From 0fb7059c716bd65a58d6bae8d56c49996117b175 Mon Sep 17 00:00:00 2001 From: Factorino73 Date: Fri, 18 Oct 2024 01:38:52 +0400 Subject: [PATCH] lab_2: 2nd dataset is done --- lab_2/lab2.ipynb | 990 ++++++++-- static/csv/ds_salaries.csv | 3756 ++++++++++++++++++++++++++++++++++++ 2 files changed, 4628 insertions(+), 118 deletions(-) create mode 100644 static/csv/ds_salaries.csv diff --git a/lab_2/lab2.ipynb b/lab_2/lab2.ipynb index cd3c03b..aac19b2 100644 --- a/lab_2/lab2.ipynb +++ b/lab_2/lab2.ipynb @@ -92,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -166,114 +166,106 @@ " \n", " \n", " \n", - " id\n", - " est_diameter_min\n", - " est_diameter_max\n", - " relative_velocity\n", - " miss_distance\n", - " absolute_magnitude\n", + " count\n", + " mean\n", + " std\n", + " min\n", + " 25%\n", + " 50%\n", + " 75%\n", + " max\n", " \n", " \n", " \n", " \n", - " count\n", - " 9.083600e+04\n", - " 90836.000000\n", - " 90836.000000\n", - " 90836.000000\n", - " 9.083600e+04\n", - " 90836.000000\n", - " \n", - " \n", - " mean\n", + " id\n", + " 90836.0\n", " 1.438288e+07\n", - " 0.127432\n", - " 0.284947\n", - " 48066.918918\n", - " 3.706655e+07\n", - " 23.527103\n", - " \n", - " \n", - " std\n", " 2.087202e+07\n", - " 0.298511\n", - " 0.667491\n", - " 25293.296961\n", - " 2.235204e+07\n", - " 2.894086\n", - " \n", - " \n", - " min\n", " 2.000433e+06\n", - " 0.000609\n", - " 0.001362\n", - " 203.346433\n", - " 6.745533e+03\n", - " 9.230000\n", - " \n", - " \n", - " 25%\n", " 3.448110e+06\n", - " 0.019256\n", - " 0.043057\n", - " 28619.020645\n", - " 1.721082e+07\n", - " 21.340000\n", - " \n", - " \n", - " 50%\n", " 3.748362e+06\n", - " 0.048368\n", - " 0.108153\n", - " 44190.117890\n", - " 3.784658e+07\n", - " 23.700000\n", - " \n", - " \n", - " 75%\n", " 3.884023e+06\n", - " 0.143402\n", - " 0.320656\n", - " 62923.604633\n", - " 5.654900e+07\n", - " 25.700000\n", + " 5.427591e+07\n", " \n", " \n", - " max\n", - " 5.427591e+07\n", - " 37.892650\n", - " 84.730541\n", - " 236990.128088\n", + " est_diameter_min\n", + " 90836.0\n", + " 1.274321e-01\n", + " 2.985112e-01\n", + " 6.089126e-04\n", + " 1.925551e-02\n", + " 4.836765e-02\n", + " 1.434019e-01\n", + " 3.789265e+01\n", + " \n", + " \n", + " est_diameter_max\n", + " 90836.0\n", + " 2.849469e-01\n", + " 6.674914e-01\n", + " 1.361570e-03\n", + " 4.305662e-02\n", + " 1.081534e-01\n", + " 3.206564e-01\n", + " 8.473054e+01\n", + " \n", + " \n", + " relative_velocity\n", + " 90836.0\n", + " 4.806692e+04\n", + " 2.529330e+04\n", + " 2.033464e+02\n", + " 2.861902e+04\n", + " 4.419012e+04\n", + " 6.292360e+04\n", + " 2.369901e+05\n", + " \n", + " \n", + " miss_distance\n", + " 90836.0\n", + " 3.706655e+07\n", + " 2.235204e+07\n", + " 6.745533e+03\n", + " 1.721082e+07\n", + " 3.784658e+07\n", + " 5.654900e+07\n", " 7.479865e+07\n", - " 33.200000\n", + " \n", + " \n", + " absolute_magnitude\n", + " 90836.0\n", + " 2.352710e+01\n", + " 2.894086e+00\n", + " 9.230000e+00\n", + " 2.134000e+01\n", + " 2.370000e+01\n", + " 2.570000e+01\n", + " 3.320000e+01\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id est_diameter_min est_diameter_max relative_velocity \\\n", - "count 9.083600e+04 90836.000000 90836.000000 90836.000000 \n", - "mean 1.438288e+07 0.127432 0.284947 48066.918918 \n", - "std 2.087202e+07 0.298511 0.667491 25293.296961 \n", - "min 2.000433e+06 0.000609 0.001362 203.346433 \n", - "25% 3.448110e+06 0.019256 0.043057 28619.020645 \n", - "50% 3.748362e+06 0.048368 0.108153 44190.117890 \n", - "75% 3.884023e+06 0.143402 0.320656 62923.604633 \n", - "max 5.427591e+07 37.892650 84.730541 236990.128088 \n", + " count mean std min \\\n", + "id 90836.0 1.438288e+07 2.087202e+07 2.000433e+06 \n", + "est_diameter_min 90836.0 1.274321e-01 2.985112e-01 6.089126e-04 \n", + "est_diameter_max 90836.0 2.849469e-01 6.674914e-01 1.361570e-03 \n", + "relative_velocity 90836.0 4.806692e+04 2.529330e+04 2.033464e+02 \n", + "miss_distance 90836.0 3.706655e+07 2.235204e+07 6.745533e+03 \n", + "absolute_magnitude 90836.0 2.352710e+01 2.894086e+00 9.230000e+00 \n", "\n", - " miss_distance absolute_magnitude \n", - "count 9.083600e+04 90836.000000 \n", - "mean 3.706655e+07 23.527103 \n", - "std 2.235204e+07 2.894086 \n", - "min 6.745533e+03 9.230000 \n", - "25% 1.721082e+07 21.340000 \n", - "50% 3.784658e+07 23.700000 \n", - "75% 5.654900e+07 25.700000 \n", - "max 7.479865e+07 33.200000 " + " 25% 50% 75% max \n", + "id 3.448110e+06 3.748362e+06 3.884023e+06 5.427591e+07 \n", + "est_diameter_min 1.925551e-02 4.836765e-02 1.434019e-01 3.789265e+01 \n", + "est_diameter_max 4.305662e-02 1.081534e-01 3.206564e-01 8.473054e+01 \n", + "relative_velocity 2.861902e+04 4.419012e+04 6.292360e+04 2.369901e+05 \n", + "miss_distance 1.721082e+07 3.784658e+07 5.654900e+07 7.479865e+07 \n", + "absolute_magnitude 2.134000e+01 2.370000e+01 2.570000e+01 3.320000e+01 " ] }, - "execution_count": 2, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -283,7 +275,7 @@ "df.info()\n", "\n", "# Статистическое описание числовых столбцов\n", - "df.describe()" + "df.describe().transpose()" ] }, { @@ -299,7 +291,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -367,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -486,7 +478,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -603,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -684,7 +676,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -696,7 +688,7 @@ "True 8840\n", "Name: count, dtype: int64 \n", "\n", - "Обучающая выборка: (54501, 6)\n", + "Обучающая выборка: (54501, 10)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", "False 49197\n", @@ -705,7 +697,7 @@ "Процент объектов класса \"False\": 90.27%\n", "Процент объектов класса \"True\": 9.73%\n", "\n", - "Контрольная выборка: (18167, 6)\n", + "Контрольная выборка: (18167, 10)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", "False 16399\n", @@ -714,7 +706,7 @@ "Процент объектов класса \"False\": 90.27%\n", "Процент объектов класса \"True\": 9.73%\n", "\n", - "Тестовая выборка: (18168, 6)\n", + "Тестовая выборка: (18168, 10)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", "False 16400\n", @@ -753,7 +745,7 @@ "]].copy()\n", "\n", "df_train, df_val, df_test = split_stratified_into_train_val_test(\n", - " data, \n", + " df, \n", " stratify_colname=\"hazardous\", \n", " frac_train=0.60, \n", " frac_val=0.20, \n", @@ -835,7 +827,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -843,32 +835,32 @@ "output_type": "stream", "text": [ "После применения метода oversampling:\n", - "Обучающая выборка: (100699, 6)\n", + "Обучающая выборка: (98782, 21784)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", - "True 51502\n", + "True 49585\n", "False 49197\n", "Name: count, dtype: int64\n", - "Процент объектов класса \"True\": 51.14%\n", - "Процент объектов класса \"False\": 48.86%\n", + "Процент объектов класса \"True\": 50.20%\n", + "Процент объектов класса \"False\": 49.80%\n", "\n", - "Контрольная выборка: (32759, 6)\n", + "Контрольная выборка: (33168, 11762)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", + "True 16769\n", "False 16399\n", - "True 16360\n", "Name: count, dtype: int64\n", - "Процент объектов класса \"False\": 50.06%\n", - "Процент объектов класса \"True\": 49.94%\n", + "Процент объектов класса \"True\": 50.56%\n", + "Процент объектов класса \"False\": 49.44%\n", "\n", - "Тестовая выборка: (33556, 6)\n", + "Тестовая выборка: (32695, 11820)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", - "True 17156\n", "False 16400\n", + "True 16295\n", "Name: count, dtype: int64\n", - "Процент объектов класса \"True\": 51.13%\n", - "Процент объектов класса \"False\": 48.87%\n", + "Процент объектов класса \"False\": 50.16%\n", + "Процент объектов класса \"True\": 49.84%\n", "\n", "Для обучающей выборки аугментация данных не требуется\n", "Для контрольной выборки аугментация данных не требуется\n", @@ -877,7 +869,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABgsAAAHvCAYAAABqu+9FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEcElEQVR4nOzdd3hTZf8G8Lu7pYPVspGNiIAogrIEBWSKKIiivgxfEAVeBQeC/pChUhGVLYJKmbKXyt5Q9ipQSqGT0kL3Htnn90dMaJp0kvTJuD/X1QuaniR3Tk7Oc06+z/McJ0mSJBARERERERERERERkcNyFh2AiIiIiIiIiIiIiIjEYrGAiIiIiIiIiIiIiMjBsVhAREREREREREREROTgWCwgIiIiIiIiIiIiInJwLBYQERERERERERERETk4FguIiIiIiIiIiIiIiBwciwVERERERERERERERA6OxQIiIiIiIiIiIiIiIgfHYgERkQ3IzMxEZGQkVCqV6ChkRpIkIT09HREREaKjEBERkZkoFAokJibi/v37oqMQERGRBeTl5eHevXvIyMgQHcXsWCwgsgGNGzfGoEGDRMcwm549e6Jnz56iY1g1pVKJH374AU899RQ8PDxQvXp1tGjRAkeOHBEdzSaEhoZi165d+t9DQkKwZ88ecYEKycnJwf/93//h8ccfh7u7O2rWrImWLVvi9u3boqMR0SNgW01keevXr0dsbKz+99WrVyMhIUFcoEIuXbqEt99+G/7+/vDw8EDdunUxdOhQ0bGIHBbbZSLbNHfuXGg0GgCARqNBYGCg4EQPbd26Fb169YKvry98fHzw2GOP4YcffhAdy+zKVSxYvXo1nJyc9D+enp5o2bIlJk2ahKSkJEtlJLJ7s2bNQuPGjQE8/JyR5fXs2ROjR48GAIwePdpqDr7kcjl69+6NGTNmoGfPnti6dSsOHTqEo0ePonPnzqLj2YScnByMHz8e586dQ0REBD7++GPcuHFDdCykpaWhc+fOWLx4MYYNG4bdu3fj0KFDOH78uH4f8KjYVhNZBttqMay1rSYxTp06halTpyI2NhYHDhzAxIkT4ewsvv/b7t270a1bN4SFheG7777DoUOHcOjQIaxYsYLtMpGFsF0Wg+0yWdqaNWvw448/Ij4+Hj/99BPWrFkjOhIAYNq0aRg+fDh8fX3x22+/4dChQzh8+DAmTJggOprZuVbkTnPmzEGTJk0gk8kQHByM5cuXY+/evQgNDUWVKlXMnZGIyKHMmzcP58+fx4EDB3jwVUGdO3fW/wBAy5YtMW7cOMGpgM8//xwPHjzA2bNn8eSTT1r0udhWExGRvZkyZQp69uyJJk2aAAA++eQT1K1bV2im9PR0jB07Fn379sXWrVvh7u5u8PcrV64AYLtMRERUFnPmzMHIkSPxxRdfwMPDA+vXrxcdCSdOnMC8efMQGBiIadOmiY5jcRUqFvTv3x/PPvssAGDs2LGoWbMmfv75Z+zevRsjRowwa0Aisj15eXnw9vYWHcMmqVQqLFy4EJ9++ikLBY9o165dCAsLQ0FBAdq2bWt08l7ZkpOTsWbNGvz6668WLxQAbKuJqGRsq8kWtWrVClFRUQgNDYW/vz+aNWsmOhKCgoIgk8mwevXqEo812C4TUUnYLhNpvfnmm3jxxRcRGRmJFi1aICAgQHQk/Pjjj+jSpYtDFAoAM12z4KWXXgIAxMTEAND2rvjss8/Qtm1b+Pj4wM/PD/3798e1a9eM7iuTyTBr1iy0bNkSnp6eqFu3Ll5//XVERUUBAGJjYw2GbRb9Kfxl2vHjx+Hk5ITNmzfjyy+/RJ06deDt7Y3Bgwfj3r17Rs99/vx59OvXD1WrVkWVKlXQo0cPnD592uRr7Nmzp8nnnzVrltGy69evR4cOHeDl5YUaNWrgrbfeMvn8Jb22wjQaDRYuXIgnn3wSnp6eqF27NsaPH290EY3i5uSbNGmS0WOayj5//nyjdQpop0SZOXMmmjdvDg8PDzRs2BBTp06FXC43ua4KMzWv3nfffQdnZ2f8+eefFVofug9pzZo14eXlhQ4dOmDbtm0mn3/9+vXo1KkTqlSpgurVq+OFF17AwYMHDZbZt28fevToAV9fX/j5+aFjx45G2bZu3ap/T/39/fHuu+8azY86evRog8zVq1dHz549cerUqVLXU1kFBwejU6dO8PT0RNOmTbF27VqDv5f1s9e4ceNi1/Xx48cBAHfv3sWECRPw+OOPw8vLCzVr1sQbb7xhME8s8HDI54kTJzBhwgTUqlULDRo00P995cqVaNasGby8vNCpU6di10dycjL++9//onbt2vD09MRTTz1lNNxM9xnXZdTRbTurV6/W35aYmIgxY8agQYMG+nljX331VaP85VV43Tk7O6NOnTp48803ERcXV6b7//LLL3jyySfh4eGBevXqYeLEicjMzNT//fbt28jIyICvry969OiBKlWqoGrVqhg0aBBCQ0P1yx07dgxOTk7YuXOn0XP8+eefcHJywtmzZ/WZdUNFdUyty1OnTuGNN97AY489pv+sT5kyBQUFBQb3nTVrltHncsOGDWjfvj08PT1Rs2ZNjBgxwmidjB49Gj4+Pga3bdu2zeR76uPjY5QZKNv+tfB+p3Xr1ujQoQOuXbtmcn9iStH9vb+/PwYOHGiw/gHtfnTSpEnFPo7us6Hb5i5evAiNRgOFQoFnn322xHUFAEePHkX37t3h7e2NatWq4dVXX8WtW7cMltG9F+Hh4Rg+fDj8/Pz0mYruo3/++WcAD9vq5ORkNG3aFC4uLqhSpYrB/qLoen7jjTcwZcoUttVsq9lWlwHbattuq021me+//z48PT2NXlNpbTqg/Xy1adPG6Hl+/PFHgzaipPfbyclJP9WGbj3++OOPWLBgARo1agQvLy/06NHDqJ0CytaWmFpvprY33TKlzQFeOGNRbdq0MdrflGW7Krz9eHt747nnnkOzZs0wceJEODk5mTxmMHV/3Y+bmxsaN26Mzz//HAqFQr+c7rNy6dKlYh+r6D7z3LlzaN++PebOnYuGDRvCw8MDLVq0wPfff6+fc1lHpVLhm2++QbNmzbB48WIAwIoVKyCXyw32Dc7OznBzc0PHjh3x+OOPw9PTE61bt8aOHTsAPDyHrlOnDpycnFCrVi19u3zz5k34+fmVuD05OzujefPmmDdvHo4ePcp2me2yAbbLbJetpV22VNsYHh6OYcOGoUaNGvD09MSzzz6Lv/76y2CZ4tqD1NRUo32BqfPj3Nxc/T668LrXHRdcvnwZXbp0gZeXF5o0aYJff/3VKGd52sfS2jcAiI6OxhtvvIEaNWqgSpUqeP75542u62fqtQDGx0flWT8AcPXqVfTv3x9+fn7w8fFBr169cO7cOYNlCp8/16pVS7/PateundG2akrRaf+qVKmCtm3b4vfffzdYztT3EkUVfQ3nzp1DmzZt8NZbb6FGjRrw8vJCx44dDa6TqFOe960s2+zo0aONpixev349nJ2d8f333xvcXpZtuywqNLKgKN2XBTVr1gSg3QB37dqFN954A02aNEFSUhJWrFiBHj16ICwsDPXq1QMAqNVqDBo0CEeOHMFbb72Fjz/+GDk5OTh06BBCQ0MNeoqMGDECAwYMMHje6dOnm8zz3XffwcnJCV988QWSk5OxcOFC9O7dGyEhIfDy8gKgPXDu378/OnTogJkzZ8LZ2RlBQUF46aWXcOrUKXTq1MnocRs0aKC/sEZubi4+/PBDk889Y8YMDB8+HGPHjkVKSgqWLFmCF154AVevXkW1atWM7vP++++je/fuAIAdO3YYffk3fvx4rF69GmPGjMFHH32EmJgYLF26FFevXsXp06fh5uZmcj2UR2ZmpsmLhmg0GgwePBjBwcF4//338cQTT+DGjRtYsGAB7ty5Y/KDUZKgoCD83//9H3766Se8/fbbJpcpbX0sWrQIgwcPxjvvvAOFQoFNmzbhjTfewD///IOBAwfql5s9ezZmzZqFLl26YM6cOXB3d8f58+dx9OhRvPzyywC0O5P33nsPTz75JKZPn45q1arh6tWr2L9/vz6fbt137NgRgYGBSEpKwqJFi3D69Gmj99Tf3x8LFiwAAMTHx2PRokUYMGAA7t27Z/K9L4/IyEgMGzYM//3vfzFq1CisWrUKo0ePRocOHfS9lMv62Vu4cCFyc3MNHn/BggUICQnRf44vXryIM2fO4K233kKDBg0QGxuL5cuXo2fPnggLCzMaLj1hwgQEBATg66+/Rl5eHgDgjz/+wPjx49GlSxdMnjwZ0dHRGDx4MGrUqIGGDRvq71tQUICePXsiMjISkyZNQpMmTbB161aMHj0amZmZ+Pjjj8u9voYOHYqbN2/if//7Hxo3bozk5GQcOnQIcXFxjzw3fPfu3fH+++9Do9EgNDQUCxcuxP3790s9qJ01axZmz56N3r1748MPP8Tt27exfPlyXLx4Uf9ZTktLA6Ddv7Vo0QKzZ8+GTCbDsmXL0LVrV1y8eBEtW7ZEz5490bBhQ2zYsAGvvfaawfNs2LABzZo1K/f1DbZu3Yr8/Hx8+OGHqFmzJi5cuIAlS5YgPj4eW7duLfZ+f/75J95991089dRTCAwMRFpaGhYvXozg4GBcvXoV/v7+5cpRnIrsX3W++OKLcj1Xq1at8NVXX0GSJERFReHnn3/GgAEDylwUMkX33k6aNAkdOnTA999/j5SUFJPr6vDhw+jfvz+aNm2KWbNmoaCgAEuWLEHXrl1x5coVo214+PDhaNy4MQIDA7FhwwacPXsWc+fONXlRZ91n/L333kNsbCzeeecddO/eXb+/eP755yGTyfDmm29i7NixSEpKwty5c6FUKvH666+zrQbbaoBtdXHYVpePNbbVRc2cORN//PEHNm/ebPDlXVna9PIo/H7funULc+fOxZdffoknnngCAIxOateuXYucnBxMnDgRMpkMixYtwksvvYQbN26gdu3aAMrflgAP11vhHJb0KNtVZGQkfvvtt3I9n27fJZfLceDAAfz444/w9PTEN998U+HXkJaWhuDgYAQHB+O9995Dhw4dcOTIEUyfPh2xsbF4/vnn9cuOHTsWa9aswbBhw/DMM89g27ZtOHHiBN566y189dVX+n3D/fv34eTkhMuXL8Pd3R3Tpk3Djh078MYbb2DPnj348ccfceTIETz33HNISkrCmDFjcOnSJRw/fhyzZs1Cs2bNEBISom+X5XI5Zs+ejYyMDDg5OaFOnTro3Lkzpk+fjtdffx0A2+WKYLvMdpntctlVpF22RNt48+ZNdO3aFfXr18e0adPg7e2NLVu2YMiQIdi+fbvRuXVF/fTTT8VelyYjIwMDBgzA8OHDMWLECGzZsgUffvgh3N3d8d577wEo//tbWvuWlJSELl26ID8/Hx999BFq1qyJNWvWYPDgwdi2bZvZXrcpN2/eRPfu3eHn54epU6fCzc0NK1asQM+ePXHixAk899xzxd533bp15b724IIFC+Dv74/s7GysWrUK48aNQ+PGjdG7d+8Kv4a0tDSsXLkSPj4++OijjxAQEID169fj9ddfx4YNG/QjBMv7vpVlmy3q4MGDeO+99zBp0iSDkQ5m3balcggKCpIASIcPH5ZSUlKke/fuSZs2bZJq1qwpeXl5SfHx8ZIkSZJMJpPUarXBfWNiYiQPDw9pzpw5+ttWrVolAZB+/vlno+fSaDT6+wGQ5s+fb7TMk08+KfXo0UP/+7FjxyQAUv369aXs7Gz97Vu2bJEASIsWLdI/dosWLaS+ffvqn0eSJCk/P19q0qSJ1KdPH6Pn6tKli9SmTRv97ykpKRIAaebMmfrbYmNjJRcXF+m7774zuO+NGzckV1dXo9sjIiIkANKaNWv0t82cOVMq/LacOnVKAiBt2LDB4L779+83ur1Ro0bSwIEDjbJPnDhRKvpWF80+depUqVatWlKHDh0M1um6deskZ2dn6dSpUwb3//XXXyUA0unTp42er7AePXroH2/Pnj2Sq6ur9Omnn5pctizrQ5K071NhCoVCatOmjfTSSy8ZPJazs7P02muvGW2Luvc8MzNT8vX1lZ577jmpoKDA5DIKhUKqVauW1KZNG4Nl/vnnHwmA9PXXX+tvGzVqlNSoUSODx1m5cqUEQLpw4YLJ11xWjRo1kgBIJ0+e1N+WnJwseXh4GKzPsn72itJ9RgovU3Q9S5IknT17VgIgrV27Vn+bbr/QrVs3SaVS6W/Xrbv27dtLcrlcf7tunRTezhYuXCgBkNavX29w/86dO0s+Pj76z7PuM37s2DGj1whACgoKkiRJkjIyMordbzyqRo0aSaNGjTK47e2335aqVKlS4v2Sk5Mld3d36eWXXzZ4j5YuXSoBkFatWiVJ0sPX6O/vL6WmpuqXu3PnjuTm5iYNHTpUf9v06dMlDw8PKTMz0+B5XF1dDT7fTZo0kUaOHGmQx9S6NPWeBwYGSk5OTtLdu3f1txX+XKpUKql27dpSs2bNpNzcXP0yx48flwAYbJ+jRo2SvL29DR5/69atJt9Tb29vg/Vcnv1r4f2OJEnS3r17JQBSv379jPYnphS9vyRJ0pdffikBkJKTk/W3AZAmTpxY7OPoPhsxMTEGv7du3dpgXevei8Lrqn379lKtWrWktLQ0/W3Xrl2TnJ2dDd5L3XsxePBgo+cFIB0/flzfVgOQXF1dpfj4eGn69OmSs7OztGPHDoPMujanV69e+tt0bbWzs7PR+mdbbbje2FY/xLZai2214Wu09ra66H1XrFghAZCWLFlisExZ23RJ0n6+nnzySaPnmT9/vkEbUVhx61CSHq7HwudekiRJ58+flwBIU6ZM0d9W1rZEp379+tKYMWNKzFHcPsxUxrK0CWXdropuP5IkScOHD5fatGkjNWzY0Oj9Li5T4ftLkiTVq1dPGjBggP533Wfl4sWLxT5W0eOEHj16SACkWbNmGSw3evRoCYD0zTffSAD029OIESMMzqHHjx8vAZD279+v3550+5Ply5fr9w1ZWVlS3bp1pccee0x/Dl34WCM9PV164oknpMcff1y6cuWKwXvwzTffSN7e3tKdO3cM3oNp06ZJzs7ObJfZLusfi+2yFttl83qUdlnHXG1jr169pLZt20oymUx/m0ajkbp06SK1aNFCf1tx7YGp/VjRz1xycrLk6+sr9e/f3yizrs346aef9LfJ5XJ9m61QKCRJerT2UZKM27fJkydLAAz2Szk5OVKTJk2kxo0b6z8Ds2fPlgAY7Oclyfg9LM/6GTJkiOTu7i5FRUXpb7t//77k6+srvfDCC0aPqTs2kslk0mOPPaZfj0VfY1FF7y9J2u9RAEg//PCD/jZT30sUVfQ1FD6/1snPz5eeeOIJqU6dOhV+38qyzRbeT166dEny8fGR3njjDaP9Vlm37bKo0DREvXv3RkBAABo2bIi33noLPj4+2LlzJ+rXrw8A8PDwgLOz9qHVajXS0tLg4+ODxx9/XH+BJwDYvn07/P398b///c/oOUwNeymrkSNHwtfXV//7sGHDULduXezduxcAEBISgoiICLz99ttIS0tDamoqUlNTkZeXh169euHkyZNGQ0ZlMhk8PT1LfN4dO3ZAo9Fg+PDh+sdMTU1FnTp10KJFCxw7dsxged2QIA8Pj2Ifc+vWrahatSr69Olj8JgdOnSAj4+P0WMqlUqD5VJTUyGTyUrMnZCQgCVLlmDGjBlGldmtW7fiiSeeQKtWrQweUzf1VNHnL86FCxcwfPhwDB06FPPnzze5TFnWBwB9zxZAW5HNyspC9+7dDbatXbt2QaPR4Ouvv9Zvizq6bevQoUPIycnBtGnTjN5b3TKXLl1CcnIyJkyYYLDMwIED0apVK6NeuxqNRr+OQkJCsHbtWtStW1df+X4UrVu31vcWAYCAgAA8/vjjiI6O1t9W1s9eYWFhYXjvvffw6quv4v/+7//0txdez0qlEmlpaWjevDmqVatm8rHGjRsHFxcX/e+6dffBBx8YzN86evRoVK1a1eC+e/fuRZ06dQzma3Vzc8NHH32E3NxcnDhxotT1U5iXlxfc3d1x/Phxo6HG5iCXy5GamqrvaXH06FH06tWrxPscPnwYCoUCkydPNtgmx40bBz8/P6NtacyYMfoeKgDQokULDB48GPv374darQag3dfJ5XKDIcSbN2+GSqXCu+++q7+tVq1aiI+PL/V1FX7P8/LykJqaii5dukCSJFy9etVo+dTUVBw/fhxJSUkYP368wRybPXr0QIcOHUz2bK+I8u5fdSRJwvTp0zF06NASeywUpduXpqSk4OzZs9i5cyfatWtnNEpCJpMhNTUVaWlpRu1GcSZOnGiwrnv27Gmwrh48eICQkBCMHj0aNWrU0C/Xrl079OnTR9+WFX1MU3QjUN566y0A2vkfd+7cicDAQCxZskTfu0C3v9CtR2dnZ/063rhxI2rWrImWLVsarWe21Vpsq42xrdZiW108a2yrC9u9ezcmTJiAzz//3GjKufK26Wq12ugzn5+f/0ivb8iQIfpzLwDo1KkTnnvuOf0+tCJtiUKhKPWzDTzch6WlpUGlUhW7XH5+vtHr1h3D6FR0u7p8+TK2bt2KwMBAo/1HSXJzc5GamoqEhASsXLkSiYmJJreLrKwspKamIicnp0yP6+LigilTphjc9umnnwKAfiqT8ePHAwA2btxocA6tm+bg0KFD+tciSRLq1KmDoUOH6vcNfn5+GDlyJOLi4lCjRg2Dc2iZTIbBgwcjNTUV+/fvR/Xq1Q2ybN26Fd27d0f16tWhVqv172Hv3r31bSnbZbbLbJfZLltzu1wWpbWN6enpOHr0KIYPH46cnBz9dpeWloa+ffsiIiLCaKosXXug+0lPTy81xzfffIOqVavio48+Mvl3V1dXfZsAAO7u7hg/fjySk5Nx+fJlAOV/f0tr3/bu3YtOnTqhW7du+tt8fHzw/vvvIzY2FmFhYQC03x0AKNP3B0Dp60etVuPgwYMYMmQImjZtqr+9bt26ePvttxEcHIzs7GyTj71s2TKkpaVh5syZZcqik5GRgdTUVERHR2PBggVwcXFBjx49jJYr6/5ep2PHjgaP4+XlhQkTJiAxMVH/+S7v+1baNltYdHQ0Bg4ciPbt22PdunUG++mKbNslqdA0RMuWLUPLli3h6uqK2rVr4/HHHzcIqdFosGjRIvzyyy+IiYkxOCgs/OVXVFQUHn/8cbi6mmU2JL0WLVoY/O7k5ITmzZvr51mLiIgAAIwaNarYx8jKyjI4yEpNTTV63KIiIiIgSVKxyxUd6qib07SkubIiIiKQlZWl/8AWlZycbPD7wYMHy33xj5kzZ6JevXoYP3680byFERERuHXrVrGPWfT5TUlISMDAgQORl5eHtLS0Yr9cKsv6AIB//vkH3377LUJCQgzmfCz8uFFRUXB2dkbr1q2LfRzd9Fmm5pHVuXv3LgDg8ccfN/pbq1atEBwcbHDbvXv3DNZV3bp1sX379lJfU1k89thjRrdVr17doCEv62dPJzs7G6+//jrq16+PtWvXGqzDgoICBAYGIigoCAkJCdAWU7WysrKMHqtJkyYGv+vWXdHPg5ubm0EjoVu2RYsWRgelugNE3WOVlYeHB+bNm4dPP/0UtWvXxvPPP49BgwZh5MiRqFOnTrkey5RNmzZh06ZN+t87duxoNA9eUcVtS+7u7mjatKn+77r3oFWrVkaP8cQTT2D79u1ITU1F7dq10apVK3Ts2BEbNmzAf//7XwDaKYief/55NG/eXH+/Ll26YPHixdi0aRNeeuklODs7m3wP4+Li8PXXX+Ovv/4yOkA0tXzhbd3UZ+SJJ54odi7U8irv/lVnw4YNuHnzJrZs2WI0j2pJzpw5Y/D6WrRogV27dhntv/744w/88ccfALTv5XPPPYeff/5ZfwHDwkp7b3XrqqT9zhNPPIEDBw4YXQDN1HpxcnLCgAED8Nlnn6F27dpo3bo1IiIisHHjRgDadm3BggUm9xeHDh0y2u+npaWZ9SLRbKvZVrOtZlttbW21TkhICLZs2QK1Wm3yS4Gytuk64eHhZr84n6l9WMuWLbFly5YSMwLFtyVZWVll+hwU3oe5uLigXbt2+P777/VTlOjMnDnT5Al+4WH1Fd2upk2bhu7du2PQoEElXj+oqP/9738GX7KPGTPG6Et+AAZTFVSrVg0jRozA/PnzTV581MnJCfXq1YOfn5/B7bpz5NTUVABAt27dcPr0aRw8eBD169c3OIeuVq0aYmNj9e2ybtpDXbui2ze0bNkSgHZqn8Ln0GPGjMG5c+fg6ekJlUpldH4dERGB69evG2yHRbdJtstsl9kus1221na5rEprGyMjIyFJEmbMmIEZM2aYfIzk5GSDL2/LO3VNTEwMVqxYgeXLlxdbLK1Xr55Re6Lbv+umryvv+1ta+3b37l2TnecKP16bNm3QuXNnODk5Yfr06fj222/1n8PiOsaVtn5SUlKQn59f7PGIRqPBvXv39NOC6WRlZWHu3Ln45JNPip2OpzjPPPOM/v8eHh5YunSp0TR5eXl5Bvudhg0b4tNPPy1x+q7izuMB7fv23HPPlft9K22bLZy3b9++SEpKQs2aNY3ahIps2yWp0Lf0nTp1MvlFiM7cuXMxY8YMvPfee/jmm29Qo0YNODs7Y/LkyWXueWlJugzz589H+/btTS5TuGFSKBR48OAB+vTpU+rjOjk5Yd++fQbVYVOPCWgvHgOgxB2vRqNBrVq1sGHDBpN/L3oA8txzz+Hbb781uG3p0qXYvXu3yfvfunULq1evxvr1601+2abRaNC2bVv9hTGLKjxnXnEiIyPxzDPPYMGCBfjPf/6DNWvWmDzILMv6OHXqFAYPHowXXngBv/zyC+rWrQs3NzcEBQWV64tAS6lduzbWr18PQLtzW7VqFfr164fg4GC0bdv2kR7b1DYFwOAApLyfvdGjR+P+/fu4cOGC0QnO//73PwQFBWHy5Mno3LkzqlatCicnJ7z11lsmH6twLwpLKe4guWgvNQCYPHkyXnnlFezatQsHDhzAjBkzEBgYiKNHj+Lpp59+pBwvv/wyPv/8cwDaivu8efPw4osv4tKlS4+8Hsp7/5EjR+Ljjz9GfHw85HI5zp07h6VLlxos8+WXX+L06dMG1e2i1Go1+vTpg/T0dHzxxRdo1aoVvL29kZCQgNGjR5t8zw8dOoSzZ8/i66+/Llfmiijv/hXQ7rtnzJiB//73v/qDr7Jq164dfvrpJwDQX1egZ8+euHLlisE+6tVXX8WkSZMgSRJiYmIwZ84cDBo0SH9CXVhlfEaKatCggcEc2xcuXMC4cePg7e2NOXPmQK1WG+wvFi9ejD179hjs99977z34+flh4cKFZjlpKyu21Q+xrTYvttWWZQ9t9bVr19C/f3/06tULn3/+Od59912ji42WR+PGjY3m1t+6dStWrlxZ4cc0t/T0dCgUijJ9IVR4H3b//n3MmzcPr732Gm7evGkwp/X777+PN954w+C+48aNe+SsBw8exOHDh3H27Nly3/fzzz/Hyy+/DLVajZs3b2LOnDmQJAlBQUEGy+k6x8nlchw/flx/seZffvnF6DHL+rmqVauW/kK4pjrLhYeHY/v27XjvvfeQmZmJOnXqYMGCBWU6h75y5Qp2796NSZMm4f3338eqVasM/q7RaNCnTx9MnTpVPwJGd5xz7do1fPbZZ6XmZ7v8ENtl82K7bFn20C6bi+49+Oyzz9C3b1+TyxTudAc8bA90srOzMXTo0GKf46uvvkKLFi0watQos16ouzRlbd9K89RTT2HmzJmYPXt2sfvQwsq7fspq3rx5cHZ2xueff66/9l9ZrV+/HrVr14ZMJsPRo0cxceJEeHp6Glyg2dPTE3///TcAICcnB6tWrcLkyZNRt25dDB8+3OgxRZzLF5aamgpvb2/8/fffGDJkCAIDAw06ZFRk2y6Jebv0/2vbtm148cUX9b0tdTIzMw2mcGjWrBnOnz8PpVJplgsM6RT9kkaSJERGRqJdu3b65wUAPz+/MlUJr127BqVSWWKBRPe4kiShSZMmZfpiKiwsDE5OTiYrbIUf8/Dhw+jatWuZNk5/f3+j11TSBZSmT5+O9u3b48033yz2+a9du4ZevXpVeLoJ3fDV2rVrY/fu3fj0008xYMAAo4O0sqyP7du3w9PTEwcOHDAYall0B9isWTNoNBqEhYUVezCr2w5CQ0OL/dA0atQIAHD79m39sFGd27dv6/+u4+npabD+dRciWrp0KVasWFHs6zKXsn72AOD777/Hrl27sGPHDpMV0m3btmHUqFH6EwlAO5RY13ulNLp1ExERYbDulEolYmJi8NRTTxkse/36dWg0GoMKbHh4uMFj6XoqFc1QXK+JZs2a4dNPP8Wnn36KiIgItG/fHj/99JP+YLSi6tata/A+P/744+jSpQt27dpV7Bfyhbelwr1CFAoFYmJi9I+n611y+/Zto8cIDw+Ht7e3wXv51ltv4ZNPPsHGjRtRUFAANzc3o8+zv78/zp49i7CwMP0JRdETwxs3buDOnTtYs2YNRo4cqb/90KFDxa6H3r17o2rVqvj666+LzfuoF8LSKe/+FdCe0CcnJ+uH95dH9erVDd7jnj17ol69eggKCjK4YG+DBg0MlvPx8cE777xjctqmwu9t0f1J4XVVeFspKjw8HP7+/kY9USIiIox6JkmSZLT++/Tpg+XLl+svmu3j44Pff/9dv3+/du0a9uzZAy8vL/3rateuHc6fP48ePXqwrS7hMdlWP8S2umRsqw1ZU1ut07ZtW2zduhVeXl7YunUr3n//fVy/fl3fQ7CsbbqOt7e30W0hISGP8vJMFqXv3LlT4bZEN/1AWab9KLoPa968Obp27YqTJ08atDstWrQwuS4KK+t2pSNJEqZNm4bXXnvN4MLBZdW6dWt9pr59+0Iul+PLL7/Ed999p7+IKWDYOW7gwIG4du0a9u/fb/IxmzRpgoMHDyInJ8dgGp87d+5Ao9HoP9d16tSBRqNBRESEwXpOSkpCZmYm3Nzc9PuGxo0bIz09Hb169TLYN9y5cweA9os2pVKpf4zff/8dgwcPhouLCwYNGoTNmzcbZGzWrBlyc3PRu3dveHt7Gxzn6AoXbJfZLrNdZrsMWGe7XFaltY26NtvNza3MIwaKdpbWjRYz5erVq9i0aRN27dpVbKEK0Bbai47u0+3fC7fj5WkfS2vfGjVqVOwxQdHHmzlzJt5//32Eh4fri0qFpzkurLT1ExAQgCpVqhT73M7OzkYF1Pv372PRokUIDAyEr69vuYsFXbt21a/HQYMG4ebNmwgMDDQoFri4uBhsAwMHDkSNGjWwf/9+k8WCJk2alLj+Kvq+lbbN6lSpUgX79+9Hq1atMGXKFMydOxfDhw/XH09UZNsuSYWuWVAaFxcXg0otoO09U3R+pKFDhyI1NdWoFywAo/uXh+5q0jrbtm3DgwcP0L9/fwBAhw4d0KxZM/z4449GV7MHtL1Ii2bXHXiV5PXXX4eLiwtmz55tlF+SJIMNXKVSYfv27ejUqVOJPTWHDx8OtVqtv4J5YSqVqsyNjilnz57F7t278f333xd7EDN8+HAkJCQY9YYCtEPs8vLySn2eli1b6ocNLVmyBBqNxmhoT1nXh4uLC5ycnAyq4LGxsUYHc0OGDIGzszPmzJljVMHXvTcvv/wyfH19ERgYaDRHmW6ZZ599FrVq1cKvv/5qMFxz3759uHXrFgYOHFjia1coFFCpVAb3taSyfvYOHz6M//u//8NXX32FIUOGlPmxlixZYrIHginPPvssAgIC8Ouvv+rn0gSA1atXG223AwYMQGJiosGJjUqlwpIlS+Dj46OfF65Ro0ZwcXHByZMnDe5ftJdXfn6+0XvarFkz+Pr6WuS9KCgoAIASH7t3795wd3fH4sWLDdbrH3/8gaysLP22FBAQgGeffRZr1qwxGB4bFRWFv/76C/379zc48PD390f//v2xfv16bNiwAf369TM6qAW0c9C3adMGvXv3Ru/evdGhQweDv+ses3A2SZKwaNGiEl97+/btUbt2bfz2228G8y+fOnUKly5dKnW/WVbl2b8C2t4B3333HaZMmWKWYbNleY+BhxV9UweHTz/9NOrUqWO0Pym6rurWrYv27dtjzZo1Bp+V0NBQHDx4EAMGDDB67GXLlpnMo2v3dLp06QIXFxd4e3ujUaNGyMrKMti/674Ii42N1a9nXVu9ZMkSo/XMtlqLbbUhttUlY1utZY1ttc4zzzwDb29vODs74/fff0dsbCzmzJmj/3tZ23RL2rVrl8E2c+HCBZw/f16/Dy1vW7Jp0ya4u7sbzGVcViW1faUp63ZVOOf169cRGBhY7ucyRbddFN7+TdFoNMW+vgEDBkCtVhud0+p6leu+3OvatSsAYOHChSaXq1atmsH2dP/+fXz++ef69zk7Oxtr165Fw4YNkZ6ebvB8ujnZBwwYgLfeegtz5841eI7hw4fj7NmzOHDggFF+XRvLdrls2C6zXWa7bB7laZfLqrS2sVatWujZsydWrFiBBw8eGN2/6H6svKZNm4auXbti8ODBJS6nUqkMCmEKhQIrVqxAQECA/jy9vO1jUUXbtwEDBuDChQsGo/Ly8vKwcuVKNG7c2Gj6sbp16+LFF1/Uf39Q2vVniuPi4oKXX34Zu3fv1k9rB2gL5X/++Se6detmNEJn9uzZqF27Nj744IMKPWdRBQUFpW5nus9tSW39hQsXcObMGf1tMpkMy5cvR506dSr8vpW2zeoEBAToC5Rz5sxBgwYNMG7cOH1uc2/bFhlZMGjQIMyZMwdjxoxBly5dcOPGDWzYsMFojrWRI0di7dq1+OSTT3DhwgV0794deXl5OHz4MCZMmIBXX321Qs9fo0YNdOvWDWPGjEFSUhIWLlyI5s2b64e96g78+/fvjyeffBJjxoxB/fr1kZCQgGPHjsHPzw9///038vLysGzZMixevBgtW7bE8ePH9c+hO0C6fv06zp49i86dO6NZs2b49ttvMX36dMTGxmLIkCHw9fVFTEwMdu7ciffffx+fffYZDh8+jBkzZuD69ev6YS/F6dGjB8aPH4/AwECEhITg5ZdfhpubGyIiIrB161YsWrQIw4YNq9B6OnjwIPr06VNi1ek///kPtmzZgg8++ADHjh1D165doVarER4eji1btuDAgQOl9hYprE6dOpg/fz7Gjh2Ld999FwMGDCjX+hg4cCB+/vln9OvXD2+//TaSk5OxbNkyNG/eHNevX9cv17x5c3z11Vf45ptv0L17d7z++uvw8PDAxYsXUa9ePQQGBsLPzw8LFizA2LFj0bFjR7z99tuoXr06rl27hvz8fKxZswZubm6YN28exowZgx49emDEiBFISkrCokWL0LhxY6M5TvPy8gyGUK5btw4ymUx/EVFLK+tnb8SIEQgICECLFi2Megj06dMHtWvXxqBBg7Bu3TpUrVoVrVu3xtmzZ3H48GGT8zaa4ubmhm+//Rbjx4/HSy+9hDfffBMxMTEICgoyyvP+++9jxYoVGD16NC5fvozGjRtj27ZtOH36NBYuXKjvpVW1alW88cYbWLJkCZycnNCsWTP8888/RvN+3rlzB7169cLw4cPRunVruLq6YufOnUhKStJf6PVRREdH69dbQkICli5dCj8/vxIv0BQQEIDp06dj9uzZ6NevHwYPHozbt2/jl19+QceOHQ0q9T/88ANefvlldO7cGWPHjtX3Avf09MR3331n9NgjR47U7wdMnRSVRatWrdCsWTN89tlnSEhIgJ+fH7Zv317qxa10n5HRo0eja9euGDVqFNLT07Fo0SLUr18fX3zxhcHyarXaoGeermflhQsXDA5O1Wo1EhIScOHCBXTq1KnM+1edK1euwN/fH1OnTq3Q+khKStK/x6mpqVixYgVcXV2NTnjj4uKwf/9+/TRE3333HRo1aoSnn37aqJeAq6srfvjhB4wcORLdu3fHO++8o5/iqEGDBgbrav78+ejfvz86d+6M//73vygoKMCSJUtQtWpVkyMlYmJiMHjwYPTr10+fu2/fvga9j4p6++23MWfOHEyaNAnZ2dmIi4vDhg0bUKNGDSQnJ6Nbt24YMmQIvL299XM4rlu3DuPGjWNbXQTbakNsq0vGtlrLGttqU9q0aYMvvvgC33//Pd566y20a9euXG26pTRv3hzdunXDhx9+CLlcjoULF6JmzZoG7V5Z2pKIiAjMnDkTGzduxLRp04xO2E1JSUnRt+UPHjzAvHnzULVqVbz44ovlfh1l3a50Dh48iHHjxpXYi7okZ8+ehaurq36ahiVLluDpp5826sF39uxZpKam6qchOnLkSLFT9QwYMAC9e/fGV199hZiYGLRv3x5Hjx7F9u3b8cEHH6BBgwYAtF/+jho1CitXrkRmZiZ69OiBCxcuYM2aNRgyZAjatWun3zfk5OSgWrVq+Pnnn1GtWjXEx8ejW7duSEpKwt9//4358+fjk08+0c8/vWLFCly5cgUTJkzAokWLsG/fPoOMn3/+Of766y8MGjQIvr6+UCgU+Omnn3Djxg39Fxpsl8uG7TLbZbbLFWOudrkkZWkbly1bhm7duqFt27YYN24cmjZtiqSkJJw9exbx8fH6i9JXxMGDB3H69OlSl6tXrx7mzZuH2NhYtGzZEps3b0ZISAhWrlypH8ld3vaxtPZt2rRp2LhxI/r374+PPvoINWrUwJo1axATE4Pt27cbzbFvTt9++y0OHTqEbt26YcKECXB1dcWKFSsgl8vxww8/GC1/8OBBbNiwocLXy9u1axf8/f310xCdOnUKkydPNlim8PcSOTk5CAoKQl5eXrGFwKlTp2LDhg369efv74/169cjLCwMGzZs0I/SK+/7VpZttigvLy+sXLkSvXv3xvLlyzFhwgQAZt62pXIICgqSAEgXL14scTmZTCZ9+umnUt26dSUvLy+pa9eu0tmzZ6UePXpIPXr0MFg2Pz9f+uqrr6QmTZpIbm5uUp06daRhw4ZJUVFRkiRJUkxMjARAmj9/vtHzPPnkkwaPd+zYMQmAtHHjRmn69OlSrVq1JC8vL2ngwIHS3bt3je5/9epV6fXXX5dq1qwpeXh4SI0aNZKGDx8uHTlyxOC5S/sZNWqUweNu375d6tatm+Tt7S15e3tLrVq1kiZOnCjdvn1bkiRJ+t///ie98MIL0v79+40yzZw5UzL1tqxcuVLq0KGD5OXlJfn6+kpt27aVpk6dKt2/f1+/TKNGjaSBAwca3XfixIlGjwlAcnJyki5fvmxwu6n3SKFQSPPmzZOefPJJycPDQ6pevbrUoUMHafbs2VJWVpbR85X2eJIkSS+99JL02GOPSTk5OeVeH3/88YfUokULycPDQ2rVqpUUFBRU7HpbtWqV9PTTT+tz9+jRQzp06JDBMn/99ZfUpUsXycvLS/Lz85M6deokbdy40WCZzZs36x+nRo0a0jvvvCPFx8cbLDNq1CiD7cLHx0d65plnpHXr1pW4jsqiuPe26Pot62evpO352LFjkiRJUkZGhjRmzBjJ399f8vHxkfr27SuFh4dLjRo1MtjmS9sv/PLLL1KTJk0kDw8P6dlnn5VOnjxpcrtISkrSP5+7u7vUtm1bKSgoyOjxUlJSpKFDh0pVqlSRqlevLo0fP14KDQ2VAOiXT01NlSZOnCi1atVK8vb2lqpWrSo999xz0pYtW8qyukvUqFEjg/Xl7+8vvfzyy9LZs2fLdP+lS5dKrVq1ktzc3KTatWtLH374oZSRkWG03JEjR6SuXbvqt8uBAwdKN27cMPmYcrlcql69ulS1alWpoKCgTDl0+0vd+y1JkhQWFib17t1b8vHxkfz9/aVx48ZJ165dM1i3kmT6c7lp0yapffv2+s/am2++KcXGxhosU/QzUpafottJaftXSdJ+LgBICxYsMLhvcfuJonT31/1Uq1ZN6tq1q7R3716D5Qov4+TkJNWpU0d6/fXXpVu3bkmS9PCzERMTY3C/LVu2GOxPRowYYbKNOnz4sME28Morr0hhYWEmX1NYWJg0bNgwydfXV6pSpYoEQAoODjbKO3PmTP3vMplMmjBhguTs7Cy5uLgY7C+efPJJg/XcsmVLqUOHDlKDBg3YVktsq4tiW63FtvohW26ri647SdK+Z61atZI6duwoqVQq/e1ladN1+9Si5s+fb7KNkCTTbbRO4f3tTz/9JDVs2FDy8PCQunfvLl27ds1o+dLako0bN0pt2rSRFi1aJGk0mlJzFLduz507ZzJjUUXbBEkq23ale0wvLy8pISHB4G+m3rPi1pvux9nZWWrQoIE0atQog/2E7rOi+3F3d5eaN28uff3115JcLpckyfQ+Mzc3V5oyZYpUr149yc3NTWrevLn0/fffS2q12uDzp1QqpdmzZ+vPfRs2bChNnz5dkslkBvsGJycnqXr16tLChQslb29vycnJSWrVqpW0detWSZIenkMHBARIAKSAgACDdvnHH3+UAEhjxozRZ8zJyZGmT58uubu7S05OTpK/v7/UpUsX6YMPPmC7zHbZANtltsvW1C7rmLNtjIqKkkaOHCnVqVNHcnNzk+rXry8NGjRI2rZtm36Z4t6jlJQUo/Mq3Wfp1VdfLTWz7rjg0qVLUufOnSVPT0+pUaNG0tKlS41ylqd9LK19073uYcOGSdWqVZM8PT2lTp06Sf/884/R85pS1m3Y1PqRJEm6cuWK1LdvX8nHx0eqUqWK9OKLL0pnzpwxWEb3mO3btzc4JtG9RlPbtqn7m2rDZTKZfrmy7HdMvQbd+qtatark6ekpdezYUdq1a5dRjvK8b2XZZkeNGiU1atTI6HnGjBkj+fn5GbzPZdm2y8Lp35VgF44fP44XX3wRW7durXBPgcJiY2PRpEkTxMTEFDvv9qxZsxAbG4vVq1c/8vMREVWESqVCvXr18MorrxjNtWnLVq9ejdWrVxv0SCNDs2bNwuzZs5GSkmJy+ilrxLaaiKjidPu8+fPnl+mitGSbGjdujDZt2uCff/6x+HOxXSYiW2dLbWPPnj2RmpqK0NBQ0VFIIGvfZi03zoSIiCrFrl27kJKSYnBhYiIiIiIiIiIiovKwyDUL7IWPjw/eeeedEi8W1K5dO9SrV68SUxERaZ0/fx7Xr1/HN998g6effrrUixzZmvr166NTp06iY5CVY1tNRERkPdguExER2TYWC0qgu2BFSV5//fVKSkNEZGj58uVYv3492rdvb5fDuPv06YM+ffqIjkFWjm01ERGR9WC7TEREZNvs6poFRERERERERERERERUfrxmARERERERERERERGRg2OxgIiIiIiIiIiIiIjIwbFYQERERERERERERETk4FgsICIiIiIiIiIiIiJycCwWEBERERERERERERE5OBYLiIiIiIiIiIiIiIgcHIsFREREREREREREREQOjsUCIiIiIiIiIiIiIiIHx2IBEREREREREREREZGDY7GAiIiIiIiIiIiIiMjBsVhAREREREREREREROTgWCwgIiIiIiIiIiIiInJwLBYQERERERERERERETk4FguIiIiIiIiIiIiIiBwciwVERERERERERERERA6OxQIiIiIiIiIiIiIiIgfHYgERERERERERERERkYNjsYCIiIiIiIiIiIiIyMGxWEBERERERERERERE5OBYLCAiIiIiIiIiIiIicnAsFhAREREREREREREROTgWC4iIiIiIiIiIiIiIHByLBUREREREREREREREDo7FAiIiIiIiIiIiIiIiB8diARERERERERERERGRg2OxgIiIiIiIiIiIiIjIwbFYQERERERERERERETk4FgsICIiIiIiIiIiIiJycCwWEBERERERERERERE5OBYLiIiIiIiIiIiIiIgcHIsFREREREREREREREQOjsUCIiIiIiIiIiIiIiIHx2IBEREREREREREREZGDY7GAiIiIiIiIiIiIiMjBsVhAREREREREREREROTgWCwgIiIiIiIiIiIiInJwLBYQERERERERERERETk4FguIiIiIiIiIiIiIiBwciwVERERERERERERERA6OxQIiIiIiIiIiIiIiIgfHYgERERERERERERERkYNjsYCIiIiIiIiIiIiIyMGxWEBERERERERERERE5OBYLCAiIiIiIiIiIiIicnAsFhAREREREREREREROTgWC4iIiIiIiIiIiIiIHByLBUREREREREREREREDo7FAiIiIiIiIiIiIiIiB+cqOgARVY5smRLJ2TIkZcuRnCNDdoEKuXIV8v79yZWrka8ofJsaSrUGGkmCRgI0koS1Df5C05QjgJPzvz8ugJsn4O4DuHv/+++///fQ/esHeAcAvnUAn9raf928RK8OIiIim5GRp0ByjhxJ2TIk58iRVaBEvlyFXIW2zc6Xq7Xtt0LbnhcoVFCqpX/bcAkaDXCg9jL4ZN0p0oZ7AR6+Rdpu30JtuC/gXUvbduvacRc30auDiIjIJmg0ElJz5fpz8NRcOXJk2nPtwufeuXK19hxcoUK+Qg21xrAND67yKZw06odtuLMr4F7l4fm3h4nzca/q/55/1wZ86mjPyZ3ZX5iISsdiAZEdUGsk3EvPR3RqLqJT8vAgS6b9QiFbjqQc7b8FSvUjP49zzXQgM+7RA3tU/feg5d+fqvWBGs2Ams2Ams21X0gQERE5AIVKg7tpeYhOzUNsah7iMwqQnKMtCiRny5GSI4dCrXnk53HxTjRDG+4EVKkB+Nb99wuIuoBfXaBGU237XbO59u9EREQOIE+uQnRKHqJTc3E3LR+J2TKDDnqpuQqoNdKjP5EiDtCoHu0xnFwAb/+HHfh8agPVGz08D6/RTFt0ICKHx2IBkQ3JzFcgMllbEIj6tzAQnZKLe+kFZvkiodLIs7Q/qXdM/93d598vHv49aKnZHKjdGqjVmj0aiYjIJqXkyBGemI3olDzEpGqLAzGpubifKTPPFwmVQgLy07Q/SaGmF/Gq8bBwoOsEENAK8G8BOLtUblwiIiIzuJeej8iUh+ffugJBUrZcdLSyk9RAbpL2J/G66WV86vx7Dv7vubh/S6BOW6DaY5WblYiEYrGAyEply5QIjc/C9YQs3IjPwvWETNxLLxAdq3IocrUHMEUPYlw8gFqtgLpP/fvTHqjdRjsVEhERkZVIzpEhNCELN+KzcSMhCzcSMm3rC4VHUZAOxF/Q/hTmVkX7hUPd9kC99tp/Ax5nAYGIiKzKvfR83EjIwvV4bft9Iz4L2bJH7NVvK3ITtT93Txve7lUDqNvO8Dy8RlPAyUlITCKyLBYLiKyASq3BtfgsXI3L+PegJAuxaXmQbKWjYWVRy4EH17Q/Os6u2h4P9Z8BHusCNO4KVG8sLCIRETkWuUqNK3czcSEmXfulQkKW4xQGykOZD9w7r/3RcauiLfrXaw80fA5o3I1TERIRUaXJylfiQmw6rt3LxPWELIQmZCE9TyE6lvUpSAeij2t/dDz8tJ0AGnTUtt+PPa+91hER2TwnSeLXkUSVTaORcPN+Ns5EpeJMVBouxaYjT/Ho1xSwtOPNN6Nx/G7RMUrn10BbNGj0749/c9GJiIjITuiKA+ei03AuOg0h9zIhV1n/VIC36s+FV1oxUwdZk5rNgcbdtV88NO6uvcYRERGRGeTKVbgQk4azUWk4E5WGWw+yYQszAcZUGQmnR71mgaU5uWhHH+jOwRt11l5kmYhsDosFRJUkPDFbf1ByPjrNJocy2kyxoCifOkCjLkDz3kDLvtoLOxEREZWBRiPh6r0MnIpIxbnoNFyNs43iQFE2Uywoyr+ltnDQ5AWg2UuAZ1XRiYiIyEbIlGpcis3AmahUnI1Ow434LKhsoTpQhE0UC4pycgZqPQk06Q60eFnblvP6g0Q2gcUCIgtRqjU4G5WGQ2FJOHwrCQ+yZKIjPTKbLRYU5uQM1HsGaNlPWzio2050IiIisjL5ChVO3knB4VvJOBaejDQ7mJLAZosFhTm7aXsqPj4AeLw/px0kIiIjablyHLmVjINhSQiOTIFMaXsF/qJsslhQlLsv0Kyn9jy8RV/AJ0B0IiIqBosFRGaUI1Pi+O0UHAxLwvHbycixwdEDJbGLYkFRfvW1PR1a9gWavsiLJRMROajELBkO3UrCkVtJOBOVBoUNjh4oiV0UC4qq1VpbNGjZH2jwLC+0SETkoGJT83AoLAkHwxJx+W6GTUwtVB52USww4KS95mDLftofduAjsiosFhA9oow8BfbceICDYUk4F5UGhdq+vlwozC6LBYV5+AGtBgJthwFNegIuvAY8EZE9S8yS4a9rCfj72gPcSMgSHcei7LJYUJhPbaDVIKDdcO1FFomIyK7depCNf67fx6GwJNxJyhUdx6Lsr1hQRI1m2nPwtm8A/i1EpyFyeCwWEFWAQqXBkVtJ2HE1AcdvJ0OpdoyPkd0XCwqr4g88OUR7wNLwOfZWJCKyEzkyJfaFJmLX1QSci06zu96HxbH7YkFh1Rpp2+92bwIBLUWnISIiM0nOlmFXSAJ2XElAeGKO6DiVxu6LBYXVaadtw9sMBarWF52GyCGxWEBUDpfvZmDHlXjsufEAmflK0XEqnUMVCwqr+hjQ5nXgqRFArVai0xARUTkp1Rocv52CXVcTcPhWkk1eoPhROVSxoLC6T2mLBm2GAr51RKchIqJykinVOHAzEduvJOB0ZCrUjlLlL8ShigV6TkCjLtoRB22GAp5VRQcichgsFhCVIiGzANsvx2Pn1QTEpOaJjiOUwxYLCmv4PPDse9pRB64eotMQEVEJ7iTl4M/zcdgdkoAMByzyF+awxQIdJxeg2YvaNrxlP8DZRXQiIiIqwbnoNGy/HI99oYnIlTvaF+WGHLNYUIhbFeDJ14Fnx2ivUUREFsViAZEJkiThxJ0UrD93F0fDkx1mioLSsFhQiFcNoP3bQIcxgH9z0WmIiOhfcpUa+24kYsP5u7gYmyE6jtVw+GJBYVUbAh1GAc+MAnxqiU5DRET/ypYpsf1yPDacj0Nksn1fh6A8HL5YUFidttpz8HbDAQ9f0WmI7BKLBUSFZBUosfXSPaw7dxd30/JFx7E6LBYUo3F3bS+HVq8Aru6i0xAROaQHWQVYf+4uNl24h7Q8heg4VofFAhNc3IEnXgE6jtVOdUBERELcTszB6jOx2B2SgHyFWnQcq8NigQnuPtopip59TzvlIBGZDYsFRACiUnKx+nQstl+J58FJCVgsKIVvXeC5D7QHLJ5+otMQETmECzHpCDodg4NhSQ45j3FZsVhQilqttUWD9u8Abp6i0xAR2T2NRsLR8GSsOh2DM1FpouNYNRYLSvFYF6Drx0DLvoCTk+g0RDaPxQJyaBdj0/HLsUgcv5MCfhJKx2JBGXn4aac3eH4i4FdXdBoiIrt05FYSfjkehct3OdVQWbBYUEbetYDnP9QWDlj4JyIyO7lKjW2X4/HbyWjEcjR/mbBYUEYBTwBd/qedosjFTXQaIpvFYgE5pOCIVCw5GoHzMemio9gUFgvKycUdaPsG0OUjoFYr0WmIiGyeWiPhn+v3sfx4FMITc0THsSksFpSTR1Wg43vA8xN4XQMiIjOQKdXYcD4Ov52MRmK2THQcm8JiQTn51gOe/0B7bQMW/onKjcUCcihHbiVh6bFIXI3LFB3FJrFYUFFO2iGRL3wONHhWdBgiIpsjV6mx/XICVpyM4jWFKojFggpy9dROTdT1I6B6Y9FpiIhsTq5chbVnY7EqOAapubymUEWwWFBBHlW11xbs8hHgXVN0GiKbwWIB2T1JkrA/NBFLj0Xi5v1s0XFsGosFZtCyP/DS/wF12ohOQkRk9eQqNdafi8PKk1FIypaLjmPTWCx4RM6uQJthQM9pQI0motMQEVm9rAIlgk7HYPWZWGTmK0XHsWksFjwid1/tFINdJgGeVUWnIbJ6LBaQXTtwMxE/HbyNO0m5oqPYBRYLzMUJePI14MWvAP/mosMQEVkdjUbC9ivxWHg4AgmZBaLj2AUWC8zE2Q3oMBroMZXTExERmZAnV2HFyWgEBccgR84vuM2BxQIz8aymvRDycx8A7lVEpyGyWiwWkF26EpeBwL23cDGWFz00JxYLzMzJBXhqBNDzC6DaY6LTEBFZhUNhSZh/IJyFfjNjscDM3LyBzhO0UxtwPmQiIqjUGmy8eA+LDkcgNZejAc2JxQIz864FdP9UO0WRq4foNERWh8UCsit30/Lww/7b2HPjgegodonFAgtxcQeeGQX0nM65FInIYV2MTce8feG4dJeFfktgscBCvGpov3DoNI5fOBCRwzpwMxHz9ocjOiVPdBS7xGKBhfg1AF6cDjz1NuDsLDoNkdVgsYDsQkaeAouORGDD+btQqrlJWwqLBRbmWVVbMOg4DnBxFZ2GiKhSRCTl4Pt94TgSniw6il1jscDC/BoAvWYA7d4EnJxEpyEiqhRX4zIQuDccF2LTRUexaywWWFjd9kD/H4DHnhOdhMgqsFhANk2h0uCP4Bj8cjwSOTI2npbGYkElCWgF9AsEmr0kOgkRkcXkylVYeOgOVp+JhUrDw1FLY7GgkjR8HhgwH6jbTnQSIiKLuZeej+/3hXNEfyVhsaCStB0O9JkN+NUTnYRIKHZdJZt1OjIVM3aFIjqVQx3JzqSEA+teAx4fCPT9DqjRRHQiIiKz2h2SgLl7byEpm3Mak525dw5Y2RN49j3gpf8DvKqJTkREZDYKlQYrT0Zh6bFIyJQa0XGIzOvGFiB8D9D9E6DL/zi9IDksjiwgm5OSI8e3e8KwO+S+6CgOhyMLBHDxADpPBF74DHD3Fp2GiOiRRCTlYMbuUJyL5nQFlY0jCwSo4g/0ngU8/S6nJiIim3cuOg3/tysUkcm5oqM4HI4sEKB6Y+Dl74AnBolOQlTpWCwgm6HRSNhwIQ7z94cjm1MOCcFigUBVHwNeWQA07y06CRFRuXHKIfFYLBCoQUdgwI9AvfaikxARlVtarhzf7b2FHVcSREdxWCwWCNSyPzDoZ05NRA6Fl/smmxCakIXXlp/BjF2hLBSQY8qKA9YPBXZ+AOSzRy4R2Y5DYUno9dNx/B4cw0IBOab4i8BvLwIHvgKUBaLTEBGViSRJ+PN8HHr9fIKFAnJcd/YBy54DLq0C2NeaHASvWUBWTaZUY/6B21h9JhZqfsFABFzbCEQeAfrPA9q8LjoNEVGxsvKVmPX3Tey8yi8YiCBpgLNLgTv7gVd/AR57TnQiIqJiRSbn4ovt13H5boboKETiybOBf6YAoTuAVxYBNZuJTkRkURxZQFbr2r1MDFh8Cn8Ex7BQQFRYXjKwbQyw6R0gJ1F0GiIiI4fDktBnwQkWCoiKSosEgvoB+7/kKAMisjqSJOGP4BgMWnKKhQKiomJPAcu7AsELAY1adBoii2GxgKyOSq3BzwdvY+jyM4hOyRMdh8h6hf8DLOsEXFknOgkREQAgq0CJT7aEYOzaS0jOkYuOQ2SdJA1wbhnwazcg7pzoNEREAICEzAK8/dt5fPNPGGRKjeg4RNZJVQAcngn89hKQFCY6DZFFsFhAViUyOQev/XIGi49Gcl5jorKQZQF/TQI2v8trGRCRUMfCk/HyAs5rTFRmaZFAUH9g/3SOMiAiobZeuod+C07ibHSa6ChEtuFBiPZ6ROdXiE5CZHa8ZgFZBd1wx/kHbkOuYi8GonK79TeQcAV4bQXQpLvoNETkQGRKNWb/HYaNF+JERyGyPZIGOPeL9npEbwQBtZ8UnYiIHEhqrhxf7riBg2FJoqMQ2R6VDNg3VduGD/kF8PYXnYjILDiygIR7kFWAEb+dw7d7brFQQPQoshOAtYOBw7MBtUp0GiJyAJHJOXh16WkWCogeVept7ZQGl1aJTkJEDuJwWBL6LjjJQgHRo4o4ACzvoi0aENkBFgtIqBN3UjBwcTDORXP6FCKzkDRA8M/AqpeB9GjRaYjIjm25dA+vLDmN20k5oqMQ2QeVDPhnCrB1tHaaQSIiC1CpNZi79xbGrr2EtDyF6DhE9iE3CVg/FNj/JaDi54psG4sFJIRGI+HnQ3cwJugC0nmAQmR+CZeBX18Arm0SnYSI7EyeXIVPNodg6rbrKFCqRcchsj83dwK/dte25UREZpSULcPbv53HypPsVERkfhJwbhnw+0tAaoToMEQVxmIBVbq0XDlGrrqAxUciwGsYE1mQIgfYOR745xNArRSdhojsQNj9bLyyNBg7rvIixkQWlXkX+KMvcGYJIPGAmYge3ZnIVAxcfAoXYjmqn8iiEm9opxYM3yM6CVGFsFhAlepSbDoGLg5GcGSq6ChEjuPSH8DqQUBOougkRGTDNl2Iw2u/nEZ0Sp7oKESOQaMEDv4fsHEEIMsWnYaIbJQkSVhyJALv/nEeqbkc1U9UKeTZwKZ3gKPfAhpem5NsC4sFVGl+OxmNt1aeQ2K2THQUIsdz7xywogcQd150EiKyMSq1BjN2hWLajhuQq3iyQ1Tp7uwDfu8NpEWJTkJENiYjT4Exqy/ip0N3OKqfqNJJwMn5wJ/DgYJM0WGIyozFArI4mVKNiX9ewXd7b0HFIxQicXITgdUDgYu/i05CRDYiM1+BkasuYN25u6KjEDm21NvaKQ2ijopOQkQ24nZiDgYtCcbx2ymioxA5tshDwMqeQNJN0UmIyoTFArKolBw53lx5DnuuPxAdhYgA7ZQGez4Fdk0EVHLRaYjIikUk5WDw0tM4E5UmOgoRAYAsE1g/DDj7i+gkRGTljt1OxtDlZ5CQWSA6ChEBQEYM8HsfIHS76CREpWKxgCwmPDEbQ5adxrV7maKjEFFRIeuBoAFAHq8fQkTGjtxKwmu/nEFcer7oKERUmKQGDkz/t+jPuceJyNjq0zEYu+YScuUq0VGIqDBlHrDtPe11DIisGIsFZBHHwpMxbPlZ9mQgsmYJl7RzIKdGik5CRFbkl+ORGLeWXzIQWbWQ9dqpBXOSRCchIiuh1kj4encoZv0dBjWn/yWyXifnAzvGA2ql6CREJrFYQGYXdDoGY/klA5FtyIgB/ujDCx8TEVRqDT7beg0/7L/NiyAS2YL4C/8W/SNEJyEiwXJkSry3+iLWnuU1hohswvVNwPrXAVmW6CRERlgsILNRayTM2BWK2ezJQGRbCtKBtYOBm7tEJyEiQQoUary/7jK2XY4XHYWIyiMrDljVF4i/JDoJEQlyLz0fQ5efwYk7vJAxkU2JOQms6gdk8fibrAuLBWQWMqUa49ddxrpz7MlAZJNUMmDraODMUtFJiKiSZeYr8Pbv53A0PFl0FCKqiPw0YM1gIOKw6CREVMnCE7Px+vIzuJOUKzoKEVVEcph2lGDiDdFJiPRYLKBHlidXYUzQRRy+xTlTiWybBBz8Ctg7FdBoRIchokpwP7MAw349i6txmaKjENGjUOYBG98Erm0SnYSIKsmVuAy8ueIcUnLkoqMQ0aPIeQCs6g9EsuhP1oHFAnok2t6I53E2Ok10FCIylwsrgB1jATWvO0JkzyKScjB0+RlEJrM3IpFd0KiAnR8ApxeJTkJEFnY6MhXv/n4eWQW8QCqRXVDkAH++BYTuEJ2EiMUCqrjkbBmGrziLa/cyRUchInML3Q5s+Q+gYk8lInt0+W46hv16Fg+yZKKjEJFZScChr4H9XwISryFGZI8O3EzEmNUXka9Qi45CROakUQLb/wtcXS86CTk4FguoQu6l52PYr2c5NyKRPbu9F/hzOKDIE52EiMzoVEQK3v39AnsjEtmzc8uAv/7HaQWJ7Mz2y/GYsOEKFCp+tonskqQBdk8Czq8QnYQcGIsFVG4RSTkY9usZxKXni45CRJYWfRxYPwyQszBIZA9O3EnB2DWXUKBkb0Qiu3d1HbB7IgsGRHZi9ekYfLbtGtQajhoism8SsG8qELxQdBByUCwWULmE3c/G8BVnkZTNqUmIHEbcGWDda4AsW3QSInoEx8KTMW7tJcjZG5HIcVz7E9g5HtCwQEhky349EYVZf4dxdjEiR3J4JnByvugU5IBYLKAyu52Yg3f/OI+MfE5bQORw4i8A64YABZmikxBRBRwLT8b4dZc5bQGRI7qx5d+CAT//RLbo91PR+H5fuOgYRCTC0W+BY4GiU5CDYbGAyiQyOQfv/H4O6XkK0VGISJSEy8D6oZySiMjGnLiTgvHrL0Oh5heFRA7rxlZg14csGBDZmKDTMfh2zy3RMYhIpBPfc4QBVSoWC6hU0Sm5GPHbeaTmslBA5PASLgEb3wKUMtFJiKgMgiNS8f7aSxxRQETA9U3AX5NYMCCyEevP3cXsv8NExyAia3D0W170mCoNiwVUoviMfLz7+3mk5PAaBUT0r9hTwNbRgFolOgkRleB8dBrGrr3IaxQQ0UMhG4A9n4hOQUSl2HElHjN2h4qOQUTWZN8XQMhG0SnIAbBYQMVKzpHh3d/P434WexATURF39nH+YyIrdutBNsauvQSZkp9RIirichBw9DvRKYioGPtDH+Dzbdd5MWMiKkICdk8Ebv0tOgjZORYLyKTMfAXe/f08YtPyRUchImsVuo29E4ms0L30fIxadQE5Mo7+IaJinPwBuPCb6BREVMSJOyn4aGMI1BpWCojIBEkNbHsPiDoqOgnZMRYLyIhMqcZ/11zCnSRexJSISnE5CDj0tegURPSv9DwFRq26gGROH0hEpdk3Fbi5S3QKIvrXjfgsfLj+MhRqjgokohKoFcCmd4G486KTkJ1isYAMSJKET7aE4PLdDNFRiMhWnF4EBC8UnYLI4eUrVBgTdAHRqXmioxCRLZA0wI73gZiTopMQObz4jHy8t+Yi8hVq0VGIyBYo84A/3wCSeBF0Mj8WC8hA4L5w7L2RKDoGEdmaw7PYO5FIIKVagw/WX8G1+CzRUYjIlqjlwKZ3gAfXRCchclhZBUqMCbqIFI4KJKLykGUBf74J5CaLTkJ2hsUC0lt3NhYrT0aLjkFENkkCdn4AxF8SHYTI4UiShKnbruPknRTRUYjIFsmzgfXDgPQY0UmIHI5CpcH4dZcQkcwpgImoArLigI1vAcoC0UnIjrBYQACAI7eSMOtvDl8iokegKgA2jgAy40QnIXIoPx28g51XE0THICJblpcM/Dlc20uRiCrN1G3XcC46XXQMIrJlCZeBneMBiRdGJ/NgsYBwIz4L/9t4FWoNdyxE9IjykoENwwFZtugkRA7hn+v3sfRYpOgYRGQPUu8A2/4LaHhxVaLK8OOB29gVcl90DCKyB2G7gSOzRacgO8FigYNLyCzghZSIyLxSbgFbRwFqlegkRHYtNCELn2+9LjoGEdmTyEPA4a9FpyCye5svxrHYT0TmFbwAuLJOdAqyAywWODCZUo3x6y7xQkpEZH5RR4F9n4tOQWS3UnLkeH/tJRQoWewnIjM7swS4tkl0CiK7dSUuAzN23RQdg4js0T9TgJiTolOQjWOxwIF9tTMUoQmcKoSILOTSKuDiH6JTENkdhUqDD9dfxv0smegoRGSv/voIiL8kOgWR3UnNlWPC+itQqDndFxFZgEYJbBkJZNwVnYRsGIsFDmrdubvYfiVedAwisnf7p2svuEREZjNjVygu3c0QHYOI7JlaDmx6B8jmfOpE5qJSazBxwxUkZrPYT0QWVJChLRioOIsIVQyLBQ7o8t0MfPN3mOgYROQI1HJgy2ggP110EiK7EHQ6Bpsv3RMdg4gcQW4isOltQMkvNonMIXBfOM7H8JiYiCrBgxBgL6cFpophscDBpOTIMWHDZQ57JKLKkxUHbB8LaLjfIXoUl++m47s9t0THICJHcv8qsH+a6BRENu+va/fxR3CM6BhE5EiurAGubhCdgmwQiwUORKXWYOKfV5CUzaFIRFTJoo4AJ+aJTkFks7LylfhoYwhUGkl0FCJyNJeDgNAdolMQ2azbiTmYtv266BhE5Ij2fAok3hCdgmwMiwUOZO7ecFzgsEciEuXkD0DEYdEpiGzSZ9uuISGzQHQMInJUf38MpLNXNFF55ciU+GD9ZeQr1KKjEJEjUhUAm/8DyLJEJyEbwmKBgzgcloRVp3mAT0QCSRpgx1ggM050EiKbEnQ6BofCkkTHICJHJs8Gto0BVArRSYhsylc7QxGTmic6BhE5sowYYOcHgMQRylQ2LBY4gJQcOb7gsEcisgYFGcD2cYCGvauIyiI0IQuBe8NFxyAi0l6/4NDXolMQ2YydV+Px17X7omMQEQG39wIXVopOQTaCxQI7J0kSPtt6DWl57AVERFbi3jkgeIHoFERWL1euwqQ/r0Ch5sXBichKnF8OhO8RnYLI6t1Lz8fXu26KjkFE9NChmUDKbdEpyAawWGDn1pyJxYk7KaJjEBEZOv69tociERXryx03EJuWLzoGEZGhXROAzHuiUxBZLbVGwidbQpAjV4mOQkT0kKoA2D4WUCtFJyErx2KBHbuTlIPAfZy6gIiskEYJ7HgfUPKCrUSm7LjCqQuIyErJMoFdH3LuY6JiLDsWiYuxGaJjEBEZS7wOHJsrOgVZORYL7JRcpcZHG69CruLUBURkpVLvcO5jIhOSs2WY/XeY6BhERMWLPQVc/F10CiKrczUuA4uPRIiOQURUvNMLgbtnRacgK8ZigZ36Yf9thCfmiI5BRFSyC78BEYdFpyCyKtN33EBWAYcHE5GVOzQTSI8RnYLIauTJVZiyOQQqDUfdEJEVkzTAzvcBOb8zJNNYLLBDZ6PSsOo0D9yJyBZIwO6JQH666CBEVmHHlXgcCU8WHYOIqHTKPGD3JE5HRPSvuXtv8VpDRGQbMuOAfV+ITkFWisUCOyNTqvHlzhs8Zici25GbCOybKjoFkXCcfoiIbM7dYO0oQSIHdyEmHX9eiBMdg4io7EI2AHcOiE5BVojFAjuz5GgEYlLzRMcgIiqfG1uBSE5HRI6N0w8RkU06PIvTEZFDk6vUmL7jOjvsEZHt2fMZoOB3iGSIxQI7Ep6YjZUno0XHICKqmD2fAsoC0SmIhOD0Q0RkszgdETm4ZceiEJXCL9uIyAZlxQHH5opOQVaGxQI7odFImLb9BpRqHqQTkY3KiAWOB4pOQVTpknM4/RAR2bi7wcClP0SnIKp0d5Jy8OvxKNExiIgq7txy4H6I6BRkRVgssBNrz8Yi5F6m6BhERI/m7DIg8YboFESV6vu94Zx+iIhs35FvgLxU0SmIKo22w951KNQa0VGIiCpOUgN/fwRo1KKTkJVgscAO3M8swPwDt0XHICJ6dBoV8PfHgIYnXeQYLsamY8fVBNExiIgenSwTODRTdAqiSrP+/F1cicsUHYOI6NE9uAac/1V0CrISLBbYga93hyJPwQogEdmJhMvAxd9EpyCyOLVGwoxdoaJjEBGZT8gG4N5F0SmILC4xS4Yf9rPDHhHZkaPfAZlxolOQFWCxwMYduZWEw7d4QUQisjNHvgFyEkWnILKodWdjEZ6YIzoGEZEZScCeTzhCkOze3L23kCtXiY5BRGQ+yjxg3xeiU5AVYLHAhinVGny395boGERE5qfIAY5+IzoFkcWk5srx06E7omMQEZlf4nVe7Jjs2uW7Gfjr2n3RMYiIzO/2XiD6uOgUJBiLBTZs3dm7iE7JEx2DiMgyQv7Uzp1IZIe+3xeOHBl7JBKRnTr6LS92THZJkiR880+Y6BhERJZz4CuOEHRwLBbYqMx8BRYdiRAdg4jIciSN9kCFyM5cvpuB7VfiRccgIrIcWSZwmBc7JvuzO+Q+Qu5lio5BRGQ5SaHA1bWiU5BALBbYqIWHI5BVoBQdg4jIsmJPAbf+EZ2CyGwkScLsv29CkkQnISKysKsbgAfXRacgMhuZUo0f9oeLjkFEZHlHvwPkvLaao2KxwAZFJudi/bm7omMQEVWOQzMAlUJ0CiKz2HsjEdfjs0THICKqBBJwZLboEERms+JENO5nyUTHICKyvLxk4NTPolOQICwW2KC5e29BpWGXRCJyEOnRwIWVolMQPTKVWoOfDt4WHYOIqPJEHgZiTolOQfTIErNkWHEySnQMIqLKc+4XIDNOdAoSgMUCG3MqIgVHw5NFxyAiqlwnfwDy0kSnIHokWy7FIzo1T3QMIqLKdXiW6AREj2z+gdvIV6hFxyAiqjwqGXCI1x9yRCwW2Jj5B9gjkYgckCwLOL1QdAqiCpMp1Vh05I7oGERElS/hEhD2l+gURBUWkZSDnVfjRccgIqp8N3cAD66JTkGVjMUCG3I4LInzHBOR47r4O5CbIjoFUYUEnY5FUrZcdAwiIjGOfgNo2CubbNOiIxHgLMBE5LCOfy86AVUyFgtsyEL2SCQiR6bM5+gCsklZ+UosPx4pOgYRkTipd4Cr60WnICq3O0k52HvjgegYRETi3N4L3L8qOgVVIhYLbMTBm4kITcgWHYOISKyLfwA5SaJTEJXL8hNRyJapRMcgIhLr+PeAUiY6BVG5cFQBERE4usDBsFhgAyRJwqIjEaJjEBGJpyrg6AKyKel5Cqw5Eys6BhGReDn3gavrRKcgKrPbiRxVQEQEALizH0i4LDoFVRIWC2zAwbAk3LzPUQVERACAS6uAnETRKYjKJOh0DAqUnKebiAgAcHoxoOZIK7INi47cgcRRBUREWhxd4DBYLLBykiRh4WGOKiAi0lPJgOAFolMQlSpXrsLas3dFxyAish5ZcUDoNtEpiEp160E29oWycwoRkV7EQSD+kugUVAlYLLByB24m4tYDjiogIjJweTWQzWHhZN3+PH8XWQVK0TGIiKxL8AKwuzZZu0WHI7iZEhEVxdEFDoHFAiu3/HiU6AhERNZHJQMurBCdgqhYCpUGfwTHiI5BRGR9UsKB8D2iUxAVKyolFwfCOKqAiMhI5CEgKUx0CrIwFgus2MXYdFyLzxIdg4jIOl0KAhR5olMQmbT9SjySsuWiYxARWafgn0UnICpW0OkYjiogIirO2WWiE5CFsVhgxf44xR6JRETFkmUCIX+KTkFkRKORsPJktOgYRETWK+EyEH1cdAoiI5n5Cmy/nCA6BhGR9bqxFchNFp2CLIjFAit1Lz0fBzn0kYioZOeWAxqN6BREBvaGPkBMKke9EBGV6BRHF5D12XA+DgVKtegYRETWSy0HLqwUnYIsiMUCKxV0OhYaDn0kIipZehRwZ5/oFEQGfuOoAiKi0sWcAJJviU5BpKdUa7D2bKzoGERE1u/SKkBZIDoFWQiLBVYoR6bElkv3RMcgIrINnDORrMjVuAxeb4iIqKwu/i46AZHeP9fv83pDRERlkZ8GXNsoOgVZCIsFVmjzxXvIlatExyAisg13TwP3r4pOQQQAWHv2rugIRES249pmQJ4rOgURAOCPYF4zkIiozM4tB68Gb59YLLAyao2E1WdiRccgIrIt55aLTkCE1Fw59tx4IDoGEZHtUOQA1zeJTkGE89FpCE3IFh2DiMh2pN4BIg6JTkEWwGKBlTl8KwnxGZz3i4ioXMJ2AwUZolOQg9t88R4UKl5wm4ioXC7+IToBETvsERFVxOXVohOQBbBYYGU2XogTHYGIyPaoZMD1LaJTkAPTaCS24UREFZEcBsSeFp2CHFhqrhyHbyWJjkFEZHsiDgA53H/aGxYLrMj9zAKcvJMiOgYRkW26slZ0AnJgJyNSODKQiKiiLv4mOgE5sO2X46FUc95tIqJy06iAkA2iU5CZsVhgRbZcugcNj1GIiComKRRIuCw6BTmoDec5qoCIqMJu/cOeiSTM5ov3REcgIrJdV9eLTkBmxmKBldBoJGy9FC86BhGRbePoAhIgOUeGo+HJomMQEdkujZIXOiYhzkenITo1T3QMIiLblR4FxAaLTkFmxGKBlTgTlYaETE5fQET0SG5sBxQ84aPK9VfIfag5NJCI6NHw2kMkwLbL7LBHRPTI2GnPrrBYYCW2X+FBChHRI1PkADd3ik5BDmZ3yH3REYiIbF9SKJB0U3QKciD5ChX23nggOgYRke0L+wuQZYlOQWbCYoEVyJWrsD80UXQMIiL7wDkTqRJFpeTiRgIPjImIzOL6ZtEJyIHsu5GIPIVadAwiItunKgBubBWdgsyExQIrsPf6AxQoeZBCRGQWceeALI7Wosqx+2qC6AhERPbjxjZA4rRuVDk4up+IyIxubBedgMyExQIr8Pd1Tl9ARGQ+EnBzl+gQ5CB2X2MbTkRkNtkJQOwp0SnIAaTkyHEuOk10DCIi+3HvHJDNqd3sAYsFgmXmK3A2igcpRERmxesWUCW4fDcDd9PyRccgIrIv1zgVEVnegZuJ0HAQCxGR+UgaIGy36BRkBiwWCHYwLAkqHqUQEZlXwiUgM050CrJzu0M4BRERkdnd+gtQykSnIDu3L5S9X4mIzI6d9uwCiwWC7bvBgxQiIovgVERkQSq1Bnuusw0nIjI7eTYQeUh0CrJjGXkKnI9OFx2DiMj+3DsPZHOaVlvHYoFA2TIlTkdyCiIiIotgrwayoIuxGUjLU4iOQURkn8L3ik5AduxgWCJH9xMRWYTEqYjsAIsFAh25lQSFWiM6BhGRfbp/Bci4KzoF2anDt5JERyAisl8RBwANz5PIMvaFJoqOQERkv9hpz+axWCDQ3hs8SCEisigeqJCFHGGxgIjIcvLTtFMZEJlZVoESZzi6n4jIcu5dALJ4bTdbxmKBIHlyFU7eSREdg4jIvt05IDoB2aHI5FzEpuWLjkFEZN9u7xGdgOzQ4TCO7icisiwJuLNfdAh6BCwWCHLiTgrkKh6kEBFZVPwFQJYlOgXZGY4qICKqBLf3iU5AduhgGEf3ExFZXORh0QnoEbBYIMiJ2xxVQERkcRoVEHVMdAqyM0duJYuOQERk/9IigdQI0SnIjqjUGk5BRERUGWJOAiqF6BRUQSwWCBIcmSo6AhGRY2CvBjKjzHwFLsdliI5BROQYwjkVEZnP1XuZyJGrRMcgIrJ/ilwg7qzoFFRBLBYIEJWSi4TMAtExiIgcQ+QR0QnIjhwNT4ZaI4mOQUTkGDjnMZnRqQh22CMiqjTstGezWCwQ4BQvbExEVHly7gOJoaJTkJ04xmkEiYgqT/xFQJEnOgXZiVMRbMOJiCoNiwU2i8UCATgFERFRJeOBCpnJuWjOdUxEVGk0Kk5jQGaRVaDE9fgs0TGIiBxHchiQlSA6BVUAiwWVTKXW4Fx0uugYRESOhcUCMoOolFyk5MhFxyAiciwxp0QnIDtwJjKV0wgSEVU2nofbJBYLKtmVuEzk8qJKRESVK+4coOS1YujRcFQBEZEAsSwW0KM7xdH9RESVL/q46ARUASwWVLJgzpNIRFT5NEog4YroFGTjODKQiEiA+yGAPEd0CrJxvF4BEZEAcedEJ6AKYLGgkp2JYq9EIiIhOOcxPaLzHFlARFT5JDVwl204VVx8Rj7upXOEKRFRpcu5D2TGiU5B5cRiQSVSqjW4kcCLKhERCXHvvOgEZMOiU3KRzOsVEBGJEXtSdAKyYVfiMkVHICJyXBxdYHNYLKhEYfezIVdpRMcgInJM984DEi9sRxXDKYiIiATiRY7pEVyNyxAdgYjIcbFYYHNYLKhEPEghIhJIlgUkh4lOQTbqfAynICIiEibxOiDPFZ2CbNRVjiwgIhKHxQKbw2JBJbp6L1N0BCIix8YDFaqgKyz4ExGJI2m0BQOicpKr1Ai7ny06BhGR40q5pe24RzaDxYJKxB4NRESCsVhAFZCVr+SFEYmIRLt/VXQCskE372dDoeZUwEREwkga4N4F0SmoHFgsqCRpuXLEpeeLjkFE5Nh4kWOqgND77AlDRCQciwVUAeywR0RkBXgeblNYLKgkPEghIrICmXc5BJLKLTSB2wwRkXAsFlAF8LqBRERW4AGnErQlLBZUkqv3eJBCRGQVkm6KTkA25gaLBURE4qVFATLOPU/lw057RERWIClUdAIqBxYLKsmNBB7YEhFZhUQeqFD53OSFEYmIrIAEPLgmOgTZkMx8BRIyec0hIiLhshOA/HTRKaiMWCyoJBFJOaIjEBERACTdEJ2AbEiOTInYtDzRMYiICOBURFQud5JyRUcgIiIdji6wGSwWVIIcmRIPsmSiYxAREcCRBVQuN+9nQ5JEpyAiIgDAgxDRCciGRCSzwx4RkdXgdMA2g8WCShCRzB4NRERWIyUc0GhEpyAbwSmIiIisSFKY6ARkQyI4soCIyHqw057NYLGgEnAKIiIiK6LMB9KjRKcgGxHJXolERNYjI4YFfyqzOzwPJyKyHpwO2GawWFAJ2KOBiMjKJPJAhcomJpXXKyAishoqGZAVJzoF2Qhes4CIyIqk3AY0atEpqAxYLKgEdzgNERGRdUm5LToB2QgWC4iIrExqpOgEZAMy8xVIzZWLjkFERDoqGZAeIzoFlQGLBZWA0xAREVmZjFjRCcgG5CtUSMrmFw1ERFYljcUCKh1HFRARWaEMFgtsAYsFFpYjU+JBlkx0DCIiKozFAioDjiogIrJCaRGiE5AN4PUKiIisEM/DbQKLBRZ2Ny1fdAQiIiqKBylUBiwWEBFZoVQWC6h0d9PYhhMRWR2eh9sEFgssLCGzQHQEIiIqKjcRUHL/TCWLZbGAiMj6pEWJTkA24H4mR/cTEVkdFgtsAosFFnafxQIiIuvEAxUqRTSLBURE1ic7AVBw9DaVjJ32iIisUMZd0QmoDFgssDBer4CIyEqxWECliONUgkREVkgCsu+LDkFWjp32iIisUCaLBbaAxQILY48GIiIrxWIBlSIxmwV/IiKrlPNAdAKyYkq1Bqm5ctExiIioKHk2kJcmOgWVgsUCC3vAYgERkXVisYBKkZzDLxqIiKxSTqLoBGTFErNk0EiiUxARkUk8D7d6LBZYGC+sRERkpfhFA5UgK18JhUojOgYREZnCkQVUAk5BRERkxdiGWz0WCyxIpdYgOYfFAiIiq5SXKjoBWbGUXLbfRERWiwV/KsH9LBYLiIisVl6K6ARUChYLLCgxm8MfiYisFg9SqATJ2ZyCiIjIarFXIpWAo/uJiKxYPjvtWTsWCywohXMdExFZLx6kUAl4vQIiIivGkQVUAp6HExFZMY7wt3osFlhQVoFSdAQiIipOQQagUYtOQVaK0wgSEVkxjiygEmTzPJyIyHqxWGD1WCywIBYLiIismKQB8tNEpyArxWmIiIisWG6S6ARkxXgeTkRkxTgdsNVjscCCsmUq0RGIiKgkVtKrYfXq1ahWrZroGFRIep5CdAQiIiqOMh9Q81yLTGOxgIjIillRhz2eh5vGYoEFcfgjEZGVM3OvhtGjR8PJycnoJzIy0qzPQ5aXI+eXUEREVk2RIzoBWalsGc/DiYislgVGFvA83LxcRQewZywWEBFZOQv0aujXrx+CgoIMbgsICDD785Bl5StYLCAismryXMCruugUZIU4soCIyIpZaGQBz8PNhyMLLIgHKUREVk6Ra/aH9PDwQJ06dQx+Fi1ahLZt28Lb2xsNGzbEhAkTkJtb/HNfu3YNL774Inx9feHn54cOHTrg0qVL+r8HBweje/fu8PLyQsOGDfHRRx8hLy/P7K/FkeXJefFrIiKrZoE2nOwDz8OJiKyYRgUoZWZ/WJ6Hmw+LBRbE4Y9E9Ci+D5bDaXY2Ju9/2JAm5mrwn50FqPNjDrznZuOZFbnYHlbyviZHLmHyfhkaLcyB13fZ6PJHHi4mGH4R+uMZOWrNz0Gt+Tn46YzhhV3Px6vQYWUuVBrJfC/OWijyK+VpnJ2dsXjxYty8eRNr1qzB0aNHMXXq1GKXf+edd9CgQQNcvHgRly9fxrRp0+Dm5gYAiIqKQr9+/TB06FBcv34dmzdvRnBwMCZNmlQpr8VR5HEaIiIi6yZnsYCMyVVqyJQa0TGIyEbxHLySKHkebs04DZEFsUcDEVXUxQQ1VlxWoF1tw5ruyJ0FyJRJ+GtEFfhXccKfN5QYvq0Al8Y54+m6LiYfa+zfBQhN1mDda16o5+uM9dcV6L0uD2ETfFDfzxnXk9T4+pgc/7xdBZIEDNqYj5ebuaJtbReoNBI+2CPDykFecHV2qoyXXrmU5u8F8M8//8DHx0f/e//+/bF161b9740bN8a3336LDz74AL/88ovJx4iLi8Pnn3+OVq1aAQBatGih/1tgYCDeeecdTJ48Wf+3xYsXo0ePHli+fDk8PT3N/pocUb6CIwuIiKyaPFt0ArJC2QUs9hNRxfAcvBIpcoEqNcz6kDwPNx+OLLAgTmFARBWRq5Dwzo4C/PaKF6p7Gh4cnLmnxv86uaNTfRc0re6M/3vBA9U8nXD5gen9TYFSwvYwFX7o7YEXGrmieQ1nzOrpieY1nLH8kgIAEJ6qQbvaLnipiSt6NXVFu9rOCE/V9siaf1qBFx5zRcf6pg+CbJ7C/MWCF198ESEhIfqfxYsX4/Dhw+jVqxfq168PX19f/Oc//0FaWhry8033qPjkk08wduxY9O7dG99//z2ioqL0f7t27RpWr14NHx8f/U/fvn2h0WgQExNj9tfjqPJ4zQIiIuvGaYjIBF5ziIgqgufglcwCI/x5Hm4+LBZYkErD4Y9EVH4T98owsIUrejc1HvzVpaELNt9UIb1AgkaSsClUCZlKQs/GpgeKqTSAWgI8XQ0PeLxcnRAcpz24aVvLGXfS1IjL0uBupgZ30jRoU8sZUekaBIUo8e1LHuZ/kdZCJS99mXLy9vZG8+bN9T9yuRyDBg1Cu3btsH37dly+fBnLli0DACgUCpOPMWvWLNy8eRMDBw7E0aNH0bp1a+zcuRMAkJubi/HjxxscCF27dg0RERFo1qyZ2V+Po8pnwZ+IyLpxGiIyQam20yk7iMiieA5eyVQFZn9InoebD6chsiAVD1SIqJw2hSpx5YEaF8d5m/z7ljeq4M1t+aj5Qw5cnYEqbsDON6ugeQ3TtV9fDyd0buCCb07K8USAM2p7O2FjqBJn49X6+zwR4IK5vTzRZ522uh7YyxNPBLig99o8/NDHAweiVJh1XA43F2BRP0+80MiOmg4LFAuKunz5MjQaDX766Sc4O2vX+ZYtW0q9X8uWLdGyZUtMmTIFI0aMQFBQEF577TU888wzCAsLQ/PmzS0dvVKsXr0akydPRmZmpugoekq1Bgq1fRX8M4M3IOv0RoPbXGs0QP1xvwIAJJUC6Uf/QP6tk5DUSng1eQY1Xv4QLt7Vi33M/NtnkBOyD4rESGhkOag7ejHcazc1WCb9yG/ICz0CJzdPVOsxCj5Pvqj/W154MPJCj6DWsJlmfKVE1uH7YDmmH5Hj4+fcsbCfdlh6VLoGnx2SIThODblKQr/mrljS3xO1fYrvv5UjlzDjmBw7w5VIzpPwdB0XLOrnadDb8MczcvxwWnvS+0VXd3za5eEXDOfjVZiwV4bzY73tbyoDM44OdHIqed3MnDkTs2bNMtvzkeVoJJ6DE1H58BxcAJXpL+vNiefhFWdnW5t1UdvrhUiIyCLuZWnw8X4ZDv2nilEvBJ0ZR2XIlEk4/B/tfIm7wlUYvjUfp8Z4o21t08MU173mhff+KkD9n3Ph4gQ8U9cZI9q4GQyb/OBZd3zwrLv+9zUhCv1BzuNLc3FxnDfisyW8ta0AMR/7wKOYfDZHbfliQfPmzaFUKrFkyRK88sorOH36NH799ddily8oKMDnn3+OYcOGoUmTJoiPj8fFixcxdOhQAMAXX3yB559/HpMmTcLYsWPh7e2NsLAwHDp0CEuXLrX46ynO6NGjsWbNGqPbIyIibO6ASqa0z1EFbv6Pofab3z28wfnhCU76kd9QEHUJ/kOmwdnDG+mHliNl51zUeXd+sY+nUcrg0aA1qrTqhvT9S4z+nh95Hnm3TqDW8G+gyriPtH2L4NXkGbhUqQqNPA+ZJ9ei9lvfmvU1ElkDU3Me5ykkvLw+D0/VdsHRkVUAADOOyfHKxnycG+sN52K+rOacxyXQmO/6cA8ePND/f/Pmzfj6669x+/Zt/W2F50CWJAlqtRqurjyVtkbssEdE5cFzcEF4Hm7VOA2RBanZq4GIyuHyAzWS8yQ8syIPrnOy4TonGyfuqrH4vAKuc7IRla7B0otKrBrshV5NXfFUHRfM7OmBZ+u5YNnF4ivzzWo448Rob+RO98W9KT64MM4HSo2EptVNNwGp+RrMPiHHkv6eOJ+gRsuazmhR0wUvNnGFUgPcSbOjHteVMLLgqaeews8//4x58+ahTZs22LBhAwIDA4td3sXFBWlpaRg5ciRatmyJ4cOHo3///pg9ezYAoF27djhx4gTu3LmD7t274+mnn8bXX3+NevXqWfy1lKZfv3548OCBwU+TJk1Exyo3u631O7vAxaf6w58qVQEAGnkecq8fQvWX/guvRk/Bo05z+A+YDHnCLcgTwot9OJ82L6Fa1xHwatze5N+Vaffg2bAtPOq2gHfrHnByrwJVVhIAIONYEHyfHgBXv1pmf5lEIhU35/Hpe2rEZkpYPcQLbWu7oG1tF6wZ4oVL9zU4GsM5jytEMt/xSJ06dfQ/VatWhZOTk/738PBw+Pr6Yt++fejQoQM8PDwQHByM0aNHY8iQIQaPM3nyZPTs2VP/u0ajQWBgIJo0aQIvLy889dRT2LZtm9lykzF22COi8uA5uCCVMLLAkc7DzY3dISyIBypEVB69mrjixoeGQx/H7C5AK38XfNHVHflK7T6laOdAF+eyfbnp7e4Eb3cnZBRIOBCpwg99PE0uN+WAHFOe90ADP2dcTFBDWei4RKWRYFcdtjTmvQje6tWrTd4+ZcoUTJkyxeC2//znP/r/jx49GqNHjwYAuLu7Y+NGw+liiurYsSMOHjz4SFktwcPDA3Xq1DG47eeff0ZQUBCio6NRo0YNvPLKK/jhhx8MemkWdu3aNUyePBmXLl2Ck5MTWrRogRUrVuDZZ58FAAQHB2P69Om4dOkS/P398dprryEwMBDe3qaHDVeEZKfFflXGfcQvGwknFze412+F6j1GwdWvFuSJkYBGZfClv1vNhnDxC4D8fjg86req0PO5BzRBbsgBqGW5UGUmQlLJ4Vq9HmTxN6FIikKNlz800ysjsh6F5zz+9uTDgrRcJcEJgEeh7+09XbVtenCcyuQcyeWd81iSYDTn8eX3zbdvtDpmLBaUxbRp0/Djjz+iadOmqF69+CnaCgsMDMT69evx66+/okWLFjh58iTeffddBAQEoEePHhZO7Jh43UAiKg+egwtixtGBAM/DzY3FAguytyGQpc13nBOyH3lhx6FIioKkKEDDjzfB2dP0l0E6snuhyD6/HYqkKKhz0xHw2leo0rKzwTJZ53cg+8J2AEDV54bCr9Pr+r/J799G+sFfUGfkz3ByttNeU+QwfD2c0KaW4Xbs7eaEml7a25VqCc1rOGP8PzL8+LInano5YVe4Eoei1Pjn7YfDF3utzcNrrdwwqZP2tgORKkgAHq/pjMh0DT4/JEMrfxeMae9mlOFQlAp30tRYM0R7ENOxvgvCUzXYF6HEvWwJLk5OeLymHQ1Kc+J+w9KcnZ2xePFiNGnSBNHR0ZgwYQKmTp2KX375xeTy77zzDp5++mksX74cLi4uCAkJgZubdluNiopCv3798O2332LVqlVISUnBpEmTMGnSJAQFBZktsz3WCjzqPo6aA6bArUZ9qHPTkXV6IxI3fIF67y2DJi8DcHE1arNdvKtBnZdR4ef0atoB3k/2ROKaKXBydYf/wClwdvNA+oFfUHPgFORc3YucK//AxcsPNfpOgntAo0d9mURClTTn8fMNXODtDnxxWI65vTwgScC0wzKoJeBBjumdDuc8LoWmcqeMmzNnDvr06VPm5eVyOebOnYvDhw+jc2ft+U3Tpk0RHByMFStWsFhgIfbWYY/n4ESWxXNwQXgebtXs6GjR+tjjxZVKmu9YUsrh1bQDvJp2QOYJ43mrTZEUMrjVagqfdn2QsnOu0d8VyTHICt6AgGFfA5KElO1z4NnkGbgHNIakUSPtwDLU7DeJBymVRMMdulBuLk7Y+7YXph3RznGcq9AeuKwZ4okBLR4edESla5Ca/7ArQpZcwvQjMsRnS6jh5YShT7jiu5c84eZi2D2iQClh0j4ZNg/z0s+d3MDPGUv6e2LMbhk8XIE1Qzzh5WZHcyVy32FW//zzj8GIgf79+2Pr1q363xs3boxvv/0WH3zwQbHFgri4OHz++edo1Urbm71Fixb6vwUGBuKdd97B5MmT9X9bvHgxevTogeXLl8PT03RPnfKyv9Yb8Gr27MNfajWBR73HEb/8PeSFB8PZzb34Oz6iat3eQbVu7+h/zwz+E56N28PJ2QVZZzej3nvLUBB5AWl7fkbd0YssloPI0kqb8zjA2xlb36iCD/cUYPF5BZydgBFt3fBMXWej3oqFcc7jklTu3lo3wq2sIiMjkZ+fb1RgUCgUePrpp80ZjQpR2VmxAOA5OAFwdjX7iGgqG56DW4iznRU/7AyLBRZkjwcquvmOTfHr+CoAQBZ3vcwP59XsWcMvMIpQpsXDLaAxvBo9BQBwC2gMZVo83AMaI/v8dng2fBIedVuW4wXQo8iBHQ9lt1LHRxuu8xY1XbB9eJUS7xM72dfg9+FPumH4k8Y9GIrycnPC7UnGPZHGPuOOsc9Y7stEoVgAM6sXX3wRy5cv1//u7e2Nw4cPIzAwEOHh4cjOzoZKpYJMJkN+fj6qVDHelj/55BOMHTsW69atQ+/evfHGG2+gWbNmALRTFF2/fh0bNmzQLy9JEjQaDWJiYvDEE0+Y5XXY2aG4Sc6ePnCrUR+qzPvwbPw0oFZBI8s16I2ozsuEi3fZptooC2XaPeSFHUPd0YuRe/0QPBu0gUuVqqjSqjvS9i2CRp4PZ4+S929UcVIxF9Al8yg857GOWgJO3lVj6QUF5P/ni5ebuSLqI1+k5mvg6uyEap5OqPNjDpo+WfwJs27O4zyFhGy5hLq+znhzW36pcx6fHONtMOdxi5rQz3lc3MUYbY5T5X7RUHS6O2dnZ6Np65TKh9Mq5ObmAgD27NmD+vXrGyzn4eFhoZRkbyMLAPAcnKDx8IOLSiY6hsPgOXgl4Hm4VbP6Uo6Tk1OJP7NmzRIdsVh2OLBAP99xwq//Rcrf86HKTrbo87kHNIYqIwGq7GSospKhSk+Au38jKDMeIPfGYVTr/p/SH4TMJgslD2klsjns0WBW3t7eaN68uf5HLpdj0KBBaNeuHbZv347Lly9j2bJlALQ9K02ZNWsWbt68iYEDB+Lo0aNo3bo1du7cCUD7xcv48eMREhKi/7l27RoiIiL0BQVzcC6pm6+d0CgKoMp8ABfvGvCo0xxwdkXB3Wv6vyvT4qHOToFHvYpdr6AoSZKQdmAZqr80Fs7uXoCkgaTrIaf7t5LnH3c89r9di6Sb8zjkg4c/z9Zzxjvt3BDygTdcCu1X/Ks4o5qnE47GqJCcJ2Hw46X33/J2d0JdX2f9nMevFnOfwnMeqzWw7zmPK7lYUFRAQAAePHhgcFtISIj+/61bt4aHhwfi4uIM2sbmzZujYcOGlZy2fGz5HNwe8RycVO7VREcgMi9n9l23Zlb/7hQ+ANu8eTO+/vpr3L59W39b4ekOJEmCWq2Gq6t1vCx3F/s6KStpvmNL9QR082+Iai+MRNLmGQCAaj1Gwc2/IZI2fYXqPcegIOYKsk7/CTi7okbv9+HZsI1FcpBWusSRBWRneJBiUZcvX4ZGo8FPP/0E538LM1u2bCn1fi1btkTLli0xZcoUjBgxAkFBQXjttdfwzDPPICwsDM2bN7dobnusFWQc/QNezTvBtWotqHLSkRW8AXByhnfrHnD28IZPuz7IOPo7XDx94eRRBRmHfoVHvVYGFzdO+O0DVO8xElVadgEAqAtyoM5OgTo3DQCgTI8HALh4VzfqAZl77QBcvPxQpflzAACP+k8gM/hPyBPCURB9GW41Hyt1jmV6VHa4YVuR0uY8BoCgqwo8EeCMgCrOOBuvwsf75ZjyvDse9394P855XB5it+mXXnoJ8+fPx9q1a9G5c2esX78eoaGh+imGfH198dlnn2HKlCnQaDTo1q0bsrKycPr0afj5+WHUqFFC85fEps/BXe1pG+c5OGkp3PzA8UhkVziNmVWz+pa0Tp06+p+qVavCyclJ/3t4eDh8fX2xb98+dOjQAR4eHggODsbo0aMxZMgQg8eZPHkyevbsqf9do9EgMDAQTZo0gZeXF5566ils27bNrNnt7UDFq9mz8G7VDe61msCraQfUemMWNLI85IUHW/R5fZ8egPrjVqD+uBXwfXoAcm8cgZO7Fzzqt0La/iUIeO0r1HhpLFL/+gGSyrxXVCdDKSpOD0F2hsMfLap58+ZQKpVYsmQJoqOjsW7dOvz666/FLl9QUIBJkybh+PHjuHv3Lk6fPo2LFy/qpxf64osvcObMGUyaNAkhISGIiIjA7t27MWnSJLPmdrHDaoEqJxWpf89Hwm/jkbr7ezh7+aLOf36CS5WqAIAavcbBq1knpOyai6Q/v4CzT3UEvPaV4WOkx0Mjz9f/XhB5Hg9Wf4TkbbMBAKl//YAHqz9CTsheg/up8zKQdXYLqvcer7/No97j8Ov0GpK3zUZe+CnUHPCxpV46/YvTEIl3O02DIZsK8MSyXMw5ocBX3d3x48uGX/+YmvN44t4CtFqWi5G7CtDtMRcceLdKsXMerxhkes7j707J7W/OY8FfNPTt2xczZszA1KlT0bFjR+Tk5GDkyJEGy3zzzTeYMWMGAgMD8cQTT6Bfv37Ys2cPmjRpIih12dj0ObgLz8HNgefg1qXA1U90BCLzYqc9q2YX7860adPw448/omnTpqhevWxz6wYGBmL9+vX49ddf0aJFC5w8eRLvvvsuAgIC0KNHD7PksrdiQVGF5zuuLOr8LGSd/hO1354H+f07cKtRD2416sOtRn1IahWUGQlwD2hcaXkcTZKKIwvIzrBHg0U99dRT+PnnnzFv3jxMnz4dL7zwAgIDA42+TNFxcXFBWloaRo4ciaSkJPj7++P111/H7NnaL6PbtWuHEydO4KuvvkL37t0hSRKaNWuGN99806y53ezsiwYACHj1ixL/7uTqjpovf4iaL39Y7DKNvvjH4Heftr3h07Z3qc/t4l0dDT5cZXR7ta4jUK3riFLvT2Sris55/H1vT3zfu+QLsXPO43Jw87LIw44ePRqjR4/W/96zZ0+jaxPozJ49W99GmeLk5ISPP/4YH39sfwVRnoOLwXNwx5TnzGIB2Rl22rNqdlEsmDNnDvr06VPm5eVyOebOnYvDhw+jc+fOAICmTZsiODgYK1as4IFKGT2c7/jFSnvOjKO/w7fjELj6+UOReAeSWl0okBrQcL5jS3ogt8xJGZEwPEgxm9WrV5u8fcqUKZgyZYrBbf/5z8O5bgt/KePu7o6NGzeW+DwdO3bEwYMHHylradxcnOHu6gyFim0K2Q+J0xCRvXHn1GUi8RxcDJ6DO6YcJ+7vyM6w055Vs4tiwbPPPluu5SMjI5Gfn290cKNQKPRzTJqDp6t9bfwlzXcMAOrcDKjzMqDM0M5xqUiJhbN7Fbj4BcDFS9tLKmnTl/Bq0Rl+HV4B8O/BTsbDOTFVWUlQJEXD2csHrn61DJ6/IOYqlOkJqDlQ+6WTe52WUKXHoyDqElQ5qYCzC1xr1Lf4enBkCfKSe8MR2Rw3btNkmo+HK9JVpi/CTGSbWCwgO+POEa8iWes5uJcbz8F5Dm5/ssBiAdkZV16Fw5rZRbHA29vwQNHZ2dloqKhS+XAevdzcXADAnj17UL++YcPm4WG+DbaKh12sXj3dfMfqgmy4eFWFR4PWBvMd54TsRdbphz1Ck/6cBgCoOWCyfpoCZUYiPAqy9csoEiOQtPFL/e8ZR38HAHi36QX/gQ97omqUcqQf/hUBg7+Ak5O2t4irnz+q9x6P1H0L4eTihpoDp8DZjTscS4or8ADs6/ibHJ0Hh/SSad4eLkjPE52CyIx4zQKyNxxZIJTVnoO729fJCs/BCQDSNdzfkZ3xrCo6AZXAvr7N/ldAQABCQ0MNbgsJCYGbm3a+z9atW8PDwwNxcXFmG+5oShU769VQ2nzH1bq9g2rd3ilxmaJzFns+1s5oDmRTnN08UH/cCqPbfZ/qC9+n+pZ6fzKPdKUbJHcPOKnloqMQmQcPUqgY3u52eYhEDozTEJHdYbHAqljLObiXnRULeA5OAJCqriI6ApF58TzcqtnlmfBLL72E+fPnY+3atejcuTPWr1+P0NBQ/fBGX19ffPbZZ5gyZQo0Gg26deuGrKwsnD59Gn5+fhg1apRZclTxsK8DFSIA0HhWg0tekugYRObBgxQqho+djQ4kIrI7nIbIqljLObiHqwtcnJ2g1pi+KDWRLUpS8dqBZEecXdmGWzm7PBPu27cvZsyYgalTp0Imk+G9997DyJEjcePGDf0y33zzDQICAhAYGIjo6GhUq1YNzzzzDL788ssSHrl8+EUD2SOVO4sFZEc8OQ0RmebNNpzsDEcWkN3hFw1WxVrOwQHteXhWgbL0BYlsRKKCxQKyI5wK2Oo5SUUnFiSzWXDoDhYdiRAdg8isrjdaCL+kC6JjEJnH2CNAg/JdoI8cw8QNV7DnxoPSFySyEWy/ye5MjQGq1BCdgqzQiz8eR0wqLzxE9qODXw62K8aLjkFkHtWbAB+HiE5BJXAWHcCe+fu4i45AZHYFLqwCkx3hNERUDG9OJUhEZN08fEUnICtV05vn4WRf4uW8iDTZEY7ut3osFliQvw936GR/8lgsIHvCIZBUjGpV+EUD2RtOQ0R2xKsG4OImOgVZqZrstEd2JknuDsmZ+zyyE+ywZ/VYLLCgmiwWkB3Kho/oCETmwwMVKkYtX7bhZF94zQKyK751RCcgK8bzcLJHEs9byF5wW7Z6LBZYEHs0kD3KAId8k53wqAq4eYpOQVaqlh+3DSIiq+VTW3QCsmL+nIaI7JDKvZroCETm4V1LdAIqBYsFFuTvzR4NZH/SNVVERyAyD796ohOQFavNkQVkZyQnjiwgO8KRBVQCjiwge6RwZ29sshNV64tOQKVgscCCqlZxg5sLT8zIvqSqvEVHIDIPFguoBLU5soDsDo9JyY5wZAGVgCP8yR4V8NqBZC/8WCywdiwWWFgNDoEkO5Ok8hIdgcg8WCygErBYQPaG1ywgu8KRBVSCmhzhT3Yoz4XTAZOd4Hm41WOxwMICOI0B2ZkHChYLyE6wRwOVwMvdBb6erqJjEBGRKRxZQCXgOTjZoxwnFgvITvA83OqxWGBhDatzfneyL/EyFgvITrBHA5WCowvInnBkAdkVjiygEjSo7gVepoXsTRZ8REcgMg+eh1s9Fgss7LGaLBaQfblbwJ46ZCfYo4FKUduP+zuyI/zmjOyJb13RCciKebq5oA4L/mRn0iVeO5DsgFd1wI0dUK0diwUW1qgGd+hkX7JVrpBcuXMnO8AeDVSKBtVY8Cf7wZEFZDec3YBqj4lOQVbusRpsw8m+pKn43RLZAXbYswksFlhYY44sIDuk8awmOgLRo6vaQHQCsnJNA3hSRvaExQKyE9UbA84uolOQlWvE83CyM8lqdtgjO8BzcJvAYoGFcRoiskdK92qiIxA9Gp86gKef6BRk5Zr4s1hARGR1ajYXnYBsQKOabMPJviQq+N0S2QG24TaBxQILq1fVC+7/3959h9ldl+kfv08/Z3qfTGYm05OZ9D7pHUggCb0m1BB6EXsXd3/YUHRFFwvq2sDCusq6rtix7Yq6i6vSFEHS26TOZPr5/XFCBEnClHPO8y3v13XlIvCHuZXxlO/9+TxPiP+Z4S09ER6ywuXKx1sngAs0lrNIDt6RZGcBvKK0yToBXIAxRPCabT3s0oIHlE+wToAh4Cl2hgWDAdUUc10M3nI0RFkAlyujLMCrqyvNUSjIA1Z4AzsL4BmUBRgCxhDBa7Z2s7QbHsD3cFegLMgCRhHBa45QFsDtyjjRgFcXCQVVS+EPz6AsgEcwwgBDUFfCGCJ4y46eqJIB9rXA5SgLXIGyIAvqmZcIjzkkRnPA5cparBPAJdhbAK/gZgE8g7IAQ1CYE1FxTsQ6BpA2yWRAyXiRdQxg5HLLpZwS6xQYAsqCLGiryreOAKTVAfEzDZdjViKGiL0FAOAgkVypYKx1CrhEWxW3oeEt/bFC6wjAyHGrwDUoC7JgYhUv6PCWfQOM1oKLRfN50IAhayznZgG8gZsF8ARuBmIYJlIWwGN6IzxbgotRFrgGZUEWjB+TpzALEuEhewZ4eAYXK2N8AYaOU4nwCsoCeMLY6dYJ4CITx/IeDm/pDvMzDRfjdr9rUBZkQSwcUnMFYwzgHbv6uFkAFxszxToBXGRiVQGFP7yBH2N4QdU06wRwEcoCeE1XiJ9puFjlJOsEGCLKgizhCiS8ZHtvwjoCMHJjZ1ongIvEIxT+8AraAnhA1XTrBHCR5vI8RcM88oB3HA6wOxBuFeA93EV458wSTjXAS7Z0x60jACNXTVmA4ZlSzXxYuF/SOgAwWsEIpxIxLOFQUOMrKfzhHQfFzzNcqqxFivNc1C0oC7KEsgBesqU7Zh0BGJlwXKrgQQOGZ2oNZQG8gJsFcLmKVinMZ1AMz6Qq3sPhHR1JdgfCpapnWSfAMFAWZAkfUuAlnf0hJSN8UIELjZkihcLWKeAyk7lZAA9gwTFcj/EFGAEO7cFL9g3wHRwuxShgV6EsyJLCnIhqS5jzDu8YiBdZRwCGjxMNGIE2lhwDgD2WG2MEKPzhJbv7c6wjACPDKGBXoSzIotl1JdYRgLTpixZZRwCGjxMNGIF4JKSWShbKwd24WQDXGzvDOgFcaEp1oeIRHnvAG3b1sjsQLhSMpG74wzV418yiuQ2UBfCOnghXeuFCnGjACE1jbwFcLhmgLICLhRPSmKnWKeBC0XBQ02uLrGMAabG9l2kVcKHKSewcchnKgiyiLICXdIV4cAaXiRdKpc3WKeBS7Y28h8PtKAvgYrVzpHDUOgVcam497+HwhheOcrMALlQz2zoBhomyIIuayvNUlkebBm84EmQkB1ymbpHEyVqM0PzGMusIwKgkrQMAo1G/2DoBXGxuQ6l1BCAttvVElQzwGA8uU7fQOgGGiVeZLJvbUGwdAUiLw8qzjgAMT8MS6wRwsTGFcTWU5VrHAEaBshQuVr/IOgFcbGZdkcJBXgPhfslkQMkYN/zhJgGpYal1CAwTZUGWzeEKJDxiP2UB3IayAKM0r5GTiXAvFhzDtcIJqXqWdQq4WE40rEnVPGCFNwzEiqwjAENXOUnK5TuU21AWZBl7C+AV+wY4YQsXyS2XKidap4DLzWNvAVyMsgCuVTObxYgYtXa+h8MjeiMF1hGAoePAnitRFmRZ25gCFcTD1jGAUdvdT1kAF2HWMdJgfhOnYgAg63gPRxpwwx9e0R3hlgxchLLAlSgLsiwYDKidMQbwgF19cesIwNDxIQVpUJEfV1M5RSnciZsFcC32FSAN5jaUsLcAntAVyreOAAxNIMRyY5eiLDCwfEKFdQRg1Lb35lhHAIaOsgBpwu0CuBVlAVwpkpMaQwSMUmEiopl1xdYxgFE7HGAMEVxi7HQpzs+rG1EWGFjRSlkA99vazexYuERhrVTaZJ0CHrG4pdw6AjAydAVwo8Zl7CtA2vA9HF5wUHnWEYCh4cCea1EWGBhTGNfEKto1uNsWygK4Rctp1gngIYtbyhQL8/EJ7pNM0hbAhcavtk4AD1lJWQAPOJBkJCZcouV06wQYIb7tGuFUA9zu6EBIySinGuACE86yTgAPyYmGtbC5zDoGMHwBygK4TYCyAGnVUpmv2pKEdQxgVPYOMA4YLpBTJtW2W6fACFEWGFlOWQAPGIgVWUcATi1WwPVHpN2qtkrrCMCwsbMArlM9U8rn9RbptYL9gXC5PZQFcIPxq6VgyDoFRoiywMiM2iKV5EatYwCj0kdZAKdrXimFea1Feq1qq+CQNlwnaR0AGK7xa6wTwIM4tAe329lLWQAXaD3TOgFGgbLASDAY0LLxLEmEu3WHC60jAKfGCCJkQEVBXFOref2Du3CzAK4zgRFESL/5TaXKiXLaFe61vZdRWnC4SI7UtMI6BUaBssDQijZONcDdukIs6oaDBSPSeJYqITMYRQT3oSyAixTWSmOmWKeAB8XCIS1oYvcQ3GvL0Zh1BODUGpdLEUotN6MsMLRsQoXiEf4VwL2OBPOtIwAnV79QinP6G5lx2iTKArgLY4jgKiw2RgatmTzGOgIwYlu7o9wWhLO1crvf7XhSbSgvFtYKZibCxQ6KsgAOxggiZFDrmAKNK2FmLNyDsgCuMukc6wTwsDMmj+HQHlxrIBmUYtzwh0MFQhT+HsA7pLH106qtIwAjtj+Zax0BOLFAUGpbZ50CHrduWpV1BGAYOIUIlyiokeoWWqeAh3FoD27XHyuyjgCcWP1CKbfUOgVGibLA2PLWchXEw9YxgBHZN0hZAIdqWCoV8CAXmXXujBrrCMAwUBbAJaacLwX4eUVmcWgPbtYXZdQqHGrqJdYJkAaUBcZi4ZBWMzMRLrWnn7IADjX1YusE8IHmijxNqebLGtyBMURwjSkXWSeADyxvLVc+h/bgUt1hxhDBgcIJaeJ66xRIA8oCBzh7Oqca4E47++LWEYBXiuQwgghZc84M3sPhDixDhCtUTJTGTLZOAR+IhUNaPYlDe3CnrjCHVeBArWdJMfZaegFlgQPMbyxVeX7MOgYwbNt7E9YRgFdqXSvF8qxTwCfWTxurUJCHsHA+ygK4wpQLrRPAR9ZPH2sdARiRIwG+68CBuN3vGZQFDhAMBrR2KrO14T5bjnKzAA40jQ8pyJ7y/JgWNpdZxwAADwhQFiCrFjSVcWgPrnRQnN6Gw+SWS00rrFMgTSgLHOJcxhjAhbZ0xzmpCGfJq5Qal1ungM+cx3s4XID3azjeuPlSUa11CvhIKBjQuqncLoD77E+yOxAOM/kCKcQeGK+gLHCIqTVFmljFkhq4S99ggJl0cJbJF0jBkHUK+MwZk8YoN8rPHZyNsgCON+0S6wTwoUvnUlDBfToGcqwjAC/H7X5PoSxwkA3zxllHAIatP1ZsHQH4mxkbrBPAhxLRkNZyMhEOl7QOAJxKrJARRDDRUpmvuQ0l1jGAYdkzwM0COEjFRGnsDOsUSCPKAgc5Z3q18mJc24G79EULrSMAKeMWSJWTrFPApy5rp/CHwwW4WQAHm36pFOWkLGxs4D0cLrOzj92BcJA5m6wTIM0oCxwkNxbWOTM4mQh36Q4zPgsOMfda6wTwsWm1RZpSTXkK50omKQvgYLOvsU4AH1szuUqluVHrGMCQbe9NWEcAUmIF0lTGCHoNZYHDbGivs44ADEtXmIdjcIC8SqltvXUK+By3C+BkdAVwrPrFUvkE6xTwsWg4qAtm11jHAIZsy1FuFsAhpl0qxfKsUyDNKAscpq2qQLPqmAEP9zgS4I0BDjDzSikUsU4BnztnerUK4owThDNxswCOxfgCOMCGuXVMa4NrbOmOKyl+YOEAc7jd70WUBQ7EzES4yUExhgjGgmFp9tXWKQAloiFdNLvWOgZwQkmegsGJ8sZIrWutUwAaV5qjRc1l1jGAIekbDHCaG/Yalkrl461TIAMoCxzozClVKs7hhCzcoSPJMjoYm3CmVMC+FzjDFfPrFeSZLByImwVwpJlXcDMQjrFxHiOB4R4DsSLrCPC7uZutEyBDKAscKB4J6dK53C6AO+wb5EQDjHH1EQ4yrjRHyydUWMcAXomuAE4TjEizrrJOARy3qq1StSUsjoU79EXYHQhDBTWpQ3vwJMoCh7pqYb2iYf71wPl29/OBGoYqJkmNS61TAC+zaVGDdQTgFbhZAMeZcqFUWG2dAjguFAzo2kWN1jGAIemmLIClOZukYMg6BTKEp9EOVZEf17nT+fAM59vRyxgiGFr8WusEwCssaC7T9Noi6xjAy7CzAM4SkBa9xjoE8AoXza5lJDBcoSvE7kAYiRVyu9/jKAscbPOSRvG9Dk63vSduHQF+VdwgTTrXOgVwQjcta7KOALxMMmmdAHiJCWdK5ROsUwCvkIiGdDm7C+ACR4L51hHgV3OvleKUVV5GWeBgzRV5WtVWaR0DOKWt3ZQFMLLwdq4+wrFOm1ipCZV8iYNzJFlaACfhZiAc7MoF9UpE+IwJZzskdgfCQDghzbvJOgUyjLLA4W5e3mwdATilrd1RJQO8lCDL8quk6ZdZpwBOKhAI6EZuF8BBKAvgGHWLpJrZ1imAkyrNi+niObXWMYBT2p+kLICBmVdIuWXWKZBhPOFzuOm1RVrYXGodAzipgWRQyRhX0JBl82+WwjHrFMAprZs2VrUlLIEHgJdZdId1AuBVXb+0UZEQJSucq2Mw1zoC/CYYkRbeZp0CWUBZ4AI3L+N2AZxtIFZsHQF+kiiWZl1tnQJ4VaFgQNcv4XYBnIKHXnCAMVOlllXWKYBXVVWY0Lkzqq1jACe1p58DKciyqRdJhTXWKZAFlAUusKC5TLPreBgL5+qNcLMAWTT3einGtVu4w4Wza1SRzy0Y2GO/MRyBXQVwkZuXN3O7AI61sy/HOgL8JBDkZqCPUBa4xJvWtFpHAE6qO1JkHQF+ES+S5t1gnQIYslg4pOuXcrsA9thZAHNV06SJ51inAIasrjRXF81mdwGcaXtP3DoC/GTSeVJZi3UKZAllgUvMqS/R8gnl1jGAE+oM5VtHgF8suiM1hghwkY3zxqm6iKvisMXNAphb+U4pQGkFd7l9ZYsSkZB1DOAVtlEWIFuCEWnF26xTIIsoC1zkDWe08vkajnQkQFmALMgfK7Vfb50CGLZYOKTXnjbeOgZ8jpsFMFW/WGpmVwHcp6IgrisX1FvHAF5hSzdjLpEls66SShqtUyCLKAtcZOLYAq2bOtY6BvAKB0VZgCxY9iYpwulsuNO5M6rVOobXStjhZgFMrbrTOgEwYjcubVJBPGwdA3iZowMhJaO51jHgddE8aembrFMgyygLXOZ1p49nyRIcZ3+S5UrIsNIWacbl1imAEQsGA3rTavYPwQ43C2Cmda1UM9s6BTBihTkR3bCM/UNwnoFYkXUEeN38m6U8RqL7DWWBy9SV5uriOSxZgrPsHcizjgCvW/kOKci8WLjb8tYKtTeUWMeAT1EWwEQgJK14h3UKYNSuXtCginzGvsBZ+qJF1hHgZTll0oJbrVPAAGWBC93GkiU4zK5+bhYgg6pnSRPPtk4BpMWb13C7ADYYQwQT0y6RKnjdg/sloiHdurLFOgbwMj2RQusI8LIlr5dijFH1I8oCF6rIj2vz4gbrGMBxO3uZI48MYs4xPGTGuGKtnjTGOgZ8iJsFyLpIjrT8rdYpgLS5dE6tmsqZEQ/n6AoVWEeAVxWNk2Zvsk4BI5QFLnXjsmZVF/GAFs6wrSduHQFeNfFsqWGJdQogrd68plXRMB/BkF2UBci6xa+VCmusUwBpEw4Fdef6SdYxgOOOBDn1jQw54z1SOGqdAkb4pupSiWhI71jbZh0DkCRt6aYsQAZEclMfUgCPqS/L1XWLG61jwGcYQ4SsKmmUFtxmnQJIu8Ut5VozmRuCcIbDYncgMqBppdS2zjoFDFEWuNjqyVVa3FJmHQPQ9p6okgH2aCDNlryOE4nwrFtWNKummBuCyCZuFiCLVr9fCrMMFt709rUT2SEIR9ifZCwW0iwUlc682zoFjFEWuNy7109SNMS/RthKJgNKxlmuhDQqbZbm32qdAsiYeCSkd66daB0DPsIYImTN+NXS+NOtUwAZU12U0M3Lm6xjAOoYpCxAms2/RSrl9c3veMrsco3lebpmEcuOYa8/VmQdAV6y5v3MSITnnT5pjFa0VljHgE8whghZEYpJq99nnQLIuM1LGlVfmmMdAz63e4CyAGlUWCsteYN1CjgAZYEH3LayWVWFzIyHrd4INwuQJq1rpeZV1imArLhz3STFWHaMLEgmuVmALFh4m1TCQSZ4Xywc0rtYdgxju/oYaYk0OuMuKUoJCsoCT8iJhvW2s1h2DFvdlAVIh3BCWv1e6xRA1owrzdENS7nqi8zjZgEyrnCctPh11imArFk+oUKr2iqtY8DHdvRQFiBNGpdLE8+2TgGHoCzwiLVTx2rp+HLrGPCxzmCBdQR4wbI3S0XjrFMAWXXjsibVMcoAGcbOAmTcug9LER5cwV/effYk5cXC1jHgU1t7mDCBNAgnpLM+ZJ0CDkJZ4CHvO3+K8uN8UIGNw4F86whwu+rZ0gKWGsN/4pGQ3nfeVAV4losM4mYBMmrGRkYIwpeqixJ6y5mt1jHgU1u6Y9YR4AUr3s5SY7wMZYGHVBUm9HbGEcHIQeVZR4CbhWLSOf8sBUPWSQAT85tKdcW8OusY8DBuFiBj8sdKZ7zHOgVgZkN7nRY1l1nHgA919oeUjHA7FaNQO0+ad5N1CjgMZYHHXDxnHOOIYKJjMNc6Atxs+Vuk8gnWKQBTb17TxjgiZAxlATJm3T9JcXZXwd/ed/4UxhHBxGCsyDoC3CqckM7+uBTk0TBejp8ID2IcESzspSzASFXPkhbcZp0CMJeIhvTBC6cpyDNdZASDiJAB0y6Txp9unQIwV1OcozevYRwRsq+PsgAjteJtUlmzdQo4EGWBBzGOCBZ297PQDiMQiklnM34IeNGc+hJdtaDBOgY8iJsFSLv8Kmn1e61TAI6xoX2cFjaXWseAz/SEC6wjwI1q26V5N1ungENRFngU44iQbTt6GZ2BEVj2JqmCU1jAS71x9QQ1lnFbC+lFWYC0W/sRKVFknQJwjEAgoPefP1W5UQ7BIHu6KAswXOH4sQN7PBLGifGT4WGMI0I2beuOW0eA29TMkRa+xjoF4DjxSEh3M44IaUZZgLSasVGasNo6BeA4NcU5eiu3/JFFncF86whwm5XvZPwQTomywMOqChN633lTrWPAJ7ZQFmA44oXS+Z9h/BBwErPqinXTMj7EI33YWIC0KZsgrbnbOgXgWBva67R60hjrGPCJQ8qzjgA3aTldmneTdQo4HGWBx501tUob2sdZx4AP7OyJKhnkJguGaP29UnGddQrA0e44bbzmNpRYx4BHJJPcLEAahOPShZ+TooyfBE7l/RdMVU0xO92QeQcoCzBU+WOlcz4hBfhMiFOjLPCBd6ydqLYq5tgh85LxIusIcIPZ10gTz7ZOATheKBjQRy+ZoZLcqHUUeABdAdLijLukyknWKQDHK0xEdO+lMxQJ8eKLzOoYYM8VhiAQks7/tJTLEna8OsoCH4hHQvr4ZTNYtISM648WWUeA01VOls54r3UKwDXGFMb1oYumcQAIozZIW4DRmni2NOda6xSAa8wYV6w3nDHBOgY8bg9lAYZiyRuk+kXWKeASlAU+0Viep7vOnWIdAx7XGy20jgAni+RKF3xOirDfAhiO5RMqdN2SRusYAPysaJy07qPWKQDX2by4UcsnlFvHgIft7GPcFV5F3SJp6RutU8BFKAt85JwZ1bpwVo11DHjY0TBlAU7hzA9I5eOtUwCu9IbTJ2hWXbF1DLhYUtwswAgFw9L5n5USRdZJANcJBAL60EXTNaaAwzLIjJ29lAU4hZxS6fz7pSCTRjB0lAU+8w9nT1ZLBQtwkBmdwXzrCHCqaZdKMzZapwBcKxwK6t5LZ6goJ2IdBS7FgmOM2Ko7pdo51ikA1yrJjeqfLpmuUJDXYaTftp6YdQQ4VSAonftJqaDKOglchrLAZxLRkO7bOEv58bB1FHjQYcoCnEj1LGntR6xTAK43tiihD188XTxrwEgM8nODkZhykbTgVusUgOu1N5bqLWtarWPAg144yq0VnMSKt0stp1mngAtRFvhQc0WePnrpDB42IO0OJLm1gr+TN0a6+MvsKQDSZPmECr1pNQ8bMHzcLMCwjZ0hrb/XOgXgGdcubtQFjAVGmh3qDysZ5rsW/s7k86XFr7NOAZeiLPCp5RMq9JY1bdYx4DEdg5QFeIlQTLr4S1x7BNLs+qVNOm9mtXUMuAw7CzAseZXSJQ9Q9gNpdte5kzVzXJF1DHjMYKzIOgKcpGqadPbHrVPAxSgLfGzzkkadP5OTDUifvQM51hHgJGs/zIxjIEPee94UHjZgWJLWAeAeoah00RelgrHWSQDPiYVD+sTls1RVSBGH9OmjLMCLciuOlf0svsbIURb43HvO42QD0mdXP2UBjmm/QZqxwToF4Fk8bMBwURZgyM66RxrXbp0C8KyK/Lg+dflsxSM8jkF69EQKrSPACUJR6eIvSoUcCsbo8O7kczxsQDpt76G9hqSGpdLpd1mnADyvIj+uT18xW4lIyDoKXIAxRBiSuddLMy+3TgF43pSaQt19wTTrGPCIo6EC6whwgjPvlsbNs04BD6AswPGHDZxswGht76V08r3SFunCf5FCYeskgC9Mri7U3RdOtY4BF6AswKtqWimd8R7rFIBvrJs2Vrcsb7aOAQ/oDOZbR4C19hulWVdZp4BH8HQYklIPGz56yQyFgnyRxMhtOUpZ4Gu5FdLGf5VySqyTAL6ydupYveGMCdYx4HBJ5hDhVMbOkC76AmU/kGWvO328zpnOfhCMzuFAnnUEWGpbT9mPtKIswHGnTxqj95w72ToGXGxPb0TJUNQ6BixE86QNX5OK66yTAL508/JmXbWg3joGHIybBTipkkZpw0NSjIdNQLYFAgHdfeE0LR1fbh0FLnZAvH771rj50nmfloI83kX68NOEl7l4zjhOJ2JUBuNF1hGQbcGwdOHnU6cSAZh517qJWj+N04k4sUHKApxIboW08RtSbpl1EsC3IqGg7ts4U9Nqi6yjwKU6BnOtI8BC2QTpkgekCBMekF6UBXgFTidiNPqjRdYRkFUB6ex/llpWWQcBfC8QCOhDF03T4hYe+uGVmEKEV4jmSxsfkkoarJMAvpcTDetzV81RYzkPfTF8e/r5ufGdgmrp8m8wAhgZQVmAE3rXuok6m9mJGIGeSKF1BGTTGXdJ0y62TgHgmEgoqE9snMXpRLwSbQFeKhSVLv6iVDXNOgmAY0pyo/ripnaNKeCUMIZnV3/COgKyKVEsXf5vUmGNdRJ4FGUBTigQCOiDF07TEmYnYpiOhgusIyBbFt0hzb/ZOgWAv5Mb43QiXinJFCIcF5DOuU9qWm4dBMDfqS5K6Aub5qowEbGOAhfZ0UtZ4BuRXOmyr0vljA9H5lAW4KRSpxNnajqnEzEMXcF86wjIhnk3SavutE4B4CRePJ1YVcjpRKSw4BjHnfUhacoF1ikAnMT4ynx95srZSkRC1lHgEtt7+LznC5Ec6bKvSrVzrJPA4ygLcEo50bA+f81cTathtAyG5hBlgfe13yCtfq91CgCvoroooQc2z1NlQcw6ChwgydUCSNKaD0hzNlmnAPAqZteX6LNXzaEwwJBsOcpnPc8LJ6RLvyI1LLZOAh+gLMCrKkxE9MVr25l/jCE5kMyzjoBMmrNZWvN+6xQAhqihLFcPbJ6n8ny+RPodKwug0++S2q+3TgFgiOY3lepzV89RTpTCAKfW0RdRMsRnPc8KJ6TLviI1LrVOAp+gLMCQFMQj+uKmuYwkwqvaN0hZ4Fmzr5HOvNs6BYBhairP04Ob56ksjy+RfsYYIp877R+kBbdYpwAwTPMaS/W5qygM8OoG40XWEZAJ4bh06QNS4zLrJPARygIM2YuFwYxxRdZR4GB7B3KsIyATZl4pnXWPFOBhE+BGzRV5+sp181TBDQPfGuRqgX+dfpe08HbrFABGqL2xVP9y9VzlUhjgFPqjRdYRkG6hmHTJl6WmFdZJ4DOUBRiW/HhEX9zUrpkUBjiJXX2UBZ4z43Jp3T9RFAAu11yRp69eP5+lxz7FzQKfOuO93CgAPGBuQ4n+5RoKA5xcT6TAOgLS6cWioHmVdRL4EGUBhi0vFtYXNrVrVl2xdRQ40PbehHUEpFP7DdL6eykKAI9oKMvVV6+br+oiXqv9hosFPhMISmd+UJp/k3USAGkyp75En79mrvJiYesocKCjYcoCz4jmpXYUtJxmnQQ+RVmAEcmLhfWFa+ZqYXOpdRQ4zLYeTqx6xvK3p5YZUxQAnjKuNEdfv2G+mivYMeMng9ws8I9QVDr/fmnuZuskANJsdn2JvnRtu4pzItZR4DBdwXzrCEiHnFLpiocZPQRTlAUYsdxYWJ+7aq7OmlJlHQUO8sJR5mG7XiCY2k+w9A3WSQBkyNiihB66YT63BH0kmaQs8IVonnTZ16TJ51snAZAh02uL9PUbFmgsYwXxEocClAWuV1AjXf1dqWaWdRL4HGUBRiUaDureS2do47xx1lHgEAf6IkqG+eDqWqGodMFnpTmbrJMAyLCinKi+fG27VrVVWkdBNtAVeF9OmXTlv0tNy62TAMiw5oo8PXTjAm4J4riD4mfB1comSJu+J5WPt04CUBZg9ILBgP7fOVN0xype1JAyGCuyjoCRiOZJG74uTTrXOgmALIlHQvrk5bN0yZxa6yjIsEFuFnhb0Tjpmkek6pnWSQBkydiihL5+PbcEkdKRzLWOgJGqmSNd812psNo6CSCJsgBpdPuqFn3ggqkKB/ky6nd9sULrCBiunNLUacTGZdZJAGRZKBjQ+86fqttWNFtHQQax4NjDKiZJ13xPKuP/w4DfFOembgmeMYlbgn63pz/HOgJGommldMW3pJwS6yTAcZQFSKuLZtfqM1fNUW40ZB0FhnojRdYRMBzlbdLmH3EaEfC5154+Qf94zmTR+XsTZYFH1S+Wrv6OVMAOMcCv4pGQ7tswS1fOr7OOAkO7+ygLXGf2Nak9Q1FuhcBZKAuQdkvHl+trN8xXdVHCOgqMdIUKrCNgqFpOl679vlRcb50EgANcPq9O9185W/mxsHUUpNkgSwu8Z/Ym6fJvSoki6yQAjAWDAb377Ml659qJCtH6+9KOXp6/uEYgJK25W1r7YSnEZ244D2UBMmLS2EI9fMtCza3nKpUfdVIWuMP8W6RLvyrF8q2TAHCQFa2V+rebF6qhjFNOXpJkZ4F3BMPSWR+S1t7DQwYAL3PNogZ9/uq5KsqJWEdBlm3vjVtHwFDEC6WND0nt11knAU6KsgAZU5oX05c3t2tD+zjrKMiyQ8qzjoBTCUWl9R+TzrhLCvI2AOCVmivy9M2bF2rJ+HLrKEgTxhB5RKIkdZtgzrXWSQA41KKWMj188yJNqORAkJ9sORqzjoBXU9IkXftDqWmFdRLglHhKhIyKhIK669wpes+5UxQJcaLNLw6I06iOlVOaWqA083LrJAAcrjAR0eeumqPNixusoyANBq0DYPRe3DHUsNg6CQCHG1eao2/ctIDFxz6ypzeqZJAbJY7VsFTa/EOprMU6CfCqKAuQFZe1j9ODm+epLI+22w86BrlZ4EhjpqQeMtQtsE4CwCVCwYDedtZE3XPRNMXCfGx0Nw5tuNr4NakdQyWUdwCGJjcW1ic2ztLtK1sU4C3AFwbjRdYRcCJzr5c2fkNKFFsnAYaEb33Imtn1Jfr3WxdqSnWhdRRk2J7+HOsI+HuzrpY2/YBFxgBG5LyZNfrq9fNVVcg8XLcaZGeBOwVC0vK3SZc8wI4hAMMWCAR0x2njdd+GWcqNhqzjIMP6Y0XWEfBSsQLpgs9JZ36AHUNwFcoCZFVVYUJfv2G+Lp9XZx0FGbSzj7LAMaJ50nn3S+s+IkV4yAdg5KbXFuk7ty3WqrYK6ygYgSRbC9wnv0q68mFp6RvZMQRgVFZPHqOHb12ktqoC6yjIoN4IBzMdY8xU6bqfSJPPs04CDBufOpF18UhI/3jOZH1i4ywVJpip50U7ehPWESBJFRNTH1CmXmidBIBHFOdGdf+Vc/SOtRMVDfEx0l24WeAqzaukG34u1S+yTgLAI5rK8/TNmxfoqgX11lGQId1hyiBHmH2NdO0PpNIm6yTAiPAtD2ZWTx6j/7x9sebUM7fNa7b2cILd3PSNqf0ELFACkAGbFjXoX29coPpSbpK5xSBlgTsEw9KqO6UND0m5ZdZpAHhMLBzSnesn6dNXzFZxDgf3vKYzyLg6U9E86fzPSGs/LIXZ1wn3oiyAqbFFCX3luvm6bWWLgnyH9YwXjvLGaCaaJ51zn3TOx6UINzwAZM6UmkJ9+7bFWj9trHUUDEGSKUTOV1AjXfUdadEdYhspgEw6bWKlvnP7Ys1tKLGOgjQ6HMizjuBflVOk6x6VplxgnQQYNcoCmAsFA3rtaeP1wOZ5GlPAiXQvONwfVjLCadOsq1so3fgLafpl1kkA+EReLKyPXjpD7z9/ihIRFic6GV2Bw7Wtl274mTSu3ToJAJ+oKkzowc3z9JpVLQpxcs8TDoibBVkXCEmLXnvsVn+zdRogLSgL4BjzGkv1n7cv1prJY6yjIA0GY0XWEfwjHJdOv0u68ttScb11GgA+dPGccYwWdLjBJA+CHClRkhpZcPEXpRxO+ALIrlAwoNesGq8HN89THaMFXa9jMNc6gr+UNkvXPCKtepcUjlqnAdKGsgCOUpwb1X0bZ+mfN8xUWR4vtm7WFy20juAPY2dI1/9UWnCLFOQlHYCd+rJcffW6+Xrn2oncMnCgJDsLnKd1rXTzrxhZAMDc3IYSfff2Jdq0qIHxwC62d5DCJzsC0tzrpet/JtXOsQ4DpB1PluBIZ06p0vfvWKpzpjMH2a16IpQFGRWMSMveKm36gVQ+wToNAEiSgsGArlnUoO++hjnITkNZ4CCJYum8T0uXfFnKq7BOAwCSpEQ0pHesnaiv37BATeWcUHejPX2UBRlXOE668mHpzA9IUf73hjdRFsCxinOj+sglM/SZK2ezy8CFusIF1hG8q3KKdO0PpGVvkkJh6zQA8Ap1pbn66nXz9O71k5QT5ZaBEyTZWuAM49dIN/23NPUi6yQAcEKz6or1ndsX68ZlTewycJkdfQnrCB4WkGZekdoR2LDEOgyQUZQFcLyVbZX63muX6OLZtdZRMAxHgpQFaRfNk854j3T9o9LY6dZpAOCUAoGArlxQr0des0TzG0ut4/geOwuM5VZI535KuuwrUj77uQA4Wywc0ptWt+qbNy1U6xiW5rrF9m4OWWZExSTpmu9K6++V4jzngPdRFsAVCuIRvf+CqfrSpnY1ciXSFQ4pzzqCt7Stl275tTT/ZinIKV0A7lFbkqMHr5unD188TRX5Mes4vsUYIiOBUGqu8a2/kaZdbJ0GAIZlSk2h/v3WRXr96ePZR+QCWykL0iuaJ53+/1I7AsfNs04DZA1lAVxlUUuZHnnNEr1lTavyYoxfcbID4gRKWhTXSxseki7+olTADg8A7nXujBr96PXLtHlxg8KMNci6QesAflTbLl33k9Rc4zi7nAC4UyQU1C0rWvTD1y3VWVOrrOPgFHb0RJUM8pwkLdrWSTc/Ji24ldG/8B3KArhOJBTU9Uub9KPXL9V5M6sV4HmDI+0bYNnPqISi0uLXp+Yat5xmnQYA0iIvFtbbzpqo/7x9sRY0MZoom7hZkEU5ZdLZH5eueUSqmmqdBgDSYmxRQh+/bKYe3DyP0UQOlowVWUdwt6I66bKvSRd/SSqstk4DmKAsgGtV5Md1z0XT9a83LtDUGk5rOc3uAcZFjVjb+lRJsPIdUoQlVQC8p6UyXw9snqePXTZDVYVcmc+GQfYbZ14gKM3elBo5NGOjONECwIvmN5XqP25brDvXTVRhImIdB3+nP8azkRGJ5ksr3i7d/Ctp/BnWaQBT3KWB680cV6xv3rRQX/vNFt39yNPa19lrHQmSdvXxkHvYauamZiKOa7dOAgBZsXbqWK1ordAnfvKs7v/5c+rqHbCO5FncLMiw8WukVe+SKtqskwBAxoWCAV21sEHrp1fr7kee1ld//QKltEP0RgoVtQ7hJsGwNOtqadmbpdwy6zSAIwSSySQv6fCMw919uv9nz+kzP39OR3r6reP42qrSDt3feYt1DHcoaZRW3SlNPNs6CQCY2XO4Rx/70Z/04GNb1DvAhP10O79ylz508A7rGN5T2y6terdUN986CQCYeWbXYX3wkaf1vSd2WUfxvd80fEplO35iHcMd2tZJK++UypqtkwCOQlkAT9rf2av7Hn1WX/iv59XdxwMHC615Xfpu/7XWMZwtp1Ra+iZp9jVSiCu8ACBJWzq6dM/3n9G3Ht/GKcU0Oq9yt+45+BrrGN5R3iqtfKfUepZ1EgBwjN9tOaAPfu9p/exPe62j+NajzV9R3daHrWM4Gzf6gVOiLICn7TrUrXt/9Cd99ddb1DfAj3o25YYG9cfIRusYzhQvkubdmPoVZ6YkAJzIUzsP6YOPPK0fPLnbOoonnFO5Wx+hLBi9gmpp2Vuk6ZdJwZB1GgBwpP96dp8++L2n9du/7reO4jvfbvkPTd7yZesYzjRmSuqwXts66ySAo1EWwBe2dHTpwz94Rt/8X04pZtNzBZsV6O20juEcOaXSvJukuddJ8QLrNADgCr/9a4fu+f4z+sWf91lHcbWzK3frnygLRq5wnLTwNmnG5VKEpdwAMBQ/emqXPvjIM3pixyHrKL7x5ZZHtXDLJ61jOMvYmdLSN0oT1lgnAVyBsgC+8ufdh/XJR/+ibz2+nXnIWfDn8jcofHibdQx7uRXSglulOZukaK51GgBwpd9tOaD7fvKsvvfETor/EVhXsUf3HrrdOob7lI2XFt0hTblICoWt0wCA6ySTST3yx1365E+f1f++cMA6jufd2/Qbrdt2j3UMZ6htl5a8UWpZZZ0EcBXKAvjSrkPd+uwvntMDv3pBh7tZhJwpT1a/R4l9f7COYSe/Slp4uzTrKimSsE4DAJ7w591H9MlHn9U3H9/GiMFhWFu+Vx87fJt1DPeomi4tfq3Uuk4KBq3TAIAnPPZchz756LP60dO7xZOozLiz4UldteMfrWPYql8sLXmD1LjUOgngSpQF8LXD3X168LEX9NmfP6+dh7qt43jO4/UfU9HOX1rHyL4xU1P7CCafL4Vj1mkAwJN2HDyq+3/2nL7y2Avq7B2wjuN4Z5bv1T9TFry6uoWpkqCZU4gAkCnc+M+cm2qe1xv3vtU6RvYFw1Lb+tT38Nq51mkAV6MsACT1DQzqW49v16d/+hc9veuwdRzP+GXTFzR223etY2RHICS1rZXab5Tq5lunAQDfONDVqy//6gV9+b//qu0HKf5PZk35Xt1HWXBi4YQ05QJp7mapapp1GgDwjV2HuvXZnx+78d/Djf90OK9yl+45eId1jOzJKZVmXZ0a+Vsw1joN4AmUBcDf+eWze/XgY1v0yB92csphlL7X8m8av+Xr1jEyK1Eszbwy9YChsMY6DQD41sBgUt9/Ype+8F/P65fPsgz571EWnEBxgzTnWmnGhtT7OQDARGdPvx7+3XY9+NgL+r+tB63juNq8ooP6SveN1jEyb8wUqf0GafIFUiRunQbwFMoC4CQ6Onv10G+36CuPbdFf9nZax3Glh1q+r9lbPmcdIzOqZ0kzr5CmXsw+AgBwmD/vPqIHH3tB//o/W3Wgq886jiOsLt+nTxy+1TqGvUBQajldmrNZal4pBQLWiQAAL/GHbQf1wGMv6OHHt+sItw2GrTreo1/oausYmRGKSa1npYr++oXWaQDPoiwAhoDbBiPz6eb/1mlbP2odI33yxkhTL5Kmb5AqWq3TAABeRU//gP7z9zv1wGMv6NfPd/h6meLpZR361JFbrGPYKapLFfwzNkjF9dZpAACv4sXbBg/86gX9fhu3DYYqEEjqL/ErFEh6aJ9T9Sxp+mWpWwSJIus0gOdRFgDD0NHZq2/8z1Z96/HtfGAZgvc1/l6XbH+vdYzRCUWlCWtSBUHzKikYsk4EABiBrfu79PDvtuvhx7frqZ3+2090WlmHPu23siBeJE06V5p2iTRunnUaAMAI/WHbQT3026369v/t0N4jPdZxHO8vxbcoeLTDOsbo5Ff97aBe+QTrNICvUBYAI/SXPUdSDx1+t11/2cOYohN5Xd2zunXXO6xjDF8gKNW2S5POSy08zCmxTgQASKOndh7Stx5PFQfbDhy1jpMVK0s79JlOH5QFoWhqzNC0S6SWM6Rw1DoRACBNBgaT+uWze/Wtx7frkT/u1OFuxhSdyDOVb1P04HPWMYYvmi+NPyP1Ht60goN6gBHKAiANnth+SN/5/Q595/c72G/wEpdVbdd79r/eOsbQBMNS/SKpbb3UulbKr7ROBADIsGQyqV8/v1/fenybHvnjLk+fVlxRul+f7bzZOkZmhONS4zJpwpnSxPUsKwYAH+jpH9DPntmr//j9Dv3giV06zH6D4/5Y+wHl7nncOsbQJEpS799t66Sm5VI4Zp0I8D3KAiDNnth+SN9/Ypd+/PRu/d/WAxr08f/DlpXs1790OfjBRCiW+kDStj41aogbBADgW8lkUo9vOaAfPbVbP3hyt57cccg6Ulo5/j15uHJKpfGrU+/fTSukaK51IgCAkReLgx89vVuPPr3HN7cGT+a3DZ9U6Y5HrWOcXH5ValFx2zqpbpEUClsnAvASlAVABnV09uqnz+zRT57erZ/+aa86OnutI2VVc85R/WBwk3WMlyuulxqXpx4sNC2XYvnWiQAADrT9wFH98Knd+uGTu/TLZ/ept3/QOtKoLC3dr8+7/WZBSVOqHGg9KzUukPEEAIATeGbXYf34qd368dO79du/7lffgL8ee/20+QGN2/pt6xh/EwynlhQ3LpeaV0o1c6RAwDoVgJOgLACyZHAwqd9tPaAfP71Hjz69W3/YfkgDHr92EAsO6unoRuMQhVLD4r+VAyWNtnkAAK7T1duvX/55n/7rL/v0q+f26Ynth1x3c3BJyQF9oesm6xjDU1At1S+WGpak3suLxlknAgC4zOHuPv3iz3v146f26Gd/2qPtB7utI2Xcd1r+XRO3PGgborT52CG95an38niBbR4AQ0ZZABg50tOv/31hv379/H795vkOPb7lgLp6B6xjpd1zhdcr0HM4e39gojh1UqFmrtS4NHWCgZOHAIA0OtTdp98836Ff/aVD//1ch/647aD6Hd4eLCo5qC913Wgd49TyKo+VA4tTfy1tsk4EAPCYbQeO6jfPd+jXz3foN8/v1zO7DrvuAMCreaDlJ1qw5VPZ/UNLmlLfw+sXpkqCotrs/vkA0obBYICRvFhYi1vKtbilXJLUPzCoJ3Yc0q+f36/f/jX1wWX3YfcvWhyIFSmcqbIgEJIqJ/6tHKiZI5U1Z+bPAgDgmIJ4RCtaK7WitVKS1NnTr9/8db9++9f9+sO2g/rDtoOOew933PGgSK5UNVUaO+PYr5m8hwMAMq66KKHq6dU6e3q1JOng0T79z1/3Hy8Pfr/toI72ufsQ34FkTmb/gFihVD3z2PfwOVLNbPb/AR7CzQLAwfYc7tGTOw7pqZ2H9NSOw3pixyH9ZU+negfcMzf5iZr3Kmfv70f/HxTNl8onSBVtqV9jpqY+oLDQEADgQLsPd+uP2w6lyoPtB/WHbYdMFy7OLz6oB48a3SyI5Kbeu18sBqpnSmUTpGDQJg8AACcxOJjU8/s69eSOw8e/iz+547Crlib/Q8MfdcWOu9LzH5Y/9m/fwSvapOrZqe/l7BwAPIubBYCDlefHVJ5friXjy4//s76BQf1595FUgbDzsF7Y16Ut+7v0wr4uHeruN0x7Yj3hAg3rXEOiJDWTuLz15R9KCmv5QAIAcI2K/LgqWuNa3lpx/J8d6OrVn3cf0XN7O/X8vk49v7fr+O8zPYpwMJnp99CAVFgjlbVIpS3H/toslY2XCsbyHg4AcIVgMKDG8jw1lufprKlVx//5waN9emrHIT2545Ce3dOpFzpS38O37j+q3n5nHebb0z/MmwWBkJRflRr/V9F27Lv4xFQpkCjKSEYAzkVZALhMJBRUW1WB2qpeuSDo4NE+beno0tb9XdrScfT4h5e9R3rU0dmr/Z296szyXoTOcKGKX/ybcELKLUs9NCisTc0xLKxNlQOFtamHDLG8rOYDACBbinKiml1fotn1r7yqv/tQt57b26m/7uvSzkPd2n24W3sO92j34R7tOfarZxQPI0Z9lThRknr/zh9z7NeLv69KvZ+XNEnRDI89AADASGEiovbGUrU3lr7snyeTSe061JMqDzq6jpcIOw92q6OzN/U9vKtXfQPZG+qxsy/xkr8LpJYL51b87fv3S7+LF9ZIBdVSiMeDAFIYQwT4THffgPZ3HfvQ0tmnjq5UiXC0b0C9/YPq7R9UT/+x3w8MqqdvUD0DqX8eDKTKitSvgMKhoKIv+X0kFFRuNKTCREQFiYgK4hFNzDuskkRIyinjIQIAAKNw8Gif9hzu0d4jPers6Vdn74CO9vars2dAXb396uodUFfvgDp7+tXdP6jBZFJKSoPJpGqjnXqr7k+dHgyGUn8NhVNj/mL5qbI+li/FCqToi7/Pl+KFqVIgHLP+rw8AgGsd6u7T/mPlwYu/Dnf3q+cl3797XvJ9/MXfDwwmFQkFFQ4FFA6++N07cPx7eTgYUCwcUn48fOw7eFhjcqSpOR1STmnqF0UAgGGgLAAAAAAAAAAAwOfYKgYAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc5QFAAAAAAAAAAD4HGUBAAAAAAAAAAA+R1kAAAAAAAAAAIDPURYAAAAAAAAAAOBzlAUAAAAAAAAAAPgcZQEAAAAAAAAAAD5HWQAAAAAAAAAAgM9RFgAAAAAAAAAA4HOUBQAAAAAAAAAA+BxlAQAAAAAAAAAAPkdZAAAAAAAAAACAz1EWAAAAAAAAAADgc/8fOQLtnWBoGR8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAHxCAYAAAC1TkfqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC/0lEQVR4nOzdd3hT1f8H8Hd3SwerbJA9ZIkiDoaAArJElKGoP4YDFFDBjX4RcCGiskVQBARkCygiexbKprRQCqWD0kH3brPP74+Y0JBOaHqS2/frefIoaXLzzk1yz733c865TkIIASIiIiIiIiIiIiIiIgDOsgMQEREREREREREREZH9YOGAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiB5CRkYHr169Dp9PJjkLlSAiBtLQ0hIeHy45CRERE5Uij0eDWrVuIj4+XHYWIiIhsKDc3Fzdv3kR6errsKOWOhQMiB9CkSRMMHjxYdoxy06tXL/Tq1Ut2DLum1Wrx3Xff4YEHHoCHhweqV6+Oli1b4sCBA7KjOYRLly5h+/bt5n8HBQXhn3/+kReogOzsbPzvf/9D69at4e7ujpo1a6JVq1a4evWq7GhEdI/YXhPZ3tq1axEdHW3+96pVqxAXFycvUAFnz57FSy+9BH9/f3h4eKBevXoYNmyY7FhElR7bZyLH9M0338BgMAAADAYDZs+eLTnRbZs3b8ZTTz0FX19f+Pj44L777sN3330nO1a5K1PhYNWqVXBycjLfPD090apVK0yePBmJiYm2ykikeDNnzkSTJk0A3P6dke316tULY8eOBQCMHTvWbna+1Go1+vTpg+nTp6NXr17YvHkz9u3bh4MHD+Lxxx+XHc8hZGdnY8KECTh58iTCw8Px7rvvIiQkRHYspKam4vHHH8fChQsxfPhw7NixA/v27cPhw4fN24DywPaayDbYXsthr+01yXHs2DF89NFHiI6Oxp49ezBp0iQ4O8vvD7djxw50794doaGh+Prrr7Fv3z7s27cPy5YtMz+G7TORbbB9loPtM9na6tWr8f333yM2NhY//PADVq9eLTsSAOCTTz7ByJEj4evri19++QX79u3D/v37MXHiRNnRyp3r3Tzpiy++QNOmTaFSqRAQEIClS5di165duHTpEqpUqVLeGYmIKpU5c+bg1KlT2LNnD3e+7tLjjz9uvgFAq1at8MYbb0hOBXz44YdISEhAYGAg2rVrZ/PXY3tNRERKM3XqVPTq1QtNmzYFALz33nuoV6+e1ExpaWl4/fXX8fTTT2Pz5s1wd3cv9vFsn4mIiEr2xRdfYPTo0fj444/h4eGBtWvXyo6EI0eOYM6cOZg9ezY++eQT2XFs7q4KBwMGDMDDDz8MAHj99ddRs2ZN/Pjjj9ixYwdGjRpVrgGJyPHk5ubC29tbdgyHpNPpMH/+fLz//vssGtyj7du3IzQ0FPn5+ejQoUOJB/G2lpSUhNWrV+Pnn3+ukKIBwPaaiIrH9pocUZs2bRAREYFLly7B398fzZs3lx0JK1euhEqlwqpVq0q1v8H2mYiKw/aZyOiFF15A7969cf36dbRs2RK1atWSHQnff/89unbtWimKBkA5XePgySefBABERUUBMPa4+OCDD9ChQwf4+PjAz88PAwYMwMWLF62eq1KpMHPmTLRq1Qqenp6oV68enn/+eURERAAAoqOjLYZz3nkreGLt8OHDcHJywsaNG/Hpp5+ibt268Pb2xpAhQ3Dz5k2r1z516hT69++PqlWrokqVKujZsyeOHz9e6Hvs1atXoa8/c+ZMq8euXbsWnTt3hpeXF2rUqIEXX3yx0Ncv7r0VZDAYMH/+fLRr1w6enp6oU6cOJkyYYHXRjaLm7Zs8ebLVMgvLPnfuXKt1ChinTZkxYwZatGgBDw8PNGrUCB999BHUanWh66qgwube+/rrr+Hs7Iw//vjjrtaH6Udas2ZNeHl5oXPnztiyZUuhr7927Vo88sgjqFKlCqpXr44nnngCe/futXjMv//+i549e8LX1xd+fn7o0qWLVbbNmzebP1N/f3+88sorVnOpjh071iJz9erV0atXLxw7dqzE9VRaAQEBeOSRR+Dp6YlmzZrh999/t/h7aX97TZo0KXJdHz58GABw48YNTJw4Ea1bt4aXlxdq1qyJESNGWMwpC9weCnrkyBFMnDgRtWvXRsOGDc1/X758OZo3bw4vLy888sgjRa6PpKQkvPbaa6hTpw48PT3xwAMPWA1DM/3GTRlNTN+dVatWme+7desWxo0bh4YNG5rnmH322Wet8pdVwXXn7OyMunXr4oUXXkBMTEypnv/TTz+hXbt28PDwQP369TFp0iRkZGSY/3716lWkp6fD19cXPXv2RJUqVVC1alUMHjwYly5dMj/u0KFDcHJywrZt26xe448//oCTkxMCAwPNmU1DSE0KW5fHjh3DiBEjcN9995l/61OnTkV+fr7Fc2fOnGn1u1y3bh06deoET09P1KxZE6NGjbJaJ2PHjoWPj4/FfVu2bCn0M/Xx8bHKDJRu+1pwu9O2bVt07twZFy9eLHR7Upg7t/f+/v4YNGiQxfoHjNvRyZMnF7kc02/D9J07c+YMDAYDNBoNHn744WLXFQAcPHgQPXr0gLe3N6pVq4Znn30WV65csXiM6bMICwvDyJEj4efnh5o1a2LdunVWy3NyckJCQgIAY3ut0+nQp08f8zQJBbcZX3/9tdV6Dg8PZ3vN9rpM64PtNdtrR22vC2s3x48fD09PT6v3VFK7Dhh/X+3bt7d6ne+//96inSju83ZycjJPw2Faj99//z3mzZuHxo0bw8vLCz179rRqq4DStSeFrbfCvm+mx5Q0V3jBjHdq37691famNN+rgt8fb29vPProo2jevDkmTZoEJyenQvcbCnu+6ebm5oYmTZrgww8/hEajMT/O9Fs5e/Zskcu6c5t58uRJdOrUCd988w0aNWoEDw8PtGzZEt9++615buaCfv31VzRv3hweHh5o0qSJue0peDxdtWpV+Pn5wcvLCy4uLnB2dkazZs3w559/Wizrl19+gZOTE5o2bWpun/v06QM/Pz8MHjwY169fL/Z71axZM3NGts9sn+/E9pnts720z7ZqI8PCwjB8+HDUqFEDnp6eePjhh/HXX39ZPKaodiElJcVqW1DYsXJOTg7q1q1rte5N+wfnzp1D165d4eXlhaZNm+Lnn3+2ylmWdrKkdg4AIiMjMWLECNSoUQNVqlTBY489ZnVNwMLeC2C9n1SW9QMAFy5cwIABA+Dn5wcfHx889dRTOHnypMVjCh5L165d27zN6tixo9V3tTB3Tg1YpUoVdOjQAb/++qvF4wo7R3GnO9/DyZMn0b59e7z44ouoUaMGvLy80KVLF4trLJqU5XMrzXd27NixVlMcr127Fs7Ozvj2228t7i/Nd7s07mrEwZ1MJw1q1qwJwPgF3L59O0aMGIGmTZsiMTERy5YtQ8+ePREaGor69esDAPR6PQYPHowDBw7gxRdfxLvvvovs7Gzs27cPly5dsug9MmrUKAwcONDidadNm1Zonq+//hpOTk74+OOPkZSUhPnz56NPnz4ICgqCl5cXAOMO9IABA9C5c2fMmDEDzs7OWLlyJZ588kkcO3YMjzzyiNVyGzZsaL4QR05ODt56661CX3v69OkYOXIkXn/9dSQnJ2PRokV44okncOHCBVSrVs3qOePHj0ePHj0AAH/++afVicAJEyZg1apVGDduHN555x1ERUVh8eLFuHDhAo4fPw43N7dC10NZZGRkFHqREYPBgCFDhiAgIADjx4/H/fffj5CQEMybNw/Xrl0r9IdRnJUrV+J///sffvjhB7z00kuFPqak9bFgwQIMGTIEL7/8MjQaDTZs2IARI0Zg586dGDRokPlxs2bNwsyZM9G1a1d88cUXcHd3x6lTp3Dw4EH069cPgHFj8uqrr6Jdu3aYNm0aqlWrhgsXLmD37t3mfKZ136VLF8yePRuJiYlYsGABjh8/bvWZ+vv7Y968eQCA2NhYLFiwAAMHDsTNmzcL/ezL4vr16xg+fDhee+01jBkzBr/99hvGjh2Lzp07m3svl/a3N3/+fOTk5Fgsf968eQgKCjL/js+cOYMTJ07gxRdfRMOGDREdHY2lS5eiV69eCA0NtRpGPXHiRNSqVQuff/45cnNzAQArVqzAhAkT0LVrV0yZMgWRkZEYMmQIatSogUaNGpmfm5+fj169euH69euYPHkymjZtis2bN2Ps2LHIyMjAu+++W+b1NWzYMFy+fBlvv/02mjRpgqSkJOzbtw8xMTH3PJd8jx49MH78eBgMBly6dAnz589HfHx8iTu1M2fOxKxZs9CnTx+89dZbuHr1KpYuXYozZ86Yf8upqakAjNu3li1bYtasWVCpVFiyZAm6deuGM2fOoFWrVujVqxcaNWqEdevW4bnnnrN4nXXr1qF58+Zlvh7C5s2bkZeXh7feegs1a9bE6dOnsWjRIsTGxmLz5s1FPu+PP/7AK6+8ggceeACzZ89GamoqFi5ciICAAFy4cAH+/v5lylGUu9m+mnz88cdleq02bdrgs88+gxACERER+PHHHzFw4MBSF4gKY/psJ0+ejM6dO+Pbb79FcnJyoetq//79GDBgAJo1a4aZM2ciPz8fixYtQrdu3XD+/Hmr7/DIkSPRpEkTzJ49GydPnixyCKfpALlmzZp4/fXXERAQAH9/fwwbNsy8zfj++++xe/duDBkyxLyeFy5ciB07dkClUrG9Znttxva6cGyvy8Ye2+s7zZgxAytWrMDGjRstTuCVpl0vi4Kf95UrV/DNN9/g008/xf333w8AVge2v//+O7KzszFp0iSoVCosWLAATz75JEJCQlCnTh0AZW9PgNvrrWAOW7qX79X169fxyy+/lOn1TNsutVqNPXv24Pvvv4enpye+/PLLu34PqampCAgIQEBAAF599VV07twZBw4cwLRp0xAdHW11EmjZsmUYPnw43n//fZw6dcp88rLg8XReXh58fX2h0+nQrVs3BAcH48aNGxg+fDj27NmDvn37Qq/XY/78+QCADh064IMPPsDNmzcxf/58NG7cGJs2bUJSUhIAYMSIETh58iTS09Px5JNPombNmti4cSOioqLw3nvvmZcDsH2+G2yf2T6zfS69u2mfbdFGXr58Gd26dUODBg3wySefwNvbG5s2bcLQoUOxdetWq+Psu/XDDz8UeR2b9PR0DBw4ECNHjsSoUaOwadMmvPXWW3B3d8err74KoOyfb0ntXGJiIrp27Yq8vDy88847qFmzJlavXo0hQ4Zgy5Yt5fa+C3P58mX06NEDfn5++Oijj+Dm5oZly5ahV69eOHLkCB599NEin7tmzZoyX7dw3rx58Pf3R1ZWFn777Te88cYbaNKkCfr06XPX7yE1NRXLly+Hj48P3nnnHdSqVQtr167F888/j3Xr1plHDpb1cyvNd/ZOe/fuxauvvorJkydbjIAo1++2KIOVK1cKAGL//v0iOTlZ3Lx5U2zYsEHUrFlTeHl5idjYWCGEECqVSuj1eovnRkVFCQ8PD/HFF1+Y7/vtt98EAPHjjz9avZbBYDA/D4CYO3eu1WPatWsnevbsaf73oUOHBADRoEEDkZWVZb5/06ZNAoBYsGCBedktW7YUTz/9tPl1hBAiLy9PNG3aVPTt29fqtbp27Srat29v/ndycrIAIGbMmGG+Lzo6Wri4uIivv/7a4rkhISHC1dXV6v7w8HABQKxevdp834wZM0TBj+XYsWMCgFi3bp3Fc3fv3m11f+PGjcWgQYOssk+aNEnc+VHfmf2jjz4StWvXFp07d7ZYp2vWrBHOzs7i2LFjFs//+eefBQBx/Phxq9crqGfPnubl/fPPP8LV1VW8//77hT62NOtDCOPnVJBGoxHt27cXTz75pMWynJ2dxXPPPWf1XTR95hkZGcLX11c8+uijIj8/v9DHaDQaUbt2bdG+fXuLx+zcuVMAEJ9//rn5vjFjxojGjRtbLGf58uUCgDh9+nSh77m0GjduLACIo0ePmu9LSkoSHh4eFuuztL+9O5l+IwUfc+d6FkKIwMBAAUD8/vvv5vtM24Xu3bsLnU5nvt+07jp16iTUarX5ftM6Kfg9mz9/vgAg1q5da/H8xx9/XPj4+Jh/z6bf+KFDh6zeIwCxcuVKIYQQ6enpRW437lXjxo3FmDFjLO576aWXRJUqVYp9XlJSknB3dxf9+vWz+IwWL14sAIjffvtNCHH7Pfr7+4uUlBTz465duybc3NzEsGHDzPdNmzZNeHh4iIyMDIvXcXV1tfh9N23aVIwePdoiT2HrsrDPfPbs2cLJyUncuHHDfF/B36VOpxN16tQRzZs3Fzk5OebHHD58WACw+H6OGTNGeHt7Wyx/8+bNhX6m3t7eFuu5LNvXgtsdIYTYtWuXACD69+9vtT0pzJ3PF0KITz/9VAAQSUlJ5vsAiEmTJhW5HNNvIyoqyuLfbdu2tVjXps+i4Lrq1KmTqF27tkhNTTXfd/HiReHs7GzxWZo+iyFDhli89pNPPikAiOXLl5vbawDCy8tLeHl5icmTJwsXFxexefNmi+9jdHS0cHZ2Fq6urhbbgy+++EIAEAMHDrR6n2yvjdhes70Wgu21EtrrO5+7bNkyAUAsWrTI4jGlbdeFMP6+2rVrZ/U6c+fOtWgnCipqHQpxez0WPP4SQohTp04JAGLq1Knm+0rbnpg0aNBAjBs3rtgcRW3DCstYmjahtN+rO78/QggxcuRI0b59e9GoUSOrz7uoTAWfL4QQ9evXt2jfTL+VM2fOFLmsO/cVevbsKQCImTNnWjxu7NixAoAICQkRQggxa9YsAUAMGDDA4njay8tLABAbN24UQhi3Effdd58AILZu3WrO7+HhIXx8fMSDDz4ohLh9PG36HqWlpYm2bduK1q1bi+TkZIv3/fTTTwtvb29x7do1c7527dqJRo0aCRcXFxETE8P2me2zxbLYPhuxfS5f99I+m5RXG/nUU0+JDh06CJVKZb7PYDCIrl27ipYtW5rvK6pdKGw7dudvLikpSfj6+ooBAwZYZTa1HT/88IP5PrVabW67NRqNEOLe2kkhrNu5KVOmCAAW26Xs7GzRtGlT0aRJE/NvwNRmFdzOC2H9GZZl/QwdOlS4u7uLiIgI833x8fHC19dXPPHEE1bLNO0jmdpF03q88z3e6c7nC2E8pwJAfPfdd+b7CjtHcac734Op3T18+LD5vry8PHH//feLunXr3vXnVprvbMHt5NmzZ4WPj48YMWKE1XartN/t0rirqYr69OmDWrVqoVGjRnjxxRfh4+ODbdu2oUGDBgAADw8PODsbF63X65GamgofHx+0bt0a58+fNy9n69at8Pf3x9tvv231GoUNhymt0aNHw9fX1/zv4cOHo169eti1axcAICgoCOHh4XjppZeQmpqKlJQUpKSkIDc3F0899RSOHj1qNaRUpVLB09Oz2Nf9888/YTAYMHLkSPMyU1JSULduXbRs2RKHDh2yeLxpqJCHh0eRy9y8eTOqVq2Kvn37Wiyzc+fO8PHxsVqmVqu1eFxKSgpUKlWxuePi4rBo0SJMnz7dqkq7efNm3H///WjTpo3FMk3TU935+kU5ffo0Ro4ciWHDhmHu3LmFPqY06wOAuZcLYKzOZmZmokePHhbfre3bt8NgMODzzz83fxdNTN+tffv2ITs7G5988onVZ2t6zNmzZ5GUlISJEydaPGbQoEFo06aN1VAug8FgXkdBQUH4/fffUa9ePXMV/F60bdvW3HMEAGrVqoXWrVsjMjLSfF9pf3sFhYaG4tVXX8Wzzz6L//3vf+b7C65nrVaL1NRUtGjRAtWqVSt0WW+88QZcXFzM/zatuzfffNNirtexY8eiatWqFs/dtWsX6tatazGnq5ubG9555x3k5OTgyJEjJa6fgry8vODu7o7Dhw9bDUEuD2q1GikpKeZeFwcPHsRTTz1V7HP2798PjUaDKVOmWHwn33jjDfj5+Vl9l8aNG2furQIALVu2xJAhQ7B7927o9XoAxm2dWq22GFq8ceNG6HQ6vPLKK+b7ateujdjY2BLfV8HPPDc3FykpKejatSuEELhw4YLV41NSUnD48GEkJiZiwoQJFvNw9uzZE507d7Z6X3errNtXEyEEpk2bhmHDhhXbe+FOpm1pcnIyAgMDsW3bNnTs2NFq9IRKpUJKSgpSU1MLnYqgMJMmTbJY17169bJYVwkJCQgKCsLYsWNRo0YN8+M6duyIvn37mtuyO5dZkKkHxfjx483tNQC4u7tj3LhxWLx4MRYuXIjhw4dbbDPWrFkDg8GAFi1a4OTJk+b1fOzYMbi4uBTanrC9NmJ7bY3ttRHb66LZY3td0I4dOzBx4kR8+OGHVlPTlbVd1+v1Vr/5vLy8e3p/Q4cONR9/AcAjjzyCRx991LwNvZv2RKPRlPjbBm5vw1JTU6HT6Yp8XF5entX7Nu3HmNzt9+rcuXPYvHkzZs+ebbX9KE5OTg5SUlIQFxeH5cuX49atW4V+LzIzM5GSkoLs7OxSLdfFxQVTp061uO/9998HAPP3ITg4GIBxapeCx9Omfb7Tp08DMG4jnJycUL9+fQwZMsRiG1GvXj1cuHABt27dwtatW83tgUqlwpAhQ5CcnIzdu3db7bMEBwejR48eqF69usVnUb16dej1ehw9etT8WLbPbJ/ZPrN9tuf2uTRKaiPT0tJw8OBBjBw5EtnZ2ebvXWpqKp5++mmEh4dbTadlahdMt7S0tBJzfPnll6hatSreeeedQv/u6uqKCRMmmP/t7u6OCRMmICkpCefOnQNQ9s+3pHZu165deOSRR9C9e3fzfT4+Phg/fjyio6MRGhoKwHgeAUCpziUAJa8fvV6PvXv3YujQoWjWrJn5/nr16uGll15CQEAAsrKyCl32kiVLkJqaihkzZpQqi0l6ejpSUlIQGRmJefPmwcXFBT179rR6XGm39yZdunSxWI6XlxcmTpyIW7dumX/fZf3cSvrOFhQZGYlBgwahU6dOWLNmjcV2+m6+28W5q6mKlixZglatWsHV1RV16tRB69atLUIaDAYsWLAAP/30E6Kioix2DgueCIuIiEDr1q3h6louMyaZtWzZ0uLfTk5OaNGihXkutvDwcADAmDFjilxGZmYmqlevbv53SkqK1XLvFB4eDiFEkY+7cwikaf7T4ubTCg8PR2ZmpvkHeyfT0FOTvXv3lvliITNmzED9+vUxYcIEq7kNw8PDceXKlSKXeefrFyYuLg6DBg1Cbm4uUlNTizzJVJr1AQA7d+7EV199haCgIIt5IQsuNyIiAs7Ozmjbtm2RyzFNsVXYnLMmN27cAAC0bt3a6m9t2rRBQECAxX03b960WFf16tWz2KG/F/fdd5/VfdWrV7doyEv72zPJysrC888/jwYNGuD333+3WIf5+fmYPXs2Vq5cibi4OBgLq0aZmZlWy2ratKnFv03r7s7fg5ubm0UjYXpsy5YtrXZKTTuIpmWVloeHB+bMmYP3338fderUwWOPPYbBgwdj9OjRqFu3bpmWVZgNGzZgw4YN5n936dLFaq68OxX1XXJ3d0ezZs3Mfzd9Bm3atLFaxv3334+tW7ciJSUFderUQZs2bdClSxesW7cOr732GgDjNEWPPfYYWrRoYX5e165dsXDhQmzYsAFPPvkknJ2dC/0MY2Ji8Pnnn+Ovv/6y2kEs7PEFv+uF/Ubuv//+IudLLauybl9N1q1bh8uXL2PTpk1Wc60W58SJExbvr2XLlti+fbvV9mvFihVYsWIFAONn+eijj+LHH380X/CwoJI+W9O6Km67c//992PPnj1WF0y7c72Y2ozu3btjxowZcHV1Re/evdGqVSvzdAlpaWlFbjPCwsIQFhZmte1PSUmxynQv2F6zvWZ7zfba3tprk6CgIGzatAl6vb7QEwOlbddNCtum3qvCtmGtWrXCpk2bis0IFN2eZGZmlup3UHAb5uLigo4dO+Lbb781T19iMmPGjEIP8gsOub/b79Unn3yCHj16YPDgwcVec+hOb7/9tkXHtXHjxlmd8AdgMY1BtWrVMGrUKMydO7fQC5aaTvL7+flZ3G86Tja1a6ZpCxcuXIj777/f4ni6Zs2a5vdqMBiQlZWF/Px8eHp6WmwjTPsR0dHRiIiIQL169RAeHo5x48bh5MmT8PT0LLSYYyooFNdOmE5YsH1m+8z2me2zvbbPpVVSG3n9+nUIITB9+nRMnz690GUU3C4CKPP0NlFRUVi2bBmWLl1aZOG0fv36Vu1Kq1atABi384899liZP9+S2rkbN24U2qmu4PLat2+Pxx9/HE5OTpg2bRq++uor8++wqA5zJa2f5ORk5OXlFblfYjAYcPPmTfPUYSaZmZn45ptv8N577xU5ZU9RHnroIfP/e3h4YPHixVZT6eXm5lpsdxo1aoT333+/2Cm+ijqmB4yf26OPPlrmz62k72zBvE8//TQSExNRs2ZNqzbhbr7bxbmrM/aPPPJIoSdFTL755htMnz4dr776Kr788kvUqFEDzs7OmDJlSql7ZNqSKcPcuXPRqVOnQh9TsGHSaDRISEhA3759S1yuk5MT/v33X4tKcWHLBIwXmwFQ7IbXYDCgdu3ahV7oEoDVDsijjz6Kr776yuK+xYsXY8eOHYU+/8qVK1i1ahXWrl1b6Ik3g8GADh064Mcffyz0+QXn1SvK9evX8dBDD2HevHn4v//7P6xevbrQnczSrI9jx45hyJAheOKJJ/DTTz+hXr16cHNzw8qVK8t0UtBW6tSpY55bPDMzE7/99hv69++PgIAAdOjQ4Z6WXdh3CoDFDkhZf3tjx45FfHw8Tp8+bXWg8/bbb2PlypWYMmUKHn/8cVStWhVOTk548cUXC11WwR4VtlLUTvKdPdcAYMqUKXjmmWewfft27NmzB9OnT8fs2bNx8OBBPPjgg/eUo1+/fvjwww8BGKvvc+bMQe/evXH27Nl7Xg9lff7o0aPx7rvvIjY2Fmq1GidPnsTixYstHvPpp5/i+PHjFpXuO+n1evTt2xdpaWn4+OOP0aZNG3h7eyMuLg5jx44t9DPft28fAgMD8fnnn5cp890o6/YVMG67p0+fjtdee82881VaHTt2xA8//AAA5jn+e/XqhfPnz1tso5599llMnjwZQghERUXhiy++wODBg80H1AVVxG/kTrVr17bYgTtz5gzeeOMNeHt746uvvkJKSgoWLFhg3masWbMGu3btQuPGjVG1alXzOnj11Vfh5+eHZcuWVWh+tte3sb0uX2yvbUsJ7fXFixcxYMAAPPXUU/jwww/xyiuvWF2gtCyaNGliNRf/5s2bsXz58rteZnlLS0uDRqMp1Umhgtuw+Ph4zJkzB8899xwuX75sMff1+PHjMWLECIvnvvHGG/ecde/evdi/fz8CAwPL/NwPP/wQ/fr1g16vx+XLl/HFF19ACIGVK1daPM7UWU6tVuPw4cPmCz3/9NNPVsss6++qS5cueOyxx4r8+zfffIP09HTUqVMH8+fPt9hGFDXC4/z589ixYwcmT56M8ePH4+DBgxZ/F0Kgb9+++Oijj8z3mUbI/PDDD2jVqpVFz+visH2+je1z+WL7bFtKaJ/Li+kz+OCDD/D0008X+piCnfGA2+2CSVZWFoYNG1bka3z22Wdo2bIlxowZU64X+S5Jadu5kjzwwAOYMWMGZs2aVeQ2tKCyrp/SmjNnDpydnfHhhx+aC/CltXbtWtSpUwcqlQoHDx7EpEmT4OnpaXFxZ09PT/z9998AgOzsbPz222+YMmUK6tWrh5EjR1otU8ZxfUEpKSnw9vbG33//jaFDh2L27NkWnTTu5rtdnPLt6v+fLVu2oHfv3uZemCYZGRkWQyabN2+OU6dOQavVlssFiUzuPGEjhMD169fRsWNH8+sCgJ+fX6kqhhcvXoRWqy22WGJarhACTZs2LdVJqtDQUDg5ORVabSu4zP3796Nbt26l+nL6+/tbvafiLrg0bdo0dOrUCS+88EKRr3/x4kU89dRTdz0dhWlYa506dbBjxw68//77GDhwoNVOWmnWx9atW+Hp6Yk9e/ZYDMG8cwPYvHlzGAwGhIaGFrkza/oeXLp0qcgfTePGjQEAV69eNQ8nNbl69ar57yaenp4W69904aLFixdXyAm30v72AODbb7/F9u3b8eeffxZaLd2yZQvGjBljPnEIGIcYm3qylMS0bsLDwy3WnVarRVRUFB544AGLxwYHB8NgMFhUY8PCwiyWZeq1dGeGonpQNG/eHO+//z7ef/99hIeHo1OnTvjhhx+KvHBsadWrV8/ic27dujW6du2K7du3F3lyvuB3qWAPEY1Gg6ioKPPyTD1Nrl69arWMsLAweHt7W3yWL774It577z2sX78e+fn5cHNzs/o9+/v7IzAwEKGhoeYDiosXL+KDDz4wPyYkJATXrl3D6tWrMXr0aPP9+/btK3I99OnTB1WrVsXnn39eZN57vXCWSVm3r4DxwD4pKQkzZ84s8+tVr17d4jPu1asX6tevj5UrV1pc6Ldhw4YWj/Px8cHLL79c6NROBT/bO7cnBddVwe/KncLCwuDv72/VKyU8PNyil5Kp91q9evUsHte3b18sXboUKpUK27dvx6+//mqxzbh58yZ27doFlUplcdGojh074tSpU+jcuXNhq+uusb1me832mu01YF/ttUmHDh2wefNmeHl5YfPmzRg/fjyCg4PNPQZL266beHt7W90XFBR0L2+v0CL1tWvX7ro9MU1NUJopQe7chrVo0QLdunXD0aNHLdr+li1bFrouCirt98pECIFPPvkEzz33XLEn34vStm1bc6ann34aarUan376Kb7++mvzhU8By85ygwYNwsWLF7F79+5Cl9m0aVPs3bsX2dnZFlP8XLt2DQaDwbxOTD2Wb968aZE9MTERGRkZ5ve6ZcsWeHh4wMXFBS+88IJ5u56RkWFeR02aNEHz5s3NUx38+uuvGDJkCFxcXDB48GCsWLHCPCLV9No5OTkWn4e3t7fFPo+pcMD2me0z22e2z4B9ts+lVVIbaWq73dzcSj2S4M5O1MWNxr5w4QI2bNiA7du3F1m0AozF9ztH/127dg0ALNrzsrSTJbVzjRs3LnLf4M7lzZgxA+PHj0dYWJi5wFRwWuSCSlo/tWrVQpUqVYp8bWdnZ6tianx8PBYsWIDZs2fD19e3zIWDbt26mdfj4MGDcfnyZcyePduicODi4mLxHRg0aBBq1KiB3bt3F1o4aNq0abHr724/t5K+syZVqlTB7t270aZNG0ydOhXffPMNRo4cad5/u5vvdnHu6hoHJXFxcbGo2gLGHjV3zqE0bNgwpKSkWPWOBWD1/LIwXYnaZMuWLUhISMCAAQMAAJ07d0bz5s3x/fffm6/KXlBycrJVdtMOWHGef/55uLi4YNasWVb5hRAWX3CdToetW7fikUceKXbY3ciRI6HX681XPy9Ip9OVutEpTGBgIHbs2IFvv/22yJ2YkSNHIi4uzqqHFGAcepebm1vi67Rq1co8nGjRokUwGAxWQ35Kuz5cXFzg5ORkURGPjo622pkbOnQonJ2d8cUXX1hV802fTb9+/eDr64vZs2dbzWNmeszDDz+M2rVr4+eff7YYxvnvv//iypUrGDRoULHvXaPRQKfTWTzXlkr729u/fz/+97//4bPPPsPQoUNLvaxFixYV2huhMA8//DBq1aqFn3/+2TzfJgCsWrXK6ns7cOBA3Lp1Cxs3bjTfp9PpsGjRIvj4+JjnjmvcuDFcXFws5mAFrHt+5eXlWX2mzZs3h6+vr00+i/z8fAAodtl9+vSBu7s7Fi5caLFeV6xYgczMTPN3qVatWnj44YexevVqi2GzERER+OuvvzBgwACLHQ9/f38MGDAAa9euxbp169C/f3+rnVoAcHZ2Rvv27dGnTx/06dPH6gSwaZkFswkhsGDBgmLfe6dOnVCnTh388ssvFnM1Hzt2DGfPni1xu1laZdm+AsaeAl9//TWmTp1aLsNpS/MZA7er+4XtHD744IOoW7eu1fbkznVVr149dOrUCatXr7b4rVy6dAl79+7FwIEDrZa9ZMkSi3/v378fgHGaqoK6du0KFxcXeHt74+eff0Zubq7F9uH555+Hs7MzEhMTLZ5naq/nzJlj9dpsr43YXltie108ttdG9themzz00EPw9vaGs7Mzfv31V0RHR+OLL74w/7207botbd++3eI7c/r0aZw6dcq8DS1re7Jhwwa4u7tbzHlcWsW1fyUp7feqYM7g4GDMnj27zK9VGNP3ouD3vzAGg6HI9zdw4EDo9Xqr41pTL3PT98F04n39+vXFPs70OvHx8di2bRuA29uIxMREdOrUCXXr1sWwYcPM7aNp7vZBgwbhxRdfxAcffGDRnj/wwAMIDAzEnj17rPJnZGRYjGRg+1w6bJ/ZPrN9Lh9laZ9Lq6Q2snbt2ujVqxeWLVuGhIQEq+ffuR0rq08++QTdunXDkCFDin2cTqezKIppNBosW7YMtWrVMh+zl7WdvNOd7dzAgQNx+vRpi1F7ubm5WL58OZo0aWI1RVm9evXQu3dv87mEkq5XUxQXFxf069cPO3bsME99BxiL53/88Qe6d+9uNXJn1qxZqFOnDt588827es075efnl/g9M/1ui2vzT58+jRMnTpjvU6lUWLp0KerWrXvXn1tJ31mTWrVqmYuVX3zxBRo2bIg33njDnLu8v9s2GXEwePBgfPHFFxg3bhy6du2KkJAQrFu3zmoettGjR+P333/He++9h9OnT6NHjx7Izc3F/v37MXHiRDz77LN39fo1atRA9+7dMW7cOCQmJmL+/Plo0aKFeVis6QBgwIABaNeuHcaNG4cGDRogLi4Ohw4dgp+fH/7++2/k5uZiyZIlWLhwIVq1aoXDhw+bX8O0gxQcHIzAwEA8/vjjaN68Ob766itMmzYN0dHRGDp0KHx9fREVFYVt27Zh/Pjx+OCDD7B//35Mnz4dwcHB5uEwRenZsycmTJiA2bNnIygoCP369YObmxvCw8OxefNmLFiwAMOHD7+r9bR371707du32ArU//3f/2HTpk148803cejQIXTr1g16vR5hYWHYtGkT9uzZU2LPkYLq1q2LuXPn4vXXX8crr7yCgQMHlml9DBo0CD/++CP69++Pl156CUlJSViyZAlatGhhvtgYYOz19Nlnn+HLL79Ejx498Pzzz8PDwwNnzpxB/fr1MXv2bPj5+WHevHl4/fXX0aVLF7z00kuoXr06Ll68iLy8PKxevRpubm6YM2cOxo0bh549e2LUqFFITEzEggUL0KRJE6v5UHNzcy2GVq5ZswYqlQrPPfdcqdfRvSjtb2/UqFGoVasWWrZsadVboG/fvqhTpw4GDx6MNWvWoGrVqmjbti0CAwOxf//+Qud2LIybmxu++uorTJgwAU8++SReeOEFREVFYeXKlVZ5xo8fj2XLlmHs2LE4d+4cmjRpgi1btuD48eOYP3++uedW1apVMWLECCxatAhOTk5o3rw5du7caTU36LVr1/DUU09h5MiRaNu2LVxdXbFt2zYkJibixRdfLOtqtRIZGWleb3FxcVi8eDH8/PyKvaBTrVq1MG3aNMyaNQv9+/fHkCFDcPXqVfz000/o0qWLRdX+u+++Q79+/fD444/j9ddfh0qlwpIlS+Dp6Ymvv/7aatmjR482bwcKOygqjTZt2qB58+b44IMPEBcXBz8/P2zdurXEi2GZfiNjx45Ft27dMGbMGKSlpWHBggVo0KABPv74Y4vH6/V6i956pt6Wp0+fttg51ev1iIuLw+nTp/HII4+Uevtqcv78efj7+1sMxy+LxMRE82eckpKCZcuWwdXV1eqANyYmBrt37zZPVfT111+jcePGePDBB616DLi6uuK7777D6NGj0aNHD7z88svmaZAaNmxosa7mzp2LAQMG4PHHH8drr72G/Px8LFq0CFWrVi10BEVUVBSGDBmC/v37IzAw0Dw9QXG99Z5++ml06NABISEheOGFF9CnTx+EhITAw8MD+fn5uHDhAubOnQtfX19ERETAy8sL06dPx+XLl9leF4LttSW218Vje21kj+11Ydq3b4+PP/4Y3377LV588UV07NixTO26rbRo0QLdu3fHW2+9BbVajfnz56NmzZoWbV9p2pPw8HDMmDED69evxyeffGJ10F4Y03z5gPEizHPmzEHVqlXRu3fvMr+P0n6vTPbu3Ys33nij2F7VxQkMDISrq6t5CodFixbhwQcftOrRFxgYiJSUFPNURQcOHLDY1yho4MCB6NOnDz777DNERUWhU6dOOHjwILZu3Yo333zTPAe8aY71bdu24YUXXkDPnj1x+vRprF69GkOHDjWvv8GDB+P8+fPw8/PDK6+8grZt2+LKlStwd3eHRqPBt99+C8C4D/jdd98hLCwM77zzDvr374/c3FzcunULOp0Ob7/9Nr777jsAxtGTqampGDx4MMaOHYvOnTubL5jYsGFDi5M4bJ9Lh+0z22e2z3envNrn4pSmjVyyZAm6d++ODh064I033kCzZs2QmJiIwMBAxMbG4uLFi3f9+nv37sXx48dLfFz9+vUxZ84cREdHo1WrVti4cSOCgoKwfPly88wsZW0nS2rnPvnkE6xfvx4DBgzAO++8gxo1amD16tWIiorC1q1brebkL09fffUV9u3bh+7du2PixIlwdXXFsmXLoFarze1VQXv37sW6dessLhBeFtu3b4e/v795qqJjx45hypQpFo8peI4iOzsbK1euRG5ubpFFwY8++gjr1q0zrz9/f3+sXbsWoaGhWLdunfk6vmX93Erznb2Tl5cXli9fjj59+mDp0qWYOHEigHL+bosyWLlypQAgzpw5U+zjVCqVeP/990W9evWEl5eX6NatmwgMDBQ9e/YUPXv2tHhsXl6e+Oyzz0TTpk2Fm5ubqFu3rhg+fLiIiIgQQggRFRUlAIi5c+davU67du0slnfo0CEBQKxfv15MmzZN1K5dW3h5eYlBgwaJGzduWD3/woUL4vnnnxc1a9YUHh4eonHjxmLkyJHiwIEDFq9d0m3MmDEWy926davo3r278Pb2Ft7e3qJNmzZi0qRJ4urVq0IIId5++23xxBNPiN27d1tlmjFjhijsY1m+fLno3Lmz8PLyEr6+vqJDhw7io48+EvHx8ebHNG7cWAwaNMjquZMmTbJaJgDh5OQkzp07Z3F/YZ+RRqMRc+bMEe3atRMeHh6ievXqonPnzmLWrFkiMzPT6vVKWp4QQjz55JPivvvuE9nZ2WVeHytWrBAtW7YUHh4eok2bNmLlypVFrrfffvtNPPjgg+bcPXv2FPv27bN4zF9//SW6du0qvLy8hJ+fn3jkkUfE+vXrLR6zceNG83Jq1KghXn75ZREbG2vxmDFjxlh8L3x8fMRDDz0k1qxZU+w6Ko2iPts7129pf3vFfZ8PHTokhBAiPT1djBs3Tvj7+wsfHx/x9NNPi7CwMNG4cWOL73xJ24WffvpJNG3aVHh4eIiHH35YHD16tNDvRWJiovn13N3dRYcOHcTKlSutlpecnCyGDRsmqlSpIqpXry4mTJggLl26JACYH5+SkiImTZok2rRpI7y9vUXVqlXFo48+KjZt2lSa1V2sxo0bW6wvf39/0a9fPxEYGFiq5y9evFi0adNGuLm5iTp16oi33npLpKenWz3uwIEDolu3bubv5aBBg0RISEihy1Sr1aJ69eqiatWqIj8/v1Q5TNtL0+cthBChoaGiT58+wsfHR/j7+4s33nhDXLx40WLdClH473LDhg2iU6dO5t/aCy+8IKKjoy0ec+dvpDS3O78nJW1fhTD+LgCIefPmWTy3qO3EnUzPN92qVasmunXrJnbt2mXxuIKPcXJyEnXr1hXPP/+8uHLlihDi9m8jKirK4nmbNm2y2J6MGjWq0DZq//79Ft+BZ555RoSGhhb6nkJDQ8Xw4cOFr6+vqF69unjqqaesfpcAxIwZMyyeHxcXJ7y8vISnp6fFNqNdu3bCz8/PYj1PmDBBvPnmm2yv71j3d2J7fRvb69vYXjtWe33nuhPC+Jm1adNGdOnSReh0OvP9pWnXe/bsKdq1a2f1OnPnzi20nRCi8HbapOD29ocffhCNGjUSHh4eokePHuLixYtWjy+pPVm/fr1o3769WLBggTAYDCXmKGrdnjx5stCMd7qzTRCidN8r0zK9vLxEXFycxd8K+8yKWm+mm7Ozs2jYsKEYM2aMxXbC9Fsx3dzd3UWLFi3E559/LtRqtRCi8G1mTk6OmDp1qqhfv75wc3MTLVq0EN9++63Q6/VWyx4/fry5PW3UqJGYNm2aUKlU5sepVCrh5+cnPDw8hIeHh6hSpYpwc3MTXl5eom3bthavu2zZMgFANGrUyKJ9Nn2/fvnlF/NnkZ2dLaZNmyZatGgh3N3dhYuLi/Dz8xPff/+90Gg0bJ/ZPls9n+0z22d7ap9NyrONjIiIEKNHjxZ169YVbm5uokGDBmLw4MFiy5Yt5scU9RklJydbHWOZfkvPPvtsiZlN+wdnz54Vjz/+uPD09BSNGzcWixcvtspZlnaypHbO9L6HDx8uqlWrJjw9PcUjjzwidu7cafW6hSntd7iw9SOEEOfPnxdPP/208PHxEVWqVBG9e/cWJ06csHiMaZmdOnWy2DcxvcfCvtuFPb+wtrxge1ua7U5h78G0/qpWrSo8PT1Fly5dxPbt261ylOVzK813dsyYMaJx48ZWrzNu3Djh5+dn8TmX5rtdGk7/rQRFOHz4MHr37o3Nmzffda+BgqKjo9G0aVNERUUVOU/3zJkzER0djVWrVt3z6xER3Q2dTof69evjmWeesZqP05GtWrUKq1atsuidRpZmzpyJWbNmITk5udApquwV22siortn2ubNnTu3yB7w5PiaNGmC9u3bY+fOnRX2mmyficjROVIb2atXL6SkpODSpUuyo5BE9v6dtd34EyIiqhDbt29HcnKyxUWNiYiIiIiIiIiI7pZNrnGgFD4+Pnj55ZeLvbhQx44dUb9+/QpMRURkdOrUKQQHB+PLL7/Egw8+WOJFkRxNgwYN8Mgjj8iOQQ6A7TUREZH9YftMRETk2Fg4KIbpAhfFef755ysoDRGRpaVLl2Lt2rXo1KmTIod39+3bF3379pUdgxwA22siIiL7w/aZiIjIsSnqGgdERERERERERERERHRveI0DIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIjIUDIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIjIUDIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIjIUDIiIiIiIiIiIiIiIyY+GAiIiIiIiIiIiIiIjMWDggIiIiIiIiIiIiIiIzFg6IiIiIiIiIiIiIiMiMhQMiIiIiIiIiIiIiIjJj4YCIiIiIiIiIiIiIiMxYOCAiIiIiIiIiIiIiIjMWDoiIiIiIiIiIiIiIyIyFAyIiIiIiIiIiIiIiMmPhgIiIiIiIiIiIiIiIzFg4ICIiIiIiIiIiIiIiMxYOiIiIiIiIiIiIiIjIzFV2ACKSK0+jQ65aj1y1DjlqHfI0xv/P1eig0RlgEIBBCAgh8IR7OOrp4wAnZ8DJBXB2AVw9AHdvwN0X8PC5/f/u3oCbp+y3R0REpGh6g/iv/db915b/146rdcjX6qHTi//accAFegxzPvJfO+5sbMedXQG3Kv+14f/dCrbnzuxnREREZEsqrant1pvbdNOxuVqnh95w+5j8QfdYtNJfv92WOzn/d0xeSBvu7g24V5H99ojIgbFwQKRAqTlqJGWrkZilQlK2Gsmm/89SIynbeF9GnhZ5Gh0MovTLPdxiIxC7o/RPcHYz7qx4+wM+dQHf/24+dQDfeoCv6b91AQ/fsr9RIiIiBdLoDEjKViExS43k/9ptUzuemK1GUpYKKTka5Ki1UGkNpV6uv7sWw5zfKVsYtyqAZ1XAp/Z/bXmdO/5boF134aEFERERAGTma5GUpbI4Lje24yok//ff9FwN8jR66MpwUL665TG0urm09EGcXIwFhSrVb7ffvvUsj8lN7XmVGnfxTolIybh3T+SgMvO1iEzOQVRKLqJSchGZkovI5FzcSM1FnkYvO56RQQuoMoy31OvFP7ZKTaBmi/9uzW//f43mHLlARESKYzAIxGXkG9vw/9pzU1sen5kPUYbCvk1p84y37AQAF4t+nLMrUO2+wttyvwaAk1OFRSYiIqoIeRodIpNzzcfkprY8OiUXmfla2fGMhB5QZxpv6dHFP9ajKlCzWYG2vMDNw6dC4hKRfWHhgMjO6fQGXEvMwaW4TATHZeDqrWxEJuciNVcjO1r5yks13m6esrzfydl4wsG/FVCvI1CvE1C/E1C9iYSQREREZZeRp0FwbCZC4jIRGp+F60k5iE7NhVpX+tECds+gA9IijbfwvZZ/c/UyFhJqtzW24fU6Gdt0jjYkIiIHIIRAZEouQv5ry68kZCEiOQeJWWrZ0cqXOhOIv2C83cmnLuDfEqjb4fYxec2WnNKQSOFYOCCyI6YiQUhcBkLiMhESl4WwhCxlnVgoK2EAMm8abxEHbt/vVR2o98DtnZZ6nYAaTSWFJCIiMsrM0yLkv2L/pbhMBMdmIjY9X3YsuXT5QOIl4y1k0393OhmLCfU6Gdvz+v/917OqxKBERFTZGQzGIsGluMz/jsmNRf8ctU52NLlybhlv0cdu3+fuY1lIqNfJ2OGPxQQixWDhgEgijc6AoJsZCIxIxcnIVFy4mV6muYortfx0IPKw8WZSpSbQuCvQpAfQpLuxZyOnRiAiIhtKylIhMNLYjp+MTENUSq7sSA5CGKcxTL0OXNpivMvJGajTDmjc3diON+7K+ZaJiMimDAaBS/GZ5nb8TFQasit7kaC0NDlATKDxZuLuC9z3mLEdb9LDWFBwdpEWkYjuDQsHRBVIozPgYmwGTkakIjAyFedjWCgoV3mpwJW/jTcAqOJ/RyHhfhYSiIjonqTkqHEyMhWB/7XlkcksFJQbYQBuhRhvp5YCcPqvkNDtvxMQ3VlIICKie2IwCIQmZJnb8tPRachWsVBQbjTZwPV9xhsAePgBjR4Fmv53TF6vEwsJRA6EhQMiG4vPyMf+K4nYfyUJZ6LSkK+1kwsXVwZ5KcCVv4w3wFhIaPEU0HoA0PwpwNNPbj4iIrJ7eoPA6ag07L+SiKPXkhGelCM7UiUibk9xdHoZACfjtRFaDQBa9zeefGCHACIiKkF6rgYHwpJw4Eoijl9PQRYLBRVHnWVdSGj6hPGYvFV/wNtfbj4iKhYLB0TlTAiBkLhM7A81FgtCE7JkRyKTvBQgeKPx5uJu7MHYeoDxVu0+2emIiMhO5Kp1OHItGftCE3HoahIy8rSyIxEAQAAJF423I98CvvWAVk8bTzw06wW4eckOSEREdiIiOee/Y/JEnI/JgN4gZEciwFhICNtpvDk5Aw0evn1MXvt+2emI6A5OQghuPYnukUZnwPGIFOwLTcTBK0m4laWSHckmDrfYiCaxO2THsI3a7Yw7K/cPBuo/KDsNERFVsMQsFfaFJmJfaCICI1Oh0SlvKkF/dy3OOo+RHcM2XL2AZj2B1gOBtkMAr+qyExERUQUSQuDsjXTsvXwLB64kIVKh1xxa3fIYet5cKjuGbVRvYhxV2GaQsZMfL7JMJB0LB0R3ybRjsu1CHHaFJFSK3oiKLhwUVLMl0HEk0GEEUKOp7DRERGQjWSotdgUnYNuFOJyOToPS94oVXTgoyMUdaNHH2I63HsCRCERECnb1Vjb+vBCLv4PiEZ+pzA58BSm6cFCQb32gwzCgw0jjNIVEJAULB0RlFJGcg23n47DjYhxupuXLjlOhKk3hoKCGjxiLCO2eB7xryk5DRET3SKs34MjVZGy7EIf9VxKhVuDIgqJUmsJBQe6+xtGEHUYYpzPiBRmJiBzerUwVdgTFYduFOITdypYdp0JVmsJBQbXuBzqOMLblnGKYqEKxcEBUCik5auwIisf2C3EIicuUHUeaSlk4MHF2BZo/CXR8Abj/GcDVQ3YiIiIqgwsxxlGCO4MTkJarkR1HikpZOCjIuzbQfhjw0GigTlvZaYiIqAxy1DrsCknA9gtxOBmZisp6yYJKWTgwcwLue9xYRGg/HPD0kx2ISPFYOCAqxonrKVh3KgZ7Q29Bq+dPpVIXDgqq4g88+Arw8KtA9cay0xARURGyVFpsPReLdadicD0pR3Yc6Sp94aCg+x43tuNtn2VnACIiO3Y5PhNrT8bgr6A45Gr0suNIV7kLBwW4+wAdhgNdXgfqdpCdhkixWDggukOWSovNZ2Ox7tQNRCYr84JKd4uFgzs4ORvnUO7yOtCiLy/eRERkJy7FZWJN4A38dTEe+VqeZDBh4aAQVfyBB18GOo/jdY2IiOyEWqfH3xcTsObkDVy8mSE7jl1h4aAQjR41HpOzMwBRuWPhgOg/1xKzsfpENLZdiEMeezIUioWDYlS7z3jS4aHRgLe/7DRERJWOTm/Av5duYdWJaJy7kS47jl1i4aA4TsYpCbu8BrQawM4AREQSxGfkY+3JG9hw5malnVawJCwcFIMzAxCVOxYOqNI7ei0ZPx+JwImIVNlR7B4LB6Xg4gE88ALQbQpQs7nsNEREipeZr8XakzewJvAGbmWpZMexaywclFKN5kDXt4FOL7HnIhFRBQiJzcTSI9ex53Ii9JX14gWlxMJBKTg5A20GAd3fAxo8JDsNkUNj4YAqJSEEdl+6hZ8OR1Tqix2XFQsHZeDkDNw/BOjxHlDvAdlpiIgUJyVHjRUBUVgbeAPZap3sOA6BhYMy8qkDPPYW8PBrvAAjEZENnIxMxZJD13EsPEV2FIfBwkEZNe0JdJ8KNO8tOwmRQ3KVHYCoIun0BmwPisfPRyJ4kUSyLWEAQrcbb82fNO6sNH1CdioiIocXn5GP5UcjseFMDFRag+w4pGQ5icD+mcCxecDD44DHJgK+dWSnIiJyaEIIHAxLwk+HIzi1INle1BHjrf5DQPcpQJtnOB0hURmwcECVgkqrx8YzN7H8aCTiMvJlx6HKJuKg8dbgYeMIhNYDAScn2amIiBxKVEoulh6+jm0X4qDVc8AsVSB1JnB8PnByqXH6oh7vA9UayU5FRORQ9AaBncHxWHo4AmG3smXHocom/jywaTTg3wro+g7wwIuAi5vsVER2j1MVkaJp9Qb8cSoGiw5eR0qOWnYch8epispJ/QeBpz43jkQgIqJiRaXkYt6+a/gnJIHzHt8jTlVUTlw8jCMQenwA+NSSnYaIyK4JIbAzOAE/7ruGqJRc2XEcHqcqKifVmwK9PwM6DGenPqJicMQBKZIQAn9djMeP+67hRmqe7DhEluIvAGueM8632GcG0KCz7ERERHYnOVuNBQeuYcPpm9CxYED2RK8GTv0MXFhrvAZC17cBz6qyUxER2Z2A8BTM2R3G6wqS/UmPAv58HTixAHjyc6BVP9mJiOwSCwekOEeuJeO73WG4HJ8lOwpR8aKOAL88Cdz/jHFnpVYr2YmIiKTLVeuw7GgkVhyLRK5GLzsOUdE0OcDRucCZX4FuU4BHJwBuXrJTERFJFxKbiTm7wxBwnRc9Jjt3KwT4YwTQuBvw1AzgvkdlJyKyKywckGIEx2Zgzu4wHL+eKjsKUdlc+RsI2wV0GgX0mgZUbSg7ERFRhdPqDVh/OgYLD4QjJUcjOw5R6eWnA/tnGEch9PwIeGgM4OwiOxURUYWLTsnF93uv4p+QBHBSbHIoN44Dv/UDWg0wTitcp63sRER2gYUDcnjxGfn4ZtcV7pyQYxN645QHIVuB7lOMPRfdPGWnIiKqELtCEvDd7jBEc3pBcmTZCcDOqcCZ34CB3wGNu8pORERUITLztZi37xrWnboBrZ4H5eTArv0LhO8BOo8FnpwOVKkhOxGRVCwckMPS6g345VgkFh+8jjxOZUBKocsHDs8Ggv4A+n8LtBkoOxERkc1cT8rB5zsu4UQERwuSgiSGACsHAB1GAH2/BPzqyU5ERGQTQghsPheL73aHcbQgKYcwAGd/Ay5vN44+eGgM4OwsOxWRFCwckEMKCE/BjL8uISI5V3YUItvIuAFsGAW07GcsINRsLjsREVG5ydfosehgOH49FgWN3iA7DpFthGwGrv4LPPEB8NgkwNVddiIionITGp+F6Tsu4dyNdNlRiGwjPw3YOQU4/zsw8HugYWfZiYgqHAsH5FBuZarw5c5Q/BOSIDsKUcUI3wtEHgG6TgZ6fAC4V5GdiIjonuy9fAuz/g5FXEa+7ChEtqfJAfbPNE5H2P9boGVf2YmIiO5JlkqLH/dew5qTN6A3cFoiqgTizwO/PgU8+ArQZxbgXVN2IqIKw8IBOQSt3oAVAVFYdCAcuZyWiCobvRo49gNwcaNxzuQ2g2QnIiIqs5tpeZj512UcCEuSHYWo4qVeB9YNB+4fAgz6AfCpLTsREVGZbT0Xi9n/hiElRy07ClEFE8CFNcCVv43TFz38KuDkJDsUkc2xcEB271JcJj7YfBFht7JlRyGSKysW2PAS0H44MHAuL9RERA5BbxBYdjQCCw+EQ6XltERUyV35C4gOMI4+eOAF2WmIiEolNj0PH28NxvHrvCYRVXKqDOCf94DL24BnFwPVm8hORGRTvLoH2S2t3oAf913D0CXHWTQgKujSFmDJo0DoX7KTEBEVKyI5B88vPYHvdl9l0YDIJD8N2DYe+OMFICtedhoiomL9cSoG/ecfY9GAqKDoY8BPXYFTywHBKbtIuVg4ILt0JSELzy4+joUHwqHjvIlE1nKTgE3/B2weC+RyJ56I7IvBIPDrsUgMWngMF29myI5DZJ+u7QaWPGa86CIRkZ2Jz8jH/604hU+3hSBHrZMdh8j+aHOBfz8EVg0G0iJlpyGyCRYOyK7o9AYsPBCOIYsDEJqQJTsOkf27vA1Y8ojxv0REdiAmNQ8vLj+Jr/65wlEGRCVRZwJ/vQ38PhTIiJGdhogIALDxTAyenncUx8JTZEchsn83AoCl3YCTSzn6gBSHhQOyG9cSs/HcTyfw475r0Oq5sSUqtbwU48iDTWOA/AzZaYiokhJCYM3JG+i/4ChOR6fJjkPkWCIPGU86hGyRnYSIKrFbmSqMXXkaH28NQTZHGRCVnjYP2P0JsHIgOwKQorBwQHbh98BoDF4UgJC4TNlRiBxX6Hbg5x7AzdOykxBRJZOUrcLo305j+vZLyNPoZcchckzqLGDra8D2SYAmV3YaIqpk9oUmov+Cozh8NVl2FCLHFXMC+Lk7r0dIisHCAUmVpdJi4rpz+HzHZWh0nM6A6J5lxgArBwDHfuAwSSKqEMevp2DgggBOZ0BUXoLWAst6AgnBspMQUSWg1Rvw5c5QvPH7WWTkaWXHIXJ8qkzj9Qh3vgdoVbLTEN0TFg5ImuDYDAxeGIBdIbdkRyFSFoMOOPAFsOY5ICdJdhoiUiiDQWDevmv4vxWnkJKjlh2HSFlSw4Ff+wAnf5adhIgU7GZaHob/HIgVAVGyoxApz9kVxrY8JVx2EqK7xsIBSbEiIArDlwYiJi1PdhQi5TLNlxxxUHYSIlKY5Gw1XllxCgsOhMPAwU1EtqFXA7s/Bv54AchNlZ2GiBRm96UEDFp4DBdvZsiOQqRciSHGUYRBf8hOQnRXWDigCpWZp8Ubv5/FlztDodFzaiIim8tNAtY8D+yfBRg47zgR3bsTESkYuPAYTkTwRCZRhbi22zhfcuw52UmISAHUOj1m7LiEN9eeR5aKF0AmsjltLrD9LeDPCbyGETkcFg6owlyKy8TAhcewLzRRdhSiSkYAAT8C64YD+RmywxCRgzIYBBbsD8crv55CcjanJiKqUNnxxmsYXVgnOwkRObD4jHwMXxqI1YE3ZEchqnyCNwAr+gHp/P2R42DhgCrEP8EJGPFzIOIy8mVHIaq8Ig4CvzwJJF+VnYSIHEyuWofxa85h3v5rnJqISBa9GtgxEfj3Y0DPXsJEVDbnbqRhyOLjCInLlB2FqPJKvAT80huIOiY7CVGpsHBANiWEwI/7rmHy+vPI13KaFCLp0iKMF2i6ult2EiJyELHpeRi29AT2X+GIQSK7cOpnYM1QXveAiEpt89mbGLX8FFJyOGKQSLq8VGM7fvoX2UmISsTCAdlMnkaHt9aex8ID4RDsnUhkP9RZwIZRwNHvZSchIjt3NjoNQ5ccR9itbNlRiKig6GPA8l5AQrDsJERkx/QGga92huLDLcG8xiCRPTHogF0fAH+9A+i1stMQFYmFA7KJuIx8DFsaiN2Xb8mOQkSFEQbg4JfA5rGAJk92GiKyQ1vPxeKlX08hJUcjOwoRFSYzBvjtaeDSVtlJiMgOZam0eHXVGfwaECU7ChEV5fxqYPUzQE6y7CREhWLhgMrd2eg0PLs4AFcSsmRHIaKSXN5mPOmQzSIfERkZDAKz/72C9zdfhEbH3olEdk2bB2x5DQiYLzsJEdmRqJRcPLfkOI5c48lIIrsXE2i87kFiqOwkRFZYOKBy9U9wAl76hb0TiRzKrWBgRV8g5brsJEQkWb5Gjwlrz2HZkUjZUYio1ASwfwaw6yPAwGIfUWV3PiYdz/10HBHJubKjEFFpZd4EVvYHbpyQnYTIAgsHVG7WBEbj7fXnOXcikSPKiAF+6wfEnpOdhIgkycjT4KVfT2JfKC+CTOSQTi8DNo8BtCrZSYhIkkNhSXj5l1PIyOOc6UQOR5UJrHkOuPK37CREZiwcULn4cd81TN9xGQZeBJnIceWlGudXDN8nOwkRVbDELBVGLgvEhZgM2VGI6F5c+ct40iE/XXYSIqpgf56PxRu/n0W+Vi87ChHdLZ0K2DQaOLNCdhIiACwc0D0yGAQ+2xaChQfCZUchovKgzQXWvwgE/SE7CRFVkKiUXAxbegLXEnNkRyGi8hBzAvitP5AZKzsJEVWQX45G4v3NF6FjTz4ixycMwD/vAYe+kZ2EiIUDunsanQGT15/HulMxsqMQUXky6IDtbwHHfpSdhIhs7FJcJkb8fAKx6fmyoxBReUoOA37tywstEimcEAKzd13B17uuQLBmQKQsR+YAf70DGDiKiORh4YDuSo5ah7ErT2NXyC3ZUYjIVg7MAnZ/KjsFEdnIychUjFp+Eik5GtlRiMgWsuOBVYOA+CDZSYjIBnR6Az7YHIxlRyNlRyEiWzm/2jh1kY776yQHCwdUZpn5Wrz8y0mciEiVHYWIbO3kEuCf98EuTETKsi80EWN+O41stU52FCKypfw04PchwM0zspMQUTnS6g2Y9Md5bD3PKcmIFC9sJ7DhJUCrkp2EKiEWDqhMMvO0eOXXU7gYmyk7ChFVlDO/An+/y+IBkULsvpSAievOQa0zyI5CRBVBlWm8YHL0cdlJiKgcaHQGTFx3HnsuJ8qOQkQV5fo+47UItZxelCoWCwdUahl5Grz060mExLFoQFTpnF8N7JgMGHiikciR7b6UgLfXX4BWz0IgUaWiyQbWjQCiA2QnIaJ7oNEZ8Nbac9gXyqIBUaUTecjYlmvyZCehSoSFAyqVzDwtXvrlFC7HZ8mOQkSyBK0F/n6bIw+IHBSLBkSVnDYXWDeSxQMiB2UqGhwIS5IdhYhkiT4GrH+BIw+owrBwQCXKUmnxyopTCE1g0YCo0ruwFvj7HRYPiBzMvtBEFg2IiMUDIgel0xsw+Y/zLBoQERB19L9pi3jNA7I9Fg6oWDlqHUavOM3piYjotvO/Azunyk5BRKV05FoyJv1xnkUDIjLS5gJ/vADEnZOdhIhKQW8QeGfDBezl9EREZBJ5GNgwCtCpZSchhWPhgIqUr9Fj3MrTCLqZITsKEdmbcyuB/TNlpyCiEpyISMGENWeh4YWQiaggTQ6wdjiQfE12EiIqhhAC728Kwq6QW7KjEJG9iTgIbH2d1yEkm2LhgAqlNwhM/uM8zkSny45CRPYqYB4Q+JPsFERUhIs3M/DG6rNQaXkwQUSFyE8D1gwFMm7KTkJERfjqnyvYHhQvOwYR2asrfwH/vCc7BSkYCwdUqE//DOH8iURUsj2fAsGbZKcgojtEp+Ti1VVnkKvRy45CRPYsKw5Y8xyQmyI7CRHdYdmRCKwIiJIdg4js3bmVwKFvZKcghWLhgKx8v+cqNp5lzyMiKg0BbJ8IhO+XHYSI/pOSo8aYlaeRmquRHYWIHEFqOLB2GKDOlp2EiP7z5/lYfLs7THYMInIUR+YAp3+RnYIUiIUDsrAmMBqLD12XHYOIHIlBC2z6P+DmGdlJiCq9PI0Or606gxupebKjEJEjSQgC1vMii0T24PDVJHy0JRhCyE5CRA7l34+Ay9tkpyCFYeGAzP4NScCMvy7LjkFEjkibB/wxAki+KjsJUaWl0xswad15XIzNlB2FiBxR9DFg62vg2UoieYJuZmDiuvPQGfg7JKIyEgbgz/FA5GHZSUhBWDggAMDJyFS8uzEI3D8horuWnw6seR7ITpSdhKhS+mzbJRy6miw7BhE5sit/AwdmyU5BVClFJufg1VVnkMfrExHR3dJrgA2vALdCZCchhWDhgBCZnIPxv5+FRmeQHYWIHF1WLLDxZU51QFTBftx3jdcnIqLyETAPuLhBdgqiSiUjT4Nxq84gjdcnIqJ7pckG1r8E5KbITkIKwMJBJZel0uL1388iS6WTHYWIlCL2DPDXO7JTEFUa2y/EYeGBcNkxiEhJ/noHiDklOwVRpaDTGzDpj/O8PhERlZ/MGGDjK4COxUi6NywcVGIGg8C76y8gMjlXdhQiUprgDcDxBbJTECnepbhMfPJnsOwYRKQ0erVxBGFGjOwkRIr31T9XcPx6quwYRKQ0MYHAP+/JTkEOjoWDSuy7PVc5FzIR2c7+mcC1PbJTEClWao4aE9acg0rLqQaJyAZyk4E/XgTUObKTECnWprM3sepEtOwYRKRUF9YAJ5fKTkEOjIWDSmpHUBx+PhIhOwYRKZkwAFtfB5LCZCchUhyd3oCJ684jLiNfdhQiUrKky8a23MACJVF5O3cjHf/bdkl2DCJSuj2fAdcPyE5BDoqFg0ooJDYTH2/ltAZEVAHUWcD6F4G8NNlJiBTlq3+u4FQUf1dEVAGu/Qsc/FJ2CiJFScjMx5trz0GjZ1GOiGxM6IEt44CU67KTkANi4aCSSc5WY/yas5zWgIgqTnoUsOVV9lYkKiebOa0BEVW0gHnAtb2yUxApgkqrx4Q155CcrZYdhYgqC1UmsGEUpx+kMmPhoBLRGwQm/3EeCZkq2VGIqLKJPAQE/CA7BZHDC7qZgc+2c1oDIqpoAtg2AciMlR2EyOHN/OsygmMzZccgosom5RovlkxlxsJBJbLwQDinNSAieQ7NBm6ckJ2CyGFl5mkxce05aHQcvUNEEuSnAZvHAXqt7CREDuuvi/HYcOam7BhEVFkFbwQurJWdghwICweVxMnIVCw+xPnMiEgioQe2vAbkpspOQuSQPt4ajHiOGiQimWJPA/tnyk5B5JBupObisz9DZMcgospu14dA0hXZKchBsHBQCaTlajBlQxD0BiE7ChFVdtnxxqkOBLdHRGWx7tQN7L58S3YMIiIgcDFwZafsFEQORaMz4O31F5Ct1smOQkSVnTYP2DwW0OTJTkIOgIWDSuCDzRdxK4s9FInITlzfBxxfIDsFkcMIT8zGlztDZccgIrptx0QgPVp2CiKHMWd3GK9rQET2IzkM+PdD2SnIAbBwoHC/HovEwbAk2TGIiCwd/BKIOSU7BZHdU2n1eHv9Bai0vK4BEdkRVSaw5VVAz97TRCU5GJaI345HyY5BRGTpwlrg4kbZKcjOsXCgYCGxmfhu91XZMYiIrBl0wNbXjCceiKhI3+y6grBb2bJjEBFZizsHBPwoOwWRXbuVqcL7my5ylk4isk//vAekRshOQXaMhQOFytfo8fb689Do2UORiOxU5k1g96eyUxDZrX2hifg98IbsGERERTvyHRAfJDsFkV0SQuC9TUFIz9PKjkJEVDhNDrBjEmDguUMqHAsHCvXdnjBEp/JCJ0Rk54LWAtf2yk5BZHeSs9X4aMtF2TGIiIpn0ALb3gR0atlJiOzO2lMxOBGRKjsGEVHxYgKBkz/JTkF2ioUDBToTnYbVJ6JlxyAiKp2/3wHyM2SnILIrn++4xB6KROQYkq8AB7+SnYLIrsSm5+HbXVdkxyAiKp2DXwEp4bJTkB1i4UBhVFo9PtoSDAPnUCQiR5GdAPz7sewURHbj35AE/HvpluwYRESlF7gYiDkpOwWR3fh4azByNXrZMYiISkeXD2yfyCmLyAoLBwrz/Z6riErJlR2DiKhsgjcAYbtkpyCSLiNPg+k7LsuOQURUNsJgnLJIw+MQonWnbuD4dU5RREQOJvY0ELhIdgqyMywcKMi5G+n47XiU7BhERHfn73eBvDTZKYik+mJnKFJyOFc4ETmg9Chg3+eyUxBJFZeRj9m7wmTHICK6O4e+AZKvyk5BdoSFA4VQafX4cMtFTlFERI4rNwnY9aHsFETSHLqahD/Px8mOQUR0986sAGLPyk5BJM0nW4ORo9bJjkFEdHd0KmD7W4CBU62REQsHCjFv/zVEJnNoMBE5uEtbgIiDslMQVbgctQ6f/RkiOwYR0T0SwM4pPOFAldLGMzE4Fp4iOwYR0b2JOwec+VV2CrITLBwowNVb2VhxjFMUEZFC7PoQ0GlkpyCqUN/+ewXxmSrZMYiI7t2tEOD0ctkpiCpUeq4Gs//lFEVEpBAHvwZykmSnIDvAwoECzPjrEnSco4iIlCL1OnBioewURBXm4s0MrDsVIzsGEVH5Ofg1kJUgOwVRhZm79yoy8rSyYxARlQ91JrB3uuwUZAdYOHBwf12Mx8lIXkyUiBTm2A9ABk+kkvIJITDz78sQrP8TkZJosoHdn8hOQVQhQmIzseE091uJSGGCNwA3TshOQZKxcODA8jQ6fPPPFdkxiIjKnzYP2D1Ndgoim/vzfBwuxGTIjkFEVP5CtwPX98tOQWRTQgh8/tclcAIAIlKkfz4A9Lzge2XGwoEDW3jgOm5lcT5kIlKosJ3Atb2yUxDZTI5ahzm7OR8yESnYPx8AWh6vkHJtPhfLDgBEpFxJl3ndokqOhQMHFZmcg98CeEFkIlK4fz/iCQdSrEUHw5GUrZYdg4jIdtKjgMDFslMQ2URmvhbfsQMAESnd4dlA9i3ZKUgSFg4c1My/Q6HRG2THICKyrfQoIHCR7BRE5S4qJRcrA6JlxyAisr3jC4DcFNkpiMrdvH3XkJKjkR2DiMi21FnAvhmyU5AkLBw4oP2hiTh6LVl2DCKiinF8IZCbKjsFUbn6cic7ABBRJaHOAg5/KzsFUbm6lpiNNSdvyI5BRFQxgjcCCcGyU5AELBw4GINBcD5kIqpc1FnA0bmyUxCVm0NXk3AwLEl2DCKiinNuJZByXXYKonIzd89V6HlFZCKqNASwf6bsECQBCwcO5s8LcQhPypEdg4ioYp1dAaSzVxc5PiEEvtt9VXYMIqKKZdABB2bKTkFULs7HpGNfaKLsGEREFSviABB1VHYKqmAsHDgQjc6AefuuyY5BRFTx9Brg4FeyUxDds53BCbiSkCU7BhFRxbvyNxBzUnYKons251/OAEBElRSvdVDpsHDgQNaduoG4jHzZMYiI5AjZzHkVyaHpDQLz9rMDABFVYnuny05AdE8OX03Cqag02TGIiOSIPw9c3iY7BVUgFg4cRK5ahyWHOC8oEVVmnFeRHNvW87GITM6VHYOISJ7Y08Dl7bJTEN0VIQTm7uF0g0RUyR34EtDrZKegCsLCgYNYERCFlByN7BhERHJFHAAij8hOQVRmGp0BC/aHy45BRCTfkTmA4EVlyfHsDE7A5XhON0hElVxaBHB+lewUVEFYOHAA6bka/HI0UnYMIiL7wGsdkAPacCaG0w0SEQFAUqjxegdEDkSnN+BHXm+QiMjoyFxAp5adgioACwcO4OejEchWcxgQEREA4zQHUUdlpyAqNZVWj8UHOd0gEZHZ0bmyExCVyZ/n4xCVwukGiYgAADm3gAtrZaegCsDCgZ3LzNdi3ckY2TGIiOzLsR9kJyAqtTWBN5CUzR45RERmt4KBq7tlpyAqFYNB4OejEbJjEBHZl+MLeK2DSoCFAzu39uQN5HC0ARGRpcjDQNw52SmISqTRGfDLMU43SERk5eh3shMQlcqey7cQmczRBkREFjJuAJe2yE5BNsbCgR1TafVYeTxKdgwiIvt0lKMOyP5tuxDL0QZERIWJOwdcPyA7BVGJfj7C0QZERIUKmAcIITsF2RALB3Zs89mbSMnRyI5BRGSfru4CEkNlpyAqkhACy49ytAERUZF4rQOyc8evp+BibKbsGERE9ik5DAjbKTsF2RALB3ZKbxBYzqkNiIiKIYCAH2WHICrSgStJiODUBkRERYsJBKKOyU5BVKSlhznagIioWMd4TK5kLBzYqZ3B8biZli87BhGRfbv0J5DGIivZJ442ICIqhcAlshMQFSokNhMB11NkxyAism/x54GIg7JTkI2wcGCn2LOBiKgUhB44uVR2CiIr52PScTo6TXYMIiL7F74HSON13cj+LD1yXXYEIiLHcHyh7ARkIywc2KHDV5MQditbdgwiIscQtB5Qc5tJ9mX5EY42ICIqFWEATv8iOwWRhRupudh96ZbsGEREjiHyMJASLjsF2QALB3Zo9Ylo2RGIiByHJhu4uEF2CiKz6JRc7A3lyQYiolK7sBbQ8JowZD/WBN6AQchOQUTkKARw5lfZIcgGWDiwMzGpeThyLVl2DCIix8KdFLIjqwOjebKBiKgs1JlA0B+yUxABAFRaPTafi5Udg4jIsQStZycABWLhwM6sPcWeDUREZZYcBkQdlZ2CCCqtHlt5soGIqOw4XRHZie0X4pCZr5Udg4jIsagzgeCNslNQOWPhwI6otHpsOntTdgwiIsfEEw5kB/66GI8slU52DCIix5NyFYg4KDsFEdacvCE7AhGRYzrNmQCUhoUDO7IrJAEZeezZQER0V67uAjLjZKegSm4dTzYQEd29U8tkJ6BKLuhmBi7HZ8mOQUTkmJIuAzdOyE5B5YiFAzvyx6kY2RGIiByXQQecWyk7BVVil+MzcTE2U3YMIiLHFb4PyEqQnYIqsfU8Jiciujenl8tOQOWIhQM7EZ6YjbM30mXHICJybOd/Bwx62SmoktpwmtMNEhHdE6EHgjfITkGVVLZKi7+D42XHICJybFd2AjnJslNQOWHhwE6s58kGIqJ7l5MIRBySnYIqIZVWjx1BnCqLiOieBa2XnYAqqR1B8cjTsAMKEdE9MWiBS1tkp6BywsKBHdDpDTzZQERUXthTkST491ICL4pMRFQeUq4Csedkp6BK6M/zsbIjEBEpw0UekysFCwd24Nj1FKTmamTHICJShrB/AHWO7BRUyWw+y5MNRETlJmid7ARUydxMy8P5mAzZMYiIlCEhCEi+KjsFlQMWDuzAX0GcR5GIqNxo84Arf8lOQZVIUrYKJyNTZccgIlKOS1sBnVp2CqpEOAMAEVE546gDRWDhQDKVVo+9l2/JjkFEpCzcSaEKtCs4AQYhOwURkYKoMoCru2SnoEpkOzvzERGVr5DNgOBBkqNj4UCyfaGJyOUFmIiIylf0MSCLB4BUMf4OTpAdgYhIeYL+kJ2AKonL8Zm4nsRpLomIylXmTSA6QHYKukcsHEjGIZFERDYgDEDwJtkpqBKIz8jH+Zh02TGIiJQn4iCQlyY7BVUCnDqYiMhGgjkTgKNj4UCijDwNjlxLlh2DiEiZWDigCrAzOJ4jcImIbMGgA67tlp2CFE4Igb8usnBARGQToX8BWpXsFHQPWDiQaFfILWj1PNtARGQTSZeBtEjZKUjh/r7IaYqIiGzmyt+yE5DCnYpKQ0ImT2oREdmEOguIOiI7Bd0DFg4k+ieEPRuIiGwqjBdWJNu5kZqLkLhM2TGIiJQr4iCgyZWdghTsH16niIjItsL+kZ2A7gELB5JkqbQ4HcU5O4mIbIo7KWRDO3mygYjItnQqIHyf7BSkYAfDkmRHICJStmu7wbldHRcLB5IcvZbMaYqIiGzt5ikgN1V2ClKovZdvyY5ARKR8nK6IbCQ0PgtxGfmyYxARKVtOIhB7VnYKukssHEhy8Ap7NhAR2ZzQ88KKZBMpOWoEc5oiIiLbC98L6DSyU5ACHQxLlB2BiKhyuMqZABwVCwcSGAwCh66ycEBEVCE4XRHZwJGryRxxS0RUEdRZQORh2SlIgfazMx8RUcXgtQcdFgsHEpyPSUd6nlZ2DCKiyiHyEKDlMHQqX4evJcuOQERUebCnIpWzlBw1gmMzZMcgIqocUq4CqRGyU9BdYOFAggO8ABMRUcXR5gERh2SnIAXRGwSOhbNwQERUYdiOUzk7GJYEA0cOEhFVHM4E4JBYOJCA1zcgIqpg1/fJTkAKEnQzHRkcOUhEVHEybgBpkbJTkILwmJyIqIKF75WdgO4CCwcVLDY9D1cTs2XHICKqXKKOyk5ACnIojKMNiIgqHK9zQOVEozNw5CARUUW7eRrQqmSnoDJi4aCCBYSnyI5ARFT5pF4HsuJlpyCFOHSVvRSJiCocpyuichJ0MwO5Gr3sGERElYteDdw8JTsFlRELBxXsVFSa7AhERJVT1DHZCUgBkrPVCE3Ikh2DiKjyiT4GGAyyU5ACnI5KlR2BiKhy4kwADoeFgwp2KpI7KUREUnAnhcrB6ag0CF5MkYio4uWnAwkXZKcgBWBnPiIiSaLZmc/RsHBQgW6m5SE+k/N5ERFJwcIBlYMz0TzZQEQkDa9zQPdIpzfg3I102TGIiCqnuPOAOkd2CioDFg4qEHs2EBFJlBkDpEfLTkEO7uwNtuVERNLwOgd0j4LjMpHH6xsQEclh0AIxJ2WnoDJg4aACcZoiIiLJOOqA7kGuWocrCdmyYxARVV5x5wC9TnYKcmCnItkBgIhIqqgjshNQGbBwUIFOc3oDIiK5ogNkJyAHdj4mHXoDL3BARCSNNg9Iuiw7BTmwU7wwMhGRXLzOgUNh4aCC3MpU4UZqnuwYRESVW+xZ2QnIgZ3hlINERPKxLae7pDcInI3m9Q2IiKS6FQJoef1XR8HCQQXhaAMiIjuQFgnkZ8hOQQ7qDE82EBHJF3dOdgJyUFcSspCj5lRXRERSGXTG4gE5BBYOKkjwzQzZEYiICAKIvyA7BDkgnd6AILblRETyccQB3aXg2EzZEYiICOAxuQNh4aCCXI7Pkh2BiIgA7qTQXbmSkI18rV52DCIiSrkGqHgCmMrucjy/N0REdoHH5A6DhYMKwp0UIiI7EX9edgJyQKEJbMeJiOyD4HRFdFcusTMfEZF94DG5w2DhoALcTMtDlopzKRIR2YU49m6gsruSkC07AhERmcSycEBlo9MbEJbAwgERkV1IuQaoc2SnoFJg4aACXIpjL0UiIruRFQvkJMtOQQ4mlCcbiIjsB0ccUBlFJOdCrTPIjkFERAAgDEDCRdkpqBRYOKgAvL4BEZGd4dBIKiP2UiQisiNJobITkINhZz4iIjvD6xw4BBYOKsAlXt+AiMi+sHcDlUFcRj6nHCQisicZMYAmT3YKciDszEdEZGd4TO4QWDioANxJISKyMynXZCcgB3KF7TgRkZ0RQMpV2SHIgbAzHxGRnWE77hBYOLCxlBw1krPVsmMQEVFBLBxQGVzhNEVERPYnmSccqPSu3sqWHYGIiApKuQ4IITsFlYCFAxuLSsmVHYGIiO7EnRQqgyu3WDggIrI7SVdkJyAHkZarQWa+VnYMIiIqSJsLZMXLTkElYOHAxlg4ICKyQ9xJoTK4lpgjOwIREd2JIw6olHhMTkRkpzgTgN1j4cDGbqRyJ4WIyC5xJ4VKQQiBm2m8ACcRkd1J5ogDKp1oFg6IiOxT6nXZCagELBzYWHQKTzYQEdmllHDZCcgBJGapodYZZMcgIqI7ZcQA2nzZKcgBRLMzHxGRfeIxud1j4cDGOCySiMhOccQBlcLNdHYAICKyS8IApEXKTkEOIDqVbTkRkV3iMbndY+HAxjhVERGRnUpl7wYqWQxPNhAR2a/MWNkJyAFwqiIiIjvFqYrsHgsHNpSUrUKuRi87BhERFSYtSnYCcgAxvL4BEZH9yrwpOwE5ABYOiIjsVGYsoFPLTkHFYOHAhm6wlyIRkf3KviU7ATkAXhiZiMiOccQBlSAlR41stU52DCIiKpQAshNkh6BisHBgQzzZQERkx/RqIDdVdgqycxxxQERkxzLjZCcgOxeXzgtoExHZNXbos2ssHNhQUjaH2xAR2TX2bqAS8OLIRER2jCMOqAQ8JicisnNZ8bITUDFYOLChZO6kEBHZNxYOqBg6vYEnHIiI7BkLB1QCHpMTEdk5HpPbNRYObIg7KUREdo69G6gYaXkaCCE7BRERFSk7HjAYZKcgO8ZjciIiO8fCgV1j4cCGUnK4k0JEZNe4k0LFSMvVyI5ARETFMeiAHM6NTEVLzlHJjkBERMXJ4jG5PWPhwIbYu4GIyM5xxAEVIy2HhQMiIruXkyQ7AdmxpCwekxMR2TVeHNmusXBgQ8kccUBEZN844oCKkcoRB0RE9k+VITsB2TEekxMR2blsduazZywc2IhGZ0BmvlZ2DCIiKk5uiuwEZMc4VRERkQPIz5CdgOwYZwEgIrJzOcmyE1AxWDiwkdRcNS+oSERk79TZshOQHeOIAyIiB5CfLjsB2TFed5CIyM5pcsATqPaLhQMbSc/laAMiIrvHwgEVIy2XJxuIiOwepyqiIqi0eqi0BtkxiIioWILH5XaMhQMbydPoZEcgIqKScAeFisGpioiIHACnKqIi5Gn0siMQEVFp8LjcbrFwYCO53EkhIrJ/2lzAwO01FS4rn50AiIjsHkccUBHYmY+IyEGwcGC3WDiwkXzupBAROQZ1luwEZKdUWhaViIjsnp2MOFi1ahWqVasmOwYVkM/OfEREjoGFA7vFwoGNcFgkEZGD4E4KFUGlY1tORGT3ynnEwdixY+Hk5GR1u379erm+DtkeZwEgInIQ7Mxnt1g4sBEWDoiIHISdFA7YU9H+qHlBRSK6R98GqOE0KwtTdqvM90WkGfDcxjzUmpsNv9lZGLk5D4k5pd/eFLZMAHhvjwo15mSh0bxsrAvWWvxt82Utnlmfd29vxl5pyv999e/fHwkJCRa3pk2blvvrkG1xqiIiIgdhJ8fkZI2FAxvhsEgiulfldbJBbxCYflCFpguy4fV1FpovzMaXR9QQQpgf8/0JNWrPzUbtudn44YTa4vmnYnXovDwHOoO4c9HKUM47KeypqBxqHQsHRHT3zsTpseycBh3r3D7kytUI9FubCycAB0dXwfFXvaHRA8+sz4NBlNzOFrZMAPj7qhZ/hGix9/+88V0fT7z+dz5S8ozbsEyVwGcH1Vgy0LNc35/d0KtLfkwZeXh4oG7duha3BQsWoEOHDvD29kajRo0wceJE5OTkFLmMixcvonfv3vD19YWfnx86d+6Ms2fPmv8eEBCAHj16wMvLC40aNcI777yD3Nzccn8vlRmPyYnoXvGYvIKU4zF5YcfiBW8zZ84st9eqDFg4sBGOOCCie1GeJxvmHNdg6VktFg/wxJVJPpjTxxPfnVBj0WkNACA4UY/PD6mxYbgX1g/zwv8OqRGSaNyG6QwCb/6jws+DvODq7GTT9yyNNr/cF8meisqg5lRFRHSXcjQCL/+Zj1+e8UJ1z9vt5/GbekRnCKwa6oUOdVzQoY4LVg/1wtl4Aw5GFb/NKWqZAHAlxYBeTVzwcH0XjOrgBj8PJ0SlG/cNPtqnwlsPu+G+qgo99NNrS35MOXB2dsbChQtx+fJlrF69GgcPHsRHH31U5ONffvllNGzYEGfOnMG5c+fwySefwM3NDQAQERGB/v37Y9iwYQgODsbGjRsREBCAyZMnV8h7sQV7HDnJY3Iiuhc8Jq9AOlXJjymlgsfg8+fPh5+fn8V9H3zwgfmxQgjodBydVhy73nt05CpRnlZZX7yMgHW4MWewxS3ulzfNfxc6DVL3LsXNBaMQ8+NwJG/7Bvrc9CKXJ/Q6pB9eifgVkxDz4zDELhmNlJ0/QJedWmCZWqTs/AEx80Ygbvl45EcHWSwj89RWpO37udzfK5Fs5X2y4cRNPZ5t7YpBrdzQpJozhrd1Q7/mrjgdZ+wVEZZiQMc6LniyqSueauaKjnWcEZZi/Nvc4xo8cZ8rujRwse2blkmU/0Eleyoqg4pTFRHRXZq0S4VBLV3Rp5mrxf1qnYATAI8CzaqnK+DsBATEFH/8UNQyAeCBOi44G69Her7AuXg98rUCLWo4IyBGh/O39HjnUffyeFv2SVf+Iw527twJHx8f823EiBGYMmUKevfujSZNmuDJJ5/EV199hU2bNhW5jJiYGPTp0wdt2rRBy5YtMWLECDzwwAMAgNmzZ+Pll1/GlClT0LJlS3Tt2hULFy7E77//DpWq/E6e3A0ljZxU4ogDHpcTVQwek1cwQ/mdQy14DF61alU4OTmZ/x0WFgZfX1/8+++/6Ny5Mzw8PBAQEICxY8di6NChFsuZMmUKevXqdTuiwYDZs2ejadOm8PLywgMPPIAtW7aUW257Zb3XaUcSEhLM/79x40Z8/vnnuHr1qvk+Hx8f8/8LIaDX6+Hqah9vSYnzIrv534c6L3x9+w7n23WntAO/ID/iLPyHfgJnD2+k7VuK5G3foO4rcwtdltCpobkVgapdX4R77aYwqHKQdmA5kv/8EvXGzAcAZF/cDc2t66j7yvfIjzyHlL/nouHktXBycoI24xZyLu4xP5ZISQqeGPjq6O2D4ZJONhR2IgEAujZywfJzGlxL1aNVTRdcvKVHQIweP/YzTlnQobYzrqXqEZNpgBDAtVQD2td2RkSaASuDtDg33tuWb1c+Q8UcVJp6KjZt2hSRkZGYOHEiPvroI/z000+FPv7ll1/Ggw8+iKVLl8LFxQVBQUFWPRW/+uor/Pbbb0hOTsbkyZMxefJkrFy5skLeT2WgtBEHGQHrkHl8vcV9rjUaosEbxoN9odMg7eAK5F05CqHXwqvpQ6jR7y24eFcvdrnalJtIP7ISqphLgNDDreZ9qPXcNLj61QZg3EfIvXQATm6eqNZzDHza9TY/NzcsALmXDqD28Bnl/G6J5NlwSYvzCXqcecO6/XysoQu83YGP96vxzVMeEAL4ZL8KegEkZBfdU7G4ZQLA0y1c8UpHN3T5JQdebk5YPdQL3u7AW/+osOpZLyw9q8Wi0xr4V3HC8sGeaFdbQScfDOU/4qB3795YunSp+d/e3t7Yv38/Zs+ejbCwMGRlZUGn00GlUiEvLw9VqlSxWsZ7772H119/HWvWrEGfPn0wYsQING/eHICxc0BwcDDWrVtnfrwQAgaDAVFRUbj//vvL/T2VRf/+/a32J2rVqiUpzd1T65V3TA7wuJyoIvCYvIJV0DG5ySeffILvv/8ezZo1Q/XqxR/rmMyePRtr167Fzz//jJYtW+Lo0aN45ZVXUKtWLfTs2dPGieWx6xEHrBLZGWcXuPhUv32rUhUAYFDnIid4H6o/+Rq8Gj8Aj7ot4D9wCtRxV6COCyt8UR7eqPPiV/C+vwfcajaER4M2qNH3TWhuXYcuKwkAoE29Ca8Wj8K9VmP4PjQIhrxMGPKNV1pP2/sTqvcaC2cP6510IkdmOjEwu4+H1d8KnmzI0wrkagQ+2FvyyYZPurvjxfZuaLM4F25fZuHBZbmY8qg7Xu5oPAl9fy0XfPOUJ/quyUO/tXmY/ZQn7q/lggk78/FdXw/sidCh/U85eHBZDo7eUNZoKgDl2rvBpDL3VFQSJV7jwM3/PjSctMZ8q/vyHPPf0g78gvzrp+E/9BPUeelb6HJSkbztm2KXp01PwK11H8GtRkPUfWk26o1bjKpdX4STi7F3c971U8i9cgS1R36J6r3GIW33IujzMgEY9x8yjv6OGv3est0bJqpgNzMNeHe3Cuue94Knq/V0ArW8nbF5RBX8fU0Ln2+yUfXbbGSogYfqOaOo2QdKWqbJzF6euP6OL0Le8sFz97th9jEN+jR1hZsL8NVRNQLGVcHrD7ph9Pbyn6JPKkP5b6u9vb3RokUL802tVmPw4MHo2LEjtm7dinPnzmHJkiUAAI1GU+gyZs6cicuXL2PQoEE4ePAg2rZti23btgEAcnJyMGHCBAQFBZlvFy9eRHh4uLm4IBNHTto5HpcT2RSPySWwwSwAxfniiy/Qt29fNG/eHDVq1Cjx8Wq1Gt988w1+++03PP3002jWrBnGjh2LV155BcuWLauAxPLYR/f8e8AqUcXRpccjdsloOLm4wb1BG1TvOQaufrWhvnUdMOjg1aST+bFuNRvBxa8W1PFh8GjQplTLN6jzADjB2cM4ksS9dlPkXjoEg1YNVdR5uPjUgLOXH3IuH4KTqzuqtOpqg3dJJI/pxMC+/6tS7MmGt/7Jx8JTGjg7AaM6uBV7sgEANl3WYV2IFn8M80K7Ws4IuqXHlD1q1Pd1wphOxpN7bz7sjjcfvj2NweogDXw9nPB4Qxe0XpyDM294IzZL4MUt+Yh61wcexZy4cDg26N1Q2Xsqmjg5Ff89mTFjht1OO6g3CJTiOqWO57+TDXcynWzwf+YDeDU2Fqj8B05B/K9vQR1XdFuecfR3eDV/GNV7v2q+z616PfP/a1NvwrNRB3jUawmPei2RduAX6DIT4VKlKtIPrYTvgwPNIxOIlOBcgh5JuQIPLbt9AlQvgKM39Fh8WgP1/3zRr7krIt7xRUqeAa7OTqjm6YS632ejWbvC+3SVZpkud+wIhKXosTZEiwsTvPHbBQ2eaOyCWt7OGNnODa/+pUK2WsDXQyFteQWcbDh37hwMBgN++OEHOP/Xu7u44r9Jq1at0KpVK0ydOhWjRo3CypUr8dxzz+Ghhx5CaGgoWrRoYevo5cYhR04qsiHncTmRLfGYXJIKHnHw8MMPl+nx169fR15eHvr27Wtxv0ajwYMPPlie0eyOwxcOTFWi0jJVifbv34/HH38cANCsWTMEBARg2bJl5VY4EArbSfGo1xo1B06FW40G0OekIfP4etxa9zHqv7oEhtx0wMUVzp4+Fs9x8a5W7HyKBQmdBhmHV6JK2yfMvRV8OvSFJika8SsmwsXLD/7PfgyDKgeZAetQZ9RspB9dg7wrR+FarS5qDnwXrr7+5f6+yZJxUB7Zii1ONgDAh/tU+KSbB15sbzxY61DHBTcyBWYHaMw7KQWl5Bkw64gaR8d541ScHq1qOqNlTRe0rAloDcZhkx3qKGiKAxsw9VQ0iY6OxuDBg/HWW2/h66+/Ro0aNRAQEIDXXnsNGo2m0MLBzJkz8dJLL+Gff/7Bv//+ixkzZmDDhg147rnnzD0V33nnHavn3XfffTZ9b2XhyFMOKva6Y+V4skEIA/Ijz8LvkeeRuHE6NEmRcK1aB1UfG4EqrYz7WO61miInaA/0qhzoMm5B6NRwrV4fqtjL0CRGcLRBBVPW3ql9eqqpK0LespxOYNyOfLTxd8HH3dwtTvD7VzG23QejdEjKFRjSuvDtX1mWCRi3pxN2qvBjPw/4uDtBbzC238Dt/+qV9GUQth8d1qJFC2i1WixatAjPPPMMjh8/jp9/LnpO9/z8fHz44YcYPnw4mjZtitjYWJw5cwbDhg0DAHz88cd47LHHMHnyZLz++uvw9vZGaGgo9u3bh8WLF9v8/ZTENHLSZMCAAdi8ebP5302aNMFXX32FN998s8jCQUxMDD788EO0aWNsP1q2bGn+W8GRk6a/LVy4ED179sTSpUvh6elZLu9DSV9zEx6XE4/JbYvH5LJU7Bbb29tyv8rZ2dnqPK5We3sqRNMIu3/++QcNGjSweJyHh/XIFCWxj6Pze2CvVaKSelk6Gq/mBdZz7abwqN8asUtfRW5YAJzd7u1ia0KvQ/KObwEANftNMt/v5OKKmnecUEj5Zz58Oz8DTWIk8sMDUW/cImSd2or0/ctR67lP7ykHlYw7KbZli5MNAJCntT4J6uIEGIpom6fuUWPqYx5o6OeMM3F6FLxki84glHWyAQAqYHtdWXsq1q1b1/z/BaccBIDDhw+jd+/e2LVrF/73v/8hJCQEe/fuxapVq5CRkYHt27ebnztlyhQEBQXh8OHDAIxTDs6ZMwfLly/HrVu30KpVK0yfPh3Dhw8vt+xKa8eB8j/ZYMjNhNDkI+vUFlTr8X+o3msc8qPOIXnbN6gz6ht43tcBXs06w7tdL9xaPRVOru7wHzQVzm4eSNvzE2oOmorsC7uQfX4nXLz8UOPpyXCv1bgiVkWllaNzARR8jVx74OvhhPZ3XD/A280JNb1u37/yggb313JGrSrOCIzV4d3dakx9zB2t/W8/76nfc/FcGzdMfsS9VMss6NfzWtSq4oRnWhtPTnS7zxUzj6hxMlaHf8N1aFvLGdU8FbSNq4DCwQMPPIAff/wRc+bMwbRp0/DEE09g9uzZGD16dKGPd3FxQWpqKkaPHo3ExET4+/vj+eefx6xZswAAHTt2xJEjR/DZZ5+hR48eEEKgefPmeOGFF2z+XkqDIyftF4/LSWmHYvaGx+SyyN0vqVWrFi5dumRxX8GRcm3btoWHhwdiYmIq3Uw1Dl84sNcqkQLPN1hw9vSBW40G0GXEw7PJg4BeB4Mqx+KEgz43o8QLKpp2TnSZSagz6pti50ZU3QiGNvUGag54G+mHfoNXs4fh7O6JKm26I/GPneX23qhoBie7viyKw7PFyQYAeKaVK74+psZ9VZ3QrrYLLiTo8eNJDV7t5GaVYV+EDtdS9Vg91NjTq0sDF4SlGPBvuBY3swRcnJzQuia/B2VV2XoqloU9Tzno4uwEfVF78w6ovE82iP9O1nm1eAx+XYYCANzrNIM67gqyg/6F530dAADVur+Mat1fNj8vI+APeDbpBCdnF2QGbkT9V5cg//pppP7zI+qNXXD3b5BKpDY4Qzi7wskG13ah0ruaasC0A2qk5Qs0qeaMz3q4Y+pjlr/BiDQDUvLKfkI8MceAr4+pceK128dIjzRwwfuPe2DQH/mo7W28cLKiOJfvIe2qVasKvX/q1KmYOnWqxX3/93//Z/7/sWPHYuzYsQAAd3d3rF9veTH6O3Xp0gV79+69p6y2opSRk0rsBHAnHpdXPgYoqZe5/eExuSSSt9dPPvkk5s6di99//x2PP/441q5di0uXLpk7mPv6+uKDDz7A1KlTYTAY0L17d2RmZuL48ePw8/PDmDFjpOa3JYcvHNzJXqpELgrfSTFo8qHLSICLd2941G0BOLsi/8ZFeLfuBgDQpsZCn5UMj/pFz6No3jlJj0edUbPh4uVX9GN1GqTtWwr/Zz6Ak7MLIAy3OxcZ9OaTF2RbBvu+nnqlcDcnGxYN8MT0Q2pM3KVCUq5AfV8nTOjshs97WhZL87UCk/9VYeNwLzj/tw1r6OeMRQM8MW6HCh6uwOqhnvByU9r2zfbvp7L1VCwLe51yEDC25XoF9+u615MNLlX8AGcXuPk3srjfrWYjqGNDC32ONvUmckMPod7YhcgJ3gfPhu3hUqUqqrTpgdR/F8CgzuMFFm3N1RPQFH1BUyp/h8dadnT6to8nvu1T/FQs0VN8y7RMkzo+zoU+9/OeHlbtvmK4KvR92RFHHTnpqtR5BwvgcXnloxfK/17bOx6TK8/TTz+N6dOn46OPPoJKpcKrr76K0aNHIyQkxPyYL7/8ErVq1cLs2bMRGRmJatWq4aGHHsKnnyp7lJXiCgf2UiVycVHWjzj94Ap4tXgErlVrQ5edhsyAdYCTM7zb9oSzhzd8OvZF+sFf4eLpCyePKkjf9zM86rexmBM57pc3Ub3naFRp1dW4c7J9NjSJEag9/HPAYIA+xzgVgrOXD5xcLKuuGSc2wKvZw3CvYxze6tGgLdIP/wafDn2QfX4nPBtwOGtFYOGg4pXHyQZfDyfM7++J+f2Lf56XmxOuTvaxuv/1h9zx+kMKntvCpXzfG3sqlo29TjkIAK4uTtBU7HW6KtS9nmxwcnGDR92W0KXFWdyvTYuDSyEXPBZCIHXPElR/8nU4u3v9d7Lhv57vpv/yhIPNCVdPOLFwQEriWj7z4VPRHHXkpBI78/G4nAycPrjC8Zi8Ajhbj7woDwWPsQGgV69eRV6TdtasWeaOeoVxcnLCu+++i3fffbe8Y9o1xRUO7KVKpLTeDbrsFKT8PRf6/Cy4eFWFR8O2qPt/P8ClSlUAQI2n3kCakzOSt38DodfCs+lDqNl3ouUy0mJhUOcBAPQ5qci/fgoAkLDScoiqcV7kjuZ/a5KjkRd2DPXGLjLfV6VNN6huhuDWuo/hVrMB/J/50CbvmyzpOSySlMidvZtlstcpBwHAzcUZgHIqB+V9sgEA/B59Hsk7voNHw3bwbNwR+ZHnkH/9NOq8NNvq9XMu7oGLlx+qtHgUAODR4H5kBPwBdVwY8iPPwa3mfVbXWKDyZ3DxZDcAUhaOOLA5Rx05eeeFw5WAx+WkZytOSsRjcrvlJIoqtdA9WXggHD/uuyY7BlG5+rvVLnSIWSs7BlH5Gn8YqF++PdXJ2qpVqzBlyhRkZGQAuH1x5PT0dFSrVs38uI8//hiHDh3C6dOnzfd169YNbm5uOHz4MLKzs1GrVi388ssvFiM2bKHL1/uRnK226WtUpOQdc6COvWxxsqHaE6PhVr0egP+mHzi4AnlXjlicbHDxuT1V0Y05g1Fz4BT4dOhjvi8neC8yT26GPjsVrjUaoFr3l1Gl5WMWr63PTUfC7++j7itz4epb03x/xvH1yD77F5yrVIX/oKnwqN/axmuBrtX9HO4Z12XHICo/jR4FXnP8EXhU/nYGx2PyHxdkxyAqVwtbnMWQ2B9lxyAqX8//AnQcKTsFFUJxIw7shbcHVy0pj16wdwMpkFvh80STHPYy5SAAuLsoa5tX69mPi/27k6s7avZ7CzX7vVXkYxp/bH3RQ5+O/eDTsV+xy3bxro6Gb/1mdX+1bqNQrduoYp9L5UvvwmldSGE44oCK4MNjclIgTh9MiuTGEQf2ii2pjfh6ctWS8hicuJNCCsRhkXbFXqYcBAAvd07PRsqjd+FJVlIYXuOAisBjclIiXhyZFInH5HaLLamN+LJ3AykQRxyQIrF3Q4VwxAtT+fGEAymQzpmFA1IYFg6oCD4etrnYJpFMvMYBKZI7r3Nmr7jFsREfnmwgBTLw4sikRO6cqogKV9WLJxxIebQsHJDSsHBAReAxOSmRgZ35SInYmc9ucYtjI5xPkZRIDw6LJIVxduXcyFQkFg5IibRO3OaRwnhVL/kxVCnxmJyUiMfkpEicqshusXBgI5xPkZRIxxEHpDS8MDIVo1oVd9kRiMqd1onfa1KYKjVlJyA7xemDSYk4fTApEqcqslvc4tgI51MkJeJ8iqQ4XtVkJyA75scRB6RAGo44IKXxZuGACufs7IQq7uz4RMrCiyOTInlWlZ2AisCzgDbCEQekRAZuMkhpfOrITkB2jFMVkRKpwREHpDAccUDF4HE5KQ0785HieFbl9MF2jFscG/H2cIW7K1cvKQt7N5Di+NSWnYDsGAsHpEQsHJDiVPGXnYDsWHVOO0gKw2NyUhx25rNrPLNtQ3X8WDEjZWHvBlIcFg6oGCwckBKpWDggpfFm4YCKVreqp+wIROWKF0cmxWHhwK7xLKAN1fHlTgopi44XYiKl4U4KFaOGN0+wkvKwcECKw6mKqBg8JielYWc+Uhx25rNr3OLYUB32biCF0Ttxk0EKw50UKkb9amzHSXnyBUfSkJI4AV41ZIcgO8ZjclIanYEjDkhh2JnPrvEsoA3V9eNOCimLniMOSGm8WTigotXx9YSrMw/OSFnyWDggJfGqDrjw4rdUNE4fTErDEQekOOzMZ9e4xbEhFg5IaThVESkOezdQMZydnVCHbTkpTJ6BUxWRglRrJDsB2Tkek5PS6GUHICpvPCa3azwLaEMcFklKwwsxkeKwdwOVoEE1L9kRiMpVnoG9s0lBqjWWnYDsHDsAkNJwFgBSHB6T2zVucWyIvRtIabiTQori7Ar4NZCdguwcr3NASpNr4FRFpCDVWTig4rFwQEqjE+zMRwpT9T7ZCagYPAtoQywckNJwqiJSlGr3cV5kKlF9jjgghcnRs3BACsIRB1QCfx93uLnwRCspBzvzkaI4uQDVm8hOQcXgFseG6lXjRRVJWXTcZJCS1GgmOwE5gAbVWTggZcnRs2BKCsKTDVQCJycnNKpeRXYMonLDEQekKFUbAq68/pY941lAG3JzcUajGtxJIeXgiANSlBrNZScgB8ARB6Q02RxxQErCwgGVQrNa3rIjEJUbXneQFIWd+ewezwLaWHPupJCCsHBAisKdFCqF+9gBgBQmW+8iOwJROXEyTjtIVILmtXxkRyAqNzwmJ0Wpyc589o5bHBvjTgopCXs3kKJwJ4VKoXGNKnB34e4SKUeWjlMVkUL41gVcPWSnIAfAEQekJHpOVURKwlkA7B6PhG2MOymkJOzdQIrCEQdUCq4uzmzLSVEytSwckEKwHadSYmc+UhJe44AUhZ357B7PAtoYd1JISbiTQorh7MrpDajUWtbxlR2BqNxk6jhVESlE7bayE5CDaMZjclIQHpOTonDEgd1j4cDGWtTmTgoph5YjDkgpqt0HuPACoVQ6rdiWk4Jk61whOPUgKUGddrITkIOo4e2O6lW430fKwKmKSDGcXIDqjWWnoBLwLKCNVavijhre7rJjEJULTlVEilGnvewE5EBa1eWIA1IYV0/ZCYjuHdtyKgOOOiCl4DE5KYZ/K3bmcwDc4lSAFtxJIYXgsEhSjHodZSf4//buO8zOsszj+O/U6b33PpNMZiYzmSSTZNJIBRJIAgktgYAQkCIgImvDRRFde4O1YXcFCypgYUUBBZUFuyIYQksggfReZubM7B8nzC6SkGnn3O/7nu/nurgCeO3ub6/EZ97nuZ/7fuAijYwqgscMUDiA6/mkIkYVYejYk8MrIgPWCYAxwp7cFSgcxMG4Eg4c4A19LBnwipJ26wRwkarcVCUFWf/gHRQO4Ho51VKYh+sxdBPKMq0jAGOCjgN4RslE6wQYAlacOGgrz7aOAIyJvn46DuARfKRgGPx+n+q4qQgP6Q9QOIDL8b4Bhqm1LMs6AjAmeuk4gFewJ3cFCgdxMLGcjxR4Qy+jiuAF6cVSeqF1CrhMcyk3FeEdkUCSdQRgdHjfAMPUXJqpUIC9DNyPjgN4g08qbrUOgSFgxYmDuoJ0pYUD1jGAUevlIwVewCxFjEB7RbZ1BGDMROg4gNvRcYBhSgoGeLMInsC7g/CEnGopmUvWbsApYBz4/T610BoJD+B2AzyhmMIBhq+jMts6AjBmIn46DuBypR3WCeBCjBCGFzA+GJ7AmCLX4BQwTtoYVwQP6OUjBV7ARwpGYFxxJt2D8IxeCgdws8wyKbvCOgVciD05vIDLfPAEpgC4BitOnHC7AV7Qx5IBL+CWIkYg4PeplQMHeESfL2wdARi5ii7rBHApCgfwgj4eR4YXlLRbJ8AQcQoYJxMpHMAD6DiA62VVcksRI9ZRmWMdARgTdBzA1SqnWSeASzUVZSgpyBEI3I03DuB6voBUMdU6BYaIn5pxUpmXqpzUkHUMYFR6+UiB21XNsE4AF+vggWR4RI/oOICL0XGAEQoG/Lw9CNfrZVQR3K5kopTEY/VuwYoTR1Nrcq0jAKNCxwFcj8IBRoGOA3hFD6OK4FbhdKm41ToFXGxaLXtyuFtfv3UCYJSqu60TYBgoHMTRjLp86wjAqHC7Aa5XPdM6AVysICNJFbkp1jGAUTtC4QBuVTZJ8vNQPUaOPTncjseR4XpV7MndhBUnjmbU5VlHAEaFjgO4WnqxlFdnnQIu11XDz3K43+EB3jiAS1XwvgFGp7MqR2HeOYCL9fI4MtzM5+etIpfhJ2YcNRRlqCCDjRrcizcO4GpV060TwANmNXBTEe53WLy7BZfisAGjlBwK8GYRXC3CnhxuVjRBSsm2ToFhoHAQZ3QdwM0YVQRXq2KWIkZvZn2+fOzX4HKHBxhVBBcKJvNWEcYE44rgZkwBgKsxpsh1OAWMMwoHcLM+PlLgZhQOMAby0pPUXJJpHQMYlUN0HMCNqrqlEO/MYPSmsyeHi/HGAVyNh5FdhxUnzrjdADc7QuEAbpVRIhU1W6eAR8xqKLCOAIzKwX4KB3Ch+gXWCeARHZXZSgnxyDbca8DHUR5cyBfgMp8LsdrEWUVuqspzuCkDd+KNA7hWwyLrBPAQ3jmA2x3sZ1QRXIjCAcZIKODX5Ooc6xjAyFE4gBtVdEmpudYpMEysNga4qQi36qHjAG7VeLJ1AnjI5OocbirC1Q7QcQC3ya6UChqtU8BD5jSyJ4eL+fgOhQs1LrZOgBGgcGBgYXOhdQRgRCLMU4QbBZOl2rnWKeAhScGAptZwWwbudaA/aB0BGJ66+dYJ4DELm4usIwAjR8cB3IjLfK7EamOguz5faWEqxHCnAW43wG2qZ0rhVOsU8JjZ3FSEi+2P0HEAl2FMEcZYVV6aGovSrWMAI+PnKA8uk1MtFY6zToERYLUxkBQMcOAA9/JTOIDLcLMBMbCIm4pwsX0ROg7gIv6QVDvHOgU8aFFzsXUEYGS4zAe3YU/uWhQOjCyawIEDXIqPFLgNsxQRAxW5qWopy7SOAYzIvj4KB3CRmllSUoZ1CngQ44rgVgOMKoLbsCd3LVYbI/OaihT089AsXIiOA7hJYXP0QUUgBk5pKbGOAIzIXjoO4CbNy60TwKPayrNUnJlsHQMYPi7zwU3CGVLVTOsUGCEKB0ayUkM8rAh34iMFbtJ0inUCeNgpLYw4gDvRcQDX8Ael8adZp4BH+Xw+LWgutI4BDJ+PS6hwkbqTpGDYOgVGiMKBIeYjw40G6DiAm7SstE4AD6stSFdTEeMz4D57KBzALWrmSKlctkLsLOSdA7jQAJf54CYtZ1gnwChQODC0aAIfKXAh5inCLQqbpaJm6xTwuJPpOoAL7enlwAEuMWG5dQJ43PTaPGUkU0yFy7Anh1uEM6RGpgC4GauNodLsFHVW5VjHAIaF2w1wjVa6DRB7p7byzgHc50i/XwN+DsrgcP6gNG6pdQp4XDjoZ/QgXIfHkeEa45dKId6ScTNWG2NnTCqzjgAMD4UDuEXLmdYJkACaijNUW5BmHQMYviCbODgcY4oQJ2dMKreOAAwPe3K4BaODXY/CgbGlraUKB/ltgHvwxgFcoXyKlFNtnQIJYmlbqXUEYNgGKBzA6SassE6ABNFVk6uy7BTrGMCQ0XEAV0grkGrnWqfAKLHaGMtKDWn+uELrGMCQMaoIrtC6yjoBEsiqznL5fNYpgOHpD1A4gIMFkqLjDYA48Pl8Wt7BJQC4B4UDuELzcinAaEy3Y7VxAFoj4SZ8pMDxfAFuKSKuKnJTNa0mzzoGMCwUDuBo45dKKbwFh/hhTw53YU8OF+Aynyew2jjA3KYC5aaFrWMAQ0PHAZyuZraUTicX4mvVZA4c4C4RCgdwso7zrRMgwdQVpGtieZZ1DGBImAIAx8uukiq7rFNgDFA4cIBQwK/T2kqsYwBDQscBHG/SBdYJkIBObS1RRhKtuHCPSCDJOgJwbNlVzESGiRUdZdYRgCFhTw7Haz/POgHGCKuNQ9AaCbfgdgMcLa1AGn+adQokoORQQEsnMh8Z7tHnp3AAh+pYIx6OgYXTJpYqFODPHpyPwgEczR+UJq21ToExwmrjEBMrstVYlG4dAzihAZYNOFnHGikQsk6BBHUW44rgIr0UDuBEPr/Uvto6BRJUXnqS5o8rso4BnBCFAzha48lSJlNVvILVxkHWTKuyjgCcUL+fURxwKp/UeaF1CCSwjsocNRRyCQDu0OujcAAHqpsvZTEuBnbYk8MNuMwHR5v8JusEGEOsNg6yoqNMaWHGwMDZ+EiBY9XNk3KqrVMgwZ09pcI6AjAkvb6wdQTg9XinCMa66/NUm59mHQN4Q3QcwLFyaqL7cngGq42DZCSHtIwHmeBwfKTAsbjZAAdY1VmhlBCXAOB8PXQcwGnSCqWmU6xTIMH5fD6d11VpHQN4Y+zJ4VSdF/JOkcew2jjMBdNpjYSz8TgyHCmjlMMGOEJWakjLO3gkGc53RHQcwGGmXMI7RXAELgHA6fo5yoMTBcJSx/nWKTDGWG0cZlxxpqbV5lrHAI6rn9sNcKJJF0h+Nnhwhgtn1FhHAE6IwgEcJZgcLRwADpCVGtKKSUwCgHNxmQ+O1LxMSsuzToExxgmgA13UzYEDnIs3DuA4gSTGFMFRmoozNKOOj2Y422EKB3CStrM5bICjXDSj2joCcFwDjIKBE0291DoBYoATQAdaOL5IFbkp1jGAY+r3Ba0jAK818Rwpo8g6BfAaF8/kEgCcjcIBnMMnTb/SOgTwGg1FGZpZn28dAzgmLvPBcSpnSBVTrVMgBlhtHMjv92nt9GrrGMAxMaoIjuLzS93XWKcAXmfeuELVFaRZxwCO69AAs+ThEPULpIIm6xTA63AJAE5F4QCOM/Na6wSIEVYbhzqvq1I5qWzo4Dx8pMBRxi2R8uqsUwCv4/P5dMmsWusYwHEdpHAAp6DbAA510rhCNZdkWscAXmeAy3xwksJmqWGRdQrECKuNQ6WGg7x1AEei4wCO0v1W6wTAca3oKFN+OuNg4EwH+/mzCQcoapHqTrJOARzXVfPqrSMAr9PP48hwku5rJN7d8CxOAB1s7YxqZSQxTx7O0i8+UuAQVTOl8k7rFMBxJYcCehNjDuBQB/v5xoQDTL/KOgHwhk6eUMzoQThOvzikhUNkVUgtK61TIIYoHDhYVkpI50+vso4BvEY/ywacgjmKcIG106uVm8bNbjjPgX5GFcFYbq3Uuso6BfCG/H6frphL1wGchVFFcIzpV0oBLqN4GauNw10yq1YpIW54wzloi4QjFE6QGhZapwBOKC0pqEtm0XUA5zkQYZMHY7Nv4LABrrCsvVQVuSnWMYBBvDsIR0jJkSZdYJ0CMcZq43C5aWGd11VpHQMYRMcBHGHO260TAENG1wGcaD8dB7CUVy+1nWWdAhiSYMCvy2bXWccABrEnhyNMu0IKM8rN61htXODS2bUKB/mtgjPwkQJzJROl5uXWKYAhS0sKat2sWusYwGvsp+MAlmbfIPnpYoV7rJpcrqLMJOsYgCRGFcEBUvOjhQN4HquNCxRlJuusyeXWMQBJUj8fKbA270bJx4NgcJe1M6roOoCj7OujcAAjeQ1SKw8pwl2SggG6DuAYXOaDuVlvk5LSrVMgDlhtXOLqeQ28dQBH4CMFpipn8LYBXCk1HNSls+k6gHPspXAAK3P+jW4DuNKaaVUqz+GtA9hjTw5TmeXSlIutUyBOWG1cojAzmccV4Qh8pMDU/ButEwAjdsH0KuXRdQCH2NPHwS0M5DdJLWdapwBGJBz06/pFTdYxAA2I7msYmnODFGR0W6LgBNBFLptTx4EDzEXEQQOM1C+QqmZYpwBGLDUc1FXz6q1jAJKkPXQcwMLcd0h+tqBwr2XtpZpQmmkdAwmu38eeHEby6qWONdYpEEd8tblIelJQV89vsI6BBMcbB7Dhi75tALjcmmlVqs1Ps44BaC8dB4i3ii6p5QzrFMCo+Hw+vfOU8dYxkOD66TiAlZPexbjBBMMJoMuc11Wp6rxU6xhIYJEBlg0YaF4mlbZbpwBGLRTw652ncuAAewMDPg0Ek61jIGH4pMUfsg4BjImZDfma1ZBvHQMJjPHBMFHcKk3gAkCiYbVxmVDAr7cvHmcdAwmMjgPEXTBZWvg+6xTAmFnYXKQZdXnWMQAKB4if1lVSead1CmDMvOOUcfJx6RtGKBzAxKIPiIUv8bDauNCSthJNrMi2joEERccB4m76VVJOtXUKYEy9Z0mz/Hx3w9hAgMIB4iCUKi24yToFMKYmlGZpeXuZdQwkKEYVIe7Gny7VzrVOAQOcALrUuxlzACP9PI6MeMosk2a9zToFMOaaSzO1qrPCOgYSXD8dB4iHGW+Rsjhghfdcv7hJKSH2Rog/Og4QV8EUafEt1ilghNXGpabW5GpFBx/giL8ItxsQT4tulsK86wJvetviRqWFOXCAnf5AknUEeF1GidR9jXUKICbKslN01bx66xhIQBQOEFczr5WyK61TwAirjYu9e8l4ZSYHrWMgwfTRcYB4qZoptZxpnQKImcKMZF0+t846BhJYxE/HAWJs/nulcJp1CiBm1s2qVV0Bf8YRX7w7iLjJrpS6r7VOAUOsNi6Wn56kty9uso6BBBNh2UA8+ALSKR+2TgHE3LrZtarN58ABNvroOEAsVXRJE8+1TgHEVDjo183LWqxjIMH0DzAFAHGy+INSiIsmiYwTQJdb3VWltvIs6xhIILRFIi4mXyQVswmD9yUFA7plRat1DCSoPj+FA8SIPySd9mnJx+EWvG9Gfb5On1hqHQMJhD054qL2JGn8adYpYIzVxuX8fp8+sLxFfr7JEScRbjcg1lLzpZPebZ0CiJvpdXla1VluHQMJqNdH4QAx0n2NVDjeOgUQN+9ZMl4ZSYwRRnz0Mz4YseYPMQEAkigceEJbebZWd1VZx0CCYFQRYu7Uj0ipudYpgLh695Lxyk8PW8dAguml4wCxkFcvzbnBOgUQV4WZyXrrwkbrGEgQEXGZDzE2+3qpgNHooHDgGdcvblJ+Ops/xF7fAMsGYmjcUh5ERkLKTg3rxqXN1jGQYHpEsQoxsPRTUpB9CRLP2hnVai7JtI6BBNBP4QCxVNQizXqbdQo4BCeAHpGVEtJNp3PggNiL+Fg2ECPJ2dKST1inAMwsay/T7MYC6xhIID0+CgcYY+1rpJpZ1ikAEwG/Tx9Z2aYgc4QRY7xxgJjxB6Vlt0mBkHUSOASrjYcsbSvVkrYS6xjwuAgdB4iVxR+UMoqsUwCmblneopQQc2sRH0coHGAspRVIi262TgGYainL0pUn1VvHgMcxPhgxM+MtUmm7dQo4CKuNx3xgWYsKMmgNRuwwqggxUb9A6lhtnQIwV5GbquuYkYw4OTzANyPG0Mn/wRtFgKSr5tWrpYyRRYgdOg4QE/mN0tx3WqeAw7DaeExOWlj/cUardQx4GA8xYcyFM6LzkAFIki6eWaNptRy+IfYOizZ0jJGWlVLrSusUgCOEAn59fFW7wkGOWxAbkQH25BhjPn90RBFvFOFf8JPMg+aPL9KqznLrGPAoRhVhzC28ScqusE4BOIbf79MnzmpXZnLQOgo87vAAo4owBjLLpSUft04BOEpTcYbeuoAOQsQGjyNjzHW9WaqYap0CDsQJoEe997RmlWWnWMeABzGqCGOqYZE0+WLrFIDjlGan6OblLdYx4HGH6DjAaPn80orPSynZ1kkAx7l0dq0mVWZbx4AHUTjAmMpvkubdaJ0CDsUJoEdlJIf00ZVt8vHzBGOsj2UDYyW9SFr+ObFQAce2rL1My9pLrWPAww72UzjAKE2/UqqZZZ0CcKSA36ePrZqo5BD7J4ytiALWEeAVwWRp1VelcKp1EjgUP8E8bEZ9vtZOr7aOAY+h4wBjwyet+IKUlm8dBHC0m5e30EGImDnYz6gijEJRqzTvvdYpAEerLUjXu08dbx0DHsMbBxgziz4gFU2wTgEH4wTQ49516ni1lmVZx4CHUDjAmOi+Wqo7yToF4HiZySF9/KyJ8rM/RAwcoOMAIxVMls78khSk+AScyPnTq7WktcQ6BjyEUUUYE+OWSlPXWaeAw3EC6HHhoF+3nTdJGTywiDES4SMFo1XWyQxFYBim1ebp0tl11jHgQQf6+T7ECC24SSrkFjUwVP9xZquq8xgFgrHB+GCMWma5dPpnrVPABVhtEkBlXqo+urLNOgY8go4DjEpSpnTml6UAt1yB4XjbokZNrsqxjgGP2R9hLcYIjD9dmna5dQrAVTKSQ7r1vEkKB9lLYfT62ZNjNHwB6YwvSqm51kngAqw2CeLklhJd1F1tHQMe0Mc8RYzGkk9IuTXWKQDXCQX8+s/Vk1SQkWQdBR6yL0LHAYYpr0Fa/p/WKQBXainL0o1Lm61jwAOYAoBRmf12qbrbOgVcgsJBAnnXqePVXpFtHQMu18vtBoxU54VS2yrrFIBrFWYm69ZzOxTkwQOMkX19FA4wDKE06exvSUkZ1kkA1zp/WpVOm1hqHQMux+PIGLHqWdKcG6xTwEU4AUwgoYBft57XoawU2tIxcowqwohUTJNO+ah1CsD1umrz9I5TxlnHgEfspeMAw3H6Z6RC1h9gtD50Rqtq89OsY8DFIhzlYSSyK6VVX5f8AeskcBFWmwRTnpOqj6+aKB8FaowQo4owbBml0lnfkIJh6ySAJ1wyq1ZLWkusY8AD6DjAkHW9WWpdaZ0C8IT0pKBuWz1JKSEO7zAyES7zYbhCqdI535bS8qyTwGVYbRLQguYiXbeg0ToGXKqPZQPDEUiKjjXIKLJOAnjKR1a2qb4w3ToGXG4PhQMMRcU0adEHrFMAnjK+JFOfOIsLfRgZRhVh2JbdKhW3WqeAC3ECmKDeMr9By9qZrYjh6+vnIwXDsPSTUnmndQrAc9KSgvr8mk6lJ3Hwi5Hb08ttV5xAWqG06mtSgFGnwFg7pbVEb+VCH0aAx5ExLN3XSi1nWqeAS1E4SGAfPrNNHZXZ1jHgMr3cbsBQTb1U6lhtnQLwrPrCdH36nHYFeCwZI3Sk368BP8UnHEcwRTr3TimT0WhArFw9v4HHkjFsdBxgyOoXSPP/3ToFXIzCQQJLDgX0xfMnqzQr2ToKXKSXeYoYiqqZ0uIPWacAPG/++CK9d2mzdQy4WZDvQByLTzrji3QNAnHw0ZVtmliRbR0DLsLjyBiS3DrpzC9Lfv68YOT405PgCjKS9KW1k5UaplUdQ9NH4QAnklsXfQw5wC1WIB7WzqjWm7prrGPApQYoHOBYFr5Paj7dOgWQEJJDAX3p/E6VcKEPQ0THAU4oOVs69w4pJds6CVyOE0BoQmmWPnl2Ow8zYUh6eeMAbyStUFpzl5SWZ50ESCjvWTJei5p5hBzD1x9Iso4Ap+m8SOq+xjoFkFAKM5P1pQsmKyXEhT6cWB9vHOCNBJOjowYLmqyTwAMoHECStHhCsW5YPM46Blygj2UDxxNOl1Z/V8rl5jMQb36/T58+p0MTy7Oso8Bl+gPccMX/UzdfOvVj1imAhNRSlqVPnj1RPF2EE4kwBQDH4/NLZ3xJqppunQQewWqDQZfPrWPUAU6IjgMckz8orfq6VNphnQRIWCnhgG5fO0XlOSnWUeAiEQoHeFXhBGnV1xg1CBg6uaVEH1jeah0DDtfHqCIczykfYdQgxhSFA7zGjUvH64xJZdYx4GC9fKTgWE77jNSwwDoFkPAKMpL01QunKDOZgz8MTcTPqCJIyiiNdg0mZ1onARLeeV2VevtiRozg+Og4wDHNfKs0dZ11CngMqw1ew+fz6SNntmnB+ELrKHAoOg7wOie9W+pYbZ0CwFENRRn66kVTlBpmTjJOrI83DpCSK53/Qymr3DoJgKOuPKleF89kGgCOLTJgnQCOM/FcacFN1ingQRQO8DrBgF+3njdJU2tyraPAgXq53YD/r/Miac4N1ikA/IvOqlzdfsFkJQVZs/HG+ug4SGzhDGnNXVIhb50BTvOeJeN1RgfTAPB6vDuI16ibL53+WesU8ChWGxxTciigL6+drOYS2pXxWnQcYFDrWdKST1inAHAcM+rz9bk1kxQKsG7j+Hp9FA4SVjBZOvcOqWySdRIAx+Dz+fSRlW2aP45pAHitPi7z4VUV06SzvykFQtZJ4FGsNjiujOSQvnHxVNXkp1lHgYPwxgEkSeNPl1Z8XvLzYwRwsnnjivSpszsU8LN249h6KBwkpkBYOvtbUs0s6yQA3kAw4NdtqydpSnWOdRQ4SIQ9OSSprFNa/T0pzJkdYocTH7yh/PQkffPiqSrPSbGOAodgVBHUeLK08iuSn/npgBssaSvRh89sk489Jo6hxxe2joB48wellV+VGhZaJwEwBMmhgL5y4RS1V2RbR4FD9FE4QHGbtOYHUjJTQhBbnADihMpzUnXnpdMoHkCS1MeoosRWv1A66xu0QgIus7KzXO8/fYJ1DDhQjygcJBSfX1rxBWn8UuskAIbh1WkAFA8gUThIeEUt0vk/klKyrZMgAVA4wJBQPMCrjlA4SFz1C6Vz/ksKMtYCcKPzp1frPUvGW8eAwxyh4yBx+IPSGV+SWldaJwEwApkUD3BUhCkAiauoRbrgHiktzzoJEgSrDYbs1eJBZW6qdRQY4o2DBEXRAPCES2bV6v3LJjC2CIMOD1A4SAiBpGjHIEUDwNUyk0P65sVTNaky2zoKDPUNWCeACYoGMEDhAMNSnpOq7142XbU8mJyweug4SDxNSygaAB5ywfRqffiMNvFeMiTpMKOKvC+UKp17hzRuiXUSAGMgIzmkb17cpa6aXOsoMBIRH3EJp2QiRQOYoHCAYSvOStZ3LpuupqIM6ygwQFtkgmlfLZ39TYoGgMecNaVCnzy7XUGqBwnv0ABv1nhaOENac5dUP986CYAxlJYU1NffNFWzGvKto8BAXz978oRSPUta+2OKBjDBaoMRKchI0p2XTlNbeZZ1FBgY8AWsIyAepl8lLbtN8vP7DXjRsvYyfX5Np5KCfA4mskP9dBx4VnK2tPZuqWqGdRIAMZAcCuj2tZO1qLnIOgrirJdRRYlj3NLoBYDkTOskSFDsFDFiOWlh3XnpNM1tKrCOgnjjINn75v+7tPgWMQgd8LYFzUX62kVTlZ4UtI4CIwfpOPCmtALpwp9IZZ3WSQDEUFIwoM+v6dSaaZXWURBHfUwBSAwd50ffJ6L7H4ZYbTAqqeGgbr9gslZ1lltHQTzRceBdPr902qelWddZJwEQJ9Pr8vTtdV3KS+PmeSI60E/hwHNyaqSL7pOKW6yTAIgDv9+nDyxv1fWLGq2jIE4iA1zu8rzua6Rlt3JpE+YoHGDUggG/Prpqoq6eV28dBfHCDy9vCoSlVV+TOi+0TgIgztrKs/XDK7pVV5BmHQVxRuHAY8qnSpf8UsrnuxxINFfNa9BHV7bxflEC6KNw4G0Lb5YWvt86BSCJwgHG0HWLmvTBFa0K8KHifXQceE9ytrT6+1LzMuskAIxU5qXqB1d0a3otD68lkv0RxlR5RvMyae29PJ4IJLBVkyt0+9rJSg2zX/OyXh5H9iZ/SFr2n1L31dZJgEGsNhhT53VV6gtrOpUS4kPFywboOPCWvHpp3QNS7RzrJACMZaWE9I2Lp2olIwgTxn46DrxhxtXSqq9LoWTrJACMzW0q1J2XTlN+OiMIvaqPx5G9JzVPuuBuqWO1dRLgNSgcYMwtaC7St9d1qSCDB1w8y8fS4Rm1c6MjDfLqrJMAcIhQwK+PrZqo6xc18j56AqDjwOV8AWnJx6VFN4v/wgJ4VVt5tn5webcai9KtoyAGGFXkMQXjoxf5qrutkwCvw+kfYqKjMkf3XjVTEyuyraMgBgYYVeQNUy6RVt8lpWRbJwHgQFfNa9Cnz+lQOMjnopft66Nw4FrhdOncO6M/zwHgX1TmpeqHV3RrUXORdRSMMQoHHtKwWLrkfimn2joJcEzsBBEzxVnJ+u5l0xh34EUUDtzNF5BO/Vj0hmKAAyMAx3f6xFLdsa5L+el0EXrVXgoH7pRXL13yC6lxkXUSAA6WlhTUF87v1LULGmhK8pC+AY7yPGH6VdELAEkZ1kmA42K1QUwlBQP62KqJuum0ZgV5NNkzeOPAxZKzpDXfl6aus04CwCU6q3L106tnakp1jnUUxMCePn6mu07TEmndg1LheOskAFzA5/Pp2gWN+sKaTqUnUSz2gr5+6wQYlUBYWnabtPgWyc+xLJyNP6GIiwu7a/StS7qUl8YDTV7AqCKXKm6LHjTUzbNOAsBlCjOTdce6aXpTd411FIyxPXQcuIfPL827UTrnv6TkTOs0AFxm0YRi/fCKGarJT7OOglHqZVSRe2WWSWt/LHWssU4CDAmFA8TNtNo83fOWmWopY6PjdgM8juw+nRdFRxrwCDKAEQoG/Hrvac269bwOpYUpIHvFXjoO3CElV1pzlzT7eh5BBjBiDUUZ+tGV3ZrbVGAdBaPAGwcuVb9QuuxhqbLLOgkwZJz+Ia7KslP0/TfP0OquSusoGA06DtwjnC6dcbt02qekIDPKAYze0rZS3X1Vt+oL062jYAwMDPg0EEy2joE3UtIuXfYrOgYBjImslJC+snaKbji5iXHCLtXbz++bq/iD0vx/l1Z/T0rLs04DDAuFA8RdciigW1a06vNrOpWVErKOgxGg48AlCpulSx+S2lZZJwHgMfWFGbr7ym4tbSuxjoIxQOHAwTovkt7031I2l24AjB2/36cr5tbru2+ervKcFOs4GCYeR3aRjNLoaKJZ19ExCFditYGZk1uK9bNrZmlqda51FAwTbxy4QPsaad0DUn6DdRIAHpWWFNSt503SB1e0KpXRRa42EKBw4Dip+dI5d0Q7BkP8/gCIjUmVOfrpNbO4COBCA+IQ2vHq5ktvfliqmm6dBBgxCgcwVZqdojsunaZrFzQoQJukawywdDhXUpa04gvS8tukELeHAMTeeV2V+snVs9RekW0dBSPUT8eBs9QvkC7/rTTuVOskABJAZnJIt543SR8+s1UpIS4CuIaf3yvH8oekeTdG3yZKy7dOA4wKp38wF/D7dO2CRt2xbppKs9i4ukG/P2gdAcdSM0e64rfSxHOskwBIMDX5afr+m6fr2gUNzEt2of4Ab+A4QjBZOuUj0urvSxlF1mkAJJizp1Tq3rfM1PiSTOsoGAqmADhT4YRo5//s6xlNBE+gcADHmFqTq59dM1unTyy1joIToOPAYUKp0qkfky64W8oqt04DIEEFA35du6BR3798hmry06zjYBgifi5umCtqib5L1HUZBw0AzNQXputHV87QZXNqmQjgdLw76Cy+gDTzuujP8pI26zTAmGGlgaNkpYb0mXM7dPsFk1WUye03p+JxZAep6JLe/Ig0dR0HDQAcob0iWz+9epbO6+IxV7foo+PAji8gzXhL9HZi4XjrNACgpGBA7zxlvH54xQw1FWVYx8Hx+NmTO0Zeg3Txz6UF/y4Fw9ZpgDHFSgNHWtBcpPuvm6NzplRYR8Ex8DiyAwSSpAXvky66T8qrs04DAK+REg7ogyta9bWLpqg8h/dWnK7PT+HARHGrtO6X0qIPSEF+DwA4S1t5tu59y0xdPb9BoQAXlByHy3wO4JOmXRF9ALl8snUYICZYaeBYmckh/ceZbfqvS7pUkcuhg5P085Fiq3xqtAVy5rXcNAHgaHObCnX/W+fo0tm1vH3gYL0+Dq3jKpgiLbhJWveQVNphnQYAjisc9Ou6hY2656qZainj7QMn4TKfsdw66cIfSyd/SApxXgXv4sQJjtddn6//vna2LpxRLc4cnIE3Doyk5EinfSbaBlnUbJ0GAIYkJRzQu04dr7uv6tbE8izrODiGXjoO4qdmtnT5b6SZb5UCQes0ADAk40sy9aMruvX2xU0KB9kLOgKX+WwEk6WT3i1d8TupeqZ1GiDmWGngCqnhoG46fYK+9+YZ3HRwgH4fG9348knta6Sr/iB1ruUtAwCuNKE0Sz+8ols3ndas9CR+jjhJj5jHG3PJ2dLpt0pr72XEIABXCgb8uvKket13zSzNbSqwjgMKB/HXsEi64lFpzg2MGETCYKWBq3RW5eieK2fqgytalZvGJtcKo4riqHCC9Kb7pOW3SWl51mkAYFT8fp8u7K7R/dfN1qLmIus4OKrHxzdVzPj8R4v/j0uTzrdOAwCjVluQrq9dNFW3XzBZVXmp1nESFqOK4iizXDrrm9Lq70m5NdZpgLjiuhdcx+/36byuSi1pK9En71+vbz36gvr6B6xjJRRGFcVBOF2a+w6p63JGGQDwnJKsFH3xgsl66J9b9cGfPqn1r+y3jpTQjlA4iI3KGdHZx6Xt1kkAYMwtaC7SrMZ83f7wc7r1gQ061BuxjpRYuMwXe/6QNO3y6L48nGadBjDhGxgY4MQVrrb+lX266Z4n9NtndlhHSRiP1n1VxS/dbx3Dm3wBqWN1dG5iRrF1GgCIuUj/gO58fKM+ef96bd/fYx0nIX2n4QF1bbrdOoZ3ZFdKC98vTVhhnQQA4mLLnkO65SdP6sd/3WIdJWFsKHi7gvteso7hXY2nSAvfJxU0WScBTFE4gGf87G9bdMtPn9SLuw5ZR/G839Z9Q6Uv3Wcdw3saT5YWvE8qHGedBADibv+RPv3ngxv05Uee05G+fus4CeUbDQ9r9qbPWcdwv3B69NHj6VdJoWTrNAAQd48+u0M3//gfemLzXusonreh8N8U3LvJOob3lE2WFt0sVc2wTgI4AoUDeEpPX7/ufHyjPvvABm3bd8Q6jmc9Uvctlb/0U+sY3lE6KfpxUj3TOgkAmHtp9yF95L6ndM9fNouv1Pj4Yv2jWvTiZ6xjuJcvILWfK827kW5BAAlvYGBAP/nbFn3i/vV6dtsB6zie9XTRuxTa87x1DO/IrZPmv1easNw6CeAoFA7gSYd6Ivr6757X53/1jHYf7LWO4zm/rr9DlS/eax3D/XKqo4cMLWdKPp91GgBwlD9v2q2P/fc/9ciG7dZRPO/TdX/Uspc+Zh3DfXx+qWVldPZxXp11GgBwlEj/gO76w4v69C+f1ku7mQow1tYXv0fh3c9ax3C/tAJpzr9JnRdKgZB1GsBxKBzA0/Yd7tWXHn5OX3nkOe0/0mcdxzMeqv+Oql+82zqGe2VVSN3XSJPWSkEepASAN/KHF3bqU794Wg8/TQEhVj5U+zedu/lD1jFcxBe9kTj3ncw+BoATONIX0bf/Z6Nue3ADbxmNofXF71V49wbrGO6VnB19+Hj6lVJShnUawLEoHCAh7DzQo889tEHf+N0LzE0eAw/Uf0+1L/7QOob75NRIs66TJp7LbQYAGKY/btylT/3iaf16/TbrKJ5zY81TunjL+61juMO4pdJJ75KKJlgnAQBXOdjTp6/+5nl98dfPas8hpgKM1j9L3qekXf+0juE+aQXRYsGUSygYAENA4QAJZfv+I/rab57XNx99gY+VUfhFw12q33SXdQz3yG+SZr1Nal0p+QPWaQDA1f50tIDwKwoIY+ZtVc/oLa/caB3DwXxS06nSnBuk0nbrMADgageO9OmOxzbqK488p817DlvHca2nSt+v5J1PWcdwj8wyacbVUudaKZRinQZwDQoHSEgHjvTpO49v0pcfeY55iyPw84YfqnHT96xjOF9xqzTremn86ZLfb50GADzlz5t26/MPPaP7n3xFkX4+Z0fjsvKNeuf2d1jHcJ5gSvTR42lXSvn11mkAwFP6Iv265y+b9cVfP6unXt5nHcd1niy7RSk7nrCO4Xw51VL3tVL7asYEAyNA4QAJrS/Srx//dYu+8Otn9eSWvdZxXOO+hrs1btN3rGM4lE9qWCR1XSrVL7AOAwCet2nnQX39t8/rO7/fpH2Hec9oJFaXbNYtu663juEcaQXSlHXRMQZpedZpAMDzHnxqqz7/q2f0P8/ttI7iGk+WfVApO/5uHcO5yqdIUy+TJqyQAkHrNIBrUTgAjvrV+m26/eFn9ciG7eK/FW/sJw0/1oRN37aO4SxJWVLH6ughQ16ddRoASDgHjvTpe7/fpK/99nk9v+OgdRxXWVa0VZ/ec611DHv5jdG5x23nSKFk6zQAkHD+tHGXbn/kOf38iZfVG2FT/kb+Uf5hpW7/i3UMZwkkSS1nRi/xlXZYpwE8gcIB8C+e3bZf3/6fjfr+H1/U7oO8g3As9zb+VK0bv2Udwxnym6Sp66IPHielW6cBgIQ3MDCgB57aqq/85jn9ZsMO6ziuMC9vl75y4ErrGDb8QanpFGnShVL9fMnns04EAAlv697DuvPxTbrjsY3awjsIx/T3io8qfdufrGM4Q2a5NOVN0Z/ldAoCY4rCAXAch3sj+vFft+jOxzbq9y/sso7jKD9quE/tm75hHcOOPyQ1Lo52F9SdZJ0GAHAcG7bu03ce36Qf/PEl7TjQYx3HsSZn7dP3j1xmHSO+cmulSRdEZx6nF1qnAQAcQ6R/QL948hXd+dhG/Wr9NvGk0f/5e+XHlb71D9YxDPmk6pnRS3zjlkr+gHUgwJMoHABDsGHrPt352Cb94E8vaScHD/pB4881aePXrGPEX2mHNPE8qXWllJprnQYAMES9kX794h+v6Du/36SHn97OY8r/ojHtkH4eudg6RuwFkqTm06VJa6OHDXQXAIBrbN59SN/9/SZ97/cv6qXdh6zjmPtr5SeVufVx6xjxl1cfHSk48Wwpu9I6DeB5FA6AYejp69ev12/TvX/drPv/8YoO9kSsI5n4XsMvNGXTV6xjxEdGidR2VrRgUDjOOg0AYJS27jusu/+0WXf98UU99fI+6ziOUJzUo0d9F1rHiBFf9IHEljOjP88p/AOAqw0MDOix53bq3r9u1k//9nLCXuz7S9WnlfXK/1jHiI/kbKnljOievGKKdRogoVA4AEboUE9Ev3zqFd3z5816aP029fT1W0eKm+80PKiuTV+yjhE7SZlS48nSxHOk2pMkv986EQAgBp7YvEc/+esW3ffEy3p22wHrOGZSAhE9GTrfOsbYKp0UPWRoXi5lV1inAQDEQF+kX49s2K57/rJZP3/iFe0/0mcdKW7+XP1ZZb/8O+sYsRNIkurmRffkTadIwSTrREBConAAjIG9h3v1339/Wff+dYt+u2G7+jw+AuHbDQ9pxqYvWscYW2mF0rhTpXGnSTWzpWDYOhEAII7Wv7JPP/vby7rviZf15Ja91nHi7rmU8+UbcHknZXFbtFgwYYWUU22dBgAQR4d7I3rwqa265y+b9eA/t+pwr7cv9v2p+jblvPwb6xhjKylTalgojVsiNSySkjKsEwEJj8IBMMb2HOzVr57epoee2qqH1m/zZOvkNxoe1uxNn7OOMXo51dGHlMafJpVPpbMAACBJemHHAf3s7y/rvr+/rL+8uFuJ8LX8XOY6+Xpc1nURCEuV06OHDI2nSPn11okAAA5wuDei3z2zQw88tVUPPLXVk28i/LH6c8p9+WHrGKOXXhztKBi3lAt8gANROABiqL9/QH95cbcefGqrHvznNv198x5PHD58teE3OmnTbdYxhi+YLFV0SbVzojcYilutEwEAHG7r3sN6+OntemRD9K9t+45YR4qJZ3Oulv/QdusYJ5ZVIdUviP4cr5ktJaVbJwIAONz6V/YNFhH++MIuT0wI+EPNF5S35VfWMYbPF5DKJkk1c6LjgcsnSz6fdSoAx0HhAIijrfsO66F/btOjz+zQY8/v1Iu73Hnz4csNv9P8TZ+1jnFiPr9U0i7Vzo0WCyqmSaFk61QAABf758v79PDT2/TIhu167LmdOtjj8vE+R20oeLuC+16yjvF64YzoQ4h186T6hVLhOOtEAAAX23OoVw8/vU2/e2aHHn9+p57eut+Vl/ser/mSCrY8aB1jaAqbo4WC2jlSVbeUnGmdCMAQUTgADG3Zc0iPPbdTjz+/U48/t0vrt+5zxUfLF+sf1aIXP2Md4/X8IaloglQxNXoLsXqWlJJtnQoA4FE9ff3648ZdevTZHfrzpt3686bd2n2w1zrWiKwvvlHh3c9Yx4iOLKicFh1BVDkt2h3oD1inAgB41K4DPXrs+Z16/Lmdeuz5nXpi815FXNCR8Fjtl1W4+ZfWMV7P55fyGqJ78tq50X15eqF1KgAjFLQOACSykqwULWsv07L2MknS7oM9+v3zu/T4Czv1xEt79eSWvdrhwDcSInLIWwC5tVJZ59G/JkslbVIwyToVACBBhIN+TavN07TavMF/99z2A/rTxl2DhYQnt+xVb8T5BxCRgEFHXiAp2kFQ0v5/hYLcmvjnAAAkrJy0sBZPKNbiCcWSpANH+vSHF3bp9y/s0j8279E/Nu/V5j2HjVO+Xr9T9uSZZdHRQ6/uy0s7eNQY8BAKB4CDZKeGtaC5SAuaiwb/3ct7DuvJLXv1jy179Y/N0V+f33HAtDOhbyDOHymhVCm/QcpvkgoapZKO6MdJam58cwAAcAI1+WmqyU/TGZPKJUUfaHzi6MHD01v36+lX9uvprfu0fb+zLgZE/DEuvKcVRrsHilukoqO/5jVIAbYjAADnSEsKanZjgWY3Fgz+u10Hegb3409s3qN/bNmrZ7YdMO1MGPDFeU/uD0l5dVJ+o1QwLlogKOuUMopO/D8LwLX4UgccrjgrWcVZyTpp3P+19x040qf1r+zTxp0H9cKO6F8bdx7QCzsOamscHm2MxOQjxSel5Ue7CPIbpYKm6AdJfqOUXcmDSQAAV0oOBdRZlavOqtcWu3cd6IkWErbu09Ov7NeGrfu1addBbdlzWD19/XHP2RcYg8JBOEPKqZZyq6O/5lRHf64XtTCmAADgWjlpYXXX56u7Pn/w3x3ujeiZbfu1ccdBPX90P/789oPauPOgtuw5pFjXFGLWcZCcJeXVRy/t5TdE9+X5TdGf6RT7gYTDf+sBF0pLCqqjMkcdlTmv+88O9USOFhQO6KXdh7R9/xHt2N+j7ft7tOPAq39/ZFSPOUaG23EQzoh+gKTlSZnlUmaplFUWbWvMLIv+c2YpY4YAAAkjJy2sqTW5mlrz2oLCwMCAtu/v0ZY9h7R592Ft3n0o+vd7DmvL7kPaeaBHew/3ae+hXvWN4alE3xt1HATCUmp+9Od4WsHRvy+IFvyzK6WcmuiBQlre8f93AADgIcmhgCaUZmlCadbr/rMjfRFt2nlIL+w4oM17Dmv7viPaceCItu+L7sVf3aPvO9I34v/7w+44CKZEHyVOK/x/+/HS/7cfP/prOG3EmQB4D48jAwnqUE9E2/cf0Z5DvTrcG9Hh3n4d6o3ocG9Eh3ojOnL018O9/eqN9MsnyefzyeeTulJe0vTIH6RAKNqyGAhJoRQpKTNaIPjXv3jUEACAMXfgSJ/2Hu7VnkO92nuo7+ivveqJ9Kuvf0CRSL8iA1Kk/9V/HlBkYECR/gEF/D6Fg36FA36Fg36dnLpehf690QODUGr015ScaHEg+fWHIgAAYHQO90b35PsO9+lQb0SHeo7+NbgX/79/7n/1ssDRTvyz0v6k8r6N0f24Pxjdk4fTju7JM1+7N0/KlIJhw/9PAbgVhQMAAAAAAAAAADDIIc+wAwAAAAAAAAAAJ6BwAAAAAAAAAAAABlE4AAAAAAAAAAAAgygcAAAAAAAAAACAQRQOAAAAAAAAAADAIAoHAAAAAAAAAABgEIUDAAAAAAAAAAAwiMIBAAAAAAAAAAAYROEAAAAAAAAAAAAMonAAAAAAAAAAAAAGUTgAAAAAAAAAAACDKBwAAAAAAAAAAIBBFA4AAAAAAAAAAMAgCgcAAAAAAAAAAGAQhQMAAAAAAAAAADCIwgEAAAAAAAAAABhE4QAAAAAAAAAAAAyicAAAAAAAAAAAAAZROAAAAAAAAAAAAIMoHAAAAAAAAAAAgEEUDgAAAAAAAAAAwCAKBwAAAAAAAAAAYBCFAwAAAAAAAAAAMIjCAQAAAAAAAAAAGEThAAAAAAAAAAAADKJwAAAAAAAAAAAABlE4AAAAAAAAAAAAgygcAAAAAAAAAACAQRQOAAAAAAAAAADAIAoHAAAAAAAAAABgEIUDAAAAAAAAAAAwiMIBAAAAAAAAAAAYROEAAAAAAAAAAAAMonAAAAAAAAAAAAAGUTgAAAAAAAAAAACDKBwAAAAAAAAAAIBBFA4AAAAAAAAAAMAgCgcAAAAAAAAAAGAQhQMAAAAAAAAAADCIwgEAAAAAAAAAABhE4QAAAAAAAAAAAAyicAAAAAAAAAAAAAZROAAAAAAAAAAAAIMoHAAAAAAAAAAAgEEUDgAAAAAAAAAAwCAKBwAAAAAAAAAAYBCFAwAAAAAAAAAAMIjCAQAAAAAAAAAAGEThAAAAAAAAAAAADKJwAAAAAAAAAAAABlE4AAAAAAAAAAAAgygcAAAAAAAAAACAQRQOAAAAAAAAAADAIAoHAAAAAAAAAABg0P8CsaFLt/sAigsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -889,7 +881,7 @@ "source": [ "# Метод приращения с избытком (oversampling)\n", "def oversample(df: DataFrame, column: str) -> DataFrame:\n", - " X: DataFrame = df.drop(column, axis=1)\n", + " X: DataFrame = pd.get_dummies(df.drop(column, axis=1))\n", " y: DataFrame = df[column] # type: ignore\n", " \n", " adasyn = ADASYN()\n", @@ -921,7 +913,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -929,7 +921,7 @@ "output_type": "stream", "text": [ "После применения метода undersampling:\n", - "Обучающая выборка: (10608, 6)\n", + "Обучающая выборка: (10608, 21784)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", "False 5304\n", @@ -938,7 +930,7 @@ "Процент объектов класса \"False\": 50.00%\n", "Процент объектов класса \"True\": 50.00%\n", "\n", - "Контрольная выборка: (3536, 6)\n", + "Контрольная выборка: (3536, 11762)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", "False 1768\n", @@ -947,7 +939,7 @@ "Процент объектов класса \"False\": 50.00%\n", "Процент объектов класса \"True\": 50.00%\n", "\n", - "Тестовая выборка: (3536, 6)\n", + "Тестовая выборка: (3536, 11820)\n", "Распределение выборки данных по классам \"hazardous\":\n", " hazardous\n", "False 1768\n", @@ -975,7 +967,7 @@ "source": [ "# Метод приращения с недостатком (undersampling)\n", "def undersample(df: DataFrame, column: str) -> DataFrame:\n", - " X: DataFrame = df.drop(column, axis=1)\n", + " X: DataFrame = pd.get_dummies(df.drop(column, axis=1))\n", " y: DataFrame = df[column] # type: ignore\n", " \n", " undersampler = RandomUnderSampler()\n", @@ -1004,6 +996,768 @@ "# Визуализация сбалансированности классов\n", "visualize_balance(df_train_undersampled, df_val_undersampled, df_test_undersampled, 'hazardous')" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Датасет №2: [Зарплаты в области Data Science](https://www.kaggle.com/datasets/henryshan/2023-data-scientists-salary).\n", + "\n", + "### Описание датасета:\n", + "Данный набор данных предназначен для исследования факторов, влияющих на заработную плату специалистов по данным (Data Scientists) в 2023 году. Набор данных содержит информацию о различных характеристиках работников, таких как уровень опыта, тип занятости, местоположение сотрудника и компании, удалённость работы и размер компании. Этот анализ помогает понять, какие факторы наиболее значимо влияют на уровень зарплат в области Data Science, и как изменяются заработные платы в зависимости от этих факторов.\n", + "\n", + "---\n", + "\n", + "### Анализ сведений:\n", + "**Проблемная область:**\n", + "Основная задача – изучить, как различные факторы, такие как опыт, тип занятости, местоположение и удалённость работы, влияют на уровень зарплаты специалистов по данным. Это важно для понимания рыночных тенденций и формирования конкурентоспособной системы оплаты труда.\n", + "\n", + "**Актуальность:**\n", + "Данный набор данных актуален для компаний, стремящихся выстроить конкурентоспособные стратегии оплаты труда, а также для специалистов по данным, желающих оценить свои зарплатные ожидания в зависимости от их опыта, географии и типа занятости.\n", + "\n", + "**Объекты наблюдения:**\n", + "Объектами наблюдения являются специалисты по данным, работающие в различных компаниях и странах, с разным уровнем опыта и типом занятости.\n", + "\n", + "**Атрибуты объектов:**\n", + "- work_year: Год, в который была выплачена зарплата.\n", + "- experience_level: Уровень опыта сотрудника.\n", + " - EN: Начальный.\n", + " - MI: Средний.\n", + " - SE: Старший.\n", + " - EX: Исполнительный.\n", + "- employment_type: Тип занятости.\n", + " - PT: Полная.\n", + " - FT: Частичная.\n", + " - CT: Контрактная.\n", + " - FL: Фриланс.\n", + "- job_title: Должность, которую занимал сотрудник.\n", + "- salary: Общая сумма выплаченной заработной платы.\n", + "- salary_currency: Валюта, в которой выплачена зарплата.\n", + "- salary_in_usd: Заработная плата, конвертированная в доллары США (USD).\n", + "- employee_residence: Страна проживания сотрудника в год выплаты зарплаты.\n", + "- remote_ratio: Доля удалённой работы (например, 100% удалённо или частично удалённо).\n", + "- company_location: Страна, в которой расположена основная офисная компания работодателя.\n", + "- company_size: Среднее количество сотрудников, работающих в компании.\n", + "\n", + "**Связь между объектами:**\n", + "Набор данных позволяет исследовать взаимосвязи между факторами, такими как уровень опыта, тип занятости и местоположение сотрудника, с уровнем его заработной платы. Взаимосвязи между этими факторами могут дать полезную информацию о влиянии определённых условий работы на доход.\n", + "\n", + "---\n", + "\n", + "### Качество набора данных:\n", + "**Информативность:**\n", + "Датасет предоставляет важную информацию для анализа различных факторов, влияющих на зарплату специалистов по данным. Он включает множество атрибутов, которые можно использовать для построения моделей и анализа.\n", + "\n", + "**Степень покрытия:**\n", + "Набор данных охватывает специалистов по данным с разным опытом, работающих в различных странах, что позволяет провести сравнительный анализ и выявить региональные и глобальные тренды.\n", + "\n", + "**Соответствие реальным данным:**\n", + "ДЗаработные платы специалистов по данным, приведенные в датасете, отражают реальную ситуацию на рынке труда в 2023 году, предоставляя точные данные для анализа текущих рыночных условий.\n", + "\n", + "**Согласованность меток:**\n", + "Все категории, такие как уровни опыта или типы занятости, имеют четко определённые метки, что упрощает анализ и моделирование.\n", + "\n", + "---\n", + "\n", + "### Бизес-цели:\n", + "1. **Оптимизация структуры оплаты труда:**\n", + "Компании могут использовать данный анализ для создания конкурентных предложений по оплате труда, основываясь на опыте, географии и других значимых факторах.\n", + "2. **Планирование найма и удержание специалистов:**\n", + "Помогает работодателям понять, какие факторы могут привлечь или удержать специалистов по данным, и оптимизировать HR-процессы для сокращения текучести кадров.**\n", + "3. **Анализ глобальных и региональных зарплатных трендов:**\n", + "Позволяет компаниям проводить сравнительный анализ зарплат по регионам, уровням опыта и типам занятости, помогая в принятии решений о расширении бизнеса в разные страны.**\n", + "\n", + "**Эффект для бизнеса:**\n", + "Компании, использующие данную информацию, могут предлагать конкурентоспособные зарплаты, улучшить процессы найма и удержания специалистов, а также сократить издержки, связанные с высокими зарплатными ожиданиями. Это также помогает улучшить планирование бюджета на персонал.\n", + "\n", + "---\n", + "\n", + "### Технические цели:\n", + "1. **Построение модели прогнозирования зарплат:**\n", + "Создание модели, которая будет предсказывать уровень зарплаты специалиста по данным на основе таких факторов, как опыт, регион и удалённость работы.\n", + "2. **Анализ влияния опыта и удалённости на зарплату:**\n", + "Исследование того, как уровень опыта и удалённость работы влияют на заработную плату, что может помочь компаниям лучше планировать условия найма.\n", + "3. **Оптимизация найма специалистов:**\n", + "С помощью анализа компания может определить наиболее значимые факторы для назначения зарплат, чтобы предлагать более конкурентные условия и привлекать лучших специалистов.\n", + "\n", + "**Входные данные:**\n", + "Год, уровень опыта, тип занятости, должность, зарплата, страна проживания, удалённость работы.\n", + "\n", + "**Целевой признак:**\n", + "Признак \"salary_in_usd\" – заработная плата в долларах США.\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Выгрузка данных из файла в DataFrame:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "df: DataFrame = pd.read_csv('..//static//csv//ds_salaries.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Краткая информация о DataFrame:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 3755 entries, 0 to 3754\n", + "Data columns (total 11 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 work_year 3755 non-null int64 \n", + " 1 experience_level 3755 non-null object\n", + " 2 employment_type 3755 non-null object\n", + " 3 job_title 3755 non-null object\n", + " 4 salary 3755 non-null int64 \n", + " 5 salary_currency 3755 non-null object\n", + " 6 salary_in_usd 3755 non-null int64 \n", + " 7 employee_residence 3755 non-null object\n", + " 8 remote_ratio 3755 non-null int64 \n", + " 9 company_location 3755 non-null object\n", + " 10 company_size 3755 non-null object\n", + "dtypes: int64(4), object(7)\n", + "memory usage: 322.8+ KB\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
work_year3755.02022.3736350.6914482020.02022.02022.02023.02023.0
salary3755.0190695.571771671676.5005086000.0100000.0138000.0180000.030400000.0
salary_in_usd3755.0137570.38988063055.6252785132.095000.0135000.0175000.0450000.0
remote_ratio3755.046.27163848.5890500.00.00.0100.0100.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% \\\n", + "work_year 3755.0 2022.373635 0.691448 2020.0 2022.0 \n", + "salary 3755.0 190695.571771 671676.500508 6000.0 100000.0 \n", + "salary_in_usd 3755.0 137570.389880 63055.625278 5132.0 95000.0 \n", + "remote_ratio 3755.0 46.271638 48.589050 0.0 0.0 \n", + "\n", + " 50% 75% max \n", + "work_year 2022.0 2023.0 2023.0 \n", + "salary 138000.0 180000.0 30400000.0 \n", + "salary_in_usd 135000.0 175000.0 450000.0 \n", + "remote_ratio 0.0 100.0 100.0 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Краткая информация о DataFrame\n", + "df.info()\n", + "\n", + "# Статистическое описание числовых столбцов\n", + "df.describe().transpose()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Проблема пропущенных данных:\n", + "\n", + "Проверка на отсутствие значений, представленная ниже, показала, что DataFrame не имеет пустых значений признаков. Нет необходимости использовать методы заполнения пропущенных данных." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "work_year False\n", + "experience_level False\n", + "employment_type False\n", + "job_title False\n", + "salary False\n", + "salary_currency False\n", + "salary_in_usd False\n", + "employee_residence False\n", + "remote_ratio False\n", + "company_location False\n", + "company_size False\n", + "dtype: bool \n", + "\n", + "work_year 0\n", + "experience_level 0\n", + "employment_type 0\n", + "job_title 0\n", + "salary 0\n", + "salary_currency 0\n", + "salary_in_usd 0\n", + "employee_residence 0\n", + "remote_ratio 0\n", + "company_location 0\n", + "company_size 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "# Проверка пропущенных данных\n", + "check_null_columns(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Проблема зашумленности данных:\n", + "\n", + "Представленный ниже код помогает определить наличие выбросов в наборе данных и устранить их (при наличии), заменив значения ниже нижней границы (рассматриваемого минимума) на значения нижней границы, а значения выше верхней границы (рассматриваемого максимума) – на значения верхней границы." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Колонка work_year:\n", + "\tЕсть выбросы: Да\n", + "\tКоличество выбросов: 76\n", + "\tМинимальное значение: 2020\n", + "\tМаксимальное значение: 2023\n", + "\t1-й квартиль (Q1): 2022.0\n", + "\t3-й квартиль (Q3): 2023.0\n", + "\n", + "Колонка salary:\n", + "\tЕсть выбросы: Да\n", + "\tКоличество выбросов: 113\n", + "\tМинимальное значение: 6000\n", + "\tМаксимальное значение: 30400000\n", + "\t1-й квартиль (Q1): 100000.0\n", + "\t3-й квартиль (Q3): 180000.0\n", + "\n", + "Колонка salary_in_usd:\n", + "\tЕсть выбросы: Да\n", + "\tКоличество выбросов: 63\n", + "\tМинимальное значение: 5132\n", + "\tМаксимальное значение: 450000\n", + "\t1-й квартиль (Q1): 95000.0\n", + "\t3-й квартиль (Q3): 175000.0\n", + "\n", + "Колонка remote_ratio:\n", + "\tЕсть выбросы: Нет\n", + "\tКоличество выбросов: 0\n", + "\tМинимальное значение: 0\n", + "\tМаксимальное значение: 100\n", + "\t1-й квартиль (Q1): 0.0\n", + "\t3-й квартиль (Q3): 100.0\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPOCAYAAAALMup9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbMklEQVR4nOzdeVhV5f7//xeDDIrgyGCi4FDOE5mAoqImebQktM7RSpzSEjspZYWZUyXlkHlyykqxo6hpqKmdlFSUEk8nzAo1v6WYlYBaCWoKCOv3hz/Wxy2IoOhGeD6ua1+67/u91nqvzd7ci/de6142hmEYAgAAAAAAAAAARbK1dgIAAAAAAAAAAJRnFNIBAAAAAAAAACgGhXQAAAAAAAAAAIpBIR0AAAAAAAAAgGJQSAcAAAAAAAAAoBgU0gEAAAAAAAAAKAaFdAAAAAAAAAAAikEhHQAAAAAAAACAYlBIBwAAAAAAAACgGBTSAaASmTp1qmxsbHT69GlrpwIAAG7SsWPHZGNjo5iYGGunAgDAHaW8j6EJCQmysbFRQkKCtVO5YUOHDpWPj4+10yhTFNIrmHXr1snGxqbIR6tWraydHlBpdO/eXUOHDpV0efDo3r27VfOpDAoOhAoONMrzQRFwq3AcAJQPleU44Mp9mzp1aoX7YxmVC2MoUD5UljG0srry73QfHx9NnTrVqvmUlr21E8CtMXHiRDVv3tx8/vrrr1sxGwAAcDtxHAAAwI1hDAVQHnTt2lUXLlyQg4ODtVPBFSikV1D333+/xbd277//PlM5AJXY+fPnVa1aNWuncUtcunRJ+fn51k4DKFc4DgBwIyry8QJQUoyhAG5EWY+htra2cnJyKrP1oWwwtUsFk5OTI+nyB+56YmJiZGNjo2PHjplt+fn5atOmTaEpEb777jsNHTpUjRo1kpOTkzw9PTV8+HD9/vvvFussmH/56oe9/f99Z9O9e3e1atVKycnJCgwMlLOzs3x9fbV48eJC+zJ58mT5+fnJzc1N1apVU1BQkHbu3GkRVzCdg42NjTZs2GDRd/HiRdWsWVM2NjaaPXt2oTzd3d2Vm5trscyqVavM9V15wLRx40b17dtX9erVk6Ojoxo3bqxXX31VeXl5132tC7b3ww8/6NFHH5Wrq6tq166tZ599VhcvXrSIXbZsmXr06CF3d3c5OjqqRYsWWrRoUaF19u/fXz4+PnJycpK7u7seeughff/99xYxBfvx9ttvF1q+WbNmsrGx0dixY822P/74Q88//7xat24tFxcXubq6qk+fPvr2228tlg0PD5eTk5MOHTpk0R4SEqKaNWvqxIkTZtvRo0f1yCOPqFatWqpatar8/f21ZcsWi+UK5v4qeDg6Ouruu+9WdHS0DMMo/sX9/13rvVfUZWBXvmeuflzp5MmTGjFihBo0aCA7OzszxsXFpUQ5XUuHDh0UFhZm0da6dWvZ2Njou+++M9vWrFkjGxsbi9f5m2++UZ8+feTq6ioXFxf17NlTe/futVhXwWd7165dGjNmjNzd3VW/fv1r5vPzzz+rSZMmatWqlTIyMq6b/9GjR2VjY6O5c+cW6tuzZ49sbGy0atUqs+23337T8OHD5eHhIUdHR7Vs2VJLly61WK60n/fZs2fr7bffVuPGjeXo6KiDBw9eN2+gMuA4YINFH8cBHAeUx+MASVq9erX8/PxUvXp1ubq6qnXr1po3b57ZX9KfRVFK+3k9ePCgBg8erJo1a6pLly5atmyZbGxs9M033xRa94wZM2RnZ6fffvvtpl8DoLxhDN1g0ccYyhjKGGrdMbSoOdILfgccPHhQwcHBqlq1qu666y7NnDmzROu8ko2NTZHTqvj4+JhT60hSbm6upk2bpqZNm8rJyUm1a9dWly5dFB8fb7Hchg0b1KpVKzk5OalVq1Zav359qXO6E3BGegVTMPg7Ojre0PL//ve/Cw0gkhQfH6+jR49q2LBh8vT01IEDB7RkyRIdOHBAe/fuLfRLc9GiRRa/IK8+GPnzzz/1t7/9TY8++qgGDRqkjz76SE8//bQcHBw0fPhwSVJWVpbef/99DRo0SE8++aTOnj2rDz74QCEhIfrqq6/Url07i3U6OTlp2bJlCg0NNdvi4uIKDa5XOnv2rDZv3qyHH37YbFu2bJmcnJwKLRcTEyMXFxdFRkbKxcVFO3bs0OTJk5WVlaVZs2ZdcxtXevTRR+Xj46Po6Gjt3btX//rXv/Tnn3/qww8/tHjtWrZsqYceekj29vbatGmTxowZo/z8fEVERFisb9SoUfL09NSJEyc0f/589erVS6mpqapatWqh12XcuHFm2549e/Tzzz8Xyu/o0aPasGGDHnnkEfn6+iojI0PvvvuuunXrpoMHD6pevXqSpHnz5mnHjh0KDw9XUlKS7Ozs9O6772rbtm3697//bcZlZGQoMDBQf/31l/75z3+qdu3aWr58uR566CGtW7fO4nWX/u8yygsXLmjNmjWaOHGi3N3dNWLEiBK9vgWvX8F7LyoqqtjYUaNGKSgoSNLl98rVv+jDw8P1+eef65lnnlHbtm1lZ2enJUuWaN++fSXOpyhBQUEWheY//vhDBw4ckK2trRITE9WmTRtJUmJiourWrWteWnrgwAEFBQXJ1dVVL7zwgqpUqaJ3331X3bt3165du9SpUyeL7YwZM0Z169bV5MmTdf78+SJzOXLkiHr06KFatWopPj5ederUuW7+jRo1UufOnbVy5UqNHz/eom/lypWqXr26+vfvL+nye8Df39880Kxbt67+85//aMSIEcrKyjLfl6X9vC9btkwXL17UqFGj5OjoqFq1anFWOiCOAzgO4DjgTjgOiI+P16BBg9SzZ0+9+eabkqRDhw7pyy+/1LPPPiup5D+La62/NJ/XRx55RE2bNtWMGTNkGIYGDhyoiIgIrVy5Uu3bt7eIXblypbp376677rrrpl4DoDxiDGUMZQxlDL0TxtA///xTDzzwgMLCwvToo49q3bp1evHFF9W6dWv16dPnptZdlKlTpyo6OlojR47Ufffdp6ysLH399dfat2+f7r//fknStm3bNGDAALVo0ULR0dH6/fffNWzYsGJP6LtjGahQ3n77bUOS8e2331q0d+vWzWjZsqVF27JlywxJRmpqqmEYhnHx4kWjQYMGRp8+fQxJxrJly8zYv/76q9C2Vq1aZUgydu/ebbZNmTLFkGScOnXqmjl269bNkGTMmTPHbMvOzjbatWtnuLu7Gzk5OYZhGMalS5eM7Oxsi2X//PNPw8PDwxg+fLjZlpqaakgyBg0aZNjb2xvp6elmX8+ePY3BgwcbkoxZs2YVynPQoEFGv379zPaff/7ZsLW1NQYNGlRoP4p6DUaPHm1UrVrVuHjx4jX398rtPfTQQxbtY8aMKfTzKmo7ISEhRqNGjYrdxkcffWRIMr7++muzTZIxcOBAw97e3qJ9xIgR5usSERFhtl+8eNHIy8uzWG9qaqrh6OhoTJ8+3aJ969athiTjtddeM44ePWq4uLgYoaGhFjHjxo0zJBmJiYlm29mzZw1fX1/Dx8fH3NbOnTsNScbOnTstcrG1tTXGjBlT7H4XmDhxoiHJOH36tNnWsmVLo1u3boVif/zxR0OSsXz5crOt4GdU4MKFC4atra0xevRoi2XDw8ONatWqlSina1m7dq0hyTh48KBhGIbxySefGI6OjsZDDz1k/P3vfzfj2rRpYzz88MPm89DQUMPBwcE4cuSI2XbixAmjevXqRteuXc22gs92ly5djEuXLlls+8rP6KFDh4x69eoZHTt2NP74449S7cO7775rSDIOHTpktuXk5Bh16tQxwsPDzbYRI0YYXl5eFj8XwzCMf/zjH4abm5v5fi/t593V1dU4efJkqXIGKgOOAzgO4Dig/B8HPPvss4arq2uhMfpKJf1ZFLz/b+bzOmjQoELxgwYNMurVq2eRw759+wptC6hIGEMZQxlDGUPL0xha1M+24HfAhx9+aLZlZ2cbnp6exoABA0q8bsO4/B6fMmVKofaGDRta/E3ftm1bo2/fvsWuq127doaXl5dx5swZs23btm2GJKNhw4alyqu8Y2qXCqbgcpO6deuWetkFCxbo999/15QpUwr1OTs7m/+/ePGiTp8+LX9/f0m6oW8U7e3tNXr0aPO5g4ODRo8erZMnTyo5OVmSZGdnZ95UIT8/X3/88YcuXbqke++9t8htdujQQS1bttS///1vSZenq9i5c6fFJSlXGz58uD777DOlp6dLkpYvX66AgADdfffdhWKvfA3Onj2r06dPKygoSH/99Zd++OGHEu331d+CP/PMM5KkTz/9tMjtZGZm6vTp0+rWrZuOHj2qzMxMi+X/+usvnT59Wvv379d7770nDw+PQrl7eHiob9++WrZsmbnMRx99pGHDhhXKz9HR0TzjIS8vT7///rtcXFx0zz33FHrNe/furdGjR2v69OkKCwuTk5OT3n33XYuYTz/9VPfdd5+6dOlitrm4uGjUqFE6duxYoek4Cvb3+PHjmjlzpvLz89WjR48iXsnCCs56KMkcYiU52+T8+fPKz89X7dq1S7T90ij45n737t2SLp953rFjR91///1KTEyUJJ05c0YpKSlmbF5enrZt26bQ0FA1atTIXJeXl5cGDx6sL774QllZWRbbefLJJ2VnZ1dkDikpKerWrZt8fHz0+eefq2bNmqXah0cffVROTk5auXKl2bZ161adPn1ajz/+uCTJMAx9/PHHevDBB2UYhk6fPm0+QkJClJmZab6vSvt5HzBgwA39ngMqOo4DOA7gOKD8HwfUqFFD58+fL3RJ9JVK87O4Wmk/r0899VShtiFDhujEiRMW00CsXLlSzs7OGjBgQPE7CNyhGEMZQxlDGUPvhDHUxcXF/Jtbuvw74L777tPRo0dvet1FqVGjhg4cOKAff/yxyP60tDTt379f4eHhcnNzM9vvv/9+tWjR4pbkZE0U0iuYn3/+Wfb29qUe/DMzMzVjxgxFRkbKw8OjUP8ff/yhZ599Vh4eHnJ2dlbdunXl6+trLlta9erVK3QThoJB68p55pYvX642bdqY8zDVrVtXW7ZsueY2hw0bZg5yMTExCgwMVNOmTa+ZR7t27dSqVSt9+OGHMgxDMTExRQ6K0uVpNR5++GG5ubnJ1dVVdevWNX95lfQ1uDqXxo0by9bW1mKfv/zyS/Xq1UvVqlVTjRo1VLduXU2cOLHI7UyfPl1169ZV+/btdezYMSUkJKh69eqFtjts2DDFxsYqOztba9euVc2aNYscVPPz8zV37lw1bdpUjo6OqlOnjurWravvvvuuyH2cPXu2atWqpf379+tf//qX3N3dLfp//vln3XPPPYWWK5iq5OpL4kJDQ1W3bl01bNhQU6dO1aRJk0o80Jw+fVpVqlSxuBTvWs6cOSNJxc7PVrt2bTVt2lTvv/++tm3bppMnT+r06dPKzs4uUT7F8fDwUNOmTc2ieWJiooKCgtS1a1edOHFCR48e1Zdffqn8/HyzkH7q1Cn99ddf13w98/Pz9csvv1i0F3xGi/Lggw+qevXq2rp1q1xdXUu9DzVq1NCDDz6o2NhYs23lypW66667zPfWqVOndObMGS1ZskR169a1eBR8zk6ePGkuX5rPe3H7hspt9+7devDBB1WvXr0i5/u8nmvNEXmn3HyP4wCOAzgOKP/HAWPGjNHdd9+tPn36qH79+mYx6kql/VlcqbSf16LG1Pvvv19eXl7mF+b5+flatWqV+vfvX+R7DKgIGEMZQxlDGUPvhDG0fv36haaYqVmzpv7888+bXndRpk+frjNnzujuu+9W69atNWHCBIt7uxW8F4v6fVHUe/hORyG9gjl8+LAaNWpkcUOSknjzzTdla2urCRMmFNn/6KOP6r333tNTTz2luLg4bdu2zfxldavmJV6xYoWGDh2qxo0b64MPPtBnn32m+Ph49ejR45rbfPzxx/XTTz9p7969Wr58+TUH8isNHz5cy5Yt065du5Senq5HH320UMyZM2fUrVs3ffvtt5o+fbo2bdqk+Ph4c06uG30Nrv7ld+TIEfXs2VOnT5/WW2+9pS1btig+Pt6ch/rq7YwcOVLbtm3T0qVL5eTkpAEDBhT5y71v375ycHDQhg0btGzZMoWHhxd5E52CA8CuXbtqxYoV2rp1q+Lj49WyZcsi9/Gbb74xC6FFzQdYWrNnz1Z8fLw+/fRTTZkyRW+++aamTZtWomWPHTumBg0aFHpNi1Jw1oSnp2excWvWrFHt2rUVEhIiDw8P1a1bV6tXry5RPtfTpUsXJSYm6sKFC0pOTlZQUJBatWqlGjVqKDExUYmJiXJxcSk0r1ppXPlt+tUGDBigI0eOWJxRXlpDhgzR0aNHtWfPHp09e1affPKJBg0aZL63Ct4zjz/+uOLj44t8dO7cWVLpP+/F7Rsqt/Pnz6tt27ZasGDBDS3//PPPKy0tzeLRokULPfLII2Wc6a3BcQDHARwHlP/jAHd3d+3fv1+ffPKJHnroIe3cuVN9+vRReHi4GVPan8WVSvt5LWpMtbOz0+DBg/Xxxx/r4sWL2rlzp06cOGFxBhxQ0TCGMoYyhjKG3glj6LWuOjdKeHPZ67n6JsBdu3bVkSNHtHTpUrVq1Urvv/++OnTooPfff79Mtnen4WajFUh2drb2799vcYOQkjhx4oTmzZun6OhoVa9evdDdiP/8809t375d06ZN0+TJk832a13WUdJtnj9/3uKb9P/3//6fpMt3CJakdevWqVGjRoqLi7P4hV7U5XIFateurYceesi8tO3RRx+1uFt4UR577DFNmDBBzz77rAYOHFjkN4QJCQn6/fffFRcXp65du5rtqampJdrfAj/++KPFN5Y//fST8vPzzX3etGmTsrOz9cknn6hBgwZm3NV3Vy/QpEkTNWnSRJLUq1cvNWjQQLGxsXr66act4uzt7fXEE0/o9ddf14EDB7R06dIi17du3ToFBwfrgw8+sGg/c+ZMoZtQnj9/XsOGDVOLFi0UGBiomTNn6uGHH1bHjh3NmIYNG+rw4cOFtlNw+V7Dhg0t2v38/Mw7g/fp00e//fab3nzzTb3yyitFHqwUuHTpkr799ls98MAD14y50sGDB2VjY3Pdb0fbt2+v9957T0FBQZo+fbr8/f01a9YsffnllyXaTnGCgoK0bNkyrV69Wnl5eQoMDJStra1ZYD906JACAwPNQbJu3bqqWrXqNV9PW1tbeXt7l3j7s2bNkr29vcaMGaPq1atr8ODBpd6HBx54QHXr1tXKlSvVqVMn/fXXX3riiSfM/rp166p69erKy8tTr169il3XjXzegaL06dOn2JvsZGdn6+WXX9aqVat05swZtWrVSm+++ab5u8fFxcXiDJtvv/1WBw8e1OLFi2916jeN4wCOAzgOuHOOAxwcHPTggw/qwQcfVH5+vsaMGaN3331Xr7zyipo0aVKqn8WVyvLzOmTIEM2ZM0ebNm3Sf/7zH9WtW1chISGlXg9wJ2AMZQxlDGUMrWxjaM2aNc0rDArk5OQoLS2tUGytWrU0bNgwDRs2TOfOnVPXrl01depUjRw50nwvFvU6FfUevtNxRnoFUnC5Uc+ePUu13LRp0+Th4VHk3E7S/33bdfW3W2+//fYN5Sld/mV95RxgOTk5evfdd1W3bl35+fldc7v//e9/lZSUVOy6hw8fru+++06PPPJIsZcbFahVq5b69++v7777zrzL+dWKyiUnJ0cLFy687vqvdPUZku+8844kmUWforaTmZlpXmJXnIKDnGtdLjV8+HB9//336tq1q8Uc21eys7Mr9HNeu3atfvvtt0KxL774oo4fP67ly5frrbfeko+Pj8LDwy22/7e//U1fffWVxc/s/PnzWrJkiXx8fK47X9aFCxd06dIlXbp0qdi4bdu2KTMzU/379y82Trr83vv444913333Xff9kZWVpSeeeEIPPfSQJk2apF69esnLy+u62yiJgilb3nzzTbVp08acSywoKEjbt2/X119/bcZIl382vXv31saNGy0uX8zIyFBsbKy6dOlSqilabGxstGTJEg0cOFDh4eH65JNPSr0P9vb2GjRokD766CPFxMSodevWatOmjUXOAwYM0Mcff6yUlJRCy586dcoiVir95x0orbFjxyopKUmrV682x4oHHnjgmgfI77//vu6++26Lz2N5xXHAZRwHcBxQnPJwHHB1oc3W1tYcPwtev9L8LK5Ulp/XNm3aqE2bNnr//ff18ccf6x//+Eepz9QF7hSMoZcxhjKGFocxtOTuhDG0cePG5n3bCixZsqTQGelXv+YuLi5q0qSJ+Xp7eXmpXbt2Wr58ucVVHfHx8YXm8q8IytdPETfk/PnzeueddzR9+nTzF8aKFSssYjIyMnTu3DmtWLFC999/v8Xcbdu2bdPKlSvNm5FczdXVVV27dtXMmTOVm5uru+66S9u2bSv1N8hXqlevnt58800dO3ZMd999t9asWaP9+/dryZIlqlKliiSpX79+iouL08MPP6y+ffsqNTVVixcvVosWLXTu3LlrrvuBBx7QqVOnSjTwF4iJidGCBQuu+e1kYGCgatasqfDwcP3zn/+UjY2N/v3vf5f60pnU1FQ99NBDeuCBB5SUlKQVK1Zo8ODBatu2raTLNx0p+HZ19OjROnfunN577z25u7tbfCv46aef6v3331dgYKBq1aqlo0eP6r333lO1atX08MMPF7nt5s2b6/Tp08VOidGvXz9Nnz5dw4YNU2BgoL7//nutXLmy0MHCjh07tHDhQk2ZMkUdOnSQJC1btkzdu3fXK6+8opkzZ0qSXnrpJa1atUp9+vTRP//5T9WqVUvLly9XamqqPv7440LfjMfHx+vXX39Vbm6u/ve//2nlypV66KGHrvnelC5fMvb888/L0dFRFy5csHjvZ2ZmKi8vTxs2bFBoaKg+//xzvfLKK/ruu++0adOma66zQEREhC5cuHBLLllq0qSJPD09dfjwYfNGOdLly6ZefPFFSSpUuHvttdcUHx+vLl26aMyYMbK3t9e7776r7Oxs8zUvDVtbW61YsUKhoaF69NFH9emnn5b4hjQFhgwZon/961/auXOneXnmld544w3t3LlTnTp10pNPPqkWLVrojz/+0L59+/T555/rjz/+kHTjn3egNI4fP65ly5bp+PHjqlevnqTLU7l89tlnWrZsmWbMmGERf/HiRa1cuVIvvfSSNdItMY4DLHEcwHFAgfJ6HDBy5Ej98ccf6tGjh+rXr6+ff/5Z77zzjtq1a2fOfVvSn8XVyvrzOmTIED3//POSxLQuqJAYQy0xhjKGFmAMrfhj6MiRI/XUU09pwIABuv/++/Xtt99q69athT7LLVq0UPfu3eXn56datWrp66+/1rp16zR27FgzJjo6Wn379lWXLl00fPhw/fHHH3rnnXfUsmXLivf3vIE7XmpqqiGpxI+dO3cahmEYy5YtMyQZ7dq1M/Lz8wutb9myZWbbr7/+ajz88MNGjRo1DDc3N+ORRx4xTpw4YUgypkyZYsZNmTLFkGScOnXqmvl269bNaNmypfH1118bAQEBhpOTk9GwYUNj/vz5FnH5+fnGjBkzjIYNGxqOjo5G+/btjc2bNxvh4eFGw4YNC+U7a9asYl+fK/uvl2dR/V9++aXh7+9vODs7G/Xq1TNeeOEFY+vWrRav6bUUrO/gwYPGwIEDjerVqxs1a9Y0xo4da1y4cMEi9pNPPjHatGljODk5GT4+Psabb75pLF261JBkpKamGoZhGCkpKUbv3r2N2rVrGw4ODoa3t7fxj3/8w/juu+8s1iXJiIiIuGZeV/dfvHjReO655wwvLy/D2dnZ6Ny5s5GUlGR069bN6Natm2EYhpGVlWU0bNjQ6NChg5Gbm2uxvvHjxxu2trZGUlKS2XbkyBFj4MCBRo0aNQwnJyfjvvvuMzZv3myx3M6dOy3eo/b29kbDhg2Nf/7zn8aff/5Z7GvbsGHD677nC94vzzzzjNG1a1fjs88+K7Segp9RgVWrVhk2NjaFYsPDw41q1aoVm1NJPfLII4YkY82aNWZbTk6OUbVqVcPBwaHQe8MwDGPfvn1GSEiI4eLiYlStWtUIDg429uzZYxFT8Nn+3//+V2j5ot7bf/31l9GtWzfDxcXF2Lt3b6n3o2XLloatra3x66+/FtmfkZFhREREGN7e3kaVKlUMT09Po2fPnsaSJUvMmLL6vANXkmSsX7/efL5582ZDklGtWjWLh729vfHoo48WWj42Ntawt7c30tPTb2PWpcdxAMcBHAfcWccB69atM3r37m24u7sbDg4ORoMGDYzRo0cbaWlpZkxJfhaGces/r2lpaYadnZ1x991339Q+A+UVYyhjKGMoY2h5HUMLfrZXfkYKfgdc7erPdknk5eUZL774olGnTh2jatWqRkhIiPHTTz8ZDRs2NMLDw8241157zbjvvvuMGjVqGM7OzkazZs2M119/3cjJybFY38cff2w0b97ccHR0NFq0aGHExcXdUF7lHYX0CqDgw3+9AaikcbfatT74FVlJfsnixjRs2NBi4Lvazp07K9wv7vKmXbt2Ro8ePaydBlDI1YX01atXG3Z2dsYPP/xg/PjjjxaPKw++C/To0cMIDQ29jRnfGI4Dyj+OA24djgNurVOnThn29vbG9OnTrZ0KcEswhpZ/jKG3DmPorcUYWjExtQsA4IZ9/fXX2r9/v2JiYqydCnBd7du3V15enk6ePHndOc9TU1O1c+fOG7p/AABUFDExMcrLy7O4mTgAALg+xtCKiUJ6BeDi4qLHHnvMYq62m4kD7iQPP/ywGjdufM1+Dw+Pa851h8IuXLhgcYOQotSqVUv/7//9PyUnJ2vOnDny8vLS3//+99uUIVC8c+fO6aeffjKfp6amav/+/apVq5buvvtuPfbYYxoyZIjmzJmj9u3b69SpU9q+fbvatGmjvn37msstXbpUXl5e5g2syjOOA1CZcRxwa+zYsUMHDx7U66+/rtDQUPn4+Fg7JeCWYAxFZcYYemtcbwwt6d/cxc1vX5xTp04VumHolRwcHFSrVq0bWjckG8Mo5R0egJvUvXt3nT59WikpKdZO5baZOnWqpk2bplOnTl3zJixAeRATE6Nhw4YVG7Nz504lJCRo+vTpuueee7R48WJ169btNmUIFC8hIUHBwcGF2sPDwxUTE6Pc3Fy99tpr+vDDD/Xbb7+pTp068vf317Rp09S6dWtJUn5+vho2bKghQ4bo9ddfv927UOFxHMBxAMq/7t27a8+ePercubNWrFihu+66y9opARBjKGMo7gTXG0NL+jd39+7db2j7Pj4++vnnn6/Z361bNyUkJNzQukEhHQBwhbS0NB04cKDYGD8/P9WsWfM2ZQQAAAAAQMVwq//m/vLLL3XhwoVr9tesWVN+fn43tG5QSAcAAAAAAAAAoFjMkX4FwzB09uxZa6cBAICqV68uGxsba6dxR8jPz9eJEyd4zQAAVlXw92S9evVka2tr7XTuCIzhAABrK834TSH9CllZWapRo4a10wAAQGfOnJGbm5u107gjnDhxQt7e3tZOAwAASdIvv/yi+vXrWzuNOwJjOACgvCjJ+E0hvQi//PKLXF1drZ0GAKASysrK4g/KUqpevbokxm8AgHUVjOEF4xKujzEcAGBtpRm/KaRfoeBSMldXVwZxAIBVcXlzyTF+AwDKE8bwkmMMBwCUFyUZv5m4DQAAAAAAAACAYlBIBwAAAAAAAACgGBTSAQAAAAAAAAAoBoV0AAAAAAAAAACKQSEdAAAAAAAAAIBiUEgHAAAAAAAAAKAYFNIBAAAAAAAAACgGhXQAAAAAAAAAAIpBIR0AAAAAAAAAgGJQSAcAAAAAAAAAoBgU0gEAAAAAAAAAKIa9tRMAAAAAYD15eXlKTExUWlqavLy8FBQUJDs7O2unBQAAisH4Ddx+pTojPTo6Wh07dlT16tXl7u6u0NBQHT582CLm4sWLioiIUO3ateXi4qIBAwYoIyPD7P/22281aNAgeXt7y9nZWc2bN9e8efMs1vHFF1+oc+fOql27tpydndWsWTPNnTv3uvl99913CgoKkpOTk7y9vTVz5szS7B4AAABQqcTFxalJkyYKDg7W4MGDFRwcrCZNmiguLs7aqQEAgGtg/Aaso1SF9F27dikiIkJ79+5VfHy8cnNz1bt3b50/f96MGT9+vDZt2qS1a9dq165dOnHihMLCwsz+5ORkubu7a8WKFTpw4IBefvllRUVFaf78+WZMtWrVNHbsWO3evVuHDh3SpEmTNGnSJC1ZsuSauWVlZal3795q2LChkpOTNWvWLE2dOrXYZQAAAIDKKi4uTgMHDlTr1q2VlJSks2fPKikpSa1bt9bAgQP5YxwAgHKI8RuwHhvDMIwbXfjUqVNyd3fXrl271LVrV2VmZqpu3bqKjY3VwIEDJUk//PCDmjdvrqSkJPn7+xe5noiICB06dEg7duy45rbCwsJUrVo1/fvf/y6yf9GiRXr55ZeVnp4uBwcHSdJLL72kDRs26IcffijR/mRlZcnNzU2ZmZlydXUt0TIAAJQlxqLS4zUDSi8vL09NmjRR69attWHDBtna/t/5Nfn5+QoNDVVKSop+/PFHLhMHSojxqPR4zYDSYfwGyl5pxqKbmiM9MzNTklSrVi1Jl882z83NVa9evcyYZs2aqUGDBsUW0jMzM811FOWbb77Rnj179Nprr10zJikpSV27djWL6JIUEhKiN998U3/++adq1qxZaJns7GxlZ2ebz7Oysq65fuBOcvz4cZ0+ffqGlr1w4YKOHTtWtgmVko+Pj5ydnW9o2Tp16qhBgwZlnBEAABVLYmKijh07plWrVln8ES5Jtra2ioqKUmBgoBITE9W9e3frJAkAACwwfgPWdcOF9Pz8fI0bN06dO3dWq1atJMk8G7xGjRoWsR4eHkpPTy9yPXv27NGaNWu0ZcuWQn3169fXqVOndOnSJU2dOlUjR468Zj7p6eny9fUttN2CvqIK6dHR0Zo2bVqx+wncaY4fP657mjXXxQt/WTsVq3ByrqrDPxyimA4AQDHS0tIkyTyOv1pBe0EcAACwPsZvwLpuuJAeERGhlJQUffHFFze88ZSUFPXv319TpkxR7969C/UnJibq3Llz2rt3r1566SU1adJEgwYNuuHtXS0qKkqRkZHm86ysLHl7e5fZ+gFrOH36tC5e+Eu1+z2nKrVL/342LuXoUmbG9QNvIXs3D9nYO1w/8Cq5v/+i3zfP0enTpymkA1ayaNEiLVq0yLyypWXLlpo8ebL69OlzzWXWrl2rV155RceOHVPTpk315ptv6m9/+9ttyhionLy8vCRdPh4v6qrRlJQUizgAAGB9jN+Add1QIX3s2LHavHmzdu/erfr165vtnp6eysnJ0ZkzZyzOSs/IyJCnp6fFOg4ePKiePXtq1KhRmjRpUpHbKTjDvHXr1srIyNDUqVOvWUj39PRURoZl8a/g+dXbLuDo6ChHR8fidxa4Q1Wp7S1HzyY3tnD9FmWbDIBKo379+nrjjTfUtGlTGYah5cuXq3///vrmm2/UsmXLQvF79uzRoEGDFB0drX79+ik2NlahoaHat2/fNc+0AXDzgoKC5OPjoxkzZhQ5x2p0dLR8fX0VFBRkxSwBAMCVGL8B67K9fsj/MQxDY8eO1fr167Vjx45CU6n4+fmpSpUq2r59u9l2+PBhHT9+XAEBAWbbgQMHFBwcrPDwcL3++usl2nZ+fr7FfOZXCwgI0O7du5Wbm2u2xcfH65577ilyWhcAAFD2HnzwQf3tb39T06ZNdffdd+v111+Xi4uL9u7dW2T8vHnz9MADD2jChAlq3ry5Xn31VXXo0EHz58+/zZkDlYudnZ3mzJmjzZs3KzQ0VElJSTp79qySkpIUGhqqzZs3a/bs2dyoDACAcoTxG7CuUhXSIyIitGLFCsXGxqp69epKT09Xenq6Lly4IElyc3PTiBEjFBkZqZ07dyo5OVnDhg1TQECAeclJSkqKgoOD1bt3b0VGRprrOHXqlLmdBQsWaNOmTfrxxx/1448/6oMPPtDs2bP1+OOPmzHz589Xz549zeeDBw+Wg4ODRowYoQMHDmjNmjWaN2+exdQtAADg9snLy9Pq1at1/vx5iy/Ur5SUlGRxk3Lp8s3Ck5KSrrne7OxsZWVlWTwAlF5YWJjWrVun77//XoGBgXJ1dVVgYKBSUlK0bt06hYWFWTtFAABwFcZvwHpKNbXLokWLJKnQnX+XLVumoUOHSpLmzp0rW1tbDRgwQNnZ2QoJCdHChQvN2HXr1unUqVNasWKFVqxYYbY3bNjQnE81Pz9fUVFRSk1Nlb29vRo3bqw333xTo0ePNuNPnz6tI0eOmM/d3Ny0bds2RUREyM/PT3Xq1NHkyZM1atSo0uwiAAC4Sd9//70CAgJ08eJFubi4aP369WrRougpo9LT082bgxco7iblEjcLB8pSWFiY+vfvr8TERKWlpcnLy0tBQUGcyQYAQDnG+A1Yh41hGIa1kygvsrKy5ObmpszMTLm6ulo7HeCG7Nu3T35+fvIMf/vG50i/Q2Wn/6T05eOUnJysDh06WDsd4IZUhLEoJydHx48fV2ZmptatW6f3339fu3btKrKY7uDgoOXLl1vcA2XhwoWaNm1aoXufFMjOzraY7q3gZuF38msGALjzVYQx/HbjNQMAWFtpxqIbutkoAADAtTg4OKhJk8tf5Pn5+el///uf5s2bp3fffbdQ7LVuFn6tG4VL3CwcAAAAAHD7lWqOdAAAgNIq7obhAQEBFjcply7fLPxac6oDAAAAAGANnJEOAADKTFRUlPr06aMGDRro7Nmzio2NVUJCgrZu3SpJGjJkiO666y5FR0dLkp599ll169ZNc+bMUd++fbV69Wp9/fXXWrJkiTV3AwAAAAAACxTSAQBAmTl58qSGDBmitLQ0ubm5qU2bNtq6davuv/9+SdLx48dla/t/F8QFBgYqNjZWkyZN0sSJE9W0aVNt2LBBrVq1stYuAAAAAABQCIV0AABQZj744INi+xMSEgq1PfLII3rkkUduUUYAAABAxZOXl6fExESlpaXJy8tLQUFBsrOzs3ZaQIXGHOkAAAAAAADAHSIuLk5NmjRRcHCwBg8erODgYDVp0kRxcXHWTg2o0CikAwAAAAAAAHeAuLg4DRw4UK1bt1ZSUpLOnj2rpKQktW7dWgMHDqSYDtxCFNIBAAAAAACAci4vL0/PPfec+vXrpw0bNsjf318uLi7y9/fXhg0b1K9fPz3//PPKy8uzdqpAhUQhHQAAAAAAACjnEhMTdezYMU2cOFG2tpYlPVtbW0VFRSk1NVWJiYlWyhCo2LjZKAAAAAAAAFDOpaWlSZJatWpV5M1GW7VqZREHoGxRSAcAAAAAAADKOS8vL0nS/PnztXjxYv38889mX8OGDTV69GiLOABli0I6AAAAAAAAUM4FBQXJ3d1dUVFRcnZ2tug7efKkJk6cKHd3dwUFBVkpQ6BiY450AAAAAAAA4A5w8eJFSZKrq6uWLFmiEydOaMmSJXJ1dbXoB1D2OCMdAAAAAAAAKOcSEhKUlZWl5s2b66+//tKoUaPMPh8fHzVr1kw//PCDEhIS1LNnTytmClRMnJEOAAAAAAAAlHMJCQmSLs+RfuTIEe3cuVOxsbHauXOnfvrpJ73zzjsWcQDKFmekAwAAAAAAAHcQOzs7de/e3dppAJUKZ6QDAAAAAAAA5VxB4XzKlCnKzc1VQkKCVq1apYSEBOXm5mrq1KkWcQDKFmekAwAAAAAAAOVc9+7d5e7uri+++EKurq4WNxZ1cnLSxYsX5e7uTiEduEU4Ix0AAAAAAAAo5+zs7BQeHi5JysnJsejLzc2VJIWHh8vOzu625wZUBhTSAQAAAAAAgHIuLy9Pa9eu1b333itvb2+LPm9vb917771at26d8vLyrJQhULFRSAcAAAAAAADKucTERB07dkwDBgyQjY1Nof6wsDClpqYqMTHRCtkBFR+FdAAAAAAAAKCcS0tLkyRNnDhRrVu3VlJSks6ePaukpCS1bt1aL7/8skUcgLLFzUYBAAAAAACAcs7d3V2S1LlzZ23YsEG2tpfPj/X399eGDRvUrVs3ffHFF2YcgLLFGekAAAAAAADAHc4wDGunAFRoFNIBAAAAAACAcu7kyZOSpC+++EKhoaEWU7uEhobqyy+/tIgDULYopAMAAAAAAADlnJeXlyQpOjpa33//vQIDA+Xq6qrAwEClpKRoxowZFnEAyhaFdAAAAAAAAKCcCwoKko+Pjz7++GPl5+db9OXl5SkuLk6+vr4KCgqyUoZAxUYhHQAAAAAAACjn7Ozs9Mgjj+jrr79Wdna2lixZohMnTmjJkiXKzs7W119/rYEDB8rOzs7aqQIVEoV0AAAAAAAAoJzLy8vT2rVrde+998rZ2VmjRo1SvXr1NGrUKFWtWlX33nuv1q1bp7y8PGunClRI9tZOAAAAAAAAAEDxEhMTdezYMa1atUodO3ZUYmKi0tLS5OXlpaCgIH311VcKDAxUYmKiunfvbu10gQqHQjoAAAAAAABQzqWlpUmSWrVqJTs7u0LF8latWlnEAShbTO0CAAAAAEA588Ybb8jGxkbjxo0z2y5evKiIiAjVrl1bLi4uGjBggDIyMiyWO378uPr27auqVavK3d1dEyZM0KVLlyxiEhIS1KFDBzk6OqpJkyaKiYkptP0FCxbIx8dHTk5O6tSpk7766iuL/pLkAqBseXl5SZJSUlKK7C9oL4gDULYopAMAAAAAUI7873//07vvvqs2bdpYtI8fP16bNm3S2rVrtWvXLp04cUJhYWFmf15envr27aucnBzt2bNHy5cvV0xMjCZPnmzGpKamqm/fvgoODtb+/fs1btw4jRw5Ulu3bjVj1qxZo8jISE2ZMkX79u1T27ZtFRISopMnT5Y4FwBlLygoSD4+PpoxY4by8/Mt+vLz8xUdHS1fX18FBQVZKUOgYqOQDgAAAABAOXHu3Dk99thjeu+991SzZk2zPTMzUx988IHeeust9ejRQ35+flq2bJn27NmjvXv3SpK2bdumgwcPasWKFWrXrp369OmjV199VQsWLFBOTo4kafHixfL19dWcOXPUvHlzjR07VgMHDtTcuXPNbb311lt68sknNWzYMLVo0UKLFy9W1apVtXTp0hLnUpTs7GxlZWVZPACUnJ2dnebMmaPNmzcrNDRUSUlJOnv2rJKSkhQaGqrNmzdr9uzZsrOzs3aqQIVEIR0AAAAAgHIiIiJCffv2Va9evSzak5OTlZuba9HerFkzNWjQQElJSZKkpKQktW7dWh4eHmZMSEiIsrKydODAATPm6nWHhISY68jJyVFycrJFjK2trXr16mXGlCSXokRHR8vNzc18eHt7l+q1ASCFhYVp3bp1+v777xUYGChXV1cFBgYqJSVF69at48oQ4BbiZqMAAAAAAJQDq1ev1r59+/S///2vUF96erocHBxUo0YNi3YPDw+lp6ebMVcW0Qv6C/qKi8nKytKFCxf0559/Ki8vr8iYH374ocS5FCUqKkqRkZHm86ysLIrpwA0ICwtT//79lZiYqLS0NHl5eSkoKIgz0YFbjEI6AAAAAABW9ssvv+jZZ59VfHy8nJycrJ3OLeHo6ChHR0drpwFUCHZ2durevbu10wAqFaZ2AQAAAADAypKTk3Xy5El16NBB9vb2sre3165du/Svf/1L9vb28vDwUE5Ojs6cOWOxXEZGhjw9PSVJnp6eysjIKNRf0FdcjKurq5ydnVWnTh3Z2dkVGXPlOq6XCwAAFQ2FdAAAAAAArKxnz576/vvvtX//fvNx77336rHHHjP/X6VKFW3fvt1c5vDhwzp+/LgCAgIkSQEBAfr+++918uRJMyY+Pl6urq5q0aKFGXPlOgpiCtbh4OAgPz8/i5j8/Hxt377djPHz87tuLgAAVDRM7QIAAAAAgJVVr15drVq1smirVq2aateubbaPGDFCkZGRqlWrllxdXfXMM88oICBA/v7+kqTevXurRYsWeuKJJzRz5kylp6dr0qRJioiIMKdUeeqppzR//ny98MILGj58uHbs2KGPPvpIW7ZsMbcbGRmp8PBw3Xvvvbrvvvv09ttv6/z58xo2bJgkyc3N7bq5AABQ0VBIBwAAAADgDjB37lzZ2tpqwIABys7OVkhIiBYuXGj229nZafPmzXr66acVEBCgatWqKTw8XNOnTzdjfH19tWXLFo0fP17z5s1T/fr19f777yskJMSM+fvf/65Tp05p8uTJSk9PV7t27fTZZ59Z3ID0erkAAFDR2BiGYVg7ifIiKytLbm5uyszMlKurq7XTAW7Ivn375OfnJ8/wt+Xo2cTa6dxW2ek/KX35OCUnJ6tDhw7WTge4IYxFpcdrBgAoDxiPSo/XDABgbaUZizgjHQAAAAAAALiD5OXlKTExUWlpafLy8lJQUJDs7OysnRZQoXGzUQAAAAAAAOAOERcXpyZNmig4OFiDBw9WcHCwmjRpori4OGunBlRoFNIBAAAAAACAO0BcXJwGDhyo1q1bKykpSWfPnlVSUpJat26tgQMHUkwHbiEK6QAAAAAAAEA5l5eXp+eee079+vXThg0b5O/vLxcXF/n7+2vDhg3q16+fnn/+eeXl5Vk7VaBCopAOAAAAAAAAlHOJiYk6duyYJk6cKMMwlJCQoFWrVikhIUGGYSgqKkqpqalKTEy0dqpAhcTNRgEAAAAAAIByLi0tTZJ05MgRDRo0SMeOHTP7fHx89Nprr1nEAShbnJEOAAAAAAAAlHNeXl6SpCeeeKLIOdKfeOIJizgAZYtCOgAAAAAAAFDOBQYGyt7eXu7u7lq7dq0uXryoTZs26eLFi1q7dq3c3d1lb2+vwMBAa6cKVEilKqRHR0erY8eOql69utzd3RUaGqrDhw9bxFy8eFERERGqXbu2XFxcNGDAAGVkZJj93377rQYNGiRvb285OzurefPmmjdvnsU64uLidP/996tu3bpydXVVQECAtm7dWmxux44dk42NTaHH3r17S7OLAAAAAAAAQLmzZ88eXbp0SRkZGapRo4aCg4M1ePBgBQcHq0aNGsrIyNClS5e0Z88ea6cKVEilKqTv2rVLERER2rt3r+Lj45Wbm6vevXvr/PnzZsz48eO1adMmrV27Vrt27dKJEycUFhZm9icnJ8vd3V0rVqzQgQMH9PLLLysqKkrz5883Y3bv3q37779fn376qZKTkxUcHKwHH3xQ33zzzXVz/Pzzz5WWlmY+/Pz8SrOLAAAAAAAAQLlz5dznFy9etOi78jlzpAO3RqluNvrZZ59ZPI+JiZG7u7uSk5PVtWtXZWZm6oMPPlBsbKx69OghSVq2bJmaN2+uvXv3yt/fX8OHD7dYR6NGjZSUlKS4uDiNHTtWkvT2229bxMyYMUMbN27Upk2b1L59+2JzrF27tjw9PUuzWwAAAAAAAEC55u7ubvH/IUOGqFGjRjp69Kg+/PBDnTx5slAcgLJTqkL61TIzMyVJtWrVknT5bPPc3Fz16tXLjGnWrJkaNGigpKQk+fv7X3M9BesoSn5+vs6ePVtsTIGHHnpIFy9e1N13360XXnhBDz300DVjs7OzlZ2dbT7Pysq67voBAAAAAACA2y0nJ0eSVKVKFf3yyy9ycHAw+15//XW5uLgoNzfXjANQtm74ZqP5+fkaN26cOnfurFatWkmS0tPT5eDgoBo1aljEenh4KD09vcj17NmzR2vWrNGoUaOuua3Zs2fr3LlzevTRR68Z4+Liojlz5mjt2rXasmWLunTpotDQUH3yySfXXCY6Olpubm7mw9vbu5g9BgAA11OS+6lcLSYmptA9TpycnG5TxgAAAMCdITY2VpJ06dIlhYWFady4cRo9erTGjRunsLAwXbp0ySIOQNm64TPSIyIilJKSoi+++OKGN56SkqL+/ftrypQp6t27d5ExsbGxmjZtmjZu3FjspSl16tRRZGSk+bxjx446ceKEZs2adc2z0qOioiyWycrKopgOAMBNKLifSseOHXXp0iVNnDhRvXv31sGDB1WtWrVrLufq6mpRcLexsbkd6QIAAAB3jHPnzkm6XPPasmVLof777rtPX331lRkHoGzdUCF97Nix2rx5s3bv3q369eub7Z6ensrJydGZM2cszkrPyMgoNG/5wYMH1bNnT40aNUqTJk0qcjurV6/WyJEjtXbtWovpYkqqU6dOio+Pv2a/o6OjHB0dS71eAABQtOvdT+VabGxsuMcJAAAAUIwuXbpow4YN+uqrr4qcI/2rr74y4wCUvVJN7WIYhsaOHav169drx44d8vX1tej38/NTlSpVtH37drPt8OHDOn78uAICAsy2AwcOKDg4WOHh4Xr99deL3NaqVas0bNgwrVq1Sn379i1Nmqb9+/fLy8vrhpYFAAA37+r7qVzLuXPn1LBhQ3l7e6t///46cODANWOzs7OVlZVl8QAAAAAqutGjR5v/9/PzU1hYmB5//HGFhYXJz8+vyDgAZadUZ6RHREQoNjZWGzduVPXq1c15z93c3OTs7Cw3NzeNGDFCkZGRqlWrllxdXfXMM88oICDAvNFoSkqKevTooZCQEEVGRprrsLOzU926dSVdns4lPDxc8+bNU6dOncyYgm1I0vz587V+/XqzaL98+XI5ODioffv2kqS4uDgtXbpU77///s2+RgAA4AYUdT+Votxzzz1aunSp2rRpo8zMTM2ePVuBgYE6cOCAxZVvBaKjozVt2rRbmToAAABQ7lxZ49q6dav+85//mM/t7Ows4saNG3c7UwMqhVKdkb5o0SJlZmaqe/fu8vLyMh9r1qwxY+bOnat+/fppwIAB6tq1qzw9PRUXF2f2r1u3TqdOndKKFSss1tGxY0czZsmSJbp06ZIiIiIsYp599lkz5vTp0zpy5IhFfq+++qr8/PzUqVMnbdy4UWvWrNGwYcNK/aIAAICbV3A/ldWrVxcbFxAQoCFDhqhdu3bq1q2b4uLiVLduXb377rtFxkdFRSkzM9N8/PLLL7cifQAAAKBcKaiDPf3007K1tSzp2djY6Omnn7aIA1C2SnVGumEY141xcnLSggULtGDBgiL7p06dqqlTpxa7joSEhOtu5+r1hIeHKzw8/LrLAQCAW+9a91MpiSpVqqh9+/b66aefiuznHicAAACojBo3bixJ6tChg86fP6+FCxfqyJEjaty4scaMGaOYmBiLOABlq1RnpAMAABTnevdTKYm8vDx9//333OcEAAAAuMKYMWNkb2+vSZMmydbWVuPGjdM777yjcePGydbWVpMnT5a9vb3GjBlj7VSBColCOgAAKDMRERFasWKFYmNjzfuppKen68KFC2bMkCFDFBUVZT6fPn26tm3bpqNHj2rfvn16/PHH9fPPP2vkyJHW2AUAAACgXHJwcND48eOVkZGh+vXra8mSJTpx4oSWLFmi+vXrKyMjQ+PHj5eDg4O1UwUqpFJN7QIAAFCcRYsWSZK6d+9u0b5s2TINHTpUknT8+HGLOR3//PNPPfnkk0pPT1fNmjXl5+enPXv2qEWLFrcrbQAAAOCOMHPmTEmX71E4evRos93e3l4TJkww+wGUPQrpAACgzJTkfipX3wtl7ty5mjt37i3KCAAAAKhYZs6cqddee63QHOmciQ7cWhTSAQAAAAAAgDuIg4ODxo0bZ+00gEqFOdIBAAAAAAAAACgGhXQAAAAAAAAAAIrB1C4AAAAAAADAHSQvL0+JiYlKS0uTl5eXgoKCZGdnZ+20gAqNM9IBAAAAAACAO0RcXJyaNGmi4OBgDR48WMHBwWrSpIni4uKsnRpQoXFGOgAAAAAAAHAHiIuL08CBA/W3v/1N/fv314ULF+Ts7KyffvpJAwcO1Lp16xQWFmbtNIEKiUI6AAAAAAAAUM7l5eXpueeeU6NGjbR161Zt2bLF7LO3t1ejRo30/PPPq3///kzzAtwCTO0CAAAAAAAAlHOJiYk6duyYjhw5otq1a+u9995TWlqa3nvvPdWuXVtHjhxRamqqEhMTrZ0qUCFxRjoAAAAAAABQzv3yyy+SJHd3d/3666+yt79c1hs5cqSGDh2qu+66SydPnjTjAJQtzkgHAAAAAAAAyrn//ve/kqThw4fLxsZGCQkJWrVqlRISEmRjY6OhQ4daxAEoW5yRDgAAAAAAAJRzhmFIkj799FOtXr1ax44dM/t8fHzk6upqEQegbFFIBwAAAAAAAMq5pk2bSpK+++47eXh4mDcePXr0qFasWGEW1gviAJQtCukAAAAAAABAOTd69GiNHz9ednZ2ysjI0Jw5c8w+Gxsb2dnZKS8vT6NHj7ZilkDFxRzpAAAAAAAAQDlXMPd5Xl5eoT7DMMx25kgHbg0K6QAAAAAAAEA599tvv5n/t7Gxsei78vmVcQDKDoV0AAAAAAAAoJxLT0+XJDVs2FDe3t4Wfd7e3mrYsKFFHICyRSEdAAAAAAAAKOf++OMPSdLPP/+sNm3aKCkpSWfPnlVSUpLatGmjn3/+2SIOQNmikA4AAAAAAADcYQzDMB8Abj17aycAAAAAAAAAoHi1atWSdHlql5SUFAUGBpp9vr6+atCggY4fP27GAShbFNIBAAAAAACAcs7T01PS5ald+vbtq+eff17Ozs66cOGC/vOf/2jLli0WcQDKFoV0AAAAAAAAoJy76667zP/v2LHDLJxLUtWqVYuMA1B2KKQDAAAAAAAA5VxQUJB8fHxUp04dnTp1yry5qCS5u7urTp06+v333xUUFGTFLIGKi0I6AAAAAAAAUM7Z2dlpzpw5GjhwoP72t78pNDRUFy5ckLOzs3766Sd9+umnWrdunezs7KydKlAhUUgHAAAAAAAA7gBhYWF6/vnnNXfuXIupXezt7fX8888rLCzMitkBFRuFdAAAAAAAAOAOEBcXp9mzZ6tv377q06ePxc1GZ8+eLX9/f4rpwC1CIR0AAAAAAAAo5/Ly8vTcc8+pX79+2rBhg2xtbc2+p556SqGhoXr++efVv39/pncBbgHb64cAAAAAAAAAsKbExEQdO3ZMEydOlGEYSkhI0KpVq5SQkCDDMBQVFaXU1FQlJiZaO1WgQuKMdAAAAAAAAKCcS0tLkyQdOXJEgwYN0rFjx8w+Hx8fvfbaaxZxAMoWhXQAAAAAAACgnPPy8pIkPfHEE3JycrLoy8jI0BNPPGERB6BsMbULAAAAAAAAUM4FBgbK1tZWhmHIMAyLvoI2W1tbBQYGWilDoGKjkA4AAAAAAACUc4mJicrPz5ckubq6asmSJTpx4oSWLFkiV1dXSVJ+fj5zpAO3CFO7AAAAAAAAAOXcjh07JEl33323srOzNWrUKLPPx8dHTZs21Y8//qgdO3aoZ8+e1koTqLA4Ix0AAAAAAAAo544fPy5JeuaZZ3To0CFFRESod+/eioiI0MGDBzV27FiLOABlizPSAQAAAAAAgHKuQYMGkqTo6Gg9++yz5jQv27Zt06JFi+Tp6WkRB6BscUY6AAAAAAAAUM716NFDknTixAmziF4gPz9fJ06csIgDULYopAMAAAAAAADlXGBgYJnGASgdCukAAAAAAABAObdw4cIyjQNQOhTSAQAAAAAAgHIuMTHR/L+jo6NFn5OTU5FxAMoOhXQAAAAAAACgnDt37pwkqVGjRjp69Kg8PDzk6OgoDw8PHTlyRI0aNbKIA1C27K2dAAAAAAAAAIDiubu7S5KOHj2qu+66y2zPyMiweF4QB6BscUY6AAAAAAAAUM75+vqWaRyA0qGQDgAAAAAAAJRzbdu2LdM4AKVDIR0AAAAAAAAo5yZMmGD+/8qbi0qSs7NzkXEAyg6FdAAAAAAAAKCcS09PN/9vY2NTojgAZYdCOgAAAAAAAFDOOTg4SJJq1qypnJwci76cnBzVqFHDIg5A2bK3dgIAAAAAAAAAijdhwgRNmTJFf/75p+6//36FhobK2dlZFy5c0IYNGxQfH2/GASh7nJEOAAAAAAAAlHNXFsjj4+M1f/581ahRQ/PnzzeL6FfHASg7pSqkR0dHq2PHjqpevbrc3d0VGhqqw4cPW8RcvHhRERERql27tlxcXDRgwABlZGSY/d9++60GDRokb29vOTs7q3nz5po3b57FOuLi4nT//ferbt26cnV1VUBAgLZu3Xrd/L777jsFBQXJyclJ3t7emjlzZml2DwAAAAAAACiX/vvf/1o8P3TokMLCwnTo0KFi4wCUjVIV0nft2qWIiAjt3btX8fHxys3NVe/evXX+/HkzZvz48dq0aZPWrl2rXbt26cSJEwoLCzP7k5OT5e7urhUrVujAgQN6+eWXFRUVpfnz55sxu3fv1v33369PP/1UycnJCg4O1oMPPqhvvvnmmrllZWWpd+/eatiwoZKTkzVr1ixNnTpVS5YsKc0uAgAAAABgFYsWLVKbNm3k6upqnlT2n//8x+y/3olrknT8+HH17dtXVatWlbu7uyZMmKBLly5ZxCQkJKhDhw5ydHRUkyZNFBMTUyiXBQsWyMfHR05OTurUqZO++uori/6S5AKgbKWlpZVpHIDSKdUc6Z999pnF85iYGLm7uys5OVldu3ZVZmamPvjgA8XGxqpHjx6SpGXLlql58+bau3ev/P39NXz4cIt1NGrUSElJSYqLi9PYsWMlSW+//bZFzIwZM7Rx40Zt2rRJ7du3LzK3lStXKicnR0uXLpWDg4Natmyp/fv366233tKoUaOKXCY7O1vZ2dnm86ysrNK8HEC55elio+Z/fSP7P07c9m0bebnKO/uH7KrXko1dldu67Ut/ZUgu175zOQAAAFCe1a9fX2+88YaaNm0qwzC0fPly9e/fX998841atmyp8ePHa8uWLVq7dq3c3Nw0duxYhYWF6csvv5Qk5eXlqW/fvvL09NSePXuUlpamIUOGqEqVKpoxY4YkKTU1VX379tVTTz2llStXavv27Ro5cqS8vLwUEhIiSVqzZo0iIyO1ePFiderUSW+//bZCQkJ0+PBhubu7S9J1cwFQ9ry8vMo0DkDp3NTNRjMzMyVJtWrVknT5bPPc3Fz16tXLjGnWrJkaNGigpKQk+fv7X3M9BesoSn5+vs6ePVtsTFJSkrp27WpxZ+KQkBC9+eab+vPPP1WzZs1Cy0RHR2vatGnF7yRwh6lTp44i/KtpUov11k7l9qsnvfZnNdWpU8famQCVVnR0tOLi4vTDDz/I2dlZgYGBevPNN3XPPfcUu9zatWv1yiuv6NixY2ratKnefPNN/e1vf7tNWQMAUD48+OCDFs9ff/11LVq0SHv37lX9+vWve+Latm3bdPDgQX3++efy8PBQu3bt9Oqrr+rFF1/U1KlT5eDgoMWLF8vX11dz5syRJDVv3lxffPGF5s6daxbS33rrLT355JMaNmyYJGnx4sXasmWLli5dqpdeeqlEJ9EBKHuOjo5lGgegdG64kJ6fn69x48apc+fOatWqlSQpPT1dDg4OqlGjhkWsh4eH0tPTi1zPnj17tGbNGm3ZsuWa25o9e7bOnTunRx999Jox6enp8vX1LbTdgr6iCulRUVGKjIw0n2dlZcnb2/ua2wDuBA0aNNDQdxJ06MSPVtl+amqqJk2apNdee63QZ/J2GPqPpqrfoMFt3y6AywqmgevYsaMuXbqkiRMnqnfv3jp48KCqVatW5DJ79uzRoEGDFB0drX79+ik2NlahoaHat2+feYwBAEBlk5eXp7Vr1+r8+fMKCAgo0YlrSUlJat26tfm3sHT5BLOnn35aBw4cUPv27ZWUlGSxjoKYcePGSZJycnKUnJysqKgos9/W1la9evVSUlKSpBs/iY6rwoGbExgYaPHc399fr732miZNmqS9e/daxBmGcbvTAyq8Gy6kR0REKCUlRV988cUNbzwlJUX9+/fXlClT1Lt37yJjYmNjNW3aNG3cuNG8hKysODo68i0dKqT6zfykZn5W2faFffv0TfpEebYPUfMOHaySAwDrud40cEWZN2+eHnjgAU2YMEGS9Oqrryo+Pl7z58/X4sWLb3nOAACUJ99//70CAgJ08eJFubi4aP369WrRooX2799/3RPX0tPTLYroBf0FfcXFZGVl6cKFC/rzzz+Vl5dXZMwPP/xgrqO0J9FJXBUOlKW77rpLe/fuNb/Qql+/vn799VcrZwVUbKW62WiBsWPHavPmzdq5c6fq169vtnt6eionJ0dnzpyxiM/IyJCnp6dF28GDB9WzZ0+NGjVKkyZNKnI7q1ev1siRI/XRRx8V+sb8ap6enoVubFLw/OptAwCA2+PqaeCKcq0z4wrOertadna2srKyLB4AAFQU99xzj/bv36///ve/evrppxUeHq6DBw9aO60yERUVpczMTPPxyy+/WDsl4I71888/a+fOnYqNjdXOnTt17Ngxa6cEVHilKqQbhqGxY8dq/fr12rFjR6FpG/z8/FSlShVt377dbDt8+LCOHz+ugIAAs+3AgQMKDg5WeHi4Xn/99SK3tWrVKg0bNkyrVq1S3759r5tbQECAdu/erdzcXLMtPj5e99xzT5HTugAAgFurqGnginKtM+OudUZbdHS03NzczAfTsgEAKhIHBwc1adJEfn5+io6OVtu2bTVv3rwSnbhWkhPMrhXj6uoqZ2dn1alTR3Z2dkXGXLmOkp5EdyVHR0e5urpaPACU3JUnp6Smpqp79+4aNGiQunfvrtTU1CLjAJSdUhXSIyIitGLFCsXGxqp69epKT09Xenq6Lly4IElyc3PTiBEjFBkZqZ07dyo5OVnDhg1TQECAOUdaSkqKgoOD1bt3b0VGRprrOHXqlLmd2NhYDRkyRHPmzFGnTp3MmIKz2iRp/vz56tmzp/l88ODBcnBw0IgRI3TgwAGtWbNG8+bNs5gDHQAA3D4F08CtXr26TNfL2WwAgMokPz9f2dnZJTpxLSAgQN9//71OnjxpxsTHx8vV1VUtWrQwY65cR0FMwTocHBzk5+dnEZOfn6/t27ebMSU9iQ5A2WrevLn5/6ZNm8rGxkZDhgyRjY2NmjZtWmQcgLJTqjnSFy1aJEnq3r27RfuyZcs0dOhQSdLcuXNla2urAQMGKDs7WyEhIVq4cKEZu27dOp06dUorVqzQihUrzPaGDRual6EsWbJEly5dUkREhCIiIsyY8PBwxcTESJJOnz6tI0eOmH1ubm7atm2bIiIi5Ofnpzp16mjy5MkaNWpUaXYRAACUgYJp4Hbv3m0xDVxRrnVm3LXOaOMeJwCAiioqKkp9+vRRgwYNdPbsWcXGxiohIUFbt261OHGtVq1acnV11TPPPGNx4lrv3r3VokULPfHEE5o5c6bS09M1adIkRUREmGPnU089pfnz5+uFF17Q8OHDtWPHDn300UfasmWLmUdkZKTCw8N177336r777tPbb7+t8+fPa9iwYZJUolwAlL0tW7YUujfBv//97yLjAJQ9G4Pb+JqysrLk5uamzMxMLjEDbtC+ffvk5+en5ORkdeBmo0Cp3eljkWEYeuaZZ7R+/XolJCRYnBlzLX//+9/1119/adOmTWZbYGCg2rRpU6Kbjd7prxkAoGIoi/FoxIgR2r59u9LS0uTm5qY2bdroxRdf1P333y9Junjxop577jmtWrXK4sS1K798/vnnn/X0008rISFB1apVU3h4uN544w3Z2//feXQJCQkaP368Dh48qPr16+uVV14xT44rMH/+fM2aNUvp6elq166d/vWvf6lTp05mf0lyuR2vGXCn++uvv8wb+ZZE//79i72paP369bVx48ZS5dCsWTNVrVq1VMsAFUVpxiIK6VdgEAduHoV04Obc6WPRmDFjFBsbq40bN+qee+4x293c3OTs7CxJGjJkiO666y5FR0dLkvbs2aNu3brpjTfeUN++fbV69WrNmDFD+/btK3Zu9QJ3+msGAKgYGI9Kj9cM+L+/oa2Jv99RmZVmLCrV1C4AAADFKck0cMePH5et7f/dpiUwMFCxsbGaNGmSJk6cqKZNm2rDhg0lKqIDAAAAd7JmzZopOTm51MtlZmZq9OjR+vHHH9W0aVO9++67cnNzu+EcAFwfhXQAAFBmSnKhW0JCQqG2Rx55RI888sgtyAgAAAAov6pWrXrDZ4OvXr1afn5+Wr16NWeUA7eB7fVDAAAAAAAAAACovCikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFKNUhfTo6Gh17NhR1atXl7u7u0JDQ3X48GGLmIsXLyoiIkK1a9eWi4uLBgwYoIyMDLP/22+/1aBBg+Tt7S1nZ2c1b95c8+bNs1hHWlqaBg8erLvvvlu2trYaN25cifKzsbEp9Fi9enVpdhEAAAAAAAAAAAulKqTv2rVLERER2rt3r+Lj45Wbm6vevXvr/PnzZsz48eO1adMmrV27Vrt27dKJEycUFhZm9icnJ8vd3V0rVqzQgQMH9PLLLysqKkrz5883Y7Kzs1W3bl1NmjRJbdu2LdUOLVu2TGlpaeYjNDS0VMsDAAAAAAAAAHAl+9IEf/bZZxbPY2Ji5O7uruTkZHXt2lWZmZn64IMPFBsbqx49eki6XNhu3ry59u7dK39/fw0fPtxiHY0aNVJSUpLi4uI0duxYSZKPj495lvrSpUtLtUM1atSQp6dnqZYBAABlY/fu3Zo1a5aSk5OVlpam9evXF/uldkJCgoKDgwu1p6WlMZ4DAAAAAMqNm5ojPTMzU5JUq1YtSZfPNs/NzVWvXr3MmGbNmqlBgwZKSkoqdj0F67hZERERqlOnju677z4tXbpUhmFcMzY7O1tZWVkWDwAAcOPOnz+vtm3basGCBaVa7vDhwxZXlLm7u9+iDAEAAAAAKL1SnZF+pfz8fI0bN06dO3dWq1atJEnp6elycHBQjRo1LGI9PDyUnp5e5Hr27NmjNWvWaMuWLTeaimn69Onq0aOHqlatqm3btmnMmDE6d+6c/vnPfxYZHx0drWnTpt30dgEAwGV9+vRRnz59Sr2cu7t7oeMHAAAAAADKixsupEdERCglJUVffPHFDW88JSVF/fv315QpU9S7d+8bXk+BV155xfx/+/btdf78ec2aNeuahfSoqChFRkaaz7OysuTt7X3TeQAAgNJp166dsrOz1apVK02dOlWdO3e+Zmx2drays7PN51xRBgAAAAC41W5oapexY8dq8+bN2rlzp+rXr2+2e3p6KicnR2fOnLGIz8jIKDTP6cGDB9WzZ0+NGjVKkyZNupE0rqtTp0769ddfLf7YvpKjo6NcXV0tHgAA4Pbx8vLS4sWL9fHHH+vjjz+Wt7e3unfvrn379l1zmejoaLm5uZkPvgQHAAAAANxqpSqkG4ahsWPHav369dqxY4d8fX0t+v38/FSlShVt377dbDt8+LCOHz+ugIAAs+3AgQMKDg5WeHi4Xn/99ZvchWvbv3+/atasKUdHx1u2DQAAcOPuuecejR49Wn5+fgoMDNTSpUsVGBiouXPnXnOZqKgoZWZmmo9ffvnlNmYMAAAAAKiMSjW1S0REhGJjY7Vx40ZVr17dnPfczc1Nzs7OcnNz04gRIxQZGalatWrJ1dVVzzzzjAICAuTv7y/p8nQuPXr0UEhIiCIjI8112NnZqW7duua29u/fL0k6d+6cTp06pf3798vBwUEtWrSQJK1fv15RUVH64YcfJEmbNm1SRkaG/P395eTkpPj4eM2YMUPPP//8zb1CAADgtrrvvvuKnTrO0dGRL8kBAAAAALdVqQrpixYtkiR1797don3ZsmUaOnSoJGnu3LmytbXVgAEDlJ2drZCQEC1cuNCMXbdunU6dOqUVK1ZoxYoVZnvDhg117Ngx83n79u3N/ycnJys2NtYiJjMzU4cPHzZjqlSpogULFmj8+PEyDENNmjTRW2+9pSeffLI0uwgAAKxs//798vLysnYaAAAAAACYSlVINwzjujFOTk5asGCBFixYUGT/1KlTNXXq1Jve1tChQ83ivSQ98MADeuCBB667XgAAcOucO3dOP/30k/k8NTVV+/fvV61atdSgQQNFRUXpt99+04cffihJevvtt+Xr66uWLVvq4sWLev/997Vjxw5t27bNWrsAAAAAAEAhpSqkAwAAFOfrr79WcHCw+TwyMlKSFB4erpiYGKWlpen48eNmf05Ojp577jn99ttvqlq1qtq0aaPPP//cYh0AAAAAAFgbhXQAAFBmunfvXuxVZTExMRbPX3jhBb3wwgu3OCsAAAAAAG6OrbUTAAAAAAAAAACgPKOQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAUA5ER0erY8eOql69utzd3RUaGqrDhw9bxFy8eFERERGqXbu2XFxcNGDAAGVkZFjEHD9+XH379lXVqlXl7u6uCRMm6NKlSxYxCQkJ6tChgxwdHdWkSRPFxMQUymfBggXy8fGRk5OTOnXqpK+++qrUuQAAUFFQSAcAAAAAoBzYtWuXIiIitHfvXsXHxys3N1e9e/fW+fPnzZjx48dr06ZNWrt2rXbt2qUTJ04oLCzM7M/Ly1Pfvn2Vk5OjPXv2aPny5YqJidHkyZPNmNTUVPXt21fBwcHav3+/xo0bp5EjR2rr1q1mzJo1axQZGakpU6Zo3759atu2rUJCQnTy5MkS5wIAQEViYxiGYe0kyousrCy5ubkpMzNTrq6u1k4HuCPt27dPfn5+Sk5OVocOHaydDnDHYSwqPV4zAEB5cCvGo1OnTsnd3V27du1S165dlZmZqbp16yo2NlYDBw6UJP3www9q3ry5kpKS5O/vr//85z/q16+fTpw4IQ8PD0nS4sWL9eKLL+rUqVNycHDQiy++qC1btiglJcXc1j/+8Q+dOXNGn332mSSpU6dO6tixo+bPny9Jys/Pl7e3t5555hm99NJLJcrlatnZ2crOzrZ4zby9vRnDgRvE39/AzSvN+M0Z6QAAAAAAlEOZmZmSpFq1akmSkpOTlZubq169epkxzZo1U4MGDZSUlCRJSkpKUuvWrc0iuiSFhIQoKytLBw4cMGOuXEdBTME6cnJylJycbBFja2urXr16mTElyeVq0dHRcnNzMx/e3t439sIAAGAFFNIBAAAAAChn8vPzNW7cOHXu3FmtWrWSJKWnp8vBwUE1atSwiPXw8FB6eroZc2URvaC/oK+4mKysLF24cEGnT59WXl5ekTFXruN6uVwtKipKmZmZ5uOXX34p4asBAID12Vs7AQAAAAAAYCkiIkIpKSn64osvrJ1KmXF0dJSjo6O10wAA4IZwRjoAAAAAAOXI2LFjtXnzZu3cuVP169c32z09PZWTk6MzZ85YxGdkZMjT09OMycjIKNRf0FdcjKurq5ydnVWnTh3Z2dkVGXPlOq6XCwAAFQmFdAAAAAAAygHDMDR27FitX79eO3bskK+vr0W/n5+fqlSpou3bt5tthw8f1vHjxxUQECBJCggI0Pfff6+TJ0+aMfHx8XJ1dVWLFi3MmCvXURBTsA4HBwf5+flZxOTn52v79u1mTElyAQCgImFqFwAAAAAAyoGIiAjFxsZq48aNql69ujnXuJubm5ydneXm5qYRI0YoMjJStWrVkqurq5555hkFBATI399fktS7d2+1aNFCTzzxhGbOnKn09HRNmjRJERER5rQqTz31lObPn68XXnhBw4cP144dO/TRRx9py5YtZi6RkZEKDw/Xvffeq/vuu09vv/22zp8/r2HDhpk5XS8XAAAqEgrpAAAAAACUA4sWLZIkde/e3aJ92bJlGjp0qCRp7ty5srW11YABA5Sdna2QkBAtXLjQjLWzs9PmzZv19NNPKyAgQNWqVVN4eLimT59uxvj6+mrLli0aP3685s2bp/r16+v9999XSEiIGfP3v/9dp06d0uTJk5Wenq527drps88+s7gB6fVyAQCgIrExDMOwdhLlRVZWltzc3JSZmSlXV1drpwPckfbt2yc/Pz8lJyerQ4cO1k4HuOMwFpUerxkAoDxgPCo9XjPg5vD3N3DzSjMWMUc6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUw97aCQAAAAAAAAB3quPHj+v06dO3fbuHDh2y+Nca6tSpowYNGlht+8DtRCEdAAAAAAAAuAHHjx/XPc2a6+KFv6yWw+OPP261bTs5V9XhHw5RTEelQCEdAAAAAAAAuAGnT5/WxQt/qXa/51Sltvdt3bZxKUeXMjNk7+YhG3uH27ptScr9/Rf9vnmOTp8+TSEdlQKFdAAAAKASy8nJ0cKFC3XkyBE1btxYY8aMkYPD7f9jHACAO1mV2t5y9Gxy+zdcv8Xt3yZQSVFIBwAAACqpF154QXPnztWlS5fMtgkTJmj8+PGaOXOmFTMDAAAAyhdbaycAAAAA4PZ74YUXNGvWLNWuXVvvvfee0tLS9N5776l27dqaNWuWXnjhBWunCAAAAJQbFNIBAACASiYnJ0dz586Vh4eHfv31V40cOVKenp4aOXKkfv31V3l4eGju3LnKycmxdqoAAABAuUAhHQAAAKhkFi5cqEuXLum1116Tvb3lbI/29vaaPn26Ll26pIULF1opQwAAAKB8oZAOAAAAVDJHjhyRJPXr16/I/oL2gjgAAACgsqOQDgAAAFQyjRs3liRt3ry5yP6C9oI4AAAAoLKjkA4AAABUMmPGjJG9vb0mTZqkS5cuWfRdunRJkydPlr29vcaMGWOlDAEAAIDyhUI6AAAAUMk4ODho/PjxysjIUP369bVkyRKdOHFCS5YsUf369ZWRkaHx48fLwcHB2qkCAAAA5YL99UMAAAAAVDQzZ86UJM2dO1ejR4822+3t7TVhwgSzHwAAAACFdAAAAKDSmjlzpl577TUtXLhQR44cUePGjTVmzBjORAcAAACuQiEdAAAAqMQcHBw0btw4a6cBAAAAlGulmiM9OjpaHTt2VPXq1eXu7q7Q0FAdPnzYIubixYuKiIhQ7dq15eLiogEDBigjI8Ps//bbbzVo0CB5e3vL2dlZzZs317x58yzWkZaWpsGDB+vuu++Wra1tiQ/sjx8/rr59+6pq1apyd3fXhAkTCt08CQAAAAAAAACA0ihVIX3Xrl2KiIjQ3r17FR8fr9zcXPXu3Vvnz583Y8aPH69NmzZp7dq12rVrl06cOKGwsDCzPzk5We7u7lqxYoUOHDigl19+WVFRUZo/f74Zk52drbp162rSpElq27ZtiXLLy8tT3759lZOToz179mj58uWKiYnR5MmTS7OLAAAAAAAAAABYKFUh/bPPPtPQoUPVsmVLtW3bVjExMTp+/LiSk5MlSZmZmfrggw/01ltvqUePHvLz89OyZcu0Z88e7d27V5I0fPhwzZs3T926dVOjRo30+OOPa9iwYYqLizO34+Pjo3nz5mnIkCFyc3MrUW7btm3TwYMHtWLFCrVr1059+vTRq6++qgULFignJ6c0uwkAAG7Q7t279eCDD6pevXqysbHRhg0brrtMQkKCOnToIEdHRzVp0kQxMTG3PE8AAAAAAErjpuZIz8zMlCTVqlVL0uWzzXNzc9WrVy8zplmzZmrQoIGSkpLk7+9/zfUUrONGJSUlqXXr1vLw8DDbQkJC9PTTT+vAgQNq3759oWWys7OVnZ1tPs/KyrqpHICK4K+//tIPP/xww8sfOnTI4t8b0axZM1WtWvWGlwdgPefPn1fbtm01fPhwiyvSriU1NVV9+/bVU089pZUrV2r79u0aOXKkvLy8FBISchsyBgAAAADg+m64kJ6fn69x48apc+fOatWqlSQpPT1dDg4OqlGjhkWsh4eH0tPTi1zPnj17tGbNGm3ZsuVGUzG3fWURvWC7BX1FiY6O1rRp025qu0BF88MPP8jPz++m1/P444/f8LLJycnq0KHDTecA4Pbr06eP+vTpU+L4xYsXy9fXV3PmzJEkNW/eXF988YXmzp17zUI6X4QDAAAAAG63Gy6kR0REKCUlRV988cUNbzwlJUX9+/fXlClT1Lt37xtez42KiopSZGSk+TwrK0ve3t63PQ+gPGnWrJk5XdONuHDhgo4dOyYfHx85OzvfcA4AKoekpCSLK9mky1eUFXejcb4IBwAAAADcbjdUSB87dqw2b96s3bt3q379+ma7p6encnJydObMGYuz0jMyMuTp6WmxjoMHD6pnz54aNWqUJk2adGPZX8HT01NfffWVRVtGRobZVxRHR0c5Ojre9LaBiqRq1ao3fTZ4586dyygbABXdta4oy8rK0oULF4r8Qo4vwgEAAAAAt1upbjZqGIbGjh2r9evXa8eOHfL19bXo9/PzU5UqVbR9+3az7fDhwzp+/LgCAgLMtgMHDig4OFjh4eF6/fXXb3IXLgsICND333+vkydPmm3x8fFydXVVixYtymQbAADA+hwdHeXq6mrxAAAAAADgVirVGekRERGKjY3Vxo0bVb16dXPucTc3Nzk7O8vNzU0jRoxQZGSkatWqJVdXVz3zzDMKCAgwbzSakpKiHj16KCQkRJGRkeY67OzsVLduXXNb+/fvlySdO3dOp06d0v79++Xg4GAWxdevX6+oqCjzpoi9e/dWixYt9MQTT2jmzJlKT0/XpEmTFBERwVnnAACUU56enuYVZAUyMjLk6up6w9NDAQAAAABQ1kpVSF+0aJEkqXv37hbty5Yt09ChQyVJc+fOla2trQYMGKDs7GyFhIRo4cKFZuy6det06tQprVixQitWrDDbGzZsqGPHjpnP27dvb/4/OTlZsbGxFjGZmZk6fPiwGWNnZ6fNmzfr6aefVkBAgKpVq6bw8HBNnz69NLsIAABuo4CAAH366acWbfHx8RZXsgEAAAAAYG2lKqQbhnHdGCcnJy1YsEALFiwosn/q1KmaOnXqTW9r6NChZvG+QMOGDQv9MQ4AAG6fc+fO6aeffjKfp6amav/+/apVq5YaNGigqKgo/fbbb/rwww8lSU899ZTmz5+vF154QcOHD9eOHTv00UcfacuWLdbaBQAAAAAACinVHOkAAADF+frrr9W+fXvzyrLIyEi1b99ekydPliSlpaXp+PHjZryvr6+2bNmi+Ph4tW3bVnPmzNH777+vkJAQq+QPAAAAAEBRSnVGOgAAQHG6d+9e7FVlMTExRS7zzTff3MKsAAAAAAC4OZyRDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAx7K2dAAAAAAAAAHCn8nSxUWuHE6piY2ftVG6rXIcTkouNtdMAbhsK6QAAAEAllpeXp8TERKWlpcnLy0tBQUGys6tchQAAAG7GaD8HTa232Npp3H71pKl+DtbOArhtKKQDAAAAlVRcXJyee+45HTt2zGzz8fHRnDlzFBYWZr3EAAC4g7ybnKM9dz+rKrW9rZ3KbZX7+y/6PnmWHrJ2IsBtQiEdAAAAqITi4uI0cOBA9evXT6tWrVKrVq2UkpKiGTNmaODAgVq3bh3FdAAASiD9nCHl1JOj4WvtVG6r7Jy8y/sOVBLcbBQAAACoZPLy8vTcc8+pX79+2rBhg/z9/eXi4iJ/f39t2LBB/fr10/PPP6+8vDxrpwoAAACUCxTSAQAAgEomMTFRx44d08SJE2Vra/knga2traKiopSamqrExEQrZQgAAACULxTSAQAAgEomLS1NktSqVasi+wvaC+IAAACAyo5COgAAAFDJeHl5SZJSUlKK7C9oL4gDAAAAKjsK6QAAAEAlExQUJB8fH82YMUP5+fkWffn5+YqOjpavr6+CgoKslCEAAABQvlBIBwAAACoZOzs7zZkzR5s3b1ZoaKiSkpJ09uxZJSUlKTQ0VJs3b9bs2bNlZ2dn7VQBAACAcsHe2gkAAAAAuP3CwsK0bt06PffccwoMDDTbfX19tW7dOoWFhVkxOwAAAKB8oZAOAAAAVFJhYWHq37+/EhMTlZaWJi8vLwUFBXEmOgAAAHAVCukAAABAJWZnZ6fu3btbOw0AAACgXKOQDgAAAFRieXl5nJEOAAAAXAc3GwUAAAAqqbi4ODVp0kTBwcEaPHiwgoOD1aRJE8XFxVk7NQAAAKBcoZAOAAAAVEJxcXEaOHCgWrduraSkJJ09e1ZJSUlq3bq1Bg4cSDEdAAAAuAKFdAAAAKCSycvL03PPPad+/fppw4YN8vf3l4uLi/z9/bVhwwb169dPzz//vPLy8qydKgAAAFAuUEgHAAAAKpnExEQdO3ZMEydOlK2t5Z8Etra2ioqKUmpqqhITE62UIQAAAFC+UEgHAAAAKpm0tDRJUqtWrYrsL2gviAMAAAAqO3trJwAAAADg9vLy8pIkpaSkqEOHDlq4cKGOHDmixo0ba8yYMUpJSbGIAwAAACo7CukAAABAJRMUFCQfHx89/vjj+vnnn3Xp0iWzb8KECWrYsKF8fX0VFBRkxSwBAACA8oOpXQAAAIBKxs7OTm3bttWRI0dka2url156ST/++KNeeukl2dra6siRI2rTpo3s7OysnSoAAABQLnBGOgAAAFDJ5OTkaMuWLXJzc5Obm5veeOMNvfHGG5Kkhg0b6syZM9qyZYtycnLk4OBg5WwBAAAA6+OMdAAAAKCSWbhwoS5duqTZs2fr6NGj2rlzp2JjY7Vz504dOXJEM2fO1KVLl7Rw4UJrpwoAAACUCxTSAQAAgErmyJEjkqR+/foV2V/QXhAHAAAAVHZM7QIAAABUMo0bN5YkTZ8+Xf/5z3907Ngxs8/Hx0cPPPCARRwAAABQ2XFGOgAAAFDJjBkzRra2tlq0aJFatmyppKQknT17VklJSWrZsqUWL14sW1tbjRkzxtqpApXK7t279eCDD6pevXqysbHRhg0bLPoNw9DkyZPl5eUlZ2dn9erVSz/++KNFzB9//KHHHntMrq6uqlGjhkaMGKFz585ZxHz33XcKCgqSk5OTvL29NXPmzEK5rF27Vs2aNZOTk5Nat26tTz/9tNS5AABQkVBIBwAAACoZOzs7ubi4SJK+/vprfffdd8rKytJ3332nr7/+WpLk4uIiOzs7a6YJVDrnz59X27ZttWDBgiL7Z86cqX/9619avHix/vvf/6patWoKCQnRxYsXzZjHHntMBw4cUHx8vDZv3qzdu3dr1KhRZn9WVpZ69+6thg0bKjk5WbNmzdLUqVO1ZMkSM2bPnj0aNGiQRowYoW+++UahoaEKDQ1VSkpKqXIBAKAioZAOAAAAVDKJiYnKysrSY489pt9//12jR4/WXXfdpdGjR+v333/X4MGDlZWVpcTERGunClQqffr00WuvvaaHH364UJ9hGHr77bc1adIk9e/fX23atNGHH36oEydOmGeuHzp0SJ999pnef/99derUSV26dNE777yj1atX68SJE5KklStXKicnR0uXLlXLli31j3/8Q//85z/11ltvmduaN2+eHnjgAU2YMEHNmzfXq6++qg4dOmj+/PklzgUAgIqGQjoAAABQyaSlpUmSFi9erPPnz2vu3LkaO3as5s6dq/Pnz2vx4sUWcQCsLzU1Venp6erVq5fZ5ubmpk6dOikpKUmSlJSUpBo1aujee+81Y3r16iVbW1v997//NWO6du0qBwcHMyYkJESHDx/Wn3/+acZcuZ2CmILtlCSXomRnZysrK8viAQDAnYKbjQIAAACVjJeXlyQpJSVF/v7+GjdunEV/cnKyRRwA60tPT5ckeXh4WLR7eHiYfenp6XJ3d7fot7e3V61atSxifH19C62joK9mzZpKT0+/7naul0tRoqOjNW3atOvvLAAA5RBnpAMAAACVTFBQkHx8fDRjxgzl5uYqISFBq1atUkJCgnJzcxUdHS1fX18FBQVZO1UAFUhUVJQyMzPNxy+//GLtlAAAKDHOSAcAAAAqGTs7O82ZM0cDBgyQm5ubLly4YPY5OzvrwoUL+vjjj7nZKFCOeHp6SpIyMjIsrhbJyMhQu3btzJiTJ09aLHfp0iX98ccf5vKenp7KyMiwiCl4fr2YK/uvl0tRHB0d5ejoWKL9BQCgvKGQDgAAAFRSNjY2RbYV1Q7Aunx9feXp6ant27ebxeqsrCz997//1dNPPy1JCggI0JkzZ5ScnCw/Pz9J0o4dO5Sfn69OnTqZMS+//LJyc3NVpUoVSVJ8fLzuuece1axZ04zZvn27xbRP8fHxCggIKHEuQGWT+/vtv8LCuJSjS5kZsnfzkI29w/UXKGPW2GfAmiikAwAAAJVMXl6ennvuOfXr108ff/yxvvzyS6WlpcnLy0udO3fWgAED9Pzzz6t///6clQ7cRufOndNPP/1kPk9NTdX+/ftVq1YtNWjQQOPGjdNrr72mpk2bytfXV6+88orq1aun0NBQSVLz5s31wAMP6Mknn9TixYuVm5ursWPH6h//+Ifq1asnSRo8eLCmTZumESNG6MUXX1RKSormzZunuXPnmtt99tln1a1bN82ZM0d9+/bV6tWr9fXXX2vJkiWSLn/hdr1cgMqiTp06cnKuqt83z7F2Klbh5FxVderUsXYawG1BIR0AAACoZBITE3Xs2DGtWrVKVapUUffu3S36o6KiFBgYqMTExEJ9AG6dr7/+WsHBwebzyMhISVJ4eLhiYmL0wgsv6Pz58xo1apTOnDmjLl266LPPPpOTk5O5zMqVKzV27Fj17NlTtra2GjBggP71r3+Z/W5ubtq2bZsiIiLk5+enOnXqaPLkyRo1apQZExgYqNjYWE2aNEkTJ05U06ZNtWHDBrVq1cqMKUkuQGXQoEEDHf7hkE6fPn3bt33o0CE9/vjjWrFihZo3b37bty9d/iKhQYMGVtk2cLvZGIZhWDuJ8iIrK0tubm7KzMyUq6urtdMBAFRCjEWlx2sGlN6qVas0ePBgnT17Vi4uLoX6z549K1dXV8XGxmrQoEFWyBC48zAelR6vGXBz9u3bJz8/PyUnJ6tDhw7WTge4I5VmLLK9TTkBAAAAKCcKbg6YkpJSZH9B+5U3EQQAAAAqMwrpAAAAQCUTFBQkHx8fzZgxQ/n5+RZ9+fn5io6Olq+vr4KCgqyUIQAAAFC+UEgHAAAAKhk7OzvNmTNHmzdvVmhoqJKSknT27FklJSUpNDRUmzdv1uzZs7nRKAAAAPD/42ajAAAAQCUUFhamdevW6bnnnlNgYKDZ7uvrq3Xr1iksLMyK2QEAAADlC4V0AAAAoJIKCwtT//79lZiYqLS0NHl5eSkoKIgz0QEAAICrUEgHAAAAKjE7Ozt1797d2mkAAAAA5Vqp5kiPjo5Wx44dVb16dbm7uys0NFSHDx+2iLl48aIiIiJUu3Ztubi4aMCAAcrIyDD7v/32Ww0aNEje3t5ydnZW8+bNNW/evELbSkhIUIcOHeTo6KgmTZooJiam2NyOHTsmGxubQo+9e/eWZhcBAACASiUvL08JCQlatWqVEhISlJeXZ+2UAAAAgHKnVIX0Xbt2KSIiQnv37lV8fLxyc3PVu3dvnT9/3owZP368Nm3apLVr12rXrl06ceKExfyKycnJcnd314oVK3TgwAG9/PLLioqK0vz5882Y1NRU9e3bV8HBwdq/f7/GjRunkSNHauvWrdfN8fPPP1daWpr58PPzK80uAgCAMrBgwQL5+PjIyclJnTp10ldffXXN2JiYmEJfhDs5Od3GbIHKKy4uTo0bN1ZwcLAGDx6s4OBgNW7cWHFxcdZODQAAAChXSjW1y2effWbxPCYmRu7u7kpOTlbXrl2VmZmpDz74QLGxserRo4ckadmyZWrevLn27t0rf39/DR8+3GIdjRo1UlJSkuLi4jR27FhJ0uLFi+Xr66s5c+ZIkpo3b64vvvhCc+fOVUhISLE51q5dW56enqXZLQAAUIbWrFmjyMhILV68WJ06ddLbb7+tkJAQHT58WO7u7kUu4+rqanGVm42Nze1KF6i04uLiNGDAADk7O1u0nzx5UgMGDNDHH3/MDUcBAACA/1+pzki/WmZmpiSpVq1aki6fbZ6bm6tevXqZMc2aNVODBg2UlJRU7HoK1iFJSUlJFuuQpJCQkGLXUeChhx6Su7u7unTpok8++aTY2OzsbGVlZVk8AADAzXnrrbf05JNPatiwYWrRooUWL16sqlWraunSpddcxsbGRp6enubDw8PjNmYMVD55eXl66qmnJEk9e/ZUUlKSzp49q6SkJPXs2VOS9PTTTzPNCwAAAPD/u+FCen5+vsaNG6fOnTurVatWkqT09HQ5ODioRo0aFrEeHh5KT08vcj179uzRmjVrNGrUKLMtPT290B/QHh4eysrK0oULF4pcj4uLi+bMmaO1a9dqy5Yt6tKli0JDQ4stpkdHR8vNzc18eHt7l2TXAQDANeTk5Cg5OdniC3FbW1v16tWr2C/Ez507p4YNG8rb21v9+/fXgQMHrhnLF+HAzUtISNCpU6fUpUsXbdy4Uf7+/nJxcZG/v782btyoLl266OTJk0pISLB2qgAAAEC5cMOF9IiICKWkpGj16tU3vPGUlBT1799fU6ZMUe/evW94PZJUp04dRUZGqlOnTurYsaPeeOMNPf7445o1a9Y1l4mKilJmZqb5+OWXX24qBwAAKrvTp08rLy+vyC/Er/Wl+j333KOlS5dq48aNWrFihfLz8xUYGKhff/21yHi+CAduXkGBfNq0abK1tfyTwNbWVlOmTLGIAwAAACq7Gyqkjx07Vps3b9bOnTtVv359s93T01M5OTk6c+aMRXxGRkahecsPHjyonj17atSoUZo0aZJFn6enpzIyMgqtw9XVtdAcjsXp1KmTfvrpp2v2Ozo6ytXV1eIBAABur4CAAA0ZMkTt2rVTt27dFBcXp7p16+rdd98tMp4vwoGylZeXp4SEBK1atUoJCQlM5wIAAID/r707j9OqrP/H/xq2AQUGQdZk00hFzQU3sJSUJHfcNStE3BI0JDUt9zRSc19TCzS13FLL3VC0FDfMJbePC4hLoKQwiIDK3L8//HF/HYEjIDoO83w+HvdD7utc5zrvc+YeLnnNmeuwEEv0sNFSqZRDDz00N910U8aNG5eePXvW2t6nT580bdo0Y8eOza677pokefHFFzN58uT07du33O/ZZ5/NlltumcGDB+fUU09d4Dh9+/bN7bffXqvtnnvuqTXG4njyySfTuXPnJdoHAFh6K6+8cho3brzQH4gv7sPAmzZtmvXXX3+RPwyvrKxMZWXlF64VGrL+/fvnlFNOybBhwzJ79uy89tpr5W3du3cv37zSv3//OqoQAAC+XpYoSB82bFiuueaa3HLLLWnVqlX5V7SrqqrSokWLVFVVZejQoRk5cmTatm2b1q1b59BDD03fvn2z6aabJvlkOZctt9wyAwcOzMiRI8tjNG7cOO3bt0+SHHzwwbngggty1FFHZb/99su9996b6667Lrfddlu5lgsuuCA33XRTxo4dmyS54oor0qxZs6y//vpJkr/+9a/54x//mMsvv/wLXiIAYHE1a9Ysffr0ydixYzNo0KAknzxXZezYsRk+fPhijTFv3rw888wz2Xbbbb/ESqFh69+/f6qqqvLCCy8ssLTL66+/npqamlRVVQnSAQDg/7dEQfrFF1+cZME7U0aPHp199903SXL22WenUaNG2XXXXTN37twMHDgwF110UbnvDTfckHfeeSdXXXVVrrrqqnJ79+7dM2nSpCRJz549c9ttt+Xwww/Pueeem1VWWSWXX355Bg4cWO4/bdq0vPLKK7Xq+PWvf53XXnstTZo0yRprrJFrr702u+2225KcIgDwBY0cOTKDBw/OhhtumI033jjnnHNOZs2alSFDhiRJfvKTn+Qb3/hGRo0alSQ5+eSTs+mmm+ab3/xmpk+fnjPOOCOvvfZa9t9//7o8DVjulUqlL7QdAAAakoqS/0Muq66uTlVVVWbMmGG9dADqxPIyF11wwQU544wzMmXKlKy33no577zzsskmmyT55AfyPXr0yJgxY5Ikhx9+eP76179mypQpWWmlldKnT5+ccsop5d8y+zzLyzWDr9LYsWMzYMCArLnmmpk1a1YmT55c3jZ/aZcXXngh//jHP7LVVlvVYaVQf5iPlpxrBl/ME088kT59+mTChAnZYIMN6rocqJeWZC5aqoeNAgAUGT58eF577bXMnTs3jzzySDlET5Jx48aVQ/Tkk99mm993ypQpue222xY7RAeWzrhx45Ike+65ZyoqKhbYvueee9bqBwAADd0SLe0CAAAsP0488cRst912GTRoUGbPnp0WLVrk5ZdfzkknnVTXpQEAwNeKIB0AABqYzTffPElSWVmZO++8M/PmzStva9y4cSorKzN37txyPwAAaOgs7QIAAA1Mo0af/DNg7ty5adSoUY4++ui89NJLOfroo9OoUaPMnTu3Vj8AAGjo3JEOAAANzFtvvVX+c5MmTfLb3/42v/3tb5MkLVq0yEcffbRAPwAAaMjcYgIAAA3MI488kiTZeeed07Fjx1rbOnXqlEGDBtXqBwAADZ070gEAoIEplUpJkvfffz//93//lwcffDD//e9/07lz52y22WbZbrvtavUDAICGzh3pAADQwPTq1StJcs8992TXXXdNZWVltt9++1RWVmbXXXfNPffcU6sfAAA0dIJ0AABoYA455JA0adIkVVVVefrpp9OvX7+0bt06/fr1yzPPPJOqqqo0adIkhxxySF2XCgAAXwuCdAAAaGCaNWuWww8/PDNmzMicOXMycuTIXHDBBRk5cmRmz56dGTNm5PDDD0+zZs3qulQAAPhasEY6AAA0QKeffnqS5Oyzz85ZZ51Vbm/SpEmOPPLI8nYAAECQDgAADdbpp5+eU045JRdddFFeeeWVrLbaajnkkEPciQ4AAJ8hSAcAgAasWbNmGTFiRF2XAQAAX2vWSAcAgAZs9uzZGT58eAYOHJjhw4dn9uzZdV0SAAB87QjSAQCggRo0aFBWWGGFXHjhhbn77rtz4YUXZoUVVsigQYPqujQAAPhaEaQDAEADNGjQoNxyyy1p1qxZjj766Lz88ss5+uij06xZs9xyyy3CdAAA+BRBOgAANDCzZ88uh+jTp0/PwIED8+ijj2bgwIGZPn16OUy3zAsAAHzCw0YBAKCBOfLII5Mk2223XXr37p1JkyaVt/Xo0SPbbrttbr755hx55JG54IIL6qhKAAD4+nBHOgAANDAvvfRSkuSmm27KOuusk/Hjx2fmzJkZP3581llnndx88821+gEAQEMnSAcAgAZm1VVXTZKsttpque666/Lwww/nmGOOycMPP5zrrruuvH3+fwEAoKGztAsAADQwO+64Yy655JJMnDgxLVu2zLx588rbjjjiiJRKpXI/AABAkA4AAA3O9OnTkyQ1NTULbPt0qD6/HwAANHSWdgEAgAamXbt2y7QfAAAs7wTpAADQwPz73/9OkjRq1Chdu3atta1r165p1KhRrX4AANDQCdIBAKCB+fvf/57kk6Vd3njjjVrb3njjjfKSL/P7AQBAQydIBwAAAACAAh42CgAADcyaa66ZBx98MEmyzTbbZLvttkuLFi0ye/bs3Hbbbbn99tvL/QAAAHekAwBAg/Pph4g+/vjjadKkSQYOHJgmTZrk8ccfX2g/AABoyNyRDgAADcybb75Z/vPbb7+dgw466HP7AQBAQ+aOdAAAaGC6deuWJFlxxRUXun1++/x+AADQ0AnSAQCggdlyyy2TJLNmzVro9vnt8/sBAEBDJ0gHAIAGpl+/fsu0HwAALO8E6QAA0MCcf/75y7QfAAAs7wTpAADQwPzpT39apv0AAGB5J0gHAIAG5r333lum/QAAYHknSAcAgAamadOmy7QfAAAs7wTpAADQwPz3v/9dpv0AAGB5J0gHAIAG5sMPP1ym/QAAYHknSAcAgAamoqJimfYDAIDlnSAdAAAamJYtWy7TfgAAsLwTpAMAQAOzwgorLNN+AACwvBOkAwBAA/PBBx8s034AALC8E6QDAEAD8/HHHy/TfgAAsLwTpAMAQAPTpk2bZdoPAACWd4J0AABoYDbddNNl2g8AAJZ3gnQAAGhgpk+fvkz7AQDA8k6QDgAADczs2bOXaT8AAFjeCdIBAKCBee+995ZpPwAAWN4J0gEAoIF54YUXlmk/AABY3gnSgWVm0KBBqaioKL8GDRpU1yUBAJ+joqKi8D0AAJA0qesCgOXDwv7Rfcstt6SioiKlUqkOKgKAhuODDz5Y6rvHPztPf/b9E088sdhjrbHGGllhhRWWqg4AAPg6W6IgfdSoUfnrX/+aF154IS1atEi/fv1y2mmnZfXVVy/3mTNnTn7+85/nL3/5S+bOnZuBAwfmoosuSseOHZMkTz31VH7729/mX//6V6ZNm5YePXrk4IMPzs9+9rNaxxo3blxGjhyZZ599Nl27ds2xxx6bfffdt7C+p59+OsOGDctjjz2W9u3b59BDD81RRx21JKcILIXPu3NNmA4Nz4UXXpgzzjgjU6ZMybrrrpvzzz8/G2+88SL7X3/99TnuuOMyadKk9OrVK6eddlq23Xbbr7Bi+HqYPHlypk2btsT7Pf/88/nRj370JVSU9OnTZ7H7XnXVVVlzzTWX+Bgrr7xyunXrtsT7AQDAV2WJgvT7778/w4YNy0YbbZSPP/44v/zlL7P11lvnueeey4orrpgkOfzww3Pbbbfl+uuvT1VVVYYPH55ddtklDz74YJJkwoQJ6dChQ6666qp07do1Dz30UA488MA0btw4w4cPT5JMnDgx2223XQ4++OBcffXVGTt2bPbff/907tw5AwcOXGht1dXV2XrrrTNgwIBccskleeaZZ7LffvulTZs2OfDAA7/INQIKfHr5lp///Of53e9+V35/xBFH5Mwzzyz3u/nmm7/i6oC6cO2112bkyJG55JJLsskmm+Scc87JwIED8+KLL6ZDhw4L9H/ooYey9957Z9SoUdl+++1zzTXXZNCgQXniiSey9tpr18EZQN2YPHlytuizZlZqMmep9l+/U92v2njmET9Zqv3e+7h57p/wvDAdAICvrYrSF7hN9J133kmHDh1y//33Z/PNN8+MGTPSvn37XHPNNdltt92SfPKAojXXXDPjx4/PpptuutBxhg0blueffz733ntvkuQXv/hFbrvttvznP/8p99lrr70yffr03HnnnQsd4+KLL86vfvWrTJkyJc2aNUuSHH300bn55psX+Wuuc+fOzdy5c8vvq6ur07Vr18yYMSOtW7de8gsCDdCn70Zf2F8nn7cdqK26ujpVVVX1ei7aZJNNstFGG+WCCy5IktTU1KRr16459NBDc/TRRy/Qf88998ysWbNy6623lts23XTTrLfeernkkksW6G/+Znk1efLkXDl0rRy7Wd0H4l+1Ux6syU/+8KwgnXpteZjDv2quGXyx5dnm/0ba0v5G2HyWZqMhW5K56AutkT5jxowkSdu2bZN8crf5Rx99lAEDBpT7rLHGGunWrVthkD5jxozyGEkyfvz4WmMkycCBAzNixIhF1jJ+/Phsvvnm5RB9/j6nnXZa3nvvvay00koL7DNq1KicdNJJn3+iAMBi+fDDDzNhwoQcc8wx5bZGjRplwIABGT9+/EL3GT9+fEaOHFmrbeDAgYv8LRbzN8urbt26Zd/zx+X5t15a4n0nTpyYY489dtkXtYROOeWU9OzZc4n323evXllFiA5AA/TCCy8s0TJqC/NFl3ebMGFCNthggy80BjQESx2k19TUZMSIEdlss83Kv3Y9/27wNm3a1OrbsWPHTJkyZaHjPPTQQ7n22mtz2223ldumTJlSXlP902NUV1dn9uzZadGixQLjTJkyZYH/aZ8/xpQpUxYapB9zzDG1/uE+/442AGDpTJs2LfPmzVvoPL6oO20WNe8v6v8dzN8sz1ZZo0+yxpL/Y7r7Bx/k8vUXvgRikaJ/uE+YMGGJx3NHGzQ8S/pcFKC2NdZYY6nm3CSZPXt2Jk2alB49eiw0K1uSGoDPt9RB+rBhw/Kf//wn//rXv5b64P/5z3+y00475YQTTsjWW2+91OMsrcrKylRWVn7lx4XlyU477ZRbbrklySdron92jfRP9wNYFszfsKAVVlhhqe4kK5VKmTBhQjbccMNy2+OPP/6F74wDGoYlfS4KsKClncPn22yzzZZhNUCRpVqAcfjw4bn11ltz3333ZZVVVim3d+rUKR9++GGmT59eq//UqVPTqVOnWm3PPfdcttpqqxx44IEL/Bpqp06dMnXq1AXGaN269SJ/wraofeZvA74cn1564cwzz0xFRUX5Nf9Bo5/tByy/Vl555TRu3Hihc/Ki5uNFzeHmb/hq9OnTJ6VSqfwSogOL66yzzsoBBxyQIUOGpHfv3rnkkkuywgor5I9//GNdlwYAy9wSBemlUinDhw/PTTfdlHvvvXeBpVT69OmTpk2bZuzYseW2F198MZMnT07fvn3Lbc8++2y+973vZfDgwTn11FMXOE7fvn1rjZEk99xzT60xFrbPAw88kI8++qjWPquvvvpCl3UBlp3Pe4ioh4xCw9GsWbP06dOn1jxeU1OTsWPHLnIeX5p5HwCoW/Ofi/Lp55t93nNR5s6dm+rq6lovAKgvlihIHzZsWK666qpcc801adWqVaZMmZIpU6Zk9uzZSZKqqqoMHTo0I0eOzH333ZcJEyZkyJAh6du3b/lBo//5z3/yve99L1tvvXVGjhxZHuOdd94pH+fggw/Oq6++mqOOOiovvPBCLrroolx33XU5/PDDy30uuOCCbLXVVuX3P/zhD9OsWbMMHTo0zz77bK699tqce+65Czy8DPhylEqlBZZv2WmnnYTo0ACNHDkyl112Wa644oo8//zz+elPf5pZs2ZlyJAhSZKf/OQntR5G+rOf/Sx33nlnzjzzzLzwwgs58cQT8/jjj2f48OF1dQoAwOcoei7Kop5zMmrUqFRVVZVfnnECQH2yRGukX3zxxUmS/v3712ofPXp09t133yTJ2WefnUaNGmXXXXfN3LlzM3DgwFx00UXlvjfccEPeeeedXHXVVbnqqqvK7d27d8+kSZOSJD179sxtt92Www8/POeee25WWWWVXH755Rk48P89QGnatGl55ZVXyu+rqqpy9913Z9iwYenTp09WXnnlHH/88TnwwAOX5BSBL8DyLUCS7LnnnnnnnXdy/PHHZ8qUKVlvvfVy5513lv+hPXny5DRq9P9+lt+vX79cc801OfbYY/PLX/4yvXr1ys0331x+mDkAsHzwwHAA6rOKkttFy6qrq1NVVZUZM2akdevWdV0OAA2QuWjJuWYAfB00tPnoww8/zAorrJAbbrghgwYNKrcPHjw406dPzy233PK5YzS0awbA18+SzEVL9bBRAAAAoOFamueiAEB9tkRLuwAAAAAknzwXZfDgwdlwww2z8cYb55xzzqn1XBQAWJ4I0gEAAIAl9nnPRQGA5YkgHQAAAFgqw4cPz/Dhw+u6DAD40lkjHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoECTui7g66RUKiVJqqur67gSABqq+XPQ/DmJz2f+BuDrwBy+5MzhANS1JZm/BemfMnPmzCRJ165d67gSABq6mTNnpqqqqq7LqBfM3wB8nZjDF585HICvi8WZvytKflxeVlNTk7feeiutWrVKRUVFXZcD9VJ1dXW6du2a119/Pa1bt67rcqDeKZVKmTlzZrp06ZJGjazAtjjM3/DFmb/hizOHLzlzOHwx5m/44pZk/hakA8tUdXV1qqqqMmPGDBM5ANQT5m8AqH/M3/DV8mNyAAAAAAAoIEgHAAAAAIACgnRgmaqsrMwJJ5yQysrKui4FAFhM5m8AqH/M3/DVskY6AAAAAAAUcEc6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOrBMPPDAA9lhhx3SpUuXVFRU5Oabb67rkgCAz2H+BoD6yRwOXz1BOrBMzJo1K+uuu24uvPDCui4FAFhM5m8AqJ/M4fDVa1LXBQDLh2222SbbbLNNXZcBACwB8zcA1E/mcPjquSMdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACjSp6wKA5cP777+fl19+ufx+4sSJefLJJ9O2bdt069atDisDABbF/A0A9ZM5HL56FaVSqVTXRQD137hx4/K9731vgfbBgwdnzJgxX31BAMDnMn8DQP1kDoevniAdAAAAAAAKWCMdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB1YLJMmTUpFRUWefPLJui4FAFgGKioqcvPNN9d1GQCwXPg6zKsnnnhi1ltvvTqt4fN8Ha4TLC1BOgAAAADUc0cccUTGjh1b12XAckuQDnyuDz/8sK5LWCr1tW4AqA/MswCw7CyLebVly5Zp167dMqgGWBhBOiwHbr311rRp0ybz5s1Lkjz55JOpqKjI0UcfXe6z//7750c/+lGS5MYbb8xaa62VysrK9OjRI2eeeWat8Xr06JFf//rX+clPfpLWrVvnwAMPXOCY8+bNy3777Zc11lgjkydPLqxvv/32y/bbb1+r7aOPPkqHDh3yhz/8IUlSU1OTUaNGpWfPnmnRokXWXXfd3HDDDbWON3To0PL21VdfPeeee26tMffdd98MGjQop556arp06ZLVV1/98y4dANRrN9xwQ9ZZZ520aNEi7dq1y4ABAzJr1qw89thj+f73v5+VV145VVVV2WKLLfLEE08UjvWLX/wi3/rWt7LCCitk1VVXzXHHHZePPvqovH3+r4tffvnl6dmzZ5o3b54rr7wy7dq1y9y5c2uNNWjQoPz4xz/+Us4ZAL4s9X1e/ezSLvP/jfy73/0unTt3Trt27TJs2LBadRRZ2DIsbdq0yZgxY5J8Ev4PHz48nTt3TvPmzdO9e/eMGjWq3Pell17K5ptvnubNm6d379655557Fuu48HXVpK4LAL647373u5k5c2b+/e9/Z8MNN8z999+flVdeOePGjSv3uf/++/OLX/wiEyZMyB577JETTzwxe+65Zx566KEccsghadeuXfbdd99y/9/97nc5/vjjc8IJJyxwvLlz52bvvffOpEmT8s9//jPt27cvrG///ffP5ptvnv/+97/p3Llzkk/C/w8++CB77rlnkmTUqFG56qqrcskll6RXr1554IEH8qMf/Sjt27fPFltskZqamqyyyiq5/vrr065duzz00EM58MAD07lz5+yxxx7lY40dOzatW7c2QQOw3Pvvf/+bvffeO6effnp23nnnzJw5M//85z9TKpUyc+bMDB48OOeff35KpVLOPPPMbLvttnnppZfSqlWrhY7XqlWrjBkzJl26dMkzzzyTAw44IK1atcpRRx1V7vPyyy/nxhtvzF//+tc0btw4vXr1ymGHHZa//e1v2X333ZMkb7/9dm677bbcfffdX8l1AIBlYXmdV++777507tw59913X15++eXsueeeWW+99XLAAQcs1Xifdt555+Vvf/tbrrvuunTr1i2vv/56Xn/99SSf3Cy3yy67pGPHjnnkkUcyY8aMjBgx4gsfE+pUCVgubLDBBqUzzjijVCqVSoMGDSqdeuqppWbNmpVmzpxZeuONN0pJSv/3f/9X+uEPf1j6/ve/X2vfI488stS7d+/y++7du5cGDRpUq8/EiRNLSUr//Oc/S1tttVXpO9/5Tmn69OmLXV/v3r1Lp512Wvn9DjvsUNp3331LpVKpNGfOnNIKK6xQeuihh2rtM3To0NLee++9yDGHDRtW2nXXXcvvBw8eXOrYsWNp7ty5i10XANRXEyZMKCUpTZo06XP7zps3r9SqVavS3//+93JbktJNN920yH3OOOOMUp8+fcrvTzjhhFLTpk1Lb7/9dq1+P/3pT0vbbLNN+f2ZZ55ZWnXVVUs1NTVLcDYAULeWh3n1hBNOKK277rrl94MHDy5179699PHHH5fbdt9999Kee+75uWOVSgs/p6qqqtLo0aNLpVKpdOihh5a23HLLhdZ21113lZo0aVJ68803y2133HHH514n+DqztAssJ7bYYouMGzcupVIp//znP7PLLrtkzTXXzL/+9a/cf//96dKlS3r16pXnn38+m222Wa19N9tss7z00kvlpWGSZMMNN1zocfbee+/MmjUrd999d6qqqha7vv333z+jR49OkkydOjV33HFH9ttvvySf/BT+gw8+yPe///20bNmy/LryyivzyiuvlMe48MIL06dPn7Rv3z4tW7bMpZdeusCyMuuss06aNWu22HUBQH217rrrZquttso666yT3XffPZdddlnee++9JJ/MtQcccEB69eqVqqqqtG7dOu+//37hcmzXXnttNttss3Tq1CktW7bMscceu0D/7t27L/CbaAcccEDuvvvuvPnmm0mSMWPGZN99901FRcUyPmMA+PIsr/PqWmutlcaNG5ffd+7cOW+//fZSjfVZ++67b5588smsvvrqOeyww2rdNf/888+na9eu6dKlS7mtb9++y+S4UFcE6bCc6N+/f/71r3/lqaeeStOmTbPGGmukf//+GTduXO6///5sscUWSzTeiiuuuND2bbfdNk8//XTGjx+/ROP95Cc/yauvvprx48fnqquuSs+ePfPd7343SfL+++8nSW677bY8+eST5ddzzz1XXif9L3/5S4444ogMHTo0d999d5588skMGTJkgQeyLKpuAFjeNG7cOPfcc0/uuOOO9O7dO+eff35WX331TJw4MYMHD86TTz6Zc889Nw899FCefPLJtGvXbpEPMhs/fnz22WefbLvttrn11lvz73//O7/61a8Wa55df/31s+666+bKK6/MhAkT8uyzz9ZaLg4A6oPldV5t2rRprfcVFRWpqalZrH0rKipSKpVqtX16ffUNNtggEydOzK9//evMnj07e+yxR3bbbbelrhW+7qyRDsuJ+eukn3322eXQvH///vntb3+b9957Lz//+c+TJGuuuWYefPDBWvs++OCD+da3vlXrp9SL8tOf/jRrr712dtxxx9x2222LHdC3a9cugwYNyujRozN+/PgMGTKkvK13796prKzM5MmTFznegw8+mH79+uWQQw4pt336bnUAaIgqKiqy2WabZbPNNsvxxx+f7t2756abbsqDDz6Yiy66KNtuu22S5PXXX8+0adMWOc5DDz2U7t2751e/+lW57bXXXlvsOvbff/+cc845efPNNzNgwIB07dp16U8KAOqIebW29u3b57///W/5/UsvvZQPPvigVp/WrVtnzz33zJ577pnddtstP/jBD/Luu+9mzTXXzOuvv17rWWkPP/zwV1o/LGuCdFhOrLTSSvn2t7+dq6++OhdccEGSZPPNN88ee+yRjz76qBxQ//znP89GG22UX//619lzzz0zfvz4XHDBBbnooosW+1iHHnpo5s2bl+233z533HFHvvOd7yzWfvvvv3+23377zJs3L4MHDy63t2rVKkcccUQOP/zw1NTU5Dvf+U5mzJiRBx98MK1bt87gwYPTq1evXHnllbnrrrvSs2fP/OlPf8pjjz2Wnj17LsFVAoDlxyOPPJKxY8dm6623TocOHfLII4/knXfeyZprrplevXrlT3/6UzbccMNUV1fnyCOPTIsWLRY5Vq9evTJ58uT85S9/yUYbbZTbbrstN91002LX8sMf/jBHHHFELrvsslx55ZXL4vQA4CtlXl3QlltumQsuuCB9+/bNvHnz8otf/KLWHe5nnXVWOnfunPXXXz+NGjXK9ddfn06dOqVNmzYZMGBAvvWtb2Xw4ME544wzUl1dXesHC1AfWdoFliNbbLFF5s2bl/79+ydJ2rZtm969e6dTp05ZffXVk3zyq1fXXXdd/vKXv2TttdfO8ccfn5NPPnmJf1VsxIgROemkk7LtttvmoYceWqx9BgwYkM6dO2fgwIG11klLkl//+tc57rjjMmrUqKy55pr5wQ9+kNtuu60clB900EHZZZddsueee2aTTTbJ//73v1p3pwNAQ9O6des88MAD2XbbbfOtb30rxx57bM4888xss802+cMf/pD33nsvG2ywQX784x/nsMMOS4cOHRY51o477pjDDz88w4cPz3rrrZeHHnooxx133GLXUlVVlV133TUtW7bMoEGDlsHZAcBXy7y6oDPPPDNdu3bNd7/73XK4v8IKK5S3t2rVKqeffno23HDDbLTRRpk0aVJuv/32NGrUKI0aNcpNN92U2bNnZ+ONN87++++fU089tc7OBZaFitJnFzsC+JK8//77+cY3vpHRo0dnl112qetyAIBlaKuttspaa62V8847r65LAYB6z7wKXz+WdgG+dDU1NZk2bVrOPPPMtGnTJjvuuGNdlwQALCPvvfdexo0bl3Hjxi3RUnEAwILMq/D1JUgHvrCrr746Bx100EK3de/evbxEyyqrrJIxY8akSRN/9QDA8mL99dfPe++9l9NOO628lBwAsHSK5tW11lprkQ8t/f3vf5999tlnsY/zz3/+M9tss80it7///vuLPRY0FJZ2Ab6wmTNnZurUqQvd1rRp03Tv3v0rrggAAACWL6+99lo++uijhW7r2LFjWrVqtdhjzZ49O2+++eYit3/zm99c4vpgeSdIBwAAAACAAo3qugAAAAAAAPg6E6QDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDUO+MGzcuFRUVGTduXF2XAgAAADQAgvR64IYbbkhFRcVCX2uvvXZdlwcNRv/+/bPvvvsmSfbdd9/079+/Tuv5In7zm9/k5ptvrusyPtdFF12UMWPGLNMxTzzxxPTo0SNJMmbMmFRUVCzT8QEAAIDlT5O6LoDF98tf/jJrrrlm+f2pp55ah9UA9dlvfvOb7Lbbbhk0aFBdl1Looosuysorr1z+AcZ8m2++eWbPnp1mzZrVTWEAAABAgyJIr0e+//3v17oD9vLLL8+0adPqriCg0Mcff5yamhph7/+vVCplzpw5adGixRceq1GjRmnevPkyqAoAAADg81napR748MMPk3wSHH2e+csUTJo0qdxWU1OTb3/726moqKi1RMLTTz+dfffdN6uuumqaN2+eTp06Zb/99sv//ve/WmOeeOKJC11WpkmT//dzmP79+2fttdfOhAkT0q9fv7Ro0SI9e/bMJZdcssC5HH/88enTp0+qqqqy4oor5rvf/W7uu+++Wv0mTZpUPs5nl5+YM2dOVlpppVRUVOR3v/vdAnV26NAhH330Ua19/vznP5fH+/QPH2655ZZst9126dKlSyorK7Paaqvl17/+debNm/e513r+8V544YXssccead26ddq1a5ef/exnmTNnTq2+o0ePzpZbbpkOHTqksrIyvXv3zsUXX7zAmDvttFN69OiR5s2bp0OHDtlxxx3zzDPP1Ooz/zzOOeecBfZfY401UlFRkeHDh5fb3n333RxxxBFZZ5110rJly7Ru3TrbbLNNnnrqqVr7Dh48OM2bN8/zzz9fq33gwIFZaaWV8tZbb5XbXn311ey+++5p27ZtVlhhhWy66aa57bbbau03fw3r+a/Kysp861vfyqhRo1IqlYov7v9vUZ+9hS2p8unPzGdfn/b2229n6NCh6datWxo3blzu07Jly8WqaVHmH/93v/tdzjnnnKy22mqprKzMc889lyR54YUXsttuu6Vt27Zp3rx5Ntxww/ztb3+rNcb8799//etfOeyww9K+ffu0adMmBx10UD788MNMnz49P/nJT7LSSitlpZVWylFHHbXAtZw1a1Z+/vOfp2vXrqmsrMzqq6+e3/3ud7X6VVRUZNasWbniiivK5//pO77ffPPN7LfffunYsWMqKyuz1lpr5Y9//OMSX5MePXpk++23z1133ZUNN9wwLVq0yO9///ski/c90aNHjzz77LO5//77F/jaL2qN9Ouvvz59+vRJixYtsvLKK+dHP/pR3nzzzSWuHQAAAODT3JFeD8wP0isrK5dq/z/96U8LhLFJcs899+TVV1/NkCFD0qlTpzz77LO59NJL8+yzz+bhhx9eIIC8+OKLa4WNnw3233vvvWy77bbZY489svfee+e6667LT3/60zRr1iz77bdfkqS6ujqXX3559t577xxwwAGZOXNm/vCHP2TgwIF59NFHs95669Uas3nz5hk9enSt5Sf++te/LhBUf9rMmTNz6623Zueddy63jR49Os2bN19gvzFjxqRly5YZOXJkWrZsmXvvvTfHH398qqurc8YZZyzyGJ+2xx57pEePHhk1alQefvjhnHfeeXnvvfdy5ZVX1rp2a621Vnbcccc0adIkf//733PIIYekpqYmw4YNqzXegQcemE6dOuWtt97KBRdckAEDBmTixIlZYYUVFrguI0aMKLc99NBDee211xao79VXX83NN9+c3XffPT179szUqVPz+9//PltssUWee+65dOnSJUly7rnn5t57783gwYMzfvz4NG7cOL///e9z9913509/+lO539SpU9OvX7988MEHOeyww9KuXbtcccUV2XHHHXPDDTfUuu7J/1uSaPbs2bn22mvzy1/+Mh06dMjQoUMX6/rOv37zP3vHHHNMYd8DDzww3/3ud5N88lm56aabam0fPHhw/vGPf+TQQw/Nuuuum8aNG+fSSy/NE088sdj1FBk9enTmzJmTAw88MJWVlWnbtm2effbZbLbZZvnGN76Ro48+OiuuuGKuu+66DBo0KDfeeOMC1+zQQw9Np06dctJJJ+Xhhx/OpZdemjZt2uShhx5Kt27d8pvf/Ca33357zjjjjKy99tr5yU9+kuSTO7533HHH3HfffRk6dGjWW2+93HXXXTnyyCPz5ptv5uyzz07yyd8J+++/fzbeeOMceOCBSZLVVlstySdf30033bT8A5n27dvnjjvuyNChQ1NdXV3rM7c4Xnzxxey999456KCDcsABB2T11VdPsnjfE+ecc04OPfTQtGzZMr/61a+SJB07dlzkscaMGZMhQ4Zko402yqhRozJ16tSce+65efDBB/Pvf/87bdq0WaLaAQAAAMpKfO2dc845pSSlp556qlb7FltsUVprrbVqtY0ePbqUpDRx4sRSqVQqzZkzp9StW7fSNttsU0pSGj16dLnvBx98sMCx/vznP5eSlB544IFy2wknnFBKUnrnnXcWWeMWW2xRSlI688wzy21z584trbfeeqUOHTqUPvzww1KpVCp9/PHHpblz59ba97333it17NixtN9++5XbJk6cWEpS2nvvvUtNmjQpTZkypbxtq622Kv3whz8sJSmdccYZC9S59957l7bffvty+2uvvVZq1KhRae+9917gPBZ2DQ466KDSCiusUJozZ84iz/fTx9txxx1rtR9yyCELfL0WdpyBAweWVl111cJjXHfddaUkpccff7zclqS02267lZo0aVKrfejQoeXrMmzYsHL7nDlzSvPmzas17sSJE0uVlZWlk08+uVb7XXfdVUpSOuWUU0qvvvpqqWXLlqVBgwbV6jNixIhSktI///nPctvMmTNLPXv2LPXo0aN8rPvuu6+UpHTffffVqqVRo0alQw45pPC85/vlL39ZSlKaNm1auW2ttdYqbbHFFgv0femll0pJSldccUW5bf7XaL7Zs2eXGjVqVDrooINq7Tt48ODSiiuuuFg1Lcr8z2zr1q1Lb7/9dq1tW221VWmdddap9Zmqqakp9evXr9SrV69y2/zv34EDB5ZqamrK7X379i1VVFSUDj744HLbxx9/XFpllVVqXYubb765/PX7tN12261UUVFRevnll8ttK664Ymnw4MELnMfQoUNLnTt3rnXNS6VSaa+99ipVVVUt9LO8KN27dy8lKd15550LbFvc74lFfb0/+/n68MMPSx06dCitvfbapdmzZ5f73XrrraUkpeOPP36x6wYAAAD4LEu71APzl1pp3779Eu974YUX5n//+19OOOGEBbZ9ep3iOXPmZNq0adl0002TZKnuzm3SpEkOOuig8vtmzZrloIMOyttvv50JEyYkSRo3blxeL7qmpibvvvtuPv7442y44YYLPeYGG2yQtdZaK3/605+SJK+99lruu+++BR48+Gn77bdf7rzzzkyZMiVJcsUVV6Rv37751re+tUDfT1+DmTNnZtq0afnud7+bDz74IC+88MJinfdn7yg/9NBDkyS33377Qo8zY8aMTJs2LVtssUVeffXVzJgxo9b+H3zwQaZNm5Ynn3wyl112WTp27LhA7R07dsx2222X0aNHl/e57rrrMmTIkAXqq6ysLP/2wLx58/K///0vLVu2zOqrr77ANd96661z0EEH5eSTT84uu+yS5s2bl5fimO/222/PxhtvnO985zvltpYtW+bAAw/MpEmTykuZfPZ8J0+enNNPPz01NTXZcsstF3IlFzT/NwgWZy3sxfnNjVmzZqWmpibt2rVbrOMvjV133bXW9+q7776be++9N3vssUf5MzZt2rT873//y8CBA/PSSy8tsPTI0KFDa/1GyCabbJJSqVTrLv7GjRtnww03zKuvvlpuu/3229O4ceMcdthhtcb7+c9/nlKplDvuuKOw9lKplBtvvDE77LBDSqVSudZp06Zl4MCBmTFjxhL/3dCzZ88MHDhwgfYl+Z5YHI8//njefvvtHHLIIbU+L9ttt13WWGONBZYeAgAAAFgSgvR64LXXXkuTJk2WOEifMWNGfvOb32TkyJELXQ7h3Xffzc9+9rN07NgxLVq0SPv27dOzZ8/yvkuqS5cuWXHFFWu1zQ+AP71m+xVXXJFvf/vbad68edq1a5f27dvntttuW+QxhwwZUg6Mx4wZk379+qVXr16LrGO99dbL2muvnSuvvDKlUqm83MPCPPvss9l5551TVVWV1q1bp3379vnRj36UZPGvwWdrWW211dKoUaNa5/zggw9mwIABWXHFFdOmTZu0b98+v/zlLxd6nJNPPjnt27fP+uuvn0mTJmXcuHFp1arVAscdMmRIrrnmmsydOzfXX399VlpppYUG1DU1NTn77LPTq1evVFZWZuWVV0779u3z9NNPL/Qcf/e736Vt27Z58sknc95556VDhw61tr/22mvl5Tk+bc011yxv/7RBgwalffv26d69e0488cQce+yx2XXXXRfYf2GmTZuWpk2b1lrWZlGmT5+eJIVrnbdr1y69evXK5Zdfnrvvvjtvv/12pk2blrlz5y5WPYtj/vfQfC+//HJKpVKOO+64tG/fvtZr/g+43n777Vr7dOvWrdb7qqqqJEnXrl0XaH/vvffK71977bV06dJlgc/Lor42n/XOO+9k+vTpufTSSxeodf730Gdr/TyfvR7zLcn3xOKYf24L+2yuscYan3vuAAAAAEWskV4PvPjii1l11VVrPdxzcZx22mlp1KhRjjzyyAUeIJp8srb3Qw89lCOPPDLrrbdeWrZsmZqamvzgBz9ITU3Nsiq/lquuuir77rtvBg0alCOPPDIdOnRI48aNM2rUqLzyyisL3edHP/pRjjrqqDz88MO54oorcuyxx37ucfbbb79cdNFF2XjjjTNlypTsscceOfPMM2v1mT59erbYYou0bt06J598clZbbbU0b948TzzxRH7xi18s9TX47Nryr7zySrbaaqusscYaOeuss9K1a9c0a9Yst99+e84+++wFjrP//vtnq622yhtvvJGzzz47u+66ax566KFymDrfdtttl2bNmuXmm2/O6NGjM3jw4IU+kPY3v/lNjjvuuOy333759a9/nbZt26ZRo0YZMWLEQs/x3//+dzksfeaZZ7L33nsv1XWY73e/+13WXXfdfPTRR3nsscdyyimnpEmTJgv9LYnPmjRpUrp167bANV2Y+b+B0KlTp8J+1157bfbZZ58F7pL+7A+Bltan77ROUr7GRxxxxELvzE6Sb37zm7XeN27ceKH9FtZeWswHty6O+bX+6Ec/yuDBgxfa59vf/vYSjfnZ65Es+fcEAAAAQF0TpH/NzZ07N08++WSth20ujrfeeivnnntuRo0alVatWi0QpL/33nsZO3ZsTjrppBx//PHl9pdeemmpa33rrbcya9asWoHk//3f/yVJevTokSS54YYbsuqqq+avf/1rrXC0KFRt165ddtxxx/IyMXvssUemTZtWWMs+++yTI488Mj/72c+y2267LfSO7nHjxuV///tf/vrXv2bzzTcvt0+cOHGxzne+l156qdZdty+//HJqamrK5/z3v/89c+fOzd/+9rdadxrfd999Cx3vm9/8ZjlYHTBgQLp165ZrrrkmP/3pT2v1a9KkSX784x/n1FNPzbPPPps//vGPCx3vhhtuyPe+97384Q9/qNU+ffr0rLzyyrXaZs2alSFDhqR3797p169fTj/99Oy8887ZaKONyn26d++eF198cYHjzF8Kp3v37rXa+/Tpk/79+ydJttlmm7z55ps57bTTctxxxy00+J/v448/zlNPPZUf/OAHi+zzac8991wqKioWekfyp62//vq57LLL8t3vfjcnn3xyNt1005xxxhl58MEHF+s4S2rVVVdNkjRt2jQDBgz4Uo4xX/fu3fOPf/wjM2fOrPWZX9jXZmE/nGjfvn1atWqVefPmfam1Lsn3xOL8ECX5f+f24osvLvCbGS+++OICn0sAAACAJWFpl6+5+Ut3bLXVVku030knnZSOHTvm4IMPXuj2+Xe2fvZu1nPOOWep6kw+CT4/vZ72hx9+mN///vdp3759+vTps8jjPvLIIxk/fnzh2Pvtt1+efvrp7L777oVLd8zXtm3b7LTTTnn66aez3377LbTPwmr58MMPc9FFF33u+J924YUX1np//vnnJ/kkNF7UcWbMmFFerqbI/B8YLGrpkf322y/PPPNMNt9883Jg+1mNGzde4Ot8/fXXL7Aud5L84he/yOTJk3PFFVfkrLPOSo8ePTJ48OBax992223z6KOP1vqazZo1K5deeml69OiR3r17F57T7Nmz8/HHH+fjjz8u7Hf33XdnxowZ2WmnnQr7JZ989m688cZsvPHGn/v5qK6uzo9//OPsuOOOOfbYYzNgwIB07tz5c4+xtDp06JD+/fvn97//ff773/8usP2dd95ZZsfadtttM2/evFxwwQW12s8+++xUVFSUP5PJJ3fgz18OZ77GjRtn1113zY033pj//Oc/X1qtS/I9sbA6F2bDDTdMhw4dcskll9T6vN5xxx15/vnns912233xwgEAAIAGyx3pX1OzZs3K+eefn5NPPrkchF511VW1+kydOjXvv/9+rrrqqnz/+9+vtQ763Xffnauvvrr8YM/Pat26dTbffPOcfvrp+eijj/KNb3wjd9999xLfjf1pXbp0yWmnnZZJkyblW9/6Vq699to8+eSTufTSS9O0adMkyfbbb5+//vWv2XnnnbPddttl4sSJueSSS9K7d++8//77ixz7Bz/4Qd55553FCtHnGzNmTC688MIF7rqer1+/fllppZUyePDgHHbYYamoqMif/vSnJV4qY+LEidlxxx3zgx/8IOPHj89VV12VH/7wh1l33XWTfPIAz2bNmmWHHXbIQQcdlPfffz+XXXZZOnToUCtYvf3223P55ZenX79+adu2bV599dVcdtllWXHFFbPzzjsv9Nhrrrlmpk2bttDlM+bbfvvtc/LJJ2fIkCHp169fnnnmmVx99dULBO/33ntvLrroopxwwgnZYIMNkiSjR49O//79c9xxx+X0009Pkhx99NH585//nG222SaHHXZY2rZtmyuuuCITJ07MjTfeuMBd5vfcc0/eeOON8tIuV199dXbcccdFfjaTT5ZfOeKII1JZWZnZs2fX+uzPmDEj8+bNy80335xBgwblH//4R4477rg8/fTT+fvf/77IMecbNmxYZs+encsvv/xz+y4rF154Yb7zne9knXXWyQEHHJBVV101U6dOzfjx4/PGG2/kqaeeWibH2WGHHfK9730vv/rVrzJp0qSsu+66ufvuu3PLLbdkxIgRWW211cp9+/Tpk3/84x8566yz0qVLl/Ts2TObbLJJfvvb3+a+++7LJptskgMOOCC9e/fOu+++myeeeCL/+Mc/8u67737hOhf3e2J+nRdffHFOOeWUfPOb30yHDh0W+iyApk2b5rTTTsuQIUOyxRZbZO+9987UqVNz7rnnpkePHjn88MO/cN0AAABAA1bia2nixImlJIv9uu+++0qlUqk0evToUpLSeuutV6qpqVlgvNGjR5fb3njjjdLOO+9catOmTamqqqq0++67l956661SktIJJ5xQ7nfCCSeUkpTeeeedRda7xRZblNZaa63S448/Xurbt2+pefPmpe7du5cuuOCCWv1qampKv/nNb0rdu3cvVVZWltZff/3SrbfeWho8eHCpe/fuC9R7xhlnFF6fT2//vDoXtv3BBx8sbbrppqUWLVqUunTpUjrqqKNKd911V61ruijzx3vuuedKu+22W6lVq1allVZaqTR8+PDS7Nmza/X929/+Vvr2t79dat68ealHjx6l0047rfTHP/6xlKQ0ceLEUqlUKv3nP/8pbb311qV27dqVmjVrVuratWtpr732Kj399NO1xkpSGjZs2CLr+uz2OXPmlH7+85+XOnfuXGrRokVps802K40fP760xRZblLbYYotSqVQqVVdXl7p3717aYIMNSh999FGt8Q4//PBSo0aNSuPHjy+3vfLKK6Xddtut1KZNm1Lz5s1LG2+8cenWW2+ttd99991X6zPapEmTUvfu3UuHHXZY6b333iu8tt27d//cz/z8z8uhhx5a2nzzzUt33nnnAuPM/xrN9+c//7lUUVGxQN/BgweXVlxxxcKaPs/nfWZfeeWV0k9+8pNSp06dSk2bNi194xvfKG2//falG264odxn/vfvY489ttDz+Oxne2F1z5w5s3T44YeXunTpUmratGmpV69epTPOOKPW3welUqn0wgsvlDbffPNSixYtSklKgwcPLm+bOnVqadiwYaWuXbuWmjZtWurUqVNpq622Kl166aVLdE26d+9e2m677Ra6bXG+J0qlUmnKlCml7bbbrtSqVatSkvJndv7n67Pfp9dee21p/fXXL1VWVpbatm1b2meffUpvvPHGEtUNAAAA8FkVpdIyfFIdy8ykSZPSs2fP3HfffeX1pb9Ivy9b//79M23atIUuB7G8OvHEE3PSSSflnXfeWeRd7yydHj165MQTT8y+++670O3jxo3Lvvvum0mTJn2ldQEAAADQMFkjHQAAAAAAClgj/WuqZcuW2WeffWqte/5F+kF9svPOO9daz/uzOnbsuMh14/nyvfPOO5k3b94itzdr1ixt27b9CisCAAAA+HJZ2oVlwtIulnah4ejRo0dee+21RW7fYostMm7cuK+uIAAAAIAvmSAdgCXy4IMPZvbs2YvcvtJKK6VPnz5fYUUAAAAAXy5BOgAAAAAAFLBG+qfU1NTkrbfeSqtWrVJRUVHX5QDQAJVKpcycOTNdunRJo0aeCQ4AAABfB4L0T3nrrbfStWvXui4DAPL6669nlVVWqesyAAAAgAjSa2nVqlWST8KL1q1b13E1ADRE1dXV6dq1a3lOAgAAAOqeIP1T5i/n0rp1a0E6AHXKEmMAAADw9WHxVQAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAJfiyD9gQceyA477JAuXbqkoqIiN998c63tpVIpxx9/fDp37pwWLVpkwIABeemll2r1effdd7PPPvukdevWadOmTYYOHZr333//KzwLAAAAAACWR1+LIH3WrFlZd911c+GFFy50++mnn57zzjsvl1xySR555JGsuOKKGThwYObMmVPus88+++TZZ5/NPffck1tvvTUPPPBADjzwwK/qFAAAAAAAWE5VlEqlUl0X8WkVFRW56aabMmjQoCSf3I3epUuX/PznP88RRxyRJJkxY0Y6duyYMWPGZK+99srzzz+f3r1757HHHsuGG26YJLnzzjuz7bbb5o033kiXLl0W69jV1dWpqqrKjBkz0rp16y/l/ACgiLkIAAAAvn6a1HUBn2fixImZMmVKBgwYUG6rqqrKJptskvHjx2evvfbK+PHj06ZNm3KIniQDBgxIo0aN8sgjj2TnnXde6Nhz587N3Llzy++rq6u/vBOBr9DkyZMzbdq0pdp39uzZmTRp0rItaAn16NEjLVq0WKp9V1555XTr1m0ZVwQAAABAQ/a1D9KnTJmSJOnYsWOt9o4dO5a3TZkyJR06dKi1vUmTJmnbtm25z8KMGjUqJ5100jKuGOrW5MmTs/oaa2bO7A/qupQ60bzFCnnxheeF6QAAAAAsM1/7IP3LdMwxx2TkyJHl99XV1enatWsdVgRf3LRp0zJn9gdpt/3P07Tdkn+eSx9/mI9nTP0SKlt8Tao6pqJJsyXe76P/vZ7/3Xpmpk2bJkgHAAAAYJn52gfpnTp1SpJMnTo1nTt3LrdPnTo16623XrnP22+/XWu/jz/+OO+++255/4WprKxMZWXlsi8avgaatuuayk7fXLqdV+m9bIsBAAAAgHqsUV0X8Hl69uyZTp06ZezYseW26urqPPLII+nbt2+SpG/fvpk+fXomTJhQ7nPvvfempqYmm2yyyVdeMwAAAAAAy4+vxR3p77//fl5++eXy+4kTJ+bJJ59M27Zt061bt4wYMSKnnHJKevXqlZ49e+a4445Lly5dMmjQoCTJmmuumR/84Ac54IADcskll+Sjjz7K8OHDs9dee6VLly51dFYAAAAAACwPvhZB+uOPP57vfe975ffz1y0fPHhwxowZk6OOOiqzZs3KgQcemOnTp+c73/lO7rzzzjRv3ry8z9VXX53hw4dnq622SqNGjbLrrrvmvPPO+8rPBQAAAACA5cvXIkjv379/SqXSIrdXVFTk5JNPzsknn7zIPm3bts0111zzZZQHAAAAAEAD9rVfIx0AAAAAAOqSIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoEC9CdLnzZuX4447Lj179kyLFi2y2mqr5de//nVKpVK5T6lUyvHHH5/OnTunRYsWGTBgQF566aU6rBoAAAAAgPqu3gTpp512Wi6++OJccMEFef7553Paaafl9NNPz/nnn1/uc/rpp+e8887LJZdckkceeSQrrrhiBg4cmDlz5tRh5QAAAAAA1GdN6rqAxfXQQw9lp512ynbbbZck6dGjR/785z/n0UcfTfLJ3ejnnHNOjj322Oy0005JkiuvvDIdO3bMzTffnL322muBMefOnZu5c+eW31dXV38FZwIAAAAAQH1Sb+5I79evX8aOHZv/+7//S5I89dRT+de//pVtttkmSTJx4sRMmTIlAwYMKO9TVVWVTTbZJOPHj1/omKNGjUpVVVX51bVr1y//RAAAAAAAqFfqzR3pRx99dKqrq7PGGmukcePGmTdvXk499dTss88+SZIpU6YkSTp27Fhrv44dO5a3fdYxxxyTkSNHlt9XV1cL0wEAAAAAqKXeBOnXXXddrr766lxzzTVZa6218uSTT2bEiBHp0qVLBg8evFRjVlZWprKychlXCgAAAADA8qTeBOlHHnlkjj766PJa5+uss05ee+21jBo1KoMHD06nTp2SJFOnTk3nzp3L+02dOjXrrbdeXZQMAAAAAMByoN6skf7BBx+kUaPa5TZu3Dg1NTVJkp49e6ZTp04ZO3ZseXt1dXUeeeSR9O3b9yutFQAAAACA5Ue9uSN9hx12yKmnnppu3bplrbXWyr///e+cddZZ2W+//ZIkFRUVGTFiRE455ZT06tUrPXv2zHHHHZcuXbpk0KBBdVs8AAAAAAD1Vr0J0s8///wcd9xxOeSQQ/L222+nS5cuOeigg3L88ceX+xx11FGZNWtWDjzwwEyfPj3f+c53cuedd6Z58+Z1WDkAAAAAAPVZvQnSW7VqlXPOOSfnnHPOIvtUVFTk5JNPzsknn/zVFQYAAAAAwHKt3qyRDgAAAAAAdUGQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABepVkP7mm2/mRz/6Udq1a5cWLVpknXXWyeOPP17eXiqVcvzxx6dz585p0aJFBgwYkJdeeqkOKwYAAAAAoL6rN0H6e++9l8022yxNmzbNHXfckeeeey5nnnlmVlpppXKf008/Peedd14uueSSPPLII1lxxRUzcODAzJkzpw4rBwAAAACgPmtS1wUsrtNOOy1du3bN6NGjy209e/Ys/7lUKuWcc87Jsccem5122ilJcuWVV6Zjx465+eabs9dee33lNQMAAAAAUP/VmzvS//a3v2XDDTfM7rvvng4dOmT99dfPZZddVt4+ceLETJkyJQMGDCi3VVVVZZNNNsn48eMXOubcuXNTXV1d6wUAAAAAAJ9Wb4L0V199NRdffHF69eqVu+66Kz/96U9z2GGH5YorrkiSTJkyJUnSsWPHWvt17NixvO2zRo0alaqqqvKra9euX+5JAAAAAABQ79SbIL2mpiYbbLBBfvOb32T99dfPgQcemAMOOCCXXHLJUo95zDHHZMaMGeXX66+/vgwrBgAAAABgeVBvgvTOnTund+/etdrWXHPNTJ48OUnSqVOnJMnUqVNr9Zk6dWp522dVVlamdevWtV4AAAAAAPBp9SZI32yzzfLiiy/Wavu///u/dO/ePcknDx7t1KlTxo4dW95eXV2dRx55JH379v1KawUAAAAAYPnRpK4LWFyHH354+vXrl9/85jfZY4898uijj+bSSy/NpZdemiSpqKjIiBEjcsopp6RXr17p2bNnjjvuuHTp0iWDBg2q2+IBAAAAAKi36k2QvtFGG+Wmm27KMccck5NPPjk9e/bMOeeck3322afc56ijjsqsWbNy4IEHZvr06fnOd76TO++8M82bN6/DygEAAAAAqM/qTZCeJNtvv3223377RW6vqKjIySefnJNPPvkrrAoAAAAAgOVZvVkjHQAAAAAA6oIgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACgQL0M0n/729+moqIiI0aMKLfNmTMnw4YNS7t27dKyZcvsuuuumTp1at0VCQAAAADAcqHeBemPPfZYfv/73+fb3/52rfbDDz88f//733P99dfn/vvvz1tvvZVddtmljqoEAAAAAGB5Ua+C9Pfffz/77LNPLrvssqy00krl9hkzZuQPf/hDzjrrrGy55Zbp06dPRo8enYceeigPP/zwIsebO3duqqura70AAAAAAODT6lWQPmzYsGy33XYZMGBArfYJEybko48+qtW+xhprpFu3bhk/fvwixxs1alSqqqrKr65du35ptQMAAAAAUD/VmyD9L3/5S5544omMGjVqgW1TpkxJs2bN0qZNm1rtHTt2zJQpUxY55jHHHJMZM2aUX6+//vqyLhsAAAAAgHquSV0XsDhef/31/OxnP8s999yT5s2bL7NxKysrU1lZuczGAwAAAABg+VMv7kifMGFC3n777WywwQZp0qRJmjRpkvvvvz/nnXdemjRpko4dO+bDDz/M9OnTa+03derUdOrUqW6KBgAAAABguVAv7kjfaqut8swzz9RqGzJkSNZYY4384he/SNeuXdO0adOMHTs2u+66a5LkxRdfzOTJk9O3b9+6KBkAAAAAgOVEvQjSW7VqlbXXXrtW24orrph27dqV24cOHZqRI0embdu2ad26dQ499ND07ds3m266aV2UDAAAAADAcqJeBOmL4+yzz06jRo2y6667Zu7cuRk4cGAuuuiiui4LAAAAAIB6rt4G6ePGjav1vnnz5rnwwgtz4YUX1k1BAAAAAAAsl+rFw0YBAAAAAKCuCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKBAvQnSR40alY022iitWrVKhw4dMmjQoLz44ou1+syZMyfDhg1Lu3bt0rJly+y6666ZOnVqHVUMAAAAAMDyoN4E6ffff3+GDRuWhx9+OPfcc08++uijbL311pk1a1a5z+GHH56///3vuf7663P//ffnrbfeyi677FKHVQMAAAAAUN81qesCFtedd95Z6/2YMWPSoUOHTJgwIZtvvnlmzJiRP/zhD7nmmmuy5ZZbJklGjx6dNddcMw8//HA23XTTuigbAAAAAIB6rt7ckf5ZM2bMSJK0bds2STJhwoR89NFHGTBgQLnPGmuskW7dumX8+PELHWPu3Lmprq6u9QIAAAAAgE+rl0F6TU1NRowYkc022yxrr712kmTKlClp1qxZ2rRpU6tvx44dM2XKlIWOM2rUqFRVVZVfXbt2/bJLBwAAAACgnqmXQfqwYcPyn//8J3/5y1++0DjHHHNMZsyYUX69/vrry6hCAAAAAACWF/VmjfT5hg8fnltvvTUPPPBAVllllXJ7p06d8uGHH2b69Om17kqfOnVqOnXqtNCxKisrU1lZ+WWXDAAAAABAPVZv7kgvlUoZPnx4brrpptx7773p2bNnre19+vRJ06ZNM3bs2HLbiy++mMmTJ6dv375fdbkAAAAAACwn6s0d6cOGDcs111yTW265Ja1atSqve15VVZUWLVqkqqoqQ4cOzciRI9O2bdu0bt06hx56aPr27ZtNN920jqsHAAAAAKC+qjdB+sUXX5wk6d+/f6320aNHZ999902SnH322WnUqFF23XXXzJ07NwMHDsxFF130FVcKAAAAAMDypN4E6aVS6XP7NG/ePBdeeGEuvPDCr6AiAAAAAAAagnqzRjoAAAAAANQFQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQIHlLki/8MIL06NHjzRv3jybbLJJHn300bouCQAAAACAemy5CtKvvfbajBw5MieccEKeeOKJrLvuuhk4cGDefvvtui4NAAAAAIB6qkldF7AsnXXWWTnggAMyZMiQJMkll1yS2267LX/84x9z9NFHL9B/7ty5mTt3bvl9dXX1V1YrfJk6tazImh/8O03efWuJ9y3N+yjzZr77JVS1+Bq3apuKxk2XeL+PP5iatKz4EioCAAAAoCFbboL0Dz/8MBMmTMgxxxxTbmvUqFEGDBiQ8ePHL3SfUaNG5aSTTvqqSoSvxMorr5xhm66YY3vfVNelfPW6JKe8t2JWXnnluq4EAAAAgOXIchOkT5s2LfPmzUvHjh1rtXfs2DEvvPDCQvc55phjMnLkyPL76urqdO3a9UutE75s3bp1y77nj8vzb720VPvPnTs3b7215HeyL0tdunRJZWXlUu277169skq3bsu4IgAAAAAasuUmSF8alZWVSx3WwdfZKmv0Sdbos9T7r7fsSgEAAACAem+5edjoyiuvnMaNG2fq1Km12qdOnZpOnTrVUVUAAAAAANR3y02Q3qxZs/Tp0ydjx44tt9XU1GTs2LHp27dvHVYGAAAAAEB9tlwt7TJy5MgMHjw4G264YTbeeOOcc845mTVrVoYMGVLXpQEAAAAAUE8tV0H6nnvumXfeeSfHH398pkyZkvXWWy933nnnAg8gBQAAAACAxVVRKpVKdV3E10V1dXWqqqoyY8aMtG7duq7LAaABMhcBAADA189ys0Y6AAAAAAB8GQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFCgSV0X8HVSKpWSJNXV1XVcCQAN1fw5aP6cBAAAANQ9QfqnzJw5M0nStWvXOq4EgIZu5syZqaqqqusyAAAAgCQVJbe8ldXU1OStt95Kq1atUlFRUdflQL1UXV2drl275vXXX0/r1q3ruhyod0qlUmbOnJkuXbqkUSMrsAEAAMDXgSAdWKaqq6tTVVWVGTNmCNIBAAAAWC641Q0AAAAAAAoI0gEAAAAAoIAgHVimKisrc8IJJ6SysrKuSwEAAACAZcIa6QAAAAAAUMAd6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOnAMvHAAw9khx12SJcuXVJRUZGbb765rksCAAAAgGVCkA4sE7Nmzcq6666bCy+8sK5LAQAAAIBlqkldFwAsH7bZZptss802dV0GAAAAACxz7kgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAk3qugBg+fD+++/n5ZdfLr+fOHFinnzyybRt2zbdunWrw8oAAAAA4IupKJVKpbouAqj/xo0bl+9973sLtA8ePDhjxoz56gsCAAAAgGVEkA4AAAAAAAWskQ4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDix3evTokXPOOaeuywAAAABgOSFIB5ZI//79M2LEiLouI0kyZsyYtGnTZoH2xx57LAceeOBXXxAAAAAAyyVBOtRDH374YV2X8KX6oufXvn37rLDCCsuoGgAAAAAaOkE61AP9+/fP8OHDM2LEiKy88soZOHBg/vOf/2SbbbZJy5Yt07Fjx/z4xz/OtGnTau1z6KGHZsSIEVlppZXSsWPHXHbZZZk1a1aGDBmSVq1a5Zvf/GbuuOOOWse6//77s/HGG6eysjKdO3fO0UcfnY8//jhJsu++++b+++/Pueeem4qKilRUVGTSpElJ8rn1LOn5JclZZ52VddZZJyuuuGK6du2aQw45JO+//36SZNy4cRkyZEhmzJhRruXEE09MsuDSLpMnT85OO+2Uli1bpnXr1tljjz0yderUpflSAAAAANAACdKhnrjiiivSrFmzPPjgg/ntb3+bLbfcMuuvv34ef/zx3HnnnZk6dWr22GOPBfZZeeWV8+ijj+bQQw/NT3/60+y+++7p169fnnjiiWy99db58Y9/nA8++CBJ8uabb2bbbbfNRhttlKeeeioXX3xx/vCHP+SUU05Jkpx77rnp27dvDjjggPz3v//Nf//733Tt2jXTp09frHoW9/wuueSSJEmjRo1y3nnn5dlnn80VV1yRe++9N0cddVSSpF+/fjnnnHPSunXrci1HHHHEAuPW1NRkp512yrvvvpv7778/99xzT1599dXsueeeS/V1AAAAAKDhqSiVSqW6LgIo1r9//1RXV+eJJ55Ikpxyyin55z//mbvuuqvc54033kjXrl3z4osv5lvf+lb69++fefPm5Z///GeSZN68eamqqsouu+ySK6+8MkkyZcqUdO7cOePHj8+mm26aX/3qV7nxxhvz/PPPp6KiIkly0UUX5Re/+EVmzJiRRo0apX///llvvfVq3fG9OPUsyfktyg033JCDDz64fKf7mDFjMmLEiEyfPr1Wvx49emTEiBEZMWJE7rnnnmyzzTaZOHFiunbtmiR57rnnstZaa+XRRx/NRhttVHhMAAAAAHBHOtQTffr0Kf/5qaeeyn333ZeWLVuWX2ussUaS5JVXXin3+/a3v13+c+PGjdOuXbuss8465baOHTsmSd5+++0kyfPPP5++ffuWQ/Qk2WyzzfL+++/njTfeWGRti1vP4p7ffP/4xz+y1VZb5Rvf+EZatWqVH//4x/nf//5XvoN+cTz//PPp2rVrOURPkt69e6dNmzZ5/vnnF3scAAAAABquJnVdALB4VlxxxfKf33///eywww457bTTFujXuXPn8p+bNm1aa1tFRUWttvmBeU1NzReqbXHrKfLp80uSSZMmZfvtt89Pf/rTnHrqqWnbtm3+9a9/ZejQofnwww89TBQAAACAr4wgHeqhDTbYIDfeeGN69OiRJk2W3bfxmmuumRtvvDGlUqkcsj/44INp1apVVllllSRJs2bNMm/evC+9ngkTJqSmpiZnnnlmGjX65Jdnrrvuulp9FlbLws7p9ddfz+uvv15raZfp06end+/ey6RWAAAAAJZvlnaBemjYsGF59913s/fee+exxx7LK6+8krvuuitDhgz53GC5yCGHHJLXX389hx56aF544YXccsstOeGEEzJy5MhymN2jR4888sgjmTRpUqZNm5aampovpZ5vfvOb+eijj3L++efn1VdfzZ/+9KfyQ0jn69GjR95///2MHTs206ZNW+iSLwMGDMg666yTffbZJ0888UQeffTR/OQnP8kWW2yRDTfccKlqAwAAAKBhEaRDPdSlS5c8+OCDmTdvXrbeeuuss846GTFiRNq0aVMOvJfGN77xjdx+++159NFHs+666+bggw/O0KFDc+yxx5b7HHHEEWncuHF69+6d9u3bZ/LkyV9KPeuuu27OOuusnHbaaVl77bVz9dVXZ9SoUbX69OvXLwcffHD23HPPtG/fPqeffvoC41RUVOSWW27JSiutlM033zwDBgzIqquummuvvXap6gIAAACg4akolUqlui4CAAAAAAC+rtyRDgAAAAAABQTpwJdq8uTJadmy5SJfkydPrusSAQAAAKCQpV2AL9XHH3+cSZMmLXJ7jx490qRJk6+uIAAAAABYQoJ0AAAAAAAoYGkXAAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAo8P8B1haTvolcILYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Числовые столбцы DataFrame\n", + "numeric_columns: list[str] = [\n", + " 'work_year',\n", + " 'salary',\n", + " 'salary_in_usd',\n", + " 'remote_ratio'\n", + "]\n", + "\n", + "# Проверка выбросов\n", + "check_outliers(df, numeric_columns)\n", + "visualize_outliers(df, numeric_columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Колонка work_year:\n", + "\tЕсть выбросы: Нет\n", + "\tКоличество выбросов: 0\n", + "\tМинимальное значение: 2020.5\n", + "\tМаксимальное значение: 2023.0\n", + "\t1-й квартиль (Q1): 2022.0\n", + "\t3-й квартиль (Q3): 2023.0\n", + "\n", + "Колонка salary:\n", + "\tЕсть выбросы: Нет\n", + "\tКоличество выбросов: 0\n", + "\tМинимальное значение: 6000.0\n", + "\tМаксимальное значение: 300000.0\n", + "\t1-й квартиль (Q1): 100000.0\n", + "\t3-й квартиль (Q3): 180000.0\n", + "\n", + "Колонка salary_in_usd:\n", + "\tЕсть выбросы: Нет\n", + "\tКоличество выбросов: 0\n", + "\tМинимальное значение: 5132.0\n", + "\tМаксимальное значение: 295000.0\n", + "\t1-й квартиль (Q1): 95000.0\n", + "\t3-й квартиль (Q3): 175000.0\n", + "\n", + "Колонка remote_ratio:\n", + "\tЕсть выбросы: Нет\n", + "\tКоличество выбросов: 0\n", + "\tМинимальное значение: 0\n", + "\tМаксимальное значение: 100\n", + "\t1-й квартиль (Q1): 0.0\n", + "\t3-й квартиль (Q3): 100.0\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPeCAYAAAAI5OjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEHUlEQVR4nOzdeVxV5fr//zegDIqgKIMeETUrwTHJgcyZQI+lFk024ZRlG0v5nPRw8jhWfNLULFEzE+wgOaWZw1HJsRLqhKGJyufkkJ6DoJZCkgLK+v3hj/V1C2xBTRBez8djPWqv+9r3utaCzb289lr3sjMMwxAAAAAAAAAAACiRfUUnAAAAAAAAAABAZUYhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQCqkcmTJ8vOzk5nzpyp6FQAAMBNOnbsmOzs7BQXF1fRqQAAcEep7GPojh07ZGdnpx07dlR0KjdsyJAhatq0aUWncUtRSK9iVq1aJTs7uxKX1q1bV3R6QLXRs2dPDRkyRNKVwaNnz54Vmk91UHQiVHSiUZlPioA/CucBQOVQXc4Drt63yZMnV7l/LKN6YQwFKofqMoZWV1f/O71p06aaPHlyheZTXjUqOgH8Mf72t7/J39/ffP3WW29VYDYAAOB24jwAAIAbwxgKoDLo3r27Lly4IEdHx4pOBVehkF5FPfTQQ1bf2i1atIipHIBqLDc3V7Vr167oNP4Qly5dUmFhYUWnAVQqnAcAuBFV+XwBKCvGUAA34laPofb29nJ2dr5l/eHWYGqXKiY/P1/SlQ/c9cTFxcnOzk7Hjh0z1xUWFqpt27bFpkTYt2+fhgwZoubNm8vZ2Vk+Pj4aNmyYfvnlF6s+i+ZfvnapUeP/fWfTs2dPtW7dWikpKXrggQfk4uKiZs2aacGCBcX2ZeLEiQoMDJS7u7tq166tbt26afv27VZxRdM52NnZ6fPPP7dqu3jxourVqyc7Ozu9++67xfL08vJSQUGB1Xs+/fRTs7+rT5jWrl2r/v37q1GjRnJyctJdd92ladOm6fLly9c91kXbO3TokJ588km5ubmpfv36eu2113Tx4kWr2NjYWPXu3VteXl5ycnJSQECA5s+fX6zPgQMHqmnTpnJ2dpaXl5cGDBigH3/80SqmaD/ee++9Yu9v2bKl7OzsFBERYa779ddf9Ze//EVt2rSRq6ur3Nzc1K9fP+3du9fqveHh4XJ2dtbBgwet1oeGhqpevXrKyMgw1x05ckRPPPGEPDw8VKtWLXXp0kUbNmywel/R3F9Fi5OTk+655x5FR0fLMAzbB/f/V9rvXkm3gV39O3PtcrVTp05p+PDhatKkiRwcHMwYV1fXMuVUmg4dOuixxx6zWtemTRvZ2dlp37595rrly5fLzs7O6jj/8MMP6tevn9zc3OTq6qo+ffooOTnZqq+iz/bOnTv1yiuvyMvLS40bNy41n59//lktWrRQ69atlZWVdd38jxw5Ijs7O82ePbtY2+7du2VnZ6dPP/3UXPff//5Xw4YNk7e3t5ycnNSqVSstXrzY6n3l/by/++67eu+993TXXXfJyclJBw4cuG7eQHXAecDnVm2cB3AeUBnPAyRp2bJlCgwMVJ06deTm5qY2bdpozpw5ZntZfxYlKe/n9cCBA3rmmWdUr149Pfjgg4qNjZWdnZ1++OGHYn2//fbbcnBw0H//+9+bPgZAZcMY+rlVG2MoYyhjaMWOoSXNkV70N+DAgQPq1auXatWqpT/96U+aPn16mfq8mp2dXYnTqjRt2tScWkeSCgoKNGXKFN19991ydnZW/fr19eCDDyoxMdHqfZ9//rlat24tZ2dntW7dWmvWrCl3TncCrkivYooGfycnpxt6/z/+8Y9iA4gkJSYm6siRIxo6dKh8fHyUlpamhQsXKi0tTcnJycX+aM6fP9/qD+S1JyNnz57Vn//8Zz355JMaPHiwVqxYoVGjRsnR0VHDhg2TJOXk5GjRokUaPHiwXnzxRf3222/6+OOPFRoaqu+++07t27e36tPZ2VmxsbEaNGiQuW716tXFBter/fbbb1q/fr0effRRc11sbKycnZ2LvS8uLk6urq6KjIyUq6urtm3bpokTJyonJ0czZswodRtXe/LJJ9W0aVNFR0crOTlZ77//vs6ePatPPvnE6ti1atVKAwYMUI0aNbRu3Tq98sorKiwslMVisepv5MiR8vHxUUZGhubOnavg4GAdPXpUtWrVKnZcxowZY67bvXu3fv7552L5HTlyRJ9//rmeeOIJNWvWTFlZWfrwww/Vo0cPHThwQI0aNZIkzZkzR9u2bVN4eLiSkpLk4OCgDz/8UFu2bNE//vEPMy4rK0sPPPCAfv/9d7366quqX7++lixZogEDBmjVqlVWx136f7dRXrhwQcuXL9ff/vY3eXl5afjw4WU6vkXHr+h3LyoqymbsyJEj1a1bN0lXfleu/UMfHh6uL7/8UqNHj1a7du3k4OCghQsXas+ePWXOpyTdunWzKjT/+uuvSktLk729vb766iu1bdtWkvTVV1/J09PTvLU0LS1N3bp1k5ubm8aNG6eaNWvqww8/VM+ePbVz50517tzZajuvvPKKPD09NXHiROXm5paYy+HDh9W7d295eHgoMTFRDRo0uG7+zZs3V9euXbV06VKNHTvWqm3p0qWqU6eOBg4cKOnK70CXLl3ME01PT0/985//1PDhw5WTk2P+Xpb38x4bG6uLFy9q5MiRcnJykoeHB1elA+I8gPMAzgPuhPOAxMREDR48WH369NE777wjSTp48KC++eYbvfbaa5LK/rMorf/yfF6feOIJ3X333Xr77bdlGIYef/xxWSwWLV26VPfdd59V7NKlS9WzZ0/96U9/uqljAFRGjKGMoYyhjKF3whh69uxZ9e3bV4899piefPJJrVq1SuPHj1ebNm3Ur1+/m+q7JJMnT1Z0dLRGjBihTp06KScnR99//7327Nmjhx56SJK0ZcsWhYWFKSAgQNHR0frll180dOhQmxf03bEMVCnvvfeeIcnYu3ev1foePXoYrVq1sloXGxtrSDKOHj1qGIZhXLx40WjSpInRr18/Q5IRGxtrxv7+++/FtvXpp58akoxdu3aZ6yZNmmRIMk6fPl1qjj169DAkGTNnzjTX5eXlGe3btze8vLyM/Px8wzAM49KlS0ZeXp7Ve8+ePWt4e3sbw4YNM9cdPXrUkGQMHjzYqFGjhpGZmWm29enTx3jmmWcMScaMGTOK5Tl48GDj4YcfNtf//PPPhr29vTF48OBi+1HSMXjppZeMWrVqGRcvXix1f6/e3oABA6zWv/LKK8V+XiVtJzQ01GjevLnNbaxYscKQZHz//ffmOknG448/btSoUcNq/fDhw83jYrFYzPUXL140Ll++bNXv0aNHDScnJ2Pq1KlW6zdv3mxIMt58803jyJEjhqurqzFo0CCrmDFjxhiSjK+++spc99tvvxnNmjUzmjZtam5r+/bthiRj+/btVrnY29sbr7zyis39LvK3v/3NkGScOXPGXNeqVSujR48exWL//e9/G5KMJUuWmOuKfkZFLly4YNjb2xsvvfSS1XvDw8ON2rVrlymn0qxcudKQZBw4cMAwDMP44osvDCcnJ2PAgAHGU089Zca1bdvWePTRR83XgwYNMhwdHY3Dhw+b6zIyMow6deoY3bt3N9cVfbYffPBB49KlS1bbvvozevDgQaNRo0ZGx44djV9//bVc+/Dhhx8akoyDBw+a6/Lz840GDRoY4eHh5rrhw4cbDRs2tPq5GIZhPP3004a7u7v5+17ez7ubm5tx6tSpcuUMVAecB3AewHlA5T8PeO211ww3N7diY/TVyvqzKPr9v5nP6+DBg4vFDx482GjUqJFVDnv27Cm2LaAqYQxlDGUMZQytTGNoST/bor8Bn3zyibkuLy/P8PHxMcLCwsrct2Fc+R2fNGlSsfV+fn5W/6Zv166d0b9/f5t9tW/f3mjYsKFx7tw5c92WLVsMSYafn1+58qrsmNqliim63cTT07Pc742JidEvv/yiSZMmFWtzcXEx///ixYs6c+aMunTpIkk39I1ijRo19NJLL5mvHR0d9dJLL+nUqVNKSUmRJDk4OJgPVSgsLNSvv/6qS5cu6f777y9xmx06dFCrVq30j3/8Q9KV6Sq2b99udUvKtYYNG6ZNmzYpMzNTkrRkyRIFBQXpnnvuKRZ79TH47bffdObMGXXr1k2///67Dh06VKb9vvZb8NGjR0uSNm7cWOJ2srOzdebMGfXo0UNHjhxRdna21ft///13nTlzRqmpqfroo4/k7e1dLHdvb2/1799fsbGx5ntWrFihoUOHFsvPycnJvOLh8uXL+uWXX+Tq6qp777232DEPCQnRSy+9pKlTp+qxxx6Ts7OzPvzwQ6uYjRs3qlOnTnrwwQfNda6urho5cqSOHTtWbDqOov09fvy4pk+frsLCQvXu3buEI1lc0VUPZZlDrCxXm+Tm5qqwsFD169cv0/bLo+ib+127dkm6cuV5x44d9dBDD+mrr76SJJ07d0779+83Yy9fvqwtW7Zo0KBBat68udlXw4YN9cwzz+jrr79WTk6O1XZefPFFOTg4lJjD/v371aNHDzVt2lRffvml6tWrV659ePLJJ+Xs7KylS5ea6zZv3qwzZ87oueeekyQZhqHPPvtMjzzyiAzD0JkzZ8wlNDRU2dnZ5u9VeT/vYWFhN/R3DqjqOA/gPIDzgMp/HlC3bl3l5uYWuyX6auX5WVyrvJ/Xl19+udi6F154QRkZGVbTQCxdulQuLi4KCwuzvYPAHYoxlDGUMZQx9E4YQ11dXc1/c0tX/gZ06tRJR44cuem+S1K3bl2lpaXp3//+d4ntJ0+eVGpqqsLDw+Xu7m6uf+ihhxQQEPCH5FSRKKRXMT///LNq1KhR7sE/Oztbb7/9tiIjI+Xt7V2s/ddff9Vrr70mb29vubi4yNPTU82aNTPfW16NGjUq9hCGokHr6nnmlixZorZt25rzMHl6emrDhg2lbnPo0KHmIBcXF6cHHnhAd999d6l5tG/fXq1bt9Ynn3wiwzAUFxdX4qAoXZlW49FHH5W7u7vc3Nzk6elp/vEq6zG4Npe77rpL9vb2Vvv8zTffKDg4WLVr11bdunXl6empv/3tbyVuZ+rUqfL09NR9992nY8eOaceOHapTp06x7Q4dOlQJCQnKy8vTypUrVa9evRIH1cLCQs2ePVt33323nJyc1KBBA3l6emrfvn0l7uO7774rDw8Ppaam6v3335eXl5dV+88//6x777232PuKpiq59pa4QYMGydPTU35+fpo8ebImTJhQ5oHmzJkzqlmzptWteKU5d+6cJNmcn61+/fq6++67tWjRIm3ZskWnTp3SmTNnlJeXV6Z8bPH29tbdd99tFs2/+uordevWTd27d1dGRoaOHDmib775RoWFhWYh/fTp0/r9999LPZ6FhYU6ceKE1fqiz2hJHnnkEdWpU0ebN2+Wm5tbufehbt26euSRR5SQkGCuW7p0qf70pz+Zv1unT5/WuXPntHDhQnl6elotRZ+zU6dOme8vz+fd1r4B1RnnAZwHcB5Q+c8DXnnlFd1zzz3q16+fGjdubBajrlben8XVyvt5LWlMfeihh9SwYUPzC/PCwkJ9+umnGjhwYIm/Y0BVwBjKGMoYyhh6J4yhjRs3LjbFTL169XT27Nmb7rskU6dO1blz53TPPfeoTZs2ev31162e7Vb0u1jS34uSfofvdBTSq5j09HQ1b97c6oEkZfHOO+/I3t5er7/+eontTz75pD766CO9/PLLWr16tbZs2WL+sfqj5iWOj4/XkCFDdNddd+njjz/Wpk2blJiYqN69e5e6zeeee04//fSTkpOTtWTJklIH8qsNGzZMsbGx2rlzpzIzM/Xkk08Wizl37px69OihvXv3aurUqVq3bp0SExPNOblu9Bhc+8fv8OHD6tOnj86cOaNZs2Zpw4YNSkxMNOehvnY7I0aM0JYtW7R48WI5OzsrLCysxD/u/fv3l6Ojoz7//HPFxsYqPDy8xIfoFJ0Adu/eXfHx8dq8ebMSExPVqlWrEvfxhx9+MAuhJc0HWF7vvvuuEhMTtXHjRk2aNEnvvPOOpkyZUqb3Hjt2TE2aNCl2TEtSdNWEj4+Pzbjly5erfv36Cg0Nlbe3tzw9PbVs2bIy5XM9Dz74oL766itduHBBKSkp6tatm1q3bq26devqq6++0ldffSVXV9di86qVx9Xfpl8rLCxMhw8ftrqivLxeeOEFHTlyRLt379Zvv/2mL774QoMHDzZ/t4p+Z5577jklJiaWuHTt2lVS+T/vtvYNqM44D+A8gPOAyn8e4OXlpdTUVH3xxRcaMGCAtm/frn79+ik8PNyMKe/P4mrl/byWNKY6ODjomWee0WeffaaLFy9q+/btysjIsLoCDqhqGEMZQxlDGUPvhDG0tLvOjTI+XPZ6rn0IcPfu3XX48GEtXrxYrVu31qJFi9ShQwctWrTolmzvTsPDRquQvLw8paamWj0gpCwyMjI0Z84cRUdHq06dOsWeRnz27Flt3bpVU6ZM0cSJE831pd3WUdZt5ubmWn2T/n//93+SrjwhWJJWrVql5s2ba/Xq1VZ/0Eu6Xa5I/fr1NWDAAPPWtieffNLqaeElefbZZ/X666/rtdde0+OPP17iN4Q7duzQL7/8otWrV6t79+7m+qNHj5Zpf4v8+9//tvrG8qefflJhYaG5z+vWrVNeXp6++OILNWnSxIy79unqRVq0aKEWLVpIkoKDg9WkSRMlJCRo1KhRVnE1atTQ888/r7feektpaWlavHhxif2tWrVKvXr10scff2y1/ty5c8UeQpmbm6uhQ4cqICBADzzwgKZPn65HH31UHTt2NGP8/PyUnp5ebDtFt+/5+flZrQ8MDDSfDN6vXz/997//1TvvvKO///3vJZ6sFLl06ZL27t2rvn37lhpztQMHDsjOzu66347ed999+uijj9StWzdNnTpVXbp00YwZM/TNN9+UaTu2dOvWTbGxsVq2bJkuX76sBx54QPb29maB/eDBg3rggQfMQdLT01O1atUq9Xja29vL19e3zNufMWOGatSooVdeeUV16tTRM888U+596Nu3rzw9PbV06VJ17txZv//+u55//nmz3dPTU3Xq1NHly5cVHBxss68b+bwDsMZ5AOcBnAfcOecBjo6OeuSRR/TII4+osLBQr7zyij788EP9/e9/V4sWLcr1s7jarfy8vvDCC5o5c6bWrVunf/7zn/L09FRoaGi5+wHuBIyhjKGMoYyh1W0MrVevnnmHQZH8/HydPHmyWKyHh4eGDh2qoUOH6vz58+revbsmT56sESNGmL+LJR2nkn6H73RckV6FFN1u1KdPn3K9b8qUKfL29i5xbifp/33bde23W++9994N5Sld+WN99Rxg+fn5+vDDD+Xp6anAwMBSt/vtt98qKSnJZt/Dhg3Tvn379MQTT9i83aiIh4eHBg4cqH379plPOb9WSbnk5+dr3rx51+3/ajExMVavP/jgA0kyn6xc0nays7PNW+xsKTrJKe12qWHDhunHH39U9+7drebYvpqDg0Oxn/PKlSv13//+t1js+PHjdfz4cS1ZskSzZs1S06ZNFR4ebrX9P//5z/ruu++sfma5ublauHChmjZtet35si5cuKBLly7p0qVLNuO2bNmi7OxsDRw40GacdOV377PPPlOnTp2u+/uRk5Oj559/XgMGDNCECRMUHByshg0bXncbZVE0Zcs777yjtm3bmnOJdevWTVu3btX3339vxkhXfjYhISFau3at1e2LWVlZSkhI0IMPPliuKVrs7Oy0cOFCPf744woPD9cXX3xR7n2oUaOGBg8erBUrViguLk5t2rRR27ZtrXIOCwvTZ599pv379xd7/+nTp61ipfJ/3gH8P5wHXMF5AOcBtlSG84BrC2329vbm+Fl0/Mrzs7jarfy8tm3bVm3bttWiRYv02Wef6emnny73lbrAnYIx9ArGUMZQWxhDy+5OGEPvuusu87ltRRYuXFjsivRrj7mrq6tatGhhHu+GDRuqffv2WrJkidVdHYmJicXm8q8KKtdPETckNzdXH3zwgaZOnWr+wYiPj7eKycrK0vnz5xUfH6+HHnrIau62LVu2aOnSpebDSK7l5uam7t27a/r06SooKNCf/vQnbdmypdzfIF+tUaNGeuedd3Ts2DHdc889Wr58uVJTU7Vw4ULVrFlTkvTwww9r9erVevTRR9W/f38dPXpUCxYsUEBAgM6fP19q33379tXp06fLNPAXiYuLU0xMTKnfTj7wwAOqV6+ewsPD9eqrr8rOzk7/+Mc/yn3rzNGjRzVgwAD17dtXSUlJio+P1zPPPKN27dpJuvLQkaJvV1966SWdP39eH330kby8vKy+Fdy4caMWLVqkBx54QB4eHjpy5Ig++ugj1a5dW48++miJ2/b399eZM2dsTonx8MMPa+rUqRo6dKgeeOAB/fjjj1q6dGmxk4Vt27Zp3rx5mjRpkjp06CBJio2NVc+ePfX3v/9d06dPlyT99a9/1aeffqp+/frp1VdflYeHh5YsWaKjR4/qs88+K/bNeGJiov7zn/+ooKBA//rXv7R06VINGDCg1N9N6cotY3/5y1/k5OSkCxcuWP3uZ2dn6/Lly/r88881aNAgffnll/r73/+uffv2ad26daX2WcRisejChQt/yC1LLVq0kI+Pj9LT080H5UhXbpsaP368JFkV0iXpzTffVGJioh588EG98sorqlGjhj788EPl5eWZx7w87O3tFR8fr0GDBunJJ5/Uxo0by/xAmiIvvPCC3n//fW3fvt28PfNq//u//6vt27erc+fOevHFFxUQEKBff/1Ve/bs0Zdffqlff/1V0o1/3gFwHnAtzgM4DyhSWc8DRowYoV9//VW9e/dW48aN9fPPP+uDDz5Q+/btzblvy/qzuNat/ry+8MIL+stf/iJJTOuCKokx1BpjKGNoEcbQqj+GjhgxQi+//LLCwsL00EMPae/evdq8eXOxz3JAQIB69uypwMBAeXh46Pvvv9eqVasUERFhxkRHR6t///568MEHNWzYMP3666/64IMP1KpVq6r373kDd7yjR48aksq8bN++3TAMw4iNjTUkGe3btzcKCwuL9RcbG2uu+89//mM8+uijRt26dQ13d3fjiSeeMDIyMgxJxqRJk8y4SZMmGZKM06dPl5pvjx49jFatWhnff/+9ERQUZDg7Oxt+fn7G3LlzreIKCwuNt99+2/Dz8zOcnJyM++67z1i/fr0RHh5u+Pn5Fct3xowZNo/P1e3Xy7Ok9m+++cbo0qWL4eLiYjRq1MgYN26csXnzZqtjWpqi/g4cOGA8/vjjRp06dYx69eoZERERxoULF6xiv/jiC6Nt27aGs7Oz0bRpU+Odd94xFi9ebEgyjh49ahiGYezfv98ICQkx6tevbzg6Ohq+vr7G008/bezbt8+qL0mGxWIpNa9r2y9evGj8z//8j9GwYUPDxcXF6Nq1q5GUlGT06NHD6NGjh2EYhpGTk2P4+fkZHTp0MAoKCqz6Gzt2rGFvb28kJSWZ6w4fPmw8/vjjRt26dQ1nZ2ejU6dOxvr1663et337dqvf0Ro1ahh+fn7Gq6++apw9e9bmsfXz87vu73zR78vo0aON7t27G5s2bSrWT9HPqMinn35q2NnZFYsNDw83ateubTOnsnriiScMScby5cvNdfn5+UatWrUMR0fHYr8bhmEYe/bsMUJDQw1XV1ejVq1aRq9evYzdu3dbxRR9tv/1r38Ve39Jv9u///670aNHD8PV1dVITk4u9360atXKsLe3N/7zn/+U2J6VlWVYLBbD19fXqFmzpuHj42P06dPHWLhwoRlzqz7vQHXEeQDnAZwH3FnnAatWrTJCQkIMLy8vw9HR0WjSpInx0ksvGSdPnjRjyvKzMIw//vN68uRJw8HBwbjnnntuap+ByooxlDGUMZQxtLKOoUU/26s/I0V/A6517We7LC5fvmyMHz/eaNCggVGrVi0jNDTU+Omnnww/Pz8jPDzcjHvzzTeNTp06GXXr1jVcXFyMli1bGm+99ZaRn59v1d9nn31m+Pv7G05OTkZAQICxevXqG8qrsqOQXgUUffivNwCVNe6PVtoHvyoryx9Z3Bg/Pz+rge9a27dvr3J/uCub9u3bG717967oNIBqi/OAyo/zgD8O5wF/rNOnTxs1atQwpk6dWtGpAH8IxtDKjzH0j8MY+sdiDK2amCMdAHDDvv/+e6WmpuqFF16o6FQAAMAtFhcXp8uXL1s9TBwAAFwfY2jVxBzpVYCrq6ueffZZq7nabiYOuJM8+uijuuuuu0pt9/b2LnWuOxR34cIFqweElMTDw0P/93//p5SUFM2cOVMNGzbUU089dZsyBHAtzgNQnXEe8MfYtm2bDhw4oLfeekuDBg1S06ZNKzol4A/BGIrqjDH0j3G9MbSs/+a2Nb+9LadPny72wNCrOTo6ysPD44b6hmRnGOV8wgNwk3r27KkzZ85o//79FZ3KbTN58mRNmTJFp0+fLvUhLEBlEBcXp6FDh9qM2b59u3bs2KGpU6fq3nvv1YIFC9SjR4/blCGAOx3nAZwHoPLr2bOndu/era5duyo+Pl5/+tOfKjolAGIMZQzFneB6Y2hZ/83ds2fPG9p+06ZN9fPPP5fa3qNHD+3YseOG+gaFdADAVU6ePKm0tDSbMYGBgapXr95tyggAAAAAgKrhj/439zfffKMLFy6U2l6vXj0FBgbeUN+gkA4AAAAAAAAAgE08bBQAAAAAAAAAABt42OhVCgsLlZGRoTp16sjOzq6i0wEAVEOGYei3335To0aNZG/P991lwfgNAKgMGMPLjzEcAFDRyjN+U0i/SkZGhnx9fSs6DQAAdOLECTVu3Lii07gjMH4DACoTxvCyYwwHAFQWZRm/KaRfpU6dOpKuHDg3N7cKzgYAUB3l5OTI19fXHJNwfYzfAIDKgDG8/BjDAQAVrTzjN4X0qxTdSubm5sYgDgCoUNzeXHaM3wCAyoQxvOwYwwEAlUVZxm8mbgMAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAEAlMH/+fLVt21Zubm5yc3NTUFCQ/vnPf5rtFy9elMViUf369eXq6qqwsDBlZWVZ9XH8+HH1799ftWrVkpeXl15//XVdunTJKmbHjh3q0KGDnJyc1KJFC8XFxRXLJSYmRk2bNpWzs7M6d+6s7777zqq9LLkAAFCVUEgHAAAAAKASaNy4sf73f/9XKSkp+v7779W7d28NHDhQaWlpkqSxY8dq3bp1WrlypXbu3KmMjAw99thj5vsvX76s/v37Kz8/X7t379aSJUsUFxeniRMnmjFHjx5V//791atXL6WmpmrMmDEaMWKENm/ebMYsX75ckZGRmjRpkvbs2aN27dopNDRUp06dMmOulwsAAFWNnWEYRkUnUVnk5OTI3d1d2dnZcnNzq+h0AADVEGNR+XHMAACVwR81Hnl4eGjGjBl6/PHH5enpqYSEBD3++OOSpEOHDsnf319JSUnq0qWL/vnPf+rhhx9WRkaGvL29JUkLFizQ+PHjdfr0aTk6Omr8+PHasGGD9u/fb27j6aef1rlz57Rp0yZJUufOndWxY0fNnTtXklRYWChfX1+NHj1af/3rX5WdnX3dXCrymAEAUFblGYu4Ih0AAAAAgErm8uXLWrZsmXJzcxUUFKSUlBQVFBQoODjYjGnZsqWaNGmipKQkSVJSUpLatGljFtElKTQ0VDk5OeZV7UlJSVZ9FMUU9ZGfn6+UlBSrGHt7ewUHB5sxZckFAICqpkZFJwAAAAAAAK748ccfFRQUpIsXL8rV1VVr1qxRQECAUlNT5ejoqLp161rFe3t7KzMzU5KUmZlpVUQvai9qsxWTk5OjCxcu6OzZs7p8+XKJMYcOHTL7uF4uJcnLy1NeXp75Oicn5zpHAwCAyoMr0gEAAAAAqCTuvfdepaam6ttvv9WoUaMUHh6uAwcOVHRat0R0dLTc3d3NxdfXt6JTAgCgzCikAwAAAABQSTg6OqpFixYKDAxUdHS02rVrpzlz5sjHx0f5+fk6d+6cVXxWVpZ8fHwkST4+PsrKyirWXtRmK8bNzU0uLi5q0KCBHBwcSoy5uo/r5VKSqKgoZWdnm8uJEyfKdlAAAKgEylVIj46OVseOHVWnTh15eXlp0KBBSk9Pt4q5ePGiLBaL6tevL1dXV4WFhVkNwHv37tXgwYPl6+srFxcX+fv7a86cOVZ9fP311+ratavq168vFxcXtWzZUrNnz75ufvv27VO3bt3k7OwsX19fTZ8+vTy7BwBAlTB//ny1bdtWbm5ucnNzU1BQkP75z3+a7dcbqyXp+PHj6t+/v2rVqiUvLy+9/vrrunTpklXMjh071KFDBzk5OalFixaKi4srlktMTIyaNm0qZ2dnde7cWd99951Ve1lyAQCgOissLFReXp4CAwNVs2ZNbd261WxLT0/X8ePHFRQUJEkKCgrSjz/+qFOnTpkxiYmJcnNzU0BAgBlzdR9FMUV9ODo6KjAw0CqmsLBQW7duNWPKkktJnJyczPOTogUAgDtFuQrpO3fulMViUXJyshITE1VQUKCQkBDl5uaaMWPHjtW6deu0cuVK7dy5UxkZGXrsscfM9pSUFHl5eSk+Pl5paWl64403FBUVZT4NXJJq166tiIgI7dq1SwcPHtSECRM0YcIELVy4sNTccnJyFBISIj8/P6WkpGjGjBmaPHmyzfcAAFAVNW7cWP/7v/+rlJQUff/99+rdu7cGDhxoPmTsemP15cuX1b9/f+Xn52v37t1asmSJ4uLiNHHiRDPm6NGj6t+/v3r16qXU1FSNGTNGI0aM0ObNm82Y5cuXKzIyUpMmTdKePXvUrl07hYaGWv3j/nq5AABQnURFRWnXrl06duyYfvzxR0VFRWnHjh169tln5e7uruHDhysyMlLbt29XSkqKhg4dqqCgIHXp0kWSFBISooCAAD3//PPau3evNm/erAkTJshiscjJyUmS9PLLL+vIkSMaN26cDh06pHnz5mnFihUaO3asmUdkZKQ++ugjLVmyRAcPHtSoUaOUm5uroUOHSlKZcgEAoMoxbsKpU6cMScbOnTsNwzCMc+fOGTVr1jRWrlxpxhw8eNCQZCQlJZXazyuvvGL06tXL5rYeffRR47nnniu1fd68eUa9evWMvLw8c9348eONe++9t6y7Y2RnZxuSjOzs7DK/BwCAW+mPGovq1atnLFq0qExj9caNGw17e3sjMzPTjJk/f77h5uZmjrPjxo0zWrVqZbWNp556yggNDTVfd+rUybBYLObry5cvG40aNTKio6MNw7jx84ZrMX4DACqDWzEeDRs2zPDz8zMcHR0NT09Po0+fPsaWLVvM9gsXLhivvPKKUa9ePaNWrVrGo48+apw8edKqj2PHjhn9+vUzXFxcjAYNGhj/8z//YxQUFFjFbN++3Wjfvr3h6OhoNG/e3IiNjS2WywcffGA0adLEcHR0NDp16mQkJydbtZcll+thDAcAVLTyjEU1bqYIn52dLUny8PCQdOVq84KCAgUHB5sxLVu2VJMmTZSUlFTqN9PZ2dlmHyX54YcftHv3br355pulxiQlJal79+5ydHQ014WGhuqdd97R2bNnVa9evWLv4YnhqKqOHz+uM2fO3NB7L1y4oGPHjt3ahMqpadOmcnFxuaH3NmjQQE2aNLnFGQF3rsuXL2vlypXKzc1VUFBQmcbqpKQktWnTRt7e3mZMaGioRo0apbS0NN13331KSkqy6qMoZsyYMZKk/Px8paSkKCoqymy3t7dXcHCwkpKSJN34eQPjN1Dc77//rkOHDt3w+4vG/5sZg6Urn+FatWrd8PuB6u7jjz+22e7s7KyYmBjFxMSUGuPn56eNGzfa7Kdnz5764YcfbMZEREQoIiLipnIBcH03M4YzfgO31w0X0gsLCzVmzBh17dpVrVu3liRlZmbK0dFRdevWtYr19vZWZmZmif3s3r1by5cv14YNG4q1NW7cWKdPn9alS5c0efJkjRgxotR8MjMz1axZs2LbLWorqZAeHR2tKVOm2NxP4E5z/Phx3dvSXxcv/F7RqVQIZ5daSj90kGI6qr0ff/xRQUFBunjxolxdXbVmzRoFBAQoNTX1umN1ZmamVRG9qL2ozVZMTk6OLly4oLNnz+ry5cslxhT9Q+FGzhskxm+gJIcOHVJgYGBFp6GUlBR16NChotMAAOCOURnGcMZvoGxuuJBusVi0f/9+ff311ze88f3792vgwIGaNGmSQkJCirV/9dVXOn/+vJKTk/XXv/5VLVq00ODBg294e9eKiopSZGSk+TonJ0e+vr63rH+gIpw5c0YXL/yu+g//j2rWL//vs3EpX5eyK/ZBfzXcvWVXw/H6gdco+OWEflk/U2fOnKGQjmrv3nvvVWpqqrKzs7Vq1SqFh4dr586dFZ3WLcH4DRTXsmVLpaSk3PD7Dx48qOeee07x8fHy9/e/qTwAAEDZ3cwYzvgN3F43VEiPiIjQ+vXrtWvXLjVu3Nhc7+Pjo/z8fJ07d87q6rKsrCz5+PhY9XHgwAH16dNHI0eO1IQJE0rcTtEV5m3atFFWVpYmT55caiHdx8dHWVnWxb+i19duu4iTk5P5wBWgqqlZ31dOPi1u7M2NA25tMgBuO0dHR7VoceVvQGBgoP71r39pzpw5euqpp647Vvv4+Oi7776z6u/aMbW0cdfNzU0uLi5ycHCQg4NDiTFX91HW84arMX4DxdWqVeuWXEnm7+/PFWkAANxGt2IMZ/wGbg/78gQbhqGIiAitWbNG27ZtKzaVSmBgoGrWrKmtW7ea69LT03X8+HEFBQWZ69LS0tSrVy+Fh4frrbfeKtO2CwsLreZDvVZQUJB27dqlgoICc11iYqLuvffeEqd1AQCgOikaR8syVgcFBenHH3/UqVOnzJjExES5ubkpICDAjLm6j6KYoj4cHR0VGBhoFVNYWKitW7eaMWU9bwAAAAAAoKKV64p0i8WihIQErV27VnXq1DHnL3V3d5eLi4vc3d01fPhwRUZGysPDQ25ubho9erSCgoLMB4bt379fvXv3VmhoqCIjI80+HBwc5OnpKUmKiYlRkyZNzFtLdu3apXfffVevvvqqmcvcuXO1Zs0a8x/fzzzzjKZMmaLhw4dr/Pjx2r9/v+bMmaPZs2ff5CECAODOEhUVpX79+qlJkyb67bfflJCQoB07dmjz5s1lGqtDQkIUEBCg559/XtOnT1dmZqYmTJggi8ViXgn+8ssva+7cuRo3bpyGDRumbdu2acWKFVbPPImMjFR4eLjuv/9+derUSe+9955yc3M1dOhQSSpTLgAAAAAAVAblKqTPnz9f0pUnfF8tNjZWQ4YMkSTNnj1b9vb2CgsLU15enkJDQzVv3jwzdtWqVTp9+rTi4+MVHx9vrvfz89OxY8ckXbliLSoqSkePHlWNGjV011136Z133tFLL71kxp85c0aHDx82X7u7u2vLli2yWCwKDAxUgwYNNHHiRI0cObI8uwgAwB3v1KlTeuGFF3Ty5Em5u7urbdu22rx5sx566CFJ1x+rHRwctH79eo0aNUpBQUGqXbu2wsPDNXXqVDOmWbNm2rBhg8aOHas5c+aocePGWrRokUJDQ82Yp556SqdPn9bEiROVmZmp9u3ba9OmTVYPIL1eLgAAAAAAVAZ2hmEYFZ1EZZGTkyN3d3dlZ2fLzc2totMBbsiePXsUGBgon/D3bnyO9DtUXuZPylwyhieO447GWFR+HDPg5hWdPzCGAjeO8aj8OGbAzWH8Bm5eecaics2RDgAAAAAAAABAdUMhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAoBKIjo5Wx44dVadOHXl5eWnQoEFKT0+3iunZs6fs7Oyslpdfftkq5vjx4+rfv79q1aolLy8vvf7667p06ZJVzI4dO9ShQwc5OTmpRYsWiouLK5ZPTEyMmjZtKmdnZ3Xu3FnfffedVfvFixdlsVhUv359ubq6KiwsTFlZWbfmYAAAUMlQSAcAAAAAoBLYuXOnLBaLkpOTlZiYqIKCAoWEhCg3N9cq7sUXX9TJkyfNZfr06Wbb5cuX1b9/f+Xn52v37t1asmSJ4uLiNHHiRDPm6NGj6t+/v3r16qXU1FSNGTNGI0aM0ObNm82Y5cuXKzIyUpMmTdKePXvUrl07hYaG6tSpU2bM2LFjtW7dOq1cuVI7d+5URkaGHnvssT/wCAEAUHFqVHQCAAAAAABA2rRpk9XruLg4eXl5KSUlRd27dzfX16pVSz4+PiX2sWXLFh04cEBffvmlvL291b59e02bNk3jx4/X5MmT5ejoqAULFqhZs2aaOXOmJMnf319ff/21Zs+erdDQUEnSrFmz9OKLL2ro0KGSpAULFmjDhg1avHix/vrXvyo7O1sff/yxEhIS1Lt3b0lSbGys/P39lZycrC5dutzy4wMAQEXiinQAAAAAACqh7OxsSZKHh4fV+qVLl6pBgwZq3bq1oqKi9Pvvv5ttSUlJatOmjby9vc11oaGhysnJUVpamhkTHBxs1WdoaKiSkpIkSfn5+UpJSbGKsbe3V3BwsBmTkpKigoICq5iWLVuqSZMmZsy18vLylJOTY7UAAHCn4Ip0AAAAAAAqmcLCQo0ZM0Zdu3ZV69atzfXPPPOM/Pz81KhRI+3bt0/jx49Xenq6Vq9eLUnKzMy0KqJLMl9nZmbajMnJydGFCxd09uxZXb58ucSYQ4cOmX04Ojqqbt26xWKKtnOt6OhoTZkypZxHAgCAyoEr0gEAqGJ4UBkAAHc+i8Wi/fv3a9myZVbrR44cqdDQULVp00bPPvusPvnkE61Zs0aHDx+uoEzLLioqStnZ2eZy4sSJik4JAIAyo5AOAEAVw4PKAAC4s0VERGj9+vXavn27GjdubDO2c+fOkqSffvpJkuTj41PsC+mi10XzqpcW4+bmJhcXFzVo0EAODg4lxlzdR35+vs6dO1dqzLWcnJzk5uZmtQAAcKegkA4AQBWzadMmDRkyRK1atVK7du0UFxen48ePKyUlxSqu6EFlRcvV/5gtelBZfHy82rdvr379+mnatGmKiYlRfn6+JFk9qMzf318RERF6/PHHNXv2bLOfqx9UFhAQoAULFqhWrVpavHixJJkPKps1a5Z69+6twMBAxcbGavfu3UpOTr4NRwsAgMrDMAxFRERozZo12rZtm5o1a3bd96SmpkqSGjZsKEkKCgrSjz/+aPWldWJiotzc3BQQEGDGbN261aqfxMREBQUFSZIcHR0VGBhoFVNYWKitW7eaMYGBgapZs6ZVTHp6uo4fP27GAABQlVBIBwCgiqtqDyoDAKCqslgsio+PV0JCgurUqaPMzExlZmbqwoULkqTDhw9r2rRpSklJ0bFjx/TFF1/ohRdeUPfu3dW2bVtJUkhIiAICAvT8889r79692rx5syZMmCCLxSInJydJ0ssvv6wjR45o3LhxOnTokObNm6cVK1Zo7NixZi6RkZH66KOPtGTJEh08eFCjRo1Sbm6uhg4dKklyd3fX8OHDFRkZqe3btyslJUVDhw5VUFCQunTpcpuPHAAAfzweNgoAQBVWFR9UlpeXp7y8PPN1Tk5OWQ8HAACV2vz58yVdeZbJ1WJjYzVkyBA5Ojrqyy+/1Hvvvafc3Fz5+voqLCxMEyZMMGMdHBy0fv16jRo1SkFBQapdu7bCw8M1depUM6ZZs2basGGDxo4dqzlz5qhx48ZatGiRQkNDzZinnnpKp0+f1sSJE5WZman27dtr06ZNVuP67NmzZW9vr7CwMOXl5Sk0NFTz5s37g44OAAAVi0I6AABVWNGDyr7++mur9SNHjjT/v02bNmrYsKH69Omjw4cP66677rrdaZZLdHS0pkyZUtFpAABwyxmGYbPd19dXO3fuvG4/fn5+2rhxo82Ynj176ocffrAZExERoYiIiFLbnZ2dFRMTo5iYmOvmBADAnY6pXQAAqKKq6oPKoqKilJ2dbS4nTpywuW8AAAAAANwsCukAAFQxVf1BZU5OTnJzc7NaAAAAAAD4IzG1CwAAVYzFYlFCQoLWrl1rPqhMuvJQMBcXFx0+fFgJCQn685//rPr162vfvn0aO3ZsqQ8qmz59ujIzM0t8UNncuXM1btw4DRs2TNu2bdOKFSu0YcMGM5fIyEiFh4fr/vvvV6dOncw5XUt6UJmHh4fc3Nw0evRoHlQGAAAAAKhUKKQDAFDF8KAyAAAAAABuLQrpAABUMTyoDAAAAACAW6tcc6RHR0erY8eOqlOnjry8vDRo0CClp6dbxVy8eFEWi0X169eXq6urwsLCrB4ytnfvXg0ePFi+vr5ycXGRv7+/5syZY9XH6tWr9dBDD8nT01Nubm4KCgrS5s2bbeZ27Ngx2dnZFVuSk5PLs4sAAAAAAAAAAFgpVyF9586dslgsSk5OVmJiogoKChQSEqLc3FwzZuzYsVq3bp1WrlypnTt3KiMjQ4899pjZnpKSIi8vL8XHxystLU1vvPGGoqKiNHfuXDNm165deuihh7Rx40alpKSoV69eeuSRR657xZskffnllzp58qS5BAYGlmcXAQAAAAAAAACwUq6pXTZt2mT1Oi4uTl5eXkpJSVH37t2VnZ2tjz/+WAkJCerdu7ekK/Ox+vv7Kzk5WV26dNGwYcOs+mjevLmSkpK0evVq87bv9957zyrm7bff1tq1a7Vu3Trdd999NnOsX7++fHx8yrNbAAAAAAAAAACUqlxXpF8rOztbkuTh4SHpytXmBQUFCg4ONmNatmypJk2aKCkpyWY/RX2UpLCwUL/99pvNmCIDBgyQl5eXHnzwQX3xxRdl3RUAAAAAAAAAAEp0ww8bLSws1JgxY9S1a1e1bt1akpSZmSlHR0fVrVvXKtbb21uZmZkl9rN7924tX75cGzZsKHVb7777rs6fP68nn3yy1BhXV1fNnDlTXbt2lb29vT777DMNGjRIn3/+uQYMGFDie/Ly8pSXl2e+zsnJKbV/AAAAAAAAAED1dMOFdIvFov379+vrr7++4Y3v379fAwcO1KRJkxQSElJiTEJCgqZMmaK1a9fKy8ur1L4aNGigyMhI83XHjh2VkZGhGTNmlFpIj46O1pQpU244fwAAAAAAAABA1XdDU7tERERo/fr12r59uxo3bmyu9/HxUX5+vs6dO2cVn5WVVWze8gMHDqhPnz4aOXKkJkyYUOJ2li1bphEjRmjFihVW08WUVefOnfXTTz+V2h4VFaXs7GxzOXHiRLm3AQAAAAAAAACo2spVSDcMQxEREVqzZo22bdumZs2aWbUHBgaqZs2a2rp1q7kuPT1dx48fV1BQkLkuLS1NvXr1Unh4uN56660St/Xpp59q6NCh+vTTT9W/f//ypGlKTU1Vw4YNS213cnKSm5ub1QIAAAAAAAAAwNXKNbWLxWJRQkKC1q5dqzp16pjznru7u8vFxUXu7u4aPny4IiMj5eHhITc3N40ePVpBQUHq0qWLpCvTufTu3VuhoaGKjIw0+3BwcJCnp6ekK9O5hIeHa86cOercubMZU7QNSZo7d67WrFljFu2XLFkiR0dH3XfffZKk1atXa/HixVq0aNHNHiMAAAAAAAAAQDVWrkL6/PnzJUk9e/a0Wh8bG6shQ4ZIkmbPni17e3uFhYUpLy9PoaGhmjdvnhm7atUqnT59WvHx8YqPjzfX+/n56dixY5KkhQsX6tKlS7JYLLJYLGZMeHi44uLiJElnzpzR4cOHrfKYNm2afv75Z9WoUUMtW7bU8uXL9fjjj5dnFwEAAAAAAAAAsFKuQrphGNeNcXZ2VkxMjGJiYkpsnzx5siZPnmyzjx07dlx3O9f2Ex4ervDw8Ou+DwAAAAAAAACA8rihh40CAAAAAAAAAFBdUEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAKoHo6Gh17NhRderUkZeXlwYNGqT09HSrmIsXL8pisah+/fpydXVVWFiYsrKyrGKOHz+u/v37q1atWvLy8tLrr7+uS5cuWcXs2LFDHTp0kJOTk1q0aKG4uLhi+cTExKhp06ZydnZW586d9d1335U7FwAAqgoK6QAAAAAAVAI7d+6UxWJRcnKyEhMTVVBQoJCQEOXm5poxY8eO1bp167Ry5Urt3LlTGRkZeuyxx8z2y5cvq3///srPz9fu3bu1ZMkSxcXFaeLEiWbM0aNH1b9/f/Xq1UupqakaM2aMRowYoc2bN5sxy5cvV2RkpCZNmqQ9e/aoXbt2Cg0N1alTp8qcCwAAVUmNik4AAAAAAABImzZtsnodFxcnLy8vpaSkqHv37srOztbHH3+shIQE9e7dW5IUGxsrf39/JScnq0uXLtqyZYsOHDigL7/8Ut7e3mrfvr2mTZum8ePHa/LkyXJ0dNSCBQvUrFkzzZw5U5Lk7++vr7/+WrNnz1ZoaKgkadasWXrxxRc1dOhQSdKCBQu0YcMGLV68WH/961/LlAsAAFUJV6QDAAAAAFAJZWdnS5I8PDwkSSkpKSooKFBwcLAZ07JlSzVp0kRJSUmSpKSkJLVp00be3t5mTGhoqHJycpSWlmbGXN1HUUxRH/n5+UpJSbGKsbe3V3BwsBlTllwAAKhKuCIdAAAAAIBKprCwUGPGjFHXrl3VunVrSVJmZqYcHR1Vt25dq1hvb29lZmaaMVcX0Yvai9psxeTk5OjChQs6e/asLl++XGLMoUOHypzLtfLy8pSXl2e+zsnJud5hAACg0uCKdAAAqhgeVAYAwJ3PYrFo//79WrZsWUWncstER0fL3d3dXHx9fSs6JQAAyoxCOgAAVQwPKgMA4M4WERGh9evXa/v27WrcuLG53sfHR/n5+Tp37pxVfFZWlnx8fMyYa7+QLnp9vRg3Nze5uLioQYMGcnBwKDHm6j6ul8u1oqKilJ2dbS4nTpwow9EAAKByoJAOAEAVs2nTJg0ZMkStWrVSu3btFBcXp+PHjyslJUWSzIeDzZo1S71791ZgYKBiY2O1e/duJScnS5L5oLL4+Hi1b99e/fr107Rp0xQTE6P8/HxJsnpQmb+/vyIiIvT4449r9uzZZi5XP6gsICBACxYsUK1atbR48eIy5wIAQHVhGIYiIiK0Zs0abdu2Tc2aNbNqDwwMVM2aNbV161ZzXXp6uo4fP66goCBJUlBQkH788UerL60TExPl5uamgIAAM+bqPopiivpwdHRUYGCgVUxhYaG2bt1qxpQll2s5OTnJzc3NagEA4E5BIR0AgCquqj2oLC8vTzk5OVYLAABVgcViUXx8vBISElSnTh1lZmYqMzNTFy5ckCS5u7tr+PDhioyM1Pbt25WSkqKhQ4cqKChIXbp0kSSFhIQoICBAzz//vPbu3avNmzdrwoQJslgscnJykiS9/PLLOnLkiMaNG6dDhw5p3rx5WrFihcaOHWvmEhkZqY8++khLlizRwYMHNWrUKOXm5mro0KFlzgUAgKqEh40CAFCFVcUHlUVHR2vKlCllPAIAANw55s+fL0nq2bOn1frY2FgNGTJEkjR79mzZ29srLCxMeXl5Cg0N1bx588xYBwcHrV+/XqNGjVJQUJBq166t8PBwTZ061Yxp1qyZNmzYoLFjx2rOnDlq3LixFi1apNDQUDPmqaee0unTpzVx4kRlZmaqffv22rRpk9W4fr1cAACoSiikAwBQhRU9qOzrr7+u6FRumaioKEVGRpqvc3JyeFgZAKBKMAzjujHOzs6KiYlRTExMqTF+fn7auHGjzX569uypH374wWZMRESEIiIibioXAACqCgrpAABUUUUPKtu1a1epDyq7+krwax8g9t1331n1V94HlTk4OJTrQWWl5XItJycn89Z0AAAAAABuB+ZIBwCgiqnqDyoDAAAAAOB244p0AACqGIvFooSEBK1du9Z8UJl05aFgLi4uVg8H8/DwkJubm0aPHl3qg8qmT5+uzMzMEh9UNnfuXI0bN07Dhg3Ttm3btGLFCm3YsMHMJTIyUuHh4br//vvVqVMnvffee6U+qKy0XAAAAAAAqGgU0gEAqGJ4UBkAAAAAALcWhXQAAKoYHlQGAAAAAMCtxRzpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGBDuQrp0dHR6tixo+rUqSMvLy8NGjRI6enpVjEXL16UxWJR/fr15erqqrCwMGVlZZnte/fu1eDBg+Xr6ysXFxf5+/trzpw5Vn2sXr1aDz30kDw9PeXm5qagoCBt3rz5uvnt27dP3bp1k7Ozs3x9fTV9+vTy7B4AAAAAAAAAAMWUq5C+c+dOWSwWJScnKzExUQUFBQoJCVFubq4ZM3bsWK1bt04rV67Uzp07lZGRoccee8xsT0lJkZeXl+Lj45WWlqY33nhDUVFRmjt3rhmza9cuPfTQQ9q4caNSUlLUq1cvPfLII/rhhx9KzS0nJ0chISHy8/NTSkqKZsyYocmTJ2vhwoXl2UUAAAAAAAAAAKzUKE/wpk2brF7HxcXJy8tLKSkp6t69u7Kzs/Xxxx8rISFBvXv3liTFxsbK399fycnJ6tKli4YNG2bVR/PmzZWUlKTVq1crIiJCkvTee+9Zxbz99ttau3at1q1bp/vuu6/E3JYuXar8/HwtXrxYjo6OatWqlVJTUzVr1iyNHDmyPLsJAAAAAAAAAIDppuZIz87OliR5eHhIunK1eUFBgYKDg82Yli1bqkmTJkpKSrLZT1EfJSksLNRvv/1mMyYpKUndu3eXo6OjuS40NFTp6ek6e/ZsmfcJAAAAAAAAAICrleuK9KsVFhZqzJgx6tq1q1q3bi1JyszMlKOjo+rWrWsV6+3trczMzBL72b17t5YvX64NGzaUuq13331X58+f15NPPllqTGZmppo1a1Zsu0Vt9erVK/aevLw85eXlma9zcnJK7R+4k/i42sn/9x9U49eM275t43KBLv/2qxzqeMjOoeZt3fal37MkV7vbuk0AAAAAAABUfTdcSLdYLNq/f7++/vrrG974/v37NXDgQE2aNEkhISElxiQkJGjKlClau3atvLy8bnhbJYmOjtaUKVNuaZ9ARWvQoIEsXWprQsCaik7l9mskvXm2tho0aFDRmQAAAAAAAKAKuaFCekREhNavX69du3apcePG5nofHx/l5+fr3LlzVlelZ2VlycfHx6qPAwcOqE+fPho5cqQmTJhQ4naWLVumESNGaOXKlVbTxZTEx8dHWVlZVuuKXl+77SJRUVGKjIw0X+fk5MjX19fmdoDKrkmTJhrywQ4dzPh3hWz/6NGjmjBhgt58881id4ncDkOevluNmzS57dsFAAAAAABA1VWuQrphGBo9erTWrFmjHTt2FCuSBQYGqmbNmtq6davCwsIkSenp6Tp+/LiCgoLMuLS0NPXu3Vvh4eF66623StzWp59+qmHDhmnZsmXq37//dXMLCgrSG2+8oYKCAtWseWU6icTERN17770lTusiSU5OTnJycirTvgN3ksYtA6WWgRWy7Qt79uiHzL/J575Q+XfoUCE5AABwpzp+/LjOnDlz27d78OBBq//ebg0aNFATvggHAABAJVauQrrFYlFCQoLWrl2rOnXqmPOeu7u7y8XFRe7u7ho+fLgiIyPl4eEhNzc3jR49WkFBQerSpYukK9O59O7dW6GhoYqMjDT7cHBwkKenp6Qr07mEh4drzpw56ty5sxlTtA1Jmjt3rtasWaOtW7dKkp555hlNmTJFw4cP1/jx47V//37NmTNHs2fPvgWHCQAAAPhjHT9+XPe29NfFC79XWA7PPfdchWzX2aWW0g8dpJgOAACASqtchfT58+dLknr27Gm1PjY2VkOGDJEkzZ49W/b29goLC1NeXp5CQ0M1b948M3bVqlU6ffq04uPjFR8fb6738/PTsWPHJEkLFy7UpUuXZLFYZLFYzJjw8HDFxcVJks6cOaPDhw+bbe7u7tqyZYssFosCAwPVoEEDTZw4USNHjizPLgIAAAAV4syZM7p44XfVf/h/VLP+7Z1u0LiUr0vZWarh7i27Go63ddsFv5zQL+tn6syZMxTSAQB3pOp6R5nEXWWoXuwMwzAqOonKIicnR+7u7srOzpabm1tFpwPckfbs2aPAwEClpKSoA1O7AOXGWFR+HDNUFUVjqE/4e3LyaVHR6dw2eZk/KXPJGM4dcMdjPCo/jhmqgspwR1lF4q4y3OnKMxbd0MNGAQAAAAAAgOquut5RJnFXGaofCukAAAAAAADATahZ37di7ihrHHD7twlUU/YVnQAAAAAAAAAAAJUZhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAACqBXbt26ZFHHlGjRo1kZ2enzz//3Kp9yJAhsrOzs1r69u1rFfPrr7/q2WeflZubm+rWravhw4fr/PnzVjH79u1Tt27d5OzsLF9fX02fPr1YLitXrlTLli3l7OysNm3aaOPGjVbthmFo4sSJatiwoVxcXBQcHKx///vft+ZAAABQCVFIBwAAAACgEsjNzVW7du0UExNTakzfvn118uRJc/n000+t2p999lmlpaUpMTFR69ev165duzRy5EizPScnRyEhIfLz81NKSopmzJihyZMna+HChWbM7t27NXjwYA0fPlw//PCDBg0apEGDBmn//v1mzPTp0/X+++9rwYIF+vbbb1W7dm2Fhobq4sWLt/CIAABQedSo6AQAAAAAAIDUr18/9evXz2aMk5OTfHx8Smw7ePCgNm3apH/961+6//77JUkffPCB/vznP+vdd99Vo0aNtHTpUuXn52vx4sVydHRUq1atlJqaqlmzZpkF9zlz5qhv3756/fXXJUnTpk1TYmKi5s6dqwULFsgwDL333nuaMGGCBg4cKEn65JNP5O3trc8//1xPP/30rTokAABUGlyRDgAAAADAHWLHjh3y8vLSvffeq1GjRumXX34x25KSklS3bl2ziC5JwcHBsre317fffmvGdO/eXY6OjmZMaGio0tPTdfbsWTMmODjYaruhoaFKSkqSJB09elSZmZlWMe7u7urcubMZU5K8vDzl5ORYLQAA3CkopAMAUAUxxyoAAFVP37599cknn2jr1q165513tHPnTvXr10+XL1+WJGVmZsrLy8vqPTVq1JCHh4cyMzPNGG9vb6uYotfXi7m6/er3lRRTkujoaLm7u5uLr69vufYfAICKRCEdAIAqiDlWAQCoep5++mkNGDBAbdq00aBBg7R+/Xr961//0o4dOyo6tTKJiopSdna2uZw4caKiUwIAoMyYIx0AgCqIOVYBAKj6mjdvrgYNGuinn35Snz595OPjo1OnTlnFXLp0Sb/++qs55vv4+CgrK8sqpuj19WKubi9a17BhQ6uY9u3bl5qvk5OTnJycbmBPAQCoeFyRDgBANXWnzrHK/KoAAFzxn//8R7/88otZzA4KCtK5c+eUkpJixmzbtk2FhYXq3LmzGbNr1y4VFBSYMYmJibr33ntVr149M2br1q1W20pMTFRQUJAkqVmzZvLx8bGKycnJ0bfffmvGAABQ1VBIBwCgGrqT51hlflUAQFV1/vx5paamKjU1VdKVL5xTU1N1/PhxnT9/Xq+//rqSk5N17Ngxbd26VQMHDlSLFi0UGhoqSfL391ffvn314osv6rvvvtM333yjiIgIPf3002rUqJEk6ZlnnpGjo6OGDx+utLQ0LV++XHPmzFFkZKSZx2uvvaZNmzZp5syZOnTokCZPnqzvv/9eERERkiQ7OzuNGTNGb775pr744gv9+OOPeuGFF9SoUSMNGjToth4zAABuF6Z2AQCgGrp6ypQ2bdqobdu2uuuuu7Rjxw716dOnAjO7vqioKKt/7Ofk5FBMBwBUCd9//7169eplvi4a78LDwzV//nzt27dPS5Ys0blz59SoUSOFhIRo2rRpVtOlLF26VBEREerTp4/s7e0VFham999/32x3d3fXli1bZLFYFBgYqAYNGmjixIlWz0F54IEHlJCQoAkTJuhvf/ub7r77bn3++edq3bq1GTNu3Djl5uZq5MiROnfunB588EFt2rRJzs7Of+QhAgCgwlBIBwAAd9Qcq8yvCgCoqnr27CnDMEpt37x583X78PDwUEJCgs2Ytm3b6quvvrIZ88QTT+iJJ54otd3Ozk5Tp07V1KlTr5sTAABVAVO7AAAA5lgFAAAAAMAGCukAAFRBzLEKAAAAAMCtw9QuAABUQcyxCgAAAADArUMhHQCAKog5VgEAAAAAuHWY2gUAAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMCGGhWdAAAAAIArfFzt1MYxQzXtHCo6ldumwDFDcrWr6DQAAAAAmyikAwAAAJXES4GOmtxoQUWncXs1kiYHOlZ0FgAA3LDq+EW4xJfhqH4opAMAAACVxIcp+dp9z2uqWd+3olO5bQp+OaEfU2ZoQEUnAgDADaqWX4RLfBmOaodCOgAAAFBJZJ43pPxGcjKaVXQqt01e/uUr+w0AwB2qOn4RLvFlOKofCukAAAAAAADADaqOX4RLfBmO6se+ohMAAAAAAAAAAKAyo5AOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIAN5SqkR0dHq2PHjqpTp468vLw0aNAgpaenW8VcvHhRFotF9evXl6urq8LCwpSVlWW27927V4MHD5avr69cXFzk7++vOXPmWPVx8uRJPfPMM7rnnntkb2+vMWPGlCk/Ozu7YsuyZcvKs4sAAAAAAAAAAFgpVyF9586dslgsSk5OVmJiogoKChQSEqLc3FwzZuzYsVq3bp1WrlypnTt3KiMjQ4899pjZnpKSIi8vL8XHxystLU1vvPGGoqKiNHfuXDMmLy9Pnp6emjBhgtq1a1euHYqNjdXJkyfNZdCgQeV6PwAAAAAAAAAAV6tRnuBNmzZZvY6Li5OXl5dSUlLUvXt3ZWdn6+OPP1ZCQoJ69+4t6Uph29/fX8nJyerSpYuGDRtm1Ufz5s2VlJSk1atXKyIiQpLUtGlT8yr1xYsXl2uH6tatKx8fn3K9BwAAAAAAAACA0tzUHOnZ2dmSJA8PD0lXrjYvKChQcHCwGdOyZUs1adJESUlJNvsp6uNmWSwWNWjQQJ06ddLixYtlGMYt6RcAAAAAAAAAUD2V64r0qxUWFmrMmDHq2rWrWrduLUnKzMyUo6Oj6tataxXr7e2tzMzMEvvZvXu3li9frg0bNtxoKqapU6eqd+/eqlWrlrZs2aJXXnlF58+f16uvvlpifF5envLy8szXOTk5N50DAAAAAAAAAKBqueFCusVi0f79+/X111/f8Mb379+vgQMHatKkSQoJCbnhfor8/e9/N///vvvuU25urmbMmFFqIT06OlpTpky56e0CAAAAAAAAAKquG5raJSIiQuvXr9f27dvVuHFjc72Pj4/y8/N17tw5q/isrKxi85YfOHBAffr00ciRIzVhwoQbSeO6OnfurP/85z9WV51fLSoqStnZ2eZy4sSJPyQPAAAAAAAAAMCdq1yFdMMwFBERoTVr1mjbtm1q1qyZVXtgYKBq1qyprVu3muvS09N1/PhxBQUFmevS0tLUq1cvhYeH66233rrJXShdamqq6tWrJycnpxLbnZyc5ObmZrUAAAAAAAAAAHC1ck3tYrFYlJCQoLVr16pOnTrmvOfu7u5ycXGRu7u7hg8frsjISHl4eMjNzU2jR49WUFCQunTpIunKdC69e/dWaGioIiMjzT4cHBzk6elpbis1NVWSdP78eZ0+fVqpqalydHRUQECAJGnNmjWKiorSoUOHJEnr1q1TVlaWunTpImdnZyUmJurtt9/WX/7yl5s7QgAAAAAAAACAaq1chfT58+dLknr27Gm1PjY2VkOGDJEkzZ49W/b29goLC1NeXp5CQ0M1b948M3bVqlU6ffq04uPjFR8fb6738/PTsWPHzNf33Xef+f8pKSlKSEiwisnOzlZ6eroZU7NmTcXExGjs2LEyDEMtWrTQrFmz9OKLL5ZnFwEAAAAAAAAAsFKuQrphGNeNcXZ2VkxMjGJiYkpsnzx5siZPnnzT2xoyZIhZvJekvn37qm/fvtftFwAAAAAAAACA8rihh40CAAAAAAAAAFBdUEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAACVwK5du/TII4+oUaNGsrOz0+eff27VbhiGJk6cqIYNG8rFxUXBwcH697//bRXz66+/6tlnn5Wbm5vq1q2r4cOH6/z581Yx+/btU7du3eTs7CxfX19Nnz69WC4rV65Uy5Yt5ezsrDZt2mjjxo3lzgUAgKqEQjoAAAAAAJVAbm6u2rVrp5iYmBLbp0+frvfff18LFizQt99+q9q1ays0NFQXL140Y5599lmlpaUpMTFR69ev165duzRy5EizPScnRyEhIfLz81NKSopmzJihyZMna+HChWbM7t27NXjwYA0fPlw//PCDBg0apEGDBmn//v3lygUAgKqkRkUnAAAAAAAApH79+qlfv34lthmGoffee08TJkzQwIEDJUmffPKJvL299fnnn+vpp5/WwYMHtWnTJv3rX//S/fffL0n64IMP9Oc//1nvvvuuGjVqpKVLlyo/P1+LFy+Wo6OjWrVqpdTUVM2aNcssuM+ZM0d9+/bV66+/LkmaNm2aEhMTNXfuXC1YsKBMuQAAUNVwRToAAFUQt4YDAFC1HD16VJmZmQoODjbXubu7q3PnzkpKSpIkJSUlqW7dumYRXZKCg4Nlb2+vb7/91ozp3r27HB0dzZjQ0FClp6fr7NmzZszV2ymKKdpOWXIBAKCqoZAOAEAVxK3hAABULZmZmZIkb29vq/Xe3t5mW2Zmpry8vKzaa9SoIQ8PD6uYkvq4ehulxVzdfr1cSpKXl6ecnByrBQCAOwWFdAAAqqB+/frpzTff1KOPPlqs7drbsdu2batPPvlEGRkZ5pXrRbeGL1q0SJ07d9aDDz6oDz74QMuWLVNGRoYkWd0a3qpVKz399NN69dVXNWvWLHNbV98a7u/vr2nTpqlDhw6aO3dumXMBAABVQ3R0tNzd3c3F19e3olMCAKDMKKQDAFDNcGs4AAB3Hh8fH0lSVlaW1fqsrCyzzcfHR6dOnbJqv3Tpkn799VermJL6uHobpcVc3X69XEoSFRWl7Oxsczlx4sR19hoAgMqDh40CAFDN3Mpbw5s1a1asj6K2evXq/SG3hufl5SkvL898zW3hqGoKfrn9hSXjUr4uZWephru37Go4Xv8Nt1BF7C9wJ2rWrJl8fHy0detWtW/fXtKVMfDbb7/VqFGjJElBQUE6d+6cUlJSFBgYKEnatm2bCgsL1blzZzPmjTfeUEFBgWrWrClJSkxM1L333qt69eqZMVu3btWYMWPM7ScmJiooKKjMuZTEyclJTk5Ot+yYAABwO1FIBwAAd5To6GhNmTKlotMAbrkGDRrI2aWWflk/s6JTue2cXWqpQYMGFZ0GUOHOnz+vn376yXx99OhRpaamysPDQ02aNNGYMWP05ptv6u6771azZs3097//XY0aNdKgQYMkSf7+/urbt69efPFFLViwQAUFBYqIiNDTTz+tRo0aSZKeeeYZTZkyRcOHD9f48eO1f/9+zZkzR7Nnzza3+9prr6lHjx6aOXOm+vfvr2XLlun77783n4NiZ2d33VwAAKhqKKQDAFDNXH07dsOGDc31WVlZ5lVlFXFreGm5XCsqKkqRkZHm65ycHOZYRZXQpEkTpR86qDNnztz2bR88eFDPPfec4uPj5e/vf9u336BBAzVp0uS2bxeobL7//nv16tXLfF003oWHhysuLk7jxo1Tbm6uRo4cqXPnzunBBx/Upk2b5OzsbL5n6dKlioiIUJ8+fWRvb6+wsDC9//77Zru7u7u2bNkii8WiwMBANWjQQBMnTrR6oPgDDzyghIQETZgwQX/7299099136/PPP1fr1q3NmLLkAgBAVUIhHQCAauZOvzWc28JRlTVp0qRCC8r+/v7q0KFDhW0fqO569uwpwzBKbbezs9PUqVM1derUUmM8PDyUkJBgcztt27bVV199ZTPmiSee0BNPPHFTuQDVSXWbmk1iejZUPxTSAQCogrg1HAAAAPjjVeep2SSmZ0P1QiEdAIAqiFvDAQAAgD9edZ6aTWJ6NlQvdoat+8aqmZycHLm7uys7O1tubm4VnQ5wR9qzZ48CAwOVkpLCreHADWAsKj+OGXDzGL+Bm8d4VH4cM+DmMH4DN688Y5H9bcoJAAAAAAAAAIA7EoV0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsKFchPTo6Wh07dlSdOnXk5eWlQYMGKT093Srm4sWLslgsql+/vlxdXRUWFqasrCyzfe/evRo8eLB8fX3l4uIif39/zZkzx6qPkydP6plnntE999wje3t7jRkzpkz5HT9+XP3791etWrXk5eWl119/XZcuXSrPLgIAAAAAAAAAYKVchfSdO3fKYrEoOTlZiYmJKigoUEhIiHJzc82YsWPHat26dVq5cqV27typjIwMPfbYY2Z7SkqKvLy8FB8fr7S0NL3xxhuKiorS3LlzzZi8vDx5enpqwoQJateuXZlyu3z5svr376/8/Hzt3r1bS5YsUVxcnCZOnFieXQQAAAAAAAAAwEqN8gRv2rTJ6nVcXJy8vLyUkpKi7t27Kzs7Wx9//LESEhLUu3dvSVJsbKz8/f2VnJysLl26aNiwYVZ9NG/eXElJSVq9erUiIiIkSU2bNjWvUl+8eHGZctuyZYsOHDigL7/8Ut7e3mrfvr2mTZum8ePHa/LkyXJ0dCzPrgIAAAAAAAAAIOkm50jPzs6WJHl4eEi6crV5QUGBgoODzZiWLVuqSZMmSkpKstlPUR83KikpSW3atJG3t7e5LjQ0VDk5OUpLS7upvgEAAAAAAAAA1Ve5rki/WmFhocaMGaOuXbuqdevWkqTMzEw5Ojqqbt26VrHe3t7KzMwssZ/du3dr+fLl2rBhw42mYm776iJ60XaL2kqSl5envLw883VOTs5N5QAAAAAAAAAAqHpu+Ip0i8Wi/fv3a9myZTe88f3792vgwIGaNGmSQkJCbrifGxUdHS13d3dz8fX1ve05AAAAAAAAAAAqtxsqpEdERGj9+vXavn27GjdubK738fFRfn6+zp07ZxWflZUlHx8fq3UHDhxQnz59NHLkSE2YMOFG0rDi4+OjrKysYtstaitJVFSUsrOzzeXEiRM3nQcAAAAAAAAAoGopVyHdMAxFRERozZo12rZtm5o1a2bVHhgYqJo1a2rr1q3muvT0dB0/flxBQUHmurS0NPXq1Uvh4eF66623bnIXrggKCtKPP/6oU6dOmesSExPl5uamgICAEt/j5OQkNzc3qwUAAAAAAAAAgKuVa450i8WihIQErV27VnXq1DHnHnd3d5eLi4vc3d01fPhwRUZGysPDQ25ubho9erSCgoLUpUsXSVemc+ndu7dCQ0MVGRlp9uHg4CBPT09zW6mpqZKk8+fP6/Tp00pNTZWjo6NZFF+zZo2ioqJ06NAhSVJISIgCAgL0/PPPa/r06crMzNSECRNksVjk5OR0c0cJAAAAAAAAAFBtlauQPn/+fElSz549rdbHxsZqyJAhkqTZs2fL3t5eYWFhysvLU2hoqObNm2fGrlq1SqdPn1Z8fLzi4+PN9X5+fjp27Jj5+r777jP/PyUlRQkJCVYx2dnZSk9PN2McHBy0fv16jRo1SkFBQapdu7bCw8M1derU8uwiAAAAAAAAAABWylVINwzjujHOzs6KiYlRTExMie2TJ0/W5MmTb3pbQ4YMMYv3Rfz8/LRx48br9g0AAAAAAAAAQFnd0MNGAQAAAAAAAACoLiikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAA4A4wefJk2dnZWS0tW7Y02y9evCiLxaL69evL1dVVYWFhysrKsurj+PHj6t+/v2rVqiUvLy+9/vrrunTpklXMjh071KFDBzk5OalFixaKi4srlktMTIyaNm0qZ2dnde7cWd99990fss8AAFQWFNIBAAAAALhDtGrVSidPnjSXr7/+2mwbO3as1q1bp5UrV2rnzp3KyMjQY489ZrZfvnxZ/fv3V35+vnbv3q0lS5YoLi5OEydONGOOHj2q/v37q1evXkpNTdWYMWM0YsQIbd682YxZvny5IiMjNWnSJO3Zs0ft2rVTaGioTp06dXsOAgAAFYBCOgAA1RBXtAEAcGeqUaOGfHx8zKVBgwaSpOzsbH388ceaNWuWevfurcDAQMXGxmr37t1KTk6WJG3ZskUHDhxQfHy82rdvr379+mnatGmKiYlRfn6+JGnBggVq1qyZZs6cKX9/f0VEROjxxx/X7NmzzRxmzZqlF198UUOHDlVAQIAWLFigWrVqafHixbf/gAAAcJtQSAcAoJriijYAAO48//73v9WoUSM1b95czz77rI4fPy5JSklJUUFBgYKDg83Yli1bqkmTJkpKSpIkJSUlqU2bNvL29jZjQkNDlZOTo7S0NDPm6j6KYor6yM/PV0pKilWMvb29goODzZjS5OXlKScnx2oBAOBOQSEdAIBqiivaAAC4s3Tu3FlxcXHatGmT5s+fr6NHj6pbt2767bfflJmZKUdHR9WtW9fqPd7e3srMzJQkZWZmWhXRi9qL2mzF5OTk6MKFCzpz5owuX75cYkxRH6WJjo6Wu7u7ufj6+pb7GAAAUFEopAMAUE3dqVe0cTUbAKC66tevn5544gm1bdtWoaGh2rhxo86dO6cVK1ZUdGplEhUVpezsbHM5ceJERacEAECZUUgHAKAaupOvaONqNgAArqhbt67uuece/fTTT/Lx8VF+fr7OnTtnFZOVlSUfHx9Jko+PT7FnnhS9vl6Mm5ubXFxc1KBBAzk4OJQYU9RHaZycnOTm5ma1AABwp6CQDgBANXQnX9HG1WwAAFxx/vx5HT58WA0bNlRgYKBq1qyprVu3mu3p6ek6fvy4goKCJElBQUH68ccfrZ5FkpiYKDc3NwUEBJgxV/dRFFPUh6OjowIDA61iCgsLtXXrVjMGAICqiEI6AAC4o65o42o2AEB19Ze//EU7d+7UsWPHtHv3bj366KNycHDQ4MGD5e7uruHDhysyMlLbt29XSkqKhg4dqqCgIHXp0kWSFBISooCAAD3//PPau3evNm/erAkTJshiscjJyUmS9PLLL+vIkSMaN26cDh06pHnz5mnFihUaO3asmUdkZKQ++ugjLVmyRAcPHtSoUaOUm5uroUOHVshxAQDgdqCQDgAAuKINAIA7wH/+8x8NHjxY9957r5588knVr19fycnJ8vT0lCTNnj1bDz/8sMLCwtS9e3f5+Pho9erV5vsdHBy0fv16OTg4KCgoSM8995xeeOEFTZ061Yxp1qyZNmzYoMTERLVr104zZ87UokWLFBoaasY89dRTevfddzVx4kS1b99eqamp2rRpU7Hp2gAAqEpqVHQCAADg9vvLX/6iRx55RH5+fsrIyNCkSZNKvKLNw8NDbm5uGj16dKlXtE2fPl2ZmZklXtE2d+5cjRs3TsOGDdO2bdu0YsUKbdiwwcwjMjJS4eHhuv/++9WpUye99957XNEGAEApli1bZrPd2dlZMTExiomJKTXGz89PGzdutNlPz5499cMPP9iMiYiIUEREhM0YAACqEgrpAABUQ0VXtP3yyy/y9PTUgw8+WOyKNnt7e4WFhSkvL0+hoaGaN2+e+f6iK9pGjRqloKAg1a5dW+Hh4SVe0TZ27FjNmTNHjRs3LvGKttOnT2vixInKzMxU+/btuaINAAAAAFDpUEgHAKAa4oo2AAAAAADKjjnSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABvKVUiPjo5Wx44dVadOHXl5eWnQoEFKT0+3irl48aIsFovq168vV1dXhYWFKSsry2zfu3evBg8eLF9fX7m4uMjf319z5swptq0dO3aoQ4cOcnJyUosWLRQXF2czt2PHjsnOzq7YkpycXJ5dBAAAAAAAAADASrkK6Tt37pTFYlFycrISExNVUFCgkJAQ5ebmmjFjx47VunXrtHLlSu3cuVMZGRl67LHHzPaUlBR5eXkpPj5eaWlpeuONNxQVFaW5c+eaMUePHlX//v3Vq1cvpaamasyYMRoxYoQ2b9583Ry//PJLnTx50lwCAwPLs4sAAAAAAAAAAFipUZ7gTZs2Wb2Oi4uTl5eXUlJS1L17d2VnZ+vjjz9WQkKCevfuLUmKjY2Vv7+/kpOT1aVLFw0bNsyqj+bNmyspKUmrV69WRESEJGnBggVq1qyZZs6cKUny9/fX119/rdmzZys0NNRmjvXr15ePj095dgsAAAAAAAAAgFKVq5B+rezsbEmSh4eHpCtXmxcUFCg4ONiMadmypZo0aaKkpCR16dKl1H6K+pCkpKQkqz4kKTQ0VGPGjLluTgMGDNDFixd1zz33aNy4cRowYECpsXl5ecrLyzNf5+TkXLd/oKr7/fffdejQoRt+/8GDB63+eyNatmypWrVq3fD7AQCobirD+C0xhgMAUF43M4YzfgO31w0X0gsLCzVmzBh17dpVrVu3liRlZmbK0dFRdevWtYr19vZWZmZmif3s3r1by5cv14YNG8x1mZmZ8vb2LtZHTk6OLly4IBcXl2L9uLq6aubMmeratavs7e312WefadCgQfr8889LLaZHR0drypQp5dltoMo7dOjQLZkS6bnnnrvh96akpKhDhw43nQMAANVFZRi/JcZwAADK61aM4YzfwO1xw4V0i8Wi/fv36+uvv77hje/fv18DBw7UpEmTFBIScsP9SFKDBg0UGRlpvu7YsaMyMjI0Y8aMUgvpUVFRVu/JycmRr6/vTeUB3OlatmyplJSUG37/hQsXdOzYMTVt2rTEL73KmgMAACi7yjB+F+UBAADK7mbGcMZv4Pa6oUJ6RESE1q9fr127dqlx48bmeh8fH+Xn5+vcuXNWV6VnZWUVm7f8wIED6tOnj0aOHKkJEyZYtfn4+CgrK8tqXVZWltzc3Mr1h6Fz585KTEwstd3JyUlOTk5l7g+oDmrVqnXT30R37dr1FmUDAADKgvEbQEWJiYnRjBkzlJmZqXbt2umDDz5Qp06dKjot4I5xs2M44zdw+9iXJ9gwDEVERGjNmjXatm2bmjVrZtUeGBiomjVrauvWrea69PR0HT9+XEFBQea6tLQ09erVS+Hh4XrrrbeKbScoKMiqD0lKTEy06qMsUlNT1bBhw3K9BwAAAAAAXN/y5csVGRmpSZMmac+ePWrXrp1CQ0N16tSpik4NAIBbrlyFdIvFovj4eCUkJKhOnTrKzMxUZmamLly4IElyd3fX8OHDFRkZqe3btyslJUVDhw5VUFCQ+aDR/fv3q1evXgoJCVFkZKTZx+nTp83tvPzyyzpy5IjGjRunQ4cOad68eVqxYoXGjh1rxsydO1d9+vQxXy9ZskSffvqpDh06pEOHDuntt9/W4sWLNXr06Js6QAAA4PaIiYlR06ZN5ezsrM6dO+u7776r6JQAAIANs2bN0osvvqihQ4cqICBACxYsUK1atbR48eKKTg0AgFuuXIX0+fPnKzs7Wz179lTDhg3NZfny5WbM7Nmz9fDDDyssLEzdu3eXj4+PVq9ebbavWrVKp0+fVnx8vFUfHTt2NGOaNWumDRs2KDExUe3atdPMmTO1aNEihYaGmjFnzpzR4cOHrfKbNm2aAgMD1blzZ61du1bLly/X0KFDy31QAADA7cUVbQAA3Fny8/OVkpKi4OBgc529vb2Cg4OVlJRUgZkBAPDHsDMMw6joJCqLnJwcubu7Kzs7W25ubhWdDgCgGqquY1Hnzp3VsWNHzZ07V5JUWFgoX19fjR49Wn/9619tvre6HjMAQOVS3cajjIwM/elPf9Lu3butpmEdN26cdu7cqW+//bbYe/Ly8pSXl2e+zsnJka+vb7U5ZgCAyqc843e5rkgHAAC41cp7RVteXp5ycnKsFgAAUPlFR0fL3d3dXHx9fSs6JQAAyoxCOgAAqFBnzpzR5cuX5e3tbbXe29tbmZmZxeL5RzgAABWvQYMGcnBwUFZWltX6rKws+fj4lPieqKgoZWdnm8uJEyduR6oAANwSFNIBAMAdhX+EAwBQ8RwdHRUYGKitW7ea6woLC7V161arqV6u5uTkJDc3N6sFAIA7RY2KTgAAAFRv5b2izcnJSU5OTrcrPQAAUIrIyEiFh4fr/vvvV6dOnfTee+8pNzdXQ4cOrejUAAC45bgiHQAAVKgbuaINAABUvKeeekrvvvuuJk6cqPbt2ys1NVWbNm0qNl0bAABVAVekAwCACscVbQAA3JkiIiIUERFR0WkAAPCHo5AOAAAq3FNPPaXTp09r4sSJyszMVPv27bmiDQAAAABQaVBIBwAAlQJXtAEAAAAAKivmSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAG5gj/SqGYUiScnJyKjgTAEB1VTQGFY1JuD7GbwBAZcAYXn6M4QCAilae8ZtC+lV+++03SZKvr28FZwIAqO5+++03ubu7V3QadwTGbwBAZcIYXnaM4QCAyuL/a+++w6wo7/9xv5a2EDpIW6VpsGDvikaIkhCs2GM0QSBirEFjTEysaCR27DUBWxJbNMbeQBPFEhWT2D4WECygRGUBBZU9vz/8cn6uwAiKrov3fV3nujjPPPPMe2bnOO5rZp+zJNfvipLb5WU1NTV5/fXX07Jly1RUVNR1OVAvVVdXp2vXrpk6dWpatWpV1+VAvVMqlTJr1qxUVVWlQQMzsC0J12/44ly/4YtzDV96ruHwxbh+wxe3NNdvQTqwTFVXV6d169aZOXOmCzkA1BOu3wBQ/7h+w1fLbXIAAAAAACggSAcAAAAAgAKCdGCZqqyszHHHHZfKysq6LgUAWEKu3wBQ/7h+w1fLHOkAAAAAAFDAE+kAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpwDLxwAMPZIcddkhVVVUqKipy00031XVJAMBncP0GgPrJNRy+eoJ0YJmYM2dO1l133Zx//vl1XQoAsIRcvwGgfnINh69eo7ouAFg+DBw4MAMHDqzrMgCApeD6DQD1k2s4fPU8kQ4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFGtV1AcDyYfbs2XnxxRfL7ydNmpSJEyemXbt26datWx1WBgAsjus3ANRPruHw1asolUqlui4CqP/Gjx+f7373uwu1Dx48OGPHjv3qCwIAPpPrNwDUT67h8NUTpAMAAAAAQAFzpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAfANVVFTkpptuqusyAACgXhCkA0tk8uTJqaioyMSJE+u6FAAAAPha+TrcoD7++OOz3nrr1WkNn+XrcJzg8xKkAwAAS+2DDz6o6xIAgE844ogjcu+999Z1GbDcEqQDn6m+/qJcX+sGgCV1/fXXZ+21106zZs3Svn379O/fP3PmzMljjz2W733ve1lhhRXSunXr9O3bN0888UThWL/61a+y6qqr5lvf+lZWXnnlHHPMMfnwww/Lyxc85XbZZZelZ8+eadq0aa644oq0b98+8+bNqzXWoEGD8uMf//hL2WcAWB4ti99fW7Rokfbt2y+DaoBFEaTDcuCWW25JmzZtMn/+/CTJxIkTU1FRkV//+tflPj/96U+zzz77JEluuOGGrLnmmqmsrEyPHj1yxhln1BqvR48eOfHEE/OTn/wkrVq1yvDhwxfa5vz58zN06NCsvvrqmTJlSmF9Q4cOzfbbb1+r7cMPP0zHjh3zhz/8IUlSU1OTUaNGpWfPnmnWrFnWXXfdXH/99bW2N2zYsPLy1VZbLWeffXatMffdd98MGjQov/vd71JVVZXVVlvtsw4dANRbb7zxRvbaa68MHTo0zz77bMaPH59ddtklpVIps2bNyuDBg/PPf/4zDz/8cHr16pVtt902s2bNWux4LVu2zNixY/PMM8/k7LPPzqWXXpqzzjqrVp8XX3wxN9xwQ/76179m4sSJ2X333TN//vzcfPPN5T5vvvlmbr311gwdOvRL23cA+DLU9xvUn57aZcHvyKeffnq6dOmS9u3b56CDDqpVR5FFTcPSpk2bjB07NsnH4f/BBx+cLl26pGnTpunevXtGjRpV7vvCCy9kq622StOmTdO7d+/cfffdS7Rd+LpqVNcFAF/cd77zncyaNStPPvlkNtpoo9x///1ZYYUVMn78+HKf+++/P7/61a/y+OOPZ4899sjxxx+fPffcMw899FAOPPDAtG/fPvvuu2+5/+mnn55jjz02xx133ELbmzdvXvbaa69Mnjw5//jHP9KhQ4fC+n76059mq622yhtvvJEuXbok+Tj8f++997LnnnsmSUaNGpWrrroqF110UXr16pUHHngg++yzTzp06JC+ffumpqYmK620Uq677rq0b98+Dz30UIYPH54uXbpkjz32KG/r3nvvTatWrVygAVjuvfHGG/noo4+yyy67pHv37kmStddeO0my9dZb1+p7ySWXpE2bNrn//vsXurm9wNFHH13+d48ePXLEEUfkL3/5S4488shy+wcffJArrrii1rX/Rz/6UcaMGZPdd989SXLVVVelW7du6dev3zLZTwD4Kiy4QX3qqadm5513zqxZs/KPf/yj1g3qc889N6VSKWeccUa23XbbvPDCC2nZsuUix1twg7qqqir/+c9/st9++6Vly5a1rqufvEHdsGHD9OrVK4ceemhuvvnm8nV1wQ3qu+6663Pt17hx49KlS5eMGzcuL774Yvbcc8+st9562W+//T7XeJ90zjnn5Oabb861116bbt26ZerUqZk6dWqSjx+W22WXXdKpU6c88sgjmTlzZkaMGPGFtwl1SZAOy4HWrVtnvfXWy/jx47PRRhtl/PjxOeyww3LCCSdk9uzZmTlzZl588cX07ds3xx9/fLbZZpscc8wxSZJVV101zzzzTE477bRaQfrWW2+dX/ziF+X3kydPTpLMnj072223XebNm5dx48aldevWn1lfnz59stpqq+XKK68s/0/Dgl+4W7RokXnz5uXkk0/OPffck8033zxJsvLKK+ef//xnLr744vTt2zeNGzfOCSecUB6zZ8+emTBhQq699tpaQXrz5s1z2WWXpUmTJp/7eAJAfbDuuutmm222ydprr50BAwbk+9//fnbbbbe0bds206dPz9FHH53x48fnzTffzPz58/Pee+8V/hXZNddck3POOScvvfRSZs+enY8++iitWrWq1ad79+4L3UDfb7/9svHGG+e1117LiiuumLFjx2bfffdNRUXFl7LfAPBlWF5vULdt2zbnnXdeGjZsmNVXXz3bbbdd7r333mUSpE+ZMiW9evXKlltumYqKivJxS5J77rknzz33XO68885UVVUlSU4++eQMHDjwC28X6oqpXWA50bdv34wfPz6lUin/+Mc/sssuu2SNNdbIP//5z9x///2pqqpKr1698uyzz2aLLbaote4WW2yRF154oTw1TJJstNFGi9zOXnvtlTlz5uSuu+5aohB9gZ/+9KcZM2ZMkmT69Om5/fbby3/y/eKLL+a9997L9773vbRo0aL8uuKKK/LSSy+Vxzj//POz4YYbpkOHDmnRokUuueSShQKBtddeW4gOwDdCw4YNc/fdd+f2229P7969c+6552a11VbLpEmTMnjw4EycODFnn312HnrooUycODHt27df7PyrEyZMyN57751tt902t9xyS5588sn89re/Xah/8+bNF1p3/fXXz7rrrpsrrrgijz/+eJ5++ulaN+cBoD745A3q3XffPZdeemneeeedJB//DrvffvulV69ead26dVq1apXZs2d/5g3qLbbYIp07d06LFi1y9NFHL9R/cTeo77rrrrz22mtJ8oVvUK+55ppp2LBh+X2XLl3y5ptvfq6xPm3ffffNxIkTs9pqq+XQQw+t9dT8s88+m65du5ZD9CTlB+egvhKkw3KiX79++ec//5mnnnoqjRs3zuqrr55+/fpl/Pjxuf/++9O3b9+lGm9Rvygnybbbbpt///vfmTBhwlKN95Of/CQvv/xyJkyYkKuuuio9e/bMd77znSQfP+WeJLfeemsmTpxYfj3zzDPledL/8pe/5IgjjsiwYcNy1113ZeLEiRkyZMgS/YIPAMurioqKbLHFFjnhhBPy5JNPpkmTJrnxxhvz4IMP5tBDD822225b/l6UGTNmLHachx56KN27d89vf/vbbLTRRunVq1deeeWVJa7jpz/9acaOHZsxY8akf//+6dq167LYPQD4yiyvN6gbN25c631FRUVqamqWaN2KioqUSqVabZ+cX32DDTbIpEmTcuKJJ+b999/PHnvskd122+1z1wpfd6Z2geXEgnnSzzrrrHJo3q9fv/z+97/PO++8U56mZY011siDDz5Ya90HH3wwq666aq271ItzwAEHZK211sqOO+6YW2+9dYkD+vbt22fQoEEZM2ZMJkyYkCFDhpSX9e7dO5WVlZkyZcpix3vwwQfTp0+fHHjggeW2Tz6tDgDfNI888kjuvffefP/730/Hjh3zyCOP5K233soaa6yRXr165corr8xGG22U6urq/PKXv0yzZs0WO1avXr0yZcqU/OUvf8nGG2+cW2+9NTfeeOMS1/KjH/0oRxxxRC699NJcccUVy2L3AOArt+AG9RZbbJFjjz023bt3L9+gvuCCC7LtttsmSaZOnbrEN6gXWNob1KNHj85rr71WpzeoO3TokDfeeKP8/oUXXsh7771Xq0+rVq2y5557Zs8998xuu+2WH/zgB3n77bezxhprZOrUqbW+K+3hhx/+SuuHZU2QDsuJtm3bZp111snVV1+d8847L0my1VZbZY899siHH35YDqh/8YtfZOONN86JJ56YPffcMxMmTMh5552XCy64YIm3dcghh2T+/PnZfvvtc/vtt2fLLbdcovV++tOfZvvtt8/8+fMzePDgcnvLli1zxBFH5LDDDktNTU223HLLzJw5Mw8++GBatWqVwYMHp1evXrniiity5513pmfPnrnyyivz2GOPpWfPnktxlABg+dGqVas88MADGT16dKqrq9O9e/ecccYZGThwYDp37pzhw4dngw02SNeuXXPyySfniCOOWOxYO+64Yw477LAcfPDBmTdvXrbbbrscc8wxOf7445eoltatW2fXXXfNrbfemkGDBi2bHQSAr5Ab1Avbeuutc95552XzzTfP/Pnz86tf/arWE+5nnnlmunTpkvXXXz8NGjTIddddl86dO6dNmzbp379/Vl111QwePDinnXZaqqura91YgPpIkA7Lkb59+2bixInlLyFp165devfunenTp2e11VZL8vGfXl177bU59thjc+KJJ6ZLly4ZOXLkUv+p2IgRI1JTU5Ntt902d9xxR/r06fOZ6/Tv3z9dunTJmmuuWWuetCQ58cQT06FDh4waNSovv/xy2rRpkw022CC/+c1vkiT7779/nnzyyey5556pqKjIXnvtlQMPPDC33377UtUNAMuLNdZYI3fccccil62//vp57LHHarV9+k+tP/2n2qeeempOPfXUWm0jRowo//v4448vDNZfe+217L333qmsrFyC6gHg68UN6oWdccYZGTJkSL7zne+kqqoqZ599dh5//PHy8pYtW+bUU0/NCy+8kIYNG2bjjTfObbfdlgYNPp5J+sYbb8ywYcOyySabpEePHjnnnHPygx/8oK52B76witKn/w8a4Esye/bsrLjiihkzZkx22WWXui4HAFgG3nnnnYwfPz677bZbnnnmmfLNewDg89tmm22y5ppr5pxzzqnrUoD/xxPpwJeupqYmM2bMyBlnnJE2bdpkxx13rOuSAIBlZP31188777yTU045RYgOAF/QghvU48ePX6opWIEvnyAd+MKuvvrq7L///otc1r1799x6663p2bNnVlpppYwdOzaNGvlPDwAsLyZPnlzXJQDAcqPoBvWaa6652C8tvfjii7P33nsv8Xb+8Y9/ZODAgYtdPnv27CUeC74pTO0CfGGzZs3K9OnTF7mscePG6d69+1dcEQAAACxfXnnllXz44YeLXNapU6e0bNlyicd6//3389prry12+be//e2lrg+Wd4J0AAAAAAAo0KCuCwAAAAAAgK8zQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToA9c748eNTUVGR8ePH13UpAAAAwDeAIL0euP7661NRUbHI11prrVXX5cE3Rr9+/bLvvvsmSfbdd9/069evTuv5Ik4++eTcdNNNdV3GZ7rgggsyduzYZTrm8ccfnx49eiRJxo4dm4qKimU6PgAAALD8aVTXBbDkfvOb32SNNdYov//d735Xh9UA9dnJJ5+c3XbbLYMGDarrUgpdcMEFWWGFFco3MBbYaqut8v7776dJkyZ1UxgAAADwjSJIr0e+973v1XoC9rLLLsuMGTPqriCg0EcffZSamhph7/9TKpUyd+7cNGvW7AuP1aBBgzRt2nQZVAUAAADw2UztUg988MEHST4Ojj7LgmkKJk+eXG6rqanJOuusk4qKilpTJPz73//Ovvvum5VXXjlNmzZN586dM3To0Pzvf/+rNebxxx+/yGllGjX6/+/D9OvXL2uttVYef/zx9OnTJ82aNUvPnj1z0UUXLbQvxx57bDbccMO0bt06zZs3z3e+852MGzeuVr/JkyeXt/Pp6Sfmzp2btm3bpqKiIqeffvpCdXbs2DEffvhhrXX+/Oc/l8f75M2Hv/3tb9luu+1SVVWVysrKrLLKKjnxxBMzf/78zzzWC7b33HPPZY899kirVq3Svn37/PznP8/cuXNr9R0zZky23nrrdOzYMZWVlendu3cuvPDChcbcaaed0qNHjzRt2jQdO3bMjjvumP/85z+1+izYj9GjRy+0/uqrr56KioocfPDB5ba33347RxxxRNZee+20aNEirVq1ysCBA/PUU0/VWnfw4MFp2rRpnn322VrtAwYMSNu2bfP666+X215++eXsvvvuadeuXb71rW9ls802y6233lprvQVzWC94VVZWZtVVV82oUaNSKpWKD+7/s7hzb1FTqnzynPn065PefPPNDBs2LN26dUvDhg3LfVq0aLFENS3Ogu2ffvrpGT16dFZZZZVUVlbmmWeeSZI899xz2W233dKuXbs0bdo0G220UW6++eZaYyz4/P7zn//MoYcemg4dOqRNmzbZf//988EHH+Tdd9/NT37yk7Rt2zZt27bNkUceudCxnDNnTn7xi1+ka9euqayszGqrrZbTTz+9Vr+KiorMmTMnl19+eXn/P/nE92uvvZahQ4emU6dOqayszJprrpk//vGPS31MevToke233z533nlnNtpoozRr1iwXX3xxkiX7TPTo0SNPP/107r///oV+9oubI/26667LhhtumGbNmmWFFVbIPvvsk9dee22pawcAAAD4JE+k1wMLgvTKysrPtf6VV165UBibJHfffXdefvnlDBkyJJ07d87TTz+dSy65JE8//XQefvjhhQLICy+8sFbY+Olg/5133sm2226bPfbYI3vttVeuvfbaHHDAAWnSpEmGDh2aJKmurs5ll12WvfbaK/vtt19mzZqVP/zhDxkwYEAeffTRrLfeerXGbNq0acaMGVNr+om//vWvCwXVnzRr1qzccsst2XnnncttY8aMSdOmTRdab+zYsWnRokUOP/zwtGjRIvfdd1+OPfbYVFdX57TTTlvsNj5pjz32SI8ePTJq1Kg8/PDDOeecc/LOO+/kiiuuqHXs1lxzzey4445p1KhR/v73v+fAAw9MTU1NDjrooFrjDR8+PJ07d87rr7+e8847L/3798+kSZPyrW99a6HjMmLEiHLbQw89lFdeeWWh+l5++eXcdNNN2X333dOzZ89Mnz49F198cfr27ZtnnnkmVVVVSZKzzz479913XwYPHpwJEyakYcOGufjii3PXXXflyiuvLPebPn16+vTpk/feey+HHnpo2rdvn8svvzw77rhjrr/++lrHPfn/pyR6//33c8011+Q3v/lNOnbsmGHDhi3R8V1w/Bace0cddVRh3+HDh+c73/lOko/PlRtvvLHW8sGDB+eee+7JIYccknXXXTcNGzbMJZdckieeeGKJ6ykyZsyYzJ07N8OHD09lZWXatWuXp59+OltssUVWXHHF/PrXv07z5s1z7bXXZtCgQbnhhhsWOmaHHHJIOnfunBNOOCEPP/xwLrnkkrRp0yYPPfRQunXrlpNPPjm33XZbTjvttKy11lr5yU9+kuTjJ7533HHHjBs3LsOGDct6662XO++8M7/85S/z2muv5ayzzkry8X8TfvrTn2aTTTbJ8OHDkySrrLJKko9/vptttln5hkyHDh1y++23Z9iwYamurq51zi2J559/PnvttVf233//7LfffllttdWSLNlnYvTo0TnkkEPSokWL/Pa3v02SdOrUabHbGjt2bIYMGZKNN944o0aNyvTp03P22WfnwQcfzJNPPpk2bdosVe0AAAAAZSW+9kaPHl1KUnrqqadqtfft27e05ppr1mobM2ZMKUlp0qRJpVKpVJo7d26pW7dupYEDB5aSlMaMGVPu+9577y20rT//+c+lJKUHHnig3HbccceVkpTeeuutxdbYt2/fUpLSGWecUW6bN29eab311it17Nix9MEHH5RKpVLpo48+Ks2bN6/Wuu+8806pU6dOpaFDh5bbJk2aVEpS2muvvUqNGjUqTZs2rbxsm222Kf3oRz8qJSmddtppC9W51157lbbffvty+yuvvFJq0KBBaa+99lpoPxZ1DPbff//St771rdLcuXMXu7+f3N6OO+5Yq/3AAw9c6Oe1qO0MGDCgtPLKKxdu49prry0lKf3rX/8qtyUp7bbbbqVGjRrVah82bFj5uBx00EHl9rlz55bmz59fa9xJkyaVKisrSyNHjqzVfuedd5aSlE466aTSyy+/XGrRokVp0KBBtfqMGDGilKT0j3/8o9w2a9asUs+ePUs9evQob2vcuHGlJKVx48bVqqVBgwalAw88sHC/F/jNb35TSlKaMWNGuW3NNdcs9e3bd6G+L7zwQilJ6fLLLy+3LfgZLfD++++XGjRoUNp///1rrTt48OBS8+bNl6imxVlwzrZq1ar05ptv1lq2zTbblNZee+1a51RNTU2pT58+pV69epXbFnx+BwwYUKqpqSm3b7755qWKiorSz372s3LbRx99VFpppZVqHYubbrqp/PP7pN12261UUVFRevHFF8ttzZs3Lw0ePHih/Rg2bFipS5cutY55qVQq/fCHPyy1bt16kefy4nTv3r2UpHTHHXcstGxJPxOL+3l/+vz64IMPSh07diyttdZapffff7/c75ZbbiklKR177LFLXDcAAADAp5napR5YMNVKhw4dlnrd888/P//73/9y3HHHLbTsk/MUz507NzNmzMhmm22WJJ/r6dxGjRpl//33L79v0qRJ9t9//7z55pt5/PHHkyQNGzYszxddU1OTt99+Ox999FE22mijRW5zgw02yJprrpkrr7wySfLKK69k3LhxC33x4CcNHTo0d9xxR6ZNm5Ykufzyy7P55ptn1VVXXajvJ4/BrFmzMmPGjHznO9/Je++9l+eee26J9vvTT5QfcsghSZLbbrttkduZOXNmZsyYkb59++bll1/OzJkza63/3nvvZcaMGZk4cWIuvfTSdOrUaaHaO3XqlO222y5jxowpr3PttddmyJAhC9VXWVlZ/uuB+fPn53//+19atGiR1VZbbaFj/v3vfz/7779/Ro4cmV122SVNmzYtT8WxwG233ZZNNtkkW265ZbmtRYsWGT58eCZPnlyeyuTT+ztlypSceuqpqampydZbb72II7mwBX9BsCRzYS/JX27MmTMnNTU1ad++/RJt//PYdddda31W33777dx3333ZY489yufYjBkz8r///S8DBgzICy+8sNDUI8OGDav1FyGbbrppSqVSraf4GzZsmI022igvv/xyue22225Lw4YNc+ihh9Ya7xe/+EVKpVJuv/32wtpLpVJuuOGG7LDDDimVSuVaZ8yYkQEDBmTmzJlL/d+Gnj17ZsCAAQu1L81nYkn861//yptvvpkDDzyw1vmy3XbbZfXVV19o6iEAAACApSFIrwdeeeWVNGrUaKmD9JkzZ+bkk0/O4YcfvsjpEN5+++38/Oc/T6dOndKsWbN06NAhPXv2LK+7tKqqqtK8efNabQsC4E/O2X755ZdnnXXWSdOmTdO+fft06NAht95662K3OWTIkHJgPHbs2PTp0ye9evVabB3rrbde1lprrVxxxRUplUrl6R4W5emnn87OO++c1q1bp1WrVunQoUP22WefJEt+DD5dyyqrrJIGDRrU2ucHH3ww/fv3T/PmzdOmTZt06NAhv/nNbxa5nZEjR6ZDhw5Zf/31M3ny5IwfPz4tW7ZcaLtDhgzJn/70p8ybNy/XXXdd2rZtu8iAuqamJmeddVZ69eqVysrKrLDCCunQoUP+/e9/L3IfTz/99LRr1y4TJ07MOeeck44dO9Za/sorr5Sn5/ikNdZYo7z8kwYNGpQOHTqke/fuOf7443P00Udn1113XWj9RZkxY0YaN25ca1qbxXn33XeTpHCu8/bt26dXr1657LLLctddd+XNN9/MjBkzMm/evCWqZ0ks+Awt8OKLL6ZUKuWYY45Jhw4dar0W3OB68803a63TrVu3Wu9bt26dJOnatetC7e+88075/SuvvJKqqqqFzpfF/Ww+7a233sq7776bSy65ZKFaF3yGPl3rZ/n08VhgaT4TS2LBvi3q3Fx99dU/c98BAAAAipgjvR54/vnns/LKK9f6cs8lccopp6RBgwb55S9/udAXiCYfz+390EMP5Ze//GXWW2+9tGjRIjU1NfnBD36QmpqaZVV+LVdddVX23XffDBo0KL/85S/TsWPHNGzYMKNGjcpLL720yHX22WefHHnkkXn44Ydz+eWX5+ijj/7M7QwdOjQXXHBBNtlkk0ybNi177LFHzjjjjFp93n333fTt2zetWrXKyJEjs8oqq6Rp06Z54okn8qtf/epzH4NPzy3/0ksvZZtttsnqq6+eM888M127dk2TJk1y22235ayzzlpoOz/96U+zzTbb5NVXX81ZZ52VXXfdNQ899FA5TF1gu+22S5MmTXLTTTdlzJgxGTx48CK/kPbkk0/OMccck6FDh+bEE09Mu3bt0qBBg4wYMWKR+/jkk0+Ww9L//Oc/2WuvvT7XcVjg9NNPz7rrrpsPP/wwjz32WE466aQ0atRokX8l8WmTJ09Ot27dFjqmi7LgLxA6d+5c2O+aa67J3nvvvdBT0p++CfR5ffJJ6yTlY3zEEUcs8snsJPn2t79d633Dhg0X2W9R7aUl/OLWJbGg1n322SeDBw9eZJ911llnqcb89PFIlv4zAQAAAFDXBOlfc/PmzcvEiRNrfdnmknj99ddz9tlnZ9SoUWnZsuVCQfo777yTe++9NyeccEKOPfbYcvsLL7zwuWt9/fXXM2fOnFqB5P/93/8lSXr06JEkuf7667Pyyivnr3/9a61wtChUbd++fXbcccfyNDF77LFHZsyYUVjL3nvvnV/+8pf5+c9/nt12222RT3SPHz8+//vf//LXv/41W221Vbl90qRJS7S/C7zwwgu1nrp98cUXU1NTU97nv//975k3b15uvvnmWk8ajxs3bpHjffvb3y4Hq/3790+3bt3ypz/9KQcccECtfo0aNcqPf/zj/O53v8vTTz+dP/7xj4sc7/rrr893v/vd/OEPf6jV/u6772aFFVao1TZnzpwMGTIkvXv3Tp8+fXLqqadm5513zsYbb1zu07179zz//PMLbWfBVDjdu3ev1b7hhhumX79+SZKBAwfmtddeyymnnJJjjjlmkcH/Ah999FGeeuqp/OAHP1hsn0965plnUlFRscgnkj9p/fXXz6WXXprvfOc7GTlyZDbbbLOcdtppefDBB5doO0tr5ZVXTpI0btw4/fv3/1K2sUD37t1zzz33ZNasWbXO+UX9bBZ1c6JDhw5p2bJl5s+f/6XWujSfiSW5iZL8//v2/PPPL/SXGc8///xC5yUAAADA0jC1y9fcgqk7ttlmm6Va74QTTkinTp3ys5/9bJHLFzzZ+umnWUePHv256kw+Dj4/OZ/2Bx98kIsvvjgdOnTIhhtuuNjtPvLII5kwYULh2EOHDs2///3v7L777oVTdyzQrl277LTTTvn3v/+doUOHLrLPomr54IMPcsEFF3zm+J90/vnn13p/7rnnJvk4NF7cdmbOnFmerqbIghsGi5t6ZOjQofnPf/6TrbbaqhzYflrDhg0X+jlfd911C83LnSS/+tWvMmXKlFx++eU588wz06NHjwwePLjW9rfddts8+uijtX5mc+bMySWXXJIePXqkd+/ehfv0/vvv56OPPspHH31U2O+uu+7KzJkzs9NOOxX2Sz4+92644YZssskmn3l+VFdX58c//nF23HHHHH300enfv3+6dOnymdv4vDp27Jh+/frl4osvzhtvvLHQ8rfeemuZbWvbbbfN/Pnzc95559VqP+uss1JRUVE+J5OPn8BfMB3OAg0bNsyuu+6aG264If/973+/tFqX5jOxqDoXZaONNkrHjh1z0UUX1Tpfb7/99jz77LPZbrvtvnjhAAAAwDeWJ9K/pubMmZNzzz03I0eOLAehV111Va0+06dPz+zZs3PVVVfle9/7Xq150O+6665cffXV5S/2/LRWrVplq622yqmnnpoPP/wwK664Yu66666lfhr7k6qqqnLKKadk8uTJWXXVVXPNNddk4sSJueSSS9K4ceMkyfbbb5+//vWv2XnnnbPddttl0qRJueiii9K7d+/Mnj17sWP/4Ac/yFtvvbVEIfoCY8eOzfnnn7/QU9cL9OnTJ23bts3gwYNz6KGHpqKiIldeeeVST5UxadKk7LjjjvnBD36QCRMm5KqrrsqPfvSjrLvuukk+/gLPJk2aZIcddsj++++f2bNn59JLL03Hjh1rBau33XZbLrvssvTp0yft2rXLyy+/nEsvvTTNmzfPzjvvvMhtr7HGGpkxY8Yip89YYPvtt8/IkSMzZMiQ9OnTJ//5z39y9dVXLxS833fffbngggty3HHHZYMNNkiSjBkzJv369csxxxyTU089NUny61//On/+858zcODAHHrooWnXrl0uv/zyTJo0KTfccMNCT5nffffdefXVV8tTu1x99dXZcccdF3tuJh9Pv3LEEUeksrIy77//fq1zf+bMmZk/f35uuummDBo0KPfcc0+OOeaY/Pvf/87f//73xY65wEEHHZT3338/l1122Wf2XVbOP//8bLnllll77bWz3377ZeWVV8706dMzYcKEvPrqq3nqqaeWyXZ22GGHfPe7381vf/vbTJ48Oeuuu27uuuuu/O1vf8uIESOyyiqrlPtuuOGGueeee3LmmWemqqoqPXv2zKabbprf//73GTduXDbddNPst99+6d27d95+++088cQTueeee/L2229/4TqX9DOxoM4LL7wwJ510Ur797W+nY8eOi/wugMaNG+eUU07JkCFD0rdv3+y1116ZPn16zj777PTo0SOHHXbYF64bAAAA+AYr8bU0adKkUpIlfo0bN65UKpVKY8aMKSUprbfeeqWampqFxhszZky57dVXXy3tvPPOpTZt2pRat25d2n333Uuvv/56KUnpuOOOK/c77rjjSklKb7311mLr7du3b2nNNdcs/etf/yptvvnmpaZNm5a6d+9eOu+882r1q6mpKZ188sml7t27lyorK0vrr79+6ZZbbikNHjy41L1794XqPe200wqPzyeXf1adi1r+4IMPljbbbLNSs2bNSlVVVaUjjzyydOedd9Y6pouzYLxnnnmmtNtuu5VatmxZatu2benggw8uvf/++7X63nzzzaV11lmn1LRp01KPHj1Kp5xySumPf/xjKUlp0qRJpVKpVPrvf/9b+v73v19q3759qUmTJqWuXbuWfvjDH5b+/e9/1xorSemggw5abF2fXj537tzSL37xi1KXLl1KzZo1K22xxRalCRMmlPr27Vvq27dvqVQqlaqrq0vdu3cvbbDBBqUPP/yw1niHHXZYqUGDBqUJEyaU21566aXSbrvtVmrTpk2padOmpU022aR0yy231Fpv3Lhxtc7RRo0albp371469NBDS++8807hse3evftnnvMLzpdDDjmktNVWW5XuuOOOhcZZ8DNa4M9//nOpoqJiob6DBw8uNW/evLCmz/JZ5+xLL71U+slPflLq3LlzqXHjxqUVV1yxtP3225euv/76cp8Fn9/HHntskfvx6XN7UXXPmjWrdNhhh5WqqqpKjRs3LvXq1at02mmn1frvQalUKj333HOlrbbaqtSsWbNSktLgwYPLy6ZPn1466KCDSl27di01bty41Llz59I222xTuuSSS5bqmHTv3r203XbbLXLZknwmSqVSadq0aaXtttuu1LJly1KS8jm74Pz69Of0mmuuKa2//vqlysrKUrt27Up777136dVXX12qugEAAAA+raJUWobfVMcyM3ny5PTs2TPjxo0rzy/9Rfp92fr165cZM2YscjqI5dXxxx+fE044IW+99dZin3rn8+nRo0eOP/747LvvvotcPn78+Oy7776ZPHnyV1oXAAAAAN9M5kgHAAAAAIAC5kj/mmrRokX23nvvWvOef5F+UJ/svPPOtebz/rROnTotdt54vnxvvfVW5s+fv9jlTZo0Sbt27b7CigAAAAC+XKZ2YZkwtYupXfjm6NGjR1555ZXFLu/bt2/Gjx//1RUEAAAA8CUTpAOwVB588MG8//77i13etm3bbLjhhl9hRQAAAABfLkE6AAAAAAAU8GWjAAAAAABQwJeNfkJNTU1ef/31tGzZMhUVFXVdDgDfQKVSKbNmzUpVVVUaNHC/GwAAAL4OBOmf8Prrr6dr1651XQYAZOrUqVlppZXqugwAAAAggvRaWrZsmeTj8KJVq1Z1XA0A30TV1dXp2rVr+ZoEAAAA1D1B+icsmM6lVatWgnQA6pQpxgAAAODrw+SrAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUOBrEaQ/8MAD2WGHHVJVVZWKiorcdNNNtZaXSqUce+yx6dKlS5o1a5b+/fvnhRdeqNXn7bffzt57751WrVqlTZs2GTZsWGbPnv0V7gUAAAAAAMujr0WQPmfOnKy77ro5//zzF7n81FNPzTnnnJOLLroojzzySJo3b54BAwZk7ty55T577713nn766dx999255ZZb8sADD2T48OFf1S4AAAAAALCcqiiVSqW6LuKTKioqcuONN2bQoEFJPn4avaqqKr/4xS9yxBFHJElmzpyZTp06ZezYsfnhD3+YZ599Nr17985jjz2WjTbaKElyxx13ZNttt82rr76aqqqqJdp2dXV1WrdunZkzZ6ZVq1Zfyv4BQBHXIgAAAPj6+Vo8kV5k0qRJmTZtWvr3719ua926dTbddNNMmDAhSTJhwoS0adOmHKInSf/+/dOgQYM88sgjX3nNAAAAAAAsPxrVdQGfZdq0aUmSTp061Wrv1KlTedm0adPSsWPHWssbNWqUdu3alfssyrx58zJv3rzy++rq6mVVNtSpKVOmZMaMGZ9r3ffffz+TJ09etgUtpR49eqRZs2afa90VVlgh3bp1W8YVAQAAAPBN9rUP0r9Mo0aNygknnFDXZcAyNWXKlKy2+hqZ+/57dV1KnWja7Ft5/rlnhekAAAAALDNf+yC9c+fOSZLp06enS5cu5fbp06dnvfXWK/d58803a6330Ucf5e233y6vvyhHHXVUDj/88PL76urqdO3adRlWD1+9GTNmZO7776X99r9I4/ZLfz6XPvogH82c/iVUtuQate6UikZNlnq9D/83Nf+75YzMmDFDkA4AAADAMvO1D9J79uyZzp0759577y0H59XV1XnkkUdywAEHJEk233zzvPvuu3n88cez4YYbJknuu+++1NTUZNNNN13s2JWVlamsrPzS9wHqQuP2XVPZ+dufb+WVei/bYgAAAACgHvtaBOmzZ8/Oiy++WH4/adKkTJw4Me3atUu3bt0yYsSInHTSSenVq1d69uyZY445JlVVVRk0aFCSZI011sgPfvCD7Lfffrnooovy4Ycf5uCDD84Pf/jDVFVV1dFeAQAAAACwPPhaBOn/+te/8t3vfrf8fsF0K4MHD87YsWNz5JFHZs6cORk+fHjefffdbLnllrnjjjvStGnT8jpXX311Dj744GyzzTZp0KBBdt1115xzzjlf+b4AAAAAALB8+VoE6f369UupVFrs8oqKiowcOTIjR45cbJ927drlT3/605dRHgAAAAAA32AN6roAAAAAAAD4OhOkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAECBehOkz58/P8ccc0x69uyZZs2aZZVVVsmJJ56YUqlU7lMqlXLsscemS5cuadasWfr3758XXnihDqsGAAAAAKC+qzdB+imnnJILL7ww5513Xp599tmccsopOfXUU3PuueeW+5x66qk555xzctFFF+WRRx5J8+bNM2DAgMydO7cOKwcAAAAAoD5rVNcFLKmHHnooO+20U7bbbrskSY8ePfLnP/85jz76aJKPn0YfPXp0jj766Oy0005JkiuuuCKdOnXKTTfdlB/+8Id1VjsAAAAAAPVXvXkivU+fPrn33nvzf//3f0mSp556Kv/85z8zcODAJMmkSZMybdq09O/fv7xO69ats+mmm2bChAmLHHPevHmprq6u9QIAAAAAgE+qN0+k//rXv051dXVWX331NGzYMPPnz8/vfve77L333kmSadOmJUk6depUa71OnTqVl33aqFGjcsIJJ3y5hQMAAAAAUK/VmyfSr7322lx99dX505/+lCeeeCKXX355Tj/99Fx++eWfe8yjjjoqM2fOLL+mTp26DCsGAAAAAGB5UG+eSP/lL3+ZX//61+W5ztdee+288sorGTVqVAYPHpzOnTsnSaZPn54uXbqU15s+fXrWW2+9RY5ZWVmZysrKL712AAAAAADqr3rzRPp7772XBg1ql9uwYcPU1NQkSXr27JnOnTvn3nvvLS+vrq7OI488ks033/wrrRUAAAAAgOVHvXkifYcddsjvfve7dOvWLWuuuWaefPLJnHnmmRk6dGiSpKKiIiNGjMhJJ52UXr16pWfPnjnmmGNSVVWVQYMG1W3xAAAAAADUW/UmSD/33HNzzDHH5MADD8ybb76Zqqqq7L///jn22GPLfY488sjMmTMnw4cPz7vvvpstt9wyd9xxR5o2bVqHlQMAAAAAUJ/VmyC9ZcuWGT16dEaPHr3YPhUVFRk5cmRGjhz51RUGAAAAAMByrd7MkQ4AAAAAAHVBkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABepVkP7aa69ln332Sfv27dOsWbOsvfba+de//lVeXiqVcuyxx6ZLly5p1qxZ+vfvnxdeeKEOKwYAAAAAoL6rN0H6O++8ky222CKNGzfO7bffnmeeeSZnnHFG2rZtW+5z6qmn5pxzzslFF12URx55JM2bN8+AAQMyd+7cOqwcAAAAAID6rFFdF7CkTjnllHTt2jVjxowpt/Xs2bP871KplNGjR+foo4/OTjvtlCS54oor0qlTp9x000354Q9/+JXXDAAAAABA/Vdvnki/+eabs9FGG2X33XdPx44ds/766+fSSy8tL580aVKmTZuW/v37l9tat26dTTfdNBMmTFjkmPPmzUt1dXWtFwAAAAAAfFK9CdJffvnlXHjhhenVq1fuvPPOHHDAATn00ENz+eWXJ0mmTZuWJOnUqVOt9Tp16lRe9mmjRo1K69aty6+uXbt+uTsBAAAAAEC9U2+C9JqammywwQY5+eSTs/7662f48OHZb7/9ctFFF33uMY866qjMnDmz/Jo6deoyrBgAAAAAgOVBvQnSu3Tpkt69e9dqW2ONNTJlypQkSefOnZMk06dPr9Vn+vTp5WWfVllZmVatWtV6AQAAAADAJ9WbIH2LLbbI888/X6vt//7v/9K9e/ckH3/xaOfOnXPvvfeWl1dXV+eRRx7J5ptv/pXWCgAAAADA8qNRXRewpA477LD06dMnJ598cvbYY488+uijueSSS3LJJZckSSoqKjJixIicdNJJ6dWrV3r27JljjjkmVVVVGTRoUN0WDwAAAABAvVVvgvSNN944N954Y4466qiMHDkyPXv2zOjRo7P33nuX+xx55JGZM2dOhg8fnnfffTdbbrll7rjjjjRt2rQOKwcAAAAAoD6rN0F6kmy//fbZfvvtF7u8oqIiI0eOzMiRI7/CqgAAAAAAWJ7VmznSAQAAAACgLgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKBAvQzSf//736eioiIjRowot82dOzcHHXRQ2rdvnxYtWmTXXXfN9OnT665IAAAAAACWC/UuSH/sscdy8cUXZ5111qnVfthhh+Xvf/97rrvuutx///15/fXXs8suu9RRlQAAAAAALC/qVZA+e/bs7L333rn00kvTtm3bcvvMmTPzhz/8IWeeeWa23nrrbLjhhhkzZkweeuihPPzww3VYMQAAAAAA9V29CtIPOuigbLfddunfv3+t9scffzwffvhhrfbVV1893bp1y4QJExY73rx581JdXV3rBQAAAAAAn9SorgtYUn/5y1/yxBNP5LHHHlto2bRp09KkSZO0adOmVnunTp0ybdq0xY45atSonHDCCcu6VAAAAAAAliP14on0qVOn5uc//3muvvrqNG3adJmNe9RRR2XmzJnl19SpU5fZ2AAAAAAALB/qRZD++OOP580338wGG2yQRo0apVGjRrn//vtzzjnnpFGjRunUqVM++OCDvPvuu7XWmz59ejp37rzYcSsrK9OqVataLwAAAAAA+KR6MbXLNttsk//85z+12oYMGZLVV189v/rVr9K1a9c0btw49957b3bdddckyfPPP58pU6Zk8803r4uSAQAAAABYTtSLIL1ly5ZZa621arU1b9487du3L7cPGzYshx9+eNq1a5dWrVrlkEMOyeabb57NNtusLkoGAAAAAGA5US+C9CVx1llnpUGDBtl1110zb968DBgwIBdccEFdlwUAAAAAQD1Xb4P08ePH13rftGnTnH/++Tn//PPrpiAAAAAAAJZL9eLLRgEAAAAAoK4I0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACgQL0J0keNGpWNN944LVu2TMeOHTNo0KA8//zztfrMnTs3Bx10UNq3b58WLVpk1113zfTp0+uoYgAAAAAAlgf1Jki///77c9BBB+Xhhx/O3XffnQ8//DDf//73M2fOnHKfww47LH//+99z3XXX5f7778/rr7+eXXbZpQ6rBgAAAACgvmtU1wUsqTvuuKPW+7Fjx6Zjx455/PHHs9VWW2XmzJn5wx/+kD/96U/ZeuutkyRjxozJGmuskYcffjibbbZZXZQNAAAAAEA9V2+eSP+0mTNnJknatWuXJHn88cfz4Ycfpn///uU+q6++erp165YJEyYscox58+alurq61gsAAAAAAD6pXgbpNTU1GTFiRLbYYoustdZaSZJp06alSZMmadOmTa2+nTp1yrRp0xY5zqhRo9K6devyq2vXrl926QAAAAAA1DP1Mkg/6KCD8t///jd/+ctfvtA4Rx11VGbOnFl+TZ06dRlVCAAAAADA8qLezJG+wMEHH5xbbrklDzzwQFZaaaVye+fOnfPBBx/k3XffrfVU+vTp09O5c+dFjlVZWZnKysovu2QAAAAAAOqxevNEeqlUysEHH5wbb7wx9913X3r27Flr+YYbbpjGjRvn3nvvLbc9//zzmTJlSjbffPOvulwAAAAAAJYT9eaJ9IMOOih/+tOf8re//S0tW7Ysz3veunXrNGvWLK1bt86wYcNy+OGHp127dmnVqlUOOeSQbL755tlss83quHoAAAAAAOqrehOkX3jhhUmSfv361WofM2ZM9t133yTJWWedlQYNGmTXXXfNvHnzMmDAgFxwwQVfcaUAAAAAACxP6k2QXiqVPrNP06ZNc/755+f888//CioCAAAAAOCboN7MkQ4AAAAAAHVBkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUGC5C9LPP//89OjRI02bNs2mm26aRx99tK5LAgAAAACgHluugvRrrrkmhx9+eI477rg88cQTWXfddTNgwIC8+eabdV0aAAAAAAD11HIVpJ955pnZb7/9MmTIkPTu3TsXXXRRvvWtb+WPf/xjXZcGAAAAAEA9tdwE6R988EEef/zx9O/fv9zWoEGD9O/fPxMmTKjDygAAAAAAqM8a1XUBy8qMGTMyf/78dOrUqVZ7p06d8txzzy1ynXnz5mXevHnl99XV1V9qjfBV6dyiImu892Qavf36Uq9bmv9h5s96+0uoask1bNkuFQ0bL/V6H703PWlR8SVUBAAAAMA32XITpH8eo0aNygknnFDXZcAytcIKK+SgzZrn6N431nUpX72q5KR3mmeFFVao60oAAAAAWI4sN0H6CiuskIYNG2b69Om12qdPn57OnTsvcp2jjjoqhx9+ePl9dXV1unbt+qXWCV+2bt26Zd9zx+fZ11/4XOvPmzcvr7++9E+yL0tVVVWprKz8XOvu+8NeWalbt2VcEQAAAADfZMtNkN6kSZNsuOGGuffeezNo0KAkSU1NTe69994cfPDBi1ynsrLyc4d18HW20uobJqtv+LnXX2/ZlQIAAAAA9d5yE6QnyeGHH57Bgwdno402yiabbJLRo0dnzpw5GTJkSF2XBgAAAABAPbVcBel77rln3nrrrRx77LGZNm1a1ltvvdxxxx0LfQEpAAAAAAAsqYpSqVSq6yK+Lqqrq9O6devMnDkzrVq1qutyAPgGci0CAACAr58GdV0AAAAAAAB8nQnSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoECjui7g66RUKiVJqqur67gSAL6pFlyDFlyTAAAAgLonSP+EWbNmJUm6du1ax5UA8E03a9astG7duq7LAAAAAJJUlDzyVlZTU5PXX389LVu2TEVFRV2XA/VSdXV1unbtmqlTp6ZVq1Z1XQ7UO6VSKbNmzUpVVVUaNDADGwAAAHwdCNKBZaq6ujqtW7fOzJkzBekAAAAALBc86gYAAAAAAAUE6QAAAAAAUECQDixTlZWVOe6441JZWVnXpQAAAADAMmGOdAAAAAAAKOCJdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHlokHHnggO+ywQ6qqqlJRUZGbbrqprksCAAAAgGVCkA4sE3PmzMm6666b888/v65LAQAAAIBlqlFdFwAsHwYOHJiBAwfWdRkAAAAAsMx5Ih0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKNKrrAoDlw+zZs/Piiy+W30+aNCkTJ05Mu3bt0q1btzqsDAAAAAC+mIpSqVSq6yKA+m/8+PH57ne/u1D74MGDM3bs2K++IAAAAABYRgTpAAAAAABQwBzpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOnAcqdHjx4ZPXp0XZcBAAAAwHJCkA4slX79+mXEiBF1XUaSZOzYsWnTps1C7Y899liGDx/+1RcEAAAAwHJJkA710AcffFDXJXypvuj+dejQId/61reWUTUAAAAAfNMJ0qEe6NevXw4++OCMGDEiK6ywQgYMGJD//ve/GThwYFq0aJFOnTrlxz/+cWbMmFFrnUMOOSQjRoxI27Zt06lTp1x66aWZM2dOhgwZkpYtW+bb3/52br/99lrbuv/++7PJJpuksrIyXbp0ya9//et89NFHSZJ99903999/f84+++xUVFSkoqIikydPTpLPrGdp9y9JzjzzzKy99tpp3rx5unbtmgMPPDCzZ89OkowfPz5DhgzJzJkzy7Ucf/zxSRae2mXKlCnZaaed0qJFi7Rq1Sp77LFHpk+f/nl+FAAAAAB8AwnSoZ64/PLL06RJkzz44IP5/e9/n6233jrrr79+/vWvf+WOO+7I9OnTs8ceeyy0zgorrJBHH300hxxySA444IDsvvvu6dOnT5544ol8//vfz49//OO89957SZLXXnst2267bTbeeOM89dRTufDCC/OHP/whJ510UpLk7LPPzuabb5799tsvb7zxRt5444107do177777hLVs6T7d9FFFyVJGjRokHPOOSdPP/10Lr/88tx333058sgjkyR9+vTJ6NGj06pVq3ItRxxxxELj1tTUZKeddsrbb7+d+++/P3fffXdefvnl7Lnnnp/r5wAAAADAN09FqVQq1XURQLF+/fqluro6TzzxRJLkpJNOyj/+8Y/ceeed5T6vvvpqunbtmueffz6rrrpq+vXrl/nz5+cf//hHkmT+/Plp3bp1dtlll1xxxRVJkmnTpqVLly6ZMGFCNttss/z2t7/NDTfckGeffTYVFRVJkgsuuCC/+tWvMnPmzDRo0CD9+vXLeuutV+uJ7yWpZ2n2b3Guv/76/OxnPys/6T527NiMGDEi7777bq1+PXr0yIgRIzJixIjcfffdGThwYCZNmpSuXbsmSZ555pmsueaaefTRR7PxxhsXbhMAAAAAPJEO9cSGG25Y/vdTTz2VcePGpUWLFuXX6quvniR56aWXyv3WWWed8r8bNmyY9u3bZ+211y63derUKUny5ptvJkmeffbZbL755uUQPUm22GKLzJ49O6+++upia1vSepZ0/xa45557ss0222TFFVdMy5Yt8+Mf/zj/+9//yk/QL4lnn302Xbt2LYfoSdK7d++0adMmzz777BKPAwAAAMA3V6O6LgBYMs2bNy//e/bs2dlhhx1yyimnLNSvS5cu5X83bty41rKKiopabQsC85qami9U25LWU+ST+5ckkydPzvbbb58DDjggv/vd79KuXbv885//zLBhw/LBBx/4MlEAAAAAvjKCdKiHNthgg9xwww3p0aNHGjVadh/jNdZYIzfccENKpVI5ZH/wwQfTsmXLrLTSSkmSJk2aZP78+V96PY8//nhqampyxhlnpEGDj/945tprr63VZ1G1LGqfpk6dmqlTp9aa2uXdd99N7969l0mtAAAAACzfTO0C9dBBBx2Ut99+O3vttVcee+yxvPTSS7nzzjszZMiQzwyWixx44IGZOnVqDjnkkDz33HP529/+luOOOy6HH354Oczu0aNHHnnkkUyePDkzZsxITU3Nl1LPt7/97Xz44Yc599xz8/LLL+fKK68sfwnpAj169Mjs2bNz7733ZsaMGYuc8qV///5Ze+21s/fee+eJJ57Io48+mp/85Cfp27dvNtpoo89VGwAAAADfLIJ0qIeqqqry4IMPZv78+fn+97+ftddeOyNGjEibNm3KgffnseKKK+a2227Lo48+mnXXXTc/+9nPMmzYsBx99NHlPkcccUQaNmyY3r17p0OHDpkyZcqXUs+6666bM888M6ecckrWWmutXH311Rk1alStPn369MnPfvaz7LnnnunQoUNOPfXUhcapqKjI3/72t7Rt2zZbbbVV+vfvn5VXXjnXXHPN56oLAAAAgG+eilKpVKrrIgAAAAAA4OvKE+kAAAAAAFBAkA58qaZMmZIWLVos9jVlypS6LhEAAAAACpnaBfhSffTRR5k8efJil/fo0SONGjX66goCAAAAgKUkSAcAAAAAgAKmdgEAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKPD/AbYjeXlGhk1oAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Устраняем выборсы\n", + "df: DataFrame = remove_outliers(df, numeric_columns)\n", + "\n", + "# Проверка выбросов\n", + "check_outliers(df, numeric_columns)\n", + "visualize_outliers(df, numeric_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Разбиение набора данных на выборки:\n", + "\n", + "Разделим выборку данных на 3 группы и проанализируем качество распределения данных.\n", + "\n", + "Стратифицированное разбиение требует, чтобы в каждом классе, по которому происходит стратификация, было минимум по два элемента, иначе метод не сможет корректно разделить данные на тренировочные, валидационные и тестовые наборы.\n", + "\n", + "Чтобы решить эту проблему введём категории для значения зарплаты. Вместо того, чтобы использовать точные значения зарплаты для стратификации, мы создадим категории зарплат, основываясь на квартилях (25%, 50%, 75%) и минимальном и максимальном значении зарплаты. Это позволит создать более крупные классы, что устранит проблему с редкими значениями:\n", + "\n", + "Категории для разбиения зарплат:\n", + "- Низкая зарплата: зарплаты ниже первого квартиля (25%) — это значения меньше 95000.\n", + "- Средняя зарплата: зарплаты между первым квартилем (25%) и третьим квартилем (75%) — это зарплаты от 95000 до 175000.\n", + "- Высокая зарплата: зарплаты выше третьего квартиля (75%) и до максимального значения — это зарплаты выше 175000.\n", + "\n", + "Весь набор данных состоит из 3755 объектов, из которых 1867 (около 49.7%) имеют средний уровень зарплаты (medium), 956 (около 25.4%) – низкий уровень зарплаты (low), и 932 (около 24.8%) – высокий уровень зарплаты (high).\n", + "\n", + "Все выборки показывают одинаковое распределение классов, что свидетельствует о том, что данные были отобраны случайным образом и не содержат явного смещения.\n", + "\n", + "Однако, несмотря на сбалансированность при разбиении данных, в целом данные обладают значительным дисбалансом между классами. Это может быть проблемой при обучении модели, так как она может иметь тенденцию игнорировать низкие или высокие зарплаты (low или high), что следует учитывать при дальнейшем анализе и выборе методов обработки данных.\n", + "\n", + "Для получения более сбалансированных выборок данных необходимо воспользоваться методами приращения (аугментации) данных, а именно методами oversampling и undersampling." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "salary_in_usd\n", + "100000.0 99\n", + "150000.0 98\n", + "120000.0 91\n", + "160000.0 84\n", + "130000.0 82\n", + " ..\n", + "39916.0 1\n", + "26005.0 1\n", + "22611.0 1\n", + "5679.0 1\n", + "40038.0 1\n", + "Name: count, Length: 1002, dtype: int64 \n", + "\n", + "count 3755.000000\n", + "mean 136959.779760\n", + "std 61098.121137\n", + "min 5132.000000\n", + "25% 95000.000000\n", + "50% 135000.000000\n", + "75% 175000.000000\n", + "max 295000.000000\n", + "Name: salary_in_usd, dtype: float64 \n", + "\n", + "salary_category\n", + "medium 1867\n", + "low 956\n", + "high 932\n", + "Name: count, dtype: int64 \n", + "\n", + "Обучающая выборка: (2253, 12)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "medium 1120\n", + "low 574\n", + "high 559\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"medium\": 49.71%\n", + "Процент объектов класса \"low\": 25.48%\n", + "Процент объектов класса \"high\": 24.81%\n", + "\n", + "Контрольная выборка: (751, 12)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "medium 373\n", + "low 191\n", + "high 187\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"medium\": 49.67%\n", + "Процент объектов класса \"low\": 25.43%\n", + "Процент объектов класса \"high\": 24.90%\n", + "\n", + "Тестовая выборка: (751, 12)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "medium 374\n", + "low 191\n", + "high 186\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"medium\": 49.80%\n", + "Процент объектов класса \"low\": 25.43%\n", + "Процент объектов класса \"high\": 24.77%\n", + "\n", + "Для обучающей выборки аугментация данных требуется\n", + "Для контрольной выборки аугментация данных требуется\n", + "Для тестовой выборки аугментация данных требуется\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAHmCAYAAAA7jgwGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHBUlEQVR4nOzdd3xTVRsH8F+S7k0HUFbL3rwgAgoiFZGpCIooKFvBFxRRXLgYDgSULbyCgmwQUYYCZSN7r7JKS1ugdO89kvP+0SY0TUfapr256e/7+fChvb25eXJzk+ee85x7rkIIIUBERERERERERERERGTmlFIHQEREREREREREREREZAwWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiKqNCkpKQgNDUVaWprUoZCJJSYmIigoCLm5uVKHQkRERBWQm5uL6Oho3Lt3T+pQiIiIyIQyMzPx8OFDREdHSx2KybGoQVTN+Pr6YvTo0VKHQRZKCIEVK1bgiSeegIODA1xcXNCwYUOsX79e6tBk4cGDB/jtt990v4eGhmLDhg3SBVRATk4O5s6di//85z+wtbVFjRo10LRpUxw8eFDq0IgsBnM0kWX5+++/cfnyZd3v27dvx/Xr16ULqIA7d+7grbfegre3N2xsbFCrVi08+eSTEEJIHRqR5JiPiag0S5cuRWJiou73hQsXms1gzgMHDmDgwIFwc3ODvb096tati/fee0/qsEyuTEWN3377DQqFQvfPzs4OzZo1wzvvvIOoqKjKipHI4s2YMQO+vr4AHn3OqOKWLVum10FsKUaPHg0/Pz8A+seOORg+fDjefvtttGzZEuvWrcP+/ftx4MABvPTSS1KHJgsKhQKTJk2Cv78/QkND8fHHH+PYsWNGPbYyc3RWVhZ69eqFL7/8En5+fti6dSv279+PQ4cO4cknn6zQtonMHXN05WCOJktVMB+/8MILeOyxx9CwYUMMGTIEb731FlJSUqQOEadPn0bnzp1x6NAhfPrpp/D398f+/fuxfft2fseR2WI+rhzMx0Tls2vXLsyYMQP379/Hhg0b8OWXX8Le3l7qsLBs2TL06dMHSUlJWLRoEfbv34/9+/dj1qxZUodmclbledCsWbPQsGFDZGZm4vjx41i+fDl2796NgIAAODg4mDpGIqJyWbZsGTw9PTnKpoqsXbsWW7Zswfr16zF8+HCpw5GlunXr4q233kLfvn0BAN7e3jhy5EiZtlEZOXrOnDk4c+YM/P39dY0DIqKKYI4mSzdr1ix4eHhgxowZCA0NRWhoKBwcHNCuXTtJ48rOzsaYMWPQrFkz7Nu3D66urpLGQ0TSYj4mKp/PPvsMAwcOxKJFi6BUKvHjjz9CqZR2QqQ7d+7ggw8+wPjx47Fs2TKLL/6Wq6jRr18/PP744wCAN998Ex4eHpg/fz527NiBYcOGmTRAIjJfmZmZsLGxkfyLW+7S0tLg6OgodRgVNm/ePAwbNowFjQpauHAh3n33XcTGxqJNmzZlPjZMnaNzc3OxcOFCTJ06lQUNIhlhjjYNS8nRVPW0+XjcuHEICAjAkiVLsGbNGsnbzLt27cLt27dx69YtFjSIqgDzsWkwH5O56dGjB8LCwnDz5k3Ur18f9erVkzokLF68GLVr18bixYstvqABmOieGj179gQAhISEAADi4+Px4Ycfom3btnBycoKLiwv69euHK1euGDw2MzMTM2bMQLNmzWBnZwdvb2+89NJLCA4OBpA3n3jB6TQK/yvYwXLkyBEoFAps2bIFn332GWrXrg1HR0cMHDgQ9+/fN3juM2fOoG/fvnB1dYWDgwN69OiBEydOFPka/fz8inz+GTNmGKy7fv16dOzYEfb29nB3d8drr71W5POX9NoK0mg0WLhwIVq3bg07OzvUqlULEyZMQEJCgt56vr6+eP755w2e55133jHYZlGxz5s3z2CfAnnTjkyfPh1NmjSBra0t6tevj48//hhZWVlF7quC/Pz8DLb37bffQqlUYuPGjeXaHz/88AO6du0KDw8P2Nvbo2PHjvjjjz+KfP7169ejc+fOcHBwQI0aNfD0009j3759euvs2bMHPXr0gLOzM1xcXNCpUyeD2LZu3ap7Tz09PfHGG28gPDxcb53Ro0frxVyjRg34+fkZPXVMSc6fP48+ffrA09MT9vb2aNiwIcaOHVvu/VKQsZ9X7edr8+bN+OKLL1C3bl04ODjg8uXLUCgUWLBggcG2T548CYVCgU2bNhn9WjUaDRYtWoS2bdvCzs4OXl5e6Nu3L86fP69bZ/Xq1ejZsydq1qwJW1tbtGrVCsuXL9fbjq+vL65fv46jR48W+X2RmJiIKVOmoH79+rC1tUWTJk0wZ84caDQave3ExcVhxIgRcHFxgZubG0aNGoUrV65AoVAYXKZ76NAhdO/eHY6OjnBzc8OLL76Imzdv6q0zY8YMKBQK3LhxA8OHD0eNGjXw1FNPYfXq1VAoFLh06ZLBPvnuu++gUqkMjrmyKPwd5unpiQEDBiAgIMCox5f2GUhLS0NAQADq16+PAQMGwMXFBY6Ojgafgbt37xp9vBT1/aH9nii4769evYrRo0ejUaNGsLOzQ+3atTF27FjExcXpPVZ7mXpoaKhumb+/P7p27QoHBwe4urri+eefN9gn2vcsNjZWt+z8+fNFHgNt2rQpsuN/z549umPD2dkZAwYMMJhTe/To0brLohs3bowuXbogPj4e9vb2BnEX5ZdffgEAdOrUSe87qFatWgAe5ej69eujUaNGxX7mtZ/1I0eOIDMzE5MnT0ZCQgLmzp0LW1tbqFQqODs74/nnn4e/v3+JOVqlUuHZZ5/F6dOn9XL0888/D4VCAXt7e/j4+MDNzQ0uLi4YOXKkLrdpc7RSqYSVlZVejh4/fjzs7Ox0V7EUl6ObNm1qsJ+Zox9hjmaOZo6Wf44uy+fY2M+Kk5OTwfP88ccfutxQVMwlfTcoFAq888472LBhA5o3bw47Ozt07NgR//77r8HzXLp0Cf369YOLiwucnJx0OcSY/ab9V/C99/PzQ5s2bUrahXoxFvb8888bTFmSlpaGqVOn6o7P5s2b44cffjC4F0WnTp0wY8YM2NraomPHjnjllVcA5E3V6efnV+rnu+BrUiqVcHZ2hqurq16becOGDVAoFLrRmMX9s7Oz08X1+++/QwiB6dOno0aNGrrtN2nSBHfu3DHYBx999BGcnJx026pbty727t1r8F60adMGHTt2LLHNXPAco2A+VqlUcHd3x61bt3Tb1OY3Hx8f5uMCmI+Lx3zMfCxVPq6snBgeHo6xY8eiVq1asLW1RevWrbFq1Sq9dbTHXFHHsZOTk94VOEW1hzUaDdq1a2fwXmnPB+7evYs+ffrA0dERderUwaxZswzynbF5sXA7sW7duhg/frzefSkAIDo6GuPGjUOtWrVgZ2eH//znP1izZo3eOkW9FsDw+7Qs+wfI66945ZVX4O7uDgcHBzzxxBP4559/9NYpmMvc3Nzw5JNPol69ehgwYECReaMw7eO1/2xtbdGsWTPMnj1bb58V1Q9RWOH7/5w+fRodO3bExIkTdcdNmzZtsHLlSoPHluV9M+aY1cZb0OHDh2Fra4u3335bb7kxx7YxynWlRmHaAoSHhweAvINg+/bteOWVV9CwYUNERUXh559/Ro8ePXDjxg3UqVMHAKBWq/H888/j4MGDeO211/Dee+8hJSUF+/fvR0BAABo3bqx7jmHDhqF///56zztt2rQi4/n222+hUCjwySefIDo6GgsXLkSvXr1w+fJl3fxmhw4dQr9+/dCxY0dMnz4dSqVS96V/7NgxdO7c2WC79erVw+zZswEAqamp+O9//1vkc3/55ZcYOnQo3nzzTcTExGDJkiV4+umncenSJbi5uRk8Zvz48ejevTsA4M8//8Rff/2l9/cJEybgt99+w5gxYzB58mSEhIRg6dKluHTpEk6cOAFra+si90NZJCYm6l5bQRqNBgMHDsTx48cxfvx4tGzZEteuXcOCBQsQGBiI7du3l+l5Vq9ejS+++AI//vhjsaO5S9sfixYtwsCBA/H6668jOzsbmzdvxiuvvIK///4bAwYM0K03c+ZMzJgxA127dsWsWbNgY2ODM2fO4NChQ+jduzeAvC/CsWPHonXr1pg2bRrc3Nxw6dIl7N27Vxefdt936tQJs2fPRlRUFBYtWoQTJ04YvKeenp66E5UHDx5g0aJF6N+/P+7fv1/ke2+M6Oho9O7dG15eXvj000/h5uaG0NBQ/Pnnn+XaL4UZ+3nV+vrrr2FjY4MPP/wQWVlZaNGiBbp164YNGzbg/fff11t3w4YNcHZ2xosvvmj06x03bhx+++039OvXD2+++SZyc3Nx7NgxnD59Wjf6fPny5WjdujUGDhwIKysr7Nq1CxMnToRGo8GkSZMAPBrt7uTkhM8//xwAdJ276enp6NGjB8LDwzFhwgQ0aNAAJ0+exLRp0xAREYGFCxcCyDv+X3jhBZw9exb//e9/0aJFC+zYsQOjRo0yiPvAgQPo168fGjVqhBkzZiAjIwNLlixBt27dcPHiRYMG8SuvvIKmTZviu+++gxACQ4YMwaRJk7BhwwZ06NDBYD/6+fmhbt26Ru/HorRo0QKff/45hBAIDg7G/Pnz0b9/f9y7d6/ExxnzGdAWEObMmYPatWvjo48+gp2dHVauXIlevXph//79ePrpp9GoUSOTHi8AsH//fty9exdjxoxB7dq1cf36daxYsQLXr1/H6dOnDRKr1rFjx9C/f3/4+Phg+vTpyMnJwbJly9CtWzecO3cOzZo1K1McxVm3bh1GjRqFPn36YM6cOUhPT8fy5cvx1FNP4dKlSyXO7/rVV18hMzOzTM83c+ZMNGrUSPcddOrUKQCPcnRubi7i4+MxefLkIj/zWgVztPZxHh4eqFGjBjp16oRDhw5hyJAhAB7l6AcPHmDGjBmws7ODEAIeHh4ICQmBn58f5s+fDyAvT2pPXJ2dnfHgwQN4enpi8ODBWLlyJcLCwvDVV1+hf//+6NixI9zc3NCkSRMkJiaiZ8+eGDFiBFavXo0tW7bonbC6u7sjPj4e7dq1Q8uWLbFlyxbExMTo7Wfm6JIxR5cdczRztNQ5urDiPsdl+awY4/PPP8ebb74JAIiNjcX777+v9/1Q2NGjR7FlyxZMnjwZtra2WLZsGfr27YuzZ8/qig7Xr19H9+7d4eLigo8//hjW1tb4+eef4efnh6NHj6JLly4G29Xut4JxVCYhBAYOHIjDhw9j3LhxaN++Pfz9/fHRRx8hPDy8yA5LrcKdYqV9vgFg8ODBGDRoEObMmaNb1qlTJ7z00kvYv3+/bsCCVlFt5gkTJkCtVut+T05OBgBs3rwZrq6uePnllxEYGIhr166hQ4cOiI6O1k1XOWrUKKxduxaurq4YPHgwYmJicPz4cfTv3x/Hjx9H165dddtNSEhATEwMnJycMHjwYJw5cwaBgYFF7ov169dj1apVGDx4MKKiopCRkQGFQoF+/frh0qVLcHFx0eW3V199FatXr0br1q1x8+ZNtG/fHj4+PszHzMd6mI+Zj6XMx5WRE6OiovDEE0/oOpS9vLywZ88ejBs3DsnJyZgyZUqFXqfWunXrcO3atSL/plar0bdvXzzxxBOYO3cu9u7di+nTpyM3N1d3f4ay5sXBgwfjpZdeQm5uLk6dOoUVK1YgIyMD69atAwBkZGTAz88PQUFBeOedd9CwYUNs3boVo0ePRmJiYqXe7DoqKgpdu3ZFeno6Jk+eDA8PD6xZswYDBw7EH3/8gcGDBxf72H///Re7d+8u0/N99tlnaNmyJTIyMnSD82vWrIlx48aV+zXExcXh/PnzsLKywqRJk9C4cWNs374d48ePR1xcHD799FMAZX/fjDlmC7ty5QoGDRqE/v3746efftItN+mxLcpg9erVAoA4cOCAiImJEffv3xebN28WHh4ewt7eXjx48EAIIURmZqZQq9V6jw0JCRG2trZi1qxZumWrVq0SAMT8+fMNnkuj0egeB0DMmzfPYJ3WrVuLHj166H4/fPiwACDq1q0rkpOTdct///13AUAsWrRIt+2mTZuKPn366J5HCCHS09NFw4YNxXPPPWfwXF27dhVt2rTR/R4TEyMAiOnTp+uWhYaGCpVKJb799lu9x167dk1YWVkZLL9z544AINasWaNbNn36dFHwbTl27JgAIDZs2KD32L179xos9/HxEQMGDDCIfdKkSaLwW1049o8//ljUrFlTdOzYUW+frlu3TiiVSnHs2DG9x//vf/8TAMSJEycMnq+gHj166Lb3zz//CCsrKzF16tQi1zVmfwiR9z4VlJ2dLdq0aSN69uypty2lUikGDx5scCxq3/PExETh7OwsunTpIjIyMopcJzs7W9SsWVO0adNGb52///5bABBfffWVbtmoUaOEj4+P3nZWrFghAIizZ88W+ZqN8ddffwkA4ty5cyWuZ8x+ESLvOBk1apTud2M/r9rPV6NGjQye6+effxYAxM2bN/We39PTU++5SnPo0CEBQEyePNngb4U/q4X16dNHNGrUSG9Z4e8Ira+//lo4OjqKwMBAveWffvqpUKlU4t69e0IIIbZt2yYAiIULF+rWUavVomfPngKAWL16tW55+/btRc2aNUVcXJxu2ZUrV4RSqRQjR47ULdMe08OGDTOIa9iwYaJOnTp678fFixcNnqs8Cn4WtT777DMBQERHRxf7OGM/A9rvahsbG739GhMTIzw8PETHjh11y4w9Xp555hnx9NNP68WjfZ6C+6Oo42HTpk0CgPj33391y7Q5LCQkRAghRMeOHYWrq6uIjIzUrRMYGCisra3Fyy+/rFumfc9iYmJ0y86dO1fk+1L4mEtJSRFubm7irbfe0lsvMjJSuLq66i0v/B0SEBAglEql6Nevn17cxenWrZtBjn7rrbcEAGFra6vL0Q0aNBD9+/fXe2zBz7z2s/7xxx8LAGLixIkCgPD09BSxsbFCiLzPY2BgoLCystLL0YMGDRI2NjYiODhYty8ePnwonJ2dRbt27XQ5etmyZQKA6Nixo9i4caMuR8+dO1cAEHXq1NHlaO13Vnp6uvD09BQAxJIlS/Ti79Kli1Aqlbr9qc3RU6dO1e1n5mhDzNHM0czR8s7RhR9b3Oe4rJ8VR0dHg+fZunWrACAOHz5s8LeicnNBAAQAcf78ed2ysLAwYWdnJwYPHqxbVjCHaGlzSOHzASHy8t4zzzxTYhw9evQQrVu3LjKuwjFOmjTJYPmAAQP0vju2b98uAIhvvvlGb70hQ4YIhUIhgoKCdOcbAMRHH32kazPb29sLAKJt27aiR48epX6+tbmgYJu5a9euolWrVrr1tZ/Ln376qdg2s5ubm7C1tdX93qdPHwFAODg46LWZhwwZIgDocmlUVJQAIDw8PERubq5uvfnz5wsAevu1R48eAoDw9fXVtZmzsrJEmzZtBADxxRdfCCEefVcplUoxc+ZM4efnJ2rWrCmCgoL08nHB/FYw/2jz29ixY5mPmY/1MB/nYT5ebbB+WVQkH2uZKieOGzdOeHt769pfWq+99ppwdXXVvb/aY27r1q0Gz+Xo6Kh3bBVuD2dmZooGDRro2psFYx41apQAIN59913dMo1GIwYMGCBsbGx0bWNj8mLB117wO1UIYZDXFi5cKACI9evX65ZlZ2eLJ598Ujg5Oeny1po1awQAcffuXb3tFX4Py7J/pkyZIgDofZenpKSIhg0bCl9fX90xp91mwXOiLl266PZj4ddYWFGPz8zMFEqlUkycOFG3rKh+iMIKf1f5+PgIAOK3337TLcvNzRXPPvussLW11R1PZX3fjDlmC+ai0NBQ4e3tLZ566imD3GHssW2Mck0/1atXL3h5eaF+/fp47bXX4OTkhL/++ktXEbW1tdXNF6hWqxEXFwcnJyc0b94cFy9e1G1n27Zt8PT0xLvvvmvwHMWNrDXGyJEj4ezsrPt9yJAh8Pb21lXNLl++jDt37mD48OGIi4tDbGwsYmNjkZaWhmeffRb//vuvweV0mZmZepftFuXPP/+ERqPB0KFDdduMjY1F7dq10bRpUxw+fFhv/ezsbAB5+6s4W7duhaurK5577jm9bXbs2BFOTk4G28zJydFbLzY2ttRRvuHh4ViyZAm+/PJLg8vNt27dipYtW6JFixZ629ROOVb4+Ytz9uxZDB06FC+//DLmzZtX5DrG7A8AuqttgLwRQUlJSejevbvesbV9+3ZoNBp89dVXBnNXao+t/fv3IyUlBZ9++qnBe6td5/z584iOjsbEiRP11hkwYABatGhhcBmaRqPR7aPLly9j7dq18Pb2RsuWLUt8TSXRjlb5+++/kZOTU+x6xuyXohj7edUaNWqU3nMBwNChQ2FnZ4cNGzbolvn7+yM2NhZvvPFGqa9Ra9u2bVAoFJg+fbrB3wp+JxR8/qSkJMTGxqJHjx64e/cukpKSSn2erVu3onv37qhRo4becd2rVy+o1WrdZXR79+6FtbU13nrrLd1jlUqlbmSLVkREBC5fvozRo0fD3d1dt7xdu3Z47rnniqzYF778Dsj77nr48KHe52rDhg2wt7fHyy+/XOrrKo32+yEmJganTp3CX3/9hXbt2sHT07PYx5T1M/Diiy+iadOmut+1N527cOECoqKiABh/vNSsWRMPHjwo9XUVPB4yMzMRGxuLJ554AgCKPIYTEhIQGBiICxcu4PXXX9eNRgKApk2bYuDAgdi7d6/eqMby2r9/PxITEzFs2DC9Y02lUqFLly4lfodOmzYNjz32mG66CmMVzNErV66ESqXC5s2bdTlaoVAgNzcXsbGxiI6ORlRUVJGf+X///Reenp546aWXAABjxozRXe2hUORN7dSrVy8Aed99arUa+/btw6BBg9CoUSPddry9vTF8+HDdCKCRI0fq3rPx48fjtdde0+Xo//73v1CpVHj48KEuR6vVamRmZuKPP/5AXFwcVCoVJk6cqPeaY2JioNFodPtZe+WQUqnU7Wfm6OIxRzNHG4M52vxydEElfY7L+lkBYPBdlZKSUqHX9+STT6Jjx4663xs0aIAXX3wR/v7+UKvVpeaQ48eP664w0MrOzi71OwnI++xoX4f2u6wo2nOIgv8Kf653794NlUqFyZMn6y2fOnUqhBDYs2eP3vJ58+bp2syZmZmYOHGi7jg05vOdnp6OTZs2wd3dHXXr1sWVK1fw7LPP6rav/eylpaUByBvhaqzXX39dr82snZpCO7XUr7/+CiBvCpKEhATdPnn11VdhbW2Nmzdv6rWZrays4ObmpjvGbGxsdCO1IyIi9J5bCIHTp0/j1KlT2LhxI1xdXfXyccH8pj1/zMrKMpj2Wov52BDzcdGYj5mPS1PRfGyM0nKiEALbtm3DCy+8ACGE3v7v06cPkpKSDI67lJQUg++10vz000+Ii4sr8ljSKjg1o3ZkfXZ2Ng4cOACg7HkxPT0dsbGxiIyMxLZt2wzy2u7du1G7dm29e09ZW1tj8uTJSE1NxdGjRwHk9RUAMKq/ADBu/+zevRudO3fGU089pVvm5OSE8ePHIzQ0VG9Wg4L+/PNPnDt3Dt9//71RsWhpP5f37t3D3LlzodFodHmjoPj4eF2ftTFq1aqFESNG6H5XqVSYMmUKsrKyyv2+lXbMFhQXF4c+ffrA2dkZO3fu1MsL5Tm2S1Ku6ad++uknNGvWDFZWVqhVqxaaN2+ulwS18/stW7YMISEhei9Q2yEC5E1b1bx5c1hZmWQWLJ2CHWpA3gevSZMmurnWtHOFFnU5nFZSUhJq1Kih+z02NtZgu4XduXMHQohi1yt8yat2+o2i5q0tuM2kpCTdB7aw6Ohovd/37dsHLy+vEuMsbPr06ahTpw4mTJhgMM/cnTt3cPPmzWK3Wfj5ixIeHo4BAwYgLS0NcXFxxRasjNkfQN6JyjfffIPLly/rzVFacLvBwcFQKpVo1apVsdvRTptW0jy7YWFhAIDmzZsb/K1FixY4fvy43rL79+/r7Stvb29s27at1NdUkh49euDll1/GzJkzsWDBAvj5+WHQoEEYPny43smsMfulKMZ+XrUaNmxosMzNzQ0vvPACNm7ciK+//hpA3olF3bp1i/xSLk5wcDDq1Kmjd5JTlBMnTmD69Ok4deoU0tPT9f6WlJRU6k0P79y5g6tXr5Z6XIeFhcHb21t3Cb5WkyZN9H4v6Thp2bIl/P39DW5sVtR+fO655+Dt7Y0NGzbg2WefhUajwaZNm/Diiy/qNTrL6+TJk3qvuWnTpti+fXuJx4ixnwHtNlq0aGGwnraBEhoailq1ahl9vHTt2hVbtmzBwoUL8dprr8HKyspgXmQgL8nPnDkTmzdvNvhOKuqE/bHHHtP9XNx7tm3bNsTGxuoVPMpDm2+K+xy4uLgUufz48ePYtWsXDh48WOapRwry9PTE9u3b0a1bN90yIUSxuaLgZ/7hw4d6Obqo91b7WUhLS0NMTAzS09OL3acif27OgjmyadOmejnayclJN51ZwRy9ZcsWbNmyBUBeQ7Jwjo6PjwdguJ+1HQIuLi7M0cVgjmaONhZztPnlaK3SPsdl/aykpaWV+buqNEV99zZr1gzp6emIiYkBgBJziEajwf3799G6dWvd8sTERPj4+JT63Ldu3dK9Hu29I6ZPn24wrc+vv/6q68gvqOBzhIWFoU6dOgbvufZcJywsTC/GESNGYOzYsbppkBYuXIjnnnsOgHGf74Id26+++ir69u2LOXPmGMT48ccfA8ibtnLu3Ll44YUXsGDBghLPYwpPt+zm5gYbGxtdTtUORvjxxx/x448/FrmNgvm4Tp06iI+P13uvtdNJF54vvWCHiXaAhJa1tTVycnIM8tv48eN1Pxfu2GE+NsR8zHzMfFw+FcnHxiotJyqVSiQmJmLFihVYsWJFkdso/L1S+P4xpUlKSsJ3332HDz74oNhcoVQq9QYaaOMEoOtfNSYvFjRv3jy93FY4r4WFhaFp06YGhdbC2+vQoQPs7Owwc+ZMLF++XJeLcnJyipxu0Jj9ExYWVuRUlwWfu/B3oVqtxmeffYbXX38d7dq1K/U5Cho0aJDuZ6VSiS+++KLIwlzBz0zNmjXx1ltvYebMmVCpVAbrKhQKNGvWrNj9V973rbRjtnbt2rrlzz//PG7fvo2aNWsa3J8jJiamzMd2ScpVTejcubNunr6ifPfdd/jyyy8xduxYfP3113B3d4dSqcSUKVMMroCQgjaGefPmoX379kWuUzChZmdnIyIiQncCWtJ2FQoF9uzZU+TBVThJR0ZGAoDem1/UNmvWrKlXzS+ocILp0qULvvnmG71lS5cuxY4dO4p8/M2bN/Hbb79h/fr1RX7wNRoN2rZtq5sLvbD69esXG7tWUFAQHnvsMSxYsAAjRozAmjVriiwoGbM/jh07hoEDB+Lpp5/GsmXL4O3tDWtra6xevdrgRmVSqFWrFtavXw8gL0msWrUKffv2xfHjx9G2bdtybVN7U6PTp09j165d8Pf3x9ixY/Hjjz/i9OnTcHJyqtB+KevntfCIE62RI0di69atOHnyJNq2bYudO3di4sSJBl+mFRUcHIxnn30WLVq0wPz581G/fn3Y2Nhg9+7dWLBggVHfMRqNBs8995yuAViYqe6lUJKi9qNKpcLw4cOxcuVKLFu2DCdOnMDDhw/LNHKnJO3atdM1SmNiYrB48WL4+fnh4sWLJX7ujFHccVEcY46X8ePHw9/fH++//36Jc2QPHToUJ0+exEcffYT27dvDyckJGo0Gffv2LfJ4WL9+PdLT0/Uax5VF+/zr1q0rch8XV9T/5JNP0KdPH/Ts2dPg5nqlWbp0KZo3b677DtLOe639DtIWevr27YvHHnsM2dnZ+P3333H//n2DBg9Q9vfWVLQ5+vXXX0d0dDQ6deqEDh06YMWKFbhw4YKuEyQ7O1s3gli7n5OSkjBkyBCMGDECI0eOhJWVFTZv3swcXQTmaOZoU2KOLr+K5GhjP8fGsrOzw65du/SWHTt2TDd/trmIjIxEnz59Sl3P19dXdxVCXFwcFi9ejBEjRqBRo0a6KzuBvKtNC98s/IsvvtB9/5VHo0aNUKtWLWzfvt3gu9yYz/eIESNw5MgRuLi44J133sHXX3+N559/HgcOHNDrYJs8eTIWL16McePGwdfXF7NmzUJiYmKRI5+NuboFgK4j4tNPP9UbRQvkjZ5WqVR6uVMIgcjIyFLbzFpTp07Frl27kJGRgf/973+wsbEB8OjGrdr8pj32tAMrgbwrDM6ePavbFvOxPuZj5mPm4/KrzDazsbTvzxtvvFFsPi/cgf7VV18Z3MPjhRdeKPY55syZA6VSiY8++kh3lXtV0LbPNBoN7t69W2xeK02tWrWwZMkSTJo0yeBY7NGjh8H6Zd0/xvr1118RGhoKf3//Mj/2hx9+wH/+8x/k5OTg3Llz+Oabb2BlZWVw5cy2bdvg4uKC9PR0/PXXX/j222919x8rTKq2e0G3bt3Cnj17MHToUEydOhWrV6/W/a08x3ZJTHuJRL4//vgDzzzzjMFIl8TERL1Ltho3bowzZ84UW0krL+3IWC0hBIKCgnQ7RjtixMXFxWBkSFGuXLmCnJycEgs52u0KIdCwYUOjvuBv3LgBhUJRZKW64DYPHDiAbt26GXVwenp6Grymkm5MNm3aNLRv3x6vvvpqsc+vvRysvJVp7bQitWrVwo4dOzB16lT079/f4OTSmP2xbds22NnZwd/fX++EvOCHRBu3RqPBjRs3ii1caY+DgIAAg1EEWtqRWbdv3zYYPXH79m2D0WF2dnZ6+3/gwIFwd3fH0qVL8fPPPxf7uozxxBNP4IknnsC3336LjRs34vXXX8fmzZvx5ptvGr1fimLs57U0ffv2hZeXFzZs2IAuXbogPT1d75I3YzRu3Bj+/v6Ij48vduTJrl27kJWVhZ07d6JBgwa65UVd1l3cMdu4cWOkpqaW+vn38fHB4cOHkZ6erjfyJCgoyGA9IO+YKOzWrVvw9PTUG3FSkpEjR+LHH3/Erl27sGfPHnh5eRnVYDdGjRo19F6zn58f6tSpg9WrV2PatGlFPsbYz4CnpyecnJyK3QcA9G78ZszxYmdnh3/++QeBgYG4f/8+hBCIiorSO2FNSEjAwYMHMXPmTHz11Ve65YXzQEHdunWDo6Mjxo8fX2y8jo6OJrnEWPs9U7NmTaPyDZD3nX3q1KkyXXZZUJcuXXT5qqjvoPT0dHh4eOhdUjp48GB069ZN78qWOnXq4Pbt26hXrx6Aoo9v7eg9R0dHeHl5wcHBodh9qlAoIITAnTt3dDnyzp07uhvBtWvXDqmpqboRiNocbW9vj7Zt2+Lw4cOwt7fHlStXMHHiRFy9ehV2dna4cuWKbrScdj9rLydu1KiRbr+fO3eOOboIzNHM0cZijja/HK1V2ue4rJ8VlUplsP8Lj7Qvq6LycmBgIBwcHHRxlpRDlEqlXsfwgwcPkJKSYtR0NY6Ojnqvp3v37qhbty727dunV9SoV6+eweteuHChXlHDx8cHBw4cQEpKit7oRu25TlFXjhT3XW7M57tRo0aIj4/HmTNnMG7cOLi6umL48OE4ffo0nnzySd1jtN/NLVq0wIcffoh79+5hzZo1yM3NNYjH29sbQN5UR9ob2wJ5ncvZ2dm6EbvaK07S0tL09kt2drZuCpqCbfiHDx9CrVbrtZm15wlF3fx5/PjxGDFiBB5//HGcOnVKN3Id0M9vp0+fhkKhwMiRI3VFlMIj/5mP9TEfMx8zH5dfRfKxsYzJic7OzlCr1Ua3Idu2bWuwblEDuYC87+tFixZh9uzZcHZ2LraooS08FGw7BQYGAnjUti9rXizYPgNgkNd8fHxw9epVaDQavWJfUdt788038dJLLyEgIEA3Nd/UqVOLfC3G7B8fH58S+zMKv5b09HTMnDkTEydONOrK0cI6duwIPz8/AEC/fv0QHh6OOXPm4Msvv9R77U8//bTue2bgwIE4ceIE9u7dW2RRo2HDhrh48WKx+6+875sxx6zWzp070b17d8yePRvvvPMO3njjDd3gCC8vrzIf2yUxbTk4n0qlMrjEZOvWrQgPD9db9vLLLyM2NhZLly412Ebhx5fF2rVr9eZ9/eOPPxAREYF+/foByDtwGjdujB9++AGpqakGj9deAl0wdpVKheeff77E533ppZegUqkwc+ZMg/iFEHpfFLm5udi2bRs6d+5c4mWWQ4cOhVqt1jvJK7iNijQwTp06hR07duD7778vNpENHToU4eHhutFNBWVkZBg1p1uzZs10J8dLliyBRqPBe++9p7eOsftDpVJBoVDoXe4ZGhpqcBI6aNAgKJVKzJo1y2AUgva96d27N5ydnTF79myDOVS16zz++OOoWbMm/ve//+ldnrpnzx7cvHkTAwYMKPG1Z2dnIzc3V++xZZWQkGBwPGlPOrXbNXa/FMXYz2tprKysMGzYMPz+++/47bff0LZt2zJffvfyyy9DCIGZM2ca/E0bozbxFIw5KSmpyJNRR0fHIj8jQ4cOxalTp4qspicmJuoagH369EFOTo7e8a/RaPDTTz/pPcbb2xvt27fHmjVr9J4vICAA+/btQ//+/Ut41fratWuHdu3a4ZdffsG2bdt00y5VBu28yyUdn8Z+BpRKJfr27YsdO3bozXMcHx+PNWvW4PHHH9e7rLUsx0uzZs3w7LPPolevXnrTKAFFHw9AXidESby8vPDYY49h48aNet/5wcHB2LlzJ/r161fsSWBZ9OnTBy4uLvjuu++KnN+3cL7RXr46fPjwYhuXZVHUd5C2uFDQwYMHDR779NNPIzY2Flu2bMHjjz+ONWvW6Kb/EkIgODhYNyenUqmESqVC7969sWPHDt1lrQAQFRWFjRs36kberV27VnfsrVixAps3b9bl6OXLl0OtVqN27dp6Ofqxxx6Do6MjlEol5s6di9DQUN2IYW2OdnJyKnE/M0cXjTmaOdpYzNHml6O1SvscV/SzYgqFi/X379/Hjh070Lt3b6hUqlJzyFNPPaU3ZePmzZsBFD+9Y0m03zvlyfP9+/eHWq02aL8uWLAACoVC197UKum7vDxt5sLHRXFtZm1nRlH5Qzu1xsaNG/XazNorWPv27QsAuvnxf/31V731fv31V919CApSq9VQKpW6NnN2djbWrFkD4FEhRUupVGLmzJlo164dPvzwQ8yZMwcBAQG6fKzNb//73/8M8k9GRobBvVGYj/UxH+dhPmY+NoWy5GNjGZMTX375ZWzbtg0BAQEGjy/chiyrmTNnolatWkXes6SwgvlOCIGlS5fC2tpa10ld1rxYWOH9279/f0RGRuqmHgbyvvuWLFkCJycng6sw3N3d8fTTT6NXr17o1auX3hTFZdW/f3+cPXsWp06d0i1LS0vDihUr4OvrazBV36JFi5CWlobPP/+83M9ZUEZGBnJzc4sckKAlhIAQothzmKL2n3b6PFtbW10hoTznMyUdswVpzw8mTpyIrl27YsKECbr32dTHdqV86p9//nnMmjULY8aMQdeuXXHt2jVs2LDBYC62kSNHYu3atfjggw9w9uxZdO/eHWlpaThw4AAmTpyIF198sVzP7+7ujqeeegpjxoxBVFQUFi5ciCZNmuhOzJRKJX755Rf069cPrVu3xpgxY1C3bl2Eh4fj8OHDcHFxwa5du5CWloaffvoJixcvRrNmzXDkyBHdc2g7Wq5evYpTp07hySefROPGjfHNN99g2rRpCA0NxaBBg+Ds7IyQkBD89ddfGD9+PD788EMcOHAAX375Ja5evWpwaXdhPXr0wIQJEzB79mxcvnwZvXv3hrW1Ne7cuYOtW7di0aJFGDJkSLn20759+/Dcc8+VWB0bMWIEfv/9d7z99ts4fPgwunXrBrVajVu3buH333+Hv79/qVewFFS7dm3MmzcPb775Jt544w3079+/TPtjwIABmD9/Pvr27Yvhw4cjOjoaP/30E5o0aYKrV6/q1mvSpAk+//xzfP311+jevTteeukl2Nra4ty5c6hTpw5mz54NFxcXLFiwAG+++SY6deqE4cOHo0aNGrhy5QrS09OxZs0aWFtbY86cORgzZgx69OiBYcOGISoqCosWLYKvr6/BlDhpaWl6l9KuW7cOmZmZGDx4sNH7qLA1a9Zg2bJlGDx4MBo3boyUlBSsXLkSLi4uusRv7H4pirGfV2OMHDkSixcvxuHDh4uc77c0zzzzDEaMGIHFixfjzp07uumDjh07hmeeeQbvvPMOevfuDRsbG7zwwguYMGECUlNTsXLlStSsWdPgJoQdO3bE8uXL8c0336BJkyaoWbMmevbsiY8++gg7d+7E888/j9GjR6Njx45IS0vDtWvX8McffyA0NBSenp4YNGgQOnfujKlTpyIoKAgtWrTAzp07dXMNF2zYzJs3D/369cOTTz6JcePGISMjA0uWLIGrqytmzJhR5v344YcfAoDJLqMF8joGtMdnbGwsfv75Z1hZWZVYsC3LZ2DWrFnYu3cvnnrqKUycOBG2trZYuXIlkpKSipyLuaLHC5A3mv/pp5/G3LlzkZOToxt5WfgGkkWZO3cu+vbtiyeeeAITJkxAbm4uli5dCjs7O3z77bcG6x86dEjXoaIdqXDt2jXdDTWBvNygVCpx9OhR9OjRAy4uLli+fDlGjBiBxx57DK+99hq8vLxw7949/PPPP+jWrZveicSDBw90l4aX1+7du3Hr1q1iv4Ps7e0RHx+P3r17o2XLlrh+/ToOHz4MpVKpdxLYu3dvnD17Fh988AGeeeYZxMTEoHnz5qhRowYef/xxHDp0CLa2tnpFhG+++Qb79+/HU089hZycHGRkZKBr167IysrChAkTMGnSJLi7u2P27NkAgHv37uGNN96Al5cXbt68iZUrV+Kpp57CrFmz0L9/f7Ru3RpJSUkIDAzEjBkzdDn6k08+wezZs5GRkYHly5ejWbNm8PPzw//+9z80atRId9+UzZs3Y+PGjejduzeWLl3KHF0K5uiyY45mjjaV8uToohT1OS7rZ6UytGnTBn369MHkyZNha2uLZcuWAYBep1zBHDJx4kRYWVnh559/RlZWFubOnQsgbz9Nnz4dv/zyC1577bUi7/dUWGpqqi5Xx8fHY/HixbC2ti5XMeeFF17AM888g88//xyhoaH4z3/+g3379mHHjh2YMmUKGjdujGPHjunWL+m73JjP99WrV9GoUSO0bNkSH3zwAaytreHm5objx49j9uzZuo4D7c1Lb9y4gZkzZ2Lt2rV48cUXi+z00M5Rn5aWhvr166NXr166ufMdHBywYMECAHlTe4waNQpr1qxBzZo18cwzzyAzMxNHjhyBs7Mz9u3bh/feew9paWm6+38pFAqMHTsW3t7eOH36tG5E7/Xr1/U6icaNG4eVK1ciNDQUAwYMgJubG3r37q27IesHH3yAZcuWYeLEiVAoFJgwYQIWLVqky2+F5xxnPtbHfMx8zHxcfqbKxyUxJid+//33OHz4MLp06YK33noLrVq1Qnx8PC5evIgDBw7o9m957Nu3Dxs2bNBN+1ccOzs77N27F6NGjUKXLl2wZ88e/PPPP/jss890o/ONyYsFXb16FevXr9cNklu8eDHq1aun+44cP348fv75Z4wePRoXLlyAr68v/vjjD5w4cQILFy40yX1TivPpp59i06ZN6NevHyZPngx3d3esWbMGISEh2LZtm8E0cfv27cO3335b5H11jLF//348ePBAN/3Uhg0bMHDgQIP3RdsPoZ1+KigoCFOmTClym+PGjcPy5csxevRonD9/Hg0bNsT27dtx8OBBfP/997pYy/q+GXPMFqZQKPDLL7+gffv2mD59uu5czqTHtiiD1atXCwDi3LlzJa6XmZkppk6dKry9vYW9vb3o1q2bOHXqlOjRo4fo0aOH3rrp6eni888/Fw0bNhTW1taidu3aYsiQISI4OFgIIURISIgAIObNm2fwPK1bt9bb3uHDhwUAsWnTJjFt2jRRs2ZNYW9vLwYMGCDCwsIMHn/p0iXx0ksvCQ8PD2Frayt8fHzE0KFDxcGDB/Weu7R/o0aN0tvutm3bxFNPPSUcHR2Fo6OjaNGihZg0aZK4ffu2EEKId999Vzz99NNi7969BjFNnz5dFPW2rFixQnTs2FHY29sLZ2dn0bZtW/Hxxx+Lhw8f6tbx8fERAwYMMHjspEmTDLYJQCgUCnHhwgW95UW9R9nZ2WLOnDmidevWwtbWVtSoUUN07NhRzJw5UyQlJRk8X2nbE0KInj17igYNGoiUlJQy749ff/1VNG3aVNja2ooWLVqI1atXF7vfVq1aJTp06KCLu0ePHmL//v166+zcuVN07dpV2NvbCxcXF9G5c2exadMmvXW2bNmi2467u7t4/fXXxYMHD/TWGTVqlN5x4eTkJB577DGxbt26EvdRaS5evCiGDRsmGjRoIGxtbUXNmjXF888/L86fP1+u/eLj46N3zBr7edV+vrZu3VpivK1btxZKpdJg/xgrNzdXzJs3T7Ro0ULY2NgILy8v0a9fP71jdefOnaJdu3bCzs5O+Pr6ijlz5ohVq1YJACIkJES3XmRkpBgwYIBwdnYWAPReT0pKipg2bZpo0qSJsLGxEZ6enqJr167ihx9+ENnZ2br1YmJixPDhw4Wzs7NwdXUVo0ePFidOnBAAxObNm/ViP3DggOjWrZvuWHrhhRfEjRs39NbRvicxMTHF7oOIiAihUqlEs2bNyrUPi9KjRw+949PNzU1069ZN7N6926jHG/MZECLveO3Tp49wdHQUDg4Ows/PTxw7dqzY7Zb1eNF+L69evVq37MGDB2Lw4MHCzc1NuLq6ildeeUU8fPhQABDTp0/XrafNYQWPkQMHDoiuXbsKOzs74ezsLPr37y+uXr2q95za96ws/3x8fPS2cfjwYdGnTx/h6uoq7OzsROPGjcXo0aP1Psfa75D33ntP77FFxV2Ubt26GfUd1KBBA731rKysROfOnUWHDh1Ejx49dJ/1w4cP6+VoKysrYW1tLZRKpXBychIDBgwQe/fuNcjR2mNAqVQKpVIpnnnmGXHy5Em9HD1gwAABQNja2ooGDRoIV1dX4eTkJF5//XURFxcnhHiUo7XbKZijMzMzRaNGjYx6Lxo3bqy3n5mjS96eEMzRZcEczRxtChXJ0cZ8jrWM/aw4OjoabG/r1q263FBYUbm5IABi0qRJYv369brPQYcOHYrcljaHODk5CQcHB10O0Tpx4oRo0qSJmDFjhsjKyio1juL27Z49e4qMsbABAwYY5PSUlBTx/vvvizp16ghra2vRtGlTMW/ePKHRaIQQj/J2ad/lpX2+C+cz7blVwTbzhg0b9NbR5svJkyeLhIQEIYQQbm5uwtbWVvf82u+LV155Rbi6uuribNSokS4XFvTpp58KJycn3XM4OzuLwYMHl6vNXPAco2A+trOzEwBE9+7ddTFMmjRJNGzYUPj4+Bjkt08//ZT5uADmY+Zj5mPTqGibWQjT5sSoqCgxadIkUb9+fd13/7PPPitWrFihW6ekY87R0VHvONbmp/bt2+tyVnExa88HgoODRe/evYWDg4OoVauWmD59ulCr1XrPU1peLPjaC+bH2rVri5deekncvHnT4HWPGTNGeHp6ChsbG9G2bdti92dhZflMFt4/QggRHBwshgwZItzc3ISdnZ3o3Lmz+Pvvv/XW0W7T29tbpKWlGbzGgn0QRdE+vmB7vHDuFsKwH8Le3l60atVKLFiwQLdO4e8qIYSIjo4WY8eO1e2/Nm3aiJUrVxrEUZb3zZhjtrgcM3PmTGFlZSUuXryoW2bMsW2MMhU1zJ2xCcRY2g92SR1J06dPNziAiKqz9u3bi549e0odRqX666+/BABx/PjxStl+TEyMsLKyErNmzaqU7ZsTSzxeDh8+bNABQvo52thBEiVhjiYqO0v8zi2MOdr8FFcwIGlUVpu5adOmxa7DfEykj/m44uSaj+WSE4sb5EDVjzkfs5VyTw0iqp7Onz+Py5cvY+TIkVKHYjLauf+01Go1lixZAhcXF90UN6b222+/Qa1Wl/mmcXJjiccLEZG5ssTvXOZoIiKSG+Zj02A+JqLKuZOOhXBycsLrr79e4k242rVrhzp16lRhVETmJyAgABcuXMCPP/4Ib29vvPrqq3p/V6vVpd7wx8nJqcTPmlTeffddZGRk4Mknn0RWVhb+/PNPnDx5Et999x3s7e1N+lyHDh3CjRs38O2332LQoEHw9fU16fbNRWnHi9y5u7sb3MCMTI85msg4zNGmUV1yNFFZOTk5oWbNmgZzjRfEfEzEfGwqzMdEpMWiRgk8PT11NwgqzksvvVRF0RCZrz/++AOzZs1C8+bNsWnTJtjZ2en9/f79+7qbEhZn+vTpZb45WFXo2bMnfvzxR/z999/IzMxEkyZNsGTJErzzzjsmf65Zs2bh5MmT6NatG5YsWWLy7ZuL0o4XuWvXrh3WrFkjdRgWjzmayDjM0aZRXXI0UVl5enqiZcuWiI2NLXYd5mMi5mNTYT4mIi2FEEJIHQQRWbbMzEwcP368xHUaNWqERo0aVVFEREREBDBHExERmQPmYyKismFRg4iIiIiIiIiIiIiIZIE3CiciIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZIFFDSIiIiIiIiIiIiIikgUWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZIFFDSIiIiIiIiIiIiIikgUWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZIFFDSIiIiIiIiIiIiIikgUWNYiIiIiIiIiIiIiISBZY1CAiIiIiIiIiIiIiIllgUYOIiIiIiIiIiIiIiGSBRQ0iIiIiIiIiIiIiIpIFFjWIiIiIiIiIiIiIiEgWWNQgIiIiIiIiIiIiIiJZYFGDiIiIiIiIiIiIiIhkgUUNIiIiIiIiIiIiIiKSBRY1iIiIiIiIiIiIiIhIFljUICIiIiIiIiIiIiIiWWBRg4iIiIiIiIiIiIiIZMFK6gCIqPrQaATSsnORnq1GVo4GaiGgEQJCCCitUgFlBhQKBZQKJZQKJexUdnCwdoCDlQMUCoXU4RMREVU7xuZulUIFpUIJW5UtHK0dYW9lz9xNREQkAba7iag6YFGDiMolK1eN6OQsRKdkISYlE1HJWYhOyUR0chbi0rKRmpmLtOxcpGXlIjVLjfTsXGTkqCFE0dvr/sQJXE7aVeTfFFDA3soeDtYOcLR2hIOVAxysHeBs7QwPew942nvCy94LXg5euv897D1grbSuxD1AREQkLyXl7tjULKRm5SItS52fv9VIy8pFZm7FcrejtaOuo6S03O1p7wkrJZsnREREWtm5GkQlZ5bY7k7NykV6tpHt7i4ncDm5fO1ubc4umMPZ7iYiqbDVQETFik/LRkhsKu7GpCEk9tG/yORMJKbnVFkcAgLpuelIz01HbEasUY9RQIEadjVQ27E2fJx94OPqAx8XH/i6+MLHxQfONs6VHDUREVHVKyp3h8alIyIpQ7LcjQzjHlNS7vZ18YWTjVPlBk1ERCSBxPRsBOfn7bsxqWaRu9nuJiJzx6IGESE5MwcB4UkICE/CrcgU3I1JQ2hcWpWeQJmagEB8ZjziM+NxI+6Gwd/d7dzzOklcfdGsRjO09miN5u7NYW9lL0G0REREZZOSmYOA8GQEhCfhZmRytcrdDV0bommNpszdREQkKwVz963IFNyNzStgVIfc7evqi+Y1mqOVRyvmbiIyCRY1iKqZpIwcXA9PwrX8fwHhSQiLTy/28lRLpT3xuhh9UbdMpVChoWtDtPJohZbuLdHKoxVauLeAg7WDhJESEVF1x9ydp7Tcrf3XvEZz5m4iIpJUwYGD1/ILGaFxaczdeJS7tW1utruJqDwUQlS3r1Si6iUqOROnguNw+m4czobEI8RMT6RKmpdbSkqFEk3cmuDxWo/j8dqP4/Faj6OGXQ2pwyIiIgumzd1nQuJw5i5zd1kpFUo0dmuMx2s9jk61OzF3ExFRpZNNu7uEe2pIqWC7u1PtTuhYqyNzNxGViEUNIgsTmZSJ03fjdP9C49KlDsko5toxUpgCCjR2a4xOtTuxo4SIiEyCubtyFc7dnWp1gpudm9RhERGRjBUsYsgqd5tpUaMwtruJqDQsahDJXI5ag7Mh8dh/IwpHA2MQEpsmdUjlIpeOkcIUUKBJjSZ4uu7T8Kvvh3Ze7aBUKKUOi4iIzJg2dx+4GYUjt5m7q5oCCjSt0RTd63Zn7iYiIqMUbHf/GxiDu3LN3TIpahSmzd096vVAj/o90NazLXM3UTXHogaRDCWmZ+PI7Rjsv5l3QpWSmSt1SBUm146Rwtzt3HWdJF3rdOW8oEREBIC525xpc/cz9Z/Bk3WeZO4mIiIAQFJ6Dg7fjsaBm3kDCC0id8u0qFGYu507nq73NPzq+TF3E1VTLGoQycSDhHTsuRaJ/TejcCEsAWqNZX10LaVjpCAbpQ06eXfCM/WeQS+fXvCw95A6JCIiqkLM3fJjo7RBZ+/O8Kvnh2d9noWnvafUIRERURW6H5+OvQGROJCfu3MtLXdbSFGjIBulDTrV7gS/+n54zuc5truJqgkWNYjMWEJaNv65FoHtl8Jx4V6CWd5ozFQssWOkICuFFbrU6YIBDQfg2QbPciQJEZGFSkzPxt9XI7DjcjjOhzF3y5lKocIT3k9gQCPmbiIiS6bN3dWi3W2BRY2C2O4mqj6spA6AiPRl5qix/0YUdlwOx9HAGOSoLfiMqhrJFbk4EX4CJ8JPwN7KHn71/fB8o+fRtU5XWCn5VUxEJGfM3ZZJLdQ48fAETjxk7iYisjSZOWocuBmF7ZeYuy2JQbu7nh8GNBqArnW7wlppLXV4RGRCvFKDyEycvhuH38/fx77rUUjNkv9cnWVl6aM9i1PDtgZ6+/bGy01fRkuPllKHQ0REZcDcXT1zt7udO3r79MbgpoPRyqOV1OEQEVEZnL4bh63nH8D/emT1zN0WfqVGcdxs3dDHtw/b3UQWhEUNIgmlZOZg24UH2HDmHu5Ep0odjqSqa8dIQe0822Fo86Ho27AvbFW2UodDRERFYO5+hLkbaOvZFkObD0W/hv2Yu4mIzFRyZg7+ZO4GUH2LGgWx3U1kGVjUIJJAQHgSNpwJw47LD5GerZY6HLPAjpFHXG1d8WLjFzG0+VD4uPhIHQ4REYG5uyjM3Y9oc/erzV9FA5cGUodDREQArj9MwvrTzN0FsajxCNvdRPLGogZRFcnKVePvKxFYfyYMl+4lSh2O2WHHiCEFFOji3QWvNX8NzzR4BkqFUuqQiIiqFebukjF3G1JAgSe8n8CrLV6FXz0/qJQqqUMiIqpWsnLV+OdqBNadZu4uCosahtjuJpIn3uGOqJKlZuVi/ekwrDoeguiULKnDIRkREDgdcRqnI06jgXMDjG4zGi82fhE2KhupQyMismjM3VReAgKnIk7hVMQp1Heuj9GtR2NQk0HM3URElSwlMwfrT9/DqhMhiGHupjIo2O72cfHBqNaj2O4mkgFeqUFUSWJTs7DqeAjWnw5Dcmb1uwFZWXG0p3G87L3wRqs38GrzV+Fo7Sh1OEREFoW5u2yYu43jae+JN1rm5W4nGyepwyEisija3L3udBhSmLtLxSs1jKNtdw9tNpS5m8hMsahBZGL349Px87/B2Hr+AbJyNVKHIxvsGCkbZxtnvNr8VbzR8g142HtIHQ4Rkawxd5cPc3fZOFs749UWzN1ERKZwPz4dK/69i60X7iMzh7nbWCxqlI2ztTOGNh+KN1q9AU97T6nDIaICWNQgMpG7MalYfPAOdl2NgFrDj1VZsWOkfGxVthjcZDDGtxsPLwcvqcMhIpIV5u6KYe4uHzuVHQY1GYQ3276JWo61pA6HiEhWgmNSsfRQEHZdeYhc5u4yY1GjfGxVthjUZBAmtJvAdjeRmWBRg6iCIpMysfBAIP648IAnVRXAjpGKsbeyx7AWwzC2zVi42rpKHQ4RkVlj7jYN5u6KsVPZYViLYRjXdhxzNxFRKbS5e+uFBxyIUAEsalQM291E5oNFDaJySkzPxk+Hg7D2VBinqjABdoyYhrONM8a2GYvXW74Oeyt7qcMhIjIrienZWHYkGGtOhjJ3mwBzt2k42zhjTOsxeKPVG8zdRESFMHebFosapqHN3a+3fB0O1g5Sh0NULbGoQVRG6dm5+PVYCFYcu8sbkZkQO0ZMy9PeE+PbjceQZkNgrbSWOhwiIkkxd1cO5m7T8rT3xIR2E/Bys5eZu4mo2kvPzsWq4yH4+V/mblNiUcO0POw8ML7deLzS7BVYq5i7iaoSixpERlJrBDaeCcOig0GITc2SOhyLw46RylHPqR7e6/ge+vr2lToUIqIqp9YIbDx7D4sO3GHurgTM3ZWjvnN9TO4wGX0bMncTUfWjzd2LD95BTApzt6mxqFE56jrVxZSOU9juJqpCLGoQGeFsSDy+2hGAW5EpUodisdgxUrk61+6MaZ2noUmNJlKHQkRUJc6FxuOrHddxMyJZ6lAsFnN35Xq81uP4rMtnaFqjqdShEBFVCebuyseiRuXqXLszPu38KXM3URVgUYOoBNHJmfhu901sv/xQ6lAsHjtGKp+VwgqvtXgNE9tPhLONs9ThEBFVCubuqsPcXfmYu4moOohOycTs3bfw16VwqUOxeCxqVD7mbqKqwaIGURFy1BqsPhGCxQeDkJrF+TurAjtGqo6HnQfee+w9DGoyCAqFQupwiIhMgrm76jF3Vx0POw9M6TgFLzZ+kbmbiCxGrlqD1SdCsejgHebuKsKiRtVxt3PHlMemsN1NVElY1CAq5ERQLKbvvI6g6FSpQ6lW2DFS9dp5tcNnXT5Da4/WUodCRFQhzN3SYO6ueu292uOzLp+hpUdLqUMhIqqQk/m5+w5zd5ViUaPqtfNsh8+eYLubyNSUUgdAZC6SMnIw9fcreP2XM+wUoWrhasxVvP7P65h/fj6y1LwJHxHJD3M3VTeXYy7jtX9ew7xz85CZmyl1OEREZZaUnoMPfr+M4b+cYUGDqoWrsfnt7gtsdxOZEosaRAAO3IjCc/OPYtvFB1KHQlSl1EKN1ddXY8jOIbgcfVnqcIiIjMbcTdWVRmiw9sZavLLrFeZuIpKVAzei8NyCo/jzIu+dQdWLWqixOoDtbiJTYlGDqrXE9GxM2XwJb649j+gUVsyp+gpNDsWovaMw5+wcZORmSB0OEVGxmLuJ8mhz99xzc3nVBhGZNeZuojxsdxOZDosaVG3tDYhEr/n/Yvvlh1KHQmQWNEKD9TfXY8jOITgfeV7qcIiIDDB3E+nTCA3W3ViHIbuG4GLURanDISIysO96JJ5bwNxNpKVtd7+882WcizwndThEssWiBlU7CWnZeGfjRby9/gJiUzlKhKiweyn3MNZ/LL478x1HfhKRWUhMZ+4mKklYchjG+I/B92e/Z+4mIrOQmJ6NyZsuYfy6C4jh1RlEBu6n3Mc4/3H49vS3ZnmvDT8/P0yZMqXYvysUCmzfvt3o7R05cgQKhQKJiYkVjo0IYFGDqpkzd+PQb9Ex/H01QupQiMyagMCmW5sw7J9hCEoIkjocPTy5IqpezobEM3cTGUEjNNhwcwNe+/s13Em4I3U4epi7iaqXM3fj0HfhMey8wqsziEoiILD59ma89vdrCE4MljqcMomIiEC/fv2kDoOqMRY1qFrQaAQWHgjE8F/OIDKZo9eIjBWUGIRh/wzD1sCtUodiNJ5cEVkGbe4etvI0IpKYu4mMFZwUjOH/DMfvt3+XOhSjMXcTWQa2u4nKJygxCK/9/Zqs2t21a9eGra2t1GFQNcaiBlm8yKRMDP/lNBYeuAO1RkgdDpHsZKozMevULEw9MhUp2SlSh1MqnlwRyR9zN1HFZKoz8fXpr/Hh0Q+Zu4moSkQlM3cTVYQ5trs1Gg0+/vhjuLu7o3bt2pgxY4bub4Wvsjx58iTat28POzs7PP7449i+fTsUCgUuX76st80LFy7g8ccfh4ODA7p27Yrbt29XzYshi8OiBlm0Q7ei0H/xMZy+Gy91KESyty9sH17Z9QquxFyROhSeXBFZsIM3mbuJTMU/1B+v7HoF12KuSR0KczeRBTt8Kxr9FzF3E5mCObW716xZA0dHR5w5cwZz587FrFmzsH//foP1kpOT8cILL6Bt27a4ePEivv76a3zyySdFbvPzzz/Hjz/+iPPnz8PKygpjx46t7JdBFopFDbJIOWoNvv77BsatOY/4tGypwyGyGOGp4Ri9ZzR+vfYrhJBuBBZProgsT45ag1m7mLuJTC08NRwj947EqoBVzN1EZFI5ag2+/ecGxq45hzjmbiKTKdjullK7du0wffp0NG3aFCNHjsTjjz+OgwcPGqy3ceNGKBQKrFy5Eq1atUK/fv3w0UcfFbnNb7/9Fj169ECrVq3w6aef4uTJk8jM5HR1VHZWUgdAZGqxqVn47/oLOBeaIHUoRBYpV+Ri4cWFuB53Hd90+wYO1g5VHoP25AoAmjZtiqVLl+LgwYN47rnn9NYreHJlZ2eHVq1aITw8HG+99ZbBNrUnVwDw6aefYsCAAcjMzISdnV3lvyCiao65m6hy5WpyseDCAlyJvoLZ3WczdxNRhcWk5OXu82HM3USVwVza3QV5e3sjOjraYL3bt2+jXbt2evm3c+fOpW7T29sbABAdHY0GDRqYImSqRnilBlmUaw+SMHDJcXaKEFWB/WH78caeN/Ag5UGVP3dVnlwRUeVi7iaqOofuH8Lru1/H/ZT7Vf7czN1EluPagyS8uPQ4CxpEVWB/2H6M2DNCkna3tbW13u8KhQIajcZk21QoFABQ4W1S9cSiBlmMHZfD8crPJ/EwiZetEVWVOwl3MOyfYTgdcbpKn5cnV0SWgbmbqOoFJQYxdxNRuTF3E1W9wIRASXK3sZo3b45r164hKytLt+zcuXMSRkTVAYsaJHsajcDs3Tfx3ubLyMxhI4aoqiVmJeLt/W9j3Y11UodigCdXROaJuZtIWklZSXh7/9tYf2O91KEYYO4mMk8ajcDsPczdRFIx53b38OHDodFoMH78eNy8eRP+/v744YcfADwadEBkaixqkKwlZeRg7Jpz+Pnfu1KHQlStqYUac8/NxRfHv0C22nxuEsiTKyLzw9xNZB7UQo055+bgyxNfIkedI3U4OszdROYnOTMH49acw89HmbuJpKRtd39+/HNkqbNKf0AVcXFxwa5du3D58mW0b98en3/+Ob766isA4H2uqNLwRuEkW/fi0jF69VncjU2TOhQiyrcjeAdCk0OxtOdSuNm5SR2O7uTqv//9L9q3b4+2bdviq6++wvDhw3lyRSSB+/HpGLX6LO7GMHcTmYvtQdsRkhSCxT0Xw93OXepwmLuJzMy9uHSM/o25m8ic7AzeiXvJ97D02aVwtXWtlOc4cuSIwbLt27frfhZC6P2ta9euuHLliu73DRs2wNraWncDcD8/P4PHtG/f3mAZkbEUgkcPyVBAeBJGrz6H2FTzqUxTxXR/4gQuJ+2SOgwyEV8XX/z83M+o41RH6lAMbNiwAWPGjEFSUhLs7e2lDoeo2ggIT8KY384hJoW521Iwd1sWHxcf/K/X/1DPuZ7UoRhg7iaSBtvdlqd7lxO4nMzcbSkaujbE/3r9zyza3WvXrkWjRo1Qt25dXLlyBe+88w78/Pywfr35TXVJloHTT5HsHL8Ti9dWnOaJFZEZC00OxRu738Dt+NtSh4K1a9fi+PHjCAkJwfbt2/HJJ59g6NCh7BQhqkLa3M2CBpH5CksOw4g9I3Ar/pbUoTB3E5kBtruJzF9IUojZtLsjIyPxxhtvoGXLlnj//ffxyiuvYMWKFVKHRRaMRQ2SlR2XwzHmt7NIzcqVOhQiKkVMRgxG7x2NsxFnJY2DJ1dE0mLuJpKP2IxYjNk7BmcizkgaB3M3kbSYu4nkQ9vuljp3f/zxxwgNDUVmZiZCQkKwYMECODg4SBoTWTZOP0WysfLfu/huz03wiLVMnMLCclkrrfHdU9+hb8O+UodCRFWMuduyMXdbLuZuourrl2N38e1u5m5LxemnLJe10hpfd/saAxoNkDoUoirBKzXI7Akh8M3fN3hiRSRTOZocfPzvx1h7fa3UoRBRFWHuJpI3be7ecHOD1KEQURURQuC73TfxzT/M3URylKPJwbRj07Dm+hqpQyGqEixqkFnTaAQ+3HoVvxwPkToUIqoAAYF55+dh6aWlUodCRJWMuZvIMggIfH/2eyy5tETqUIiokqnzc/eKf+9KHQoRVYCAwA/nf2C7m6oFFjXIbOWqNZiy5TK2XXwgdShEZCI/X/0Z8y/MlzoMIqokzN1ElmfF1RWYf565m8hS5ao1eJ+5m8iisN1N1QGLGmSWctQavLvpEnZeeSh1KERkYqsDVmPO2TlSh0FEJsbcTWS5Vl9n7iayRDlqDSZvZu4mskSrA1bj+7PfSx0GUaVhUYPMTo5ag4kbLmJPQKTUoRBRJVl/cz2+Pf2t1GEQkYkwdxNZvvU31+Ob099IHQYRmUiOWoNJGy5i9zXmbiJLteHmBra7yWKxqEFmRXtitf9GlNShEFEl23x7M747853UYRBRBTF3E1UfW25vYe4msgC5ag3e2XgR+5i7iSze5tubWdggi8SiBpmNXLUG7268xBMrompk061NmH1mttRhEFE5sVOEqPrZdGsTp6IikrHc/Oki/a8zdxNVFxxQSJaIRQ0yCxqNwHtbLmPvdV76SlTdbLy1kTcxI5IhjUZgypbL7BQhqobW31yPH879IHUYRFRG2nY3p4skqn423dqEBRcWSB0GkcmwqEFm4csdAfjnaoTUYRCRRFYHrMZvAb9JHQYRlcFXOwPwN3M3UbW15sYa/HLtF6nDIKIy+ILtbqJqbVXAKra7yWKwqEGSm78/EBvO3JM6DCKS2I8XfsT2oO1Sh0FERpi/PxDrTzN3E1V3iy4uwl93/pI6DCIywvz9gdjIdjdRtcd2N1kKFjVIUmtPhWLxwTtSh0FEZmLGyRk4cv+I1GEQUQmYu4mooJmnZuLwvcNSh0FEJWDuJqKCZpycgUP3DkkdBlGFsKhBktl15SFm7LwudRhEZEbUQo0Pj36IC1EXpA6FiIqwk7mbiApRCzU+/vdj5m4iM/X3VeZuItKnzd3nIs9JHQpRubGoQZI4dicGU3+/Ao2QOhIiMjdZ6iy8e/Bd3I6/LXUoRFTAv4ExmPr7ZeZuIjKQqc7Eu4feRWBCoNShEFEBx+/E4oMtbHcTkaEsdRYmH5qMW/G3pA6FqFxY1KAqd+V+It5edwHZao3UoRCRmUrJScHbB95GeGq41KEQEYCrDxLx3/UXkKNmrwgRFS0lOwVv72fuJjIXVx8kYsK682x3E1GxUnNSMWH/BOZukiUWNahKRSRl4M2155GWrZY6FCIyc7EZsXjn4DtIy0mTOhSiai0iKQNvrmHuJqLSxWTEYOKBiUjNTpU6FKJq7WFiBsb+xtxNRKWLz4zHu4feZbubZIdFDaoyGdlqvLX2PGJSsqQOhYhkIigxCJ/++yk0giPMiKSgzd3RzN1EZKS7SXfx8b8fM3cTSUSbu2NTmbuJyDh3Eu7gk38/Ye4mWWFRg6qEEAJTt15GQHiy1KEQkcwceXAECy8ulDoMompHCIEPt15h7iaiMjsWfgwLLyyUOgyiakebu68/ZO4morI5+uAoczfJCosaVCUWHbyD3dcipQ6DiGRqdcBq7AzeKXUYRNXKooN38M+1CKnDICKZWn2duZuoqi0+GMTcTUTltvr6auwI2iF1GERGYVGDKt3uaxFYdPCO1GEQkczNPDkTl6MvSx0GUbXwz1XmbiKquJknZ+JKzBWpwyCqFvZci8DCg4FSh0FEMjfz1Excir4kdRhEpWJRgypVQHgSpv5+BUJIHQkRyV22JhtTDk9BRCpHnxFVpoDwJHy4lbmbiCpOm7sj03jFNlFluv4wCR+w3U1EJpCjycGUw1PwMPWh1KEQlYhFDao0calZGL/2PDJy1FKHQkQWIi4zDu8dfg/Z6mypQyGySPFp2XiLuZuITCg2IxaTD01GZm6m1KEQWaS8dvcF5m4iMpn4zHhMOTyF7W4yayxqUKUQQuD936/gYRIbL0RkWjfjb2LO2TlSh0FkcYQQeH/LZUQwdxORid2Mv4nvz34vdRhEFkcIgSlbLiM8MUPqUIjIwtyMv4m55+ZKHQZRsVjUoEqx7Egw/g2MkToMIrJQvwf+jr0he6UOg8iiLDsSjKPM3URUSbbd2Ybdd3dLHQaRRVl2JBjH7sRKHQYRWagtt7dgT8geqcMgKhKLGmRyZ0PiMX8/b1BGRJVrxqkZCEsOkzoMIotwLpS5m4gq36zTs5i7iUyE7W4iqgozT81EaFKo1GEQGWBRg0wqPi0bkzddglrDO5QRUeVKy0nDh0c/RJY6S+pQiGQtPi0b725k7iaiyqfN3Zyjm6hi2O4moqrCdjeZKxY1yGS0c3FHJnMubiKqGrfib/H+GkQVIITAB78zdxNR1bkVf4tzdBNVgBACU5m7iagK3U64jdlnZksdBpEeFjXIZJYf5VzcRFT1tgZu5RzdROW0/Ggwjtxm7iaiqrXl9hb4h/pLHQaRLK349y4OM3cTURXbdmcbdgXvkjoMIh0WNcgkLt5LwPx9nM+TiKQx6/QshKeGSx0GkaxcYu4mIgnNODkD91PuSx0GkaxcvJeAef63pQ6DiKqpb898i4epD6UOgwgAixpkApk5anz4+xXkcj5PIpJIWk4avjrxFYTg9xCRMTJz1Ji6lbmbiKSTmpOKL45/wdxNZKTMHDWmst1NRBJKy0nDlye+ZO4ms8CiBlXY3L23cTc2TeowiKiaOxt5FhtvbZQ6DCJZmOd/G3djmLuJSFoXoy9i/c31UodBJAtz9t5CCNvdRCQxtrvJXLCoQRVy5m4cVp8MkToMIiIAwKKLixCWHCZ1GERm7WxIPFafYO4mIvOw+OJi5m6iUpy5G4ffToZKHQYREQBg4YWFCE0KlToMquZY1KByS8/OxUd/XAWvOiMic5GRm4Evjn8BjdBIHQqRWUrPzsWHW6+AM1cQkbnIVGcydxOVID07Fx9vY7ubiMxHpjoTX5z4AmqNWupQqBpjUYPK7bvdN3EvPl3qMIiI9FyOuYzfrv8mdRhEZom5m4jM0eWYy1h7fa3UYRCZpe/33EJYHHM3EZmXKzFXsPr6aqnDoGqMRQ0qlxNBsdhw5p7UYRARFemnSz8hKCFI6jCIzMrxO8zdRGS+ll5eirtJd6UOg8isnAyOxbrTnJ6NiMzTssvLcCfhjtRhUDXFogaVWVpWLj7mtFNEZMayNdn48sSXnMqCKF9aVi4+4dQVRGTGstRZ+OI4p7Ig0mK7m4jMXY4mB1+d+IrtbpIEixpUZgsPBCI8MUPqMIiIShQQF4Ctt7dKHQaRWVh08A5zNxGZvWux17D59mapwyAyCwv2B+JBAnM3EZm3gLgA/BH4h9RhUDXEogaVye3IFKw+ESp1GERERll0aRHiMuKkDoNIUoFRKVh1PETqMIiIjPLTpZ8QmxErdRhEkrodmYLfToZKHQYRkVEWXlzIdjdVORY1qEy+3BGAXA2vfyUieUjJTsH8C/OlDoNIUl9sZ+4mIvlIyUnB/PPM3VS9sd1NRHLCdjdJgUUNMtqfFx/gbEi81GEQEZXJzuCdOB95XuowiCSx7QJzNxHJz667u3Ah6oLUYRBJgu1uIpKjncE7cS7ynNRhUDXCogYZJTkzB9/tviV1GERE5fLtmW+Rq8mVOgyiKpWUkYPZe25KHQYRUbl8c/ob5m6qdtjuJiI5+/b0t8jR5EgdBlUTLGqQUX7wv43Y1CypwyAiKpegxCCsu7FO6jCIqlRe7s6WOgwionIJSgzChpsbpA6DqErN3xfIdjcRyVZwUjDWXl8rdRhUTbCoQaUKCE/C+tNhUodBRFQhy68sR2RapNRhEFWJgPAkbDjD3E1E8rb8ynJEp0dLHQZRlbj+MAnr2O4mIpn7+erPiEqLkjoMqgZY1KBSzfr7BniPMiKSu4zcDCy9tFTqMIiqxNfM3URkAdJy0rDwwkKpwyCqEjN33oCayZuIZC4jNwNLL7PdTZWPRQ0q0cGbUbxJGRFZjF13dyEwIVDqMIgq1aFbUTjD3E1EFuKfkH9wO/621GEQVaoDN6JwNpS5m4gsw87gnbiTcEfqMMjCsahBxdJoBObs5U3KiMhyaISGIz7Jomk0AnP2sPOPiCyHRmiw4OICqcMgqjQajcBcf7a7ichyaIQG8y/MlzoMsnAsalCx/rj4AIFRqVKHQURkUsfCj+Fc5DmpwyCqFH9cfIDbUSlSh0FEZFInwk/gbMRZqcMgqhRsdxORJToefpy5myoVixpUpMwcNRbs5xQtRGSZ5p+fDyE4ZzFZFuZuIrJkCy7wag2yPJk5aixk7iYiCzX/AtvdVHlY1KAirT4RioikTKnDICKqFAFxAfAP9Zc6DCKTYu4mIkvG3E2WaM3JUDxk7iYiC3U97jr2hOyROgyyUCxqkIHE9GwsPxIkdRhERJVq8aXFyNHkSB0GkUkwdxNRdbDk0hLkanKlDoPIJJLSc7DsSLDUYRARVarFlxYjR812N5meldQBkPlZfiQYyZlsLBCZQszfMUi+kIysiCworBVwaOKA2kNrw9bb1mBdIQTC5och9VoqGrzbAC4dXYrdrjpTjaitUUi+mAx1qho2Xjbw6OUB957uunUiNkUg8XgiFLYK1B5SG25d3XR/SzqbhMQTifB538ekr1dO7qfcx5+Bf+LVFq9KHQpRhS0/ytxNZEqVlb9zk3IR+XskUq+nQp2uhmMzR3i/4Q3b2o+2y/xdvLDkMPx5508MbT5U6lCIKmzZ0SAkZbCjj8gU2O42X+Gp4fgr6C/mbjI5XqlBehLSsrHudJjUYRBZjLRbaXDv6Y5GXzaC70e+EGqB0B9CocnSGKwbty8OUBi33chNkUi9lop64+uh6XdN4dHbAw/XP0TypWQAQPKlZCSdSoLvh76oPbQ2wleHIzclr8NTna5G1LYoeI/0NtnrlKtVAas44pNkLzE9G+tPMXcTmVJl5G8hBMIWhyE7JhsNJjdAk5lNYO1pjdB5j7bL/F26lddW8kpLkr34tGysY+4mMhm2u80b291UGVjUID2rToQgPVstdRhEFsP3Q1/U6F4DdnXtYN/AHvXerIecuBxkhGborZcRloHYvbGoO7auUdtND0qHWzc3OLV0go2XDdz93GFX3w4Zd/O2mxWRBccWjrBvaA+3J9ygtFciOyYbABD5eyTce7rDxsPGtC9Whh6mPcTfd/+WOgyiCll1IhRpzN1EJlUZ+Ts7KhsZwRmoM6oOHBo5wNbbFnVG1oEmW4PE04kAmL+NEZkWiV3Bu6QOg6hCVrPdTWRSbHebt/DUcLa7yeRY1CCdlMwcrDkZKnUYRBZNnZHXeFE5qnTLNFkaPPj5AeqMqANrN2ujtuPQxAEpl1OQk5ADIQRSb6YiOyobTm2cACDvRCs0A+o0NTJCMyCyBWxr2SItMA2ZYZnweM7D9C9Opn699is0wnAED5EcMHcTVQ1T5G+RIwAACutHw0MVSgUU1gqkB6YDYP421qqAVVBr2CFM8sTcTVT52O42P79c+4XtbjIp3lODdNadDuN83ESVSGgEIjdGwqGpA+zq2emWR2yKgEMTB7g8VvxcnoV5v+GNh789xO33bwMqQKFQoM6YOnBs7ggAcG7rjPQn0xE8MxgKGwXqvVUPClsFHq59iHpv1kP8oXjEHYiDlZMV6oypA7u6dqU8o+UKTQ6Ff6g/+jXsJ3UoRGW27nQY5+MmqmSmyt+23raw9rBG1NYo1B1dFwpbBeL845Abn4vcpLxzcOZv44Qlh2Ff2D7mbpIltruJKhfb3eYpLDkMe0P2on+j/lKHQhaCRQ0CAGTmqLHqeIjUYRBZtIh1Ech8kIlGnzfSLUu+lIy0m2loPLNxmbYVfyAe6cHpaPBeA9h42iDtdhoi1kXA2s0aTq3zRo3UGlwLtQbX0j0mens0nFo5QaFSIGZnDJp80wQpV1LwYMUDNJnZxDQvUqZWXluJvr59oVAYObkqkRnIyFbj12PM3USVzVT5W2GlQIN3GyD813DcnHQTUAJOrZzg1M4JEI/WY/42zi/XfmFRg2SH7W6iysd2t/laeW0l+jXsx3Y3mQSLGgQA2HT2HmJTs6UOg8hiPVz3EMlXktFoWiNYuz+61DXtRhqyo7Nxc+JNvfXvLb0Hh2YOaDStUeFNQZOtQdQfUWjwbgM4t3cGkHfZa+a9TMTuidWdXBWU9TALiacS0XhmYyQeS4RDcwdYuVjBtbMrwn8NhzpDDZW9yuBx1cWdhDs4fP8wejboKXUoREbbdPYe4tKYu4kqkynzNwDY+9qjyddNoE5XQ+QKWLlYIXhWMOx97Ytcn/m7eIEJgTh6/yh61O8hdShERtvMdjdRpWK727wFJQbh4L2D6OXTS+pQyAKwqEHIztVgxb93pQ6DyCIJIRCxPgLJF5LR8NOGsPHSv0mY5wBP1OhRQ29Z0BdB8B7urTtxMtimWkCoheFdkZR5z1dUDOFrwlH7tdpQ2akgNPmPByBy89fn1JZYeXUlixokG8zdRJWrMvJ3QSqHvA6NrMgsZIRkoOZLNYuMgfm7ZCuurWBRg2QjR83cTVRZ2O6Wj5XXVrKoQSbBG4UTdlwOR0RSptRhEFmkiHURSDyZiPpv14fSTomcxBzkJOZAk513NmPtZg27enZ6/wDA2t1a70Qs8NNAJF9IBgCo7FVwaO6AyC2ReTcqi8lGwrEEJJ5IhEtHw/lBE44mwMrZCi4d8v7m0NQBaTfTkB6Ujth9sbCtY6t3A7XqKiAuAOcjz0sdBpFRdlwOR2QyczdRZamM/A0ASWeT8nJ3dDaSLyYjdF4oXB5zgXMbww4V5u/SXY25inOR56QOg8go2y+F4yHb3USVgu1u+bgRdwMXoi5IHQZZAF6pQVhzKlTqEIgsVvyheABAyPf6c+fWHVcXNbrXKOohRcqOzIY6Xa37vf5/6yPqjyg8+PkB1GlqWHtYo9bLteD+jLve43KTchGzKwaNvnh0Oa1DIwd49vVE2IIwWLlYoe5bdcvz0izSxlsb8Xjtx6UOg6hUzN1Elauy8nduUi4iNkdAnaSGlZsV3Lq6wetFL4PHMX8bb/2N9ehUu5PUYRCV6reToVKHQGSx2O6Wl403N6JjrY5Sh0EypxBFXTNF1caFsAS8vPyk1GEQofsTJ3A5aZfUYVA1Z6Wwwp6X96C2Y22pQyEqFnM3mQvmbjIHKoUKe17aA28nb6lDISrWhbB4vLz8lNRhEKF7lxO4nMzcTdJiu5tMgdNPVXNrOdKTiEgnV+Ti99u/Sx0GUYmYu4mIHlELNX4PZO4m87bmZJjUIRARmQ22u8kUWNSoxqJTMrH7WoTUYRARmZVtd7YhW50tdRhERWLuJiIy9OedP5m7yWzFpGRhb0Ck1GEQEZkVtrupoljUqMY2nbmPHDVnHyMiKig+Mx57Q/dKHQZRkZi7iYgMxWfGwz/UX+owiIq0+ew9ZKs1UodBRGRW4jPjsSdkj9RhkIyxqFFN5ao12HiWl8ASERVl482NUodAZCBHrcGGM8zdRERF2Xxrs9QhEBnIa3ffkzoMIiKztOHmBqlDIBljUaOa2ns9ElHJWVKHQURklq7HXceVmCtSh0GkZ29AJKJTmLuJiIpyNfYqrsddlzoMIj37b0QhIilT6jCIiMzSzfibbHdTubGoUU1tPMPRIkREJfnrzl9Sh0CkZ/M55m4iopJsubVF6hCI9Kw7zSssiYhKsj1ou9QhkEyxqFENhSdm4NTdOKnDICIya/6h/shSc1Q8mYeHiRk4FczcTURUEv9Qf2TkZkgdBhEA4EFCOtvdRESl8A9hu5vKh0WNamj7pXAI3mOUiKhEqTmpOHTvkNRhEAEA/roUDg1zNxFRidJz05m7yWzsuPyQ7W4iolKk5KTg8L3DUodBMsSiRjX016VwqUMgIpKFncE7pQ6BCABzNxGRsXbd3SV1CEQAgD8vPpA6BCIiWdgRvEPqEEiGWNSoZq7cT0RQdKrUYRARycKph6cQmxErdRhUzTF3ExEZ7/TD08zdJLmrDxIRHJMmdRhERLJw6uEpxKTHSB0GyQyLGtUMR4sQERlPLdT45+4/UodB1RxzNxGR8dRCjd13d0sdBlVzf17kFZZERMZiu5vKg0WNaiRHrcGuqxFSh0FEJCucgoqklKPWYOeVh1KHQUQkK3/f/VvqEKgay1VrsIu5m4ioTDgFFZUVixrVyJHbMYhPy5Y6DCIiWQlMCMSt+FtSh0HV1KFb0UhIz5E6DCIiWbkZfxN3Eu5IHQZVU0cDYxDHdjcRUZkEJQbhZtxNqcMgGWFRoxrZcZmXwBIRlYd/qL/UIVA1xZGeRETlw6s1SCp/XWK7m4ioPPaH7Zc6BJIRFjWqiexcDY7c5k13iIjK4+C9g1KHQNUQczcRUfkxd5MUsnLVOHwrWuowiIhk6dC9Q1KHQDLCokY1cSI4FqlZuVKHQUQkSyFJIQhJCpE6DKpmmLuJiMovLDkMwYnBUodB1czJoDikZaulDoOISJaCk4IRmhQqdRgkEyxqVBP7rkdJHQIRkaxxxCdVNeZuIqKKOXz/sNQhUDWz7wZzNxFRRRy4d0DqEEgmWNSoBoQQOHCTJ1dERBVx+B47RqjqMHcTEVUcczdVJSEEDjJ3ExFVCKegImOxqFENXLyXiJiULKnDICKStWux1xCdzjmSqWowdxMRVdy12GuISee9iahqXL6fiGjmbiKiCgmIDUBUGgvEVDoWNaqBfTcipQ6BiEj2BARHfFKVYe4mIqo4AcEpqKjKcOopIqKKExCc+pmMwqJGNbCfc3ITEZnEofu8FJaqBnM3EZFpsKhBVWU/ixpERCbBKajIGCxqWLi7Mam4G5smdRhERBbhbORZpOekSx0GWbiQ2DTmbiIiEzkbcRZpOfxOpcoVEpuGoOhUqcMgIrIIF6MvIiM3Q+owyMyxqGHhjgfFSh0CEZHFyNXk4mL0RanDIAvH3E1EZDrZmmycizwndRhk4Y7e5n3XiIhMJUeTgwtRF6QOg8wcixoW7gQ7RoiITOpMxBmpQyALd5K5m4jIpJi7qbKdDI6TOgQiIovC3E2lYVHDgmk0AqfvxksdBhGRReHJFVUmjUbg1F12jBARmRKv1KDKpNEInAlhu5uIyJROR5yWOgQycyxqWLDrD5ORlJEjdRhERBblVvwtJGYmSh0GWagbEclITGfuJiIypcCEQOZuqjQ3ItjuJiIytdvxt5GQmSB1GGTGWNSwYCeDOX0FEZGpCQicjTwrdRhkoThtJBGR6TF3U2Viu5uIyPQEBGdJoBKxqGHBOK8nEVHl4MkVVRbmbiKiysGiBlUW5m4iosrBKaioJCxqWKgctQbnQjmvJxFRZeDJFVUG5m4iosrDAQlUGXLVGpzj/TSIiCoF291UEhY1LNTl+4lIz1ZLHQYRkUW6l3IPkWmRUodBFoa5m4io8oQmhyImPUbqMMjCXHmQhDTmbiKiShGeGs52NxWLRQ0LdSGMN9MhIqpMV2OuSh0CWZiLzN1ERJXqfNR5qUMgC3OWV2kQEVWqgNgAqUMgM8WihoW6cj9R6hCIiCwaT67I1K48SJQ6BCIii8bcTabGdjcRUeW6GsvBhFQ0FjUs1NUHSVKHQERk0a7FXpM6BLIwV+4zdxMRVSYWNcjUrnJAAhFRpboWw3Y3FY1FDQsUm5qF8MQMqcMgIrJoN+JuQCM0UodBFoK5m4io8t2Kv8XcTSYTm5qFh0mZUodBRGTR2O6m4rCoYYF4CSwRUeVLz01HcGKw1GGQhWDuJiKqfOm56bibeFfqMMhC8CoNIqLKl56bjqDEIKnDIDPEooYFusKpp4iIqgSnsSBTYVGDiKhqBMQxd5NpcNpIIqKqwXY3FYVFDQvEESNERFWD99UgU+GABCKiqsGOETIVtruJiKrG1RjeLJwMsahhgXiTcCKiqsGOETIVdowQEVWNG3E3pA6BLMS1cLa7iYiqwvW461KHQGaIRQ0L8zAxA/Fp2VKHQURULQQnBkOtUUsdBsncw8QMJKTnSB0GEVG1cDv+NnI0/M6linmYmIHYVLa7iYiqQkhSCG8WTgZY1LAwd6JTpQ6BiKjayNZkIzw1XOowSOaCmLuJiKpMtiYb95PvSx0GydztqBSpQyAiqjay1Fl4kPJA6jDIzLCoYWHYMUJEVLXuJt2VOgSSOeZuIqKqFZIUInUIJHPBzN1ERFWK7W4qjEUNCxMcw5MrIqKqxJMrqqgg5m4ioioVksyiBlVMcEya1CEQEVUrwYnBUodAZoZFDQvDESNERFXrbiKLGlQxzN1ERFWLV2pQRXEwIRFR1eJgQiqMRQ0Lw5MrIqKqxY4RqijmbiKiqhWaFCp1CCRzd3mlBhFRleJgQiqMRQ0LkpSeg9jUbKnDICKqVjhihCoiMT2buZuIqIpx+imqiKSMHMSmZkkdBhFRtcJ2NxXGooYFCYpJkToEIqJqJzUnFdHp0VKHQTLFqzSIiKpeSnYKYjNipQ6DZIq5m4io6qXnpiMiNULqMMiMsKhhQXizMiIiaXAaCyqv4GjmbiIiKXD6SCov3guLiEga91PuSx0CmREWNSzI/fh0qUMgIqqWItI4YoTK50ECczcRkRTuJd+TOgSSqbA45m4iIilEpkdKHQKZERY1LEhEUqbUIRARVUuRaTy5ovKJTGbuJiKSAqeOpPJiu5uISBpsd1NBLGpYkCh2jBARSSIqPUrqEEim2DFCRCQN5m4qL7a7iYikwaIGFcSihgVhxwgRkTTYMULlFcncTUQkCV6pQeXFqyyJiKTBogYVxKKGBWHHCBGRNHhyReXF3E1EJA0WNai8opi7iYgkwXtqUEEsaliI1KxcpGblSh0GEVG1xCs1qDxSs3KRwtxNRCQJFjWoPNKYu4mIJMPBhFQQixoWIjIpQ+oQiIiqraSsJGTk8nuYyoa5m4hIOglZCchWZ0sdBskM76dBRCSdlOwUpOekSx0GmQkWNSxEZFKW1CEQEVVrUWm8WoPKhvfCIiKSFq/WoLLi/TSIiKTFKahIi0UNC8ERI0RE0orLjJM6BJKZmBQOSCAikhKLGlRWbHcTEUkrKStJ6hDITLCoYSGSMnKkDoGIqFpLyU6ROgSSGeZuIiJpJWQmSB0CyUxcKqcsIyKSEtvdpMWihoVIyeTNyoiIpMSTKyor5m4iImml5DB3U9kwdxMRSSs5O1nqEMhMsKhhIVIyOdqTiEhKLGpQWTF3ExFJKy0nTeoQSGZSs1jUICKSUnIWixqUh0UNC8ERI0RE0mJRg8oqOYO5m4hISqnZqVKHQDKTynY3EZGk2O4mLRY1LERKFkd7EhFJKTWHHSNUNszdRETS4pUaVFbM3URE0mJRg7RY1LAQvFKDiEhaPLmShp+fH6ZMmaL73dfXFwsXLpQsnrLglRpERNLigAQqK7a7iYikxfthkRaLGgXIumOEJ1dERJLiDcvMw7lz5zB+/HipwzAK76lBRCQtTj8lDTm3u3lPDSIiafGeGqRlJXUA5uzcuXNwdHSUOgyjWGrHSNLprUg8ugbOHQfCvVdeJ1VOQgQSDv+KrAc3INQ5sG/YEe7PTYDKsUax23mwfCzUydEGy506DIBH7/8CAOIPrkRawEEorO3g1mMUnFo/o1sv7dZxpAUcRM0h0038ConIUrBjxDx4eXlJHYLRLHW0J3M3EckFr9QwD/Jqd1tm7iYikgtOHUlavFKjBF5eXnBwcJA6DKOkZ6mlDsHksiICkXJ5L6y9fHXLNNmZiP79S0ChQK1h36H2G/MgNLmI3jYLQmiK3Zb3qAWoN2md7l/NV78BADi26AYASA86g7SbR1Fz6Neo4TcG8XuXQJ2elPecWWlI/Hct3PM7UIiIipKlzpI6BLPi5+eHd999F1OmTEGNGjVQq1YtrFy5EmlpaRgzZgycnZ3RpEkT7NmzR/eYgIAA9OvXD05OTqhVqxZGjBiB2NhY3d/T0tIwcuRIODk5wdvbGz/++KPB8xYc7RkaGgqFQoHLly/r/p6YmAiFQoEjR44AAI4cOQKFQgF/f3906NAB9vb26NmzJ6Kjo7Fnzx60bNkSLi4uGD58ONLT0026jzJymLuZu4lISuwYMQ9yanenWeiVGkmntyJszvOIP7BCtywnIQLRf36D+4uH496CVxCz/Xuo0xJK3I7QqJH47zo8+N843PvxJYT//CYST2yCEOLRc535E/eXvI77S15H8tk/9R6f9fA2In57D0JjeedIRGQa2ZpsqUMgMyGLogY7RkqXqym+U0CONNkZiN31Azz6vgulnZNueVb4DeQmRcOz//uw8fKFjZcvPAe8j+yIIGSGXS12eyoHV6icauj+ZQSdhZWbN2zrtwUA5MTdh139trD1bgrHVj2gsHFAblIUACDh8Go4d+gPK5ealfuiiUjWcoVlNnIrYs2aNfD09MTZs2fx7rvv4r///S9eeeUVdO3aFRcvXkTv3r0xYsQIpKenIzExET179kSHDh1w/vx57N27F1FRURg6dKhuex999BGOHj2KHTt2YN++fThy5AguXrxoklhnzJiBpUuX4uTJk7h//z6GDh2KhQsXYuPGjfjnn3+wb98+LFmyxCTPpZWjFqWvJCPM3UQkNzkay7zavbzY7i5ddq5ltbsB0w5ISD6zDSmX98D9ubdR583lcOsxGsln/0TKhV0AgOzoECQd3wDPgR/D84WPkHhsPbJjQgHkFUTi/H+Ce59JUChVlfmSiUjGmLtJSxZFDYAdI6XJ1VhWx0j8/uWwb9wJ9r7t9ZYLdd6Xl0JlrVumUNkACgWyHlw3attCnYO0G0fg1O45KBQKAICNV0NkRwZBnZmKrMggiNwsWNWog8wH15EdFQznji+Y5oURkcXK1bCoUdh//vMffPHFF2jatCmmTZsGOzs7eHp64q233kLTpk3x1VdfIS4uDlevXsXSpUvRoUMHfPfdd2jRogU6dOiAVatW4fDhwwgMDERqaip+/fVX/PDDD3j22WfRtm1brFmzBrm5ptnv33zzDbp164YOHTpg3LhxOHr0KJYvX44OHTqge/fuGDJkCA4fPmyS59KytAEJzN1EJDfM3YbY7i6ZpbW7TT0gISv8JuybdIFD406wcq0FxxZPwd63A7IjAgEAOXEPYO3lC3uf/8Detz2svXyRE/cAQF5BxK5+a9h6N6vcF01EspajZlGD8sjmnhrajhEAmDZtGr7//ntdxwgAfPXVV1i+fDmuXr2KAwcO6DpGtFatWoX69esjMDAQderUwa+//or169fj2WefBZB38lavXj2TxKrtGAGAcePGYdq0aQgODkajRo0AQNcx8sknn5jk+QBAbUGjPdNuHEV2ZDC8Ry0w+JttnRZQWNsh4chquPUYCQgg8ehvgNBAnVrypbBa6YGnoclMhWObZ3XL7Bt1hGNrP0SueR8KKxt4DngfSmtbxPsvg8eA95FyaTdSLv4Nlb0L3Pu8AxsvH1O9XCKyEOwYMdSuXTvdzyqVCh4eHmjbtq1uWa1atQAA0dHRuHLlCg4fPgwnJyeD7QQHByMjIwPZ2dno0qWLbrm7uzuaN29u8lhr1aoFBwcHXd7WLjt79qxJnksrl7mbuZuIJKUWnOKmMLa7S6axsKJGwQEJSSc365aXNiCh8AAGLdu6LZFyeS9y4sNh7V4X2dF3kfngBmr0HAcAsPHyRW5COHKTowEB5MaHw8bTBzkJEUi9dgDeoxZW2msloqqjUqjy/ilVUCmU+b8rYaVQQalQ5v+ct1wJRf7PSqighArI/zlvuRLI/1kBFRSoa8crsSmPbIoa7BgpmaWMGMlNjkH8wZWo9erXUFjZGPxd5eAKr0GfIn7fsrxLWBUKOLbqAZtajYH8kZulSb26D/aNOsLK2UNvudtTr8Ptqdd1vyce3wg73/ZQKFVIOrUFdcb+hIygs4j7Zz68Ry+q2AslkiEFFHknHfknHMr8f3nLFHonKEooHq2j/RkKqBQKKKHM/z/vpESZf3KS93c8Wg7tzwX/z0tcSpG/rgBUEHnrCujWUQlRxP8i738hCizXFPhdA5Umfz2NJv9vmvzHaKDSaPLXyV+uEVAKtW49OyVHjBRmbW2t97tCodBbph1xr9FokJqaihdeeAFz5swx2I63tzeCgoLK/PxKZd4FqQXncc7JKfp9KhxXUbFrTHxlhaVcqcHcTURypea8/QbY7i6ZpbS7gcoZkODyxBBostLxcOXbgFIJaDRwe3oEnFo/AwCw9qwPt6dHImrLlwAAtx6jYO1ZH1GbP0cNvzHICLmIpBMbAaUV3HuNh139NpXy2olMSdtOzuvA13biKx917Cvy/m5VoK2s14mf3x7O+z+vMz+vEx+6drIVkL8cUOW3e1XIbxvnL7OCgEoASiF0P6vy28Cq/Hatla5tK2AlNHl/12igym/XqjQCKk3ez1b5/ys1algJdd5yjTpvfU0uVOpcWAk1lBo1VJpcWKlz8x9bybnVqwXwXOU+BcmDbIoa7BgpmUZYxslVdmQQNOmJiPjtvUcLhQZZ968j5eLfaPDhX7Bv+BjqTvgF6vQkKJQqKO2ccH/pG3Bwq13q9nOTopEZdgVegz8rcb2cuPtIu3EY3qMXI/XqftjVawOVgyscWnRH3J5F0GSlQ2krj5vZVWf6ne6POuJVUOr/btDxrnrU6a7XGf+oE/5Rx3vBjnj9DnldBzuK7oTXnowohSjh/wKd8Hod8xr9DnpRTCe80MAq/0REmX8yoxTq/L+pH3XMa7QnI2r9v6vVur8rYBnfM5XHuvRVqFiPPfYYtm3bBl9fX1hZGZ6eNG7cGNbW1jhz5gwaNGgAAEhISEBgYCB69OhR5Da9vLwAABEREejQoQMA6M3RLTULSd3M3WS28grrSkABKKGEIj9/KxRKKPL/rlAooIB2ef7P+f8X+TcooFAgf7287eT9BbrzA+i2kXdeUPDvup/z/1co9NcxfAx0z6EE9J8vf11A6Lb3aJ1H8wwrhXabosD2835WCMPHKITQ25YSAPIHA+QtE1CI/L8Jkbc/8v/+6LEi/2dF/t+0z5f3s1Lkb1ORt54yf3sKoSmwnbzzHO3PivzHKfKXPXoOTf5yTX6seQMW8p5Dk/98eevpHis0UEDAGhyQUBjb3SWzlHZ3ZQ1ISL95DGk3jsDzhQ9h7eWD7Ki7SDi4EionDzi1zbtax7lDfzh36K97TOq1g1DY2MO2bguEr3wb3iPnQ50Sh9idc1F3wq9QWPEc29xo29lWBUfjI78TX5k/Gj+/LW0wGj9/+aNO/LwR+Np2tJXeYLb8Tnwo8jrmkd+RLx4NZDPsvC/8TwMr5H3vW2m0nfuaRx35+Z372javlXZwmyY3r1Nft15eJ75KkwsrTf7f839Xsp1ctSzke5gqTjZFjbKojh0jlsLO5z/wHrtUb1nc7kWw9qgHly4v690wTOXgCgDICLsCTVoSHJp0QWlSr+2HysEV9o07FbuOEAJx/j+hRs83obSxB4QGQjutjPb/Em6ORuXzaroGU3M9HnXOG3TC5/8T4lHne/4oAGX+iUbh5URViidXFTJp0iSsXLkSw4YNw8cffwx3d3cEBQVh8+bN+OWXX+Dk5IRx48bho48+goeHB2rWrInPP/9c1/lRFHt7ezzxxBP4/vvv0bBhQ0RHR+um1CDTYe6uvl5N1+D9XI/8DmttZ3F+R3PBzmldB7WmwHp5Hc8osJ5SaB49Vvu3/J8VhR5bcD2F0Oj9zM4FMprCTuoIZI3tbvmqrAEJCUdWw/WJIXBslff+2nj5Ijc5Gkmnt+qKGgWp05OQdGIjag2fg6yHgbB2rwNr97qwdq8Loc5FTkI4bArcwJwqbmi6wNRcd71R99pOfStNbv4o/IKd+Or80fj5I/M52I2kxnN6ymeRRQ12jMiX0tbB4KRFYW0LpZ2zbnnq1f2w9qgPpYMrsh7eQsKBFXDu9CKsPR7NzRq1+TPYN30SLgVuEiqEBqnXDsCxzbN6HSyFpV7xh8reRdfRYlu3JRKPb0RW+C1k3L0Aa48GejdRI9NomhGH5vcvSR0GUQXw5L4i6tSpgxMnTuCTTz5B7969kZWVBR8fH/Tt21eXn+fNm6cbFers7IypU6ciKSmpxO2uWrUK48aNQ8eOHdG8eXPMnTsXvXv3roqXVCpLOWKYu6uvZhmxaMbcTVRtVcd2t5GzJpq9yhqQIHKyAIX++6tQKIvthEw49AucOw2ClYsnsiMDIdQFBqZp1ICFTNVpTppkxqPl/ctSh0FUAZbSiqKKssiiRnXsGKlOcuLDkfDvGmgyUmHlWhOuTw6Fc6dB+uskRMI2I1lvWWboZaiTY+DUrvjJ99RpCUg69TtqvzFPt8y2TnO4dB6M6D9mQungCs8B75v09VAeFXhlBZElOXLkiMGy0NBQg2UFp5do2rQp/vzzz2K36eTkhHXr1mHdunW6ZR999FGJz9GyZUucPHmy2Of08/PT+x0ARo8ejdGjR+stmzFjBmbMmFFsbOVhIf0iRmHutkxWzN0kd5bSQy0Rtrvlq7IGJNg36Yykk1ugcvGCjWcDZEcFI/nc9iLzeEbIJeTEh8MjP0fb1G6G3PgHyAg+j9yUWECpgpV73crZAdWYEiwUkcwpih/oRNWLQhRuyZMstZnuj9SsXKnDICq3w01+R8MH26UOg6j8arcF3j4udRQkI22n+yOFuZtk7GiTzfB5sFPqMIjKr2YrYOIpqaMgGWn11V6kZ1tmQTdy46ewqdkI7r3GAwASjvyG1IADugEJzu37wbnTIN19VQDgwfKxcGr7LNyeeh0AoMlKR+Kx9Ui/cwqa9CSonNzh0LIH3Lq9BoXq0b0xNDlZiPhtMrwGfgKbWo9u7p5yxR+Jx9ZBobKGe++JcChh6kkqnwNNt6HJ/W1Sh0FUft7/ASb8K3UUZAYs8kqN6sjOWsWiBsmaFXj8ksxZ2UsdAcmMnY2KRQ2SNRVzN8mdFe+pQWVjb62y2KJG7eHf6/1ew280aviNLvEx9f67Su93pa0D3HuN1xVGiqO0tkXdt342WO78nz5w/k8f4wKmclHyfgQkd2x3U77iJ7MkWbG34VtJ8qYU7BghmbPmyRWVjb01L50mebNi7ia5s3GUOgKSGXsb5m6SN04/RbJnzQEJlIc94RbCwZoX3ZC88Z4aJHvWDlJHQDLDogbJnYpFDZI7FjWojBxY1CCZY1GDZI9XalA+FjUshB1PrkjmVIJFDZI5XqlBZcTcTXLHqyxJ9jgggcrI3oaDCUneWNQg2eOVGpSPRQ0LYW/Nt5LkTcmiBskdO0aojJi7Se54pQbJng1zN5WNA6+yJJlju5tkj1dqUD62pi2EA0eMkMxxtCfJHkeMUBlx+imSO6UmR+oQiCrGmtNPUdlw+imSOyWnfSa5Y7ub8rGoYSHYMUJyx6IGyR6nn6Iy4s1GSe6Yu0n2eKUGlZGDLQcTkrwpBaefIpnjlRqUj0UNC8GOEZI7XgZLsmfjJHUEJDO8ypLkjkUNkj3eKJzKiNNPkdwpeE8Nkjs7V6kjIDPBooaFcHe0kToEogphxwjJnoOH1BGQzHgwd5PMcfopkj0bZ6kjIJlxsuOABJI3XqlBsufIdjflYVHDQrBjhOROqWFRg2TOqabUEZDMeDgxd5O8MXeT7Dl6Sh0ByYynk63UIRBVCAcTkuw5ekkdAZkJFjUsBE+uSO4UPLkiuePJFZURczfJnYJXapDcOdWSOgKSGS9n5m6SN04/RbLHdjflY1HDQnjy5IpkjqM9SfYceaUGlQ2LGiR3HJBAsseiBpURixokd5x+imSPRQ3Kx6KGhfDkFBYkc+wYIdlz4skVlQ2nnyK545UaJHucOpLKiO1ukjuFUEsdAlHFcOpIyseihoXw4mhPkjkFr9QgOVPZAnauUkdBMsPcTXKnULOoQTJmZQfYu0kdBckMr9QguWNRg2RNaQ3Y15A6CjITLGpYCHdHGygUUkdBVH4sapCs8RJYKgfmbpI7XqlBssZpI6kcPBxtoWTuJhnj9FMka7xKgwpgUcNCWKmUqOHAS2FJvljUIFnj1FNUDlYqJdzsraUOg6j8mLtJzpx5Pw0qO5VSAXdHtrtJvhTglRokYyxqUAEsaliQmrwUluSM99QgOXOqLXUEJFO1XOykDoGo/NTZUkdAVH68STiVkyenjyQZU/BKDZIz1wZSR0BmhEUNC1Lf3UHqEIjKjVNYkKy5N5Q6ApIpHw/mbpInlULDjhGSN2dvqSMgmapXw17qEIjKjffUIFlju5sKYFHDgviyY4TkTMOTK5Ix90ZSR0Ay5evhKHUIROVipxJSh0BUMR6NpY6AZMqHuZtkTMF2N8lZDV+pIyAzwqKGBeHJFcmamldqkIxxxAiVUwMOSCCZclCyU4Rkzp1FDSofX0+2u0m+eJUlyRrb3VQAixoWhFNYkFwpFIKXwZK81eDJFZWPjzs7Rkie7FXsFCGZ45UaVE4NOZiQ5IztbpIztrupABY1LAinsCC5slOyY4RkTGkFuPlIHQXJFAckkFzZKTn9FMkYczdVAHM3yRkHE5JsKVSAG28UTo+wqGFB6rjZw1qlkDoMojJjxwjJmmt9QGUldRQkU8zdJFf2KnaKkIy5NWDupnKr62YPGyt2pZA8cfopki3XeoDKWuooyIwwE1sQlVKBejU4aoTkh1dqkKxxXk+qAOZukivmbpI13k+DKkCpVKB+DXupwyAqH5ErdQRE5cN2NxXCooaF4aWwJEe27BghOXNvJHUEJHPM3SRHdrxROMkZ76dBFdSQNwsnmVJo2PYmmWK7mwphUcPCNK3pJHUIRGVmx5uNkpx5Npc6ApK55rWcpQ6BqMx4o3CSNV6pQRXEogbJFu+pQXJVq7XUEZCZYVHDwrSu4yp1CERlxis1SNa820kdAclcqzouUodAVGa2vFKD5KxmS6kjIJlr6c3cTfLEG4WTbNVmu5v0sahhYdgxQnLEogbJlkIJ1GojdRQkc63YMUIyZKtg7ia5UnBAAlVYm7ocTEgypWFRg2RIoeSVGmSARQ0L09jLCXbWfFtJXljUINlybwTYcto/qphGzN0kQ7xROMlWDV/Ajh3SVDFsd5Ns8UoNkqMaDQEbTvtH+piFLYxKqeDc3CQ7NhztSXLFS2DJBJi7SY5sOP0UyZX3f6SOgCyASqlA89q80pJkiFdqkBzVbit1BGSGWNSwQK14Xw2SGV6pQbLFkysyEU4fSXJjq2CnCMkUixpkIq2Zu0mOeKUGyRHb3VQEFjUsEDtGSG5Y1CDZ4pzcZCK8rwbJjR2v1CC5qtNe6gjIQrThYEKSIYVg25tkiDMkUBFY1LBAHDFCcmPDogbJVW2O9iTT4IAEkhtrsKhBMuXdXuoIyEKw3U1yw3Y3yRav1KAisKhhgVrWdoGVUiF1GERGs+U9NUiOnL0BJy+poyAL0crbFdYq5m6SD04/RbLkWh9wcJc6CrIQzWs7s91NsmKtFFKHQFR2TrUBF2+poyAzxKKGBbK3UXHUCMmKDTtGSI7qd5Y6ArIgebmb01iQfPBG4SRLvJ8GmZCdtQotOX0kyYiNgkUNkiGfJ6WOgMwUixoWqnNDjkAi+bBmxwjJkU83qSMgC8PcTXJizQEJJEc+XaWOgCwMczfJCa/UIFliu5uKwaKGherky5Mrkg9OP0WyxI4RMjHmbpITG95Tg+SIHSNkYixqkJxYs91NctSAV2pQ0VjUsFCdG7pDwek9SSY42pNkx84NqNla6ijIwnTyrcHcTbLBqSNJduxcgdrtpI6CLExnX7a7ST5sWNQgubFzBWq2kjoKMlMsalgoNwcbNK3p9P/27jvOyvLO+/j3Pn16rzAFptLBYRg6A9JEERULoogKgj2WJJs1+2SfJLubxH2SmGgSNa4tGjWaWGJPohAxatREsxoLdhABQarMwJTz/HEQGQWmcM657vJ5v168SFhgvtmXzve+zu++rst0DKBHeLiC45SPlXxUKOKL7oaTBNVuOgLQO+Xj6G7EXU5aSLWFGaZjAD0S5FsgnKaMdTcOjn8yXIytsHAKtsHCcTi+AgnCEVRwCnZZwnHobiRI00C6G84Q9LHuhsNw5DMOgaGGi/HBCJwixNuecBo+GEGC8EICnCLInRpwmsqJphPApehuOEXQ4qJwOAxDDRwCQw0XaxqQZzoC0CMB3hiBk4TSpZIRplPApfhgBE7B8VNwlHAm3Y2EobvhFJyQAEcJpEilo0yngI0x1HCx4qwIZ3PDEXjbE45SPlbyB0yngEuVZKWoroizuWF/AbobTlI+VvL5TaeASxVmRFTNuhsOEPKxUwMOMmCS5A+aTgEbY6jhctPqC01HALrFGyNwlJqZphPA5ZrrC0xHALoVtNipAQcZMMV0Arjc1Dq6G/bHCQlwFNbd6AZDDZebylADDsBODThK7SzTCeByU+vobthfIMpQAw5Sd5TpBHA51t1wgoDYqQEHYd2NbjDUcLnRFTnKjHBMCuwtYDHUgEMU1Es5laZTwOXobjgBx0/BMfJqpLwq0yngcmMqc5VBd8Pmghw/BacoGCRll5tOAZtjqOFyAb9Pk2rZCgt744MROAZviyAJAn6fJtXQ3bA3Pzs14BTs0kASBPw+TWbdDZsLiOOn4BC1HD2F7jHU8ACOsYDdcfwUHKN2tukE8AiOsYDdBcRQAw7BUANJciTdDZvjonA4BvdpoAcYanhAc12BLMt0CuDg2KkBR4hkS2VNplPAI+hu2B07NeAIKbl0N5Kmua5QProbNua32KkBB4hkSWVjTaeAAzDU8ID89LCG9882HQM4KO7UgCNUT5d8ftMp4BH56WEN75dlOgZwUH52asAJambS3Uia3LSQRpZlm44BHFTQYqcGHKBqmuTnjiJ0j6GGR8waUmQ6AnBQgShDDTgAR08hyWYPLTEdATgofydDDThAHd2N5DpyEOtu2FeAoQacoG6O6QRwCIYaHjF3eKnpCMBB8bYnbC8Q4ZJwJN3cEQw1YF90N2zPH4rtsgSS6JjhdDfsixMSYHuBFIYa6DGGGh5RlpvKVljYVkCc7Qmbq5kpRTJNp4DH9M9J1ajybNMxgAPyd7aZjgAcWs1MKZxhOgU8piIvTSNYd8OmOH4Ktlc3Wwqnm04Bh2Co4SFzR7BbA/bE256wvWEnmU4Aj2KnJezKx0XhsDu6G4Ycy7obNhXgonDY3dATTSeAgzDU8JC5w0vks0ynAL7ML7bBwsYiWRw9BWOOobthUww1YGvhLKnuKNMp4FGsu2FXDDVga+EsqWaG6RRwEIYaHlKYGdGYAbmmYwBf4ueicNjZoLlSIGw6BTyK7oZd+bgoHHY2mO6GOYWZEY0dmGc6BvAlHPsMW2PdjV5iqOExx47oZzoC8CV+3vaEnXF8BQzj+EjYkS/KnRqwsWEnm04Aj+MIKthRgDs1YGfD5ptOAIdhqOExRw0tVtDPXljYC8dPwbbSi6XKyaZTwOPmDC1RgHMsYDMWOzVgVxmlUuUk0yngcUcNK1HIz8ctsBeOn4JtpRVKA6aYTgGHoWU9JictpCm1haZjAF34OH4KdjX0BMlHVcKsnLSQptbT3bAXXyc7NWBTw+bT3TAuKyWoKXUFpmMAXfgZasCuhhwn+fymU8BheNrzoIVNZaYjAF1w/BRsa/gpphMAkqSFY8pNRwC6YKcGbIvuhk2cPJp1N+wlII6fgk2NWmQ6ARyIoYYHNdcWql92iukYwD4+hhqwo5KRUulI0ykASdKU2gK6G7ZisVMDdlQ8LPYDsIFp9YUqyYqYjgHsE+DYZ9hR6SipZLjpFHAghhoe5PNZvDUCW+H4KdhSw5mmEwD7+HyWTmmku2EjDDVgR6PPNp0A2MdPd8Nm/FwUDjs6YrHpBHAohhoedUpjmfxcOgqbYKcGbCeULg07yXQKoAu6G3bCTg3YDt0NGzp1TLkCdDdsgovCYTvBNGnYiaZTwKEYanhUcVZE07h0FDbBUAO2M+xEKZxuOgXQRVFmRFPr6G7YRAfdDZsZdpIUzjCdAuiiKJN1N+yDi8JhO8PpbvQdQw0P49JR2AVDDdhO4zmmEwAHtLCJYyxgE+zUgN00LjGdADig08ZWmI4ASJL8XBQOu2lcajoBHIyhhodx6SjswupkqAEbKR8vFQ81nQI4oObaQrobxgV9UVlR3vaEjZSP54Jw2NbkmnyV5dLdMI+LwmErZWPpbhyWgOkAMMfns3Ta2HJd+egbpqPA49x+Ufj3ntqt373eptc3dSolYGl8mV8/mB5WXb5/3+9pvvlTrXy/6/8fljcEde0xB18AnXlfi255ueubsrOq/Hr09DRJ0u72qJb+vlX3v96m4nSffn50RNMHfv5t/7+f3q0PtnXq6jkssroYw9sisC+fz9KicRX6/iOvm44CD4v46O2+9Pb+zn2wRde92KYfzwrrkrFhSfT2YWlaZjoBcFCWZWnhmAr94FG6G2b55e4XEuhvh2GXBg4TQw2PO62pQj974i19usfdi1PYm9t3aqx8v10XNIbUWOpXe6d0xRO7NfO2Xfrn+elKC31+ceA5RwT1nanhff89Ndj9pYKzq/26ad7nD0dh/+d/5voX2/Tiug49syRNj7zVroW/bdGGr6bLsiy9u6VTv/xbm15Ylhan/5UukVEiDTrWdArgkBY2leuaJ97Szt3u/t4J+0r1u/tDkUT2tiTd+1qbnl3bodKMrr+f3u6jjFKpfq7pFMAhnTqmTFc/sVq7WHfDIL/l7uOn6G8HyewvDTnOdAo4HMdPeVxWSlALuFsDhlkuv1Pj0dPTdObIkIYU+jWi2K+b50X0wbaoXvyo66ImNWipON2370dmuPuHq7C/65/JSfn8z7y2qUPH1gU0pNCvCxpD+nhXVJt2xR5kz3uoRT+YHu7R1/CUsedL/qDpFMAhZUaCOnUMd2vAnBSfu4caieztD7d36qJHWnX7CSkKfmElRm/30Zilkp939WBv2akhndJId8Msn8t3atDfDjKOdTcOH0MN6OyJAxTw8Q0W5rh9p8YXbdsd+zk3peu/d7f/b5vyr9yhoT/fqX/9Y6t2tXX/Js2K99pV+N87VHfNTp33YIs27/r8QXVEkV+rPuhQS1tUj73drpJ0S/mplm7/R5siAUvHD+IhootItjT6LNMpgB45e+IABf10N8yIuHynxhfFq7c7o1EturdFXxsf+8Dli+jtPghncXwFHGPppIGsu2GU1+7UoL9tKpItHbHYdAq4AK+0QP2yU3TM8BLd99I601HgUVZnW/e/ySU6o1Fd8mirJpT5NXS/B6KFw4KqyPKpNMPSPzZ06l/+2Ko3Nnfqd6ekHvTvml0d0AmDAhqQ7dPbWzp1xZ9266jbd+mZJWny+yydPSqof2zo0OCf71R+qqXfnJSiLa3St1a0asXiNP3bE62685U2VeX6dOOxKeqX6fE5d+NSKZxhOgXQIyVZKTpmeKnu/fuHpqPAg1L9nZJH3keIZ2//YNUeBXzSxU2hA/7f6e0+aFwiRbJMpwB6pF92iuaOoLthjtvv1Ngf/W1jjUulcLrpFHABhhqQJC2fUsVQA+Z0eueNkQseatUrGzu06uyuZ2oua/j8AWlYkV8lGZaOvHWX3v6kU1W5B37oWTA02OXPDC/yq+qnO7XivQ4dOTCgoN/Sz47uehnZWfe36OIxIf19fYfue71dL5+briuf3q2LH23Vb08++IOc6wVSpLHnmU4B9MqyyQP5YARGhF1+Ufj+4tXbL67r0E+e26O/LU+TZR34TW16u5cCKbFjIwEHWT6F7oY5frn7To390d82FYhITeeaTgGX8Ph4EJ8ZVJKpSTX5pmPAo7yyU+PCh1v04Op2Pbk4Tf27eTujqV/sbZK3Pun52zQDc3zKT7UO+meefLddr27s0IVjQlrxXofm1ASUFrJ08pCgVrznnQ+oDmjU6VIa3wPhLHQ3TIlY3uiMePb2Ux+0a+OnUZX/eKcC39muwHe26/1tUV3++G5VXrXjgH+G3u7GEYuk9ALTKYBeqS/OVHMd/9zCDJ9Hjp+iv21s5Gl0N+KGnRrYZ/nkKj21epPpGPAil9+pEY1GddEjrbr39XatWJyqATndz5NfWh972CnJ6Pm5u2u3d2rzrugB/0xre1QXPBy72Mzvs9TRKUX3vqjT1il1dHrnrZ0v8QWk8ReZTgH0Cd0NE9x+p0YienvR8KCmD+y69Jp12y4tGh7UWSO/fNY2vd0NX1Aaf7HpFECfLJ9cpRVvfGw6BjzIb9HfX0R/J5HlZ92NuGKnBvaZWJOvUeXZpmPAi1w+1Ljg4Vbd9o82/fqEFGWELa3f2an1OzvVsvdCsrc/6dR3V+7Wi+s69N7WTj3wRpvOuK9FkytiR0p9pv6anbr3tdiulp17ovra4616dm273tvaqT+90655d+5Sda5Ps6q+PK/+7srdmlMT0KiS2N83odyv373epn9s6NA1f92jCeUennEPOUHKqTCdAuiTiTX5Gl2RYzoGPCbsc/eHIono7bxUn4YW+rv8CPqk4nRLdflfvnSU3u7GsJOk7DLTKYA+GVeVp5Fl2aZjwIP8UXfvEqC/bW7wPCl3gOkUcBEP/9uEA/nqzDqddsNzpmPAYyyXDzV+8ULsgaj5ll1dfv2meRGdOTKkkF/647vtuuq5Pfp0T1RlWT7NHxTUv00Od/n9b2zu1LbdsQcyvyX9Y2OHbnm5TVtboyrNsDSzKqDvTg0rHOj6lskrGzv0m3+266Xln58neuLggFa8F9Ckmz5VXZ5Pv57v1XM9LWnipaZDAIfl8pl1OvWXz5qOAQ+JuPxOjUT0dm/Q292wfHQ3HO+yGbU648a/mo4Bj/G5/KJw+tvGLJ805eumU8BlrGg06uG9TziQU69/Vs+8s9l0DHhExNeh10OLTMeAVw07SZp/g+kUwGFb+Mtn9Ze36W4kx+LSD/XtT75mOga8avBx0sm3mE4BHLYF1z+jZ9/5xHQMeMjDNb/X4DV3mI4BLxq+QDrhOtMp4DIcP4Uv+eqsOtMR4CFhP3NVGOILSlO/aToFEBeXz6S7kTxhl+/UgI35AtKR3zKdAoiLr7HuRpK5facGbMoXlKb+q+kUcCGGGviShoocTasvNB0DHhFx+bncsLGGxZzpCddoqMjR1LoC0zHgEWGLoQYMOeIMKa/KdAogLhoqcll3I6kYasCIhjOlnErTKeBCDDVwQJfPrJVldf/7gMPl9stGYVPBNGkyZ3rCXS6fWUd3IylCFt0NA4Jp0pRvmE4BxNVX6W4kEUMNJF0wVZrMkaVIDIYaOKAhpVmaM7TEdAx4QMTH8VMwYOy5UkaR6RRAXA3tl6XZQ4pNx4AHcPwUjBh7Ht0N1xlcmqmjh7HuRnL4RX8jyZpYdyNxGGrgoC6dUSu/j9dGkFh8MIKkS8mRJnzFdAogIS6fWasA3Y0EC3H8FJItNY/uhmtdPrOO7kZS+KLs1EASRbLobiQUQw0cVHVhuk5rKjcdAy4XZqcGkm3ipbEHLMCFqgsz6G4kXMhqNx0BXjPpcimSaToFkBAD8tN0cmOZ6RjwAI6fQlJN+IqUkm06BVyMoQYO6bIZtcpODZqOAReL+HmwQhJllUtjlptOASTUZTPqlEN3I4FCHF+BZMoqlxqXmk4BJNRXZ9YpK4XuRmJZDDWQLNkV0tgLTKeAyzHUwCFlp4Z02Yxa0zHgYhxhgaSa9Z9SMGI6BZBQWalBuhsJFeLoSCTTjP8rBcKmUwAJlZsW0qXTa0zHgMv5o/Q3kmT291h3I+EYaqBbpzVVqL44w3QMuFTYx9siSJKqadLgY02nAJJiId2NBAqyUwPJMmCKNHS+6RRAUiwaV0l3I6Es7tRAMlRPl+qPNp0CHsBQA93y+yx9a+5g0zHgUgw1kBT+kHTUf5tOASQN3Y1ECoo7NZAE/pB09A9NpwCSxu+z9O9zh5iOARfjTg0knD8kzf6B6RTwCIYa6JHxVfk6amix6RhwoZDFgxWSYNwFUn616RRAUo2vytfsIXQ34i/I0ZFIhnEXSPkcxwNvGVeVp6OHlZiOAZfysdMSiTb2PNbdSBqGGuixK+YMUjjAPzKIrzDnciPRMvtLk79mOgVgxDePprsRfxw/hYTL7C9N/rrpFIARVxw9SClBv+kYcCFfJ/2NBMoopbuRVKxy0WNluam6cCoTV8QXOzWQcLP+QwqlmU4BGFGWm6qLj+RNZ8QXx08h4WZ/Twqlmk4BGNEvO0XnN1eZjgEXsjh+Cok087tSON10CngIQw30yrnNVVxehrgKsVMDiTRgijTkeNMpAKOWTx6oQSWZpmPARQIcP4VEqp4uDT7WdArAqOVTqlRbxIeDiC9flP5GglROkoadaDoFPIahBnol6PfpyhOHy++zTEeBS7BTAwkTTJWO+bHpFIBxAb9PV86nuxE/gSg7NZAggYh01JWmUwDGhQI+XXniCLobccVODSREME069mrTKeBBDDXQa8P7Z2vJxAGmY8AlgjxYIVGO/JaUx9Z9QJKG9c/SUrobccLxU0iYqd+ku4G9Rpax7kZ8WVHW3kiAI78l5fK9CsnHUAN9ctmMWlXmcc4tDl/Ix4MVEqB8vNR0rukUgK1cSncjTvxcFI5EKBsrjbvQdArAVi6bUasB+dwNh/jwsdMS8VY+XmpabjoFPIqhBvokEvTreycMl8VuWBymIOdyI96CqdK8a8Q3KKAruhvxEmCnBuItmCod93PJx/IU2F8k6NcP5tPdiA92aiCuAimsu2EUT43os3FVeVrQWG46BhwuxFAD8caxU8BBxbq7zHQMOJyfNz0Rb3Q3cFBjBuTq9KYK0zHgAgw1EFdH/h+6G0Yx1MBhuWJOvfplp5iOAQcLcKcG4oljp4BuXTFnkPrn0N3oOy4KR1xVTKS7gW584yjW3Th8VpQXChEnZU1S03mmU8DjGGrgsGREgrpqwUj5fWw3Q99w/BTiJpgqHfcztr8C3ciIBPUTuhuHgZ0aiJtgGt0N9EBaOKAfnjxCVDcOBzs1EBeBiDTvZxwZCeP4JxCHrbEyVxdOrTYdAw4V5LJRxMuM70i5A02nAByhoSJXF02ju9E3fu7UQLzM/I6UU2k6BeAIYwfm6QLW3TgMFi8lIB5m/ZeUX2M6BcBQA/Fx8ZE1Gl2RYzoGHIidGoiL+mOkMeeYTgE4ykXTatRYSXej93ydfCiCOKg9Shq9xHQKwFEumV6rBtbd6CN2auCwDZ4nNdLdsAeGGogLv8/SVQtGKjMSMB0FDhO0eLDCYcouj21/BdArfp+lH58yUhl0N3rJH20zHQFOl1UmHfdzjp0Cesnvs/QT1t3oI+7UwGHJLpeOvdp0CmAfhhqIm/45qfrP44eZjgGHCXCEBQ6HLyideJOUkm06CeBI/XNS9V90N3rJx4ciOByfdXdqrukkgCP1z0nV9+cPNx0DTkR/o698gVh3R7JMJwH2YaiBuJo7olQnNfQ3HQMOEhA7NXAYjvw/Uv/RplMAjjZ3RKnmH0F3o+d8nMmNw3Hkt6SyRtMpAEebM6xECxrLTMeAw1idDDXQR9NYd8N+GGog7r49b4iqCtJMx4BDBLgoHH1VM1Maf7HpFIArfGfeENUWpZuOAYfwdXL8FPqodrY0/iLTKQBX+Pe5Q1RdSHej5zh+Cn1SdaQ04SumUwBfwlADcZcaCuj6M0YrI8w5n+geQw30SUapdNy1nMUNxElaOKDrFo3mfg30CBeFo08y+0vH/YLuBuIkJeTXtacfoXTW3egpLgpHb6UXScdfR3fDlhhqICGqCtL141NG8n0P3QpYfDCCXvIFpRP/R0rLM50EcJUB+Wn68cl0N7pncVE4essXkE7iHg0g3qoLM/TDk0fQ3egZdmqgN/wh6eRbpfQC00mAA2KogYSZPrhIF0+rMR0DNufnwQq9NedKqWK86RSAK9Hd6AmOn0KvzfovqWyM6RSAK80aUqyL6G70AMdPoVfm/D+pfKzpFMBBMdRAQl0yvUbTBxWajgEb4/gp9ErjUmn02aZTAK5Gd6M7FsdPoTcazpKalptOAbjapdNrNH1QkekYsDsuCkdPNZ4jNSw2nQI4JIYaSCjLsvTjU0ZqIBeH4yD8DDXQU5WTpNk/MJ0CcD3LsvSjU0ZqYD7djQOz2KmBnqqcJM35b9MpANezLEtXLRjJxeE4NIYa6InKSdLs75tOAXSLoQYSLiMS1PWLGrjADAcUiPK2J3ogpzJ2nqef7yNAMmRGgrpuUYPSQn7TUWBDVgdDDfRAzoC93R00nQTwhPRwQNcvalBGhOdlHATHT6E72RWsu+EYDDWQFNWFGfrJgpHy+7jBDF351Gk6AuwulCGdeheXiwJJVlOUoasXjqK78WUcP4XuhDOlU++ku4EkG1iQrp8uGCWqGwfETg0cSihdOvUOuhuOwVADSXPkoCJ9Z94Q0zFgM37xwQgOwfJJ82+QCutNJwE8aVp9kb47b6jpGLCbjj2mE8DOLL904o10N2DI1PpC/ftc1t3oyrKishQ1HQO2ZUnHXysV8b0DzsFQA0l1WlOFzm+uMh0DNuLn+CkcyvRvS3WzTacAPG1hUzndjS64UwOHNOM7Us0M0ykAT1s8vlLLpww0HQM2ErY4IQGHMPt70qC5plMAvcJQA0n3tVl1On5UP9MxYBN+zvXEwYy7UJpwsekUABTr7uNGlpqOARsI+/hQBIfQdJ40/kLTKQBI+sbsetbd2CfoY5cGDmLCJdLY80ynAHqNoQaSzrIsXXnicI2vyjMdBTbATg0c0PAF0sz/MJ0CwF6x7h6hcQPpbq9L8fMyAg5i+CmxNz0B2MJn6+6J1fmmo8AGQgw1cCAjFkozvm06BdAnDDVgRNDv07WLGlRfnGE6CgzzMdTAF9XMlOb9TLK44RCwk1DAp+vOaFBtUbrpKDAoxc+HIjiAmpnSvJ/T3YDNBP0+/eL0IzSoJNN0FBgWtOhvfEHNTOnYq02nAPqMoQaMyYwEddNZjSrJipiOAoN8HD+F/fUfI510i+QPmE4C4AAyI0HdfNYYutvDUjh+Cl9U1kR3AzaWEQnqlrMa1S87xXQUGBTkTg3sr99ouhuOx1ADRpVkpei2pU3KTw+ZjgJD2KmBfQrqpYV3SaFU00kAHEJpdopuX9qk/PSw6SgwIOLjZQTsp3Aw3Q04QGFmRLecPUZ5aay7vYrjp7BPXo102t10NxyPoQaMqypI16+WNCk7NWg6Cgyw2KkBScrsL53+Oyk113QSAD0wsCBdty0dQ3d7UMTPm57YK7s81t0pOaaTAOiB6sLYujsrhe72Ii4KhyQpq0xaxLob7sBQA7YwqCRTt5w1Rhlhtr55DTs1oIwSafEDUlY/00kA9EJ9Md3tRRw/BUlSepG06D4ps8R0EgC9MLg0U79aQnd7EXdqQBmlsXV3drnpJEBcMNSAbYwoy9bNZzcqLeQ3HQVJ5OtkqOFp6cXS4gelvCrTSQD0Ad3tPWGOn0J6kXTmQ3Q34FDD+9PdXsRODY9LL5bOfFDKHWg6CRA3DDVgKw0Vubr57DE8YHkIx095WHpR7MEqv9p0EgCH4bPuTqW7PSHCTg1v+2ygkV9jOgmAw9BQkatbWHd7SsBi3e1Z6UXS4t/zMgJch6EGbKexMlc3ntnIhyMewU4Nj8ooie3Q4EMRwBXobu9gqOFh6cUMNAAXGV3JYMNLQnz6500ZJbHuLqg1nQSIO76twZaaBubp1rPHKCPCWZ9uZ0XbTEdAsmX258EKcKGxA/P0qyVjlEl3u1rYx8sInpTZTzrrYQYagMuMrozttuSODfcLiJcSPCejlJcR4GoMNWBboytzdeeyscpPD5mOggSyOtkG6ylZ5dJZnMMNuFVDRa7uXDZO+elh01GQIGGLD0U8J7s8NtCguwFXaqzM1R3LxiovjXW3m3GnhsdklbHuhusx1ICtDSnN0t3njle/7BTTUZAgVic7NTwjvy72oUhOpekkABJocGmm7j53HN3tUmGOn/KW3CrprEfobsDlhvbLortdLsBLCd5ROFha8jiXgsP1GGrA9gbkp+me88apqiDNdBQkAndqeENZk3T2o1J2mekkAJKA7nYvjp/ykH4NsQ9FsvqbTgIgCQYWpOue88apujDddBQkQJChhjeUj4u9jJBZajoJkHAMNeAIJVkpuvvc8RrWL8t0FMSZFeXDEderPUo6434pNdd0EgBJRHe7U4gPRbyhZpa0+EEpLd90EgBJVJKVoruXj9OIsmzTURBnQYvjp1yvbo606F4pJTtuf2Vzc7MuueSSuP19QDwx1IBj5KaFdMeysWoawAejrtLBUMPVjjhDWnC7FIzfVnYerADnyE0L6dfnNNHdLhK26G3XO+IM6dQ7pFBq3P5Kuhtwjpy0kH69tEkTqxlqukmAOzXcbdQi6ZTb4rruBuyOoQYcJT0c0K1LxmjeSLbSuQbHT7nX5K9Lx14t+fymkwAwKCMS1K+WNOmEUf1MR0EccFG4yzX/K90NQGnhgG48s1HHDC8xHQVxEhD97VqTLpfmXUN3w3MYasBxwgG/frJglC6dXivLMp0Gh4uLwl3I8klH/0ia9k3TSQDYRCjg049OGanLZ9DdThe0OkxHQCJYfmnuT6Xmb5hOAsAmQgGfrj51lC4+ssZ0FMQBF4W7kOWXjrpSOvJbSflyW7Zs0RlnnKGcnBylpqbqqKOO0urVqyVJ0WhUBQUFuueee/b9/pEjR6qk5PPB6KpVqxQOh7Vr166k5IX7MdSAY31leo1+umCUwgH+MXaqkI8HK9cJZ0oL7pAalyTly/FgBTjLRUfW6JpTj1AkSHc7VYjjp9wnlB47bqphcVK+HN0NOIdlWbpsRq1+eirrbqcLcvyUu0SypNN+IzUtT9qXPPPMM/XCCy/ogQce0DPPPKNoNKo5c+aora1NlmVp8uTJWrFihaRY17/22mtqaWnR66+/LklauXKlGhsblZoav+Mt4W20Ehxt7ohS3blsrAoywqajoA/CDDXcJa9aWvonqW520r4kD1aA8xw9vER3Lhun/HS624m4KNxlcqti3V07K2lfku4GnOfYEaW6a/k4FbLudqwg/e0eeTXS0iek6ulJ+5KrV6/WAw88oBtuuEGTJk3SiBEjdPvtt+vDDz/UfffdJyl2f9Zn/f3nP/9Zo0aN6vJrK1as0JQpU5KWGe7HUAOON6o8R/ddMEH1xRmmo6CXUvy8LeIa1dNjH4oU1CbtS/JgBTjXyLJs3X8h3e1EQbFTwzWqZ0jnPCEV1iftS9LdgHN91t1DSjNNR0Ef+MXa2xWqZ0jn/EnKr07ql33ttdcUCATU1NS079fy8vJUV1en1157TZI0ZcoU/fOf/9THH3+slStXqrm5eV9/t7W16S9/+Yuam5uTmhvuxlADrtAvO0W/PW+8ZgwuMh0FvRDmXG53mPAVaeHdUkp2Ur8sD1aAs/XLTtE9543XrCF0t5Nwp4ZLTLhEWvgbuhtAr5Rkpeiec8dr9pBi01HQS9yp4QLjL4p1dyTLdJIDGjZsmHJzc7Vy5cou/b1y5Uo9//zzamtr0/jx403HhIsw1IBrpIUDun5Rg/5ldr38Pm4hdYIIOzWcLZAizf8facZ3JJ8964QHK8De0sMBXbdotK6YU68A3e0IQTHUcLRgqnTijdKMb9PdAPokJeTXL04/Ql+dWcu620ECYqjhWIGIdPx10sz/MNbdgwYNUnt7u5577rl9v7Z582a98cYbGjx4sKTYHTyTJk3S/fffr1dffVUTJ07U8OHDtXv3bl133XUaPXq00tLSjOSHO9nzSRboI8uydF5zlX69tInzPh0gwp0azpVVJp39qDTsRGMReLAC3GPZ5CrdsWysijLpbrtjqOFg2eXSkselofONRaC7AXewLEsXTqvRbUtYdzsFOzUcKrtCOuthacQCozFqamo0b948nXPOOVq1apVefvllnX766erXr5/mzZu37/c1Nzfrjjvu0MiRI5Weni6fz6fJkyfr9ttv5+hIxB1DDbhS08A8PXTxJI2vyjMdBYfAZaMONWiudO5TUulIozF4sALcpbEyVw9eRHfbXVBtpiOgL+rmSMtWSsXDjMaguwF3GVfFutspAhanJDjO4ONi6+5+DaaTSJJuuukmNTQ06JhjjtG4ceMUjUb18MMPKxgM7vs9U6ZMUUdHR5djIpubm7/0a0A8MNSAaxVkhPWrJU26cGq1LHbF2lLEz1DDUQIR6egfSqfcJqXkmE4jiQcrwG0+6+4LplbR3TYVYKeGswQi0pz/J516h5SaazqNJLobcJuCjLBuW9Kki4+sEadR2ZefFwqdIxCRjv6RdPItxu/PWLFiha666ipJUk5Ojm699VZt3bpVu3bt0qOPPqqampouv3/kyJGKRqP6/ve/v+/XLrnkEkWjUc2aNSuZ0eEBVjQaZVwL13vyjY267K6XtGUXbxfaybS8Lbrx0wtMx0BPFNTHzuAuGmI6CQCPeOL1Dfrq3f/QJ5/uMR0F+3mw5iENXXO76RjoCbobQJI9tfpjXXrXS9q0k+62m+8OeFWLPvpP0zHQnfxa6cSbpOKhppMAtsdODXjC1LpCPXbJZDXXFZiOgv2Efbzt6QhHnCGd8yQfigBIqmn1RXr0kkmaVl9oOgr2E1C76QjoiYYzpWUr6G4ASTWppkAPXTxJk2ryTUfBF7BTwwFGLIx1NwMNoEcYasAzCjMjuvmsMfrP44cqNeQ3HQeSQlwUbm/hzNgbnsdeLYVSTacB4EGFGRHdeGajvnfCMKXR3bbAUMPmItnSybdKc38iBVNMpwHgQUWZEf1qSZO+exzrbjvhonAbi2RJx18nHf8LKZRmOg3gGAw14DmnNVXoka9M0ugKe9wJ4GVcFG5j1dOl85+Rhs43nQQAdOqYcj1Md9tCIMpQw7YGNkvnrpIGz+v2twJAoi0aG1t3N1bS3XYQEGtvW6qZKZ3/rDRigekkgOMw1IAnVeSl6TfLx+lfZtcr5OdfA1MYathQJEua93Pp9N9KWf1NpwGAfT7r7q/PrqO7DfKzU8N+wlmxXZVn3C9ll5lOAwD7VOSl6a5l43TFnHqFAnS3SX5xna6tRLKk434hnXa3lFlqOg3gSLQKPMvns3Rec5Xuv3CCBpVkmo7jSdypYTN1c6QL/iqNOs10EgA4IJ/P0vnN1brvggkaTHcb4Y/S3bZSN0e64LnY/VcAYEM+n6Vlk6v00EUTNaxfluk4nsWdGjZSO1s6/zlp5ELTSQBHY6gBzxtUkqnfXzhBV8yp58zPJGOnhk2k5Erz/0c69Q4po9h0GgDo1uDSTP3+oon6t6MH0d1J5o+2mY4ASUrN+7y7M0tMpwGAbtUUZeje88fr67PrlBKku5PNL15KMC6SLR13rbTwLrobiAOGGoCkgN+nZZOr9IfLpmj6oCLTcTwjyEXh5g0+LrY7Y9iJppMAQK/4fZaWThpIdycZd2rYwND5dDcARwr4fTq/uVqPXzpZ0wcVmo7jKQGOnzJr8HGxnZUjTzWdBHANhhrAfvplp+iGxaN13aIGlWZFTMdxvRCXlZmTXyud/jvp5Fuk9ALTaQCgz/bv7hK6O+F8DDXMya2SFt4tnXijlJZvOg0A9FlZbqpuWNyo6xc1qF92iuk4nsDxU4bk18XuvDr5Fk5FAOIsYDoAYEezhhRrUk2+fvyHN3XT0++pvZO3GhIhZLEFNulCGVLzv0hN50r+oOk0ABA3s4YUa2J1vn74+Ju65Zn31EF3JwRDDQNCGdLkr0pjz5cCIdNpACBuZg4p1qSaAv3kT6v1P6veUVsH3Z0oPl4oTC7W3UDCsVMDOIjUUEDfPHqwfn/RRI2vyjMdx5WCXBSeRJY04lTpohel8RfxYAXAldLCAX1r7mA9eNFETazmTfZE8DPUSKL9unviJQw0ALhSSsivbxxVr4cunqSmAbmm47hWgDs1kmf4KdJFL7DuBhKMoQbQjUElmfr1OWN105mNqi1KNx3HVbgoPElKRkhLHpeOv1bK4Nx5AO43qCRTty1t0k1n0d3x5utkqJEUpUdIS/9IdwPwjNqiDN21fJx+ecZoVRfS3fHm506NxCsaJp31qHTC9Rw1BSQBx08BPTS1vlCTawt01/Nr9OM/vqmPd+w2HcnxgrwtkliZ/WNbXkeeLvmYYQPwnql1hZpcE+vuH/3hTW3aSXcfLivaZjqCu2WUStO+KY08TbIs02kAIOlmDC7StPpC1t1xxvFTCZRdLjVfEduhwbobSBqGGkAv+H2WFjaVa97IUl3353f0yz+/o5Y2PpjvqyB3aiRGar406XKpcYkUCJtOAwBG7d/d1658Wzc89S7dfRjYqZEgqfnSxEulxqVSkAvvAXjbZ9193KhSXb933f3pHrr7cHBReAKkFUiTvyY1nMURkYABVjQaZQ8a0EcbtrfqJ39arXteWKs9HTwk9NZPq1/QsWt/ZDqGe4SzYud2jj1PCrNlGwAOZP22Vl3z5Gr95nm6uy9WF/2bgtveMR3DPSJZ0ji6GwAO5eMdu3XVH9/UXc+vUXsnH2H1xe9qHtcRa242HcMdwpnS+IvpbsAwhhpAHKzb2qJfrHhbd72wRnva+YCkp35R/VcdtfYq0zGcL5gqjVkWu0Q0Jcd0GgBwhI+2xbr7zufp7t54q+DrCuxYazqG8wXTpLHnxl5GoLsBoEfWfLJLv1j5Ni8V9sH9NY9oxJpfmY7hbIFIbEflpMulVC61B0xjqAHE0YbtrXs/IPlArW08ZHXnhppnNH3N1aZjOFcwTWpYLE24hEtEAaCPPuvuO/76gXYz3OjW23mXyf/petMxnCuYKjWcKU28TEovMJ0GABxp/bZWXbuSdXdvPFjzkIauud10DGcKZUijz5TGXiBllphOA2AvhhpAAmzc0arrV76j25/7gHO7D+HmmlVqXvNz0zGcJ61AGrM8dmcGb4gAQFxs3N6qa1e+o1//9X0+IDmEd3Iukq9ls+kYzpOaH9tVOeYcuhsA4uTjHbt1w1Pv6LZn3+fOjW48XPN7DV5zh+kYzpJWIDWdG9udkZJtOg2AL2CoASTQ5p27dcsz7+vXz72vTTv3mI5jO7fVrNTENdeZjuEcuQOlcRdKI0/jElEASJBNO3frtmff123PfqBNO3ebjmM772adK2v3dtMxnGNfdy+Ugimm0wCAK23dtUc3rnpXv3r2fW3Z1WY6ji09VnO/6tbcZTqGM+RUxo6HHHk6627AxhhqAEmwu71Dv3/5I938l3f1yod8EPCZu2qeVNOaX5qOYX+lo2JHTA06VvL5TKcBAE/Y096p37+8TjfR3V28m7FUVtsu0zHsr39j7BLR+mPobgBIkta2Dj3w0jrd/Jf39M+P6O79/aHmXtWsudt0DHsrHi5N+Io05HjJ5zedBkA3GGoASfb8e5/opqff1WOvblBHp7f/9fttzR/UsOYm0zHsyR+SBs2VRi+RKieYTgMAnvbXdz/Rjave1R9eo7vfTT1DVme76Rj25AtKg46JHRFZMc50GgDwtOff+0Q3P/2eHnt1vdo93t2S9Kfqe1S19nemY9iPPyQNnic1niOVN5lOA6AXAqYDAF7TWJmrxspcfbi1Rbc+857ueWGtNn/qzaOp/OLc0y/JKo9d/n3EYi4QBQCbGDMgV2MG5Grtll361TPv67d/+9CzR1Mx0DiA7PJYbx9xhpReaDoNAECfr7s/2tai2559X3f+dY1n192S5BP3hXWRXR7r7SMW092AQ7FTAzCsraNTT7y+Ufe8uFZPvr7RU2+RPFjzkIauud10DPN8Qal+TuyhauA0jqkAAJtr7+jUk298rLtfWKMn39iotg5vdHeKv0OvBReZjmEP/pBUd5Q06gypiu4GALvb3d6hP722Ub99ca1Wvvmxp9bdkrSy+k5VrH3AdAyzfIFYdzecybobcAGGGoCNbNq5W/f9/UPd8+Javb5+h+k4Cfdozf2q9/JlZSUjpGEnSSNOldLyTacBAPTB5p27da9Hujs32Ka/+RebjmFW0dBYb49YQHcDgENt2rlb97+0Tr99ca1n7t54qvp2la19yHQMM/o1xNbdQ+ezKwNwEYYagE298uE23fPiWj34j3XatNOd22Q9eVlZfl3sYWrofCm/2nQaAEAc/e/abbrnxTV65JX12rjDfcdT9Yvs1tM6y3SM5Muvk4aeIA05QSqoNZ0GABBHr320Xb99ca3ue2mdq4+WfLrqVvX78FHTMZInvy42yBg2X8odaDoNgARgqAHYXGdnVM+/94keeWW9Hn91vdZtazUdKW6eqL5bA9feazpG4uVUxj4IGTpfKh5qOg0AIME6O6N68YMteuR/1+uxV9frw60tpiPFRVVqi/7UucR0jOTIGfD5IIPuBgDX6+iM6rl3N+vxVzfosVfX6yMXrbsl6dmqm1X84eOmYyRWZv9Ydw87SSoZbjoNgARjqAE4zMtrtuqRV2Ifkry76VPTcQ6Lq8/1LBoq1cyQ6o+R+o82nQYAYNDLa7bq4Vc+0qOvrNf7m3eZjtNnQzN26sG2ZaZjJE7BIKl2pjTkeKl0lOk0AACDXl6zVY+9Glt3v/2xs9fdkvTcwBtVtO6PpmPEX/EwqXZ27Ee/BsmyTCcCkCQMNQAHe2P9Dv3xtQ16avXH+tv7W7Wno9N0pF5ZVX27+rvlXM9QujRgSmyQUTNTyupnOhEAwIb+uW67Vry5UatWb9IL72/RnnbndPforB26Z/dy0zHiZ193T5eqZ0jZZaYTAQBs6K2NO/XYq+v15Osb9dKarY68ZPz5gTeoYN0TpmMcvmCqNLA5tuaunSVllppOBMAQhhqAS+za067n3v1Eq1Zv0qrVm/TGBvtfVvpM1S0q+fAx0zH6Lr9Wqp4ee6CqmCAFQqYTAQAcpGVPh559d7NWrd6kp1Z/rDc37DQd6ZAm5m7TbbvOMx3j8BTU7+3uGVL5eLobANArn+5u13PvbtbTb23W02/F1t1O+FTtxQHXKe+jlaZj9IEV6+4Bk2Lr7spJUjBiOhQAGwiYDgAgPlJDAU2tK9TUukJJ0sbtrVr11iY9/dZm/e2DLbY8qsoX7TAdoed8Aal4uFQ+TqoYF/s5Ld90KgCAg6WE/F26e8P2Vj21epOefWez/v7BFr2z6VNbfVASsRzU29Le7h4W6+yyptjPGUWmUwEAHCwtHNC0+iJNq4/1yaadu/X0W5v0l7c265l3NuuDT+x5zKTllLW35Y/dh1ExQaoYH+vu1FzTqQDYEDs1AI/Y8ukevbR2q/7+wVb9/YMtennNVm1vbTea6YWB1yt/3QqjGQ4qlCH1GxV7i7NinNS/UQqlmU4FAPCQbbva9Pc1W/S3vd390pqt2mGwu48p2KRrdlxs7Ot3K5QhlTVKZWOl8rGxO63obgBAEm3euVsvr92ql9Zs00trtuofa7dq664207H0UuU1yl7/F9MxviySHXsBoWxMbIhR1iSFM0ynAuAA7NQAPCInLdTlbdBoNKq3P/5Uf/9gi15dt11vbdypNzfs0MYdu5OWyddpdqiyT3a5VDRMKh4au+C7eJiUU8klYwAAo7JSg2quK1Tzft391sad+vuarXpj/Q69uSH2Y8P25HR3xGeT3pa1t7uHSkVDPu/vnAGSz2c6HADAw/LSw112ckjSe5s+1UtrtuqlNVv1+vrY2nvTzj1JzWVFbXCHV1ZZbK1dPDz2c8nwWJ8DQB8w1AA8yrIsVRemq7owXSft9+vbdrVp9cYdenNDbMjx1sademvjTm3Y0Rr3IzB8SuIW2EAk9sCUUxn7kVez90OQIVIkK3k5AADoI8uyVFOUoZqirm8wbmtp2zfgeHN9rMPf3fSpNu5oVTzvMg37kvyBiD+8t7srYt1dOCg2vCgcLEUyk5sFAIA+qsxPU2V+mo4b1W/fr23dtUdvbdyp1XvX26s37tTbG3dq3baWhBw9mbTjpwKRWGfnDoy9bJA7IHYXZfEwjpECEFcMNQB0kZUa1OjKXI2u7PrAsae9U+u3terDrS1a99mPbS36cGur1m1t0Ybtrdq5u71XD2Bx26nhD8fut0jNi/2cVvj5ByCf/cgoYecFAMCVslKCaqzMVeMXurutI9bda7e07OvvD/f7z5s/3aMdrW09HnyEfXH8QMQfjvV2ap6Ulidl9pOyKz7v7+wKKaOY7gYAuFJ2auiA6+6WPR36aFuLPtrWGvuxtUUfbd/7895f29bS++OsfIrDiwn+sJReuHfNXRBbd2cUfT68yB3IuhtA0nCnBoC46eyMantrm7buatO2ltiPrXt/3t7Spl172tXWEdWe9k7t6ejU11IeVE7L+1K0U+rsiP3sD8be7ghEpEA49nNwv/8eTJVScrsOMThzEwCAPunsjGpHa7u2tuzR1l2x3t66a8++7t7d3qk97Z3a3d6poeH1OrHld1K0Y29v7x1yBCKSP7S3q0OxDz0C4c97PJT++fDis0EG3Q0AQJ/sae/U9tZYT29vbdf2ljbtaG3f79fa1NrWqfaOTrV1RtXe0akr0h5Qdssaxd5C3PsxoD8cW2sHU2Lr7EAk9nPws59T9xtgFLBLEoCtMNQAAAAAAAAAAACOwE16AAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBEYagAAAAAAAAAAAEdgqAEAAAAAAAAAAByBoQYAAAAAAAAAAHAEhhoAAAAAAAAAAMARGGoAAAAAAAAAAABHYKgBAAAAAAAAAAAcgaEGAAAAAAAAAABwBIYaAAAAAAAAAADAERhqAAAAAAAAAAAAR2CoAQAAAAAAAAAAHIGhBgAAAAAAAAAAcASGGgAAAAAAAAAAwBH+Pzug7E020dVmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Вывод распределения количества наблюдений по меткам (классам)\n", + "print(df.salary_in_usd.value_counts(), '\\n')\n", + "\n", + "# Статистическое описание целевого признака\n", + "print(df['salary_in_usd'].describe().transpose(), '\\n')\n", + "\n", + "# Определим границы для каждой категории зарплаты\n", + "bins: list[int] = [0, 95000, 175000, 450000]\n", + "labels: list[str] = ['low', 'medium', 'high']\n", + "\n", + "# Создаем новую колонку с категориями зарплат\n", + "df['salary_category'] = pd.cut(df['salary_in_usd'], bins=bins, labels=labels)\n", + "\n", + "# Вывод распределения количества наблюдений по меткам (классам)\n", + "print(df['salary_category'].value_counts(), '\\n')\n", + "\n", + "df_train, df_val, df_test = split_stratified_into_train_val_test(\n", + " df,\n", + " stratify_colname=\"salary_category\", \n", + " frac_train=0.60, \n", + " frac_val=0.20, \n", + " frac_test=0.20\n", + ")\n", + "\n", + "# Проверка сбалансированности\n", + "check_balance(df_train, 'Обучающая выборка', 'salary_category')\n", + "check_balance(df_val, 'Контрольная выборка', 'salary_category')\n", + "check_balance(df_test, 'Тестовая выборка', 'salary_category')\n", + "\n", + "# Проверка необходимости аугментации\n", + "print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + "print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + "print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + " \n", + "# Визуализация сбалансированности классов\n", + "visualize_balance(df_train, df_val, df_test, 'salary_category')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Приращение данных:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "После применения метода oversampling:\n", + "Обучающая выборка: (3360, 241)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "low 1121\n", + "medium 1120\n", + "high 1119\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"low\": 33.36%\n", + "Процент объектов класса \"medium\": 33.33%\n", + "Процент объектов класса \"high\": 33.30%\n", + "\n", + "Контрольная выборка: (1119, 157)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "low 373\n", + "medium 373\n", + "high 373\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"low\": 33.33%\n", + "Процент объектов класса \"medium\": 33.33%\n", + "Процент объектов класса \"high\": 33.33%\n", + "\n", + "Тестовая выборка: (1121, 162)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "medium 374\n", + "high 374\n", + "low 373\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"medium\": 33.36%\n", + "Процент объектов класса \"high\": 33.36%\n", + "Процент объектов класса \"low\": 33.27%\n", + "\n", + "Для обучающей выборки аугментация данных не требуется\n", + "Для контрольной выборки аугментация данных не требуется\n", + "Для тестовой выборки аугментация данных не требуется\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAH/CAYAAAAPNxGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpn0lEQVR4nOzdd3gUVdsG8Hs3vQIBQmgSekcQpTcV6WAFAaVJ8VUU9cOOSBELglIFAWlSFVB6770GCCGBFEhI7z3ZbDvfH3l332x2E5KQZLbcv+vKpWyZeXZ2Zp8585xzRiaEECAiIiIiIiIiIiIiIrIicqkDICIiIiIiIiIiIiIiKm8sgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiqjCZmZkIDw9Hdna21KFQOUtLS0NoaCjUarXUoRAREVE5U6vVSEhIwKNHj6QOhYiIiCqBQqFATEwMEhISpA6l3LEAQmRjfH19MX78eKnDICslhMDq1avRpUsXuLq6wtPTEw0bNsTmzZulDs0iREVFYcOGDfp/h4eHY8uWLdIFVIBKpcLPP/+Mp59+Gk5OTqhWrRqaNm2KEydOSB0akVVj3iayLvv378etW7f0/969ezfu3r0rXUAFhISEYPLkyahduzYcHR1Rq1YtdO3aFUIIqUMjMlvM00T0OMuXL0daWpr+34sXLzabTqLHjx/HsGHDULVqVbi4uKBu3br46KOPpA6r3JWqALJhwwbIZDL9n7OzM5o1a4YPPvgA8fHxFRUjkdWbPXs2fH19AfzvOKMnt2LFCoOLydZi/Pjx6NOnDwDDfcccjB49Gv/5z3/QsmVLbNq0CceOHcPx48fx2muvSR2aRZDJZJg6dSqOHDmC8PBwfP755zh37lyZl1deeTsvLw99+/bFzJkz0adPH+zYsQPHjh3DyZMn0bVr1zLHR2SpmLcrBvM22YI7d+7go48+QkhICGbOnIlXX30Vbdq0kbx9ffnyZXTq1AknT57El19+iSNHjuDYsWPYvXs3f+PI4jBPVwzmaaKy2bdvH2bPno3IyEhs2bIFM2fOhIuLi9RhYcWKFejfvz/S09OxZMkSHDt2DMeOHcPcuXOlDq3c2ZflTXPnzkXDhg2hUChw/vx5rFy5EgcPHkRAQABcXV3LO0YiojJZsWIFatSowR45leTPP//EX3/9hc2bN2P06NFSh2OR6tati8mTJ2PAgAEAgNq1a+P06dNPvNwnzdvz58/HlStXcOTIEX3jgIiovDFvky2YNGkS1q1bh2bNmukfk7p9rVQqMWHCBDRr1gxHjx5FlSpVKnydRGR5mKeJyubrr7/GsGHDsGTJEsjlcvzyyy+Qy6WdlCkkJAT/93//hylTpmDFihVWXyguUwFk4MCBePbZZwHkn8BVr14dv/76K/bs2YNRo0aVa4BEZL4UCgUcHR0l/+G2dNnZ2XBzc5M6jCe2YMECjBo1isWPJ7R48WJ8+OGHSEpKQps2bcpl33iSvK1Wq7F48WJMnz6dxQ8iC8e8XT6sJW+TNGrWrImAgAAEBATgyJEjmDFjhuTt63379uH+/fu4d+8eix9EEmKeLh/M02RuevfujYiICAQFBaF+/fqoV6+e1CFh6dKl8PHxwdKlS62++AGU0z1AXnjhBQDAw4cPAQApKSn49NNP0bZtW7i7u8PT0xMDBw7E7du3jd6rUCgwe/ZsNGvWDM7OzqhduzZee+01hIWFAcif/7zg9B2F/wpejDl9+jRkMhn++usvfP311/Dx8YGbmxuGDRuGyMhIo3VfuXIFAwYMQJUqVeDq6orevXvjwoULJj9jnz59TK5/9uzZRq/dvHkzOnbsCBcXF3h5eWHkyJEm11/cZytIq9Vi8eLFaN26NZydnVGrVi28++67SE1NNXidr68vhgwZYrSeDz74wGiZpmJfsGCB0TYF8qc+mTVrFpo0aQInJyfUr18fn3/+OfLy8kxuq4L69OljtLzvv/8ecrkcW7duLdP2WLhwIbp164bq1avDxcUFHTt2xM6dO02uf/PmzejUqRNcXV1RrVo19OrVC0ePHjV4zaFDh9C7d294eHjA09MTzz33nFFsO3bs0H+nNWrUwNtvv43o6GiD14wfP94g5mrVqqFPnz5PNH2NzvXr19G/f3/UqFEDLi4uaNiwId55550yb5eCSnq86o6v7du345tvvkHdunXh6uqKW7duQSaTYdGiRUbLvnjxImQyGbZt21biz6rVarFkyRK0bdsWzs7OqFmzJgYMGIDr16/rX7N+/Xq88MIL8Pb2hpOTE1q1aoWVK1caLMfX1xd3797FmTNnTP5epKWl4eOPP0b9+vXh5OSEJk2aYP78+dBqtQbLSU5OxpgxY+Dp6YmqVati3LhxuH37NmQymdHw35MnT6Jnz55wc3ND1apV8fLLLyMoKMjgNbNnz4ZMJkNgYCBGjx6NatWqoUePHli/fj1kMhlu3rxptE1++OEH2NnZGe1zpVH4N6xGjRoYPHgwAgICSvT+xx0D2dnZCAgIQP369TF48GB4enrCzc3N6Bh48OBBifcXU78fut+Jgtve398f48ePR6NGjeDs7AwfHx+88847SE5ONnivbvh7eHi4/rEjR46gW7ducHV1RZUqVTBkyBCjbaL7zpKSkvSPXb9+3eQ+0KZNG5NFgkOHDun3DQ8PDwwePNhovu/x48frh1s3btwYnTt3RkpKClxcXIziNsXUb9BPP/1k9DpfX1+cPXsWgOm8rVtf586dcfv2bdy/fx+pqanw8PBA79694eLiAicnJ7i7u8PJyckobx84cOCxeVv3XSxZsgQymUy/LBcXF6O8XXBeZV3ednR0hEwmw9NPP22QtwtuZzs7O+Zt5m3mbeZtm8zbpTmOS3qsuLu7G61n586dkMlk+pGKhWMu7rdBJpPhgw8+wJYtW9C8eXM4OzujY8eO+vxU0M2bNzFw4EB4enrC3d0dL774Ii5fvlyi7ab7K/jd9+nTB23atCluExrEWNiQIUOMpkfJzs7G9OnT9ftn8+bNsXDhQqN7Z+h+y52cnNCxY0fUqVMHAPDcc88ZfGdFta8Lfy5vb29MmTLFYF7xo0ePQiaToU6dOiVuX7/xxhsQQqB58+ZwcXGBo6MjnnrqKYwcOdJk+7pdu3Zo1qwZnJycUKdOHUydOhVpaWkG7Ws7Ozu4ublh7dq16Natm/638Pfffy/2u5o9ezZiYmLg6+uLZ599FllZWQZ52sXFBR4eHnB0dDTKb8zTzNMlxTzNPC1Vnq6oXBkdHY133nkHtWrVgpOTE1q3bo1169YZvEa3z5naj93d3Q1G9phqO2u1WrRr187ou9KdJzx48AD9+/eHm5sb6tSpg7lz5xrlwdLkS92fnZ0d6tata5TvACAhIQETJ05ErVq14OzsjKeffhobN240eI2pzwIY/56WZvsA+dc2hg8fDi8vL7i6uqJLly44cOCAwWt0yzx9+jSqVq2Krl27ol69ehg8eHCRbVNT79f9OTk5oVmzZvjxxx8NtpmpaxaFFb5f0eXLl9GxY0e8//77+v2mTZs2WLNmjdF7S/O9lWSf1cVb0KlTp+Dk5IT//Oc/Bo+XZN8uiTKNAClMdzJVvXp1APk7we7duzF8+HA0bNgQ8fHxWLVqFXr37o3AwED9iZ5Go8GQIUNw4sQJjBw5Eh999BEyMzNx7NgxBAQEoHHjxvp1jBo1CoMGDTJY71dffWUynu+//x4ymQxffPEFEhISsHjxYvTt2xe3bt3Sz7F28uRJDBw4EB07dsSsWbMgl8v1P/rnzp1Dp06djJZbr149/PjjjwCArKwsvPfeeybXPXPmTIwYMQKTJk1CYmIili1bhl69euHmzZuoWrWq0XumTJmCnj17AgD++ecf/PvvvwbPv/vuu9iwYQMmTJiAadOm4eHDh1i+fDlu3ryJCxcuwMHBweR2KI20tDT9ZytIq9Vi2LBhOH/+PKZMmYKWLVvizp07WLRoEYKDg7F79+5SrWf9+vX45ptv8MsvvxTZS/xx22PJkiUYNmwY3nrrLSiVSmzfvh3Dhw/H/v37MXjwYP3r5syZg9mzZ6Nbt26YO3cuHB0dceXKFZw8eRL9+vUDkP9D+M4776B169b46quvULVqVdy8eROHDx/Wx6fb9s899xx+/PFHxMfHY8mSJbhw4YLRd1qjRg39iUpUVBSWLFmCQYMGITIy0uR3XxIJCQno168fatasiS+//BJVq1ZFeHg4/vnnnzJtl8JKerzqfPfdd3B0dMSnn36KvLw8tGjRAt27d8eWLVvwySefGLx2y5Yt8PDwwMsvv1zizztx4kRs2LABAwcOxKRJk6BWq3Hu3DlcvnxZ3zNu5cqVaN26NYYNGwZ7e3vs27cP77//PrRaLaZOnQrgf73o3d3dMWPGDABArVq1AAA5OTno3bs3oqOj8e677+Kpp57CxYsX8dVXXyE2NhaLFy8GkL//Dx06FFevXsV7772HFi1aYM+ePRg3bpxR3MePH8fAgQPRqFEjzJ49G7m5uVi2bBm6d+8OPz8/o4by8OHD0bRpU/zwww8QQuCNN97A1KlTsWXLFnTo0MFoO/bp0wd169Yt8XY0pUWLFpgxYwaEEAgLC8Ovv/6KQYMG4dGjR8W+ryTHgK7YMH/+fPj4+OCzzz6Ds7Mz1qxZg759++LYsWPo1asXGjVqVK77CwAcO3YMDx48wIQJE+Dj44O7d+9i9erVuHv3Li5fvmyUWHXOnTuHQYMGoUGDBpg1axZUKhVWrFiB7t2749q1awZTUzyJTZs2Ydy4cejfvz/mz5+PnJwcrFy5Ej169MDNmzeLnWP222+/hUKhKPG6Cv8G6X7XMzMzDV6Xk5MDwHTeViqV+PXXX/HgwQP07t1bf3Lx1VdfoUmTJqhXrx5CQ0Mhk8kgl8vx1ltv4ebNmwgICIBCocDw4cMBAG3btkWrVq1w8uRJpKamYsaMGVi7dq1BHEuWLAEAVKlSBXl5eUhJSUG9evVw7Ngxfd7W0eVtb29vqNVqjB8/Hn5+fvq8ff/+fYPtvGjRIkRERMDJyQnz5s2Di4sL8zbzNvM287aeNeftwoo6jktzrJTEjBkzMGnSJABAUlISPvnkE4Pfh8LOnDmDv/76C9OmTYOTkxNWrFiBAQMG4OrVq/oCxd27d9GzZ094enri888/h4ODA1atWoU+ffrgzJkz6Ny5s9FyddutYBwVSQiBYcOG4dSpU5g4cSLat2+PI0eO4LPPPkN0dLTJi5g6unxcWFHtawBo3749GjdujJMnTyI9PR1r1qxBbm4uNm3aBI1Go28jN2rUCDNmzCiyfe3q6opVq1YBANasWaO/OOHu7o45c+bg+vXrWL9+PQDD9vWuXbtw4cIFuLq64scff8TDhw+xcuVKnDhxAg8fPtS3r1esWIGIiAhMmjQJw4cPx6hRo/D333/jvffeg6OjI4D89vXYsWPxww8/4JNPPsGiRYugUCgwcOBAODg44ODBg1iyZAlmzpyJ4cOHIzc3V38OoruobCq/MU8bYp42xDzNPC1lnq6IXBkfH48uXbroLz7XrFkThw4dwsSJE5GRkYGPP/74iT6nzqZNm3Dnzh2Tz2k0GgwYMABdunTBzz//jMOHD2PWrFlQq9X6+0mUNl+++uqreO2116BWq3Hp0iWsXr1an+8AIDc3F3369EFoaCg++OADNGzYEDt27MD48eORlpZWoTfyjo+PR7du3ZCTk4Np06ahevXq2LhxI4YNG4adO3fi1VdfLfK9Z8+excGDB0u1vq+//hotW7ZEbm6uvlOCt7c3Jk6cWObPkJycjOvXr8Pe3h5Tp05F48aNsXv3bkyZMgXJycn48ssvAZT+eyvJPlvY7du38corr2DQoEH47bff9I+X674tSmH9+vUCgDh+/LhITEwUkZGRYvv27aJ69erCxcVFREVFCSGEUCgUQqPRGLz34cOHwsnJScydO1f/2Lp16wQA8euvvxqtS6vV6t8HQCxYsMDoNa1btxa9e/fW//vUqVMCgKhbt67IyMjQP/73338LAGLJkiX6ZTdt2lT0799fvx4hhMjJyRENGzYUL730ktG6unXrJtq0aaP/d2JiogAgZs2apX8sPDxc2NnZie+//97gvXfu3BH29vZGj4eEhAgAYuPGjfrHZs2aJQp+LefOnRMAxJYtWwzee/jwYaPHGzRoIAYPHmwU+9SpU0Xhr7pw7J9//rnw9vYWHTt2NNimmzZtEnK5XJw7d87g/b///rsAIC5cuGC0voJ69+6tX96BAweEvb29mD59usnXlmR7CJH/PRWkVCpFmzZtxAsvvGCwLLlcLl599VWjfVH3naelpQkPDw/RuXNnkZuba/I1SqVSeHt7izZt2hi8Zv/+/QKA+Pbbb/WPjRs3TjRo0MBgOatXrxYAxNWrV01+5pL4999/BQBx7dq1Yl9Xku0iRP5+Mm7cOP2/S3q86o6vRo0aGa1r1apVAoAICgoyWH+NGjUM1vU4J0+eFADEtGnTjJ4rfKwW1r9/f9GoUSODxwr/Ruh89913ws3NTQQHBxs8/uWXXwo7Ozvx6NEjIYQQu3btEgDE4sWL9a/RaDTihRdeEADE+vXr9Y+3b99eeHt7i+TkZP1jt2/fFnK5XIwdO1b/mG6fHjVqlFFco0aNEnXq1DH4Pvz8/IzWVRYFj0Wdr7/+WgAQCQkJRb6vpMeA7rfa0dHRYLsmJiaK6tWri44dO+ofK+n+8vzzz4tevXoZxKNbT8HtYWp/2LZtmwAgzp49q39Ml8MePnwohBCiY8eOokqVKiIuLk7/muDgYOHg4CBef/11/WO67ywxMVH/2LVr10x+L4X3uczMTFG1alUxefJkg9fFxcWJKlWqGDxe+DckICBAyOVyMXDgQIO4i2LqN2j8+PECgFi+fLk+b9eoUUM4ODgUmbd1x/q2bduEk5OTmDBhggAgatSoIZYuXarP24W3lVarFa+88opwcHAwyNsxMTHCw8ND9OrVS799dN9Fs2bNDPL2zz//LACIzz//XJ+3GzRoIMaOHSuaNm0qWrVqJQCIZcuWCSH+l7dfeOEFo+3crVs30aJFC/12Zt5m3mbe/h/mbevN24XfW9RxXNpjxc3NzWg9O3bsEADEqVOnjJ4zla8LAiAAiOvXr+sfi4iIEM7OzuLVV1/VP/bKK68IR0dHERYWpn+sYF4prHv37uL5558vNo7evXuL1q1bm4yrcIxTp041enzw4MEGvx27d+8WAMS8efMMXvfGG28ImUwmQkNDDZZZ8Ldcl+ObNm0qunXr9tj2dcH36477+vXri1atWgkh/te+BiB27NhhEE/h9nXVqlX1z40bN07/WMH9Tvd49erVRUZGhkhISBCOjo6iXbt2Bu3rZcuWCQCiTZs2+vX07t1bABBeXl769nVeXp7+2Ovatato06aN/rdKtx0bNGggvL29RWhoqEGeLpjfCubpgvmNedoQ87RpzNP5mKfXG72+NJ4kT+uUV66cOHGiqF27tkhKSjJ4/8iRI0WVKlX0369unyucH4QQws3NzWDfKtx2VigU4qmnntLnrYIx63LFhx9+qH9Mq9WKwYMHC0dHR307+knypRD57TtdvhNCiMWLFwsAYvPmzfrHlEql6Nq1q3B3d9dfF964caMAIB48eGCwvMLfYWm2z8cffywAGPyWZ2ZmioYNGwpfX1+jtnXBc6XOnTvrt2Phz1iYqfcrFAohl8vF+++/r3/M1DWLwgr/VjVo0EAAEBs2bNA/plarxYsvviicnJz0+1Npv7eS7LMFc1F4eLioXbu26NGjh1HuKOm+XRJlmgKrb9++qFmzJurXr4+RI0fC3d0d//77r7566uTkpJ+zUKPRIDk5Ge7u7mjevDn8/Pz0y9m1axdq1KiBDz/80GgdRfXYLYmxY8fCw8ND/+833ngDtWvX1lfYbt26hZCQEIwePRrJyclISkpCUlISsrOz8eKLL+Ls2bNGw/QUCgWcnZ2LXe8///wDrVaLESNG6JeZlJQEHx8fNG3aFKdOnTJ4vVKpBJC/vYqyY8cOVKlSBS+99JLBMjt27Ah3d3ejZapUKoPXJSUlPbb3cHR0NJYtW4aZM2caDW/fsWMHWrZsiRYtWhgsUzcsu/D6i3L16lWMGDECr7/+OhYsWGDyNSXZHgD0o3gAIDU1Fenp6ejZs6fBvrV7925otVp8++23RvNn6vatY8eOITMzE19++aXRd6t7zfXr15GQkID333/f4DWDBw9GixYtjIa3abVa/Ta6desW/vzzT9SuXRstW7Ys9jMVR9ezZf/+/VCpVEW+riTbxZSSHq8648aNM1gXAIwYMQLOzs7YsmWL/rEjR44gKSkJb7/99mM/o86uXbsgk8kwa9Yso+cK/iYUXH96ejqSkpLQu3dvPHjwAOnp6Y9dz44dO9CzZ09Uq1bNYL/u27cvNBqNvgfc4cOH4eDggMmTJ+vfK5fL9b1gdGJjY3Hr1i2MHz8eXl5e+sfbtWuHl156yWR1v/CwPiD/tysmJsbguNqyZQtcXFzw+uuvP/ZzPY7u9yExMRGXLl3Cv//+i3bt2qFGjRpFvqe0x8DLL7+Mpk2b6v+tu0nejRs3EB8fD6Dk+4u3tzeioqIe+7kK7g8KhQJJSUno0qULAJjch1NTUxEcHIwbN27grbfe0vdcAoCmTZti2LBhOHz4MDQazWPX/TjHjh1DWloaRo0aZbCv2dnZoXPnzsX+hn711Vd45pln9CMqSqLwb5Bueihdb4n69evr179hwwY4OztDrVYb/Q4A+du1efPmCAkJAQBMmDABR44c0eftwttKq9Xi6NGj+h6AOrVr18bo0aNx/vx5o9yqm1ZCl7ffe+892NvbIy0tzSBvp6SkICQkBEFBQZg6dSpGjhxpkLfPnTtntJ2zsrLg7Oxc7HZm3i4a8zbzdkkwb5tf3i6ouOO4tMcKAKPfqsKjC0ura9eu6Nixo/7fTz31FF5++WUcOXIEGo0GGo0GR48exSuvvIJGjRrpX1cwr2RkZBgsU6lUPvY3Ccg/dnSfQ/dbZoruvKLgX+Hj+uDBg7Czs8O0adMMHp8+fTqEEDh06JDJZUdHR+P48eMA8m9EevHixRK1r7OyshAcHIzs7Gz4+PggJiYGL774IoD8Y1J3D4/MzEwkJSXppwspSfu68L71xhtvAMj/bjw8PHD8+HEolUr8+OOPBnlaN3uCs7Ozvn2tUqlgZ2eHYcOG6dvXjo6OePfdd5GQkICUlBSDfU93jhAVFYWDBw+icePGBnl68+bNaNq0KWrWrAkHBwc0atQIR48eNchvzNOGmKdNY57OxzwtfZ4uicflSiEEdu3ahaFDh0IIYbD9+/fvj/T0dKP9TpcfCv49zm+//Ybk5GST+5JOwWkjdT32lUqlPteVNl/m5OQgKSkJcXFx2LVrF27fvq3Pd7rl+fj4GNwry8HBAdOmTUNWVhbOnDkDIP+6AoASXVsASrZ9Dh48iE6dOqFHjx76x9zd3TFlyhSEh4cjMDDQ5LL/+ecfXLt2zeRU1cXRHZePHj3Czz//DK1Wq88bBaWkpOjbySVRq1YtjBkzRv9vOzs7fPzxx8jLyyvz9/a4fbag5ORk9O/fHx4eHti7d69BXijLvl2cMk2B9dtvv6FZs2awt7dHrVq10Lx5c4MkqJtjcMWKFXj48KHBB9QN4wXyh/Y2b94c9vblMhOXXsGLb0D+gdekSRP9fG+6izmmhtnppKeno1q1avp/JyUlGS23sJCQEAghinxd4aG0upNRU3PqFlxmenq6/oAtLCEhweDfR48eRc2aNYuNs7BZs2ahTp06ePfdd43mutNdcCpqmYXXb0p0dDQGDx6M7OxsJCcnF3nyXZLtAeSfqMybNw+3bt0ymCe14HLDwsIgl8vRqlWrIpejG1pe3BzAERERAIDmzZsbPdeiRQucP3/e4LHIyEiDbVW7dm3s2rXrsZ+pOL1798brr7+OOXPmYNGiRejTpw9eeeUVjB492uBktiTbxZSSHq86DRs2NHqsatWqGDp0KLZu3YrvvvsOQP6JRd26dU3+KBclLCwMderUMTjJMeXChQuYNWsWLl26ZDR1QHp6+mNv3hgSEgJ/f//H7tcRERGoXbs2XF1dDZ5v0qSJwb+L209atmyJI0eOGN2IzdR2fOmll1C7dm1s2bIFL774IrRaLbZt24aXX37ZoKhbVhcvXjT4zE2bNsXu3buL3UdKegzoltGiRQuj1+kaKOHh4ahVq1aJ95du3brhr7/+wuLFizFy5EjY29sbzc0M5Cf5OXPmYPv27Ua/SaZO2J955hn9/xf1ne3atQtJSUkGxZGy0OWboo4DT09Pk4+fP38e+/btw4kTJ0o11Unh3yDdsVAwb7/11luIiYnBm2++CSD/JKdt27bo3LkzTpw4gQcPHgAAXnnlFQDQDxlv0aIF9u3bZ5C3C24rIQRycnIMLlLptGzZElqt1qiRqbv5my5vuru7o3bt2oiIiDDI27qh1kII/PbbbwbDYgsq7XZm3jaNeZt5u6SYt80vb+s87jgu7bGSnZ1d6t+qxzH129usWTPk5OQgMTERQP7Fj6K+J61Wi8jISLRu3Vr/eFpaGho0aPDYdd+7d0//eeRyOZo0aYJZs2YZTSG0du1ao+kbARisIyIiAnXq1DH6znXnP7ptXdisWbNQtWpVJCYmokmTJnB1dcWSJUuKbV8DwC+//IJffvlF/5yXlxfmz58PIP+YrF+/PtLT0w3uZ+Du7o6hQ4cWOR2XblpL3dRUBd8HQJ+/dZ+lRYsWBnla99/r168b7Se6eeJ17WvdFKPJyckGN4H9/vvvAeRfMNb9TpjK0wXPNYODg/XLS0hIYJ4uhHnaNOZpY8zTZfMkebqkHpcr5XI50tLSsHr1aqxevdrkMgr/rhS+383jpKen44cffsD//d//Fdk+lsvlRu1A3e+zLkeUNl8uWLDAoMA7YMAAfb7Tvb5p06ZGRdnCy+vQoQOcnZ0xZ84crFy5Un+tV6VSmZzysCTbJyIiwuQ0nAXXXfi3UKPR4Ouvv8Zbb72Fdu3aPXYdBena5kD+tv7mm29MFvEKHjPe3t6YPHky5syZAzs7O6PXymQyNGvWrMjtV9bv7XH7rI+Pj/7xIUOG4P79+/D29ja6n0hiYmKp9+3ilKny0KlTJ/1cgab88MMPmDlzJt555x1899138PLyglwux8cff2zU+1MKuhgWLFiA9u3bm3xNwYSqVCoRGxuLl1566bHLlclkOHTokMmdq3CSjouLAwCDL9/UMr29vQ0q/wUVTjCdO3fGvHnzDB5bvnw59uzZY/L9QUFB2LBhAzZv3mzywNdqtWjbti1+/fVXk++vX79+kbHrhIaG4plnnsGiRYswZswYbNy40WTxqSTb49y5cxg2bBh69eqFFStWoHbt2nBwcMD69euNbqwmhVq1amHz5s0A8pPEunXrMGDAAJw/fx5t27Yt0zJ1N2G6fPky9u3bhyNHjuCdd97BL7/8gsuXL8Pd3f2Jtktpj9fCvVN0xo4dix07duDixYto27Yt9u7di/fff9/ox/RJhYWF4cUXX0SLFi3w66+/on79+nB0dMTBgwexaNGiEv3GaLVavPTSS/j8889NPl9e934ojqntaGdnh9GjR2PNmjVYsWIFLly4gJiYmFL18ilOu3bt9A3mxMRELF26FH369IGfn1+xx11JFLVfFKUk+8uUKVNw5MgRfPLJJ8XO3z1ixAhcvHgRn332Gdq3bw93d3dotVoMGDDA5P6wefNm5OTkYMqUKaWKuSx069+0aZPJbVxUB4AvvvgC/fv3xwsvvGB0M8DiFP4Nmjt3Lvz9/eHl5YW+ffsCyL+oXzBXxMTE4NNPP8WqVaswYsQIjBo1Ct999x0WLlyov3mg1HQnVUOGDMH+/fuxcOFCPP300/rnt2/fjrVr1+q3s0qlwrBhw9C3b19Mnz69yO3MvG0a8zbzdnli3i67J8nbJT2OS8rZ2Rn79u0zeOzcuXP6eb3NRVxcHPr37//Y1/n6+upv8pmcnIylS5dizJgxaNSokX4UKZA/srXwjdC/+eYb/e9fWel+yydPnozff/8dnp6e8PDwMLq5tY7uuAeAHj166O8/sHTpUiQnJ2PIkCH6npo63377LXr27AmVSoUbN25g7ty5SEtLw4oVK4yWr9u/y5rzdcdxvXr19PcNmT59OuLi4vT5sHBOTU1NNZjD/8aNGwDyL3BPmTIFt27dMsjTkyZNgoODg0Evb2dnZ/0F+fr16+Pu3bsAmKd1mKdNY542xDxddhXZvi4p3ffz9ttvF5nnC19s1+WHgoYOHVrkOubPnw+5XI7PPvtMf+/PyjBmzBiMHTsWWq0WDx48wHfffafPd6XJV7Vq1cKyZcswdepUo32xd+/eRq8v7fYpqbVr1yI8PBxHjhwp9Xt17V+VSoVr165h3rx5sLe3NxqRs2vXLnh6eiInJwf//vsvvv/+e/191Aor7TWcinDv3j0cOnQII0aMwPTp0/XnEEDZ9u3ilO/Qi//auXMnnn/+eaPeMmlpaQZDwRo3bowrV64UWXUrK12PWx0hBEJDQ/UbRnfzN09PT/0FoeLcvn0bKpWq2KKPbrlCCDRs2LBEP/CBgYGQyWQmq9oFl3n8+HF07969RDtnjRo1jD5TcTdS++qrr9C+fXt9T2BT69cNMyvrCbFueHStWrWwZ88eTJ8+HYMGDTI6uSzJ9ti1axecnZ1x5MgRg94ZBQ8SXdxarRaBgYFFFrl0+0FAQIBRjwMdXe+u+/fvG/W0uH//vlEPM2dnZ4PtP2zYMHh5eWH58uX6mwyWVZcuXdClSxd8//332Lp1K9566y1s374dkyZNKvF2MaWkx+vjDBgwADVr1sSWLVvQuXNn5OTkGAylK4nGjRvjyJEjSElJKbKXyr59+5CXl4e9e/fiqaee0j9uarh4Ufts48aNkZWV9djjv0GDBjh16hRycnIMeqmEhoYavQ7I3ycKu3fvHmrUqGHQO6U4Y8eOxS+//IJ9+/bh0KFDqFmzZoka8iVRrVo1g8/cp08f1KlTB+vXr9ffMLOwkh4DNWrUgLu7e5HbAIBBI7ck+4uzszMOHDiA4OBgREZGQgiB+Ph4gxPW1NRUnDhxAnPmzMG3336rf7xwHiioe/fucHNzw5QpU4qM183NrVyGLut+Z7y9vUuUb4D83+xLly6VajinTuHfoLS0NEyaNAl///03Ro4cqX+8cK747rvvkJiYiMGDB+Opp57Cd999h44dO2LRokUG+0DhvF14W7m6uupHkBR07949yOVyo1yvG4as+76ysrIQGxuLgQMHYt++fWjXrh3u3buHxo0bIywsDIMHD0ZiYiJWrVoFf39//RDZ1NRUrF27Vr+dr127BrVajZdffln/OU0NXWbeNo15m3m7pJi3zS9v6zzuOC7tsWJnZ2e0/XW9y8vKVK4ODg6Gq6urPk5XV9civye5XG5wsTgqKgqZmZklmhrHzc3N4PP07NkTdevWxdGjRw0KIPXq1TP63IsXLzYogDRo0ADHjx9HZmamQe9I3fmPqREput/yTp064ffff39svLrj/tSpU3jxxRf1NyZdvny5/oboly9fRuPGjfU96Nu2bauPfeDAgXj06BE2btwItVpttPyGDRtCq9Ua9HIHoJ9CQ5e/dZ/l3r17Bu1r3bFds2ZN/TqrVauGwMBAdO3a1eB4Cg4OBpDfE7Zg+/qLL77A/PnzMWzYMKxduxbz5s0zyNPt2rXD7du38dlnnxX5W7Fjxw7m6QKYp4vHPJ2PebrsniRPl1RJcqWHhwc0Gk2J25sF84OOqc5gQH5nuSVLluDHH3+Eh4dHkQUQXZGiYJtK93uvuw5Q2nzZqFEjgzirVKmC0aNH4/Lly+jatSsaNGgAf39/aLVag8KgqeVNmjQJr732GgICAvTTA06fPt3kZynJ9mnQoEGx1z4Kf5acnBzMmTMH77//folGqhbWsWNHfSeJgQMHIjo6GvPnz8fMmTMNPnuvXr30vzPDhg3DhQsXcPjwYZMFkIYNG8LPz6/I7VfW760k+6zO3r170bNnT/z444/44IMP8Pbbb+unOatZs2ap9+3ilG/p+L/s7OyMhq7s2LED0dHRBo+9/vrrSEpKwvLly42WUfj9pfHnn38azEm7c+dO/QUVIH/Hady4MRYuXIisrCyj9+uGXBeM3c7OTj9XeVFee+012NnZYc6cOUbxCyEMfijUajV27dqFTp06FTt8c8SIEdBoNPphjwWp1eonanhcunQJe/bswU8//VRkIhsxYgSio6P1PaQKys3NLdG8cs2aNdMPk1u2bBm0Wi0++ugjg9eUdHvY2dlBJpMZDCMNDw83Ogl95ZVXIJfLMXfuXKMeC7rvpl+/fvDw8MCPP/5oNI+r7jXPPvssvL298fvvvxs0CA4dOoSgoCB976uiKJVKqNVqo8ZEaaSmphrtT7qTTt1yS7pdTCnp8fo49vb2GDVqFP7++29s2LABbdu2LfWwvtdffx1CCMyZM8foOV2MusRTMOb09HSTJ6Nubm4mj5ERI0bg0qVLJivvaWlp+oZh//79oVKpDPZ/rVZrNP1O7dq10b59e2zcuNFgfQEBATh69CgGDRpUzKc21K5dO7Rr1w5//PEHdu3apZ/6qSLk5uYCQLH7Z0mPAblcjgEDBmDPnj14+PCh/nUpKSnYuHEjnn32WYPhsqXZX5o1a4YXX3wRffv2Rffu3Q2eM7U/APkXJ4pTs2ZNPPPMM9i6davBb35YWBj27t2LgQMHFnkSWBr9+/eHp6cnfvjhB5NzDBfON7phsaNHjy6ycVkaun25uPnNAehPeAp+5tOnTyM6OhoODg549tlnsXHjRgwYMECftwtvK7lcjn79+uHYsWMGy46Pj8fWrVvRo0cPox5r+/fvB/C/vL1y5Uqo1WpUqVLFIG93794djRs3xq+//oqlS5ciPDzcoNdxx44dDbZz4bxdeDvrMG+bxrzNvF1SzNvml7d1HnccP+mxUh4KF/sjIyOxZ88e9OvXD3Z2drCzs0O/fv2wZ88e/TQMgGFeKTjF4fbt2wEUPR1icXS/O2XJ/YMGDYJGozFq0y5atAgymUyfy3RK8lteWHHHvS72vLw8vP7660XO16/RaCCXy02uU7fPF76wtWvXLgDAo0ePkJmZib59+8LR0REzZswwyNM3b94EkH+hrGD7Wq1WY9WqVfo8rFQqsWrVKri4uBi1r7t27Qogf7TCp59+ivnz56NNmzb6PD18+HCD/FYwT+fm5iI9PZ15ugDm6aIxT+djni5/pcnTJVWSXPn6669j165dCAgIMHp/Ue2gkpozZw5q1apl8h4rhRXMg0IILF++HA4ODvoL2qXNl4UV3r6DBg1CXFwc/vrrL/1r1Go1li1bBnd3d6PRHV5eXujVqxf69u2Lvn37Gtz2oLQGDRqEq1ev4tKlS/rHsrOzsXr1avj6+hpNF7hkyRJkZ2djxowZZV5nQbm5uVCr1SY7NegIISCEKPLcxtT2003h5+TkpC86lOU8p7h9tiDdSJv3338f3bp1w7vvvqv/nst7366Qo37IkCGYO3cuJkyYgG7duuHOnTvYsmWL0XxwY8eOxZ9//on/+7//w9WrV9GzZ09kZ2fj+PHjeP/99/Hyyy+Xaf1eXl7o0aMHJkyYgPj4eCxevBhNmjTR32hJLpfjjz/+wMCBA9G6dWtMmDABdevWRXR0NE6dOgVPT0/s27cP2dnZ+O2337B06VI0a9YMp0+f1q9Dd2Ln7++PS5cuoWvXrmjcuDHmzZuHr776CuHh4XjllVfg4eGBhw8f4t9//8WUKVPw6aef4vjx45g5cyb8/f2NhpIX1rt3b7z77rv48ccfcevWLfTr1w8ODg4ICQnBjh07sGTJEv3N6Urr6NGjeOmll4qtpI0ZMwZ///03/vOf/+DUqVPo3r07NBoN7t27h7///htHjhx57MiYgnx8fLBgwQJMmjQJb7/9NgYNGlSq7TF48GD8+uuvGDBgAEaPHo2EhAT89ttvaNKkCfz9/fWva9KkCWbMmIHvvvsOPXv2xGuvvQYnJydcu3YNderUwY8//ghPT08sWrQIkyZNwnPPPYfRo0ejWrVquH37NnJycrBx40Y4ODhg/vz5mDBhAnr37o1Ro0YhPj4eS5Ysga+vr9G0PNnZ2QZDdDdt2gSFQoFXX321xNuosI0bN2LFihV49dVX0bhxY2RmZmLNmjXw9PTUJ/6SbhdTSnq8lsTYsWOxdOlSnDp1ymBuxpJ6/vnnMWbMGCxduhQhISH6KYzOnTuH559/Hh988AH69esHR0dHDB06FO+++y6ysrKwZs0aeHt7IzY21mB5HTt2xMqVKzFv3jw0adIE3t7eeOGFF/DZZ59h7969GDJkCMaPH4+OHTsiOzsbd+7cwc6dOxEeHo4aNWrglVdeQadOnTB9+nSEhoaiRYsW2Lt3L1JSUgAY9oBZsGABBg4ciK5du2LixInIzc3FsmXLUKVKFcyePbvU2/HTTz8FgHIbngvkXzDQ7Z9JSUlYtWoV7O3tiy3uluYYmDt3Lg4fPowePXrg/fffh5OTE9asWYP09HSDuaoLfs4n2V+A/JF8vXr1ws8//wyVSqXvvVmwCFOUn3/+GQMGDECXLl3w7rvvQq1WY/ny5XB2dtbPQ13QyZMn9RdadL0a7ty5g8OHD+tfk5WVBblcjjNnzqB3797w9PTEypUrMWbMGDzzzDMYOXIkatasiUePHuHAgQPo3r27wYlEVFSUfsh5WRT+DdJNr/D8888bvC4xMVEfd2xsrP4Cwt69e/W9aRctWqT/Hfj555/Rr18/LFu2DI0bN8b//d//4euvv4ZcLkfDhg3Rv39/vP/++5g3b56+4XPixAlotVqsWrUKeXl5+PnnnzFx4kSDOHRFIV3vzpSUFNSrVw/Lli3T523diZUubw8fPhxdunTB/PnzkZqaisDAQP12fvvtt1G/fn0kJyfD29sbU6dOxa1bt9CsWTP9HKnM28zbBTFvM29bW942xdRxXNpjpSK0adMG/fv3x7Rp0+Dk5KSfmqnghbp58+bh2LFj+nMLe3t7g7wC5G+nWbNm4Y8//sDIkSNN3o+ssKysLH0eTElJwdKlS+Hg4FCmws/QoUPx/PPPY8aMGQgPD8fTTz+No0ePYs+ePfj444/1veJ1Cv6Wl3SaS91xDwB79uzBxYsXcfHiRVSrVg1hYWGoV68enn32WfTs2RNLly7FrVu3MGvWLJw+fRo5OTk4e/YswsPD8eqrr5q8ENK6dWtMnDgRa9euRWBgIFasWAE/Pz/9BdA6dero29fPPfccLly4AFdXV2i1WkybNg0rVqxA8+bNERERoW9fx8bGwt3dHV9++SWWLVuG6dOnY+vWrbh16xbs7e317eugoCAA0N+s1t/fH9OmTcOuXbswd+5cfPfdd/j6668RHh6OFi1a4N1338WiRYuQnJyMrl27ok6dOtiyZQt8fX1x9+5d5mnm6cdinmaeLi/llaeLU5Jc+dNPP+HUqVPo3LkzJk+ejFatWiElJQV+fn44fvy4fvuWxdGjR7Flyxaje0QV5uzsjMOHD2PcuHHo3LkzDh06hAMHDuDrr7/W9/ovbb709/fH5s2bIYRAWFgYli5dqs93QP6U2atWrcL48eNx48YN+Pr6YufOnbhw4QIWL15cLvd5KcqXX36Jbdu2YeDAgZg2bRq8vLywceNGPHz4ELt27TLq+Hf06FF8//33Ju8DVBLHjh1DVFSUfgqsLVu2YNiwYUbfi+6ahW4KrNDQUHz88ccmlzlx4kSsXLkS48ePx/Xr19GwYUPs3r0bJ06cwE8//aSPtbTfW0n22cJ07f327dtj1qxZ+nO8ct23RSmsX79eABDXrl0r9nUKhUJMnz5d1K5dW7i4uIju3buLS5cuid69e4vevXsbvDYnJ0fMmDFDNGzYUDg4OAgfHx/xxhtviLCwMCGEEA8fPhQAxIIFC4zW07p1a4PlnTp1SgAQ27ZtE1999ZXw9vYWLi4uYvDgwSIiIsLo/Tdv3hSvvfaaqF69unBychINGjQQI0aMECdOnDBY9+P+xo0bZ7DcXbt2iR49egg3Nzfh5uYmWrRoIaZOnSru378vhBDiww8/FL169RKHDx82imnWrFnC1NeyevVq0bFjR+Hi4iI8PDxE27Ztxeeffy5iYmL0r2nQoIEYPHiw0XunTp1qtEwAQiaTiRs3bhg8buo7UiqVYv78+aJ169bCyclJVKtWTXTs2FHMmTNHpKenG63vccsTQogXXnhBPPXUUyIzM7PU22Pt2rWiadOmwsnJSbRo0UKsX7++yO22bt060aFDB33cvXv3FseOHTN4zd69e0W3bt2Ei4uL8PT0FJ06dRLbtm0zeM1ff/2lX46Xl5d46623RFRUlMFrxo0bZ7BfuLu7i2eeeUZs2rSp2G30OH5+fmLUqFHiqaeeEk5OTsLb21sMGTJEXL9+vUzbpUGDBgb7bEmPV93xtWPHjmLjbd26tZDL5Ubbp6TUarVYsGCBaNGihXB0dBQ1a9YUAwcONNhX9+7dK9q1ayecnZ2Fr6+vmD9/vli3bp0AIB4+fKh/XVxcnBg8eLDw8PAQAAw+T2Zmpvjqq69EkyZNhKOjo6hRo4bo1q2bWLhwoVAqlfrXJSYmitGjRwsPDw9RpUoVMX78eHHhwgUBQGzfvt0g9uPHj4vu3bvr96WhQ4eKwMBAg9fovpPExMQit0FsbKyws7MTzZo1K9M2NKV3794G+2fVqlVF9+7dxcGDB0v0/pIcA0Lk76/9+/cXbm5uwtXVVfTp00ecO3euyOWWdn/R/S6vX79e/1hUVJR49dVXRdWqVUWVKlXE8OHDRUxMjAAgZs2apX+dLocV3EeOHz8uunXrJpydnYWHh4cYNGiQ8Pf3N1in7jsrzV+DBg0MlnHq1CnRv39/UaVKFeHs7CwaN24sxo8fb3Ac635DPvroI4P3morbFFO/QQ0aNDDK27rHdH81atQQffv2FaNHjxa1a9cWTk5OAoD47bffDH4HTpw4Ibp37y6cnZ2Fo6OjcHFxEfb29kZ5e//+/QKAcHR0FK6uruL5558XFy9eFEL8L2/rPtPixYsFAOHm5iYcHByEs7OzUd4u+JtVMG/LZDLh6Ogohg8frs/b27ZtY94WzNtCMG8Lwbxty3m7JMexTkmPFTc3N6Pl7dixQwAQp06dMnrOVL4uCICYOnWq2Lx5s/446NChg8ll6c4t3N3djfKKEEJcuHBBNGnSRMyePVvk5eU9No6itu2hQ4dMxljY4MGDjfJ8Zmam+OSTT0SdOnWEg4ODaNq0qViwYIHQarVGyyz4W67Lh88884zJ70xHd9wXzmcODg6iRo0aIigoSP/aw4cPG73O1dVVjBs3TqSmpuq3SdWqVQ3WoVKphLe3t3B2dhYODg6ifv36YuTIkSbb161btxaNGzcWDg4OolatWuK9994TqampRnnawcFBvPTSS6JVq1bC2dlZ1K1bt8R5+vTp00Imk4klS5YY5GlHR0fh6Ogo5HK58PT0FB07dhSdO3cW3bt3Z55mni4R5mnm6fLwpO1rIco3V8bHx4upU6eK+vXr66+tvvjii2L16tX61xS3z7m5uRnsx7r81L59e4NcZipm3XlCWFiY6Nevn3B1dRW1atUSs2bNEhqNxmA9pcmXuj+ZTCZ8fHzEa6+9ZpDvdJ97woQJokaNGsLR0VG0bdu2yO1ZWGmOycLbRwghwsLCxBtvvCGqVq0qnJ2dRadOncT+/fsNXqNbZu3atUV2drbRZyx4vcIU3ft1f/b29qJBgwZi2rRpIjU1Vf+6wtcsXFxcRKtWrcSiRYv0ryn8WyWEEAkJCeKdd97Rb782bdqINWvWGMVRmu+tJPtsUTlmzpw5wt7eXvj5+ekfK8m+XRKlKoCYu5ImkJLSHdjFXXSaNWuW0Q5EZMvat28vXnjhBanDqFD//vuvACDOnz9fIctPTEwU9vb2Yu7cuRWyfHNijfvLqVOnjC6MkCHdCfXvv//OvE0kMWv8HS6Medv8FFVcIPPyJO3r3r17i9atWxs8xjxNVHrM00/OUvO0peTKojpKkO0x5322Qu4BQkS26fr167h16xbGjh0rdSjlRjf/oI5Go8GyZcvg6emJZ555pkLWuWHDBmg0mlLf5M7SWOP+QkRkSazxd5h5m4iIrAXzdPlgniaiirnzj5Vwd3fHW2+9VexNw9q1a4c6depUYlRE5icgIAA3btzAL7/8gtq1a+PNN980eF6j0Tz2BkXu7u7FHmtS+fDDD5Gbm4uuXbsiLy8P//zzDy5evIgffvgBLi4u5bqukydPIjAwEN9//z1eeeUV+Pr6luvyzcXj9hdL5+XlZXTDNaoczNtEJcO8XT5sJW8TlRfmaaKSYZ4uH8zTRKTDAkgxatSoob+hUVFee+21SoqGyHzt3LkTc+fORfPmzbFt2zY4OzsbPB8ZGYmGDRsWu4xZs2aV+mZmleGFF17AL7/8gv3790OhUKBJkyZYtmwZPvjgg3Jf19y5c3Hx4kV0794dy5YtK/flm4vH7S+Wrl27dti4caPUYdgk5m2ikmHeLh+2kreJygvzNFHJME+XD+ZpItKRCSGE1EEQkXVTKBQ4f/58sa9p1KgRGjVqVEkRERERUVGYt4mIiMwX8zQRUemwAEJERERERERERERERFaHN0EnIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR1WAAhIiIiIiIiIiIiIiKrwwIIERERERERERERERFZHRZAiIiIiIiIiIiIiIjI6rAAQkREREREREREREREVocFECIiIiIiIiIiIiIisjosgBARERERERERERERkdVhAYSIiIiIiIiIiIiIiKwOCyBERERERERERERERGR17KUOgIhsi0YroNZqIUT+/2uEgFYrAJkSMrkGdjI7yGVyyGVy2MnsYCfP/zcRERGZDyEE1FoBjVZAK3T/BYRWQGafC5lMps/pdjI7yGQyOMgdpA6biIiICimqjS5keZDLtWyjE5HFYwGEiMpEpdEiOjUXCZl5SM9VIT1XhYz//rfw/6fnqpChyP+vQqU1ubyeXS7gVvo+k8+52LvA09ETnk6e+f/975+Ho4fBY1WcqsDT0RPert7wcfPhSRkREVEJpGQrEZ2ai9QcpT5fF5nPc9VIz1UhU6GCVhgvq0YVBfLqzDa5HnuZvVHu9nD0MM7x//3/as7VUNe9Ltwc3Cp2AxAREVkBpVqLqNQcJBZoo+e3xdVG+bxgns9Tm26j9+h6DLfTTph8ztXe9bHt84L/7+PmA29Xb7bRiUgSLIAQUZGSsvIQmZKDRyk5+v/m/38u4jIU0Ji68lEBctW5yFXnIj4nvsTvsZfbo45bHdR1r4t6HvXy/9zroa5HXdT3qA9PR88KjJiIiMh85Kk1iErN/V8+T/5vPk/NRVRKDjLz1JUSh1qokZqXitS81FK9r6pTVdRzr2eUz+u510Ntt9qwk9tVUMRERETmJSFTUaCNnlugjZ6D+AyFyc4JFSFHnYMcdQ7isuNK/B5HuSPquBdoo/83t9d1z2+juzu6V2DERGTLWAAhIkQkZ+NOdDoCojMQlpiFyP+eQGUrNVKHVmZqrRqPMh/hUeYjINb4eQ9HD/0JV+OqjdHSqyVaVW8FHzefyg+WiIioHGTlqXE3Oh0BMRkIis3QFzriMxUQlXRBpCKk5aUhLS8NAckBRs/Zy+zh4+aDuh510cCjAZp7NUfr6q3RrFozONhxyi0iIrI8Qgg8TMpvo9+NycCDxCx9wSNXZbltdKVWifCMcIRnhJt8vopTFX0xpHHVxmhdvTVaVW+FGi41KjdQIrI6MiEsuTlERKUhhEBEcs5/ix3p+v9mKCqn52dxipsCqzJ5OXuhVfVW+r/W1VuzKEJERGYnK0+NgAL5/E50OsKTsiut52dRipsCqzLZy+3RtGpTg5zerFozONo5Sh0aERGRnhACD5Ky8/N5VH4+D4zJqLTRmcUpbgqsyuTt4q3P5S2r53dc9Hb1ljosIrIgLIAQWbGo1Bz4PUrTn0wFxKQj0wyKHaaYSwHEFC9nr/wTLa/8k6723u3ZC4WIiCqNQqXBrcg0/YWRgOh0PEzONstRHeZSADHFXm6PJlWb5F9E8WqFNjXaoIVXC06hRURElSY8KTs/p0f/r9iRZQbFDlPMpQBiSg2XGv/r5ODVCh28O6Cqc1WpwyIiM8UCCJEVSc9V4VJYEs6FJOF8aBIiknOkDqnEzLkAUpgMMjSp1gRda3dFl9pd8KzPs3Cxd5E6LCIishJCCNyNycC5kCRcCE3CtfCUIm9Qam7MuQBiioejBzr5dMrP6XW6oIFnA6lDIiIiK5KSrcSF0CSc/28bPTotV+qQSsycCyCFyWVyNK/WHF3r5LfRn6n1DJzsnKQOi4jMBAsgRBZMqdbC71Eqzock4VxoEgKi0yvtxuTlzZIKIIU5yB3wdM2n9Sdbrau3Zm9SIiIqlajUHH0+vxSWjJRspdQhlYmlFUAKq+NWR5/PO9fujGrO1aQOiYiILIhCpcH18FScC03EhdAk3I3JMMsRmyVhSQWQwpzsnNDBuwO61O6CrnW6oqVXS8hkMqnDIiKJsABCZGHuxWXoe49cfZiCHAu+UXlBllwAKaxgb9KudbriKc+npA6JiIjMjG7U5vn/9goNt6BRm8Wx9AJIQTLI0MKrBbrU6YIutbugY62O7E1KREQGdKM2dfnckkZtPo4lF0AKq+ZUDZ1qd9IXROq615U6JCKqRCyAEFmAgOh07POPwQH/WESlWs6Q2dKwpgJIYU2qNkF/3/4Y4DsAvlV8pQ6HiIgkkp6rwtG7cdjvH4sLoUlQW+iozeJYUwGkMFd7V/Su3xsDfAegR90evKE6EZEN83uUiv23Y3HwTiziMhRSh1MhrKkAUlhLr5bo79sf/X37o55HPanDIaIKxgIIkZm6F5eB/bdjceBOLB4mZUsdToWz5gJIQc2rNceAhgPQ37c/6nvUlzocIiKqYFl5ahwLjMMB/1icDU6CUmMdvUKLYs0FkII8HDzw/FPPo79vf3St0xUOcgepQyIiogp2Jyod+/1jsN8/1qLu5VFW1lwAKahN9Tb6NrqPm4/U4RBRBWABhMiMhCZk6U+oQhOypA6nUtlKAaSg1tVb63ud1HGvI3U4RERUTnKUapwISsB+/xicvp9oNVNhlIStFEAK8nT0xItPvYgBvgPQqXYn2MvtpQ6JiIjKSVBsBvb/dzYGa5musqRspQCiI4MM7Wq2wwDfAejn2w/ert5Sh0RE5YQFECKJRSRnY9/t/KLHvbhMqcORjC0WQHRkkKFtzbbo36A/BjQcwBMtIiILlKfW4NS9BOzzj8XJoATkqqzjHl2lZYsFkIKqOVVD3wZ9McB3AJ71eRZymVzqkIiIqJRCEzKx73Ys9vvHICzR+mdjKIqtFUAKkkGGDt4dMKDhAPRr0A/VXapLHRIRPQEWQIgkoNZocSwwHpsuR+BiWLLU4ZgFWy6AFGQns0Pver3xZos30bV2V8hkMqlDIiKiYjxKzsHmKxHYcT0SqTkqqcORnK0XQAqq514Pw5sPx2tNXkNV56pSh0NERMVQqrU4FBCLTZcicD0iVepwzIItF0AKcpA7oO9TffFmizfRsVZHqcMhojJgAYSoEiVkKLD16iNsvxpptTdKKysWQIz5evpieLPheKXpK/B09JQ6HCIi+i+tVuDkvQRsuhyBsyGJ4Nn0/7AAYsxR7oj+vv3xZos38XTNp6UOh4iICohOy8WWyxH4+3okkrKUUodjVlgAMdakahO82fxNDG08FG4OblKHQ0QlxAIIUSW4GJaEzZcjcPRuPNRaHnKmsABSNGc7ZwxoOAAjW4xE6+qtpQ6HiMhmJWflYfu1SGy98sgmbn5aFiyAFK+lV0uMaD4CgxsNhou9i9ThEBHZJCEEzgQnYvPlCJy8lwA20U1jAaRobg5uGNJoCN5s/iaaVmsqdThE9BgsgBBVkEyFCrtuRGHzlUc2d0PzsmABpGTaVG+DN1u8iYENB8LJzknqcIiIbMK18BRsvhyBQ3fioNTYzg3Ny4IFkJLxcPTAsMbD8GbzN9GwSkOpwyEisglpOUr8fT0SW648QoSN3dC8LFgAKZlnvJ/Bm83fxEsNXoKDnYPU4RCRCSyAEJWzsMQs/HHuIfbcikaO0jZvgFoWLICUThWnKnil8SsY02oMarnVkjocIiKro1Rr8Y9fFDZcDMe9uEypw7EYLICUXmefzni71dvoU7+P1KEQEVmloNgM/HHuIfb7xyBPzY4MJcUCSOlUd66O15u9jrdavgUvZy+pwyGiAlgAISonIfGZWHoyFAf8YziEtgxYACkbR7kjXm36Kia1nQQfNx+pwyEisnh5ag3+uhaJ30+HISad9+sqLRZAyq6FVwu82+5dvPjUi5DJZFKHQ0Rk8QKi07H0RAiOBcXzfl1lwAJI2bjYu2BEsxEY32Y8arjUkDocIgILIERP7F5cBpadCMWhgFgWPp4ACyBPxkHugGGNh2Fyu8mo615X6nCIiCyOQqXB1iuPsOpsGOIz8qQOx2KxAPLkmlZriintpqBfg36Qy+RSh0NEZHH8o9Kw9EQIjgclSB2KRWMB5Mk42znjjWZvYEKbCfB29ZY6HCKbxgIIURkFxmRg6YkQHAmMY2+ScsACSPmwl9ljSOMhmNJ2Cup71pc6HCIis5er1GDLlQisOvsAiZksfDwpFkDKT+MqjTG53WQMbDiQhRAiohK4+SgVS06E4PT9RKlDsQosgJQPztpAJD0WQIhKKSA6HUtOhOA4h9GWKxZAype9zB6DGg3C5LaT4VvFV+pwiIjMTo5SjT8vReCPcw+QlKWUOhyrwQJI+fP19MXkdpMxuOFg2MntpA6HiMjs3IhIweLjITgXkiR1KFaFBZDy5SB3wMtNXsbktpNRx72O1OEQ2RQWQIhK6HZkGpacCMHJexxGWxFYAKkYdjI79Pftj3fbvYtGVRtJHQ4RkeSy8tTYeDEca88/REo2Cx/ljQWQivOUx1OY1HYShjYeCnu5vdThEBFJ7urDFCw5EYwLoclSh2KVWACpGPZyewxtNBST207mrA1ElYQFEKLHCE/Kxo+HgnDkbrzUoVg1FkAqllwmxytNXsGHHT7kjdiIyCapNVpsufIIS06EsPBRgVgAqXgNPBvgk46f4MWnXpQ6FCIiSdyPy8T3B4NwNphTXVUkFkAqlr3cHiOajcB7T7+Hqs5VpQ6HyKqxAEJUhPQcFZacCMGmy+FQaXiYVDQWQCqHq70r3mnzDsa1Hgdne2epwyEiqhQn78Xj+wNBCEvMljoUq8cCSOXp5NMJnz77KVpWbyl1KERElSIpKw+/HA3G39cjodGyjV7RWACpHB6OHni33bsY3WI0HOwcpA6HyCqxAEJUiFqjxabLEVhyIgRpOSqpw7EZLIBULh83H0zrMA1DGg2BTCaTOhwiogpxLy4D3x8I4pzglYgFkMoll8kxtNFQTHtmGrxdvaUOh4ioQuSpNVh7/iFWngpDZp5a6nBsBgsglau+R3180vETvNTgJalDIbI6LIAQFXAuJBGz995lD1EJsAAijXY12+Hrzl+jdfXWUodCRFRu0nKUWHj0PrZdZQ/RysYCiDRc7F0wpd0UjGs1jr1HiciqHLkbh3kHAhGZkit1KDaHBRBpPOfzHL7q9BWaVmsqdShEVoMFECIAUak5+G5/IO/zISEWQKQjl8nxapNX8dEzH6GaczWpwyEiKjOtVmDbtUdYeOQ+UjmKUxIsgEirgWcDfPHcF+hZr6fUoRARPZEHiVmYsy8QZ3ifD8mwACIde5k93mzxJqa2nwoPRw+pwyGyeCyAkE1TqDT4/UwYfj8TBoVKK3U4No0FEOl5Onrigw4fYESzEbCT20kdDhFRqdyISMWsvQEIiM6QOhSbxgKIeehTrw8+7/Q56nvUlzoUIqJSyc5TY+nJEKw/Hw6lhm10KbEAIj0vZy98/MzHeKXJK5y6mugJsABCNutiWBK+3HUHj1JypA6FwAKIOWnp1RLfdf8Ozb2aSx0KEdFjZeWp8f2BQGy/Fgme1UqPBRDz4Sh3xH+e/g/eafMOOzYQkUU4eS8eX/8TgLgMhdShEFgAMSfta7bHd92/g28VX6lDIbJIcqkDIKpsOUo1Zu4OwFt/XGHxg8iEoJQgjDwwEr/f/h1qLW8ySETm61xIIvovOottV1n8ICpMqVVi6c2lePvg2whLC5M6HCKiIqXnqjD979t4Z8N1Fj+ITLiVeAvD9w3HxrsboRUcGUVUWiyAkE25/CAZAxafw6bLEbxQQlQMtVaN3279htEHRiM4NVjqcIiIDGTlqfHVP3cwZu1VRKfxpqhExQlIDsCIfSPwx50/oNFqpA6HiMjAqXsJ6L/oLHb5RUkdCpFZU2gUWHh9IcYfHo+IjAipwyGyKCyAkE3IVWowa08ARq25zFEfRKUQlBKEkfs5GoSIzMf5kKT/jvp4JHUoRBZDqVViid8SjDk0Bg/SHkgdDhERMhQqfLbjNiZsuMZRH0SlcDPhJt7Y+wb+vPsnR4MQlRALIGT1rjxIxoAlZ7HxEkd9EJWFSqviaBAiklx2nhpf/3sHb6+9wlEfRGV0J+kOhu8bjnUB6zgahIgkc/p+/qiPHTc46oOoLBQaBRZcX8DRIEQlxAIIWa1cpQaz997FyDWXEZHMUR9ET0o3GmTV7VUcDUJElepiaBL6Lz6LrVc46oPoSSm1Siy6sQhjD43Fg3SOBiGiypOpUOGLnf4Yv/4aYtM56oPoSXE0CFHJsABCVulaeAoGLjmLDRfDOeqDqByptCosv7Ucbx18CyGpIVKHQ0RWLjtPjW9238Fba68gKpWjPojKk3+SP0bsG4ENARt40YSIKtzZ4ET0X3QWf12PlDoUIquiGw0y4fAEjgYhKgILIGRVtFqBX48F481VlxDOUR9EFSYwORAj94/EjuAdUodCRFYqKDYDQ5adx+bLj9iZgaiC5Gny8MuNXzDp6CQk5SZJHQ4RWSG1Rovv9gdi7LqriOGoD6IK45fghxH7RuDQw0NSh0JkdlgAIauRkq3EuPVXsfRECLS8UEJU4ZRaJeZemosZ52cgV82e2URUfnbeiMKrKy7gYVK21KEQ2YRrcdcwYt8I3Ii/IXUoRGRF4tIVGLn6Mtaefyh1KEQ2IUedg8/Pfo7vL38PlUYldThEZoMFELIKNyJSMXjpOZwLYc81osq2N2wvRh8YjfD0cKlDISILp1Bp8OUuf3y64zYUKk7JQ1SZEnMTMenIJKwPWC91KERkBS6EJmHIsnO4HpEqdShENmf7/e0Yd3gcYrNipQ6FyCywAEIWb935hxi5+hJvokYkodC0UIw8MBJHwo9IHQoRWahHyTl4feVFbL/GucGJpKIWavx641d8dPIjZCozpQ6HiCyQEALLToRgzNorSMpSSh0Okc26k3QHw/cPx7moc1KHQiQ5FkDIYmXlqTF1qx/m7g+ESsM5r4iklq3KxqdnPsVPV3+CSsvhtkRUckfvxmHIsnO4G5MhdShEBOBk5Em8uf9N3Eu5J3UoRGRB0nKUeGfDNfxyLJjTUhOZgfS8dEw9MRVL/ZZCKzi6mmwXCyBkkYLjMzFs+Xkc8OdwPiJzsyVoCyYcnoC47DipQyEiM6fRCvx4MAjvbr6BDIVa6nCIqIDIzEi8ffBt/BPyj9ShEJEF8I9Kw+Cl53HqfqLUoRBRAQICa+6swZRjU5Ccmyx1OESSYAGELM7um9F45bcLeJDIG6MSmavbibcxYt8IXIy+KHUoRGSmEjIVGLXmMladfQDBXqJEZilPk4dZF2dh5oWZUKg53SwRmbbpcgTe+P0SotNypQ6FiIpwJfYKRuwbAb94P6lDIap0LICQxVBrtJi5OwAf/3ULOUqN1OEQ0WOk5qXivRPvYY3/GqlDISIzcyMiBYOXnsfVhylSh0JEJbA7dDfePvg2YrJipA6FiMxInlqD//vrFmbuDoBSzel1iMxdQm4CJh6ZiG33tkkdClGlYgGELEJ2nhoTN17HpssRUodCRKWgFVosvbkUsy/OhlrL6W2ICDh0Jxaj11xBYmae1KEQUSncT72Ptw++jcDkQKlDISIzkJajxNt/XME/N6OlDoWISkEt1Pjhyg9YcG0BBIdhk41gAYTMXkKGAiNWXcKZYM4lSmSpdoXswgcnP0C2ilPXEdmyP849wNStfshjL1Eii5SYm4gJhyfgXNQ5qUMhIglFpuTg9ZUXcS08VepQiKiM/gz8E9PPTEeehp2SyPqxAEJmLSQ+E6+uuIi7MRlSh0JET+hC9AWMPzweiTksZhLZGq1WYM6+u5h3IAhadjQjsmg56hxMOzkNO4N3Sh0KEUngTlQ6Xl1xEWG8JyeRxTsWcQyTj05GmiJN6lCIKhQLIGS2Lj9IxusrL/JGakRW5F7KPbx18C2EpoZKHQoRVRKFSoP3t/hh/YVwqUMhonKiFmrMuTQHS/2WSh0KEVWik/fi8ebqS0jKYo9xImtxM+Emxhwag8jMSKlDIaowLICQWdp7OwZj115FhoL3DCCyNrHZsRh7aCyuxl6VOhQiqmAp2UqMXnMZh+/GSR0KEVWANXfW4KtzX0GlVUkdChFVsK1XHmHynzeQo9RIHQoRlbPwjHC8ffBt3Em8I3UoRBWCBRAyO7+fCcNH229CqeH84ETWKlOVif8c/w/2he2TOhQiqiDhSdl4bcUF+D1KkzoUIqpA+x/sx3vH3kOmMlPqUIiogiw4cg9f/3sHGs5jSWS1UhQpmHh0Ik4+Oil1KETljgUQMhsarcDM3QH46dA9CJ5XEVk9lVaFr89/jdX+q6UOhYjKmd+jVLy+8iLCk3OkDoWIKsGVuCsYe2gs4rI52ovImqg0Wnzy1y38dipM6lCIqBLkqnPxyelPsDVoq9ShEJUrFkDILChUGry76QY2XY6QOhQiqmTLbi7D3EtzIVj5JLIKJ4LiMXrNZSRnK6UOhYgqUWhaKN468BZCUkOkDoWIykFWnhrj1l3FvzejpQ6FiCqRVmjx49UfsejGIqlDISo3LICQ5BQqDaZsuoHjQfFSh0JEEtkRvAOzLs5iEYTIwh0LjMd/Nt+AQsVpLIlsUUJuAiYdncQiCJGFy8pTY/y6q7gYlix1KEQkkXUB67Dw2kKpwyAqFyyAkKR0xY+zwYlSh0JEEvs39F8WQYgs2LHAeLy/5QZUGh7DRLYsRZHCIgiRBdMVP65HpEodChFJbGPgRhZByCqwAEKSYfGDiArTFUG0gr3HiSwJix9EVBCLIESWicUPIipsY+BGLLi2QOowiJ4ICyAkCRY/iKgoLIIQWRYWP4jIFBZBiCwLix9EVJQ/A//Ez9d+ljoMojJjAYQqHYsfRPQ4u0N3swhCZAFY/CCi4rAIQmQZsln8IKLH2BS4iUUQslgsgFClYvGDiEqKRRAi88biBxGVBIsgROYtO0+NcSx+EFEJbArchPlX50sdBlGpsQBClYbFDyIqLRZBiMwTix9EVBosghCZJxY/iKi0NgdtZhGELA4LIFQpWPwgorJiEYTIvLD4QURlwSIIkXlh8YOIyopFELI0LIBQhVNrtHh/ix+LH0RUZrtDd+OHKz9IHQaRzTsXksjiBxGVma4IEpkRKXUoRDZNodJgwoZrLH4QUZltDtqMZTeXSR0GUYmwAEIVbuaeAJy8lyB1GERk4f66/xfW3lkrdRhENiswJgPvbfZj8YOInkiKIgXvnXgPqQpeeCWSghAC0/++jasPU6QOhYgs3Gr/1dgZvFPqMIgeiwUQqlDLT4Zg21X28CKi8rHEbwkOPjgodRhENic2PRfvbLiGrDy11KEQkRWIyIjAhyc/hEKtkDoUIpvzw8EgHLgTK3UYRGQlvr/8Pc5GnZU6DKJisQBCFWb3zWgsPBosdRhEZEUEBL658A2uxV2TOhQim5GhUGH8umuIy+CFSiIqP7cTb+PLc1/yHl9ElWjjxXCsOfdQ6jCIyIqohRqfnvkUd5PvSh0KUZFYAKEKcTEsCZ/v9Jc6DCKyQiqtCh+d+ghhaWFSh0Jk9VQaLf6z6Qbux2dKHQoRWaETj07g52s/Sx0GkU04FhiPOft4gZKIyl+uOhdTj09FdFa01KEQmcQCCJW74PhMvLvpBpQa9uYiooqRqczEe8ffQ2JOotShEFm1L3b642JYstRhEJEV2xK0BX/e/VPqMIis2q3INEzbdhNa3saLiCpIsiIZ7x1/D+l56VKHQmSEBRAqV/EZCoxfdxWZCs4RTkQVKzY7FlNPTEWOKkfqUIis0sIj9/HPTfbiIqKKt/D6QhwNPyp1GERW6VFyDiZuuIZclUbqUIjIyj1Mf4hpJ6chT5MndShEBlgAoXKTnafGhPXXEJPOOcKJqHIEpQTh/07/H9RaFl2JytO2q4+w/FSo1GEQkY0QEPj6/Ne4mXBT6lCIrEpqthLj119FcrZS6lCIyEb4Jfjh63NfQwgOOSPzwQIIlQu1Rov3t/ghMDZD6lCIyMZciLmAuZfmSh0GkdU4dT8BM3cHSB0GEdmYPE0epp2chvD0cKlDIbIKCpUGk/+8jgdJ2VKHQkQ25mjEUSy8vlDqMIj0WAChcjFzz12cCeZc/EQkjX9D/8Ufd/6QOgwii3cvLgMfbPGDmpOEE5EE0vLSOH84UTmZvuM2rkekSh0GEdmoPwP/xI7gHVKHQQSABRAqB39fi8S2q4+kDoOIbNzym8txJfaK1GEQWaxMhQrvbfZDtpJzhBORdKKyovDVua84dQbRE1hz9gEO+MdKHQYR2bifrvyEu8l3pQ6DiAUQejKBMRmYuYfTZBCR9DRCg8/Pfo6EnASpQyGySJ/v9MdDTpNBRGbgXPQ5rLmzRuowiCzStfAUzD98T+owiIig1Cox/fR0juwkybEAQmWWoVDh/S03kKfWSh0KEREAIEWRgs/OfMabohOV0h/nHuBQQJzUYRAR6f126zdcjr0sdRhEFiUpKw8fbOVUlkRkPqKzojmykyTHAgiV2Wc7biM8OUfqMIiIDPgl+GHRjUVSh0FkMa6Hp+CnQ+wpSkTmRSu0+OLsF4jPjpc6FCKLoNUKTNt2E/EZeVKHQkRk4Fz0Oaz2Xy11GGTDWAChMllz9gGO3GVjhIjM05+Bf+JYxDGpwyAye0lZeZjKnqJEZKZSFCn47CxHdhKVxK/HgnExLFnqMIiITFpxewUuxVySOgyyUSyAUKld55yiRGQBvr3wLSIyIqQOg8hssacoEVmCmwk38euNX6UOg8isnbqXgN9Oh0odBhFRkbRCiy/PfYm4bE67S5WPBRAqFfYUJSJLkaXKwienP0GuOlfqUIjMEnuKEpGl2BS4iSM7iYoQlZqDT/6+BU6vT0TmLkWRgk/PfAqVViV1KGRjWAChEmNPUSKyNCGpIZh3eZ7UYRCZnZP34tlTlIgsCkd2EhlTqrWYusUPaTm8mEhEluF24m38cv0XqcMgG8MCCJUYe4oSkSXaG7YXO4J3SB0GkdmITMnBJ3/dZk9RIrIoupGdCrVC6lCIzMZ3+wNxOypd6jCIiEplS9AWHH54WOowyIawAFJJ+vTpg48//ljqMMrsQmgSe4oSkcWaf3U+HqQ/qLT1Pe43XyaTYffu3SVe3unTpyGTyZCWlvbEsdGTs+ScrtEKfLT9JtJz2VOUiCxPSGoIfr72c6WukzndshX+/nx9fbF48WLJ4ilPh+7EYtNljooiIss099LcSr0fiCW34ejJsQBCj5WVp8bnO/3ZU5SILFaeJg8zz8+ERquROhQAQGxsLAYOHCh1GGSD/jj3AH6P0qQOg4iozHYE78ClmEtSh6HHnG5Zrl27hilTpkgdxhNLyVbim90BUodBRFRmmapMzL40W+owyEawAEKP9cPBIESn8SbCRGTZ/JP8sTFwo9RhAAB8fHzg5OQkdRhkY0ITsvDrsWCpwyAiemKzLs5Ctipb6jAAMKdbmpo1a8LV1VXqMJ7YzD0BSM5WSh0GEdETuRB9AbuCd0kdBtkAFkAkkJqairFjx6JatWpwdXXFwIEDERISAgAQQqBmzZrYuXOn/vXt27dH7dq19f8+f/48nJyckJOTU+Gxng9JwtYrjyp8PUREleG3m7/hQVrlTIWl1Wrx+eefw8vLCz4+Ppg9e7b+ucLTZVy8eBHt27eHs7Mznn32WezevRsymQy3bt0yWOaNGzfw7LPPwtXVFd26dcP9+/cr5bNQ0Swlp2u0Ap/uuI08tbZC10NEVBlis2Ox8PrCSlsfc3r569OnDz788EN8/PHHqFatGmrVqoU1a9YgOzsbEyZMgIeHB5o0aYJDhw7p3xMQEICBAwfC3d0dtWrVwpgxY5CUlKR/Pjs7G2PHjoW7uztq166NX34xvsluwSmwwsPDjb6btLQ0yGQynD59GsD/piw7cuQIOnToABcXF7zwwgtISEjAoUOH0LJlS3h6emL06NGV0j4HgIN3YnHAP7ZS1kVEVNEWXl+I2KzK/U2zlDYclR8WQCQwfvx4XL9+HXv37sWlS5cghMCgQYOgUqkgk8nQq1cv/QlXamoqgoKCkJubi3v37gEAzpw5g+eee67Ce65k5anxxS7/Cl0HEVFlUmqVmHF+RqVMhbVx40a4ubnhypUr+PnnnzF37lwcO3bM6HUZGRkYOnQo2rZtCz8/P3z33Xf44osvTC5zxowZ+OWXX3D9+nXY29vjnXfeqeiPQY9hKTl9zbkHuBWZVqHrICKqTDuDd+JizMVKWRdzesXYuHEjatSogatXr+LDDz/Ee++9h+HDh6Nbt27w8/NDv379MGbMGOTk5CAtLQ0vvPACOnTogOvXr+Pw4cOIj4/HiBEj9Mv77LPPcObMGezZswdHjx7F6dOn4efnVy6xzp49G8uXL8fFixcRGRmJESNGYPHixdi6dSsOHDiAo0ePYtmyZeWyruIkZ+VhJqe+IiIrkqXKwrcXv63UdVpKG47KDwsglSwkJAR79+7FH3/8gZ49e+Lpp5/Gli1bEB0dre851KdPH/2BdvbsWXTo0MHgsdOnT6N3794VHuv3Bzj1FRFZn4DkAKy/u77C19OuXTvMmjULTZs2xdixY/Hss8/ixIkTRq/bunUrZDIZ1qxZg1atWmHgwIH47LPPTC7z+++/R+/evdGqVSt8+eWXuHjxIhQKRUV/FCqCpeT00IRMTn1FRFZp9sXZyFJmVfh6mNMrxtNPP41vvvkGTZs2xVdffQVnZ2fUqFEDkydPRtOmTfHtt98iOTkZ/v7+WL58OTp06IAffvgBLVq0QIcOHbBu3TqcOnUKwcHByMrKwtq1a7Fw4UK8+OKLaNu2LTZu3Ai1Wl0usc6bNw/du3dHhw4dMHHiRJw5cwYrV65Ehw4d0LNnT7zxxhs4depUuayrON/uucupr4jI6lyOvYy/7/9dKeuylDYclS8WQCpZUFAQ7O3t0blzZ/1j1atXR/PmzREUFAQA6N27NwIDA5GYmIgzZ86gT58++gNNpVLh4sWL6NOnT4XGeS4kEduucuorIrJOK26tQGhqaIWuo127dgb/rl27NhISEoxed//+fbRr1w7Ozs76xzp16vTYZeqG4JpaJlUOS8jpGq3A9B3+UHLqKyKyQpU1FRZzesUouA3s7OxQvXp1tG3bVv9YrVq1AORvl9u3b+PUqVNwd3fX/7Vo0QIAEBYWhrCwMCiVSoOc7OXlhebNm5d7rLVq1YKrqysaNWpk8FhFf38H/GNx4A6nviIi6/TL9V8QnRVd4euxhDYclT8WQMxQ27Zt4eXlhTNnzhgcaGfOnMG1a9egUqnQrVu3Clt/pkKFL3fdqbDlExFJTaVV4ZsL30CtLZ9egaY4ODgY/Fsmk0GrfbKL0AWXKZPJAOCJl0kVS+qcvupsGG5z6isismK7QnbhQvSFCl0Hc3rFMLVdi9ouWVlZGDp0KG7dumXwFxISgl69epVp/XJ5/uUQIYT+MZVK9dhYC8epe6wiv7/krDx8u4dTXxGR9cpR52DWhVkGv8lSkboNR+WPBZBK1rJlS6jValy5ckX/WHJyMu7fv49WrVoByD956tmzJ/bs2YO7d++iR48eaNeuHfLy8rBq1So8++yzcHNzq7AYfzjIqa+IyPrdTb6LdQHrpA4DzZs3x507d5CXl6d/7Nq1axJGRCVl7jk9OD4Ti4+HVMiyiYjMyexLlTMV1uMwp1ecZ555Bnfv3oWvry+aNGli8Ofm5obGjRvDwcHBICenpqYiOLjoKSBr1qwJAIiN/d+oisI3qzcXM/cEcOorIrJ6V+KuYPv97RW6DnNvw1HFYAGkkjVt2hQvv/wyJk+ejPPnz+P27dt4++23UbduXbz88sv61/Xp0wfbtm1D+/bt4e7uDrlcjl69emHLli0VOs9c/tRXkRW2fCIic/L77d8RnCrtvRFGjx4NrVaLKVOmICgoCEeOHMHChfnTeeh6PpJ5MuecrtEKfLbjNqe+IiKbEJcdhwXXF0gdBnN6BZo6dSpSUlIwatQoXLt2DWFhYThy5AgmTJgAjUYDd3d3TJw4EZ999hlOnjyJgIAAjB8/Xj/KwxQXFxd06dIFP/30E4KCgnDmzBl88803lfipSma/fwwO3omTOgwiokqx6MYiRGZW3HVJc27DUcVhAUQC69evR8eOHTFkyBB07doVQggcPHjQYBht7969odFoDOaU69Onj9Fj5SlHqebUV0RkU1RaFb698C20QrqLxJ6enti3bx9u3bqF9u3bY8aMGfj2228BwGAOcTJP5prT15x7gNtR6RWybCIic/RPyD+4GHNR0hiY0ytOnTp1cOHCBWg0GvTr1w9t27bFxx9/jKpVq+qLHAsWLEDPnj0xdOhQ9O3bFz169EDHjh2LXe66deugVqvRsWNHfPzxx5g3b15lfJwSS81WYtaeu1KHQURUaXLVuZh7aW6FrsNc23BUcWTCHCZXI7Pw06F7+P1MmNRhkI3q2eUCbqXvkzoMslGzus7CG83ekDoMvS1btmDChAlIT0+Hi4uL1OGQhYlLV+CFX04jR6mROhSyQTWqKJBXZ7bUYZCN8vX0xT8v/wMHucPjX1xJmNPpSXz1zx1su/pI6jDIRvXoegy3005IHQbZqF/7/IqXGrwkdRhkJTgChAAADxKzsO78Q6nDICKSxFK/pUjPk663/J9//onz58/j4cOH2L17N7744guMGDGCF0qoTL4/GMTiBxHZpPCMcGwO3CxpDMzpVF7uRKXjr2ssfhCRbVpwbQEUaoXUYZCVYAGEAABz9wdCqeE84URkm1LzUrHs5jLJ1h8XF4e3334bLVu2xCeffILhw4dj9erVksVDluvyg2Tsux0jdRhERJJZ5b8KiTmJkq2fOZ3KgxACs/YGQMv5OojIRsVmx2LNnTVSh0FWglNgEY4HxmPSn9elDoNsHKfAIqnZyeywfch2tPBqIXUoRGWi0QoMXnoO9+IypQ6FbBinwCJzMLjRYPzU8yepwyAqs103ojB9x22pwyAbxymwSGqOckfsfnk36nvWlzoUsnAcAWLj8tQafHcgUOowiIgkpxEa/HjlR6nDICqzTZfCWfwgIgJw4MEB+MX7SR0GUZlkKlT46fA9qcMgIpKcUqvEz9d+ljoMsgIsgNi4defDEZGcI3UYRERmwS/BD0fCj0gdBlGppeeosOh4iNRhEBGZjfnX5oOTHZAl+u1UGBIz86QOg4jILJyOOo3LsZelDoMsHAsgNiw5Kw8rToVKHQYRkVlZdGMRlBql1GEQlcqSEyFIz1VJHQYRkdkITA7E/gf7pQ6DqFQiU3Kw7sJDqcMgIjIrC64tgFbwvsVUdiyA2LBfjwUjM08tdRhERGYlOisam4M2Sx0GUYk9TMrGpsvhUodBRGR2lvgtgUKtkDoMohKbf/gelGpe5CMiKig4NRj/hPwjdRhkwVgAsVEh8ZnYfi1S6jCIiMzSGv81SFGkSB0GUYn8eDAIKg2neSEiKiw+Jx4b7m6QOgyiEvF7lIr9/rFSh0FEZJaW31yObFW21GGQhWIBxEZ9fzAIGi0vlhARmZKlysJvN3+TOgyix7r8IBlHA+OlDoOIyGytC1iHxJxEqcMgeqx5+wOlDoGIyGwlK5Lxx50/pA6DLBQLIDboUlgyTt9nI4CIqDj/hPyDqMwoqcMgKtb8w/ekDoGIyKzlqnOxyn+V1GEQFetwQBz8HqVJHQYRkVnbErSFMzVQmbAAYoOWnAiWOgQiIrOnFmr2MCGzdjY4ETd5sYSI6LH+DfkX8dkcLUfma+mJEKlDICIye7nqXE5tSWXCAoiNufowBZcfsFpKRFQSe8L2ICYrRuowiEzixRIiopJRapVYF7BO6jCITDoWGI/A2AypwyAisgjb721HqiJV6jDIwrAAYmN4sYSIqOTUWo4CIfN0MTQJ1yN44k9EVFK7QnbxXiBklpadZBudiKikctW52Hh3o9RhkIVhAcSG3IhIxfnQJKnDICKyKLtDdyMuO07qMIgMLGaHBiKiUsnT5HEUCJmdU/cS4B+VLnUYREQWZfv97UjP428nlRwLIDaEoz+IiEpPpVVxFAiZlcsPknH1IaezJCIqrZ3BO5GUyw5hZD6WcvQHEVGpZauyOQqESoUFEBtxOzINZ4I55JuIqCx481QyJ+zQQERUNgqNghdMyGycC0nEzUdpUodBRGSRtt3bxlEgVGIsgNgIzitKRFR2vHkqmYvr4Sm4GJYsdRhERBbrr/t/IUXBUXQkPXZoICIquyxVFjYFbpI6DLIQLIDYgLsx6TgelCB1GEREFo03TyVzsIQXS4iInghvnkrm4GJYEq6Fp0odBhGRRdsatBUZygypwyALwAKIDWDPEiKiJ8ebp5LU/B6l4lwI564nInpS2+9tR5oiTeowyIaxjU5E9OQyVZnYErhF6jDIArAAYuXuxWXgaCDnrSciKg+8eSpJiRdLiIjKR446B38G/il1GGSjrj5MweUHnIaNiKg8bArahCxlltRhkJljAcTK/X46DEJIHQURkXVQaBT46/5fUodBNuh+XCZO3+cUbERE5WX7ve3IVedKHQbZoJWnQ6UOgYjIamQqM7EnbI/UYZCZYwHEiiVn5eHgnTipwyAisiq7gndBpVVJHQbZmD8vhUsdAhGRVclUZeLAgwNSh0E25lFyDs4Es0MDEVF52n5vu9QhkJljAcSKbb8WCaVGK3UYRERWJTE3EScenZA6DLIhWXlq7L4ZLXUYRERW5+/7f0sdAtmYLVcioOUMDURE5So8IxyXYy9LHQaZMRZArJRWK7D1yiOpwyAiskp/3eM0WFR5/vGLQrZSI3UYRERWJyglCLcSbkkdBtmIPLUGO25ESR0GEZFV4igQKg4LIFbq1P0ERKdxTlsioopwPf46QlM5fzNVjs2XI6QOgYjIavHeXlRZDvjHIiVbKXUYRERW6XTkacRl8zYAZBoLIFaKF0uIiCrW9vvsYUIV7/KDZATHZ0kdBhGR1ToafhSpilSpwyAbwDY6EVHF0QgNdgTvkDoMMlMsgFihyBTeWI2IqKLtf7AfOaocqcMgK8eLJUREFUupVeKfkH+kDoOs3N2YdPg9SpM6DCIiq7YreBdUWpXUYZAZYgHECm3mjdWIiCpctiob+8L2SR0GWbHEzDwcucth3EREFW1H8A5ohVbqMMiKsUMDEVHFS1Yk43jEcanDIDPEAoiVyVNrsOM6b6xGRFQZOA0WVaTtVx9BpWGPBiKiihadFY3z0eelDoOsVKZChT23YqQOg4jIJvBm6GQKCyBW5uAd3liNiKiyhKaF4nrcdanDICuk0Qpsu/pI6jCIiGwGb4ZOFWXXjSjkKDVSh0FEZBP8EvwQnBosdRhkZlgAsTKbLnFoLRFRZeIFE6oIx4PiEZOukDoMIiKbcT76PKKzoqUOg6zQ5ivs0EBEVJk4CoQKYwHEigTFZvDGakRElez4o+NIU6RJHQZZma28WEJEVKm0QotdwbukDoOszOUHyQhNyJI6DCIim3Lw4UHkafKkDoPMCAsgVmT3LfZYIiKqbGqtGscf8UZrVH5SspW4EJokdRhERDbn4MODUodAVmYP2+hERJUuW5WNc1HnpA6DzAgLIFbk4J1YqUMgIrJJh8MPSx0CWZFDAbFQa3nzcyKiyhadFY2ApACpwyArodZocTggTuowiIhs0qGHh6QOgcwICyBW4lZkGiJTcqUOg4jIJl2Pu47k3GSpwyArsf82OzQQEUnl8EN2aqDycSEsGak5KqnDICKySeeizyFHlSN1GGQmWACxEgf8Y6QOgYjIZmmEBkcjjkodBlmBxMw8XA1PkToMIiKbdTTiKITgKDx6cmyjExFJJ1edi9ORp6UOg8yEvdQB0JMTQuCAv+30Fs28eRCZNw9CnR4PAHCo8RSqdhsFl8bPAgCSDy+HIuIWNFkpkDk4w6luS1TrMx4O1euXaPnJR5Yj69ZhVHthMjyfexkAINQqJB9eipyQy7Bzqwavfu/Dxbe9/j3pV3ZBk5EIr5f+U74flqgYySeTkXIyBaqk/J5lTnWd4P2yNzzaeQAAojdEI+tuFtRpasid5XBt4gqf4T5wquNU5DLj/41H+pV0qFJUkNnL4OLrglqv14JrY1cAgFalRfS6aGTezIR9FXvUGVsH7q3d9e9PPJgIVbIKdcbUqcBPbp4OPzyMUS1GSR0GWbhDAbHQ2ND0VxWR09POb0F20DloMhMhk9vD0acJqvYaC6c6zQEwp5N5Yk43H7HZsbideBvtvdtLHQpZMJVGiyN346UOo9KwjU6Uj/ncvBwOP4xBjQZJHQaZARZArIDfo1TEpCukDqPS2HlUR7Xe42BfLf/HOyvgBBL+mYfa45fAsWYDOPo0gVvrPrD3rAlNbibSL2xF/F/fou5//oBMblfssnOCLyIv5j7s3L0MHs+8fRjKuFD4vL0QuQ9uIGnfAtT7YDNkMhlUaXHIun0EtcctrqiPTGSSQzUH+Az3gWMtRwBA2vk0PFryCI3nNoZzXWe4+LqgateqcPBygCZbg4TdCQhfGI5mC5tBJpeZXKaTjxPqjKkDx5qO0Kq0SD6SnP+e+c1g72mP1NOpUEQo0GhmI2T5ZyHy90i0WNoCMpkMykQlUs+kovHsxpW5GczGzYSbiM+ORy23WlKHQhbM1qa/qoic7uBVF14v/Qf2VX0gVHnIvL4H8X/NRN1318DOtQpzOpkl5nTzciT8CAsg9ETOhSQiPdd2pr9iG50oH/O5ebkQfQGZykx4OHpIHQpJjFNgWYH9NjT6AwBcm3SGS+Pn4OBVFw5edVGt11jIHZ2RF3MfAODRfgCc67eBfZVacPJpgqo9x0CTmQh1ekKxy1VnJiHl2CrUGPIpIDesDaqSI+HSpDMcazaAxzODoc1JhzY3AwCQcnQFqvUZD7mTa8V8YKIieHbwhMfTHnDycYKTjxNqvVELcmc5ckLz57n06uMFt+ZucKzpqO8lokpRQZmkLHKZVbtWhXtrdzh6O8K5rjN8RvlAm6uFIiq/yJoXmweP9h5wrusMrxe9oMnUQJOpAQDEbIyBzwgf2LkU34ixVgKC02DRE4lLV+BahG1Nf1UROd2tVR+4+LaHQ1UfONZsgGovTIJQ5kCZ8BAAczqZJ+Z083I0/Ci0Qit1GGTB2EZnG51sE/O5eVFqlTj56KTUYZAZYAHEwgkhcPCObZ1cFSS0GmQHnoFWpYBT3RZGz2uVCmTdOQ77KrVg71mj6OUILZL2/wrPzq/BsWYDo+cdvRsiLyoQWlUeFA/9YOfuBbmLJ7LunoLM3hGuzbqV6+ciKi2hFUi7nAZtnhauTYxP9LV5WqSeS4VDTQc4eDmUaJlatRapp1Mhd5HDub4zAMC5vjNyQnKgVWqRdScL9lXtYedhh7SLaZA5yODZ0bNcP5elORzOG6dS2R24Ewtbnna+vHK6wTI1KmTeOgyZkxscvRsCYE4n88ecLr2E3AT4xftJHQZZqDy1BscCbWf6q8LYRifKx3xuHg6FH5I6BDIDnALLwl0LT0V8Rp7UYVQ6ZWI44jZ9CqFWQuboAu9XZ8CxxlP65zP9DiD19HoIlQL2XvXg/eY8yOyKTigZl3dCJreDR8dhJp93b/sSlAnhiFn7PuxcPFHj5S+gVWQh/fwW1Br1I1LPbkJO0FnYV/VB9UEfwd6jZBdmiJ6UIlKBB/MeQKvSQu4kx1MfPgXnus7655NPJCP+73ho87Rw9HGE72e+kNsXX/vOuJWBqJVR0Cq1sK9iD9/PfGHvkZ8uqvWsBkWkAiFfh8Dewx71368PTbYG8f/Go+GXDRG/K39+UkdvR9SdWBcO1Up2Imct/BP9EZMVgzrutje/Kj25/TZ6s9TyzukAkBN6FUl7f4ZQ5cHOvRpqvfkd7FyrAGBOJ/PFnG5eDocfxrM+z0odBlmgs8FJyFSopQ6j0rGNTpSP+dy8XIm5gjRFGqo6V5U6FJKQTAhb7mto+b7dE4A/L0VIHUalExoV1BmJ0OblIOf+eWTdPopao3/Sn2Bp87KhyU6DJjsVGVf/gSYzGT5vL4DM3tFoWXlxoUjYORu1xy2BvUd1AEDUynfg+ezL+husmZJ0YDEcazWEfRUfpJ3dCJ8xvyLjyi6okiJQ89WvK+aDW7GeXS7gVvo+qcOwOFq1FqpkFbS5WqRfS0fq2VQ0/LKh/gRLk6OBOkMNdboaSYeSoEpVodGMRpA7Fn2Cpc3TQpWmgiZTg5QzKcgOykbjbxvD3tN0zTzqjyg4P+UMx5qOiN8Zj8bfNkbiwUTkReXhqQ+fMvkea/ZJx0/wTpt3pA6DLEx0Wi56zD9pkyNAyjOn62iVCmiyU6DNyUDm7SNQPPJH7TG/wM6tqsnXM6eXnxpVFMirM1vqMCwSc7p5qe5cHSeGn4DdY+5PQFTYR9tvYs8t2+vUwDa69enR9Rhup52QOgyLw3xufr7t+i2GNxsudRgkIU6BZcG0WoGDd+KkDkMSMjsHOFSrAyefJqjWezwcvRsi8/pe/fNyJzc4eNWFc/02qPnKV1ClRCEn+JLJZeVF3oU2Ox3RKycg4udhiPh5GDQZCUg9tRZRK01fxFRE+EOVHAGPZ4ZA8cgfLo2ehdzRGa4tekDx6E6FfGYiU+T2cjjVcoKLrwt8hvvAub4zko8l65+3c7WDk48T3Jq7of4H9ZEXm4cMv4zil+mUv0zXJq6oN7EeZHYypJ5NNfnarKAs5EXnoXrf6si+lw2Pdh6QO8lRpVMVZN/LLtfPaikOP+Q0WFR6B/xjbLL4AZRvTte/x9E5f5l1W6DGoI8gk8uR5W/6Hj3M6WQumNPNS7IiGdfjr0sdBlkYhUqD4zY6/RXb6ET5mM/Nz5HwI1KHQBLjFFgW7MajVCRl2d70V6YIISA0qiKezP8r6nm3Ns/D2fdpg8cS/v4Wbq1fgHvbvsaLUyuRcmwlagz9FDK5HSC00N8jUauB4A0TSUoCEKoirqL+9+Einy9qkVoBrcp4v9YqtYjdFIt679aDTC4DtPnHIgAItYDQ2ubV3KCUICTmJKKma02pQyELYstzhRf2JDm9mIWafA9zOpk15nTJnYo8hc61O0sdBlmQ8yFJyFZqpA7DLLCNTvRfzOeS84v3Q44qB64OxvdiIdvAESAW7FxIktQhSCL1zAYoIgOgTo+HMjEcqWc2IO/RHbi16gNVWhzSL/2NvLhQqDMSoIgKQuKeHyGzd4RLo//N4Ru95j/ICb4IALBz8YRjTV+DP8jtYedWDQ7V6xmtP+3idrg0ehaOtRoDAJzqtkJO8EUoEx4i028/nOu2rJTtQBS3Iw7Z97OhTFRCEanI//e9bFTtWhXKBCUS9yciNzwXymQlckJyEPlbJOQOcng87aFfRvCXwci4kd/bRJunRdzOOOSE5kCZpERueC6i1kZBnapGlU5VjNafuDcR7u3c4dLABQDg2tQVGTcyoIhUIOVEClyb2u7JxeXYy1KHQBYkK0+Nm4/SpA5DEuWd07VKBVLPbERe9D2o0xOQFxeKpIOLoc5MhmvzHkbrZ04nc8Gcbp4uxRQ/2oyosPOhbKOzjU62jPncPKm0Ko7qtHEcAWLBzockSh2CJDTZ6Uja/ys02SmQO7nBsaYvvEfMhUvDDlBnJkMRdRcZ1/dCq8iCnVtVONVvDZ+3FxjM+61OiYI2L6fU61YmhiPn3jnUHr9M/5hri+5QRN5B3JYv4FC9LmoM/aw8PibRY6kz1IhaHQV1uhpyFzmc6zvDd7ov3Nu4Q5WqQnZwNpKOJkGbrYVdFTu4NXNDo28aGcwTqoxTQpPz315qMkAZq8Sj84+gydLAzt0OLg1d0PDrhgY3bQMARZQC6dfS0WRuE/1jns96IvteNh788ABOPk6o9x/jxomtuBRzCUMbD5U6DLIQVx4kQ22jvbHKO6fL5HKoUqKQuPsENLkZ+RdQfJrC5635cKzZwGDdzOlkTpjTzdOD9AeIz45HLbdaUodCFuIc2+hso5NNYz43X5diLqFXvV5Sh0ES4U3QLVSmQoUOc4/Z7AUTsj68CTpZk5ouNXFyxEmpwyALMXvvXWy4GC51GETlgjdBJ2szr/s8vNyk6JsuE+nEpSvQ5UfeMJqsB2+CTtakcZXG2P3KbqnDIIlwCiwLdflBCosfRERmKjE3ESGpIVKHQRbigo1Ol0FEZAk4rSWVlK1Of0VEZAnC0sMQn837LtoqFkAsFC+WEBGZN84bTiURl65ASEKW1GEQEVERWAChkmIbnYjIvF2KZRvdVrEAYqFsdW5RIiJLwZMrKgn2FiUiMm9JuUkITg2WOgyyAMzpRETmjZ0UbRcLIBYoLl2BsMRsqcMgIqJi3Ii/AZVGJXUYZObYW5SIyPxdjuEoECre/bhMJGbmSR0GEREV43LsZfBW2LaJBRALxJ4lRETmL1edi1uJt6QOg8wcczoRkfnjqE56HOZzIiLzl6JIwf3U+1KHQRJgAcQCsbcoEZFl4BBbKg57ixIRWQaO6qTHYRudiMgysI1um1gAsUDsXUJEZBl441QqDu/nRURkGTiqk4qj0mhx5UGy1GEQEVEJsABim1gAsTDsLUpEZDnuJt9FhjJD6jDITLG3KBGR5WCnBirKzUdpyFZqpA6DiIhKwC/Bj6M6bRALIBbmaniK1CEQEVEJaYUWAUkBUodBZsrvUZrUIRARUQndTrgtdQhkpq6xjU5EZDHyNHkISQuROgyqZCyAWJiAqHSpQyAiolIITA6UOgQyQ4+Sc5Cey55HRESWIjCF+ZxMu8M2OhGRRbmbfFfqEKiSsQBiYQJieHJFRGRJWAAhU+5EM58TEVmSTGUmIjMipQ6DzBDb6EREloVtdNvDAogFyVNrEByfKXUYRERUCjy5IlNYACEisjx3U9hjlAyl5SgRlZordRhERFQKd5OYz20NCyAW5H5cJlQaIXUYRERUCtFZ0UjP48VuMhTAAggRkcVhpwYqjB0aiIgsT2haKG+EbmNYALEgAdEZUodARERlwDlGqTBOl0FEZHlYAKHC2EYnIrI8Kq0KwanBUodBlYgFEAvC3iVERJaJF0yooMiUHKTlsMcREZGlCUoOkjoEMjMc0UlEZJnYSdG2sABiQe6ytygRkUViAYQKYocGIiLLlKHMQGQmb4RO/8MRnUREloltdNvCAoiFUGm0uBfHG6ATEVkinlxRQSyAEBFZLuZ00knPVSEiOUfqMIiIqAw4AsS2sABiIe7HZUKp1kodBhERlQFvhE4FcboMIiLLxQII6dxlPicislihaaFQapRSh0GVhAUQC8Hpr4iILBt7mJAOR4AQEVkuFkBIh9NfERFZLrVWjfsp96UOgyoJCyAWghdLiIgsGy+YEMAboBMRWTrmc9K5E50hdQhERPQEglKCpA6BKgkLIBYiOC5L6hCIiOgJRGRESB0CmYHQROZzIiJLlqHMQFJuktRhkBkI5j06iYgsWmRmpNQhUCVhAcRCPErhzdWIiCxZVGaU1CGQGYhkPicisnjM6QQAkanM6UREloz53HawAGIB8tQaxGcqpA6DiIieQFQWT64IeJTMiyVERJaOOZ2SsvKQo9RIHQYRET0BjgCxHSyAWICo1FwIIXUURET0JBJyEqDS8N4Pto4jOomILB97jBLzORGR5WOHBtvBAogF4HQZRESWTyu0iM6KljoMkhgvmBARWT4WQIhtdCIiy5etykaKIkXqMKgSsABiASJTc6UOgYiIygF7mFAUczoRkcVjhwZiPicisg7s1GAbWACxAOxdQkRkHTjHqG1LyVYiK08tdRhERPSE2KGBeE8vIiLrwAKIbWABxAKwAEJEZB14cmXbOP0VEZF14H29KDKVOZ2IyBqwk6JtYAHEAvCCCRGRdWABxLYxnxMRWQfe14uY04mIrANHddoGFkAsAEeAEBFZB55c2TbmcyIi68GcbrvUGi1i0xVSh0FEROWAI0BsAwsgZi49R4UMBecLJyKyBuwtattYACEish7RmczptiomTQGNVkgdBhERlQPO0mAbWAAxc5xblIjIemSrspGiSJE6DJIIp8sgIrIeHAFiu9hGJyKyHryvl21gAcTMxaTlSh0CERGVo+TcZKlDIInEZ3C6DCIia5GQkyB1CCQRttGJiKyHgEC6Ml3qMKiCsQBi5tJyWYUkIrImGcoMqUMgiaTnckpLIiJrwXxuu9LZRicisirpeSyAWDsWQMxcBk+uiIisSkYeL5jYKuZ0IiLrwQKI7WI+JyKyLiyAWD8WQMwcT66IiKwLL5jYplylBkqNVuowiIionLBDg+3iCBAiIuvCNrr1YwHEzGUoOF0GEZE1Ye8S28SLJURE1oUXS2wX2+hERNaFbXTrxwKImeMFEyIi68ILJrYpQ8F8TkRkTTKVmVKHQBJhG52IyLqwjW79WAAxc5wCi4jIuvDkyjbxYgkRkXVRaVXIVedKHQZJgG10IiLrwhEg1o8FEDPHCyZERNaFBRDblJ7DfE5EZG14HxDbxDY6EZF1YRvd+rEAYuY4ZQYRkXXhxRLbxIslRETWhxdMbBPb6ERE1oUjQKwfCyBmjhdMiIisS7qSJ1e2iBdLiIisD+8DYpvYRicisi7s0GD9WAAxczy5IiKyLhwBYpuYz4mIrA8vmNiePLUGCpVW6jCIiKgcsY1u/VgAMWNKtZYnV0REVoYXS2wTCyBERNaHOd32ZOSqpQ6BiIjKGfO59WMBxIxlcroMIiKrk6vOlToEkkB2Hi+YEBFZmyxlltQhUCVjG52IyPooNAqpQ6AKxgKIGVNrhdQhEBFROdMKjuyzRczpRETWhznd9jCfExFZH62W+dzasQBixjQ8uSIisjoaoZE6BJKAljmdiMjqMKfbHrbRiYisj1pwtL61YwHEjGkFT66IiKyNRsuLJbZIw5RORGR1OALE9rCNTkRkfZjPrR8LIGaMI7CIiKyPgIBg49nmcAQIEZH14QgQ28M2OhGR9WEnRevHAogZY+8SIiLrxAsmtodTZhARWR/2GLU9bKMTEVkfToFl/VgAMWM8uSJbUdNRha4yJRzkDlKHQlQpOALE9jCnk614rVocGrnXkzoMokrBDg22h/mcbEVd5zw8JxOwk9lJHQoR0ROzlzoAKppMJpM6BKIKJZMJfO8bgDcz1sPuZhwG12iEhU+1xOnUIKlDI6pQchn7H9gaOXM6WblOVTOw1GsXfGKOQZ1gj+2tX8SKvEhkqrKkDo2owvDCoO1hG52snZ1Mi18a3cKwlPWQ+yVjcK3m+LnOU7iUdl/q0IgqDNvn1o8FEDNmx5MrsmJv+MRjjsNGuMXe0j/WIOkBliU9wMWGnbHA3R6hWZHSBUhUgXiCZXvs5MzpZJ1qOqrwe4NTeCZmG2QxeQAAe60ab985gsFu1fFb8y7YmRbInvJklZjPbQ/b6GTNxteJwpeyDXCODtQ/1iT+PlbH38fpJj2w0FmNiOwYCSMkqhhyTpBk9VgAMWNyHn9khVq652Clz140iNoHGUwPIe/28Ap2yuzwd+u++E0VjXRlRiVHSVRxZJCx96ANkrMAQlZGJhP4vmEA3kxfB7vIeJOvqZadjG/8DmBErRaYX7serqYHV3KURBWLI0BsD9voZI2eqZKJ32r8g9rRR4p8TZ/Q8+gud8DWNn2xShHBEZ5kVdg+t35M32aMvUXJmrjZa7Ch6XkclH8E36i9RRY/dOyEBqMCjuBAZDRGV2sHexnrtWQd2FvUNtkxpZMVebN2HALqLcDomB9hl226+FFQs/h7WHvrOBbZN0Bd11qVECFR5WBOtz1so5M1qeagxl9NT2KX5uNiix86DloVxvkfwoHoeIyo1pZFYLIazOfWj9+wGePJFVmLT58Kxa3qM9EncgVkyuxSvbdKTiq+8tuPnVn26F61RQVFSFR52LvENnEECFmDth7ZONtkK35KnQ63xFulfn/fkHPYe88fH3m2hqu9a/kHSFTJePHP9tgzn5OVmN0wCNeqfoXOkX9Aps4t1XurZSdjpt8B/J3thM5Vm1VQhESVhwUQ68cu1WaM84uSpXuxegoWemxDtbgLT7ysxgnB+D0hGGcbd8MCFy3COfcoWSgHuYPUIZAEeMGELJmHvRorG15A97jNkEWVriNDYY6aPEy6fQgve/pgcZNnsC/1LsRjRoUSmSteMLE9crbRycK9XCsB85w2wyP2+hMvq1n8PfwRfw8nm/bAL44qPMqJLYcIiSof2+jWjwUQM+biyB5FZJnqOedhdf2jaBm9A7Jsdbkuu1fYRXSVO2Br6xexKu8R5x4li+Ph4CF1CCQBNyeecpFlmuF7HxNy1sE+MrJcl1szIw7f+x3EyHrt8FP16vDPCCvX5RNVBndHd6lDoErGNjpZqqZuufi99gE0it4NmdCW67JfCDmPnnaO2NL6Baz+//buOzyqMu/D+PdMSTLplZBCSCChhVAFKYIK2HvD3su+uquga+917a69rmLvBYWAICo2LEjoRRQpAUKHQHqZef8YwQIqZSbPzJn7c125ZEFmblbNmXN+5zxPHefoCD8JUZyj2x23rISw2CiXopz8I0L4cDt8eqj9NH3uuVxdyl+T5Q3s8GPb+3gbdebsDzV2xRqdwNqjCDN8uIpMiTHcVYTwcmjGOs1q+5DOX3WLXJsDO/z4rZLls/TyzMn6T0yhWsWkBe19gGDgpobIk+yJMp0A7BKPs1nPFH6tia5L1X75uwEffmzlbm7QWbP85+jHp5TwhBzCSmJUoukEBBnfkUJcoocLJggP5+SUa3bWHTpqxf1y1K5vkfdMrV6nG8tK9UZNjPomsfYowkNiNB+uIlESx3OEifaxtfqo6F09VjVSiau/bZH3tOTTEfM/0ZhFC3V+UomindEt8r7AnuKYHnk8UU5uUkTYuDhvsWZm3KwDlj8iq35zi7xnavU63VRWqjdrPJyjI2xwk6L9ceQOcUkelsxAaOuVtEVft39BN66/SjHr5xlp6Lhqvp6dMUkPutoqN7a1kQZgZ/HhKjIxAEGo8zib9XThN5rkvlRF5W8H7Q7RvxLbUK1LZpTq/Q31OiClS4u/P7CruGM0MnGTIkLd4NRNmlbwlP695jpFbTKzxORvz9HbcI6OEMfx3P64uh7iuGCCUJXibtJT+Z+pT8UrslbUmc6RJA398QsNckbrxa5D9UzNz6ppqjGdBGyHD1eRieM5QtnFeYt1ccNziloeGvtw5GxYpgc2LNPU/D66OzFGP2xZajoJ2CGO6ZEpyePSuqp60xnAdlpHN+jpvEkqWfGGrJpG0zmS/Ofog51Reql4qJ6pW6KqxmrTScB2uEnR/ngCJMQlx7LGKELPLQXz9H3S1epb/qysptAYfmwV1Vyv82aOU+mqjTo6pUSWLNNJwO/w4SoyJcUyAEHo2Tdto/E7RP9KnyVT9ebsr3RDbEelRCWZzgG2wxJYkYlzdIQap+XVfe1makrc5epW/rIsb2gMP7ZyNzfonFnjNXblOh3H/iAIQZyj2x/fdUIcd4wilByVuUaz8x7QmRW3y1m10nTOX0rfslq3lZXqtfoE9UwqNJ0DbMOHq8jEJugIJVkxDRpTVKrna0cqreIz0zl/yeHzavjcjzR22TKdllwil4MH2BEa3A63PC6P6QwYwDk6QsmpWSs1O+duHb/ybjlq1pnO+UtpVWt1c1mp3qiN1V5JRaZzgG04R7c/ziBCHB+uEAqK4mr1VHapCpaPNrIm+J4oXjlHL66UxnfcTw84t2hV7VrTSYhwLJcRmTieIxT47xCdoaM2PC9HeWhfJPmjxNpKXTW9VMMz2uue3E76ctMC00mIcFwsiVwc0xEKuiVW6fFW7yt3eanplF3WqWKeRlXM06QOg3S/u17La1aZTkKE4xzd/hiAhDg2WINJHmezHin4VkPXviCrfIvpnD1yyA+Ttb/bo1HFQzSq6kfVNofW0l2IHHy4ikxcLIFpZ2Uv19XW84pZMc90yh4pWLtIT6xdpM/b99e9HmlJ9QrTSYhQHM8jF8d0mJTgatKTBV9pwKqXZC0P7z0vhy38QoOd0XqpeIieqV2savbwhCHc1GB/LIEV4pL5cAVDRuT9rJkZN2nY8kdl1Yf38GOrmMZaXTijVB+sq9ZhKV3ZHwRGcMEkMnminIpy8rELLW+vpC36uv3zunnDlYpZH97Dj98avOhrvTvve10e30UJ7njTOYhA7P8RuRiAwJTr8n/Q9JRrNbD8KVmN9hgWRDXX69xZ4zW2YoOOZX8QGMIAxP74zhLi+HCFlrZ1Q9RL11yvqE0/m84JitabVuiusnF6sSlFXRMLTOcgwvDhKnIlenjwFi0nLapRbxVN0lvNI5S1YqLpnKBwext15uwPNXbFGh3PRRO0MI7nkYtzdLS0QzLWaWbbh3X+qlvk2rLcdE5QpFet0S1lpXq9Nla92R8ELYxjuv1xlhDi+HCFlpIV06AxHcaFxYaogdKjfIZenfm57ogpUquYNNM5iBBJ0UmmE2AIy1qiJViWT7cVzNF3iVerT/lzsprsv+RjavU63cSmqmhhPNEZuThHR0vJ99RpYtF7erzqUiWt/sZ0TovoXDFPz8/4WPe785UTm2k6BxEiOTrZdAKCjAFIiEtPiDadAJtzWl7d3366voq9XCXLXpblbTSd1KIs+XTk/I81ZtFCnZ9Uomgn/80huFrHtTadAEMyE2JMJ8Dmjstcrdm59+v0iv/IWVVhOqfFdaqYp1EzPtZ9UfnK9rQynQOba8W/YxGLc3QEW7TDqycKv9Mn0ZepQ/lbsnzNppNa3IELP9cHC2ZpRGKxYl2xpnNgYy7LpUyGbbbHACTEtUnxmE6AjZ2evUJzcu7ScSvulaNmnekco2IbqnXJjFK9v6FeB6QUm86BTSW4E3gCJILlpXLyhuDoHF+jyYWv677KyxS/tsx0jnEH/fC5Plg4R/9K7CqPi8/SCI7chFzTCTCEc3QE04VtlmpW5q06ZPmDctRtMp1jVFRzvc6bOV6lqzbqaJa6RJBkxmXK6XCazkCQ8d0jxKXFRys+mjXDEVg9Eqv0ZfuXdduGK+RZN8d0TkjJ2bBMD5SN1yhvhjoltDWdA5vJScgxnQCD8tIYgCCw4lzNeqHoC41zjFD+8g9kyWc6KWREN9XpHzPHacyaLTospassWaaTYDMMQCJXbkqsHHxLQYD1T6nUd+3+p6vWXqPojQtN54SU9C2rdVtZqV6ri1OvpELTObCZ3HiO55GAAUgYyOUOEwRIkrtJrxZN1nu+kcpdMc50Tkjba+k0vTH7K90c20Gp0Smmc2ATfLiKbBzPEUhXt12oGanXa9/yJ2Q1VJvOCVmZlSt1V9k4vdiUoq6JBaZzYCM58dzUEKmiXA61TmRZSwRGRlSj3i2aqFcbRqjVyk9M54S0Livn6oUZn+hedwH7gyBguEkxMjAACQMsmYFAuCF/gaYlX6sB5U/LaqwxnRMWHD6vjps7SaVLFuvs5BK5HWx4iD3DxZLIxvEcgXBwxnrNyH9E/7f6Zrk3LzWdEzZ6lM/QqzM/1+0xRcqISTWdgzDnsBwc0yNcG47p2EOW5dOd7Wbrm4Qr1av8eVnNDaaTwsbBCz/T+z/M1iWJXdkfBHuM43lkYAASBtqyZAb2wKEZ6zSr7UM6d9Wtcm1ZbjonLMXXbdZl00s1utKr/VO6mM5BGOPuksjGAAR7It9TpwlFo/VE1Uglr/radE5YsuTTUfM/1tiff9K5ySWKckSZTkKYyvBkKMrJvz+RjHN07IkTWq/SnNx7dfLKO+WsXm06JyxFN9Xp/JnjNHb1Jh3JUpfYAwxAIgMDkDDABRPsjnaxdZpY9J4eq7pUiau/NZ1jC3nrFuvhsg/1tFqrML6N6RyEIZbAimxp8dGKi2KDPeyaaIdXTxR+p0+iL1PH8jdl+ZpNJ4W92PoqjZxeqtGbGjWEGxuwG9j/A5yjY3d0jq/RZ4Wv655N/1bc2hmmc2whY/Mq3VE2Tq81JKon+4NgNzAAiQzsrh0GeLwWuyLa4dVD7abqoLXPyyqvNJ1jS/0Xf6e3LafeKh6qxxortKmB/5+xc3gCBG1SY7Vg1RbTGQgTF7ZZokubRilq+Y+mU2ypzfqlemj9Un1b0Ed3x0frx6plppMQJrihAZyjY1fEuZr1eMEUDV79oqzl7NsVDMUrZuvFFdKHHffTA84tqqhdazoJYYKbGiIDA5AwwN0l2FlcKGk5Tl+zTpozUYd4kvVk5330+qZ5avI1mc5CCLNkccEEDECwU/ZJrdR/k95URsWnplMiwt6Lp+otbmzALuCGBnCOjp11ZdsfdX7tc3KXs29XSzj4h8na3xWj54uH6NmaRaptqjWdhBAW44xRuifddAZaAEtghYHclFg5WM4Qf2FgSqWmtvufrlp7raI2MvxoSUm1m3RV2Vi9U+XQwOROpnMQwlgvHBIXTPDXWkc36P2i8XqpfgTDjxa29caGscvKdUpyiVwW94nhz3FDAzie4+8ckL5B0/Mf00Wrb5J7M8OPlhTdVKd/zBynsWs268iUEvYHwZ/Kjs82nYAWwgAkDES5HGqdGGM6AyGoVXSj3iuaoJcbRihj5SemcyJauzU/6cnpE/WYI1f5cdwViO1xtygkLphgx5yWV/e1m6EpcZere/lLspobTCdFrKTaTbpmeqnernJpQHJH0zkIUW0S2Asu0qXFRys+mkEptpcbU6/xRR/o6ZqRSln1lemciNaqskJ3lJXq1YZE9UhsbzoHIYj9PyIHR+wwkZcWq5WVdaYzECIsy6c7C+bohMpn5SxfYzoHvzF40RT1d7j1evFQPVG/TFsaq0wnIURwtygkBiDY3unZK3St4wV5Vs4xnYLfaL9moZ5as1CTCwfqvphmLa1eaToJIYT1wiH5l7WcX7HZdAZChNvh0/3tpunw9c/LUb7BdA5+o+uK2XpphTSu0376r2OLVrE/CH7BDQ2RgydAwkRBerzpBISIE7NWaW7OPTpp5Z1yVjP8CEVub6NOn/2hSles1okpJXJaTtNJCAFFKUWmExACCltxPIdfr6QqfdX+Rd224Qp51jH8CFX7/fSV3ptfpn8nFCveHWc6ByEgISqB9cIhSWqXzvcE+J2bU67ZrW/TkcsfkKOW4UeoOnTBZI35cZ4uSuwqj5NVViB1TOVp30jBACRMFGcnmk6AYcUJ1fq88DXdtfHfil0303QOdkJK9XpdX1aqN6ujtXdSB9M5MKxzWmfTCQgBbVJjleRxm86AQSnuJr1e9IneaR6hnBUfms7BTnA3N+isWeM1duU6HZtSIofFKVQk65LWxXQCQkQXztEj3l5JW/RNu1G6Yf1VitmwwHQOdkJMY60unDlOY9ZW6fCUruwPEuE6p3KOHin49B4mSnKSTCfAkDhXs14s+kJjrZHKWz5Glnymk7CLOqxeoP/NmKQHXW3VJra16RwYwocrbNU1hwsmkermgvmamnyN+pX/T1ZTrekc7KK0qrW6paxUr9XFqVdSoekcGMIABFtxjh650qIa9VbRJL3VPEKtV35kOge7IbNype4sG6eXG5PVjf1BIpLb4VZhCp/nIgV7gISJTlkJcjstNTZz8TuSXNn2R51f+5zc5UtNpyAAhv74hQY7o/RS8VA9XbtY1U01ppPQQnLic5QUzUky/LrmJOmrn9abzkALOjpzjW6LflkJFd+bTkEAdFk5Vy+snKvxHffTA07WEo80DECwVbdcPttFolsL5urULc/JWV5hOgUB0G35TL283FJpp/30oKNSq2vXmU5CCylKKZLbwZP5kYInQMJEtMupDpkJpjPQQg5M36AZ+Y/qotU3yb2Z4YeduJsbdM6s8RpbsUHHsIxGxOBiCX6LO0YjR4e4Wn1a+Kb+u/kyJaxh+GE3h/zwy1riSawlHkmKU4tNJyBEJMdGKTfFYzoDLeTozDWak3e/zqi4Q84qhh92Ysmnwxd8qjE/LdBFSSUc0yMEKzREFq68hRHuMLG/PE+dPix6X09Vj1DyqimmcxBE6VVrdCvLaEQMBiD4LQYg9hfn9Oq5oq80wTlCBctHy/J5TSchSGIaa3XhjHH6YF2NDknpajoHQZYQlaA2iW1MZyCEcI5uf9tuZqi8VPFrppnOQRB5Gmp04YxSfbCuWoeyP4jtcY4eWRiAhJGuXDCxLbfDp0faf6/JMZerU/kbsnzNppPQQrqsnKsXZnyie6MKlO1pZToHQdIllQ9X+FXbtDg2Qrexy/N+0oz0GzSk/DFZDVWmc9BCWm9arnvKxunFpjR1Scg3nYMg4XiOP+Ic3b7inF49WzRFE1wj/TczsBdnxGi9aYXuLhunl5qSVZLYznQOgoQnQCILe4CEkW45yaYTEATn5pTrCt8oxaxYYDoFBh38w2fa3xWjUcVD9FzNItWyOa6tdE7jwxV+r2tOIvuA2MwB6Rt0T/xrSln1lekUGNSzfLpeW+7Q+52H6CHvWq2v32g6CQHE3aL4I87R7enSvJ91Uf1zcpf/bDoFBnUvn6lXyi2N7by/HtQmraljfxC7cFkudUjtYDoDLYgnQMJIx9YJinLyj8wu+iZv1jftRumG9VcpZgPDD0jRTXX6v5njNGbNFh3OI7e2kRWXpZSYFNMZCDHcMWofuTH1Gl/0gZ6uGcnwA5Ikh8+rY+ZN0tjFP+vs5BI22LQRBiD4o645iaYTEED7pW7UtIInNWLN9XJXMvyAf3+QI+Z/orGLFuj/kkoU44w2nYQAKEguUDT/LCMKV9PDSJTLoQ6t401nYA+lRTXq7aKP9EbTSLVe+ZHpHISgzMqVurNsnF5qTFY3HrkNezxaix1hH5Dw53b49GjhVH0ec5k6l78uy9tkOgkhJr5+iy6bXqrRlV7tl8yFcztgAII/So6NUptUNkIPd1kxDRpTVKpRdSOVVvG56RyEIE9Djf45o1Rj1tWy55cNcI4eeRiAhJkSHrENW5bl020Fc/Rd4tXaq3yUrKY600kIcd2Xz9TLMz/Tf2IK1Som3XQOdhMXS7AjDEDC2wW5yzSn9a06fPl/5ahjiSP8tbx1i/XI9A/1lLJUGM8G2uEqwZ2gNgn888P2WAYrfDktrx5oP11feS5XSfkrsryNppMQ4rbu+fVSU5q6JhaYzsFu4hw98jAACTNcMAlPx2au0ezc+3V6xX/krKownYMwsvWR2zGLftAFSSU8phmG+HCFHWmbFqfEGLZiCzf9Uyr1Xbtnde26qxW94QfTOQgzAxZ/q7fmfqur4zsrMSrBdA52Uee0zrIslifF9ljWMjydkb1Sc7Lv0rEr7pWjlr0dsGt6lE/XqzM/1x0xhWoVk2Y6B7uoOK3YdAJaGAOQMNOjTbLpBOyCDnG1+rToTd1feani15aZzkEYi22o1sUzSvXB+nodlMLBOlw4Lad6tOphOgMhqldb9oYJF62iG/Ve0QS92jBCrVZ+bDoHYczlbdKpsyeotLxCJ6aUyGk5TSdhJ3XP6G46ASGKc/Tw0iOxSl+1f0m3brhcnvVzTOcgjFny6cj5n2jMooXcrBhGYl2xKk7nmkqkYQASZjpnJSgtLsp0Bv5GnNOr54qmaIJzhArKR8uSz3QSbCJ74zLdVzZezzdnqHNCvukc/I3i9GIlcJcv/sQ+hSxtF+osy6e7283S1/FXqGf5C7KaG0wnwSaSazbo+rJSvVUdpb2TO5jOwU7on93fdAJCVK+2yYpxc2kl1CW5m/Ra0WS95x2hnBXjTefARrberDhmfZ0O5mbFkNc7s7fcDrfpDLQwjtJhxrIsDeCCSUi7LG+RZqTfqCHlj8pqqDKdA5vqvWyaXp/9pW7xFCktmrvIQ1W/rH6mExDCBnI8D2mnZFVobs7dOnHlXXJWrzGdA5sqWv2D/jd9kh505alNbGvTOfgTHpdHPTJ6mM5AiIp2OdW3gCVwQtkNBfM1Lfka9S9/WlZTrekc2FTWxnLdWzZeLzalqZj9QUIW5+iRiQFIGBrEBZOQtF/qRpUVPKFL1twgd+XPpnMQARw+r46d97HGLv5ZZyeXcBdDCOLDFf5Kp9YJSo/nUflQ0y2xSl8WvqL/bPy3YtfNMp2DCDH0xy81esFMjUwoVpwr1nQO/qBXZi+5nXzOwp/jHD00HZ6xTrPaPqhzK26Ta8sK0zmIED3Lp+u1mZ/r9pgiZcSkms7BH+ydtbfpBBjAACQM7VPEh6tQkhNTr7FFpRpVN0KpFV+YzkEEiq/fosuml+r9Tc0aksKG26GCu0XxdyzL0sBC7hgNFUnuJr1aNFnv+0Yqd3mp6RxEoKjmep07a7zGrtqoo1K6yhIbboeK/lksf4W/xjl6aGkXW6ePit7VI1Ujlbj6O9M5iECWfDpq/sca+/NPOp/9QUJGWkyaOqSw9GgkYgAShrKTPWqXEWc6I+I5La8eaD9dX3iuUNfyV2R5m0wnIcK1Wb9ED5V9qP8pU0XxeaZzIh53i2JnsA9IaNi6NMaA8qdlNdaYzkGES9+yWreXjdNrDYnqntjedA7EE534ezzVGRqiHV49VfitPnZfqqLyt2X5vKaTEOFi66t0yYxSvb+hXgeyP4hxfbP6yrK4wSQSuUwHYPcMKkzXz2urTWdErDOzV+hq63l5Vsw1nQJsZ+/FU/WW5dTbxUP1WGOFNjZUmk6KSNwtip3BHaNmHdFqre6IeVmJFVNNpwDbKV4xWy+vkEo77a//Oiq1unad6aSIxN2i2BmWZWmfwjSNnrHSdErE+mebJRrRNEpRy380nQJsJ2fDMt2/YZmm5fXW3clxmr9liemkiMQNDZGLJ0DC1D5FGaYTIlKvpCpNaf+ibtlwhTzrGX4gdDl9zTpxzkSNXbZMpyV3k8vBvLul8eEKOyMryaP2PNXZ4oriajWp6B09vOVSJa5h+IHQdtiCTzXmpwX6R1KJYlhCo8XtnbU3d4tip3CObsbAlEpNbfeMrlh7raI2MvxAaOu9bJpen/2lbvV0UHo0+4O0NG5SjFwMQMJU//Zpcjn4IN5SktxNer3oU73TPELZKz40nQPstMTaSl01faze3Wxpn+ROpnMiRmpMKneLYqexDFbL8Tib9b+irzXRdakKy99haQyEDU9Djf41o1Tvr6/XQSyh0aK4oQE7axBPdbaoVtGNGl30oV5uGKGMlZ+azgF2msPn1THzJql08U86L7lEUY4o00kRIS8hT1nxWaYzYAgDkDAVH+1Sz7xk0xkR4cZf1gXvV/6MrKZa0znAbilYu0hPTJ+oxx05KojLMZ1je3u35m5R7DzuGG0Zl+b9rJkZN2lY+SOy6jebzgF2S/bGZbqvbLyeb85Q54S2pnMiQv9s7hbFzslMjFGHzHjTGbZnWT7d3W6Wvom7XD3KX5TV3GA6CdgtsfVVGjG9VO9vbNABKV1M59je3ll7m06AQayJEsb2KczQ1CUbTWfYFuuCw44GLfpa/R0uvV48VE80LNfmhi2mk2yJiyXYFf3apcrlsNTk9ZlOsaX9Ujfq/qQ3lFbxuekUIGB6L5um18sderfLED3SvEYb6jeZTrKlgqQCtY5rbToDYWSfwgwtXF1lOsO2Tsqq0I3OFxS7cpbpFCBgcjcs0wMblmlq2710b5JH87csNZ1kSzzRGdl4AiSMsXFqcLSPZV1w2JvL26TTZk9QaXmFTkwpkdNymk6yHQYg2BUJMW71aJNsOsN2cmLqNbZorEbVjWD4AVty+Lw6fu4kjV2yVGckl7DfVxBwsQS7imWwgqMkoVpfFL6qOzderth1DD9gT32Wfq/XZ3+lWzxFSotOMZ1jKy7LxRMgEY4BSBjr0SZZqXGsFRgoHmezni78RpPcrAuOyJBcs0HXl5Xqreoo9UvuaDrHNorTirlbFLtsWJdM0wm24Xb49FD7afrCc7m6lr8qy9tkOgkIqoS6Sl0xvVTvbbY0OLmz6Rxb2b/N/qYTEGb6tUuTx83NRYGS4GrSS0Wf6wONVJvlY2WJp2Vhbw6fV8fO+1ili3/WOewPEjB7Z+2tpOgk0xkwiAFIGHM6LB1UzEW2QPhXmyWamXGLDlz+MOuCI+IUrf5Bz0z/SA+58pQXy6Zge+rg/INNJyAMHVbCf3uBcG5OuWa3vl1Hrbhfjtr1pnOAFpW/dpEemz5BT7DfV0CkxqSqb+u+pjMQZjxRTg3p1Mp0hi1c3Xahpqder0HlT8pqrDadA7SouPotunR6qUZvatSwlGLTOWHvoPyDTCfAMAYgYe6I7lww2RP7pFbq+4KndfnaaxW16SfTOYBRQ378UqMXTNdlCcWKd8eZzglbfLjC7miTGqvuLIO12/omb9Y37UbphvVXKWbDfNM5gFH7LPpa786bqivjuyjBzYbMu2tY3jA5HdzJj13HOfqeOThjvWbkP6L/W32zXJuXmc4BjGqzfqn+WzZez/ky1SmhremcsORyuDQkb4jpDBjGACTM9StIU0ZCtOmMsNM6ukHvdxivl+pHKL1isukcIGS4mxt09qzxGrNyvY5LKZHD4jCxK7qld1NWPCe92D1HdOPfnV2VEdWotztM0htNI9V65Uemc4CQ4fI26fTZH6p0xWoNZ7+v3XJwAU90Yvfs17GV4qPZk2dX5Xnq9GHR+3qiaqSSV31tOgcIKX2WTNUbs7/STbEdlMr+ILukX1Y/lr8CA5Bw53BYOrQry2DtLMvy6Z72MzUl7gp1X/aSrOYG00lASEqvWqOby0r1em2seicVmc4JGzz9gT1xWLcsWZbpivBgWT79p2C2vkm4Snste05WU53pJCAkpVSv1w1lpXqjJkZ9kzqYzgkbGZ4M9c7sbToDYSrG7dSwziyDtbPcDp8eLZyqydH/VqfyN2T5mk0nASHJ4fPq+LmTVLpksc5OLpHb4TadFBY4R4fEAMQWDu+ebTohLJySVaG5OXdr+Iq75ahZazoHCAudK+bp+Rkf676oAmV7OJH7K5YsHZh/oOkMhLGsJI9653FH1985ofUqzcm9V6dU3Cln9SrTOUBY6Lhqvp6dMUkPuNsqJzbTdE7IO6DtATwFiz1yeDfO0XfGBbnLNKf1rTp8+X/lqNtoOgcIC/F1m3XZ9FK9v6lZQ1K6mM4JaW6Hm+WvIEniuUwb2KttirKSYlRRyd2PO1KSUK3HM0erzfJS0ylA2Droh8+0nytGLxQP0f9qFqm2qdZ0Usjp0aqHWsfxRB72zOHdsvT9Ui4A7EhxQrWeyPxAbZaPlSWf6RwgLB2w8AsNdsXoxeIh+l/Nz6ppqjGdFJJY/gp7anCHDCXGuLS5rsl0SkjaO3mzHk59W5krJ5lOAcJWm/VL9ND6Jfq2oI/uiY/Wwir2zPmj/tn9lRiVaDoDIYDbWmzAsiwdVsK64X+U4GrSy0Wf6QONZPgBBEB0U50umDlOY9ds1pEpJbLEWj2/xaO1CIRDS7Lk4D+t30lwNemlos81ViOVt3wMww9gD0U31en8meM0Zk2ljkjpyvH8DzJjM9Ujo4fpDIS5KJdDBxVzY8wfpUU16p2ij/R64wiGH0CA7L14qt6aM0U3xnZUanSy6ZyQwjk6tmIAYhMsg/V717RdqOmp12uf8qdkNVabzgFspVVlhe4oK9UrjUnqltjedE5IcFgOHdD2ANMZsIFWiTHqk59qOiNkXJvvP54PKn+S4zkQYK0qK/SfsnF6uTFZ3RLbmc4JGQfmHyiLDZkQAJyj/8qyfLq93Vx9l3CVepePktVcbzoJsBWHz6sT5n6ksUuW6kz2B5HkX/5q/zb7m85AiGAAYhM92iQrLzXWdIZxB2es14z8R/SP1TfLtZnH/4BgKlk+Sy/PnKw7owvVKibddI5RPVv1VKtY9khBYHDBRDokY51mtn1YF6zieA4EW7flM/XyzM/0n5hCtYpJM51j3MH5LH+FwBjYPk2pcVGmM4w7LnO1Zufer9NW3sHeXUCQJdRV6vLppRpd6dV+yZ1N5xg1IHuAEqISTGcgRDAAsZHDukXuMlh5njpNKHpfT1SNVPKqr03nABHDkk+HL/hEYxct0P8llSjGGW06yQgerUUgHdK1tZwRug5Wu9g6TSx6T49XXaqk1d+YzgEihiWfjpj/icYsWqjzk0oUHaHH85z4HHXL6GY6Azbhcjp0cNfIXQarU3yNPi18U/dVXqb4tWWmc4CIkrdusR6ZPkHPqLWK4vNM5xjBOTp+iwGIjRzRLfLuGI12ePV44XeaHP1vdSx/Q5av2XQSEJE8DTX654xSfbC+TgenFJvOaVFuh5sPVwio9PhoDWgfWXdhe5zNeqrwG33svlQdyt/ieA4YEttQrUtmlGr0hnodEGHHc4mLJQi8SDxHj3N6NaroS413jFTB8tHs3QUY1G/xd3przte6Ia6TUqKSTOe0mHh3vIbmDTWdgRDCAMRGumQnqiQncr6hXZC7TLMyb9Ohyx+Uo26j6RwAkrI2luvesvF6oTldXRLyTee0iGFthyk1hj0bEFin9I2cO7X+1WaJZmbcooOWPyyrvtJ0DgBJuRuW6YGy8XrOl6kOEXLnqCVLx3c43nQGbKZfu1Tlp0XOUtX/brtIM9Jv0P7lj8tqqDKdA0CS09es4XMmqnTpMp2R3E0uh8t0UtAd0f4Ixboj53sv/h4DEJs5vV9b0wlBt3fyZn3b7jldu+5qRW/8wXQOgB3otaxMr83+Urd6Oig92t7DgRM7nmg6ATZ0QJdMtU6MMZ0RVINTN+n7gqd0+dprFbXpJ9M5AHagz5KpenPO17ohtqPt7xwdkDNAbRLamM6AzViWpVP3tv85+pC0jSoreEIXr75B7srFpnMA7EBCXaWumD5Woyul/VLsvT8I5+j4IwYgNnNkj2wledymM4IiI6pR7xR9pNcbRyhz5STTOQD+hsPn1THzJmns4kU6N7lEUQ77bQJZmFyo3pm9TWfAhlxOh07qa88LcVkxDRrTYZxeqBuh9IrPTOcA+BtOX7OGz/1IY5ct02nJJba9c/SkjieZToBNnbBXrmLc9rz0khNTr9KisXq2doRSK74wnQNgJ7Rd97MeKZugp5Slwnj7nW/0zuyt9sntTWcgxNjzKBzBYtxOndA713RGQFmWT/8pmK1vEq5S7/JRsprrTScB2AVx9Vs0cnqpRm9q1NCULqZzAoo7SxBMp/TNk8tGm6E7La8eaD9dX3kuV8myl2V5G00nAdgFibWVump6qd7Z4tDA5E6mcwIqOy5bg3MHm86ATSXHRtluLxCn5dWDhWX6wnO5istfleVtMp0EYBcNWPyt3p7zja6z2f4gnKNjRxiA2NBp/drKssn1kuNbr9bs3Pt0SsWdclavMp0DYA+0Wb9UD5Z9qGdtsp54rCtWR7Q/wnQGbKxVYowOLM40nREQZ2av0JzsO3XsinvlqF1nOgfAHmi35ic9OX2iHnPkKj/OHhd1T+h4ghwWp8YInjP655tOCJgzs1dobvZ/dPTy++SoXW86B8AecPqaddKcib885Rn++4OkxqRqWN4w0xkIQXzKs6H89DgNKsownbFHOsXXaHLhG7p302WKXzvddA6AAOprk/XED293uOLccaYzYHOnhfneXr2StmhK+xd1y4Yr5Fk/13QOgAAavGiK3p03TZcnFCvBHW86Z7e5HW4dW3Ss6QzYXElukrq3STadsUd6JVVtO6bHrJ9nOgdAAPmf8hyrdzdbGpwcvvuDHFN4jNxOe24LgD3DAMSmwnUz9DinV6OKvtJ4x0jlL39flnymkwAEwW/XEz89TO80Gd5xuOkERIAB7dNV2Cr8LiymuJv0ZtHHeqd5hLJXfGg6B0CQuL2NOnPWeI1dsUbHpZSE5VMUB7Q9QKkxqaYzEAHC9Rw9xd2kN4o+5ZgORICCtYv02PQJesrKVvv48Fpe32E5dELHE0xnIESF3ydU7JShnVopJ9ljOmOXXJ73k2ak36D9yx+T1VBlOgdAC0isrdSVYXinSc9WPdUxtaPpDESI0/YOryXjbi2Yq++Trlbf8mdlNdWZzgHQAlKr1+nmslK9URur3klFpnN2yUmd2PwcLePwbllKiQ2vO5NvKpivqcnXaO/yZ2Q11ZrOAdBCBvz8jd6e+52ujeus5DBZtWFg9kDlxOeYzkCIYgBiUw6HpVPC5ILJkLQNKst/XP9ac6PclYtN5wAwYOudJk9a2WoXBnea8PQHWtJxvXMVG+U0nfG3jstcrTlt7tMZFXfIWbXSdA4AAzpVzNPzMz7Wve4CZXtamc75Wx1SOqhnq56mMxAhYtxODd+rjemMnXJEq7WanfeAzq64Ta4tK0znADDA5W3SyXMmaOyycp2aXCKXFdqrNrD5Of4KAxAbO6lPG0W5QvcfcU5MvUqLxujZ2pFKXfWl6RwAIWDgz9/onbnf6eq4zkqMSjCds0OpMak6sO2BpjMQQRJi3DqqR+huNLx13677Ki9T/Noy0zkAQsDBCz/TBwvn6J+JXeVxxpjO+VNcLEFLO61fWzks0xV/rn1srSYVvaOHt1yqhDXfm84BEAKSajfp6umleqfKoX2SO5nO2aHsuGwNyh1kOgMhLHSvjmOPpcVH69CurU1nbMdpefVQ+zJ94blcxeWvyfI2mU4CEEJc3iadOmeCSssrdFJKNzmt0Lrz/diiYxXljDKdgQhzer980wnbiXM16/miL9m3C8AORTfV6f9mjtMH66p1aEpX0znbiXfH6/B2h5vOQIRpkxqrfTtkmM7YjsfZrGcKv9Ek96UqLH9Hls9rOglAiGm35ic9MX2innDkhNyqDSd1Oiks9yFDy7F8Ph9nqzY2e3mljng0dJ6uOCt7ua62nlfM+nmmUwCEiZ8yO+qe7Dx9vekH0ynyuDwaf+x4pXnSTKcgAp3+7Lf64sd1pjMkSVe2/VHn142Su3KJ6RQAYWJGmx66OzVJczaHxpK353Y9VyN7jzSdgQj01U/rdOr/vjWdsc3FeYt1ccNzitq0yHQKgDDR5HDpjeKheqJhhSobNhttSY5O1oTjJijWHWu0A6GNAUgEOOf5qfpkwRqjDb2Stuix9HeVtWKC0Q4A4Wty4T66L6ZJS6vN7S1wWufTdFXfq4y9PyLbtKUbdNwTXxttODB9g+6Jf1XJq6YY7QAQnnyy9H7nIXrIt17r6jcY6/C4PJpw3ASlxKQYa0BkO+6JKZq2dKPRhsGpm/RA0htKr/jMaAeA8FUZm6LHOw3Um5vmqclnZnWXf/X4l/7R/R9G3hvhgwFIBJhZvklHPfaVkfdOcTfpyfzP1bfiFVlNtUYaANhHozNKrxQP0dN1y7SlsapF3zvaGa3xx45XRmzoLVuAyHHKM99oyqL1Lf6++Z46PZk7QR2Xvy3L19zi7w/AXqqjE/R058F6ecsPavA2tPj7n1V8lv69179b/H2BrT5fuFZnPPedkfduHd2gp/I+VrcVr8vyNhppAGAvP7cq0j05Bfpq04IWfd8Ed4ImHD9BCSG6fyhCBwukRYDubZKNrDN6c8F8fZ90tfYu/x/DDwAB4W5u0FmzPtSYlWt1XEpJi67zeUzhMQw/YNwlQ4ta9P2iHV49UfidPom+TJ3K32D4ASAg4uq36NIZpRq9qUlDUrq06HvHOGN0VvFZLfqewB8N7pChnnnJLfqeTsure9vN0JS4K9S9/CWGHwACpt2aH/Xk9Il6zJGjgricFnvfUzqfwvADO4UnQCJE2bKNOvbxllmu4qjMNbo9+mUlrPm+Rd4PQORakNVFd2dm6fvKH4P6Pm6HW+OOHafWca2D+j7Azjjxqa/17eLgLx1zYZulGtk0StEbFwb9vQBEtm8K+urueLd+qioP+nud3uV0XdnnyqC/D/B3Pv1hjc4eNbVF3uvUrJW6zvmCYtfNbpH3AxC5mhwuvV48VE80LNfmhi1Be584d5wmHDdBSdFJQXsP2AdPgESIXnkpGlSUHtT3KIqr1ceFb+vBzZcx/ADQIjpVzNOoGR/rAXe+cmIzg/Y+RxUexfADIWNEkJ8CGZhSqant/qer1l7D8ANAi+i3+Du9PecbXRvXSclRwbuQEe2M1jldzwna6wO7Yv+OrdQ9N7gX7rolVunLwld0x8bLGX4AaBEub5NOmz1BpeUVOimlm5yWMyjvc2LHExl+YKcxAIkgI4cF54KJx9msZwq/1kTXpWq//F1ZPm9Q3gcA/swBCz/XBwtm6ZLEYsW6YgP62i7LpfNKzgvoawJ7YkBhuvrkB37j3tbRDXq/aLxebhihjJWfBPz1AeCvOH3NOnnORI1dVq5TkkvkslwBf4/jio5Tuie4N4UBu2JEkM7RE1xNeqXoM73vu1S5y0uD8h4A8FeSazbourKxers6SgOSOwb0tT0uj84sPjOgrwl7YwASQXq3TdXAwrSAvuaIvJ81M+MmHbD8EVn1mwP62gCwK6Ka63X+zPEau3qTjkwpkSUrIK97ePvDlRPfcuuYAjsjkHuBbLcmeHPLb0gMAFsl1W7SNdNL9XaVS/0DeMEkyhHF0x8IOUM6ZaokJ7B3MF+b/4Omp16ngeVPyWqsDuhrA8CuKlz9g56a/pEec+QqPy47IK95fIfjlRqTGpDXQmRgD5AI893iDRr+1Nd7/Dr7pm3UA4lvKq3iswBUAUDgzckp0d3p6ZqxedFuv4bTcmrM0WPUJrFNAMuAwDj28a9UtmzTHr0Ga4IDCHWfFg7UfdFNWlZTsUevc2LHE3V9v+sDVAUEzkfzVuv8F/d8CelDMtbprthXlbT6mwBUAUDgNTrceq14qJ6sX6YtjVW79RrRzmiNP3a8MmIzAlwHO+MJkAjTtyBV/dvt/lMgraMb9EHROD1fO5LhB4CQ1nXFbL0081PdHd1erT279+HokIJDGH4gZF28B0+B9Eis0peFL7MmOICQt/9PX2n0gum6LKGL4t1xu/Uaboeb5SwRsg7okqni7MTd/v35njpNKHpPj1ddyvADQEhzext1xuwPVbpitU5MLtmt/UGOKTyG4Qd2GQOQCLQ764w6La/uazdDU+IuV7fyl2V5G4NQBgCBd+iCT/XBT/N1YVKJYpzRO/37nJZTF3S7IIhlwJ7Znc1Tk9xNeq3oU73nG6nc5eOCVAYAgeVubtDZsz7UmJXrdUxKiRzWrp3GHlV4lFrHtQ5SHbDndmdpy2iHV08UfqdPoi9Tx/K3ZPmag1AGAIGXUr1e108v1VvVUeq3C8tdxjhjdG7JuUEsg10xAIlA/dqlaZ/Cnd/879SslZqTc5eOX3mPHDXrglgGAMHhaajRRTNKNWZdrQ5J6bpTv+fYomNVkFQQ5DJgz1x1cKed/ntvyp+vacnXqH/5M7Iaa4JYBQDBkV61RreWlerVunj1TCrcqd/jcXl0YfcLg1wG7JkDu2Sq2y7c1PCP3GWalXmbDln+oBx1m4IXBgBBVLT6Bz0z/SM94sxT253YH+T0LqdzQwN2C3uARKj5FZt12MNfyPsX//S7JVbp8YzRyl3BHaIA7GV6m566OzVRczcv3uGvx7njVHpMqdI8u79kINBSznthqibNX/Onv35U5hrdHv2yEtbs+friABBKxnfaTw84tmhV7do//Xsu7H6hLupxUQtWAbtn6pINOuHJv96vs39KpR5KeVutVn7cQlUA0DIaHW692nWYnqpbusP9QdJi0lR6bKnidnM5TEQ2ngCJUJ2zEnVinx2va5/gatKrRZP1vm8kww8AttSzfLpem/m5bvN0UEZM6na/fl7JeQw/EDauObSzXA5ru5/vEFerTwrf0oObL2P4AcCWDlkw2b/MZWLXHS5z2crTSmcVn9XyYcBu6JOfqkNLdnxnc0ZUo97tMFGvNoxk+AHAltzeRp05a7zGrlij4Snb7w9yUY+LGH5gt/EESARbu6Ve+983WVX1Tdt+7rr8BTq7+jm5tiw3WAYALacmOl7PdNlXL27+QQ3eBmXHZeuDYz5Q9C7sFwKYdtP7c/TC10slSXFOrx5u942GrHlBVv0Ww2UA0DJWJefq/nYl+nDj3G0/d+uAW3VM0TEGq4BdU76hRkMf+EwNTV5JkmX5dEfBHJ1Y+Zyc1asN1wFAy1mY2Un3ZOfq200LVZhcqLePeFtOx65vmg5IDEAi3mOf/qR7J/ygQzLW6a7YV5W0+hvTSQBgxPLUPD2QX6xhXc/Qoe0ONZ0D7JKN1Q3a995PdX6rBfq/+lFyV+54eTcAsLuyvF66Kzlecnv0+uGv7/KG6YBpd46br6c+/1kntF6lm90vKm7tDNNJAGDMJ0X7KGHfa9Qndx/TKQhjDEAiXF1js3566wYV//ikLF+z6RwAMKvN3tI5EyRr++WEgFC3ceqbSik933QGABjntRxaf+4EZeT2NZ0C7LItdY1a9da/VbjoRVnicg2ACFd0oHTqW6YrEOa4HSbCxbid6tqzP8MPALAc0qH3MvxA2ErpdayU0cl0BgAY5+hyNMMPhK2EGLeKivsw/AAAZ5R08F2mK2ADDEAgdT5Caj/UdAUAmNXrTCmru+kKYPc5XdIh95iuAACz3HHSQXeYrgD2TM/TpJy9TFcAgFn9LpLS2puugA0wAIHfIff4J6sAEIk8KdLQG01XAHuu3b5Sl6NNVwCAOYMvlxKzTVcAe8aypMPu8z+hDACRKCFLGnyF6QrYBEdT+KUXSv0uNF0BAGbsf50Um2q6AgiMg+6Q3LGmKwCg5aW2l/r/y3QFEBjZPaVeZ5iuAAAzDrhVio43XQGbYACCXw2+UkrgbikAESarh7TXOaYrgMBJyvXfAQ0AkeaQeyQXT7XDRobe5H9SGQAiSbv9pW7DTVfARhiA4FfR8dLhD5iuAICW44ySjn5CcjhNlwCBNWAEe9oAiCzdT5GKhpmuAAIrNpUNgAFElqgE6ciHTVfAZhiA4Pc6HiJ1P9l0BQC0jH2vlDK7mK4AAs/p8g/32N8LQCRIyJIOvtN0BRAc3U+SOh5qugIAWsYBt0jJeaYrYDMMQLC9g+9iKSwA9pfVQxp4qekKIHgyi/3LWwKA3R3xsORJNl0BBM/hD7IUFgD7K9iX5akRFAxAsD1PMo+bAbA3Z5R09OP+u+QBO9vnUv+wDwDsqsepUocDTVcAwZWQKR1yr+kKAAieqHjpyEckyzJdAhtiAIIdKzpA6nma6QoACI7BV/rvjgfsjqWwANhZQjZLXyFydDtB6nS46QoACI5hN0spbU1XwKYYgODPHfQfKTHXdAUABFZWd/9d8UCkyOwi7XuV6QoACLwjH5FikkxXAC3n8Ael2DTTFQAQWPmDpD7nma6AjTEAwZ+LSWIpLAD24oz65W54lr5ChNnnUim7p+kKAAicnqdJRcNMVwAtKz5DOpSlsADYiDuOpa8QdAxA8NcKh0q9zjRdAQCBMfgKlr5CZHI4fxn+RZsuAYA9l5jjf1odiERdj5O6HG26AgACY9hNUmqB6QrYnOXz+XymIxDi6rdIjw+QKpeZLkEIeWJqg574vkFLNnklScWtnLpxcJQOKXJLkv4xplaTFjdp5Raf4qMsDWjj1N3DotUp3fmnr3nz5Dq9PqdJ5Zu9inJKvbOcumNItPbO9d+tX9/k03lj6vT+gka1jnfo8cNiNKzdr3fy3/tVvZZVevXIoZ4g/skRtlp3k87/lKc/ENm+uF/6+FbTFQghHM8Rlk59h6c/ENmq10uP7y1VrzVdghASjGP6b/3f2Fo9Na1R/z0oWiP7+W+q4ZiOPdJ2oHRWKU9/IOh4AgR/LzpBOuoRSXxDwq9yEy3dNSxa0y6I0/cXxGlIvlNHvV6ruWuaJUm9s50adZRH8/8Zrwmnxcrnkw58qUbN3j+fuXZIc+rRQ2M0+8J4fXl2nPKTHTrw5RqtrfZ/gHt6WqOmrWzW1+fG6YLebp3yTq22znAXb/TqmbJG3TE0Jvh/eIQfZzRLXwGSNHCklNPbdAVCCMdzhJ2epzP8AOLSpMPuN12BEBOMY/pW781v1DfLm5Wd8PvrQhzTsduik6SjHmP4gRbBAAQ7p91+Uv9/mq5ACDmio1uHFrlVlOZUhzSn7hgao/go6Zvl/g9XF/SO0uC2LuUnO9Qry6nbh0SrfLNPSzb9+YerU0rcGtbOpXYpDhW3cuqBg2K0uV6atdp/wWT+umYd2dGl4lZO/bNPlNbW+LSuxv96F5bW6u5h0UqM5uCJHTjkbql1V9MVgHkOp3Tcs2wajG04niOsZHTyH9MBSF2OknqcZroCISQYx3RJWrHZq4vH1+mVYz1y/+EqIsd07LajH2PpK7QYBiDYecNukfL6m65ACGr2+vT6nEZVN0r922z/+Gx1g0+jpjeqINlSm6Sd+/DT0OzT09MalBQtdW/t/1bVPdOpL5c1q7bRpwmLmpQVbyk91tIrsxoV47J0TGd3QP9csInuJ0t7nW26AggdqQXS0U+KJzvxRxzPEdKi4qXhL0lRcaZLgNBx2H1S6xLTFQhBgTqme30+nf5era4YEKXiVtu/Dsd07JZ+/5Q6H2G6AhGEtUCw85wu6YTnpScHSdVrTNcgBMxe3az+z1arrkmKj5LeO9GjLhm/fih6fGqDrvyoTtWNUsc0hz46PU5Rzr++YDJ2YaNOertWNY1SVoKlj06PU3qs/4LJOT3dmrW6WV0er1J6rKU3T/BoY5104+Q6TT4zTtd/UqfX5zSqfapDzx3pUU4iM96I16qLdNgDpiuA0NPpUGngJdJXD5kuQQjgeI6wcOTDUkYH0xVAaHF7pOEvSk/tJ9VXmq5BCAj0Mf3uLxvkckiX7B21w1/nmI5dlttXOuAW0xWIMGyCjl23+AvpxaMkX7PpEhjW0OzTskqfKut8enteo/43vVGfnRW77QNWZZ1Pa6q9qqjy6b4pDVqxxauvzolTjOvPP2BVN/hUUeXTuhqvnpnWqE+WNOnb8+LUKm7HH5TOfr9WPTIdKkhx6NqP6/XteXG656t6zVnr1TvDY4Py50aYiIqXLpgspReZLgFCk7dZeuFIaemXpktgGMdzhLy+/5AOvcd0BRC6FpRKr58qics7kS6Qx/RpK5t12Ks1KvtHnLIT/Mfv/Ae3aGS/qG2boO8Ix3T8qdg06R9fSEk5pksQYRi9YtcVDJKGXG+6AiEgymmpMNWh3tlO3TksRt0zHXrom4Ztv54UY6kozanBbV16e7hHC9Z59d78pr98zbgo/2v2y3Xp2aM8cjksPVvWuMO/99PFTZq7pln/6hulyUuadWiRS3FRloYXuzV5CQO6iHfkwww/gL/icErHPyfFZ5ougWEczxHScvtIB91hugIIbZ0O8z/ZiYgXyGP6F8uatKbap7z/Vsl162a5bt2spZU+/XtivfIf3LLD38MxHX/KckjHPs3wA0awBBZ2zz6XSsunSj+MM12CEOL1SfV/8pnG5/N/1Tfv2l1JXp9vh7+nrsmnf47zb8TmdFhq9vpfX5Iavf41TxHB+l4gdT3OdAUQ+hIy/UOQF47kyU5sw/EcISM2zb8Er5M15IG/NfQmaUWZtOQL0yUIIXtyTD+9m1vD2v3+suFBL9fo9G5und1j++/LHNPxlwZdLhUOM12BCMUTINg9liUd/YSUkm+6BIZcM6lOny9t0pJNXs1e3axrJtVp8pJmnVri1s8bvbrzi3pNW9msZZVeTSlv0glv1crjtnRo0a8foDo9WqX35vvvBq1u8Onaj+v0zfImLd3k1bSVzTrn/Vqt2OzTCV22/3B122f1OrTIpZ5Z/kd5B+Y59e6CRs1a3axHv2vQwDzmuxErZy/pQO4UBXZa/j7S0BtMV8AQjucIWdvuFM01XQKEh21PdrY2XQJDAn1MT4t1qGsr5+++3A6pdbyljunbb4jOMR1/qmBfab9rTFcggvHdB7vPkywNf0l69gCpqc50DVrYmmqfznivVhVVPiVFW+qW6dCE02J1QHuXVm7x6otlzXrw2wZtrPUpM97S4LZOTTkn9ndrf/+w3qvKev9dIE6HtGCdVy/MrNW6Gp/SPJb65Dj1xdlxKm71+w9Xc9Y06815TZrxj7htP3d8F5cmL3Fp0KhqdUxz6NXjWFs0InlS/XeKuna8SR+APzFwpFT+HU92RiCO5whZg6/kTlFgV8W38n8WfuFwyfvXSxXCfgJ9TN8VHNPxpxKypOOelRzcgw9z2AQde67sJemDf5muABDxLOnUt6UiLpYAu6V2k/T0vtLGJaZLAES69kP9x3QulgC7Z8oj0kT27QRgmMMlnTlWatvfdAkiHJ8osed6nS71PN10BYBIt/91DD+APbH1yU43d+cBMCgpTzr2GYYfwJ4YcLHU+UjTFQAi3SF3M/xASOBTJQLjsAek/EGmKwBEqp6nSfteYboCCH9Z3fzrh1vbr+sMAEEXkyyd9rYUl2a6BAh/xzwpZfc0XQEgUg24ROpznukKQBIDEASKK0o66RWpVRfTJQAiTfsh0uEPma4A7KPjIf67tQCgJTl/OZ/I6Gi6BLCHqDjplLeklHzTJQAiTfEx0gG3mq4AtmEAgsCJSZJOfUtKyDZdAiBSZJZIw1+UnC7TJYC99D1fGjjCdAWAiGFJRz8h5e9jOgSwl/gM6dR3JE+q6RIAkaJNP+mYpyTLMl0CbMMABIGVlCud+qYUlWC6BIDdJeb4v99E8/0GCIpht0hdjzddASASDLtZKuH7DRAU6YXSya9LrhjTJQDsLq1QOvk1yRVtugT4HQYgCLzWJdKJL0oOt+kSAHYVneh/4iyRJ86AoLEs6ejHpbYDTZcAsLM+50n7jDRdAdhb3t7Ssc9IFpeAAARJbLr/HD2WJ84Qejj6ITjaD5GOfNh0BQA7cril4S9ImcWmSwD7c0X71+RPZ01+AEHQ4RDpkHtMVwCRocuR0kF3mq4AYEcuj/9Js9R2pkuAHWIAguDpcYq0/3WmKwDYzREP+YesAFqGJ0U67W0pPtN0CQA7ye4lHf+c5HCaLgEiR7//k/r/y3QFADuxHNKxT0tt+pguAf4UAxAE175XSr3ONF0BwC72vVrqearpCiDyJOdJp7wpRcWbLgFgByn5v3xPiTVdAkSeA2+Xio8xXQHALg683f+EGRDCGIAg+A57QCo60HQFgHDX83Rp/2tMVwCRK7uHdMLzksNlugRAOPOkSqe+I8VnmC4BIpNlScc8JeUNMF0CINwNuETq/0/TFcDfYgCC4HO6pBNekPIHmS4BEK66nyIdwb5CgHFFB/yyZA1DEAC7wZMqnfG+lF5ougSIbK5o6ZTX/UvRAcDu6P8v6cDbTFcAO4UBCFpGVKz/MXeGIAB2VfeTpaMekxwcsoCQ0OUohiAAdt3W4UdWN9MlACQpJkk6Y7SU09t0CYBw0+8i6aA7TFcAO42rSWg5W4cgBYNNlwAIF91Plo56nOEHEGoYggDYFQw/gNAUkySd/p6Us5fpEgDhYu8LpYPvNF0B7BKuKKFlMQQBsLO6ncTwAwhlDEEA7AyGH0BoYwgCYGf1/Yd0yF2mK4BdxlUltDy355chyL6mSwCEqm4nSkc/wfADCHUMQQD8FYYfQHiISfQPQXL7mC4BEKr6nC8deo/pCmC3cGUJZrg90ilvSO32M10CINSUDJeOfpLhBxAuGIIA2BGGH0B4iUmUTntXyu1rugRAqOlznnTYfaYrgN3G1SWY4/ZIJ78utdvfdAmAUFEyXDrmKYYfQLhhCALgtxh+AOEpJlE6/V2pzd6mSwCEir3OkQ5l+IHwxhUmmMUQBMBWJSdIx/DkBxC2GIIAkBh+AOEuOkE67R2pTT/TJQBM632WdNgDkmWZLgH2CFeZYJ47xj8EKRxmugSAKb3O+OXJD6fpEgB7ostR0gnPS64Y0yUATIjPZPgB2MHWIUjeANMlAEwZOFI6/EGGH7AFy+fz+UxHAJKk5kZpzAhpxiumSwC0pP2vl/a9wnQFgEBa9o302klS7UbTJQBaSnoH6dS3pZS2pksABEpjnfTeBdK8902XAGgplkM65B6p7/mmS4CAYQCC0DP5LmnynaYrAASbwy0d+YjU42TTJQCCYd2P0svHSZuWmi4BEGx5A6STX5U8KaZLAASazydNvF76+lHTJQCCzeWRjn9W6nSY6RIgoBiAIDTNeFX64BLJ22i6BEAwRCdKw1+U2rP/D2BrVWulV4dLK8tMlwAIluJj/Xt4uaJNlwAIpm+fkj68WvJ5TZcACIbYNOnkN6Q2fUyXAAHHAASh6+fJ0hunS/WbTZcACKSELOnUt6TWJaZLALSEhhrp7XOkheNNlwAItAGXSAfcyvrgQKRYUCq9c57UWGO6BEAgpeRLp70rpbU3XQIEBQMQhLbVc6VXTpA2rzBdAiAQWnXxDz+Sck2XAGhJ3mZp3BXS98+aLgEQCJZTOuRu1gcHItHyadJrJ0rVa02XAAiE7F7SKW9K8RmmS4CgYQCC0Ld5pfTKcGn1bNMlAPZE/iDppFekmCTTJQBM+fK/0qRbJPHxEwhb7ljpuGelToeaLgFgyobF0ivHS+t/Ml0CYE90OFg6fpQUFWu6BAgqBiAID/VbpDfPlBZ9bLoEwO4oOUE66nHJFWW6BIBps9+WRl8kNdebLgGwq+Iy/OuD5/Y2XQLAtJoN0uunSMu+Nl0CYHf0Pks67AHJ4TRdAgQdAxCEj+YmqfRSqexF0yUAdpblkPa9yv/F+uAAtlrylfTmGVLNOtMlAHZWRmfp5Nek1ALTJQBCRVO99N7/SXPfNV0CYGc53P79u/pfZLoEaDEMQBB+pj0vjb9KaqozXQLgr3hSpeOekQqHmS4BEIo2r5TeOksq/9Z0CYC/UzJcOuJBKSrOdAmAUDTlUWnSTZK3yXQJgL+SkCWd8LyU1890CdCiGIAgPFXM9N85unGJ6RIAO5LdSxr+opTcxnQJgFDW3Ch9dKP0zeOmSwDsiDNaOvhOqc+5pksAhLpl30hvnS1tWWm6BMCOFAyWjnuOzc4RkRiAIHzVVfrXEF8w1nQJgN/a61zp4LvY7wPAzps7Wnr/X1LDFtMlALZKzpNOeEHK6WW6BEC4qF4nvXOe9POnpksAbGNJ+4yUhtzAfh+IWAxAEP6+elj6+BYetwVMc8dKRzwkdRtuugRAOFr3k//pzjVzTZcAKDpIOuZJKTbVdAmAcOP1Sp/dLX1+j+Tzmq4BIltMknT0k1KnQ02XAEYxAIE9LP1aevtsaUuF6RIgMqUVSSe+JLXqbLoEQDhrqJFKL5Nmvma6BIhMllPa/1pp0L8lyzJdAyCc/fSx9O75Us160yVAZMoskU58UUptZ7oEMI4BCOyjaq30zrnS4s9MlwCRpcvR0lGPStEJpksA2MW056VxV0rN9aZLgMgRlyEd96zUbl/TJQDsonKF9NZZ0vLvTJcAkaXHqdJh90tuj+kSICQwAIG9eL3S5P9In98niX+1gaByRknDbpH6X2S6BIAdrZwhvXWmtHGJ6RLA/vL6S8ePkhKzTJcAsJvmRumjG6VvHjddAtifO9a/H2fvM02XACGFAQjsadGn0gcXS5XlpksAe2rdzb82eGax6RIAdla3WZp4nVT2oukSwJ6cUdJ+V0sDR7IxKoDgWjBOGjtSqlptugSwp7z+0tGPs+QVsAMMQGBf9Vukidf7l9EAEBgOtzT4cmnQ5ZLTZboGQKT4aZL0wQhp83LTJYB9ZPWQjn5CyuxiugRApKjZII2/Spr9pukSwD5cMdKQG6R+F0kOh+kaICQxAIH98TQIEBiZXf0XSrK6mS4BEInqNksTrpGmv2y6BAhvzihp3yulgZdyMwMAMxaUSmMv5WkQYE/l7OVfmSG9yHQJENIYgCAy1G+RJt4gTRtlugQIPw6XtM+l0r5XSU636RoAke7Hj6QPLpG2rDRdAoSfrO6/PPXBEpYADKvd6H8aZNYbpkuA8OOMlva/RhpwCUtYAjuBAQgiy8+TpfcvliqXmS4BwkOrLv51RLN7mi4BgF/VVUofXivN4GkQYKc43P6nPva5jKc+AISWBeN+eRpklekSIDxk9fA/9dGqs+kSIGwwAEHkqa+SPrpB+n6UJP71B3bIckoDR0j7XSO5okzXAMCOLZwojRnB0yDAX2ndzf/UR+uupksAYMdqN0rjr5ZmvW66BAhd3MwA7DYGIIhcP0/27w2yiadBgN9p1UU66lEpp7fpEgD4e7WbpAnXSjNeMV0ChBZnlDTo39Kgy7lQAiA8/DBeGjOSp0GAP8ruJR35sNS6xHQJEJYYgCCyNVRLX9wvTXlUaq43XQOYFZ3kX0e0z/lcKAEQfpZ8JY2/Ulo9x3QJYF7hMOngu6X0QtMlALBr6iqlT++Upj4jeZtM1wBmxaZJQ2+Sep0hWZbpGiBsMQABJGnDz9KH10gLPzRdAhhgST1OkYbdIsVnmI4BgN3nbZamPit9erv/AgoQaZLbSgffKXU6zHQJAOyZNfP9NzYs/tx0CdDyLIe01znSkOslT4rpGiDsMQABfmvhROnDq6UNi0yXAC0jq7t06H1Sm76mSwAgcKrXSR/fIk1/WfJ5TdcAwefySPtc6t+/yx1jugYAAmfuaGni9VJluekSoGW02Vs69F7/uTqAgGAAAvxRU4P07ZPS5/dJ9dw9CptKyJKG3CB1P1lyOEzXAEBwrJwhTbhOWvql6RIgSCyp5ARp2E1SUq7pGAAIjsZaacoj0pcPSo3VpmuA4EjO86/K0PVY0yWA7TAAAf5M9Xrps7uk759j7VHYh8sjDbzEf4doVJzpGgBoGfPHSB/d6F/yErCLvP7SQXdIOb1NlwBAy9iySvrkdmnGKzzhCfuISpAGXSb1u4inOIEgYQAC/J11P0oTb5AWjjddAuw+y+G/Q3ToTVJSjukaAGh5zY3Sd09Ln90j1W0yXQPsvuS20gG3SsVHmy4BADNWzfEvi/Xzp6ZLgN3ncEk9TvXv8xHfynQNYGsMQICdtXSKNPkuafFnpkuAnWc5pOJjpMFXSq06ma4BAPNqN/mXuvzmCQYhCC/JedI+l/kvlriiTNcAgHk/fey/saH8G9MlwM5zuPxLUQ/6t5RaYLoGiAgMQIBdVf6d9Nnd0k+TTJcAf85ySl2PkwZfIWV0MF0DAKGnbrP03VPS149LtRtM1wB/LqXAf5Gk+8mS02W6BgBCz8+f+Qch7PmFUOZwSz1OlgZdLqW0NV0DRBQGIMDuWjFN+uxelsZCaLGc/qWuBl8hpReargGA0FdfJU19RpryqFSzznQN8KvU9tLgy6WS4Qw+AGBnLJ3iH4SwNBZCicMt9TzVfzNDcp7pGiAiMQAB9lTFTOnze6X5YyXxnxMMcbikbif6P1SltTddAwDhp6FamvqsNOURqXqN6RpEsvSO/sFH1+Mkh9N0DQCEn/Kp0uf3SD9ONF2CSOaM8i9bOejfUnIb0zVARGMAAgTK6nn+Qci80ZLPa7oGkcLhkrqf5H+MlvVDAWDPNdZK34+SvnpIqlplugaRpFUX/+CjyzGSw2G6BgDC38rp/lUbfhgnblZEi3FGST1PlwZdJiXlmq4BIAYgQOCtXSh9+V9p7rtSU53pGthVTLLU8zSp7wWsHwoAwdBYJ814WfruGWntAtM1sLO8AVK//5M6HylZlukaALCfVXOkLx+Q5n0geRtN18Cu4jKkXmdIe50rJeWYrgHwGwxAgGCp2SBNf1n6/jlp42LTNbCLrO5Sn/OlkuMlt8d0DQBEhsWfS1P/Jy0olbxNpmtgB1EJUrfhUp/zpMwupmsAIDJsWS1Nf1Ga9oJUWW66BnbRZm//OXqXoyRXlOkaADvAAAQINp9PWvSxNPU5aeGHkq/ZdBHCjTNaKj5G6nu+lLuX6RoAiFxbVvkvmkx7Xtqy0nQNwlGrLtJe5/iXr4xOMF0DAJHJ2ywtnCB9/6z008dieSzsMnes/6bEPudLWd1M1wD4GwxAgJZUudx/0aTsRalqtekahLrkPP9Fkp5nSHFppmsAAFs1N/nXE5/6P//TIVw4wV9xuKUuR/qf9mg7wHQNAOC3NiyWpo3yr95Qs950DUJdanupz7n+zc09yaZrAOwkBiCACc2N0vwx/uWxlnxhugYhxZIKh/mf9ig8gE1QASDUrftRmvqsNPNVqa7SdA1CSWKutNdZUq8zpfhWpmsAAH+lqV6aO9r/VEj5t6ZrEEosp9ThIP+NDO2HsF8XEIYYgACmrV0ozX5TmvuetP4n0zUwJae3VHysf6krNkwDgPDTUCMtHC/NeVf6aZLUVGe6CCbEJEudD/cf09vtJzmcposAALtq1Zxfz9E3LTNdAyMsKa+f1PU4qcvRUnyG6SAAe4ABCBBKKmb5P2TNfY+N0yNBZonU9Vj/V0q+6RoAQKDUb5EWjJPmvist+kRqbjBdhGCKTpQ6Huo/nrfbnw1QAcBOlk/zH8/nvc/G6ZEgu5d/6MGNiYCtMAABQtXK6b8MQ0ZLm5aarkGgpHf8ZehxnJReZLoGABBstZukBaX+iyc/T5a8TaaLEAjuOKnjIf4LJEUHSK5o00UAgGDy+aTl3/vP0eeNljavMF2EQMns6j+edz1OSi0wXQMgCBiAAOGAu07CW0qBf+hRfKzUuqvpGgCAKTUbpPkf+JfJWvKl5Gs2XYRd4fJIHQ70H887HCS5PaaLAAAm+Hz+fULmvuc/R99SYboIuyq9w69Dj4yOpmsABBkDECCc+Hz+J0N+/lRa9KlU/p3UXG+6Cn8UlSAVDPIvg9F+f570AABsr3q9tHiy/6mQRZOlStYYD0mtuviP5+32k/IHSlFxposAAKHE55OWT/UvefnzZ/4fextNV+GPYpKldvv+co4+REppa7oIQAtiAAKEs8ZaaekU/8WTnydLq2ZL4j/pFudw+Tcx3zrwyNlLcrpMVwEAwsn6Rb/e4LDkC6mu0nRRZErI+nXg0W4/KSHTdBEAIJzUV/3+HH3NPHGOboDDLbXp6z8/bzdEyu4pORymqwAYwgAEsJPq9dLiz379sMXeIcGTVvjrwCN/kBSTaLoIAGAX3mb/E5+LPvUfz5d/x0bqwRKV4H+yY+vQo1Un00UAADupWuN/MmTrOfrm5aaL7Cu9g//pjnb7S/n7SNHxposAhAgGIICdbVgsLftaWjlDqpghrZojNVabrgo/MclSdg//XSNZPaTcvaSkXMNRAICI0VDtX2t86/F85QxuctgdltN/cSS7h/94nt1TyuklOd2mywAAkWL9Iv8+YBUzpIqZ0uq5UlOd6arwE5v+6zl6dk8pu5eUmGW6CkCIYgACRBKvV1q30P9Ba+sHropZUsMW02WhIybpl4siPX4deKQWGI4CAOAPajb8ejzfOhjZuMRsUyixnP5NTbce07N6SK1LpKhYw2EAAPxGc5O0dsEvx/RfvlbN5sbF3/Kk/v7mheyeUnIb01UAwggDECDS+Xz+u1AqZvi/Vs/z31W6qdzeG6xHxUsp+f6vtPZSVvdfhh3tJMsyHAcAwG6o3ei/cLJyhv+O0o2L/UOR6rWmy4LHckgJ2f7NTFMLpNbd/RdJMrsy7AAAhCevV1r/468DkdVzpI1Lpcrl9t5gPTpJSs33n6OntpeyuvmHHSn5hsMAhDsGIAB2zOuVtlT4hyEbl/ovoPz2x1sqFNKbuVkO/0amKQW/Djq2fqUWSHHpZvsAAGgpDdX+Y/fWY/jWr63H9aZas31/JzrRP+D47bE8eetf8yRXlNE8AABahLdZ2rzy98fw3/51yyqF/Dl6Ys725+Yp+f7z9thUs30AbIsBCIDd01Tvf0qkslyq2yTVbpLqKn/5+uXHO/q53dnE1eHy78PhSf7lryl//eO4Vv5HYl3RAfmjAgBgWz6fVLXaf0yv3fCb4/emP/nrL8f0hqrdeDPLP8zwJP3muJ70h2P8b/4amyYlt+WCCAAAO6Oxzn9+vmmZ/6nQbefiO/ra9OuP9/Qc3ZPi//rtOfkffy4uXUpqw00LAIxgAAKgZTXW+R/b9TZLPq//wovPK/ma/XeEWE7J8cvX1h8zyAAAILQ0N/kvmPiaf3NM9/p/bFm/HNMdvx7PLYf/eO5wmi4HAAC/1Vj3yzHd+5tz9F+O7b87R3f9+len23Q1AOw0BiAAAAAAAAAAAMB2HKYDAAAAAAAAAAAAAo0BCAAAAAAAAAAAsB0GIAAAAAAAAAAAwHYYgAAAAAAAAAAAANthAAIAAAAAAAAAAGyHAQgAAAAAAAAAALAdBiAAAAAAAAAAAMB2GIAAAAAAAAAAAADbYQACAAAAAAAAAABshwEIAAAAAAAAAACwHQYgACLSfvvtp5EjR2773/n5+XrwwQeN9QAAgF3H8RwAgOD647H2jyzL0ujRo3f69SZPnizLsrRp06Y9bgOAneEyHQAAoWDq1KmKi4sznQEAAPYAx3MAAFpWRUWFUlJSTGcAwJ9iAAIAkjIyMkwnAACAPcTxHACAltW6dWvTCQDwl1gCC0BI2W+//XTxxRdr5MiRSklJUWZmpp555hlVV1fr7LPPVkJCggoLCzV+/Phtv2fOnDk65JBDFB8fr8zMTJ1++ulat27dtl+vrq7WGWecofj4eGVlZen+++/f7n1/u2TGkiVLZFmWZsyYse3XN23aJMuyNHnyZEm/PrY7YcIE9ezZUx6PR0OGDNGaNWs0fvx4de7cWYmJiTrllFNUU1MTlP+vAAAIVRzPAQCwD6/XqyuvvFKpqalq3bq1br755m2/9sclsKZMmaIePXooJiZGe+21l0aPHr3d8ViSpk2bpr322kuxsbEaMGCAfvjhh5b5wwCIOAxAAIScF154Qenp6fruu+908cUX68ILL9QJJ5ygAQMGqKysTAceeKBOP/101dTUaNOmTRoyZIh69uyp77//Xh9++KFWr16t4cOHb3u9K664Qp999pnef/99TZw4UZMnT1ZZWVlAWm+++WY9+uijmjJlisrLyzV8+HA9+OCDevXVV1VaWqqJEyfqkUceCch7AQAQTjieAwBgDy+88ILi4uL07bff6p577tGtt96qjz76aLu/b/PmzTriiCNUUlKisrIy3Xbbbbrqqqt2+JrXXXed7r//fn3//fdyuVw655xzgv3HABChWAILQMjp3r27rr/+eknSNddco7vuukvp6ek6//zzJUk33nijnnjiCc2aNUuTJk1Sz5499Z///Gfb73/uuefUpk0bLVy4UNnZ2Xr22Wf18ssva+jQoZL8H95yc3MD0nr77bdr4MCBkqRzzz1X11xzjRYtWqR27dpJko4//nh9+umnf/qhDwAAu+J4DgCAPXTr1k033XSTJKmoqEiPPvqoPv74Yx1wwAG/+/teffVVWZalZ555RjExMerSpYtWrFix7dj/W3fccYf23XdfSdLVV1+tww47THV1dYqJiQn+HwhARGEAAiDkdOvWbduPnU6n0tLSVFJSsu3nMjMzJUlr1qzRzJkz9emnnyo+Pn6711m0aJFqa2vV0NCgvffee9vPp6amqmPHjgFvzczMVGxs7LaLJVt/7rvvvgvIewEAEE44ngMAYA+/PU5KUlZWltasWbPd3/fDDz+oW7duvxti9O3b929fMysrS5L/M0FeXl4gkgFgGwYgAEKO2+3+3f+2LOt3P2dZliT/OqRVVVU64ogjdPfdd2/3OllZWfrpp592+f0dDv/qgD6fb9vPNTY2/m3rHzu3/pzX693lBgAAwh3HcwAA7CEYx8U/+0wAAIHGHiAAwlqvXr00d+5c5efnq7Cw8HdfcXFxat++vdxut7799tttv2fjxo1auHDhn75mRkaGJKmiomLbz/1xwzYAABA4HM8BAAh/HTt21OzZs1VfX7/t56ZOnWqwCAAYgAAIc//85z+1YcMGnXzyyZo6daoWLVqkCRMm6Oyzz1Zzc7Pi4+N17rnn6oorrtAnn3yiOXPm6Kyzztp2V+iOeDwe9evXT3fddZfmz5+vzz77bNsa5gAAIPA4ngMAEP5OOeUUeb1eXXDBBZo/f74mTJig++67T9KvT3kAQEtjAAIgrGVnZ+urr75Sc3OzDjzwQJWUlGjkyJFKTk7edlHk3nvv1aBBg3TEEUdo2LBh2meffdS7d++/fN3nnntOTU1N6t27t0aOHKnbb7+9Jf44AABEJI7nAACEv8TERI0ZM0YzZsxQjx49dN111+nGG2+UJDY3B2CM5fvtorgAAAAAAAAAEACvvPKKzj77bFVWVsrj8ZjOARCB2AQdAAAAAAAAwB578cUX1a5dO+Xk5GjmzJm66qqrNHz4cIYfAIxhAAIAAAAAAABgj61atUo33nijVq1apaysLJ1wwgm64447TGcBiGAsgQUAAAAAAAAAAGyHTdABAAAAAAAAAIDtMAABAAAAAAAAAAC2wwAEAAAAAAAAAADYDgMQAAAAAAAAAABgOwxAAAAAAAAAAACA7TAAAQAAAAAAAAAAtsMABAAAAAAAAAAA2A4DEAAAAAAAAAAAYDsMQAAAAAAAAAAAgO0wAAEAAAAAAAAAALbDAAQAAAAAAAAAANgOAxAAAAAAAAAAAGA7DEAAAAAAAAAAAIDtMAABAAAAAAAAAAC2wwAEAAAAAAAAAADYDgMQAAAAAAAAAABgOwxAAAAAAAAAAACA7TAAAQAAAAAAAAAAtsMABAAAAAAAAAAA2A4DEAAAAAAAAAAAYDsMQAAAAAAAAAAAgO0wAAEAAAAAAAAAALbDAAQAAAAAAAAAANgOAxAAAAAAAAAAAGA7DEAAAAAAAAAAAIDtMAABAAAAAAAAAAC2wwAEAAAAAAAAAADYDgMQAAAAAAAAAABgOwxAAAAAAAAAAACA7TAAAQAAAAAAAAAAtvP/OWPHnmO2kzQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Приращение данных (oversampling)\n", + "df_train_oversampled: DataFrame = oversample(df_train, 'salary_category')\n", + "df_val_oversampled: DataFrame = oversample(df_val, 'salary_category')\n", + "df_test_oversampled: DataFrame = oversample(df_test, 'salary_category')\n", + "\n", + "# Проверка сбалансированности\n", + "print('После применения метода oversampling:')\n", + "check_balance(df_train_oversampled, 'Обучающая выборка', 'salary_category')\n", + "check_balance(df_val_oversampled, 'Контрольная выборка', 'salary_category')\n", + "check_balance(df_test_oversampled, 'Тестовая выборка', 'salary_category')\n", + "\n", + "# Проверка необходимости аугментации\n", + "print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_oversampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + "print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_oversampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + "print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_oversampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + " \n", + "# Визуализация сбалансированности классов\n", + "visualize_balance(df_train_oversampled, df_val_oversampled, df_test_oversampled, 'salary_category')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "После применения метода undersampling:\n", + "Обучающая выборка: (1677, 241)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "low 559\n", + "medium 559\n", + "high 559\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"low\": 33.33%\n", + "Процент объектов класса \"medium\": 33.33%\n", + "Процент объектов класса \"high\": 33.33%\n", + "\n", + "Контрольная выборка: (1119, 157)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "low 373\n", + "medium 373\n", + "high 373\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"low\": 33.33%\n", + "Процент объектов класса \"medium\": 33.33%\n", + "Процент объектов класса \"high\": 33.33%\n", + "\n", + "Тестовая выборка: (558, 162)\n", + "Распределение выборки данных по классам \"salary_category\":\n", + " salary_category\n", + "low 186\n", + "medium 186\n", + "high 186\n", + "Name: count, dtype: int64\n", + "Процент объектов класса \"low\": 33.33%\n", + "Процент объектов класса \"medium\": 33.33%\n", + "Процент объектов класса \"high\": 33.33%\n", + "\n", + "Для обучающей выборки аугментация данных не требуется\n", + "Для контрольной выборки аугментация данных не требуется\n", + "Для тестовой выборки аугментация данных не требуется\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAH/CAYAAAAfV19VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACma0lEQVR4nOzdd3xT9f7H8XfSvQsUKCB7T1FcgAhOpgO3uHDhveBVr3szXNctoLhFFFyIsgUBUZkKsvfeqwNK6W5zfn/wS2w6oPvknLyej8d9/H6GNPk0TfI67fecE4dhGIYAAAAAAAAAAAB8nNPsAQAAAAAAAAAAAEqCRQ0AAAAAAAAAAGAJLGoAAAAAAAAAAABLYFEDAAAAAAAAAABYAosaAAAAAAAAAADAEljUAAAAAAAAAAAAlsCiBgAAAAAAAAAAsAQWNQAAAAAAAAAAgCWwqAEAqDSpqanatWuX0tLSzB4FFezYsWPatm2bcnNzzR4FAACUQ25uro4cOaI9e/aYPQoAAKhAmZmZOnDggI4cOWL2KBWORQ3AzzRq1EgDBw40ewzYlGEY+vjjj3XBBRcoPDxc0dHRaty4scaPH2/2aJawb98+ffHFF57/3rVrlyZMmGDeQPnk5OTo9ddf15lnnqmQkBBVq1ZNzZs317x588weDbANGg3Yy/Tp07Vq1SrPf0+ePFnr1683b6B8tm7dqvvuu0916tRRcHCwateurc6dO8swDLNHA0xHjwGcznvvvadjx455/vvdd9/1mZ05586dq6uuukqxsbEKCwtTvXr19NBDD5k9VoUr1aLGF198IYfD4flfaGioWrRooQceeECHDx+urBkB2xs2bJgaNWok6Z/XGcpvzJgxXn8gtouBAweqR48ekryfO75gwIAB+te//qXWrVvrq6++0pw5czR37lxde+21Zo9mCQ6HQ0OGDNHs2bO1a9cuPfHEE1qwYEGJvrYyG52VlaXLLrtMzz//vHr06KGJEydqzpw5+vXXX9W5c+dy3Tbg62h05aDRsKv8Pb7yyit19tlnq3Hjxrr++ut13333KTU11ewRtXTpUp133nn69ddf9dRTT2n27NmaM2eOJk+ezHscfBY9rhz0GCibadOmadiwYdq7d68mTJig559/XmFhYWaPpTFjxqhnz55KSUnRyJEjNWfOHM2ZM0cjRowwe7QKF1iWLxoxYoQaN26szMxMLVy4UB988IFmzpypdevWKTw8vKJnBIAyGTNmjOLi4tjLpop8+eWX+u677zR+/HgNGDDA7HEsqV69errvvvvUq1cvSVKdOnX022+/leo2KqPRr732mv7880/Nnj3b88sBAJQHjYbdjRgxQjVq1NCwYcO0a9cu7dq1S+Hh4erQoYOpc2VnZ+uuu+5SixYt9MsvvygmJsbUeQCYix4DZfPMM8/oqquu0siRI+V0OvXWW2/J6TT3hEhbt27VI488okGDBmnMmDG2X/wt06JG7969dc4550iS7r33XtWoUUNvv/22pkyZoltuuaVCBwTguzIzMxUcHGz6G7fVpaWlKSIiwuwxyu2NN97QLbfcwoJGOb377rv6z3/+o8TERLVr167Uz42KbnRubq7effddPfrooyxoABZCoyuGXRqNqufu8T333KN169Zp9OjRGjdunOm/M0+bNk2bN2/Wpk2bWNAAqgA9rhj0GL6me/fu2r17tzZu3Kj69evrjDPOMHskjRo1SvHx8Ro1apTtFzSkCvpMjUsuuUSStHPnTklScnKyHnvsMbVv316RkZGKjo5W7969tXr16kJfm5mZqWHDhqlFixYKDQ1VnTp1dO2112r79u2STp5PPP/pNAr+L/8fWH777Tc5HA599913euaZZxQfH6+IiAhdddVV2rt3b6H7/vPPP9WrVy/FxMQoPDxc3bt316JFi4r8Hnv06FHk/Q8bNqzQdcePH69OnTopLCxM1atX180331zk/Z/qe8vP5XLp3XffVdu2bRUaGqratWvr/vvv19GjR72u16hRI/Xr16/Q/TzwwAOFbrOo2d94441Cj6l08rQjQ4cOVbNmzRQSEqL69evriSeeUFZWVpGPVX49evQodHsvv/yynE6nvv766zI9Hm+++aa6dOmiGjVqKCwsTJ06ddIPP/xQ5P2PHz9e5513nsLDw1WtWjVddNFF+uWXX7yu8/PPP6t79+6KiopSdHS0zj333EKzTZw40fMzjYuL02233ab9+/d7XWfgwIFeM1erVk09evQo8aljTmX58uXq2bOn4uLiFBYWpsaNG+vuu+8u8+OSX0lfr+7X17fffqvnnntO9erVU3h4uFatWiWHw6F33nmn0G0vXrxYDodD33zzTYm/V5fLpZEjR6p9+/YKDQ1VzZo11atXLy1fvtxznbFjx+qSSy5RrVq1FBISojZt2uiDDz7wup1GjRpp/fr1+v3334t8vzh27Jgefvhh1a9fXyEhIWrWrJlee+01uVwur9tJSkrS7bffrujoaMXGxurOO+/U6tWr5XA4Ch2m++uvv6pbt26KiIhQbGysrr76am3cuNHrOsOGDZPD4dCGDRs0YMAAVatWTRdeeKHGjh0rh8OhlStXFnpMXnnlFQUEBBR6zpVGwfewuLg49e3bV+vWrSvR15/uNZCWlqZ169apfv366tu3r6KjoxUREVHoNbBjx44SP1+Kev9wv0/kf+zXrFmjgQMHqkmTJgoNDVV8fLzuvvtuJSUleX2t+zD1Xbt2eS6bPXu2unTpovDwcMXExKhfv36FHhP3zywxMdFz2fLly4t8DrRr167IP/z//PPPnudGVFSU+vbtW+ic2gMHDvQcFt20aVOdf/75Sk5OVlhYWKG5i/Lpp59Kks4991yv96DatWtL+qfR9evXV5MmTYp9zbtf67/99psyMzP14IMP6ujRo3r99dcVEhKigIAARUVFqV+/fpo9e/YpGx0QEKBLL71US5cu9Wp0v3795HA4FBYWpoYNGyo2NlbR0dG64447PG1zN9rpdCowMNCr0YMGDVJoaKjnKJbiGt28efNCjzON/geNptE02vqNLs3ruKSvlcjIyEL388MPP3jaUNTMp3pvcDgceuCBBzRhwgS1bNlSoaGh6tSpk/74449C97Ny5Ur17t1b0dHRioyM9DSkJI+b+3/5f/Y9evRQu3btTvUQes1YUL9+/QqdsiQtLU2PPvqo5/nZsmVLvfnmm4U+i+Lcc8/VsGHDFBISok6dOumGG26QdPJUnT169Djt6zv/9+R0OhUVFaWYmBiv35knTJggh8Ph2RuzuP+FhoZ65vr+++9lGIaGDh2qatWqeW6/WbNm2rp1a6HH4PHHH1dkZKTnturVq6dZs2YV+lm0a9dOnTp1OuXvzPm3MfL3OCAgQNWrV9emTZs8t+nuW8OGDelxPvS4ePSYHpvV48pq4v79+3X33Xerdu3aCgkJUdu2bfX55597Xcf9nCvqeRwZGel1BE5Rvw+7XC516NCh0M/KvT2wY8cO9ezZUxEREapbt65GjBhRqHcl7WLB3xPr1aunQYMGeX0uhSQdOXJE99xzj2rXrq3Q0FCdeeaZGjdunNd1ivpepMLvp6V5fKSTf6+44YYbVL16dYWHh+uCCy7QjBkzvK6Tv2WxsbHq3LmzzjjjDPXt27fIbhTk/nr3/0JCQtSiRQu9+uqrXo9ZUX+HKKjg5/8sXbpUnTp10uDBgz3Pm3bt2umTTz4p9LWl+bmV5Dnrnje/+fPnKyQkRP/617+8Li/Jc7skynSkRkHuBYgaNWpIOvkkmDx5sm644QY1btxYhw8f1kcffaTu3btrw4YNqlu3riQpLy9P/fr107x583TzzTfroYceUmpqqubMmaN169apadOmnvu45ZZb1KdPH6/7ffrpp4uc5+WXX5bD4dCTTz6pI0eO6N1339Vll12mVatWec5v9uuvv6p3797q1KmThg4dKqfT6XnTX7Bggc4777xCt3vGGWfo1VdflSSdOHFC//73v4u87+eff1433nij7r33XiUkJGj06NG66KKLtHLlSsXGxhb6mkGDBqlbt26SpB9//FE//fST17/ff//9+uKLL3TXXXfpwQcf1M6dO/Xee+9p5cqVWrRokYKCgop8HErj2LFjnu8tP5fLpauuukoLFy7UoEGD1Lp1a61du1bvvPOOtmzZosmTJ5fqfsaOHavnnntOb731VrF7c5/u8Rg5cqSuuuoq3XrrrcrOzta3336rG264QdOnT1ffvn091xs+fLiGDRumLl26aMSIEQoODtaff/6pX3/9VVdccYWkk2+Ed999t9q2baunn35asbGxWrlypWbNmuWZz/3Yn3vuuXr11Vd1+PBhjRw5UosWLSr0M42Li/NsqOzbt08jR45Unz59tHfv3iJ/9iVx5MgRXXHFFapZs6aeeuopxcbGateuXfrxxx/L9LgUVNLXq9uLL76o4OBgPfbYY8rKylKrVq3UtWtXTZgwQf/973+9rjthwgRFRUXp6quvLvH3e8899+iLL75Q7969de+99yo3N1cLFizQ0qVLPXuff/DBB2rbtq2uuuoqBQYGatq0aRo8eLBcLpeGDBki6Z+93SMjI/Xss89KkuePu+np6erevbv279+v+++/Xw0aNNDixYv19NNP6+DBg3r33XclnXz+X3nllfrrr7/073//W61atdKUKVN05513Fpp77ty56t27t5o0aaJhw4YpIyNDo0ePVteuXbVixYpCvxDfcMMNat68uV555RUZhqHrr79eQ4YM0YQJE3TWWWcVehx79OihevXqlfhxLEqrVq307LPPyjAMbd++XW+//bb69OmjPXv2nPLrSvIacC8gvPbaa4qPj9fjjz+u0NBQffLJJ7rssss0Z84cXXTRRWrSpEmFPl8kac6cOdqxY4fuuusuxcfHa/369fr444+1fv16LV26tFBY3RYsWKA+ffqoYcOGGjp0qHJycjRmzBh17dpVy5YtU4sWLUo1R3G++uor3XnnnerZs6dee+01paen64MPPtCFF16olStXnvL8ri+88IIyMzNLdX/Dhw9XkyZNPO9BS5YskfRPo3Nzc5WcnKwHH3ywyNe8W/5Gu7+uRo0aqlatms4991z9+uuvuv766yX90+h9+/Zp2LBhCg0NlWEYqlGjhnbu3KkePXro7bfflnSyk+4N16ioKO3bt09xcXHq37+/PvnkE+3evVsvvPCC+vTpo06dOik2NlbNmjXTsWPHdMkll+j222/X2LFj9d1333ltsFavXl3Jycnq0KGDWrdure+++04JCQlejzONPjUaXXo0mkab3eiCinsdl+a1UhLPPvus7r33XklSYmKi/vvf/3q9PxT0+++/67vvvtODDz6okJAQjRkzRr169dJff/3lWXRYv369unXrpujoaD3xxBMKCgrSRx99pB49euj333/X+eefX+h23Y9b/jkqk2EYuuqqqzR//nzdc8896tixo2bPnq3HH39c+/fvL/IPlm4F/yh2ute3JPXv31/XXHONXnvtNc9l5557rq699lrNmTPHs8OCW1G/M99///3Ky8vz/Pfx48clSd9++61iYmJ03XXXacuWLVq7dq3OOussHTlyxHO6yjvvvFNffvmlYmJi1L9/fyUkJGjhwoXq06ePFi5cqC5dunhu9+jRo0pISFBkZKT69++vP//8U1u2bCnysRg/frw+//xz9e/fX4cPH1ZGRoYcDod69+6tlStXKjo62tO3m266SWPHjlXbtm21ceNGdezYUQ0bNqTH9NgLPabHZva4Mpp4+PBhXXDBBZ4/KNesWVM///yz7rnnHh0/flwPP/xwub5Pt6+++kpr164t8t/y8vLUq1cvXXDBBXr99dc1a9YsDR06VLm5uZ7PZyhtF/v3769rr71Wubm5WrJkiT7++GNlZGToq6++kiRlZGSoR48e2rZtmx544AE1btxYEydO1MCBA3Xs2LFK/bDrw4cPq0uXLkpPT9eDDz6oGjVqaNy4cbrqqqv0ww8/qH///sV+7R9//KGZM2eW6v6eeeYZtW7dWhkZGZ6d82vVqqV77rmnzN9DUlKSli9frsDAQA0ZMkRNmzbV5MmTNWjQICUlJempp56SVPqfW0meswWtXr1a11xzjfr06aP333/fc3mFPreNUhg7dqwhyZg7d66RkJBg7N271/j222+NGjVqGGFhYca+ffsMwzCMzMxMIy8vz+trd+7caYSEhBgjRozwXPb5558bkoy333670H25XC7P10ky3njjjULXadu2rdG9e3fPf8+fP9+QZNSrV884fvy45/Lvv//ekGSMHDnSc9vNmzc3evbs6bkfwzCM9PR0o3Hjxsbll19e6L66dOlitGvXzvPfCQkJhiRj6NChnst27dplBAQEGC+//LLX165du9YIDAwsdPnWrVsNSca4ceM8lw0dOtTI/2NZsGCBIcmYMGGC19fOmjWr0OUNGzY0+vbtW2j2IUOGGAV/1AVnf+KJJ4xatWoZnTp18npMv/rqK8PpdBoLFizw+voPP/zQkGQsWrSo0P3l1717d8/tzZgxwwgMDDQeffTRIq9bksfDME7+nPLLzs422rVrZ1xyySVet+V0Oo3+/fsXei66f+bHjh0zoqKijPPPP9/IyMgo8jrZ2dlGrVq1jHbt2nldZ/r06YYk44UXXvBcdueddxoNGzb0up2PP/7YkGT89ddfRX7PJfHTTz8Zkoxly5ad8noleVwM4+Tz5M477/T8d0lfr+7XV5MmTQrd10cffWRIMjZu3Oh1/3FxcV73dTq//vqrIcl48MEHC/1bwddqQT179jSaNGnidVnB9wi3F1980YiIiDC2bNnidflTTz1lBAQEGHv27DEMwzAmTZpkSDLeffddz3Xy8vKMSy65xJBkjB071nN5x44djVq1ahlJSUmey1avXm04nU7jjjvu8Fzmfk7fcssthea65ZZbjLp163r9PFasWFHovsoi/2vR7ZlnnjEkGUeOHCn260r6GnC/VwcHB3s9rgkJCUaNGjWMTp06eS4r6fPl4osvNi666CKvedz3k//xKOr58M033xiSjD/++MNzmbthO3fuNAzDMDp16mTExMQYhw4d8lxny5YtRlBQkHHdddd5LnP/zBISEjyXLVu2rMifS8HnXGpqqhEbG2vcd999Xtc7dOiQERMT43V5wfeQdevWGU6n0+jdu7fX3MXp2rVroUbfd999hiQjJCTE0+gGDRoYffr08fra/K9592v9iSeeMCQZgwcPNiQZcXFxRmJiomEYJ1+PW7ZsMQIDA70afc011xjBwcHG9u3bPY/FgQMHjKioKKNDhw6eRo8ZM8aQZHTq1Mn4+uuvPY1+/fXXDUlG3bp1PY12v2elp6cbcXFxhiRj9OjRXvOff/75htPp9Dye7kY/+uijnseZRhdGo2k0jbZ2owt+bXGv49K+ViIiIgrdz8SJEw1Jxvz58wv9W1Ftzk+SIclYvny557Ldu3cboaGhRv/+/T2X5W+Im7shBbcHDONk9y6++OJTztG9e3ejbdu2Rc5VcMYhQ4YUurxv375e7x2TJ082JBkvvfSS1/Wuv/56w+FwGNu2bfNsb0gyHn/8cc/vzGFhYYYko3379kb37t1P+/p2tyD/78xdunQx2rRp47m++3X5/vvvF/s7c2xsrBESEuL57549exqSjPDwcK/fma+//npDkqelhw8fNiQZNWrUMHJzcz3Xe/vttw1JXo9r9+7dDUlGo0aNPL8zZ2VlGe3atTMkGc8995xhGP+8VzmdTmP48OFGjx49jFq1ahnbtm3z6nH+vuXvj7tvd999Nz2mx17o8Un0eGyh65dGeXrsVlFNvOeee4w6dep4fv9yu/nmm42YmBjPz9f9nJs4cWKh+4qIiPB6bhX8fTgzM9No0KCB5/fN/DPfeeedhiTjP//5j+cyl8tl9O3b1wgODvb8blySLub/3vO/pxqGUahr7777riHJGD9+vOey7Oxso3PnzkZkZKSnW+PGjTMkGTt27PC6vYI/w9I8Pg8//LAhyeu9PDU11WjcuLHRqFEjz3POfZv5t4nOP/98z+NY8HssqKivz8zMNJxOpzF48GDPZUX9HaKggu9VDRs2NCQZX3zxheey3Nxc49JLLzVCQkI8z6fS/txK8pzN36Jdu3YZderUMS688MJC7Sjpc7skynT6qcsuu0w1a9ZU/fr1dfPNNysyMlI//fSTZ0U0JCTEc77AvLw8JSUlKTIyUi1bttSKFSs8tzNp0iTFxcXpP//5T6H7KG7P2pK44447FBUV5fnv66+/XnXq1PGsmq1atUpbt27VgAEDlJSUpMTERCUmJiotLU2XXnqp/vjjj0KH02VmZnodtluUH3/8US6XSzfeeKPnNhMTExUfH6/mzZtr/vz5XtfPzs6WdPLxKs7EiRMVExOjyy+/3Os2O3XqpMjIyEK3mZOT43W9xMTE0+7lu3//fo0ePVrPP/98ocPNJ06cqNatW6tVq1Zet+k+5VjB+y/OX3/9pRtvvFHXXXed3njjjSKvU5LHQ5LnaBvp5B5BKSkp6tatm9dza/LkyXK5XHrhhRcKnbvS/dyaM2eOUlNT9dRTTxX62bqvs3z5ch05ckSDBw/2uk7fvn3VqlWrQoehuVwuz2O0atUqffnll6pTp45at259yu/pVNx7q0yfPl05OTnFXq8kj0tRSvp6dbvzzju97kuSbrzxRoWGhmrChAmey2bPnq3ExETddtttp/0e3SZNmiSHw6GhQ4cW+rf87wn57z8lJUWJiYnq3r27duzYoZSUlNPez8SJE9WtWzdVq1bN63l92WWXKS8vz3MY3axZsxQUFKT77rvP87VOp9OzZ4vbwYMHtWrVKg0cOFDVq1f3XN6hQwddfvnlRa7YFzz8Tjr53nXgwAGv19WECRMUFham66677rTf1+m43x8SEhK0ZMkS/fTTT+rQoYPi4uKK/ZrSvgauvvpqNW/e3PPf7g+d+/vvv3X48GFJJX++1KpVS/v27Tvt95X/+ZCZmanExERdcMEFklTkc/jo0aPasmWL/v77b916662evZEkqXnz5rrqqqs0a9Ysr70ay2rOnDk6duyYbrnlFq/nWkBAgM4///xTvoc+/fTTOvvssz2nqyip/I3+5JNPFBAQoG+//dbTaIfDodzcXCUmJurIkSM6fPhwka/5P/74Q3Fxcbr22mslSXfddZfnaA+H4+SpnS677DJJJ9/78vLy9Msvv+iaa65RkyZNPLdTp04dDRgwwLMH0B133OH5mQ0aNEg333yzp9H//ve/FRAQoAMHDnganZeXp8zMTP3www9KSkpSQECABg8e7PU9JyQkyOVyeR5n95FDTqfT8zjT6OLRaBpdEjTa9xqd36lex6V9rUgq9F6Vmpparu+vc+fO6tSpk+e/GzRooKuvvlqzZ89WXl7eaRuycOFCzxEGbtnZ2ad9T5JOvnbc34f7vawo7m2I/P8r+LqeOXOmAgIC9OCDD3pd/uijj8owDP38889el7/xxhue35kzMzM1ePBgz/OwJK/v9PR0ffPNN6pevbrq1aun1atX69JLL/Xcvvu1l5aWJunkHq4ldeutt3r9zuw+NYX71FKfffaZpJOnIDl69KjnMbnpppsUFBSkjRs3ev3OHBgYqNjYWM9zLDg42LOn9sGDB73u2zAMLV26VEuWLNHXX3+tmJgYrx7n75t7+zErK6vQaa/d6HFh9Lho9Jgen055e1wSp2uiYRiaNGmSrrzyShmG4fX49+zZUykpKYWed6mpqYXe107n/fffV1JSUpHPJbf8p2Z071mfnZ2tuXPnSip9F9PT05WYmKhDhw5p0qRJhbo2c+ZMxcfHe332VFBQkB588EGdOHFCv//+u6STfyuQVKK/F0gle3xmzpyp8847TxdeeKHnssjISA0aNEi7du3yOqtBfj/++KOWLVum//3vfyWaxc39utyzZ49ef/11uVwuTzfyS05O9vzNuiRq166t22+/3fPfAQEBevjhh5WVlVXmn9vpnrP5JSUlqWfPnoqKitLUqVO9ulCW5/aplOn0U++//75atGihwMBA1a5dWy1btvSKoPv8fmPGjNHOnTu9vkH3H0Skk6etatmypQIDK+QsWB75/6AmnXzhNWvWzHOuNfe5Qos6HM4tJSVF1apV8/x3YmJiodstaOvWrTIMo9jrFTzk1X36jaLOW5v/NlNSUjwv2IKOHDni9d+//PKLataseco5Cxo6dKjq1q2r+++/v9B55rZu3aqNGzcWe5sF778o+/fvV9++fZWWlqakpKRiF6xK8nhIJzdUXnrpJa1atcrrHKX5b3f79u1yOp1q06ZNsbfjPm3aqc6zu3v3bklSy5YtC/1bq1attHDhQq/L9u7d6/VY1alTR5MmTTrt93Qq3bt313XXXafhw4frnXfeUY8ePXTNNddowIABXhuzJXlcilLS16tb48aNC10WGxurK6+8Ul9//bVefPFFSSc3LOrVq1fkm3Jxtm/frrp163pt5BRl0aJFGjp0qJYsWaL09HSvf0tJSTnthx5u3bpVa9asOe3zevfu3apTp47nEHy3Zs2aef33qZ4nrVu31uzZswt9sFlRj+Pll1+uOnXqaMKECbr00kvlcrn0zTff6Oqrr/b6pbOsFi9e7PU9N2/eXJMnTz7lc6SkrwH3bbRq1arQ9dy/oOzatUu1a9cu8fOlS5cu+u677/Tuu+/q5ptvVmBgYKHzIksnIz98+HB9++23hd6TitpgP/vssz3/f3E/s0mTJikxMdFrwaMs3L0p7nUQHR1d5OULFy7UtGnTNG/evFKfeiS/uLg4TZ48WV27dvVcZhhGsa3I/5o/cOCAV6OL+tm6XwtpaWlKSEhQenp6sY+p8f/n5szfyObNm3s1OjIy0nM6s/yN/u677/Tdd99JOvmLZMFGJycnSyr8OLv/IBAdHU2ji0GjaXRJ0Wjfa7Tb6V7HpX2tpKWllfq96nSKeu9t0aKF0tPTlZCQIEmnbIjL5dLevXvVtm1bz+XHjh1Tw4YNT3vfmzZt8nw/7s+OGDp0aKHT+nz22WeeP+Tnl/8+du/erbp16xb6mbu3dXbv3u014+233667777bcxqkd999V5dffrmkkr2+8/9h+6abblKvXr302muvFZrxiSeekHTytJWvv/66rrzySr3zzjun3I4peLrl2NhYBQcHe5rq3hnhrbfe0ltvvVXkbeTvcd26dZWcnOz1s3afTrrg+dLz/8HEvYOEW1BQkHJycgr1bdCgQZ7/v+AfduhxYfSYHtPjsilPj0vqdE10Op06duyYPv74Y3388cdF3kbB95WCnx9zOikpKXrllVf0yCOPFNsKp9PptaOBe05Jnr+vlqSL+b3xxhtebSvYtd27d6t58+aFFloL3t5ZZ52l0NBQDR8+XB988IGnRTk5OUWebrAkj8/u3buLPNVl/vsu+F6Yl5enZ555Rrfeeqs6dOhw2vvI75prrvH8/06nU88991yRC3P5XzO1atXSfffdp+HDhysgIKDQdR0Oh1q0aFHs41fWn9vpnrPx8fGey/v166fNmzerVq1ahT6fIyEhodTP7VMp02rCeeed5zlPX1FeeeUVPf/887r77rv14osvqnr16nI6nXr44YcLHQFhBvcMb7zxhjp27FjkdfIHNTs7WwcPHvRsgJ7qdh0Oh37++ecin1wFI33o0CFJ8vrhF3WbtWrV8lrNz69gYM4//3y99NJLXpe99957mjJlSpFfv3HjRn3xxRcaP358kS98l8ul9u3be86FXlD9+vWLnd1t27ZtOvvss/XOO+/o9ttv17hx44pcUCrJ47FgwQJdddVVuuiiizRmzBjVqVNHQUFBGjt2bKEPKjND7dq1NX78eEknI/H555+rV69eWrhwodq3b1+m23R/qNHSpUs1bdo0zZ49W3fffbfeeustLV26VJGRkeV6XEr7ei24x4nbHXfcoYkTJ2rx4sVq3769pk6dqsGDBxd6My2v7du369JLL1WrVq309ttvq379+goODtbMmTP1zjvvlOg9xuVy6fLLL/f8AlhQRX2WwqkU9TgGBARowIAB+uSTTzRmzBgtWrRIBw4cKNWeO6fSoUMHzy+lCQkJGjVqlHr06KEVK1ac8nVXEsU9L4pTkufLoEGDNHv2bP33v/895Tmyb7zxRi1evFiPP/64OnbsqMjISLlcLvXq1avI58P48eOVnp7u9ctxZXHf/1dffVXkY1zcov6TTz6pnj176pJLLin04Xqn895776lly5ae9yD3ea/d70HuhZ5evXrp7LPPVnZ2tr7//nvt3bu30C88Uul/thXF3ehbb71VR44c0bnnnquzzjpLH3/8sf7++2/PH0Gys7M9exC7H+eUlBRdf/31uv3223XHHXcoMDBQ3377LY0uAo2m0RWJRpddeRpd0tdxSYWGhmratGlely1YsMBz/mxfcejQIfXs2fO012vUqJHnKISkpCSNGjVKt99+u5o0aeI5slM6ebRpwQ8Lf+655zzvf2XRpEkT1a5dW5MnTy70Xl6S1/ftt9+u3377TdHR0XrggQf04osvql+/fpo7d67XH9gefPBBjRo1Svfcc48aNWqkESNG6NixY0Xu+VySo1skef4Q8dRTT3ntRSud3Hs6ICDAq52GYejQoUOn/Z3Z7dFHH9W0adOUkZGhDz/8UMHBwZL++eBWd9/czz33jpXSySMM/vrrL89t0WNv9Jge0+Oyq8zfmUvK/fO57bbbiu15wT+gv/DCC4U+w+PKK68s9j5ee+01OZ1OPf74456j3KuC+/czl8ulHTt2FNu106ldu7ZGjx6tIUOGFHoudu/evdD1S/v4lNRnn32mXbt2afbs2aX+2jfffFNnnnmmcnJytGzZMr300ksKDAwsdOTMpEmTFB0drfT0dP300096+eWXPZ8/VpBZv7vnt2nTJv3888+68cYb9eijj2rs2LGefyvLc/tUKvYQif/3ww8/6OKLLy60p8uxY8e8Dtlq2rSp/vzzz2JX0srKvWesm2EY2rZtm+eBce8xEh0dXWjPkKKsXr1aOTk5p1zIcd+uYRhq3Lhxid7gN2zYIIfDUeRKdf7bnDt3rrp27VqiJ2dcXFyh7+lUH0z29NNPq2PHjrrpppuKvX/34WBlXZl2n1akdu3amjJlih599FH16dOn0MZlSR6PSZMmKTQ0VLNnz/baIM//InHP7XK5tGHDhmIXrtzPg3Xr1hXai8DNvWfW5s2bC+09sXnz5kJ7h4WGhno9/ldddZWqV6+u9957Tx999FGx31dJXHDBBbrgggv08ssv6+uvv9att96qb7/9Vvfee2+JH5eilPT1ejq9evVSzZo1NWHCBJ1//vlKT0/3OuStJJo2barZs2crOTm52D1Ppk2bpqysLE2dOlUNGjTwXF7UYd3FPWebNm2qEydOnPb137BhQ82fP1/p6elee55s27at0PWkk8+JgjZt2qS4uDivPU5O5Y477tBbb72ladOm6eeff1bNmjVL9At7SVSrVs3re+7Ro4fq1q2rsWPH6umnny7ya0r6GoiLi1NkZGSxj4Ekrw9+K8nzJTQ0VDNmzNCWLVu0d+9eGYahw4cPe22wHj16VPPmzdPw4cP1wgsveC4v2IH8unbtqoiICA0aNKjYeSMiIirkEGP3+0ytWrVK1Bvp5Hv2kiVLSnXYZX7nn3++p1dFvQelp6erRo0aXoeU9u/fX127dvU6sqVu3bravHmzzjjjDElFP7/de+9FRESoZs2aCg8PL/YxdTgcMgxDW7du9TRy69atng+C69Chg06cOOHZA9Hd6LCwMLVv317z589XWFiYVq9ercGDB2vNmjUKDQ3V6tWrPXvLuR9n9+HETZo08Tzuy5Yto9FFoNE0uqRotO812u10r+PSvlYCAgIKPf4F97QvraK6vGXLFoWHh3vmPFVDnE6n1x+G9+3bp9TU1BKdriYiIsLr++nWrZvq1aunX375xWtR44wzzij0fb/77rteixoNGzbU3LlzlZqa6rV3o3tbp6gjR4p7Ly/J67tJkyZKTk7Wn3/+qXvuuUcxMTEaMGCAli5dqs6dO3u+xv3e3KpVKz322GPas2ePxo0bp9zc3ELz1KlTR9LJUx25P9hWOvnH5ezsbM8eu+4jTtLS0rwel+zsbM8paPL/Dn/gwAHl5eV5/c7s3k4o6sOfBw0apNtvv13nnHOOlixZ4tlzXfLu29KlS+VwOHTHHXd4FlEK7vlPj73RY3pMj8uuPD0uqZI0MSoqSnl5eSX+HbJ9+/aFrlvUjlzSyffrkSNH6tVXX1VUVFSxixruhYf8vztt2bJF0j+/25e2i/l/P5NUqGsNGzbUmjVr5HK5vBb7irq9e++9V9dee63WrVvnOTXfo48+WuT3UpLHp2HDhqf8e0bB7yU9PV3Dhw/X4MGDS3TkaEGdOnVSjx49JEm9e/fW/v379dprr+n555/3+t4vuugiz/vMVVddpUWLFmnWrFlFLmo0btxYK1asKPbxK+vPrSTPWbepU6eqW7duevXVV/XAAw/otttu8+wcUbNmzVI/t0+lYpeD/19AQEChQ0wmTpyo/fv3e1123XXXKTExUe+9916h2yj49aXx5Zdfep339YcfftDBgwfVu3dvSSefOE2bNtWbb76pEydOFPp69yHQ+WcPCAhQv379Tnm/1157rQICAjR8+PBC8xuG4fVGkZubq0mTJum888475WGWN954o/Ly8rw28vLfRnl+wViyZImmTJmi//3vf8WG7MYbb9T+/fs9ezfll5GRUaJzurVo0cKzcTx69Gi5XC499NBDXtcp6eMREBAgh8Phdbjnrl27Cm2EXnPNNXI6nRoxYkShvRDcP5srrrhCUVFRevXVVwudQ9V9nXPOOUe1atXShx9+6HV46s8//6yNGzeqb9++p/zes7OzlZub6/W1pXX06NFCzyf3Rqf7dkv6uBSlpK/X0wkMDNQtt9yi77//Xl988YXat29f6sPvrrvuOhmGoeHDhxf6N/eM7vDknzklJaXIjdGIiIgiXyM33nijlixZUuRq+rFjxzy/APbs2VM5OTlez3+Xy6X333/f62vq1Kmjjh07aty4cV73t27dOv3yyy/q06fPKb5rbx06dFCHDh306aefatKkSZ7TLlUG93mXT/X8LOlrwOl0qlevXpoyZYrXeY6Tk5M1btw4nXPOOV6HtZbm+dKiRQtdeumluuyyy7xOoyQV/XyQTv4R4lRq1qyps88+W19//bXXe/727ds1depU9e7du9iNwNLo2bOnoqOj9corrxR5ft+CvXEfvjpgwIBif7ksjaLeg9yLC/nNmzev0NdedNFFSkxM1HfffadzzjlH48aN85z+yzAMbd++3XNOTqfTqYCAAF1xxRWaMmWK57BWSTp8+LC+/vprz553X375pee59/HHH+vbb7/1NPqDDz5QXl6e4uPjvRp99tlnKyIiQk6nU6+//rp27drl2WPY3ejIyMhTPs40umg0mkaXFI32vUa7ne51XN7XSkUouFi/d+9eTZkyRVdccYUCAgJO25ALL7zQ65SN3377raTiT+94Ku73nbJ0vk+fPsrLyyv0++s777wjh8Ph+X3T7VTv5WX5nbng86K435ndf8woqh/uU2t8/fXXXr8zu49g7dWrlyR5zo//2WefeV3vs88+83wOQX55eXlyOp2e35mzs7M1btw4Sf8spLg5nU4NHz5cHTp00GOPPabXXntN69at8/TY3bcPP/ywUH8yMjIKfTYKPfZGj0+ix/S4IpSmxyVVkiZed911mjRpktatW1fo6wv+Dllaw4cPV+3atYv8zJKC8vfOMAy99957CgoK8vyRurRdLKjg49unTx8dOnTIc+ph6eR73+jRoxUZGVnoKIzq1avroosu0mWXXabLLrvM6xTFpdWnTx/99ddfWrJkieeytLQ0ffzxx2rUqFGhU/WNHDlSaWlpevbZZ8t8n/llZGQoNze3yB0S3AzDkGEYxW7DFPX4uU+fFxIS4llIKMv2zKmes/m5tw8GDx6sLl266P777/f8nCv6uV0pr/p+/fppxIgRuuuuu9SlSxetXbtWEyZMKHQutjvuuENffvmlHnnkEf3111/q1q2b0tLSNHfuXA0ePFhXX311me6/evXquvDCC3XXXXfp8OHDevfdd9WsWTPPhpnT6dSnn36q3r17q23btrrrrrtUr1497d+/X/Pnz1d0dLSmTZumtLQ0vf/++xo1apRatGih3377zXMf7j+0rFmzRkuWLFHnzp3VtGlTvfTSS3r66ae1a9cuXXPNNYqKitLOnTv1008/adCgQXrsscc0d+5cPf/881qzZk2hQ7sL6t69u+6//369+uqrWrVqla644goFBQVp69atmjhxokaOHKnrr7++TI/TL7/8ossvv/yUq2O33367vv/+e/3rX//S/Pnz1bVrV+Xl5WnTpk36/vvvNXv27NMewZJffHy83njjDd1777267bbb1KdPn1I9Hn379tXbb7+tXr16acCAATpy5Ijef/99NWvWTGvWrPFcr1mzZnr22Wf14osvqlu3brr22msVEhKiZcuWqW7dunr11VcVHR2td955R/fee6/OPfdcDRgwQNWqVdPq1auVnp6ucePGKSgoSK+99pruuusude/eXbfccosOHz6skSNHqlGjRoVOiZOWluZ1KO1XX32lzMxM9e/fv8SPUUHjxo3TmDFj1L9/fzVt2lSpqan65JNPFB0d7Ql/SR+XopT09VoSd9xxh0aNGqX58+cXeb7f07n44ot1++23a9SoUdq6davn9EELFizQxRdfrAceeEBXXHGFgoODdeWVV+r+++/XiRMn9Mknn6hWrVqFPoSwU6dO+uCDD/TSSy+pWbNmqlWrli655BI9/vjjmjp1qvr166eBAweqU6dOSktL09q1a/XDDz9o165diouL0zXXXKPzzjtPjz76qLZt26ZWrVpp6tSpnnMN5//F5o033lDv3r3VuXNn3XPPPcrIyNDo0aMVExOjYcOGlfpxfOyxxySpwg6jlU7+YcD9/ExMTNRHH32kwMDAUy7YluY1MGLECM2aNUsXXnihBg8erJCQEH3yySdKSUkp8lzM5X2+SCf35r/ooov0+uuvKycnx7PnZcEPkCzK66+/rl69eumCCy7Q/fffr9zcXL333nsKDQ3Vyy+/XOj6v/76q+cPKu49FdauXev5QE3pZBucTqd+//13de/eXdHR0frggw90++236+yzz9bNN9+smjVras+ePZoxY4a6du3qtSGxb98+z6HhZTVz5kxt2rSp2PegsLAwJScn64orrlDr1q21fv16zZ8/X06n02sj8IorrtBff/2lRx55RBdffLESEhLUsmVLVatWTeecc45+/fVXhYSEeC0ivPTSS5ozZ44uvPBC5eTkKCMjQ126dFFWVpbuv/9+DRkyRNWrV9err74qSdqzZ49uu+021axZUxs3btQnn3yiCy+8UCNGjFCfPn3Utm1bpaSkaMuWLRo2bJin0U8++aReffVVZWRk6IMPPlCLFi3Uo0cPffjhh2rSpInnc1O+/fZbff3117riiiv03nvv0ejToNGlR6NpdEUpS6OLUtTruLSvlcrQrl079ezZUw8++KBCQkI0ZswYSfL6o1z+hgwePFiBgYH66KOPlJWVpddff13Sycdp6NCh+vTTT3XzzTcX+XlPBZ04ccLT6uTkZI0aNUpBQUFlWsy58sordfHFF+vZZ5/Vrl27dOaZZ+qXX37RlClT9PDDD6tp06ZasGCB5/qnei8vyet7zZo1atKkiVq3bq1HHnlEQUFBio2N1cKFC/Xqq696/nDg/vDSDRs2aPjw4fryyy919dVXF/lHD/c56tPS0lS/fn1ddtllnnPnh4eH65133pF08tQed955p8aNG6datWrp4osvVmZmpn777TdFRUXpl19+0UMPPaS0tDTP5385HA7dfffdqlOnjpYuXerZo3f9+vVefyS655579Mknn2jXrl3q27evYmNjdcUVV3g+kPWRRx7RmDFjNHjwYDkcDt1///0aOXKkp28FzzlOj73RY3pMj8uuonp8KiVp4v/+9z/Nnz9f559/vu677z61adNGycnJWrFihebOnet5fMvil19+0YQJEzyn/StOaGioZs2apTvvvFPnn3++fv75Z82YMUPPPPOMZ+/8knQxvzVr1mj8+PGeneRGjRqlM844w/MeOWjQIH300UcaOHCg/v77bzVq1Eg//PCDFi1apHfffbdCPjelOE899ZS++eYb9e7dWw8++KCqV6+ucePGaefOnZo0aVKh08T98ssvevnll4v8XJ2SmDNnjvbt2+c5/dSECRN01VVXFfq5uP8O4T791LZt2/Twww8XeZv33HOPPvjgAw0cOFDLly9X48aNNXnyZM2bN0//+9//PLOW9udWkudsQQ6HQ59++qk6duyooUOHerblKvS5bZTC2LFjDUnGsmXLTnm9zMxM49FHHzXq1KljhIWFGV27djWWLFlidO/e3ejevbvXddPT041nn33WaNy4sREUFGTEx8cb119/vbF9+3bDMAxj586dhiTjjTfeKHQ/bdu29bq9+fPnG5KMb775xnj66aeNWrVqGWFhYUbfvn2N3bt3F/r6lStXGtdee61Ro0YNIyQkxGjYsKFx4403GvPmzfO679P978477/S63UmTJhkXXnihERERYURERBitWrUyhgwZYmzevNkwDMP4z3/+Y1x00UXGrFmzCs00dOhQo6gfy8cff2x06tTJCAsLM6Kiooz27dsbTzzxhHHgwAHPdRo2bGj07du30NcOGTKk0G1KMhwOh/H33397XV7Uzyg7O9t47bXXjLZt2xohISFGtWrVjE6dOhnDhw83UlJSCt3f6W7PMAzjkksuMRo0aGCkpqaW+vH47LPPjObNmxshISFGq1atjLFjxxb7uH3++efGWWed5Zm7e/fuxpw5c7yuM3XqVKNLly5GWFiYER0dbZx33nnGN99843Wd7777znM71atXN2699VZj3759Xte58847vZ4XkZGRxtlnn2189dVXp3yMTmfFihXGLbfcYjRo0MAICQkxatWqZfTr189Yvnx5mR6Xhg0bej1nS/p6db++Jk6ceMp527ZtazidzkKPT0nl5uYab7zxhtGqVSsjODjYqFmzptG7d2+v5+rUqVONDh06GKGhoUajRo2M1157zfj8888NScbOnTs91zt06JDRt29fIyoqypDk9f2kpqYaTz/9tNGsWTMjODjYiIuLM7p06WK8+eabRnZ2tud6CQkJxoABA4yoqCgjJibGGDhwoLFo0SJDkvHtt996zT537lyja9eunufSlVdeaWzYsMHrOu6fSUJCQrGPwcGDB42AgACjRYsWZXoMi9K9e3ev52dsbKzRtWtXY+bMmSX6+pK8Bgzj5PO1Z8+eRkREhBEeHm706NHDWLBgQbG3W9rni/t9eezYsZ7L9u3bZ/Tv39+IjY01YmJijBtuuME4cOCAIckYOnSo53ruhuV/jsydO9fo0qWLERoaakRFRRl9+vQx1qxZ43Wf7p9Zaf7XsGFDr9uYP3++0bNnTyMmJsYIDQ01mjZtagwcONDrdex+D3nooYe8vraouYvStWvXEr0HNWjQwOt6gYGBxnnnnWecddZZRvfu3T2v9fnz53s1OjAw0AgKCjKcTqcRGRlp9O3b15g1a1ahRrufA06n03A6ncbFF19sLF682KvRffv2NSQZISEhRoMGDYyYmBgjMjLSuPXWW42kpCTDMP5ptPt28jc6MzPTaNKkSYl+Fk2bNvV6nGn0qW/PMGh0adBoGl0RytPokryO3Ur6WomIiCh0exMnTvS0oaCi2pyfJGPIkCHG+PHjPa+Ds846q8jbcjckMjLSCA8P9zTEbdGiRUazZs2MYcOGGVlZWaedo7jH9ueffy5yxoL69u1bqOmpqanGf//7X6Nu3bpGUFCQ0bx5c+ONN94wXC6XYRj/dPt07+Wne30X7Jl72yr/78wTJkzwuo67lw8++KBx9OhRwzAMIzY21ggJCfHcv/v94oYbbjBiYmI8czZp0sTTwvyeeuopIzIy0nMfUVFRRv/+/cv0O3P+bYz8PQ4NDTUkGd26dfPMMGTIEKNx48ZGw4YNC/Xtqaeeosf50GN6TI8rRnl/ZzaMim3i4cOHjSFDhhj169f3vPdfeumlxscff+y5zqmecxEREV7PY3efOnbs6GlWcTO7twe2b99uXHHFFUZ4eLhRu3ZtY+jQoUZeXp7X/Zyui/m/9/x9jI+PN6699lpj48aNhb7vu+66y4iLizOCg4ON9u3bF/t4FlSa12TBx8cwDGP79u3G9ddfb8TGxhqhoaHGeeedZ0yfPt3rOu7brFOnjpGWllboe8z/N4iiuL8+/+/jBdttGIX/DhEWFma0adPGeOeddzzXKfheZRiGceTIEePuu+/2PH7t2rUzPvnkk0JzlObnVpLnbHGNGT58uBEYGGisWLHCc1lJntslUapFDV9X0oCUlPuFfao/JA0dOrTQEwjwZx07djQuueQSs8eoVD/99JMhyVi4cGGl3H5CQoIRGBhojBgxolJu35fY8fkyf/78Qn8AgXejS7qTxKnQaKD07PieWxCN9j3FLRjAHJX1O3Pz5s2LvQ49BrzR4/Kzao+t0sTidnKA//Hl52ylfKYGAP+0fPlyrVq1SnfccYfZo1QY97n/3PLy8jR69GhFR0d7TnFT0b744gvl5eWV+kPjrMaOzxcA8FV2fM+l0QAAq6HHFYMeA6icT9KxicjISN16662n/BCuDh06qG7dulU4FeB71q1bp7///ltvvfWW6tSpo5tuusnr3/Py8k77gT+RkZGnfK2Z5T//+Y8yMjLUuXNnZWVl6ccff9TixYv1yiuvKCwsrELv69dff9WGDRv08ssv65prrlGjRo0q9PZ9xemeL1ZXvXr1Qh9ghopHo4GSodEVw18aDZRWZGSkatWqVehc4/nRY4AeVxR6DMCNRY1TiIuL83xAUHGuvfbaKpoG8F0//PCDRowYoZYtW+qbb75RaGio17/v3bvX86GExRk6dGipPxysKlxyySV66623NH36dGVmZqpZs2YaPXq0HnjggQq/rxEjRmjx4sXq2rWrRo8eXeG37ytO93yxug4dOmjcuHFmj2F7NBooGRpdMfyl0UBpxcXFqXXr1kpMTCz2OvQYoMcVhR4DcHMYhmGYPQQAe8vMzNTChQtPeZ0mTZqoSZMmVTQRAACQaDQAAL6AHgNA6bCoAQAAAAAAAAAALIEPCgcAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBJY1AAAAAAAAAAAAJbAogYAAAAAAAAAALAEFjUAAAAAAAAAAIAlsKgBAAAAAAAAAAAsgUUNAAAAAAAAAABgCSxqAAAAAAAAAAAAS2BRAwAAAAAAAAAAWAKLGgAAAAAAAAAAwBICzR4AgH/JcxnKdblkGCf//zzDkMtlSI5sOZx5CnAEyOlwyulwKsARoADnyf8GAADmoN0AAFgL7QZgdyxqACiTnDyXDhzL0OHjWTqekaOUAv/Lf9nxzH/+/8wcV5G31+2CRVqVMq3IfwsLDFN0cLSiQ6IVHRytqOCok/+d77Lo4GjFhMQoOjhaNcNrKj48XgHOgMp8CAAAsBTaDQCAtdBuACgaixoAipV0Ikt7ktO1Jzldez3/N0N7ktN16Him8lxGlcyRkZuhjNwMHU4/XOKvCXQGqk5EHZ0ReYbOiDr5v3qR9XRG1BmqH1Vf0cHRlTgxAADmoN0AAFgL7QaA0mNRA4D2JKVr7f4Urd2fou0JJ7T3/zem0rLzzB6tzHJdudqbuld7U/dKBwv/e1RwlGfDq0lME7Wp0UZtarRRfER81Q8LAEAp0W7aDQCwFtpNuwFUHBY1AD9iGIZ2//+G1LoDKVq3P0Xr9h9XSkaO2aNVudTsVG1M3qiNyRu9Lq8eWt2zodWmRhu1rdGWDS4AgGlo9z9oNwDACmj3P2g3gMriMAyjao5jA1Dl9h1N14o9x7Ruf4rW7kvR+gMpOp6Za/ZYRTrVuT3NVj20ulrXaK021U9ubJ1Z60zFhcWZPRYAwIZod8Wg3QCAqkK7KwbtBlAaLGoANpKSkaMl2xO1cFuiFm5N1K6kdLNHKjFf3rgqSvNqzXVBnQvUuU5nnRN/jsICw8weCQBgQbS76tBuAEBFoN1Vh3YDKA6LGoCFZee69Pfuo1q0LVELtiVq3f6UKvsQsYpmtY2r/IKcQTqz5pnqXLezLqhzgdrWaKsAZ4DZYwEAfBDt9g20GwBQUrTbN9BuAPmxqAFYzKZDx7Vwa6IWbE3Usl3JSrfwh4rlZ+WNq4KigqN0Xvx56lynszrX7awG0Q3MHgkAYCLa7ftoNwAgP9rt+2g34N9Y1AAsYN3+FE1bc0Az1hzUvqMZZo9TKey0cVVQ05im6tm4p3o16qXGMY3NHgcAUAVot7XRbgDwP7Tb2mg34F9Y1AB81KZDxzV99UHNWHtQOxPTzB6n0tl54yq/ltVaqlfjXurZqKfqR9U3exwAQAWi3fZEuwHAvmi3PdFuwP5Y1AB8yLYjJzR9zQFNX3NQ246cMHucKuUvG1f5ta3RVr0andzQqhNZx+xxAABlQLtpNwDAWmg37QZgfSxqACbbnZSm6WsOatrqA9p0KNXscUzjjxtXbg451KFmB/Vs1FM9G/VUrfBaZo8EADgF2n0S7abdAGAVtPsk2k27AbtgUQMwQZ7L0JwNh/TV0t1avD1JvAr9e+MqvwBHgLqf0V03tbpJnet0lsPhMHskAIBod1Fo90m0GwB8E+0ujHafRLsB62NRA6hCR45n6uu/9ujbv/bq0PFMs8fxKWxcFdYoupFuaHGDrml+jaKDo80eBwD8Eu0uHu0ujHYDgPlod/Fod2G0G7AmFjWAKrB4e6LGL92tX9YfVq6Ll1xR2LgqXlhgmHo16qWbW92sNjXamD0OAPgF2n16tLt4tBsAqh7tPj3aXTzaDVgLixpAJUnNzNGkv/dp/J97/O7Dx8qCjauSaR/XXje1vEm9GvdSSECI2eMAgK3Q7tKh3SVDuwGg8tDu0qHdJUO7Ad/HogZQwXYknNCnC3dq8sr9Ss/OM3scy2DjqnRiQ2LVv1l/3dr6VtWOqG32OABgabS7bGh36dBuAKg4tLtsaHfp0G7Ad7GoAVSQbUdSNWreNk1fc0Ac6Vp6bFyVTbAzWP2b99e97e9VfES82eMAgKXQ7vKh3WVDuwGg7Gh3+dDusqHdgO9hUQMop82HUjVq3lb9vO4gG1XlwMZV+QQ5g3R1s6t1X/v7VDeyrtnjAIBPo90Vg3aXD+0GgJKj3RWDdpcP7QZ8B4saQBltOHBco+Zt1ewNh8SrqPzYuKoYgc5AXdnkSt3X4T7Vj6pv9jgA4FNod8Wi3RWDdgNA8Wh3xaLdFYN2A+ZjUQMopbX7UjRy3lbN23SYjaoKxMZVxQp0BKpPkz4a1GGQGkY3NHscADAV7a4ctLti0W4A+Aftrhy0u2LRbsA8LGoAJbRq7zGNmrdVv246YvYotsTGVeUIcASoV+NeGtRhkJrENDF7HACoUrS7ctHuykG7Afgz2l25aHfloN1A1WNRAziNXYlpemXmRv2y4bDZo9gaG1eVy+lw6ppm1+g/Z/1HcWFxZo8DAJWKdlcN2l25aDcAf0K7qwbtrly0G6g6LGoAxUhJz9HIeVv11dJdysnjZVLZ2LiqGuGB4bq73d26s+2dCg0MNXscAKhQtLtq0e6qQbsB2Bntrlq0u2rQbqDysagBFJCT59JXS3Zr1K9bdSw9x+xx/AYbV1UrPiJeD571oPo16SeHw2H2OABQLrTbHLS7atFuAHZCu81Bu6sW7QYqD4saQD5/bEnQ8GnrtT0hzexR/A4bV+boENdBz5z/jNrGtTV7FAAoE9ptHtptDtoNwOpot3lotzloN1DxWNQAJO1NTteL0zdw/k4TsXFlHqfDqf7N+uuhsx9StdBqZo8DACVCu81Hu81DuwFYEe02H+02D+0GKhaLGvBrmTl5+vD37frw9+3KzHGZPY5fY+PKfNHB0RrScYhuanmTApwBZo8DAEWi3b6DdpuPdgOwAtrtO2i3+Wg3UDFY1IDfWrw9UU9NWqs9yelmjwKxceVLWlVvpZe6vqSW1VuaPQoAeKHdvoV2+w7aDcBX0W7fQrt9B+0Gysdp9gBAVUvPztULU9bp1k//ZMMKKMKm5E26ecbN+mDVB8p15Zo9DgDQbuA0aDcAX0O7gVOj3UD5sKgBv7J0R5J6vbtAXy7ZLY5RAoqX68rVmNVjNGDGAG1O3mz2OAD8GO0GSoZ2A/AVtBsoGdoNlB2LGvAL6dm5GjplnW75ZCl7iQClsDF5o26ecbM+XP0he48AqFK0Gygb2g3ALLQbKBvaDZQeixqwvT//fy+RcewlApRJritX7696XwNmDNCWo1vMHgeAH6DdQPnQbgBVjXYD5UO7gdJhUQO2lZGdp2FT1+tm9hIBKsTG5I26efrN+mj1R+w9AqBS0G6gYtFuAJWNdgMVi3YDJcOiBmzpr53J6j3yD32xeBd7iQAVKMeVo/dWvadbZ96qbUe3mT0OABuh3UDloN0AKgvtBioH7QZOj0UN2IrLZeidOVt088dLtCuJvUSAyrIhaYNumn6Tvt/8vdmjALA42g1UDdoNoKLQbqBq0G6geCxqwDaS07J159i/NHLeVrnYSwSodNmubL249EU9s+AZZeRmmD0OAAui3UDVot0Ayot2A1WLdgNFY1EDtrBiz1H1HbVAC7Ymmj0K4Hem7ZimATMGaFfKLrNHAWAhtBswD+0GUBa0GzAP7Qa8sagBy/t84U7d9NESHUzJNHsUwG9tO7ZNN8+4WbN3zTZ7FAAWQLsB89FuAKVBuwHz0W7gHyxqwLJOZOVqyNcrNGL6BuXkcdwrYLa0nDQ99vtj+t9f/1OOK8fscQD4INoN+BbaDeB0aDfgW2g3cBKLGrCkzYdSddV7CzVjzUGzRwFQwISNE3TXrLt0KO2Q2aMA8CG0G/BdtBtAUWg34LtoN/wdixqwnJ9W7tM17y/SjoQ0s0cBUIzVCat147QbtfjAYrNHAeADaDfg+2g3gPxoN+D7aDf8GYsasIzcPJeen7xO//1utTJy8sweB8BpHM06qn/P/bc+XvOx2aMAMAntBqyFdgOg3YC10G74KxY1YAlpWbm698vl+mrpbrNHAVAKLsOl0StH64VFLyjXlWv2OACqEO0GrIl2A/6LdgPWRLvhj1jUgM87cjxTN360RL9tTjB7FABl9NO2nzRk3hCl5XD4OuAPaDdgfbQb8C+0G7A+2g1/wqIGfNrWw6nqP2ax1h84bvYoAMpp8YHFGjhroI6kHzF7FACViHYD9kG7Af9AuwH7oN3wFyxqwGct3ZGk6z5YrP3HMsweBUAF2ZS8SbfOvFXbjm4zexQAlYB2A/ZDuwF7o92A/dBu+AMWNeCTpqzarzs++0vHMzkXIGA3h9IO6Y5Zd+ivg3+ZPQqACkS7Afui3YA90W7Avmg37I5FDficMb9t08PfrVJ2nsvsUQBUktTsVP1r7r80fcd0s0cBUAFoN2B/tBuwF9oN2B/thp2xqAGfkecy9NzktXp91mYZhtnTAKhsOa4cPbPgGX2y5hOzRwFQRrQb8C+0G7A+2g34F9oNu2JRAz4hMydP93+1XOOX7jF7FABVyJChUStH6cUlL8plsJcYYCW0G/BPtBuwLtoN+CfaDTtiUQOmy8zJ06Cv/tbcjUfMHgWASb7f8r2GLh7KBhZgEbQbAO0GrIV2A6DdsBMWNWAq94bVH1sSzB4FgMkmb5vMBhZgAbQbgBvtBqyBdgNwo92wCxY1YBo2rAAUxAYW4NtoN4CCaDfg22g3gIJoN+yARQ2Ygg0rAMVhAwvwTbQbQHFoN+CbaDeA4tBuWB2LGqhybFgBOB02sADfQrsBnA7tBnwL7QZwOrQbVsaiBqoUG1YASooNLMA30G4AJUW7Ad9AuwGUFO2GVbGogSrDhhWA0mIDCzAX7QZQWrQbMBftBlBatBtWxKIGqgQbVgDKig0swBy0G0BZ0W7AHLQbQFnRblgNixqodHkuQ0MmrGDDCkCZTd42WS8vfdnsMQC/QbsBlBftBqoW7QZQXrQbVsKiBirdc5PXad6mI2aPAcDivt/yvT5d+6nZYwB+gXYDqAi0G6g6tBtARaDdsAoWNVCp3p+/Td/8tcfsMQDYxKgVozRzx0yzxwBsjXYDqEi0G6h8tBtARaLdsAIWNVBpJq/crzd/2Wz2GABsxJCh5xY9p2WHlpk9CmBLtBtARaPdQOWi3QAqGu2GFbCogUqxeHuinvhhjQzD7EkA2E2OK0cPzX9I249tN3sUwFZoN4DKQruBykG7AVQW2g1fx6IGKtyWw6m6/6u/lZ3nMnsUADaVmp2qf8/9txLS+SBEoCLQbgCVjXYDFYt2A6hstBu+jEUNVKjDxzM18PO/lJqZa/YoAGzuYNpBDZk3ROk56WaPAlga7QZQVWg3UDFoN4CqQrvhq1jUQIU5kZWru8Yu04GUTLNHAeAnNiZv1CO/P6JcF7/QAWVBuwFUNdoNlA/tBlDVaDd8EYsaqBC5eS79e/zf2nDwuNmjAPAzi/Yv0otLXzR7DMByaDcAs9BuoGxoNwCz0G74GhY1UCGen7JeC7Ymmj0GAD/149Yf9enaT80eA7AU2g3ATLQbKD3aDcBMtBu+hEUNlNv3y/fqm7/2mD0GAD83euVoLT241OwxAEug3QB8Ae0GSo52A/AFtBu+gkUNlMuGA8f1wpR1Zo8BAHIZLj35x5M6kn7E7FEAn0a7AfgK2g2UDO0G4CtoN3wFixoos9TMHA2e8Lcyc1xmjwIAkqTkzGQ99vtjfIAZUAzaDcDX0G7g1Gg3AF9Du+ELWNRAmT02cbV2JaWbPQYAeFl5ZKXe+fsds8cAfBLtBuCLaDdQPNoNwBfRbpiNRQ2UySd/7NDs9YfNHgMAivTlhi81d/dcs8cAfArtBuDLaDdQGO0G4MtoN8zEogZKbdmuZL02a5PZYwDAKT2/6HntPr7b7DEAn0C7AVgB7Qb+QbsBWAHthllY1ECpJJ7I0gNfr1CuyzB7FAA4pRM5J/TIb48oMzfT7FEAU9FuAFZBu4GTaDcAq6DdMAuLGiixPJehB79ZqcPHs8weBQBKZMvRLXpp6UtmjwGYhnYDsBraDX9HuwFYDe2GGVjUQIm9PWezFm9PMnsMACiVKdunaNKWSWaPAZiCdgOwItoNf0a7AVgR7UZVY1GjivTo0UMPP/yw2WOU2eJtiRrz23azxwCAMnn1r1e1I2VHld3f6d7zHQ6HJk+eXOLb++233+RwOHTs2LFyz4aSo90AYB7ajbKg3QBgHtqNqsSiBk4rLStXT0xaI4PTeQKwqKy8LD2/8HnlufLMHkWSdPDgQfXu3dvsMWBjtBuA1dFu+BvaDcDqaDeqEosaOK1XZm7UvqMZZo8BAOWyJnGNxm0YZ/YYkqT4+HiFhISYPQZsjHYDsAPaDX9CuwHYAe1GVWFRwwRHjx7VHXfcoWrVqik8PFy9e/fW1q1bJUmGYahmzZr64YcfPNfv2LGj6tSp4/nvhQsXKiQkROnp6ZU+68Ktifr6rz2Vfj8AUBXeX/m+dhyrmsNhXS6XnnjiCVWvXl3x8fEaNmyY598KHga7ePFidezYUaGhoTrnnHM0efJkORwOrVq1yus2//77b51zzjkKDw9Xly5dtHnz5ir5XkC7AcAstBtlRbsBwBy0G1WBRQ0TDBw4UMuXL9fUqVO1ZMkSGYahPn36KCcnRw6HQxdddJF+++03SSc3xDZu3KiMjAxt2rRJkvT777/r3HPPVXh4eKXOeSIrV09y+CsAG8l2ZevZhc9WyeGw48aNU0REhP7880+9/vrrGjFihObMmVPoesePH9eVV16p9u3ba8WKFXrxxRf15JNPFnmbzz77rN566y0tX75cgYGBuvvuuyv728D/o90AYA7ajbKi3QBgDtqNqsCiRhXbunWrpk6dqk8//VTdunXTmWeeqQkTJmj//v2e1cMePXp4Nq7++OMPnXXWWV6X/fbbb+revXulz/ryjI3af4zDXwHYy7qkdRq7fmyl30+HDh00dOhQNW/eXHfccYfOOecczZs3r9D1vv76azkcDn3yySdq06aNevfurccff7zI23z55ZfVvXt3tWnTRk899ZQWL16szMzMyv5W/B7tBgBz0W6UFu0GAHPRblQ2FjWq2MaNGxUYGKjzzz/fc1mNGjXUsmVLbdy4UZLUvXt3bdiwQQkJCfr999/Vo0cPz8ZVTk6OFi9erB49elTqnAu2JugbDn8FYFMfrPpA245uq9T76NChg9d/16lTR0eOHCl0vc2bN6tDhw4KDQ31XHbeeeed9jbdp0co6jZRsWg3AJiPdqM0aDcAmI92ozKxqOGD2rdvr+rVq+v333/32rj6/ffftWzZMuXk5KhLly6Vdv+pmTl6atLaSrt9ADBbtitbzy16Trmu3Eq7j6CgIK//djgccrlcFXabDodDksp9m6gYtBsAKhftRkWj3QBQuWg3KhOLGlWsdevWys3N1Z9//um5LCkpSZs3b1abNm0knXzBdOvWTVOmTNH69et14YUXqkOHDsrKytJHH32kc845RxEREZU2I4e/AvAH65PWa+y6yj8c9nRatmyptWvXKisry3PZsmXLTJwIBdFuAPANtBslRbsBwDfQblQWFjWqWPPmzXX11Vfrvvvu08KFC7V69Wrddtttqlevnq6++mrP9Xr06KFvvvlGHTt2VGRkpJxOpy666CJNmDChUs/r+fuWBH27bG+l3T4A+JIPVn+grUe3mjrDgAED5HK5NGjQIG3cuFGzZ8/Wm2++KemfvUJgLtoNAL6DdqMkaDcA+A7ajcrAooYJxo4dq06dOqlfv37q3LmzDMPQzJkzvQ5v6t69u/Ly8rzO4dmjR49Cl1Wk9OxcPT1pTaXcNgD4ohxXjp5f9LxchnmHkkZHR2vatGlatWqVOnbsqGeffVYvvPCCJHmd7xPmot0A4BtoN0qKdgOAb6DdqAwOwzAMs4eAb3ht1iZ98Nt2s8eAn+p2wSKtSplm9hjwUy90fkE3tLjB7DE8JkyYoLvuukspKSkKCwszexz4MNoNM9FumIl2w6poN8xEu2Em2o2KFGj2APANOxPT9NmCnWaPAQCmGL1itK5oeIViQmJMuf8vv/xSTZo0Ub169bR69Wo9+eSTuvHGG9mwwinRbgD+jHbDimg3AH9Gu1GROP0UJEnDp61Xdp55h4EBgJmOZh3V6JWjTbv/Q4cO6bbbblPr1q313//+VzfccIM+/vhj0+aBNdBuAP6MdsOKaDcAf0a7UZE4/RQ0d8Nh3fvlcrPHgJ/jMFiYLcARoO/6faeW1VuaPQpwWrQbvoB2w2y0G1ZCu+ELaDfMRrtRUThSw89l5ebpxRkbzB4DAEyXZ+TplT9fMXsM4LRoNwCcRLthFbQbAE6i3agoLGr4uc8X7tLupHSzxwAAn7DiyArN2jXL7DGAU6LdAPAP2g0roN0A8A/ajYrAooYfSzqRpTHzt5k9BgD4lHf/flfZedlmjwEUiXYDQGG0G76MdgNAYbQb5cWihh97e84WpWblmj0GAPiU/Sf2a/zG8WaPARSJdgNAYbQbvox2A0BhtBvlxaKGn9p6OFXfLttr9hgA4JM+XfOpkjOTzR4D8EK7AaB4tBu+iHYDQPFoN8qDRQ0/9dKMjcpzGWaPAQA+KTUnVWNWjTF7DMAL7QaA4tFu+CLaDQDFo90oDxY1/NDSHUn6fUuC2WMAgE+btGWS9h5nzzr4BtoNAKdHu+FLaDcAnB7tRlmxqOGHRs7davYIAODzco1cfbL2E7PHACTRbgAoCdoNX0K7AeD0aDfKikUNP7NsV7KW7EgyewwAsIRpO6Zp/4n9Zo8BP0e7AaDkaDd8Ae0GgJKj3SgLFjX8zKh57C0CACWV68rVp2s/NXsM+DnaDQAlR7vhC2g3AJQc7UZZsKjhR1bsOaoFWxPNHgMALGXKtik6lHbI7DHgp2g3AJQe7YaZaDcAlB7tRmmxqOFH2FsEAEovx5XDXiMwDe0GgNKj3TAT7QaA0qPdKC0WNfzE6r3H9NvmBLPHAABL+mnrTzqcdtjsMeBnaDcAlB3thhloNwCUHe1GabCo4SfYWwQAyi7bla3P131u9hjwM7QbAMqOdsMMtBsAyo52ozRY1PAD6/anaN6mI2aPAQCWNmnrJCVmcH5kVA3aDQDlR7tRlWg3AJQf7UZJsajhB9hbBADKLysvi71GUGVoNwCUH+1GVaLdAFB+tBslxaKGzW08eFxzNnI+OgCoCBM3T2SvEVQ62g0AFYd2oyrQbgCoOLQbJcGihs19/McOGYbZUwCAPWTmZeqbTd+YPQZsjnYDQMWh3agKtBsAKg7tRkmwqGFjSSeyNGPtQbPHAABb+XHrj8px5Zg9BmyKdgNAxaPdqEy0GwAqHu3G6bCoYWPfLd+r7FyX2WMAgK0kZiRq3u55Zo8Bm6LdAFDxaDcqE+0GgIpHu3E6LGrYlMtl6Os/95g9BgDY0rebvzV7BNgQ7QaAykO7URloNwBUHtqNU2FRw6bmbz6ifUczzB4DAGzp78N/a9vRbWaPAZuh3QBQeWg3KgPtBoDKQ7txKixq2NRXS3ebPQIA2Bp7jaCi0W4AqFy0GxWNdgNA5aLdKA6LGja0Nzldf2xJMHsMALC16TumKz0n3ewxYBO0GwAqH+1GRaLdAFD5aDeKw6KGDY3/c7dchtlTAIC9peWkadr2aWaPAZug3QBQ+Wg3KhLtBoDKR7tRHBY1bCYrN08Tl+8zewwA8AvfbfnO7BFgA7QbAKoO7UZFoN0AUHVoN4rCoobNzFhzUMlp2WaPAQB+YevRrVpxeIXZY8DiaDcAVB3ajYpAuwGg6tBuFIVFDZvhg8oAoGrxwWUoL9oNAFWLdqO8aDcAVC3ajYJY1LCRjQePa+WeY2aPAQB+Ze7uuTqaedTsMWBRtBsAqh7tRnnQbgCoerQbBbGoYSNTVx8wewQA8Ds5rhzN3TPX7DFgUbQbAKoe7UZ50G4AqHq0GwWxqGEj09ewcQUAZpi9c7bZI8CiaDcAmIN2o6xoNwCYg3YjPxY1bGL13mPam5xh9hgA4JeWH16uxIxEs8eAxdBuADAP7UZZ0G4AMA/tRn4satgEe4sAgHnyjDzN2T3H7DFgMbQbAMxDu1EWtBsAzEO7kV+g2QOg/AzD0Iw1B80eo8qkrpyp1JUzlZtyWJIUFNdAsV1uUVjTcyRJSbPeU+buVco7kSxHUKhC6rVWtR4DFVSjfrG3eWzhBKVtXKC81AQ5nIEKjm+m2IvuUEjdlpIkIzdHSbNGKX3rUgVEVFP1KwYrrFFHz9en/DlJeccTVP3yf1XeNw4UkPRrkpJ/TVZOYo4kKaReiGpdXUtRHaIkSfu/2K8T608o91iunKFOhTcLV/wN8QqpG1LsbR7+6bBS/kxRTnKOHIEOhTUKU+3raiu8abgkyZXj0v7P9yt1ZaoCYwJV9466imwb6fn6hJkJyknKUd3b61bid+6bZu2cpVta3WL2GLAI2k274Z9ot2+h3SgN2k274Z9ot2+h3XBzGIZhmD0Eyufv3cm67oMlZo9RZdK3/SmHw6nAaiffvE+sm6fjf/6oOgNHKrhmQ6WumqWgGmcoMLqm8jJSlbLoa2Uf3ql6//pUDmdAkbeZtuE3OcNjFRgbLyMnS6nLpyht00LVu/8TBYTH6Pjf03Ri5UzFXf2UMnb8reN/TdIZD4yXw+FQzrFDOvL9C6pz57tyhoRX5UNhK90uWKRVKdPMHsNSjq88LofToeDawZKkYwuPKfHnRDUd0VSh9UKV/FuyQuqEKKh6kPLS8nRk8hFl7slUizdbyOF0FHmbx5YcU2B0oIJrBsuV41LS7CSlLEtRi9daKDA6UElzkpQ8P1n1h9TXiTUnlDAzQa1GtZLD4VB2QrZ2vblLTYc1VUBY0a81O3PIobk3zFWt8FpmjwILoN202w5od+nRbt9Cu1EatJt22wHtLj3a7VtoN9w4/ZQNTPejvUUkKbzZ+Qpreq6CqtdTUPV6qnbRHXIGhyrrwGZJUlTHXgqt306BMbUVEt9Msd1uV15qgnJTjhR7mxFteiisUUcFxcYruGZDVbvkXhnZ6co+slOSlJO0V2HNzldwzYaKOruvXOkpcmUclyQl/zJG1XoMZMMKVS76rGhFnRmlkPgQhcSHqPb1teUMdSp9W7okqXqP6opoGaHgmsGePT9yknOUnZhd7G3Gdo5VZNtIBdcKVmi9UMXfEi9XhkuZ+zIlSVkHsxTVMUqh9UJV/dLqykvNU15qniTpwLgDir8x3i83rCTJkKFfdv1i9hiwCNpNu+GfaLdvod0oDdpNu+GfaLdvod1wY1HD4lwuQzPX+tfGVX6GK09pG36XKydTIfVaFfp3V3amTqydq8CY2gqMjivZbeblKHXVLDlCIhRcq7EkKbhWY2Xt2yBXTpYyd65QQGR1OcOidWL9fDkCgxXeokuFfl9AaRkuQ8eWHpMry6XwZoU39F1ZLh1dcFRBNYMUVD2oRLfpynXp6G9H5QxzKrR+qCQptH6o0remy5Xt0om1JxQYG6iAqAAdW3xMjiCHojtFV+j3ZTWzds0yewRYAO2m3YBEu30F7UZJ0G7aDUi021fQbkh8poblLduVrMPHs8weo8plJ+zSoa8ek5GbLUdwmGr1f1bBcQ08/566YoaO/jZWRk6mAqufoVo3vSRHwKmDkr7tLyVOfV1GTpYCIqup9k0vKiA8RpIU2f5yZR/ZpQOfDVZAWLTirn5SrswTSlk4QbVveVVH//hK6Rv/UGBsvGr0eUiBUSXbkAPKK3Nvpna8tEOuHJecIU41+E8DhdYL9fx70rwkHf7+sFxZLgXHB6vR443kDDz1evbxVce174N9cmW7FBgTqEaPN1Jg1MlcVOtWTZl7M7X1ma0KjApU/cH1lZeWp8M/HVbjpxrr8KST5wYNrhWsevfUU1C1km3I2cWahDU6eOKg6kTWMXsU+DDaTbvh32i3b6HdKAnaTbvh32i3b6HdkPhMDct7fvI6fbV0t9ljVDkjL0e5xxPkykpX+uaFOrH6F9Ue8D/PBpYrK015aceUl3ZUx//6UXmpSYq/7Q05AoOLvU1Xdqby0pLlSj+u1NWzlblnjerc/pYCImKLvH7ijHcVXLuxAmPideyPcYq//W0d/3OSchJ3q2b/Zyrj27Y1zu1ZNq5cl3KScuTKcCllWYqO/nFUjZ9q7NnAykvPU+7xXOWm5Crx50TlHM1Rk2ebyBlc/AaWK8ulnGM5ykvNU/LvyUrbmKamLzRVYHTR6+D7Pt2n0AahCq4ZrMM/HFbTF5oqYWaCsvZlqcF/GhT5NXb2aKdHNbDdQLPHgA+j3bTbLmh32dBu30O7cTq0m3bbBe0uG9rte2g3OP2UheW5DP28zj8PgXUEBCmoWl2FxDdTte4DFVyrsVKXT/X8uzMkQkHV6ym0fjvVvOZp5STvU/qWU3+omzM49ORt1muluD4PyeF06sSaos/Tl7l7jXKSdivq7H7K3LNGYU3OkTM4VOGtLlTmnrUV+r0Cp+IMdCqkdojCGoUp/oZ4hdYPVdKcJM+/B4QHKCQ+RBEtI1T/gfrKOpil4yuOn/o2Q07eZnizcJ1xzxlyBDh09I+jRV73xMYTytqfpRqX1VDapjRFdYiSM8SpmPNilLYprUK/V6vgUFicCu2m3QDt9j20G6dCu2k3QLt9D+0GixoWtnLPUSWeKP6Dh/yJYRgy8nKK+ceT/yv234u/0SK/xsjNVvKcD1Sj5wNyOAMkwyXDdfIDm+TKk2G4Snc/QEUyJCOnmAPw/v/iYv+9uJt0GXLlFH5eu7JdOvjVQdUdWFcOp0NySUbeyds2cg0ZLv88EHB90nodTjts9hjwUbT7H7Qb+H+023S0G6dCu/9Bu4H/R7tNR7vBooaFLdiaaPYIpjj6+xfK3LtOuSmHlZ2wS0d//0JZe9Yqok0P5Rw7pJQl3yvr0DblHj+izH0blTDlVTkCgxXW5BzPbez/5F9K37JY0snDX4/+Pk5Z+zcpN+WIsg5tU+LMd5WbmqTwlhcWuv9ji79VWJNzFFy7qSQppF4bpW9ZrOwjO5W6YrpC67WumgcCfu/QxENK25ym7IRsZe7NPPnfm9IU2zlW2UeylTA9QRm7MpSdlK30rena+/5eOYOcijozynMbW57aouN/n9yDxJXl0qEfDil9W7qyE7OVsStD+z7bp9yjuYo5L6bQ/SdMTVBkh0iFNQyTJIU3D9fxv48rc2+mkuclK7x54Q9O8xdLDy41ewT4KNpNu+HfaLfvot0oDu2m3fBvtNt30W7/xgeFW9iibf65cZWXlqLE6W8rLy1ZzpAIBddspFo3jlBY47OUm5qkzH3rdXz5VLkyTyggIlYh9dsq/rY3vM7RmZu8T66sdEmSw+lUTvI+JUyep7yM4woIi1ZwfHPF3/qagms29Lrv7IRdSt+0QHUGjvZcFt6qqzL3rtWhCU8qqEY9xV35eJU8DkDu8Vzt+3ifclNy5QxzKrR+qBo92kiR7SKVczRHaVvSlPhLolxpLgXEBCiiRYSaPNfE6xyd2YeylZf+/3s8OaTsg9nas3CP8k7kKSAyQGGNw9T4mcZeH4ImSZn7MpWyLEXNRjTzXBZ9TrTSNqVpxys7FBIfojP+dUaVPA6+aOnBpbq62dVmjwEfRLtpN/wb7fZdtBvFod20G/6Ndvsu2u3f+KBwizqRlauOw39Rrp8eZgb74QPLYCdxYXGaf+N8s8eAj6HdsBvaDTuh3SgK7Ybd0G7YCe32b5x+yqKWbk9iwwoAfFRiRqK2Ht1q9hjwMbQbAHwX7UZRaDcA+C7a7d9Y1LCohX56CCwAWMWSA0vMHgE+hnYDgG+j3SiIdgOAb6Pd/otFDYtasDXB7BEAAKew5CAbV/BGuwHAt9FuFES7AcC30W7/xaKGBR1KydT2hDSzxwAAnMLfh/9WTl6O2WPAR9BuAPB9tBv50W4A8H2023+xqGFB7C0CAL4vIzdDqxJWmT0GfATtBgDfR7uRH+0GAN9Hu/0XixoWtIjzegKAJSw9uNTsEeAjaDcAWAPthhvtBgBroN3+iUUNC1q4LcnsEQAAJbD0ABtXOIl2A4A10G640W4AsAba7Z9Y1LCYTYeOK/FEltljAABKYH3Seh3PPm72GDAZ7QYA66DdkGg3AFgJ7fZPLGpYzN+7j5o9AgCghPKMPK1LWGf2GDAZ7QYA66DdkGg3AFgJ7fZPLGpYzLr9KWaPAAAohQ3JG8weASaj3QBgLbQbtBsArIV2+x8WNSxmLRtXAGApG5LYuPJ3tBsArIV2g3YDgLXQbv/DooaFZOe6tOXQCbPHAACUAhtX/o12A4D10G7/RrsBwHpot/9hUcNCNh9KVXaey+wxAAClsP/EfqVksbefv6LdAGA9tNu/0W4AsB7a7X9Y1LAQDoEFAGtan7Te7BFgEtoNANZEu/0X7QYAa6Ld/oVFDQth4woArIlDYf0X7QYAa6Ld/ot2A4A10W7/wqKGhaxj4woALImNK/9FuwHAmmi3/6LdAGBNtNu/sKhhETl5Lm0+lGr2GACAMmDjyj/RbgCwLtrtn2g3AFgX7fYvLGpYBB9WBgDWxYeW+SfaDQDWRbv9E+0GAOui3f6FRQ2L4BBYALC2jckbzR4BVYx2A4C10W7/Q7sBwNpot/9gUcMi+LAyALA2DoX1P7QbAKyNdvsf2g0A1ka7/QeLGhax7cgJs0cAAJTDjmM7zB4BVYx2A4C10W7/Q7sBwNpot/9gUcMi9ianmz0CAKAc9p3YZ/YIqGK0GwCsjXb7H9oNANZGu/0HixoWkJ3r0qHjmWaPAQAoh32pbFz5E9oNANZHu/0L7QYA66Pd/oNFDQvYdzRdLsPsKQAA5ZGQkaDsvGyzx0AVod0AYH2027/QbgCwPtrtP1jUsIA9HAILAJbnMlzaf2K/2WOgitBuALA+2u1faDcAWB/t9h8saljA3qMZZo8AAKgAbFz5D9oNAPZAu/0H7QYAe6Dd/oFFDQvgw8oAwB44v6f/oN0AYA+023/QbgCwB9rtH1jUsIA9SWxcAYAdsHHlP2g3ANgD7fYftBsA7IF2+wcWNSyAc3sCgD3sO8HGlb+g3QBgD7Tbf9BuALAH2u0fWNSwAA6DBQB7YI8R/0G7AcAeaLf/oN0AYA+02z+wqOHjjqVnKzUr1+wxAAAVgA8s8w+0GwDsg3b7B9oNAPZBu/0Dixo+jkNgAcA+TuSc0LHMY2aPgUpGuwHAPmi3f6DdAGAftNs/sKjh4w4fzzJ7BABABTqSccTsEVDJaDcA2Avttj/aDQD2Qrvtj0UNH5eSkWP2CACACnQ867jZI6CS0W4AsBfabX+0GwDshXbbH4saPo6NKwCwl+PZbFzZHe0GAHuh3fZHuwHAXmi3/bGo4ePYuAIAe2Hjyv5oNwDYC+22P9oNAPZCu+2PRQ0fd5yNKwCwFQ6DtT/aDQD2Qrvtj3YDgL3QbvtjUcPHsccIANgLe4zYH+0GAHuh3fZHuwHAXmi3/bGo4ePYuAIAe2Hjyv5oNwDYC+22P9oNAPZCu+2PRQ0fx2GwAGAvqdmpZo+ASka7AcBeaLf90W4AsBfabX8savg49hgBAHthjxH7o90AYC+02/5oNwDYC+22PxY1fBwbVwBgL3xgmf3RbgCwF9ptf7QbAOyFdtsfixo+jo0rALAX9hixP9oNAPZCu+2PdgOAvdBu+2NRw4dl5uQpK9dl9hgAgArExpW90W4AsB/abW+0GwDsh3bbH4saPiwtK9fsEQAAFSwtJ83sEVCJaDcA2A/ttjfaDQD2Q7vtj0UNH5bnMsweAQBQwfJceWaPgEpEuwHAfmi3vdFuALAf2m1/LGr4sDyDjSsAsBuXwekN7Ix2A4D90G57o90AYD+02/5Y1PBh7DECAPaTZ7DHiJ3RbgCwH9ptb7QbAOyHdtsfixo+zMWiIgDYjiFDBnsE2hbtBgD7od32RrsBwH5ot/2xqOHDXLz4AMCWOBTWvmg3ANgT7bYv2g0A9kS77Y1FDR/GxhX8Rc3gHF3gyFagM9DsUYAqwcaVfdFu+AvaDX9Du+2LdsNf0G74G9ptbyxq+DCnw2H2CEClcjgMvdJkrZZGPaEhKz/RT8cduii2tdljAZXO6SC/dkW7YXe0G/6KdtsX7Ybd0W74K9ptbyzP+jA2rmBnN9U5pBcCv1TEgVWeyxolbNf7Cdu1qMkFej3CqR0n9pk3IFCJ2LiyL9oNO6Pd8Ge0275oN+yMdsOf0W57Y1HDhzl57cGG2kel6f3aU1R/3ww5VPSh3l13LNUkZ6C+bXupxmTtVWrOiSqeEqg8Djnk4Jdn26LdsCPaDX9Hu+2NdsOOaDf8He22P/LtwwKcvPhgH1GBuRrf/HdN1cNqsG96sRtWboGuXN22drZm7D+sm6q1V4AjoIomBSoXz2V7o92wE9oNnMRz2d5oN+yEdgMn8Vy2PxY1fFgAK4qwiWcbbdLK6s/qwr0fyZGTVqqvrZaWpOdWzND3aSE6L6ZFJU0IVB0OgbU32g27oN3AP2i3vdFu2AXtBv5Bu+2P00/5MPYYgdX1qZmo/4VPUPShP8t9Wy0Ob9JnhzdpbvNuejM4U/vTD1fAhEDVC3Cyx4id0W5YHe0GCqPd9ka7YXW0GyiMdtsfixo+LCKEHw+sqWl4hj6s97Oa7ftRjlRXhd72ZVsX6KKAEI1rd4k+Td+p9Nz0Cr19oLJFBEWYPQIqEe2GVdFuoHi0295oN6yKdgPFo932x7E4Piw0KEAhgfyIYB1hAXn6uNlSzQ36r5rv/UEOo2I3rNyC87J03+qfNf3wMV1VrZ0cYu8qWEd0cLTZI6AS0W5YDe0GTo922xvthtXQbuD0aLf9UW4fFx0WZPYIQIk82GCHVtccpiv2jZIj63iV3GfN44f08oqZmpATow7RTavkPoHyigqOMnsEVDLaDaug3UDJ0G77o92wCtoNlAzttj+Os/RxMWFBSkjNMnsMoFjdaxzV29Hfq8bB302bof2+NRq/z6HprS/WuzqqI5lJps0CnA57jNgf7Yavo91A6dBu+6Pd8HW0Gygd2m1/LGr4uBj2GIGPqhOarY/rz1G7/d/LkZZj9jhyyNCVG3/VpcER+rRND315Youy8vjFBL4nOoSNK7uj3fBVtBsoG9ptf7Qbvop2A2VDu+2P00/5ODau4GsCHC6903SFFoU9pvZ7J8jhMn/DKr/w7DQ9uGqGpiRn6fJqbcweByiEPUbsj3bD19BuoHxot/3Rbvga2g2UD+22P47U8HFsXMGXDKy7T085vlDo/g1mj3Ja9ZL36O3kPVrW6Fy9Fh2qzam7zR4JkMTGlT+g3fAltBsoP9ptf7QbvoR2A+VHu+2PRQ0fx8YVfME5MakaHTdJdfb/YvYopXburmX63uHUD20u1Xu5h3Q0O8XskeDn2LiyP9oNX0C7gYpDu+2PdsMX0G6g4tBu++P0Uz4umo0rmKhGcI4mNp+riXkPWXLDys1puHTj+jmavmePbottr0An67kwD+f2tD/aDTPRbqDi0W77o90wE+0GKh7ttj8WNXwce4zADA6HoRcbr9Nf0U/p3L2fy5GbafZIFSI6I0VPrpyhSalOdY1tZfY48FPsMWJ/tBtmoN1A5aHd9ke7YQbaDVQe2m1/LJv6uOhQfkSoWtfHH9awoC8VeXCl2aNUmiZHtunDI9v0R9MueiPM0K60/WaPBD8SFRxl9gioZLQbVY12A5WLdtsf7UZVo91A5aLd9ke5fRx7jKCqtI5M1wfxU9Vw3zQ5ZJg9TpW4aPtidXYG6eu2l+qjrD1KzTlh9kjwA+wxYn+0G1WFdtNuVA3abX+0G1WFdtNuVA3abX+cfsrH1Y4ONXsE2FxEYJ7GNV+gmc6H1GjfVL/ZsHILcuXozrWzNH3/EV1Xrb2cDt4WUblqhdcyewRUMtqNyka7aTeqFu22P9qNyka7aTeqFu22P95FfFyD6uFmjwAbe6rhFq2q/py67/1Ajuw0s8cxVfW0RA1bMUPfZYTrnJjmZo8Dm4oMilS10Gpmj4FKRrtRmWj3P2g3qgLt9g+0G5WJdv+DdqMq0G7/wOmnfFy1iGBFhQQqNSvX7FFgI71qJul/EV8r9tASs0fxOa0ObtDYgxs0u+VFejsgXQcyjpg9EmykXmQ9s0dAFaDdqAy0u3i0G5WJdvsH2o3KQLuLR7tRmWi3f+BIDQs4g71GUEEahWVqdvPJ+uDEw2xYnUbPzX9o6pZ1eiC6ncICw8weBzbBxpX/oN2oKLS75Gg3KgPt9h+0GxWFdpcc7UZloN3+gUUNC2hQnTd2lE+I06UPmv2pX0MeUcu938th5Jk9kiWE5Gbq/tUzNe1IqvpWayeHHGaPBIs7I+oMs0dAFaHdKC/aXTa0GxWNdvsP2o3yot1lQ7tR0Wi3f2BRwwI4vyfK49/1d2lt7eHqvW+knJnHzB7HkmqnHND/VszUl7nV1C66sdnjwMLYuPIftBvlQbvLj3ajotBu/0G7UR60u/xoNyoK7fYPfKaGBbBxhbK4sHqK3on5XjUPzjd7FNvouHeVvt7r0JTWl2iUkpSQmWz2SLCYMyLZuPIXtBtlQbsrHu1GedFu/0G7URa0u+LRbpQX7fYPHKlhAZzbE6URH5KtKc1/1ldZD7FhVQkcMnTNxnmavmOb7oltr2BnsNkjwULYY8R/0G6UBu2uXLQb5UG7/QftRmnQ7spFu1EetNs/sKhhAewxgpIIcLj0ZpNVWhzxmM7c+5Ucedlmj2Rr4Vkn9PDKGZp8LEeXVGtj9jiwAIccfGCZH6HdKAnaXbVoN0qLdvsX2o2SoN1Vi3ajtGi3/+D0UxZwRrUwOR2SyzB7EviqO+oe0NOOLxR2YJ3Zo/id+km7NTJpt5Y2Pk+vRQZp24m9Zo8EH1UzvKaCA9jDyF/QbpwO7TYP7UZJ0W7/QrtxOrTbPLQbJUW7/QeLGhYQEhig2tGhOpiSafYo8DFnx5zQ6LgfVW//LLNH8XsX7PxLPzgCNLHtpXo/56COZaeYPRJ8DOf19C+0G8Wh3b6DduN0aLd/od0oDu32HbQbp0O7/Qenn7KI+hwKi3yqBeXq2+a/alLeQ2xY+ZAAI083r/tF0/fs1YDY9gp0sG6Mf3BeT/9Du5Ef7fZNtBunQrv9D+1GfrTbN9FunArt9h8salhEs1qRZo8AHzGs8UYti31aF+z9VI7cDLPHQRFiMo7p6ZUz9MOJQHWJbWn2OPARjWMamz0Cqhjthhvt9n20G0Wh3f6HdsONdvs+2o2i0G7/wXKmRbSrG2P2CDDZNbWP6MWQ8Yo6uNzsUVBCTY9s0UdHtui3ZhfqzdBc7U47YPZIMFGbGnywnb+h3aDd1kO7kR/t9j+0G7Tbemg38qPd/oNFDYtoX4+NK3/VIiJDH9WZpkb7psghPrXOinpsW6iuAcEa3/YSfZy5Wydy0sweCSZoW6Ot2SOgitFu/0W7rY92Q6Ld/oh2+y/abX20GxLt9iecfsoiWsZHKTiAH5c/iQhw6fPmizQ74CE13jeZDSuLC8rL1l1rZmnagST1r9ZeTgevZ39SL7KeYkL4Jdnf0G7/Q7vthXb7N9rtn2i3/6Hd9kK7/Rvt9i+8ui0iONCpFvGc39NfPNZgm1bFPa9L9r4vR/YJs8dBBYo7cUQjVszQN5kROjummdnjoIpwCKx/ot3+hXbbF+32T7TbP9Fu/0K77Yt2+yfa7V9Y1LAQDoW1v8vjkrWy0ft64MgLCkrZafY4qERtDqzXuFW/6vXgJooPq2n2OKhkbFz5L9ptf7Tbf9Bu/0K7/Rfttj/a7T9ot3+h3f6Fz9SwkHb1YiTtNXsMVIIGYZn66Ixf1Gr/D3KcyDV7HFSh3pt/08VBYRrb9hKNPbFVGXmZZo+EStCmOhtX/op22xft9l+02z/Qbv9Fu+2Ldvsv2u0faLd/4UgNC2GPEfsJchp6r9ky/RbyqFrv/VYOFxtW/ig0J0P/XjVDUxPT1btaO7PHQSVgjxH/Rbvth3ZDot3+gHb7L9ptP7QbEu32B7Tbv7CoYSEt46MUFOAwewxUkEFn7NG6+BHqt+8dOTOPmj0OfED8sX16fcVMjcuLU+uoRmaPgwpSN6KuYkNjzR4DJqHd9kK7URDttifa7d9ot73QbhREu+2JdvsfTj9lISGBAWpRO0rrDxw3exSUQ+dqKRpZ7QfVOjDP7FHgo87es0Lf7nVqSutLNNKVoKQsNr6tjL1F/BvttgfajdOh3fZCu/0b7bYH2o3Tod32Qrv9D0dqWAyHwlpXrZAc/dR8tr7OfogNK5yW03Cp/4a5mr5zh+6Kba8gZ5DZI6GM2LgC7bYu2o3SoN32QbtBu62LdqM0aLd90G7/w6KGxbRj48pyHA5DrzVZoyWRj+usvePkyMs2eyRYSGRWqh5ZOUOTU1zqEUukrYiNK9Bu66HdKA/abX20G7Tbemg3yoN2Wx/t9j+cfspiOjWsZvYIKIUBdQ7quYBxCj+wxuxRYHENEndqdOJOLW58vl6PDND2E/vMHgkl4HQ41S6OD6Hzd7TbWmg3KgrttibaDYl2Ww3tRkWh3dZEu/0TixoW0yo+SnGRwUo8wV4HvqxD9AmNqTVFZ+ybYfYosJkuO//UD85Afdf2Uo3J3qfj2almj4RTaFujrWJC2NPP39Fua6DdqCy021poNyTabRW0G5WFdlsL7fZPnH7KYhwOh7o0jTN7DBQjJihXXzf/TVOMh9mwQqUJdOXq1rWzNWPvQd1Urb0CHAFmj4RiXFDnArNHgA+g3b6NdqMq0G7roN2QaLevo92oCrTbOmi3f2JRw4IubM7GlS96vvFG/R37tLrs/ViOnHSzx4EfiE1P1nMrZmhiWrDOj21h9jgoQue6nc0eAT6Cdvsm2o2qRrt9H+2GG+32TbQbVY12+z7a7Z84/ZQFXdiMjStfcmWtBL0cOl7RB5eZPQr8VPPDm/Xp4c2a1/xCvRWcrb3ph8weCZLCAsPUsWZHs8eAj6DdvoV2w2y02zfRbuRHu30L7YbZaLdvot3+iyM1LKhubJia1Iwwewy/1zwiQ3ObT9Ko1P8q+ggbVjDfpVsXavKm1Xooqq3CA8PNHsfvnV37bAUFBJk9BnwE7fYNtBu+hnb7FtqN/Gi3b6Dd8DW027fQbv/FooZFsdeIecIC8vRp8yX6JfC/arZ3khyGy+yRAI/gvCzdu+ZnTT98TFdVayeHHGaP5Lc61+EQWHij3eah3fBltNt30G4URLvNQ7vhy2i376Dd/otFDYti48oc/22wQ6trDtVle0fLkXXc7HGAYtU8fkgvr5ipr7OjdWZ0U7PH8Ut8WBkKot3moN2wCtptPtqNgmi3OWg3rIJ2m492+y8+U8OiOjetoQCnQ3kuw+xR/EKP6kf1Vsx3qnHwD7NHAUql3f61Gr9fmt7qYr3jSNGRzESzR/ILNUJrqEU1PkQO3mh31aLdsCrabQ7ajaLQ7qpFu2FVtNsctNu/caSGRUWFBunMM2LMHsP26oVmaUbz6Rqb+RAbVrC0fpvma9r2zbo/pr1CA0LMHsf2zq9zvhwODkGGN9pdNWg37IJ2Vy3ajaLQ7qpBu2EXtLtq0W7/xqKGhV3YvKbZI9hWkNPQyKZ/a0HYY2q792s5XLlmjwSUW3h2mh5YNUNTkrJ0RbW2Zo9ja53rcl5PFI12Vx7aDTui3VWHdqM4tLvy0G7YEe2uOrTbv7GoYWHdmnN+z8pwT729Whv/kq7e/5acGUlmjwNUuLpH9+itFT9rrKumWkU1NHscW+K8nigO7a4ctBt2R7srH+1GcWh35aDdsDvaXflot3/jMzUs7OwG1VQjIlhJadlmj2IL58Ue16gakxS/f47ZowBV4pzdf+s7h1M/trlUo/MOKznrmNkj2ULr6q0VHxFv9hjwUbS7YtFu+BvaXTloN06Fdlcs2g1/Q7srB+0GR2pYWIDToV7teAGXV83gHE1qPkff5TzEhhX8jtNw6fr1czR9127dEdtegU7WusurV+NeZo8AH0a7Kwbthj+j3RWPduNUaHfFoN3wZ7S74tFusKhhcf061DV7BMtyOAy90nitlkY9qU57x8qRl2X2SIBpojJT9PjKGfrpuEPdYluZPY6l9WzU0+wR4ONod9nRbuAftLvi0G6cDu0uO9oN/IN2VxzaDZYGLe78xtVVKypER1LZMCiNG+IPaVjQl4o4uMrsUQCf0ihhu8YkbNeCpp31Rpi0M22/2SNZSoe4DqoXWc/sMeDjaHfZ0G6gaLS7fGg3SoJ2lw3tBopGu8uHdkPiSA3Lczod6s2hsCXWNipNfzT7Rq8fe1QRCavMHgfwWd22L9GPG5bpicg2igqKNHscy7ii0RVmjwALoN2lQ7uBkqHdZUO7URK0u3RoN1AytLtsaDckFjVsod+ZHAp7OlGBufqq+R+arofVYN80OWSYPRLg8wJdubp97SzN2H9YN1RrrwBHgNkj+TSHHBwCixKj3adHu4HSo92lQ7tRGrT79Gg3UHq0u3RoN9xY1LCBcxpWU52YULPH8FnPNNqsldWfVbe9H8qRk2b2OIDlVEtL0gsrZui79FCdG9Pc7HF8VsdaHRUfwR58KBnafWq0Gygf2l0ytBulQbtPjXYD5UO7S4Z2w41FDRtwOBzq076O2WP4nN41E7W64SgNOjRcgcf3mj0OYHktD23U56vm6e2ghqoXXtvscXwOe4ugNGh30Wg3ULFo96nRbpQG7S4a7QYqFu0+NdoNNxY1bKJfBzau3JqEZ+qX5j9pzIn/KubwUrPHAWzn8i0LNGXzWv0nup3CAsPMHscnOB1OXdGQ83qidGj3P2g3ULlod2G0G2VBu/9Bu4HKRbsLo93Ij0UNmzirQTWdUc2/3+TCAvL0UbOlmhf0X7XYO1EOI8/skQDbCsnN1KDVMzX9yHFdWa2dHHKYPZKpOtXupJrhNc0eAxZDu2k3UJVotzfajbKg3bQbqEq02xvtRn4sathIXz/ea+SB+ru0uuZw9dw3So6sFLPHAfxGrZSDemXFTI3PiVWH6CZmj2OaXo16mT0CLIp2026gqtHuk2g3yop2026gqtHuk2g38nMYhmGYPQQqxvoDKeo7aqHZY1Spi6of09sx3ynu4O9mjwL4PUMOTWt9sUbqqI5kJpk9TpUJdAZq3g3zVD20utmjwIJoNwAz0W7ajdKj3QDMRLtpN07iSA0baVs3RmeeEWP2GFWiTmi2prWYqXGZD7FhBfgIhwxdtfFXTduxVffGtFewM9jskarEpQ0uZcMKZUa7AZiJdgOlR7sBmIl2AyexqGEzt13Q0OwRKlWAw6W3m67UorDH1H7PeDlcOWaPBKCA8KwTemjVDE05mq3LqrUxe5xKd1PLm8weARZHuwGYjXYDpUO7AZiNdsPfcfopm8nMydMFr87TsXT7bXTcWXe/nnJ8obCk9WaPAqAU/mp0rl6LCtGWE3vMHqXCNYttpp+u/snsMWBxtBuAr6HdwKnRbgC+hnbD33Ckhs2EBgXohk5nmD1GhTo7JlWLm36p4cmPs2EFWNB5u5bp+3VL9HxEK1ULtteh+je2vNHsEWADtBuAr6HdwKnRbgC+hnbD33Ckhg3tTkpTjzd/k9V/stWCcvVRo9917sEJcuRmmj0OgApwPCxGH7S6UN+mbFSukWv2OOUSHhiuX2/8VRFBEWaPAhug3QB8Fe0Gika7Afgq2g1/wJEaNtSwRoS6Na9p9hjlMqLxei2PeUrn7f2MDSvARqIzUvTkyhmadCJAXWNbmT1OufRr0o8NK1QY2g3AV9FuoGi0G4Cvot3wBxypYVNzNhzWfV8uN3uMUruu9mEND/5KkQkrzB4FQBX4o2kXvRHm0q60A2aPUmqTrpqkFtVamD0GbIR2A7AC2g38g3YDsALaDTsKNHsAVI5LW9VSvdgw7T+WYfYoJdIqMl0fxk9Tw31T5RDrbIC/uGj7YnV2Bunrdpfqo8w9Ss05YfZIJXJ2rbPZsEKFo90ArIB2A/+g3QCsgHbDjjj9lE05nQ4NOL+B2WOcVkRgnr5ovlA/Ox9Wo31T2LAC/FCQK0d3rpmlaQcSdF219nI6fD9NN7W8yewRYEO0G4BV0G7gJNoNwCpoN+yG00/ZWEJqlrr+71dl57nMHqVITzTcqvsyPlfQ8d1mjwLAh2yq00b/q11Hf6dsNXuUIlUPra65189VUECQ2aPAhmg3ACui3fBntBuAFdFuWJ3vL8uhzGpGhahXu3izxyjkirhkrWr0ngYfHsqGFYBCWh3coC9WzdMbQY1VJ8z3Pnzx2ubXsmGFSkO7AVgR7YY/o90ArIh2w+o4UsPm1u1PUb/RC80eQ5LUKCxTH54xWy33/SCHkWf2OAAsIDMoTGPbXKyxaduUkZdp9jgKDQjVz9f9rLiwOLNHgY3RbgBWRrvhj2g3ACuj3bAijtSwuXb1YnRZ61qmzhDidOmDZn/p15BH1Grvd2xYASix0JwM/Xv1TE1NTFOfau3MHkfXtbiODStUOtoNwMpoN/wR7QZgZbQbVsSRGn5gzb5juuq9Rabc97/r79LDuV8o5OgWU+4fgL2sqn+W/lc9WuuP76zy+w52Buvn635WrXBzf2GFf6DdAOyCdsNf0G4AdkG7YQUcqeEHOpwRqx4tq/b8eF2rpWhZk0/1ZMIzbFgBqDAd967UN6v/0Iiw5ooLqV6l992/eX82rFBlaDcAu6Dd8Be0G4Bd0G5YAUdq+IkVe47q2jGLK/1+4kOy9VGDeepw4Ds58rIr/f4A+K+0kCh93PoijU/drGxX5b7fBDmDNPPamYqP8L0PgYR90W4AdkO7YXe0G4Dd0G74Ko7U8BNnN6imbs0r73x0AQ6X3miySosjHteZe79iwwpApYvIStV/V83Q5GO5uji2TaXe19XNrmbDClWOdgOwG9oNu6PdAOyGdsNXcaSGH1m+K1nXf7ikwm/31joH9GzAOIUnrq3w2waAklrS+Dy9HhmkbSf2VujtBjoDNaP/DNWNrFuhtwuUBO0GYGe0G3ZEuwHYGe2Grwg0ewBUnXMaVVeXpjW0eHtShdxex+gTer/mT6q3/+cKuT0AKI/OO//SD44Afd/2Mr2fs18p2ccr5HavanoVG1YwDe0GYGe0G3ZEuwHYGe2Gr+BIDT+zdEeSbv54abluIyYoVx82WqALDo6XIzejgiYDgIqTEl5N77fsookpG5Vr5Jb5dgIdgZraf6rqR9WvwOmA0qHdAPwB7Yad0G4A/oB2w0x8poafuaBJDZ3XuHqZv35oo436O/Zpdd77CRtWAHxWTPpRPbNyhiamBemC2JZlvp0+TfqwYQXT0W4A/oB2w05oNwB/QLthJo7U8EOLtyVqwKd/luprrq59RC+FjFfUkeWVNBUAVJ75zS/Um8E52pN+sMRfE+AI0JRrpqhhdMNKnAwoGdoNwN/Qblgd7Qbgb2g3qhJHavihLs3i1K15XImu2yIiQ782m6h3jz/ChhUAy7p460JN3rRS/41qq4jA8BJ9Tf/m/dmwgs+g3QD8De2G1dFuAP6GdqMqcaSGn9p8KFV9Ri1QnqvoH39EgEujmizVJUfGyZGVWsXTAUDlSYyspZEtztWUo+tkqJj3wKAIzeg/QzXCalTxdEDxaDcAf0W7YVW0G4C/ot2obByp4adaxkfpxnPOKPLfHm2wTavintele99jwwqA7cSdOKIXV8zQN1lROiumWZHXubf9vWxYwefQbgD+inbDqmg3AH9Fu1HZOFLDjyWkZuniN3/TiaxcSdKlNZL1RtS3qn5oocmTAUDVmdmqh95xpupQRoIkqW5EXU3tP1UhASEmTwYURrsBgHbDWmg3ANBuVDyO1PBjNaNC9O8eTXVGaJZmNp+mTzMeZsMKgN/ps+k3Td22Uf+Oaa/QgBA9dPZDbFjBZ9FuAKDdsBbaDQC0GxWPIzX8XGZOngI/u0SBh1aZPQoAmO5I6z6qddM3Zo8BnBLtBoB/0G5YAe0GgH/QblQEjtTwc6FBAQrs/pjZYwCA+RxO1er2pNlTAKdFuwHg/9FuWATtBoD/R7tRQVjUgNT6SqnpJWZPAQDmOvtOqW5Hs6cASoZ2AwDthrXQbgCg3agwLGrgpN6vS84gs6cAAHOEVZMufcHsKYDSod0A/BnthhXRbgD+jHajArGogZPimksX/NvsKQDAHJc8J4VXN3sKoHRoNwB/RrthRbQbgD+j3ahALGrgH92flKLqmj0FAFStOmdKne42ewqgbGg3AH9Eu2FltBuAP6LdqGAsauAfIZHSlSPNngIAqo4zSLr6fclJDmFRtBuAv6HdsDraDeD/2rv3KDnrOs/jn+rudC7dJOESmoBIhCAKEggZvHKJGOPIDKDOEgQMK+LIcViO2ZmB1VnHdY46oqwrDoyO43pBHddhvKHDIIgkqKACQdQgyhCIIAQil4QkpJO+1P7RIeGSmFtVP89T9Xqdk9OdalL9bU6R94/zfaqq3Wg3TeDRxDO9cG5y5JlFTwEwOo67INnn8KKngF2j3UA70W5agXYD7US7aYJavV6vFz0EJdO/KvnHlyerHyx6EoDm2WdG8ucLk86uoieBXafdQDvQblqJdgPtQLtpEs/U4LnGTUpOvrToKQCap7M7eeM/OVjROrQbaHXaTavRbqDVaTdNZKnBlh08J5n5lqKnAGiO4y5M+g4regpoLO0GWpl204q0G2hl2k0Tefkptq5/VfLJVyRPPFD0JACNM/XI5O3fd7UIrUm7gVak3bQy7QZakXbTZJ6pwdaNm5Sc/A9FTwHQOJ3dyRs+5WBF69JuoNVoN61Ou4FWo92MAksN/rDpc5Kjzip6CoDGOP5/JH2HFj0FNJd2A61Eu2kH2g20Eu1mFHj5Kbat/4mNT4f9XdGTUCKfumVDPnXrhixbOZwkOWzvzrzvuO68/uAxSZJzv7Mu1907mAdX19PbXcsr9+/MR+aMzYv26tzqfb5/UX++umQw9z8xnO7OZNbUznzohLF52fNGtvvrB+t5+3f6c+WvB7JPb0c++SfjMufAzZv/i29cn/tWDefSE8c38SensvadOfL0146tPwahZWg3W6DdVI520060my3QbipHuxklnqnBto2bmJxyaZJa0ZNQIs+bWMtFc8Zm8Tt6cus7enLCtM6c8tV1uWPFUJJk1r6d+fwp43Pneb255i0TUq8nc7/0ZIaGt75HfeGenbnsxHH55Tt786OzezJtckfmfvnJ/H7tyAHunxcPZPGDQ/nxOT15x6wxOePr6/LUXvbex4fzmdsG8qHXjGv+D0/1dI4defqrgxXtQrvZAu2mUrSbdqPdbIF2UynazSjyTA223/fel9z4iaKnoMT2+MgTufi143LOUd3P+dovHh7KEf+0Nnef35uD9ti+feoT6+uZdNHqXDd/Ql5zYFf+4qp1mTi2lovmjMu6gXom/P3qrPjr3kzp6cgff3ltzp3VnTe+eEyjfyxawZ/8n+Toc4qeAkafdrMN2k1paTftSrvZBu2mtLSbUeSZGmy/1/yv5IBjip6CEhoaruerSwaydiB5xf7P3civ3VDP5382kBdMrmX/Sdt35dGGoXr+efGGTBqbHLHPyF9VR/R15kf3DWXdQD3XLB3M1N5a9ppQy7/8YiDjumoOVmzZjNMcrGhf2s1WaDelpt20M+1mK7SbUtNuRplnarBjVj+cfPrYZM3DRU9CCfzy4aG84rNr0z+Y9HYnX/mz8Tnx4M0HnE/esiEXfq8/aweSQ/bsyFVnTNjm1SL/ftdA3vy1dXlyIJm6Wy3fOm1Cjt5v5MA2MFTPgu/25z/uHsxeE2r5+OvG5dApnTn6M2uy6L/25NOLN+SrSwZy0B4d+dzJ47PfRHvbtjflxcmfX590Tyh6EiiOdvM02k3paTdoN8+g3ZSedlMASw123LIfJZefnNSHip6Egm0Yque+VfWs6q/na78ayP/92UBueOuEHDpl5DC0qr+eFWuHs3xNPf/7pg15YPVwbnxbT8Z1bf2qkbUb6lm+pp5HnhzOZxYP5Pplg/np23uyd8+WD0pnX7kuR/Z15AW7d+Rvvr8+P317Tz564/os+f1wvj5PUNtad2/yjkXJXgcXPQkUT7vZSLspNe2GzbSbjbSbUtNuCmKdyo6bdkzymr8tegpKoLuzlul7dGTWvp358JxxOaKvI5/4yYZNX580rpaD9+zMcQd05WvzxufXjwznm3cO/sH77Okeuc+XP68rnz1lfLo6avnsbQNb/GcX3juYO1YM5b+9tDuLlg3lxIO70tNdy7zDxmTRMof/tnfypQ5W8BTtZiPtptS0GzbTbjbSbkpNuymIpQY751ULkkNOLHoKSma4nqzfypmmXh/5tX5ox54cNlyvb/HP9A/Wc95/9OfTfzo+nR21DA0nAxu/98DwyOuN0sZeem7ykjcVPQWUi3azBdpNaWg3PJd2swXaTWloNwWy1GDn1GrJGz6V7D6t6EkoyHuu688PfjuYZSuH88uHh/Ke6/qzaNlQzjx8TO55fDgf/uH6LH5wKPetGs5N9w/m1H9bl/Fjajnx4K5N9/Giy9bkm3eOXA2ydkM9f/P9/vzkd4P57crhLH5wKG+7cl0eeKKeUw997huRfeCG9Tnx4K7MnDrylNtXPb8z3/j1QH7x8FAuu3lDXvX8ruf8GdrE845OXvehoqeA8tHutqfdlJZ2w5Zpd9vTbkpLuymYv33YeeMnJ/O+mHx2bjLYX/Q0jLIVa+s565vrsnxNPZPG1jKjryPXvGVCXntQVx5cPZwf3jeUS366IY+vq6evt5bjDujMTW+b8IzX6PzNo8NZtX7kyo7OjuTXjwzn8p+vyyNP1rPn+FqO3q8zPzy7J4ft3fmM771kxVCu+NVgbj+3Z9Nt/+XQrixa1pVjP782h+zZka/8mdf1bEsT9kxO/ULS+dwDORDtbnPaTSlpN/xh2t3WtJtS0m5KwBuFs+sWfyH5zruKngJod7WO5MyvJdNfU/QkUH7aDZSBdsP2026gDLSbkvDyU+y6WW9NjnxL0VMA7W72exysYHtpN1AG2g3bT7uBMtBuSsJSg8Y46ZLkBccXPQXQro44Izn+wqKngGrRbqBI2g07TruBImk3JWKpQWN0jklO+3Ky92FFTwK0mwNnJyf/Q9FTQPVoN1AU7Yado91AUbSbkrHUoHHGTUzO/Ldkt32LngRoF30vSeZ9yRuUwc7SbmC0aTfsGu0GRpt2U0KWGjTWpP1GDlhjJxY9CdDqJm78+2acv29gl2g3MFq0GxpDu4HRot2UlKUGjbfPS5J5lycdNrhAk4zdeIXaRFeoQUNoN9Bs2g2Npd1As2k3JWapQXMcdILX2gOao2NMMu+LSZ/XEoaG0m6gWbQbmkO7gWbRbkrOUoPmOfKMZPZ7ip4CaDUnX5oc9Oqip4DWpN1AM2g3NI92A82g3ZScpQbNNfvdycy3FD0F0Cpe/T+TI08vegpobdoNNJJ2Q/NpN9BI2k0FWGrQfH/6iWT6nKKnAKruqLOS4y8segpoD9oNNIJ2w+jRbqARtJuKsNSg+Tq7ktO+nLzg+KInAapqxmkj/6MGjA7tBnaVdsPo0m5gV2k3FWKpwegYMz45418dsIAdN+O05A3/lHRIFowq7QZ2lnZDMbQb2FnaTcV4pDJ6HLCAHeVgBcXSbmBHaTcUS7uBHaXdVJBHK6PLAQvYXg5WUA7aDWwv7YZy0G5ge2k3FeURy+hzwAK2xcEKykW7gW3RbigX7Qa2RbupMI9aiuGABWyNgxWUk3YDW6PdUE7aDWyNdlNxHrkUxwELeDYHKyg37QaeTbuh3LQbeDbtpgV49FIsByzgKQ5WUA3aDTxFu6EatBt4inbTIjyCKd5TB6zpc4qeBCjKzLc4WEGVaDeg3VAt2g1oNy3Eo5hyGDM+Of1fk5nzi54EGG2z35Oc8o8OVlA12g3tS7uhmrQb2pd202Jq9Xq9XvQQ8Aw3fDRZ+KGipwCarWNMctInkplnFj0JsKu0G9qDdkPr0G5oD9pNi7LUoJxu/3/Jt89PhgeKngRohu7dktO+mBx0QtGTAI2i3dDatBtaj3ZDa9NuWpilBuV1z6LkX+cn658oehKgkXbbNznzimSfw4ueBGg07YbWpN3QurQbWpN20+IsNSi3h+9I/uXU5IkHip4EaIS9D03O/Foyab+iJwGaRbuhtWg3tD7thtai3bQBSw3Kb9UDyVfmJQ8vKXoSYFe84LjktC8n4yYVPQnQbNoNrUG7oX1oN7QG7aZNWGpQDf1PJFfMH3lqLFA9M96cnHJZ0jmm6EmA0aLdUG3aDe1Hu6HatJs2YqlBdQwNJFf9ZXLbF4ueBNhuteT4C5NX/03RgwBF0G6oIO2GtqbdUEHaTfux1KB6bvtS8h8XJIPrip4E+EPG75688Z+TF84tehKgaNoN1aDdwFO0G6pBu2lTlhpU00O/TK44K3nsnqInAbZk36OSeZcnk59f9CRAWWg3lJt2A8+m3VBu2k0bs9SguvpXJd/6i+TX/170JMDT/dE5yR9flHR1Fz0JUDbaDeWk3cDWaDeUk3bT5iw1qL4b/yH5/t8lw4NFTwLtbUxPctIlyYx5RU8ClJ12QzloN7C9tBvKQbshiaUGreK3NyX/dnay5qGiJ4H2tNcLk3lfSvZ+UdGTAFWh3VAs7QZ2lHZDsbQbNrHUoHWsWZF87W3Jsh8WPQm0l8PelJx8aTK2t+hJgKrRbiiGdgM7S7uhGNoNz2CpQWsZHkqu/2Dyo48n8dCGpursTuZ+KHnZO4qeBKgy7YbRo91AI2g3jB7thi2y1KA13fuD5MrzkpX3FT0JtKa+w5M3fDKZOqPoSYBWod3QXNoNNJp2Q3NpN2yVpQata/2a5HvvS279XFw9Ag3S0ZUc+1fJcRcknWOKngZoNdoNjafdQDNpNzSedsM2WWrQ+u5ZlFx5frLK1SOwS/pesvEqkSOKngRoddoNjaHdwGjRbmgM7YbtYqlBe1i/Orn2b5PFny96Eqiejq7kmL9Mjr/QVSLA6NFu2HnaDRRBu2HnaTfsEEsN2svShcm3z09W3V/0JFANex82cpXIvkcWPQnQrrQbdox2A0XTbtgx2g07zFKD9rN+dXLte5PFXyh6Eiivjq7kmP+eHHdh0tVd9DRAu9Nu2DbtBspEu2HbtBt2mqUG7evu7yffeZerR+DZ9j5041UiM4ueBOCZtBu2TLuBstJu2DLthl1iqUF72/Bk8sOPJTddmgytL3oaKNbYicnsdycvPTfp7Cp6GoAt027YTLuBKtBu2Ey7oSEsNSBJHrsnufrdyX9eU/QkUIBacsTpyWv/Lundu+hhALaPdtPWtBuoIO2mrWk3NJKlBjzdXdck3333yGEL2sHUI5MTL072f2nRkwDsHO2m3Wg3UHXaTbvRbmg4Sw14tsENyc2fTn5wcdK/quhpoDl2m5qc8N7kiDOSjo6ipwHYNdpNO9BuoJVoN+1Au6FpLDVga9Y+miz6cLL488nwYNHTQGOMmZC88vzkVe9KunuKngagsbSbVqTdQCvTblqRdkPTWWrAtvz+ruTa93rdTyqulsw4LXnN+5JJ+xU9DEBzaTctQbuBNqLdtATthtFiqQHb676fJDd8JFl6fdGTwPardSSHnpIcd2HSd2jR0wCMLu2mirQbaGfaTRVpN4w6Sw3YUfffMnLIuvt7RU8CW1frSA57U3LcBcneLyp6GoBiaTdVoN0Am2k3VaDdUBhLDdhZD9yW3PDR5K6ri54ENqt1Joefmhz318leBxc9DUC5aDdlpN0AW6fdlJF2Q+EsNWBXLf/5yCHr11cl8Z8TBenoSma8OTnur5I9Dix6GoBy027KQLsBtp92UwbaDaVhqQGN8tCS5AcfTX717ThkMWo6xiRHnp4c+1fJ7tOKngagWrSbImg3wM7Tboqg3VA6lhrQaCvuTG66LFny9WRwXdHT0KrGTkqOPCN5xXnJ5P2Lngag2rSb0aDdAI2j3YwG7YbSstSAZln3ePKzf0lu/Vzy2NKip6FV7DMjOfrtI6/f2T2h6GkAWot20wzaDdA82k0zaDeUnqUGNFu9niy9Prnls8ld303qQ0VPRNV0jk0Oe+PIoWr/o4ueBqD1aTe7SrsBRpd2s6u0GyrFUgNG06rfJYu/kNz2xWTNw0VPQ9lNPiD5o7clM+cnPXsWPQ1Ae9JudoR2AxRPu9kR2g2VZKkBRRgaSO789shVJL+9sehpKJNaRzL9tSNXh0yfk3R0FD0RAIl2s3XaDVBO2s3WaDdUnqUGFO33d428udkd30geuavoaSjKvjNHnup62Ju8ARlA2Wk3iXYDVIl2k2g3tBBLDSiTh5Ykd3xz5KD12D1FT0Oz9R2evOSNI4eqPQ4sehoAdoZ2txftBqg+7W4v2g0tyVIDyurB20cOWXd8M1l5X9HT0ChTXjRyVchL3pTsdXDR0wDQSNrdmrQboHVpd2vSbmh5lhpQBb+7NVnyjeRX30qeeKDoadhRexw0cpg67E1J36FFTwPAaNDuatNugPaj3dWm3dBWLDWgSur1ZPnPk3sWJvcsSu77STLYX/RUPFv3bsm0VyUHvjo5cHay94uKngiAomh3NWg3AE/R7mrQbmhrlhpQZQP9yX03jRy0li5MHvplEv9Jj7qOrmS/WZsPU887OunsKnoqAMpIu8tBuwHYXtpdDtoNPI2lBrSStY8m9y4aOWjdc0OyymuCNs1eLxw5SB346mTaMcm4iUVPBEAVaffo0W4AGkG7R492A1thqQGt7NGlye9uGXnzs+W3J8t/kQysLXqq6hk3OZl6RLLvkcnUI5P9X5ZM2q/goQBoSdrdGNoNwGjR7sbQbmAHWGpAOxkeTh79z82HrQdvH3nq7IbVBQ9WIuMmbz5EPfVxjxcUOhIAbUy7t027ASgT7d427QZ2kaUGtLvh4eSxpZsPXI/clTy+LFl5X2u/GdqYnmT3A5LdpyVTDtl8mNp9WrFzAcC2aLd2A1At2q3dQENZagBbVq8nqx8aOWg9/dfK3458XP1QSv3maLWOZOJ+I4el3Q9IJk/b+PnGX71TCh0PABpOuwGgWrQbYKdYagA7Z6B/5KC1+qGkf1XSvzJZt3LLH/tXbf58eHDHv1dn98jTU8dPHvk4btLmz7f0cbepyeTnJ51jdvGHBIAWot0AUC3aDbBFlhrA6BpYlwwPJfXhpD408jTc+sbf1zqTjs6kVtv8eUdX0jW26KkBoH1pNwBUi3YDLc5SAwAAAAAAqISOogcAAAAAAADYHpYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCVYagAAAAAAAJVgqQEAAAAAAFSCpQYAAAAAAFAJlhoAAAAAAEAlWGoAbWn27NlZsGDBpt9PmzYtl1xySWHzAAB/mHYDQLVoN9AsXUUPAFAGt9xyS3p6eooeAwDYTtoNANWi3UCjWGoAJJkyZUrRIwAAO0C7AaBatBtoFC8/BZTK7Nmzc/7552fBggXZfffd09fXl8985jNZu3Ztzj777Oy2226ZPn16rr766k1/ZsmSJXn961+f3t7e9PX1Zf78+XnkkUc2fX3t2rU566yz0tvbm6lTp+ZjH/vYc77v058Gu2zZstRqtdx+++2bvr5y5crUarUsWrQoSbJo0aLUarVcc801mTlzZsaPH58TTjghK1asyNVXX50Xv/jFmThxYs4444w8+eSTTfl3BQBloN0AUC3aDVSdpQZQOpdffnn22muv3HzzzTn//PPzzne+M6eeempe+cpX5rbbbsvcuXMzf/78PPnkk1m5cmVOOOGEzJw5M7feemu++93v5uGHH868efM23d8FF1yQG264IVdeeWWuvfbaLFq0KLfddltDZn3/+9+fyy67LDfddFPuv//+zJs3L5dcckm+8pWv5Kqrrsq1116bSy+9tCHfCwDKSrsBoFq0G6i0OkCJHH/88fVjjjlm0+8HBwfrPT099fnz52+6bfny5fUk9R//+Mf1D3zgA/W5c+c+4z7uv//+epL6b37zm/rq1avr3d3d9SuuuGLT1x999NH6+PHj6+9617s23XbAAQfUP/7xj9fr9Xr93nvvrSep/+xnP9v09ccff7yepL5w4cJ6vV6vL1y4sJ6kft111236Zz784Q/Xk9SXLl266bZzzz23/rrXvW5X/pUAQKlpNwBUi3YDVec9NYDSmTFjxqbPOzs7s+eee+bwww/fdFtfX1+SZMWKFfn5z3+ehQsXpre39zn3s3Tp0qxbty4bNmzIy172sk2377HHHjnkkEMaPmtfX18mTJiQAw888Bm33XzzzQ35XgBQVtoNANWi3UCVWWoApTNmzJhn/L5Wqz3jtlqtliQZHh7OmjVrctJJJ+UjH/nIc+5n6tSpufvuu3f4+3d0jLwyX71e33TbwMDANmd99pxP3TY8PLzDMwBAlWg3AFSLdgNV5j01gEo76qijcscdd2TatGmZPn36M3719PTkoIMOypgxY/LTn/500595/PHHc9ddd231PqdMmZIkWb58+abbnv7mZQDAztNuAKgW7QbKxlIDqLTzzjsvjz32WE4//fTccsstWbp0aa655pqcffbZGRoaSm9vb84555xccMEFuf7667NkyZK89a1v3XRVyJaMHz8+L3/5y3PRRRflzjvvzA033JD3vve9o/hTAUDr0m4AqBbtBsrGUgOotH333Tc33nhjhoaGMnfu3Bx++OFZsGBBJk+evOkAdfHFF+fYY4/NSSedlDlz5uSYY47JrFmz/uD9fu5zn8vg4GBmzZqVBQsW5IMf/OBo/DgA0PK0GwCqRbuBsqnVn/7idQAAAAAAACXlmRoAAAAAAEAlWGoAAAAAAACVYKkBAAAAAABUgqUGAAAAAABQCZYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCVYagAAAAAAAJVgqQEAAAAAAFSCpQYAAAAAAFAJlhoAAAAAAEAlWGoAAAAAAACVYKkBAAAAAABUgqUGAAAAAABQCZYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCVYagAAAAAAAJVgqQEAAAAAAFSCpQYAAAAAAFAJlhoAAAAAAEAlWGoAAAAAAACVYKkBAAAAAABUgqUGAAAAAABQCZYaAAAAAABAJVhqAAAAAAAAlWCpAQAAAAAAVIKlBgAAAAAAUAmWGgAAAAAAQCX8f55qSSPSIXsJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Приращение данных (undersampling)\n", + "df_train_undersampled: DataFrame = undersample(df_train, 'salary_category')\n", + "df_val_undersampled: DataFrame = oversample(df_val, 'salary_category')\n", + "df_test_undersampled: DataFrame = undersample(df_test, 'salary_category')\n", + "\n", + "# Проверка сбалансированности\n", + "print('После применения метода undersampling:')\n", + "check_balance(df_train_undersampled, 'Обучающая выборка', 'salary_category')\n", + "check_balance(df_val_undersampled, 'Контрольная выборка', 'salary_category')\n", + "check_balance(df_test_undersampled, 'Тестовая выборка', 'salary_category')\n", + "\n", + "# Проверка необходимости аугментации\n", + "print(f\"Для обучающей выборки аугментация данных {'не ' if not need_augmentation(df_train_undersampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + "print(f\"Для контрольной выборки аугментация данных {'не ' if not need_augmentation(df_val_undersampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + "print(f\"Для тестовой выборки аугментация данных {'не ' if not need_augmentation(df_test_undersampled, 'salary_category', 'low', 'medium') else ''}требуется\")\n", + " \n", + "# Визуализация сбалансированности классов\n", + "visualize_balance(df_train_undersampled, df_val_undersampled, df_test_undersampled, 'salary_category')" + ] } ], "metadata": { diff --git a/static/csv/ds_salaries.csv b/static/csv/ds_salaries.csv new file mode 100644 index 0000000..2339741 --- /dev/null +++ b/static/csv/ds_salaries.csv @@ -0,0 +1,3756 @@ +work_year,experience_level,employment_type,job_title,salary,salary_currency,salary_in_usd,employee_residence,remote_ratio,company_location,company_size +2023,SE,FT,Principal Data Scientist,80000,EUR,85847,ES,100,ES,L +2023,MI,CT,ML Engineer,30000,USD,30000,US,100,US,S +2023,MI,CT,ML Engineer,25500,USD,25500,US,100,US,S +2023,SE,FT,Data Scientist,175000,USD,175000,CA,100,CA,M +2023,SE,FT,Data Scientist,120000,USD,120000,CA,100,CA,M +2023,SE,FT,Applied Scientist,222200,USD,222200,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,SE,FT,Data Scientist,219000,USD,219000,CA,0,CA,M +2023,SE,FT,Data Scientist,141000,USD,141000,CA,0,CA,M +2023,SE,FT,Data Scientist,147100,USD,147100,US,0,US,M +2023,SE,FT,Data Scientist,90700,USD,90700,US,0,US,M +2023,SE,FT,Data Analyst,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2023,EN,FT,Applied Scientist,213660,USD,213660,US,0,US,L +2023,EN,FT,Applied Scientist,130760,USD,130760,US,0,US,L +2023,SE,FT,Data Modeler,147100,USD,147100,US,0,US,M +2023,SE,FT,Data Modeler,90700,USD,90700,US,0,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Analyst,150000,USD,150000,US,100,US,M +2023,MI,FT,Data Analyst,110000,USD,110000,US,100,US,M +2023,SE,FT,Research Engineer,275000,USD,275000,DE,0,DE,M +2023,SE,FT,Research Engineer,174000,USD,174000,DE,0,DE,M +2023,SE,FT,Analytics Engineer,230000,USD,230000,GB,100,GB,M +2023,SE,FT,Analytics Engineer,143200,USD,143200,GB,100,GB,M +2023,SE,FT,Business Intelligence Engineer,225000,USD,225000,US,0,US,M +2023,SE,FT,Business Intelligence Engineer,156400,USD,156400,US,0,US,M +2023,SE,FT,Machine Learning Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Strategist,90000,USD,90000,CA,0,CA,M +2023,SE,FT,Data Strategist,72000,USD,72000,CA,0,CA,M +2023,SE,FT,Data Engineer,253200,USD,253200,US,0,US,M +2023,SE,FT,Data Engineer,90700,USD,90700,US,0,US,M +2023,SE,FT,Computer Vision Engineer,342810,USD,342810,US,0,US,M +2023,SE,FT,Computer Vision Engineer,184590,USD,184590,US,0,US,M +2023,MI,FT,Data Engineer,162500,USD,162500,US,0,US,M +2023,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,MI,FT,Data Analyst,105380,USD,105380,US,0,US,M +2023,MI,FT,Data Analyst,64500,USD,64500,US,0,US,M +2023,EN,FT,Data Quality Analyst,100000,USD,100000,NG,100,NG,L +2023,EN,FT,Compliance Data Analyst,30000,USD,30000,NG,100,NG,L +2022,MI,FT,Machine Learning Engineer,1650000,INR,20984,IN,50,IN,L +2023,EN,FT,Applied Scientist,204620,USD,204620,US,0,US,L +2023,EN,FT,Applied Scientist,110680,USD,110680,US,0,US,L +2023,SE,FT,Data Engineer,270703,USD,270703,US,0,US,M +2023,SE,FT,Data Engineer,221484,USD,221484,US,0,US,M +2023,SE,FT,Data Scientist,212750,USD,212750,US,100,US,M +2023,SE,FT,Data Scientist,185000,USD,185000,US,100,US,M +2023,SE,FT,Data Scientist,262000,USD,262000,US,100,US,M +2023,SE,FT,Data Scientist,245000,USD,245000,US,100,US,M +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183500,USD,183500,US,100,US,M +2023,SE,FT,Data Scientist,218500,USD,218500,US,100,US,M +2023,SE,FT,Data Scientist,199098,USD,199098,US,100,US,M +2023,SE,FT,Data Engineer,203300,USD,203300,US,100,US,M +2023,SE,FT,Data Engineer,123600,USD,123600,US,100,US,M +2023,SE,FT,Research Engineer,189110,USD,189110,US,0,US,M +2023,SE,FT,Research Engineer,139000,USD,139000,US,0,US,M +2023,EX,FT,Data Scientist,258750,USD,258750,US,0,US,M +2023,EX,FT,Data Scientist,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Engineer,231500,USD,231500,US,100,US,M +2023,SE,FT,Data Engineer,166000,USD,166000,US,100,US,M +2023,SE,FT,Data Scientist,172500,USD,172500,US,100,US,M +2023,SE,FT,Data Scientist,110500,USD,110500,US,100,US,M +2023,SE,FT,Data Engineer,238000,USD,238000,US,0,US,M +2023,SE,FT,Data Engineer,176000,USD,176000,US,0,US,M +2023,SE,FT,Data Engineer,237000,USD,237000,US,100,US,M +2023,SE,FT,Data Engineer,201450,USD,201450,US,100,US,M +2023,SE,FT,Applied Scientist,309400,USD,309400,US,0,US,L +2023,SE,FT,Applied Scientist,159100,USD,159100,US,0,US,L +2023,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Data Engineer,81500,USD,81500,US,0,US,M +2023,SE,FT,Data Scientist,237000,USD,237000,US,100,US,M +2023,SE,FT,Data Scientist,201450,USD,201450,US,100,US,M +2023,SE,FT,Computer Vision Engineer,280000,USD,280000,US,0,US,M +2023,SE,FT,Computer Vision Engineer,210000,USD,210000,US,0,US,M +2023,SE,FT,Data Architect,280100,USD,280100,US,100,US,M +2023,SE,FT,Data Architect,168100,USD,168100,US,100,US,M +2023,SE,FT,Data Engineer,193500,USD,193500,US,100,US,M +2023,SE,FT,Data Engineer,139000,USD,139000,US,100,US,M +2023,MI,FT,Data Scientist,510000,HKD,65062,HK,0,HK,L +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,PT,100,US,M +2023,MI,FT,Applied Machine Learning Engineer,65000,EUR,69751,IN,100,DE,S +2022,EN,FT,AI Developer,300000,USD,300000,IN,50,IN,L +2023,MI,FT,Machine Learning Engineer,90000,EUR,96578,NL,100,NL,L +2023,SE,FT,Business Intelligence Engineer,185900,USD,185900,US,0,US,M +2023,SE,FT,Business Intelligence Engineer,129300,USD,129300,US,0,US,M +2023,SE,FT,Data Engineer,225000,USD,225000,US,100,US,M +2023,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Engineer,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Scientist,45000,EUR,48289,ES,0,ES,M +2023,SE,FT,Data Scientist,36000,EUR,38631,ES,0,ES,M +2023,SE,FT,Data Scientist,105000,USD,105000,US,0,US,M +2023,SE,FT,Data Scientist,70000,USD,70000,US,0,US,M +2023,EN,FT,Machine Learning Engineer,163196,USD,163196,US,0,US,M +2023,EN,FT,Machine Learning Engineer,145885,USD,145885,US,0,US,M +2023,SE,FT,Data Engineer,217000,USD,217000,US,100,US,M +2023,SE,FT,Data Engineer,185000,USD,185000,US,100,US,M +2023,SE,FT,Data Analyst,202800,USD,202800,US,0,US,L +2023,SE,FT,Data Analyst,104300,USD,104300,US,0,US,L +2023,SE,FT,Data Analyst,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Analyst,65000,USD,65000,US,0,US,M +2023,SE,FT,Data Engineer,165000,USD,165000,US,0,US,M +2023,SE,FT,Data Engineer,132300,USD,132300,US,0,US,M +2023,SE,FT,Data Engineer,179170,USD,179170,US,0,US,M +2023,SE,FT,Data Engineer,94300,USD,94300,US,0,US,M +2023,SE,FT,Analytics Engineer,152500,USD,152500,US,0,US,M +2023,SE,FT,Analytics Engineer,116450,USD,116450,US,0,US,M +2023,SE,FT,Data Engineer,247300,USD,247300,US,0,US,M +2023,SE,FT,Data Engineer,133800,USD,133800,US,0,US,M +2023,SE,FT,Research Engineer,203000,USD,203000,US,0,US,M +2023,SE,FT,Research Engineer,133000,USD,133000,US,0,US,M +2023,EN,FT,Research Scientist,220000,USD,220000,US,50,US,L +2022,EN,FT,Machine Learning Engineer,54000,CHF,56536,CH,100,CH,S +2023,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Analytics Engineer,289800,USD,289800,US,0,US,M +2023,SE,FT,Analytics Engineer,214000,USD,214000,US,0,US,M +2023,SE,FT,Analytics Engineer,179820,USD,179820,US,0,US,M +2023,SE,FT,Analytics Engineer,143860,USD,143860,US,0,US,M +2023,SE,FT,Machine Learning Engineer,283200,USD,283200,US,100,US,M +2023,SE,FT,Machine Learning Engineer,188800,USD,188800,US,100,US,M +2023,SE,FT,Analytics Engineer,289800,USD,289800,US,0,US,M +2023,SE,FT,Analytics Engineer,214200,USD,214200,US,0,US,M +2023,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,MI,FT,Data Analytics Manager,155000,USD,155000,US,0,US,M +2023,MI,FT,Data Analytics Manager,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Engineer,161800,USD,161800,US,100,US,M +2023,SE,FT,Data Engineer,141600,USD,141600,US,100,US,M +2023,SE,FT,Machine Learning Engineer,342300,USD,342300,US,0,US,L +2023,SE,FT,Machine Learning Engineer,176100,USD,176100,US,0,US,L +2023,MI,FT,Data Engineer,100000,USD,100000,US,100,US,M +2023,MI,FT,Data Engineer,70000,USD,70000,US,100,US,M +2023,EN,FT,Data Engineer,85000,USD,85000,US,0,US,M +2023,EN,FT,Data Engineer,65000,USD,65000,US,0,US,M +2023,SE,FT,Data Scientist,138784,USD,138784,US,100,US,M +2023,SE,FT,Data Scientist,83270,USD,83270,US,100,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,0,US,M +2023,EN,FT,Data Analyst,70000,USD,70000,US,0,US,M +2023,SE,FT,Data Analyst,204500,USD,204500,US,0,US,M +2023,SE,FT,Data Analyst,138900,USD,138900,US,0,US,M +2023,SE,FT,Machine Learning Engineer,318300,USD,318300,US,100,US,M +2023,SE,FT,Machine Learning Engineer,212200,USD,212200,US,100,US,M +2023,SE,FT,Data Engineer,95000,USD,95000,US,100,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Scientist,195000,USD,195000,US,0,US,M +2023,SE,FT,Data Scientist,160000,USD,160000,US,0,US,M +2023,SE,FT,Analytics Engineer,230000,USD,230000,US,0,US,M +2023,SE,FT,Analytics Engineer,143200,USD,143200,US,0,US,M +2023,MI,FT,Data Engineer,100000,USD,100000,US,100,US,M +2023,MI,FT,Data Engineer,70000,USD,70000,US,100,US,M +2023,MI,FT,Business Data Analyst,105000,USD,105000,US,50,US,L +2023,MI,FT,Applied Data Scientist,1700000,INR,20670,IN,100,IN,L +2023,MI,FT,Data Analyst,38000,GBP,46178,GB,0,GB,M +2023,MI,FT,Data Analyst,35000,GBP,42533,GB,0,GB,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Data Analyst,168400,USD,168400,US,0,US,M +2023,SE,FT,Data Analyst,105200,USD,105200,US,0,US,M +2023,SE,FT,Applied Scientist,309400,USD,309400,US,0,US,L +2023,SE,FT,Applied Scientist,159100,USD,159100,US,0,US,L +2023,SE,FT,Machine Learning Engineer,190000,USD,190000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Engineer,162500,USD,162500,US,0,US,M +2023,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Analytics Engineer,150000,USD,150000,US,100,US,M +2023,SE,FT,Analytics Engineer,120000,USD,120000,US,100,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Applied Scientist,222200,USD,222200,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,SE,FT,Data Analyst,45000,GBP,54685,CF,100,CF,M +2023,SE,FT,Data Analyst,35000,GBP,42533,CF,100,CF,M +2023,SE,FT,Data Engineer,241000,USD,241000,US,0,US,M +2023,SE,FT,Data Engineer,155000,USD,155000,US,0,US,M +2023,SE,FT,Data Engineer,220000,USD,220000,US,100,US,M +2023,SE,FT,Data Engineer,190000,USD,190000,US,100,US,M +2023,MI,FT,Data Scientist,55000,GBP,66837,GB,0,GB,M +2023,MI,FT,Data Scientist,45000,GBP,54685,GB,0,GB,M +2020,EX,FT,Staff Data Analyst,15000,USD,15000,NG,0,CA,M +2023,MI,FT,ETL Engineer,70000,GBP,85066,GB,100,GB,M +2023,MI,FT,ETL Engineer,47500,GBP,57723,GB,100,GB,M +2023,EN,FT,Data Analyst,85000,USD,85000,US,100,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,300000,USD,300000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,250000,USD,250000,US,0,US,M +2023,SE,FT,Data Scientist,228000,USD,228000,US,0,US,M +2023,SE,FT,Data Scientist,186000,USD,186000,US,0,US,M +2023,SE,FT,Data Scientist,190000,USD,190000,US,0,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,0,US,M +2023,MI,FT,Research Engineer,230000,USD,230000,US,0,US,M +2023,MI,FT,Research Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Architect,180000,USD,180000,US,100,US,M +2023,SE,FT,Data Architect,115000,USD,115000,US,100,US,M +2023,SE,FT,Data Architect,200000,USD,200000,US,100,US,M +2023,SE,FT,Data Architect,115000,USD,115000,US,100,US,M +2023,SE,FT,Data DevOps Engineer,50000,EUR,53654,FR,50,FR,S +2023,EX,FT,Data Engineer,220000,USD,220000,US,0,US,M +2023,EX,FT,Data Engineer,205000,USD,205000,US,0,US,M +2023,MI,FT,Data Engineer,180000,USD,180000,US,0,US,M +2023,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Engineer,200000,USD,200000,US,100,US,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2023,SE,FT,Computer Vision Engineer,215000,USD,215000,US,0,US,M +2023,SE,FT,Computer Vision Engineer,170000,USD,170000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,247500,USD,247500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,172200,USD,172200,US,0,US,M +2023,SE,FT,Data Scientist,224000,USD,224000,CA,0,CA,M +2023,SE,FT,Data Scientist,176000,USD,176000,CA,0,CA,M +2023,SE,FT,Data Analyst,120000,USD,120000,US,100,US,M +2023,SE,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,EN,FT,Data Engineer,1400000,INR,17022,IN,100,IN,L +2023,SE,FT,Applied Data Scientist,100000,AUD,68318,AU,100,FI,M +2023,MI,FT,AI Developer,100000,SGD,75020,FI,0,FI,M +2023,SE,FT,Data Analyst,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Analyst,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Engineer,128000,USD,128000,US,0,US,M +2023,SE,FT,Data Engineer,81500,USD,81500,US,0,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Data Engineer,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,EX,FT,Head of Data,329500,USD,329500,US,0,US,M +2023,EX,FT,Head of Data,269600,USD,269600,US,0,US,M +2023,SE,FT,Data Quality Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Quality Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Scientist,250000,USD,250000,US,0,US,M +2023,SE,FT,Data Scientist,162500,USD,162500,US,0,US,M +2023,MI,FT,AI Developer,200000,USD,200000,US,100,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2023,EX,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,EX,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Data Scientist,203500,USD,203500,US,0,US,M +2023,SE,FT,Data Scientist,152000,USD,152000,US,0,US,M +2023,SE,FT,Data Scientist,239000,USD,239000,US,0,US,L +2023,SE,FT,Data Scientist,122900,USD,122900,US,0,US,L +2023,SE,FT,Data Scientist,237000,USD,237000,US,0,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Science Manager,191765,USD,191765,US,0,US,M +2023,SE,FT,Data Science Manager,134236,USD,134236,US,0,US,M +2023,SE,FT,Analytics Engineer,190000,USD,190000,US,100,US,M +2023,SE,FT,Analytics Engineer,112000,USD,112000,US,100,US,M +2022,SE,FT,Data Scientist,84000,EUR,88256,ES,100,GB,L +2023,EN,FT,Data Engineer,85000,USD,85000,US,0,US,M +2023,EN,FT,Data Engineer,65000,USD,65000,US,0,US,M +2023,SE,FT,Data Analyst,135000,USD,135000,US,0,US,M +2023,SE,FT,Data Analyst,105500,USD,105500,US,0,US,M +2023,SE,FT,Research Engineer,293000,USD,293000,US,0,US,M +2023,SE,FT,Research Engineer,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Analyst,70000,USD,70000,US,0,US,M +2023,SE,FT,Data Engineer,220000,USD,220000,US,100,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Analyst,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Analyst,148500,USD,148500,US,0,US,M +2023,SE,FT,Data Scientist,45000,EUR,48289,ES,0,ES,M +2023,SE,FT,Data Scientist,36000,EUR,38631,ES,0,ES,M +2023,SE,FT,Data Engineer,240500,USD,240500,US,0,US,L +2023,SE,FT,Data Engineer,123700,USD,123700,US,0,US,L +2023,SE,FT,Analytics Engineer,152900,USD,152900,US,100,US,M +2023,SE,FT,Analytics Engineer,117100,USD,117100,US,100,US,M +2023,SE,FT,Analytics Engineer,173000,USD,173000,US,100,US,M +2023,SE,FT,Analytics Engineer,113000,USD,113000,US,100,US,M +2023,SE,FT,Applied Scientist,260000,USD,260000,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,EX,FT,Data Engineer,175000,USD,175000,US,0,US,M +2023,EX,FT,Data Engineer,110000,USD,110000,US,0,US,M +2023,SE,FT,Applied Scientist,260000,USD,260000,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,SE,FT,Research Scientist,130000,USD,130000,US,100,US,M +2023,SE,FT,Research Scientist,110000,USD,110000,US,100,US,M +2023,SE,FT,Applied Scientist,205000,USD,205000,US,100,US,M +2023,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2023,SE,FT,Data Analyst,149500,USD,149500,US,100,US,M +2023,SE,FT,Data Analyst,127075,USD,127075,US,100,US,M +2023,SE,FT,Data Scientist,195000,USD,195000,US,0,US,M +2023,SE,FT,Data Scientist,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Engineer,219535,USD,219535,US,100,US,M +2023,SE,FT,Data Engineer,146115,USD,146115,US,100,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Scientist,135000,USD,135000,US,0,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Scientist,199000,USD,199000,US,0,US,M +2023,SE,FT,Data Scientist,162000,USD,162000,US,0,US,M +2023,SE,FT,Applied Scientist,222200,USD,222200,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,EX,FT,Analytics Engineer,221000,USD,221000,US,100,US,M +2023,EX,FT,Analytics Engineer,153000,USD,153000,US,100,US,M +2023,SE,FT,Data Analyst,187000,USD,187000,US,0,US,M +2023,SE,FT,Data Analyst,128000,USD,128000,US,0,US,M +2023,SE,FT,Research Scientist,210000,USD,210000,US,0,US,M +2023,SE,FT,Research Scientist,136000,USD,136000,US,0,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Scientist,100000,USD,100000,US,100,US,M +2023,SE,FT,Data Engineer,179000,USD,179000,US,0,US,M +2023,SE,FT,Data Engineer,109000,USD,109000,US,0,US,M +2023,SE,FT,Data Scientist,245000,USD,245000,US,0,US,M +2023,SE,FT,Data Scientist,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Analyst,142000,USD,142000,US,100,US,M +2023,SE,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Manager,198800,USD,198800,US,0,US,M +2023,SE,FT,Data Manager,105200,USD,105200,US,0,US,M +2023,SE,FT,Data Analyst,125000,USD,125000,US,100,US,M +2023,SE,FT,Data Analyst,112000,USD,112000,US,100,US,M +2023,SE,FT,Data Scientist,210000,USD,210000,US,0,US,M +2023,SE,FT,Data Scientist,155000,USD,155000,US,0,US,M +2023,SE,FT,Data Manager,115000,USD,115000,US,100,US,M +2023,SE,FT,Data Manager,86000,USD,86000,US,100,US,M +2023,SE,FT,Data Scientist,165000,USD,165000,US,0,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Analyst,139000,USD,139000,US,0,US,M +2023,SE,FT,Data Analyst,106000,USD,106000,US,0,US,M +2023,EN,FT,Data Analyst,55000,CAD,40663,CA,0,CA,L +2022,SE,FT,AI Developer,275000,USD,275000,CA,0,CA,S +2023,SE,FL,Machine Learning Researcher,50000,USD,50000,UA,50,UA,S +2023,MI,FT,Machine Learning Engineer,280700,USD,280700,US,100,US,M +2023,MI,FT,Machine Learning Engineer,150450,USD,150450,US,100,US,M +2023,EN,FT,Data Scientist,70000,CAD,51753,CA,100,CA,L +2023,SE,FT,Data Architect,250500,USD,250500,US,0,US,M +2023,SE,FT,Data Architect,159500,USD,159500,US,0,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Data Analyst,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Analyst,120000,USD,120000,US,0,US,M +2023,EN,FT,Data Scientist,130001,USD,130001,US,100,US,M +2023,EN,FT,Data Scientist,71907,USD,71907,US,100,US,M +2023,MI,FT,Data Scientist,93918,USD,93918,US,100,US,M +2023,MI,FT,Data Scientist,51962,USD,51962,US,100,US,M +2023,SE,FT,Data Analyst,175000,USD,175000,CA,100,CA,M +2023,SE,FT,Data Analyst,135000,USD,135000,CA,100,CA,M +2023,EN,FT,Data Engineer,85000,USD,85000,US,0,US,M +2023,EN,FT,Data Engineer,65000,USD,65000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,257000,USD,257000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,147000,USD,147000,US,0,US,M +2023,SE,FT,Data Engineer,222000,USD,222000,US,100,US,M +2023,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Scientist,203000,USD,203000,US,100,US,M +2023,SE,FT,Data Scientist,133200,USD,133200,US,100,US,M +2023,EN,FT,Applied Scientist,213660,USD,213660,US,0,US,L +2023,EN,FT,Applied Scientist,130760,USD,130760,US,0,US,L +2023,SE,FT,Data Engineer,221000,USD,221000,US,0,US,M +2023,SE,FT,Data Engineer,147000,USD,147000,US,0,US,M +2023,SE,FT,Data Quality Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Quality Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2023,SE,FT,Data Scientist,238000,USD,238000,US,100,US,M +2023,SE,FT,Data Scientist,156000,USD,156000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,304000,USD,304000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,199000,USD,199000,US,100,US,M +2023,MI,FT,Big Data Engineer,45000,EUR,48289,ES,100,ES,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2023,SE,FT,Data Scientist,110000,USD,110000,US,100,US,M +2023,MI,FT,Data Analyst,90000,USD,90000,US,0,US,M +2023,MI,FT,Data Analyst,75000,USD,75000,US,0,US,M +2023,MI,FT,Research Scientist,161200,GBP,195895,GB,0,GB,M +2023,MI,FT,Research Scientist,84570,GBP,102772,GB,0,GB,M +2023,SE,FT,Data Engineer,240000,USD,240000,US,0,US,M +2023,SE,FT,Data Engineer,183600,USD,183600,US,0,US,M +2023,MI,FT,Data Specialist,130000,USD,130000,US,0,US,M +2023,MI,FT,Data Specialist,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Engineer,250000,USD,250000,US,0,US,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Analytics Manager,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Analytics Manager,120000,USD,120000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,289076,USD,289076,US,0,US,M +2023,SE,FT,Machine Learning Engineer,202353,USD,202353,US,0,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Analyst,155000,USD,155000,US,0,US,M +2023,SE,FT,Data Analyst,106000,USD,106000,US,0,US,M +2023,SE,FT,Data Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Scientist,157750,USD,157750,US,100,US,M +2023,SE,FT,Data Scientist,104650,USD,104650,US,100,US,M +2023,MI,FT,Data Scientist,180000,USD,180000,US,100,US,M +2023,MI,FT,Data Scientist,140000,USD,140000,US,100,US,M +2023,EX,FT,Data Scientist,200000,USD,200000,US,0,US,M +2023,EX,FT,Data Scientist,145000,USD,145000,US,0,US,M +2023,MI,FT,Lead Data Analyst,68000,USD,68000,US,0,US,L +2023,EN,FT,BI Data Engineer,60000,USD,60000,US,100,US,M +2023,SE,FT,Data Scientist,45000,EUR,48289,ES,0,ES,M +2023,SE,FT,Data Scientist,36000,EUR,38631,ES,0,ES,M +2023,EN,FT,Data Engineer,85000,USD,85000,US,0,US,M +2023,EN,FT,Data Engineer,65000,USD,65000,US,0,US,M +2023,MI,FT,Data Engineer,125000,USD,125000,US,0,US,M +2023,MI,FT,Data Engineer,90000,USD,90000,US,0,US,M +2023,SE,FT,Data Analyst,105000,USD,105000,US,100,US,M +2023,SE,FT,Data Analyst,90000,USD,90000,US,100,US,M +2023,SE,FT,Analytics Engineer,179820,USD,179820,US,0,US,M +2023,SE,FT,Analytics Engineer,143860,USD,143860,US,0,US,M +2023,SE,FT,Data Analyst,135000,USD,135000,US,0,US,M +2023,SE,FT,Data Analyst,105500,USD,105500,US,0,US,M +2023,EN,FT,Research Engineer,155000,USD,155000,US,0,US,M +2023,EN,FT,Research Engineer,125000,USD,125000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,241000,USD,241000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,181000,USD,181000,US,0,US,M +2023,SE,FT,Data Scientist,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Scientist,154000,USD,154000,US,0,US,M +2023,EX,FT,Data Architect,180000,USD,180000,US,0,US,M +2023,EX,FT,Data Architect,155000,USD,155000,US,0,US,M +2023,SE,FT,Data Scientist,191765,USD,191765,US,0,US,M +2023,SE,FT,Data Scientist,134236,USD,134236,US,0,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Scientist,237000,USD,237000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,EN,FT,Research Engineer,155000,USD,155000,US,0,US,M +2023,EN,FT,Research Engineer,125000,USD,125000,US,0,US,M +2023,SE,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Analyst,70000,USD,70000,US,0,US,M +2023,SE,FT,Data Engineer,146000,USD,146000,US,0,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,0,US,M +2023,EN,FT,Data Analyst,64200,USD,64200,US,100,US,M +2023,EN,FT,Data Analyst,56100,USD,56100,US,100,US,M +2023,SE,FT,Machine Learning Engineer,170000,USD,170000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Analyst,208450,USD,208450,US,100,US,M +2023,SE,FT,Data Analyst,170550,USD,170550,US,100,US,M +2023,SE,FT,Machine Learning Engineer,125000,USD,125000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,100000,USD,100000,US,0,US,M +2023,MI,FT,Data Manager,135000,USD,135000,US,0,US,M +2023,MI,FT,Data Manager,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Scientist,200000,USD,200000,US,100,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Scientist,171250,USD,171250,IE,0,IE,M +2023,SE,FT,Data Scientist,113750,USD,113750,IE,0,IE,M +2023,SE,FT,Applied Scientist,222200,USD,222200,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,SE,FT,Applied Scientist,260000,USD,260000,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,100500,USD,100500,US,0,US,M +2023,SE,FT,Applied Scientist,205000,USD,205000,US,100,US,M +2023,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,115000,USD,115000,CA,100,CA,M +2023,SE,FT,Machine Learning Engineer,95000,USD,95000,CA,100,CA,M +2023,MI,FT,Data Analyst,182500,USD,182500,US,0,US,M +2023,MI,FT,Data Analyst,121500,USD,121500,US,0,US,M +2023,SE,FT,Data Engineer,203100,USD,203100,US,0,US,M +2023,SE,FT,Data Engineer,114500,USD,114500,US,0,US,M +2023,MI,FT,Data Analyst,60000,GBP,72914,GB,0,GB,M +2023,MI,FT,Data Analyst,45000,GBP,54685,GB,0,GB,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,EN,FT,Data Engineer,92700,USD,92700,US,100,US,M +2023,EN,FT,Data Engineer,61800,USD,61800,US,100,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Scientist,258000,USD,258000,CA,0,CA,M +2023,SE,FT,Data Scientist,190000,USD,190000,CA,0,CA,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Scientist,135000,USD,135000,US,0,US,M +2023,MI,FT,Data Architect,167500,USD,167500,US,0,US,M +2023,MI,FT,Data Architect,106500,USD,106500,US,0,US,M +2023,SE,FT,Data Scientist,195000,USD,195000,US,0,US,M +2023,SE,FT,Data Scientist,160000,USD,160000,US,0,US,M +2023,MI,FT,Data Engineer,146000,USD,146000,US,0,US,M +2023,MI,FT,Data Engineer,75000,USD,75000,US,0,US,M +2022,EN,FT,Data Engineer,57000,EUR,59888,NL,100,NL,L +2023,EX,FT,Data Engineer,286000,USD,286000,US,100,US,M +2023,EX,FT,Data Engineer,207000,USD,207000,US,100,US,M +2023,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2023,SE,FT,Data Analyst,80000,USD,80000,US,100,US,M +2023,SE,FT,Data Engineer,223250,USD,223250,US,0,US,M +2023,SE,FT,Data Engineer,178600,USD,178600,US,0,US,M +2023,EX,FT,Director of Data Science,353200,USD,353200,US,0,US,M +2023,EX,FT,Director of Data Science,249300,USD,249300,US,0,US,M +2023,MI,FT,Machine Learning Scientist,230000,USD,230000,US,0,US,M +2023,MI,FT,Machine Learning Scientist,220000,USD,220000,US,0,US,M +2023,SE,FT,Data Scientist,297300,USD,297300,US,100,US,M +2023,SE,FT,Data Scientist,198200,USD,198200,US,100,US,M +2023,MI,FT,Research Scientist,210000,USD,210000,US,100,US,M +2023,MI,FT,Research Scientist,151800,USD,151800,US,100,US,M +2023,SE,FT,Data Scientist,200000,USD,200000,US,100,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Scientist,317070,USD,317070,US,0,US,M +2023,SE,FT,Data Scientist,170730,USD,170730,US,0,US,M +2023,SE,FT,Data Engineer,128000,USD,128000,US,0,US,M +2023,SE,FT,Data Engineer,81500,USD,81500,US,0,US,M +2023,EN,FT,Business Data Analyst,20000,EUR,21461,ES,0,ES,M +2023,SE,FT,AI Developer,108000,USD,108000,UA,0,UA,M +2023,SE,FT,AI Developer,60000,USD,60000,UA,0,UA,M +2023,MI,FT,MLOps Engineer,134000,USD,134000,US,100,US,M +2023,MI,FT,MLOps Engineer,124000,USD,124000,US,100,US,M +2023,SE,FT,Data Engineer,171250,USD,171250,US,0,US,M +2023,SE,FT,Data Engineer,113750,USD,113750,US,0,US,M +2023,SE,FT,Data Engineer,165000,USD,165000,US,0,US,M +2023,SE,FT,Data Engineer,132300,USD,132300,US,0,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Engineer,230000,USD,230000,US,0,US,M +2023,SE,FT,Data Engineer,124500,USD,124500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,247500,USD,247500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,172200,USD,172200,US,0,US,M +2023,SE,FT,Data Analyst,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Analyst,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Analyst,148700,USD,148700,US,0,US,M +2023,SE,FT,Data Analyst,125600,USD,125600,US,0,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,SE,FT,Research Scientist,150000,USD,150000,US,0,US,M +2023,EN,FT,Research Engineer,160000,USD,160000,US,0,US,M +2023,EN,FT,Research Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Analyst,185000,USD,185000,US,100,US,M +2023,SE,FT,Data Analyst,120250,USD,120250,US,100,US,M +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183000,USD,183000,US,100,US,M +2023,SE,FT,Data Architect,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Architect,125000,USD,125000,US,100,US,M +2023,MI,FT,Data Architect,167500,USD,167500,US,0,US,M +2023,MI,FT,Data Architect,106500,USD,106500,US,0,US,M +2023,SE,FT,Research Scientist,250000,USD,250000,US,0,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,135000,USD,135000,US,50,US,L +2023,SE,FT,AI Scientist,1500000,ILS,423834,IL,0,IL,L +2023,SE,FT,Machine Learning Engineer,216000,USD,216000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,184000,USD,184000,US,100,US,M +2023,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M +2023,SE,FT,Data Engineer,165000,USD,165000,US,100,US,M +2023,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Engineer,143865,USD,143865,US,0,US,M +2023,MI,FT,Data Engineer,115092,USD,115092,US,0,US,M +2023,MI,FT,Machine Learning Engineer,130000,USD,130000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,90000,USD,90000,US,0,US,M +2023,SE,FT,Data Scientist,173000,USD,173000,US,100,US,M +2023,SE,FT,Data Scientist,132000,USD,132000,US,100,US,M +2023,SE,FT,Data Analyst,208049,USD,208049,US,0,US,M +2023,SE,FT,Data Analyst,128500,USD,128500,US,0,US,M +2023,SE,FT,Analytics Engineer,179820,USD,179820,US,0,US,M +2023,SE,FT,Analytics Engineer,143860,USD,143860,US,0,US,M +2023,SE,FT,Data Engineer,167500,USD,167500,US,0,US,M +2023,SE,FT,Data Engineer,106500,USD,106500,US,0,US,M +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183500,USD,183500,US,100,US,M +2023,MI,FT,Data Engineer,149600,USD,149600,US,0,US,M +2023,MI,FT,Data Engineer,102000,USD,102000,US,0,US,M +2023,EX,FT,Data Scientist,145000,USD,145000,US,0,US,M +2023,EX,FT,Data Scientist,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Analyst,190000,USD,190000,US,100,US,M +2023,SE,FT,Data Analyst,95000,USD,95000,US,100,US,M +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,106800,USD,106800,US,0,US,M +2023,MI,FT,Data Scientist,90000,EUR,96578,IE,0,IE,M +2023,MI,FT,Data Scientist,75000,EUR,80481,IE,0,IE,M +2023,MI,FT,Data Analyst,128000,USD,128000,US,0,US,M +2023,MI,FT,Data Analyst,85000,USD,85000,US,0,US,M +2023,MI,FT,Data Engineer,151000,USD,151000,US,0,US,M +2023,MI,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183500,USD,183500,US,100,US,M +2023,SE,FT,Machine Learning Scientist,220000,USD,220000,US,0,US,M +2023,SE,FT,Machine Learning Scientist,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Analyst,135000,USD,135000,US,0,US,M +2023,SE,FT,Data Analyst,105500,USD,105500,US,0,US,M +2023,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2023,SE,FT,Data Analyst,80000,USD,80000,US,100,US,M +2023,EN,FT,Autonomous Vehicle Technician,7000,USD,7000,GH,0,GH,S +2023,EN,FT,Applied Machine Learning Scientist,40000,EUR,42923,DE,50,DE,M +2023,SE,FT,Data Engineer,160000,USD,160000,CA,100,CA,M +2023,SE,FT,Data Engineer,145000,USD,145000,CA,100,CA,M +2023,MI,FT,Data Analyst,154000,USD,154000,US,0,US,M +2023,MI,FT,Data Analyst,143000,USD,143000,US,0,US,M +2023,MI,FT,Data Scientist,65000,GBP,78990,GB,0,GB,M +2023,MI,FT,Data Scientist,42000,GBP,51039,GB,0,GB,M +2023,EN,FT,Data Scientist,190000,USD,190000,US,0,US,M +2023,EN,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Scientist,70000,GBP,85066,GB,0,GB,M +2023,MI,FT,Data Scientist,42000,GBP,51039,GB,0,GB,M +2023,MI,FT,Data Scientist,90000,GBP,109371,GB,0,GB,M +2023,MI,FT,Data Scientist,60000,GBP,72914,GB,0,GB,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Engineer,111000,USD,111000,US,0,US,M +2023,EX,FT,Data Engineer,265000,USD,265000,US,0,US,M +2023,EX,FT,Data Engineer,235000,USD,235000,US,0,US,M +2023,EN,FT,Data Scientist,112000,CHF,121093,CH,50,CH,L +2022,MI,FT,Data Scientist,70000,EUR,73546,DE,100,DE,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2023,MI,FT,Data Engineer,75000,USD,75000,US,100,US,M +2023,MI,FT,Data Engineer,60400,USD,60400,US,100,US,M +2023,EN,FT,Data Analyst,85000,USD,85000,US,100,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,EN,FT,Data Engineer,92700,USD,92700,US,100,US,M +2023,EN,FT,Data Engineer,61800,USD,61800,US,100,US,M +2022,SE,FT,Lead Data Scientist,164000,EUR,172309,IE,100,IE,L +2023,MI,FT,Data Scientist,56000,EUR,60093,AT,100,DE,M +2023,MI,FT,Data Analyst,83500,USD,83500,US,100,US,M +2023,MI,FT,Data Analyst,52500,USD,52500,US,100,US,M +2023,SE,FT,Data Scientist,201036,USD,201036,US,0,US,M +2023,SE,FT,Data Scientist,134024,USD,134024,US,0,US,M +2023,SE,FT,Data Analyst,165000,USD,165000,US,100,US,M +2023,SE,FT,Data Analyst,140000,USD,140000,US,100,US,M +2023,EN,FT,Data Engineer,62000,USD,62000,US,100,US,M +2023,EN,FT,Data Engineer,58000,USD,58000,US,100,US,M +2023,SE,FT,Data Scientist,172000,USD,172000,US,0,US,M +2023,SE,FT,Data Scientist,115000,USD,115000,US,0,US,M +2023,EN,FT,Data Engineer,125000,USD,125000,US,0,US,M +2023,EN,FT,Data Engineer,90000,USD,90000,US,0,US,M +2023,SE,FT,Data Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Data Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,Data Scientist,237000,USD,237000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,MI,FT,Data Engineer,90000,USD,90000,US,100,US,M +2023,MI,FT,Data Engineer,90000,USD,90000,US,100,US,M +2023,SE,FT,Data Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Data Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Data Scientist,258000,USD,258000,CA,0,CA,M +2023,SE,FT,Data Scientist,190000,USD,190000,CA,0,CA,M +2023,MI,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Engineer,205600,USD,205600,US,0,US,L +2023,SE,FT,Data Engineer,105700,USD,105700,US,0,US,L +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Data Scientist,239748,USD,239748,US,0,US,M +2023,SE,FT,Data Scientist,159832,USD,159832,US,0,US,M +2023,SE,FT,Data Scientist,186300,USD,186300,US,100,US,M +2023,SE,FT,Data Scientist,102500,USD,102500,US,100,US,M +2023,SE,FT,Data Engineer,165000,USD,165000,US,0,US,M +2023,SE,FT,Data Engineer,132300,USD,132300,US,0,US,M +2023,SE,FT,Data Scientist,190000,USD,190000,US,0,US,M +2023,SE,FT,Data Scientist,126000,USD,126000,US,0,US,M +2023,SE,FT,Data Architect,149040,USD,149040,US,100,US,M +2023,SE,FT,Data Architect,113900,USD,113900,US,100,US,M +2023,SE,FT,Data Engineer,153600,USD,153600,US,100,US,M +2023,SE,FT,Data Engineer,106800,USD,106800,US,100,US,M +2023,SE,FT,Data Engineer,172600,USD,172600,US,100,US,M +2023,SE,FT,Data Engineer,107900,USD,107900,US,100,US,M +2023,SE,FT,Data Analyst,180180,USD,180180,US,0,US,M +2023,SE,FT,Data Analyst,106020,USD,106020,US,0,US,M +2023,SE,FT,Data Architect,376080,USD,376080,US,100,US,M +2023,SE,FT,Data Architect,213120,USD,213120,US,100,US,M +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,100500,USD,100500,US,0,US,M +2023,SE,FT,Data Analyst,206500,USD,206500,US,100,US,M +2023,SE,FT,Data Analyst,121600,USD,121600,US,100,US,M +2023,SE,FT,Data Engineer,260000,USD,260000,US,0,US,M +2023,SE,FT,Data Engineer,225000,USD,225000,US,0,US,M +2023,EX,FT,Data Engineer,194500,USD,194500,US,0,US,M +2023,EX,FT,Data Engineer,115500,USD,115500,US,0,US,M +2023,SE,FT,Cloud Database Engineer,170000,USD,170000,US,100,US,L +2023,SE,FT,Applied Machine Learning Scientist,90000,USD,90000,US,100,US,L +2023,EN,FT,Data Analyst,95000,USD,95000,US,100,US,M +2023,EN,FT,Data Analyst,70000,USD,70000,US,100,US,M +2023,SE,FT,Data Engineer,275000,USD,275000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2023,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,M +2023,SE,FT,Research Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,Research Engineer,175000,USD,175000,US,0,US,M +2023,MI,FT,Data Analyst,206000,USD,206000,US,0,US,M +2023,MI,FT,Data Analyst,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Architect,138000,USD,138000,GB,100,GB,M +2023,SE,FT,Data Architect,92000,USD,92000,GB,100,GB,M +2023,SE,FT,Data Manager,65000,USD,65000,CO,0,CO,M +2023,SE,FT,Data Manager,48000,USD,48000,CO,0,CO,M +2023,SE,FT,Data Analyst,110000,USD,110000,US,100,US,M +2023,SE,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Analytics Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Analytics Engineer,87000,USD,87000,US,0,US,M +2023,MI,FT,Data Analyst,160000,USD,160000,US,0,US,M +2023,MI,FT,Data Analyst,112000,USD,112000,US,0,US,M +2023,MI,FT,Data Engineer,162500,USD,162500,US,0,US,M +2023,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Science Manager,299500,USD,299500,US,0,US,M +2023,SE,FT,Data Science Manager,245100,USD,245100,US,0,US,M +2023,MI,FT,Data Scientist,145000,USD,145000,US,0,US,M +2023,MI,FT,Data Scientist,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Engineer,147100,USD,147100,US,0,US,M +2023,SE,FT,Data Engineer,90700,USD,90700,US,0,US,M +2023,EN,FT,Data Engineer,115100,USD,115100,US,0,US,M +2023,EN,FT,Data Engineer,73900,USD,73900,US,0,US,M +2023,SE,FT,Data Engineer,168400,USD,168400,US,0,US,M +2023,SE,FT,Data Engineer,105200,USD,105200,US,0,US,M +2023,SE,FT,Data Scientist,210000,USD,210000,US,0,US,M +2023,SE,FT,Data Scientist,160000,USD,160000,US,0,US,M +2023,MI,FT,Data Scientist,145000,USD,145000,US,0,US,M +2023,MI,FT,Data Scientist,100000,USD,100000,US,0,US,M +2023,SE,FT,Applied Scientist,222200,USD,222200,US,0,US,L +2023,SE,FT,Applied Scientist,136000,USD,136000,US,0,US,L +2023,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,MI,FT,Data Analyst,85000,USD,85000,US,0,US,M +2023,MI,FT,Data Engineer,70000,GBP,85066,GB,100,GB,M +2023,MI,FT,Data Engineer,47500,GBP,57723,GB,100,GB,M +2023,EX,FT,Data Scientist,200000,USD,200000,US,0,US,M +2023,EX,FT,Data Scientist,145000,USD,145000,US,0,US,M +2023,MI,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Analyst,185000,USD,185000,US,100,US,M +2023,SE,FT,Data Analyst,120250,USD,120250,US,100,US,M +2023,MI,FT,Financial Data Analyst,130000,USD,130000,US,100,US,L +2023,SE,FT,Data Scientist,205000,USD,205000,US,0,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Scientist,297300,USD,297300,US,100,US,M +2023,SE,FT,Data Scientist,198200,USD,198200,US,100,US,M +2023,SE,FT,Research Scientist,141288,USD,141288,US,0,US,M +2023,SE,FT,Research Scientist,94192,USD,94192,US,0,US,M +2023,SE,FT,Data Infrastructure Engineer,184000,USD,184000,US,100,US,M +2023,SE,FT,Data Infrastructure Engineer,143000,USD,143000,US,100,US,M +2023,SE,FT,Data Analyst,70000,USD,70000,US,0,US,M +2023,SE,FT,Data Analyst,55000,USD,55000,US,0,US,M +2023,SE,FT,Analytics Engineer,275300,USD,275300,US,100,US,M +2023,SE,FT,Analytics Engineer,183500,USD,183500,US,100,US,M +2023,MI,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,MI,FT,Data Analyst,65000,USD,65000,US,100,US,M +2023,MI,FT,ML Engineer,160000,USD,160000,US,0,US,M +2023,MI,FT,ML Engineer,147000,USD,147000,US,0,US,M +2023,SE,FT,Data Architect,149040,USD,149040,US,100,US,M +2023,SE,FT,Data Architect,113900,USD,113900,US,100,US,M +2023,MI,FT,Software Data Engineer,100000,SGD,75020,SG,100,SG,L +2023,SE,FT,Data Analyst,180180,USD,180180,US,0,US,M +2023,SE,FT,Data Analyst,106020,USD,106020,US,0,US,M +2023,MI,FT,Data Scientist,1400000,INR,17022,IN,100,IN,L +2023,EN,FT,AI Programmer,70000,USD,70000,IN,0,AU,L +2023,EN,FT,AI Developer,80000,USD,80000,SE,50,SE,M +2023,MI,FT,Lead Data Analyst,1500000,INR,18238,IN,50,IN,L +2023,MI,FT,Machine Learning Engineer,250000,USD,250000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Data Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Data Scientist,105000,USD,105000,US,0,US,M +2023,SE,FT,Data Scientist,70000,USD,70000,US,0,US,M +2023,EX,FT,Data Engineer,210914,USD,210914,US,100,US,M +2023,EX,FT,Data Engineer,116704,USD,116704,US,100,US,M +2023,EN,FT,Research Scientist,150000,USD,150000,US,0,US,M +2023,EN,FT,Research Scientist,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Engineer,146000,USD,146000,US,0,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,0,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,EN,FT,Data Analyst,60000,USD,60000,US,100,US,M +2023,MI,FT,Analytics Engineer,185700,USD,185700,US,0,US,M +2023,MI,FT,Analytics Engineer,165000,USD,165000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2023,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2023,SE,FT,Data Operations Engineer,193000,USD,193000,US,100,US,M +2023,SE,FT,Data Operations Engineer,136850,USD,136850,US,100,US,M +2023,SE,FT,Machine Learning Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Data Engineer,276000,USD,276000,US,100,US,M +2023,SE,FT,Data Engineer,178500,USD,178500,US,100,US,M +2023,MI,FT,Data Scientist,55000,EUR,59020,ES,0,ES,M +2023,MI,FT,Data Scientist,45000,EUR,48289,ES,0,ES,M +2023,MI,FT,Data Engineer,70000,EUR,75116,SI,100,SI,M +2023,MI,FT,Data Engineer,45000,EUR,48289,SI,100,SI,M +2023,SE,FT,Machine Learning Engineer,161000,GBP,195652,GB,0,GB,M +2023,SE,FT,Machine Learning Engineer,83300,GBP,101228,GB,0,GB,M +2023,SE,FT,Data Engineer,112700,GBP,136956,GB,0,GB,M +2023,SE,FT,Data Engineer,83300,GBP,101228,GB,0,GB,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2022,SE,FT,BI Developer,130000,USD,130000,US,100,US,L +2021,MI,FT,Data Science Lead,150000,USD,150000,US,100,US,M +2023,SE,FT,Data Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Data Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,ML Engineer,260000,USD,260000,CA,100,CA,M +2023,SE,FT,ML Engineer,110000,USD,110000,CA,100,CA,M +2023,SE,FT,Analytics Engineer,170000,USD,170000,US,100,US,M +2023,SE,FT,Analytics Engineer,130000,USD,130000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,247500,USD,247500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,172200,USD,172200,US,0,US,M +2023,SE,FT,Data Scientist,239748,USD,239748,US,0,US,M +2023,SE,FT,Data Scientist,159832,USD,159832,US,0,US,M +2023,SE,FT,Machine Learning Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Machine Learning Engineer,126000,USD,126000,US,0,US,M +2023,MI,FT,Data Scientist,128750,USD,128750,US,0,US,M +2023,MI,FT,Data Scientist,106250,USD,106250,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Data Science Manager,299500,USD,299500,US,0,US,M +2023,SE,FT,Data Science Manager,245100,USD,245100,US,0,US,M +2023,MI,FT,Data Analytics Manager,155000,USD,155000,US,0,US,M +2023,MI,FT,Data Analytics Manager,140000,USD,140000,US,0,US,M +2023,EX,FT,Data Engineer,167500,USD,167500,US,0,US,M +2023,EX,FT,Data Engineer,106500,USD,106500,US,0,US,M +2023,SE,FT,Data Architect,188500,USD,188500,US,100,US,M +2023,SE,FT,Data Architect,117000,USD,117000,US,100,US,M +2023,SE,FT,Data Analyst,250000,USD,250000,US,100,US,M +2023,SE,FT,Data Analyst,138000,USD,138000,US,100,US,M +2023,MI,FT,Data Analyst,130000,USD,130000,CA,100,CA,M +2023,MI,FT,Data Analyst,100000,USD,100000,CA,100,CA,M +2023,SE,FT,Deep Learning Researcher,115000,EUR,123405,DE,0,DE,L +2023,SE,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,BI Analyst,160000,USD,160000,US,0,US,M +2023,SE,FT,BI Analyst,135000,USD,135000,US,0,US,M +2023,MI,FT,Data Science Manager,104500,USD,104500,US,0,US,M +2023,MI,FT,Data Science Manager,70000,USD,70000,US,0,US,M +2023,MI,FT,Data Science Consultant,90000,USD,90000,US,0,US,M +2023,MI,FT,Data Science Consultant,70000,USD,70000,US,0,US,M +2023,SE,FT,Data Engineer,153600,USD,153600,US,100,US,M +2023,SE,FT,Data Engineer,106800,USD,106800,US,100,US,M +2023,EN,FT,Data Engineer,125000,USD,125000,US,0,US,M +2023,EN,FT,Data Engineer,90000,USD,90000,US,0,US,M +2023,MI,FT,Research Scientist,185000,USD,185000,US,100,US,M +2023,MI,FT,Research Scientist,125000,USD,125000,US,100,US,M +2023,SE,FT,Data Analyst,127000,USD,127000,US,100,US,M +2023,SE,FT,Data Analyst,94000,USD,94000,US,100,US,M +2023,SE,FT,Data Scientist,210550,USD,210550,US,0,US,M +2023,SE,FT,Data Scientist,153300,USD,153300,US,0,US,M +2023,MI,FT,Data Scientist,200000,USD,200000,US,100,US,M +2023,MI,FT,Data Scientist,150000,USD,150000,US,100,US,M +2023,SE,FT,Data Analyst,161500,USD,161500,US,100,US,M +2023,SE,FT,Data Analyst,119500,USD,119500,US,100,US,M +2023,SE,FT,Data Analyst,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Analyst,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Scientist,148750,USD,148750,US,0,US,M +2023,SE,FT,Data Analytics Specialist,105000,USD,105000,US,0,US,M +2023,SE,FT,Data Analytics Specialist,85000,USD,85000,US,0,US,M +2023,SE,FT,Research Scientist,215000,USD,215000,US,0,US,M +2023,SE,FT,Research Scientist,146300,USD,146300,US,0,US,M +2023,EN,FT,AI Developer,200000,EUR,214618,DE,100,DE,L +2023,MI,FT,Data Engineer,72000,USD,72000,MX,100,MX,M +2023,MI,FT,Data Engineer,60000,USD,60000,MX,100,MX,M +2023,SE,FT,Machine Learning Engineer,153400,USD,153400,US,0,US,M +2023,SE,FT,Machine Learning Engineer,122700,USD,122700,US,0,US,M +2023,MI,FT,Data Engineer,260000,USD,260000,US,0,US,M +2023,MI,FT,Data Engineer,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Scientist,186300,USD,186300,US,100,US,M +2023,SE,FT,Data Scientist,123900,USD,123900,US,100,US,M +2023,MI,FT,Research Scientist,340000,USD,340000,US,100,US,M +2023,MI,FT,Research Scientist,150000,USD,150000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,153400,USD,153400,US,0,US,M +2023,SE,FT,Machine Learning Engineer,122700,USD,122700,US,0,US,M +2023,MI,FT,Data Engineer,250000,USD,250000,US,0,US,M +2023,MI,FT,Data Engineer,175000,USD,175000,US,0,US,M +2023,MI,FT,Data Scientist,60000,EUR,64385,FR,50,FR,M +2023,SE,FT,Data Analyst,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Analyst,121700,USD,121700,US,0,US,M +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,106800,USD,106800,US,0,US,M +2023,SE,FL,Software Data Engineer,50000,USD,50000,NG,50,AU,M +2023,EN,FT,Data Analyst,100000,USD,100000,UZ,100,US,L +2023,SE,FT,Machine Learning Engineer,247500,USD,247500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,172200,USD,172200,US,0,US,M +2023,EX,FT,Data Engineer,310000,USD,310000,US,100,US,M +2023,EX,FT,Data Engineer,239000,USD,239000,US,100,US,M +2023,SE,FT,Data Analyst,125000,USD,125000,US,0,US,M +2023,SE,FT,Data Analyst,110000,USD,110000,US,0,US,M +2023,EN,FT,Data Analyst,150000,USD,150000,US,0,US,M +2023,EN,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Scientist,149076,USD,149076,US,0,US,M +2023,SE,FT,Data Scientist,82365,USD,82365,US,0,US,M +2023,MI,FT,Data Engineer,146000,USD,146000,US,0,US,M +2023,MI,FT,Data Engineer,75000,USD,75000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Data Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Data Engineer,109400,USD,109400,US,0,US,M +2023,MI,FT,Data Engineer,149600,USD,149600,US,0,US,M +2023,MI,FT,Data Engineer,102000,USD,102000,US,0,US,M +2023,MI,FT,Data Analyst,80000,GBP,97218,GB,0,GB,M +2023,MI,FT,Data Analyst,40000,GBP,48609,GB,0,GB,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Analyst,85500,USD,85500,US,0,US,M +2023,SE,FT,Data Analyst,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Analyst,121700,USD,121700,US,0,US,M +2023,EN,FT,Research Scientist,150000,USD,150000,US,0,US,M +2023,EN,FT,Research Scientist,100000,USD,100000,US,0,US,M +2023,MI,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,MI,FT,Data Engineer,125000,USD,125000,US,0,US,M +2023,MI,FT,Data Scientist,150000,USD,150000,US,100,US,M +2023,MI,FT,Data Scientist,97750,USD,97750,US,100,US,M +2023,SE,FT,Data Scientist,201000,USD,201000,US,0,US,M +2023,SE,FT,Data Scientist,122000,USD,122000,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Data Analyst,120000,USD,120000,US,100,US,M +2023,SE,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,MI,FT,Data Scientist,116990,USD,116990,US,100,US,M +2023,MI,FT,Data Scientist,82920,USD,82920,US,100,US,M +2023,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2023,MI,FT,Machine Learning Scientist,200000,USD,200000,US,0,US,S +2023,MI,FT,Machine Learning Scientist,125000,USD,125000,US,0,US,S +2023,SE,FT,Data Scientist,201000,USD,201000,US,0,US,M +2023,SE,FT,Data Scientist,122000,USD,122000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,SE,FT,Data Manager,155000,USD,155000,US,0,US,M +2023,SE,FT,Data Manager,140000,USD,140000,US,0,US,M +2023,MI,FT,Machine Learning Infrastructure Engineer,205920,USD,205920,US,0,US,M +2023,MI,FT,Machine Learning Infrastructure Engineer,171600,USD,171600,US,0,US,M +2023,SE,FT,Data Engineer,121500,USD,121500,US,100,US,M +2023,SE,FT,Data Engineer,78000,USD,78000,US,100,US,M +2023,MI,FT,Data Engineer,154000,USD,154000,US,0,US,M +2023,MI,FT,Data Engineer,116000,USD,116000,US,0,US,M +2023,SE,FT,Data Scientist,190000,USD,190000,US,0,US,M +2023,SE,FT,Data Scientist,136000,USD,136000,US,0,US,M +2023,MI,FT,Data Analyst,65000,GBP,78990,GB,100,GB,M +2023,MI,FT,Data Analyst,36050,GBP,43809,GB,100,GB,M +2023,SE,FT,Data Analyst,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Analyst,110000,USD,110000,US,0,US,M +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183000,USD,183000,US,100,US,M +2023,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Engineer,154000,USD,154000,US,0,US,M +2023,SE,FT,Data Engineer,116000,USD,116000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2023,MI,FT,Data Engineer,200000,USD,200000,US,0,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Scientist,160000,USD,160000,US,100,US,M +2023,MI,FT,Data Engineer,105000,GBP,127599,GB,0,GB,M +2023,MI,FT,Data Engineer,85000,GBP,103294,GB,0,GB,M +2023,SE,FT,Data Engineer,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Engineer,106800,USD,106800,US,0,US,M +2023,EN,FT,Data Analyst,85000,USD,85000,US,100,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2023,SE,FT,Analytics Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Analytics Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Machine Learning Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,Data Analyst,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Analyst,90000,USD,90000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Analyst,85500,USD,85500,US,0,US,M +2023,SE,FT,Data Engineer,167500,USD,167500,US,0,US,M +2023,SE,FT,Data Engineer,106500,USD,106500,US,0,US,M +2023,SE,FT,Data Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Data Engineer,126000,USD,126000,US,0,US,M +2023,MI,FT,Data Analytics Manager,155000,USD,155000,US,0,US,M +2023,MI,FT,Data Analytics Manager,140000,USD,140000,US,0,US,M +2023,SE,FT,Research Scientist,250000,USD,250000,US,0,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Scientist,260000,USD,260000,US,0,US,M +2023,SE,FT,Data Scientist,186000,USD,186000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,SE,FT,Research Scientist,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Scientist,45000,EUR,48289,ES,0,ES,M +2023,SE,FT,Data Scientist,36000,EUR,38631,ES,0,ES,M +2023,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,EN,FT,Data Analyst,30000,USD,30000,IN,50,IN,M +2023,MI,FT,Research Scientist,185000,USD,185000,US,0,US,M +2023,MI,FT,Research Scientist,125000,USD,125000,US,0,US,M +2022,EN,PT,Data Analyst,34320,USD,34320,US,100,US,S +2022,MI,FT,Business Data Analyst,48000,BRL,9289,BR,100,BR,M +2023,SE,FT,Head of Data,70000,EUR,75116,PT,100,PT,L +2022,EX,FT,Data Science Manager,106000,USD,106000,UZ,0,RU,L +2023,SE,FT,Data Analyst,175000,USD,175000,US,100,US,M +2023,SE,FT,Data Analyst,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Analyst,122000,USD,122000,US,100,US,M +2023,SE,FT,Data Analyst,93800,USD,93800,US,100,US,M +2023,SE,FT,Data Science Manager,150000,USD,150000,MX,100,MX,M +2023,SE,FT,Data Science Manager,90000,USD,90000,MX,100,MX,M +2023,SE,FT,Data Analyst,165000,USD,165000,US,100,US,M +2023,SE,FT,Data Analyst,112000,USD,112000,US,100,US,M +2023,EN,FT,Computer Vision Engineer,220000,USD,220000,US,0,US,M +2023,SE,FT,BI Data Analyst,67000,EUR,71897,DE,100,DE,M +2023,EN,FT,AI Developer,60000,EUR,64385,DE,0,DE,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,SE,FT,Data Analyst,1300000,INR,15806,IN,100,IN,S +2023,MI,FT,Machine Learning Engineer,200000,USD,200000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2023,SE,FT,Data Analyst,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Analyst,121700,USD,121700,US,0,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,MI,FT,Data Scientist,40000,USD,40000,FR,50,FR,L +2023,SE,FT,Data Science Consultant,1000000,THB,29453,TH,50,TH,M +2023,SE,FT,Data Analyst,180180,USD,180180,US,0,US,M +2023,SE,FT,Data Analyst,106020,USD,106020,US,0,US,M +2023,SE,FT,Data Scientist,136000,USD,136000,US,100,US,M +2023,SE,FT,Data Scientist,104000,USD,104000,US,100,US,M +2023,SE,FT,Data Analyst,125000,USD,125000,US,0,US,M +2023,SE,FT,Data Analyst,110000,USD,110000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,153400,USD,153400,US,0,US,M +2023,SE,FT,Machine Learning Engineer,122700,USD,122700,US,0,US,M +2023,EX,FT,Data Engineer,310000,USD,310000,US,100,US,M +2023,EX,FT,Data Engineer,239000,USD,239000,US,100,US,M +2023,SE,FT,Data Analyst,152380,USD,152380,US,0,US,M +2023,SE,FT,Data Analyst,121904,USD,121904,US,0,US,M +2023,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2023,SE,FT,Machine Learning Engineer,247500,USD,247500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,172200,USD,172200,US,0,US,M +2023,SE,FT,Data Architect,168400,USD,168400,US,0,US,M +2023,SE,FT,Data Architect,105200,USD,105200,US,0,US,M +2023,SE,FT,Machine Learning Engineer,128280,USD,128280,US,0,US,M +2023,SE,FT,Machine Learning Engineer,106900,USD,106900,US,0,US,M +2022,SE,FT,Lead Data Scientist,192000,USD,192000,US,100,US,L +2023,MI,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,MI,FT,Data Engineer,100000,USD,100000,US,0,US,M +2023,SE,FT,Research Engineer,100000,EUR,107309,DE,100,DE,S +2023,SE,FT,Research Engineer,80000,EUR,85847,DE,100,DE,S +2023,SE,FT,Machine Learning Engineer,275000,USD,275000,DE,0,DE,M +2023,SE,FT,Machine Learning Engineer,174000,USD,174000,DE,0,DE,M +2023,SE,FT,Data Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Data Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Machine Learning Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Data Analyst,170500,USD,170500,US,100,US,M +2023,SE,FT,Data Analyst,85000,USD,85000,US,100,US,M +2023,SE,FT,Data Manager,60027,GBP,72946,GB,0,GB,M +2023,SE,FT,Data Manager,44737,GBP,54365,GB,0,GB,M +2023,EX,FT,Head of Data Science,131899,GBP,160288,GB,0,GB,M +2023,EX,FT,Head of Data Science,104891,GBP,127467,GB,0,GB,M +2023,SE,FT,Data Engineer,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Engineer,65000,USD,65000,US,0,US,M +2023,SE,FT,Data Engineer,124740,USD,124740,US,0,US,M +2023,SE,FT,Data Engineer,65488,USD,65488,US,0,US,M +2023,SE,FT,Data Quality Analyst,72200,USD,72200,US,0,US,M +2023,SE,FT,Data Quality Analyst,64980,USD,64980,US,0,US,M +2023,SE,FT,Data Engineer,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Engineer,106800,USD,106800,US,0,US,M +2023,SE,FT,Data Analyst,179975,USD,179975,US,100,US,M +2023,SE,FT,Data Analyst,86466,USD,86466,US,100,US,M +2023,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Engineer,90000,USD,90000,US,0,US,M +2023,MI,FT,Insight Analyst,42000,GBP,51039,GB,0,GB,M +2023,MI,FT,Insight Analyst,35000,GBP,42533,GB,0,GB,M +2023,SE,FT,Data Scientist,149076,USD,149076,US,0,US,M +2023,SE,FT,Data Scientist,82365,USD,82365,US,0,US,M +2023,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2023,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2023,SE,FT,Data Science Manager,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Science Manager,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Analyst,230000,USD,230000,US,0,US,M +2023,SE,FT,Data Analyst,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,106800,USD,106800,US,0,US,M +2023,SE,FT,Data Manager,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Manager,120000,USD,120000,US,0,US,M +2023,SE,FT,Machine Learning Infrastructure Engineer,205920,USD,205920,US,0,US,M +2023,SE,FT,Machine Learning Infrastructure Engineer,171600,USD,171600,US,0,US,M +2023,SE,FT,Data Analyst,165000,USD,165000,US,100,US,M +2023,SE,FT,Data Analyst,125000,USD,125000,US,100,US,M +2023,SE,FT,Data Engineer,265000,USD,265000,US,0,US,M +2023,SE,FT,Data Engineer,185000,USD,185000,US,0,US,M +2023,MI,FT,Applied Machine Learning Engineer,130000,USD,130000,US,0,US,M +2022,EN,FT,Data Scientist,168000,USD,168000,US,100,US,M +2023,MI,FT,AI Scientist,36000,EUR,38631,ES,50,ES,L +2023,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Analyst,85500,USD,85500,US,0,US,M +2023,SE,FT,Data Scientist,147100,USD,147100,US,0,US,M +2023,SE,FT,Data Scientist,90700,USD,90700,US,0,US,M +2023,SE,FT,Data Engineer,167580,USD,167580,US,0,US,M +2023,SE,FT,Data Engineer,87980,USD,87980,US,0,US,M +2023,SE,FT,Data Engineer,202000,USD,202000,US,100,US,M +2023,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2023,SE,FT,Data Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Data Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Machine Learning Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,Data Engineer,104000,USD,104000,US,100,US,M +2023,SE,FT,Data Engineer,65000,USD,65000,US,100,US,M +2023,SE,FT,Research Engineer,230000,USD,230000,US,0,US,M +2023,SE,FT,Research Engineer,148000,USD,148000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,269000,USD,269000,CA,100,CA,M +2023,SE,FT,Machine Learning Engineer,158000,USD,158000,CA,100,CA,M +2023,SE,FT,Analytics Engineer,197000,USD,197000,US,0,US,M +2023,SE,FT,Analytics Engineer,106000,USD,106000,US,0,US,M +2023,MI,FT,Deep Learning Engineer,150000,USD,150000,US,100,US,M +2023,MI,FT,Deep Learning Engineer,100000,USD,100000,US,100,US,M +2023,SE,FT,Data Engineer,290000,USD,290000,US,100,US,M +2023,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M +2023,SE,FT,Data Engineer,192000,USD,192000,US,0,US,M +2023,SE,FT,Data Engineer,172800,USD,172800,US,0,US,M +2023,SE,FT,Data Scientist,300240,USD,300240,US,0,US,M +2023,SE,FT,Data Scientist,200160,USD,200160,US,0,US,M +2023,SE,FT,Data Scientist,300240,USD,300240,US,0,US,M +2023,SE,FT,Data Scientist,200160,USD,200160,US,0,US,M +2023,SE,FT,Analytics Engineer,175000,USD,175000,US,0,US,M +2023,SE,FT,Analytics Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Manager,169000,USD,169000,US,0,US,M +2023,SE,FT,Data Manager,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Scientist,370000,USD,370000,US,0,US,M +2023,SE,FT,Data Scientist,245000,USD,245000,US,0,US,M +2023,MI,FT,Data Engineer,95000,GBP,115447,GB,100,GB,L +2023,SE,FT,Data Analyst,110000,USD,110000,US,100,US,S +2023,SE,FT,Data Analyst,80000,USD,80000,US,100,US,S +2023,EN,FT,Data Analyst,55000,USD,55000,US,0,US,M +2023,EN,FT,Data Analyst,48000,USD,48000,US,0,US,M +2023,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Analyst,85000,USD,85000,US,0,US,M +2023,SE,FT,Data Engineer,137500,USD,137500,US,100,US,M +2023,SE,FT,Data Engineer,81500,USD,81500,US,100,US,M +2023,SE,FT,Machine Learning Engineer,323300,USD,323300,US,0,US,M +2023,SE,FT,Machine Learning Engineer,184700,USD,184700,US,0,US,M +2021,MI,FT,AI Scientist,30000,USD,30000,GH,0,GH,S +2023,SE,FT,Machine Learning Engineer,186000,USD,186000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,153088,USD,153088,US,100,US,M +2023,MI,FT,Data Infrastructure Engineer,190000,USD,190000,US,100,US,M +2023,MI,FT,Data Infrastructure Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,200000,USD,200000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,US,100,US,M +2023,MI,FT,Data Infrastructure Engineer,190000,USD,190000,US,0,US,M +2023,MI,FT,Data Infrastructure Engineer,183310,USD,183310,US,0,US,M +2023,SE,FT,Machine Learning Engineer,240000,USD,240000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,180000,USD,180000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,200000,USD,200000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,US,100,US,M +2023,SE,FT,Data Science Manager,299500,USD,299500,US,0,US,M +2023,SE,FT,Data Science Manager,245100,USD,245100,US,0,US,M +2023,SE,FT,Data Engineer,144000,USD,144000,US,100,US,M +2023,SE,FT,Data Engineer,66000,USD,66000,US,100,US,M +2023,MI,FT,Machine Learning Engineer,148500,USD,148500,US,0,US,M +2023,MI,FT,Machine Learning Engineer,126277,USD,126277,US,0,US,M +2023,SE,FT,Data Architect,228000,USD,228000,US,0,US,M +2023,SE,FT,Data Architect,120000,USD,120000,US,0,US,M +2023,SE,FT,Machine Learning Software Engineer,180000,USD,180000,US,0,US,M +2023,SE,FT,Machine Learning Software Engineer,90000,USD,90000,US,0,US,M +2023,SE,FT,Data Scientist,126500,USD,126500,US,0,US,M +2023,SE,FT,Data Scientist,78000,USD,78000,US,0,US,M +2023,SE,FT,Data Engineer,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Machine Learning Software Engineer,272000,USD,272000,US,0,US,M +2023,SE,FT,Machine Learning Software Engineer,170000,USD,170000,US,0,US,M +2023,MI,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,MI,FT,Data Analyst,60000,USD,60000,US,0,US,M +2023,SE,FT,Data Engineer,259000,USD,259000,US,100,US,M +2023,SE,FT,Data Engineer,146000,USD,146000,US,100,US,M +2023,SE,FT,Data Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,EX,FT,Data Engineer,310000,USD,310000,US,100,US,M +2023,EX,FT,Data Engineer,239000,USD,239000,US,100,US,M +2023,SE,FT,Data Analyst,142000,USD,142000,US,100,US,M +2023,SE,FT,Data Analyst,95000,USD,95000,US,100,US,M +2023,SE,FT,Data Scientist,155000,USD,155000,US,0,US,M +2023,SE,FT,Data Scientist,139500,USD,139500,US,0,US,M +2023,MI,FT,Data Engineer,140000,USD,140000,US,100,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,100,US,M +2023,SE,FT,Data Engineer,259000,USD,259000,US,100,US,M +2023,SE,FT,Data Engineer,146000,USD,146000,US,100,US,M +2023,MI,FT,Data Analyst,90000,GBP,109371,HR,0,HR,M +2023,MI,FT,Data Analyst,60000,GBP,72914,HR,0,HR,M +2023,EN,PT,Data Analyst,78000,PLN,17779,PL,100,IN,L +2023,EN,FT,Data Scientist,101400,BRL,19522,BR,100,BR,L +2023,SE,FT,Data Science Lead,247500,USD,247500,US,0,US,M +2023,SE,FT,Data Science Lead,172200,USD,172200,US,0,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2023,SE,FT,Data Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Data Engineer,109400,USD,109400,US,0,US,M +2023,MI,FT,Data Engineer,125000,USD,125000,US,0,US,M +2023,MI,FT,Data Engineer,90000,USD,90000,US,0,US,M +2023,SE,FT,Machine Learning Infrastructure Engineer,100000,EUR,107309,FR,100,FR,M +2023,SE,FT,Machine Learning Infrastructure Engineer,70000,EUR,75116,FR,100,FR,M +2023,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2023,SE,FT,Machine Learning Engineer,139500,USD,139500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,109400,USD,109400,US,0,US,M +2023,SE,FT,Data Analyst,120000,USD,120000,US,100,US,M +2023,SE,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2023,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2023,SE,FT,Machine Learning Engineer,288000,USD,288000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,140000,USD,140000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,288000,USD,288000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,140000,USD,140000,US,100,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Engineer,90000,USD,90000,US,0,US,M +2023,MI,FT,Data Science Lead,60000,GBP,72914,GB,0,GB,M +2023,MI,FT,Data Science Lead,50000,GBP,60761,GB,0,GB,M +2023,SE,FT,Data Scientist,215050,USD,215050,US,100,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,100,US,M +2023,SE,FT,Data Architect,198000,USD,198000,US,100,US,M +2023,SE,FT,Data Architect,114000,USD,114000,US,100,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,EN,FT,Data Analyst,60000,USD,60000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,SE,FT,Data Scientist,209300,USD,209300,US,100,US,M +2023,SE,FT,Data Scientist,182200,USD,182200,US,100,US,M +2023,SE,FT,Data Manager,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Manager,120000,USD,120000,US,0,US,M +2022,EN,FT,Data Scientist,85000,USD,85000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,40000,GBP,48609,GB,100,GB,M +2023,EN,FT,Research Engineer,120000,USD,120000,GB,100,GB,M +2023,EN,FT,Research Engineer,60000,USD,60000,GB,100,GB,M +2023,SE,FT,Machine Learning Engineer,147100,USD,147100,US,0,US,M +2023,SE,FT,Machine Learning Engineer,90700,USD,90700,US,0,US,M +2023,SE,FT,Data Engineer,230000,USD,230000,US,0,US,M +2023,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Analyst,227000,USD,227000,US,0,US,M +2023,SE,FT,Data Analyst,108000,USD,108000,US,0,US,M +2023,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Architect,180000,USD,180000,US,100,US,M +2023,SE,FT,Data Architect,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Analyst,52000,EUR,55800,ES,100,ES,M +2023,SE,FT,Data Analyst,48000,EUR,51508,ES,100,ES,M +2023,EN,FT,Data Analyst,60000,USD,60000,US,100,US,L +2023,EN,FT,Data Analyst,50000,USD,50000,KW,50,US,L +2023,SE,FT,Data Engineer,226700,USD,226700,US,0,US,M +2023,SE,FT,Data Engineer,133300,USD,133300,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Big Data Architect,124999,GBP,151902,GB,100,GB,L +2023,EN,FT,Data Scientist,800000,INR,9727,IN,0,IN,L +2023,SE,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Analyst,52500,USD,52500,US,0,US,M +2023,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2023,SE,FT,Data Engineer,162500,USD,162500,US,100,US,M +2023,EN,FT,Data Analyst,85000,USD,85000,US,100,US,M +2023,EN,FT,Data Analyst,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,106800,USD,106800,US,0,US,M +2023,MI,FT,Data Analyst,165000,USD,165000,US,0,US,M +2023,MI,FT,Data Analyst,124000,USD,124000,US,0,US,M +2023,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2023,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2023,SE,FT,Data Engineer,167580,USD,167580,US,0,US,M +2023,SE,FT,Data Engineer,87980,USD,87980,US,0,US,M +2023,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2023,SE,FT,Data Engineer,63000,USD,63000,US,100,US,M +2023,SE,FT,Research Scientist,253750,USD,253750,ES,0,ES,M +2023,SE,FT,Research Scientist,169200,USD,169200,ES,0,ES,M +2023,SE,FT,Research Scientist,253750,USD,253750,ES,0,ES,M +2023,SE,FT,Research Scientist,169200,USD,169200,ES,0,ES,M +2023,MI,FT,Data Scientist,170000,USD,170000,US,0,US,M +2023,MI,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Engineer,124740,USD,124740,US,0,US,M +2023,SE,FT,Data Engineer,65488,USD,65488,US,0,US,M +2023,SE,FT,Data Engineer,213580,USD,213580,US,100,US,M +2023,SE,FT,Data Engineer,163625,USD,163625,US,100,US,M +2023,EN,FT,Data Engineer,12000,USD,12000,VN,0,VN,L +2022,SE,FT,Machine Learning Software Engineer,375000,USD,375000,US,100,US,M +2023,SE,FT,Data Engineer,95000,EUR,101943,IE,100,IE,M +2023,MI,FT,Product Data Analyst,1350000,INR,16414,IN,100,IN,L +2023,SE,FT,Machine Learning Engineer,220000,USD,220000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,170000,USD,170000,US,0,US,M +2023,EX,FT,Data Engineer,235000,USD,235000,US,0,US,M +2023,EX,FT,Data Engineer,210000,USD,210000,US,0,US,M +2023,SE,FT,Data Architect,180000,USD,180000,US,100,US,M +2023,SE,FT,Data Architect,115000,USD,115000,US,100,US,M +2023,SE,FT,Data Architect,200000,USD,200000,US,100,US,M +2023,SE,FT,Data Architect,115000,USD,115000,US,100,US,M +2023,SE,FT,Data Science Manager,231250,USD,231250,US,100,US,M +2023,SE,FT,Data Science Manager,138750,USD,138750,US,100,US,M +2023,SE,FT,Machine Learning Engineer,284310,USD,284310,US,0,US,M +2023,SE,FT,Machine Learning Engineer,153090,USD,153090,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,100,US,M +2023,MI,FT,Data Analyst,125000,USD,125000,US,0,US,M +2023,MI,FT,Data Analyst,105000,USD,105000,US,0,US,M +2023,MI,FT,Data Analyst,90000,GBP,109371,GB,0,GB,M +2023,MI,FT,Data Analyst,70000,GBP,85066,GB,0,GB,M +2023,EN,FT,Data Analyst,55000,USD,55000,US,0,US,M +2023,EN,FT,Data Analyst,48000,USD,48000,US,0,US,M +2023,EN,FT,Data Analyst,100000,USD,100000,US,50,US,M +2023,SE,FT,Data Science Lead,225900,USD,225900,US,0,US,M +2023,SE,FT,Data Science Lead,156400,USD,156400,US,0,US,M +2023,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2023,SE,FT,Data Engineer,162500,USD,162500,US,100,US,M +2023,SE,FT,Machine Learning Engineer,318300,USD,318300,US,100,US,M +2023,SE,FT,Machine Learning Engineer,188800,USD,188800,US,100,US,M +2023,SE,FT,Data Analyst,385000,USD,385000,US,0,US,M +2023,SE,FT,Data Analyst,60000,USD,60000,US,0,US,M +2023,MI,FT,Data Analyst,110000,USD,110000,US,100,US,M +2023,MI,FT,Data Analyst,95000,USD,95000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Scientist,135000,USD,135000,US,100,US,M +2023,SE,FT,Data Analyst,180180,USD,180180,US,0,US,M +2023,SE,FT,Data Analyst,106020,USD,106020,US,0,US,M +2023,SE,FT,Data Analyst,93919,USD,93919,US,100,US,M +2023,SE,FT,Data Analyst,51962,USD,51962,US,100,US,M +2023,SE,FT,Data Engineer,241871,USD,241871,US,0,US,M +2023,SE,FT,Data Engineer,133832,USD,133832,US,0,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Scientist,90000,USD,90000,US,100,US,M +2023,EX,FT,Data Engineer,210914,USD,210914,US,100,US,M +2023,EX,FT,Data Engineer,116704,USD,116704,US,100,US,M +2023,SE,FT,Data Analyst,192500,USD,192500,US,100,US,M +2023,SE,FT,Data Analyst,140000,USD,140000,US,100,US,M +2023,SE,FT,Data Scientist,149076,USD,149076,US,0,US,M +2023,SE,FT,Data Scientist,82365,USD,82365,US,0,US,M +2023,MI,FT,Machine Learning Engineer,36000,USD,36000,MX,100,MX,S +2023,SE,FT,Data Scientist,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Scientist,148750,USD,148750,US,0,US,M +2023,SE,FT,Research Scientist,370000,USD,370000,US,0,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Scientist,235000,USD,235000,US,100,US,M +2023,SE,FT,Data Scientist,185000,USD,185000,US,100,US,M +2023,MI,FT,Machine Learning Engineer,100000,GBP,121523,GB,0,GB,M +2023,MI,FT,Machine Learning Engineer,80000,GBP,97218,GB,0,GB,M +2023,SE,FT,Data Scientist,216100,USD,216100,US,0,US,M +2023,SE,FT,Data Scientist,140800,USD,140800,US,0,US,M +2023,MI,FT,Machine Learning Engineer,120000,GBP,145828,GB,0,GB,M +2023,MI,FT,Machine Learning Engineer,100000,GBP,121523,GB,0,GB,M +2023,SE,FT,Computer Vision Software Engineer,50000,EUR,53654,NL,100,CA,L +2023,EN,FT,Data Scientist,110000,USD,110000,US,50,US,S +2023,SE,FT,Data Engineer,128000,USD,128000,US,0,US,M +2023,SE,FT,Data Engineer,81500,USD,81500,US,0,US,M +2023,MI,FT,Data Engineer,55000,GBP,66837,GB,100,GB,M +2023,MI,FT,Data Engineer,52000,GBP,63192,GB,100,GB,M +2023,MI,FT,Data Analyst,50000,GBP,60761,GB,0,GB,M +2023,MI,FT,Data Analyst,45000,GBP,54685,GB,0,GB,M +2023,EX,FT,Data Engineer,284000,USD,284000,US,100,US,M +2023,EX,FT,Data Engineer,236000,USD,236000,US,100,US,M +2023,SE,FT,Research Scientist,248100,USD,248100,CA,0,CA,M +2023,SE,FT,Research Scientist,145900,USD,145900,CA,0,CA,M +2023,SE,FT,Research Engineer,155850,USD,155850,US,0,US,M +2023,SE,FT,Research Engineer,102544,USD,102544,US,0,US,M +2023,MI,FT,Data Scientist,151410,USD,151410,US,100,US,M +2023,MI,FT,Data Scientist,115360,USD,115360,US,100,US,M +2023,MI,FT,Data Engineer,62000,EUR,66531,ES,100,ES,M +2023,MI,FT,Data Engineer,55000,EUR,59020,ES,100,ES,M +2023,SE,FT,Director of Data Science,170000,CAD,125686,CA,50,CA,M +2023,SE,FT,Azure Data Engineer,100000,USD,100000,NL,50,NL,L +2023,EN,FT,Data Scientist,1050000,INR,12767,IN,50,IN,L +2023,SE,FT,Data Scientist,250000,USD,250000,US,0,US,M +2023,SE,FT,Data Scientist,162500,USD,162500,US,0,US,M +2023,SE,FT,Data Scientist,185000,USD,185000,GB,0,GB,M +2023,SE,FT,Data Scientist,120250,USD,120250,GB,0,GB,M +2023,EN,FT,Data Engineer,25000,EUR,26827,DE,100,DE,L +2022,EN,FT,Data Scientist,180000,USD,180000,US,100,US,M +2023,MI,FT,Research Scientist,85000,USD,85000,US,0,US,M +2023,MI,FT,Research Scientist,70000,USD,70000,US,0,US,M +2023,SE,FT,BI Developer,135000,USD,135000,US,100,US,M +2023,SE,FT,BI Developer,100000,USD,100000,US,100,US,M +2023,EX,FT,Data Analytics Manager,155000,USD,155000,US,0,US,M +2023,EX,FT,Data Analytics Manager,140000,USD,140000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,SE,FT,Data Engineer,226700,USD,226700,US,0,US,M +2023,SE,FT,Data Engineer,133300,USD,133300,US,0,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,100,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,100,US,M +2023,SE,FT,Data Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Data Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,163800,USD,163800,US,0,US,M +2023,SE,FT,Machine Learning Engineer,126000,USD,126000,US,0,US,M +2023,SE,FT,ML Engineer,220000,USD,220000,US,0,US,M +2023,SE,FT,ML Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2023,SE,FT,Data Analytics Manager,204500,USD,204500,US,0,US,M +2023,SE,FT,Data Analytics Manager,138900,USD,138900,US,0,US,M +2023,MI,FT,Data Engineer,162500,USD,162500,US,0,US,M +2023,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2023,SE,FT,Data Engineer,107000,USD,107000,US,100,US,M +2023,EX,FT,Data Engineer,175000,USD,175000,US,0,US,M +2023,EX,FT,Data Engineer,110000,USD,110000,US,0,US,M +2023,SE,FT,Data Engineer,226700,USD,226700,US,0,US,M +2023,SE,FT,Data Engineer,133300,USD,133300,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,125000,USD,125000,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2022,MI,FT,Research Scientist,23000,USD,23000,IN,100,IN,L +2023,MI,FT,Machine Learning Engineer,110000,USD,110000,US,100,US,L +2023,SE,FT,Data Engineer,265000,USD,265000,US,100,US,M +2023,SE,FT,Data Engineer,182750,USD,182750,US,100,US,M +2023,MI,FT,Data Analyst,130000,USD,130000,US,0,US,M +2023,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Analyst,153600,USD,153600,US,0,US,M +2023,SE,FT,Data Analyst,106800,USD,106800,US,0,US,M +2023,SE,FT,Data Engineer,137500,USD,137500,US,0,US,M +2023,SE,FT,Data Engineer,81500,USD,81500,US,0,US,M +2023,EX,FT,Head of Data Science,314100,USD,314100,US,0,US,M +2023,EX,FT,Head of Data Science,195800,USD,195800,US,0,US,M +2023,SE,FT,Applied Scientist,205000,USD,205000,US,0,US,M +2023,SE,FT,Applied Scientist,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Scientist,165000,USD,165000,US,100,US,M +2023,SE,FT,Data Scientist,144000,USD,144000,US,100,US,M +2023,EN,FT,BI Developer,160000,USD,160000,US,0,US,M +2023,EN,FT,BI Developer,100000,USD,100000,US,0,US,M +2023,EX,FT,Data Engineer,200000,USD,200000,US,0,US,M +2023,EX,FT,Data Engineer,145000,USD,145000,US,0,US,M +2023,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Manager,199000,USD,199000,US,0,US,M +2023,SE,FT,Data Manager,112000,USD,112000,US,0,US,M +2023,SE,FT,Data Scientist,105000,USD,105000,US,0,US,M +2023,SE,FT,Data Scientist,70000,USD,70000,US,0,US,M +2023,EN,FT,Big Data Engineer,130000,USD,130000,SE,100,SE,S +2023,SE,FT,Data Analyst,180180,USD,180180,US,0,US,M +2023,SE,FT,Data Analyst,106020,USD,106020,US,0,US,M +2023,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2023,SE,FT,Data Scientist,183000,USD,183000,US,0,US,M +2023,SE,FT,Data Scientist,134000,USD,134000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,220000,USD,220000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Applied Scientist,350000,USD,350000,US,0,US,L +2023,SE,FT,Applied Scientist,262500,USD,262500,US,0,US,L +2023,SE,FT,Data Analyst,122000,USD,122000,US,0,US,M +2023,SE,FT,Data Analyst,94000,USD,94000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,276000,USD,276000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,184000,USD,184000,US,0,US,M +2023,EX,FT,Data Engineer,310000,USD,310000,US,100,US,M +2023,EX,FT,Data Engineer,239000,USD,239000,US,100,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,100,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,100,US,M +2023,MI,FT,Machine Learning Engineer,180000,USD,180000,US,100,US,M +2023,MI,FT,Machine Learning Engineer,150000,USD,150000,US,100,US,M +2023,SE,FT,Data Scientist,228000,USD,228000,US,0,US,M +2023,SE,FT,Data Scientist,152000,USD,152000,US,0,US,M +2023,SE,FT,Data Scientist,209450,USD,209450,US,100,US,M +2023,SE,FT,Data Scientist,158677,USD,158677,US,100,US,M +2023,SE,FT,Data Analyst,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Analyst,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Engineer,240000,USD,240000,US,0,US,M +2023,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2023,MI,FT,Data Analyst,103200,USD,103200,US,0,US,M +2023,MI,FT,Data Analyst,61200,USD,61200,US,0,US,M +2022,MI,FT,Data Scientist,155000,USD,155000,US,100,US,L +2021,EN,FT,Marketing Data Engineer,90000,SGD,66970,SG,50,SG,L +2023,SE,FT,Data Scientist,59000,EUR,63312,CY,50,EE,L +2023,SE,FT,Data Scientist,237000,USD,237000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Scientist,240000,USD,240000,US,100,US,M +2023,SE,FT,Data Scientist,139000,USD,139000,US,100,US,M +2023,SE,FT,Data Architect,174500,USD,174500,US,0,US,M +2023,SE,FT,Data Architect,113000,USD,113000,US,0,US,M +2023,SE,FT,Data Analyst,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Analyst,87000,USD,87000,US,100,US,M +2023,SE,FT,Data Analyst,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Analyst,108000,USD,108000,US,100,US,M +2023,SE,FT,Data Engineer,165000,USD,165000,US,100,US,M +2023,SE,FT,Data Engineer,107250,USD,107250,US,100,US,M +2023,SE,FT,Data Engineer,300000,USD,300000,US,0,US,M +2023,SE,FT,Data Engineer,119000,USD,119000,US,0,US,M +2023,SE,FT,Data Scientist,285800,USD,285800,US,100,US,M +2023,SE,FT,Data Scientist,154600,USD,154600,US,100,US,M +2023,MI,FT,Head of Data Science,5000000,INR,60795,IN,50,IN,L +2023,EN,FT,Data Analyst,30000,USD,30000,AR,100,US,S +2023,MI,FT,Data Science Manager,220000,USD,220000,US,0,US,M +2023,MI,FT,Data Science Manager,195000,USD,195000,US,0,US,M +2023,SE,FT,Data Manager,168400,USD,168400,US,0,US,M +2023,SE,FT,Data Manager,105200,USD,105200,US,0,US,M +2023,MI,FT,Data Analyst,206000,USD,206000,US,0,US,M +2023,MI,FT,Data Analyst,160000,USD,160000,US,0,US,M +2023,SE,FT,Analytics Engineer,200000,USD,200000,US,100,US,M +2023,SE,FT,Analytics Engineer,175000,USD,175000,US,100,US,M +2023,SE,FT,Analytics Engineer,231250,USD,231250,US,100,US,M +2023,SE,FT,Analytics Engineer,138750,USD,138750,US,100,US,M +2023,SE,FT,Data Engineer,153000,USD,153000,CA,100,CA,M +2023,SE,FT,Data Engineer,94000,USD,94000,CA,100,CA,M +2023,SE,FT,Data Engineer,240500,USD,240500,US,0,US,L +2023,SE,FT,Data Engineer,123700,USD,123700,US,0,US,L +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,90000,USD,90000,US,100,US,M +2023,EN,FT,Data Scientist,124234,USD,124234,US,0,US,M +2023,EN,FT,Data Scientist,74540,USD,74540,US,0,US,M +2023,MI,FT,Data Analyst,109000,USD,109000,US,0,US,M +2023,MI,FT,Data Analyst,79000,USD,79000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,80000,EUR,84053,FR,50,FR,L +2023,MI,FT,Machine Learning Engineer,50000,USD,50000,AM,0,AM,S +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183500,USD,183500,US,100,US,M +2023,SE,FT,Data Scientist,275300,USD,275300,US,100,US,M +2023,SE,FT,Data Scientist,183500,USD,183500,US,100,US,M +2023,SE,FT,Data Analyst,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Analyst,125600,USD,125600,US,100,US,M +2023,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2023,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Engineer,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Analyst,141290,USD,141290,US,0,US,M +2023,SE,FT,Data Analyst,74178,USD,74178,US,0,US,M +2023,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Engineer,85000,USD,85000,US,100,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Engineer,220000,USD,220000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Engineer,205600,USD,205600,US,100,US,M +2023,SE,FT,Data Engineer,107500,USD,107500,US,100,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2023,EN,FT,Data Scientist,1060000,INR,12888,IN,50,IN,S +2023,MI,FT,Data Engineer,250000,USD,250000,US,0,US,M +2023,MI,FT,Data Engineer,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Scientist,136000,USD,136000,US,100,US,M +2023,SE,FT,Data Scientist,104000,USD,104000,US,100,US,M +2023,MI,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,MI,FT,Data Analyst,52500,USD,52500,US,0,US,M +2023,SE,FT,Data Scientist,110000,USD,110000,US,100,US,M +2023,SE,FT,Data Scientist,84000,USD,84000,US,100,US,M +2023,SE,FT,BI Analyst,125000,USD,125000,US,0,US,M +2023,SE,FT,BI Analyst,110000,USD,110000,US,0,US,M +2023,MI,FT,Data Analyst,90000,USD,90000,US,0,US,M +2023,MI,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,ML Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,ML Engineer,135000,USD,135000,US,0,US,M +2022,EN,FT,Business Data Analyst,48000,USD,48000,US,50,US,L +2023,EN,FT,AI Developer,120000,USD,120000,BA,50,BA,S +2023,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2023,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Engineer,226700,USD,226700,US,0,US,M +2023,SE,FT,Data Engineer,133300,USD,133300,US,0,US,M +2023,SE,FT,Data Scientist,190000,USD,190000,US,0,US,M +2023,SE,FT,Data Scientist,165000,USD,165000,US,0,US,M +2023,SE,FT,Data Engineer,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2023,MI,FT,Data Engineer,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2023,SE,FT,Computer Vision Engineer,200000,USD,200000,US,100,US,S +2023,MI,FT,Applied Data Scientist,80000,USD,80000,KE,100,KE,S +2023,EN,FT,Business Data Analyst,12000,EUR,12877,GR,50,GR,L +2022,EN,FT,AI Developer,6000,EUR,6304,MK,0,MK,S +2023,MI,FT,Data Analytics Lead,1440000,INR,17509,IN,50,SG,M +2023,SE,FT,Data Scientist,257000,USD,257000,US,0,US,M +2023,SE,FT,Data Scientist,134000,USD,134000,US,0,US,M +2023,SE,FT,Data Scientist,72000,EUR,77262,LV,0,LV,M +2023,SE,FT,Data Scientist,36000,EUR,38631,LV,0,LV,M +2023,SE,FT,Data Engineer,205600,USD,205600,US,0,US,L +2023,SE,FT,Data Engineer,105700,USD,105700,US,0,US,L +2023,SE,FT,BI Developer,140000,USD,140000,US,100,US,M +2023,SE,FT,BI Developer,110000,USD,110000,US,100,US,M +2023,SE,FT,Data Science Manager,299500,USD,299500,US,0,US,M +2023,SE,FT,Data Science Manager,245100,USD,245100,US,0,US,M +2023,SE,FT,Research Scientist,210000,USD,210000,US,0,US,M +2023,SE,FT,Research Scientist,151800,USD,151800,US,0,US,M +2023,MI,FT,Data Scientist,50000,EUR,53654,RO,50,RO,L +2023,SE,FT,Data Analyst,48000,EUR,51508,ES,0,ES,M +2023,SE,FT,Data Analyst,38000,EUR,40777,ES,0,ES,M +2023,SE,FT,Data Analyst,48000,EUR,51508,ES,0,ES,M +2023,SE,FT,Data Analyst,38000,EUR,40777,ES,0,ES,M +2023,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,100,US,M +2023,MI,FT,Data Engineer,95000,USD,95000,US,100,US,M +2023,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2023,SE,FT,Data Engineer,63000,USD,63000,US,100,US,M +2023,SE,FT,Data Scientist,237000,USD,237000,US,100,US,M +2023,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Scientist,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Scientist,90000,USD,90000,US,100,US,M +2023,MI,FT,Data Analyst,120000,USD,120000,US,100,US,M +2023,MI,FT,Data Analyst,100000,USD,100000,US,100,US,M +2023,SE,FT,Data Architect,174500,USD,174500,US,0,US,M +2023,SE,FT,Data Architect,113000,USD,113000,US,0,US,M +2023,MI,FT,Data Scientist,183310,USD,183310,US,0,US,M +2023,MI,FT,Data Scientist,183310,USD,183310,US,0,US,M +2023,SE,FT,Data Analyst,145000,USD,145000,US,100,US,M +2023,SE,FT,Data Analyst,102500,USD,102500,US,100,US,M +2023,SE,FT,Data Scientist,210000,USD,210000,US,0,US,M +2023,SE,FT,Data Scientist,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Architect,174500,USD,174500,US,0,US,M +2023,SE,FT,Data Architect,113000,USD,113000,US,0,US,M +2023,SE,FT,Data Science Consultant,122000,USD,122000,US,0,US,M +2023,SE,FT,Data Science Consultant,94000,USD,94000,US,0,US,M +2023,SE,FT,Data Scientist,220000,USD,220000,US,0,US,M +2023,SE,FT,Data Scientist,146000,USD,146000,US,0,US,M +2023,SE,FT,Data Engineer,300000,USD,300000,US,0,US,M +2023,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2023,MI,FT,Data Scientist,840000,THB,24740,TH,50,TH,L +2022,MI,FT,Computer Vision Engineer,1250000,INR,15897,IN,100,IN,M +2023,SE,FT,Data Science Consultant,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Science Consultant,128000,USD,128000,US,0,US,M +2023,SE,FT,Data Scientist,182000,USD,182000,US,0,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Engineer,122000,USD,122000,US,0,US,M +2023,SE,FT,Data Engineer,94000,USD,94000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,72000,EUR,77262,LV,0,LV,M +2023,SE,FT,Machine Learning Engineer,36000,EUR,38631,LV,0,LV,M +2023,EX,FT,Data Scientist,300000,USD,300000,US,0,US,M +2023,EX,FT,Data Scientist,200000,USD,200000,US,0,US,M +2023,MI,FT,Data Analyst,135000,USD,135000,US,0,US,M +2023,MI,FT,Data Analyst,105500,USD,105500,US,0,US,M +2023,SE,FT,Data Engineer,252000,USD,252000,US,0,US,M +2023,SE,FT,Data Engineer,129000,USD,129000,US,0,US,M +2022,MI,FT,Data Scientist,110000,USD,110000,US,100,US,L +2023,SE,FT,Data Scientist,136000,USD,136000,US,100,US,M +2023,SE,FT,Data Scientist,104000,USD,104000,US,100,US,M +2023,SE,FT,Data Scientist,168000,USD,168000,US,100,US,M +2023,SE,FT,Data Scientist,130000,USD,130000,US,100,US,M +2023,MI,FT,Data Analyst,65000,GBP,78990,GB,0,GB,M +2023,MI,FT,Data Analyst,36050,GBP,43809,GB,0,GB,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2023,SE,FT,Data Scientist,153400,USD,153400,US,0,US,M +2023,SE,FT,Data Scientist,122700,USD,122700,US,0,US,M +2023,SE,FT,Data Scientist,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Scientist,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Scientist,205000,USD,205000,US,100,US,M +2023,SE,FT,Data Scientist,185000,USD,185000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,MI,FT,Machine Learning Engineer,145000,USD,145000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,87000,USD,87000,US,0,US,M +2023,EN,FT,Data Scientist,50000,USD,50000,IN,100,US,M +2023,SE,FT,ML Engineer,234100,USD,234100,US,100,US,M +2023,SE,FT,ML Engineer,203500,USD,203500,US,100,US,M +2023,SE,FT,Data Scientist,223800,USD,223800,US,0,US,M +2023,SE,FT,Data Scientist,172100,USD,172100,US,0,US,M +2023,SE,FT,Data Scientist,180000,USD,180000,US,0,US,M +2023,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2023,SE,FT,Data Engineer,232200,USD,232200,US,100,US,M +2023,SE,FT,Data Engineer,167200,USD,167200,US,100,US,M +2023,SE,FT,BI Developer,197000,USD,197000,US,0,US,M +2023,SE,FT,BI Developer,106000,USD,106000,US,0,US,M +2023,SE,FT,Research Scientist,180000,USD,180000,US,0,US,M +2023,SE,FT,Research Scientist,145000,USD,145000,US,0,US,M +2023,SE,FT,Data Lead,225000,USD,225000,US,0,US,M +2023,SE,FT,Data Lead,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Engineer,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Engineer,114000,USD,114000,US,100,US,M +2023,SE,FT,Data Engineer,291500,USD,291500,US,0,US,M +2023,SE,FT,Data Engineer,180000,USD,180000,US,0,US,M +2023,EX,FT,Data Engineer,196200,USD,196200,US,0,US,M +2023,EX,FT,Data Engineer,150900,USD,150900,US,0,US,M +2023,SE,FT,Data Scientist,168400,USD,168400,US,0,US,M +2023,SE,FT,Data Scientist,105200,USD,105200,US,0,US,M +2023,MI,FT,Data Engineer,95000,USD,95000,ES,100,ES,M +2023,MI,FT,Data Engineer,80000,USD,80000,ES,100,ES,M +2023,MI,FT,Data Analyst,116000,USD,116000,US,0,US,M +2023,MI,FT,Data Analyst,72000,USD,72000,US,0,US,M +2023,SE,FT,Analytics Engineer,207000,USD,207000,US,0,US,M +2023,SE,FT,Analytics Engineer,167000,USD,167000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,145000,USD,145000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,135000,USD,135000,US,0,US,M +2023,MI,FT,Data Engineer,105000,USD,105000,US,0,US,M +2023,MI,FT,Data Engineer,70000,USD,70000,US,0,US,M +2023,SE,FT,Data Architect,180000,USD,180000,US,100,US,M +2023,SE,FT,Data Architect,115000,USD,115000,US,100,US,M +2023,SE,FT,Data Engineer,133800,USD,133800,US,100,US,M +2023,SE,FT,Data Engineer,96100,USD,96100,US,100,US,M +2023,MI,FT,Data Analyst,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Analyst,80000,USD,80000,US,0,US,M +2023,SE,FT,Data Science Engineer,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Science Engineer,100000,USD,100000,US,0,US,M +2023,SE,FT,Research Scientist,150000,USD,150000,US,0,US,M +2023,SE,FT,Research Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Cloud Database Engineer,140000,USD,140000,US,100,US,M +2023,SE,FT,Cloud Database Engineer,115000,USD,115000,US,100,US,M +2023,SE,FT,Data Science Manager,297300,USD,297300,US,100,US,M +2023,SE,FT,Data Science Manager,198200,USD,198200,US,100,US,M +2023,SE,FT,Data Scientist,297300,USD,297300,US,100,US,M +2023,SE,FT,Data Scientist,198200,USD,198200,US,100,US,M +2023,SE,FT,Data Engineer,202000,USD,202000,US,100,US,M +2023,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2023,SE,FT,Data Scientist,110000,USD,110000,US,100,US,M +2023,SE,FT,Data Scientist,84000,USD,84000,US,100,US,M +2023,MI,FT,Machine Learning Engineer,219000,USD,219000,US,50,US,L +2023,SE,FT,Applied Scientist,230000,USD,230000,US,100,US,M +2023,SE,FT,Applied Scientist,196000,USD,196000,US,100,US,M +2023,SE,FT,BI Developer,140000,USD,140000,US,100,US,M +2023,SE,FT,BI Developer,110000,USD,110000,US,100,US,M +2023,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Data Engineer,110000,USD,110000,US,0,US,M +2023,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2023,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2023,SE,FT,Applied Scientist,126100,USD,126100,US,0,US,L +2023,SE,FT,Applied Scientist,72000,USD,72000,US,0,US,L +2023,SE,FT,Data Engineer,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2023,MI,FT,Machine Learning Engineer,175000,USD,175000,US,100,US,M +2023,MI,FT,Machine Learning Engineer,140000,USD,140000,US,100,US,M +2023,SE,FT,Data Analyst,240500,USD,240500,US,0,US,M +2023,SE,FT,Data Analyst,137500,USD,137500,US,0,US,M +2023,MI,FT,Data Scientist,187500,USD,187500,US,0,US,M +2023,MI,FT,Data Scientist,165000,USD,165000,US,0,US,M +2023,MI,FT,Machine Learning Research Engineer,60000,GBP,72914,GB,0,GB,L +2022,EN,PT,Data Analyst,24000,EUR,25216,ES,100,US,L +2023,SE,FT,Research Scientist,210000,USD,210000,US,0,US,M +2023,SE,FT,Research Scientist,165750,USD,165750,US,0,US,M +2023,SE,FT,Machine Learning Scientist,225000,USD,225000,US,100,US,M +2023,SE,FT,Machine Learning Scientist,165750,USD,165750,US,100,US,M +2023,MI,FT,Machine Learning Engineer,89700,GBP,109006,GB,0,GB,M +2023,MI,FT,Machine Learning Engineer,55250,GBP,67141,GB,0,GB,M +2023,SE,FT,Data Scientist,135000,USD,135000,US,100,US,M +2023,SE,FT,Data Scientist,115000,USD,115000,US,100,US,M +2023,SE,FT,NLP Engineer,275000,USD,275000,US,0,US,M +2023,SE,FT,NLP Engineer,175000,USD,175000,US,0,US,M +2023,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2023,SE,FT,Data Engineer,175308,USD,175308,US,0,US,M +2023,SE,FT,Data Engineer,100706,USD,100706,US,0,US,M +2023,SE,FT,NLP Engineer,235000,USD,235000,US,0,US,M +2023,SE,FT,NLP Engineer,135000,USD,135000,US,0,US,M +2023,SE,FT,Data Engineer,310000,USD,310000,US,0,US,M +2023,SE,FT,Data Engineer,229000,USD,229000,US,0,US,M +2023,SE,FT,ML Engineer,289076,USD,289076,US,0,US,M +2023,SE,FT,ML Engineer,202353,USD,202353,US,0,US,M +2023,SE,FT,Data Engineer,65000,EUR,69751,PT,0,PT,M +2023,SE,FT,Data Engineer,35000,EUR,37558,PT,0,PT,M +2023,MI,FT,Research Engineer,120000,USD,120000,US,100,US,M +2023,MI,FT,Research Engineer,100000,USD,100000,US,100,US,M +2023,SE,FT,Data Engineer,226700,USD,226700,US,0,US,M +2023,SE,FT,Data Engineer,133300,USD,133300,US,0,US,M +2023,SE,FT,Data Analyst,125000,USD,125000,US,0,US,M +2023,SE,FT,Data Analyst,85000,USD,85000,US,0,US,M +2023,SE,FT,Data Analyst,130000,USD,130000,US,100,US,M +2023,SE,FT,Data Analyst,80000,USD,80000,US,100,US,M +2023,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Engineer,100000,USD,100000,US,0,US,M +2021,SE,FT,Data Scientist,4000000,INR,54094,IN,100,IN,L +2022,MI,FT,Business Data Analyst,1440000,INR,18314,IN,50,IN,L +2023,SE,FT,Data Engineer,231250,USD,231250,US,100,US,M +2023,SE,FT,Data Engineer,138750,USD,138750,US,100,US,M +2023,SE,FT,Data Engineer,199000,USD,199000,US,0,US,M +2023,SE,FT,Data Engineer,162000,USD,162000,US,0,US,M +2023,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,EN,FT,Data Scientist,100000,USD,100000,US,100,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,SE,FT,Research Scientist,150000,USD,150000,US,0,US,M +2023,EN,FT,Research Engineer,160000,USD,160000,US,0,US,M +2023,EN,FT,Research Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Research Scientist,250000,USD,250000,US,0,US,M +2023,SE,FT,Research Scientist,200000,USD,200000,US,0,US,M +2023,EN,FT,Deep Learning Engineer,150000,USD,150000,US,0,US,M +2023,EN,FT,Deep Learning Engineer,120000,USD,120000,US,0,US,M +2023,SE,FT,Research Engineer,150000,USD,150000,US,0,US,M +2023,SE,FT,Research Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Analytics Manager,133000,USD,133000,NL,0,NL,L +2023,SE,FT,Data Scientist,272550,USD,272550,US,0,US,M +2023,SE,FT,Data Scientist,198200,USD,198200,US,0,US,M +2023,SE,FT,Data Scientist,182000,USD,182000,US,0,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Engineer,200000,USD,200000,US,0,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,MI,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,MI,FT,Data Scientist,105000,USD,105000,US,0,US,M +2023,SE,FT,Data Engineer,187500,USD,187500,US,100,US,M +2023,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2023,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2023,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2023,SE,FT,Data Analyst,155000,USD,155000,US,100,US,M +2023,SE,FT,Data Analyst,64000,USD,64000,US,100,US,M +2023,SE,FT,Computer Vision Engineer,235000,USD,235000,US,0,US,M +2023,SE,FT,Computer Vision Engineer,185000,USD,185000,US,0,US,M +2023,SE,FT,Data Architect,174500,USD,174500,US,0,US,M +2023,SE,FT,Data Architect,113000,USD,113000,US,0,US,M +2023,SE,FT,Data Scientist,143100,USD,143100,CA,0,CA,M +2023,SE,FT,Data Scientist,113000,USD,113000,CA,0,CA,M +2023,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2023,SE,FT,Applied Scientist,142000,USD,142000,US,100,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Data Architect,174500,USD,174500,US,0,US,M +2023,SE,FT,Data Architect,113000,USD,113000,US,0,US,M +2023,SE,FT,Data Scientist,180560,USD,180560,US,0,US,M +2023,SE,FT,Data Scientist,115440,USD,115440,US,0,US,M +2023,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2023,SE,FT,Research Scientist,248100,USD,248100,US,0,US,M +2023,SE,FT,Research Scientist,145900,USD,145900,US,0,US,M +2023,SE,FT,Data Scientist,120000,USD,120000,CA,0,CA,M +2023,SE,FT,Data Scientist,110000,USD,110000,CA,0,CA,M +2023,SE,FT,Data Engineer,291500,USD,291500,US,0,US,M +2023,SE,FT,Data Engineer,180000,USD,180000,US,0,US,M +2023,MI,FT,Machine Learning Engineer,62000,GBP,75344,GB,100,GB,M +2023,MI,FT,Machine Learning Engineer,52000,GBP,63192,GB,100,GB,M +2023,SE,FT,Data Engineer,161800,USD,161800,US,0,US,M +2023,SE,FT,Data Engineer,141600,USD,141600,US,0,US,M +2023,MI,FT,Machine Learning Engineer,48000,GBP,58331,GB,100,GB,M +2023,MI,FT,Machine Learning Engineer,38000,GBP,46178,GB,100,GB,M +2023,SE,FT,Data Engineer,166000,USD,166000,US,100,US,M +2023,SE,FT,Data Engineer,128000,USD,128000,US,100,US,M +2023,SE,FT,Data Architect,170000,USD,170000,US,100,US,M +2023,SE,FT,Data Architect,110000,USD,110000,US,100,US,M +2023,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2023,SE,FT,Data Engineer,75000,USD,75000,US,100,US,M +2023,SE,FT,Data Engineer,236000,USD,236000,US,100,US,M +2023,SE,FT,Data Engineer,182000,USD,182000,US,100,US,M +2022,MI,FT,Data Analyst,1125000,INR,14307,IN,100,IN,L +2022,EN,FT,Data Scientist,130000,USD,130000,US,0,US,M +2023,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2023,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2023,SE,FT,Machine Learning Engineer,261500,USD,261500,US,0,US,L +2023,SE,FT,Machine Learning Engineer,134500,USD,134500,US,0,US,L +2022,MI,FT,Data Scientist,1100000,INR,13989,IN,100,IN,L +2023,MI,FT,Data Scientist,130000,USD,130000,US,0,US,M +2023,MI,FT,Data Scientist,90000,USD,90000,US,0,US,M +2023,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2023,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Manager Data Management,125000,USD,125000,US,100,US,L +2022,SE,FT,Data Engineer,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Engineer,155000,USD,155000,US,0,US,M +2022,SE,FT,Data Engineer,153600,USD,153600,US,0,US,M +2022,SE,FT,Data Engineer,106800,USD,106800,US,0,US,M +2022,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2022,SE,FT,Data Science Consultant,122000,USD,122000,US,0,US,M +2022,SE,FT,Data Science Consultant,94500,USD,94500,US,0,US,M +2022,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Science Consultant,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Science Consultant,128000,USD,128000,US,0,US,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2022,SE,FT,Applied Machine Learning Scientist,150000,USD,150000,US,100,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,MI,FT,Data Scientist,150000,USD,150000,US,100,US,M +2022,MI,FT,Data Scientist,127500,USD,127500,US,100,US,M +2022,SE,FT,Data Scientist,126500,USD,126500,US,100,US,M +2022,SE,FT,Data Scientist,51000,USD,51000,US,100,US,M +2022,MI,FT,Data Engineer,260000,USD,260000,US,0,US,M +2022,MI,FT,Data Engineer,175000,USD,175000,US,0,US,M +2022,EN,FT,Applied Data Scientist,40000,USD,40000,AU,100,PK,M +2022,EN,FT,AI Programmer,40000,USD,40000,PK,100,AU,M +2022,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,160000,USD,160000,US,100,US,M +2022,SE,FT,Data Scientist,272550,USD,272550,US,100,US,M +2022,SE,FT,Data Scientist,198200,USD,198200,US,100,US,M +2022,MI,FT,Data Scientist,90000,EUR,94560,FR,100,FR,M +2022,MI,FT,Data Scientist,50000,EUR,52533,FR,100,FR,M +2022,SE,FT,Data Scientist,220000,USD,220000,US,0,US,M +2022,SE,FT,Data Scientist,146000,USD,146000,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Machine Learning Software Engineer,248400,USD,248400,CA,100,CA,M +2022,SE,FT,Machine Learning Software Engineer,183600,USD,183600,CA,100,CA,M +2022,MI,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,MI,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,EN,FT,Machine Learning Developer,40000,USD,40000,PK,100,AU,M +2022,SE,FT,Lead Data Scientist,4460000,INR,56723,IN,0,IN,L +2022,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,EN,FT,Data Science Consultant,23000,EUR,24165,IT,50,IT,M +2022,SE,FT,Data Engineer,216000,USD,216000,US,100,US,M +2022,SE,FT,Data Engineer,144000,USD,144000,US,100,US,M +2022,EN,FT,Data Engineer,85000,USD,85000,US,0,US,M +2022,EN,FT,Data Engineer,65000,USD,65000,US,0,US,M +2022,SE,FT,Data Analyst,149000,USD,149000,US,100,US,M +2022,SE,FT,Data Analyst,119000,USD,119000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2022,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2022,MI,FT,Data Scientist,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Scientist,110000,USD,110000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,246000,USD,246000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,201000,USD,201000,US,100,US,M +2022,SE,FT,Data Scientist,190000,USD,190000,US,0,US,M +2022,SE,FT,Data Scientist,155000,USD,155000,US,0,US,M +2022,SE,FT,ML Engineer,235000,USD,235000,US,100,US,M +2022,SE,FT,ML Engineer,185000,USD,185000,US,100,US,M +2022,SE,FT,Cloud Database Engineer,190000,USD,190000,US,100,US,M +2022,SE,FT,Cloud Database Engineer,160000,USD,160000,US,100,US,M +2022,EN,FT,Product Data Analyst,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,MI,FT,Data Engineer,115000,USD,115000,US,0,US,M +2022,MI,FT,Data Scientist,75000,GBP,92350,GB,0,GB,M +2022,MI,FT,Data Scientist,55000,GBP,67723,GB,0,GB,M +2022,MI,FT,Data Engineer,105000,USD,105000,US,0,US,M +2022,MI,FT,Data Engineer,70000,USD,70000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2022,SE,FT,Machine Learning Engineer,192000,USD,192000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,164000,USD,164000,US,100,US,M +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Engineer,75000,USD,75000,US,0,US,M +2022,SE,FT,Data Science Manager,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Science Manager,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,167500,USD,167500,US,0,US,M +2022,SE,FT,Data Engineer,106500,USD,106500,US,0,US,M +2022,MI,FT,Data Analyst,75000,USD,75000,US,100,US,M +2022,MI,FT,Data Analyst,60000,USD,60000,US,100,US,M +2022,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2022,SE,FT,Applied Scientist,142000,USD,142000,US,100,US,M +2022,MI,FT,Data Scientist,145000,USD,145000,US,0,US,M +2022,MI,FT,Data Scientist,100000,USD,100000,US,0,US,M +2022,EN,FT,Machine Learning Software Engineer,10000,USD,10000,MA,50,MA,S +2022,MI,FT,Data Scientist,2500000,INR,31795,IN,100,US,M +2022,MI,FT,NLP Engineer,198000,PLN,44365,PL,100,PL,S +2022,SE,FT,Data Engineer,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,EX,FT,Data Engineer,200000,USD,200000,US,0,US,M +2022,EX,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,MI,FT,Data Engineer,75000,GBP,92350,GB,100,GB,M +2022,MI,FT,Data Engineer,60000,GBP,73880,GB,100,GB,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Applied Scientist,192000,USD,192000,US,100,US,M +2022,SE,FT,Applied Scientist,164000,USD,164000,US,100,US,M +2022,EX,FT,Data Engineer,310000,USD,310000,US,100,US,M +2022,EX,FT,Data Engineer,239000,USD,239000,US,100,US,M +2022,SE,FT,Data Analyst,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Engineer,78000,USD,78000,US,0,US,M +2022,SE,FT,Data Engineer,70000,EUR,73546,ES,0,ES,M +2022,SE,FT,Data Engineer,35000,EUR,36773,ES,0,ES,M +2022,MI,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Engineer,120000,USD,120000,US,100,US,M +2022,SE,FT,Data Scientist,190000,USD,190000,US,0,US,M +2022,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Engineer,2800000,INR,35610,IN,50,IN,L +2022,SE,FT,AI Scientist,125000,USD,125000,CO,100,CO,L +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2022,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,SE,FT,Research Engineer,249500,USD,249500,US,0,US,M +2022,SE,FT,Research Engineer,149850,USD,149850,US,0,US,M +2022,MI,FT,Analytics Engineer,122500,USD,122500,US,100,US,M +2022,MI,FT,Analytics Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Scientist,249500,USD,249500,US,0,US,M +2022,SE,FT,Data Scientist,149850,USD,149850,US,0,US,M +2022,EN,FT,Data Analyst,55000,USD,55000,US,0,US,M +2022,EN,FT,Data Analyst,48000,USD,48000,US,0,US,M +2022,SE,FT,Research Scientist,249500,USD,249500,US,0,US,M +2022,SE,FT,Research Scientist,149850,USD,149850,US,0,US,M +2022,MI,FT,Computer Vision Engineer,56000,EUR,58837,FR,100,FR,S +2022,SE,FT,Data Engineer,190000,USD,190000,US,100,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,100,US,M +2022,SE,FT,Data Analyst,127000,USD,127000,US,100,US,M +2022,SE,FT,Data Analyst,104000,USD,104000,US,100,US,M +2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Scientist,150000,USD,150000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Scientist,182750,USD,182750,US,100,US,M +2022,SE,FT,Data Scientist,161500,USD,161500,US,100,US,M +2022,MI,FT,Data Analyst,102640,USD,102640,US,100,US,M +2022,MI,FT,Data Analyst,66100,USD,66100,US,100,US,M +2022,SE,FT,Research Scientist,210000,USD,210000,US,100,US,M +2022,SE,FT,Research Scientist,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Engineer,198800,USD,198800,US,0,US,M +2022,SE,FT,Data Engineer,122600,USD,122600,US,0,US,M +2022,MI,FT,Data Engineer,130000,USD,130000,US,100,US,M +2022,MI,FT,Data Engineer,80000,USD,80000,US,100,US,M +2022,SE,FT,Data Scientist,136000,USD,136000,US,100,US,M +2022,SE,FT,Data Scientist,104000,USD,104000,US,100,US,M +2022,SE,FT,Data Analyst,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2022,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,216000,USD,216000,US,100,US,M +2022,SE,FT,Data Engineer,144000,USD,144000,US,100,US,M +2022,EX,FT,Data Scientist,159000,USD,159000,US,100,US,M +2022,EX,FT,Data Scientist,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2022,SE,FT,Data Engineer,215000,USD,215000,US,100,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,246000,USD,246000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,201000,USD,201000,US,100,US,M +2022,MI,FT,Data Engineer,187000,USD,187000,US,100,US,M +2022,MI,FT,Data Engineer,153000,USD,153000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,255000,USD,255000,MX,100,MX,M +2022,SE,FT,Machine Learning Engineer,185000,USD,185000,MX,100,MX,M +2022,MI,FT,Data Analyst,350000,GBP,430967,GB,0,GB,M +2022,MI,FT,Data Analyst,45000,GBP,55410,GB,0,GB,M +2022,SE,FT,Data Analyst,48000,EUR,50432,ES,0,ES,M +2022,SE,FT,Data Analyst,38000,EUR,39925,ES,0,ES,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,EN,FT,BI Data Analyst,58000,EUR,60938,DE,0,DE,L +2022,SE,FT,BI Developer,140000,USD,140000,US,100,US,M +2022,SE,FT,BI Developer,120000,USD,120000,US,100,US,M +2022,MI,FT,Data Analyst,75000,USD,75000,US,100,US,M +2022,MI,FT,Data Analyst,60000,USD,60000,US,100,US,M +2022,SE,FT,3D Computer Vision Researcher,10000,USD,10000,CA,50,AL,S +2022,EN,FT,Data Analyst,50000,USD,50000,US,50,US,L +2022,MI,FT,MLOps Engineer,134000,USD,134000,US,100,US,M +2022,MI,FT,MLOps Engineer,124000,USD,124000,US,100,US,M +2022,SE,FT,Data Analyst,166700,USD,166700,US,0,US,M +2022,SE,FT,Data Analyst,119000,USD,119000,US,0,US,M +2022,EN,FT,Data Scientist,124234,USD,124234,US,0,US,M +2022,EN,FT,Data Scientist,74540,USD,74540,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Analyst,65000,USD,65000,US,100,US,M +2021,MI,FT,Data Analyst,1250000,INR,16904,IN,50,IN,L +2022,EN,FT,AI Scientist,200000,USD,200000,CA,50,CA,L +2022,EN,FT,Machine Learning Engineer,12000,USD,12000,AR,100,AR,L +2022,SE,FT,Data Engineer,220000,USD,220000,US,100,US,M +2022,SE,FT,Data Engineer,146000,USD,146000,US,100,US,M +2022,SE,FT,Data Engineer,65000,EUR,68293,ES,0,ES,M +2022,SE,FT,Data Engineer,35000,EUR,36773,ES,0,ES,M +2022,SE,FT,Data Specialist,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Specialist,70000,USD,70000,US,0,US,M +2022,EN,FT,Data Analyst,50000,USD,50000,US,50,US,L +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,SE,FT,Data Architect,190000,USD,190000,US,100,US,M +2022,SE,FT,Data Architect,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Scientist,128000,USD,128000,US,0,US,M +2022,SE,FT,Data Scientist,81500,USD,81500,US,0,US,M +2022,SE,FT,Data Scientist,173000,USD,173000,US,100,US,M +2022,SE,FT,Data Scientist,110000,USD,110000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,192000,USD,192000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2022,SE,FT,Data Analyst,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2022,SE,FT,Principal Machine Learning Engineer,190000,USD,190000,US,100,US,L +2022,SE,FT,Data Engineer,194000,USD,194000,US,100,US,M +2022,SE,FT,Data Engineer,129400,USD,129400,US,100,US,M +2022,SE,FT,Data Analyst,201000,USD,201000,US,100,US,M +2022,SE,FT,Data Analyst,89200,USD,89200,US,100,US,M +2022,SE,FT,Data Scientist,165000,USD,165000,US,0,US,M +2022,SE,FT,Data Scientist,125000,USD,125000,US,0,US,M +2022,SE,FT,Applied Scientist,230000,USD,230000,US,100,US,M +2022,SE,FT,Applied Scientist,196000,USD,196000,US,100,US,M +2022,MI,FT,Machine Learning Engineer,130000,USD,130000,US,0,US,M +2022,MI,FT,Machine Learning Engineer,90000,USD,90000,US,0,US,M +2022,MI,FT,Machine Learning Researcher,150000,USD,150000,US,100,US,M +2022,MI,FT,Machine Learning Researcher,100000,USD,100000,US,100,US,M +2022,MI,FT,Machine Learning Engineer,230000,USD,230000,US,0,US,M +2022,MI,FT,Machine Learning Engineer,150000,USD,150000,US,0,US,M +2022,SE,FT,Data Engineer,153600,USD,153600,US,0,US,M +2022,SE,FT,Data Engineer,106800,USD,106800,US,0,US,M +2022,MI,FT,Machine Learning Researcher,130000,USD,130000,US,100,US,M +2022,MI,FT,Machine Learning Researcher,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Engineer,216000,USD,216000,US,100,US,M +2022,SE,FT,Data Engineer,144000,USD,144000,US,100,US,M +2022,MI,FT,Data Scientist,180000,USD,180000,US,0,US,M +2022,MI,FT,Data Scientist,120000,USD,120000,US,0,US,M +2022,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Analyst,192500,USD,192500,US,100,US,M +2022,SE,FT,Data Analyst,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Engineer,152500,USD,152500,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,65000,USD,65000,US,100,US,M +2022,SE,FT,Data Analyst,55000,USD,55000,US,100,US,M +2022,SE,FT,Data Engineer,178750,USD,178750,US,0,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,MI,FT,Data Scientist,60000,EUR,63040,FR,100,FR,M +2022,MI,FT,Data Scientist,50000,EUR,52533,FR,100,FR,M +2022,MI,FT,Machine Learning Scientist,165000,USD,165000,US,0,US,M +2022,MI,FT,Machine Learning Scientist,135000,USD,135000,US,0,US,M +2022,SE,FT,Analytics Engineer,170000,USD,170000,US,100,US,M +2022,SE,FT,Analytics Engineer,125000,USD,125000,US,100,US,M +2022,SE,FT,Data Engineer,105000,USD,105000,US,0,US,M +2022,SE,FT,Data Engineer,70000,USD,70000,US,0,US,M +2022,SE,FT,Data Scientist,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Scientist,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Scientist,203500,USD,203500,US,0,US,M +2022,SE,FT,Data Scientist,152000,USD,152000,US,0,US,M +2022,SE,FT,Data Engineer,197430,USD,197430,US,100,US,M +2022,SE,FT,Data Engineer,134760,USD,134760,US,100,US,M +2022,MI,FT,Data Scientist,120000,USD,120000,US,100,US,M +2022,SE,FT,Data Engineer,197000,USD,197000,US,0,US,M +2022,SE,FT,Data Engineer,99000,USD,99000,US,0,US,M +2022,SE,FT,Data Engineer,220000,USD,220000,US,100,US,M +2022,SE,FT,Data Engineer,162000,USD,162000,US,100,US,M +2022,MI,FT,Data Engineer,105120,EUR,110446,LT,0,LT,M +2022,MI,FT,Data Engineer,75360,EUR,79178,LT,0,LT,M +2022,MI,FT,Data Science Consultant,57000,GBP,70186,GB,0,GB,M +2022,MI,FT,Data Science Consultant,42000,GBP,51716,GB,0,GB,M +2022,SE,FT,Data Architect,149040,USD,149040,US,100,US,M +2022,SE,FT,Data Architect,113900,USD,113900,US,100,US,M +2020,MI,FT,Business Data Analyst,95000,USD,95000,US,0,US,M +2021,SE,FT,Data Analyst,115000,USD,115000,US,100,US,S +2022,SE,FT,Data Analyst,171000,USD,171000,US,100,AU,L +2022,EN,FT,Data Analytics Engineer,13000,USD,13000,AR,100,AR,S +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Engineer,78000,USD,78000,US,0,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Specialist,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Specialist,70000,USD,70000,US,0,US,M +2022,EN,FL,Data Analytics Consultant,50000,USD,50000,BE,100,US,S +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Engineer,230000,USD,230000,US,100,US,M +2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,M +2022,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2022,MI,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Engineer,75000,USD,75000,US,100,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,SE,FT,Data Engineer,213000,USD,213000,US,0,US,M +2022,SE,FT,Data Engineer,152000,USD,152000,US,0,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Scientist,120000,USD,120000,US,100,US,M +2022,SE,FT,Data Scientist,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Scientist,70000,USD,70000,US,0,US,M +2022,SE,FT,Machine Learning Software Engineer,227200,USD,227200,CA,100,CA,M +2022,SE,FT,Machine Learning Software Engineer,168000,USD,168000,CA,100,CA,M +2021,EN,FT,3D Computer Vision Researcher,20000,USD,20000,AS,0,AS,M +2022,MI,FT,Data Scientist,61000,EUR,64090,DE,0,DE,M +2022,MI,FT,Data Scientist,58000,EUR,60938,DE,0,DE,M +2022,SE,FT,ML Engineer,243000,USD,243000,US,100,US,M +2022,SE,FT,ML Engineer,183000,USD,183000,US,100,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Scientist,130000,USD,130000,US,100,US,M +2022,MI,FT,Data Scientist,90000,USD,90000,US,100,US,M +2022,MI,FT,Data Analyst,165000,USD,165000,US,0,US,M +2022,MI,FT,Data Analyst,124000,USD,124000,US,0,US,M +2022,SE,FT,Data Engineer,178000,USD,178000,CA,0,CA,M +2022,SE,FT,Data Engineer,132000,USD,132000,CA,0,CA,M +2022,SE,FT,Data Engineer,300000,USD,300000,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,SE,FT,Data Analyst,116000,USD,116000,US,100,US,M +2022,SE,FT,Data Analyst,96000,USD,96000,US,100,US,M +2022,SE,FT,Data Analyst,75000,GBP,92350,GB,0,GB,M +2022,SE,FT,Data Analyst,57000,GBP,70186,GB,0,GB,M +2022,SE,FT,Data Analyst,105000,USD,105000,US,0,US,M +2022,SE,FT,Data Analyst,70000,USD,70000,US,0,US,M +2022,MI,FT,Machine Learning Researcher,137000,CAD,105236,CA,50,CA,L +2022,SE,FT,Data Engineer,194000,USD,194000,US,100,US,M +2022,SE,FT,Data Engineer,129400,USD,129400,US,100,US,M +2022,SE,FT,Data Architect,190000,USD,190000,US,100,US,M +2022,SE,FT,Data Architect,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Analyst,70000,USD,70000,US,0,US,M +2022,EN,FT,Machine Learning Engineer,189750,USD,189750,US,0,US,M +2022,EN,FT,Machine Learning Engineer,140250,USD,140250,US,0,US,M +2022,SE,FT,Data Analyst,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,MI,FT,Data Analyst,160000,USD,160000,US,0,US,M +2022,MI,FT,Data Analyst,109000,USD,109000,US,0,US,M +2022,SE,FT,Research Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Research Engineer,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,206000,USD,206000,US,0,US,M +2022,MI,FT,Data Analyst,160000,USD,160000,US,0,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,110000,EUR,115573,FR,100,FR,M +2022,SE,FT,Machine Learning Engineer,70000,EUR,73546,FR,100,FR,M +2022,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Engineer,65000,EUR,68293,ES,0,ES,M +2022,SE,FT,Data Engineer,40000,EUR,42026,ES,0,ES,M +2022,SE,FT,Data Engineer,191200,USD,191200,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Engineer,191200,USD,191200,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,EN,FT,Machine Learning Research Engineer,63000,EUR,66192,DE,50,DE,L +2022,EN,FT,3D Computer Vision Researcher,50000,USD,50000,US,100,CR,S +2022,SE,FT,Data Engineer,230000,USD,230000,US,0,US,L +2022,SE,FT,Data Engineer,154600,USD,154600,US,0,US,L +2022,SE,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2022,SE,FT,Data Scientist,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,MI,FT,Data Analyst,80000,USD,80000,US,100,US,L +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Analytics Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Analytics Engineer,110000,USD,110000,US,0,US,M +2022,MI,FT,Data Analytics Manager,155000,USD,155000,US,0,US,M +2022,MI,FT,Data Analytics Manager,140000,USD,140000,US,0,US,M +2022,SE,FT,Data Engineer,205000,USD,205000,US,100,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Engineer,179500,USD,179500,US,0,US,M +2022,SE,FT,Data Engineer,134000,USD,134000,US,0,US,M +2022,MI,FT,Data Scientist,180000,USD,180000,US,0,US,M +2022,MI,FT,Data Scientist,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Scientist,145000,USD,145000,US,100,US,M +2022,SE,FT,Data Architect,235000,USD,235000,US,100,US,M +2022,SE,FT,Data Architect,175000,USD,175000,US,100,US,M +2022,EN,FT,Data Science Consultant,26000,EUR,27317,ES,50,ES,L +2022,MI,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Engineer,90000,USD,90000,US,100,US,M +2022,SE,FT,Data Engineer,65000,EUR,68293,ES,0,ES,M +2022,SE,FT,Data Engineer,35000,EUR,36773,ES,0,ES,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2022,MI,FT,Data Specialist,165000,USD,165000,US,0,US,M +2022,MI,FT,Data Specialist,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,168400,USD,168400,US,0,US,M +2022,SE,FT,Data Engineer,105200,USD,105200,US,0,US,M +2022,MI,FT,Deep Learning Engineer,70000,GBP,86193,GB,100,GB,M +2022,MI,FT,Deep Learning Engineer,40000,GBP,49253,GB,100,GB,M +2022,SE,FT,Data Engineer,200000,USD,200000,US,0,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,SE,FT,Data Scientist,198800,USD,198800,US,0,US,M +2022,SE,FT,Data Scientist,122600,USD,122600,US,0,US,M +2022,EN,FL,Machine Learning Engineer,100000,USD,100000,IR,100,IR,M +2022,MI,FT,BI Data Analyst,100000,EUR,105066,FR,50,FR,M +2022,SE,FT,Data Analyst,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,MI,FT,Analytics Engineer,85000,GBP,104663,GB,0,GB,M +2022,MI,FT,Analytics Engineer,60000,GBP,73880,GB,0,GB,M +2022,SE,FT,Data Engineer,125000,USD,125000,US,100,US,M +2022,SE,FT,Data Engineer,110000,USD,110000,US,100,US,M +2022,MI,FT,Data Analyst,165000,USD,165000,US,0,US,M +2022,MI,FT,Data Analyst,124000,USD,124000,US,0,US,M +2022,SE,FT,Data Scientist,148000,USD,148000,US,100,US,M +2022,SE,FT,Data Scientist,107000,USD,107000,US,100,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Engineer,153600,USD,153600,US,0,US,M +2022,SE,FT,Data Engineer,106800,USD,106800,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,CA,0,CA,M +2022,MI,FT,Data Analyst,65000,USD,65000,CA,0,CA,M +2022,MI,FT,Data Engineer,120000,USD,120000,US,0,US,M +2022,MI,FT,Data Engineer,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Engineer,60000,EUR,63040,PT,0,PT,M +2022,SE,FT,Data Engineer,35000,EUR,36773,PT,0,PT,M +2022,EX,FT,Data Engineer,310000,USD,310000,US,100,US,M +2022,EX,FT,Data Engineer,239000,USD,239000,US,100,US,M +2022,SE,FT,Data Science Manager,299500,USD,299500,US,0,US,M +2022,SE,FT,Data Science Manager,245100,USD,245100,US,0,US,M +2022,SE,FT,Data Scientist,168000,USD,168000,US,100,US,M +2022,SE,FT,Data Scientist,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Scientist,136000,USD,136000,US,100,US,M +2022,SE,FT,Data Scientist,104000,USD,104000,US,100,US,M +2022,MI,FT,Data Engineer,161000,USD,161000,US,100,US,M +2022,MI,FT,Data Engineer,118000,USD,118000,US,100,US,M +2022,SE,FT,Applied Scientist,205000,USD,205000,US,100,US,M +2022,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Science Manager,247500,USD,247500,US,0,US,M +2022,SE,FT,Data Science Manager,172200,USD,172200,US,0,US,M +2022,SE,FT,Data Management Specialist,65000,EUR,68293,IT,0,IT,L +2022,SE,FT,Data Analyst,177000,USD,177000,US,0,US,M +2022,SE,FT,Data Analyst,131000,USD,131000,US,0,US,M +2022,SE,FT,Applied Scientist,205000,USD,205000,US,100,US,M +2022,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2022,SE,FT,Data Engineer,146000,USD,146000,US,0,US,M +2022,SE,FT,Data Engineer,102000,USD,102000,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,SE,FT,Applied Scientist,230000,USD,230000,US,100,US,M +2022,SE,FT,Applied Scientist,196000,USD,196000,US,100,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,MI,FT,Data Engineer,80000,USD,80000,US,0,US,M +2022,MI,FT,Data Engineer,65000,USD,65000,US,0,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Engineer,50000,GBP,61566,GB,100,GB,M +2022,SE,FT,Data Engineer,35000,GBP,43096,GB,100,GB,M +2022,MI,FT,Data Engineer,175000,USD,175000,US,100,US,M +2022,MI,FT,Data Engineer,135000,USD,135000,US,100,US,M +2022,EN,FT,Data Scientist,80000,USD,80000,US,0,US,M +2022,SE,FT,Data Engineer,231250,USD,231250,US,100,US,M +2022,SE,FT,Data Engineer,138750,USD,138750,US,100,US,M +2022,SE,FT,Analytics Engineer,193750,USD,193750,US,100,US,M +2022,SE,FT,Analytics Engineer,116250,USD,116250,US,100,US,M +2022,SE,FT,Data Engineer,231250,USD,231250,US,100,US,M +2022,SE,FT,Data Engineer,138750,USD,138750,US,100,US,M +2022,SE,FT,Analytics Engineer,231250,USD,231250,US,100,US,M +2022,SE,FT,Analytics Engineer,138750,USD,138750,US,100,US,M +2022,SE,FT,Analytics Engineer,231250,USD,231250,US,100,US,M +2022,SE,FT,Analytics Engineer,138750,USD,138750,US,100,US,M +2022,SE,FT,Data Engineer,193750,USD,193750,US,100,US,M +2022,SE,FT,Data Engineer,116250,USD,116250,US,100,US,M +2022,SE,FT,Data Scientist,208000,USD,208000,US,100,US,M +2022,SE,FT,Data Scientist,127000,USD,127000,US,100,US,M +2022,SE,FT,Research Scientist,300000,USD,300000,US,100,US,M +2022,SE,FT,Research Scientist,196000,USD,196000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2021,MI,FL,Autonomous Vehicle Technician,45555,USD,45555,AS,50,BS,M +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2022,SE,FT,Data Scientist,205000,USD,205000,US,100,US,M +2022,SE,FT,Data Scientist,185000,USD,185000,US,100,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Machine Learning Engineer,247500,USD,247500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,172200,USD,172200,US,0,US,M +2022,EN,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,EN,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Analyst,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Applied Scientist,205000,USD,205000,US,100,US,M +2022,SE,FT,Applied Scientist,184000,USD,184000,US,100,US,M +2022,EN,FT,Data Scientist,6600000,HUF,17684,HU,100,HU,M +2022,SE,FT,Data Science Tech Lead,375000,USD,375000,US,50,US,L +2022,SE,FT,Data Engineer,191200,USD,191200,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2022,MI,FT,Machine Learning Engineer,85000,GBP,104663,GB,0,GB,M +2022,MI,FT,Machine Learning Engineer,65000,GBP,80036,GB,0,GB,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,140700,USD,140700,US,0,US,M +2022,SE,FT,Data Scientist,93800,USD,93800,US,0,US,M +2022,SE,FT,Data Scientist,350000,USD,350000,US,100,US,M +2022,SE,FT,Data Scientist,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2022,EN,PT,BI Analyst,12000,USD,12000,MX,100,US,L +2022,MI,FT,Machine Learning Engineer,100000,CHF,104697,CH,100,CH,L +2022,EN,FT,Machine Learning Developer,33000,USD,33000,IT,100,DE,S +2022,EN,FT,Machine Learning Scientist,33000,EUR,34672,IT,100,DE,S +2022,SE,FT,Machine Learning Engineer,201000,USD,201000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,119000,USD,119000,US,0,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Analyst,154560,USD,154560,US,0,US,M +2022,SE,FT,Data Analyst,123648,USD,123648,US,0,US,M +2022,SE,FT,Data Analyst,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,MI,FT,Data Engineer,170000,USD,170000,US,0,US,M +2022,MI,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Scientist,247500,USD,247500,US,0,US,M +2022,SE,FT,Data Scientist,172200,USD,172200,US,0,US,M +2022,SE,FT,Data Scientist,177500,USD,177500,US,100,US,M +2022,SE,FT,Data Scientist,134000,USD,134000,US,100,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Architect,192564,USD,192564,US,100,US,M +2022,SE,FT,Data Architect,144854,USD,144854,US,100,US,M +2022,SE,FT,Data Analyst,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,105000,USD,105000,US,0,US,M +2022,SE,FT,Data Engineer,179305,USD,179305,US,100,US,M +2022,SE,FT,Data Engineer,142127,USD,142127,US,100,US,M +2022,SE,FT,Data Engineer,315000,USD,315000,US,100,US,M +2022,SE,FT,Data Engineer,225000,USD,225000,US,100,US,M +2022,SE,FT,Data Scientist,243900,USD,243900,US,100,US,M +2022,SE,FT,Data Scientist,156600,USD,156600,US,100,US,M +2022,MI,FT,Data Analyst,206000,USD,206000,US,0,US,M +2022,MI,FT,Data Analyst,160000,USD,160000,US,0,US,M +2022,MI,FT,Data Analyst,109000,USD,109000,US,0,US,M +2022,MI,FT,Data Analyst,79000,USD,79000,US,0,US,M +2022,MI,FT,Data Analyst,160000,USD,160000,US,0,US,M +2022,MI,FT,Data Analyst,109000,USD,109000,US,0,US,M +2022,MI,FT,Data Scientist Lead,85000,EUR,89306,AT,50,AT,L +2022,SE,FT,Data Engineer,182500,USD,182500,US,100,US,M +2022,SE,FT,Data Engineer,128500,USD,128500,US,100,US,M +2022,MI,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Engineer,90000,USD,90000,US,100,US,M +2022,EN,FT,Data Manager,77300,USD,77300,US,100,US,M +2022,EN,FT,Data Manager,45600,USD,45600,US,100,US,M +2022,SE,FT,Data Analyst,127000,USD,127000,US,100,US,M +2022,SE,FT,Data Analyst,110000,USD,110000,US,100,US,M +2022,SE,FT,Data Architect,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Architect,136000,USD,136000,US,100,US,M +2022,SE,FT,Cloud Data Engineer,12000,EUR,12608,SK,100,SK,S +2022,SE,FT,Data Engineer,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Engineer,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Engineer,247500,USD,247500,US,0,US,M +2022,SE,FT,Data Engineer,172200,USD,172200,US,0,US,M +2022,SE,FT,Data Engineer,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Engineer,184100,USD,184100,US,0,US,M +2022,MI,FT,Machine Learning Engineer,130000,USD,130000,US,0,US,M +2022,MI,FT,Machine Learning Engineer,90000,USD,90000,US,0,US,M +2022,MI,FT,Data Scientist,120000,USD,120000,US,100,US,M +2022,MI,FT,Data Scientist,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Scientist,85000,USD,85000,US,100,US,M +2022,MI,FT,Data Scientist,78000,USD,78000,US,100,US,M +2022,SE,FT,Data Engineer,161000,USD,161000,US,100,US,M +2022,SE,FT,Data Engineer,110000,USD,110000,US,100,US,M +2022,SE,FT,Data Scientist,136000,USD,136000,US,100,US,M +2022,SE,FT,Data Scientist,104000,USD,104000,US,100,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,EX,FT,Head of Data,205000,USD,205000,US,0,US,M +2022,EX,FT,Head of Data,160000,USD,160000,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,EN,FT,Data Engineer,50000,GBP,61566,GB,100,GB,M +2022,EN,FT,Data Engineer,40000,GBP,49253,GB,100,GB,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Scientist,245000,USD,245000,US,0,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Data Engineer,220000,USD,220000,US,0,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,0,US,M +2022,SE,FT,Data Scientist,198440,USD,198440,US,0,US,L +2022,SE,FT,Data Scientist,144000,USD,144000,US,0,US,L +2022,SE,FT,Data Engineer,240000,USD,240000,US,0,US,M +2022,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2022,SE,FT,Data Scientist,198440,USD,198440,US,0,US,M +2022,SE,FT,Data Scientist,144000,USD,144000,US,0,US,M +2022,MI,FT,Data Analyst,150000,USD,150000,US,100,US,M +2022,MI,FT,Data Analyst,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Analyst,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2022,MI,FT,Data Scientist,47000,GBP,57872,GB,50,GB,M +2022,EN,FT,Data Analyst,64000,USD,64000,US,100,US,L +2022,EN,FT,Data Scientist,38000,EUR,39925,FR,50,FR,L +2022,SE,FT,Machine Learning Engineer,187200,USD,187200,CA,100,CA,M +2022,SE,FT,Machine Learning Engineer,116100,USD,116100,CA,100,CA,M +2022,SE,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,SE,FT,Data Analyst,127000,USD,127000,US,0,US,M +2022,SE,FT,Data Engineer,275000,USD,275000,US,100,US,M +2022,SE,FT,Data Engineer,166000,USD,166000,US,100,US,M +2022,SE,FT,Data Scientist,159699,USD,159699,US,0,US,M +2022,SE,FT,Data Scientist,138938,USD,138938,US,0,US,M +2022,EN,FT,BI Analyst,76000,USD,76000,US,50,US,L +2022,SE,FT,Data Analyst,166700,USD,166700,US,0,US,M +2022,SE,FT,Data Analyst,119000,USD,119000,US,0,US,M +2022,SE,FT,Data Analyst,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,0,US,M +2022,SE,FT,Analytics Engineer,84000,GBP,103432,GB,0,GB,M +2022,SE,FT,Analytics Engineer,75000,GBP,92350,GB,0,GB,M +2022,SE,FT,Data Analyst,80000,USD,80000,US,0,US,M +2022,SE,FT,Data Analyst,52500,USD,52500,US,0,US,M +2022,SE,FT,Data Engineer,236000,USD,236000,US,100,US,M +2022,SE,FT,Data Engineer,182000,USD,182000,US,100,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,204500,USD,204500,US,0,US,M +2022,SE,FT,Machine Learning Engineer,142200,USD,142200,US,0,US,M +2022,MI,FT,Research Engineer,240000,USD,240000,US,100,US,M +2022,EN,PT,Data Analyst,125404,USD,125404,CN,50,US,S +2022,SE,FT,Data Engineer,300000,USD,300000,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Engineer,195000,USD,195000,US,100,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Engineer,155000,USD,155000,US,0,US,M +2022,SE,FT,Data Engineer,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Operations Analyst,123000,USD,123000,US,0,US,M +2022,SE,FT,Data Operations Analyst,92250,USD,92250,US,0,US,M +2022,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,0,US,M +2022,MI,FT,ML Engineer,180000,USD,180000,US,100,US,M +2022,MI,FT,ML Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Engineer,97000,USD,97000,US,100,US,M +2022,SE,FT,Data Engineer,90000,USD,90000,US,100,US,M +2022,SE,FT,Data Engineer,200000,USD,200000,US,0,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Engineer,260000,USD,260000,US,0,US,M +2022,SE,FT,Data Engineer,180000,USD,180000,US,0,US,M +2022,EX,FT,Analytics Engineer,210000,USD,210000,US,100,US,M +2022,EX,FT,Analytics Engineer,157000,USD,157000,US,100,US,M +2022,EN,FT,Data Scientist,180000,USD,180000,US,100,US,M +2022,EN,FT,Data Scientist,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Analyst,80000,USD,80000,US,0,US,M +2022,MI,FT,Data Analyst,52500,USD,52500,US,0,US,M +2022,SE,FT,Data Architect,128000,USD,128000,US,0,US,M +2022,SE,FT,Data Architect,81500,USD,81500,US,0,US,M +2022,SE,FT,Data Operations Engineer,105000,USD,105000,US,0,US,M +2022,SE,FT,Data Operations Engineer,70000,USD,70000,US,0,US,M +2022,SE,FT,Data Scientist,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Scientist,122500,USD,122500,US,0,US,M +2022,SE,FT,Data Engineer,171000,USD,171000,US,0,US,M +2022,SE,FT,Data Engineer,117000,USD,117000,US,0,US,M +2022,SE,FT,Data Scientist,202800,USD,202800,US,0,US,L +2022,SE,FT,Data Scientist,104300,USD,104300,US,0,US,L +2022,SE,FT,Data Analyst,48000,EUR,50432,ES,0,ES,M +2022,SE,FT,Data Analyst,35000,EUR,36773,ES,0,ES,M +2022,SE,FT,Data Engineer,197000,USD,197000,US,0,US,M +2022,SE,FT,Data Engineer,99000,USD,99000,US,0,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,M +2022,SE,FT,Data Engineer,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,MI,FT,Data Scientist,30000,USD,30000,MX,100,MX,L +2022,MI,FT,Analytics Engineer,78000,USD,78000,BR,100,BR,M +2022,MI,FT,Analytics Engineer,48000,USD,48000,BR,100,BR,M +2022,SE,FT,Data Engineer,170000,USD,170000,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,150000,USD,150000,US,0,US,M +2022,SE,FT,Data Analyst,95000,USD,95000,US,0,US,M +2022,MI,FT,Data Engineer,78000,USD,78000,BR,100,BR,M +2022,MI,FT,Data Engineer,42000,USD,42000,BR,100,BR,M +2022,SE,FT,Data Architect,345600,USD,345600,US,0,US,M +2022,SE,FT,Data Architect,230400,USD,230400,US,0,US,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,0,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2022,MI,FT,BI Analyst,78000,USD,78000,BR,100,BR,M +2022,MI,FT,BI Analyst,48000,USD,48000,BR,100,BR,M +2022,SE,FT,Data Analyst,175950,USD,175950,US,100,US,M +2022,SE,FT,Data Analyst,130050,USD,130050,US,100,US,M +2022,SE,FT,Data Engineer,205600,USD,205600,US,0,US,L +2022,SE,FT,Data Engineer,105700,USD,105700,US,0,US,L +2022,SE,FT,Data Analyst,236600,USD,236600,US,100,US,M +2022,SE,FT,Data Analyst,89200,USD,89200,US,100,US,M +2022,MI,FT,Data Scientist,84000,USD,84000,BR,100,BR,M +2022,MI,FT,Data Scientist,54000,USD,54000,BR,100,BR,M +2022,EN,FT,Data Scientist,80000,USD,80000,US,100,US,L +2022,SE,FT,Marketing Data Analyst,200000,USD,200000,GB,100,GB,S +2022,EN,FT,Data Scientist,96000,CAD,73742,CA,100,CA,L +2022,SE,FT,Data Science Lead,165000,USD,165000,US,50,US,S +2022,EN,FT,Data Scientist,27000,GBP,33246,GB,50,GB,L +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2021,EN,FT,Power BI Developer,400000,INR,5409,IN,50,IN,L +2021,MI,FT,Data Engineer,100000,AUD,75050,AU,50,AU,L +2022,SE,FT,Data Engineer,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Engineer,184100,USD,184100,US,0,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,EN,FT,Machine Learning Engineer,108000,USD,108000,US,0,US,S +2022,SE,FT,Product Data Scientist,8000,USD,8000,IN,100,SG,L +2022,SE,FT,Data Scientist,155000,USD,155000,US,100,US,M +2022,SE,FT,Data Scientist,38000,USD,38000,US,100,US,M +2022,MI,FT,Data Analyst,85000,USD,85000,US,0,US,M +2022,MI,FT,Data Analyst,65000,USD,65000,US,0,US,M +2022,SE,FT,Data Scientist,155000,USD,155000,US,100,US,M +2022,SE,FT,Data Scientist,38000,USD,38000,US,100,US,M +2022,MI,FT,Data Engineer,90000,GBP,110820,GB,0,GB,M +2022,MI,FT,Data Engineer,75000,GBP,92350,GB,0,GB,M +2022,SE,FT,Data Scientist,153600,USD,153600,US,100,US,M +2022,SE,FT,Data Scientist,106800,USD,106800,US,100,US,M +2022,SE,FT,Data Scientist,185000,USD,185000,US,100,US,M +2022,SE,FT,Data Scientist,50000,USD,50000,US,100,US,M +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,155000,USD,155000,US,100,US,M +2022,SE,FT,Data Scientist,38000,USD,38000,US,100,US,M +2022,SE,FT,Data Scientist,168000,USD,168000,US,100,US,M +2022,SE,FT,Data Scientist,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Scientist,123400,USD,123400,US,0,US,M +2022,SE,FT,Data Scientist,88100,USD,88100,US,0,US,M +2022,SE,FT,Data Scientist,120000,USD,120000,US,100,US,S +2022,SE,FT,Data Scientist,55000,USD,55000,US,100,US,S +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Engineer,191200,USD,191200,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Analyst,169000,USD,169000,US,0,US,M +2022,SE,FT,Data Analyst,110600,USD,110600,US,0,US,M +2022,SE,FT,Analytics Engineer,150000,USD,150000,US,0,US,M +2022,SE,FT,Analytics Engineer,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Science Consultant,139000,USD,139000,US,0,US,M +2022,SE,FT,Data Science Consultant,122000,USD,122000,US,0,US,M +2022,SE,FT,Data Scientist,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Scientist,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Analyst,139600,USD,139600,US,0,US,M +2022,SE,FT,Data Analyst,85700,USD,85700,US,0,US,M +2022,SE,FT,Data Engineer,185000,USD,185000,US,100,US,M +2022,SE,FT,Data Engineer,50000,USD,50000,US,100,US,M +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Scientist,156400,USD,156400,US,0,US,M +2022,SE,FT,Data Scientist,200000,USD,200000,US,100,US,M +2022,SE,FT,Data Scientist,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Engineer,185900,USD,185900,US,0,US,M +2022,SE,FT,Data Engineer,129300,USD,129300,US,0,US,M +2022,MI,FT,ML Engineer,148500,USD,148500,US,100,US,L +2022,MI,FT,ML Engineer,98200,USD,98200,US,100,US,L +2022,SE,FT,Data Analyst,115000,USD,115000,US,100,US,M +2022,SE,FT,Data Analyst,95000,USD,95000,US,100,US,M +2022,SE,FT,Data Architect,225000,USD,225000,US,100,US,M +2022,SE,FT,Data Architect,66000,USD,66000,US,100,US,M +2022,SE,FT,Data Scientist,185000,USD,185000,US,100,US,M +2022,SE,FT,Data Scientist,50000,USD,50000,US,100,US,M +2022,SE,FT,Data Scientist,45000,EUR,47280,ES,0,ES,M +2022,SE,FT,Data Scientist,36000,EUR,37824,ES,0,ES,M +2022,MI,FT,Data Manager,134000,USD,134000,US,0,US,M +2022,MI,FT,Data Manager,98000,USD,98000,US,0,US,M +2022,MI,FT,Data Analyst,105000,USD,105000,US,0,US,M +2022,MI,FT,Data Analyst,62000,USD,62000,US,0,US,M +2022,EN,FT,BI Data Analyst,57000,USD,57000,US,100,US,L +2022,SE,FT,Big Data Engineer,210000,CAD,161311,CA,50,CA,M +2022,MI,FT,Data Scientist,144200,USD,144200,US,100,US,M +2022,MI,FT,Data Scientist,115360,USD,115360,US,100,US,M +2022,MI,FT,Data Scientist,120000,AUD,83171,AU,0,AU,L +2022,SE,FT,Principal Data Architect,3000000,INR,38154,IN,100,IN,L +2022,SE,FT,Data Engineer,70000,EUR,73546,PT,0,PT,M +2022,SE,FT,Data Engineer,40000,EUR,42026,PT,0,PT,M +2022,SE,FT,Data Engineer,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Architect,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Architect,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Scientist,108000,USD,108000,US,50,US,L +2022,SE,FT,Machine Learning Manager,200000,USD,200000,US,100,US,M +2022,SE,FT,Machine Learning Manager,150000,USD,150000,US,100,US,M +2022,EX,FT,Data Manager,164000,CAD,125976,CA,50,CA,L +2022,SE,FT,Data Engineer,188700,USD,188700,US,100,US,M +2022,SE,FT,Data Engineer,160395,USD,160395,US,100,US,M +2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2022,SE,FT,Data Engineer,300000,USD,300000,US,0,US,M +2022,SE,FT,Data Engineer,225000,USD,225000,US,0,US,M +2022,SE,FT,Data Scientist,198440,USD,198440,US,100,US,M +2022,SE,FT,Data Scientist,144000,USD,144000,US,100,US,M +2022,SE,FT,Applied Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Applied Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Analyst,48000,EUR,50432,ES,0,ES,M +2022,SE,FT,Data Analyst,35000,EUR,36773,ES,0,ES,M +2022,MI,FT,Data Scientist,72000,EUR,75648,DE,100,DE,S +2022,SE,FT,Lead Data Scientist,156868,USD,156868,US,100,US,L +2022,SE,FT,BI Analyst,200000,USD,200000,NG,100,NG,S +2022,SE,FT,Data Scientist,198440,USD,198440,US,0,US,L +2022,SE,FT,Data Scientist,144000,USD,144000,US,0,US,L +2022,SE,FT,Lead Machine Learning Engineer,66000,EUR,69344,PT,100,PT,L +2022,MI,FT,NLP Engineer,120000,CZK,5132,CZ,100,CZ,M +2022,SE,CT,Data Analyst,90000,USD,90000,US,100,US,M +2022,MI,FT,Research Scientist,120000,EUR,126080,DE,0,DE,S +2022,MI,FT,Research Scientist,80000,EUR,84053,DE,0,DE,S +2022,SE,FT,Data Engineer,200000,USD,200000,US,100,US,M +2022,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M +2022,MI,FT,Analytics Engineer,108000,USD,108000,US,100,US,M +2022,MI,FT,Analytics Engineer,85000,USD,85000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Engineer,165000,USD,165000,US,100,US,M +2022,SE,FT,Data Engineer,132000,USD,132000,US,100,US,M +2022,SE,FT,Analytics Engineer,130000,USD,130000,US,100,US,M +2022,SE,FT,Analytics Engineer,110000,USD,110000,US,100,US,M +2022,MI,FT,BI Data Analyst,65000,AUD,45050,AU,50,AU,L +2021,EN,FT,Data Analyst,56000,AUD,42028,AU,50,AU,L +2022,MI,FT,Data Analytics Engineer,135000,USD,135000,US,100,US,L +2022,SE,FT,Data Engineer,178800,USD,178800,US,100,US,L +2022,SE,FT,Data Engineer,132100,USD,132100,US,100,US,L +2022,EN,FT,Data Analyst,20000,USD,20000,CR,50,US,M +2022,SE,FT,Machine Learning Engineer,140000,USD,140000,CA,0,CA,M +2022,SE,FT,Machine Learning Engineer,110000,USD,110000,CA,0,CA,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,SE,FT,Data Engineer,85000,USD,85000,US,100,US,M +2022,SE,FT,ETL Developer,250000,USD,250000,US,100,US,M +2022,SE,FT,ETL Developer,63000,USD,63000,US,100,US,M +2022,EX,FT,Data Engineer,187200,USD,187200,US,100,US,M +2022,EX,FT,Data Engineer,116100,USD,116100,US,100,US,M +2022,MI,FT,Data Scientist,10000,USD,10000,TR,0,TR,M +2022,SE,FT,Data Engineer,200000,USD,200000,US,100,US,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,100,US,M +2022,SE,FT,Data Engineer,229998,USD,229998,US,0,US,L +2022,SE,FT,Data Engineer,154545,USD,154545,US,0,US,L +2022,SE,FT,Data Scientist,215000,USD,215000,US,0,US,L +2022,SE,FT,Data Scientist,159000,USD,159000,US,0,US,L +2022,SE,FT,Data Engineer,229998,USD,229998,US,0,US,L +2022,SE,FT,Data Engineer,154545,USD,154545,US,0,US,L +2022,EN,FT,AI Scientist,50000,USD,50000,US,100,US,M +2022,SE,FT,Data Scientist Lead,183000,USD,183000,US,100,US,L +2022,SE,FT,Data Analyst,99750,USD,99750,US,100,US,M +2022,SE,FT,Data Analyst,68400,USD,68400,US,100,US,M +2022,SE,FT,Data Scientist,236900,USD,236900,US,100,US,L +2022,SE,FT,Data Scientist,159200,USD,159200,US,100,US,L +2022,SE,FT,Data Science Manager,243225,USD,243225,US,100,US,M +2022,SE,FT,Data Science Manager,179775,USD,179775,US,100,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Scientist,148000,USD,148000,US,100,US,M +2022,SE,FT,Data Scientist,128000,USD,128000,US,100,US,M +2022,SE,FT,Data Architect,190000,USD,190000,US,100,US,M +2022,SE,FT,Data Architect,135000,USD,135000,US,100,US,M +2022,SE,FT,Analytics Engineer,130000,USD,130000,US,100,US,M +2022,SE,FT,Analytics Engineer,110000,USD,110000,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,SE,FT,Data Engineer,85000,USD,85000,US,100,US,M +2022,SE,FT,Data Scientist,218000,USD,218000,US,0,US,M +2022,SE,FT,Data Scientist,145300,USD,145300,US,0,US,M +2022,SE,FT,ML Engineer,195400,USD,195400,US,100,US,L +2022,SE,FT,ML Engineer,131300,USD,131300,US,100,US,L +2022,EN,FT,Data Specialist,105000,USD,105000,CL,100,US,L +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,207000,USD,207000,US,100,US,M +2022,SE,FT,Data Scientist,153000,USD,153000,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Analyst,110000,USD,110000,US,0,US,M +2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Machine Learning Engineer,200000,USD,200000,PR,100,PR,M +2022,SE,FT,Machine Learning Engineer,135000,USD,135000,PR,100,PR,M +2022,SE,FT,Data Scientist,207000,USD,207000,US,100,US,M +2022,SE,FT,Data Scientist,153000,USD,153000,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Engineer,195700,USD,195700,US,0,US,M +2022,SE,FT,Data Engineer,130500,USD,130500,US,0,US,M +2022,SE,FT,ML Engineer,130000,USD,130000,US,100,US,M +2022,SE,FT,ML Engineer,84000,USD,84000,US,100,US,M +2022,MI,FT,Data Operations Engineer,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Operations Engineer,60000,USD,60000,US,100,US,M +2022,MI,FT,Data Engineer,65000,GBP,80036,GB,100,GB,M +2022,MI,FT,Data Engineer,55000,GBP,67723,GB,100,GB,M +2022,SE,FT,Data Engineer,141300,USD,141300,US,0,US,M +2022,SE,FT,Data Engineer,102100,USD,102100,US,0,US,M +2022,SE,FT,Data Analyst,48000,EUR,50432,ES,0,ES,M +2022,SE,FT,Data Analyst,35000,EUR,36773,ES,0,ES,M +2022,MI,FT,Business Data Analyst,150000,USD,150000,US,100,US,L +2022,MI,FT,Data Scientist,83000,GBP,102200,GB,100,GB,M +2022,EN,FT,Data Scientist,1800000,INR,22892,IN,50,IN,M +2022,SE,FT,Data Analyst,144000,USD,144000,US,100,US,M +2022,SE,FT,Data Analyst,113000,USD,113000,US,100,US,M +2022,EN,FT,AI Scientist,30000,EUR,31520,PT,100,ES,M +2022,SE,FT,Data Architect,195400,USD,195400,US,100,US,L +2022,SE,FT,Data Architect,131300,USD,131300,US,100,US,L +2022,SE,FT,Machine Learning Engineer,195400,USD,195400,US,100,US,L +2022,SE,FT,Machine Learning Engineer,131300,USD,131300,US,100,US,L +2022,SE,FT,Data Architect,195400,USD,195400,US,100,US,L +2022,SE,FT,Data Architect,131300,USD,131300,US,100,US,L +2022,SE,FT,Data Architect,190000,USD,190000,US,100,US,M +2022,SE,FT,Data Architect,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Engineer,80000,USD,80000,US,100,US,M +2022,EN,FT,BI Data Analyst,633000,INR,8050,IN,100,IN,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,SE,FT,Data Engineer,85000,USD,85000,US,100,US,M +2022,SE,FT,Data Engineer,178800,USD,178800,US,100,US,L +2022,SE,FT,Data Engineer,132100,USD,132100,US,100,US,L +2022,MI,CT,NLP Engineer,60000,USD,60000,IN,100,US,S +2022,SE,FT,Machine Learning Engineer,60000,EUR,63040,FI,50,FI,S +2022,EN,FT,Business Data Analyst,50000,USD,50000,IN,100,AS,L +2022,SE,FT,Data Engineer,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Engineer,105000,USD,105000,US,100,US,M +2022,MI,FT,Data Engineer,65000,GBP,80036,GB,100,GB,M +2022,MI,FT,Data Engineer,55000,GBP,67723,GB,100,GB,M +2022,SE,FT,Analytics Engineer,190000,USD,190000,US,100,US,M +2022,SE,FT,Analytics Engineer,140000,USD,140000,US,100,US,M +2022,MI,FT,Data Operations Engineer,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Operations Engineer,60000,USD,60000,US,100,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,100,US,L +2022,SE,FT,Data Scientist,165000,USD,165000,US,100,US,L +2022,SE,FT,Applied Machine Learning Scientist,108000,USD,108000,US,0,US,L +2021,EN,FT,Machine Learning Research Engineer,20000,USD,20000,FR,50,FR,M +2022,SE,FT,Data Architect,190000,USD,190000,US,100,US,M +2022,SE,FT,Data Architect,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Scientist,179400,USD,179400,US,0,US,M +2022,SE,FT,Data Scientist,154000,USD,154000,US,0,US,M +2022,SE,FT,Machine Learning Scientist,193900,USD,193900,US,0,US,M +2022,SE,FT,Machine Learning Scientist,129300,USD,129300,US,0,US,M +2022,EX,FT,Data Science Manager,222640,USD,222640,US,0,US,M +2022,EX,FT,Data Science Manager,182160,USD,182160,US,0,US,M +2022,MI,FT,Data Engineer,150000,USD,150000,US,0,US,M +2022,MI,FT,Data Engineer,100000,USD,100000,US,0,US,M +2022,SE,FT,Analytics Engineer,122500,USD,122500,US,100,US,M +2022,SE,FT,Analytics Engineer,100000,USD,100000,US,100,US,M +2022,EX,FT,Data Engineer,297500,USD,297500,US,100,US,M +2022,EX,FT,Data Engineer,260000,USD,260000,US,100,US,M +2021,EN,FT,Machine Learning Developer,15000,USD,15000,TH,100,TH,L +2022,SE,FT,Data Engineer,193000,USD,193000,ES,100,US,M +2022,EN,FT,Data Scientist,93000,USD,93000,US,0,US,M +2022,EN,FT,Data Scientist,73000,USD,73000,US,0,US,M +2022,MI,FT,Data Operations Engineer,100000,USD,100000,US,100,US,M +2022,MI,FT,Data Operations Engineer,60000,USD,60000,US,100,US,M +2022,EN,FT,Data Analyst,40300,BRL,7799,BR,100,BR,L +2022,SE,FT,Data Scientist,136994,USD,136994,US,100,US,M +2022,SE,FT,Data Scientist,101570,USD,101570,US,100,US,M +2022,SE,FT,ETL Developer,250000,USD,250000,US,100,US,M +2022,SE,FT,ETL Developer,63000,USD,63000,US,100,US,M +2022,MI,FT,Data Manager,134000,USD,134000,US,0,US,M +2022,MI,FT,Data Manager,98000,USD,98000,US,0,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Director of Data Science,55000,EUR,57786,FR,50,FR,L +2022,MI,FT,Data Analyst,136000,USD,136000,US,100,US,M +2022,MI,FT,Data Analyst,112000,USD,112000,US,100,US,M +2022,SE,FT,Data Scientist,172000,USD,172000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Engineer,215000,USD,215000,US,0,US,M +2022,SE,FT,Data Engineer,164000,USD,164000,US,0,US,M +2022,SE,FT,Data Engineer,300000,USD,300000,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,0,US,M +2022,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,100,US,M +2022,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2021,EN,FT,Data Engineer,33000,GBP,45390,GB,50,GB,L +2022,SE,FT,Data Engineer,250000,USD,250000,US,100,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,MI,FT,Data Analyst,97500,USD,97500,US,100,US,L +2022,SE,FT,Applied Scientist,212800,USD,212800,US,100,US,M +2022,SE,FT,Applied Scientist,142800,USD,142800,US,100,US,M +2022,MI,FT,Data Scientist,70000,EUR,73546,NL,50,NL,L +2022,EN,FT,Data Scientist,50000,USD,50000,US,50,DE,M +2022,EN,FT,Data Analyst,500000,INR,6359,FR,100,IN,L +2022,SE,FT,Data Scientist,151800,USD,151800,US,0,US,M +2022,SE,FT,Data Scientist,130240,USD,130240,US,0,US,M +2022,SE,FT,Analytics Engineer,165000,USD,165000,US,100,US,M +2022,SE,FT,Analytics Engineer,140250,USD,140250,US,100,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,0,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,0,US,M +2022,SE,FT,Data Scientist,179400,USD,179400,US,100,US,M +2022,SE,FT,Data Scientist,154000,USD,154000,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,MI,FT,Financial Data Analyst,75000,USD,75000,US,0,US,M +2022,MI,FT,Data Engineer,80000,EUR,84053,GR,100,GR,M +2022,MI,FT,Data Engineer,70000,EUR,73546,GR,100,GR,M +2022,MI,FT,Data Engineer,80000,GBP,98506,GB,100,GB,M +2022,MI,FT,Data Engineer,70000,GBP,86193,GB,100,GB,M +2022,MI,FT,Data Engineer,80000,EUR,84053,ES,100,ES,M +2022,MI,FT,Data Engineer,70000,EUR,73546,ES,100,ES,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Analytics Engineer,83376,GBP,102663,GB,100,GB,M +2022,SE,FT,Analytics Engineer,65004,GBP,80041,GB,100,GB,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Engineer,84958,GBP,104611,GB,100,GB,M +2022,SE,FT,Data Engineer,66822,GBP,82280,GB,100,GB,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,0,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,0,US,M +2022,SE,FT,Data Analyst,115000,USD,115000,US,0,US,L +2022,EN,FT,Data Scientist,30000,EUR,31520,ES,50,ES,M +2022,SE,FT,Data Operations Analyst,81000,USD,81000,US,100,US,M +2022,SE,FT,Data Operations Analyst,66000,USD,66000,US,100,US,M +2022,EN,FT,Data Analyst,46000,USD,46000,US,100,US,L +2022,EN,FT,Data Engineer,80000,USD,80000,US,100,US,L +2022,EX,FT,Machine Learning Scientist,200000,USD,200000,US,100,US,S +2022,EX,FT,Machine Learning Scientist,180000,USD,180000,US,100,US,S +2022,EX,FT,AI Scientist,200000,USD,200000,US,100,US,S +2022,SE,FT,Data Scientist,204100,USD,204100,US,0,US,M +2022,SE,FT,Data Scientist,136100,USD,136100,US,0,US,M +2022,SE,FT,Analytics Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Analytics Engineer,63000,USD,63000,US,0,US,M +2022,MI,FT,Data Scientist,96000,GBP,118208,GB,0,GB,M +2022,MI,FT,Data Scientist,90000,GBP,110820,GB,0,GB,M +2021,EN,PT,Computer Vision Software Engineer,120000,DKK,19073,DK,50,DK,L +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Scientist,191475,USD,191475,US,100,US,M +2022,SE,FT,Data Scientist,141525,USD,141525,US,100,US,M +2022,SE,FT,Data Specialist,95000,USD,95000,US,100,US,M +2022,SE,FT,Data Specialist,70000,USD,70000,US,100,US,M +2022,MI,FT,Applied Machine Learning Scientist,75000,USD,75000,BO,100,US,M +2022,MI,CT,Analytics Engineer,7500,USD,7500,BO,50,BO,M +2022,MI,FT,Data Analyst,113000,USD,113000,US,0,US,L +2022,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Scientist,130000,USD,130000,US,100,US,M +2022,MI,FT,Data Analytics Consultant,113000,USD,113000,US,100,US,L +2022,MI,FT,Product Data Analyst,140000,USD,140000,US,100,US,M +2021,SE,FT,Data Analyst,50000,USD,50000,PH,100,PH,S +2022,MI,FT,BI Data Analyst,77000,AUD,53368,AU,100,AU,M +2022,SE,FT,Data Scientist,175000,USD,175000,US,0,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,0,US,M +2022,SE,FT,Lead Data Scientist,28500,EUR,29944,PT,50,PT,S +2022,SE,FT,Analytics Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Analytics Engineer,63000,USD,63000,US,0,US,M +2022,SE,FT,Data Scientist,160000,USD,160000,US,0,US,L +2022,SE,FT,Data Scientist,119300,USD,119300,US,0,US,L +2022,MI,FT,Research Scientist,145000,USD,145000,US,50,US,L +2022,SE,FT,Data Engineer,105000,USD,105000,US,0,US,M +2022,SE,FT,Data Engineer,90000,USD,90000,US,0,US,M +2022,SE,FT,ETL Developer,146200,USD,146200,US,100,US,M +2022,SE,FT,ETL Developer,124270,USD,124270,US,100,US,M +2022,MI,FT,Data Scientist,225000,USD,225000,US,0,US,M +2022,MI,FT,Data Scientist,160000,USD,160000,US,0,US,M +2022,MI,FT,Data Scientist,52000,EUR,54634,NL,100,NL,S +2022,SE,FT,Data Engineer,185800,USD,185800,CA,100,CA,M +2022,SE,FT,Data Engineer,137400,USD,137400,CA,100,CA,M +2022,SE,FT,Analytics Engineer,245000,USD,245000,US,0,US,M +2022,SE,FT,Analytics Engineer,180000,USD,180000,US,0,US,M +2022,SE,FT,Analytics Engineer,203500,USD,203500,US,0,US,M +2022,SE,FT,Analytics Engineer,152000,USD,152000,US,0,US,M +2022,SE,FT,Data Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,0,US,M +2022,SE,FT,Machine Learning Infrastructure Engineer,186000,USD,186000,US,100,US,M +2022,SE,FT,Machine Learning Infrastructure Engineer,148800,USD,148800,US,100,US,M +2022,SE,FT,Lead Machine Learning Engineer,7500000,INR,95386,IN,50,IN,L +2022,MI,FT,Machine Learning Engineer,104000,GBP,128058,GB,50,GB,L +2022,EN,FT,Data Scientist,82000,USD,82000,US,0,US,L +2022,EN,PT,Data Scientist,110000,USD,110000,DO,100,FR,M +2022,MI,FT,Applied Machine Learning Scientist,173000,USD,173000,US,50,US,M +2022,SE,FT,Data Scientist,203500,USD,203500,US,0,US,M +2022,SE,FT,Data Scientist,152000,USD,152000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,186000,USD,186000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,148800,USD,148800,US,100,US,M +2022,EN,FT,BI Data Analyst,32400,BRL,6270,BR,100,BR,L +2022,MI,FT,Data Science Manager,158000,USD,158000,US,100,US,M +2022,MI,FT,Data Science Manager,134000,USD,134000,US,100,US,M +2022,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Scientist,120000,USD,120000,US,100,US,M +2022,EX,FT,Analytics Engineer,200000,USD,200000,US,100,US,M +2022,EX,FT,Analytics Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Analyst,216200,USD,216200,US,0,US,M +2022,SE,FT,Data Analyst,144100,USD,144100,US,0,US,M +2022,MI,FT,Data Scientist,110000,EUR,115573,NL,0,NL,M +2022,MI,FT,Data Scientist,85000,EUR,89306,NL,0,NL,M +2022,SE,FT,ETL Developer,250000,USD,250000,US,0,US,M +2022,SE,FT,ETL Developer,63000,USD,63000,US,0,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Engineer,85000,USD,85000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,85000,USD,85000,US,100,US,M +2022,SE,FT,Data Science Manager,206000,USD,206000,US,100,US,M +2022,SE,FT,Data Science Manager,175100,USD,175100,US,100,US,M +2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M +2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M +2022,SE,FT,Data Architect,149040,USD,149040,US,100,US,M +2022,SE,FT,Data Architect,113900,USD,113900,US,100,US,M +2022,SE,FT,Data Engineer,154000,USD,154000,US,100,US,M +2022,SE,FT,Data Engineer,126000,USD,126000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,200000,USD,200000,US,100,US,L +2022,SE,FT,Machine Learning Engineer,150000,USD,150000,US,100,US,L +2022,SE,FT,Data Engineer,195700,USD,195700,US,0,US,M +2022,SE,FT,Data Engineer,130500,USD,130500,US,0,US,M +2022,SE,FT,Analytics Engineer,170000,USD,170000,US,100,US,M +2022,SE,FT,Analytics Engineer,135000,USD,135000,US,100,US,M +2022,MI,FT,Data Engineer,80000,GBP,98506,GB,0,GB,M +2022,MI,FT,Data Engineer,60000,GBP,73880,GB,0,GB,M +2022,SE,FT,Data Analyst,117000,USD,117000,US,100,US,M +2022,SE,FT,Data Analyst,99450,USD,99450,US,100,US,M +2022,SE,FT,Data Engineer,200000,USD,200000,PR,100,PR,M +2022,SE,FT,Data Engineer,135000,USD,135000,PR,100,PR,M +2022,SE,FT,Machine Learning Engineer,193900,USD,193900,US,0,US,M +2022,SE,FT,Machine Learning Engineer,129300,USD,129300,US,0,US,M +2022,EN,FT,Machine Learning Engineer,45000,GBP,55410,GB,100,GB,S +2022,SE,FT,Data Analyst,70000,GBP,86193,GB,0,GB,M +2022,SE,FT,Data Analyst,50000,GBP,61566,GB,0,GB,M +2022,SE,FT,Data Analyst,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Analyst,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Engineer,188100,USD,188100,US,0,US,M +2022,SE,FT,Data Engineer,139860,USD,139860,US,0,US,M +2022,SE,FT,Machine Learning Engineer,248700,USD,248700,US,0,US,M +2022,SE,FT,Machine Learning Engineer,167100,USD,167100,US,0,US,M +2022,MI,FT,Data Analyst,450000,INR,5723,IN,100,IN,S +2022,SE,FT,Data Scientist,123400,USD,123400,US,0,US,M +2022,SE,FT,Data Scientist,88100,USD,88100,US,0,US,M +2022,MI,FT,BI Data Analyst,48000,EUR,50432,DE,100,DE,S +2022,SE,FT,Data Scientist,245000,USD,245000,US,0,US,M +2022,SE,FT,Data Scientist,205000,USD,205000,US,0,US,M +2022,SE,FT,Data Engineer,141300,USD,141300,US,0,US,M +2022,SE,FT,Data Engineer,102100,USD,102100,US,0,US,M +2022,SE,FT,Data Architect,141300,USD,141300,US,0,US,M +2022,SE,FT,Data Architect,102100,USD,102100,US,0,US,M +2022,EN,FT,Data Analyst,50000,USD,50000,AR,100,AR,L +2022,EN,FT,Data Scientist,80000,EUR,84053,BE,100,BE,L +2022,MI,FT,Lead Data Scientist,50000,GBP,61566,GB,50,GB,S +2022,SE,FT,Data Architect,250000,USD,250000,US,0,US,M +2022,SE,FT,Data Architect,63000,USD,63000,US,0,US,M +2022,SE,FT,Data Science Manager,189500,USD,189500,US,100,US,L +2022,SE,FT,Data Science Manager,140100,USD,140100,US,100,US,L +2022,SE,FT,Data Engineer,177600,USD,177600,US,100,US,L +2022,SE,FT,Data Engineer,131300,USD,131300,US,100,US,L +2022,MI,FT,Data Engineer,24000,USD,24000,US,0,US,M +2022,MI,FT,Data Engineer,24000,USD,24000,US,0,US,M +2022,SE,FT,Data Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,0,US,M +2022,SE,FT,Machine Learning Engineer,202900,USD,202900,US,100,US,L +2022,SE,FT,Machine Learning Engineer,131300,USD,131300,US,100,US,L +2022,SE,FT,Data Engineer,145000,USD,145000,US,100,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M +2022,EN,FT,Machine Learning Engineer,115000,USD,115000,US,50,US,L +2022,MI,FT,Machine Learning Engineer,193900,USD,193900,US,0,US,M +2022,MI,FT,Machine Learning Engineer,129300,USD,129300,US,0,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,100,US,L +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,L +2022,MI,FT,Data Analyst,216200,USD,216200,US,0,US,M +2022,MI,FT,Data Analyst,144100,USD,144100,US,0,US,M +2022,SE,FT,Machine Learning Scientist,216000,USD,216000,US,0,US,M +2022,SE,FT,Machine Learning Scientist,144000,USD,144000,US,0,US,M +2022,EN,FT,Data Analyst,150000,USD,150000,US,100,US,L +2021,EN,FT,Machine Learning Research Engineer,900000,INR,12171,IN,100,IN,M +2022,MI,FT,Data Scientist,4200000,INR,53416,IN,100,ID,L +2022,EN,FT,Applied Data Scientist,50000,USD,50000,AT,50,AT,M +2021,SE,FT,Cloud Data Architect,250000,USD,250000,US,50,US,L +2022,EX,FT,Research Scientist,80000,EUR,84053,NL,0,NL,L +2022,MI,FT,Data Scientist,107000,GBP,131752,GB,100,GB,M +2022,SE,FT,Analytics Engineer,48000,USD,48000,AR,100,US,S +2022,EX,FT,Data Science Manager,260500,USD,260500,US,0,US,M +2022,EX,FT,Data Science Manager,175100,USD,175100,US,0,US,M +2022,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +2022,EN,FT,Data Analyst,55000,USD,55000,US,100,US,S +2022,MI,FT,Data Analyst,130000,USD,130000,US,100,US,M +2022,SE,FT,Applied Machine Learning Scientist,73400,EUR,77119,FR,100,GB,L +2022,EN,FT,Data Scientist,49500,EUR,52008,BE,50,BE,S +2022,MI,FL,Applied Machine Learning Scientist,2400000,INR,30523,IN,100,IN,S +2022,SE,FT,Data Engineer,206699,USD,206699,US,0,US,M +2022,SE,FT,Data Engineer,99100,USD,99100,US,0,US,M +2022,MI,FT,Analytics Engineer,200000,USD,200000,US,0,US,M +2022,MI,FT,Analytics Engineer,54000,USD,54000,US,0,US,M +2022,SE,FT,Data Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,0,US,M +2022,SE,FT,Data Architect,250000,USD,250000,US,0,US,M +2022,SE,FT,Data Architect,63000,USD,63000,US,0,US,M +2022,SE,FT,Data Engineer,250000,USD,250000,US,0,US,M +2022,SE,FT,Data Engineer,63000,USD,63000,US,0,US,M +2022,EN,FT,Analytics Engineer,130000,USD,130000,US,50,US,L +2022,SE,FT,Data Engineer,100000,USD,100000,US,0,US,L +2022,SE,FT,Data Engineer,80000,USD,80000,US,0,US,L +2022,SE,FT,Data Scientist,160000,USD,160000,US,0,US,L +2022,SE,FT,Data Scientist,100000,USD,100000,US,0,US,L +2022,SE,FT,Data Specialist,221300,USD,221300,US,100,US,L +2022,SE,FT,Data Specialist,148700,USD,148700,US,100,US,L +2022,EN,FT,Machine Learning Engineer,30000,USD,30000,GB,100,GB,L +2022,EN,FT,Data Analyst,27000,EUR,28368,FR,50,FR,M +2022,MI,FT,Data Engineer,74000,GBP,91118,GB,0,GB,M +2022,MI,FT,Data Engineer,50000,GBP,61566,GB,0,GB,M +2022,MI,FT,Data Scientist,58000,EUR,60938,DE,100,DE,S +2022,SE,FT,Data Science Manager,249260,USD,249260,US,0,US,M +2022,SE,FT,Data Science Manager,185400,USD,185400,US,0,US,M +2022,SE,FT,Data Engineer,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2022,MI,FT,Data Scientist,65000,GBP,80036,GB,50,GB,M +2022,SE,FT,Data Analyst,128875,USD,128875,US,100,US,M +2022,SE,FT,Data Analyst,93700,USD,93700,US,100,US,M +2022,SE,FT,Machine Learning Engineer,180000,USD,180000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Analyst,136260,USD,136260,US,100,US,M +2022,SE,FT,Data Analyst,109280,USD,109280,US,100,US,M +2022,SE,FT,Data Scientist,160000,USD,160000,US,100,US,L +2022,SE,FT,Data Scientist,92000,USD,92000,US,100,US,L +2022,SE,FT,Data Engineer,200000,USD,200000,US,100,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Engineer,110000,GBP,135446,GB,0,GB,M +2022,MI,FT,Data Engineer,85000,GBP,104663,GB,0,GB,M +2022,SE,FT,Data Analyst,117000,USD,117000,US,100,US,M +2022,SE,FT,Data Analyst,99450,USD,99450,US,100,US,M +2022,EN,FT,Data Engineer,129000,USD,129000,US,100,US,L +2022,EN,FT,Data Engineer,86000,USD,86000,US,100,US,L +2020,EN,FT,Data Engineer,1000000,INR,13493,IN,100,IN,L +2020,EN,FT,Data Engineer,1000000,INR,13493,IN,100,IN,L +2022,SE,FT,Data Scientist,160000,USD,160000,US,0,US,L +2022,SE,FT,Data Scientist,119300,USD,119300,US,0,US,L +2022,SE,FT,Business Data Analyst,100000,USD,100000,US,100,US,L +2022,MI,FT,Data Scientist,25000,USD,25000,TR,50,TR,M +2022,MI,FT,Data Analyst,90000,SGD,65257,SG,50,SG,M +2022,MI,FT,AI Scientist,200000,USD,200000,US,100,US,M +2022,EN,FT,Machine Learning Developer,180000,USD,180000,US,100,US,L +2022,MI,FT,Data Scientist,153000,USD,153000,US,100,US,L +2022,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Analyst,150075,USD,150075,US,100,US,M +2022,SE,FT,Data Analyst,110925,USD,110925,US,100,US,M +2022,MI,FT,Machine Learning Scientist,22800,USD,22800,EG,100,EG,M +2022,SE,FT,Data Scientist,160000,USD,160000,US,100,US,L +2022,SE,FT,Data Scientist,92000,USD,92000,US,100,US,L +2022,SE,FT,Machine Learning Engineer,202900,USD,202900,US,100,US,L +2022,SE,FT,Machine Learning Engineer,131300,USD,131300,US,100,US,L +2020,EN,FT,Data Analyst,20000,EUR,22809,PT,100,PT,M +2022,EN,FT,Data Analyst,15000,USD,15000,ID,0,ID,L +2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Science Manager,193000,AUD,133766,AU,100,AU,L +2022,EN,FT,Machine Learning Engineer,83000,USD,83000,US,0,US,L +2022,MI,FT,Data Engineer,75000,GBP,92350,GB,100,GB,M +2022,MI,FT,Data Engineer,55000,GBP,67723,GB,100,GB,M +2022,SE,FT,Data Scientist,186000,USD,186000,US,0,US,M +2022,SE,FT,Data Scientist,148800,USD,148800,US,0,US,M +2022,SE,FT,Data Analyst,112900,USD,112900,US,0,US,M +2022,SE,FT,Data Analyst,90320,USD,90320,US,0,US,M +2022,SE,FT,ML Engineer,240000,USD,240000,US,0,US,M +2022,SE,FT,ML Engineer,160000,USD,160000,US,0,US,M +2022,SE,FT,Data Science Manager,300000,USD,300000,US,100,US,M +2022,SE,FT,Data Science Manager,200000,USD,200000,US,100,US,M +2022,MI,FT,Data Engineer,62500,EUR,65666,DE,50,DE,S +2022,MI,FT,AI Scientist,200000,USD,200000,IN,100,US,L +2022,MI,FT,Machine Learning Engineer,95000,GBP,116976,GB,0,GB,M +2022,MI,FT,Machine Learning Engineer,75000,GBP,92350,GB,0,GB,M +2022,MI,FT,AI Scientist,120000,USD,120000,US,0,US,M +2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +2022,SE,FT,Data Analytics Manager,145000,USD,145000,US,100,US,M +2022,SE,FT,Data Analytics Manager,105400,USD,105400,US,100,US,M +2020,EN,FT,Data Scientist,43200,EUR,49268,DE,0,DE,S +2022,MI,FT,Data Engineer,90000,GBP,110820,GB,0,GB,M +2022,MI,FT,Data Engineer,75000,GBP,92350,GB,0,GB,M +2022,SE,FT,Data Scientist,215300,USD,215300,US,100,US,L +2022,SE,FT,Data Scientist,158200,USD,158200,US,100,US,L +2022,SE,FT,Data Engineer,209100,USD,209100,US,100,US,L +2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,L +2022,SE,FT,Data Analyst,115934,USD,115934,US,0,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,0,US,M +2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M +2022,SE,FT,Data Engineer,155000,USD,155000,US,100,US,M +2022,MI,FT,Machine Learning Engineer,80000,EUR,84053,FR,100,DE,M +2022,SE,FT,Data Analyst,164000,USD,164000,US,0,US,M +2022,SE,FT,Data Analyst,132000,USD,132000,US,0,US,M +2022,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M +2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M +2022,MI,FT,ETL Developer,50000,EUR,52533,GR,0,GR,M +2022,MI,FT,ETL Developer,50000,EUR,52533,GR,0,GR,M +2022,EX,FT,Lead Data Engineer,150000,CAD,115222,CA,100,CA,S +2022,SE,FT,Data Engineer,165400,USD,165400,US,100,US,M +2022,SE,FT,Data Engineer,132320,USD,132320,US,100,US,M +2022,SE,FT,Data Architect,208775,USD,208775,US,100,US,M +2022,SE,FT,Data Architect,147800,USD,147800,US,100,US,M +2022,SE,FT,Data Engineer,136994,USD,136994,US,100,US,M +2022,SE,FT,Data Engineer,101570,USD,101570,US,100,US,M +2022,SE,FT,Data Analyst,128875,USD,128875,US,100,US,M +2022,SE,FT,Data Analyst,93700,USD,93700,US,100,US,M +2022,EX,FT,Head of Machine Learning,6000000,INR,76309,IN,50,IN,L +2022,EN,FT,Machine Learning Engineer,28500,GBP,35093,GB,100,GB,L +2022,SE,FT,Data Engineer,183600,USD,183600,US,100,US,L +2022,SE,FT,Data Engineer,100800,USD,100800,US,100,US,L +2022,MI,FT,Data Analyst,40000,GBP,49253,GB,100,GB,M +2022,MI,FT,Data Analyst,30000,GBP,36940,GB,100,GB,M +2022,MI,FT,Data Analyst,40000,EUR,42026,ES,100,ES,M +2022,MI,FT,Data Analyst,30000,EUR,31520,ES,100,ES,M +2022,MI,FT,Data Engineer,80000,EUR,84053,ES,100,ES,M +2022,MI,FT,Data Engineer,70000,EUR,73546,ES,100,ES,M +2022,MI,FT,Data Engineer,80000,GBP,98506,GB,100,GB,M +2022,MI,FT,Data Engineer,70000,GBP,86193,GB,100,GB,M +2022,MI,FT,Data Engineer,80000,EUR,84053,GR,100,GR,M +2022,MI,FT,Data Engineer,70000,EUR,73546,GR,100,GR,M +2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M +2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M +2022,MI,FT,Data Analyst,40000,EUR,42026,GR,100,GR,M +2022,MI,FT,Data Analyst,30000,EUR,31520,GR,100,GR,M +2022,MI,FT,Data Engineer,75000,GBP,92350,GB,100,GB,M +2022,MI,FT,Data Engineer,60000,GBP,73880,GB,100,GB,M +2022,SE,FT,Data Scientist,215300,USD,215300,US,0,US,L +2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,L +2022,MI,FT,Data Engineer,60000,EUR,63040,ES,100,ES,M +2022,MI,FT,Data Engineer,45000,EUR,47280,ES,100,ES,M +2022,SE,FT,Data Scientist,260000,USD,260000,US,100,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,100,US,M +2022,MI,FT,Data Scientist,55000,GBP,67723,GB,0,GB,M +2022,MI,FT,Data Scientist,35000,GBP,43096,GB,0,GB,M +2022,MI,FT,Data Engineer,60000,EUR,63040,GR,100,GR,M +2022,MI,FT,Data Engineer,45000,EUR,47280,GR,100,GR,M +2022,MI,FT,Data Engineer,60000,GBP,73880,GB,100,GB,M +2022,MI,FT,Data Engineer,45000,GBP,55410,GB,100,GB,M +2021,MI,FT,Machine Learning Engineer,43200,EUR,51064,IT,50,IT,L +2022,SE,FT,Data Science Engineer,60000,USD,60000,AR,100,MX,L +2022,MI,FT,Data Engineer,82900,USD,82900,US,0,US,M +2022,MI,FT,Data Engineer,63900,USD,63900,US,0,US,M +2022,MI,FT,Machine Learning Scientist,160000,USD,160000,US,100,US,L +2022,MI,FT,Machine Learning Scientist,112300,USD,112300,US,100,US,L +2022,MI,FT,Data Science Manager,241000,USD,241000,US,100,US,M +2022,MI,FT,Data Science Manager,159000,USD,159000,US,100,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,M +2022,SE,FT,Data Scientist,80000,USD,80000,US,0,US,M +2022,MI,FT,Data Analyst,58000,USD,58000,US,0,US,S +2022,MI,FT,Data Analyst,58000,USD,58000,US,0,US,S +2022,SE,FT,Data Engineer,136000,USD,136000,US,0,US,M +2022,SE,FT,Data Engineer,108800,USD,108800,US,0,US,M +2022,EX,FT,Data Engineer,242000,USD,242000,US,100,US,M +2022,EX,FT,Data Engineer,200000,USD,200000,US,100,US,M +2022,MI,FT,Data Scientist,50000,GBP,61566,GB,0,GB,M +2022,MI,FT,Data Scientist,30000,GBP,36940,GB,0,GB,M +2022,MI,FT,Data Engineer,60000,GBP,73880,GB,0,GB,M +2022,MI,FT,Data Engineer,40000,GBP,49253,GB,0,GB,M +2022,SE,FT,Data Scientist,165220,USD,165220,US,100,US,M +2022,SE,FT,Data Scientist,120160,USD,120160,US,100,US,M +2022,SE,FT,Data Analyst,124190,USD,124190,US,100,US,M +2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +2022,SE,FT,Data Engineer,181940,USD,181940,US,0,US,M +2022,SE,FT,Data Engineer,132320,USD,132320,US,0,US,M +2022,SE,FT,Data Engineer,220110,USD,220110,US,0,US,M +2022,SE,FT,Data Engineer,160080,USD,160080,US,0,US,M +2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,L +2022,SE,FT,Data Scientist,120000,USD,120000,US,0,US,L +2022,MI,FT,Data Analyst,126500,USD,126500,US,0,US,M +2022,MI,FT,Data Analyst,106260,USD,106260,US,0,US,M +2022,SE,FT,Data Analyst,116000,USD,116000,US,0,US,M +2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M +2022,SE,FT,Data Analyst,155000,USD,155000,US,100,US,M +2022,SE,FT,Data Analyst,120600,USD,120600,US,100,US,M +2022,MI,FT,Data Scientist,130000,USD,130000,US,0,US,M +2022,MI,FT,Data Scientist,90000,USD,90000,US,0,US,M +2022,MI,FT,Data Engineer,170000,USD,170000,US,100,US,M +2022,MI,FT,Data Engineer,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Analyst,102100,USD,102100,US,100,US,M +2022,SE,FT,Data Analyst,84900,USD,84900,US,100,US,M +2022,SE,FT,Data Scientist,136620,USD,136620,US,100,US,M +2022,SE,FT,Data Scientist,99360,USD,99360,US,100,US,M +2022,SE,FT,Data Scientist,90000,GBP,110820,GB,0,GB,M +2022,SE,FT,Data Scientist,80000,GBP,98506,GB,0,GB,M +2022,SE,FT,Data Scientist,146000,USD,146000,US,100,US,M +2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M +2022,EN,FT,Data Engineer,40000,GBP,49253,GB,100,GB,M +2022,EN,FT,Data Engineer,35000,GBP,43096,GB,100,GB,M +2022,EX,FT,Data Analyst,130000,USD,130000,US,100,US,M +2022,EX,FT,Data Analyst,110000,USD,110000,US,100,US,M +2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Science Manager,161342,USD,161342,US,100,US,M +2022,SE,FT,Data Science Manager,137141,USD,137141,US,100,US,M +2022,SE,FT,Data Scientist,167000,USD,167000,US,100,US,M +2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M +2022,SE,FT,Data Engineer,60000,GBP,73880,GB,0,GB,M +2022,SE,FT,Data Engineer,50000,GBP,61566,GB,0,GB,M +2022,SE,FT,Data Scientist,211500,USD,211500,US,100,US,M +2022,SE,FT,Data Scientist,138600,USD,138600,US,100,US,M +2022,SE,FT,Data Architect,192400,USD,192400,CA,100,CA,M +2022,SE,FT,Data Architect,90700,USD,90700,CA,100,CA,M +2022,SE,FT,Data Analyst,130000,USD,130000,CA,100,CA,M +2022,SE,FT,Data Analyst,61300,USD,61300,CA,100,CA,M +2022,SE,FT,Data Analyst,130000,USD,130000,CA,100,CA,M +2022,SE,FT,Data Analyst,61300,USD,61300,CA,100,CA,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,L +2022,SE,FT,Data Engineer,113000,USD,113000,US,0,US,L +2022,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M +2022,SE,FT,Data Scientist,95550,USD,95550,US,0,US,M +2022,MI,FT,Data Analyst,167000,USD,167000,US,100,US,M +2022,MI,FT,Data Analyst,115500,USD,115500,US,100,US,M +2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +2022,SE,FT,Data Engineer,165400,USD,165400,US,100,US,M +2022,SE,FT,Data Engineer,132320,USD,132320,US,100,US,M +2022,SE,FT,Data Engineer,243900,USD,243900,US,100,US,M +2022,SE,FT,Data Engineer,156600,USD,156600,US,100,US,M +2022,SE,FT,Data Analyst,136600,USD,136600,US,100,US,M +2022,SE,FT,Data Analyst,109280,USD,109280,US,100,US,M +2022,SE,FT,Data Engineer,128875,USD,128875,US,100,US,M +2022,SE,FT,Data Engineer,93700,USD,93700,US,100,US,M +2022,EX,FT,Head of Data Science,224000,USD,224000,US,100,US,M +2022,EX,FT,Head of Data Science,167875,USD,167875,US,100,US,M +2022,EX,FT,Analytics Engineer,175000,USD,175000,US,100,US,M +2022,EX,FT,Analytics Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Engineer,209100,USD,209100,US,100,US,L +2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,L +2022,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,SE,FT,Data Scientist,205300,USD,205300,US,0,US,L +2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,L +2022,SE,FT,Data Scientist,176000,USD,176000,US,100,US,M +2022,SE,FT,Data Scientist,144000,USD,144000,US,100,US,M +2022,SE,FT,Data Engineer,200100,USD,200100,US,100,US,M +2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M +2022,SE,FT,Data Engineer,70500,USD,70500,US,0,US,M +2022,SE,FT,Data Engineer,54000,USD,54000,US,0,US,M +2022,SE,FT,Data Scientist,205300,USD,205300,US,0,US,M +2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,M +2022,SE,FT,Analytics Engineer,205300,USD,205300,US,0,US,M +2022,SE,FT,Analytics Engineer,184700,USD,184700,US,0,US,M +2022,SE,FT,Data Engineer,175100,USD,175100,US,100,US,M +2022,SE,FT,Data Engineer,140250,USD,140250,US,100,US,M +2022,SE,FT,Data Analyst,116150,USD,116150,US,100,US,M +2022,SE,FT,Data Analyst,99050,USD,99050,US,100,US,M +2022,SE,FT,Data Engineer,145000,USD,145000,US,100,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M +2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M +2022,MI,FT,Data Analyst,85000,USD,85000,CA,0,CA,M +2022,MI,FT,Data Analyst,75000,USD,75000,CA,0,CA,M +2022,SE,FT,Machine Learning Engineer,214000,USD,214000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,192600,USD,192600,US,100,US,M +2022,SE,FT,Data Architect,266400,USD,266400,US,100,US,M +2022,SE,FT,Data Architect,213120,USD,213120,US,100,US,M +2022,SE,FT,Data Engineer,155000,USD,155000,US,100,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M +2022,MI,FT,Data Scientist,141300,USD,141300,US,0,US,M +2022,MI,FT,Data Scientist,102100,USD,102100,US,0,US,M +2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M +2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M +2022,MI,FT,Data Engineer,206699,USD,206699,US,0,US,M +2022,MI,FT,Data Engineer,99100,USD,99100,US,0,US,M +2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M +2022,SE,FT,Data Engineer,110500,USD,110500,US,100,US,M +2022,MI,FT,Data Analyst,50000,GBP,61566,GB,0,GB,M +2022,MI,FT,Data Analyst,35000,GBP,43096,GB,0,GB,M +2022,SE,FT,Data Analyst,80000,USD,80000,US,100,US,M +2022,SE,FT,Data Analyst,60000,USD,60000,US,100,US,M +2022,SE,FT,Data Architect,192564,USD,192564,US,100,US,M +2022,SE,FT,Data Architect,144854,USD,144854,US,100,US,M +2022,SE,FT,Data Scientist,230000,USD,230000,US,100,US,M +2022,SE,FT,Data Scientist,150000,USD,150000,US,100,US,M +2022,SE,FT,Data Analytics Manager,150260,USD,150260,US,100,US,M +2022,SE,FT,Data Analytics Manager,109280,USD,109280,US,100,US,M +2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Analyst,150000,USD,150000,US,100,US,M +2022,MI,FT,Data Scientist,160000,USD,160000,US,100,US,M +2022,MI,FT,Data Scientist,130000,USD,130000,US,100,US,M +2022,EN,FT,Data Analyst,67000,USD,67000,CA,0,CA,M +2022,EN,FT,Data Analyst,52000,USD,52000,CA,0,CA,M +2022,SE,FT,Data Engineer,154000,USD,154000,US,100,US,M +2022,SE,FT,Data Engineer,126000,USD,126000,US,100,US,M +2022,SE,FT,Data Analyst,129000,USD,129000,US,0,US,M +2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M +2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Analyst,69000,USD,69000,US,100,US,M +2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,SE,FT,Data Analyst,150075,USD,150075,US,100,US,M +2022,SE,FT,Data Analyst,110925,USD,110925,US,100,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Engineer,25000,USD,25000,US,100,US,M +2022,SE,FT,Data Analyst,126500,USD,126500,US,100,US,M +2022,SE,FT,Data Analyst,106260,USD,106260,US,100,US,M +2022,SE,FT,Data Engineer,220110,USD,220110,US,100,US,M +2022,SE,FT,Data Engineer,160080,USD,160080,US,100,US,M +2022,SE,FT,Data Analyst,105000,USD,105000,US,100,US,M +2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M +2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Scientist,230000,USD,230000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,MI,FT,Data Analyst,135000,USD,135000,US,100,US,M +2022,MI,FT,Data Analyst,50000,USD,50000,US,100,US,M +2022,SE,FT,Data Scientist,220000,USD,220000,US,100,US,M +2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M +2022,MI,FT,Data Scientist,140000,GBP,172386,GB,0,GB,M +2022,MI,FT,Data Scientist,70000,GBP,86193,GB,0,GB,M +2022,SE,FT,Machine Learning Engineer,220000,USD,220000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,M +2022,MI,FT,Data Scientist,200000,USD,200000,US,100,US,M +2022,MI,FT,Data Scientist,120000,USD,120000,US,100,US,M +2022,SE,FT,Machine Learning Engineer,120000,USD,120000,AE,100,AE,S +2022,SE,FT,Machine Learning Engineer,65000,USD,65000,AE,100,AE,S +2022,EX,FT,Data Engineer,324000,USD,324000,US,100,US,M +2022,EX,FT,Data Engineer,216000,USD,216000,US,100,US,M +2022,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M +2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M +2022,SE,FT,Data Scientist,185100,USD,185100,US,100,US,M +2022,SE,FT,Data Scientist,104890,USD,104890,US,100,US,M +2022,SE,FT,Data Engineer,105000,USD,105000,US,100,US,M +2022,SE,FT,Data Engineer,80000,USD,80000,US,100,US,M +2022,MI,FT,Machine Learning Developer,100000,CAD,76814,CA,100,CA,M +2020,SE,FT,Machine Learning Manager,157000,CAD,117104,CA,50,CA,L +2022,EX,FT,Director of Data Science,250000,CAD,192037,CA,50,CA,L +2022,MI,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,S +2022,MI,FT,Business Data Analyst,1400000,INR,17805,IN,100,IN,M +2022,MI,FT,Data Scientist,2400000,INR,30523,IN,100,IN,L +2022,MI,FT,Machine Learning Infrastructure Engineer,53000,EUR,55685,PT,50,PT,L +2022,MI,PT,Data Engineer,50000,EUR,52533,DE,50,DE,L +2022,EN,FT,Data Scientist,1400000,INR,17805,IN,100,IN,M +2022,MI,FT,Applied Machine Learning Scientist,75000,USD,75000,BO,100,US,L +2022,MI,FT,Applied Data Scientist,157000,USD,157000,US,100,US,L +2022,MI,FT,Business Data Analyst,90000,CAD,69133,CA,50,CA,L +2022,EN,FT,Data Engineer,65000,USD,65000,US,100,US,S +2022,SE,FT,Machine Learning Engineer,65000,EUR,68293,IE,100,IE,S +2021,MI,FT,Data Scientist,109000,USD,109000,US,50,US,L +2022,MI,FT,Data Scientist,88000,CAD,67597,CA,100,CA,M +2022,EN,FT,Computer Vision Engineer,10000,USD,10000,PT,100,LU,M +2022,MI,FT,Data Analyst,20000,USD,20000,GR,100,GR,S +2021,SE,FT,Head of Data,87000,EUR,102839,SI,100,SI,L +2022,SE,FT,Head of Data,200000,USD,200000,MY,100,US,M +2022,EN,FT,Data Scientist,66500,CAD,51081,CA,100,CA,L +2022,MI,FT,Data Scientist,78000,USD,78000,US,100,US,M +2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M +2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M +2022,MI,FT,Machine Learning Engineer,121000,AUD,83864,AU,100,AU,L +2022,EN,FT,Data Scientist,40000,USD,40000,JP,100,MY,L +2022,MI,FT,Head of Data,30000,EUR,31520,EE,100,EE,S +2022,SE,FT,Machine Learning Engineer,57000,EUR,59888,NL,100,NL,L +2020,EN,FT,Data Engineer,48000,EUR,54742,PK,100,DE,L +2022,SE,FT,Research Scientist,85000,EUR,89306,FR,50,FR,L +2022,EN,FT,Data Scientist,120000,AUD,83171,AU,50,AU,M +2022,SE,FT,Data Scientist,165000,USD,165000,US,100,US,M +2022,MI,FT,Machine Learning Scientist,153000,USD,153000,US,50,US,M +2022,SE,FT,Data Scientist,100000,USD,100000,BR,100,US,M +2022,SE,FT,Machine Learning Developer,100000,CAD,76814,CA,100,CA,M +2022,MI,FT,Data Scientist,150000,PLN,33609,PL,100,PL,L +2022,MI,FT,Principal Data Analyst,75000,USD,75000,CA,100,CA,S +2020,MI,FT,Product Data Analyst,20000,USD,20000,HN,0,HN,S +2022,EN,CT,Applied Machine Learning Scientist,29000,EUR,30469,TN,100,CZ,M +2021,MI,FT,Research Scientist,69999,USD,69999,CZ,50,CZ,L +2022,EN,FT,Data Engineer,52800,EUR,55475,PK,100,DE,M +2022,MI,FT,Research Scientist,59000,EUR,61989,AT,0,AT,L +2022,SE,FT,Data Science Manager,152500,USD,152500,US,100,US,M +2022,EN,FT,Research Scientist,120000,USD,120000,US,100,US,L +2022,MI,FT,Data Scientist,135000,USD,135000,US,100,US,L +2022,SE,FT,Data Analytics Lead,405000,USD,405000,US,100,US,L +2021,SE,FT,Data Engineer,150000,USD,150000,US,0,US,L +2021,SE,FT,Data Science Manager,240000,USD,240000,US,0,US,L +2021,MI,FT,Data Analyst,135000,USD,135000,US,100,US,L +2021,EN,FT,Data Scientist,80000,USD,80000,US,100,US,M +2022,SE,FT,Applied Data Scientist,380000,USD,380000,US,100,US,L +2022,MI,FT,Data Scientist,115000,CHF,120402,CH,0,CH,L +2022,SE,FT,Applied Data Scientist,177000,USD,177000,US,100,US,L +2022,MI,FT,Data Engineer,62000,EUR,65141,FR,100,FR,M +2022,MI,FT,Data Scientist,48000,USD,48000,RU,100,US,S +2022,EN,FT,Data Analytics Engineer,20000,USD,20000,PK,0,PK,M +2021,SE,FT,Principal Data Scientist,220000,USD,220000,US,0,US,L +2021,MI,FT,ML Engineer,8500000,JPY,77364,JP,50,JP,S +2021,MI,FT,ML Engineer,7000000,JPY,63711,JP,50,JP,S +2022,EN,FT,Computer Vision Software Engineer,150000,USD,150000,AU,100,AU,S +2021,MI,FT,Data Analyst,90000,USD,90000,US,100,US,M +2022,MI,FL,Data Scientist,100000,USD,100000,CA,100,US,M +2021,EN,FT,Data Scientist,100000,USD,100000,US,0,US,S +2022,EN,PT,Data Scientist,100000,USD,100000,DZ,50,DZ,M +2022,SE,FT,Research Scientist,144000,USD,144000,US,50,US,L +2022,SE,FT,Principal Data Scientist,148000,EUR,155499,DE,100,DE,M +2021,SE,FT,Computer Vision Engineer,24000,USD,24000,BR,100,BR,M +2021,MI,FT,Applied Machine Learning Scientist,38400,USD,38400,VN,100,US,M +2022,EN,FT,Financial Data Analyst,100000,USD,100000,US,50,US,L +2021,MI,FT,Data Scientist,82500,USD,82500,US,100,US,S +2021,EN,FT,Data Scientist,42000,EUR,49646,FR,50,FR,M +2021,SE,FT,Lead Data Scientist,3000000,INR,40570,IN,50,IN,L +2022,EN,FT,Data Engineer,120000,USD,120000,US,100,US,M +2022,SE,FT,Lead Machine Learning Engineer,80000,EUR,84053,DE,0,DE,M +2021,EN,FT,Machine Learning Engineer,20000,USD,20000,IN,100,IN,S +2022,EN,FT,Computer Vision Engineer,125000,USD,125000,US,0,US,M +2021,MI,FT,Data Scientist,700000,INR,9466,IN,0,IN,S +2021,SE,FT,Machine Learning Scientist,120000,USD,120000,US,50,US,S +2021,EN,PT,Data Analyst,8760,EUR,10354,ES,50,ES,M +2021,EN,FT,Applied Data Scientist,80000,GBP,110037,GB,0,GB,L +2022,EN,FT,ML Engineer,20000,EUR,21013,PT,100,PT,L +2021,EN,FT,Data Analyst,50000,USD,50000,US,100,US,M +2021,SE,FT,Principal Data Engineer,200000,USD,200000,US,100,US,M +2021,MI,FT,Big Data Engineer,60000,USD,60000,ES,50,RO,M +2021,MI,FT,Data Engineer,200000,USD,200000,US,100,US,L +2021,EN,FT,Machine Learning Developer,100000,USD,100000,IQ,50,IQ,S +2021,MI,FT,Data Engineer,100000,USD,100000,US,100,US,L +2021,SE,FT,Machine Learning Engineer,70000,EUR,82744,BE,50,BE,M +2020,MI,FT,Data Engineer,51999,EUR,59303,DE,100,DE,S +2021,MI,FT,Research Scientist,53000,EUR,62649,FR,50,FR,M +2021,MI,FT,Data Engineer,60000,GBP,82528,GB,100,GB,L +2021,MI,FT,Data Architect,170000,USD,170000,US,100,US,L +2021,MI,FT,Data Architect,150000,USD,150000,US,100,US,L +2021,EN,FT,BI Data Analyst,55000,USD,55000,US,50,US,S +2021,EX,FT,Director of Data Science,250000,USD,250000,US,0,US,L +2021,EN,FT,Data Engineer,80000,USD,80000,US,100,US,L +2020,EN,FT,Big Data Engineer,70000,USD,70000,US,100,US,L +2021,EX,FT,Director of Data Science,110000,EUR,130026,DE,50,DE,M +2021,EN,FT,Data Science Consultant,54000,EUR,63831,DE,50,DE,L +2020,SE,FT,Data Scientist,60000,EUR,68428,GR,100,US,L +2021,EX,FT,Head of Data Science,85000,USD,85000,RU,0,RU,M +2021,EX,FT,Head of Data,230000,USD,230000,RU,50,RU,L +2021,EN,FT,Machine Learning Engineer,125000,USD,125000,US,100,US,S +2021,SE,FT,Data Analytics Manager,120000,USD,120000,US,100,US,M +2020,MI,FT,Research Scientist,450000,USD,450000,US,0,US,M +2020,MI,FT,Data Analyst,41000,EUR,46759,FR,50,FR,L +2020,MI,FT,Data Engineer,65000,EUR,74130,AT,50,AT,L +2021,SE,FT,Data Science Engineer,159500,CAD,127221,CA,50,CA,L +2021,SE,FT,Data Science Manager,144000,USD,144000,US,100,US,L +2021,EN,FT,Data Scientist,13400,USD,13400,UA,100,UA,L +2021,MI,FT,Data Scientist,95000,CAD,75774,CA,100,CA,L +2021,MI,FT,Data Scientist,150000,USD,150000,US,100,US,M +2020,MI,FT,Data Science Consultant,103000,USD,103000,US,100,US,L +2021,SE,FT,Data Engineer,153000,USD,153000,US,100,US,L +2021,MI,FT,Data Engineer,90000,USD,90000,US,100,US,L +2021,EN,FT,Data Analyst,90000,USD,90000,US,100,US,S +2021,EN,FT,Data Analyst,60000,USD,60000,US,100,US,S +2021,MI,FT,Data Scientist,50000,USD,50000,NG,100,NG,L +2021,EN,PT,AI Scientist,12000,USD,12000,PK,100,US,M +2021,MI,PT,3D Computer Vision Researcher,400000,INR,5409,IN,50,IN,M +2021,MI,CT,ML Engineer,270000,USD,270000,US,100,US,L +2021,MI,FT,Applied Data Scientist,68000,CAD,54238,GB,50,CA,L +2021,MI,FT,Machine Learning Engineer,40000,EUR,47282,ES,100,ES,S +2021,EX,FT,Director of Data Science,130000,EUR,153667,IT,100,PL,L +2021,MI,FT,Data Engineer,110000,PLN,28476,PL,100,PL,L +2021,MI,FT,Data Analytics Engineer,110000,USD,110000,US,100,US,L +2021,EN,FT,Research Scientist,60000,GBP,82528,GB,50,GB,L +2020,EN,FT,Machine Learning Engineer,250000,USD,250000,US,50,US,L +2021,EN,FT,Data Analyst,50000,EUR,59102,FR,50,FR,M +2021,SE,FT,Data Analyst,80000,USD,80000,BG,100,US,S +2020,EN,FT,Data Analyst,10000,USD,10000,NG,100,NG,S +2020,EN,FT,Machine Learning Engineer,138000,USD,138000,US,100,US,S +2021,MI,FT,Data Engineer,140000,USD,140000,US,100,US,L +2021,SE,FT,Data Analytics Engineer,67000,EUR,79197,DE,100,DE,L +2021,SE,FT,Lead Data Analyst,170000,USD,170000,US,100,US,L +2021,EN,FT,Data Analyst,80000,USD,80000,US,100,US,M +2020,MI,FT,Data Scientist,45760,USD,45760,PH,100,US,S +2021,MI,FT,BI Data Analyst,100000,USD,100000,US,100,US,M +2021,SE,FT,Data Scientist,45000,EUR,53192,FR,50,FR,L +2021,EX,FT,Head of Data,235000,USD,235000,US,100,US,L +2021,EX,FT,BI Data Analyst,150000,USD,150000,IN,100,US,L +2020,EX,FT,Data Engineer,70000,EUR,79833,ES,50,ES,L +2021,EN,FT,Machine Learning Scientist,225000,USD,225000,US,100,US,L +2021,EN,FT,Data Science Consultant,65000,EUR,76833,DE,100,DE,S +2020,MI,FT,Machine Learning Infrastructure Engineer,44000,EUR,50180,PT,0,PT,M +2021,SE,FT,Marketing Data Analyst,75000,EUR,88654,GR,100,DK,L +2021,SE,FT,Lead Data Engineer,75000,GBP,103160,GB,100,GB,S +2021,SE,FT,Data Engineer,82500,GBP,113476,GB,100,GB,M +2021,SE,FT,Machine Learning Engineer,80000,EUR,94564,DE,50,DE,L +2021,EN,FT,Data Engineer,2250000,INR,30428,IN,100,IN,L +2021,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M +2021,SE,FT,Data Engineer,115000,USD,115000,US,100,US,S +2021,MI,FT,Research Scientist,235000,CAD,187442,CA,100,CA,L +2021,MI,FT,Data Analyst,37456,GBP,51519,GB,50,GB,L +2020,MI,FT,Data Engineer,106000,USD,106000,US,100,US,L +2020,MI,FT,Data Engineer,88000,GBP,112872,GB,50,GB,L +2021,MI,FT,BI Data Analyst,11000000,HUF,36259,HU,50,US,L +2021,SE,FT,Data Engineer,150000,USD,150000,US,100,US,L +2020,EN,PT,ML Engineer,14000,EUR,15966,DE,100,DE,S +2021,MI,FT,Computer Vision Software Engineer,81000,EUR,95746,DE,100,US,S +2021,EN,FT,Computer Vision Software Engineer,70000,USD,70000,US,100,US,M +2020,MI,FT,Data Scientist,60000,GBP,76958,GB,100,GB,S +2021,MI,FT,Cloud Data Engineer,120000,SGD,89294,SG,50,SG,L +2021,EN,FT,Data Scientist,2200000,INR,29751,IN,50,IN,L +2021,SE,FT,Lead Data Engineer,276000,USD,276000,US,0,US,L +2020,SE,FT,Data Engineer,188000,USD,188000,US,100,US,L +2021,SE,FT,Cloud Data Engineer,160000,USD,160000,BR,100,US,S +2020,MI,FT,Data Scientist,105000,USD,105000,US,100,US,L +2021,MI,FT,Data Engineer,200000,USD,200000,US,100,US,L +2021,SE,FT,Data Engineer,174000,USD,174000,US,100,US,L +2021,MI,FT,Data Analyst,93000,USD,93000,US,100,US,L +2021,EN,FT,Data Scientist,2100000,INR,28399,IN,100,IN,M +2021,SE,FT,Research Scientist,51400,EUR,60757,PT,50,PT,L +2021,EN,FT,Data Scientist,90000,USD,90000,US,100,US,S +2020,MI,FT,Data Engineer,61500,EUR,70139,FR,50,FR,L +2020,EN,FT,Data Analyst,450000,INR,6072,IN,0,IN,S +2020,SE,FT,Data Engineer,720000,MXN,33511,MX,0,MX,S +2021,SE,FT,Principal Data Analyst,170000,USD,170000,US,100,US,M +2021,SE,FT,Data Engineer,70000,GBP,96282,GB,50,GB,L +2021,MI,FT,Data Engineer,108000,TRY,12103,TR,0,TR,M +2021,EN,FT,Data Scientist,31000,EUR,36643,FR,50,FR,L +2021,MI,FT,Data Engineer,52500,GBP,72212,GB,50,GB,L +2020,EN,FT,Data Analyst,91000,USD,91000,US,100,US,L +2021,SE,FT,Big Data Architect,125000,CAD,99703,CA,50,CA,M +2021,SE,FT,Data Scientist,165000,USD,165000,US,100,US,L +2021,MI,FT,Data Analyst,80000,USD,80000,US,100,US,L +2021,SE,FT,Data Scientist,130000,CAD,103691,CA,100,CA,L +2021,EN,FT,Data Engineer,1600000,INR,21637,IN,50,IN,M +2020,EN,FT,Research Scientist,42000,USD,42000,NL,50,NL,L +2020,MI,FT,Lead Data Scientist,115000,USD,115000,AE,0,AE,L +2021,MI,FT,Research Scientist,80000,CAD,63810,CA,100,CA,M +2020,SE,FT,Machine Learning Scientist,260000,USD,260000,JP,0,JP,S +2021,MI,FT,Head of Data Science,110000,USD,110000,US,0,US,S +2021,MI,FT,Data Architect,180000,USD,180000,US,100,US,L +2021,SE,FT,Data Analyst,200000,USD,200000,US,100,US,L +2020,SE,FT,Big Data Engineer,85000,GBP,109024,GB,50,GB,M +2021,SE,FT,Data Engineer,200000,USD,200000,US,100,US,L +2021,SE,FT,ML Engineer,256000,USD,256000,US,100,US,S +2021,MI,FT,Data Engineer,110000,USD,110000,US,100,US,L +2020,MI,FT,Data Scientist,70000,EUR,79833,DE,0,DE,L +2021,EN,FT,Data Engineer,72500,USD,72500,US,100,US,L +2021,SE,FT,Machine Learning Engineer,185000,USD,185000,US,50,US,L +2021,MI,PT,Data Engineer,59000,EUR,69741,NL,100,NL,L +2021,EN,FT,Research Scientist,100000,USD,100000,JE,0,CN,L +2021,MI,FT,Data Engineer,112000,USD,112000,US,100,US,L +2020,SE,FT,Machine Learning Engineer,150000,USD,150000,US,50,US,L +2021,SE,FT,Data Scientist,180000,TRY,20171,TR,50,TR,L +2021,SE,FT,AI Scientist,55000,USD,55000,ES,100,ES,L +2021,EN,FT,Data Scientist,58000,USD,58000,US,50,US,L +2021,EN,FT,Data Scientist,100000,USD,100000,US,100,US,M +2021,SE,FT,Data Scientist,65720,EUR,77684,FR,50,FR,M +2021,EN,FT,Machine Learning Engineer,85000,USD,85000,NL,100,DE,S +2021,EN,FT,Data Science Consultant,65000,EUR,76833,DE,0,DE,L +2021,SE,CT,Staff Data Scientist,105000,USD,105000,US,100,US,M +2020,EN,FT,Data Analyst,72000,USD,72000,US,100,US,L +2021,EN,FT,Data Engineer,55000,EUR,65013,DE,50,DE,M +2021,MI,FT,Data Engineer,250000,TRY,28016,TR,100,TR,M +2021,MI,FT,Data Engineer,111775,USD,111775,US,0,US,M +2021,MI,FT,Data Engineer,93150,USD,93150,US,0,US,M +2021,SE,FT,Lead Data Engineer,160000,USD,160000,PR,50,US,S +2021,MI,FT,Data Scientist,21600,EUR,25532,RS,100,DE,S +2021,SE,FT,Machine Learning Engineer,4900000,INR,66265,IN,0,IN,L +2021,MI,FT,Data Scientist,1250000,INR,16904,IN,100,IN,S +2021,SE,FT,Data Analyst,54000,EUR,63831,DE,50,DE,L +2020,SE,FT,Lead Data Scientist,190000,USD,190000,US,100,US,S +2021,EX,FT,Director of Data Science,120000,EUR,141846,DE,0,DE,L +2021,EN,FT,Big Data Engineer,1200000,INR,16228,IN,100,IN,L +2021,SE,FT,Data Analyst,90000,CAD,71786,CA,100,CA,M +2020,MI,FT,Data Scientist,11000000,HUF,35735,HU,50,HU,L +2021,SE,FT,Data Scientist,135000,USD,135000,US,0,US,L +2021,EN,FT,Machine Learning Engineer,21000,EUR,24823,DE,50,DE,M +2021,SE,FT,Data Science Manager,4000000,INR,54094,IN,50,US,L +2021,SE,FT,Machine Learning Engineer,1799997,INR,24342,IN,100,IN,L +2021,EN,FT,BI Data Analyst,9272,USD,9272,KE,100,KE,S +2021,MI,FT,Data Scientist,147000,USD,147000,US,50,US,L +2021,SE,FT,Research Scientist,120500,CAD,96113,CA,50,CA,L +2021,SE,FT,Data Science Manager,174000,USD,174000,US,100,US,L +2020,MI,FT,Business Data Analyst,135000,USD,135000,US,100,US,L +2021,EN,FT,Machine Learning Engineer,21844,USD,21844,CO,50,CO,M +2020,SE,FT,Lead Data Engineer,125000,USD,125000,NZ,50,NZ,S +2020,EN,FT,Data Scientist,45000,EUR,51321,FR,0,FR,S +2020,MI,FT,Data Scientist,3000000,INR,40481,IN,0,IN,L +2021,EX,FT,Data Science Consultant,59000,EUR,69741,FR,100,ES,S +2021,SE,FT,Data Analytics Engineer,50000,USD,50000,VN,100,GB,M +2020,EN,FT,Data Scientist,35000,EUR,39916,FR,0,FR,M +2020,MI,FT,Lead Data Analyst,87000,USD,87000,US,100,US,L +2021,MI,FT,Data Engineer,22000,EUR,26005,RO,0,US,L +2021,MI,FT,Data Scientist,76760,EUR,90734,DE,50,DE,L +2021,MI,FT,Big Data Engineer,1672000,INR,22611,IN,0,IN,L +2021,MI,FT,Data Scientist,420000,INR,5679,IN,100,US,S +2021,EN,FT,Machine Learning Engineer,81000,USD,81000,US,50,US,S +2021,MI,FT,Data Scientist,30400000,CLP,40038,CL,100,CL,L +2021,EN,FT,Data Science Consultant,90000,USD,90000,US,100,US,S +2021,MI,FT,Data Scientist,52000,EUR,61467,DE,50,AT,M +2021,SE,FT,Machine Learning Infrastructure Engineer,195000,USD,195000,US,100,US,M +2021,MI,FT,Data Scientist,32000,EUR,37825,ES,100,ES,L +2020,MI,FT,Data Analyst,85000,USD,85000,US,100,US,L +2021,EX,CT,Principal Data Scientist,416000,USD,416000,US,100,US,S +2021,SE,FT,Machine Learning Scientist,225000,USD,225000,US,100,CA,L +2021,MI,FT,Data Scientist,40900,GBP,56256,GB,50,GB,L +2021,MI,FT,Data Scientist,2500000,INR,33808,IN,0,IN,M +2021,MI,FT,Data Scientist,85000,GBP,116914,GB,50,GB,L +2021,MI,FT,Machine Learning Engineer,180000,PLN,46597,PL,100,PL,L +2020,MI,FT,Data Analyst,8000,USD,8000,PK,50,PK,L +2020,EN,FT,Data Engineer,4450000,JPY,41689,JP,100,JP,S +2020,SE,FT,Big Data Engineer,100000,EUR,114047,PL,100,GB,S +2021,MI,FT,Machine Learning Engineer,75000,EUR,88654,BE,100,BE,M +2020,EN,FT,Data Science Consultant,423000,INR,5707,IN,50,IN,M +2020,MI,FT,Lead Data Engineer,56000,USD,56000,PT,100,US,M +2021,EN,PT,Computer Vision Engineer,180000,DKK,28609,DK,50,DK,S +2021,MI,FT,Data Scientist,75000,EUR,88654,DE,50,DE,L +2020,MI,FT,Product Data Analyst,450000,INR,6072,IN,100,IN,L +2020,SE,FT,Data Engineer,42000,EUR,47899,GR,50,GR,L +2020,MI,FT,BI Data Analyst,98000,USD,98000,US,0,US,M +2021,MI,FT,Data Engineer,48000,GBP,66022,HK,50,GB,S +2021,MI,FT,Research Scientist,48000,EUR,56738,FR,50,FR,S +2021,MI,FT,Machine Learning Engineer,21000,EUR,24823,SI,50,SI,L +2021,SE,FT,Data Analytics Manager,120000,USD,120000,US,0,US,L +2021,MI,FL,Data Engineer,20000,USD,20000,IT,0,US,L +2020,EX,FT,Director of Data Science,325000,USD,325000,US,100,US,L +2021,SE,FT,Machine Learning Engineer,200000,USD,200000,US,100,US,L +2020,EN,FT,AI Scientist,300000,DKK,45896,DK,50,DK,S +2021,MI,FT,Data Scientist,160000,USD,160000,US,100,US,L +2021,SE,FT,Research Scientist,50000,USD,50000,FR,100,US,S +2021,MI,FT,Data Science Engineer,34000,EUR,40189,GR,100,GR,M +2021,MI,FT,Data Scientist,69600,BRL,12901,BR,0,BR,S +2021,SE,FT,Data Engineer,165000,USD,165000,US,0,US,M +2021,EN,FT,Big Data Engineer,435000,INR,5882,IN,0,CH,L +2020,MI,FT,Data Scientist,37000,EUR,42197,FR,50,FR,S +2021,SE,FT,Principal Data Engineer,185000,USD,185000,US,100,US,L +2020,EN,FT,Data Scientist,55000,EUR,62726,DE,50,DE,S +2021,MI,FT,Data Scientist,76760,EUR,90734,DE,50,DE,L +2020,EN,PT,Data Scientist,19000,EUR,21669,IT,50,IT,S +2020,MI,FT,Data Engineer,110000,USD,110000,US,100,US,L +2021,SE,FT,Data Analytics Manager,140000,USD,140000,US,100,US,L +2020,SE,FT,Data Scientist,120000,USD,120000,US,50,US,L +2021,SE,FT,Data Scientist,110000,CAD,87738,CA,100,CA,S +2021,SE,FT,Finance Data Analyst,45000,GBP,61896,GB,50,GB,L +2021,MI,FL,Machine Learning Scientist,12000,USD,12000,PK,50,PK,M +2021,SE,FT,Data Engineer,65000,EUR,76833,RO,50,GB,S +2021,MI,FT,Machine Learning Engineer,74000,USD,74000,JP,50,JP,S +2021,SE,FT,Data Science Manager,152000,USD,152000,US,100,FR,L +2021,MI,FT,Big Data Engineer,18000,USD,18000,MD,0,MD,S +2020,SE,FL,Computer Vision Engineer,60000,USD,60000,RU,100,US,S +2021,MI,FT,Data Scientist,130000,USD,130000,US,50,US,L +2021,SE,FT,Computer Vision Engineer,102000,BRL,18907,BR,0,BR,M +2021,EN,FT,Business Data Analyst,50000,EUR,59102,LU,100,LU,L +2021,SE,FT,Principal Data Scientist,147000,EUR,173762,DE,100,DE,M +2020,SE,FT,Principal Data Scientist,130000,EUR,148261,DE,100,DE,M +2020,MI,FT,Data Scientist,34000,EUR,38776,ES,100,ES,M +2021,MI,FT,Data Scientist,39600,EUR,46809,ES,100,ES,M +2021,EN,FT,AI Scientist,1335000,INR,18053,IN,100,AS,S +2020,SE,FT,Data Scientist,80000,EUR,91237,AT,0,AT,S +2020,MI,FT,Data Scientist,55000,EUR,62726,FR,50,LU,S +2021,MI,FT,Data Scientist,115000,USD,115000,US,50,US,L +2021,SE,FT,Principal Data Scientist,235000,USD,235000,US,100,US,L +2021,MI,FT,Lead Data Analyst,1450000,INR,19609,IN,100,IN,L +2021,EN,PT,AI Scientist,12000,USD,12000,BR,100,US,S +2021,MI,FT,Data Analyst,75000,USD,75000,US,0,US,L +2021,MI,FT,Data Analyst,62000,USD,62000,US,0,US,L +2021,MI,FT,Data Scientist,73000,USD,73000,US,0,US,L +2021,MI,FT,Data Engineer,38400,EUR,45391,NL,100,NL,L +2020,SE,FT,Data Science Manager,190200,USD,190200,US,100,US,M +2020,MI,FT,Data Scientist,118000,USD,118000,US,100,US,M +2020,MI,FT,Data Scientist,138350,USD,138350,US,100,US,M +2020,MI,FT,Data Engineer,130800,USD,130800,ES,100,US,M +2020,SE,FT,Machine Learning Engineer,40000,EUR,45618,HR,100,HR,S +2021,SE,FT,Director of Data Science,168000,USD,168000,JP,0,JP,S +2021,MI,FT,Data Scientist,160000,SGD,119059,SG,100,IL,M +2021,MI,FT,Applied Machine Learning Scientist,423000,USD,423000,US,50,US,L +2021,MI,FT,Data Engineer,24000,EUR,28369,MT,50,MT,L +2021,SE,FT,Data Specialist,165000,USD,165000,US,100,US,L +2020,SE,FT,Data Scientist,412000,USD,412000,US,100,US,L +2021,MI,FT,Principal Data Scientist,151000,USD,151000,US,100,US,L +2020,EN,FT,Data Scientist,105000,USD,105000,US,100,US,S +2020,EN,CT,Business Data Analyst,100000,USD,100000,US,100,US,L +2021,SE,FT,Data Science Manager,7000000,INR,94665,IN,50,IN,L