import pandas import pandas as pd def analysSalesDataFrame(df: pandas.DataFrame): df['Size'] = df['Store_Area'].apply(lambda x: 'Small' if x <= 1100 else ('Average' if 1100 < x <= 1800 else 'Big')) table_one = df.query("Size == 'Small'").groupby('Size') table_two = df.query("Size == 'Average'").groupby('Size') table_three = df.query("Size == 'Big'").groupby('Size') minMaxMean_one = table_one.agg({'Store_Sales': ['min', 'max', 'mean']}).round(2).reset_index() minMaxMean_one.columns = minMaxMean_one.columns.droplevel() minMaxMean_two = table_two.agg({'Store_Sales': ['min', 'max', 'mean']}).round(2).reset_index() minMaxMean_two.columns = minMaxMean_two.columns.droplevel() minMaxMean_two = minMaxMean_two.iloc[:, 1:4] minMaxMean_three = table_three.agg({'Store_Sales': ['min', 'max', 'mean']}).round(2).reset_index() minMaxMean_three.columns = minMaxMean_three.columns.droplevel() minMaxMean_three = minMaxMean_three.iloc[:, 1:4] df1 = pd.DataFrame() df1['small'] = minMaxMean_one['min'] df1['average'] = minMaxMean_two['min'] df1['big'] = minMaxMean_three['min'] df2 = pd.DataFrame() df2['small'] = minMaxMean_one['max'] df2['average'] = minMaxMean_two['max'] df2['big'] = minMaxMean_three['max'] df3 = pd.DataFrame() df3['small'] = minMaxMean_one['mean'] df3['average'] = minMaxMean_two['mean'] df3['big'] = minMaxMean_three['mean'] totalTable = [df1, df2, df3] return totalTable