This commit is contained in:
it-is-not-alright 2024-12-02 22:30:43 +04:00
commit 9ac111d03a
4 changed files with 455 additions and 59 deletions

View File

@ -1,11 +1,10 @@
from PyWeather.weather.stations.davis import VantagePro
import logging import logging
import time
import mariadb import mariadb
import serial.tools.list_ports import serial.tools.list_ports
import gc
import time
from pprint import pprint
from PyWeather.weather.stations.davis import VantagePro
logging.basicConfig(filename="Stations.log", logging.basicConfig(filename="Stations.log",
format='%(asctime)s %(message)s', format='%(asctime)s %(message)s',
@ -13,37 +12,10 @@ logging.basicConfig(filename="Stations.log",
logger = logging.getLogger('davis_api') logger = logging.getLogger('davis_api')
logger.setLevel(logging.DEBUG) logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
def write_data(device, station, send=True): console_handler.setLevel(logging.DEBUG)
try: console_handler.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
#device.parse() logger.addHandler(console_handler)
data = device.fields
print(data)
if len(data) < 1:
return
else:
print(data)
fields = ['BarTrend', 'CRC', 'DateStamp', 'DewPoint', 'HeatIndex', 'ETDay', 'HeatIndex',
'HumIn', 'HumOut', 'Pressure', 'RainDay', 'RainMonth', 'RainRate', 'RainStorm',
'RainYear', 'SunRise', 'SunSet', 'TempIn', 'TempOut', 'WindDir', 'WindSpeed',
'WindSpeed10Min']
if send:
placeholders = ', '.join(['%s'] * len(fields))
field_names = ', '.join(fields)
sql = f"INSERT INTO weather_data ({field_names}) VALUES ({placeholders})"
values = [data[field] for field in fields]
cursor.execute(sql, values)
conn.commit()
else:
pprint(data)
del data
del fields
gc.collect()
except Exception as e:
logger.error(str(e))
raise e
try: try:
conn = mariadb.connect( conn = mariadb.connect(
@ -57,8 +29,8 @@ try:
except mariadb.Error as e: except mariadb.Error as e:
logger.error('DB_ERR: ' + str(e)) logger.error('DB_ERR: ' + str(e))
raise e raise e
while True:
try: try:
ports = serial.tools.list_ports.comports() ports = serial.tools.list_ports.comports()
available_ports = {} available_ports = {}
@ -67,13 +39,15 @@ try:
available_ports[port.name] = port.vid available_ports[port.name] = port.vid
devices = [VantagePro(port) for port in available_ports.keys()] devices = [VantagePro(port) for port in available_ports.keys()]
print(available_ports)
while True: while True:
for i in range(len(devices)): for i in range(1):
print(devices[i].fields) if len(devices) != 0:
#write_data(devices[i], 'st' + str(available_ports[list(available_ports.keys())[i]]), True) logger.info(devices)
time.sleep(1) else:
except Exception as e: raise Exception('Can`t connect to device')
logger.error('Device_error: ' + str(e)) time.sleep(60)
raise e except Exception as e:
logger.error('Device_error' + str(e))
time.sleep(60)
# todo переписать под influx, для линухи приколы сделать

200
davisAPI/prediction.py Normal file
View File

@ -0,0 +1,200 @@
from datetime import datetime
from pathlib import Path
import metpy.calc
import numpy as np
import requests
import torch
import xarray as xr
from aurora import AuroraSmall, Batch, Metadata
from metpy.units import units
def get_download_paths(date):
"""Создает список путей для загрузки данных."""
download_path = Path("~/downloads/hres_0.1").expanduser()
downloads = {}
var_nums = {
"2t": "167", "10u": "165", "10v": "166", "msl": "151", "t": "130",
"u": "131", "v": "132", "q": "133", "z": "129", "slt": "043", "lsm": "172",
}
for v in ["2t", "10u", "10v", "msl", "z", "slt", "lsm"]:
downloads[download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib")] = (
f"https://data.rda.ucar.edu/ds113.1/"
f"ec.oper.an.sfc/{date.year}{date.month:02d}/ec.oper.an.sfc.128_{var_nums[v]}_{v}."
f"regn1280sc.{date.year}{date.month:02d}{date.day:02d}.grb"
)
for v in ["z", "t", "u", "v", "q"]:
for hour in [0, 6, 12, 18]:
prefix = "uv" if v in {"u", "v"} else "sc"
downloads[download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_{hour:02d}.grib")] = (
f"https://data.rda.ucar.edu/ds113.1/"
f"ec.oper.an.pl/{date.year}{date.month:02d}/ec.oper.an.pl.128_{var_nums[v]}_{v}."
f"regn1280{prefix}.{date.year}{date.month:02d}{date.day:02d}{hour:02d}.grb"
)
return downloads, download_path
def download_data(downloads):
"""Скачивает файлы, если они отсутствуют в целевой директории."""
for target, source in downloads.items():
if not target.exists():
print(f"Downloading {source}")
target.parent.mkdir(parents=True, exist_ok=True)
response = requests.get(source)
response.raise_for_status()
with open(target, "wb") as f:
f.write(response.content)
print("Downloads finished!")
def load_surf(v, v_in_file, download_path, date):
"""Загружает переменные поверхностного уровня или статические переменные."""
ds = xr.open_dataset(download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib"), engine="cfgrib")
data = ds[v_in_file].values[:2]
data = data[None]
return torch.from_numpy(data)
def load_atmos(v, download_path, date, levels):
"""Загружает атмосферные переменные для заданных уровней давления."""
ds_00 = xr.open_dataset(
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_00.grib"), engine="cfgrib"
)
ds_06 = xr.open_dataset(
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_06.grib"), engine="cfgrib"
)
ds_00 = ds_00[v].sel(isobaricInhPa=list(levels))
ds_06 = ds_06[v].sel(isobaricInhPa=list(levels))
data = np.stack((ds_00.values, ds_06.values), axis=0)
data = data[None]
return torch.from_numpy(data)
def create_batch(date, levels, downloads, download_path):
"""Создает объект Batch с данными для модели."""
ds = xr.open_dataset(next(iter(downloads.keys())), engine="cfgrib")
batch = Batch(
surf_vars={
"2t": load_surf("2t", "t2m", download_path, date),
"10u": load_surf("10u", "u10", download_path, date),
"10v": load_surf("10v", "v10", download_path, date),
"msl": load_surf("msl", "msl", download_path, date),
},
static_vars={
"z": load_surf("z", "z", download_path, date)[0, 0],
"slt": load_surf("slt", "slt", download_path, date)[0, 0],
"lsm": load_surf("lsm", "lsm", download_path, date)[0, 0],
},
atmos_vars={
"t": load_atmos("t", download_path, date, levels),
"u": load_atmos("u", download_path, date, levels),
"v": load_atmos("v", download_path, date, levels),
"q": load_atmos("q", download_path, date, levels),
"z": load_atmos("z", download_path, date, levels),
},
metadata=Metadata(
lat=torch.from_numpy(ds.latitude.values),
lon=torch.from_numpy(ds.longitude.values),
time=(date.replace(hour=6),),
atmos_levels=levels,
),
)
return batch.regrid(res=0.1)
def create_batch_random(levels: tuple[int], date: tuple):
"""Создает объект Batch с рандомными данными для модели."""
return Batch(
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
metadata=Metadata(
lat=torch.linspace(90, -90, 17),
lon=torch.linspace(0, 360, 32 + 1)[:-1],
time=date,
atmos_levels=levels,
),
)
def run_model(batch):
"""Инициализирует модель AuroraSmall и выполняет предсказание."""
model = AuroraSmall()
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
model.eval()
model = model.to("cpu")
with torch.inference_mode():
prediction = model.forward(batch)
return prediction
def get_wind_speed_and_direction(prediction, batch: Batch, lat: float, lon: float):
target_lat = lat
target_lon = lon
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
wind_speeds=[]
wind_directions=[]
for i in range(u_values.numel()):
u_scalar = u_values.view(-1)[i].item() # Разворачиваем тензор в одномерный и берем элемент
v_scalar = v_values.view(-1)[i].item()
print("u value:", u_scalar)
print("v value:", v_scalar)
u_with_units = u_scalar * units("m/s")
v_with_units = v_scalar * units("m/s")
# Рассчитайте направление и скорость ветра
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
wind_speeds.append(wind_speed.magnitude.item())
wind_directions.append(wind_dir.magnitude.item())
return wind_speeds,wind_directions
def wind_direction_to_text(wind_dir_deg):
directions = [
"север", "северо-восток", "восток", "юго-восток",
"юг", "юго-запад", "запад", "северо-запад"
]
idx = int((wind_dir_deg + 22.5) // 45) % 8
return directions[idx]
def get_weather_predict(
dates: tuple[datetime],
latitude: float,
longitude: float,
):
levels = (100,)
batch_actual = create_batch_random(levels, dates)
prediction_actual = run_model(batch_actual)
return get_wind_speed_and_direction(prediction_actual, batch_actual, latitude, longitude)
def main():
levels = (100,)
date1 = datetime(2024, 11, 27, 12)
date2 = datetime(2024, 11, 28, 12)
date_tuple = (date1, date2,)
# downloads, download_path = get_download_paths(date)
# download_data(downloads) # Скачиваем данные, если их нет
# batch_actual = create_batch(date, levels, downloads, download_path)
batch_actual = create_batch_random(levels, date_tuple)
prediction_actual = run_model(batch_actual)
wind_speed_and_direction = get_wind_speed_and_direction(prediction_actual, batch_actual, 50, 20)
return wind_speed_and_direction
if __name__ == "__main__":
main()
print("Prediction completed!")

View File

@ -1,3 +1,4 @@
import datetime
import math import math
import sys import sys
from http import HTTPStatus from http import HTTPStatus
@ -18,6 +19,8 @@ sys.path.append(str(Path(__file__).parent.parent.parent))
from floris_module.src import FlorisULSTU from floris_module.src import FlorisULSTU
from floris_module.src.OpenMeteoClient import OpenMeteoClient from floris_module.src.OpenMeteoClient import OpenMeteoClient
from utils import prediction as weather_prediction
FLORIS_IMAGES_PATH = Path(__file__).parent.parent.parent / "public" / "floris" FLORIS_IMAGES_PATH = Path(__file__).parent.parent.parent / "public" / "floris"
router = APIRouter( router = APIRouter(
@ -25,6 +28,11 @@ router = APIRouter(
tags=["Floris Api"], tags=["Floris Api"],
) )
def daterange(start_date: datetime.date, end_date: datetime.date):
days = int((end_date - start_date).days)
for n in range(days + 1):
yield datetime.datetime.combine(start_date + datetime.timedelta(n), datetime.datetime.min.time())
@router.get("/get_windmill_data") @router.get("/get_windmill_data")
async def get_windmill_data( async def get_windmill_data(
@ -40,7 +48,14 @@ async def get_windmill_data(
client = OpenMeteoClient() client = OpenMeteoClient()
if data.date_start >= datetime.date.today():
dates = tuple(daterange(data.date_start, data.date_end))
climate_info = weather_prediction.get_weather_predict(
dates, 54.35119762746125, 48.389356992149345
)
else:
climate_info = client.get_weather_info(data.date_start, data.date_end) climate_info = client.get_weather_info(data.date_start, data.date_end)
wind_speeds = climate_info[0] wind_speeds = climate_info[0]
wind_directions = climate_info[1] wind_directions = climate_info[1]
@ -114,13 +129,20 @@ async def get_windmill_data_by_wind_park(
turbine_yaw_angles = [turbine.angle for turbine in turbines] turbine_yaw_angles = [turbine.angle for turbine in turbines]
weather_info_list = [
client.get_weather_info(start_date=data.date_start, end_date=data.date_end, latitude=lat, longitude=lon)
for lat, lon in turbine_coordinates
]
park_centerX, park_centerY = get_absolute_coordinates(park.CenterLatitude, park.CenterLongitude) park_centerX, park_centerY = get_absolute_coordinates(park.CenterLatitude, park.CenterLongitude)
if data.date_start >= datetime.date.today():
dates = tuple(daterange(data.date_start, data.date_end))
weather_info_list = weather_prediction.get_weather_predict(
dates, park.CenterLatitude, park.CenterLongitude
)
else:
weather_info_list = client.get_weather_info(start_date=data.date_start, end_date=data.date_end,
latitude=park.CenterLatitude, longitude=park.CenterLongitude)
turbineX = [ turbineX = [
park_centerX + turbine.x_offset park_centerX + turbine.x_offset
for turbine in turbines for turbine in turbines
@ -131,8 +153,8 @@ async def get_windmill_data_by_wind_park(
for turbine in turbines for turbine in turbines
] ]
wind_speeds = np.array([item[0][0] for item in weather_info_list]) wind_speeds = np.array(weather_info_list[0])
wind_directions = np.array([item[1][0] for item in weather_info_list]) wind_directions = np.array(weather_info_list[1])
print(wind_directions) print(wind_directions)

View File

@ -0,0 +1,200 @@
from datetime import datetime
from pathlib import Path
import metpy.calc
import numpy as np
import requests
import torch
import xarray as xr
from aurora import AuroraSmall, Batch, Metadata
from metpy.units import units
def get_download_paths(date):
"""Создает список путей для загрузки данных."""
download_path = Path("~/downloads/hres_0.1").expanduser()
downloads = {}
var_nums = {
"2t": "167", "10u": "165", "10v": "166", "msl": "151", "t": "130",
"u": "131", "v": "132", "q": "133", "z": "129", "slt": "043", "lsm": "172",
}
for v in ["2t", "10u", "10v", "msl", "z", "slt", "lsm"]:
downloads[download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib")] = (
f"https://data.rda.ucar.edu/ds113.1/"
f"ec.oper.an.sfc/{date.year}{date.month:02d}/ec.oper.an.sfc.128_{var_nums[v]}_{v}."
f"regn1280sc.{date.year}{date.month:02d}{date.day:02d}.grb"
)
for v in ["z", "t", "u", "v", "q"]:
for hour in [0, 6, 12, 18]:
prefix = "uv" if v in {"u", "v"} else "sc"
downloads[download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_{hour:02d}.grib")] = (
f"https://data.rda.ucar.edu/ds113.1/"
f"ec.oper.an.pl/{date.year}{date.month:02d}/ec.oper.an.pl.128_{var_nums[v]}_{v}."
f"regn1280{prefix}.{date.year}{date.month:02d}{date.day:02d}{hour:02d}.grb"
)
return downloads, download_path
def download_data(downloads):
"""Скачивает файлы, если они отсутствуют в целевой директории."""
for target, source in downloads.items():
if not target.exists():
print(f"Downloading {source}")
target.parent.mkdir(parents=True, exist_ok=True)
response = requests.get(source)
response.raise_for_status()
with open(target, "wb") as f:
f.write(response.content)
print("Downloads finished!")
def load_surf(v, v_in_file, download_path, date):
"""Загружает переменные поверхностного уровня или статические переменные."""
ds = xr.open_dataset(download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib"), engine="cfgrib")
data = ds[v_in_file].values[:2]
data = data[None]
return torch.from_numpy(data)
def load_atmos(v, download_path, date, levels):
"""Загружает атмосферные переменные для заданных уровней давления."""
ds_00 = xr.open_dataset(
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_00.grib"), engine="cfgrib"
)
ds_06 = xr.open_dataset(
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_06.grib"), engine="cfgrib"
)
ds_00 = ds_00[v].sel(isobaricInhPa=list(levels))
ds_06 = ds_06[v].sel(isobaricInhPa=list(levels))
data = np.stack((ds_00.values, ds_06.values), axis=0)
data = data[None]
return torch.from_numpy(data)
def create_batch(date, levels, downloads, download_path):
"""Создает объект Batch с данными для модели."""
ds = xr.open_dataset(next(iter(downloads.keys())), engine="cfgrib")
batch = Batch(
surf_vars={
"2t": load_surf("2t", "t2m", download_path, date),
"10u": load_surf("10u", "u10", download_path, date),
"10v": load_surf("10v", "v10", download_path, date),
"msl": load_surf("msl", "msl", download_path, date),
},
static_vars={
"z": load_surf("z", "z", download_path, date)[0, 0],
"slt": load_surf("slt", "slt", download_path, date)[0, 0],
"lsm": load_surf("lsm", "lsm", download_path, date)[0, 0],
},
atmos_vars={
"t": load_atmos("t", download_path, date, levels),
"u": load_atmos("u", download_path, date, levels),
"v": load_atmos("v", download_path, date, levels),
"q": load_atmos("q", download_path, date, levels),
"z": load_atmos("z", download_path, date, levels),
},
metadata=Metadata(
lat=torch.from_numpy(ds.latitude.values),
lon=torch.from_numpy(ds.longitude.values),
time=(date.replace(hour=6),),
atmos_levels=levels,
),
)
return batch.regrid(res=0.1)
def create_batch_random(levels: tuple[int], date: tuple):
"""Создает объект Batch с рандомными данными для модели."""
return Batch(
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
metadata=Metadata(
lat=torch.linspace(90, -90, 17),
lon=torch.linspace(0, 360, 32 + 1)[:-1],
time=date,
atmos_levels=levels,
),
)
def run_model(batch):
"""Инициализирует модель AuroraSmall и выполняет предсказание."""
model = AuroraSmall()
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
model.eval()
model = model.to("cpu")
with torch.inference_mode():
prediction = model.forward(batch)
return prediction
def get_wind_speed_and_direction(prediction, batch: Batch, lat: float, lon: float):
target_lat = lat
target_lon = lon
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
wind_speeds=[]
wind_directions=[]
for i in range(u_values.numel()):
u_scalar = u_values.view(-1)[i].item() # Разворачиваем тензор в одномерный и берем элемент
v_scalar = v_values.view(-1)[i].item()
print("u value:", u_scalar)
print("v value:", v_scalar)
u_with_units = u_scalar * units("m/s")
v_with_units = v_scalar * units("m/s")
# Рассчитайте направление и скорость ветра
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
wind_speeds.append(wind_speed.magnitude.item())
wind_directions.append(wind_dir.magnitude.item())
return wind_speeds,wind_directions
def wind_direction_to_text(wind_dir_deg):
directions = [
"север", "северо-восток", "восток", "юго-восток",
"юг", "юго-запад", "запад", "северо-запад"
]
idx = int((wind_dir_deg + 22.5) // 45) % 8
return directions[idx]
def get_weather_predict(
dates: tuple[datetime],
latitude: float,
longitude: float,
):
levels = (100,)
batch_actual = create_batch_random(levels, dates)
prediction_actual = run_model(batch_actual)
return get_wind_speed_and_direction(prediction_actual, batch_actual, latitude, longitude)
def main():
levels = (100,)
date1 = datetime(2024, 11, 27, 12)
date2 = datetime(2024, 11, 28, 12)
date_tuple = (date1, date2,)
# downloads, download_path = get_download_paths(date)
# download_data(downloads) # Скачиваем данные, если их нет
# batch_actual = create_batch(date, levels, downloads, download_path)
batch_actual = create_batch_random(levels, date_tuple)
prediction_actual = run_model(batch_actual)
wind_speed_and_direction = get_wind_speed_and_direction(prediction_actual, batch_actual, 50, 20)
return wind_speed_and_direction
if __name__ == "__main__":
main()
print("Prediction completed!")