Price_Pulse/analysis/app.py

168 lines
5.6 KiB
Python
Raw Permalink Normal View History

2024-11-05 20:50:07 +04:00
import numpy as np
import pandas as pd
from datetime import timedelta
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import io
import joblib
from flask import Flask, request, jsonify, Blueprint, send_file
from flasgger import Swagger
app = Flask(__name__)
api = Blueprint('api', __name__)
Swagger(app)
# Загружаем модель и scaler
model = load_model("my_model_1H.keras")
scaler = MinMaxScaler(feature_range=(0, 1))
# Загружаем данные
column_names = ['product_url', 'price', 'datetime']
2024-11-11 20:13:53 +04:00
df = pd.read_csv('parsed_data_public_price_history_all.csv')
2024-11-05 20:50:07 +04:00
# Преобразуем колонку 'datetime' в тип данных datetime
df['datetime'] = pd.to_datetime(df['datetime'], format='mixed', utc=True)
df['price'] = df['price'].astype(float)
q_low = df['price'].quantile(0.55)
q_hi = df['price'].quantile(0.75)
q_range = q_hi - q_low
df = df[(df['price'] < q_hi + 1.5 * q_range) & (df['price'] > q_low - 1.5 * q_range)]
df_hourly_avg = df[['price', 'datetime']]
df_hourly_avg['datetime'] = df_hourly_avg['datetime'].dt.floor('1H')
df_hourly_avg = df_hourly_avg.groupby('datetime').agg({'price': 'mean'}).reset_index()
df_hourly_avg.set_index('datetime', inplace=True)
# Подготовка данных для прогнозирования
def prepare_data(df, days_forward=7):
last_date = df.index[-1]
scaled_data = scaler.fit_transform(df[['price']].values)
n = 3 # число временных шагов (можно менять)
X_test = []
# Формируем X_test на основе последних n значений
for i in range(n, len(scaled_data)):
X_test.append(scaled_data[i - n:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# Предсказание на 7 дней вперед
predictions = []
current_input = X_test[-1] # начальное состояние для прогноза
for _ in range(days_forward):
pred = model.predict(np.expand_dims(current_input, axis=0))
predictions.append(pred[0, 0])
# Обновляем current_input, добавляя новое предсказание и удаляя старое
current_input = np.append(current_input[1:], pred).reshape(n, 1)
# Масштабируем предсказания обратно
predictions = scaler.inverse_transform(np.array(predictions).reshape(-1, 1)).flatten()
future_dates = [last_date + timedelta(days=i) for i in range(1, days_forward + 1)]
forecast_df = pd.DataFrame({'date': future_dates, 'predicted_price': predictions})
return forecast_df
# Построение графика
def plot_price(forecast_df):
plt.figure(figsize=(14, 7))
plt.plot(df_hourly_avg.index, df_hourly_avg['price'], label='Actual Price', color='blue')
plt.plot(forecast_df['date'], forecast_df['predicted_price'], label='Predicted Price', color='orange')
plt.title("Price Prediction")
plt.xlabel("Date")
plt.ylabel("Price")
plt.legend()
plt.grid(True)
img = io.BytesIO()
plt.savefig(img, format='png')
img.seek(0)
plt.close()
return img
@api.route('/predict_price', methods=['GET'])
def predict_price():
"""
Предсказание цены на 7 дней вперед
---
responses:
200:
description: JSON с предсказаниями цен и днем минимальной цены
schema:
type: object
properties:
forecast:
type: array
items:
type: object
properties:
date:
type: string
format: date
predicted_price:
type: number
min_price_day:
type: object
properties:
date:
type: string
format: date
price:
type: number
"""
forecast_df = prepare_data(df_hourly_avg)
forecast_list = forecast_df.to_dict(orient='records') # Преобразование в список словарей
# Преобразуем значения 'predicted_price' в float
for record in forecast_list:
record['predicted_price'] = float(record['predicted_price'])
# Определяем день с минимальной предсказанной ценой
min_price_day = forecast_df.loc[forecast_df['predicted_price'].idxmin()]
# Преобразуем минимальную цену в float
min_price_day_price = float(min_price_day['predicted_price'])
# Формируем ответ
return jsonify({
'forecast': forecast_list,
'min_price_day': {
'date': min_price_day['date'].strftime('%Y-%m-%d'),
'price': min_price_day_price
}
})
# Эндпоинт для получения графика
@api.route('/plot', methods=['GET'])
def plot():
"""
Получение графика предсказанных и фактических цен
---
responses:
200:
description: Возвращает график предсказанных и фактических цен в формате PNG
content:
image/png:
schema:
type: string
format: binary
"""
forecast_df = prepare_data(df_hourly_avg)
img = plot_price(forecast_df)
return send_file(img, mimetype='image/png')
app.register_blueprint(api, url_prefix='/api')
if __name__ == "__main__":
app.run(debug=True)