoIbTGj6IlajYjAbczKKccGZwDu6mW3kvGGsjpAJ+bQT+wcaPSmZAaapTkEMggkWhHa+Jxnrw89TsFEyzsQsTRsrTWxzoqpOD+ezLXJRPkXNmhCXrzIwoyDE5FH0w3O9DVzxyERx47Yff9E4BDe/egOTzlie82F52liSrh3w1TmzJKbhsTFCNCjhGqCeiiZ+rt18Y/gbURpCaE2hrK66uYaG5Vj7wQs3J00WqXkKLdWoCZCIKdsusmQnEba24YfMk8MV7/hmlTpvf5lh7RTWibhaXUYeDBmbJPqVtpP9oDe0vycc00dR3uq6Ixvi9I4a+ObBwgodpZTxPsv/jJahcR+yMQqDFaUh55TIpcEbYd5pIn+gndT9rPwZl7itM5jDBDgDKHAZirjNuLBL5KA9pLC1jKCKfq+3C6vscxcyOwsrTh3p2yeijmIP30WQvEfBKCB9Amf6Vv6u+nc9KU1SpJBAJp+fPWjZykjvXD07uxX2DUtj1+3iov5legZb2Du4bQN3mYvWcByYUC5ndkyxeAWwzoa1yDp0pz7SB1fhOfU9zJNNeaolwHhrTmr9L8ixBZG4BQB2daZlciTNouYeKy8d/oopHxFntCIpcVtxuPvxcWXisjFbcnD+p9ur4XC+kQFgYOOSKTVACZIu+bRDup2bRcI6N8HhMUDr5kbSNAayXL2u4LNS5+ULG9VtAQ6sgI1f7cbyvrLyvSaGHUKpYk7HsjTdc59+J/EIzWOFnTLgJ9SPfcFkAUZJYBQTxSLoF0fITZ0ydgfCqq9YY9rt6f5G7fP0DqzB/7S1gBxVzhIPZNrfYYQWYUK1SrgtyJquaaJb5GsCG1DVFoRttKmpb558LfFl38qspeQNVqQdSN3GPKZmLZ5/TXtmQOdSX/OgEIALW1ZiaY5HBLJkvvLFEKiAzxlY3fDo9RwKzeVb9Uqg1DbqwQV+gO1t6kkiKt1DQNcv0vKAdEWuxOa2/3CSSxfGEEvkAdbPVjBLjIvl7jChC6jKXKCGYGDuuDTJ1gyrWOrcWzaszJCkimtv3+wapasGVBKfwTfItVMealhXQAc9VdhS29XDZoG6bC8shNOSY9Z9yB74UsCAhmXJIvMELPa4FAahHKMZZ8nxMeRt7PA8g0n890VqS1hZVa02oHSFVO0QUqF/zCFb4Q3G8pGEikapXb9+SSENRz350hZO22MtdpYbQw9wRAyJlvkdNoLtRGQZqBlq4pvKqZDNSYlcIssvgupJDBF/MJD/E1c9i+ey2Ae76MRMhlBfPVEeTVfsxWJ7CU9IGGD9h85ivDmK+MYLY+qeeg1IJR8b3astnuOXst1JaSn1YIJhBrQSXUzh/Yd9AuxJDlJWZx9824N9j25658jzSy/nB+Zq6/BXtAJMoZ29vswExWZXssNiOiIBOigwrXDiT9KyMByo1a2EvGP/R3c5w76VOMtfTtPUTetTBfgrCnxwqQouCC76QxBEzlk0uP8rH2sQih0hd25qoTmK+MoJU0XJ0YUdO9ALfKk1hADaAcZxp7kIkUZ6tule/KcvVYqAxhIRnQtwVma4qYzFaUXZ5sBDdNGDLldCGCfBi1tVoHHqOBJbT9WTgXKOhfowWyT+l/HNP0uZ/gnWfzMBsc3CoJeQ4kJiJKWC6sTOZW+V62HtFXQqZQljbDKK2PTBDvBLABv3ieJACSVS+lPxqF91nIlPy3kRuplVFK88a8WBh2Gy5hPh1BO63rIcrr51qdoUwQKYwElz9jKoDoOJWdXpQzLja5pXDjnYD5+Xmg5N2U1cF1hXpnnjOp9kUiCCRSum30bHeVqb/37vWcy03/mPGm1ZokBJC1QUiZYK1X7aQie88s5Tj5xHHn1B3Mg1AA8u5RjlbfNGuzx17t2OVM1fwJLSi4vikREoKcO/Ut+Lgk4NTZlnZgDoQi4Q5rzNI6ztZ2gZoTui0AhMTZyghyoeaA6Xq3Vdnkp965EeFdfxg6wfvBvEOfAfCdiS6tLg8CIxN79FxJ2PEppnglhJytDDNiwIUnwGPhxp3A5uCPK3LJwBctkI7uubxKdr1uYkRBhoFrPhfSITYwyRIgnVL7o2TergMOEjzEfYnvA/gYo7IPf3Dp1ZLL314EH265l8AXp+3kYKXwCdpOm1isDDKixn1kLGny6pXrKKGttA9zjSm3FVMIJjhowUdWVHwG5pS4lDQx0zyIVtpn25LbVbh0fhKGc4MxSdY5xj8ot0yZEWtP/iB/gnoZGS0QK0dzpv6KwOGLrkClWjE0juUrtB+BIw5CCAiroSIdyRXww8gL/rJhCQ9nmOSTmEwkONl/WK34lSRj/RlCh3T/STOWw5Wwakhe6FPV/7rSaCFl2+ED4YL3A6BOHy6TIoTWeOV5ifbD1cWgbeITeZAFpm/gr/h1bjypfu+hfJ+TAFczlMk/Hh+xeQkt9Lu+yvRqh4xJUchiHoCNMaITe/fLSg/Ng94PgjrA0Qhvehzw93R2qY2zqDM/Ij+eimPODpmOOFsyMLrCMHV+6KMZ7yEdLJpvnA8fpF8/Bd+/zQhQmazbHMxzXIPBo2VzE6IQwFJ1BCCgrYV7VT0XJE7JmYKV5+ph6yf8tljh1BILb6J734XQMXl0FHHftwaYr4xitjYBWE22QJab/Z28H4vleFp487TlZU7Yn61NsscI5LOJTY8oyHREsGIh+471XXOaMDglV/eEv8K1ZilyA85OLDsjO40YO/xA3iA1TIV0GcISacqpsPUZBaICWGdWNuhN23SmJT1RnIrOJ4A7o/qMtUzTYL36mdbA224uBJaSPltvEOFMfS84AQYU3bL2aPiHN5rc7D4gKrwuVidfWDWmHyMgJWkFobrb/c6tikbRMBZVkxhDC8q2RIaZqJzw6NK4epI6FydRcXtIKGdKRftC4moEK7+d7lU4IQa2z4ildcJNG2nRp8K8a7dxxvVKiYaB4DPLULuSQ8AcgWCYHfcxmJjcjUr/uNeiIlsA3LgW9kYZG3HPEThzDYWnjIQV4uw9zbjOVKdwur4XS0kTIKV8y0HOsZUJ7a4tAolIbK8XYkYFAp1jbqYB/B3petsgdrx+7neWA4tUUQsPPi9NmpI5MdfYg8VkEO3hw9ri4By98xJNtArIF9Ac6XYtna2MggzTdo+pf7UExvtCFvrFtMcISiqvU/W9mKlNqbGkNbpqu7dv1i/pPkghkSV1nGrsw1xtSqWxfRGMFkeaPNrbkdmLDtpcuHlvkIuU17BQJOC2RkOoozaynFjUaP6MH7naJXCfXlOg6GxbcC0tC9OxBRAFmW4gPpCKRBd5BrNLJjwhtZxxK9+L3BtQbPja3TGcnbnysqSp72uGIFguJnKtYSqGYIW14D4svJ3GwdeuIEo6Q5fmAvMV5S/OzMi2z1998UlUANsJZvwp5isjNnNiwZu49slE9uXE29Vc10UI+C6OZbsozCosDDgYgJjAYVppT8v1Vz1EOZQZMNyezuppg9I50ejUYm77zxM+hNDxT4BW0udiAXU9qdYIrCWOuAJQhMsneHxFLaREkmizlmEWuh0e4yfexrAgWbiRB0b4vDqArDlh3zlXyY8OD6A+MOrGbjDHzDs2v8Ptrqp6ZSME3kCebezFQmUIc5URbSp1ZsuCxksIFU+FC022D/x57Ma1hEhNfpqJc02dCB4or7FrtwDO1iYKdIOPMQKsk6gSQjhxMMK/WWApwZiSCuarozgmJ21+i41dyNI6FiojPh2wzXcB29wuKpVooTKEM/W9OFsZdUKd5+SUs34meLIbgzuAU9GtXFYD4VOVu2SUTlyQzclY/RyTNu+QbWU2o4SgFTyeidYtEDjdKM5nk4cTxr166u9SCMxVJ5CLFPOVUXabC7Q+DcghsdRqQdit77CCE6dpOYUCp9r677RNwjPNEaBPrNdnN20NOSYKMhwCQKjaF2QYiXOSNUTBONUWl9nwTAh8wpvh7w8QM9PcxbzAlAhLtVEs9u/B6doeyzhz9hxpSd3Rjtxm7TMpfdE4eYUh6O3Kk7MR7sjrPo3DomHiTsjQzn3EY6IYAifQxzerMLVvu7UAAjs3KefbvlWZHoOyRmxmUuqwa8Z8M6l8u7VAS9bhbN+OiDj3Y9OxvqMkFw5V3molupgOYEk20K4OudPHQ35U6mCoEp+YyzB36jEsZYFwICQWmrsxO36FPXzQto7l44t1oUhLGBnsx9DeS4PVOWA0S/yJIwcO4OAlV8M7PFML05SzEsjszePE0WmdyF7hRJe/G4nW6IVYrAxqwuzKk9qsxN1xvK4M52HwXpzWkjyhz7WWMFubwGI6iIXKCBYqI2ilfTowmmBOwqT/D3sW1i/Ftk4XI62wqJBI1uZwMRC6fJIZr16F2e0Eme4vPr99P7vc28XE55zuLK8wPp4eefhBtJdUHKQsGcDZ4Qs9+uRisxCbG2YWOaGYYLQxmgaGxVKGTKR6IwIC+BsoFCTyPDSLOmHu1PHv2O++BtwI/i54pdImaw2HfibTDvpZ2oRMKmgT80kUxXfvBeDT+fK+KMARDORJBXON3ViojTmywumTHfcumnyGBDLhhFRolbxfj8ImCOHzJRk43AOwwQC3iBwTBZleKB+IjsAWt+KZiasOEywSChEwG16SofyOmXoSvwBajQl9KrMmVEq6ss89fpYdPsnpi5nQtmzD9rUt30vuEwyvCFZrobUjnjnCK1MRtvDIAAmBAxdcZnd5EaNo3ncI5VBN4cpAer+Nc63vx+RgVfWELkwQaCcNzFQnMVOf1u1jd4VHChwNshfYmza8QiSYrU3hRHUa3zm1iPbSAmTqtn46mmoEZUWUjS9ma2nBCnQOqhZZDhWXhhUovLRBTwgjePO6Ck24i07SfNVr8k+snw/PNkEuHDMmnb7UfGffT+6Ws3xXW8GW7+IxOQaiovaWmVrCuea0dL4a32pB9FXjrEwQaCdNbzFTutsm6ANeJpn8TdO0aWn/aBONUWUWzQG9/dow/mJQM28Vrxqjj7xwPTRbm0Jb1jBTn0JJwAYAhEpVjbc8U4uuHFL78ah8TM/Z+e2taTSDJ8LS/KztR18r5dMa0p1jaul5HhH7rhkz2Y5SbypnprjyXUt6nAhjigzro4VruPxdfC0jxPpN1FVW9dLzgQAVeqCxD1ljFEmSKp8tGEodvB+bh+tLYQUI9TlXGQFIBT4Ek18F+7d4vAr/rd6b0ajkSFQwPZaOzNzSdeRhFfzynPYYel4KRrxFEFxxsyMKMh1A3jgtOkK605TLpdY2jMqP22lVXnxC2x0fAYctc4LLMn/dwT8NIz8137ZExOyI8OkhZwC+744lajxYg/30hTVDpL2JIlye1izhERn111dLUWsOwIdm5FazoupBVLYSC9vumHiZIOPyZ21hjMxmAqitmrICs22WE9rybIsCmKJfLg7DYibwxMMPYGH+rI2yG44tRxwVQVE7K1XALEWIzdvRBI8UwRSkBEqupWrLqio37Wc95QiqjZasn8nYPQNiAoK6w0wfxGKU8DgWLLXZ0lkwuXplCfDzoGzZxrwofcHGJSgrM9wHGG4Vd6mV2YLdY3NPdbtgzCBwIjYdQMKjAUED2HWVJk0kBkfGbN2krCghh6gQaM5VxD1vg9ix8rKkjrn6NNrCBRXk9pi2rEPq04tJqPes/JpDWlMUzHhAPLeIceOwOFaEK5sx0lyPzQy+QMEFRdtcyv0T5GXAngJ6pGL2+NprtX3c0SA3X8wZTARrajaB7SQfk4ltDwnp1aHFgzEKJ9ToytqyjBbfE24h0Er6cLJxAPPVMa9ZihKVxICSEk6bL2z/KUEmQQahBZmwLN0XBT81YX3qTKlqiPE5yBcvRb63WREFGQbBCK+zl6pXaR0izQTkE5HcoDECwXw6CBAhyRaRi8QRPbPq9EaIGn4Z2xJrVhwuhfBWS2rl4ezJRAKLlCJnIbZ9o4wZlCwejoTbGWAkN2MzNaUItYbMZRAHRQjFaEpXJazOpn2GARRsK74fTU7M8TdRWxI7hqHnuQhFDDI2oTkGJ/ZDJNXigxZcALNVc4JMif+JYN94G+wuIjBCTYQF1FBJWR2sEKzHkCY0ELCaExNd2i9XqJgXRHYlKaAZhRA4Xd+L04392nfDlWW4YzvLsDQ/BwCoVXyNTL1q/D1E4V1ZNbyHxK8eFzyDoHTWj4Acjy6ubHOm/k+cQAwmhJt+Qtg10goAhKCuOmFuNITsvBljHuV1tQ+RsNvAtcTMmiYKzxD/VwuZrGtsHySVFE8MXoYzjb3FOUHlGi2vXmBMS+jMTf0K6kpopq3i8ugjIYMy/bqzqgQ+cVTyaLjA0O+MBMC1TSRgdjPydhi0ZB25rNr8QofxULOgfsvibjVDY7m6xbz/oLb8nDLVl6JAdwFgpFkBIQ2cnMkKGPyaHdeFFoYuA0zwswJTGHJAfctkHVltBEuVfkCHLcgogbRz3K+zGQacBgWlwpjp1UYJzRNsG0wcma0hykRBJsBCfRJtUVPbr8EZtT8w88AxrHCOhkhxujaNuXQEarsxn5xc6oWlSGcbUy6DEkqW5RmCWajT6sGO1FsBc3uwJ3AQrGuJkcxVkU4YMwnnqrvQkg3M6/gwjjED4AKafcIR/VClH6683enEpOcNWcczMv4RWcaYHVlGxXeZWKdar+5g99h5RHzdrts72hDomzjk0pOAlNIROGL1ZW0plGSd99Rqyq7sSNne56gGIXL7PP/0TvqGXmlSZjV7rhRoZmDYmLArSuNgLIzjollxMgastDwJMlLnzuwZbuDIBRfhssuuwIWHjmBofDdMLxHC8WDqy5ijCN9xZ2GTH15pcxTw5wEcY3T+Co55ujO1TA483gX3VxOQidmq7eYbUV6YW57GzwjzrH4Z28HhxqIzOal3or/n7PR4xhAAWG1GTnonj17xB1PTzluC3gmkTWGhNsN7yKJUArIhDdqQTgj2sjACMxPIzYFQgucT9hmrRHAvM87v0HNZOHppGOYSKdPIYjqgz3gyfaRymWsqc9xMdQJ80NiqwgmIrgs0DTEOq0xW9seO6zKrTRFuDPH+Ge2rYu+ho0jrQ6V5EPwyiI0jfo9nbMsEN4kHZlAmvC8NHcJ8cxqQFWSQEGkF0jj7WkGd5cKnFXu3broxuiEE5qq7AAgsVEZUDiVze7MiCjIBlupjONPYbQmTY/b+VuWchVsvTmpF5LK0gSyte0JELozEXCBfgbShrjupmk8GQ2AUcTOnLEstF5Rof12OIpjw0A8YezgAe7AcEdqyitn6JPLaoK4Rf77oW2EnFPwt6KaVICO8sGv2U5+YbZh7limGyxlNQaOjy5dGMyDRGBj17urpq4haTrrrfObc3z9g20eifP3ntdUSDObHZPmlMa1I2wdppYZF1DA6NsUzC3LXvaAJs1GdhyNFCBVHAmREOKH5jTP3qNVWcTwJKBNDS6QAckghMDI8hkajD0NjuyCMmaODv5GwJ/pClxnujgPMXOFaEyOAcV8rq6HhNTTTQAuDZc70RQHZFOvs/jmk9cEKz5sh8370NWciyoPVtaqnv/PDCXd2TrJnwl1YYdtMnpLtvlOyXNAmzXzbsqZiiATzyc2bQMNbOj+4o35ifT0E+9doAsm74wuyRMDpRSVehe3KWNh/8wyPtOzyNeNH3VuEEmTasu7kS+szI9GqDuFEQ8WZypl2JxxHrKnsqzMfWV0Dd3K2/e/6Xo05P28TF2pwoB9JXR+myueB33kmUxitnz9ei1RFvRoTniEY2eynWRjVKhK1vmHs2XvYK69wvA4xIZmNC0dNuYAPtJO66uvKAMLDejY7oiDDYKavz1ydZDtYZU5jNk2HFVDwnas5Q+YVan3K8s0hcWYpd6s6xmp1tt5ccqpc3hbHwFWgNbdCNg50PE8BFe4bgD3Fum0nHKDUsHzFyYkqeROlDJaQktFDMOZGQBsCc6LOCIGq55natNd/fGfExMgg+oZ3+e9Qr46UH02u6iyZyYb1myF+QjNSR+b01A7VyF4bXF+IJGVmMvX8+PAQ6v1DrHfVrcIKT7ggbW0RamS0KphJOEKqc56d43li0/LuF6QYaBspMusLUPZOGPMyNxKzkgvGqPTfLRlh07O7KzifBbKr4JARt3NCK7MN8+ooZEheHUNU0P5EeqymHXwsuD8TACxW1Sp7KekHzFZ+NicN4+fZFPrOzu8g2o7nv+Gi4NrjTAr0AC4+FQTmKyPKARll444LhHq+efPd7B5T5rTR8SlUBsZxtjaBdupORFd5FHeuwOTNdtbNnHwUrYWzQSLCUtKP2eoYZmq7bT5WI6N9PQh+6AYAOFPbjbOVMSwkA0GW5MaWMM/yepXvTOS7hZzZh2mz+EknMIsOR3u4dqRoklF55cG74CESLM9gglZZXn6+YHTF7x9vEUOqrL6qxEWXXIUBrT11FNDvDbtnxMpbhh4Ec5tpoawTtvbLi6dfb2UEomitInHppVfg0EVX2nGRe8yiuGK0DD50ZizZ6maeKlQi0FwsLZzF3MwTcIGR/IO9wsGci+Jq1i8hXCm4tCf7DmGmsRftyiCTBpT5irerLBiT+SR3URfhp89yNVEod+YWrq5vjh9SPj9CneJrGttKB9CWtZK2SSQCWGiocOSL6aBtmvGhyTPjOeQ761WTcPVespr03oe+ahmYv6U+SZQ93Qm+1FGgM+UajYWA3l2Um8BqLh+nKncmK16PnNWzjLzJJMUi6ejEHQ7N4aY695vDMTaTzgZF7DC6oQVrlSQwVgmnxj52FpifOwOC0NtC/boY4ZIX4xF7PTeIAJEkLoXjLbDHOugrS+kg5kYvw1xl3PfxKmGgtjzBhBlmvnWRrPVg5WOGDO2QynRZotE0JZB5wLBGYfywXIvZtLRfwnW0YmY5SCRKEBQCLVHBwuglltl72TCfCKslYouwjATaraVCehICi+kg8qTKzBySCVbS1pe3IkuqWKoMFOYGochwFc3NdB/6rfYelExzY9pnT5wOz2yDFVwJgDOnFAVMJZ8bOsnGoF0plGkxmYBjHY153U0qb0YghPVfKZmyXj2ZydBEa+ZDhL/vMl8g0wfW7L815JgoyJRCv7zZ6gSW0kG00gE0m32o1JuMoRjGpVYb3q4OALLarwaOgO+wyZwMRcAYuQmlOH4ksizHTKbDaAsWO4SYQx7bMJEFrzec9ML4gVgZgZtJpCJ+noAjkBGLF2N2UhC8NJwY+Lt6/PLbbPdEnqnIpFzTldSa0BYUBsPYfD+G3UNNDDVrGJ/cizxt4InGQZytmJgMEmlaAQSB8ky9LynQ1odjZkkNuwZqqA1PwaxquWNpCMOQPBenEjklM3XVtFNIn1hx84RVfQvuI6Nif2TwnxNCok3hmIE2lzAGaQUahyQRaCPVTLeTGaTcdKPi4wQCnuDMCpaQCkbULSMSLOYNY1JCOO0Q5cDMyePqWbZrw+9cVz/PtGudzzPkQiIxUWW9eRYwZyjhgyoN1jb/RWZQGi+j2TAVL9diBHOXm50s7WCphRnRTGAj10YenZnHKbECv3nXugMXTPBI/dB8bQK5SDBfGbH9kRXMX4LJTGzDdCBIWFpWaLGpIRdw1fgXQmBqqA6RqpARXNAOMrBfW0gLwi6gD3XMM08AUzX2x6TRqqjt5uad6/llT2YooY1khGfu5+cgtUnS0XPhPtk5Yr7fJP/jKPEt02MqTKc+BM62oHcdsbwCYYPM4eT6XhiSgkj5Cwq4Pgz9ztRiKhBwNzmiIMPgxof6spT2Y6E6grx0t4uwQYP8aaUwse8CuyIsai34D7KfhSMFAgaudhyY+BNc8DDT1y8h0ztKijukNPEWmoqCWIhst/pSH4YIEESSWtOSsz37hCkHn5ACLUoC4l8UDDKt3VGRR92kMityb9eSt/hyPwaaVVx46VNQ6zNaGLMaF6Ckgmq1rvtQOQ8LmeJ0fQ9ONg4gr4wgkQKTk1N6e7Rqk3NGBjya1AkBgeb+Pshh2KEH7uSnORfs+yV16nZ/VWJ8oAYhpSVi7dYi5k49hlDr4pktXA/oe4T+qkTf5GH9fjqTKWsm1L+5my5fUUp7uFy4zgwJtdqKe7o2jdnaJHJ7RpGPPGs5U45+/zwKqXmmXFWvBZ8cWqBLvCq5lbEWGvh1JhXbaKf6Xo4EItVn+XjBxoS9xAVbK7BQ8Z0bLYHvo+XPexebhQmpvN9lipnaFJtPrq5z9Sn7XYCwWBvHmcZe5LJizSjWp8kW6wRix4Bd1dw9yTY5MNLF6s8XRASJkYF+9NdSDExd6Atwtl3w55QQOCub+mtRoFTO1KFJ0uWcLS3abrNCjF4MmfPiOLUUUuqDfHU9tPO1v1uOxVyxIQF84Rgw48AXEsq1K8L75BpJbubinwBw8vhD6n2UaXbtmHUbJkwbuJYbAhhuVpDU+tBMnTO2Z/ITZuh18EXbhEh7J9lZ8LUkhiD4MNfdqihcEajBIcCdzbikGxI38LkIvhLjFciDVa4hSoVztElAyKQYHdPOVvNDYq6xB8nZx7GU9PONQGpCZ7DM3Pg+tLiPDAKGoicyDKGEwLyoo57MB/3jMwPzjGqjW50bZ8/Eq3Oh+woEL0Ra64NMJHKZIG+1kaOu6mB2jtjqCxhznWSMzNTTtYExGLtiDti2UD4+KRzxLCVA8MdZrolQpglvNU1w5OiTkFZTXHH5kzC7sISHHn7EChp2x5LOK4ffv0W4GC9UsrVSybXkvRPepkLFE6NFIG4JKawUFSTaSQOZyGw/mzyMELd4dkaf8A27+k1C59LSGcnnldrCnSQSQBYkFXCxj9wK1GRTeEcEDA4MYjHpA04/wsZ9GLzM9APflUaFTiswwcD53T3L6it8AXKhPoFsqQpgUbdW2EYYTVgoNPAxnRmpK2wqE8wK9TBtZuaiAt1h9a8mwJGLr0S1XtdXnJZEUkgPnYAphEAuazpadHFhYOsR1tuYbYQTPKxpSXcPk9u8daLUY8HQLGu6D/rR0HUKWk9BCjOeGpUEZ4J+DPOzT2k6mxdfC2u/KHF9L5lmxOsfuA8QUEslLr/kEqC9pK4GO+fUe5BKpN4ikkwUZEoRsKXSkcX9YMpzsdIt124IPti1BB1KMvx5+933lYBhxLwgYVkmkKTIsrSQj8f0kwStyiDma2O6To4gFpATUgGkQ5OYn5sFZS7+gFdnTSTMjoVFStFfawLtxTLzrq6fW+/nTPAzn9zkphhxh4y8PBXaQqKvOaCJeAIV/lwJeiGz9vO1azbvWqfCFAF19015Odo2doUMnU99UgZjrlzIge/O5MiphbTSj7SqtBfVahUVfRyAs8ebVZ2uCgkXk8KOO5/8CWG29XbykSFvh1EnKNOK1poEnFMUBD/OINjKU/eTqWsGYbecOwJLnLuCS/ck4DZ6CK0F0yYgFT03c3mY+SbgCbAh0/ecfQWQ1hpYbANGOyT1Pd4/zhcjEGhlccyEAQiFgKdF49otJxcawc/P37StaLolxyABgAQS6XZrcW0UwExGLH+jqeAa1YwJCX4d9FgkWE11vdnH8pJeakWv/LlukOsdiEJFfrNos34jNpbMh3cEg6GXbGFltDJKE52ocQquwRR2yz8/f8i2Qb0ol6fQhXvVcA9NDzeB6b2oJcDZ+Xm1xfzR+2Deax4MDdLCfLngo+izCuYYmsVcen0MmhLshHl/xXdWSVMg5exfQnnyOT/GUCDezIimJYZyvwhRGDiAeskuei9ApRK6SwuA2ScFdg07L/1Ti4SMwmfcF/M9g7Ob+wPOTCo3YGVS1SabsE5GeCK7Egk6wUvvNEg5KonE/n0HUWkO2Mle9GHwn69Xq34Zxc6xBMg5j3LNE1tVELHJWBJYqpg1lqiCZrNf27eduYlH7PTdL/ROpcD3AFRmGArhUkwNKr8A6xROVBDAyp3tlKnmsVOnsTg3gyzzNQpm55Q9ukCw69BCi1FTayaaVfqxWFVnBwlZgfFt6hTsSglegglLbm6E283D1ZzP3EOQfcdunGkBXLdjiap6y70qjfcRX71boYhNFHtkBqlAgs7Zl3W8UAyO+xlQgbM7wYvQ6RRmsHEqWEYK9hybwqjRpiX302O+6uEyH7mi8EGeMOhuhPeNDKccjHVnUx68IMWZQ+GV2MvJEWqhFN0rLPoIRW0wazuvIyvdfZLyNxHsmvpL4Gy8SeFZBO8jJyZg2z4l9o71U4zuVCsV2MCKQUWV0qTMoZc3ROisBdJEYt+evZiY2ouDhy5ErTHgCX2C7b/3Yj2V9AugNm/kIR0JTgsv1I1K/YM9DDVMdGD9iBGmlrGY2SyIgkwAPs2I/XGYwWK3IkPYcyoc4ddMyQgfeqCO1hNcddVTsOvAxTa3Y3MZTmSNoAxXG3fNH6jWwTj3t16qm1Ktnoi1g/l8KImdq2B5eY4YFOLyibBeJasDHdFzsArsueDJrg9KtpoCzFGZjF2bM3Zdl4BIm++dSYq6s4gUjWa/tm8rH4pclhFBvpbVQoCARyhUIgH+djwNF/veqCY4cORSJHVFvHJyjJi3ILfjQ/eFzj8ngUVUsBAIMuDEVADEzkQhypW2yYZo1/UUAmea+7GYDqhw+EI6Qais58zOh+B9CTDmCD2+hXs/IRFV/glcvyC8Dje9KIS0OyxaSNHSTEqac2+snxIXmouVN5oUc1cUwsgzIaID0yDARcOFy6/TKrm8XSwt6696RdGDesKdscM+A8LYs91A+h/7ppgmQYA8gdEaJgRQ1OyYdLx1gaAE46NX0vuhEFcytvzDHeEmsHfROGgHTq0ArrzyyagPT6uaeX6LRhAx300cK7cIytwgVGmkS6s0lAp7RpoY2H2R6w8hfPMtO4tJJWCCHPtSPDOpM9S8Mj/8TSMFp+Y8L6EjAv1VgbQ5gHnUwcelEj6ZX5NricWugRoG9hx1fEARNvXMFhFkommpBCFBLt+lD7RJlqYPmW0OodxudYjutFJl21WB2SVgLh0KeKbwJ4hgDmisAP+M0aI9SAAAYyxJREFUt6Aexo+irI2ko93KYKJ4cBNCrUyNHKMIxFA9QXPsMIQUOHbyDAAX6rqSSOw7fBRppSwOSlAXO9EkSOSO2Oj2tWQN7aSGFhlVtQ5aZYWbzkRj7/RuVBv9WFjM9ApDBGr8clihhhFaYb39/Wc75ZHIRAWYsydfB+9HcAFYlUp6RZeJFItURZ6Hjrs6XdhmAQgyu0IkSxsmcivQspq3cwJlmfLHEoAXVKvQbhPXhY/VMHKx+877i8cN8sxQQqBFKWpoYXqkHw+1dgGzD5dYlkoESM+HTJSY8tyCoribiL8H9d5zPV/9XU+uZf4WYFO+WfGTnmOuDtNDDaR7D2OgkSpfiFBA4/mRmXeOoRZ93pxjsLklyoQjraGTidDOqsWFAYExU+KCFp9fvmBq89db9pwfShhrxVaX7bwqCr0Wwpjt/XlardZxaM8UTlVaEKfmQDNnvWdV/BNTb7L0MkGG+47Pgap9UGZTV77yBXF9JIRAklZLaYoQAlK/B+7ryLVMuWloB3jmYATvv8RfytPIQEAdCllMI4RAtdGPRaqgoS/mNj/ej+V1SxJOpwXztdoakkzUyATgYZnLPMcNcsALlOVFjDQw49MSI0fYjEAAqNNQW4Kds1SyulVlCp94eudB8UmgauFt29XiOLf/h5E7+XpMsIluKmVOZlY/BVIJTE1Nojk4wopR9RgfG0fDBn8LCGVJu2waLcSM1Y0go1b9c829OFsb9zq4A0306jI+fcAGjBNGE5FUWC8VhVazRVQ9o/tBC3wnBy+1/ZXJmucD0ZF8GUGmJEAbN6cBwJnqBBbTQbTSPiyggonBJgowhJ6EW7WSens5ivFJTDuMH4+Uid1dFqKVKcNSm8zhfax9QkAEY0pof4Yyvw5WYfbpGLPl+ULYJJwp1FOJ4fHpcklRX1tKlHCbQ4UK4HM27G87zoXPJIMQdv68ICdoMXnHz88rJGfj3E+RSIGpqUn0DblDA90qWZVtroYH/hkhtHhoo2Q9z245ycYr39QqJ98kxP3UfDCBT/dvHgpLwSMFzYuXTtg/48/R8fWWdG9fvYrJPYcKzByAb+qGEQTV54m5eTz0nYdYm1y/mRAUStrzNSJlKukcApmoIISvmSuZBYUq87klPQErTKO0K4kVGgvlwpyozsoXwvo0ldeoDE6z5Y/NzY0oyARwc1T41wIoNXi5mtX/bRiVYv5leS2hghZSG0sF4MTAMQYVHI4RVeGYEWfKZjdAjtBmyokSEJpNeN6hMx9neuZ04E6aKqNVYA8UG12St1lBCQgcvPRp+jG2uwXlfV0+9f2rUioHX3i+MmU5QjEvxlA5sqSGM/W9mKlNYrGxCwmPCxTWhPWROjumdCDpD8Uk5tMBLFRHkEGglkrsPnKFn6UWRoxg6IRAHVxQlAhMpigS1mejkyOfiarbZoePEiPwHEbJzQVQV0/zLt0b4hoGu8WZAB5ZlO/CCzUVRmicr6hIvC3ZwGx1F86mI5ipTXuLkIyXw/vAdCLYzArMwro0qLHn91JLbw1eSgZcH5J7AgQQOWbYaeiX7V70EDBQIUTBrYUESplfKOpYE6GQbgzypnMJqES6tYKSLksd2VA+90FmXJY0qYQWqSyZSQN61JB73520CIZO+QtPt31eaUjUu1hEDYutzIY0YIVpa5yiWTKIB1aQY6QS8OcrI1hMBzBbm/T6wjgA99qhWCq8UbF/wmc7UV0BdUQNX06QfVcu1XIQakm3AlYsyHzyk5/Ec57zHOzevRtCCLz3ve/17hMRXv3qV2N6ehqNRgPXX3897r33Xi/NiRMncNNNN2FwcBDDw8P4qZ/6KczOzp5XQ1YTPuEThUFpBtT07oNI+4bLZG8vrUir1vGwMAy1CnCRila+MF8THM5MYOt46TnB8gnBGERZCwKVuZlhnQY8r3vOfRfCgR+u3Aury6Bd4XZJKGacakK2Entzpzqr8++URibRJ1CHGhnngwEbDr+MbOQyRTtpQEVLVTb9Mu2GeVIxeirZbcBTmtRqnORI0EZRq2DrYBm1zougfFu8XQ9uq7xxJvQE4RKY/FrsVGsepKtA4NjOorykLyf7Kjh06AI0dh3wyuSCIhc2rBDtaT4A/p4W0yGcru/BTG0SJBIsVIaRS3VgqhPswvdGdowX74Ax8KITu5RufJ9pTONUYz9ymTpBz+Yv9IoZbMx3lGTYl6IobnYfFgR3KjK8UEDw/eiceUAy/4vQSdcGFgwGsudLZYRMppExAdi8p8Lf9rLTkLhhnRTT6f4X3rOshQF9ccKBiwRtWm92OhFBB5HUc0Waevh+gl6EbFae3ycACYmz1XG0kwZL6/dVJ3i+KPZD2N/FhbAp16+jzY+NNd9s6AfTXIl2xRyyu1V8ZFYsyMzNzeGqq67C61//+tL7/+2//Te87nWvwxvf+Ebceeed6Ovrww033ICFhQWb5qabbsJXvvIVfOQjH8H73/9+fPKTn8SLX/zic2/FqqLkxVNZNwnsmpiGTKpWmi8+r743Bsb0bpESRqDTqfNU+HOMWOiKKEc7TjzZdwF4tlC7InEE2ZgWeHj9kCDwdtgySJNUYbQKPhN1zxN7zmTjE5YyPxy3ajBHLqg0U0N1JPV+wAQBhFstEMu3PG6KCH6p59pIUan4auFQUOVElNjzrKGKIQqlYXM8sOTdMuJU3IrL+8onOsofokjknU+K1Bo+zpzIEmejsfHq4hFuWbqzZHqojkq1CULiCKJg75v7lpjdPwUHFnNfMayxsXFUa32W4dh+IeO0zMa6biVQ1l+uhLZ0To2mjsa01Gj0YbwRqNS5moKZ4wB4W6ZzLbx6AfJYRkQCZEyU9rK3lwtnq8p0tJQOdF/ZcinUXbT3fGVJYPJgZfPvgg1IgntnRMq0ZAVZL2gUC4hnH3K5hppa/qS6XozzQwVVhq+lqaXucNJwy7Ga30nQd5360UTSNT467t0q86LakUMAFnNpTydX0aSDBZhPuErLLd0ZpB/kQfQ68/9Ogra6x+nM9FAdtVRCVutWUFOpiiZqk7PbOKH6JZUJGkMTrGyBMjrlZ+dq0WvH02bBigWZZz/72fjd3/1d/MiP/EjhHhHhta99LX79138dz33uc3HllVfibW97Gx5++GGrufna176GD33oQ3jTm96Ea6+9Fs94xjPwJ3/yJ7jtttvw8MMPn3eDzhc+EWPEIEgFCEckAG+/YTiIpTQ7ZdwKuyBVV/oDJl9U/XMmDwi1GiZNlLRjlxJeTLmO4Ba2VeYoTGIvPLYJzhH43XDTRhGGyTICEYSID3uHtHCTCGB4/+VeH9TSBAcPX4RKc7gjYVjuikFKZUPOSCJN/XOyiiRLOCHFajVYGwRj7gAoSUpVyfYUbF3RolOnKj8RAtNHrvL6v93BD9/0f+4Jzw6ZHhfeMzCyRlFAC9Gsprj88qvQ3HXQplGBuMpJhTLXQQfXIzjtoIBbK8PF54BhuFzLw5m08l+x573YFpR9Bu1IUgASFx45jIOXPR2mxXOVcRAEZqvjnqBUznRIj2/myM/qwXfk5F479YylHK20Hyfr+zFfHemoUev1Hsw84oJukal0mIeFsSj07hvpRK6QHrBLhQUKW+HblhZXMTDa604a3XLfmZJ5o2nwcs0bXAlCugHm2tDeS23dAYH20gJaaVMv7AQSKSGE0bKoHUqVRICHsvDqJouCTJHyh6JescY8heMjPv3vq6W44knXom98vza5GkGkLE9Dr5wATCLBZZdfhf7RSZumN7RjuNS0fIuoZFbVR+aBBx7AsWPHcP3119trQ0NDuPbaa3HHHXcAAO644w4MDw/jmmuusWmuv/56SClx5513lua7uLiIM2fOeH9rCrNS7CCVQzNe/jv8rtxIVD7KIVPqwVs+mFTMkTA2SkjIXHwNXjciZZ5xMkeuHPukDM7pgXX2tdqTMh+CMvKoHCW8dB1a0uG32kZc1H6o3HgQpqTDfKPgB1s094TUq/6WOXfJlh8SJdMzziwDgGmv2NqbyOYLoKsGwZgCi/dUftPDdew5cAEq/aMgCLRE0rEfALDAgVK3D0yIMPUr1sPc7rb92rTXCjLkhDbO5axDLeeAXfL0NAxwwhXYdRfQS12XHfwkCswLwMWHDuDiw4dRrfd5aRcqQzjVOIB2UlfjRpS8CU8pEjjVhwsMoYQXfy6avjcRZs25Up1fotu1FMx78ue9rpKuEHnXw/4uajFMOiOc63eUZ/ZhJ0AWRSO1a8s5j5utx6E5kDez8xCQXonqktEQs3ElzO67MkEzaCcrnIIxzQXxHOqMqcWlRYhqv50rPAowtPC0d6SJvfsPozIwXtoKT3ulKuN/ojheWc2DTz1KjAauTHhjQQyNoMb7gdh3GxSQCDJJkaQ1dwo8FeldpzpKe3bU1sCqCjLHjh0DAExOTnrXJycn7b1jx45hYmLCu5+mKUZHR22aELfeeiuGhobs3759+1az2gHClYZPivaONDDQN4C9k0p9bLc7elFS3QQ0kx4iKaxE/fQCxQPZ/LpkcKaZoWpnpkgQGGqkGBufBpiJgBM2IkAkboCHAo0joM4PhzN1b6IyhgRo9bzRPOm4Ja6gYlrze+9IAwP9Q7ZvOXLeBqse7yRourSC7RIjypVpKekQC4Nnk7AVDgXMRlEc9YiAOgyxm1Sgt6yGgg5/QgqB4aFRyLQGAMhIYnp3cZwry4HTehia1l9LMTq2CyM1fcYQwfaT0QzpHtFld9KqcTrp92/hEEEYrR9vEKnnmRmDtdIyDDfmuVDuM04pJEabVVSaQ2g065Cp221WVvd6tYKB0YnCdc4g1DgPTHbs3Znt1jyarYmICwFkgSlNVBp+/b2KdZrvHi8qWOZ4FuGxJP6ig/kEFaR68tKRABLdNu9QV6v5EIWyTTbFaNuuwsdmc++gWgCFdwoAu4frEGmjcF0Yja3V+qhrOSREsHDqDDamrSYvWKDpebOwlKFR77PbyKU5OFf/SSGRSIGh4THIpIKyxacd76baZVJ1FxSFY9aSjtpupwkK4+twYZe/G5mkEFJiYrCGSv+oP+i6QJ3Onvhm802OLbFr6VWvehVOnz5t/x566KHeD50jfD+A4mqwXklw8SWXY9feC5FIASlTAALSRBENCBmgCaGWlDkzy9M6AMJi2l+IkDo+Oma3SxqY1RBB4OBlT7NX1Ydj2hmAREoc3LsHdPAZAIC5dIw10Kwbfa1D+Zhlgo993BDzsH4mbxbPlIfHDwroqyUwDslEum+PXoZdey/0SueE3tte2WFe2p1CLG0iBUSSoIUE1VqN51543rYVAuqYAePwCeufYzZmmTQd9iSpemjBJyRAnegeARjoa2Bo154ObSPN4ABzOKYQAgd2T+HgZdeylX5IgBWRH6grE8xQDZ3Bng23J7t66jYHJkpLikkJjwC0ul4zGG+Okc2LMwUjePTVUlx66ZU4cMl13vZSN9a6Dl5bZ+tIzuYJZ8wzJx+F40xqDBukUgBJog4tJM0UoQSDgclDql/NoCF7SEip8NoJo306/ELBZ8PNKRenxU/nNd0cgGiuMlomEyM0CFi/FgIaCTCy75KedSRoE4wOeAkA33jgfpw89i1Xhw5BL5vVFEO7L3D9ojO0wq4w2uuSNgWwNAi+GdPQRpbS1VxrI9okUavVAeTeYs4Ie7wMF6rCr01Ri1usc+f6C8Nk3PzT7SmvuynTtS0cUf51JmTrMBOVRGL3ngMQMu1aM2+Bkggt/HVMvqmwqgHxpqbUyauPPvoopqen7fVHH30UT3rSk2ya48ePe8+1222cOHHCPh+iVquhVutGddcQXeiQFAJHD+7B4ngTjcFRYGFWD1I2JIxGR9tWOXOZ6TsEWT+BJdFkWguTN/tBwFhfglODBzH/2LdgzDSiZOCbeWeKaVeHcKJxACQSuw/FqMbNzhx9ka2WebZCr/yASr1fpZdm5VPeL4UVmSYINmKsxtRgHacmj6D96Nd7Thh3n5FpQ6u7P6qrIHDxvmksjtQhG8PA8ZPFNKYEbXqwViMB//2w7eXMslQQZRxhUUyuSICYMABGPLu0yWrUdR3CfvMF8bBAxcQnBmroO3oZ6tViLAxbNmuYtwtG+ClDoUCR3GL5+0abEK0jePzYd4DsjNXqGQ1IuNpX52GVt4ObfdzqtoMYLv2twmrcJl7qLAh3L+CblqRUCxV1MruJjlsU5NUDfj16+XkY0/NoXxVLhy/BI999EJjX2XR+jXDiIns3kocq8E+0dmK3ZtjEn+Xp/DpzYds6wQv1y1xz4RbMcxLpMlb/7oDTMK3xs+uZhaunNZk7wcScZaTODVPlZJBo1mpaKJTK98vWvfOY8+E02bzdxrSIMs2WV1ngKJt/Zr4RC/tQfIQJbiUdIyVfwDFtuIYwsmeOjlpCnVIL6bKjULoZsaoamUOHDmFqagq33367vXbmzBnceeeduO666wAA1113HU6dOoW77rrLpvnoRz+KPM9x7bXXrmZ1zh1cDunBJhMp0BwcDa6yASmc+jIPB6oQyGUVgHYwZMzapDIEtSqBZt8AfKJsaFauJ60jSN5uJJGgSCxQWP3YzxIi3UKKvmafY6Rd+oWHybed4K/FdPMFKrUmuk17axYJDzj06tipLn6+aSK9YGQwjLTwmPYnAGBMggmPBqz7WhDZNF2HSa5jVxQISLnjJciseju0ipuWuvjlFCql+Y0QAv39A0ir9dJnwy2oSpthwxMXxksgc1uWyZslhUBf/yBEksLT5rlBZ8vqRZZ6zclOTxHU2JSszwTcUSO8z3jbpVBBBDORsG3KfI4RDJPhAes6+UWpu7oPGNNrNJqQlZp91tWQCxdF7YBS+AmPcbmCWNuEGS9FJ05/HPl15nVRixr3fjKSaPNjMkAYGhjEvt2+ewHPm7xfgaCs62mj2JbUyQnacFoUMuOUV5wLZMIeFivTGkBqN5ZMpJem2HYfe4YbGB4aQnVwwis3RLcxSkD5/OtCWz1tE/eR8ehpkF0paes9d5TlwJwR1zP5psCKNTKzs7O477777O8HHngAd999N0ZHR7F//3684hWvwO/+7u/iwgsvxKFDh/Abv/Eb2L17N374h38YAHDJJZfgWc96Fn7mZ34Gb3zjG9FqtfCyl70MP/7jP47du3evWsPOC8Y4KIx/xPIeG++v4hSAkZohgmoiSnOYnegm8budEqoKZSSQCyrut6mzgKq3ipPg+0SYI+AN8TQrMsEJgjfxXT0AJciY02zNrgJJjPQzW37oM0JCQuRmTVEyST0hrjt4zITlp10evL4wwifUSsmYhQpB2pg/RVge146EZkV1rVM7OpupVAAzsgeIdlzxC8dEnVBcJNSdYExY9rk8L9TMOJIbwar4CoU3DnicHiMQqTZIu2omXmbHurp0vdpjzjcyyCEhZGJ7hgC0KbGMgiBQq0jMmgMKlTINUqZoEzusk/WT0XAq8BjHPatXah5VCxTJ3p7b8Xa2pXOXQitmWf/K1NbHE5CN5lK4Me1O4mLztMNYBMxr1EIQYAUhEhJtpDoIoACEwMEDh1Cpl0SkZvn5bWV3mRAtqcc7Jv5Va/i8d8OdXHUamUCmCYBcm4ylo19qMAZFCK/4RjXBBRdeim8eP4PFM9/uVJ0VaTKsyRqidDyo/CT42CorVwgVbTyHULG5SqIPLwcEgSSRllVsBaxYkPn85z+Pf/2v/7X9fcsttwAAbr75Zrz1rW/FL//yL2Nubg4vfvGLcerUKTzjGc/Ahz70IdTrTvp8xzvegZe97GV45jOfCSklnve85+F1r3vdKjRndcCHS+kOhw4YblZxxRVPQiIFHj9ryISy+5rw+L6fhGOAUqgt2ol6yE0e9t1nSLy++q5WoxOcQ1hh+6fVZJCzATMVaSdBIYdAmqRetUKQLi/LBYjarjjLFHsTpI4QxAQw9khXJ9vyy873qHymGpWzFFCRPIUI+tEJbTZNFw1KbgW+MI16FzU2Cy0h7yyf2Dq6PPwcjR9EWVnd1cp+OUZdH2717uR8CmgGJ8q34XKB1/kfCG9Lq5dfiZCWSDd+Ta5K81H+svcMNzAzdQTtY18FIJAxAc8gg/Tm1L7RAYw0LsWDjz4BnFbMSkhzCKsM5bOAocJpWUr8onjTROl7ss1i7VOfOYCZJWB+sQUkbJcL6fpY531RmGrGAd/ujsn5DjcjNhX7kL+XRq2OvDEKOj1jG5sJgYx0UEsjMHUzz5ATQ9WblF6xSaLC6lNBK1eep5PV3EYHfh3hfZHod1c8Cytn84ObeTs3pYwOm2/dnu3QFtJCfWlZ+rmOvnZqTuVC4onGQQicQe4drFmoZMdbBKm0lnrRtBWwYkHmX/2rf9V1b7kQAr/927+N3/7t3+6YZnR0FO985ztXWvQ6waw6XBs7EaMyKEcyAEIFACQ49SUFnvgWegBnIsVidRxttNCf9vkJwJmYYHeEXhH7jNYPw6+JVPjarJBhPm0BdoXgCmL+EJ38AyAAmSDPpT9GjE9OaB5ireu1LTAvcb3gK5GVoJpK7JmaxrfvPwPkSwWC5a0Q9W4BKZzgEGofBJTGLTyk0GyrNHnKAoEXmJiYxkh/I7yMTuaVSiIxOjaGY2eOo5O9HPB5mRs3PZhMIRPzIYDM+WW5V1usI4nUf01+R7n8wL+zrd5azCju4FPYO9LAzIlJLJ3xdzh2okhCCFSqDbRM/iSRBPvaMxsBW+UiE4l6ow/AE+q6OU3caB1Iz2VRslCwZxgJraDo3N/d7gXx6uzH3EILGVJQ3i4wbSkqOh5KkJeuj9qJYgRIv8dCX6KgpoAQqFSraKcVy6dJO11kIvU0Nl1hBFnAjl9ek0QA+6anMJcuoNo3BMzPl2TBy3DfzTZrIioEtVQ+MwmSpK5oe27Kl2pGCz+cv4cSfmd3/3naZF/A7oSigO/y6vRsrikRUORHxp9IQPVNZrSJ5wgr4JUsRjYrtsSupXVFsNriatQVQ/NtY9LJIRAGB7EDRUvAi+kgFtKBohOlACYG6pCVGkZramVl7d+co5esivihjIAhdORClutB3xh32319JabZpWN8R8oJllLbK2Jqzo0yk8vlW4YuxN7l0vH5Tk93e2tjQ/1oThwoptFbQ8xJtzZcupSeQKA+yabpZRNXFVVpxvqrSKpNDNcE9u8/iAEdsMppr7rTobGBftSGp5Rw1I35eD9NvsslTI7BVKV09nz2fCLMrj2FhXQQc7Xi9uewRoaxWgYseaRcAX0eZqn2qJJI9I/wMpbZHmuyQCDkK2ffcI4YGIa4a6BmD4ktrvZdaygnW5Zi2D1IbJkiJBhPBFiHtlaWYwnMZGAFCADSD8xoInmb7yprZ9LrsLIpDD5jTnNnGEkYH5McEjlJz2G61zvxKQvfXq76emSgib2HLw0OQeyeUx60qTj3JZYoQVqpaHqZwz9g1fRRcbFRBi7AUvAJAKP1lQoA3QVeu9gLpzXb7TraV0VSHwBggq8W87RzrAR8MeGE962hkYmCTAk8lfkqvEcznnIKyBrzGXC2a/8231rXqCa46vIrcOCSq4PaGmJqBBsRMCy3NZFL80oY4kREwHiq++d3qE8eldg/i8RNNikTECTyLNS+EEywuRArk/pLHCg7MudzW03khggIF5LcWwXxAcLSFEpjhJG/n3olwZWXXYpD3nv0s+9ddy3cFbqis8DHQgH1hhG6Bpu45LKrUOsb9GpFAA5Nj0MmiVG4YTEdACUVK+yGLIUfieHV04uW6rQePSoIQGBg90XLbRGgV+zVitu1ND1UR9o3wgIyIniTBEiBoUYFV155jY54HBqy+OqHrNRAQGHhUmxDOfjs4fMjI2EFKnj1EEiS1H43/xpBwdIRqb/n2XKq4eUvNJ0iKxQqc1eb1WM5czkTNVgJLtQulJraiguncMobJ3Gy70KikZp7at4tIUW9VrWLU3vAqoB6ltwCkPsWdl1mEW+zalOjQjhwtHxuq/oEuTD66fJh6XV7DA0vbhpQ9a8kEgcPHEbSGDRKsxXCtUMK/zT5zY4oyIRgjB2A9V9ZcTZw/M6o6dQKoMNE5fFW2JAOCUSSpEh0YDDHDDTLEPovYPbE2uWKYEM0IB7KBOaYiSWEQlgH1lInRQAiraANgVybkXiwLWWwO8eJUeBtbJKd11xj/RQ4pkrdTqVp0n0i+YoWNk3oFFhWeW5a4u/RpRKFb6W5WcJXJPDuaWHpndGkdTYJdqk3gEqtUXpXppUiUw+22HcUqJjWQRHMYJt0h7YBPhMzB4D2hK7I7skpjO8+hKEjT8PIrt3o23clZFoD6WMRfHMqgZjwlVbSku3mRebt5kZnfQw3Exc0PBQyEMXIAH1Yq/3uBKZcKBM29xby81DfJXuG33PjowyK6UshnFMqjPJSaB+jYr+EsAs6WcGJkStwpr5Xx9I6twkcjjORqnPvpgYq2Lv3IA4cVkKuEQqn9bs3lVeCPR9zEt1nXhmKAogECnO7U739606a5rU4MD6A2uAuCKnGetmZbebVySSBTFRss/K29G5fDtiXVb703HyIgkwAYYyNBucRppkctwskbpZG3dZaDl6P5RbCnmEV9/wxrMlJsD/YXQwmm/BkZN50suldfuEgJwKqlRQVmWB4cKikrp297jtNFyM4ubSsvvaaLD7D0q4cvkYrh2+XLti4Sw+Sg+srgEUc7YEOIfnL0DXWSCGt0hQs20dGt6m7ZjlU/ZtxVV4HAehggnwMKiFelSNRr1VhVta9nEZXikQI7N53GGmlhsbACIYv+VdIq/WiP1iHctz7LGpPF9JBAAJZUvUe6/TOjVDcGZLn4guhNr6HGwAEaTUyZytjyEWKueoYM4Ho/jYbApgJzN0twtAFMvGwmE+I2oqdIEfqR3fu0ObpoQbSSgUDVYF20kDGDnQ8N3Cdn0B9eAoEgVQQpqambViMHAIVCezedwRppQajGSa+QDFVt1pnlWengSbA/foERGq0TJ3nrlt4ltAKoVahfVUVWXh6yAno9UqC3bv3AUmlQ97Fa75WvXO68BlTv0Qm2ln4vFaJ64ZVDYi3neAx83N4l3z4Sz0pSs0PUPcQ7Nyw6Zymuhx6rlnHUv1wwRRi8+WTVgCZy1+pjbUJzF9mW0Go22QkCOzqr2H00FN9+7boTBDQ9U7Y0HN+uJibNX8Eq2kiG6jLMwl69nqnWbLvtiSYlcfQmbN0LxjnvV7177qjjveL43/npF1cLpzgw1buXBAQTBNjBDahmEcOgYnhATQnj+Db3/wayt3CGQK/q5WvpHmdpAswCM3MMncWkVVm6jFTtjV8Ke3Hqep+1HDKTihjNuuGbjSBmyw8Dal9n+5aDoGKrt9iOojFyiByWWF5uTYozRMzhYF9DSpDtlO0f5yQyGDIjkCLjHaow7EfDI1qgquueDLOLmW4/zsPq1wCITIcns1qglMQaBY4FV+0KednUz6vgzkAso+7FVG5iFK24aB7CAdnLL/s6MU48Y0ToJmHeo7EMtMSNO1tViSOPPlpJU+59WjZ7kd7mngHmCeWtUCCDtC4/2IMj3faRr+5EAWZApjTofe5MmQZgShTBEarvwsTxZ5/o00UsBTTJjEEvZRJCjc8wX4Ty9v8NoSnXR9BAiCTVZgTnm0WJf4VztEMnv24PB6Mcp4rddIjs+1IFEy83SYX3/nj2hbsGlpdGcfG+xE6sF8uEvXblsMJr94+3GnlLcxKOBSGytKWfy9P13l8ClEeX7fjrrkOUAJYmV6l0y/zYNE0qtKGdRbK1MGEHndOTifVOK/f8udmJ+WV1MzZCQViGc+pq2FAyXbSh5xmQBlzZO7Q3yXrDPc7ePkdd/SR6QPVX0mSqoUJioyaggIpa5sXDEc/pK5zeYtdvR2dyCDRrFYgmqOYO/WoFsI7jzEhJaRk+qRgkUPC743JwToqhy9AX7V87iQCOHLhxZBLZ/GdmUw7JjsxeM9wA839RzA44BiyGZ4mlQqhAFBZzANCyRzgDRJsJViknx0eCn4JbbLWRuES4dc7eJg9fmCsiUHaj9FRP9AnUNxFae92iWWm6s/as4YLn9VENC0FCF9bfo6mpUwP/gwJ0koVykdGdJkUgXBgVcm9BSq79ZFF8Qy3+hrSsVQbwZnabszWJouMxTDdwGRg1NoFv5tCPUTJFmPWpA62EF9wLEd3W+3qDGPyvrjW5uRH9nUqDkKjkqBRr6El6+hrlPuSqCyFPutkBfXoAEv4uiT0HDx1XUv4dOcyhO8LxAr36xhohbiIWfYsd2o3mg0pBHIhkFPWVeNXqMSK0EnvActEytP5grTiW6reU+Ojuq4sN/J1HcvfJQb7tqyWhg1IbvIui5WyJBvoazTddfaylcOqmtNZnhdiFHk+dhTec/PTRAV2/jACbaTYt3saIxPT7IllwmqYOvdRIgV2jY6j2T/i3xCqskIAwwMDGBybtD5OvAZpIrFrYgK1Rn+xvbp/hptVDAyNY7S2Mjpi6j1UFRBCze3l7XAtb2/XMW9Jjj8eK4nExORupJWal/NytLqd0FMbugkRNTJlOFd7EkOWq3gSbSSoVqvaj0IWpWGC4sMy4XSrZ+mMRQXf9G9vFKtVj/HTaMsaSCxawmSqYVfDRogiP4+yLYf2t25vmdYhlxUkANpS2ZGb1dBBs9cENvXxtUu9hZ/lIVz5+6tPHdPE05IJ68GQSIEL9+9Fvne60HZnxhMQMkGS9p5uovBmO6PbeVflD6CHX4Zfj94aD5+hqhW69vUyY4mtjgX0kKJAO6N9ZPKc0KwmkGmKrC1XYIpbTprytkipyw/aBIAdBVEscNdQP3btuwinj8/ap4RmrrxDumrWzLsO0uT6/B/PhMS0kGVC14VXfa9ayMw9hlAfQ2xhnWvJJAucc0VZRVgZXHDlgsDeiTEMjO/G3JkFXzvRE6zkc1SdEvz3qsJJSFST7vNsoF7BMQAVPb4SKXDRoYMADto0TiAoh1UkCYFDR6+CSCsFOhJisJ7iOIBasJNN9CoMzNF6mVqSc+tSvsDYWoiCTAiz4joPJ18AMLuPTTTfi/bvwcJIDc3BsY7PeFua9We3AekOSjN8Q/8WwrPNuxUewR6YxyJEmlWXhCg/rI+Kg1upcBmxJHWeUJk6c67vAGqnvoOz6TAOHziIoZGwD3zC2w3Op8BoDKjjiq5XjuXbwXOQEVzMihGAFL6PTNgfZQJcmgi9HX1lgnFPjQxbmXfRMxTS51iZ7orYv8vFIlUwNLILp7rUg+tsFANVQj4RoV5JcNGRC5AvzC6zfl5OK4YUKtihkT+OXnhhWSL2o2SXkWEATKNBekHQOzosCrSGKHhPnj2B9Bw3WjdVJymTQswPK/iw/Ew7M5HwA1GQSAESnUyf2nSlhU5ugiie77T8sU7B54pQYr66YM8uzDUJg6OdYxkBwFCjgouPXg5Jra7pliv0e8IvqKjWWka5ZrdZ1+Ei9M7XnrGJFP8qow7L6+utZ6iJgkwApp+AqNSRtxbOKz9zIF2tmqI2Vn66N5GLRWJKZ3fL6yncQLUOlnDmgDLbvDE5ma3CwmoaHPHRp0PZupQdVuf7aLhG5Ca0dVhuWsN8dRQCEkMj4yWaic6zt5POiZuuO6+Elql9KEkmWMj13BxXYMoWAmIZFCGRAiKpFELg98Qy8hY9GUaordFjepkqHLu7JaiL93gigXb4oEBzYBynznYaty7mjnOY1jEySMU26WvUgUb5gZZrAaFjH1Uk0M8PFe1iBuYg7w4TjrkqpCSHTgJ4LhIknlC0nPfNtSp+ZHIThZinzPQuJFOGCiOgzSOBNjc01xCjFeG6ZSXjnOx45Fqw5T8vAttnJZEYHi+nsSEG+vt7J1KldOz20PQqipK6n5MQXcvt7iuo0/SgDfbVnZNcrx6aHt4aDr4cW0/0WhcIDDaraI7tOecchpsVABJDtV7RKVV5lTSB9zr0/DERTzvzH66e1gSMfB8Zp4LlWhhhg3WZs0fULQlIsEBROg/PE1WpcJu1GquHDjBVsqoT/N9A0Blpqu0EA9UuMy9w9i0e3Fj+2PJMDsUfZpVrkMMIjjxd55WXgRQCSZoig0R7GQTaMLdeh1060bJzOsVQiufVrMRnw4zAjne1MMxzNONKakGo4Y0Rl6892BCwu5Y6nGBRWitVFiuzB7q9KaOyz1kiX4jwEqO4Ld0wMMHmGvQusS6Orx30rkVHbW1WID+1Y6RFbSlHFoj6BIEsmKfKTyktmiudTUnH1HKLHH42kZd7D02G79Qe7FpaJktaqI0DAM5WO2u4zweer1ZXgfbcNIFhLsuJ8WTMvd38EA2ckBheL1/4DdaVEDtSA/ZccNVyqr2pEDUyJfAjoJ7bQB3vr6F+9ArUO3jb27L05/6xJgblxXjo+OPA7DFXbg9ubFZeGfPj6KTSVqpgvdLmJEPNJAAmlo0hVM6OzjUQF0yNYL7vQvQNjKj7pExLIKhTUwvQdSmp01h/DY1Lr0Clx+Rk+iDvs4yQF8pdIUxkX7MFvdO5P8uBSCpoUbKyPEj0JOjmjJdytwal7wiRo7eQ5BdSEpi2y+OciV8wPYb5fmHHiHqUreShNAVu549EItbOzbAgkHDIBDkph+Py51b+/p2Q1kEjw8y6vvMtgUiqBYGW7ExMHbdDqVfwOVu6fT4N6pHpMPZm4ZNIAcgUGUlUdDA3pegVOr1ESuSFxAck0sCBfaUnzhewTHPOQn0CZxsHkKVlgvI6wwp/5YJp78eVNj3rMrmMk3nor1dIZ4ReS+uXh10DNTSPXoZ69dxOzN5oREGmFEaHUAx8tRL091Bf8pOOpRDoGxyEePykR4a6LeQNkSR2Uo0iTP4WaE7EjZbHls9XVHoCJNIQOXh5GCRSeCp4IujDqTs4aApYc0LZaqDZ7Cs+46rkiL72WxmuS7QbQ8DcLLpy1mWgGEfGtbVeSTCxaxcWaQZJteHb9JdJsKVMlHlxORoZTdC6WCT8dF3yKmMoJDpvBw4xPVQH9TcwuXtfcIcLkCxvdk+iOEZUvVWaMPDi7uE68if6MDW9e1l1c2Uu/913VdsLwWaQSU/632BRUHo6sS+okzVLdl9ll4U7oDxTp2wnovMR6B3a5Jmb9efu4TroRD92T02x59RRB/yCFCoeS1sk6Kv4zvg59Anh2vRn+mq0UUW/9nfztZW9QXYHozineQXofl4PdGhT74CRKy2mc2b2vYrzoXjlgTsBNXb6+wfOOeeNRhRkemIVR2oHFHfN6CtakukZJpr82A8qyBj7rTJytFV/9226jgAKIUB25dVb5UkgeyRBaeyC81ilmTgfPIpmLZHoG5vG0tnv6ksdA8GfY6mOIUyPjQBj6tyUzNoelLp5OSNjuFnBKaSY7l9mKH2T/zLQlZGXaWuoaJbrhL5aigsvedKy0obo6eBKgGD916ymuOiSK8+prNWANIJ7F98GDpVMjff+WopTEKjXG2hZ4cBpPXuOfVZmTgTKM30mm0Sb6yF7+K14WQphzSHNaooLj7q+HWlWcAoJyMvdaGQk2pSgWvFX5QSBNiVoLbVslQfrKY5cVjxPqJPpogx89x9v23JghcA1Js89sxfs4zzoXOgrVFaONS8uc9fSuQaJ3IqIgkwZhIoImYtVUJX2QO9w1svMx8vGnxTE/lRafwVpy9H271RKZPBt1139MTRjyroIPXb9tQJ1J2AcZhO4YwgEEgmILhqOWuqHZe8G3r+ptaN0V8uS0Ycsg4qO99cwcPmTkHY5e6Us/17oGlYf5Sa3ZdLA7uWWCN3FMjqNafsPgPPf5knBZ6+03dqe6Z0encrodG1qqI7hS6/A6SXg4e/cr+6biNlAiQ+JgusLIM+0aEQA5W1lPkgSYEmVpuam0bCSJ9SX5mt8uEruj/XX8Pj0RVh65CvBcwLIc7SQohqERyAAmZDIsxZMyLyK7NTrK3mnZM8u8wpb/tNrhh5+u94Y994x9VSklZclumtYjTabOp7XxxL2pAvbD1GQCbB/rIkn+gcxtXsPvn26tU5vXuh/wwGoiX4HXwi3a0kn0GnyHrslQEZFqdZDBFjbdA4lPLThmNTynCm1Gr5kG7J1eDyHvjQT2BDvkWYFo5N7cfLRBztmN9JXxeK+Q0hbMysqa6Bewd69B0Azj/ZMu5Km1OrL3wXQ6UwuP436p6MgUMI8iXKmZzp3iOA7H2aGf3YT/p0Zp6vXSvc62MdW8nxvLdHyn/Ov1Zt9mM0X2fWipjOEFAIyrWIJFbT0QdRKI0P6cFnfNOzyIRb9tvOioVt7k0oNfASb2D4EQgsp0mrodyKREaHdbuPwSAOV2TFMTOzqWPayFitehzOhoEf0a/eEogzrw5jLSyF2SxQmwvLBWu/FXfLSaDk7B5a1gOoqRK9wMbkVEAWZAM1qioHJQ6j3N4DTT6yt1N9lZVVp9GGx2gTaneNpmOitlqyxgesPYmEFDfWc+keysPvGodHEvRHslF11vTP6aykqtQZq7dnOk4SwgrgMDlIKvT1WYe+hi5FWgwi6wYSVQmD35CSAyWWU4DvATo6NAGMjXZ9Yc7VtDxOQZWldq1CmXViGqWMZcEahMECiEqY7huVn42+4nmIeEruGOvtHrS56CDKdz6n2+mw5gmYuEqh4ROi6g2ffWD++/nAdIzWtkckJyDO1y0ibu1Td1DwtaFT1/YlmQbw0jeoICtI0qgmqtQawlNoTxaeH6jglU0hqI6cEY4MDqFcSe6p0OZY/vgqH1OJczgJbm3noxMblaDdWpw69FozWxL4cexp1GntrSLc2EFGQ6YFzDbR1vhBCYvjyZ+HkF98PtJY6pOGyvLONU0G96BMMy7y1HloF75JAngGQqKUSC23haWq69UMiBS49fBB5tqfDeULn3odSCHWgJm2eVYQlvKss5S5Hxewl7sGowl7vZvZZLfQuQ7VvuJli8qqnQCbLW4F3yst9du4Mc7BnvUtRoX4olVKvjv22dNIE+KkklCDTva+b1RRXPekaO5CqqQRRpoQq4TN4T4BSFhlcfuWTVGnhziFbqeWZGAhqDl9y+ACy1hQSbQZtVlNcdcVVaqgRnee76lYJJ1RtNja7Gga0XliOG0HF7gbtTgfVUF/h7sRtgCjIdMMy9vavSjHBb+dPIoC0BnQJQOmUzH7ETSlDjYzw7kOf2WHMNqmQ2L9rGCfzSQyMTuH0dx72GHUv5iqTpCehO9fJJfWhfqKzN+Y55YsOZz91Arebr6WA23tl1nvXkpcfAYJW6QwVM65sNMKgrl0q5ZnEclJnkJ0Pljk+9402UW/vw8hA512EGQRSlks1lTi47wCWTldRqYWmwR76OEY3emnuEhZOf6hRwYFDFyFpzWHp4VNeeRzKZwWoVDsFDexNt6igTVPjKg3yTCsr2467fNmeO8trumQXV71hNL/nGYB9WejUptDh2tKHc1zh9BJkDuzdh6XTKSr1ZWgxgzOZHLangBMFmR5YextsL6bV7Z5wdlomt+SdtkGzslywrhwZEtTSBI1qgsa+w5hfyiAKkYbPQ6uiHfrONQeZJGiTQBK8DbseX/e5aTQAG3u8WmdziHHPCBng6piWLAoyjGbePU2I51eHqaE6TtebGMTZQmDhMlQSid3TnYNbqi6RIGTe9eH+BtB/2Ls20l/DnBAYHR4t5mPni3M2X4k/ghACu0ZHAIzg2MP/UpKzQZc8jQPxMvp4LWjbSvMcqqdYgF6wtedWaH1eu4nvtrL31moVx/u51avXAqZsPHbMS3SoxTb19o2CTDeUxoxYzeylPpnWx4psr2Q+WD4ldM7XyKi8hVSEtg2JvrpbibmVs4TkW47PE+fqmpfIBEsQOoSXWemylc+5xpPQK+fqClXmazUmjFp4OX29gl297Noq2fK7mbRE5+jB0t6T51WTWprgiksvB4Fw/+PzON+xaUxPy3mv4/01jD75qR1MqKpvTHyT8z98j5nOmPmBuN2prA7s307gIvhqmUjV9uCVtFlgtFnBxFVX496HHwc9fqKjg2pHrLlKpoMDLtPOFi6eI1ZjfvqO8C6/RjVRQRW3qckpCjI90PlgvtUroTu6lc5t6S4dj8KbSEcMLzp0CGdgiKG6tn+0icF8P0bH3C4Ed9Kqqt/5amRULuf+fJJIHRk3Y0zSfJ67rufw1ChOp4vLPp+F9TDKD5xcHajQ773bVPTgUCiEfRfmLa7uSHamNmMaQBeVthqLR/btwdn+BI3BokZjRWXL8xOG/HoZwWN5TLRMiLEnE6vKAcB5jRDTtun+BLVd+7C0cHZ5AscyF1/d4tCcD5Zv7nSbD5IktdqPlfhwrY9yoRv9Dxcdqk/byTlEG15lNwYTDdqgWU1x5PCFoIUzq1bGZsLm8aDcpHBMf43yL5m4pH0IesIyklyrEk1e7rVOD9VRb/Rhqr+GwbFJl79e5VVTiYmpvUgrbvIJs0IlIM/z8xbmVr4TwYcxoa324quWJpiY2ltyiGUX5EogWIsx4dTZy8t9ucJho5JgcGgYQ1WBZFVDuvPzk71YuB2faNYqGJ/at7pbQOn85ujUYB2NvgFMNM/fmVX5eSw/jlEn1Mb2Q1abGN99BCO7fLPYsgSVHnNuNTUJPs49r5UudlZ6qvxKMTLYh2YK9HcUuo12WH2eGTiChcow5irjKy5rtL+BeiIwPDRyrtX1UDZGhvr7MDw+vSr5bzZEjUxPrLEqjgIzgbfVc5mlszz4SgdQYfYvv+yKMLneCdFpmyxYpMlVXMufs7NvDyK3TqHKhRDaDrHGOrpl9lOvraEu7qHA4T3TwJ51IGJCLMNHZvXLPB9UU4nLLrlsVaqi5go34Z4bhvdfjuH9l3cso7vvRnfTkwJz9hUbyAZ4BHLCijQya43p0SFMjz69c4KAMOZJDfOVEVDJwbm9MDncj8kndylrpaDzX0BuJUSNTE+Icwl/smx0pDfaT8WkKTch+HmYVW6+HGdLMoWU5SsC84REeh4j5XxX36n24ynDevuuXbRvGrXhKaz2OSselp2vKOXhvZwUzwe9Tx5fe0FvM8II/wThdnatYj+oOWkWIT0OFF1ejjhTm0YraeJs5fzMfADYoZTLbDMVF0hlDuo9Mll+easMpbTWGhnzvldBE7ea2By1WB9EQaYLJgcbaKYCY7uW50NxbigzLXW9ze45PxG+Cux9MKDeRdTxZF4AUiIHMFaXaDaa2DuxcnVpWOa5Sh2JFHrV6K/2N2L1Vkkkav2ro/4tQ4/wMBa7hvrQlwqMjU10ymkdCJkIDEndj01YS2xUuSGIigc3rlrewWdn9Ah3r6u1lPRhtjaBXJ7nNngAw80qhsemMNbozVLMAiCsI0FsQS1CUN/NsCvInmO2c9h7NC11wXBfDcNPWkV1XwnO25nY2ImIs5NeMAyogyCjP3MI1FLg0suuOp8anjc5T6WASFK02/ykbqaJWmfit5IYLudaQq+V6Wh/A6MdxmaizV/NRqc4I6uLwi67LceMVgHaR430IgBYS562DI1rlzSjfVWcBAAWe+p8kUiBIwf2A9i/7GeU4OKbYVayq2Yz7MA5/51pqwtPiE42V93WElGQ2UQIz5BZkYjDzEzLm9+dY1w4p1MJdDj7Y6XIsVyHnyISKSBkBVnJCoP7JKwv1qrM89dqHNzVj131i9DXP7RKdSpH2Tjr5nu1ltgMC2HAN/tsmCBD3R3jR5pVXHLplfj28VOgJ+5Zc7G8HIG7sQi1e8vMYoN4tavpZhl5Oxs7R/e0SWHjQnRL02GuuEMjnZkoX+bWnl7iydTYCIYbKQZHOpku1g+J1shkkKCy3VzrrZEJo9tuMkghMDA42jHWyWqhdEW8ObtkzSHAhIdViyNTLAPovltneqgBkVQ63jfoazaRdIwMvLYwho9wqCw37IDLZ+MRzoHNUCcFsaOY+05q66ZE+cAvTuby+a01N8xxd7kail7C0+hAAxdc9lRUVnByc0cIXbNznOX1SoK01gQ67AbYQHe/NcHmIYZFhK0u36GznTRkK4PPjFfR2RfwQt+P1MrzHmzWMLT36DIzlRs82ELBhVboI7MJ3jnrP3dm0sbVS2ham+8wp/toWtpg9KIjy54UZCaRRGUZ56NsyGQ7R82JOpTyAFrzo55gZVeoG2IrF+e1k6tzthuj6F8xSispuzqR7wwIZlpbm37Yv2sYo7u7h6pfdmC686/OeSDQZqxwHq99sNLl1CH8vdE1MtgSVGTVEAWZDUfZ9m7fcXdZQ1IAA3suAc2fwtC+S3smX88JZ9pwPiUmUiDpG/TyRIdfa43dw3UkZwYxOb139TMP4gBtbpTtuNuoum9sn5nVeAaJ6aE6Fvr2oSG6nPZ6HqhUqoXDHbcFaHM48C4HoT+j+rZ56k6iPDTDdkUUZDYYXEhJpUCtVgNJoFKt9RyIzllX5VLrG8Suq25YcbnrArH6W3M3as3RrKY4dEFvYfFcQdjawaw2E0FfL+Q5gbI22kjQbNYxvgZb9K0ZZhnO1MvXyKz/u6pXElSqdchEQKZOe6zG/fLVnBvo68vqsNE1KIKIIDZZcMG1RhRkNhxuq60QAhftm0Z7cgSVWgOtrJdLLlsNrHDQrue2wbVmbGKNnVrXH1uDAPmnHZHlLKt6/EAP9NUSnAKQbjDRbmU58vYiWpSiWm2sfgFiZYL7chjsRjE6KQQuObQPWWsCabWOnEj7/6xt8NG1AH8n6znue2EzCHnriSjIbDh8Ni+EQKXW8O53w0q1EnKjHNJ2lsn2PLGJSZA/WPlWGm0WWN+6TwzUIfYfRl9vt7A1RU4AtVvIIJGk5x9grhtWdyptkKu8EJ55TB3CurLxsxlISrEOm2XubpZ6rA+iILOBGOurYkYITIx1DxGuNit0nrYEYLlLmfH+Gh5vDqA/m1l2PVcLaza1tpEKdbBZx4IUGBxa2xgwqwvX/+sdICyRAlMTGx8iYLSviseag+jLTm+KlflmYPIrRZdTUzqk3/h5X7aFfDOAILaMv9FqIAoyG4iRviqGnvzU7qaXXn4yMGrE5RHPaipxxdFLbCyH9cByw+6vCOTI2HaartMjfZgceuqax4A5XxTGDxW+7ChUU4nLjx5d03mldtbSMgWlZZiWIJBvkngjwpy9tNXiyBT6eRPUSm/T30FyTBRkNhrLY1jlFs9zPXdISLkhzH+ZsfqWBS78bYaV2Wpiswsx3bCTVoEh1nJeqQXLWuS+CRgvnGlpJc6+m2MJU7JzbxN06SaowrpiMwjjEV0wX9+FVtJAu1puanCRgTfDpO6GtXD5NQ6mm73tOwg7jYKuN1ZwMnrPFFJuqte18tOvNzrwXLEOGy3I8wM5dxJVjBqZTY75+jSoNoN6tb9LKtoSo3atVipboOnbCu6wzmI8n83EGLcvuo/4SqIWNs3KMmaGEBuuQRCA8pZewUyuperAy/4NcvLur6UQMoWktn9jk0gQZQdybmdEQWYTQ6D3ThDnJ7IJZk8HKB+ZNazhBhxSGMFNHd5Wpo2oyo5Cr0X/3pEmhuQF6O/r653ZJpA8+enpyzUt7R5uoP+CC9FX25jAgAP1Ci666BLIbGFDyu+O9fSA3ByIgswWQa9V01bwE1ntybUV2rxzYA4CjO9kLSA8bVf3Pk6kwPDI+LLy3QwMTwqB8ZFBnJoVaA4OL+uZRAqMDI+tbcV6YKC/D4AvLG6G/lTYWfMwCjJbAJ239Akte4utcb7NmtmPt0Dbtw10X0ffpI3B5uGUq4rJkUFMjjx9o6ux5cF1MTspsm/UyW8R9JJTNvOgXQujkjD7zhEtS5sBpAWbbcpnNxVW16F089KNrYmN7U93tMnOeq9RI7PJIbodGym4ynnzD9zV3H5t9mthS+zY2r7gm+DdvxFridUc7dEUuLrY6BO565UEE7t2YSE/jWQtjsrYpIiCzCbGcrQsbgfJJiZIaxEQz4KiiWODULb4i4xxbcCH+Kae6xEbjumxEWDsqRtdjXVFVMpvAXQWArbWbhGxuioZmDZv/pZvV5QEA9uAWkREROxsREFmK6BHrAcVM2DzsvMuxrFVyn/ztn37I+z7+C7WFqsbqCQKnquL2J8bgyjIbAV0dpFhhw9vgVe5BjwuEo4NgO10AYjwDURBZishzp+I7YAtwP12NnrZw7eEjwzW9hiFjQ4LHuF0bjsnluh6Q5R8O39EQWZ1QdgcZy3tNERn3+2CTczMN2/NIs4fwlo7hvobmNw1tdEV2qZw3DFuv968iM7uG4OokdkC6Cbgbx2NzFr4sphAMpu77dsTVIhtND48jMGxyY2pTsQ5ISoPIrYDoiCzhSGsaEDINzMvX7tDlrZMDJ1tiYIAGd/D+iBqZDYrTHSriPVFFGQ2MbaXomF19THeyTPbqp82PzihjjvG1glxkG8RxPe0EYiCzJZA78khN/EEEmvh6BsDhG04Cv4A8T2sKUg7Va/uuWrxWImIrY8oyGwB9CI0BGzqA4cSqQSZZJX5HEU97gagy0uMcsyaYS3EjUqi5mVfNb641UPsy41A3LW0JVA+ObbKAni4WcEFFxxFo7pWm3O3SEdsM3hmJSVNb1RVdhZWaeLvHWliSF6A/r6+VckvAgAE0s27pty2iILMJsayyJXQ6TaxVCOFwPDw8Jrlv4mbvq0RTXrridXnjokUGB4ZX/V8dyp2D9exdLyGyeGBja7KjkMUZLYBlIVlhy4DaHVDtkesDPEww/XEjp7pmx7NaopLL3/yRldjRyLOiYgtCaHDZyqLRmSg6w8qfItvYX0Qg65FRPiIgswWwHLc/FZ3J8Pmh7/td2e1fdMivoa1R4x/HxFRQBRktjQIhO4nY29n5IUDCyM2CvFNrDFExx8RETseqy7I/OZv/iaEEN7f0aNH7f2FhQW89KUvxdjYGPr7+/G85z0Pjz766GpXY1vA+Bwsi0ls4u3XEdsL1pS0w7SAG41oUoqIKMeacL/LLrsMjzzyiP379Kc/be/9wi/8Av7u7/4O7373u/GJT3wCDz/8MH70R390Laqx7SGEW5vtZEfLndz2jYbf81GYXkvYuS5jP0dEcKzJrqU0TTE1VTwF9/Tp0/iLv/gLvPOd78S/+Tf/BgDwlre8BZdccgk+85nP4OlPf/paVGfLYzmHRu5sREFm3REHXkRExCbBmoj29957L3bv3o3Dhw/jpptuwoMPPggAuOuuu9BqtXD99dfbtEePHsX+/ftxxx13dMxvcXERZ86c8f52FpbBqHeyVmInt31TIb6HtULs2YiIzlh1Qebaa6/FW9/6VnzoQx/CG97wBjzwwAP4vu/7PszMzODYsWOoVquF4GiTk5M4duxYxzxvvfVWDA0N2b99+/atdrW3PHbc4X3R+XHDEJUxG4PoIxMRUY5VNy09+9nPtt+vvPJKXHvttThw4ADe9a53odFonFOer3rVq3DLLbfY32fOnNlRwkwnxmGFl3zdqrKJQADpQ/Q2uioRCtH5d10QfcIiInysudfY8PAwLrroItx3332YmprC0tISTp065aV59NFHS31qDGq1GgYHB72/iBA7l7hFwr4RCCMqU7TwRUREbAjWXJCZnZ3FN7/5TUxPT+Pqq69GpVLB7bffbu/fc889ePDBB3HdddetdVW2MHpziMhEIjYecRCuFUzPRrNeREQRq25a+q//9b/iOc95Dg4cOICHH34Yr3nNa5AkCZ7//OdjaGgIP/VTP4VbbrkFo6OjGBwcxM/93M/huuuuizuWzhO00yQZKnyJWAd09MXaqVEZ1xGk/9lxcz0iogdWXZD5zne+g+c///l44oknsGvXLjzjGc/AZz7zGezatQsA8D/+x/+AlBLPe97zsLi4iBtuuAF/+qd/utrV2GZYDuHawcQtEvb1gxAABCgUIOM7iIiI2CCsuiBz2223db1fr9fx+te/Hq9//etXu+gdDNqRfpZRB7AJYAQY2oE75zYIMgYejIjwEGfElkDUyERsdkSxck0Rp3dEREdEQWaTQ8gEAFCrVnokXIfKbFJEq8YGQZuZ/N8RawUqM+lFRESszREFEauHC3eP4Ww/0D842iPlTmMijKBHBrqBIP1vZLAREREbgyjIbHIkUmBgeLzjfSJzcuQOZeaRf647OgZo3KFDcL0R4yZFRPiIpqVtgZ3NzSNZX3+Y3da278n7FbFGEDt8rkdElCEKMtsEYodtWyJmzIi7ZTYOlFQ3ugo7CHGcR0SUIZqWtjD8cxMjkYtYf7SrQ5ivjqGFfpzbSWoRERER54eokdnCECB1buIOBiH6DKw/VH8LocjHbH0a7aS5kRWKiIjYwYiCzDZBNK9ErCdKfTVkJCdrhTyp2e87zYwcEdEL0bS0lWFPksux4+zn2ttUgCJh30jYMRjfwVqiVR3BXGUMuRzEwEZXJiJikyEuobY4dvpZfTu8+RE7BUJgoTqGdlLf6JpERGw6RI3Mlof2V9iRav2oBdgsiAHxIjYClOdA3t7oamxLyLyFrLWEhYWFFT1XqVSQJMka1aocUZDZBogsJGK9QAiOJTAQAiIqeNcH0bkdRIR87iTQOhuXM2uEESIsnjyNB86sfF4PDw9jampq3TZiREFmC2NHO/h60tsO7ocNA0H1u3sR8S2sA2hHz3qLfO4kZPssxid2od5o7GxauEbIckIlkahVlq9dISKcPXsWx48fBwBMT0+vVfU8REFmG0AgbkGO2GjE8RexPqA8B1pKiBke6XUGXcS5op0RqqlEfQWCDAA0Giqi1PHjxzExMbEuZqaoC97y2OlBy3d26yN2FuLmMAB5GwJAvRFDMG5WNJsqrlSr1VqX8qIgs01AO1kjs5PbvhEokR0pamQi1hnRnLR5sd4WgijIbGWwsSJ35KsUO377+YZAiNJ9/9G8uR4QkGInzvWIiM6IPjLbAJGXR6wXSFbKr8dBGLEJsNTOkeXrMxgTKVBN10ao7KtVcNu7/hrPee5z1yT/7YYoyERERCwbi80JLCb9aKXDmOQRlaMyZl0Q5cXOWGrn+PJ3T2NucX3iyvTVUly+Z2jFwsyxY8fw3//b/4MPf/CD+O53v4PBoSEcOXIEP/78/4ibfvI/Wf+SiOUjCjLbBDtXrU/28MKIdYBIMFubQANBkKzIYdcJO3We90aWE+YW26ikEtVkbftpKVNlrVT788D99+OZ//r7MTw0jN/8nd/BZZddjlqthq98+ct481+8Cbt378GNz3nOGtV6+yJygK0MCj53InZy2zcbdqwwvX6IJrzeqCYCtUqypn/nKii94ud/Dmma4lN3fAbP+7//PY5ecgkOHT6Mf/dDP4S/+dv34Qf/3b8rPPPJT3wCfbUKTp06Za998Yt3o69Wwbe/9S177Y7/80941r99JsaHB7Fnchd+6MYfxMmTJwEAi4uL+K+/8Aoc2Lsbo4P9uP5ffz/u+vzn7LMnT57EC2/+SRzYM42xoQFceeklePvb/tLef+ihh/Af/sN/wPDwMEZHR/Hc5z4X32JlbzSiIBOxdRGJ+qZClGPWASKefr1V8cQTT+D2f/wIXvySn0VfX19pmnPVrH/xi3fjxmfdgKNHL8FHP/kpfORjH8cP3ngjsiwDAPzaq16J9773PfjzN70Z/3TnZ3H4yBE899/diBMnTgAAfuc3X4Ovf+1reM/7/g7//MUv4bV/8v9hbGwMgNpCfcMNN2BgYACf+tSn8E//9E/o7+/Hs571LCwtLZ1TfVcb0bS0pUH23x1J3Oyk34Ft32SIMmVERHfc/837QES46KKLvOv7d0/Z84xe/JKfxe/+/q0rzvt//L//L55y9dV47Z/8f/bapZdeBgCYm5vDm/78z/Bnb/oL3PCsZwEAXv+GP8Mlt1+Av3zLW/ALv/iLeOihh3DVk56Ep1x9DQDgwMGDaGdqVv/VX/0V8jzHm970JitoveUtb8Hw8DA+/vGP4wd+4AdWXN/VRhRkIiIiIrYKosS47fCJT/8f5HmOF73gP2FxcfGc8vjSF7+IH3ne80rv3X//N9FqtXDddd9jr1UqFVxzzVNxzz1fAwD89Iv/M2768f+Au7/wBTzz+n+L5/zQD+Gap10HAPjiF7+I++67DwMDA16+CwsL+OY3v3lO9V1tREEmYktivm8PcvEVzFXGN7oqOxY8IBlBRNtSREQXHD5yAYQQ+MY3vuFdP3T4MAAX2j+ElMoDhJiDVDuImFtv1M+rbjc861n42r3fxIc/9EF89PZ/xI3PugE//Z9/Fn/4h3+I2dlZXH311XjHO95ReG7Xrl3nVe5qIfrIbHGYob3Tdi3lSR0nGwewlA70ThyxBiiOt501AjcGar7Hnt6KGBsbw7955vX4szf8Kebm5pb93Pi4WqwdO/aIvfYvX/yil+byK67Axz/20dLnDx8+gmq1ijvu+D/2WqvVwl13fR5Hj15qr+3atQs/8ZP/CW9+69vw3/77/4u/fPObAABPecpTcO+992JiYgIXXHCB9zc0NLTsdqwloiATsaVBEDvTP2jTIdo8IiJ64bWv+xO0221833VPx1+/+134+te+hm/ccw/+9zvfgXvuuaf0gMUjF1yAvfv24fd/53dw37334kMf+ABe99rXemn+6y/9Cu76/Ofxip97Gb70pX/BPV//Ov7nn70Rjz/+OPr6+vDTL/7P+LVXvRL/8OEP42tf+ype+rP/GfNnz+LmF74QAPA7v/WbeP/73odv3ncfvvrVr+CDH/gALrr4KADgpptuwvj4OJ773OfiU5/6FB544AF8/OMfx8///M/jO9/5zpr32XIQTUsRERErRl7QCkRhcj0Qz7TqjaWMAGTrUMbKcfjIEfyfOz+H//7//AFe8+u/ju9+9zuo1Wo4esklePkrbsGLX/KSwjOVSgVvfdv/wst/7mW49pqn4OprrsGrf+u38BPP/3Gb5sKLLsL7/v6D+M1X/zq+/3u/B41GA9c89Wn49z+m0vzO7/0+KM/xMy96AWZmZvCUq6/G377/7zEyMgIAqFareM1v/Dq+/e1vodFo4Hu+9xl489veDkAdAPnJT34Sv/Irv4If/dEfxczMDPbs2YNnPvOZGBwcPKd+WG0Ioq0XmeDMmTMYGhrC6dOnV70jHzk9j3/5zmnsHtr8J6uefOIxnP7qR1DDEsaf+h9Qqe+ciJAPn5rHw/d9EQ0s4JKnfB+kXPuj4iNcv9ewhMuf8gycWmjjgfu+jtrSCVxw2TWoNfo3uorbEsdnFvDQvV9GPZ/FxVc+HWn1/HwitjKovQSaOY79Bw6gVnf9sFUi+24VtDNCNZWoV1ZOWxcWFvDAAw/g0KFDqNf9sboW/DtqZLYw2tVBnKlNoyYz7DSXVy5+x1NwNwJ8/ZNDvYX4HiI2DtVU4vI9Q9virKWIlSEKMlscrXQAFZrZ6GpE7EAI6RPxneZwvmGI/dwRUbDYmYhvfZtg5zq87tR2by4UfWYiIiIi1gdRkNkO2HJeThFbHRS1AhuE2O8RESGiIBOxpZFDFEwcERsB2sFawfVD1HxFRBQROcA2QAySFRGxcyBEJNsRERxxRmxhkD00cicLMdGutiGI3b5BiB0fEREiCjIRERHnjegzExERsVGIgsx2wQ5lJHF9GhEREbGzEePIRGxJGLPaThXgNhoFAZKA6Ke1djDBBqPmqweyJSBfn8i+kCmQVNenrIiuiILMtsAOJm5RJROx47CD53s3ZEsQ370LorX8k6XPB1TpA+25ekXCzIt/+kV4x//6X/b36OgonnL1NfjdW2/FFVdcCQDoq1UAAB/75KfwtGufbtMuLi7igoP7ceLECXzwH/4R/9f3f79Nf9u7/hrPee5zV6NZWxLRtLQNkEPEnQwR6wyfmUZ5cp0QO7oz8jZEaw6UVEHV/rX9S6pKYDoH7c+//YEb8M1vP4RvfvshvP9DH0aapvi/f+SHvTR79+3D//rLv/Suve9v34u+/niWWRki94uIiIiI2D5IqkBaX9u/8zAp1Wo1TE1NYWpqCldd9ST84i/9Er7z0EN47LHHbJqbfuIn8dfvfhfm5+fttbe99a246Sd+8ry6ZrsiCjLbAjt3mbZzW76xKO336L+x5ojjfXthdnYWt73znThy5AKMjY3Z609+8lOw/8ABvPc9fwMAeOjBB/FPn/4Unv8fb9qoqm5qREFm2yAykYj1RDje4vhbL8QIylsbH/zA32NidBgTo8OYHBvB3//9+/GX73gHZBCh/D/d/AK87S/fCgB4+/96G2541rMxvmvXBtR48yMKMtsAO3snw05ue8TOQxzvWx3/1/f/K9zx2c/jjs9+Hp/8p/+D6//tv8WP/NBz8OC3v+2l+/H/eBM++5nP4IH778fb3/Y2/KebX7AxFd4CiILMdkDUN0dsMHZ2dOmIiOWjr68PRy64AEcuuABXX/NU/Okb/xxn5+bwljf/hZdubGwMz/7BG/FfXvJiLCwu4Aee9awNqvHmRxRktgl2mrqZ7OfOanfEzkYc79sPQghIKT3HXoOfvPkF+OQnPoH/eNNPIEmSDajd1kCMI7MNEBUyEZsBMQRARERvLC4u4tixYwCAUydP4s/e8KeYnZ3FD9747wppf+CGG/Dt7z6CwcHB9a7mlkIUZCIiIlaMKDxvHETUynRHtrSpy/jIP3wYRw7sAwAMDAzgoosvxtv/9202wB2HEALj4+PnXNZOQRRktjIsNxGRuEVsKKJgE7HhkCmo0qcC1a2DMEOVPnVMwQrw5296M/78TW/ummZusdXx3vDwcOF+t/Q7BVGQ2QbYyXbzyEA3BrHfIzYdkipoz9WgeNbSjkMUZCIiIlYJO1egXi9EAbIHkmoULnYgonfelkcOABAyvsqIjUNksOuHONcjInzEGRGxpREZ6MZgJ5szNxJxvEdEFBEFmW2ASNwiNhpRsImIiNgoREFmG2BHCjJkPiID3SzYaUEZNwJxvDsQ7UjKtyWQ5/m6lhedfSMiIlaMyEIiNgxJBTmA48cewej4OCqV6Ny7FshyArUlkC0/ojARYWlpCY899hiklKhW1+fdREFmG2Anr9IiQ90ciO9hfRD7WQWJSwanMD93Ao88/MhGV2fbIiNCKgUqycoNN81mE/v37y+c6L1WiIJMRETEsuEOWt+5wnPExkMkKZKBXQDlQJ5tdHW2JU7OLmLvSAMHxvpW9FySJEjTFEKsH42Igsw2wM5epUWGujkQ38P6IPazgRACEAkg42GKa4Fc5kgqVdTr9Y2uSk9sqLPv61//ehw8eBD1eh3XXnstPvvZz25kdbYwInGL2HjEYzIiIiI2AhsmyPzVX/0VbrnlFrzmNa/BP//zP+Oqq67CDTfcgOPHj29UlSK2JCLz3BiE/R7fQ0RExMZgwwSZP/qjP8LP/MzP4IUvfCEuvfRSvPGNb0Sz2cSb39z9QK0IB2dSikwkImJnIM71iIgQG+Ijs7S0hLvuuguvetWr7DUpJa6//nrccccdhfSLi4tYXFy0v0+fPg0AOHPmzKrXbebMPOZmZzArN/+JonOzi5g/OwfKM8zOrH5fbGacnZ3H/Nk5gGjHtX0jMTe7oPodwOzMGczNtzB/dg750gJmZ87E8PlrhLnZJT3X23G8R6wL5mYXMVNr40x9db0wDd9ezThAGyLIPP7448iyDJOTk971yclJfP3rXy+kv/XWW/Fbv/Vbhev79u1bszpGRERERERErA1mZmYwNDS0KnltiV1Lr3rVq3DLLbfY33me48SJExgbG1v1LV5nzpzBvn378NBDD2FwcHBV895M2CntBGJbtytiW7cfdko7gZ3b1oGBAczMzGD37t2rlv+GCDLj4+NIkgSPPvqod/3RRx/F1NRUIX2tVkOtVvOuDQ8Pr2UVMTg4uO0HF7Bz2gnEtm5XxLZuP+yUdgI7s62rpYkx2BCDdrVaxdVXX43bb7/dXsvzHLfffjuuu+66jahSRERERERExBbEhpmWbrnlFtx888245ppr8LSnPQ2vfe1rMTc3hxe+8IUbVaWIiIiIiIiILYYNE2R+7Md+DI899hhe/epX49ixY3jSk56ED33oQwUH4PVGrVbDa17zmoIpa7thp7QTiG3droht3X7YKe0EYltXE4LiWegRERERERERWxQx6ENERERERETElkUUZCIiIiIiIiK2LKIgExEREREREbFlEQWZiIiIiIiIiC2LKMhEREREREREbFlEQYbh9a9/PQ4ePIh6vY5rr70Wn/3sZze6SivGJz/5STznOc/B7t27IYTAe9/7Xu8+EeHVr341pqen0Wg0cP311+Pee+/10pw4cQI33XQTBgcHMTw8jJ/6qZ/C7OzsOraiN2699VY89alPxcDAACYmJvDDP/zDuOeee7w0CwsLeOlLX4qxsTH09/fjec97XiGa9IMPPogbb7wRzWYTExMT+KVf+iW02+31bEpPvOENb8CVV15po2Jed911+OAHP2jvb5d2hviDP/gDCCHwile8wl7bTm39zd/8TQghvL+jR4/a+9uprd/97nfxEz/xExgbG0Oj0cAVV1yBz3/+8/b+dqFLBw8eLLxTIQRe+tKXAthe7zTLMvzGb/wGDh06hEajgSNHjuB3fud3vMMg1+29UgQREd12221UrVbpzW9+M33lK1+hn/mZn6Hh4WF69NFHN7pqK8IHPvAB+rVf+zX6m7/5GwJA73nPe7z7f/AHf0BDQ0P03ve+l774xS/SD/3QD9GhQ4dofn7epnnWs55FV111FX3mM5+hT33qU3TBBRfQ85///HVuSXfccMMN9Ja3vIW+/OUv0913300/+IM/SPv376fZ2Vmb5iUveQnt27ePbr/9dvr85z9PT3/60+l7vud77P12u02XX345XX/99fSFL3yBPvCBD9D4+Di96lWv2ogmdcT73vc++vu//3v6xje+Qffccw/96q/+KlUqFfryl79MRNunnRyf/exn6eDBg3TllVfSy1/+cnt9O7X1Na95DV122WX0yCOP2L/HHnvM3t8ubT1x4gQdOHCAXvCCF9Cdd95J999/P334wx+m++67z6bZLnTp+PHj3vv8yEc+QgDoYx/7GBFtn3dKRPR7v/d7NDY2Ru9///vpgQceoHe/+93U399Pf/zHf2zTrNd7jYKMxtOe9jR66Utfan9nWUa7d++mW2+9dQNrdX4IBZk8z2lqaor+8A//0F47deoU1Wo1+t//+38TEdFXv/pVAkCf+9znbJoPfvCDJISg7373u+tW95Xi+PHjBIA+8YlPEJFqV6VSoXe/+902zde+9jUCQHfccQcRKaFPSknHjh2zad7whjfQ4OAgLS4urm8DVoiRkRF605vetC3bOTMzQxdeeCF95CMfoe///u+3gsx2a+trXvMauuqqq0rvbae2/sqv/Ao94xnP6Hh/O9Oll7/85XTkyBHK83xbvVMiohtvvJFe9KIXedd+9Ed/lG666SYiWt/3Gk1LAJaWlnDXXXfh+uuvt9eklLj++utxxx13bGDNVhcPPPAAjh075rVzaGgI1157rW3nHXfcgeHhYVxzzTU2zfXXXw8pJe688851r/Nycfr0aQDA6OgoAOCuu+5Cq9Xy2nr06FHs37/fa+sVV1zhRZO+4YYbcObMGXzlK19Zx9ovH1mW4bbbbsPc3Byuu+66bdnOl770pbjxxhu9NgHb853ee++92L17Nw4fPoybbroJDz74IIDt1db3ve99uOaaa/Dv//2/x8TEBJ785Cfjf/7P/2nvb1e6tLS0hLe//e140YteBCHEtnqnAPA93/M9uP322/GNb3wDAPDFL34Rn/70p/HsZz8bwPq+1w07omAz4fHHH0eWZYXjESYnJ/H1r399g2q1+jh27BgAlLbT3Dt27BgmJia8+2maYnR01KbZbMjzHK94xSvwvd/7vbj88ssBqHZUq9XCKelhW8v6wtzbTPjSl76E6667DgsLC+jv78d73vMeXHrppbj77ru3VTtvu+02/PM//zM+97nPFe5tt3d67bXX4q1vfSsuvvhiPPLII/it3/otfN/3fR++/OUvb6u23n///XjDG96AW265Bb/6q7+Kz33uc/j5n/95VKtV3HzzzduWLr33ve/FqVOn8IIXvADA9hu/r3zlK3HmzBkcPXoUSZIgyzL83u/9Hm666SYA68tvoiATseXx0pe+FF/+8pfx6U9/eqOrsma4+OKLcffdd+P06dP467/+a9x88834xCc+sdHVWlU89NBDePnLX46PfOQjqNfrG12dNYdZuQLAlVdeiWuvvRYHDhzAu971LjQajQ2s2eoiz3Ncc801+P3f/30AwJOf/GR8+ctfxhvf+EbcfPPNG1y7tcNf/MVf4NnPfjZ279690VVZE7zrXe/CO97xDrzzne/EZZddhrvvvhuveMUrsHv37nV/r9G0BGB8fBxJkhS8xx999FFMTU1tUK1WH6Yt3do5NTWF48ePe/fb7TZOnDixKfviZS97Gd7//vfjYx/7GPbu3WuvT01NYWlpCadOnfLSh20t6wtzbzOhWq3iggsuwNVXX41bb70VV111Ff74j/94W7XzrrvuwvHjx/GUpzwFaZoiTVN84hOfwOte9zqkaYrJyclt09YyDA8P46KLLsJ99923rd7r9PQ0Lr30Uu/aJZdcYs1o25Euffvb38Y//uM/4qd/+qftte30TgHgl37pl/DKV74SP/7jP44rrrgCP/mTP4lf+IVfwK233gpgfd9rFGSgmMTVV1+N22+/3V7L8xy33347rrvuug2s2eri0KFDmJqa8tp55swZ3Hnnnbad1113HU6dOoW77rrLpvnoRz+KPM9x7bXXrnudO4GI8LKXvQzvec978NGPfhSHDh3y7l999dWoVCpeW++55x48+OCDXlu/9KUveRPpIx/5CAYHBwuEd7Mhz3MsLi5uq3Y+85nPxJe+9CXcfffd9u+aa67BTTfdZL9vl7aWYXZ2Ft/85jcxPT29rd7r937v9xZCI3zjG9/AgQMHAGwvumTwlre8BRMTE7jxxhvtte30TgHg7NmzkNIXIZIkQZ7nANb5vZ6H0/K2wm233Ua1Wo3e+ta30le/+lV68YtfTMPDw573+FbAzMwMfeELX6AvfOELBID+6I/+iL7whS/Qt7/9bSJS2+GGh4fpb//2b+lf/uVf6LnPfW7pdrgnP/nJdOedd9KnP/1puvDCCzfdNsef/dmfpaGhIfr4xz/ubXc8e/asTfOSl7yE9u/fTx/96Efp85//PF133XV03XXX2ftmq+MP/MAP0N13300f+tCHaNeuXZtuq+MrX/lK+sQnPkEPPPAA/cu//Au98pWvJCEE/cM//AMRbZ92loHvWiLaXm39xV/8Rfr4xz9ODzzwAP3TP/0TXX/99TQ+Pk7Hjx8nou3T1s9+9rOUpin93u/9Ht177730jne8g5rNJr397W+3abYLXSJSO173799Pv/Irv1K4t13eKRHRzTffTHv27LHbr//mb/6GxsfH6Zd/+ZdtmvV6r1GQYfiTP/kT2r9/P1WrVXra055Gn/nMZza6SivGxz72MQJQ+Lv55puJSG2J+43f+A2anJykWq1Gz3zmM+mee+7x8njiiSfo+c9/PvX399Pg4CC98IUvpJmZmQ1oTWeUtREAveUtb7Fp5ufn6b/8l/9CIyMj1Gw26Ud+5EfokUce8fL51re+Rc9+9rOp0WjQ+Pg4/eIv/iK1Wq11bk13vOhFL6IDBw5QtVqlXbt20TOf+UwrxBBtn3aWIRRktlNbf+zHfoymp6epWq3Snj176Md+7Me82Crbqa1/93d/R5dffjnVajU6evQo/fmf/7l3f7vQJSKiD3/4wwSgUH+i7fVOz5w5Qy9/+ctp//79VK/X6fDhw/Rrv/Zr3jbx9XqvgoiF4YuIiIiIiIiI2EKIPjIRERERERERWxZRkImIiIiIiIjYsoiCTERERERERMSWRRRkIiIiIiIiIrYsoiATERERERERsWURBZmIiIiIiIiILYsoyERERERERERsWURBJiIiIiIiImLLIgoyEREREREREVsWUZCJiIiIiIiI2LKIgkxERERERETElsX/D9hf3mRwrT/NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[['Glucose', 'BMI']].plot(kind='area', alpha=0.2, title='Area Plot (Glucose, BMI)')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB630lEQVR4nO2deXgV5dn/vwcSQgLZSQiBhBBERFkEWQwgglIUfbUobZViQUCt/nADrYpat2qxtVpbpdoFUV7F7X0Vqb61IiKIRFkj4hICYQlCSAhZSAIhkPn9Qc+BczLzPHNmOTNz8v1cV64LZs7MPLOcM/dz39/7vn2KoigghBBCCIlS2jk9AEIIIYQQO6GxQwghhJCohsYOIYQQQqIaGjuEEEIIiWpo7BBCCCEkqqGxQwghhJCohsYOIYQQQqKaGKcH4AZaWlqwb98+JCYmwufzOT0cQgghhOhAURQcPnwY2dnZaNdO239DYwfAvn37kJOT4/QwCCGEEGKAsrIy9OjRQ3M9jR0AiYmJAE5erKSkJIdHQwghhBA91NXVIScnJ/Ae14LGDhAIXSUlJdHYIYQQQjyGTIJCgTIhhBBCohoaO4QQQgiJamjsEEIIISSqobFDCCGEkKiGxg4hhBBCohoaO4QQQgiJamjsEEIIISSqobFDCCGEkKiGxg4hhBBCohpHjZ358+dj2LBhSExMRGZmJiZNmoTi4uKgzxw9ehSzZ89Geno6OnfujMmTJ+PAgQNBn9mzZw8uv/xyJCQkIDMzE7/61a9w/PjxSJ4KIYQQQlyKo8bOqlWrMHv2bHzxxRdYvnw5mpubMWHCBDQ0NAQ+M2fOHPzzn//E22+/jVWrVmHfvn24+uqrA+tPnDiByy+/HMeOHcPatWvxyiuv4OWXX8ZDDz3kxCmFRWllPVYWV2DnwQb5hwkhhBBiCJ+iKIrTg/BTWVmJzMxMrFq1CmPGjEFtbS0yMjKwZMkS/OQnPwEAfP/99+jXrx8KCwtx/vnn41//+hf+67/+C/v27UPXrl0BAC+++CLuvfdeVFZWokOHDq2O09TUhKampsD//Y3EamtrI9Ibq6bxGG5/vQirSyoDy8b0ycBzUwYjOSHW9uMTQggh0UBdXR2Sk5Ol729XaXZqa2sBAGlpaQCAjRs3orm5GePHjw985qyzzkJubi4KCwsBAIWFhRgwYEDA0AGASy65BHV1dfjmm29UjzN//nwkJycH/nJycuw6JVVuf70In28/GLTs8+0HcdvrmyM6DiPQG0UIIcRruKbreUtLC+68806MGjUK/fv3BwCUl5ejQ4cOSElJCfps165dUV5eHvjM6YaOf71/nRrz5s3D3LlzA//3e3YiQWllfZBHx88JRcHqkkrsPNiAXl06RWQs4WC3N6q0sh67DzUiL72TK8/fatra+XoV3qdT8FoQL+MaY2f27NnYunUr1qxZY/ux4uLiEBcXZ/tx1Nh9qFG4fleVO40dkTdq8azhhvfb1kJ6be18vQrv0yl4LUg04Iow1q233or3338fK1euRI8ePQLLs7KycOzYMdTU1AR9/sCBA8jKygp8JjQ7y/9//2fcRM+0BOH6vHT3GTp+b9SJEHnX6d4o/+fCDXF5OaRnBKvOl+FEe3H6uXTT/XX6WhBiBY56dhRFwW233YZ3330Xn376KXr16hW0/rzzzkNsbCxWrFiByZMnAwCKi4uxZ88eFBQUAAAKCgrwxBNPoKKiApmZmQCA5cuXIykpCWeffXZkT0gH+RmdMaZPBj7ffjDIeGjv82HUGV1c6dWReaO++aEWD7/3TdgzP6+G9Ixixflylm0/Tj6Xbru/be07SqIXRz07s2fPxquvvoolS5YgMTER5eXlKC8vx5EjRwAAycnJmDVrFubOnYuVK1di48aNmDFjBgoKCnD++ecDACZMmICzzz4bv/jFL/DVV1/h3//+Nx588EHMnj3bsVCVjOemDMaoM7oELRt1Rhc8N2WwQyMSI/NGvbJ2l6GZn56QXjRhxflylm0/Vj2X0eDpbGvfURK9OOrZeeGFFwAAY8eODVq+aNEiXH/99QCAP/7xj2jXrh0mT56MpqYmXHLJJfjLX/4S+Gz79u3x/vvv45ZbbkFBQQE6deqE6dOn47HHHovUaYRNckIsFs8ajp0HG7CrqsH1gj+RN2pIzxSs31Xdahs9Mz8vhvTMYPZ8OcuODGbvk1HvjFX310ohsRe+oxROEz04HsaS0bFjRyxYsAALFizQ/EzPnj3xf//3f1YOLSL06uKdL+dzUwbjttc3B/0YjzqjC342rIeqseNHJLjOz+iM1IRYVDc2t1qXmhDrmWujF7MhTK+K272G2ftkVMxv9v7aEQJzc9jdbSE/4m5cIVAm4SNykdshbvR7o1bePRaLZgzDyrvHYvGs4Ti7m7gIo2jmV1pZr2roAEB1Y7MrxJlWYyaE6YVZdrRg9D7pFfOrYfb+2hUCc2vY3W0hP+JuXJN6TvQhms0oUGyf6YR6o8zM/Nqip8JrIcy2itH7ZOaZNvNdsjPE6cZnliFdEi707HgM0WzGqZmO0ZlfW/ZU9OrSCeP6Zob1g0yxaOQJ9z6ZfaaNfpci8WwYeWbtgt8FEi707HgI2WxGjUjMdIzO/CKlB4gWAWNbNg69gtln2uh3qa09G23tfIl56NnxELLZjIhIzHSMzPzs1APUNB7DtIXrcNHTqzBj0XqM+8OnmLZwHWo1dEJux/8ibe/zBS1v7/NhTJ8MTxty0YQVz3S436W29my0tfMl5nFV13On0Ns11WlKK+tx0dOrDG278u6xrv4BsEMPMG3hOs0ZtpkWF05S29jcKiuOGSjuJNIal2h9NrQ8s9F6viQ89L6/aezAO8YOIH6BA4i6l7tRZIah240/GW4SixJ3ES3Pht7U8mg5X2IMve9vhrE8hshF7nSKqJv6+URCwOjk+XKOQrSIlmdDb8KFm4TTxL1QoOwgRoSzMgGjEymibizuZaeA0cnzteLY0SLYJsG48XtoFKaWE6thGAuRD2NF048S4F5tjF3jcvJ8zRw72p47Eoxbv4dGWFlcgRmL1muuXzRjGMb1zYzgiIhbYRjLxURT5U8zFWPtxoqwXmioysnzNXvsaHruIoWbQrMi3Pw9NAJTy4nVMIwVYaLNPevmKsgKjDsttbwgPxvWQ7idnedr5lpH23NnN17zgrn5e2gEN/fkIt6Enp0IE22VP908AzPjydDa9pW1u4Tb2Xm+Zq51tD13duM1L5ibv4dGcTrhgkQX9OxEmGj7UXLrDMyMJ0O07fpd1Rick4LNZTWt1o/sne7aGWe0PXd24kUvmFu/h2ZwY08u4l3o2Ykw0Vj5040zMDOeDNm2R5pPqC63W+pv5pyi8bmzC696wdz4PbQCppYTK6BnxwGemzK4VeVPL/8oWTEDszod2ownQ7bt9+WHVZcXllbZOuu3osmkV5+7SKbLe9ULRk8IIdrQ2HGAaP1R6tUl/POwSwhqxq0v2rZfdiK2/lCnua2dQtD8jM4oyE9HYWlVq3UF+fIQmhefOyeEwl4PCRn5HhIS7TCM5SB0z+oXghpJATbj1tfa9olJ/YXb2T3rD4lCSZerYea5i3QqtlNC4WgNCRHSVqFnhziGHiFoakKs4Zm9GU+GVtp6Xrpzs/7Synqs3dHaqwMAa3fYG0JzwsPipFDYi14wQog29OwQywh31q9HCGrFzN6IJ0N0XKdm/U4KZ53wsLhBKEzvKyHRAT07DuJUjyKrj2t01i8Tgrb3wZGZvcyjcKjxmK5Zv5tE12ZwysNi1fmyF9gpeC1IW4XGjgM4VZ3VruOKZv2injwyIegJSSq3XWJgvdVotYSgbhRdm8Gp6rxmz9drVZDthNeCtHUYxnIAu0MCq4or8KcV2/BZyGzcjuOa7ckjCglFwpOhFnoze1w7768TITQnU7HNnK/XqiDbCa8FaevQsxNh7AwJ7K5qwKQFn6O6sTmwLDUhFstmj0ZzS4stxzU76xcJQZMTYm3zZIhmumY8CnaHfMz0+zKKk6nYRoXCXqyCbBe8FoTQsxNx9IoujaT4hho6AFDd2IwrF6yxTexp1axfSwhqlydDNtPVc1y1e2S3qLatpmKHKxR2g7jZLfBaEELPTsSRGQdpCbGYtnBd2LH1VcUVrQwdP9WNzfj2h1rhcWPahVGo5TTsnvXbkQKsN+VdC5FXyM6QD1Ox9ePVKsh2wGtBCD07ESc/o7PmizQ1IRZPf1RiaOZetLdGuL6ksl64/niL8fBIJGb9VqYAm015F62zsweVG2boXknFZi+wU8h+c9rStSBtF3p2bEQtzbO0sl7ogTE6cz+3R4pwLCPz07F08z7N9WZmd9E265elvKtx+j2yqwcVZ+jh4eVeYFYi+82hZoe0BWjs2IAozCGbnYsQiX0v7JuJ1IRY1R+11IRY/GxYLt7fUm6ryNQrPXnMpryL8N8jLxl/0YrXjHC7cKp0ACFugmEsGxCFOWSzcxGymfuy2aNbuav92ViA8yJTN2Em5V3E6ffI6pCPG8JYXkR0HyLd68sKwh0zPYKE0LNjOTIRqe8/mgEtrwIAw96XnPQEbH5oAj4rqcSmPdUYkpuKC/pkBNZzpnsKMynvgL57FC0VlKMRLxbZMzpmr3dxJ8QKHPXsrF69GldccQWys7Ph8/mwdOnSoPU+n0/176mnngp8Ji8vr9X6J598MsJncgo9s+/HJ/VHUnywnZkUH4MnJvW3xPtyQZ8M3HHxmUGGzul4RWQaCYykvMvuUU3jMUxbuA4XPb0KMxatx7g/fIppC9ehVkM3oReKbq3Di0X2zIyZXl3S1nHUs9PQ0IBBgwZh5syZuPrqq1ut379/f9D///Wvf2HWrFmYPHly0PLHHnsMN954Y+D/iYmJ9gxYB3pm3w8u3Yq6I8eDltcdOY4Hlm7F4lnDHem7RILxe35Wb6vE5rLWXjLRPTLaPkMPFN2ax4tF9syOmV5d0tZx1NiZOHEiJk6cqLk+Kysr6P/vvfcexo0bh/z8/KDliYmJrT4roqmpCU1NTYH/19XV6d5WhsxlrGhk9IT+aEW67xIJRs91VrtHdr9I+dIyjxcFu1aN2StJBIRYjWcEygcOHMAHH3yAWbNmtVr35JNPIj09HYMHD8ZTTz2F48ePq+zhFPPnz0dycnLgLycnx9KxilzGZkWmelzZbUF0adW2WhgNGURKRMxQpHG8qH3y4pgJcROeESi/8sorSExMbBXuuv322zFkyBCkpaVh7dq1mDdvHvbv349nnnlGc1/z5s3D3LlzA/+vq6uz1OARzb7N/GjJvAZflVXj6Y9KPOX1MeOpssvLZcY7w5eS+/GiYDc/ozMK8tNRWFrVal1Bfrorx0yIm/CMZ+ell17C1KlT0bFjx6Dlc+fOxdixYzFw4EDcfPPNePrpp/Hcc88FhalCiYuLQ1JSUtCfHajNvs1UM5V5DR54d6vtokurvShmRJd2iUzNeGdYrdYbeFGw69Po6KK1nBByCk94dj777DMUFxfjzTfflH52xIgROH78OHbt2oW+fftGYHThYaaaqcxrsHVfa+2RmjfCiLjZDi+KGQ+KndoYs943Vqt1P1ZonyKZJFBaWY+1O1p7dQBg7Y4qPleESPCEsbNw4UKcd955GDRokPSzRUVFaNeuHTIzMyMwsvAxIzTMz+iMkb3TVX/0+mUl4rvyw8L9pibEGjZY7MgwMnMt7BSZmglzeFH82pYxIth1IkmAzxUh5nA0jFVfX4+ioiIUFRUBAHbu3ImioiLs2bMn8Jm6ujq8/fbbuOGGG1ptX1hYiGeffRZfffUVSktL8dprr2HOnDm47rrrkJqaGqnTCAuzmg5Fo5VBXIz4VualdzIc9vF7UU6EHPx0L4oeQkNgZq6F3doYo2EOL2h2vChgdxNO1OjxwnNFiJtx1LOzYcMGjBs3LvB/v2h4+vTpePnllwEAb7zxBhRFwZQpU1ptHxcXhzfeeAOPPPIImpqa0KtXL8yZMydIfOw2zHgNSivrVQWKAFC0txbD8lKxaXeNqZR3NczOKkUzYaPXwm6RqdEwh5vFryxbYB6navS4+bkixAs46tkZO3YsFEVp9ec3dADgpptuQmNjI5KTk1ttP2TIEHzxxReoqanBkSNH8O2332LevHmIi4uL4FmEj1GvgczomD4yz5aUd7OzStFM2IxQNBIiUyMp3m4Vv3qxarDbcLI/mVufK0K8gCc0O9GGUa+BzOg4JzsZi2dlW57ybtYbJZoJm3k56L2Oka42HQnxa7jn5MWqwZEg3OvoZDiJBSUJMQ6NHQcJVxyp1+hQ269ZN7jRNgXSdPmlX+O7fcHC6nCFz26tNm2H+NXoOVHgGoyXm2qyCjIh4eOZOjvkJE6FffyzypV3j8WiGcOw8u6xWDxruNRokKbL/1BnufDZjxfDNrIxGz0nClyDYVNNQtoW9Ox4DDOubCvc4Ea8UVqVX8/KSsT3knR5o8LnqoYmz4VtZKGm1dsqDJ+TqGzByN5tqwIvm2oS0vagseNRzLiyRdvaoW/RqvAaH9teuJ0Z4fOM0XnCbd0YtpGFmjaX1QjXy85Jq2yB1vJoIfSZZlNNbxFpzR2JTmjsuBQ7v+Bq+7azz5RW5dfNZTXCdHkzwucbLsgTjsuNYRtZqGlwTopwvayys1bZgsJS91fgXVVcgaK9NRiSm4oL+mTo2kbrmb5rwpnC7dz4bLRFnNbckeiCxo7LsPMLLtq3HRWSAX3p8vGxey0XPp9Q4LiQNFxk4tcxZ2a2ucrOu6saMGnB50EtOFITYrFs9mjkpIuNQ61nGvDes9EWses3ibRNKFB2GXaKarX2PeuV9ZZUSFZDX7q8XPhspPqyF4WksjE7Xdk50tWXQw0d4GSPsSsXrBGOSVb1++5LzvTcs9GWsKpqOyF+6NlxEXbWQhHte8PuauG2kegzZSR9XM9+vSYklYlfnars7ERIYVVxhbCp6r++3o/X15WpjknmyapqOOa5Z6Mt4VVPJHEv9Oy4CDurs8r2LeL0Wb+Rmb0ZD4sV1ZeNVEF2GtmYI13Z2QqPY7jPTtHeGuH6Jz/8TnNMej1ZXnw22gIslUCshp4dFxHOF1wkYFZbJ9u3TChsZmZv1Bshr75cL90HOYVd90HmcTT67JzbI0U4rt1VRzTH5PP5dHmyzCQCMEvIPtxQvJFEFzR2XISeL7joxaFA0VwnqndTkJ+OF687T1gh2QqxYLiputLqy+9uxXf7zVVfbotYfR9kIQWjz86FfTORmhCrGsrqHNce9U0nhGMSVf02Y7wzSygyGK3aTogaNHZchuwLLgsniF4qWvVufD7xrN+pvkrS6sv76iI+praImZCC2Wdn2ezRuHLBmlbZWM9PGYKpC78Ujkn0TE9buM6w8c4sIetR85KxeCOxEho7LsOM0aHGqeq7lZr1btbuOFVnRW3W75RYUOTp6pediK0/tDZ27B5TW8RMSMHss5OTnoDND03AZyWV2LSnOlBnp7RSfwgz9Jk2Y4Cxoaq16PGSsXgjsQIKlF2KmnDSjMh4c5k840oLJ8WCWqLaJyb1d2xMVhDpFG6zOJ3yfkGfDNxx8ZmBgoJmxPxObUta48X+dcSb0LPjIWQvDhGDc1KF60UvHSfFgiJPVyTGZLUIVa/ew23iV6MhhTKJcbC3utHQ+ZkxopzalgRDLxmJJPTseAi/0dE+RHzT/j+ZJ8J1Z4rXy35UnC7Qp+bpsnNMNY3HMG3hOlz09CrMWLQe4/7wKaYtXIdajbovepHNZO06rlWEm6otSx/ftEfscdRC9l0Qjc+pbUkw9JKRSEJjx2OIXvB2Vd8FTs3sF88chjk/6oP/njW8VaVjM6EZI9v6xySrvmzkuHa41/VUhXXarW91eE2WPj4kV+xxFGHmeXZq22gm3GdHr5fMayFf4k4YxvIYCrRbVNtVfRcQh19EKe+RSOM1ImAUHbeqockW97psJvtF6UHH3Pp2pVOL0sdTE2J1N/VUw8zz7NS20YjRZ0cWHk9NiMW0heuY4k8sgZ4dj6Fn5m9H9V3RcfV6I9RmaE55MkTHtcu9LtdcadQGMHlcPdh5H5bNHo3UkJeTv5mnFZipguzUttGEmWdH5CVz2stJogt6djyEU4I+MynvOw82IDUhVnXmd9eEPq48nxsuyBNub1SEKpvJjuiVZstxZdj9XGmljxPvY/bZ0fKSUbxMrIaeHQ/hlKDPTMr7riptHcoDS7dKt/VjZdxedj4nFNgmQhXNZK0Sv4Z7rSL1XIWmj3sB6kXEWPXshHrJKF4mVkPPjoeQWaYx7U6+JK3u92Mm5b29z6c5QxMVBQROejKs0JKEnpMeYaRdpepleg8zxzV6raxKp3ZburwfI+NiSwh92JWKzxR/YjU0djxEi2R9zZFmw4I+0Y+7LPwCQHNdaOZRKP2zk/Dd/sOatXLMlPUXnZOeGj12ilC1RNVmxK9G2xiYraPkVsPAzLjYEkIfdtXgYiNQYjUMY7kUNfe5bLazeO0uw4I+mRjQaMq7bMy/vWqA5rZ6UrWNnpPe9GGRCNXOVPtwxa9mr5Xe67GquAJ/WrENn51mQLhVSGp0XGavZVvDrlR8pvgTK6Fnx2UY9bAMzk3B+l2tC7RZ2e9H5HHQWpecECucoQ3MSdHcdpOOFhdGz+lQ4zFb0vCd6phttgeVzKO0u6oBkxZ8rtKQc7ArhaRmBK5O9YLzKnal4jPFn1gJPTsuw6iHZcbIPOF+rer3I/I4aK3TM0NT29ZM3F7vOVmdhm/ntiKs0jhoXY9QQwcAqhub8ctXNwr355SQ1IzAlXoRY9iVis8Uf2IF9Oy4CDMeFlkXaNEPtF7hs1GMztD0xu2NiKqNim7d2jE7HI1DuILdVcUVqkUBAaC+6YRwW6cMAzP3n3oRQqIPGjsuIhz3eajA1cwPtEz4fLxFLDLWi5FKx6LsJDOiaqOi22uG9hBuJwpx2B0ekWVyGQ2hyfpb9UyLx97qo64yDMzef7uy8QghzkBjx0ZkM+jQ9WY9LEZ/oMOZBUc6vVjkFZJlapl5YWmFmxqPHRduJ7pWTnvQjGYYyfpbzZvYD0vWlbnOMDBz/6kXISS6oLFjA7IZtFGvgczDYucPtNPpxaFeIStE1VqI9r1hdzWG5aVi0+4aTY+BXfdXL2oeNDMhNFl/q0sHdMOlA7q5zjCw4vtgxBtJCHEfjgqUV69ejSuuuALZ2dnw+XxYunRp0Prrr78ePp8v6O/SSy8N+syhQ4cwdepUJCUlISUlBbNmzUJ9vVi/YjcyEarW+kVrdwn3a1ZkqoWe8Irb0outElUb2ff0kXlCwbXd91eGWlq72Yq0evpbuVVIate4WF2ZEO/gqGenoaEBgwYNwsyZM3H11VerfubSSy/FokWLAv+Pi4sLWj916lTs378fy5cvR3NzM2bMmIGbbroJS5YssXXsWshm0Ku3VZjyGtiBLIzV3gfXpRfbmTFTUXtUuL6qvklznVmvkBlE3jez14v9rU7htJeTEBI+jnp2Jk6ciMcffxxXXXWV5mfi4uKQlZUV+EtNTQ2s++677/Dhhx/iH//4B0aMGIHRo0fjueeewxtvvIF9+/ZF4hRaIZtBby6rEa6XeQ3sQNaT6YQkuuJEerFVfaTUKD8sNnZe+nyn4Y7pdt7fW17d1MrQWl1SiZtf3WjZ9fJifyurcZuXkxAix/WanU8//RSZmZlITU3FRRddhMcffxzp6ekAgMLCQqSkpGDo0KGBz48fPx7t2rXDl19+qWlENTU1oanp1Oy8rk7coykcZDPowTkpwvXnZCdj8azsiOsfRGLOqgZtTwZwyisQafGyXRkzMkHu7qojrZbp7Zhu1/0traxHYWmV6rrC0irsPNgQtRlG4SYCmD2W27ychBA5rjZ2Lr30Ulx99dXo1asXduzYgfvvvx8TJ05EYWEh2rdvj/LycmRmZgZtExMTg7S0NJSXl2vud/78+Xj00UdtGbMs5XXMmZkoyE9XfTEV5KdrppbbjUjMKauCnJoQa7gnl11jNoNIkNs5rr2wtoy/Y7os5dnq+/vlzkPC9V+UVmHK8NyoyjAymghg5rlkdWVCvImrKyhfe+21uPLKKzFgwABMmjQJ77//PtavX49PP/3U1H7nzZuH2trawF9ZWZk1A/4PsorBPo0MY63latgljlQ0GneKzkmvW9+uMdshQNUS5P71uqEaW5zE3zE98j19xLHG0x8trXvsNYwmApgJN7G6sj1Q7E3sxtWenVDy8/PRpUsXbN++HRdffDGysrJQUVER9Jnjx4/j0KFDyMrK0txPXFxcK6GzlYg8DqWV9Vi7Qz3csHZHldQNbpc4UrZfReNluqtK7tZPTYj1nKBTJMh1umO6GiN6pYvX56frenYiHYo0ijwRoNKWcFO0V1eO9P234vfMK88scRZPGTt79+5FVVUVunXrBgAoKChATU0NNm7ciPPOOw8A8Mknn6ClpQUjRoxwcqgA1EMVZt3gRgvDyfh/r21qZYStLqnELa9txJIbz8dNizdgXUij0dUllSiva61fOZ1dVQ14+D3tbuxmxhwJLuiT0UqMq1f7EslQZH5GZ4zsna5qSI/sfTI8KirC+Ocp53rKIJUnAhhvIisjGrVPTmWYmfk9Y1YcCQdHjZ36+nps37498P+dO3eiqKgIaWlpSEtLw6OPPorJkycjKysLO3bswD333IMzzjgDl1xyCQCgX79+uPTSS3HjjTfixRdfRHNzM2699VZce+21yM7Oduq0hJhxg9sljpR5m1Zvq2hl6PjZdkBc06i9z6drzF6anUWiuq6R6/HC1PNavYT9P/6yZ+fGxRuwaXdN0Do3G6Sy+Hu3pHjheqO90QD33n8z2DWJEmH298zuMXvpN4nIcdTY2bBhA8aNGxf4/9y5cwEA06dPxwsvvIAtW7bglVdeQU1NDbKzszFhwgT85je/CQpBvfbaa7j11ltx8cUXo127dpg8eTL+/Oc/R/xc9GLGDW6XOPLLneqGjp///mJ32Pv0s6q4Qrh+675aPPzeN56cndnhuTEzWxW9hDdJPB3rVYxZN2cYyfq5ZSTF2dIb7fT74Lb7bxSnMszM/J7ZOWZ6jKITRwXKY8eOhaIorf5efvllxMfH49///jcqKipw7Ngx7Nq1C3/729/QtWvXoH2kpaVhyZIlOHz4MGpra/HSSy+hc+fODp2RPowKWPV6hcIX+4mV0Q1N4n5QImQ/aIvXaoe43M6q4gr8acU2fKbyo2sUK0S1aoJt2bMjQm8dpUiKTPV8F8wIxZ2qpaPnuFZfZ7PVtY1ixstt55hZRyk68ZRmx2touUH9M/DV2yqxuUy9Gq3atjKvkNEU8BG90oTn8eNzu2PtDnFqsxaXnJOFY8cV1TEPzk3xnEcBAHZXNWDSgs+DUtP9rRNy0o0bFeHMVsN1sYuencG5KdiwW9vzIwv56J0JWxkW0OshPfk9q8DmshrdVZ+d8nTIjvtVWQ2e/mib5R4HpzLMzHi57Roz6yhFL65OPfcqNY3HMG3hOlz09CrMWLQe4/7wKaYtXIfa/7wc/eunvbQOf1xegl8sXBdYL9vWihTwUPIzOqMgXz2bpyA/HdcMy0WMxpMS0067W3dMOx9+OjRHc8wzRuYJx+VEZWY9hBo6AFDd2IwrF6wxtV89s1XZ8yFC6z4snD7MVHVl2XNnZsxGzsfvuTn1PVvf6nsmwilPh+y4Dyz92haPg53VyGUY9b7ZNWan7j2xH3p2bEAmnJO9HETbaukyzM5IXrxOLG49riGSON4C/P0XQ3DLa5uCunbHtPNh2exRALS1JKWVYnGzG2uWrCquUC02CJw0eD4rqTTcSkE284hp5zMlyhR5FI1mGOl57h5+7xtbhKQyobDRa+WUp0N23K0/tK70bpXHwYoMMyOeOzNibzuy4lhHKXqhsWMxZhqBqi0/fd3pP2ih4kiz4mUz4taYmHbY/tvL8PaGMny+4yBG9e6Cnw7NafW50DF7sWZJ0d4a4fpNe6oNGzsy0e3e6iOmDFpZuMnIS0f23H1RetD2sICaUNiM8e/Ucyk6br9uidi6T7utjdnKzVp1tPRghaDXiNjbjqw4L/4mEX0wjGUxZhuBijjdhRoqUrRqRqJWXVfvvs/rmYofn9sdQ/PEGqDTcabasHFkfbOG5KYK14uQXWdZgW2Zi11PmDPcatRy4bN41E6FhGTHdeq51DruE1cNEG5n1uNgRpTrtKDX6grqXvtNIvqgZ8dipKGIcHpChJCX3kk4i7Ir1dYuYTQQmZolViLqm5WaEGuqG7hfO6XVN224REjuRI0m2bMhE787FRKSHdep51J0XLs8DmaejWgU9HrtN4nog54di5GFIo5L+hL1754kFN2JZlF2ptraIYw+HTv6W9mFVt+sZbNHm963qG+aGVGmVcJLtbRn0bPhlPjVquM69VyqHdcuj4OZZyOaBb1e+k0icujZsRjZjDIrqaNw/YyReXj8g++CPAdJ8TF4YlJ/6SzqUOMxXam2oUJCvbMzO4TRXkTUN8sMevqmPT7pHPw4JBvM/3yIMOvpMKP3caq9gpfbOqiJfc3oakSYeTYo6CVegcaOxeRndMbQnqmqdUuG9UxFpsTYWfT5LtQdCS7iV3fkOB5YuhUzRucJt5VVI9Z6YV0ztIdwv6eLH60WRnsZtb5ZZtBzLRet0X4+RBlGZoWXejKbtESmbgwJuRWRUWlXewQzzwYFvcQrMIxlA9sr1FOqSyrq5eml++qCfjSAU16Sitqjwm3/tmqHMJyk9WO5aO0u4X5Pn53ZJYx2ikhW/ZUhu5b+PmNaz4fsHIyGQfzeO6PH9WNXWEB2D70UjtD6js56Zb0l90ALMyEyCnqJF6Bnx2JWFVeg5oh6HZaaI83419f7De+7/LDY2PlaUIdDlPK+YXc1huWlYtPuGs3ZmdaM864JZxo+HydxY/8b2Sw59EUXipnyAiLc6r1z4z00gygkLKpwDZi/B2a8YF70oJG2Bz07FiOrw7ImZNYWDoNzUgxvK0t5nz4yTzg705pxPvDu18L9itLlrcLIfq0QVZs5H61tRbNkq7xoVqeXO+W9czrlWUa4z4fMqBQh8r6GgxkvmJc8aKTtQc+OxWQlijU553RLQmGpdp+pAd2T8O2+w6oz+zFnZmrO/M/OTlT17PjpJtEKnZOdjMWzslVnZ6IZp6jQGSBPlzczAze6X7OiajPnI9tWNEtOTojVpY+QVbK1sq+WU7oMO/uImcXo8yEzKo16X73q6YoEkX42iHPQs2Mxmclio2LUmRlor5Fe3N4HvDrrfKGH5fFJ5yApPthGTYqPwbTz84THzUjqqCsVV212JptxmkmXN4PR/ZpNl41EATatWbLI86O3J5uVfbWc0mXY3UfMDGZ61Im+o/+YNsyQ99Utni434dSzQZyDnh2LkVmPlYeP4oSG9OKEgkD6uFb8+8Gl36hm47y5oUx43Lz0ToZTcWUzzt9eNQB/+Pc21f3alZpuZr9mwjKRKsCmNeMUeX6mLVxnuCeb3r5abtFl6LmHdmUviTD7vIu+o6J7EIkSENHkBXHi2SDOQmPHYmRFBb+VhH2+KK0KpPCG0+9Hr8jYCLIwxsAeKYb7ahkVVjolmjVzXD3bpibE6gpFhD4fZnuy6X0ZGulh5ARlhxocqf9kZ486P2r3wM7vQ7SFx9pibTDCMJblyGac6Z3ihOv9Dmw1kaHsB82oyFiPm1tPGMNMX61wMbNfM2Esuwuw2RWakwnUrah0G8k0fjecrxpuF5E7JeZ3E9Fc9dmtuKHEBz07FiPrb3T5wG54evk2ze37dUvU7DMls0yT4+1zc4tmnGb6ahmdQZnZbzgvpFDXvZ0F2JT/3ItQrAjNyTL59L6E1UIZTsz8I3W+4eLGjulm+tdFoxfErdmF0YibvIL07NiArL/RyN7pqutH9k7H0x+VaM6ipH23Wk7+yBkRGeudzajt20xfLTMY3a+evkkiAeM9l5zZ6h77fMB9l/aVjllLYP7EpP6m7pHsnPyZfEZ7RYmuhxMzf7vP1wxu65hupn9dNHpBnOrX1hZxk1fQp6jFHtoYdXV1SE5ORm1tLZKSkkztq7SyHhc9vUpz/cq7xyItoUMrEeLJAn198OMFazW3XTxzOKa9tE64b5E4VjYuo0Jhvfu1S9xqZL+1jc2q98A/4/CLfdVmyV//UKPZ9XzzQxOExxXt95ErzzZ1j2TnJFsPaItQtcY9pGcK1u/S1mUZfa70YMX52olTYm61/nVGn6twtvWSgNnpZ6MtYNc7JxS972+GsSxGr1BQLSS0srhCuO0JRXFdD5twhJF2iVuN7NdMZosW1Y3N+KykUrNflmy/vv/MLI3eI5m41WgosqqhSXPcIkMHsLe6spnzjQROiblDj2tGvKznd8NNoQq92NVUlZzCbZXXGcaymHDiwaFONT3bOt3DxqneWHYJ3IyE/ERs2qP98tfz5bfiHsnEreGGIq2q7GsXRs63LWH2Oyp7Jt0UqtCLF8fsNdymjaJnxwHM9JkyM1s1M5sRzd7sFGRaMWsM170u+5KKGJKbani/eemdHPFGyDxON1yQJ9x+WM9UbNqjXfKAOItZr67T9X2sxotj9iJuq7xOz47F6Jm937h4Q6sv2+qSSvzq7a+k2/oxMlu1q/KvnYJMM2M2WiVVJmBMjlc3spLjYzVDWHr2e/q9jKQ3QvbMnlBOZhKqUZCfjn9MF1f2Jc5jl8fQiwJmL47Zq7ip8jo9OxYjraBc16Spc9hWUS/c1kx6sN7ZjJFt/VWfV2+rwOayGgzJTRW+9K0esxZmqqSKKtneuHg91qncw75dO0vPyWgV61DMiEFDt9XjcRJlGDqtjSFy/Pdo9bZKbC6rNvQdVcNtoQo9eHHMXsVNvw00dizmq721wvXvbd4rXJ+TGo+y6iOtlo/sna4rPVgr5CObzWzdV4uH3/vG0Lbf/KC9rZnGmGYEbnbVFSqtrFc1dABg3a5q7DworoJsVhhpVxPSkb3TsXZH69pQI3unQ1EU1XUAsHZHVeBaeqW6clvELhGx20IVevDimL2OG34bGMaymEMNTcL1VZIQSvMJ9Wo6oQUC3ly3B3e+uRlvn9YTS+TJkM1mFq/dZXjbVwTbyjAzZlFVWLvqCunZr+iczAoj7QpFahWgUBS6/Y3ihqqxfuwU5LopVKEXL46ZmIOeHYsZ1zcTL6/drbn+ioHd8H35Yc315XXqxlJh6ckZdP3RZlz1l7WBAoJLN+/DvHe+xl9+PkToydhbLX5hqYXWTm3b2tMUtO1u7W3NNMaUHbfuyDFMW6juUXKqTUV7ny/stHW93iY7m5BqUVhahVvG9tZcD7jf7R/p+i9uS8W2W5DrplCFXrw4ZmIOenYs5sK+mUjRELCmxMdi9kV90F5L/yDZ966qhiBDx8/xFgU3v7ZRuK2sV5B4W3EtFRGiWb+8v5H4uA+8u1VztmpXldT8jM5I1XhhpSbEBrnFw0XmITHjYTGTPn5CUYTn7NaXhFGBulncltYcKc+cF1P8vThmYgwaOzbwz1tHt3o5pCbE4p+3jkZpZT1OaIUMJPv95ofaVoaOH43FAboldZTsXbRtvOFtRbN+2cPXLVk85q376loZF6fPVu1wVZdW1qtWTwZOFhXUMmT1ENqTKzQEYiasZyadvr3PJzxnvWEaM2EdrzSw9HtRRM9lpKEglxCGsWyhRWC2fLnzkOH9FpnwzpxQoCnK69ctEVv31Qm2FVtSRuusyHp9ZSR21B5zdiK2/qA9ZlGlajPoSdMWiR+bT7RoNomVVaM10+xRti0AzXWy+y+rhGqXqNqNDSzdVjUWoCCXEMBhz87q1atxxRVXIDs7Gz6fD0uXLg2sa25uxr333osBAwagU6dOyM7OxrRp07Bv376gfeTl5cHn8wX9PfnkkxE+k2AmLfi81Uy4urEZVy5YA7n/RpucVOMeFh+0RXlPXDVAuq2I60fmGfKgmKkY/cSk/tJt/VjpqjZb5VqUwg2Ya6pqZlvROrOeAbtE1SIiEbpZVVyBP63Yhs9OM6rc6kWhIJe0dRz17DQ0NGDQoEGYOXMmrr766qB1jY2N2LRpE379619j0KBBqK6uxh133IErr7wSGzZsCPrsY489hhtvvDHw/8TExIiMX41VxRWSMIdx+3LcWZlYJBA/ixiRny5MpxaRnSI2ss7unozFg7LD9qD4O8BrpTz7PR1q5KU7M1vVO0vWus6iFO7V2yql3ggt7cyuqgZdngyRp0trXXJCrPQ+aWGnqFq0rZ1Gx+6qhlYTmtSEWCybPdq1XhQKcklbx1FjZ+LEiZg4caLquuTkZCxfvjxo2fPPP4/hw4djz549yM3NDSxPTExEVlaWrWPVS9HeGuH6/XVHhC+OmHbtBOEE8bE7xbVHQ9OJVstT4oNFpKE9ueShmZMCVa1O3/59h+43lFXFFSjaG1x0UJTyDMgrN+sp0GdlAT5Af2HAcK+zTJC9q6oBD7+nnuYvK3mgtyGr1jrZfdLCTFjHbANLPc+skWdD5Lnd/NAEywpH2oEb6p0Q4gSe0uzU1tbC5/MhJSUlaPmTTz6J3/zmN8jNzcXPf/5zzJkzBzEx2qfW1NSEpqZTL4e6Om3tR7i0lwR9Ytu1wwtTz2v1Y+jXIQDQ/KEskrwM1QwdAKg50iwsdnft8B7C/VbWNQm9VV+V1eDpj7Zp6iq0ZsLPTxmsql8BTqY8yzwd/srNWrNVPXoPrZedaFtZYUCjvc8G52j31QKA9j5oXg+R5gow58korawX3ie7PCwyH2hMO+3vmkxILntmtZB5bv1d7+lFIcRdeMbYOXr0KO69915MmTIFSUlJgeW33347hgwZgrS0NKxduxbz5s3D/v378cwzz2jua/78+Xj00UdtGecJyYuwuaVF+LIUuZtlgl4Ru6oa8MC7pa08SqtLKlF5+Khw2/114no3976zBd/vD64dtLqkEje/uhGv33S+5kz4l6/K0uXlng5R5d4bF29oVT9odUklbly8Hn+bNlRoCMm0IqI2FFrb+o+h5bkbc2aG0Osn8+z1756E7/Ydtjx8YtbDYjSsI3vetTIT9YxZ9sxqIfPcbtpTHfBa0otCiHvwROp5c3Mzfvazn0FRFLzwwgtB6+bOnYuxY8di4MCBuPnmm/H000/jueeeC/LchDJv3jzU1tYG/srKyjQ/Gy56PDt6RJdqolqz6cNaepHvBEUOAWBwTopwfehLw09haRXeXL9HcyZcr+GJOnVcsafD7xVQE4qWVtZr9iBbt6saNy7eoHkPZOnDwnXbKoTr777kTKFQVBQukt3/3141wBYRqln9i1FxrJnjyrYVPbOi9PBze6QI9yvqek8IcQ7Xe3b8hs7u3bvxySefBHl11BgxYgSOHz+OXbt2oW/fvqqfiYuLQ1xcnB3DlXp2Kg4fNSy6NJM+/EONeKab36UTSlV+5Avy09Ej1biRtfzbA8L1ol5gY87MEJ5vOx8w+LGPVIWi72/Z12qfpyOqGL3ORHkAWfHGqgbt0JssXOTz+VCQn66Zuj6wR4ot4RM9QnIRRsWxZrxCom3zMxJQUqFt0HxRWqW57wv7Zgq1QFY01ySEWI+rPTt+Q6ekpAQff/wx0tPTpdsUFRWhXbt2yMzMjMAIWyOb+XXpLDay/CmxWkXUjKYPyxLIRSnRZqrvytLlO8ep29v+95PonERC0UMNxqvkmmnVKfOC+b0Rap47PeEiWeq61r7NYlSgfDpGxmUmZVpr2ynDewq3k5VaWDZbvWjostmjpWPyMm7q9UVIuDjq2amvr8f27dsD/9+5cyeKioqQlpaGbt264Sc/+Qk2bdqE999/HydOnEB5eTkAIC0tDR06dEBhYSG+/PJLjBs3DomJiSgsLMScOXNw3XXXITXVGXeybOY3oHuycPujzSc0C8MlJ8QKZ8laadoAkC2pRryjUv0HbO2OKvx4ULZwWxH9uonPVyuEdrrwVe18ZULRjM4dDI/5/Px0wx60MWdmGvZGyGYelXVNurqPW40ZgbJe1DL1AHMp06JSC4+9r73diHzxpConPQGbH5qAz0oqsWlPdasxRxtW9PqKdH8yQkJx1NjZsGEDxo0bF/j/3LlzAQDTp0/HI488gmXLlgEAzj333KDtVq5cibFjxyIuLg5vvPEGHnnkETQ1NaFXr16YM2dOYD9OsWz2aFy5YI1qeGX7QXFNmwUrt+O7fcEGwOniVz9q4keRFmjG6DyDZwOUSwTMImTiZhGidGmZUPS4oiCpYwzqjh5vtS6pYwzOzUkVGiSy9GHRuscn9cePQ+5/UnyMtBCiTJAru5Z2Vee1syqwqGZNTvqp8KkZsW/otmbDcn4u6JMR1UaOH9Hvyum/SWq4rSkqabs4auyMHTtWWJtFVrdlyJAh+OKLL6welmlEM7/mFvErTa0FgpqeJ3QmLCvAdsMFvQyfT1ai8b5aWSZ6cokEqLIxZSfH46ysRKxT0eaclZUoNWZkHoXFs4Zj9bYKbC5r7Y14cOlW1B0JNrLqjhzHA0u3Cl8OMlGt3hCZ1dhZoE9Ws8YuZOUfyEnMtt0wYyh5GXqy3IfrBcpexuqZ366qBrTztX5BpCbE4v6J/YTbygTKIsxoWCrqxF6hPpmdUVrZEHbIJ1MSljve0qJq6AAns7FkNXr8qHkURLPVqoYm2wToZoTiZrCrKrDemjV2wIrC+jDj1XOqP5mT0JPlXlwtUPY6ainRZsS+eemdNGfCv/ngW8nWxttxmzF2qhq0dUQA8PPhObakJcvO1y8ENyKaFc1WzfZkEglyI9Hvyci4/IQrYNVTs8Zu7BBzRxNmvHpOPq9OYaYPHLEXenZsQKRDMGNdrttZpTkTVtOmnI6Z44oEu70zOmFbhbYOKaOz2AMzpGcqVhYfFH7GCN1TxMc1GnoxGy6UHdfvcVALkel98VjdHuP0cWkJ443MZlmzxv2Y8eq5tSmqXbRFT5aXoGfHBq58Xt378l/PrzFVBVkrI0YPMpFxv27qzVP9gk2tmf3FZ4tT/I8rLTi3h3pG1uAeyXj6oxJbulqfUE6+cNuH5Gq39/kwpk+GcUGtjj5iI3urZ/PoEb/WNB7DtIXrMO2l9fjj8hL8YuE6TFu4DrWNzYEXj9Y5pSbEYtrCdbjo6VWYsWg9xv3h08C2MvzHlW2r5gkxOpv1Zy6qwZo17sFo+r/seY22F39b9GR5CRo7FrOquAK1R9RfLrVHmlFZJ27YKKJPZmfD20qFwhpicP9i/8x+5d1jsWjGMKy8eywWzxqO83uJ03SH5KZiV5X6j8D2ygZhtWFROETPrNGO0Iue45qpSSMzHETnZMaFbnRbWbVp2XVtqzVrvITWd1+PBsVMnSSv0dY8WV6DYSyLWVnc2o15Oma8MyckbqF+3RLxnUoZ/IL8dGRKjJ3vytVDUaF1VEIFu7K6Qi0tCmo0jL/DTeLQmxU9l6wOveRndBZWMVYUxXBNGr1ucK3aMUZd6Ga2NZuW3tZq1ngZI+n/bUkIbpeQn1gDPTsWk9ZJPNsxLhMGqiVi33oN3Y7PZ66v1unuVzXRtWh2LhOhijh9JqTmgdE7a1QrYWDGC2Km2rTIlR3OtqHhpEgdNxSrZrMX9MnAHRefSUMnSmkrQvC25MnyGvTsWMwgiejy/Px0vLP5B0P7TpdUBVbrMQWcrK7r+0+cXG3WMaRnimbTTODkC0skuk6Mj8GA7ilB3oEB3VOQFB8rrYdzZtdO2FHRqDkTknlgRLNGrW3vmtDHlBdEVMX45gvzhedrpnmlG7eVebqi/eVmF6zTcgovXYu25MnyGvTsWIxMgJyRFKcp2uvfXdzkNFQXEQ67qhrw+KRzkBQfbN8mxcfgmZ+eKxXVioq/ibwksno4s0bnq47JX23YaId4ALjl1U2tjJrVJZW4752vhWMy4wUxI4zOz+gsFOzKtjUqjDZzXEDs6SLhoVco3hbw8rVoK54sL0Fjx2JkFzSmnU/T1SlrJzA4x3gqbl56Jzy49BvNyr4iUa2s+JtIoCorKvjqF7s1x2RG/Crq56Smazods14Qo67s0sp64XWWiX2NCqPNHFfm6WLTyPBgnZZT8FoQK2EYy2L21Ypf7nurj2g2A81LF/fs6SHpIC6i7FCjMHSjRWFpFc7KUk9L10O5xNj5WtAe48udh4TbisSvsm37ZHZCaaV2+MwMRl3ZZqvVGhVGmzmunX2z2hqs03IKXgtiNYY9O8ePH8fHH3+Mv/71rzh8+ORMed++faivFze6jH7E02gfxDMW0ezcTPXlzWXGq9GmdjLeQdyMN0p2LcXiV/G2Px/eU5f3JVQYHY6YV9bbLZRwtDNmxmXmuFZuaxXhlg9wK3rvYbScrwjWrCFWY8izs3v3blx66aXYs2cPmpqa8KMf/QiJiYn43e9+h6amJrz44otWj9MztJPkW1XVi3snaVFYWoVbxvY2PK5uEu2MiCsGZWPhmlLUHmmd7ZUcH4NBPbQ7iI85M8OwMPr8/C6GUzlHSOr/jD0rEzNG9zIkbhaRly4XVWuhJ3XVzLjMHNeObc0SbX2IZIZjWkIHTFu4LmrOV4QbjGgSXRjy7Nxxxx0YOnQoqqurER9/KrRy1VVXYcWKFZYNzovIKhWXVBr3fJkRKGckdhSKUGWi2r5d1cXTfbsmSTUqWuv/MW2Y9LhmqrfqEexqCQm1vG9Pf1QiHbMZrYHsfM2My8xx/aiVHnAq3dbLmg4174ys4vDTH23z7PmGS1urvkzsx5Bn57PPPsPatWvRoUNweCMvLw8//GAsrTpakKVa98kwXgX5mx9qDW/77Q91QhHqLy/Mx9c/1AR9xp8VVVpZj3W71DUw63Ydwq4qsQGnCEJKj0/qjx8vWKN6XMBcKucLU8/Dba9vVp0Ji5DpBZbNHgUAQZ/xv9zNag1E18rMuGTIrrOo9EBOekLE0229qumQeaOemzK41TM76owuuGvCmfjxgs9b7c/t52sGrWvBmjXECIaMnZaWFpw4caLV8r179yIx0biYNRqQpVqf3T1ZWHFYyyABgO0mvEIlleIMpEeXfaOaWn7X20W4ZdwZwm3v+9+v8V158P5Xl1Tiltc2YsmN5+PGxRtahatWl1TixsXr0TE2RjMba/Gs4YFlkazeKtMLVDUe09zvJok2SibYFXkrZozOMzwuvWhdZ1Hpgc0PTRBuawdeFUaL7q+/BYPaPVxZXCHcr1vP1wysWUOsxFAYa8KECXj22WcD//f5fKivr8fDDz+Myy67zKqxeRLZBa08fFToYRFxRNLZXMTIfLGGRatz+bpd1a1cyaGEGjp+1u6owuptlZq6nHW7qk31VdJLuDUv9OoF1PZrRmsgS7VvL6lbIxpX6HHCEbjKSg98JtCa2YUbNB3hXsdwSimE3kOrzteL4mbWrCFWYMiz8/TTT+OSSy7B2WefjaNHj+LnP/85SkpK0KVLF7z++utWj9FTyIoK7pekpouok/SS6hTXHg1NrT1uKfGx+NmwXLy9ca+q4dE9pSN+qNEe15a9NZoi1PyMTijRMJQA4L8LdwnHLMKp2apZwa6ofIBoW70FC42KgY0KemUtPzbtqY54mwcvCqOd9EZFm5ibkHAx5Nnp0aMHvvrqKzzwwAOYM2cOBg8ejCeffBKbN29GZmam1WP0FLIZmJlU7NEhItBQ8jV+KP3d0rcdUDdKKg+LO7EfrD+mKUKdMjxXuG29xEATIeuN5UdNNKsXrf2aEd0aLe5ndyd3o4LecyUtUIbkmikvYBwrhNFGPB1Gr6MZ74zZVGwvi7kJsQLDRQVjYmIwdepUTJ061crxEAGXDczGyuJKbNjd2jvTPztJtUAfAKzfXY031+9BrUb38WMnxG/hc7KTNOPnpZX1eOx97W0nDe6OwlJxgT8RohlpzZFjQtGsH7XeOrKZrlG9gJnifnZ2cq9qEJc8EI1L1tneqeadZjQdRj0dZoTRZrxRVoRHjYyZkGjBkGfnlVdewQcffBD4/z333IOUlBSMHDkSu3fvtmxwXkQ2AzNT3G9XVQO+L1c3aHZIxMtaL2A9dEmMC/w7NH6en9EZQ3uqz+yH9UzFNcNykRyv/vLo1KG98Li7qhqEM1KRaBYQ99bRO9MNVy9gdgau11uhNi7ROZkdl6izvdMY0XQY9XRE6v6GYiYVmwX6CDHo2fntb3+LF154AQBQWFiI559/Hs8++yzef/99zJkzB++8846lg/QSFbJ2EVXGqyBX1B1FvYomBwCONIvVQmZS3mXixw4x6jZz7H+Wv3/raFwZkl6emhCL56cMwdSFX2rut73PZ6gAo180+/fVO1VfaDcsXq+qXbJipmtWSGrGoyS6Vjdc0EvXuLQ6TOekJ2DzQxPw1vo9WFtahVG9u+CnQ3Ok49JLJDtbm/F0OHV/AeOp2G4QcxPiNIaMnbKyMpxxxsl05KVLl+InP/kJbrrpJowaNQpjx461cnyeQ1ZUcG/NEcP7fuXznYa3Te8ch+T4GM0qyGd3S1b1/hTki0W1ehpB9urSCZsfmoDPSiqxaU81huSm4oI+GVglSafdIhHGiljx3QHNF5qoajNgTiian9EZBfnphq7l6YSbxi0XNyvCEEpqQqywOm9o2Gfp5n3451f7TQtcnRDOmhEKWyWMjmQpBSfF3IS4BUNhrM6dO6Oq6uSP+UcffYQf/ehHAICOHTviyBHjL/NoQCbmlImMRVRIhMQiFEBYBVkruzx0uZmeTBf0ycAdF58Z0HjIsnwO1h8TrhfRpXOc/EMamE3j1XstrcSsuFkW1tET9omk2NcMZnqQAc5VjPZjJGznlJibELdgyLPzox/9CDfccAMGDx6Mbdu2BWrrfPPNN8jLy7NyfJ7jwr6ZSImPRY2KGDglPtbUS/i8nmn497cHDG3bPSVeWAVZC793JjUhVnUGfu1wcSgjpp32G15mGF7cLxOllQ2aM9LQis9+UhNiNTvL+xnQPQnf7jtseQp3VUOTLk+XWYyEfUQic1FYZ/W2CuH6r8pq8PRH2yIq9rUbmcfJa8XunBBzE+ImDHl2FixYgIKCAlRWVuJ///d/kZ5+smDdxo0bMWXKFEsH6EX8qd5qywt3GhMKx7QDrh0hTvPu1EH9dibHx5jqqyUSCv9l5XbhtsdbtI/rz/JRw5/lI5qRikSzsnpHv7ywt+GZrp1CYBlaouvv9qkL19WOG+oZkIvqa4TrH1j6tSNiX6PoOa4ej5MXi91FUsxNiJsw5NlJSUnB888/32r5o48+anpAXqe0sh7rVVLDgZMp4LnpYhd6RqdYVDa09lYM7J4itUwbjqm/4muPHEdFnfFihu190JyBb5W8ZEWeHeBklo+aeNmf5SOakSYnxGLzQxOw4JMSrNl+EBf0ycD/+09ri+YWsblzTnYyFs/KtkEInCfc3qwYVOvF03hMXM9IdFxZWCcrSdwCZatKyYNIiH2NIjuuTBiv1+MUSdG1XUTK+xYN14q4G8N1dmpqarBw4UJ89913AIBzzjkHM2fORHKyOHwQ7chmjVq1bvyoGToAsKmsBvtMVF8uN2HsiKoryxB5dgAgMT4GA7qnBP2gDuiegqSQdHU1QWdoc8rC0kP4+2elWDZ7tG5RptVCYDPXSoboxbNhdzUG5yRjc1nrZrEyYbTsWmVKjB0RbuzZJDtfmRdUdk7RFPaxu+pzNF0r4m4MhbE2bNiA3r17449//CMOHTqEQ4cO4ZlnnkHv3r2xadMmq8foKWSzxhzJejHGQ1FmKjebOa5sdq7XRa4mjpTV2bFDlCm7vzINspnQjOzFc/S4ujdLjzBadK1k5yzCzqrAZjBzvlY9017Abu9bNF0r4m4MeXbmzJmDK6+8En//+98RE3NyF8ePH8cNN9yAO++8E6tXr7Z0kF4iP6Oz5gx7SE4yxp6ZgUWf7zK07/PzuwjTmmPbt9OcrY45M0Nz27O7JeLb/dpd0XukJmhue26PFGlWlRZ6XOSawuhhPaTNKS/ok2GLKFPkFRjeK024XzMvB9mL5zuNe6hHGC0LF4r6ffmPobbOrqrAZpGdr9FUbTeLro0QTtp6uKGoaLtWxN0Y9uzce++9AUMHONk+4p577sGGDRssG5xX2fJDa0MHAL76oVYqnBWJjHt16SRMa358Un8kxQfbr0nxMXhiUn8AQNNx9YKETRoeAT/HWxTN42rt049odm5GKPq7fxcLt92055RuympRpsgr4G8Eqobs5S9DVEW3f7Z6WQE/er0kWtdK1O/LaC8wM1WBrULrfI16BaOxWrHsWogqlYuIxmtF3IshYycpKQl79uxptbysrAyJiYm697N69WpcccUVyM7Ohs/nw9KlS4PWK4qChx56CN26dUN8fDzGjx+PkpKSoM8cOnQIU6dORVJSElJSUjBr1izU14tbJ9jJm+v24ISG7XCiBfhWwxDyIxIZr95WKUxrvuutItSFFA2sO3IcDyzditLKemzaU6O67Y5K8Y9KZd1RzeN+V67tEQLMCWP9QtFQDcUJRcFuSSVqM80p/TNOteOuLqnEocZjWDxrOFbePRaLZgzDyrvHYvGs4QGNgdGXvx60Xjx+YbYWpwvFw62XIuv3JesFJsLpmjVa+D0/WvdYi2isViy7Fk40RiUkXAyFsa655hrMmjULf/jDHzBy5EgAwOeff45f/epXYaWeNzQ0YNCgQZg5cyauvvrqVut///vf489//jNeeeUV9OrVC7/+9a9xySWX4Ntvv0XHjidFk1OnTsX+/fuxfPlyNDc3Y8aMGbjpppuwZMkSI6dmmuXfievgfGywTg4AfPK9eFu1LDD/C/q/C433LNsvETf3756E7wzUrJFVG5YJRTvHtVdtn2G2OaVeUaaauNlMI1A9aIVfVkqqUR9vUQyLQWXXQ4RMwOr2mjXhCtijuVqx1vPuRGNUQsLFkGfnD3/4A66++mpMmzYNeXl5yMvLw/XXX4+f/OQn+N3vfqd7PxMnTsTjjz+Oq666qtU6RVHw7LPP4sEHH8SPf/xjDBw4EIsXL8a+ffsCHqDvvvsOH374If7xj39gxIgRGD16NJ577jm88cYb2Ldvn5FTM01Oarz4AybK6KZ3Ml6QsKza+AtrcE6KcP1vrxqga3a+qrgCf1qxDZ+d9uMoCsvJZn5/+8VQW5pTmplxRso1Hxp+0TNmu2bgsuPqwUzNGrdV9nWrt8oOnGqMSki4GPLsdOjQAX/6058wf/587NixAwDQu3dvJCSYyTQKZufOnSgvL8f48eMDy5KTkzFixAgUFhbi2muvRWFhIVJSUjB06NDAZ8aPH4927drhyy+/VDWiAKCpqQlNTadaL9TViWvFhMNZWWLtxJDcFGmRNi0G5RhP60/pKHa/56bFY8+h1q0+RvZOxxYVsfXprCk5KJydh6aIA/5GoIOFYbm9EgOtU5y+tPVwMTPjdMo1XyZ56azfeciWGXi/bonCWkt7qxttm6G7NW3Z7d4qK3GyMSoh4WDIs1NbW4tDhw4hISEBAwYMwIABA5CQkIBDhw5ZZjiUl5cDALp27Rq0vGvXroF15eXlyMzMDFofExODtLS0wGfUmD9/PpKTkwN/OTnWdW+WNQJNSohFe42r3r7dyZYSaqTEx+KECc3HcUn6eItGyEhRgM93HFRd58fvqdGanWuliP/y1Y3C/dpVuVcPRmecToluZRlxa0vF99DoDHxMH3Gvt9OF4lbj9rRlL1ZYDhernve2cK2Isxgydq699lq88cYbrZa/9dZbuPbaa00Pym7mzZuH2trawF9ZWZll+/5mr9gLsmHnIaGAWa2nFnByuZkqyGd0UW9h4Wdvtfq+C0urkJ0iDs2dk63tcVpVXKGZIq6mtzmd0B/QULb+UKcpIjYb0jAqUAWccc3L+oyNzBcbJXpn4KHXY0S+euaZHzNCcREyEXk44ms3hcC8CENRxAsYCmN9+eWXeOaZZ1otHzt2LB544AHTgwKArKwsAMCBAwfQrVu3wPIDBw7g3HPPDXymoiJYmHn8+HEcOnQosL0acXFxiIszrn8RsUcSevm23LjnS1YF+aysRHyvkh1VkJ+Oc3oYD4HJWlyMEszuZR6Hnmnx2Ft91FAlWxFWVe4NV6AKOOOa9/cZ02qMOjTPGqMj9HrIjmtGKC7CbGVft4bAvAhDUcQLGPLsNDU14fjx1r14mpubceRIa92HEXr16oWsrCysWLEisKyurg5ffvklCgoKAAAFBQWoqanBxo2nwiGffPIJWlpaMGLECEvGES6yGXRXE13PZVWQ42Pbqy7XI/Y1c1yRV0DmcZg3sZ/mrFC2rdExRQqRa17mUTDicRA1RrVTOC06rl2wyrH7YCiKuBlDnp3hw4fjb3/7G5577rmg5S+++CLOO+883fupr6/H9u2numbv3LkTRUVFSEtLQ25uLu688048/vjj6NOnTyD1PDs7G5MmTQIA9OvXD5deeiluvPFGvPjii2hubsatt96Ka6+9FtnZ2UZOzTQX9s3AS2t3aa7PSU3At+XadYB6pHTE/tomzSrIWkLRIT1TsH6Xuj5i7Y4q+Hw+DM9LxTqVzwzPS0NMe59mFVxR9WVZ3yVZe4y+3ZI0Z4WybYf1TMWmPTWeSluVeRTMeBxy0hOw+aEJ+KykEpv2VGNIbmrAsyJrjGrGOBQd1y7MiMhZuZeQtochY+fxxx/H+PHj8dVXX+Hiiy8GAKxYsQLr16/HRx99pHs/GzZswLhx4wL/nzt3LgBg+vTpePnll3HPPfegoaEBN910E2pqajB69Gh8+OGHgRo7APDaa6/h1ltvxcUXX4x27dph8uTJ+POf/2zktCxBFrbZLQlzDcxJQX7GiaAf49Pj389NGYzbXt/cav3PhvXQNHaAkzP34gPqBQCLD9Th7G7qYS7/e0SUIi5Cb7hBUQlZyba9fmQe4jvs1bxWVmB1N2aRR2HxrOHS9Xq4oE9GK2MjP6OzMNxkxbmpHddOtL4LVlQ5dtrYYRdwQqzFkLEzatQoFBYW4qmnnsJbb72F+Ph4DBw4EAsXLkSfPn1072fs2LGqLzk/Pp8Pjz32GB577DHNz6SlpTlWQFCNrERxh+j+3ZLxvcCzM65vJn46NAert1Vic1nrWXLNkWP4+oeaoG2+/qEGvxyTLzxuRe1R1B5pHXoETlZnFhXCk1VuFs2EZeGGtIRYTFu4TtWTIdv27O7JWDwo2xatgB2aDplHYfW2St0eByN9iES9xLzozTCqFXFD5V6t+0ctESH2YMjYAYBzzz0Xr732mpVjiQoyk8XGzuXnZuN/Nv+guf5HZ3fVfPknJ8RqpnHf+vomJMfHolYlmys5PlaaEi9ic5k4fVg0E5aFG57+qEToydATqjAiIpZhhYclFJlHQc911mqMarYKshu8GUbxUpVjmTFjx3NHCDEoUN6zZ4/wry0jmzV+I+mN9bO/rtX8sROlcVc3NqsaOgBQe6RZmsYt4vS+SkbWa6Wm3jWhjzR92O60VjUhsFVpzaHIng09QnCjwlrZF112D6MNp9KlRffPrueOEGLQs5OXlwef4OV54oS4fko0s37nIeH6Fd+JexhtO9D6B83/Y5efYTyj6mD9McPbHm8Rp4DL1hvt5+T3NtiR1iqaYdvlBZF5FEQC9FFndIHyn+cgFD3CWrE8WX4Pow0n0qVlYcwvJb8dXva+EeI0hoydzZuDZ5HNzc3YvHkznnnmGTzxxBOWDMyrFO5U17b4EWmUZKR16mB423QT2+pNPZfpSELDDeFoJ6wOVYlm2I9cebbucYWLTFQrWr/JRDhR77U2I4z1oqjWjhCoFvKGquLfBjeUUyDEqxgydgYNGtRq2dChQ5GdnY2nnnpKtYN5W6GgVzqWbtZuQjq0ZyqKJFWWtYhp1w4p8bGqVZY7xbZHQ7O2R+3c3BSh1wCA0OMgSltPFYiMRToSWddzu15Cshm27z+l7u3QdMg8CqL1ZoS1Mq+S0XsIUFSrF9n9Oz+/i67nzotGpVPwWhE/hjQ7WvTt2xfr16+3cpee45rhuZr6h5h2PiSa+PHfVnEYfTLV2z5kS7qtH29RhDqFxyf1R1J8sO2bFB+DJyb1BwBh2rqZAm0nNMInWsutQE+Yym5Nh6wAm9p6s32IROdk5h6yQJ8+9Nw/0T2qaTyGaQvX4aKnV2HGovUY94dPMW3hOtRq6PjaMrxWJBRDnp3QZp+KomD//v145JFHwko9j1YGZCdhs4r3ZkB2kjQ1XUSfjM6aXqOSCu10duCkoSXyGtz2+mbUhaSm1x05jgeWbsWs0XnCtHWjOpLSynqs26WuU1i365Bt6dB6PCT+a6VVAsApjNaWAbS9RmaK7LFAX3jI7p/oOzpt4TpmaumEWW0kFEPGTkpKSiuBsqIoyMnJUW0Q2pYoraxXNXQAYPPeWpzbU91Dooc0E60mfqg+1cYjVKcge2HlZxh/WYl0JF9K9E1fllbZ8qLUk3rs1tCMFcLa0PtvRpAdzSntdqBIdDl+wv2O0qg8Ba8VUcOQsbNy5cqg/7dr1w4ZGRk444wzEBNjuHRPVCD78S+TihRFGA/tiLaUjTmtk/GXu1hUKU531nu2RuLyshm2FTNDO/UCImFtuMc1owVyQ4E+L2H0uaJRqR9eK6KGIcvkwgsvtHocUYNMBGWmIWc7iXEg4nQdUejLUDbmwbmpmq0GkjrGoO6oeogrlNDjZksKMPaQ6JDMeF9EHhK9M0O3VcE1elwzRfasKtDXFoSkZjwONCr1w2tF1NBt7Cxbtkz3Tq+88kpDg4kGZPVMkiQvu04d2qPhWOusKrNVkPfVHtF8Gf5sWA/htsdbFCybPRpXLlgTZPCkJsTi/on98Kv/3aK5rajq7zVD5ccVYYX3Rc1DIpsZbt1Xi4ff+8Z1VXDNHNeMFsjMtm4NF9qBGY+Dk1WfvQavFVFDt7Hj7zQuw+fztemighW1YoMkxif2o6gZOsDJKshZScbFzUNyUzVfhkeaxZ6ZvPROmp2tSyvFwmhR1d/GY/Lj+gmd+dsZl5fNDBev3YVNu2uClp1eo8cJvYDZ62FGC2Rm27YkJDXrcTBjVLY1eK1IKLqNnZYWmc+CAJB6X2T9j0S0KEByfIxqZlRyfAwUBaohpaSOMeieEq/5Mly/qxrDeqZi054a6Uwo3M7WZYcaNI+7YXc1huWlYtNu7eNqzfxlXiEzcXnRzHBwbopqd3mnq+BapVMwU2Qv3G3bmpDUrMfBiarPXoXXioQSlmbn6NGj+Pjjj/Ff//VfAIB58+ahqanp1M5iYvDYY4+hY0fjHgivc26PFOH6xibjXi8fgL5dk1TTtft2TcL35VrFChXpy/D6kXmI77A37JmQvLlljXD99JF5iI/VPq4VXiEjaM0MrxnaAxt2iwxWZ6rgelGn0BaFpFZ4HCJZ9dnr8FoRP2EZOy+//DI++OCDgLHz/PPP45xzzkF8/Ekh6ffff4+srCzMnTvX+pF6hBzJS0cmyhVumxIvrEujRd3RE6isE3uczu6ejMWDsqV1ZULDSfLmlinC9edkJ2PxrGys3laBzWU1QccVzfz1eIX0oCWMFdWkEaG3Cq7VeFGn4EUDzSz0OBDiDGEZO6+99hruueeeoGVLlixBfn4+AODVV1/FggUL2rSxI5utHpfM/HNS41F2Wk0cPyN7p7fqhhwO++uOmmoXIBKSamVqpSbEYsyZmYaPK7uWMq+QCL3C2NCZoR6jwim9wD2XnolJCw4GOZd8PuC+S/vaelyjeNFAswp6HAiJLGG1i9i+fTsGDBgQ+H/Hjh3Rrt2pXQwfPhzffvutdaPzILLZakGvdOH6By7vhzEhHpUxfTLwwtTzTPX2yE6ON9UuQGv9rFfWqxo6AFDd2IydB8WtF0THlV3Lk16h4Vh591gsmjEMK+8ei8WzhuvK4jHT4kDWSsI/exeNq7SyHiuLK7DzYOsu90b5xcJ1rTLYjrcomLrwS8uOIcLIOdndloMQQoAwPTs1NTVBGp3KyuAQQ0tLS9D6tkh+RmcMzk3B5j01rdYNyU3BNcNz8eSH32t6Qs7PT8eSL8tU921GIt4lMc5wu4DV2yqF4SQRft2FkePuVfFwqRFpYazeUITauOxKtV5VXCE0Oj8rqbSt3YVd9Y4IIcQqwnIW9OjRA1u3btVcv2XLFvToIc6SaQts0RDlfvWf5ctmj0ZqyEsgNSEWy2aPNuXpEHG6/iG0yaRcZGw8g8zO4+6q0udBCPU46BHGam17OrJmnmrY1TSzaG+NcP2mPcbvoQwrzsnItSSEEL2E5dm57LLL8NBDD+Hyyy9vlXF15MgRPProo7j88sstHaDXeHPdHpzQkNacUIC3N5ThR2d3xYDuKUEz4QHdU3Co8ZjQ4+Dz+VCQn47C0tY9pc7qmojvNTqTA8De6kbD1VlDuzSHcmbXTthR0Ri27kIubk4VrpcJWLU8DndNEDerzUu3pzeWnanWsizAIbnia2mUtpY+TgjxJmF5du6//34cOnQIffv2xVNPPYX33nsP7733Hn7/+9+jb9++qK6uxv3332/XWD1BoaS55ec7DmrOhB9492vhtruqGqBldzRIUrFFM/v8jM6tPE1+UhNipcLoi/t1NaS78AtUQ42p9j4fxvTJwJgzM4TrZS9Rrev89Ecl0v3a4YEJx6MULhf2zRTeQ7tCWHaeEyGEWEVYnp2uXbti7dq1uOWWW3DfffdB+c9L0Ofz4Uc/+hH+8pe/oGvXrrYM1CsU9ErH0s37NNf3yeyMpzZva7X8hKJg67464b7b+3xYu0PdmFLL4Dqd7GTtPlOllfVCvYescvPI3l1w76X9DOkuZJlLRjObZB6HZbNHAYDqfu3yVtidaq3V0mPZ7NGm9iuiLaaPE0K8R9iNQHv16oUPP/wQhw4dwvbt2wEAZ5xxBtLS0iwfnBe5ZnguHli6VbWvU0w7H87OTja87301+gS7apQL6uzIZueZSR2F6eV+r4GRdFqZQFUx2Olddk5Vjcc0j7tJh1bIiLFjd6p1YnyMang0Kd6+HlNtOX2cEOIdDGczp6WlYfjw4Rg+fDgNnRCWzR4V1GUcOGnoLJs9ypTI2HiVHeBQ/THNdXpm5yJRtRVoCVSNhpP0ehzUjmunt8KqVGs14bRd4mcZTB8nhLidsD07RE52ajxG9u4SNMMe2bsLuqcmoKrBeGp+9xTj1ZczEuM01+VndNYUPhfkpwd6VEXaa2AmnGTG42Cnt8JsqrVIdO2UUJjp44QQt2OmTh3RQDTDloVX+ndP0hTOamV56aFZ0shVS/jsX+6E18Cs+NWMx8Fub4XRVGtNcftS7ZIQQGSEwkwfJ4S4FXp2LEbmjRjeS5wCfHn/LPxQfSRIH5MUH4MnJvWXGiwiTk89Du0HVVpZryl8XrujSlhU0E6vgdlwkhmPg93eCq2eXLJttO7D1h/E4nYKhQkhbRkaOxYj80ZslzSSfGN9GeqOBKeR1x05jgeWbsXiWcOF4ZUte2tQc6S1iDgl/qSIWCsEcs1QcSFIPcX97DB2rAonmelDZHUPIzP1e6RewewkfLf/MIXChBASAsNYFiPzRqQldBCu333oSKu6Nqd7UEThlT6ZnVX36V+uFQJZtHaXcExmi/uZwe5wkh09qkSYCQfKnq3fXjWAQmFCCFGBnp0I02Kic/muqgbNwnG7quqxXqNP1frd1Vi9rULY32pYXio27a5R9Qr4i/s5kV5sVzjJrh5VIszW75F5ugbmpFAoTAghKtCzYzGyUENaJ7FnR0ReunZlX5lAdbNGvy4/00fmCb0CTqcXWy1+9aLgGtB3HygUJoSQYOjZsRhZqOGKQd2x6PNdmgX6BnRP0Zy5K//xAISiR6A6OCdFuP6c7GQsnpWt6RVwc3pxuGLfSPVzCh2XFfV7jBZZJISQtozrPTt5eXnw+Xyt/mbPng0AGDt2bKt1N998s2PjlfV76tVFXKBPNHOXeQY6x7VXXZ6aEIsxZ2bq6jMl8wq4yWtQ03gM0xauw0VPr8KMResx7g+fYtrCdajVaH3hx+5+TlrjSu8UZ6rXF+Bc4UBCCPEyrjd21q9fj/379wf+li9fDgD46U9/GvjMjTfeGPSZ3//+904NF4A81JCTnoDND03Aryb0RUF+Gu65pC82PzQBOekJAQ/K4pnDMedHffDfs4Zj8azhSE6IlXoG6ptOqC6vbmyWipu9iN3Vle0Yl5l74PdIiQTshBBCWuP6MFZGRnC35ieffBK9e/fGhRdeGFiWkJCArKws3ftsampCU9OpSsZ1deIQULjIQj67qxowacHngVBWYekh/P2zUiybPRqJ8TGawlmRQLVfdqIwlOVPD3drKCpcnKqubHZcu6rEpQdE6PFIefV+EkKInbjes3M6x44dw6uvvoqZM2fCd1oo4LXXXkOXLl3Qv39/zJs3D42N4pfC/PnzkZycHPjLycmxZbyKRubV6YaOn+rGZly5YI3UW6HlGXhiUn/hWE73VohCUZFOxTaKk9WVzYzrgXe32pZ6zsKBhBCijus9O6ezdOlS1NTU4Prrrw8s+/nPf46ePXsiOzsbW7Zswb333ovi4mK88847mvuZN28e5s6dG/h/XV2dpQaPKK25qKxaVZwMnDR49HgrtLwzsv5WRsdsVyq2GZysrmxmXFv3tfa+WZV6Tq8OIYSo4yljZ+HChZg4cSKys7MDy2666abAvwcMGIBu3brh4osvxo4dO9C7d2/V/cTFxSEuTrsxpllE3pnz8lIM7/f0MIVaZV9ZfysRojEvnjXc0HjtxA3VlbXGNbJ3umr7jX5Zifiu/LDmtnrCUM9NGYzbXt8cZJR6WXdFCCGRwDPGzu7du/Hxxx8LPTYAMGLECADA9u3bNY0dO5FpNi4fqF9bFIrIWyHrb3W610CtN5ZTHbPN4NYXv1bdyLgYcdRYTxjKzSUACCHErXjG2Fm0aBEyMzNx+eWXCz9XVFQEAOjWrVsERtUamWYjM6kjkjrGoO7o8VbrkjrG4NycVEPeCj0altSEWNVQ1c+GiXtjuVX46sYXf2llvWooEQCK9tYKK1WHM3arPVKEEBLNeMLYaWlpwaJFizB9+nTExJwa8o4dO7BkyRJcdtllSE9Px5YtWzBnzhyMGTMGAwcOdGSsZrUkRr0Veo6rFao60tza8ApnzE7jphe/zOicPjIP8bF7XeeNIoSQaMYTxs7HH3+MPXv2YObMmUHLO3TogI8//hjPPvssGhoakJOTg8mTJ+PBBx90aKRy1pVWqXp1AKDu6HFs+aHGkLdCpmERVV9ev6saw3qmYtMe8x6Hto7M6JRVqiaEEGI9njB2JkyYoJrGnZOTg1WrVjkwIm1kM/vCneohDj+b9lTjgv9U0w33JSjyCm0qU28S6uf6kXmI70CPg1n0Cqfd5I0ihJBoxxPGjpeQzewLeqVj6eZ9muuH5KYCCL/fE3BKw7J6WwU2l9VgSG4qLuiToWtcZ3dPxuJB9DhYgVuF005j5JkmhBAroLFjMbKZ/TXDc/Hkh98LGoEmY9rCdYbq3Yhq5dDjEDncKJx2Eq/VcCKERB+eqqDsFWTVeUWNQM00ejRafbmtexzswk1NUyOBVvVtNi8lhDgNPTs2IJvZ+xuBflZSiU17qgPhJjP1bvRuS48DsRqR56aqocmTNZwIIdEFjR0bkYWELuiTEdDUAOYaPYazLUNVxEpEnpsZo/OE27q1hhMhJLpgGMtFmKnRwyaRxE8km7n6PYonQrIl/Z6b9pJeJXwuCSGRgJ4dF2Gm3xObRBInhMAyj+IJReFzSQhxHHp2XIYZETEFyG0bJ4TAejyKfC4JIU7jU9Sq9bUx6urqkJycjNraWiQlJTk9HAAwJSKmALntUVpZj4ue1i6wufLusbY9C9MWrtP03CyeNTywjM8lIcRq9L6/GcZyKWZExBQgtz3MiNvNoreIIp9LQohT0NghxIOEViN2UqDOIoqEELdDY4cQDyESITstBKbnhhDiVihQJsRDiETITguBI5nyTggh4UDPDiEeQVYl+1DjMUfCSex9RQhxO/TsEOIR9IiQgcj35GLvK0KI26GxQ4hHcGOVbFkFZYa0CCFugMYOIR7BXyU7tAVDe58PY/pkOCIO1uttIoQQJ6GxQ4iHcFqEHIobvU2EEBIKBcqEeAi31bRhTzZCiBegZ4cQD+KmLi9u8zaRtgVLHhA90LPjIKFVcAmR4cY0b7d5m0jbwI3fBeJe2AgUkW8Eyi8pMYreppuERDv8LhBA//ubYSwHYF0SYgSmeRNyEn4XSLjQ2Ikw/JISozDNm5CT8LtAwoXGToThl5QYhWnehJyE3wUSLjR2Igy/pMQobiwqSIgT8LtAwoXGToThl5SYgWnehJyE3wUSDszGQuSzsWobm3Hb65uZjUUMwzRvQk7C70LbRu/7m8YOIm/s+OGXlBBCCDGO3vc3iwo6SK8uNHIIIYQQu6FmhxBCCCFRjauNnUceeQQ+ny/o76yzzgqsP3r0KGbPno309HR07twZkydPxoEDBxwcMSGEEELchquNHQA455xzsH///sDfmjVrAuvmzJmDf/7zn3j77bexatUq7Nu3D1dffbWDoyWEEEKI23C9ZicmJgZZWVmtltfW1mLhwoVYsmQJLrroIgDAokWL0K9fP3zxxRc4//zzIz1UQgghhLgQ13t2SkpKkJ2djfz8fEydOhV79uwBAGzcuBHNzc0YP3584LNnnXUWcnNzUVhYKNxnU1MT6urqgv4IIYQQEp242tgZMWIEXn75ZXz44Yd44YUXsHPnTlxwwQU4fPgwysvL0aFDB6SkpARt07VrV5SXlwv3O3/+fCQnJwf+cnJybDwLQgghhDiJq8NYEydODPx74MCBGDFiBHr27Im33noL8fHxhvc7b948zJ07N/D/uro6GjyEEEJIlOJqz04oKSkpOPPMM7F9+3ZkZWXh2LFjqKmpCfrMgQMHVDU+pxMXF4ekpKSgP0IIIYREJ54ydurr67Fjxw5069YN5513HmJjY7FixYrA+uLiYuzZswcFBQUOjpIQQgghbsLVYay7774bV1xxBXr27Il9+/bh4YcfRvv27TFlyhQkJydj1qxZmDt3LtLS0pCUlITbbrsNBQUFzMQihBBCSABXGzt79+7FlClTUFVVhYyMDIwePRpffPEFMjIyAAB//OMf0a5dO0yePBlNTU245JJL8Je//MXhURNCCCHETbARKJxrBErcT2llPXYfamSzVkIIcSFsBEqICWoaj+H214uwuqQysGxMnww8N2UwkhNiHRwZIYSQcPGUQJmQSHH760X4fPvBoGWfbz+I217f7NCICCGEGIXGDiEhlFbWY3VJJU6ERHhPKApWl1Ri58EGh0ZGCCHECDR2CAlh96FG4fpdVTR2CCHES9DYISSEnmkJwvV56RQqE0KIl6CxQ0gI+RmdMaZPBtr7fEHL2/t8GNMng1lZhBDiMWjsEKLCc1MGY9QZXYKWjTqjC56bMtihERFCCDEKU88JUSE5IRaLZw3HzoMN2FXVwDo7hBDiYWjsECKgVxcaOYQQ4nUYxiKEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRjauNnfnz52PYsGFITExEZmYmJk2ahOLi4qDPjB07Fj6fL+jv5ptvdmjEhBBCCHEbrjZ2Vq1ahdmzZ+OLL77A8uXL0dzcjAkTJqChoSHoczfeeCP2798f+Pv973/v0IgJIYQQ4jZinB6AiA8//DDo/y+//DIyMzOxceNGjBkzJrA8ISEBWVlZkR4eIYQQQjyAqz07odTW1gIA0tLSgpa/9tpr6NKlC/r374958+ahsbFRuJ+mpibU1dUF/RFCCCEkOnG1Z+d0WlpacOedd2LUqFHo379/YPnPf/5z9OzZE9nZ2diyZQvuvfdeFBcX45133tHc1/z58/Hoo49GYtiEEEIIcRifoiiK04PQwy233IJ//etfWLNmDXr06KH5uU8++QQXX3wxtm/fjt69e6t+pqmpCU1NTYH/19XVIScnB7W1tUhKSrJ87IQQQgixnrq6OiQnJ0vf357w7Nx66614//33sXr1aqGhAwAjRowAAKGxExcXh7i4OMvHSQghhBD34WpjR1EU3HbbbXj33Xfx6aefolevXtJtioqKAADdunWzeXSEEEII8QKuNnZmz56NJUuW4L333kNiYiLKy8sBAMnJyYiPj8eOHTuwZMkSXHbZZUhPT8eWLVswZ84cjBkzBgMHDnR49IQQQghxA67W7Ph8PtXlixYtwvXXX4+ysjJcd9112Lp1KxoaGpCTk4OrrroKDz74YFjaG70xP0IIIYS4h6jQ7MjssJycHKxatSpCoyGEEEKIF/FUnR1CCCGEkHChsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKimqgxdhYsWIC8vDx07NgRI0aMwLp165weEkor67GyuAI7Dzaorl9VXIE/rdiGz0oqIzwyYgWy+xutxyaEEK8R4/QArODNN9/E3Llz8eKLL2LEiBF49tlncckll6C4uBiZmZkRH09N4zHc/noRVp9mxIzpk4HnpgxGckIsdlc1YNKCz1Hd2BxYn5oQi2WzRyMnPSHi4yXhIbu/0XpsQgjxKlHh2XnmmWdw4403YsaMGTj77LPx4osvIiEhAS+99JIj47n99SJ8vv1g0LLPtx/Eba9vBoBWhg4AVDc248oFayI2RmIc2f2N1mMTQohX8byxc+zYMWzcuBHjx48PLGvXrh3Gjx+PwsJC1W2amppQV1cX9GcVpZX1WF1SiROKErT8hKJgdUkl3ly/p5Wh46e6sZkhLZcju792hpWcPDYhhHgZzxs7Bw8exIkTJ9C1a9eg5V27dkV5ebnqNvPnz0dycnLgLycnx7Lx7D7UKFxfWFolXL9pT7VlYyHWI7u/u6rsMzicPDYhhHgZzxs7Rpg3bx5qa2sDf2VlZZbtu2eaWHNTkJ8uXD8kN9WysRDrkd3fvPROUXlsQgjxMp43drp06YL27dvjwIEDQcsPHDiArKws1W3i4uKQlJQU9GcV+RmdMaZPBtr7fEHL2/t8GNMnA9cMy0WqhpA0NSEWF/TJsGwsxHpk97dXF/sMDiePTQghXsbzxk6HDh1w3nnnYcWKFYFlLS0tWLFiBQoKChwZ03NTBmPUGV2Clo06owuemzIYALBs9uhWBo8/G4u4H9n9jdZjE0KIV/EpSoja0YO8+eabmD59Ov76179i+PDhePbZZ/HWW2/h+++/b6XlUaOurg7Jycmora211Muz82ADdlU1IC+9k+qs+7OSSmzaU40huan06HgQ2f2N1mMTQohb0Pv+jgpjBwCef/55PPXUUygvL8e5556LP//5zxgxYoSube0ydgghhBBiH23O2DEDjR1CCCHEe+h9f3tes0MIIYQQIoLGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqCbG6QG4AX8R6bq6OodHQgghhBC9+N/bsmYQNHYAHD58GACQk5Pj8EgIIYQQEi6HDx9GcnKy5nr2xgLQ0tKCffv2ITExET6fL6xt6+rqkJOTg7KyMvbVksBrpR9eK/3wWumH10o/vFbh4dT1UhQFhw8fRnZ2Ntq101bm0LMDoF27dujRo4epfSQlJfELoRNeK/3wWumH10o/vFb64bUKDyeul8ij44cCZUIIIYRENTR2CCGEEBLV0NgxSVxcHB5++GHExcU5PRTXw2ulH14r/fBa6YfXSj+8VuHh9utFgTIhhBBCohp6dgghhBAS1dDYIYQQQkhUQ2OHEEIIIVENjR1CCCGERDU0dnQwf/58DBs2DImJicjMzMSkSZNQXFwc9JmjR49i9uzZSE9PR+fOnTF58mQcOHDAoRE7xwsvvICBAwcGCksVFBTgX//6V2A9r5M2Tz75JHw+H+68887AMl6vkzzyyCPw+XxBf2eddVZgPa9TMD/88AOuu+46pKenIz4+HgMGDMCGDRsC6xVFwUMPPYRu3bohPj4e48ePR0lJiYMjdo68vLxWz5bP58Ps2bMB8Nk6nRMnTuDXv/41evXqhfj4ePTu3Ru/+c1vgvpSufbZUoiUSy65RFm0aJGydetWpaioSLnsssuU3Nxcpb6+PvCZm2++WcnJyVFWrFihbNiwQTn//POVkSNHOjhqZ1i2bJnywQcfKNu2bVOKi4uV+++/X4mNjVW2bt2qKAqvkxbr1q1T8vLylIEDByp33HFHYDmv10kefvhh5ZxzzlH2798f+KusrAys53U6xaFDh5SePXsq119/vfLll18qpaWlyr///W9l+/btgc88+eSTSnJysrJ06VLlq6++Uq688kqlV69eypEjRxwcuTNUVFQEPVfLly9XACgrV65UFIXP1uk88cQTSnp6uvL+++8rO3fuVN5++22lc+fOyp/+9KfAZ9z6bNHYMUBFRYUCQFm1apWiKIpSU1OjxMbGKm+//XbgM999950CQCksLHRqmK4hNTVV+cc//sHrpMHhw4eVPn36KMuXL1cuvPDCgLHD63WKhx9+WBk0aJDqOl6nYO69915l9OjRmutbWlqUrKws5amnngosq6mpUeLi4pTXX389EkN0NXfccYfSu3dvpaWlhc9WCJdffrkyc+bMoGVXX321MnXqVEVR3P1sMYxlgNraWgBAWloaAGDjxo1obm7G+PHjA58566yzkJubi8LCQkfG6AZOnDiBN954Aw0NDSgoKOB10mD27Nm4/PLLg64LwOcqlJKSEmRnZyM/Px9Tp07Fnj17APA6hbJs2TIMHToUP/3pT5GZmYnBgwfj73//e2D9zp07UV5eHnS9kpOTMWLEiDZ5vU7n2LFjePXVVzFz5kz4fD4+WyGMHDkSK1aswLZt2wAAX331FdasWYOJEycCcPezxUagYdLS0oI777wTo0aNQv/+/QEA5eXl6NChA1JSUoI+27VrV5SXlzswSmf5+uuvUVBQgKNHj6Jz58549913cfbZZ6OoqIjXKYQ33ngDmzZtwvr161ut43N1ihEjRuDll19G3759sX//fjz66KO44IILsHXrVl6nEEpLS/HCCy9g7ty5uP/++7F+/Xrcfvvt6NChA6ZPnx64Jl27dg3arq1er9NZunQpampqcP311wPgdzCU++67D3V1dTjrrLPQvn17nDhxAk888QSmTp0KAK5+tmjshMns2bOxdetWrFmzxumhuJa+ffuiqKgItbW1+J//+R9Mnz4dq1atcnpYrqOsrAx33HEHli9fjo4dOzo9HFfjnzkCwMCBAzFixAj07NkTb731FuLj4x0cmftoaWnB0KFD8dvf/hYAMHjwYGzduhUvvvgipk+f7vDo3M3ChQsxceJEZGdnOz0UV/LWW2/htddew5IlS3DOOeegqKgId955J7Kzs13/bDGMFQa33nor3n//faxcuRI9evQILM/KysKxY8dQU1MT9PkDBw4gKysrwqN0ng4dOuCMM87Aeeedh/nz52PQoEH405/+xOsUwsaNG1FRUYEhQ4YgJiYGMTExWLVqFf785z8jJiYGXbt25fXSICUlBWeeeSa2b9/O5yqEbt264eyzzw5a1q9fv0DYz39NQjOK2ur18rN79258/PHHuOGGGwLL+GwF86tf/Qr33Xcfrr32WgwYMAC/+MUvMGfOHMyfPx+Au58tGjs6UBQFt956K95991188skn6NWrV9D68847D7GxsVixYkVgWXFxMfbs2YOCgoJID9d1tLS0oKmpidcphIsvvhhff/01ioqKAn9Dhw7F1KlTA//m9VKnvr4eO3bsQLdu3fhchTBq1KhWpTG2bduGnj17AgB69eqFrKysoOtVV1eHL7/8sk1eLz+LFi1CZmYmLr/88sAyPlvBNDY2ol27YLOhffv2aGlpAeDyZ8tRebRHuOWWW5Tk5GTl008/DUpRbGxsDHzm5ptvVnJzc5VPPvlE2bBhg1JQUKAUFBQ4OGpnuO+++5RVq1YpO3fuVLZs2aLcd999is/nUz766CNFUXidZJyejaUovF5+7rrrLuXTTz9Vdu7cqXz++efK+PHjlS5duigVFRWKovA6nc66deuUmJgY5YknnlBKSkqU1157TUlISFBeffXVwGeefPJJJSUlRXnvvfeULVu2KD/+8Y9dkR7sFCdOnFByc3OVe++9t9U6PlunmD59utK9e/dA6vk777yjdOnSRbnnnnsCn3Hrs0VjRwcAVP8WLVoU+MyRI0eU//f//p+SmpqqJCQkKFdddZWyf/9+5wbtEDNnzlR69uypdOjQQcnIyFAuvvjigKGjKLxOMkKNHV6vk1xzzTVKt27dlA4dOijdu3dXrrnmmqC6MbxOwfzzn/9U+vfvr8TFxSlnnXWW8re//S1ofUtLi/LrX/9a6dq1qxIXF6dcfPHFSnFxsUOjdZ5///vfCgDVa8Bn6xR1dXXKHXfcoeTm5iodO3ZU8vPzlQceeEBpamoKfMatz5ZPUU4rfUgIIYQQEmVQs0MIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiHEkxQWFqJ9+/ZBjRsJIUQNtosghHiSG264AZ07d8bChQtRXFyM7Oxsp4dECHEp9OwQQjxHfX093nzzTdxyyy24/PLL8fLLLwetX7ZsGfr06YOOHTti3LhxeOWVV+Dz+VBTUxP4zJo1a3DBBRcgPj4eOTk5uP3229HQ0BDZEyGERAQaO4QQz/HWW2/hrLPOQt++fXHdddfhpZdegt9JvXPnTvzkJz/BpEmT8NVXX+GXv/wlHnjggaDtd+zYgUsvvRSTJ0/Gli1b8Oabb2LNmjW49dZbnTgdQojNMIxFCPEco0aNws9+9jPccccdOH78OLp164a3334bY8eOxX333YcPPvgAX3/9deDzDz74IJ544glUV1cjJSUFN9xwA9q3b4+//vWvgc+sWbMGF154IRoaGtCxY0cnTosQYhP07BBCPEVxcTHWrVuHKVOmAABiYmJwzTXXYOHChYH1w4YNC9pm+PDhQf//6quv8PLLL6Nz586Bv0suuQQtLS3YuXNnZE6EEBIxYpweACGEhMPChQtx/PjxIEGyoiiIi4vD888/r2sf9fX1+OUvf4nbb7+91brc3FzLxkoIcQc0dgghnuH48eNYvHgxnn76aUyYMCFo3aRJk/D666+jb9+++L//+7+gdevXrw/6/5AhQ/Dtt9/ijDPOsH3MhBDnoWaHEOIZli5dimuuuQYVFRVITk4OWnfvvffik08+wVtvvYW+fftizpw5mDVrFoqKinDXXXdh7969qKmpQXJyMrZs2YLzzz8fM2fOxA033IBOnTrh22+/xfLly3V7hwgh3oGaHUKIZ1i4cCHGjx/fytABgMmTJ2PDhg04fPgw/ud//gfvvPMOBg4ciBdeeCGQjRUXFwcAGDhwIFatWoVt27bhggsuwODBg/HQQw+xVg8hUQo9O4SQqOeJJ57Aiy++iLKyMqeHQghxAGp2CCFRx1/+8hcMGzYM6enp+Pzzz/HUU0+xhg4hbRgaO4SQqKOkpASPP/44Dh06hNzcXNx1112YN2+e08MihDgEw1iEEEIIiWooUCaEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtX8fyJ+ivEoOgNXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x=\"Age\", y=\"Glucose\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGrCAYAAACVJgNuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/VElEQVR4nO3dd3xT5eIG8OckTdp0D7optJS9ZVUcoIiouHCAIAqKCipernpVHNeLOH/XiQNRcIAIKIiouC5DQECQDWVaKIUuuvdKmry/PyqV2pauJO/JyfP9fPqRnpwkT9OaJ+ec97xHEUIIEBERqYxOdgAiIqKGsKCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoMiu7rrrLsTGxkp57pSUFCiKgtdff13K8zeHzWZD79698dJLL8mO4rLGjx+PcePGyY5BTsCComZZuHAhFEWp/fLy8kLXrl3x0EMPISsry+HPv2/fPtxxxx2IiYmBp6cngoODMXLkSHz66aewWq0Of/6G/Pjjj3juuedadJ9ly5YhNTUVDz30UL3bDh06hDvuuAPR0dHw9PREVFQUJk6ciEOHDrUp58svv4xvvvmmTY+hJjNnzsTKlSuxf/9+2VHI0QRRM3z66acCgHj++efF4sWLxYIFC8TkyZOFTqcTcXFxoqysTAghhNlsFpWVlXZ97gULFgi9Xi+ioqLEzJkzxUcffSTeeustcd111wlFUcRLL70khBDi5MmTAoB47bXX7Pr8jZk+fbpo6f9C/fr1E1OnTq23fOXKlcJoNIqIiAjxzDPPiI8++kj8+9//FpGRkcJoNIqvv/661Tl9fHzE5MmTW31/NRoyZIi48847ZccgB2NBUbOcLaidO3fWWf7oo48KAGLp0qUOed5t27YJvV4vLrnkElFcXFzv9p07d4pPP/1UCOG8giotLRVCtLyg9uzZIwCIdevW1Vl+/Phx4e3tLbp37y6ys7Pr3JaTkyO6d+8ufHx8xIkTJ1qVV4sF9frrrwsfHx9RUlIiOwo5EHfxUZuMGDECAHDy5EkADR+DstlsmDNnDnr16gUvLy+Eh4dj2rRpKCgoaPLxZ8+eDUVRsGTJEvj5+dW7fdCgQbjrrrvqLZ8/fz7i4+Ph6emJwYMHY+fOnXVuP3DgAO666y506tQJXl5eiIiIwJQpU5CXl1dnveeeew6KouDw4cO4/fbbERQUhEsuuQR33XUX5s6dCwB1dn2ezzfffAOj0Yhhw4bVWf7aa6+hvLwc8+fPR2hoaJ3b2rVrhw8//BBlZWV49dVXa5c3dqzvbN6zFEVBWVkZFi1aVJvx3NcrPT0d99xzD6KiouDp6Ym4uDg88MADMJvNteskJydj7NixCA4Ohre3Ny688EL88MMPdZ5348aNUBQFy5cvx+zZsxEdHQ0/Pz/ceuutKCoqQlVVFR5++GGEhYXB19cXd999N6qqqurl//zzzzFw4ECYTCYEBwdj/PjxSE1NrbfelVdeibKyMqxdu7bhF5s0wUN2AHJtJ06cAACEhIQ0us60adOwcOFC3H333ZgxYwZOnjyJ9957D3v37sXWrVthMBgavF95eTnWr1+PYcOGoUOHDs3OtHTpUpSUlGDatGlQFAWvvvoqbr75ZiQnJ9c+19q1a5GcnIy7774bEREROHToEObPn49Dhw5h+/bt9cpm7Nix6NKlC15++WUIIXDBBRcgIyMDa9euxeLFi5uV67fffkPv3r3r/byrV69GbGwsLr300gbvN2zYMMTGxtYrheZYvHgx7r33XgwZMgRTp04FAMTHxwMAMjIyMGTIEBQWFmLq1Kno3r070tPT8dVXX6G8vBxGoxFZWVm46KKLUF5ejhkzZiAkJASLFi3CDTfcgK+++go33XRTned75ZVXYDKZ8OSTT+L48eN49913YTAYoNPpUFBQgOeeew7bt2/HwoULERcXh//85z+1933ppZfw7LPPYty4cbj33nuRk5ODd999F8OGDcPevXsRGBhYu27Pnj1hMpmwdevWehlIQ2RvwpFrOLuLb926dSInJ0ekpqaKL774QoSEhAiTySTS0tKEEEJMnjxZdOzYsfZ+mzdvFgDEkiVL6jzezz//3ODyc+3fv18AEP/85z+blfHsLr6QkBCRn59fu/zbb78VAMTq1atrl5WXl9e7/7JlywQA8euvv9YumzVrlgAgJkyYUG/9lu7ia9++vbjlllvqLCssLBQAxI033nje+95www0CQO1uzr+/zn/Pe67GdvFNmjRJ6HS6ertthRDCZrMJIYR4+OGHBQCxefPm2ttKSkpEXFyciI2NFVarVQghxIYNGwQA0bt3b2E2m2vXnTBhglAURVxzzTV1Hn/o0KF18qekpAi9Xl97PPGsxMRE4eHhUW+5EEJ07dq13uOStnAXH7XIyJEjERoaipiYGIwfPx6+vr5YtWoVoqOjG1x/xYoVCAgIwJVXXonc3Nzar4EDB8LX1xcbNmxo9LmKi4sBoMFde+dz2223ISgoqPb7s1smycnJtctMJlPtvysrK5Gbm4sLL7wQALBnz556j3n//fe3KEND8vLy6uQCgJKSEgBN/4xnbz/7mrSVzWbDN998g+uvvx6DBg2qd/vZLcgff/wRQ4YMwSWXXFJ7m6+vL6ZOnYqUlBQcPny4zv0mTZpUZwsxISEBQghMmTKlznoJCQlITU1FdXU1AODrr7+GzWbDuHHj6vydREREoEuXLg3+nQQFBSE3N7f1LwKpHnfxUYvMnTsXXbt2hYeHB8LDw9GtWzfodI1/zklKSkJRURHCwsIavD07O7vR+/r7+wP46028uf6+O/BsKZx7zCs/Px+zZ8/GF198US9DUVFRvceMi4trUYbGiL9dwPps8TT1Mza3yJorJycHxcXF6N2793nXO3XqFBISEuot79GjR+3t5z7G31/7gIAAAEBMTEy95TabDUVFRQgJCUFSUhKEEOjSpUuDORraDSyEaPK4H7k2FhS1yJAhQxr8xN0Ym82GsLAwLFmypMHb/z4o4FydO3eGh4cHEhMTW5RRr9c3uPzcchg3bhx+++03PP744+jfvz98fX1hs9lw9dVXw2az1bvvuVtcrRUSElJvYEhAQAAiIyNx4MCB8973wIEDiI6Ori3txt6YZZ0TdlZjr31TvxObzQZFUfDTTz81uK6vr2+9ZQUFBY0WGmkDC4ocKj4+HuvWrcPFF1/c4jd5b29vjBgxAr/88gtSU1PrfQpvrYKCAqxfvx6zZ8+uc5A+KSmpRY/T0k/v3bt3rx3teK7rrrsOCxYswJYtW+rsSjtr8+bNSElJwbRp02qXBQUFobCwsN66p06dalbO0NBQ+Pv74+DBg+fN3LFjRxw7dqze8qNHj9bebg/x8fEQQiAuLg5du3Ztcv3q6mqkpqbihhtusMvzkzrxGBQ51Lhx42C1WvHCCy/Uu626urrBN9lzzZo1C0II3HnnnSgtLa13++7du7Fo0aIWZTr7Cf3vu9vmzJnTosfx8fEBgCZ/hrOGDh2KgwcP1hte/fjjj8NkMmHatGn1hrnn5+fj/vvvh7e3Nx5//PHa5fHx8SgqKqqz5ZWZmYlVq1Y1mPPvGXU6HcaMGYPVq1dj165d9e5z9rUZPXo0duzYgW3bttXeVlZWhvnz5yM2NhY9e/Zs1s/elJtvvhl6vR6zZ8+u93sRQtR7XQ4fPozKykpcdNFFdnl+UiduQZFDDR8+HNOmTcMrr7yCffv2YdSoUTAYDEhKSsKKFSvw9ttv49Zbb230/hdddBHmzp2LBx98EN27d8edd96JLl26oKSkBBs3bsR3332HF198sUWZ/P39MWzYMLz66quwWCyIjo7GmjVrGty6OZ+BAwcCAGbMmIGrrroKer0e48ePb3T9G2+8ES+88AI2bdqEUaNG1S7v0qULFi1ahIkTJ6JPnz645557EBcXh5SUFHz88cfIzc3FsmXLaoeHAzXz0c2cORM33XQTZsyYgfLycsybNw9du3atN8hj4MCBWLduHd58801ERUUhLi4OCQkJePnll7FmzRoMHz4cU6dORY8ePZCZmYkVK1Zgy5YtCAwMxJNPPolly5bhmmuuwYwZMxAcHIxFixbh5MmTWLly5XmPP7ZEfHw8XnzxRTz11FNISUnBmDFj4Ofnh5MnT2LVqlWYOnUqHnvssdr1165dC29vb1x55ZV2eX5SKTmDB8nVNDaTxN81Nvx5/vz5YuDAgcJkMgk/Pz/Rp08f8cQTT4iMjIxmPf/u3bvF7bffLqKiooTBYBBBQUHiiiuuEIsWLaod6ny+mSQAiFmzZtV+n5aWJm666SYRGBgoAgICxNixY0VGRka99c4O287Jyan3mNXV1eIf//iHCA0NFYqiNGvIed++fcU999zT4G0HDhwQEyZMEJGRkcJgMIiIiAgxYcIEkZiY2OD6a9asEb179xZGo1F069ZNfP755w0OMz969KgYNmyYMJlMAkCdIeenTp0SkyZNEqGhocLT01N06tRJTJ8+XVRVVdWuc+LECXHrrbeKwMBA4eXlJYYMGSK+//77Os9xdpj5ihUr6ixv7O+msdd15cqV4pJLLhE+Pj7Cx8dHdO/eXUyfPl0cO3asznoJCQnijjvuaPB1Ie1QhPjb9jQROczixYsxffp0nD59us6Jp9R8+/btw4ABA7Bnzx70799fdhxyIBYUkRPZbDb07dsXEyZMwDPPPCM7jksaP348bDYbli9fLjsKORgLioiIVImj+IiISJVYUEREpEosKCIiUiUWFBERqRILioiIVIkFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoIiISJVYUEREpEosKCIiUiUWFBERqRILioiIVIkFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFDUbHPnzkVsbCy8vLyQkJCAHTt2yI5ERBrGgqJm+fLLL/Hoo49i1qxZ2LNnD/r164errroK2dnZsqMRkUYpQgghOwSpX0JCAgYPHoz33nsPAGCz2RATE4N//OMfePLJJyWnk6/SYkVOSRVyS6tQWlUNc7Wt5stqQ9XZf//5vbnaBovVBkVRYNQrMHroYNTrYPTQw2TUwdvoAR+jB7w99fDz9ECIryeCfYyyf0Qip/OQHYDUz2w2Y/fu3Xjqqadql+l0OowcORLbtm2TmMw5zhRV4kROKVLzy5FTUoWc0poiyi0x1/y7pAolVdUOzWD00CHU1xPh/p4I9/dCuL8Xwvw9EebnhXB/T0QGmNAxxBsGPXeKkHawoKhJubm5sFqtCA8Pr7M8PDwcR48elZTKvszVNqTkleFEdilO5JTiRE4ZTuSUIjmnDKUOLp/m5ksvrEB6YUWj6xj0CmJDfNA13A9dwn3RJcwPXcN9EdvOh8VFLokFRW7HahM4klmMvacLsOd0IfanFeJUXjmsNtfe222xCiRllyIpuxRI/Gv5ucXVM8ofgzoGoV9MILwMenlhiZqBBUVNateuHfR6PbKysuosz8rKQkREhKRUzZdXWoW9pwux53QB9pwuwIG0IpSbrbJjOc25xfVDYiYAwKjXoVe0PwbHBmNgxyAMjg3mcS5SHRYUNcloNGLgwIFYv349xowZA6BmkMT69evx0EMPyQ3XgJJKC7Yk5WLjsRxsP5mHU3nlsiOpjtlqw97Thdh7urB2Wad2PhgUG4RBscEY3jUU4f5e8gISgaP4qJm+/PJLTJ48GR9++CGGDBmCOXPmYPny5Th69Gi9Y1MyJGWVYMOxbGw4moNdp/JhsfLPui0UBegTHYAR3cMwskc4ekcHyI5EbogFRc323nvv4bXXXsOZM2fQv39/vPPOO0hISJCSpdJixbYTefjlaDY2/pGN1PzGBw9Q20X4e2FEjzCM7BGGi+Lb8fgVOQULilyG1Sbwa1IOvtmbjjWHslBhcZ/jSGpiMuhxced2GN0nAtf0joTJyLIix2BBkeodSCvEqr3pWL0/E7mlVbLj0Dl8jHpc0ycStw5sj4S4YCiKIjsSaQgLilQpraAc3+xNx6q96TiRUyY7DjVDTLAJN1/QHrcMaI8OId6y45AGsKBINSxWG35MzMSS7aex81Q++JfpmhQFGNwxGLcMjMa1faPg68nBwtQ6LCiSLr/MjKW/n8Li7aeQVcxdeFri6+mB2wbH4O6LY9E+iFtV1DIsKJLm2JkSfLLlJL7Zl46qapvsOORAep2Cq3tF4N5L43BBhyDZcchFsKDIqWw2gfVHs/Hp1pP47USe7DgkwcCOQbj3kjhc1SsCOh0HVVDjWFDkFBarDV/tTsOHm04ghTM7EIAOwd64++JY3DY4Bt5GHqei+lhQ5FBni2nuhuNIK+DJtFRfiI8RD1wWjzuHdoSnB8+por+woMghrDaBlbvT8O6GJM7yQM0SFeCFGVd0wdhBMdBz1x+BBUV2JoTAj4ln8MbaY0jm+UvUCp3a+eCRK7viur6RPPHXzbGgyG5+/SMHr/7vKA6mF8uOQhrQK8ofj43qhsu7h8mOQpKwoKjNUvPLMXv1Yaw7ktX0ykQtNDg2CM9c2xP9YwJlRyEnY0FRq1VarPhg0wnM23iC5zGRQykKMG5gDGZe050XVnQjLChqlXWHs/D894dxOp9Dxsl5AkwG/GtUV0xM6MiBFG6ABUUtciqvDLNXH8YvR7NlRyE31jvaH6/c1Bd92vNCilrGgqJmqbRY8f6G4/jg12SYuTuPVECvU3DnhR3x2FXdOCGtRrGgqEn7Uwvx6PJ9vOwFqVJkgBeev7E3ruwZLjsK2RkLihpVbbXhnV+O4/0Nx1Ft458Jqdu4Qe0x6/pe8OHWlGawoKhBx7NL8MiX+5GYXiQ7ClGzdQzxxlu39ccAzpiuCSwoqkMIgY+3nMRr/zvGoePkkvQ6BdMv74wZIzrDQ6+THYfagAVFtdIKyvHYiv3YnpwvOwpRm/WLCcSc2/ojrp2P7CjUSiwoAgB8uy8d/151ECVV1bKjENmNt1GPf1/bE7cndJAdhVqBBeXmqq02vPjDESz8LUV2FCKHGdUzHG+M6wc/L4PsKNQCLCg3ll1SiYeW7MWOFO7SI+2LD/XB/EmDEB/qKzsKNRMLyk3tPlWAB5fsRlZxlewoRE7j5+mBOeP744oePGfKFbCg3NBn21LwwveHYbHyV0/uR1GAR0Z2xT9GdOb1plSOBeVGKi1WPL0qEV/vSZcdhUi6q3qF441x/TlNkoqxoNxEZlEF7l20C4cyeDFBorO6hPli/qRBHIquUiwoN/BHVgkmf7IDmUWVsqMQqY6/lwfmThyAS7uEyo5Cf8OC0rjfk/Nw32e7UFzJ85uIGmPQK3hjXH/c0C9KdhQ6BwtKw35KzMQ/v9zHy2MQNYOiALOu64m7Lo6THYX+xILSqM+2peC57w6Bk5ATtcw/RnTGv0Z1kx2DwILSpFd/Por3N56QHYPIZU0Y0gEvjekNHS8rLxULSkOqrTbMXJmIlXvSZEchcnlX94rA2xP6w9NDLzuK22JBaYTFasP0JXuw5nCW7ChEmnFhp2AsmDSIc/hJwoLSgGqrDf9Ythc/HTwjOwqR5vRrH4DP701gSUnAq3m5OKtN4OEv97GciBxkf1oR7v50J8rNPFXD2VhQLsxmE3h0+T58fyBTdhQiTdt1qgD3LtqFSotVdhS3woJyUTabwGNf7ce3+zJkRyFyC7+dyMP9n+/meYVOxIJyQUIIPPn1AU76SuRkG4/l4KGle1BtZUk5AwvKxQgh8PSqRCzfxaHkRDKsOZyFR5bvh41nwTscC8rF/N/PR7FsR6rsGERubfX+DDyx8gA4CNqxWFAuZMnvp/DhpmTZMYgIwFe70/DiD0dkx9A0FpSL2HgsG//59pDsGER0jo+3nMSS30/JjqFZLCgXcDijGA8t3Qsr93kTqc6sbw9hc1KO7BiaxIJSuTNFlZiycCdKq3iSIJEaVdsEHlyyB8ezS2RH0RwWlIqVVVVjysKdOFPMK+ESqVlJZTWmLNyF/DKz7CiawoJSKatNYPrSPTicWSw7ChE1w+n8ckz9bBeqqjnbhL2woFTq+dWHsPEY92sTuZJdpwow86sDsmNoBgtKhb7dl45F2zgyiMgVfbMvA++uT5IdQxNYUCpzPLsUT3+dKDsGEbXBW+v+wNbjubJjuDwWlIpUmK14cMlulJm5D5vIldkE8M8v9iGnpEp2FJfGglKRZ75JxB9ZpbJjEJEd5JZW4eEv93LOvjZgQanElztPc3ZyIo3ZejwP7204LjuGy2JBqcCRzGLM+o7TGBFp0dvrk/B7cp7sGC6JBSVZaVU1pi/Zg0oLry9DpEVWm8CML/byJN5WYEFJ9syqRCTnlsmOQUQOlFVchUe+3MfLc7QQC0qiHw5k8pLtRG5i0x85mP8rL5fTEopgpUuRW1qFUW/96vab/dUluSjcuBAVybshqqvgERiJkNEPwzOyCwAg94e3UHZwfZ37eMUNQPi45xt9zMrUgyj+fSXMWSdgLc1H6E3PwLvr0DrrFP3+NYp3rAQABCTcAv8hN9feVpVxDPlr3kfEpDeh6PT2+lGJ4Omhw4//vBTxob6yo7gED9kB3NVTXye6fTlZK0tx5vMn4NWhL8LGPgeddwCqCzKg86r7P69X3EC0G/3wXws8DOd9XGGuhCGsE3z7XomcVS/Xu92cfRJFW5Yg9Nb/AEIgZ+Xz8IobAGNoLITNirz/zUXI1Q+xnMjuqqpteHLlASyfNhSKosiOo3osKAlW7U3D2sNZsmNIV7z9K3j4t0O7ax+uXWYIjKi3nuJhgN43qNmPa4ofBFP8oEZvt+SlwRAaC1PHfjXPGRoLS14ajKGxKP59JbxiesEzsmvzfxCiFtiZUoDF209h0tBY2VFUjwXlZLmlVXh+9WHZMVSh4vjv8IobgJxvXkFl6kHofUPgd8Fo+PW/us56lacTkfruROi8fOHVoS8Ch90Jvcm/1c9rDI1FdUE6qouzAQFU56fD2K4jLAWZKE1ch8jJc9r4kxGd36s/H8MVPcIRHWiSHUXVWFBONuu7Qygot8iOoQqWwjOw7P0R/oPHIHzoOFRlJqFg/XwoegN8+1wBADDFDYB314vgERiO6oJMFP76GbJXzELEHa+3ehecoV0MAodNQtaXzwIAAodPhqFdDLK+eAZBl92NipN7ULR1KaDzQPDIqfCK6W23n5kIqDm95JlViVh49xDZUVSNBeVEaw9n4YcDmbJjqIcQ8IzojKDhkwEAxvB4WHJPoWTfj7UF5dNzeO3qxtBYGMLikPHhvag8nQhTbP9WP7XfBaPhd8Ho2u9LE9dDMZrgGd0d6QvuR+SkN2EtyUPud68ietrHUJo47kXUUhuP5eDrPWm4eUB72VFUi8PMnaS0qhrPfnNQdgxV0fsGwdCuQ51lhpAYWIsbvw6WITACOpM/qgvtV/TW8iIUbV2K4JH3oyrjDxiCo2AIjoZXx74Q1mpYCjgFFTnGC98fRm4pJ5RtDAvKSd79JYmXbv8bz+iesOSn1VlmyU+Hh39Yo/epLs6FraIEep9gu+Uo+OUj+A0eAw//doCwQljPmU3eZgVsnOWDHKOg3ILnOM1Zo1hQTnAqrwyfbkmRHUN1/AffiKqMYyjathyWggyUHd6I0v0/w3fAtQAAm7kCBRs+QVX6UVQXZaEiZR9yvn4BHkGRMMUNqH2crC+eRvHu1bXf28wVMGclw5xVc1JkdVEWzFnJNYMi/qbi5F5Y8tPh9+dzGiO6ojo/DRUndqFk38+ATg+P4GhHvgzk5r4/kInfeO2oBvEYlBO8/OMRmK38FP53npFdEXrTMyjctAiFW5fBIyAcQSPug2+vy2tWUHQwZ59E6cH1sFWWQe8bDFPcBQi89I46x4QsBWfgWVFc+735TBKylj1d+33BLx8BAHx6X4F21z5Su9xmqUL+ug8QesNMKErNZzUP/3YIGjkNuT/NgaI3IOTaR6AzeDryZSDC898fxg8zLoVex3OjzsWZJBzstxO5uH3B77JjEJHKvTCmN+68sKPsGKrCXXwOZLUJnvNERM3y1to/UMRTUOpgQTnQFztP4+iZEtkxiMgF5JeZ8c4vSbJjqAoLykGKKy14c80fsmMQkQtZvO0UUvPLZcdQDRaUg7y7Pgl5bj4ZLBG1jNlqw+trjsmOoRosKAdIL6zAot9OyY5BRC7ou/0ZOJheJDuGKrCgHOD9Dcc5rJyIWkUI4P9+Oio7hiqwoOzsTFElVuxOa3pFIqJGbDmei72nC2THkI4FZWcfbDoBczW3noiobeZuOC47gnQsKDvKLqnEsh2nZccgIg1YfzQbRzKLm15Rw1hQdvThpmRUceuJiOxACG5FsaDsJLe0Ckt/59YTEdnPj4mZOJlbJjuGNCwoO1nwazIqLNamVyQiaiabAOZtdN+tKBaUHRSUmfH5dp73RET2t2pvOtILK2THkIIFZQdLfj+FMjO3nojI/ixWgfmbTsiOIQULqo2sNsFjT0TkUF/sTEWBG06dxoJqo3VHspBRxEu5E5HjVFXbsHKP+00AwIJqIx57IiJncMc9NSyoNjiZW4Ytx3NlxyAiN5CcW4bfTrjX+w0Lqg0+334KQshOQUTuwt22olhQrVRpseIrTgpLRE605lAW8kqrZMdwGhZUK323LwNFFRbZMYjIjZitNre6WgILqpUWc3AEEUmwbMdpCDc5tsCCaoWjZ4qRyCteEpEEp/LKsfV4nuwYTsGCaoXV+zNkRyAiN7Zsp3sMlmBBtcL3BzJlRyAiN/bLkWxUuMH0aiyoFjqQVohTeeWyYxCRG6uwWPHL0WzZMRyOBdVC3L1HRGrwY6L29+SwoFpACIEfuHuPiFRgw7FsVGr8GnQsqBbYfaqAE8MSkSqUm63YoPHdfCyoFuDgCCJSkx80vpuPBdVMNpvQ/B8DEbmWDUe1vZuPBdVMu04VIKfEfebAIiL1KzNbsfFYjuwYDsOCaqZf/9DuHwERuS4tj+ZjQTXT5iQWFBGpz69JObDZtDk3HwuqGQrLzZx7j4hUqbDcgsOZxbJjOAQLqhm2Hs+DRj+gEJEGaPVKuyyoZuDuPSJSM63Obs6CaobNSdr8dEJE2rAzJR8Wq012DLtjQTUhOacU6YUVsmMQETWq3GzF3tOFsmPYHQuqCdx6IiJXsPW49t6rWFBNYEERkSvQ4kAJFlQT9pwukB2BiKhJ+1ILUW6ulh3DrlhQ55GaX478MrPsGERETbJYBXaf0tYHahbUeRxI48m5ROQ6tDahAAvqPA6kF8qOQETUbIfStTWjBAvqPA6kauvTCBFp28EMbb1nsaAaIYTQ3C+biLTtdH45SiotsmPYDQuqESdzy1BSqa0RMUSkbUIAhzK0s5uPBdUIDpAgIld0UEMDJVhQjWBBEZErOswtKO3j8ScickVaeu9iQTUiJbdMdgQiohY7kVOGSotVdgy7YEE1oMJsRXZJlewYREQtZrUJnNTIB2wWVANO5Wvjl0tE7ik1v1x2BLtgQTUgJVcbv1wick+pBdq4hh0LqgGnuQVFRC6MW1AalpKnjV8uEbmntAJtvIexoBpwmgVFRC4sNZ+7+DSLgySIyJWluvMW1IgRI1BYWFhveXFxMUaMGNHWTFJZrDZkFFbKjkFE1GrlZivySl3/VJlWFdTGjRthNte/0mxlZSU2b97c5lAynSmqhNUmZMcgImoTLYzk82jJygcOHKj99+HDh3HmzJna761WK37++WdER0fbL50EORr41EFElFZQjv4xgbJjtEmLCqp///5QFAWKojS4K89kMuHdd9+1WzgZ8kvrbxkSEbma/DLXfy9rUUGdPHkSQgh06tQJO3bsQGhoaO1tRqMRYWFh0Ov1dg/pTHll3IIiItdXVO76Fy5sUUF17NgRAGCz2RwSRg1yuQVFRBpQrIEr67aooM6VlJSEDRs2IDs7u15h/ec//2lzMFkKy1lQROT6iirctKAWLFiABx54AO3atUNERAQURam9TVEUly4oLfxSiYiKK6plR2izVhXUiy++iJdeegkzZ860dx7ptPBLJSLSwoftVp0HVVBQgLFjx9o7iypoYb8tEZEW3staVVBjx47FmjVr7J1FFbTwqYOISAsF1apdfJ07d8azzz6L7du3o0+fPjAYDHVunzFjhl3CyVChkUslE5F708Iwc0UI0eJ5feLi4hp/QEVBcnJym0LJdNlrG3i5DSJyeToFSH7lWtkx2qRVW1AnT560dw7V4DR8RKQFNgFYbQJ6ndL0yirFy238ja3lG5RERKrk6u9nrdqCmjJlynlv/+STT1oVRg1s3IQiIo2w2gQMLjz7XKsKqqCgoM73FosFBw8eRGFhoctfD4r9RERa4ZZbUKtWraq3zGaz4YEHHkB8fHybQ8nk6r9QUr9oryq8HrMNAP/WyLE8xBVow4x20rVqFF9jjh07hssuuwyZmZn2ekinG/TiWk4YSw71W/xniEr/WXYMcgdPZwJGb9kpWs2ugyROnDiB6mrXniqIu/jIkf7b6QDLiZxH58IHoNDKbb9HH320zvdCCGRmZuKHH37A5MmT7RJMFu7iI0e5JLgI43Jd+4Ke5GIU1x6o3aqC2rt3b53vdTodQkND8cYbbzQ5wk/tDHrX/oWSOpn0Vsz3ngclt0x2FHInihtuQW3YsMHeOVTDz9MDOSW8qi7Z15L49fA+fUB2DHI3Otf+wN2m4R05OTk4duwYAKBbt251LgHvqny9XHfEC6nTPdGpuCD1M9kxyN0Y/WQnaLNW1WtZWRmmTJmCyMhIDBs2DMOGDUNUVBTuuecelJe79jx2vp4sKLKfDqZKPF01B4qwNb0ykT2ZgmQnaLNWFdSjjz6KTZs2YfXq1SgsLERhYSG+/fZbbNq0Cf/617/sndGpWFBkT8ujlkFf6rqnXZALMwXITtBmrXo3XrlyJb766itcdtlltctGjx4Nk8mEcePGYd68efbK53TcxUf28mb8XkSkr5Udg9yVu25BlZeXIzw8vN7ysLAwl9/F58ctKLKD4SEFuCl7ruwY5M68AmUnaLNWFdTQoUMxa9YsVFZW1i6rqKjA7NmzMXToULuFk4FbUNRWPnobPvCaB8Xi2h/WyMVpYAuqVe/Gc+bMwdVXX4327dujX79+AID9+/fD09PT5S8F7+tpaHolovNY2ul/MKUelB2D3J27FlSfPn2QlJSEJUuW4OjRowCACRMmYOLEiTCZTHYN6GzcgqK2eCDmFPqmfi47BhFgCpSdoM1a9W78yiuvIDw8HPfdd1+d5Z988glycnIwc+ZMu4STIczPU3YEclGdvCvxWPkcKJylnNRAA1tQrToG9eGHH6J79+71lvfq1QsffPBBm0PJFB3o2luAJM8XEUugL8uSHYOohrsW1JkzZxAZGVlveWhoqEtfagNgQVHrvNN5N8Iy1suOQfQX73ayE7RZqwoqJiYGW7durbd869atiIqKanMomYJ8jPA2uvYEi+RcV4Tk4/oz78uOQVRXUKzsBG3WqmNQ9913Hx5++GFYLJbaS7yvX78eTzzxhMvPJAEAUYEmHM8ulR2DXICPhxVzPedCKauQHYXoLx5egL9rbywArSyoxx9/HHl5eXjwwQdhNtdcfdbLywszZ87EU089ZdeAMrCgqLm+jPsJXqlHZMcgqisoFlAU2SnarFUFpSgK/vvf/+LZZ5/FkSNHYDKZ0KVLF3h6amMEXHSgl+wI5AIeiklBr9RlsmMQ1RfcSXYCu2jTST++vr4YPHiwvbKoBgdKUFO6+FTg0bK3OKSc1CkoTnYCu3Dtq1k5SBQLiprwRdhn0JXnyI5B1LBgFpRmxQR7y45AKvZ+550IydwkOwZR41hQ2tU13PWvREmOcXVoHq4547qXkyE3wV182hVgMvA4FNXj51GNtz3eg1Jd2fTKRLLoPIDAjrJT2AULqhE9IrkVRXWtiPsBngXHZMcgOr+A9oBeG5Nes6Aa0SPSX3YEUpFHOiSje+qXsmMQNS2ij+wEdsOCakRPFhT9qbtvOf5RMkd2DKLmiR4oO4HdsKAawS0oAgBFEVjabiF0FbmyoxA1T9QA2QnshgXViI4h3vDhpLFu78P43xF8ZovsGETNpABRF8gOYTcsqEYoioJuERwo4c6uC83FlZmufX0zcjPtugBe2tn7w4I6D+7mc18Bhmq86fEuFKtZdhSi5tPQ8SeABXVe/doHyo5AkqyIXQ1jQZLsGEQto6HjTwAL6rwSOgXLjkASPNExCV1TV8iOQdRy3IJyHx1DfBAVwEtvuJNefmW4v/ht2TGIWk5vBCJ6y05hVyyoJlzYKUR2BHISRRFYEvIpdBX5sqMQtVx4L8BDG9fkO4sF1QQWlPv4uPNvCDzzm+wYRK3TYajsBHbHgmoCC8o9jAnPxuXp82XHIGq9zlfITmB3LKgmdAjx5szmGhditOBV5R0oNovsKESt42ECOl4iO4XdsaCagaP5tG15h29hLEyWHYOo9WIvBgzaG9DFgmoG7ubTrqdj/0B82teyYxC1TeeRshM4BAuqGYayoDSpr38p7i2cIzsGUduxoNxXTLA3uvEy8JqiV2z4POhj6CoLZUchapvAjjVz8GkQC6qZruodITsC2dGnnbfCP+t32TGI2k6Do/fOYkE109W9WFBacWtEFi5NXyA7BpF9aHT3HsCCaraeUf7oGOItOwa1UajRglfE21Bs1bKjELWdzgDEDZedwmFYUC1wFbeiXN6KDl/DUJQiOwaRfcRdCnj6yk7hMCyoFmBBubb/xB1BbNq3smMQ2U+fcbITOBQLqgUGdAhEmJ+2JmN0FwMCSnB3/juyYxDZj4cJ6HGd7BQOxYJqAUVRMKpXuOwY1EIGncCigAVQqopkRyGyn27XAJ7aPv2FBdVCV/eKlB2BWmhR/Cb4Ze+SHYPIvvreJjuBw7GgWmhofAjC/bmbz1WMj8zE0LSPZccgsi9TsKbPfzqLBdVCep2CWwa0lx2DmiHC04wXrW9DEVbZUYjsq9dNgN4gO4XDsaBa4bbBMVAU2SmoKStivoJH8WnZMYjsr6+2R++dxYJqhY4hPpxAVuVeiDuEmLTvZccgsr/ADkBMguwUTsGCaqXbBsfIjkCNGBJYjDs4pJy0qs9YuMsuHBZUK13dOwKB3trfB+xqPHU2fOI3H0pViewoRPan6ID+E2WncBoWVCt5euhx0wXRsmPQ33wWvxG+OXtkxyByjC6jgJB42SmchgXVBuMHd5Adgc5xZ1Q6hqR9KjsGkeNc+IDsBE7FgmqDbhF+6B8TKDsGAYj2qsIsyxwOKSftCusJdLpMdgqnYkG10R0XdpQdgQAsj14Oj5J02TGIHCfhftkJnI4F1UY39IvizBKS/V+nRESn/yQ7BpHjeIe4xdRGf8eCaiOjhw53XxwnO4bbujioCLflckg5adzAuwCDl+wUTseCsoPbEzrA19NDdgy346mzYb7vh1DMZbKjEDmOzgAMvld2CilYUHbg72XAeJ6463RL49fDJ2ef7BhEjtXzRsA/SnYKKVhQdnLvpZ1g9ODL6SxTolMxIG2R7BhEjnfhg7ITSMN3VDuJCPDCrQM5y7kztPeqwjNVb0MRNtlRiBwr/gqg/UDZKaRhQdnRA8Pj4aFzjzmyZPoqehn0pRmyYxA53oh/y04gFQvKjmKCvXFDP/fcV+wsr3fah4j0NbJjEDle9+uA6AGyU0jFgrKzh0Z05laUgwwLLsQtOXNlxyByPEXn9ltPAAvK7jqF+mL8EI7oszeT3ooPvOdBsXBIObmB3rcCYT1kp5COBeUAD4/sCh+jXnYMTVnWaS28cxNlxyByPJ0HcPlTslOoAgvKAdr5emLacPeZEt/RprY/jX6pi2XHIHKO/hOB4E6yU6gCC8pB7ru0E8L8OEdfW8WaKjGzYg4UCNlRiBxP7wkMf0J2CtVgQTmIyajHo1d2lR3D5S2PXAJ92RnZMYicY9AUIIDnU57FgnKgsYNi0DXcV3YMlzUnfg/CMtbLjkHkHF4BwLDHZKdQFRaUA+l1Cp68prvsGC5pREgBbszikPKWmLfTjL7zSuH/SjH8XynG0I/L8FOSpd56Qghcs6QMyuxifHO0/u3nyiq14a5vKhD1Rgm8XyrG1Z+XISmv7kUhH/1fJYL/W4yYt0qw5EDdx1txyILrl5W3/YdzB5c/A/i0k51CVVhQDjaieziGdgqRHcOl+HhYMdfrfSjVFbKjuJT2/gr+b6Qndk/1wa6pPhgRq8eNX1TgUHbdQpmz3QwFTZ+rJ4TAmC8rkFxgw7fjvbF3mg86BugwcnE5ysw1xwRXH7NgaaIFa+70wasjvXDv6grkltdMQVVUKfDML1WYO9r9LhPRYuF93HbG8vNhQTnB8zf2glHPl7q5voj7Gaa8Q7JjuJzruxkwuosBXUL06Bqix0tXeMHXCGxP+6ug9p2x4o1tZnxyY9OlkZRvw/Y0K+Zd64XB0Xp0a6fHvOu8UGEBlh2s2VI6kmvDZbF6DIrSY0IfA/w9FZwsqCmvJ9ZW4oFBBnQI4N9+k0a/Buh4asrf8S/HCbqE++H+4Rw22hzTY1LQO3Wp7Bguz2oT+OKgBWUWYGhMzRtfuUXg9pUVmDvaCxG+Tf+vX1Vd818vj7+2tnSKAk8PYMvpmtLrF67HrgwrCioEdmdYUWER6Bysw5bT1dhzxooZCUb7/3Ba0/c2oONQ2SlUiVfZc5LpIzrj+8RMJOdwJoTGxHtX4NFyDilvi8QsK4Z+XIbKasDXCKy6zYSeoTUF9cjPlbgoRo8buxua9Vjd2+nQIUDBU+sr8eF1JvgYgbe2mZFWLJBZWrMb76rOHrijrwGDF5TCZFCwaEzNeg/8UImFN5owb5cF7+4wo523gvnXeaFXGLcS6vAKBEa9JDuFailCCL4bOMnvyXkYv2A7+Io3bFen+WiXsVF2DJdmtgqcLhIoqhT46rAFH+21YNNd3jieb8O/1lRh7zQf+BprtoiU2cVYdZsJY85TWLszrLjnuwrsz7JBrwAjO+mhUxQICPw00afB+8zeWIXCSoG7LzBg1OJyJD7gg+//qMZ7O83YPZWjWuu4/u2ay7lTg1hQTvbU1wewbEeq7Biq817nnbgu7S3ZMTRn5GdliA/SwWRQ8M7vZpw7j7FVADoFuLSDHhvvarhsziqqFDBbBUJ9dEj4qBSDIvWYe62p3npHc624flkF9k7zwSd7zdhy2orlY71RZhbwfaUExU/6wc+TkykDADoMBe7+CVD4ejSGu/ic7MlremDdkWzklFTJjqIao9rl49oz82TH0CSbAKqswOzLjbh3QN0tpT7zyvDWVZ64vmvTu/wCvBQACpLyrNiVYcMLl9cfZCGEwLTvK/HmKE/4GhVYbYDlz2tKnv2vlR+Ha+iNNVtPLKfz4iAJJwswGfDc9b1kx1ANP49qvGN8D0p1pewoLu+pdZX49VQ1UgptSMyy4ql1ldiYYsXEPgZE+OrQO0xf5wsAOgToEBf019tA9/dKserIX+cyrThkwcaU6pqh5kctuHJxOcZ098Co+PqfbT/aY0Got4Lru9UU3sUdPPDLyWpsT6vGW9uq0DNUh0AvviEDAC59DAjtJjuF6nELSoJr+0Zi1d4wrDuSLTuKdF/G/QSv1KOyY2hCdpnApFUVyCwVCPBU0Ddch//d4Y0rGyiTxhzLs6Go6q/NnMxSGx5dY0ZWqUCkn4JJfQ14dnj9OSazSm14aXMVfrvnr12FQ6L1+NdQT1y7tAJhPjUDKAhATAJnjGgmHoOS5ExRJa55+1cUlJ//TH4t+2eHZDySzYuykRvx9Afu3wwExcpO4hK4i0+SiAAvvHprP9kxpOnqU4F/lsyRHYPIuUa/xnJqARaURFf2DMekoR1lx3A6RRFYFrYIuopc2VGInKf3LUC/8bJTuBQWlGRPj+6B7hF+smM41bz4HQjJ/FV2DCLnCYgBrn1TdgqXw4KSzMugx3u3XwCTwT3OsB8dmourMj+QHYPIeRQdcNMHgClQdhKXw4JSgc5hfph1fU/ZMRwuwFCNtzzeg2LlOWDkRi7+JxB7iewULokFpRLjh3TAtX0jZcdwqOWx38Oz4A/ZMYicJ7J/zXWeqFVYUCryys190D5Im+eK/KvDCXRLXS47BpHzeLcDblsM6Js3OS/Vx4JSEX8vA+ZNHAgvg7Z+LT18yzGdQ8rJnegMwLjPgMAOspO4NG29E2pAn/YBeE1D50cpisDSdp9CV5EnOwqR81zzXyD2YtkpXB4LSoWu7xeFGVd0kR3DLhbEb0PQma2yYxA5z6ApwOB7ZKfQBBaUSj0ysgtG94mQHaNNrg/LwRWZ82XHIHKejpcA17wqO4VmsKBUSlEUvDG2P3pH+8uO0ipBhmq8oXsHitUsOwqRcwR2qDnuxEERdsOCUjGTUY+PJg1GmF/92aPVbkXstzAWnpAdg8g5DD7A+GWAT4jsJJrCglK5iAAvzJ80CJ4ervOrerLjH+iculJ2DCInUWpmiojoLTuI5rjOu54b6x8TiNfG9nOJi2/29S/F1KK3Zccgcp5RLwI9b5CdQpNYUC7ihn5Rqr8Sr16xYXHQJ9BVFsiOQuQcw2cCFz0kO4VmsaBcyOSLYvH4Veq9TPTHnX9DQNZ22TGInCPhAeDyp2Wn0DQWlIuZfnln3D88XnaMem4Oz8bw9AWyYxA5R/87gKtfkZ1C81hQLujJa7rjjgvVM4VKqNGC/+IdKDb3vXw9uZEeNwA3vAOXOCjs4lhQLuqFG3vj5guiZccAACzvuAqGomTZMYgcL/4K4JaPAZ17XL9NNhaUi1IUBa+N7YereoVLzfFs3FHEpX4jNQORU8RcCNz2OeBhlJ3EbbCgXJhep+DdCQNwaZd2Up5/QEAppuRzSDm5gch+wMTlgNFbdhK3woJycUYPHT6aPAhX9nTulpResWFhwAIoVUVOfV4ip+twETB5NeAVIDuJ22FBaYCnhx4f3DEQNw9w3jGpRZ03wz97p9Oej0iKLqOAO79mOUnCgtIIvU7BG2P74a6LYh3+XLdFnsHF6R87/HmIpOozFhi/FDBo8yrXrkARQgjZIci+5qz7A3PWJTnkscM8Ldga8B8Yik855PGJVGHwfcDo1ziUXDJuQWnQwyO7Ytb1PR3y/9aKmJUsJ9K2YY8D177OclIBFpRG3X1xHN4Y2w8eOvv9T/Z83GF0TPvObo9HpC4KcNUrwIh/yw5Cf+IuPo1bdzgLM77Yi3KztU2PMyigBCvwGJSqEjslI1IRnQdw/TvABRNlJ6FzsKDcwJHMYtz32S6kFVS06v4GncDe9m/CN3u3nZMRqYApGBi7EOg0XHYS+hvu4nMDPSL98d1DlyAhLrhV918cv5HlRNoU3huYuoHlpFIsKDcR7GPE5/cmYGJCyyaZnRiZgYS0TxyUikiinmOAe9YAQbGyk1AjuIvPDX2+/RRmrz4Ei/X8v/pILzM2+/0bHiVpTkpG5ASKDrj8GWDYY7KTUBNYUG7q9+Q8PLBkD/LLzI2us6XzErRP+8GJqYgczNMfuHkB0O1q2UmoGbiLz00ldArBt9MvRo9I/wZvfzkukeVE2hLSBbjvF5aTC+EWlJurtFjx4g+H8fn207XLhgYVYan1cSjmUonJiOyo+3XAmPc5p56LYUERAODng5mYuTIRlVVV2BP9Onxy9smORNR2Rt+aS7MPmCQ7CbUCC4pqpRdWIPuX93HBgedlRyFqu/ZDgJs/BII7yU5CrcSCorpsVmDLW8DG/wNsFtlpiFpO5wEMe6JmlB4vze7SWFDUsIy9wNdTgdw/ZCchar7g+JpReu0Hyk5CdsCCosZZKoC1s4Ad8wHwz4RUbuBdwFUvA0Yf2UnITlhQ1LTUncD3jwBZibKTENXnFwVc9ybQ7RrZScjOWFDUPDYrsH0esPEVgMPPSQ10BuDC+4HhTwKevrLTkAOwoKhlitKBn54Ajn4vOwm5s9hLgdGvA2HdZSchB2JBUesc+xn46XGg8HTT6xLZi284MOoloO9Y2UnICVhQ1HrmcmDTf4FtczkknRxL0QNDpgKXPw14NTw9F2kPC4raLvsosH42cOxH2UlIi2IuBK59A4joLTsJORkLiuwndQew/nkgZbPsJKQF7boCI/4N9LxRdhKShAVF9nfil5qiytgrOwm5ooAY4LIngX4TOBOEm2NBkeMc/hb45SUg95jsJOQKfMOBix8GBt8DeHjKTkMqwIIix7JZgf1f1MztV8QRf9QA33Dg4n8Cg6YABpPsNKQiLChyjmozcOALYNv7QM4R2WlIDXwjgItnsJioUSwocr4Tv9QU1fF14Bx/bih6IJBwP9DrJkBvkJ2GVIwFRfLkHAO2vw/s/xKorpCdhhxJZwB6jakppvaDZKchF8GCIvnK84FdHwM7PgJKz8hOQ/bkEwYMurtmN55fhOw05GJYUKQe1Wbg0Cpg3+dAyhZA2GQnotaKuuDP3Xg3Ax5G2WnIRbGgSJ2K0oHEFcCBL4Hsw7LTUHMExAC9bwb6jAUi+shOQxrAgiL1yzxQU1SJX3EXoNp4hwA9x9SUUocLAUWRnYg0hAVFrsNmBZI31pTVke8BS5nsRO7J6At0G11TSvEjAL2HU5/+119/xWuvvYbdu3cjMzMTq1atwpgxY5yagZzDuX9ZRG2h0wOdr6j5slQAJzcDSWuA42uBghTZ6bTNOwTodBnQ/Vqg6zWA0VtalLKyMvTr1w9TpkzBzTffLC0HOR63oEgbcpOApLU1hXXqN8BaJTuRa9MZgJghNVtI8SOAyP6ATic7VT2KonALSsO4BUXa0K5LzdfQBwFz2TlbV+uAwlOy07mG4E5A/BU1hRR3KeDpJzsRuTkWFGmP0QfodnXNFwCUnAHSdgHpu4D03UD6XsBcIjejbHrPmusrRV1Q8xV7CRAUKzsVUR0sKNI+vwigx3U1XwBgs9XMsH62tNJ21wxlF1a5OR1FZwDCevxVRlEXAOG9OM0QqR4LityPTlfzhh3WAxhwZ80yczmQcxTIT675yjsB5J+o+Xd5nty8zeXpDwR1rNkSCoqt2WUX0a9mS4mXryAXxIIiAmpGpUUPqPn6u4rCmrLKS675b0EKUJoNlOUAZblAeS5gNTs2n8Eb8AoAvAIB39C/Sqj2Kw7wDnZsBiInY0ERNcUUWDMDd/TAxtepLAIqCmr+e+6X5c9JcIUAIGqmb6r995/fn53R3ehb81xeAYBX0J///fOL0wXVKi0txfHjx2u/P3nyJPbt24fg4GB06NBBYjKyNw4zJyKXsnHjRlx++eX1lk+ePBkLFy50fiByGBYUERGpkvrOvCMiIgILioiIVIoFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoIiISJVYUEREpEosKCIiUiUWFBERqRILioiIVIkFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoIiISJX+H3nEoW/rBMAYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df['Outcome'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Pie Chart (Outcome)')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/new.csv b/new.csv new file mode 100644 index 0000000..b278db4 --- /dev/null +++ b/new.csv @@ -0,0 +1,769 @@ +Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome +6,148,72,35,0,33.6,0.627,50,1 +1,85,66,29,0,26.6,0.351,31,0 +8,183,64,0,0,23.3,0.672,32,1 +1,89,66,23,94,28.1,0.167,21,0 +0,137,40,35,168,43.1,2.288,33,1 +5,116,74,0,0,25.6,0.201,30,0 +3,78,50,32,88,31.0,0.248,26,1 +10,115,0,0,0,35.3,0.134,29,0 +2,197,70,45,543,30.5,0.158,53,1 +8,125,96,0,0,0.0,0.232,54,1 +4,110,92,0,0,37.6,0.191,30,0 +10,168,74,0,0,38.0,0.537,34,1 +10,139,80,0,0,27.1,1.441,57,0 +1,189,60,23,846,30.1,0.398,59,1 +5,166,72,19,175,25.8,0.587,51,1 +7,100,0,0,0,30.0,0.484,32,1 +0,118,84,47,230,45.8,0.551,31,1 +7,107,74,0,0,29.6,0.254,31,1 +1,103,30,38,83,43.3,0.183,33,0 +1,115,70,30,96,34.6,0.529,32,1 +3,126,88,41,235,39.3,0.704,27,0 +8,99,84,0,0,35.4,0.388,50,0 +7,196,90,0,0,39.8,0.451,41,1 +9,119,80,35,0,29.0,0.263,29,1 +11,143,94,33,146,36.6,0.254,51,1 +10,125,70,26,115,31.1,0.205,41,1 +7,147,76,0,0,39.4,0.257,43,1 +1,97,66,15,140,23.2,0.487,22,0 +13,145,82,19,110,22.2,0.245,57,0 +5,117,92,0,0,34.1,0.337,38,0 +5,109,75,26,0,36.0,0.546,60,0 +3,158,76,36,245,31.6,0.851,28,1 +3,88,58,11,54,24.8,0.267,22,0 +6,92,92,0,0,19.9,0.188,28,0 +10,122,78,31,0,27.6,0.512,45,0 +4,103,60,33,192,24.0,0.966,33,0 +11,138,76,0,0,33.2,0.42,35,0 +9,102,76,37,0,32.9,0.665,46,1 +2,90,68,42,0,38.2,0.503,27,1 +4,111,72,47,207,37.1,1.39,56,1 +3,180,64,25,70,34.0,0.271,26,0 +7,133,84,0,0,40.2,0.696,37,0 +7,106,92,18,0,22.7,0.235,48,0 +9,171,110,24,240,45.4,0.721,54,1 +7,159,64,0,0,27.4,0.294,40,0 +0,180,66,39,0,42.0,1.893,25,1 +1,146,56,0,0,29.7,0.564,29,0 +2,71,70,27,0,28.0,0.586,22,0 +7,103,66,32,0,39.1,0.344,31,1 +7,105,0,0,0,0.0,0.305,24,0 +1,103,80,11,82,19.4,0.491,22,0 +1,101,50,15,36,24.2,0.526,26,0 +5,88,66,21,23,24.4,0.342,30,0 +8,176,90,34,300,33.7,0.467,58,1 +7,150,66,42,342,34.7,0.718,42,0 +1,73,50,10,0,23.0,0.248,21,0 +7,187,68,39,304,37.7,0.254,41,1 +0,100,88,60,110,46.8,0.962,31,0 +0,146,82,0,0,40.5,1.781,44,0 +0,105,64,41,142,41.5,0.173,22,0 +2,84,0,0,0,0.0,0.304,21,0 +8,133,72,0,0,32.9,0.27,39,1 +5,44,62,0,0,25.0,0.587,36,0 +2,141,58,34,128,25.4,0.699,24,0 +7,114,66,0,0,32.8,0.258,42,1 +5,99,74,27,0,29.0,0.203,32,0 +0,109,88,30,0,32.5,0.855,38,1 +2,109,92,0,0,42.7,0.845,54,0 +1,95,66,13,38,19.6,0.334,25,0 +4,146,85,27,100,28.9,0.189,27,0 +2,100,66,20,90,32.9,0.867,28,1 +5,139,64,35,140,28.6,0.411,26,0 +13,126,90,0,0,43.4,0.583,42,1 +4,129,86,20,270,35.1,0.231,23,0 +1,79,75,30,0,32.0,0.396,22,0 +1,0,48,20,0,24.7,0.14,22,0 +7,62,78,0,0,32.6,0.391,41,0 +5,95,72,33,0,37.7,0.37,27,0 +0,131,0,0,0,43.2,0.27,26,1 +2,112,66,22,0,25.0,0.307,24,0 +3,113,44,13,0,22.4,0.14,22,0 +2,74,0,0,0,0.0,0.102,22,0 +7,83,78,26,71,29.3,0.767,36,0 +0,101,65,28,0,24.6,0.237,22,0 +5,137,108,0,0,48.8,0.227,37,1 +2,110,74,29,125,32.4,0.698,27,0 +13,106,72,54,0,36.6,0.178,45,0 +2,100,68,25,71,38.5,0.324,26,0 +15,136,70,32,110,37.1,0.153,43,1 +1,107,68,19,0,26.5,0.165,24,0 +1,80,55,0,0,19.1,0.258,21,0 +4,123,80,15,176,32.0,0.443,34,0 +7,81,78,40,48,46.7,0.261,42,0 +4,134,72,0,0,23.8,0.277,60,1 +2,142,82,18,64,24.7,0.761,21,0 +6,144,72,27,228,33.9,0.255,40,0 +2,92,62,28,0,31.6,0.13,24,0 +1,71,48,18,76,20.4,0.323,22,0 +6,93,50,30,64,28.7,0.356,23,0 +1,122,90,51,220,49.7,0.325,31,1 +1,163,72,0,0,39.0,1.222,33,1 +1,151,60,0,0,26.1,0.179,22,0 +0,125,96,0,0,22.5,0.262,21,0 +1,81,72,18,40,26.6,0.283,24,0 +2,85,65,0,0,39.6,0.93,27,0 +1,126,56,29,152,28.7,0.801,21,0 +1,96,122,0,0,22.4,0.207,27,0 +4,144,58,28,140,29.5,0.287,37,0 +3,83,58,31,18,34.3,0.336,25,0 +0,95,85,25,36,37.4,0.247,24,1 +3,171,72,33,135,33.3,0.199,24,1 +8,155,62,26,495,34.0,0.543,46,1 +1,89,76,34,37,31.2,0.192,23,0 +4,76,62,0,0,34.0,0.391,25,0 +7,160,54,32,175,30.5,0.588,39,1 +4,146,92,0,0,31.2,0.539,61,1 +5,124,74,0,0,34.0,0.22,38,1 +5,78,48,0,0,33.7,0.654,25,0 +4,97,60,23,0,28.2,0.443,22,0 +4,99,76,15,51,23.2,0.223,21,0 +0,162,76,56,100,53.2,0.759,25,1 +6,111,64,39,0,34.2,0.26,24,0 +2,107,74,30,100,33.6,0.404,23,0 +5,132,80,0,0,26.8,0.186,69,0 +0,113,76,0,0,33.3,0.278,23,1 +1,88,30,42,99,55.0,0.496,26,1 +3,120,70,30,135,42.9,0.452,30,0 +1,118,58,36,94,33.3,0.261,23,0 +1,117,88,24,145,34.5,0.403,40,1 +0,105,84,0,0,27.9,0.741,62,1 +4,173,70,14,168,29.7,0.361,33,1 +9,122,56,0,0,33.3,1.114,33,1 +3,170,64,37,225,34.5,0.356,30,1 +8,84,74,31,0,38.3,0.457,39,0 +2,96,68,13,49,21.1,0.647,26,0 +2,125,60,20,140,33.8,0.088,31,0 +0,100,70,26,50,30.8,0.597,21,0 +0,93,60,25,92,28.7,0.532,22,0 +0,129,80,0,0,31.2,0.703,29,0 +5,105,72,29,325,36.9,0.159,28,0 +3,128,78,0,0,21.1,0.268,55,0 +5,106,82,30,0,39.5,0.286,38,0 +2,108,52,26,63,32.5,0.318,22,0 +10,108,66,0,0,32.4,0.272,42,1 +4,154,62,31,284,32.8,0.237,23,0 +0,102,75,23,0,0.0,0.572,21,0 +9,57,80,37,0,32.8,0.096,41,0 +2,106,64,35,119,30.5,1.4,34,0 +5,147,78,0,0,33.7,0.218,65,0 +2,90,70,17,0,27.3,0.085,22,0 +1,136,74,50,204,37.4,0.399,24,0 +4,114,65,0,0,21.9,0.432,37,0 +9,156,86,28,155,34.3,1.189,42,1 +1,153,82,42,485,40.6,0.687,23,0 +8,188,78,0,0,47.9,0.137,43,1 +7,152,88,44,0,50.0,0.337,36,1 +2,99,52,15,94,24.6,0.637,21,0 +1,109,56,21,135,25.2,0.833,23,0 +2,88,74,19,53,29.0,0.229,22,0 +17,163,72,41,114,40.9,0.817,47,1 +4,151,90,38,0,29.7,0.294,36,0 +7,102,74,40,105,37.2,0.204,45,0 +0,114,80,34,285,44.2,0.167,27,0 +2,100,64,23,0,29.7,0.368,21,0 +0,131,88,0,0,31.6,0.743,32,1 +6,104,74,18,156,29.9,0.722,41,1 +3,148,66,25,0,32.5,0.256,22,0 +4,120,68,0,0,29.6,0.709,34,0 +4,110,66,0,0,31.9,0.471,29,0 +3,111,90,12,78,28.4,0.495,29,0 +6,102,82,0,0,30.8,0.18,36,1 +6,134,70,23,130,35.4,0.542,29,1 +2,87,0,23,0,28.9,0.773,25,0 +1,79,60,42,48,43.5,0.678,23,0 +2,75,64,24,55,29.7,0.37,33,0 +8,179,72,42,130,32.7,0.719,36,1 +6,85,78,0,0,31.2,0.382,42,0 +0,129,110,46,130,67.1,0.319,26,1 +5,143,78,0,0,45.0,0.19,47,0 +5,130,82,0,0,39.1,0.956,37,1 +6,87,80,0,0,23.2,0.084,32,0 +0,119,64,18,92,34.9,0.725,23,0 +1,0,74,20,23,27.7,0.299,21,0 +5,73,60,0,0,26.8,0.268,27,0 +4,141,74,0,0,27.6,0.244,40,0 +7,194,68,28,0,35.9,0.745,41,1 +8,181,68,36,495,30.1,0.615,60,1 +1,128,98,41,58,32.0,1.321,33,1 +8,109,76,39,114,27.9,0.64,31,1 +5,139,80,35,160,31.6,0.361,25,1 +3,111,62,0,0,22.6,0.142,21,0 +9,123,70,44,94,33.1,0.374,40,0 +7,159,66,0,0,30.4,0.383,36,1 +11,135,0,0,0,52.3,0.578,40,1 +8,85,55,20,0,24.4,0.136,42,0 +5,158,84,41,210,39.4,0.395,29,1 +1,105,58,0,0,24.3,0.187,21,0 +3,107,62,13,48,22.9,0.678,23,1 +4,109,64,44,99,34.8,0.905,26,1 +4,148,60,27,318,30.9,0.15,29,1 +0,113,80,16,0,31.0,0.874,21,0 +1,138,82,0,0,40.1,0.236,28,0 +0,108,68,20,0,27.3,0.787,32,0 +2,99,70,16,44,20.4,0.235,27,0 +6,103,72,32,190,37.7,0.324,55,0 +5,111,72,28,0,23.9,0.407,27,0 +8,196,76,29,280,37.5,0.605,57,1 +5,162,104,0,0,37.7,0.151,52,1 +1,96,64,27,87,33.2,0.289,21,0 +7,184,84,33,0,35.5,0.355,41,1 +2,81,60,22,0,27.7,0.29,25,0 +0,147,85,54,0,42.8,0.375,24,0 +7,179,95,31,0,34.2,0.164,60,0 +0,140,65,26,130,42.6,0.431,24,1 +9,112,82,32,175,34.2,0.26,36,1 +12,151,70,40,271,41.8,0.742,38,1 +5,109,62,41,129,35.8,0.514,25,1 +6,125,68,30,120,30.0,0.464,32,0 +5,85,74,22,0,29.0,1.224,32,1 +5,112,66,0,0,37.8,0.261,41,1 +0,177,60,29,478,34.6,1.072,21,1 +2,158,90,0,0,31.6,0.805,66,1 +7,119,0,0,0,25.2,0.209,37,0 +7,142,60,33,190,28.8,0.687,61,0 +1,100,66,15,56,23.6,0.666,26,0 +1,87,78,27,32,34.6,0.101,22,0 +0,101,76,0,0,35.7,0.198,26,0 +3,162,52,38,0,37.2,0.652,24,1 +4,197,70,39,744,36.7,2.329,31,0 +0,117,80,31,53,45.2,0.089,24,0 +4,142,86,0,0,44.0,0.645,22,1 +6,134,80,37,370,46.2,0.238,46,1 +1,79,80,25,37,25.4,0.583,22,0 +4,122,68,0,0,35.0,0.394,29,0 +3,74,68,28,45,29.7,0.293,23,0 +4,171,72,0,0,43.6,0.479,26,1 +7,181,84,21,192,35.9,0.586,51,1 +0,179,90,27,0,44.1,0.686,23,1 +9,164,84,21,0,30.8,0.831,32,1 +0,104,76,0,0,18.4,0.582,27,0 +1,91,64,24,0,29.2,0.192,21,0 +4,91,70,32,88,33.1,0.446,22,0 +3,139,54,0,0,25.6,0.402,22,1 +6,119,50,22,176,27.1,1.318,33,1 +2,146,76,35,194,38.2,0.329,29,0 +9,184,85,15,0,30.0,1.213,49,1 +10,122,68,0,0,31.2,0.258,41,0 +0,165,90,33,680,52.3,0.427,23,0 +9,124,70,33,402,35.4,0.282,34,0 +1,111,86,19,0,30.1,0.143,23,0 +9,106,52,0,0,31.2,0.38,42,0 +2,129,84,0,0,28.0,0.284,27,0 +2,90,80,14,55,24.4,0.249,24,0 +0,86,68,32,0,35.8,0.238,25,0 +12,92,62,7,258,27.6,0.926,44,1 +1,113,64,35,0,33.6,0.543,21,1 +3,111,56,39,0,30.1,0.557,30,0 +2,114,68,22,0,28.7,0.092,25,0 +1,193,50,16,375,25.9,0.655,24,0 +11,155,76,28,150,33.3,1.353,51,1 +3,191,68,15,130,30.9,0.299,34,0 +3,141,0,0,0,30.0,0.761,27,1 +4,95,70,32,0,32.1,0.612,24,0 +3,142,80,15,0,32.4,0.2,63,0 +4,123,62,0,0,32.0,0.226,35,1 +5,96,74,18,67,33.6,0.997,43,0 +0,138,0,0,0,36.3,0.933,25,1 +2,128,64,42,0,40.0,1.101,24,0 +0,102,52,0,0,25.1,0.078,21,0 +2,146,0,0,0,27.5,0.24,28,1 +10,101,86,37,0,45.6,1.136,38,1 +2,108,62,32,56,25.2,0.128,21,0 +3,122,78,0,0,23.0,0.254,40,0 +1,71,78,50,45,33.2,0.422,21,0 +13,106,70,0,0,34.2,0.251,52,0 +2,100,70,52,57,40.5,0.677,25,0 +7,106,60,24,0,26.5,0.296,29,1 +0,104,64,23,116,27.8,0.454,23,0 +5,114,74,0,0,24.9,0.744,57,0 +2,108,62,10,278,25.3,0.881,22,0 +0,146,70,0,0,37.9,0.334,28,1 +10,129,76,28,122,35.9,0.28,39,0 +7,133,88,15,155,32.4,0.262,37,0 +7,161,86,0,0,30.4,0.165,47,1 +2,108,80,0,0,27.0,0.259,52,1 +7,136,74,26,135,26.0,0.647,51,0 +5,155,84,44,545,38.7,0.619,34,0 +1,119,86,39,220,45.6,0.808,29,1 +4,96,56,17,49,20.8,0.34,26,0 +5,108,72,43,75,36.1,0.263,33,0 +0,78,88,29,40,36.9,0.434,21,0 +0,107,62,30,74,36.6,0.757,25,1 +2,128,78,37,182,43.3,1.224,31,1 +1,128,48,45,194,40.5,0.613,24,1 +0,161,50,0,0,21.9,0.254,65,0 +6,151,62,31,120,35.5,0.692,28,0 +2,146,70,38,360,28.0,0.337,29,1 +0,126,84,29,215,30.7,0.52,24,0 +14,100,78,25,184,36.6,0.412,46,1 +8,112,72,0,0,23.6,0.84,58,0 +0,167,0,0,0,32.3,0.839,30,1 +2,144,58,33,135,31.6,0.422,25,1 +5,77,82,41,42,35.8,0.156,35,0 +5,115,98,0,0,52.9,0.209,28,1 +3,150,76,0,0,21.0,0.207,37,0 +2,120,76,37,105,39.7,0.215,29,0 +10,161,68,23,132,25.5,0.326,47,1 +0,137,68,14,148,24.8,0.143,21,0 +0,128,68,19,180,30.5,1.391,25,1 +2,124,68,28,205,32.9,0.875,30,1 +6,80,66,30,0,26.2,0.313,41,0 +0,106,70,37,148,39.4,0.605,22,0 +2,155,74,17,96,26.6,0.433,27,1 +3,113,50,10,85,29.5,0.626,25,0 +7,109,80,31,0,35.9,1.127,43,1 +2,112,68,22,94,34.1,0.315,26,0 +3,99,80,11,64,19.3,0.284,30,0 +3,182,74,0,0,30.5,0.345,29,1 +3,115,66,39,140,38.1,0.15,28,0 +6,194,78,0,0,23.5,0.129,59,1 +4,129,60,12,231,27.5,0.527,31,0 +3,112,74,30,0,31.6,0.197,25,1 +0,124,70,20,0,27.4,0.254,36,1 +13,152,90,33,29,26.8,0.731,43,1 +2,112,75,32,0,35.7,0.148,21,0 +1,157,72,21,168,25.6,0.123,24,0 +1,122,64,32,156,35.1,0.692,30,1 +10,179,70,0,0,35.1,0.2,37,0 +2,102,86,36,120,45.5,0.127,23,1 +6,105,70,32,68,30.8,0.122,37,0 +8,118,72,19,0,23.1,1.476,46,0 +2,87,58,16,52,32.7,0.166,25,0 +1,180,0,0,0,43.3,0.282,41,1 +12,106,80,0,0,23.6,0.137,44,0 +1,95,60,18,58,23.9,0.26,22,0 +0,165,76,43,255,47.9,0.259,26,0 +0,117,0,0,0,33.8,0.932,44,0 +5,115,76,0,0,31.2,0.343,44,1 +9,152,78,34,171,34.2,0.893,33,1 +7,178,84,0,0,39.9,0.331,41,1 +1,130,70,13,105,25.9,0.472,22,0 +1,95,74,21,73,25.9,0.673,36,0 +1,0,68,35,0,32.0,0.389,22,0 +5,122,86,0,0,34.7,0.29,33,0 +8,95,72,0,0,36.8,0.485,57,0 +8,126,88,36,108,38.5,0.349,49,0 +1,139,46,19,83,28.7,0.654,22,0 +3,116,0,0,0,23.5,0.187,23,0 +3,99,62,19,74,21.8,0.279,26,0 +5,0,80,32,0,41.0,0.346,37,1 +4,92,80,0,0,42.2,0.237,29,0 +4,137,84,0,0,31.2,0.252,30,0 +3,61,82,28,0,34.4,0.243,46,0 +1,90,62,12,43,27.2,0.58,24,0 +3,90,78,0,0,42.7,0.559,21,0 +9,165,88,0,0,30.4,0.302,49,1 +1,125,50,40,167,33.3,0.962,28,1 +13,129,0,30,0,39.9,0.569,44,1 +12,88,74,40,54,35.3,0.378,48,0 +1,196,76,36,249,36.5,0.875,29,1 +5,189,64,33,325,31.2,0.583,29,1 +5,158,70,0,0,29.8,0.207,63,0 +5,103,108,37,0,39.2,0.305,65,0 +4,146,78,0,0,38.5,0.52,67,1 +4,147,74,25,293,34.9,0.385,30,0 +5,99,54,28,83,34.0,0.499,30,0 +6,124,72,0,0,27.6,0.368,29,1 +0,101,64,17,0,21.0,0.252,21,0 +3,81,86,16,66,27.5,0.306,22,0 +1,133,102,28,140,32.8,0.234,45,1 +3,173,82,48,465,38.4,2.137,25,1 +0,118,64,23,89,0.0,1.731,21,0 +0,84,64,22,66,35.8,0.545,21,0 +2,105,58,40,94,34.9,0.225,25,0 +2,122,52,43,158,36.2,0.816,28,0 +12,140,82,43,325,39.2,0.528,58,1 +0,98,82,15,84,25.2,0.299,22,0 +1,87,60,37,75,37.2,0.509,22,0 +4,156,75,0,0,48.3,0.238,32,1 +0,93,100,39,72,43.4,1.021,35,0 +1,107,72,30,82,30.8,0.821,24,0 +0,105,68,22,0,20.0,0.236,22,0 +1,109,60,8,182,25.4,0.947,21,0 +1,90,62,18,59,25.1,1.268,25,0 +1,125,70,24,110,24.3,0.221,25,0 +1,119,54,13,50,22.3,0.205,24,0 +5,116,74,29,0,32.3,0.66,35,1 +8,105,100,36,0,43.3,0.239,45,1 +5,144,82,26,285,32.0,0.452,58,1 +3,100,68,23,81,31.6,0.949,28,0 +1,100,66,29,196,32.0,0.444,42,0 +5,166,76,0,0,45.7,0.34,27,1 +1,131,64,14,415,23.7,0.389,21,0 +4,116,72,12,87,22.1,0.463,37,0 +4,158,78,0,0,32.9,0.803,31,1 +2,127,58,24,275,27.7,1.6,25,0 +3,96,56,34,115,24.7,0.944,39,0 +0,131,66,40,0,34.3,0.196,22,1 +3,82,70,0,0,21.1,0.389,25,0 +3,193,70,31,0,34.9,0.241,25,1 +4,95,64,0,0,32.0,0.161,31,1 +6,137,61,0,0,24.2,0.151,55,0 +5,136,84,41,88,35.0,0.286,35,1 +9,72,78,25,0,31.6,0.28,38,0 +5,168,64,0,0,32.9,0.135,41,1 +2,123,48,32,165,42.1,0.52,26,0 +4,115,72,0,0,28.9,0.376,46,1 +0,101,62,0,0,21.9,0.336,25,0 +8,197,74,0,0,25.9,1.191,39,1 +1,172,68,49,579,42.4,0.702,28,1 +6,102,90,39,0,35.7,0.674,28,0 +1,112,72,30,176,34.4,0.528,25,0 +1,143,84,23,310,42.4,1.076,22,0 +1,143,74,22,61,26.2,0.256,21,0 +0,138,60,35,167,34.6,0.534,21,1 +3,173,84,33,474,35.7,0.258,22,1 +1,97,68,21,0,27.2,1.095,22,0 +4,144,82,32,0,38.5,0.554,37,1 +1,83,68,0,0,18.2,0.624,27,0 +3,129,64,29,115,26.4,0.219,28,1 +1,119,88,41,170,45.3,0.507,26,0 +2,94,68,18,76,26.0,0.561,21,0 +0,102,64,46,78,40.6,0.496,21,0 +2,115,64,22,0,30.8,0.421,21,0 +8,151,78,32,210,42.9,0.516,36,1 +4,184,78,39,277,37.0,0.264,31,1 +0,94,0,0,0,0.0,0.256,25,0 +1,181,64,30,180,34.1,0.328,38,1 +0,135,94,46,145,40.6,0.284,26,0 +1,95,82,25,180,35.0,0.233,43,1 +2,99,0,0,0,22.2,0.108,23,0 +3,89,74,16,85,30.4,0.551,38,0 +1,80,74,11,60,30.0,0.527,22,0 +2,139,75,0,0,25.6,0.167,29,0 +1,90,68,8,0,24.5,1.138,36,0 +0,141,0,0,0,42.4,0.205,29,1 +12,140,85,33,0,37.4,0.244,41,0 +5,147,75,0,0,29.9,0.434,28,0 +1,97,70,15,0,18.2,0.147,21,0 +6,107,88,0,0,36.8,0.727,31,0 +0,189,104,25,0,34.3,0.435,41,1 +2,83,66,23,50,32.2,0.497,22,0 +4,117,64,27,120,33.2,0.23,24,0 +8,108,70,0,0,30.5,0.955,33,1 +4,117,62,12,0,29.7,0.38,30,1 +0,180,78,63,14,59.4,2.42,25,1 +1,100,72,12,70,25.3,0.658,28,0 +0,95,80,45,92,36.5,0.33,26,0 +0,104,64,37,64,33.6,0.51,22,1 +0,120,74,18,63,30.5,0.285,26,0 +1,82,64,13,95,21.2,0.415,23,0 +2,134,70,0,0,28.9,0.542,23,1 +0,91,68,32,210,39.9,0.381,25,0 +2,119,0,0,0,19.6,0.832,72,0 +2,100,54,28,105,37.8,0.498,24,0 +14,175,62,30,0,33.6,0.212,38,1 +1,135,54,0,0,26.7,0.687,62,0 +5,86,68,28,71,30.2,0.364,24,0 +10,148,84,48,237,37.6,1.001,51,1 +9,134,74,33,60,25.9,0.46,81,0 +9,120,72,22,56,20.8,0.733,48,0 +1,71,62,0,0,21.8,0.416,26,0 +8,74,70,40,49,35.3,0.705,39,0 +5,88,78,30,0,27.6,0.258,37,0 +10,115,98,0,0,24.0,1.022,34,0 +0,124,56,13,105,21.8,0.452,21,0 +0,74,52,10,36,27.8,0.269,22,0 +0,97,64,36,100,36.8,0.6,25,0 +8,120,0,0,0,30.0,0.183,38,1 +6,154,78,41,140,46.1,0.571,27,0 +1,144,82,40,0,41.3,0.607,28,0 +0,137,70,38,0,33.2,0.17,22,0 +0,119,66,27,0,38.8,0.259,22,0 +7,136,90,0,0,29.9,0.21,50,0 +4,114,64,0,0,28.9,0.126,24,0 +0,137,84,27,0,27.3,0.231,59,0 +2,105,80,45,191,33.7,0.711,29,1 +7,114,76,17,110,23.8,0.466,31,0 +8,126,74,38,75,25.9,0.162,39,0 +4,132,86,31,0,28.0,0.419,63,0 +3,158,70,30,328,35.5,0.344,35,1 +0,123,88,37,0,35.2,0.197,29,0 +4,85,58,22,49,27.8,0.306,28,0 +0,84,82,31,125,38.2,0.233,23,0 +0,145,0,0,0,44.2,0.63,31,1 +0,135,68,42,250,42.3,0.365,24,1 +1,139,62,41,480,40.7,0.536,21,0 +0,173,78,32,265,46.5,1.159,58,0 +4,99,72,17,0,25.6,0.294,28,0 +8,194,80,0,0,26.1,0.551,67,0 +2,83,65,28,66,36.8,0.629,24,0 +2,89,90,30,0,33.5,0.292,42,0 +4,99,68,38,0,32.8,0.145,33,0 +4,125,70,18,122,28.9,1.144,45,1 +3,80,0,0,0,0.0,0.174,22,0 +6,166,74,0,0,26.6,0.304,66,0 +5,110,68,0,0,26.0,0.292,30,0 +2,81,72,15,76,30.1,0.547,25,0 +7,195,70,33,145,25.1,0.163,55,1 +6,154,74,32,193,29.3,0.839,39,0 +2,117,90,19,71,25.2,0.313,21,0 +3,84,72,32,0,37.2,0.267,28,0 +6,0,68,41,0,39.0,0.727,41,1 +7,94,64,25,79,33.3,0.738,41,0 +3,96,78,39,0,37.3,0.238,40,0 +10,75,82,0,0,33.3,0.263,38,0 +0,180,90,26,90,36.5,0.314,35,1 +1,130,60,23,170,28.6,0.692,21,0 +2,84,50,23,76,30.4,0.968,21,0 +8,120,78,0,0,25.0,0.409,64,0 +12,84,72,31,0,29.7,0.297,46,1 +0,139,62,17,210,22.1,0.207,21,0 +9,91,68,0,0,24.2,0.2,58,0 +2,91,62,0,0,27.3,0.525,22,0 +3,99,54,19,86,25.6,0.154,24,0 +3,163,70,18,105,31.6,0.268,28,1 +9,145,88,34,165,30.3,0.771,53,1 +7,125,86,0,0,37.6,0.304,51,0 +13,76,60,0,0,32.8,0.18,41,0 +6,129,90,7,326,19.6,0.582,60,0 +2,68,70,32,66,25.0,0.187,25,0 +3,124,80,33,130,33.2,0.305,26,0 +6,114,0,0,0,0.0,0.189,26,0 +9,130,70,0,0,34.2,0.652,45,1 +3,125,58,0,0,31.6,0.151,24,0 +3,87,60,18,0,21.8,0.444,21,0 +1,97,64,19,82,18.2,0.299,21,0 +3,116,74,15,105,26.3,0.107,24,0 +0,117,66,31,188,30.8,0.493,22,0 +0,111,65,0,0,24.6,0.66,31,0 +2,122,60,18,106,29.8,0.717,22,0 +0,107,76,0,0,45.3,0.686,24,0 +1,86,66,52,65,41.3,0.917,29,0 +6,91,0,0,0,29.8,0.501,31,0 +1,77,56,30,56,33.3,1.251,24,0 +4,132,0,0,0,32.9,0.302,23,1 +0,105,90,0,0,29.6,0.197,46,0 +0,57,60,0,0,21.7,0.735,67,0 +0,127,80,37,210,36.3,0.804,23,0 +3,129,92,49,155,36.4,0.968,32,1 +8,100,74,40,215,39.4,0.661,43,1 +3,128,72,25,190,32.4,0.549,27,1 +10,90,85,32,0,34.9,0.825,56,1 +4,84,90,23,56,39.5,0.159,25,0 +1,88,78,29,76,32.0,0.365,29,0 +8,186,90,35,225,34.5,0.423,37,1 +5,187,76,27,207,43.6,1.034,53,1 +4,131,68,21,166,33.1,0.16,28,0 +1,164,82,43,67,32.8,0.341,50,0 +4,189,110,31,0,28.5,0.68,37,0 +1,116,70,28,0,27.4,0.204,21,0 +3,84,68,30,106,31.9,0.591,25,0 +6,114,88,0,0,27.8,0.247,66,0 +1,88,62,24,44,29.9,0.422,23,0 +1,84,64,23,115,36.9,0.471,28,0 +7,124,70,33,215,25.5,0.161,37,0 +1,97,70,40,0,38.1,0.218,30,0 +8,110,76,0,0,27.8,0.237,58,0 +11,103,68,40,0,46.2,0.126,42,0 +11,85,74,0,0,30.1,0.3,35,0 +6,125,76,0,0,33.8,0.121,54,1 +0,198,66,32,274,41.3,0.502,28,1 +1,87,68,34,77,37.6,0.401,24,0 +6,99,60,19,54,26.9,0.497,32,0 +0,91,80,0,0,32.4,0.601,27,0 +2,95,54,14,88,26.1,0.748,22,0 +1,99,72,30,18,38.6,0.412,21,0 +6,92,62,32,126,32.0,0.085,46,0 +4,154,72,29,126,31.3,0.338,37,0 +0,121,66,30,165,34.3,0.203,33,1 +3,78,70,0,0,32.5,0.27,39,0 +2,130,96,0,0,22.6,0.268,21,0 +3,111,58,31,44,29.5,0.43,22,0 +2,98,60,17,120,34.7,0.198,22,0 +1,143,86,30,330,30.1,0.892,23,0 +1,119,44,47,63,35.5,0.28,25,0 +6,108,44,20,130,24.0,0.813,35,0 +2,118,80,0,0,42.9,0.693,21,1 +10,133,68,0,0,27.0,0.245,36,0 +2,197,70,99,0,34.7,0.575,62,1 +0,151,90,46,0,42.1,0.371,21,1 +6,109,60,27,0,25.0,0.206,27,0 +12,121,78,17,0,26.5,0.259,62,0 +8,100,76,0,0,38.7,0.19,42,0 +8,124,76,24,600,28.7,0.687,52,1 +1,93,56,11,0,22.5,0.417,22,0 +8,143,66,0,0,34.9,0.129,41,1 +6,103,66,0,0,24.3,0.249,29,0 +3,176,86,27,156,33.3,1.154,52,1 +0,73,0,0,0,21.1,0.342,25,0 +11,111,84,40,0,46.8,0.925,45,1 +2,112,78,50,140,39.4,0.175,24,0 +3,132,80,0,0,34.4,0.402,44,1 +2,82,52,22,115,28.5,1.699,25,0 +6,123,72,45,230,33.6,0.733,34,0 +0,188,82,14,185,32.0,0.682,22,1 +0,67,76,0,0,45.3,0.194,46,0 +1,89,24,19,25,27.8,0.559,21,0 +1,173,74,0,0,36.8,0.088,38,1 +1,109,38,18,120,23.1,0.407,26,0 +1,108,88,19,0,27.1,0.4,24,0 +6,96,0,0,0,23.7,0.19,28,0 +1,124,74,36,0,27.8,0.1,30,0 +7,150,78,29,126,35.2,0.692,54,1 +4,183,0,0,0,28.4,0.212,36,1 +1,124,60,32,0,35.8,0.514,21,0 +1,181,78,42,293,40.0,1.258,22,1 +1,92,62,25,41,19.5,0.482,25,0 +0,152,82,39,272,41.5,0.27,27,0 +1,111,62,13,182,24.0,0.138,23,0 +3,106,54,21,158,30.9,0.292,24,0 +3,174,58,22,194,32.9,0.593,36,1 +7,168,88,42,321,38.2,0.787,40,1 +6,105,80,28,0,32.5,0.878,26,0 +11,138,74,26,144,36.1,0.557,50,1 +3,106,72,0,0,25.8,0.207,27,0 +6,117,96,0,0,28.7,0.157,30,0 +2,68,62,13,15,20.1,0.257,23,0 +9,112,82,24,0,28.2,1.282,50,1 +0,119,0,0,0,32.4,0.141,24,1 +2,112,86,42,160,38.4,0.246,28,0 +2,92,76,20,0,24.2,1.698,28,0 +6,183,94,0,0,40.8,1.461,45,0 +0,94,70,27,115,43.5,0.347,21,0 +2,108,64,0,0,30.8,0.158,21,0 +4,90,88,47,54,37.7,0.362,29,0 +0,125,68,0,0,24.7,0.206,21,0 +0,132,78,0,0,32.4,0.393,21,0 +5,128,80,0,0,34.6,0.144,45,0 +4,94,65,22,0,24.7,0.148,21,0 +7,114,64,0,0,27.4,0.732,34,1 +0,102,78,40,90,34.5,0.238,24,0 +2,111,60,0,0,26.2,0.343,23,0 +1,128,82,17,183,27.5,0.115,22,0 +10,92,62,0,0,25.9,0.167,31,0 +13,104,72,0,0,31.2,0.465,38,1 +5,104,74,0,0,28.8,0.153,48,0 +2,94,76,18,66,31.6,0.649,23,0 +7,97,76,32,91,40.9,0.871,32,1 +1,100,74,12,46,19.5,0.149,28,0 +0,102,86,17,105,29.3,0.695,27,0 +4,128,70,0,0,34.3,0.303,24,0 +6,147,80,0,0,29.5,0.178,50,1 +4,90,0,0,0,28.0,0.61,31,0 +3,103,72,30,152,27.6,0.73,27,0 +2,157,74,35,440,39.4,0.134,30,0 +1,167,74,17,144,23.4,0.447,33,1 +0,179,50,36,159,37.8,0.455,22,1 +11,136,84,35,130,28.3,0.26,42,1 +0,107,60,25,0,26.4,0.133,23,0 +1,91,54,25,100,25.2,0.234,23,0 +1,117,60,23,106,33.8,0.466,27,0 +5,123,74,40,77,34.1,0.269,28,0 +2,120,54,0,0,26.8,0.455,27,0 +1,106,70,28,135,34.2,0.142,22,0 +2,155,52,27,540,38.7,0.24,25,1 +2,101,58,35,90,21.8,0.155,22,0 +1,120,80,48,200,38.9,1.162,41,0 +11,127,106,0,0,39.0,0.19,51,0 +3,80,82,31,70,34.2,1.292,27,1 +10,162,84,0,0,27.7,0.182,54,0 +1,199,76,43,0,42.9,1.394,22,1 +8,167,106,46,231,37.6,0.165,43,1 +9,145,80,46,130,37.9,0.637,40,1 +6,115,60,39,0,33.7,0.245,40,1 +1,112,80,45,132,34.8,0.217,24,0 +4,145,82,18,0,32.5,0.235,70,1 +10,111,70,27,0,27.5,0.141,40,1 +6,98,58,33,190,34.0,0.43,43,0 +9,154,78,30,100,30.9,0.164,45,0 +6,165,68,26,168,33.6,0.631,49,0 +1,99,58,10,0,25.4,0.551,21,0 +10,68,106,23,49,35.5,0.285,47,0 +3,123,100,35,240,57.3,0.88,22,0 +8,91,82,0,0,35.6,0.587,68,0 +6,195,70,0,0,30.9,0.328,31,1 +9,156,86,0,0,24.8,0.23,53,1 +0,93,60,0,0,35.3,0.263,25,0 +3,121,52,0,0,36.0,0.127,25,1 +2,101,58,17,265,24.2,0.614,23,0 +2,56,56,28,45,24.2,0.332,22,0 +0,162,76,36,0,49.6,0.364,26,1 +0,95,64,39,105,44.6,0.366,22,0 +4,125,80,0,0,32.3,0.536,27,1 +5,136,82,0,0,0.0,0.64,69,0 +2,129,74,26,205,33.2,0.591,25,0 +3,130,64,0,0,23.1,0.314,22,0 +1,107,50,19,0,28.3,0.181,29,0 +1,140,74,26,180,24.1,0.828,23,0 +1,144,82,46,180,46.1,0.335,46,1 +8,107,80,0,0,24.6,0.856,34,0 +13,158,114,0,0,42.3,0.257,44,1 +2,121,70,32,95,39.1,0.886,23,0 +7,129,68,49,125,38.5,0.439,43,1 +2,90,60,0,0,23.5,0.191,25,0 +7,142,90,24,480,30.4,0.128,43,1 +3,169,74,19,125,29.9,0.268,31,1 +0,99,0,0,0,25.0,0.253,22,0 +4,127,88,11,155,34.5,0.598,28,0 +4,118,70,0,0,44.5,0.904,26,0 +2,122,76,27,200,35.9,0.483,26,0 +6,125,78,31,0,27.6,0.565,49,1 +1,168,88,29,0,35.0,0.905,52,1 +2,129,0,0,0,38.5,0.304,41,0 +4,110,76,20,100,28.4,0.118,27,0 +6,80,80,36,0,39.8,0.177,28,0 +10,115,0,0,0,0.0,0.261,30,1 +2,127,46,21,335,34.4,0.176,22,0 +9,164,78,0,0,32.8,0.148,45,1 +2,93,64,32,160,38.0,0.674,23,1 +3,158,64,13,387,31.2,0.295,24,0 +5,126,78,27,22,29.6,0.439,40,0 +10,129,62,36,0,41.2,0.441,38,1 +0,134,58,20,291,26.4,0.352,21,0 +3,102,74,0,0,29.5,0.121,32,0 +7,187,50,33,392,33.9,0.826,34,1 +3,173,78,39,185,33.8,0.97,31,1 +10,94,72,18,0,23.1,0.595,56,0 +1,108,60,46,178,35.5,0.415,24,0 +5,97,76,27,0,35.6,0.378,52,1 +4,83,86,19,0,29.3,0.317,34,0 +1,114,66,36,200,38.1,0.289,21,0 +1,149,68,29,127,29.3,0.349,42,1 +5,117,86,30,105,39.1,0.251,42,0 +1,111,94,0,0,32.8,0.265,45,0 +4,112,78,40,0,39.4,0.236,38,0 +1,116,78,29,180,36.1,0.496,25,0 +0,141,84,26,0,32.4,0.433,22,0 +2,175,88,0,0,22.9,0.326,22,0 +2,92,52,0,0,30.1,0.141,22,0 +3,130,78,23,79,28.4,0.323,34,1 +8,120,86,0,0,28.4,0.259,22,1 +2,174,88,37,120,44.5,0.646,24,1 +2,106,56,27,165,29.0,0.426,22,0 +2,105,75,0,0,23.3,0.56,53,0 +4,95,60,32,0,35.4,0.284,28,0 +0,126,86,27,120,27.4,0.515,21,0 +8,65,72,23,0,32.0,0.6,42,0 +2,99,60,17,160,36.6,0.453,21,0 +1,102,74,0,0,39.5,0.293,42,1 +11,120,80,37,150,42.3,0.785,48,1 +3,102,44,20,94,30.8,0.4,26,0 +1,109,58,18,116,28.5,0.219,22,0 +9,140,94,0,0,32.7,0.734,45,1 +13,153,88,37,140,40.6,1.174,39,0 +12,100,84,33,105,30.0,0.488,46,0 +1,147,94,41,0,49.3,0.358,27,1 +1,81,74,41,57,46.3,1.096,32,0 +3,187,70,22,200,36.4,0.408,36,1 +6,162,62,0,0,24.3,0.178,50,1 +4,136,70,0,0,31.2,1.182,22,1 +1,121,78,39,74,39.0,0.261,28,0 +3,108,62,24,0,26.0,0.223,25,0 +0,181,88,44,510,43.3,0.222,26,1 +8,154,78,32,0,32.4,0.443,45,1 +1,128,88,39,110,36.5,1.057,37,1 +7,137,90,41,0,32.0,0.391,39,0 +0,123,72,0,0,36.3,0.258,52,1 +1,106,76,0,0,37.5,0.197,26,0 +6,190,92,0,0,35.5,0.278,66,1 +2,88,58,26,16,28.4,0.766,22,0 +9,170,74,31,0,44.0,0.403,43,1 +9,89,62,0,0,22.5,0.142,33,0 +10,101,76,48,180,32.9,0.171,63,0 +2,122,70,27,0,36.8,0.34,27,0 +5,121,72,23,112,26.2,0.245,30,0 +1,126,60,0,0,30.1,0.349,47,1 +1,93,70,31,0,30.4,0.315,23,0 diff --git a/test.csv b/test.csv new file mode 100644 index 0000000..6ae41b3 --- /dev/null +++ b/test.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22.0,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38.0,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26.0,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35.0,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35.0,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54.0,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2.0,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27.0,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14.0,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4.0,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58.0,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20.0,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39.0,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14.0,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55.0,0,0,248706,16.0,,S +17,0,3,"Rice, Master. Eugene",male,2.0,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13.0,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31.0,1,0,345763,18.0,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35.0,0,0,239865,26.0,,S +22,1,2,"Beesley, Mr. Lawrence",male,34.0,0,0,248698,13.0,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15.0,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28.0,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8.0,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38.0,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19.0,3,2,19950,263.0,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40.0,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66.0,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28.0,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42.0,1,0,113789,52.0,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21.0,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18.0,2,0,345764,18.0,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14.0,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40.0,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27.0,1,0,11668,21.0,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3.0,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19.0,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18.0,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7.0,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21.0,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49.0,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29.0,1,0,2926,26.0,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65.0,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21.0,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5.0,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11.0,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22.0,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38.0,0,0,113572,80.0,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45.0,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4.0,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29.0,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19.0,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17.0,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26.0,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32.0,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16.0,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21.0,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26.0,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32.0,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25.0,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29.0,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30.0,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22.0,0,0,345767,9.0,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29.0,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28.0,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17.0,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33.0,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16.0,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23.0,3,2,19950,263.0,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24.0,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29.0,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20.0,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46.0,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26.0,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59.0,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71.0,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23.0,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34.0,0,1,231919,23.0,,S +100,0,2,"Kantor, Mr. Sinai",male,34.0,1,0,244367,26.0,,S +101,0,3,"Petranec, Miss. Matilda",female,28.0,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21.0,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33.0,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37.0,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28.0,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21.0,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38.0,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47.0,0,0,110465,52.0,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22.0,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20.0,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17.0,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21.0,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29.0,1,0,11668,21.0,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24.0,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2.0,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21.0,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13.0,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54.0,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12.0,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24.0,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45.0,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33.0,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20.0,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47.0,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29.0,1,0,228414,26.0,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25.0,0,0,C.A. 29178,13.0,,S +136,0,2,"Richard, Mr. Emile",male,23.0,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19.0,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37.0,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16.0,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24.0,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22.0,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24.0,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19.0,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18.0,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19.0,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27.0,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9.0,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26.0,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42.0,0,0,244310,13.0,,S +151,0,2,"Bateman, Rev. Robert James",male,51.0,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22.0,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51.0,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16.0,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30.0,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44.0,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40.0,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26.0,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17.0,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1.0,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9.0,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55.0,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45.0,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28.0,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61.0,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4.0,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1.0,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21.0,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56.0,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18.0,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50.0,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30.0,0,0,250653,13.0,,S +180,0,3,"Leonard, Mr. Lionel",male,36.0,0,0,LINE,0.0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9.0,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1.0,2,1,230136,39.0,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4.0,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50.0,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45.0,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40.0,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36.0,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32.0,0,0,234604,13.0,,S +192,0,2,"Carbines, Mr. William",male,19.0,0,0,28424,13.0,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19.0,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3.0,1,1,230080,26.0,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44.0,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58.0,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42.0,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24.0,0,0,248747,13.0,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28.0,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34.0,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18.0,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2.0,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32.0,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26.0,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16.0,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40.0,0,0,112277,31.0,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24.0,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35.0,0,0,F.C.C. 13528,21.0,,S +213,0,3,"Perkin, Mr. John Henry",male,22.0,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30.0,0,0,250646,13.0,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31.0,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27.0,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42.0,1,0,243847,27.0,,S +219,1,1,"Bazzani, Miss. Albina",female,32.0,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30.0,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16.0,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27.0,0,0,220367,13.0,,S +223,0,3,"Green, Mr. George Henry",male,51.0,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38.0,1,0,19943,90.0,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22.0,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19.0,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18.0,0,0,236171,13.0,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35.0,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29.0,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59.0,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5.0,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24.0,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44.0,1,0,26707,26.0,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8.0,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19.0,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33.0,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29.0,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22.0,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30.0,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44.0,2,0,19928,90.0,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25.0,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24.0,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37.0,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54.0,1,0,244252,26.0,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29.0,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62.0,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30.0,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41.0,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29.0,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30.0,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35.0,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50.0,0,1,230433,26.0,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3.0,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52.0,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40.0,0,0,112059,0.0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36.0,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16.0,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25.0,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58.0,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35.0,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31.0,,S +272,1,3,"Tornquist, Mr. William Henry",male,25.0,0,0,LINE,0.0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41.0,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37.0,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63.0,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45.0,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0.0,,S +279,0,3,"Rice, Master. Eric",male,7.0,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35.0,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65.0,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28.0,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16.0,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19.0,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26.0,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33.0,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30.0,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22.0,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42.0,0,0,237798,13.0,,S +290,1,3,"Connolly, Miss. Kate",female,22.0,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26.0,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19.0,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36.0,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24.0,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24.0,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2.0,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50.0,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19.0,0,0,LINE,0.0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17.0,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30.0,1,0,P/PP 3381,24.0,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30.0,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24.0,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18.0,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26.0,1,1,250651,26.0,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28.0,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43.0,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26.0,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24.0,1,0,244367,26.0,,S +318,0,2,"Moraweck, Dr. Ernest",male,54.0,0,0,29011,14.0,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31.0,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40.0,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22.0,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27.0,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30.0,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22.0,1,1,248738,29.0,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36.0,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61.0,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36.0,0,0,28551,13.0,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31.0,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16.0,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38.0,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16.0,2,0,345764,18.0,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29.0,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41.0,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45.0,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45.0,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2.0,1,1,230080,26.0,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24.0,3,2,19950,263.0,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28.0,0,0,248740,13.0,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25.0,0,0,244361,13.0,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36.0,0,0,229236,13.0,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24.0,0,0,248733,13.0,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40.0,0,0,31418,13.0,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3.0,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42.0,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23.0,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35.0,C128,S +353,0,3,"Elias, Mr. Tannous",male,15.0,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25.0,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28.0,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22.0,0,1,113505,55.0,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38.0,0,0,237671,13.0,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40.0,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29.0,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45.0,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35.0,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30.0,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60.0,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24.0,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25.0,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18.0,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19.0,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22.0,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3.0,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22.0,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27.0,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20.0,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19.0,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42.0,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1.0,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32.0,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35.0,1,0,113789,52.0,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18.0,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1.0,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36.0,0,0,27849,13.0,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17.0,0,0,SC 1748,12.0,,C +391,1,1,"Carter, Mr. William Ernest",male,36.0,1,2,113760,120.0,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21.0,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28.0,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23.0,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24.0,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22.0,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31.0,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46.0,0,0,28403,26.0,,S +399,0,2,"Pain, Dr. Alfred",male,23.0,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28.0,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39.0,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26.0,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21.0,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28.0,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20.0,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34.0,1,0,28664,21.0,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51.0,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3.0,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21.0,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33.0,1,0,19928,90.0,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0.0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44.0,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34.0,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18.0,0,2,250652,13.0,,S +419,0,2,"Matthews, Mr. William John",male,30.0,0,0,28228,13.0,,S +420,0,3,"Van Impe, Miss. Catharina",female,10.0,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21.0,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29.0,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28.0,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18.0,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28.0,1,0,2003,26.0,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19.0,0,0,250655,26.0,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32.0,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28.0,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42.0,1,0,SC/AH 3085,26.0,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17.0,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50.0,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14.0,1,2,113760,120.0,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21.0,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24.0,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64.0,1,4,19950,263.0,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31.0,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45.0,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20.0,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25.0,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28.0,0,0,230434,13.0,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4.0,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13.0,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34.0,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5.0,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52.0,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36.0,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30.0,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49.0,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29.0,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65.0,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50.0,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48.0,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34.0,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47.0,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48.0,0,0,234360,13.0,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38.0,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0.0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56.0,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38.0,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33.0,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23.0,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22.0,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52.0,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34.0,1,0,31027,21.0,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29.0,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22.0,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2.0,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9.0,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0.0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50.0,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63.0,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25.0,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35.0,1,0,19943,90.0,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58.0,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30.0,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9.0,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21.0,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55.0,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71.0,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21.0,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54.0,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25.0,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24.0,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17.0,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21.0,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37.0,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16.0,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18.0,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33.0,0,2,26360,26.0,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28.0,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26.0,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29.0,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36.0,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54.0,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24.0,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47.0,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34.0,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36.0,1,0,226875,26.0,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32.0,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30.0,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22.0,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44.0,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50.0,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39.0,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23.0,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2.0,1,1,26360,26.0,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17.0,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30.0,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7.0,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45.0,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30.0,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22.0,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36.0,0,2,WE/P 5735,71.0,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9.0,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11.0,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32.0,1,0,2908,26.0,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50.0,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64.0,0,0,693,26.0,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19.0,1,0,2908,26.0,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33.0,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8.0,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17.0,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27.0,0,0,244358,26.0,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22.0,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22.0,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62.0,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48.0,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39.0,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36.0,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40.0,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28.0,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24.0,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19.0,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29.0,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32.0,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62.0,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53.0,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36.0,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16.0,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19.0,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34.0,0,0,243880,13.0,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39.0,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32.0,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25.0,1,1,237789,30.0,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39.0,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54.0,0,0,28403,26.0,,S +584,0,1,"Ross, Mr. John Hugo",male,36.0,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18.0,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47.0,0,0,237565,15.0,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60.0,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22.0,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35.0,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52.0,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47.0,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37.0,1,0,SC/AH 29037,26.0,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36.0,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33.0,,S +598,0,3,"Johnson, Mr. Alfred",male,49.0,0,0,LINE,0.0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49.0,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24.0,2,1,243847,27.0,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44.0,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35.0,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36.0,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30.0,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27.0,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22.0,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40.0,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39.0,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35.0,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24.0,1,2,220845,65.0,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34.0,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26.0,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4.0,2,1,230136,39.0,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26.0,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27.0,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42.0,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20.0,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21.0,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21.0,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61.0,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57.0,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21.0,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26.0,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80.0,0,0,27042,30.0,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51.0,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32.0,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0.0,,S +635,0,3,"Skoog, Miss. Mabel",female,9.0,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28.0,0,0,237668,13.0,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32.0,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31.0,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41.0,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20.0,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24.0,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2.0,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48.0,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19.0,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56.0,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23.0,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18.0,0,1,231919,23.0,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21.0,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18.0,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24.0,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32.0,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23.0,0,0,29751,13.0,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58.0,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50.0,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40.0,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47.0,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36.0,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20.0,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32.0,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25.0,0,0,234686,13.0,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43.0,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52.0,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40.0,1,1,29750,39.0,,S +672,0,1,"Davidson, Mr. Thornton",male,31.0,1,0,F.C. 12750,52.0,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70.0,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31.0,0,0,244270,13.0,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0.0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18.0,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18.0,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43.0,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36.0,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27.0,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20.0,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14.0,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60.0,1,1,29750,39.0,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25.0,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14.0,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19.0,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18.0,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15.0,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31.0,1,0,17474,57.0,B20,S +692,1,3,"Karun, Miss. Manca",female,4.0,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25.0,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60.0,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52.0,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44.0,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49.0,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42.0,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18.0,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35.0,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18.0,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25.0,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26.0,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39.0,0,0,250655,26.0,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45.0,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42.0,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22.0,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24.0,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48.0,1,0,19996,52.0,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29.0,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52.0,0,0,250647,13.0,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19.0,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38.0,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27.0,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33.0,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6.0,0,1,248727,33.0,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17.0,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34.0,0,0,12233,13.0,,S +724,0,2,"Hodges, Mr. Henry Price",male,50.0,0,0,250643,13.0,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27.0,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20.0,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30.0,3,0,31027,21.0,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25.0,1,0,236853,26.0,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25.0,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29.0,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11.0,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0.0,,S +734,0,2,"Berriman, Mr. William John",male,23.0,0,0,28425,13.0,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23.0,0,0,233639,13.0,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48.0,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35.0,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30.0,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36.0,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21.0,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24.0,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31.0,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70.0,1,1,WE/P 5735,71.0,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16.0,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30.0,0,0,250648,13.0,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19.0,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31.0,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4.0,1,1,29103,23.0,,S +752,1,3,"Moor, Master. Meier",male,6.0,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33.0,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23.0,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48.0,1,2,220845,65.0,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28.0,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18.0,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34.0,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33.0,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41.0,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20.0,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36.0,1,2,113760,120.0,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16.0,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51.0,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32.0,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24.0,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48.0,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57.0,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54.0,1,3,29105,23.0,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18.0,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5.0,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43.0,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13.0,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17.0,1,0,17474,57.0,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29.0,0,0,113501,30.0,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25.0,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25.0,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18.0,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8.0,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1.0,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46.0,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16.0,0,0,239865,26.0,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25.0,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39.0,0,0,28213,13.0,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49.0,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31.0,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30.0,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30.0,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34.0,0,0,250647,13.0,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31.0,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11.0,1,2,113760,120.0,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27.0,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31.0,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39.0,0,0,112050,0.0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18.0,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39.0,0,0,248723,13.0,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33.0,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26.0,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39.0,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35.0,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6.0,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0.0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23.0,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31.0,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43.0,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10.0,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52.0,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27.0,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38.0,0,0,19972,0.0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27.0,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2.0,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1.0,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62.0,0,0,113572,80.0,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15.0,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23.0,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18.0,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39.0,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21.0,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32.0,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20.0,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16.0,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30.0,0,0,113798,31.0,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17.0,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42.0,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35.0,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28.0,0,1,248727,33.0,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4.0,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74.0,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9.0,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16.0,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44.0,1,0,244252,26.0,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18.0,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45.0,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51.0,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24.0,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41.0,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21.0,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48.0,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24.0,0,0,233866,13.0,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42.0,0,0,236852,13.0,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27.0,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31.0,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4.0,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26.0,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47.0,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33.0,0,0,695,5.0,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47.0,0,0,345765,9.0,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28.0,1,0,P/PP 3381,24.0,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15.0,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20.0,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19.0,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56.0,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25.0,0,1,230433,26.0,,S +882,0,3,"Markun, Mr. Johann",male,33.0,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22.0,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28.0,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25.0,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39.0,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27.0,0,0,211536,13.0,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19.0,0,0,112053,30.0,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26.0,0,0,111369,30.0,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32.0,0,0,370376,7.75,,Q