135 lines
243 KiB
Plaintext
135 lines
243 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## начало\n",
|
||
|
"\n",
|
||
|
"выгрузка данных из csv файла в датафрейм"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',\n",
|
||
|
" 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',\n",
|
||
|
" 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',\n",
|
||
|
" 'lat', 'long', 'sqft_living15', 'sqft_lot15'],\n",
|
||
|
" dtype='object')\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import pandas as pd\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"import matplotlib\n",
|
||
|
"import matplotlib.ticker as ticker\n",
|
||
|
"\n",
|
||
|
"df = pd.read_csv(\".//static//csv//kc_house_data.csv\")\n",
|
||
|
"print(df.columns)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHKCAYAAAD/zGr0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNDklEQVR4nO3deXhM598G8Hsmy2RPREiCyCJIYhdFUNEKsYdqqaVBFVVqSYuGElqEtohai6K1VGxFSy1NpbbYxVLElkhKErElRCXMPO8f3pyfMZPIRGTiuD/Xda4r85znnPOdM8nknucsoxBCCBARERHJhNLYBRAREREVJ4YbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYab18Dly5cxaNAgeHl5wcLCAnZ2dmjatClmz56N//77z9jlERERFStTYxdAL9fWrVvx3nvvQaVSITQ0FDVr1kRubi727duHUaNG4Z9//sGiRYuMXSYREVGxUfCLM+UrMTERtWvXRqVKlfDXX3/B1dVVa/6lS5ewdetWDB8+3EgVEhERFT8elpKxb775Bvfv38ePP/6oE2wAwNvbWyvYKBQKDB06FKtWrUL16tVhYWEBf39/7NmzR2fZa9eu4cMPP4SzszNUKhVq1KiBpUuX6q1j4sSJUCgUOlOLFi20+rVo0QI1a9bUWf67776DQqFAUlKS1Pb48WNMnjwZ1apVg0ql0lrv0aNHDe6nT9++fWFjY6PTvn79eigUCsTGxmq15+TkICIiAt7e3lCpVHBzc8Po0aORk5Oj1S9vPz+rQ4cO8PDw0HnuTZo0QdmyZWFpaQl/f3+sX7++wLoBIDc3F4GBgfDy8kJGRobUnvdaPLsNU1NTbNu2TWpr0aKFzutz5MgRad89a/ny5c99jfP6PG+/A0/2cYMGDWBra6u1vu+++67A5fKrI2+aOHGiVv8TJ06gbdu2sLOzg42NDVq2bImDBw8+t76kpCQoFAosX75cart37x78/f3h6emJ1NRUqT07OxufffYZ3NzcoFKpUL16dXz33XfQ97nSkP349N+DRqNB7dq1dWry8PBA3759tbYRGxur9/f30KFDaNOmDezt7WFlZYXAwEDs379fp8Zr166hf//+qFChAlQqFTw9PTF48GDk5uY+d/8/XV/fvn212suUKYMWLVpg79690rb69OkDJycnPHr0SKeO1q1bo3r16jrtzzp06BDatWuHMmXKwNraGrVr18bs2bOl+c/W8ez09H7au3cv3nvvPVSuXFn6Gx85cmS+h/fzW+fTrx0ArFy5Ev7+/rC0tISjoyPef/99pKSkaPUx5P2ReFhK1n777Td4eXmhSZMmhV7m77//RnR0NIYNGwaVSoX58+ejTZs2OHz4sPSHlZ6ejsaNG0v/pMuVK4c//vgD/fv3R1ZWFkaMGKF33QsWLJDCQnh4+As9txkzZmD8+PHo0qULxowZA5VKhb179+ocYitsvxel0WjQqVMn7Nu3DwMHDoSvry9Onz6NWbNm4cKFC9i0aVOR1jt79mx06tQJvXr1Qm5uLtasWYP33nsPv//+O9q3b5/vcubm5ti4cSMaN26MLl26ICYmBiqVSqff5s2bMWbMGERFRaFdu3YF1jJmzJjn1jtr1iw4OTkBAKZMmfLc/vrExcWhW7duqFOnDqZNmwZ7e3vcvHkTI0eOLPQ6vvrqK3h6ekqP79+/j8GDB2v1+eeff/Dmm2/Czs4Oo0ePhpmZGX744Qe0aNECf//9Nxo1alTo7T169Ahdu3ZFcnIy9u/fL32YEEKgU6dO2L17N/r374+6detix44dGDVqFK5du4ZZs2bpXZ+h+3HFihU4ffp0oet91l9//YW2bdvC398fERERUCqVWLZsGd5++23s3bsXDRs2BABcv34dDRs2xN27dzFw4ED4+Pjg2rVrWL9+PR48eIDmzZtjxYoV0nrzah83bpzU9vT7kZOTk7QP/v33X8yePRvt2rVDSkoKHBwc8MEHH+Dnn3/Gjh070KFDB2m5tLQ0/PXXX4iIiCjwee3atQsdOnSAq6srhg8fDhcXF5w7dw6///671gc7lUqFJUuWaC175MgRfP/991pt69atw4MHDzB48GCULVsWhw8fxpw5c/Dvv/9i3bp1emvo0qUL3nnnHQDQ+94zZcoUjB8/Ht26dcNHH32EjIwMzJkzB82bN8eJEyfg4OBQ4HOkfAiSpczMTAFAhISEFHoZAAKAOHr0qNR29epVYWFhIbp06SK19e/fX7i6uoqbN29qLf/+++8Le3t78eDBA632sWPHCgBa/WvUqCECAwO1+gUGBooaNWro1PXtt98KACIxMVFqCwgIEL6+vkKj0Uhty5YtEwDEkSNHDO6nT58+fYS1tbVO+7p16wQAsXv3bqltxYoVQqlUir1792r1XbhwoQAg9u/fL7UBEEOGDNFZb/v27YW7u7tW27P7Mjc3V9SsWVO8/fbbBdaeJyEhQZQpU0b07t1bCCFERESEyPuzP3HihLC2ttZbS2BgoNbrs23bNgFAtGnTRuh721i8eLEAIK5evZrvOgq738PDwwUAkZqaKrUlJiYKAOLbb78tcNn8tpGRkSEAiIiICKmtc+fOwtzcXFy+fFlqu379urC1tRXNmzcvcDt59SxbtkxoNBrRq1cvYWVlJQ4dOqTVb9OmTQKAmDx5slb7u+++KxQKhbh06ZJWuyH7Me/v4eHDh6Jy5cqibdu2Uk15PD09RWhoqNY2du/erfX7q9FoRNWqVUVwcLDW38mDBw+Ep6enaNWqldQWGhoqlEql3tfw6WXzq/1pffr00fl9X7RokQAgDh8+LIQQQq1Wi0qVKonu3btr9Zs5c6ZQKBTiypUretcthBCPHz8Wnp6ewt3dXdy5cyffWg35O3/271EIISIjI4VCodB6zYQQ4tGjRwKAmDRpktT27GuXlJQkTExMxJQpU7SWPX36tDA1NdVqN+T9kYTgYSmZysrKAgDY2toatFxAQAD8/f2lx5UrV0ZISAh27NgBtVoNIQQ2bNiAjh07QgiBmzdvSlNwcDAyMzNx/PhxrXU+fPgQAGBhYfHc7avVaq113rx5Ew8ePNDpd+/ePZQpU0bvIZKi9HtR69atg6+vL3x8fLRqf/vttwEAu3fv1ur/8OFDneepb+jd0tJS+vnOnTvIzMzEm2++qbOP81OtWjVs2LABq1atwuTJk6X21NRUdOzYEQEBAVpD9PoIIRAeHo6uXbvmO5qRm5sLAHpHh56VmZmJmzdv4t69e3rn37t3D0ql8qV+YlWr1di5cyc6d+4MLy8vqd3V1RU9e/bEvn37pL+h5xk1ahRWrVqFtWvXSiMcebZt2wYTExMMGzZMq/2zzz6DEAJ//PGHVrsh+zHPvHnzcOvWLb2jGOXLl8e///5b4PLx8fG4ePEievbsiVu3bkm/j9nZ2WjZsiX27NkDjUYDjUaDTZs2oWPHjmjQoIHOeoryN6bRaKTtxcfH4+eff4arqyt8fX0BAEqlEr169cKWLVu0fl9WrVqFJk2aaI3OPevEiRNITEzEiBEjdH6Xivp+8PTfY3Z2Nm7evIkmTZpACIETJ05o9S3Ma7lx40ZoNBp069ZN673AxcUFVatW1XnfKOz7I73mh6X27NmDb7/9FseOHUNqaip+/fVXdO7c2aB1CCEwY8YMLFq0CFevXoWTkxM++eQTrWFYY7CzswOAfP+B5Kdq1ao6bdWqVcODBw+QkZEBpVKJu3fvYtGiRfke2rlx44bW45s3b8LMzAxWVlbP3f758+dRrly55/YLCAjAkiVL8MMPP6BDhw5QqVS4f/9+kfu9qIsXL+LcuXP51v7sPvnxxx/x448/6vRzd3fXevz7779j8uTJiI+P1zp3x5A354yMDAghMGHCBCm4hoSE4N9//4Wjo+Nzl1+1ahX++ecfrF27FqtXr9bb5+7duwCg9xylZwUFBUk/Ozg4oEePHvj2229hbW0N4MlrNnfuXAwfPhyjR4+Gvb097ty589z1GiIjIwMPHjzQe86Gr68
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df.groupby('bedrooms')['price'].mean().plot(kind='bar')\n",
|
||
|
"plt.title('Средняя цена жилья по количеству спален')\n",
|
||
|
"plt.xlabel('Количество спален')\n",
|
||
|
"plt.ylabel('Средняя цена')\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 23,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHHCAYAAACY6dMIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wddb3///xMOXX7JptOeiP0UEMJSBGEi4rCFVFQVLhXrPxURC9iR7+AYkEFL2IXqYJeKdIEEQQCIYGQRnrP7mbrKVM+n98fn5k5c85uCgRJmxePQ/bMmfm0Obuf17zfr/f7LZRSigQJEiRIkCBBgj0Axq4eQIIECRIkSJAgwY4iIS4JEiRIkCBBgj0GCXFJkCBBggQJEuwxSIhLggQJEiRIkGCPQUJcEiRIkCBBggR7DBLikiBBggQJEiTYY5AQlwQJEiRIkCDBHoOEuCRIkCBBggQJ9hgkxCVBggQJEiRIsMcgIS4JEiRIkCBBgj0GCXHZTfDLX/4SIUT0ymQyTJkyhU984hNs3LhxVw8vQYIECRIk2C1g7eoBJKjG17/+dcaPH0+pVOIf//gHP/3pT/nrX//Kyy+/TC6X29XDS5AgQYIECXYpEuKym+GMM87g8MMPB+CjH/0ora2tfO973+Pee+/l/PPP38WjS5AgQYIECXYtElfRbo63ve1tACxfvhyAzs5OPve5z3HggQdSV1dHQ0MDZ5xxBi+99NKAa0ulEl/96leZMmUKmUyGESNGcM455/Daa68BsGLFiir3VO3rxBNPjNp6/PHHEULwxz/+kS996UsMHz6cfD7P2WefzerVqwf0/a9//YvTTz+dxsZGcrkcs2fP5qmnnhp0jieeeOKg/X/1q18dcO5vf/tbZs6cSTabpaWlhfe9732D9r+tucUhpeSGG25gxowZZDIZhg0bxqWXXsqWLVuqzhs3bhxnnXXWgH4+8YlPDGhzsLFfe+21A9YUoFwuc/XVVzNp0iTS6TRjxozhC1/4AuVyedC1iuPEE0/kgAMOGHD8uuuuQwjBihUrqo53dXXxmc98hjFjxpBOp5k0aRLf/e53kVJG54Trdt111w1o94ADDhgw/sEghOATn/jEgONnnXUW48aNGzDWWbNm0draSjabZebMmdx5553b7cNxHGbPns2ECRPYvHlzdPyrX/3qgPtx3XXXYVkWf/3rX6NjJ5544oC5PPfcc4N+R2CgK3ew35HwnOeff36741+4cCHvfe97aWlpIZPJcPjhh3Pfffdt97rXc38cx+ErX/kKM2fOpLGxkXw+z/HHH89jjz223X5Af+c/9KEPVR275JJLyGQyPP7449Gxe++9lzPPPJORI0eSTqeZOHEi3/jGN/B9v+ra8Ps6Z84cZs2aRTabZfz48fzsZz+Lzgn/zmzrFf/dWrt2LRdffDHDhg0jnU4zY8YMfvGLX+zQ/BLsuUgsLrs5QpLR2toKwLJly/jTn/7Eueeey/jx49m4cSM33XQTs2fPZsGCBYwcORIA3/c566yzeOSRR3jf+97Hpz/9aXp7e/nb3/7Gyy+/zMSJE6M+zj//fN7xjndU9XvllVcOOp5vfetbCCG44oor2LRpEzfccAOnnHIKc+fOJZvNAvDoo49yxhlnMHPmTK6++moMw+DWW2/lbW97G08++SRHHnnkgHZHjx7NNddcA0BfXx///d//PWjfV111Feeddx4f/ehH2bx5Mz/60Y844YQTePHFF2lqahpwzSWXXMLxxx8PwN13380999xT9fmll17KL3/5Sz784Q/zqU99iuXLl/PjH/+YF198kaeeegrbtgddh9eDrq6uaG5xSCk5++yz+cc//sEll1zC9OnTmT9/Pt///vdZvHgxf/rTn3a67xCFQoHZs2ezdu1aLr30Uvbbbz/++c9/cuWVV7J+/XpuuOGGN62v14Mf/OAHnH322VxwwQU4jsNtt93Gueeey1/+8hfOPPPMrV6XSqW4++67Ofroo3n3u9/NI488QjqdHnDevffeyxVXXMENN9ww4DteiyuuuGK74/3+97/PkCFDAP19fCN45ZVXOPbYYxk1ahRf/OIXyefz3H777bzrXe/irrvu4t3vfvcbarcWPT09/O///i/nn38+H/vYx+jt7eWWW27h7W9/O88++yyHHHLI62rv6quv5pZbbuGPf/zjAMJWV1fH5ZdfTl1dHY8++ihf+cpX6Onp4dprr61qY8uWLbzjHe/gvPPO4/zzz+f222/nv//7v0mlUlx88cVMnz6d3/zmN9H5N998M6+++irf//73o2MHHXQQABs3buToo4+OiPLQoUO5//77+chHPkJPTw+f+cxnXveaJdhDoBLsFrj11lsVoB5++GG1efNmtXr1anXbbbep1tZWlc1m1Zo1a5RSSpVKJeX7ftW1y5cvV+l0Wn3961+Pjv3iF79QgPre9743oC8pZXQdoK699toB58yYMUPNnj07ev/YY48pQI0aNUr19PREx2+//XYFqB/84AdR25MnT1Zvf/vbo36UUqpQKKjx48erU089dUBfs2bNUgcccED0fvPmzQpQV199dXRsxYoVyjRN9a1vfavq2vnz5yvLsgYcX7JkiQLUr371q+jY1VdfreJf+SeffFIB6ne/+13VtQ888MCA42PHjlVnnnnmgLFfdtllqvbXqHbsX/jCF1RbW5uaOXNm1Zr+5je/UYZhqCeffLLq+p/97GcKUE899dSA/uKYPXu2mjFjxoDj1157rQLU8uXLo2Pf+MY3VD6fV4sXL64694tf/KIyTVOtWrVKKfX6vhNbA6Auu+yyAcfPPPNMNXbs2KpjhUKh6r3jOOqAAw5Qb3vb27bbj1JKLVq0SDU3N6sPfOADSqnqe/ziiy+qfD4/6Fhmz55dNZe//vWvClCnn376gPuplFI///nPFaBWrly51TbC3+Hnnntum2M++eST1YEHHqhKpVJ0TEqpZs2apSZPnrzNa1/P/fE8T5XL5apztmzZooYNG6YuvvjibfajlP7OX3TRRUoppW666SYFqB/96EcDzqu9h0opdemll6pcLlc1x9mzZytAXX/99dGxcrmsDjnkENXW1qYcxxnQzkUXXTTgOxPiIx/5iBoxYoRqb2+vOv6+971PNTY2DjquBHsHElfRboZTTjmFoUOHMmbMGN73vvdRV1fHPffcw6hRowBIp9MYhr5tvu/T0dFBXV0dU6dO5YUXXojaueuuuxgyZAif/OQnB/QxmCl8R3HhhRdSX18fvX/ve9/LiBEjIjP83LlzWbJkCe9///vp6Oigvb2d9vZ2+vv7Ofnkk3niiSeqXBOgXVqZTGab/d59991IKTnvvPOiNtvb2xk+fDiTJ08eYP52HAdg0KfwEHfccQeNjY2ceuqpVW3OnDmTurq6AW26rlt1Xnt7O6VSaZvjXrt2LT/60Y+46qqrqKurG9D/9OnTmTZtWlWboXtwR036O4I77riD448/nubm5qq+TjnlFHzf54knnqg6v1AoDJhrrel/WyiVSgOud113wHmhlQ7003h3dzfHH3981Xd5W5gyZQp33XUXv/vd7/jmN78ZHV+/fj3/8R//wTHHHMMPfvCDbbahlOLKK6/kPe95D0cdddSg5+zI9ylEd3c37e3t9Pb2Dviss7OTRx99lPPOO4/e3t5obTo6Onj729/OkiVLWLt27Xb72JH7Y5omqVQK0Na9zs5OPM/j8MMP3+H1BW21+vjHP87nP//5QV2A8XsYzun444+nUCiwcOHCqnMty+LSSy+N3qdSKS699FI2bdrEnDlzdnhMSinuuusu/uM//gOlVNU6vP3tb6e7u/t1zTHBnoXEVbSb4cYbb2TKlClYlsWwYcOYOnVqRFRA/wH6wQ9+wE9+8hOWL19e9ccqdCeBdjFNnToVy3pzb/HkyZOr3gshmDRpUqSnWLJkCQAXXXTRVtvo7u6mubk5et/e3j6g3VosWbIEpdRWz6t16XR1dQEMIAu1bXZ3d9PW1jbo55s2bap6/9BDDzF06NBtjrMWV199NSNHjuTSSy8doN1YsmQJr7766lbbrO1/Z7BkyRLmzZu3w31
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 2 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.scatter(df['long'], df['lat'], c=df['price'], cmap='viridis', alpha=0.5)\n",
|
||
|
"plt.colorbar(label='Цена')\n",
|
||
|
"plt.title('Распределение цен на жилье на карте')\n",
|
||
|
"plt.xlabel('Долгота')\n",
|
||
|
"plt.ylabel('Широта')\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHHCAYAAAARcURhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4GElEQVR4nOydd5hU5fXHv9Nn22yv7NJBOggIItgJqBhrjDFqsMYoWCCJxsSImvyCGmsULNGAiRoVSSxIUETAAgrSu5QFFpbtvUy/vz/uvO/cO3Onz+yUPZ/n2Ydl5u6dd8q9c+453/M9KkEQBBAEQRAEQRBxQx3vBRAEQRAEQfR2KCAjCIIgCIKIMxSQEQRBEARBxBkKyAiCIAiCIOIMBWQEQRAEQRBxhgIygiAIgiCIOEMBGUEQBEEQRJyhgIwgCIIgCCLOUEBGEARBEAQRZyggIwiCIIgk4sUXX0RLSwv//3PPPYfOzs74LYiIChSQEXHl8OHDuOOOOzBw4EAYjUaYTCZMnToVzz//PLq7u+O9PIIgiITj448/xiOPPIKqqiq89dZb+OMf/4i0tLR4L4uIEBXNsiTixSeffIJrrrkGBoMBv/jFLzBq1ChYrVZ8/fXXWL58OW666Sa8+uqr8V4mQRBEQrF+/XpcdtllaGtrg1qtxtNPP4377rsv3ssiIoQCMiIuVFZWYsyYMSgvL8cXX3yB0tJS2f2HDh3CJ598gnvvvTdOKyQIgkhcWlpasG/fPlRUVKC8vDzeyyGiAJUsibjw5JNPoqOjA6+//rpXMAYAgwcPlgVjKpUKc+fOxVtvvYXTTjsNRqMREyZMwJdffun1tydPnsQtt9yC4uJiGAwGjBw5Ev/4xz8U1/HII49ApVJ5/Zx33nmy7c477zyMGjXK6++feuopqFQqHD16lN9mt9vx5z//GUOHDoXBYJDt9/vvvw95OyVuuukmZGZmet3+/vvvQ6VSYd26dbLbLRYLFixYgMGDB8NgMKCiogL3338/LBaLbDv2Onty6aWXon///l7P/ayzzkJ+fj7S0tIwYcIEvP/++37XDQBWqxXnnnsuBg4ciPr6en47ey88H0Or1WLlypX8tvPOO8/r/dm8eTN/7TxZunRpwPeYbRPodQfE13jixInIysqS7e+pp57y+3e+1sF+HnnkEdn227Ztw8UXXwyTyYTMzExceOGF+PbbbwOu7+jRoz4f48033+TbHTlyBNdccw3y8vKQnp6OM888E5988oniPoM9Tr766itcc8016Nu3L/+czZs3z0t+cNNNN0GlUmHcuHFej7Vw4UKoVCrFz7cn5513nt/XVHpcAsDixYsxcuRIGAwGlJWVYc6cOTItFuO7777DJZdcgtzcXGRkZGDMmDF4/vnnZWsP5nH79++PSy+9FJ999hnGjRsHo9GIESNG4D//+Y/XYwbzfqxbt44f3zk5OZgyZQrKy8sxa9Ysr8+Q0vG0du1aGAwG/OpXv/K7XUdHB0pKShTPJUTs0MZ7AUTv5OOPP8bAgQNx1llnBf0369evx7vvvot77rkHBoMBixcvxkUXXYRNmzbxYKm2thZnnnkmDywKCwvxv//9D7feeiva2tp8pvVfeukl/gXw4IMPRvTcnn76afzxj3/ElVdeiQceeAAGgwFfffWVV/k12O0ixel04rLLLsPXX3+NX/7ylxg+fDh27dqFZ599Fj/88AM++OCDsPb7/PPP47LLLsP1118Pq9WKd955B9dccw1WrFiBWbNm+fw7vV6P//znPzjzzDNx5ZVXYs2aNTAYDF7bffjhh3jggQfw3HPP4ZJLLvG7lgceeCDgep999lkUFBQAAP7v//4v4PZKbNy4ET/96U8xduxYPP7448jOzkZDQwPmzZsX9D4ee+wxDBgwgP+/o6MDd955p2ybPXv24Oyzz4bJZML9998PnU6HV155Beeddx7Wr1+PyZMnB3yc6667zut1mzp1KgDxODnrrLPQ1dWFe+65B/n5+XjjjTdw2WWX4f3338eVV16puM9Ax8myZcvQ1dWFO++8E/n5+di0aRNeeOEFnDhxAsuWLZNtq9VqsWfPHmzbtg2nn346v33p0qUwGo0Bnx+jvLwcCxculN22cuVK/Pvf/5bd9sgjj+DRRx/F9OnTceedd+LAgQN46aWXsHnzZnzzzTfQ6XQAgNWrV+PSSy9FaWkp7r33XpSUlGDfvn1YsWIF7r33Xtxxxx2YPn063++NN96IK6+8EldddRW/rbCwkP9+8OBBXHvttfjVr36F2bNnY8mSJbjmmmuwatUq/OhHPwIQ/vsBAF9++aXsgsUXO3bswBVXXIFLLrkEixYt8rvt008/jdra2oD7JKKMQBA9TGtrqwBAuPzyy4P+GwACAOH777/ntx07dkwwGo3ClVdeyW+79dZbhdLSUqGhoUH29z/72c+E7OxsoaurS3b773//ewGAbPuRI0cK5557rmy7c889Vxg5cqTXuv76178KAITKykp+25QpU4Thw4cLTqeT37ZkyRIBgLB58+aQt1Ni9uzZQkZGhtfty5YtEwAIa9eu5bf961//EtRqtfDVV1/Jtn355ZcFAMI333zDbwMgzJkzx2u/s2bNEvr16ye7zfO1tFqtwqhRo4QLLrjA79oZBw4cEHJzc4UbbrhBEARBWLBggcBOSdu2bRMyMjIU13LuuefK3p+VK1cKAISLLrpIUDql/f3vfxcACMeOHfO5j2Bf9wcffFAAIJw6dYrfVllZKQAQ/vrXv/r9W1+PUV9fLwAQFixYwG+74oorBL1eLxw+fJjfVl1dLWRlZQnnnHOO38cJZj333XefAED2mWhvbxcGDBgg9O/fX3A4HLLtgz1OPD8TgiAICxcuFFQqlez1Z5/fH//4x8LcuXP57V999ZWQlpYmXHHFFYqfb0+CPS7r6uoEvV4vzJgxQ/bcXnzxRQGA8I9//EMQBEGw2+3CgAEDhH79+gnNzc2yfUqPUyme752Ufv36CQCE5cuX89taW1uF0tJS4fTTT+e3Bft+rF271uv4njx5snDxxRd7rUN6PB09elQoLS0Vpk2bJnR3d8vWKN2OvVZZWVl8n9LHImILlSyJHqetrQ0AkJWVFdLfTZkyBRMmTOD/79u3Ly6//HJ8+umncDgcEAQBy5cvx49//GMIgoCGhgb+M3PmTLS2tmLr1q2yfZrNZgAI6orc4XDI9tnQ0ICuri6v7drb25Gbm6tYPgtnu0hZtmwZhg8fjmHDhsnWfsEFFwAQyxhSzGaz1/O02Wxe+5V2dTU3N6O1tRVnn32212vsi6FDh2L58uV466238Oc//5nffurUKfz4xz/GlClTeJnIF4Ig4MEHH8TVV1/tM2tktVoBQDEL50lraysaGhrQ3t6ueH97ezvUajVycnIC7itcHA4HPvvsM1xxxRUYOHAgv720tBQ///nP8fXXX/NjKFxWrlyJSZMmYdq0afy2zMxM/PKXv8TRo0exd+9e2fbBHifSz0RnZycaGhpw1llnQRAEbNu2zWv7W265BW+//TYvnS9ZsgRXXXUVsrOzw35uSnz++eewWq247777oFa7v/Zuv/12mEwmXhrctm0bKisrcd9993m9x+Eep2VlZbIMl8lkwi9+8Qts27YNNTU1AEJ/Pxj/+c9/sHnzZjz++OM+H7+xsREzZ85EVlYWPvroo4Dv4Z/+9CdkZ2fjnnvuCeVpElGAAjKixzGZTADg80vPF0OGDPG6bejQoejq6kJ9fT3q6+vR0tKCV199FYWFhbKfm2++GQBQV1cn+/uGhgbodDqkp6cHfPz9+/d77XfBggVe202ZMgUbN27EK6+8gpMnT6KhoQEdHR1hbxcpBw8exJ49e7zWPnToUADer8nrr7/ute1nn33mtd8VK1bgzDPPhNFoRF5eHgoLC/HSSy+htbU16LXV19dDEAQ8/PDD/Evx8ssvx4kTJ7zWpcRbb72FPXv24C9/+YvPbZhGKBhN0vTp01FYWAiTyYTc3FzcddddMn+nKVOmwOl04t5778Xhw4fR0NCA5ubmgPsNhfr6enR1deG0007zum/48OFwOp2oqqqK6DG
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df.groupby('yr_built')['price'].mean().plot(kind='line')\n",
|
||
|
"plt.title('Средняя цена жилья по годам постройки')\n",
|
||
|
"plt.xlabel('Год постройки')\n",
|
||
|
"plt.ylabel('Средняя цена')\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "aimenv",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.12.0"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|