MAI/LabWork01/LoadDB.py

79 lines
2.7 KiB
Python
Raw Normal View History

from flask import Flask, redirect, url_for, request, render_template
from LabWork01.FuncLoad import createDataFrame
app = Flask(__name__)
#сразу загружаем весь док, чтобы потом просто прыгать по нему
listShops = createDataFrame()
#список типов данных по столбцам
listTypes = listShops.dtypes.to_list()
#формируем записи о кол-ве пустых ячеек в каждом столбце
countNull = listShops.isnull().sum()
@app.route("/")
def home():
2023-09-28 15:14:37 +04:00
return render_template('main_page.html', context=[], listTypes=listTypes, countNull=countNull, firstRow=1, secondRow=4, firstColumn=1, secondColumn=4)
@app.route("/showDiapason", methods=['GET','POST'])
def numtext():
data = request.args
#получаем срез и таблицы по введёным параметрам
newListShops = listShops.iloc[int(data['firstRow'])-1:int(data['secondRow']), int(data['firstColumn']):int(data['secondColumn'])+1]
_range = range(int(data['firstColumn']), int(data['secondColumn'])+1)
#список списков для шаблона
totalList = []
print(countNull[1])
#формирование 4-х списков для шаблонизатора
if 1 in _range:
listStoreArea = newListShops['Store_Area'].to_list()
totalList.append(listStoreArea)
if 2 in _range:
listItemsAvailable = newListShops['Items_Available'].to_list()
totalList.append(listItemsAvailable)
if 3 in _range:
listDailyCustomerCount = newListShops['Daily_Customer_Count'].to_list()
totalList.append(listDailyCustomerCount)
if 4 in _range:
listStoreSales = newListShops['Store_Sales'].to_list()
totalList.append(listStoreSales)
if int(data['firstRow']) and int(data['secondRow']) and int(data['firstColumn']) and int(data['secondColumn']):
return render_template('main_page.html', context=totalList, listTypes=listTypes, countNull=countNull,
firstColumn=int(data['firstColumn']), secondColumn=int(data['secondColumn']),
firstRow=int(data['firstRow']), secondRow=int(data['secondRow']))
2023-09-28 15:14:37 +04:00
return home()
#функция для проведения анализа данных
@app.route("/analysis", methods=['GET', 'POST'])
def analysis():
roundedListShops = listShops
for data in roundedListShops.items():
roundedListShops.loc[data[0], 'Store_Area'] = (data[1].astype("Int64")/100)*100
#groupingByArea = listShops.groupby(['Store_Area']/100*100).agg({'Items_Available': ['mean']})
print(roundedListShops)
return home()
if __name__=="__main__":
app.run(debug=True)
2023-09-14 14:30:19 +04:00