distributed-computing/tasks/khalitova-am/lab_5/README.md

191 lines
6.0 KiB
Markdown
Raw Permalink Normal View History

2023-12-18 10:38:04 +04:00
# Отчёт по лабораторной работе №5
Выполнила: студентка гр. ИСЭбд-41 Халитова А.М.
## Создание приложения
В приложении были созданы следующие методы:
- Заполнение матрицы рандомными значениями:
```
private static int[][] GenerateRandomMatrix(int rows, int cols)
{
int[][] matrix = new int[rows][];
Random rand = new Random();
for (int i = 0; i < rows; i++)
{
matrix[i] = new int[cols];
for (int j = 0; j < cols; j++)
{
matrix[i][j] = rand.Next(1, 10);
}
}
return matrix;
}
```
- Перемножение матриц обычным алгоритмом:
```
public static int[][] MultiplySequential(int[][] matrixA, int[][] matrixB)
{
int rowsA = matrixA.Length;
int colsA = matrixA[0].Length;
int colsB = matrixB[0].Length;
int[][] result = new int[rowsA][];
for (int i = 0; i < rowsA; i++)
{
result[i] = new int[colsB];
for (int j = 0; j < colsB; j++)
{
for (int k = 0; k < colsA; k++)
{
result[i][j] += matrixA[i][k] * matrixB[k][j];
}
}
}
return result;
}
```
- Перемножение матриц параллельным алгоритмом:
```
public static int[][] MultiplyParallel(int[][] matrixA, int[][] matrixB, int numThreads)
{
int rowsA = matrixA.Length;
int colsA = matrixA[0].Length;
int colsB = matrixB[0].Length;
int[][] result = new int[rowsA][];
Parallel.For(0, rowsA, new ParallelOptions { MaxDegreeOfParallelism = numThreads }, i =>
{
result[i] = new int[colsB];
for (int j = 0; j < colsB; j++)
{
for (int k = 0; k < colsA; k++)
{
result[i][j] += matrixA[i][k] * matrixB[k][j];
}
}
});
return result;
}
```
- Создание матриц различных размеров и с различным количеством потоков для параллельного алгоритма:
```
[Benchmark]
public void MultiplySequential_100x100()
{
int[][] matrixA = GenerateRandomMatrix(100, 100);
int[][] matrixB = GenerateRandomMatrix(100, 100);
MultiplySequential(matrixA, matrixB);
}
[Benchmark]
public void MultiplyParallel_100x100_4TH()
{
int[][] matrixA = GenerateRandomMatrix(100, 100);
int[][] matrixB = GenerateRandomMatrix(100, 100);
MultiplyParallel(matrixA, matrixB, 4);
}
[Benchmark]
public void MultiplyParallel_100x100_8TH()
{
int[][] matrixA = GenerateRandomMatrix(100, 100);
int[][] matrixB = GenerateRandomMatrix(100, 100);
MultiplyParallel(matrixA, matrixB, 8);
}
[Benchmark]
public void MultiplyParallel_100x100_16TH()
{
int[][] matrixA = GenerateRandomMatrix(100, 100);
int[][] matrixB = GenerateRandomMatrix(100, 100);
MultiplyParallel(matrixA, matrixB, 16);
}
[Benchmark]
public void MultiplySequential_300x300()
{
int[][] matrixA = GenerateRandomMatrix(300, 300);
int[][] matrixB = GenerateRandomMatrix(300, 300);
MultiplySequential(matrixA, matrixB);
}
[Benchmark]
public void MultiplyParallel_300x300_4TH()
{
int[][] matrixA = GenerateRandomMatrix(300, 300);
int[][] matrixB = GenerateRandomMatrix(300, 300);
MultiplyParallel(matrixA, matrixB, 4);
}
[Benchmark]
public void MultiplyParallel_300x300_8TH()
{
int[][] matrixA = GenerateRandomMatrix(300, 300);
int[][] matrixB = GenerateRandomMatrix(300, 300);
MultiplyParallel(matrixA, matrixB, 8);
}
[Benchmark]
public void MultiplyParallel_300x300_16TH()
{
int[][] matrixA = GenerateRandomMatrix(300, 300);
int[][] matrixB = GenerateRandomMatrix(300, 300);
MultiplyParallel(matrixA, matrixB, 16);
}
[Benchmark]
public void MultiplySequential_500x500()
{
int[][] matrixA = GenerateRandomMatrix(500, 500);
int[][] matrixB = GenerateRandomMatrix(500, 500);
MultiplySequential(matrixA, matrixB);
}
[Benchmark]
public void MultiplyParallel_500x500_4TH()
{
int[][] matrixA = GenerateRandomMatrix(500, 500);
int[][] matrixB = GenerateRandomMatrix(500, 500);
MultiplyParallel(matrixA, matrixB, 4);
}
[Benchmark]
public void MultiplyParallel_500x500_8TH()
{
int[][] matrixA = GenerateRandomMatrix(500, 500);
int[][] matrixB = GenerateRandomMatrix(500, 500);
MultiplyParallel(matrixA, matrixB, 8);
}
[Benchmark]
public void MultiplyParallel_500x500_16TH()
{
int[][] matrixA = GenerateRandomMatrix(500, 500);
int[][] matrixB = GenerateRandomMatrix(500, 500);
MultiplyParallel(matrixA, matrixB, 16);
}
```
- Запуск приложения:
```
static void Main(string[] args)
{
var summary = BenchmarkRunner.Run<MatrixMultiplication>();
Console.ReadLine();
}
```
## Результаты работы приложения
2023-12-18 10:39:35 +04:00
![](shot1.PNG)
2023-12-18 10:38:04 +04:00
По результатам работы: для матриц небольших размеров большое количество потоков не ускоряет (а в некоторых случаях замедляет) работу алгоритма, за счет излишнего переключения процессора. Для больших матриц увеличение количества потоков увеличивает скорость работы алгоритма. В сравнении с однопоточным алгоритмом, работа параллельного в несколько раз быстрее.