import pandas as pd def CovertorDataFrame(): df = pd.read_csv("res/Stores.csv") # кол-во строчек для считывания countMainRows = 35 # получаем указанное кол-во строчек mainDF = df.head(countMainRows) mainDF['TextStoreArea'] = mainDF['Store_Area'].apply( lambda x: 'Small_Area' if x <= 1100 else ('Average_Area' if 1100 < x <= 1700 else 'Big_Area')) mainDF['TextStoreSales'] = mainDF['Store_Sales'].apply( lambda x: 'Small_Sales' if x <= 50000 else ('Average_Sales' if 50000 < x <= 70000 else 'Big_Sales')) mainDF['TextDailyCustomerCount'] = mainDF['Daily_Customer_Count'].apply( lambda x: 'Small_Customer' if x <= 400 else ('Average_Customer' if 400 < x <= 900 else 'Big_Customer')) # using dictionary to convert specific columns convert_dict = {'Store_ID': str, 'Store_Area': str, 'Items_Available': str, 'Daily_Customer_Count': str, 'Store_Sales': str } newMainDF = mainDF.astype(convert_dict) # генеральная выборка newDfGeneral = newMainDF.iloc[0:25] # выборка для проверки newDfSupport = newMainDF.iloc[25:35] return [newDfGeneral[['TextDailyCustomerCount', 'TextStoreArea', 'TextStoreSales']], newDfSupport[['TextDailyCustomerCount', 'TextStoreArea', 'TextStoreSales']]] # [['Store_Area', 'Store_Sales', 'Daily_Customer_Count', 'TextStoreArea']] # [['Store_ID', 'Store_Area', 'TextStoreArea', 'Items_Available', 'Daily_Customer_Count', 'Store_Sales']]