diff --git a/lab_3/lab3.ipynb b/lab_3/lab3.ipynb
new file mode 100644
index 0000000..62ce97d
--- /dev/null
+++ b/lab_3/lab3.ipynb
@@ -0,0 +1,1110 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Данные по инсультам\n",
+ "\n",
+ "Выведем информацию о столбцах датасета:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 136,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index(['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married',\n",
+ " 'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',\n",
+ " 'smoking_status', 'stroke'],\n",
+ " dtype='object')\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " gender | \n",
+ " age | \n",
+ " hypertension | \n",
+ " heart_disease | \n",
+ " ever_married | \n",
+ " work_type | \n",
+ " Residence_type | \n",
+ " avg_glucose_level | \n",
+ " bmi | \n",
+ " smoking_status | \n",
+ " stroke | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 9046 | \n",
+ " Male | \n",
+ " 67.0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " Yes | \n",
+ " Private | \n",
+ " Urban | \n",
+ " 228.69 | \n",
+ " 36.6 | \n",
+ " formerly smoked | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 51676 | \n",
+ " Female | \n",
+ " 61.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " Yes | \n",
+ " Self-employed | \n",
+ " Rural | \n",
+ " 202.21 | \n",
+ " NaN | \n",
+ " never smoked | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 31112 | \n",
+ " Male | \n",
+ " 80.0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " Yes | \n",
+ " Private | \n",
+ " Rural | \n",
+ " 105.92 | \n",
+ " 32.5 | \n",
+ " never smoked | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 60182 | \n",
+ " Female | \n",
+ " 49.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " Yes | \n",
+ " Private | \n",
+ " Urban | \n",
+ " 171.23 | \n",
+ " 34.4 | \n",
+ " smokes | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1665 | \n",
+ " Female | \n",
+ " 79.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " Yes | \n",
+ " Self-employed | \n",
+ " Rural | \n",
+ " 174.12 | \n",
+ " 24.0 | \n",
+ " never smoked | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id gender age hypertension heart_disease ever_married \\\n",
+ "0 9046 Male 67.0 0 1 Yes \n",
+ "1 51676 Female 61.0 0 0 Yes \n",
+ "2 31112 Male 80.0 0 1 Yes \n",
+ "3 60182 Female 49.0 0 0 Yes \n",
+ "4 1665 Female 79.0 1 0 Yes \n",
+ "\n",
+ " work_type Residence_type avg_glucose_level bmi smoking_status \\\n",
+ "0 Private Urban 228.69 36.6 formerly smoked \n",
+ "1 Self-employed Rural 202.21 NaN never smoked \n",
+ "2 Private Rural 105.92 32.5 never smoked \n",
+ "3 Private Urban 171.23 34.4 smokes \n",
+ "4 Self-employed Rural 174.12 24.0 never smoked \n",
+ "\n",
+ " stroke \n",
+ "0 1 \n",
+ "1 1 \n",
+ "2 1 \n",
+ "3 1 \n",
+ "4 1 "
+ ]
+ },
+ "execution_count": 136,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from imblearn.over_sampling import RandomOverSampler\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "import featuretools as ft\n",
+ "import time\n",
+ "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score\n",
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "\n",
+ "df = pd.read_csv(\"..//..//static//csv//healthcare-dataset-stroke-data.csv\")\n",
+ "\n",
+ "print(df.columns)\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Определим бизнес цели и цели технического проекта.\n",
+ "\n",
+ "1. Улучшение диагностики и профилактики инсульта.\n",
+ " * Бизнес-цель: повышение точности прогнозирования риска инсульта среди пациентов для более раннего лечебного вмешательства. Определение основных факторов риска для более целенаправленного подхода в медицинском обслуживании.\n",
+ " * Цель технического проекта: разработка статистической модели, которая решает задачу классификации и предсказывает возможность возникновения инсульта у пациентов на основе имеющихся данных (возраст, гипертония, заболевания сердца и пр.), с целью выявления групп риска. Внедрение этой модели в систему поддержки принятия медицинских решений для врачей.\n",
+ "2. Снижение расходов на лечение инсультов.\n",
+ " * Бизнес-цель: снижение затрат на лечение инсульта путем более эффективного распределения медицинских ресурсов и направленных профилактических мер.\n",
+ " * Цель технического проекта: создание системы оценки индивидуального риска инсульта для пациентов, что позволит медучреждениям проводить профилактические меры среди целевых групп, сокращая расходы на лечение.\n",
+ "\n",
+ "### И теперь проверим датасет на пустые значения:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 137,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "id 0\n",
+ "gender 0\n",
+ "age 0\n",
+ "hypertension 0\n",
+ "heart_disease 0\n",
+ "ever_married 0\n",
+ "work_type 0\n",
+ "Residence_type 0\n",
+ "avg_glucose_level 0\n",
+ "bmi 201\n",
+ "smoking_status 0\n",
+ "stroke 0\n",
+ "dtype: int64\n",
+ "\n",
+ "id False\n",
+ "gender False\n",
+ "age False\n",
+ "hypertension False\n",
+ "heart_disease False\n",
+ "ever_married False\n",
+ "work_type False\n",
+ "Residence_type False\n",
+ "avg_glucose_level False\n",
+ "bmi True\n",
+ "smoking_status False\n",
+ "stroke False\n",
+ "dtype: bool\n",
+ "\n",
+ "bmi процент пустых значений: %3.93\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Количество пустых значений признаков\n",
+ "print(df.isnull().sum())\n",
+ "\n",
+ "print()\n",
+ "\n",
+ "# Есть ли пустые значения признаков\n",
+ "print(df.isnull().any())\n",
+ "\n",
+ "print()\n",
+ "\n",
+ "# Процент пустых значений признаков\n",
+ "for i in df.columns:\n",
+ " null_rate = df[i].isnull().sum() / len(df) * 100\n",
+ " if null_rate > 0:\n",
+ " print(f\"{i} процент пустых значений: %{null_rate:.2f}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "В столбце bmi можно заметить пустые значение. Заменим их на медиану:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 138,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Количество пустых значений в каждом столбце после замены:\n",
+ "id 0\n",
+ "gender 0\n",
+ "age 0\n",
+ "hypertension 0\n",
+ "heart_disease 0\n",
+ "ever_married 0\n",
+ "work_type 0\n",
+ "Residence_type 0\n",
+ "avg_glucose_level 0\n",
+ "bmi 0\n",
+ "smoking_status 0\n",
+ "stroke 0\n",
+ "dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Замена значений\n",
+ "df[\"bmi\"] = df[\"bmi\"].fillna(df[\"bmi\"].median())\n",
+ "\n",
+ "# Проверка на пропущенные значения после замены\n",
+ "missing_values_after_drop = df.isnull().sum()\n",
+ "\n",
+ "# Вывод результатов после замены\n",
+ "print(\"\\nКоличество пустых значений в каждом столбце после замены:\")\n",
+ "print(missing_values_after_drop)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Удалим из датафрейма столбец id, потому что нет смысла учитывать его при предсказании:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 139,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index(['gender', 'age', 'hypertension', 'heart_disease', 'ever_married',\n",
+ " 'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',\n",
+ " 'smoking_status', 'stroke'],\n",
+ " dtype='object')\n"
+ ]
+ }
+ ],
+ "source": [
+ "df = df.drop('id', axis=1)\n",
+ "print(df.columns)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Можно перейти к созданию выборок"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 140,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Размер обучающей выборки: (2503, 10)\n",
+ "Размер контрольной выборки: (1074, 10)\n",
+ "Размер тестовой выборки: (1533, 10)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Разделение данных на признаки (X) и целевую переменную (y)\n",
+ "# В данном случае мы хотим предсказать 'stroke'\n",
+ "X = df.drop(columns=['stroke'])\n",
+ "y = df['stroke']\n",
+ "\n",
+ "# Разбиение данных на обучающую и тестовую выборки\n",
+ "# Сначала разделим на обучающую и тестовую\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)\n",
+ "\n",
+ "# Затем разделим обучающую выборку на обучающую и контрольную\n",
+ "X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.3)\n",
+ "\n",
+ "# Проверка размеров выборок\n",
+ "print(\"Размер обучающей выборки:\", X_train.shape)\n",
+ "print(\"Размер контрольной выборки:\", X_val.shape)\n",
+ "print(\"Размер тестовой выборки:\", X_test.shape)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Оценим сбалансированность выборок:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 141,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Распределение классов в обучающей выборке:\n",
+ "stroke\n",
+ "0 0.95006\n",
+ "1 0.04994\n",
+ "Name: proportion, dtype: float64\n",
+ "\n",
+ "Распределение классов в контрольной выборке:\n",
+ "stroke\n",
+ "0 0.951583\n",
+ "1 0.048417\n",
+ "Name: proportion, dtype: float64\n",
+ "\n",
+ "Распределение классов в тестовой выборке:\n",
+ "stroke\n",
+ "0 0.953033\n",
+ "1 0.046967\n",
+ "Name: proportion, dtype: float64\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABboAAAHyCAYAAAAtJXgGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpeklEQVR4nO3deZyNdf/H8ffMmH0sMattxj52Gktosg2DEeqOLHeGCoUK3Soqg5ZJSoSyFC10J4ruImuUNBFSRBIjSwxjG+sMc76/Pzzm/BznzBhLzlx6PR+PeTzmfM/3uq7Pdc7M+V7nfa7zvTyMMUYAAAAAAAAAAFiUp7sLAAAAAAAAAADgehB0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAuAY2m03p6enatWuXu0sBAAD4xyPoBgAAAIB8OnjwoAYNGqTIyEj5+PgoJCRE1apVU0ZGhrtLAwAA+Ecr5O4CAAAAbrT33ntPvXv3tt/29fVV2bJl1bp1az3//PMKCwtzY3UArOqPP/5Q8+bNdf78eT3++OO6/fbbVahQIfn7+yswMNDd5QEAAPyjEXQDAIBb1ujRo1WuXDmdO3dO3333nd5++20tWrRIW7ZsUUBAgLvLA2Ax/fr1k4+Pj3744QeVKlXK3eUAAADgEgTdAADgltW2bVvVq1dPkvTwww+rRIkSGjdunD7//HN169bNzdUBsJINGzbo66+/1tKlSwm5AQAACiDm6AYAAP8YLVq0kCSlpqZKko4ePar//Oc/qlmzpoKCglSkSBG1bdtWP//8s9Oy586d08iRI1W5cmX5+fkpIiJC9957r3bu3ClJ2r17tzw8PHL9adasmX1dq1atkoeHh+bMmaPhw4crPDxcgYGB6tChg/bu3eu07bVr16pNmzYqWrSoAgIC1LRpU61Zs8blPjZr1szl9keOHOnUd9asWYqJiZG/v7+KFy+url27utx+Xvt2KZvNpvHjx6t69ery8/NTWFiY+vXrp2PHjjn0i4qKUvv27Z22M3DgQKd1uqp97NixTo+pJGVmZiopKUkVK1aUr6+vypQpo6eeekqZmZkuH6tLXf64BQcHKyEhQVu2bMnXsjVq1NCGDRvUuHFj+fv7q1y5cpoyZYpDv6ysLI0YMUIxMTEqWrSoAgMDFRsbq5UrVzr02759u1q0aKHw8HD7fjzyyCM6evSo07Z79ep1xee7V69eioqKclhu79698vf3l4eHh3bv3i3p/5/n9957z6HvyJEjXT4vAwcOdKqnffv2DtvKWedrr72Wy6PnvP6ZM2fKw8NDM2bMcOj38ssvy8PDQ4sWLcp1XdLFv6+cx8HT01Ph4eG6//77tWfPnuuq64cffpCfn5927typ6tWry9fXV+Hh4erXr5/L52bu3Ln2/6/g4GD9+9//1v79+x369OrVS0FBQdq1a5fi4+MVGBiokiVLavTo0TLGONV76XNz8uRJxcTEqFy5cjpw4IC9/bXXXlPjxo1VokQJ+fv7KyYmRvPmzXPY7vU+xgAAAAURZ3QDAIB/jJxQukSJEpKkXbt2acGCBercubPKlSuntLQ0TZ06VU2bNtXWrVtVsmRJSVJ2drbat2+vFStWqGvXrnriiSd08uRJLVu2TFu2bFGFChXs2+jWrZvatWvnsN1hw4a5rOell16Sh4eHnn76aR06dEjjx49XXFycNm3aJH9/f0nS119/rbZt2yomJkZJSUny9PTUzJkz1aJFC61evVoNGjRwWm/p0qWVnJwsSTp16pQeffRRl9t+/vnn1aVLFz388MM6fPiwJk6cqLvuuks//fSTihUr5rRM3759FRsbK0n67LPPNH/+fIf7+/XrZ58f/fHHH1dqaqomTZqkn376SWvWrJG3t7fLx+FqHD9+3L5vl7LZbOrQoYO+++479e3bV1WrVtXmzZv1xhtv6Pfff9eCBQuuuO7o6Gg9++yzMsZo586dGjdunNq1a+cQkObm2LFjateunbp06aJu3brpk08+0aOPPiofHx89+OCDkqSMjAy988476tatm/r06aOTJ0/q3XffVXx8vNatW6c6depIkk6fPq3SpUvr7rvvVpEiRbRlyxZNnjxZ+/fv1xdffOG07eDgYL3xxhv22w888MAV6x0xYoTOnTt3xX7u0Lt3b3322WcaMmSIWrVqpTJlymjz5s0aNWqUHnroIaf/L1diY2PVt29f2Ww2bdmyRePHj9dff/2l1atXX3NdR44c0blz5/Too4+qRYsWeuSRR7Rz505NnjxZa9eu1dq1a+Xr6yvp/68TUL9+fSUnJystLU0TJkzQmjVrnP6/srOz1aZNG91xxx169dVXtXjxYiUlJenChQsaPXq0y1rOnz+vf/3rX9qzZ4/WrFmjiIgI+30TJkxQhw4d1KNHD2VlZenjjz9W586d9eWXXyohIeGGPcYAAAAFjgEAALjFzJw500gyy5cvN4cPHzZ79+41H3/8sSlRooTx9/c3+/btM8YYc+7cOZOdne2wbGpqqvH19TWjR4+2t82YMcNIMuPGjXPals1msy8nyYwdO9apT/Xq1U3Tpk3tt1euXGkkmVKlSpmMjAx7+yeffGIkmQkTJtjXXalSJRMfH2/fjjHGnDlzxpQrV860atXKaVuNGzc2NWrUsN8+fPiwkWSSkpLsbbt37zZeXl7mpZdeclh28+bNplChQk7tO3bsMJLM+++/b29LSkoylx5Krl692kgys2fPdlh28eLFTu2RkZEmISHBqfYBAwaYyw9PL6/9qaeeMqGhoSYmJsbhMf3www+Np6enWb16tcPyU6ZMMZLMmjVrnLZ3qaZNmzqszxhjhg8fbiSZQ4cOXXFZSeb111+3t2VmZpo6deqY0NBQk5WVZYwx5sKFCyYzM9Nh2WPHjpmwsDDz4IMP5rmN/v37m6CgIKf2Hj16mHLlyjm0Xf6YJSYmmsjISPvtLVu2GE9PT9O2bVsjyaSmphpjjPnzzz+NJDNjxgyH9V3+XOdsY8CAAU71JCQkOGwrr/+LvNZ/4MABU7x4cdOqVSuTmZlp6tata8qWLWtOnDiR63pyREZGmsTERIe27t27m4CAgOuqK+d2y5YtzYULF+ztOa83EydONMYYk5WVZUJDQ02NGjXM2bNn7f2+/PJLI8mMGDHC3paYmGgkmccee8zeZrPZTEJCgvHx8TGHDx92qHfmzJnGZrOZHj16mICAALN27Vqnus+cOeNwOysry9SoUcO0aNHCof16HmMAAICCiKlLAADALSsuLk4hISEqU6aMunbtqqCgIM2fP98+v66vr688PS8eDmVnZ+vIkSMKCgpSlSpVtHHjRvt6Pv30UwUHB+uxxx5z2sblUzpcjZ49e6pw4cL22/fdd58iIiLs0wZs2rRJO3bsUPfu3XXkyBGlp6crPT1dp0+fVsuWLfXtt9/KZrM5rPPcuXPy8/PLc7ufffaZbDabunTpYl9nenq6wsPDValSJaepNLKysiTJfraqK3PnzlXRokXVqlUrh3XGxMQoKCjIaZ3nz5936Jeenn7FM4z379+viRMn6vnnn1dQUJDT9qtWraro6GiHdeZMV3P59l3Jqenw4cNKSUnR/PnzVatWLQUHB19x2UKFCqlfv3722z4+PurXr58OHTqkDRs2SJK8vLzk4+Mj6eIZ6EePHtWFCxdUr149h7+3HCdOnFBaWppWrFihhQsX6q677nLqk5WVlefz4sqwYcN0++23q3Pnzg7tISEhkqR9+/blaz3nzp1zeg7Pnz/vsu+ZM2eUnp6uY8eOOUzJkZvw8HBNnjxZy5YtU2xsrDZt2qQZM2aoSJEi+aotMzNT6enpOnTokJYtW6avv/5aLVu2vO66JGnIkCHy8vKy337ggQcUFhamhQsXSpLWr1+vQ4cOqX///g7/iwkJCYqOjrb3u9Sl08DkTAuTlZWl5cuXO/UdOnSoZs+erU8++cTlNzpyvg0iXfymwYkTJxQbG+v0N3a9jzEAAEBBw9QlAADgljV58mRVrlxZhQoVUlhYmKpUqWIPtqWLYeOECRP01ltvKTU1VdnZ2fb7cqY3kS5OeVKlShUVKnRjD50qVarkcNvDw0MVK1a0z5m8Y8cOSVJiYmKu6zhx4oRuu+02++309HSn9V5ux44dMsbk2u/yKUaOHz8uSU7h8uXrPHHihEJDQ13ef+jQIYfbS5cutQer+ZWUlKSSJUuqX79+TnMO79ixQ9u2bct1nZdv35Xvv//eYflKlSppwYIF+fowo2TJkgoMDHRoq1y5sqSL8yvfcccdkqT3339fr7/+un777TeHULhcuXJO64yPj9fatWslSW3atNGcOXOc+hw/fjzP5+Vy3333nb744gutWLHCaUoWf39/1a1bV9OmTVNcXJz97+PMmTMu1/Xuu+/q3XffdWqPjIx0aktKSlJSUpIkyc/PTy1atND48ePz/Fvt2rWrZs2apYULF6pv374ug+rcfPzxx/r444/tt+vXr6933nnnuurK+TuIjo52aPfy8lKlSpXs/7d//vmnJKlKlSpO64iOjtZ3333n0Obp6any5cs7tF36t3OpqVOn6ocffpAkp7nvc3z55Zd68cUXtWnTJof56V39HV/PYwwAAFDQEHQDAIBbVoMGDVSvXr1c73/55Zf1/PPP68EHH9QLL7yg4sWLy9PTU4MGDXI6U9odcmoYO3asff7my10acmZlZenAgQNq1arVFdfr4eGhr776yuHMVFfrlKSDBw9KungGaF7rDA0N1ezZs13ef3kA3bBhQ7344osObZMmTdLnn3/ucvlt27bpvffe06xZs1zO9W2z2VSzZk2NGzfO5fJlypTJtfYctWrV0uuvvy5JOnz4sN588001a9ZMGzduzHPf82vWrFnq1auXOnXqpKFDhyo0NFReXl5KTk62zx9/qYkTJyo9PV1bt25VcnKyHnnkEc2aNcuhz8GDB10Gy7l5+umnFR8frxYtWjhddFKSpkyZoo4dO6px48ZXXFfHjh2dLkj53HPP2f9eLtW3b1917txZ2dnZ2rZtm0aOHKlOnTrp119/zXX9R44c0fr16yVJW7dulc1mc/igKi+tW7fW0KFDJV08Q33MmDFq3ry51q9f73DG89XUdely7vLDDz/opZde0o8//qjBgwerTZs2Dt84WL16tTp06KC77rpLb731liIiIuTt7a2ZM2fqo48+clrf9TzGAAAABQ1BNwAA+MeaN2+emjdv7nRW6vHjxx3CowoVKmjt2rU6f/78DbmgYo6cM7ZzGGP0xx9/qFatWvbtSlKRIkUUFxd3xfX9/PPPOn/+fJ7hfs56jTEqV66c/czRvGzdulUeHh4uz1C9dJ3Lly9XkyZN8hUIBgcHO+1TXheMHDZsmOrUqaP7778/1+3//PPPatmy5TVPJ3Pbbbc51NSsWTOVLFlSM2fOzPWCojn++usvnT592uGs7t9//12SFBUVJeni31v58uX12WefOdSYc0bx5erXry9Jatu2rUJDQ9WzZ089++yzqlq1qqSLU6388ccfatOmTb72b8GCBUpJSXE5TUqOBg0aaNeuXfrll1908uRJSdIHH3ygDz/80Klv6dKlnZ7D8ePHuwy6K1WqZO8bHx+vM2fO6Nlnn83zQp8DBgzQyZMnlZycrGHDhmn8+PEaMmRIvvY1IiLCobYqVaqocePGWrBggbp163ZNdeWcdb99+3aHM7BtNpt27NihunXrSvr/M9q3b99unzonx/bt250+mLDZbNq1a5fD/+Llfzs5HnzwQQ0fPlx//fWXqlWrpsGDBzs8N59++qn8/Py0ZMkShyltZs6c6fJxup7HGAAAoKDh43oAAPCP5eXl5TQv79y5c7V//36Htn/9619KT0/XpEmTnNaR33l9Xfnggw/sYaJ0MQg9cOCA2rZtK0mKiYlRhQoV9Nprr+nUqVNOyx8+fNipdi8vL7Vv3z7P7d57773y8vLSqFGjnOo3xujIkSP22xcuXNCnn36qBg0a5DlFRpcuXZSdna0XXnjB6b4LFy7Ypz+5FikpKfr888/1yiuv5Bpid+nSRfv379f06dOd7jt79qxOnz591ds9e/asJDlM/5CbCxcuaOrUqfbbWVlZmjp1qkJCQhQTEyNJ9rPnL33M165dq5SUlCuuPz093amWzz//XGfPnnUKU13Jzs7W8OHD1b1791y/HZDD399fDRs2VFxcnOLi4pym1bgRcr6t4OobBdLF/4U5c+bolVde0TPPPKOuXbvqueeeswfAVyu/z2VedbVs2VK+vr568803Hb7xMXv2bKWlpdn/7+rVq6fQ0FBNmTLFYXtfffWVtm3bpoSEBKd1X/raYozRpEmT5O3t7TSVSGxsrKSLU+WMGTNGs2bN0tKlS+33e3l5ycPDw2Eapt27d7v8EOlGP8YAAADuxhndAADgH6t9+/YaPXq0evfurcaNG2vz5s2aPXu2U7DXs2dPffDBBxoyZIjWrVun2NhYnT59WsuXL1f//v3VsWPHa9p+8eLFdeedd6p3795KS0vT+PHjVbFiRfXp00fSxbl733nnHbVt21bVq1dX7969VapUKe3fv18rV65UkSJF9MUXX+j06dOaPHmy3nzzTVWuXFmrVq2ybyMnIP/ll1+UkpKiRo0aqUKFCnrxxRc1bNgw7d69W506dVLhwoWVmpqq+fPnq2/fvvrPf/6j5cuX6/nnn9cvv/yiL774Is99adq0qfr166fk5GRt2rRJrVu3lre3t3bs2KG5c+dqwoQJuu+++67pcVq6dKlatWqV51ntDzzwgD755BM98sgjWrlypZo0aaLs7Gz99ttv+uSTT7RkyZIrnumelpZmnxokPT1dU6dOVaFCha74wYH0/8Hj7t27VblyZc2ZM0ebNm3StGnT7N8CaN++vT777DPdc889SkhIUGpqqqZMmaJq1ao5fJAxevRo7d+/XzVq1JCvr682btyomTNnqlatWqpVq5bOnDmjpKQkvfXWW2rcuLFat259xfr27dsnHx8f+4VOb7bt27dr8eLFstls2rp1q8aOHav69evbLwx7qUOHDunRRx9V8+bN7VOjTJo0SStXrlSvXr303XffXXF6jV27dtmfy/3792vSpEkqUqSIU3B8NXUVL15czz33nJ5//nnFx8erY8eO2rVrlyZNmqTatWvr4YcflnRxjvsxY8aod+/eatq0qbp166a0tDRNmDBBUVFRGjx4sMN6/fz8tHjxYiUmJqphw4b66quvtHDhQg0fPjzPeez79u2rjz76SI888oi2bNmigIAAJSQkaNy4cWrTpo26d++uQ4cOafLkyapYsaJ++eWXG/oYAwAAFDgGAADgFjNz5kwjyfz444959jt37px58sknTUREhPH39zdNmjQxKSkppmnTpqZp06YOfc+cOWOeffZZU65cOePt7W3Cw8PNfffdZ3bu3GmMMSY1NdVIMmPHjnXaTvXq1R3Wt3LlSiPJ/Pe//zXDhg0zoaGhxt/f3yQkJJg///zTafmffvrJ3HvvvaZEiRLG19fXREZGmi5dupgVK1Y4bPtKP4mJiQ7r/fTTT82dd95pAgMDTWBgoImOjjYDBgww27dvN8YY89hjj5m77rrLLF682KmmpKQk4+pQctq0aSYmJsb4+/ubwoULm5o1a5qnnnrK/PXXX/Y+kZGRJiEhwWnZAQMGOK1TkvHw8DAbNmxwaHf1HGVlZZkxY8aY6tWrG19fX3PbbbeZmJgYM2rUKHPixAmn7V2+vksfq2LFipkmTZqYRYsW5blczrLVq1c369evN40aNTJ+fn4mMjLSTJo0yaGfzWYzL7/8somMjDS+vr6mbt265ssvvzSJiYkmMjLS3m/evHmmfv36pkiRIsbf399UrFjRPPnkk+bw4cPGGGP27dtnypQpYwYNGuRyvySZpKQk++3ExEQjyTzxxBMO/XL+T1JTU/PcP1fPtSQzYMAAp74JCQkO+3L536anp6cpXbq0SUxMNPv27XO5/nvvvdcULlzY7N6922Hdn3/+uZFkxowZk2e9kZGRDtsMDg42rVu3NikpKddVV47Jkyeb6Oho4+3tbcLCwky/fv3MkSNHnPrNmTPH1K1b1/j6+prixYubHj162NedIzEx0QQGBpqdO3ea1q1bm4CAABMWFmaSkpJMdna2U70zZ850WH779u3Gz8/PDB482N727rvvmkqVKhlfX18THR1tZs6cecMfYwAAgILIw5jr+L4tAAAArtqqVavUvHlzzZ0795rPcr7U7t27Va5cOaWmpjrN6Ztj5MiR2r17t8sLEOL6NGvWTOnp6dqyZYu7S4HF9OrVS/PmzXM5NREAAACuDt9HAwAAAAAAAABYGnN0AwAAWFxQUJB69OiR58Uia9WqpZIlS97EqgAAAADg5iHoBgAAsLjg4GD7hfdyc++9996kagAAAADg5mOObgAAAAAAAACApTFHNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcg6fTp09q7d6+OHTvm7lJwA/G8AgBgXcYYHT16VDt27HB3KQAA3JJsNpvS09O1a9cud5cC3BAE3fjHmjt3rlq2bKnChQsrKChIZcuW1auvvurusnCdeF4BALCukydP6rnnnlOVKlXk4+OjEiVKqHLlytq+fbu7SwMA4JZw8OBBDRo0SJGRkfLx8VFISIiqVaumjIwMd5cGXLdC7i4AuBF+/fVXJScna+XKlUpPT1eJEiXUvHlzDR8+XNWrV3fq/8wzz2jMmDHq2LGjpk+fruDgYHl4eKhy5cpuqB43Cs8rALjfe++9p969e+vHH39UvXr1HO6bPn26+vbtq44dO+rTTz+Vl5eXm6pEQXTkyBE1bdpUe/bs0WOPPaYmTZrIx8dH3t7eioqKcnd5AIDLeHh45KvfypUr1axZs7+3GOTLH3/8oebNm+v8+fN6/PHHdfvtt6tQoULy9/dXYGCgu8sDrhtBNyzvs88+U7du3VS8eHE99NBDKleunHbv3q13331X8+bN08cff6x77rnH3v+bb77RmDFjlJycrGeeecaNleNG4nkFgIJt/vz5evTRRxUbG6uPP/6YkBtOhg4dqgMHDiglJcXliQoAgILlww8/dLj9wQcfaNmyZU7tVatWvZllIQ/9+vWTj4+PfvjhB5UqVcrd5QA3nIcxxri7COBa7dy5U7Vq1VLZsmX17bffKiQkxH5fenq6YmNjtXfvXv3yyy8qX768JOnuu+/W0aNHtWbNGneVjb8BzysAFAyuzuhetWqV2rRpo8qVK2v16tUqWrSom6tEQXPo0CFFRERoypQp6tOnj7vLAQBcg4EDB2ry5MkiZiqYNmzYoHr16mnp0qVq1aqVu8sB/hbM0Q1LGzt2rM6cOaNp06Y5hNySFBwcrKlTp+r06dMOczT/8MMPqlGjhrp27arixYvL399f9evX14IFC+x9Tp06pcDAQD3xxBNO29y3b5+8vLyUnJwsSerVq5fLr9N6eHho5MiR9tt//vmn+vfvrypVqsjf318lSpRQ586dtXv3boflVq1aJQ8PD61atcre9uOPP6pVq1YqXLiwAgMD1axZM61evdphuffee08eHh5av369vS09Pd2pDklq3769U82rV69W586dVbZsWfn6+qpMmTIaPHiwzp4967Rv8+bNU7169VS4cGF5eHjYf1577TWnvq5qzPkJCAhQzZo19c477zj069Wrl4KCgvJc1+X7lZ/nNcehQ4f00EMPKSwsTH5+fqpdu7bef/99hz67d++279Mbb7yhyMhI+fv7q2nTptqyZYtTvZc/nrNmzZKnp6deeeUVe9svv/yiXr16qXz58vLz81N4eLgefPBBHTlyJM99BQAr27Rpkzp27KiIiAgtWbLEZcg9d+5cxcTEyN/fX8HBwfr3v/+t/fv3O/TJbWyYN2+ew7jZrFkzh7HG1U8ODw8PDRw4ULNnz1aVKlXk5+enmJgYffvtt07b+emnn9S2bVsVKVJEQUFBatmypX744QeX+5xbDe+9955Dnxo1alzx8cup8XKuxvLXXntNjRs3VokSJeTv76+YmBjNmzfPadlTp07pySefVPny5eXt7e1QY3p6ep71XL5vwcHBSkhIcBobc6s7R84xQc5x0I8//iibzaasrCzVq1dPfn5+KlGihLp166Y9e/Y4Lf/1118rNjZWgYGBKlasmDp27Kht27Y59Bk5cqQ8PDz022+/qUuXLipSpIhKlCihJ554QufOnXOq99LjigsXLqhdu3YqXry4tm7dam+fOXOmWrRoodDQUPn6+qpatWp6++2383zMAAAXZWZmKikpSRUrVrS/53zqqaeUmZnp1HfWrFlq0KCBAgICdNttt+muu+7S0qVLJUlRUVF5jvOXjo+nT5/Wk08+qTJlysjX11dVqlTRa6+95hTGX7q8l5eXSpUqpb59++r48eP2PllZWRoxYoRiYmJUtGhRBQYGKjY2VitXrnSqP+c9Z9myZeXl5WVf95Xe516+f56engoPD9f999/vMB5e+n41NznjYI4ffvhBfn5+2rlzp6pXry5fX1+Fh4erX79+Onr0qNPyV3N8tmvXLsXHxyswMFAlS5bU6NGjHR7jnHovPRY6efKkYmJiVK5cOR04cMDent/jGcAVpi6BpX3xxReKiopSbGysy/vvuusuRUVFaeHChfa2I0eOaNq0aQoKCtLjjz+ukJAQzZo1S/fee69mz56tbt26KSgoSPfcc4/mzJmjcePGOXy9+r///a+MMerRo8dV1frjjz/q+++/V9euXVW6dGnt3r1bb7/9tpo1a6atW7cqICDA5XJ//PGHmjVrpoCAAA0dOlQBAQGaPn264uLitGzZMt11111XVUdu5s6dqzNnzujRRx9ViRIltG7dOk2cOFH79u3T3Llz7f1SUlLUpUsX1a5dW6+88oqKFi2q9PR0DR48ON/beuONNxQcHKyMjAzNmDFDffr0UVRUlOLi4q65/vw8r5J09uxZNWvWTH/88YcGDhyocuXKae7cuerVq5eOHz/u9OHGBx98oJMnT2rAgAE6d+6cJkyYoBYtWmjz5s0KCwtzWcvSpUv14IMPauDAgQ7TqCxbtky7du1S7969FR4erl9//VXTpk3Tr7/+qh9++CHfc9wBgFXs3LlTbdq0ka+vr5YsWaKIiAinPjlngNevX1/JyclKS0vThAkTtGbNGv30008qVqzYVW3z2Wef1cMPPyxJ9vGpb9++uR4rfPPNN5ozZ44ef/xx+fr66q233lKbNm20bt06exD966+/KjY2VkWKFNFTTz0lb29vTZ06Vc2aNdM333yjhg0bOq03Ojpazz77rEMdf7cJEyaoQ4cO6tGjh7KysvTxxx+rc+fO+vLLL5WQkGDvN3ToUE2ZMkUPPfSQmjRpIm9vb3322WeaP39+vraTs2/GGO3cuVPjxo1Tu3btXAbS+ZXzoe/AgQMVExOjV155RYcPH9abb76p7777Tj/99JOCg4MlScuXL1fbtm1Vvnx5jRw5UmfPntXEiRPVpEkTbdy40ekDgC5duigqKkrJycn64Ycf9Oabb+rYsWP64IMPcq3n4Ycf1qpVq7Rs2TJVq1bN3v7222+revXq6tChgwoVKqQvvvhC/fv3l81m04ABA655/wHgVmez2dShQwd999136tu3r6pWrarNmzfrjTfe0O+//+5wgtKoUaM0cuRINW7cWKNHj5aPj4/Wrl2rr7/+Wq1bt9b48eN16tQpSdK2bdv08ssva/jw4fYpUnLCZGOMOnTooJUrV+qhhx5SnTp1tGTJEg0dOlT79+/XG2+84VDjPffco3vvvVcXLlxQSkqKpk2bprNnz9qnYsnIyNA777yjbt26qU+fPjp58qTeffddxcfHa926dapTp459XYmJiVq+fLkee+wx1a5dW15eXpo2bZo2btyYr8crNjZWffv2lc1m05YtWzR+/Hj99ddfTie8XY0jR47o3LlzevTRR9WiRQs98sgj2rlzpyZPnqy1a9dq7dq18vX1lXR1x2fZ2dlq06aN7rjjDr366qtavHixkpKSdOHCBY0ePdplLefPn9e//vUv7dmzR2vWrHE4Rszv8QzgkgEs6vjx40aS6dixY579OnToYCSZjIwMY4wxkowks2rVKnufM2fOmKpVq5rw8HCTlZVljDFmyZIlRpL56quvHNZXq1Yt07RpU/vt3r17m7JlyzptV5JJSkpy2MblUlJSjCTzwQcf2NtWrlxpJJmVK1caY4z517/+Zby8vMyWLVvsfdLT002JEiVMTEyMvW3mzJlGkvnxxx/tbYcPH3aqwxhjEhISTGRkpEObq/qSk5ONh4eH+fPPP+1tw4YNM5LMgQMH7G2pqalGkhk7dqzTOi6VU2Nqaqq97ffffzeSzKuvvmpvS0xMNIGBgXmu6/L9yu/zOn78eCPJzJo1y94vKyvLNGrUyAQFBdn/TnL2yd/f3+zbt8/ed+3atUaSGTx4sEO9OY/n+vXrTVBQkOncubPJzs52qNnVY/zf//7XSDLffvttnvsLAFaR81r/5ZdfmgoVKhhJpnXr1i77ZmVlmdDQUFOjRg1z9uxZe/uXX35pJJkRI0bY23IbG+bOneswbl4q57V85syZLrefM3asX7/e3vbnn38aPz8/c88999jbOnXqZHx8fMzOnTvtbX/99ZcpXLiwueuuu5zW26RJE9O8efM862jatKmpXr26y7our3HAgAFO7fkZy7OyskyNGjVMixYtHNojIiJMfHy8Q1tSUpKRZA4fPpxnPU2bNnU4DjLGmOHDhxtJ5tChQ1esO8flxwQ5t6tVq+awHznHRU8++aS9rU6dOiY0NNQcOXLE3vbzzz8bT09P07NnT6d96tChg8O2+/fvbySZn3/+2aHenOOKYcOGGS8vL7NgwQKnul2N5fHx8aZ8+fK57isA/FMMGDDA5BYzffjhh8bT09OsXr3aoX3KlClGklmzZo0xxpgdO3YYT09Pc8899zi9n7LZbE7rvfz986UWLFhgJJkXX3zRof2+++4zHh4e5o8//rC3uXrf3LhxY1OtWjX77QsXLpjMzEyHPseOHTNhYWHmwQcftLedPXvWeHp6mn79+jn0zc/7XGOMiYyMNImJiQ5t3bt3NwEBAfbb+XkPnjMOXn67ZcuW5sKFC/b2nDF44sSJxpirPz6TZB577DF7m81mMwkJCcbHx8d+XHHpsZDNZjM9evQwAQEBZu3atU515/d4BnCFqUtgWSdPnpQkFS5cOM9+OfdnZGTY2+rXr6+mTZvab/v7+6t///46ePCg/RPWuLg4lSxZUrNnz7b327Jli3755Rf9+9//treFhobq0KFDysrKyrMOf39/++/nz5/XkSNHVLFiRRUrVszlp7onTpzQoUOHtGzZMsXHxztclKlEiRLq1auXNmzYoLS0tDy3m1+X1nf69Gmlp6ercePGMsbop59+st938uRJeXp6XvUZdpc6duyY0tPTtWvXLr3xxhvy8vJyeD5ypKenKz093enrxbnJz/O6aNEihYeH28/wliRvb289/vjjOnXqlL755huHdXbq1MnhIh0NGjRQw4YNtWjRIqft79q1SwkJCapTp44+/PBDeXo6vsRe+hifO3dO6enpuuOOOyQp35/sA4BV9OrVS3v37lX37t21dOlSh28H5Vi/fr0OHTqk/v37y8/Pz96ekJCg6Ohoh29k5cgZG3J+co4HrlWjRo0UExNjv122bFl17NhRS5YsUXZ2trKzs7V06VJ16tTJfr0PSYqIiFD37t313XffORxjSBe/2pxzRlResrOz7fuR13FEzphx6c/58+ed+l06zhw7dkwnTpxQbGys0xhz8uRJlShR4or15eb8+fNKT0/X4cOHlZKSovnz56tWrVr2M64vr/vIkSOy2Wz5WveAAQMc9qNZs2aKiYmx/y0cOHBAmzZtUq9evVS8eHF7v1q1aqlVq1Yux+fLz7R+7LHHJMll30mTJik5OVlvvvmmOnbs6HT/pbWdOHFC6enpatq0qXbt2qUTJ07kax8B4J9o7ty5qlq1qqKjox3GsxYtWkiSffqPBQsWyGazacSIEU7vp672G7CLFi2Sl5eXHn/8cYf2J598UsYYffXVVw7tZ86cUXp6ug4ePKhPP/1UP//8s1q2bGm/38vLSz4+PpIunqF+9OhRXbhwQfXq1XMYa0+fPi2bzXZdY21mZqbS09PtmcDXX3/tUMvlNR87dizfc6MPGTLE4VvrDzzwgMLCwuxj7bUcn106XVnO9GVZWVlavny5U9+hQ4dq9uzZ+uSTT9SgQQOn+/N7PAO4QtANy8oJsK/0BtdVIB4dHe3UL+drTjlzRXp6eqpHjx5asGCBzpw5I0maPXu2/Pz81LlzZ/tyjRs31rlz5/Tcc89p37599gH7cmfPntWIESPsc4MFBwcrJCREx48fd/nGqFOnTgoLC1NGRoaqVKlyxXqv1549e+xvGoOCghQSEmIPjS+tr1GjRrLZbHriiSe0c+dO+6B6NW6//XaFhISoQoUKmjFjhiZNmuQ0wJ0+fVohISEKCQmRv7+/ypYtqwkTJuS53vw8r3/++acqVarkdNCU0+/PP/90aK9UqZLTOitXruz0uJ8+fVrx8fFKS0vT0aNHXR6EHT16VE888YTCwsLk7++vkJAQlStXTpJ4cwzglnP06FHNmjVL77//vurUqaMnnnjC6bUu5zXX1TgXHR3t9Jp86diQ8/Pggw9eV525vc6fOXNGhw8f1uHDh3XmzJlcx2Kbzaa9e/c6tB8/fjxfc3D+9ttvDmNdlSpV9NFHHzn1e/fdd532O2ee0kt9+eWXuuOOO+Tn56fixYsrJCREb7/9ttPj3qhRI82fP1/z5s3TgQMHlJ6ebj/WyY/vv/9eISEhCg0NVePGjXXhwgXNnTvXaezLqTs4OFj+/v666667HK4lcqmcZXMbyy8dxyXXfzNVq1ZVenq6Tp8+7dB++XNcoUIFeXp6Oo3lX331lX0KM1dzlUrSmjVrFBcXZ58bPCQkRMOHD5fEWA4AedmxY4d+/fVXp/GscuXKki7OaS1dnPbM09PTYdqoa/Xnn3+qZMmSTifH5fbeb+zYsQoJCVFERITuu+8+xcbGasyYMQ593n//fdWqVct+LYmQkBAtXLjQYQwoUaKEKlWqpHfeeUdLly7VoUOHlJ6e7nIu8tx8/PHHCgkJUVhYmFq3bq0yZco4XdtKkpKSkhQSEqLixYsrICBACQkJ2rFjh8t15jbWenl5qVKlSvkaa10dn3l6ejqcDCDJ/rxePtZOnTpVr7/+uiTlmiPk93gGcIU5umFZRYsWVUREhH755Zc8+/3yyy8qVaqUihQpIsnx08Er6dmzp8aOHasFCxaoW7du+uijj9S+fXuHC2l16NBBDz74oMaOHauxY8fmuq7HHntMM2fO1KBBg9SoUSMVLVpUHh4e6tq1q8uznF577TVVqlTJ5dlEN1p2drZatWqlo0eP6umnn1Z0dLQCAwO1f/9+9erVy6G+rl27auPGjZo4caKmTZt2TdubNWuWwsLCdO7cOX399dcaMGCA/Pz81KtXL3sfPz8/ffHFF5IuflgxY8YMDRo0SBEREerSpYvTOq/mef07pKenKzAwUF988YU6deqk5ORkJSUlOfTp0qWLvv/+ew0dOlR16tRRUFCQbDab2rRpk+8z3QDAKsaOHWv/YHjatGm64447NGzYML311lvXvM5Lx4Ycq1evznX+R3c5ePCg4uPjr9gvKipK06dPl3Rx3sw333xTDzzwgMqXL2//xo8kdezY0enCjs8995wOHjxov7169Wp16NBBd911l9566y1FRETI29tbM2fOdArPp02bpm7dujl8cH81atWqZX+TmjOPdrNmzbRx40aFh4c71W2MUWpqqkaPHq327du7fAN+M8fx3M4IXLdunfr06aPAwEC9+OKL6ty5s8Ob/J07d6ply5aKjo7WuHHjVKZMGfn4+GjRokV64403GMsBIA82m001a9bUuHHjXN5fpkyZm1yRswceeEA9e/aUzWbTrl279MILL6h9+/Zavny5PDw8NGvWLPXq1UudOnXS0KFDFRoaKi8vLyUnJ2vnzp0O65ozZ4569OjhdDwQGBiYr1pat26toUOHSpL27dunMWPGqHnz5lq/fr3DmNm3b1917txZ2dnZ2rZtm0aOHKlOnTrp119/dVqnu98zSxcviPnSSy/pxx9/1ODBg9WmTRuHb4RdzfEM4ApBNyytffv2mj59ur777jvdeeedTvevXr1au3fvVr9+/ext5cqV0/bt2536/vbbb5LkcAGjGjVqqG7dupo9e7ZKly6tPXv2aOLEiU7LvvvuuxoxYoR27txpf5PTqlUrhz7z5s1TYmKi/Y2hdPErvZdexflSMTExatq0qYKCgvJd77XavHmzfv/9d73//vvq2bOnvX3ZsmVOfT09PfXaa69p8+bNSk1N1VtvvaW0tDSH6VyupEmTJva627dvr19//VXJyckOQbeXl5fDxSkTEhJUvHhxLV682GXQnd/nNTIyUr/88otsNpvDWd05/SIjIx2Wd/Vm/Pfff3d63AMCArR48WJFR0dr8ODBevnll9WlSxf72QLHjh3TihUrNGrUKI0YMSLP9QPAreDSiyXXr19fAwYM0OTJk9WzZ097iJvzmrt9+3b7V5dzbN++3ek1+fKxQVKu42h+5fY6HxAQoJCQEEkXX+NzG2M8PT0d3pzv27dPJ0+etL/+5yUwMNBhf2JjY1WqVCktXbrUIeguXbq0036PHz/eIej+9NNP5efnpyVLljhMmzJz5kyn7UZFRWnWrFmqWbOmHnzwQXXq1EkffPCB/WJbV3Lbbbc51NOsWTOVLFlSM2fO1LBhw3KtOygoSD169HCYEi1HzjecXP0t/Pbbbw7jeE6/y/32228KDg52ChF27NhhX7908ULfNpvNaSxv1aqV3n77bZ07d04LFixQ3759tWrVKnsw/sUXXygzM1P/+9//VLZsWftyOV+3BwDkrkKFCvapQPKagqRChQqy2WzaunWrw8Udr0VkZKSWL1+ukydPOpzVndt7v/LlyzuMW0WLFlX37t31ww8/qFGjRpo3b57Kly+vzz77zGEfLj/BSZLq1q2r6dOnKzY2VqNHj9Ydd9yhsWPHas2aNfmqPSIiwqGWKlWqqHHjxvaT8HJUqlTJ3i8+Pl5nzpzRs88+6/IC0ZeOtZeegW2z2bRjxw7VrVvX4XHJ7/FZzgcDOWdxSxePpSTnvOLBBx/U8OHD9ddff6latWoaPHiww/HH1RzPAK4wdQksbejQofL391e/fv105MgRh/uOHj2qRx55RAEBAfZPQiWpXbt2Wrdunb7//nt727lz5/T2228rPDzcYZ5O6eKnukuXLtX48eNVokQJtW3b1mUtkZGRatGiheLi4pzejEoX35xfPmfWxIkTlZ2dnev+eXh4qHXr1lqyZIm2bdvmsG/vv/++6tWrp7CwsFyXz6+c+bkurc8Yk+tUIRMnTtTXX3+t2bNnKy4uTk2aNLmu7Z89e/aKX+PKqe3SucQuld/ntV27djp48KDmzJlj73fhwgVNnDhRQUFBTnOFL1iwQPv377ffXrdundauXev0dxASEmL/Ctjo0aNVunRp9enTx6nuy/8Gxo8fn+d+A8Ct4qWXXlJERIT69u2rCxcuSJLq1aun0NBQTZkyxWEc+Oqrr7Rt2zYlJCT87XWlpKQ4zPm4d+9eff7552rdurW8vLzk5eWl1q1b6/PPP3f4+m1aWpo++ugj3XnnnfZvjUkXv2osyemNYX7kfFie21iXFy8vL3l4eDgcV+zevVsLFixw6nvhwgX16NFD1atX1xtvvKG4uDinrxxfjbNnz0rSFcfyvPavbt26Cg8Pd/pbWL16tdavX6/27dtLuvjGv06dOnr//fcdPuTYsmWLli5dqnbt2jmte/LkyQ63c05auHwsb9y4sby8vBQYGKgpU6bo22+/tZ9xf2ndl47lJ06c4M03AORDly5dtH//fofX1Rxnz561TzvVqVMneXp6avTo0U7flMnvHNQ52rVrp+zsbE2aNMmh/Y033pCHh0eu7+0vrUv6//HN1Tiwdu1apaSkOC2bkZGhBx54QB06dNBzzz2nuLg4RUREXFX9edWSm7zG2pYtW8rX11dvvvmmw2M7e/ZspaWl2cfaazk+u/QxNsZo0qRJ8vb2dppXPDY2VpJUsmRJjRkzRrNmzXKYju1qjmcAVzijG5ZWqVIlvf/+++rRo4dq1qyphx56SOXKldPu3bv17rvvKj09Xf/9739VoUIF+zJPPfWUZs+erbZt2+rxxx9XcHCwZs2apa1bt2r27NkqVMjx36J79+566qmnNH/+fD366KPy9va+plrbt2+vDz/8UEWLFlW1atWUkpKi5cuXX/ECFS+88IKWLFmipk2b6rHHHlNAQICmT5+u48ePa968eU79U1JS7HOE51wc648//tDixYvtfQ4fPqyzZ89q8eLFatOmjaKjo1WhQgX95z//0f79+1WkSBF9+umnLufM+vXXX/XUU09p5MiRql+//jU9FgsWLFBwcLB96pLVq1dr0KBBDn2ys7PtNZ88eVIzZ87U6dOn1alTJ5frzO/z2rdvX02dOtV+Mc+oqCjNmzdPa9as0fjx453mb6tYsaLuvPNOPfroo8rMzLR/4PHUU0/lun/+/v6aNm2a4uLi9Pbbb6t///4qUqSI7rrrLr366qs6f/68/Yy91NTUa3oMAcBqChcurIkTJ+ree+/V66+/rqefflre3t4aM2aMevfuraZNm6pbt25KS0vThAkTFBUVpcGDB//tddWoUUPx8fF6/PHH5evra59aZdSoUfY+L774opYtW6Y777xT/fv3V6FChTR16lRlZmbq1VdflXQx+E5KStI777yjrl27upxr+nKnTp2yj3VHjx7Vm2++KW9v72sK+BMSEjRu3Di1adNG3bt316FDhzR58mRVrFjRaZq3UaNGafPmzfrpp5+u6bgmLS1Ns2bNknRx6q6pU6eqUKFC9jfIOfbs2aPFixfbpy556aWXFBkZqbp16zqdSV+oUCG9+uqr6tmzp2JjY9WjRw/7tCilS5fW008/be87duxYtW3bVo0aNdJDDz2ks2fPauLEiSpatKhGjhzpVG9qaqo6dOigNm3aKCUlRbNmzVL37t1Vu3btXPcxPj5e//73v/XUU0/p7rvvVkREhFq3bi0fHx/dfffd6tevn06dOqXp06crNDRUBw4cuOrHEQD+SR544AF98skneuSRR7Ry5Uo1adJE2dnZ+u233/TJJ59oyZIlqlevnipWrKhnn31WL7zwgmJjY3XvvffK19dXP/74o0qWLKnk5OR8b/Puu+9W8+bN9eyzz2r37t2qXbu2li5dqs8//1yDBg1yyAmki9Oezpo1S8YY7dy50z4G1atXT9LF9/SfffaZ7rnnHiUkJCg1NVVTpkxRtWrVdOrUKYd1DRgwQGfPnnU5r3Z+7Nq1yz7W7t+/X5MmTVKRIkWcguPt27dr8eLF9rPgx44dq/r166tUqVJO6yxevLiee+45Pf/884qPj1fHjh21a9cuTZo0SbVr19bDDz8sSVd9fObn56fFixcrMTFRDRs21FdffaWFCxdq+PDh9m/HudK3b1999NFHeuSRR7Rlyxb7HOP5PZ4BXDLALeCXX34x3bp1MxEREcbb29uEh4ebbt26mc2bN7vsv3PnTnPfffeZokWLGj8/P1O/fn2zYMGCXNffrl07I8l8//33+a5JkklKSrLfPnbsmOndu7cJDg42QUFBJj4+3vz2228mMjLSJCYm2vutXLnSSDIrV660t23YsMG0bt3aBAUFmYCAAHPXXXeZb775xmF7M2fONJKu+ifH1q1bTVxcnAkKCjLBwcGmT58+5ueffzaSzMyZM40xxpw7d87UqlXL3HnnnebChQv2ZVNTU40kM3bs2Dwfk8tr9PHxMRUrVjQjRoww586ds/dLTEx06BcUFGRuv/128+GHH+b6+BqT/+c1LS3N/lz4+PiYmjVr2vfR1T69/vrrpkyZMsbX19fExsaan3/+2aFvYmKiiYyMdNpO7969TZEiRcy+ffuMMcbs27fP3HPPPaZYsWKmaNGipnPnzuavv/5yuS8AYFU5r/U//vijy/s7duxoAgICzK5du+xtc+bMMXXr1jW+vr6mePHipkePHvbXzhyJiYkmMDDQaX1z5851Gjdz5LyWX/4an0OSGTBggJk1a5apVKmS8fX1NXXr1nW5ro0bN5r4+Hj7WNy8eXOH44I1a9aYihUrmpEjR5rMzMwr1tG0aVOHsa5YsWKmSZMm5quvvnJZ4+USEhKcxp53333Xvh/R0dFm5syZJikpyWG8X716tfHy8jJTp051WDan3+HDh10+Vleqe9GiRU515/x4eHiY8PBwc++995pt27YZY/7/7yQ1NdVhuU8++cThb6Fbt27mzz//dKpj+fLlpkmTJsbf398UKVLE3H333Wbr1q0u92nr1q3mvvvuM4ULFza33XabGThwoDl79qxTvZePxenp6SYkJMTcc8899rb//e9/platWsbPz89ERUWZMWPGmBkzZrjcFwD4pxkwYIDDmHO5rKwsM2bMGFO9enXj6+trbrvtNhMTE2NGjRplTpw44dB3xowZ9vHgtttuM02bNjXLli1zWqer98+XOnnypBk8eLApWbKk8fb2NpUqVTJjx441NpvNod+Vxi1jjLHZbObll182kZGR9mOGL7/80un94H//+1/j4eFhFi9e7LCN3I5lLhcZGelQT3BwsGndurVJSUmx98k5tsj58fT0NKVLlzaJiYn2Y6jLjwFyTJ482URHRxtvb28TFhZm+vXrZ44cOeLU72qOz3bu3Glat25tAgICTFhYmElKSjLZ2dlO9V5+TLZ9+3bj5+dnBg8ebG/Lz/EMkBsPY67yux/AP9A999yjzZs3648//nB3KTfM7t27Va5cuav++tc/Rc7jM3bsWP3nP/9xdzkAgL+Bh4eHBgwY4PSVZtwaRo4cqVGjRunw4cMOF7oCAAA3Rq9evTRv3jynM9oBd2GObuAKDhw4oIULF+qBBx5wdykAAAAAAAAAXGCObiAXqampWrNmjd555x15e3urX79+7i7phvL391d8fLy7ywAAAAAAAACuG2d0A7n45ptv9MADDyg1NVXvv/++wsPD3V3SDRUWFuZwgUoAAAAAAADAqtw6R/e3336rsWPHasOGDTpw4IDmz5+vTp065bnMqlWrNGTIEP36668qU6aMnnvuOfXq1eum1AsAAAAAAAAAKHjcekb36dOnVbt2bU2ePDlf/VNTU5WQkKDmzZtr06ZNGjRokB5++GEtWbLkb64UAAAAAAAAAFBQufWM7kt5eHhc8Yzup59+WgsXLtSWLVvsbV27dtXx48eZggEAAAAAAAAA/qEsdTHKlJQUxcXFObTFx8dr0KBBuS6TmZmpzMxM+22bzaajR4+qRIkS8vDw+LtKBQD8gxljdPLkSZUsWVKenlwOI78YswEANxPj9bVhvAYA3ExXM15bKug+ePCgwsLCHNrCwsKUkZGhs2fPyt/f32mZ5ORkjRo16maVCACA3d69e1W6dGl3l2EZjNkAAHdgvL46jNcAAHfIz3htqalLKleurN69e2vYsGH2tkWLFikhIUFnzpxxGXRf/mnziRMnVLZsWe3du1dFihS5ofsAAIAkZWRkqEyZMjp+/LiKFi3q7nIsgzEbAHAzMV5fG8ZrAMDNdDXjtaXO6A4PD1daWppDW1pamooUKeIy5JYkX19f+fr6OrUXKVKEQRgA8Lfi67tXhzEbAOAOjNdXh/EaAOAO+RmvLTURWaNGjbRixQqHtmXLlqlRo0ZuqggAAAAAAAAA4G5uDbpPnTqlTZs2adOmTZKk1NRUbdq0SXv27JEkDRs2TD179rT3f+SRR7Rr1y499dRT+u233/TWW2/pk08+0eDBg91RPgAAAAAAAACgAHBr0L1+/XrVrVtXdevWlSQNGTJEdevW1YgRIyRJBw4csIfeklSuXDktXLhQy5YtU+3atfX666/rnXfeUXx8vFvqBwAAAAAAAAC4n1vn6G7WrJnyuhbme++953KZn3766W+sCgAAAAAAAABgJZaaoxsAAAAAAAAAgMsRdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGmF3F0AAAAAAABAjpihH7i7BMDBhrE93V0CgHwg6L5BGIhRkDAIA4BrjNcoSBivAQAAgBuHqUsAAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpbg+6J0+erKioKPn5+alhw4Zat25dnv3Hjx+vKlWqyN/fX2XKlNHgwYN17ty5m1QtAAAAAAAAAKCgcWvQPWfOHA0ZMkRJSUnauHGjateurfj4eB06dMhl/48++kjPPPOMkpKStG3bNr377ruaM2eOhg8ffpMrBwAAAAAAAAAUFG4NuseNG6c+ffqod+/eqlatmqZMmaKAgADNmDHDZf/vv/9eTZo0Uffu3RUVFaXWrVurW7duVzwLHAAAAAAAAABw63Jb0J2VlaUNGzYoLi7u/4vx9FRcXJxSUlJcLtO4cWNt2LDBHmzv2rVLixYtUrt27XLdTmZmpjIyMhx+AABAwcOYDQBAwcd4DQAoqNwWdKenpys7O1thYWEO7WFhYTp48KDLZbp3767Ro0frzjvvlLe3typUqKBmzZrlOXVJcnKyihYtav8pU6bMDd0PAABwYzBmAwBQ8DFeAwAKKrdfjPJqrFq1Si+//LLeeustbdy4UZ999pkWLlyoF154Iddlhg0bphMnTth/9u7dexMrBgAA+cWYDQBAwcd4DQAoqAq5a8PBwcHy8vJSWlqaQ3taWprCw8NdLvP888/rgQce0MMPPyxJqlmzpk6fPq2+ffvq2Weflaenc27v6+srX1/fG78DAADghmLMBgCg4GO8BgAUVG47o9vHx0cxMTFasWKFvc1ms2nFihVq1KiRy2XOnDnjFGZ7eXlJkowxf1+xAAAAAAAAAIACy21ndEvSkCFDlJiYqHr16qlBgwYaP368Tp8+rd69e0uSevbsqVKlSik5OVmSdPfdd2vcuHGqW7euGjZsqD/++EPPP/+87r77bnvgDQAAAAAAAAD4Z3Fr0H3//ffr8OHDGjFihA4ePKg6depo8eLF9gtU7tmzx+EM7ueee04eHh567rnntH//foWEhOjuu+/WSy+95K5dAAAAAAAAAAC4mVuDbkkaOHCgBg4c6PK+VatWOdwuVKiQkpKSlJSUdBMqAwAAAAAAAABYgdvm6AYAAAAAAAAA4EYg6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYmtuD7smTJysqKkp+fn5q2LCh1q1bl2f/48ePa8CAAYqIiJCvr68qV66sRYsW3aRqAQAAAAAAAAAFTSF3bnzOnDkaMmSIpkyZooYNG2r8+PGKj4/X9u3bFRoa6tQ/KytLrVq1UmhoqObNm6dSpUrpzz//VLFixW5+8QAAAAAAAACAAsGtQfe4cePUp08f9e7dW5I0ZcoULVy4UDNmzNAzzzzj1H/GjBk6evSovv/+e3l7e0uSoqKibmbJAAAAAAAAAIACxm1Tl2RlZWnDhg2Ki4v7/2I8PRUXF6eUlBSXy/zvf/9To0aNNGDAAIWFhalGjRp6+eWXlZ2dnet2MjMzlZGR4fADAAAKHsZsAAAKPsZrAEBB5bagOz09XdnZ2QoLC3NoDwsL08GDB10us2vXLs2bN0/Z2dlatGiRnn/+eb3++ut68cUXc91OcnKyihYtav8pU6bMDd0PAABwYzBmAwBQ8DFeAwAKKrdfjPJq2Gw2hYaGatq0aYqJidH999+vZ599VlOmTMl1mWHDhunEiRP2n717997EigEAQH4xZgMAUPAxXgMACiq3zdEdHBwsLy8vpaWlObSnpaUpPDzc5TIRERHy9vaWl5eXva1q1ao6ePCgsrKy5OPj47SMr6+vfH19b2zxAADghmPMBgCg4GO8BgAUVG47o9vHx0cxMTFasWKFvc1ms2nFihVq1KiRy2WaNGmiP/74Qzabzd72+++/KyIiwmXIDQAAAAAAAAC49bl16pIhQ4Zo+vTpev/997Vt2zY9+uijOn36tHr37i1J6tmzp4YNG2bv/+ijj+ro0aN64okn9Pvvv2vhwoV6+eWXNWDAAHftAgAAAAAAAADAzdw2dYkk3X///Tp8+LBGjBihgwcPqk6dOlq8eLH9ApV79uyRp+f/Z/FlypTRkiVLNHjwYNWqVUulSpXSE088oaefftpduwAAAAAAAAAAcDO3Bt2SNHDgQA0cONDlfatWrXJqa9SokX744Ye/uSoAAAAAAAAAgFW4deoSAAAAAAAAAACuF0E3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLK3StC7755pt53v/4449f66oBAAAAAAAAAMi3aw66Bw0apNKlS8vLy0uStHfvXkVERKhQoULy8PAg6AYAAAAAAAAA3BTXHHRL0vr16xUaGipJKly4sL755huVL1/+hhQGAAAAAAAAAEB+XPMc3V5eXsrOzrbfzs7OVkpKyg0pCgAAAAAAAACA/LrmoLt06dJasWKFJOn777+XzWbTkCFDNHz4cBljbliBAAAAAAAAAADk5ZqD7n79+qlXr16Kjo5WixYt1KdPH61fv17Lly9Xq1atbmSNAAAAAAAAAADk6prn6H7mmWd0++236+eff1a5cuX0r3/9Sx4eHlq9erWeeOKJG1kjAAAAAAAAAAC5uq6LUbZu3VqtW7d2aPP19dWUKVOuqygAAAAAAAAAAPLrmoPujIyMPO8vUqTIta4aAAAAAAAAAIB8u+agu1ixYvLw8HBqN8bIw8ND2dnZ11UYAAAAAAAAAAD5cV1Tl8ybN0/Fixe/UbUAAAAAAAAAAHDVrivobtKkiUJDQ29ULQAAAAAAAAAAXLXrCrq3bt2qI0eOKDAwUOHh4fLx8blRdQEAAAAAAAAAkC+e17Nwy5YtVb16dZUrV06BgYGqWbOm3njjjRtVGwAAAAAAAAAAV3TNZ3SnpqbKGKPz588rIyNDf/31l9atW6fnn39eFy5c0NChQ29knQAAAAAAAAAAuHTNQXdkZKTD7ZiYGN19992qXLmyRo8eTdANAAAAAAAAALgprmuOble6du2q6tWr3+jVAgAAAAAAAADg0nUH3Rs2bNC2bdskSdWqVdPtt9+u22+//boLAwAAAAAAAAAgP6456D506JC6du2qVatWqVixYpKk48ePq3nz5vr4448VEhJyo2oEAAAAAAAAACBXnte64GOPPaaTJ0/q119/1dGjR3X06FFt2bJFGRkZevzxx29kjQAAAAAAAAAA5Oqaz+hevHixli9frqpVq9rbqlWrpsmTJ6t169Y3pDgAAAAAAAAAAK7kms/ottls8vb2dmr39vaWzWa7rqIAAAAAAAAAAMivaw66W7RooSeeeEJ//fWXvW3//v0aPHiwWrZseUOKAwAAAAAAAADgSq456J40aZIyMjIUFRWlChUqqEKFCipXrpwyMjI0ceLEG1kjAAAAAAAAAAC5uuY5usuUKaONGzdq+fLl+u233yRJVatWVYsWLbRv3z7t2bNHXl5eKlWq1A0rFgAAAAAAAACAy11z0C1JHh4eatWqlVq1amVvO3TokMqVKydjjMLDwx2mNgEAAAAAAAAA4Ea76qC7ePHied5vjJEkLkgJAAAAAAAAALgprjroPn78uMaPH6+iRYvmev+QIUOuuzAAAAAAAAAAAPLjmqYu6dq1q0JDQ13el5aWRtANAAAAAAAAALhpPN1dAAAAAAAAAAAA1+OazuhOSUlR8eLF5evrq8KFCysiIkLFihW7waUBAAAAAAAAAHBl1xR033PPPfbfPTw8JEkhISFq3Lix4uPjb0xlAAAAAAAAAADkw1UH3ceOHZMkXbhwQZmZmTp69Kj279+vrVu3asWKFerfv/8NLxIAAAAAAAAAgNxc9RzdRYsWVdGiRVWiRAmVLFlSNWrUUHx8vAYPHqwvv/xS06ZNkzFGLVq00H333fd31AwAAAAAAAAAgN01TV2Slx49eqhQoYur9ff3v9GrBwAAAAAAAADAwQ0Puv38/JSYmHijVwsAAAAAAAAAgEtXPXUJAAAAAAAAAAAFCUE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALK1ABN2TJ09WVFSU/Pz81LBhQ61bty5fy3388cfy8PBQp06d/t4CAQAAAAAAAAAFltuD7jlz5mjIkCFKSkrSxo0bVbt2bcXHx+vQoUN5Lrd792795z//UWxs7E2qFAAAAAAAAABQELk96B43bpz69Omj3r17q1q1apoyZYoCAgI0Y8aMXJfJzs5Wjx49NGrUKJUvX/4mVgsAAAAAAAAAKGjcGnRnZWVpw4YNiouLs7d5enoqLi5OKSkpuS43evRohYaG6qGHHrriNjIzM5WRkeHwAwAACh7GbAAACj7GawBAQeXWoDs9PV3Z2dkKCwtzaA8LC9PBgwddLvPdd9/p3Xff1fTp0/O1jeTkZBUtWtT+U6ZMmeuuGwAA3HiM2QAAFHyM1wCAgsrtU5dcjZMnT+qBBx7Q9OnTFRwcnK9lhg0bphMnTth/9u7d+zdXCQAArgVjNgAABR/jNQCgoCrkzo0HBwfLy8tLaWlpDu1paWkKDw936r9z507t3r1bd999t73NZrNJkgoVKqTt27erQoUKDsv4+vrK19f3b6geAADcSIzZAAAUfIzXAICCyq1ndPv4+CgmJkYrVqywt9lsNq1YsUKNGjVy6h8dHa3Nmzdr06ZN9p8OHTqoefPm2rRpE1+ZAgAAAAAAAIB/ILee0S1JQ4YMUWJiourVq6cGDRpo/PjxOn36tHr37i1J6tmzp0qVKqXk5GT5+fmpRo0aDssXK1ZMkpzaAQAAAAAAAAD/DG4Puu+//34dPnxYI0aM0MGDB1WnTh0tXrzYfoHKPXv2yNPTUlOJAwAAAAAAAABuIrcH3ZI0cOBADRw40OV9q1atynPZ995778YXBAAAAAAAAACwDE6VBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIKRNA9efJkRUVFyc/PTw0bNtS6dety7Tt9+nTFxsbqtttu02233aa4uLg8+wMAAAAAAAAAbm1uD7rnzJmjIUOGKCkpSRs3blTt2rUVHx+vQ4cOuey/atUqdevWTStXrlRKSorKlCmj1q1ba//+/Te5cgAAAAAAAABAQeD2oHvcuHHq06ePevfurWrVqmnKlCkKCAjQjBkzXPafPXu2+vfvrzp16ig6OlrvvPOObDabVqxYcZMrBwAAAAAAAAAUBIXcufGsrCxt2LBBw4YNs7d5enoqLi5OKSkp+VrHmTNndP78eRUvXtzl/ZmZmcrMzLTfzsjIuL6iAQDA34IxGwCAgo/xGgBQULn1jO709HRlZ2crLCzMoT0sLEwHDx7M1zqefvpplSxZUnFxcS7vT05OVtGiRe0/ZcqUue66AQDAjceYDQBAwcd4DQAoqNw+dcn1eOWVV/Txxx9r/vz58vPzc9ln2LBhOnHihP1n7969N7lKAACQH4zZAAAUfIzXAICCyq1TlwQHB8vLy0tpaWkO7WlpaQoPD89z2ddee02vvPKKli9frlq1auXaz9fXV76+vjekXgAA8PdhzAYAoOBjvAYAFFRuPaPbx8dHMTExDheSzLmwZKNGjXJd7tVXX9ULL7ygxYsXq169ejejVAAAAAAAAABAAeXWM7olaciQIUpMTFS9evXUoEEDjR8/XqdPn1bv3r0lST179lSpUqWUnJwsSRozZoxGjBihjz76SFFRUfa5vIOCghQUFOS2/QAAAAAAAAAAuIfbg+77779fhw8f1ogRI3Tw4EHVqVNHixcvtl+gcs+ePfL0/P8Tz99++21lZWXpvvvuc1hPUlKSRo4ceTNLBwAAAAAAAAAUAG4PuiVp4MCBGjhwoMv7Vq1a5XB79+7df39BAAAAAAAAAADLcOsc3QAAAAAAAAAAXC+CbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlkbQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsrZC7CwDwzxQz9AN3lwDYbRjb090lAECBxHiNgoTxGgAA5IWgGwAAAAAAALAwPpxGQeKuD6eZugQAAAAAAAAAYGkE3QAAAAAAAAAASyPoBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0AAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gpE0D158mRFRUXJz89PDRs21Lp16/LsP3fuXEVHR8vPz081a9bUokWLblKlAAAAAAAAAICCxu1B95w5czRkyBAlJSVp48aNql27tuLj43Xo0CGX/b///nt169ZNDz30kH766Sd16tRJnTp10pYtW25y5QAAAAAAAACAgsDtQfe4cePUp08f9e7dW9WqVdOUKVMUEBCgGTNmuOw/YcIEtWnTRkOHDlXVqlX1wgsv6Pbbb9ekSZNucuUAAAAAAAAAgILArUF3VlaWNmzYoLi4OHubp6en4uLilJKS4nKZlJQUh/6SFB8fn2t/AAAAAAAAAMCtrZA7N56enq7s7GyFhYU5tIeFhem3335zuczBgwdd9j948KDL/pmZmcrMzLTfPnHihCQpIyPjekp3kp159oauD7geN/rv++/A/wwKkhv9P5OzPmPMDV3vre5mjNm89qAgYbwGrg7jdcHAeI1/IsZs4OrcyP+Zqxmv3Rp03wzJyckaNWqUU3uZMmXcUA1wcxSd+Ii7SwAs5e/6nzl58qSKFi36t6z7VsSYjX8axmvg6jBeFwyM1/gnYswGrs7f8T+Tn/HarUF3cHCwvLy8lJaW5tCelpam8PBwl8uEh4dfVf9hw4ZpyJAh9ts2m01Hjx5ViRIl5OHhcZ17gBspIyNDZcqU0d69e1WkSBF3lwMUePzPFFzGGJ08eVIlS5Z0dymWwphtDbz2AFeH/5mCi/H62jBeWwevP8DV4X+mYLqa8dqtQbePj49iYmK0YsUKderUSdLFQXLFihUaOHCgy2UaNWqkFStWaNCgQfa2ZcuWqVGjRi77+/r6ytfX16GtWLFiN6J8/E2KFCnCCwpwFfifKZg4M+zqMWZbC689wNXhf6ZgYry+eozX1sPrD3B1+J8pePI7Xrt96pIhQ4YoMTFR9erVU4MGDTR+/HidPn1avXv3liT17NlTpUqVUnJysiTpiSeeUNOmTfX6668rISFBH3/8sdavX69p06a5czcAAAAAAAAAAG7i9qD7/vvv1+HDhzVixAgdPHhQderU0eLFi+0XnNyzZ488PT3t/Rs3bqyPPvpIzz33nIYPH65KlSppwYIFqlGjhrt2AQAAAAAAAADgRm4PuiVp4MCBuU5VsmrVKqe2zp07q3Pnzn9zVbjZfH19lZSU5PQ1OACu8T8DwB147QGuDv8zANyF1x/g6vA/Y30exhjj7iIAAAAAAAAAALhWnlfuAgAAAAAAAABAwUXQDQAAAAAAAACwNIJuAAAAAAAAAIClEXQDAAAAAAAAACyNoBsFwuTJkxUVFSU/Pz81bNhQ69atc3dJQIH17bff6u6771bJkiXl4eGhBQsWuLskAP8gjNlA/jBeA3Anxmsg/xizbx0E3XC7OXPmaMiQIUpKStLGjRtVu3ZtxcfH69ChQ+4uDSiQTp8+rdq1a2vy5MnuLgXAPwxjNpB/jNcA3IXxGrg6jNm3Dg9jjHF3Efhna9iwoerXr69JkyZJkmw2m8qUKaPHHntMzzzzjJurAwo2Dw8PzZ8/X506dXJ3KQD+ARizgWvDeA3gZmK8Bq4dY7a1cUY33CorK0sbNmxQXFycvc3T01NxcXFKSUlxY2UAAOBSjNkAABR8jNcA/skIuuFW6enpys7OVlhYmEN7WFiYDh486KaqAADA5RizAQAo+BivAfyTEXQDAAAAAAAAACyNoBtuFRwcLC8vL6WlpTm0p6WlKTw83E1VAQCAyzFmAwBQ8DFeA/gnI+iGW/n4+CgmJkYrVqywt9lsNq1YsUKNGjVyY2UAAOBSjNkAABR8jNcA/skKubsAYMiQIUpMTFS9evXUoEEDjR8/XqdPn1bv3r3dXRpQIJ06dUp//PGH/XZqaqo2bdqk4sWLq2zZsm6sDMCtjjEbyD/GawDuwngNXB3G7FuHhzHGuLsIYNKkSRo7dqwOHjyoOnXq6M0331TDhg3dXRZQIK1atUrNmzd3ak9MTNR777138wsC8I/CmA3kD+M1AHdivAbyjzH71kHQDQAAAAAAAACwNOboBgAAAAAAAABYGkE3AAAAAAAAAMDSCLoBAAAAAAAAAJZG0A0AAAAAAAAAsDSCbgAAAAAAAACApRF0AwAAAAAAAAAsjaAbAAAAAAAAAGBpBN0Artnu3bvl4eGhTZs2ubsUAACQC8ZrAAAKPsZr4PoRdAP/ML169VKnTp3cXQYAAMgD4zUAAAUf4zVQsBB0A3Dp/Pnz7i4BAABcAeM1AAAFH+M1cHMQdAO3qHnz5qlmzZry9/dXiRIlFBcXp6FDh+r999/X559/Lg8PD3l4eGjVqlX2r0jNmTNHTZs2lZ+fn2bPni2bzabRo0erdOnS8vX1VZ06dbR48eJct5mdna0HH3xQ0dHR2rNnjyTp888/1+233y4/Pz+VL19eo0aN0oULF27WwwAAQIHGeA0AQMHHeA1YQyF3FwDgxjtw4IC6deumV199Vffcc49Onjyp1atXq2fPntqzZ48yMjI0c+ZMSVLx4sX1119/SZKeeeYZvf7666pbt678/Pw0YcIEvf7665o6darq1q2rGTNmqEOHDvr1119VqVIlh21mZmaqW7du2r17t1avXq2QkBD7Nt98803FxsZq586d6tu3ryQpKSnp5j4oAAAUMIzXAAAUfIzXgIUYALecDRs2GElm9+7dTvclJiaajh07OrSlpqYaSWb8+PEO7SVLljQvvfSSQ1v9+vVN//79HZZbvXq1admypbnzzjvN8ePH7X1btmxpXn75ZYflP/zwQxMREXE9uwcAwC2B8RoAgIKP8RqwDs7oBm5BtWvXVsuWLVWzZk3Fx8erdevWuu+++3TbbbfluVy9evXsv2dkZOivv/5SkyZNHPo0adJEP//8s0Nbt27dVLp0aX399dfy9/e3t//8889as2aNXnrpJXtbdna2zp07pzNnziggIOB6dhMAAEtjvAYAoOBjvAasgzm6gVuQl5eXli1bpq+++krVqlXTxIkTVaVKFaWmpua5XGBg4DVtr127dvrll1+UkpLi0H7q1CmNGjVKmzZtsv9s3rxZO3bskJ+f3zVtCwCAWwXjNQAABR/jNWAdnNEN3KI8PDzUpEkTNWnSRCNGjFBkZKTmz58vHx8fZWdnX3H5IkWKqGTJklqzZo2aNm1qb1+zZo0aNGjg0PfRRx9VjRo11KFDBy1cuNDe//bbb9f27dtVsWLFG7tzAADcIhivAQAo+BivAWsg6AZuQWvXrtWKFSvUunVrhYaGau3atTp8+LCqVq2qc+fOacmSJdq+fbtKlCihokWL5rqeoUOHKikpSRUqVFCdOnU0c+ZMbdq0SbNnz3bq+9hjjyk7O1vt27fXV199pTvvvFMjRoxQ+/btVbZsWd13333y9PTUzz//rC1btujFF1/8Ox8CAAAKPMZrAAAKPsZrwDoIuoFbUJEiRfTtt99q/PjxysjIUGRkpF5//XW1bdtW9erV06pVq1SvXj2dOnVKK1euVFRUlMv1PP744zpx4oSefPJJHTp0SNWqVdP//vc/pytC5xg0aJBsNpvatWunxYsXKz4+Xl9++aVGjx6tMWPGyNvbW9HR0Xr44Yf/xr0HAMAaGK8BACj4GK8B6/Awxhh3FwEAAAAAAAAAwLXiYpQAAAAAAAAAAEsj6AYAAAAAAAAAWBpBNwAAAAAAAADA0gi6AQAAAAAAAACWRtANAAAAAAAAALA0gm4AAAAAAAAAgKURdAMAAAAAAAAALI2gGwAAAAAAAABgaQTdAAAAAAAAAABLI+gGAAAAAAAAAFgaQTcAAAAAAAAAwNIIugEAAAAAAAAAlvZ/TSkCso30ru0AAAAASUVORK5CYII=",
+ "text/plain": [
+ "