import pandas import pandas as pd def analysCustomersDataFrame(df: pandas.DataFrame): df['Size'] = df['Store_Area'].apply(lambda x: 'Small' if x <= 1100 else ('Average' if 1100 < x <= 1800 else 'Big')) table_one = df.query("Size == 'Small'").groupby('Size') table_two = df.query("Size == 'Average'").groupby('Size') table_three = df.query("Size == 'Big'").groupby('Size') minMaxMean_one = table_one.agg({'Daily_Customer_Count': ['min', 'max', 'mean']}).round(2).reset_index() minMaxMean_two = table_two.agg({'Daily_Customer_Count': ['min', 'max', 'mean']}).round(2).reset_index() minMaxMean_three = table_three.agg({'Daily_Customer_Count': ['min', 'max', 'mean']}).round(2).reset_index() totalTable = pd.merge(minMaxMean_one, minMaxMean_two, left_index=True, right_index=True) totalTable = pd.merge(totalTable, minMaxMean_three, left_index=True, right_index=True) # for data in roundedListShops.items(): # roundedListShops.loc[data[0], 'Store_Area'] = (data[1].astype("Int64")/100)*100 return totalTable