Merge branch 'front-2' of https://git.is.ulstu.ru/ElEgEv/EvaluationEfficiencyOptimizationWind into front-2
This commit is contained in:
commit
9ac111d03a
@ -1,11 +1,10 @@
|
|||||||
from PyWeather.weather.stations.davis import VantagePro
|
|
||||||
import logging
|
import logging
|
||||||
|
import time
|
||||||
|
|
||||||
import mariadb
|
import mariadb
|
||||||
import serial.tools.list_ports
|
import serial.tools.list_ports
|
||||||
import gc
|
|
||||||
import time
|
|
||||||
from pprint import pprint
|
|
||||||
|
|
||||||
|
from PyWeather.weather.stations.davis import VantagePro
|
||||||
|
|
||||||
logging.basicConfig(filename="Stations.log",
|
logging.basicConfig(filename="Stations.log",
|
||||||
format='%(asctime)s %(message)s',
|
format='%(asctime)s %(message)s',
|
||||||
@ -13,37 +12,10 @@ logging.basicConfig(filename="Stations.log",
|
|||||||
logger = logging.getLogger('davis_api')
|
logger = logging.getLogger('davis_api')
|
||||||
logger.setLevel(logging.DEBUG)
|
logger.setLevel(logging.DEBUG)
|
||||||
|
|
||||||
|
console_handler = logging.StreamHandler()
|
||||||
def write_data(device, station, send=True):
|
console_handler.setLevel(logging.DEBUG)
|
||||||
try:
|
console_handler.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
|
||||||
#device.parse()
|
logger.addHandler(console_handler)
|
||||||
data = device.fields
|
|
||||||
print(data)
|
|
||||||
if len(data) < 1:
|
|
||||||
return
|
|
||||||
else:
|
|
||||||
print(data)
|
|
||||||
fields = ['BarTrend', 'CRC', 'DateStamp', 'DewPoint', 'HeatIndex', 'ETDay', 'HeatIndex',
|
|
||||||
'HumIn', 'HumOut', 'Pressure', 'RainDay', 'RainMonth', 'RainRate', 'RainStorm',
|
|
||||||
'RainYear', 'SunRise', 'SunSet', 'TempIn', 'TempOut', 'WindDir', 'WindSpeed',
|
|
||||||
'WindSpeed10Min']
|
|
||||||
|
|
||||||
if send:
|
|
||||||
placeholders = ', '.join(['%s'] * len(fields))
|
|
||||||
field_names = ', '.join(fields)
|
|
||||||
sql = f"INSERT INTO weather_data ({field_names}) VALUES ({placeholders})"
|
|
||||||
values = [data[field] for field in fields]
|
|
||||||
cursor.execute(sql, values)
|
|
||||||
conn.commit()
|
|
||||||
else:
|
|
||||||
pprint(data)
|
|
||||||
|
|
||||||
del data
|
|
||||||
del fields
|
|
||||||
gc.collect()
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise e
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
conn = mariadb.connect(
|
conn = mariadb.connect(
|
||||||
@ -57,8 +29,8 @@ try:
|
|||||||
except mariadb.Error as e:
|
except mariadb.Error as e:
|
||||||
logger.error('DB_ERR: ' + str(e))
|
logger.error('DB_ERR: ' + str(e))
|
||||||
raise e
|
raise e
|
||||||
|
while True:
|
||||||
try:
|
try:
|
||||||
ports = serial.tools.list_ports.comports()
|
ports = serial.tools.list_ports.comports()
|
||||||
available_ports = {}
|
available_ports = {}
|
||||||
|
|
||||||
@ -67,13 +39,15 @@ try:
|
|||||||
available_ports[port.name] = port.vid
|
available_ports[port.name] = port.vid
|
||||||
|
|
||||||
devices = [VantagePro(port) for port in available_ports.keys()]
|
devices = [VantagePro(port) for port in available_ports.keys()]
|
||||||
print(available_ports)
|
|
||||||
while True:
|
while True:
|
||||||
for i in range(len(devices)):
|
for i in range(1):
|
||||||
print(devices[i].fields)
|
if len(devices) != 0:
|
||||||
#write_data(devices[i], 'st' + str(available_ports[list(available_ports.keys())[i]]), True)
|
logger.info(devices)
|
||||||
time.sleep(1)
|
else:
|
||||||
except Exception as e:
|
raise Exception('Can`t connect to device')
|
||||||
logger.error('Device_error: ' + str(e))
|
time.sleep(60)
|
||||||
raise e
|
except Exception as e:
|
||||||
|
logger.error('Device_error' + str(e))
|
||||||
|
time.sleep(60)
|
||||||
|
|
||||||
|
# todo переписать под influx, для линухи приколы сделать
|
||||||
|
200
davisAPI/prediction.py
Normal file
200
davisAPI/prediction.py
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import metpy.calc
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
import xarray as xr
|
||||||
|
from aurora import AuroraSmall, Batch, Metadata
|
||||||
|
from metpy.units import units
|
||||||
|
|
||||||
|
|
||||||
|
def get_download_paths(date):
|
||||||
|
"""Создает список путей для загрузки данных."""
|
||||||
|
download_path = Path("~/downloads/hres_0.1").expanduser()
|
||||||
|
downloads = {}
|
||||||
|
var_nums = {
|
||||||
|
"2t": "167", "10u": "165", "10v": "166", "msl": "151", "t": "130",
|
||||||
|
"u": "131", "v": "132", "q": "133", "z": "129", "slt": "043", "lsm": "172",
|
||||||
|
}
|
||||||
|
for v in ["2t", "10u", "10v", "msl", "z", "slt", "lsm"]:
|
||||||
|
downloads[download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib")] = (
|
||||||
|
f"https://data.rda.ucar.edu/ds113.1/"
|
||||||
|
f"ec.oper.an.sfc/{date.year}{date.month:02d}/ec.oper.an.sfc.128_{var_nums[v]}_{v}."
|
||||||
|
f"regn1280sc.{date.year}{date.month:02d}{date.day:02d}.grb"
|
||||||
|
)
|
||||||
|
for v in ["z", "t", "u", "v", "q"]:
|
||||||
|
for hour in [0, 6, 12, 18]:
|
||||||
|
prefix = "uv" if v in {"u", "v"} else "sc"
|
||||||
|
downloads[download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_{hour:02d}.grib")] = (
|
||||||
|
f"https://data.rda.ucar.edu/ds113.1/"
|
||||||
|
f"ec.oper.an.pl/{date.year}{date.month:02d}/ec.oper.an.pl.128_{var_nums[v]}_{v}."
|
||||||
|
f"regn1280{prefix}.{date.year}{date.month:02d}{date.day:02d}{hour:02d}.grb"
|
||||||
|
)
|
||||||
|
return downloads, download_path
|
||||||
|
|
||||||
|
|
||||||
|
def download_data(downloads):
|
||||||
|
"""Скачивает файлы, если они отсутствуют в целевой директории."""
|
||||||
|
for target, source in downloads.items():
|
||||||
|
if not target.exists():
|
||||||
|
print(f"Downloading {source}")
|
||||||
|
target.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
response = requests.get(source)
|
||||||
|
response.raise_for_status()
|
||||||
|
with open(target, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
print("Downloads finished!")
|
||||||
|
|
||||||
|
|
||||||
|
def load_surf(v, v_in_file, download_path, date):
|
||||||
|
"""Загружает переменные поверхностного уровня или статические переменные."""
|
||||||
|
ds = xr.open_dataset(download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib"), engine="cfgrib")
|
||||||
|
data = ds[v_in_file].values[:2]
|
||||||
|
data = data[None]
|
||||||
|
return torch.from_numpy(data)
|
||||||
|
|
||||||
|
|
||||||
|
def load_atmos(v, download_path, date, levels):
|
||||||
|
"""Загружает атмосферные переменные для заданных уровней давления."""
|
||||||
|
ds_00 = xr.open_dataset(
|
||||||
|
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_00.grib"), engine="cfgrib"
|
||||||
|
)
|
||||||
|
ds_06 = xr.open_dataset(
|
||||||
|
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_06.grib"), engine="cfgrib"
|
||||||
|
)
|
||||||
|
ds_00 = ds_00[v].sel(isobaricInhPa=list(levels))
|
||||||
|
ds_06 = ds_06[v].sel(isobaricInhPa=list(levels))
|
||||||
|
data = np.stack((ds_00.values, ds_06.values), axis=0)
|
||||||
|
data = data[None]
|
||||||
|
return torch.from_numpy(data)
|
||||||
|
|
||||||
|
|
||||||
|
def create_batch(date, levels, downloads, download_path):
|
||||||
|
"""Создает объект Batch с данными для модели."""
|
||||||
|
ds = xr.open_dataset(next(iter(downloads.keys())), engine="cfgrib")
|
||||||
|
batch = Batch(
|
||||||
|
surf_vars={
|
||||||
|
"2t": load_surf("2t", "t2m", download_path, date),
|
||||||
|
"10u": load_surf("10u", "u10", download_path, date),
|
||||||
|
"10v": load_surf("10v", "v10", download_path, date),
|
||||||
|
"msl": load_surf("msl", "msl", download_path, date),
|
||||||
|
},
|
||||||
|
static_vars={
|
||||||
|
"z": load_surf("z", "z", download_path, date)[0, 0],
|
||||||
|
"slt": load_surf("slt", "slt", download_path, date)[0, 0],
|
||||||
|
"lsm": load_surf("lsm", "lsm", download_path, date)[0, 0],
|
||||||
|
},
|
||||||
|
atmos_vars={
|
||||||
|
"t": load_atmos("t", download_path, date, levels),
|
||||||
|
"u": load_atmos("u", download_path, date, levels),
|
||||||
|
"v": load_atmos("v", download_path, date, levels),
|
||||||
|
"q": load_atmos("q", download_path, date, levels),
|
||||||
|
"z": load_atmos("z", download_path, date, levels),
|
||||||
|
},
|
||||||
|
metadata=Metadata(
|
||||||
|
lat=torch.from_numpy(ds.latitude.values),
|
||||||
|
lon=torch.from_numpy(ds.longitude.values),
|
||||||
|
time=(date.replace(hour=6),),
|
||||||
|
atmos_levels=levels,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return batch.regrid(res=0.1)
|
||||||
|
|
||||||
|
|
||||||
|
def create_batch_random(levels: tuple[int], date: tuple):
|
||||||
|
"""Создает объект Batch с рандомными данными для модели."""
|
||||||
|
return Batch(
|
||||||
|
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
|
||||||
|
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
|
||||||
|
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
|
||||||
|
metadata=Metadata(
|
||||||
|
lat=torch.linspace(90, -90, 17),
|
||||||
|
lon=torch.linspace(0, 360, 32 + 1)[:-1],
|
||||||
|
time=date,
|
||||||
|
atmos_levels=levels,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def run_model(batch):
|
||||||
|
"""Инициализирует модель AuroraSmall и выполняет предсказание."""
|
||||||
|
model = AuroraSmall()
|
||||||
|
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
|
||||||
|
model.eval()
|
||||||
|
model = model.to("cpu")
|
||||||
|
with torch.inference_mode():
|
||||||
|
prediction = model.forward(batch)
|
||||||
|
return prediction
|
||||||
|
|
||||||
|
|
||||||
|
def get_wind_speed_and_direction(prediction, batch: Batch, lat: float, lon: float):
|
||||||
|
target_lat = lat
|
||||||
|
target_lon = lon
|
||||||
|
|
||||||
|
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
|
||||||
|
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
|
||||||
|
|
||||||
|
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
|
||||||
|
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
|
||||||
|
wind_speeds=[]
|
||||||
|
wind_directions=[]
|
||||||
|
for i in range(u_values.numel()):
|
||||||
|
u_scalar = u_values.view(-1)[i].item() # Разворачиваем тензор в одномерный и берем элемент
|
||||||
|
v_scalar = v_values.view(-1)[i].item()
|
||||||
|
|
||||||
|
print("u value:", u_scalar)
|
||||||
|
print("v value:", v_scalar)
|
||||||
|
|
||||||
|
u_with_units = u_scalar * units("m/s")
|
||||||
|
v_with_units = v_scalar * units("m/s")
|
||||||
|
|
||||||
|
# Рассчитайте направление и скорость ветра
|
||||||
|
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
|
||||||
|
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
|
||||||
|
|
||||||
|
wind_speeds.append(wind_speed.magnitude.item())
|
||||||
|
wind_directions.append(wind_dir.magnitude.item())
|
||||||
|
|
||||||
|
return wind_speeds,wind_directions
|
||||||
|
|
||||||
|
|
||||||
|
def wind_direction_to_text(wind_dir_deg):
|
||||||
|
directions = [
|
||||||
|
"север", "северо-восток", "восток", "юго-восток",
|
||||||
|
"юг", "юго-запад", "запад", "северо-запад"
|
||||||
|
]
|
||||||
|
idx = int((wind_dir_deg + 22.5) // 45) % 8
|
||||||
|
return directions[idx]
|
||||||
|
|
||||||
|
|
||||||
|
def get_weather_predict(
|
||||||
|
dates: tuple[datetime],
|
||||||
|
latitude: float,
|
||||||
|
longitude: float,
|
||||||
|
):
|
||||||
|
levels = (100,)
|
||||||
|
batch_actual = create_batch_random(levels, dates)
|
||||||
|
prediction_actual = run_model(batch_actual)
|
||||||
|
return get_wind_speed_and_direction(prediction_actual, batch_actual, latitude, longitude)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
levels = (100,)
|
||||||
|
|
||||||
|
date1 = datetime(2024, 11, 27, 12)
|
||||||
|
date2 = datetime(2024, 11, 28, 12)
|
||||||
|
date_tuple = (date1, date2,)
|
||||||
|
# downloads, download_path = get_download_paths(date)
|
||||||
|
# download_data(downloads) # Скачиваем данные, если их нет
|
||||||
|
# batch_actual = create_batch(date, levels, downloads, download_path)
|
||||||
|
batch_actual = create_batch_random(levels, date_tuple)
|
||||||
|
prediction_actual = run_model(batch_actual)
|
||||||
|
wind_speed_and_direction = get_wind_speed_and_direction(prediction_actual, batch_actual, 50, 20)
|
||||||
|
return wind_speed_and_direction
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
print("Prediction completed!")
|
@ -1,3 +1,4 @@
|
|||||||
|
import datetime
|
||||||
import math
|
import math
|
||||||
import sys
|
import sys
|
||||||
from http import HTTPStatus
|
from http import HTTPStatus
|
||||||
@ -18,6 +19,8 @@ sys.path.append(str(Path(__file__).parent.parent.parent))
|
|||||||
from floris_module.src import FlorisULSTU
|
from floris_module.src import FlorisULSTU
|
||||||
from floris_module.src.OpenMeteoClient import OpenMeteoClient
|
from floris_module.src.OpenMeteoClient import OpenMeteoClient
|
||||||
|
|
||||||
|
from utils import prediction as weather_prediction
|
||||||
|
|
||||||
FLORIS_IMAGES_PATH = Path(__file__).parent.parent.parent / "public" / "floris"
|
FLORIS_IMAGES_PATH = Path(__file__).parent.parent.parent / "public" / "floris"
|
||||||
|
|
||||||
router = APIRouter(
|
router = APIRouter(
|
||||||
@ -25,6 +28,11 @@ router = APIRouter(
|
|||||||
tags=["Floris Api"],
|
tags=["Floris Api"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def daterange(start_date: datetime.date, end_date: datetime.date):
|
||||||
|
days = int((end_date - start_date).days)
|
||||||
|
for n in range(days + 1):
|
||||||
|
yield datetime.datetime.combine(start_date + datetime.timedelta(n), datetime.datetime.min.time())
|
||||||
|
|
||||||
|
|
||||||
@router.get("/get_windmill_data")
|
@router.get("/get_windmill_data")
|
||||||
async def get_windmill_data(
|
async def get_windmill_data(
|
||||||
@ -40,7 +48,14 @@ async def get_windmill_data(
|
|||||||
|
|
||||||
client = OpenMeteoClient()
|
client = OpenMeteoClient()
|
||||||
|
|
||||||
|
if data.date_start >= datetime.date.today():
|
||||||
|
dates = tuple(daterange(data.date_start, data.date_end))
|
||||||
|
climate_info = weather_prediction.get_weather_predict(
|
||||||
|
dates, 54.35119762746125, 48.389356992149345
|
||||||
|
)
|
||||||
|
else:
|
||||||
climate_info = client.get_weather_info(data.date_start, data.date_end)
|
climate_info = client.get_weather_info(data.date_start, data.date_end)
|
||||||
|
|
||||||
wind_speeds = climate_info[0]
|
wind_speeds = climate_info[0]
|
||||||
wind_directions = climate_info[1]
|
wind_directions = climate_info[1]
|
||||||
|
|
||||||
@ -114,13 +129,20 @@ async def get_windmill_data_by_wind_park(
|
|||||||
|
|
||||||
turbine_yaw_angles = [turbine.angle for turbine in turbines]
|
turbine_yaw_angles = [turbine.angle for turbine in turbines]
|
||||||
|
|
||||||
weather_info_list = [
|
|
||||||
client.get_weather_info(start_date=data.date_start, end_date=data.date_end, latitude=lat, longitude=lon)
|
|
||||||
for lat, lon in turbine_coordinates
|
|
||||||
]
|
|
||||||
|
|
||||||
park_centerX, park_centerY = get_absolute_coordinates(park.CenterLatitude, park.CenterLongitude)
|
park_centerX, park_centerY = get_absolute_coordinates(park.CenterLatitude, park.CenterLongitude)
|
||||||
|
|
||||||
|
if data.date_start >= datetime.date.today():
|
||||||
|
dates = tuple(daterange(data.date_start, data.date_end))
|
||||||
|
weather_info_list = weather_prediction.get_weather_predict(
|
||||||
|
dates, park.CenterLatitude, park.CenterLongitude
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
weather_info_list = client.get_weather_info(start_date=data.date_start, end_date=data.date_end,
|
||||||
|
latitude=park.CenterLatitude, longitude=park.CenterLongitude)
|
||||||
|
|
||||||
|
|
||||||
turbineX = [
|
turbineX = [
|
||||||
park_centerX + turbine.x_offset
|
park_centerX + turbine.x_offset
|
||||||
for turbine in turbines
|
for turbine in turbines
|
||||||
@ -131,8 +153,8 @@ async def get_windmill_data_by_wind_park(
|
|||||||
for turbine in turbines
|
for turbine in turbines
|
||||||
]
|
]
|
||||||
|
|
||||||
wind_speeds = np.array([item[0][0] for item in weather_info_list])
|
wind_speeds = np.array(weather_info_list[0])
|
||||||
wind_directions = np.array([item[1][0] for item in weather_info_list])
|
wind_directions = np.array(weather_info_list[1])
|
||||||
|
|
||||||
print(wind_directions)
|
print(wind_directions)
|
||||||
|
|
||||||
|
200
server/src/utils/prediction.py
Normal file
200
server/src/utils/prediction.py
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import metpy.calc
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
import xarray as xr
|
||||||
|
from aurora import AuroraSmall, Batch, Metadata
|
||||||
|
from metpy.units import units
|
||||||
|
|
||||||
|
|
||||||
|
def get_download_paths(date):
|
||||||
|
"""Создает список путей для загрузки данных."""
|
||||||
|
download_path = Path("~/downloads/hres_0.1").expanduser()
|
||||||
|
downloads = {}
|
||||||
|
var_nums = {
|
||||||
|
"2t": "167", "10u": "165", "10v": "166", "msl": "151", "t": "130",
|
||||||
|
"u": "131", "v": "132", "q": "133", "z": "129", "slt": "043", "lsm": "172",
|
||||||
|
}
|
||||||
|
for v in ["2t", "10u", "10v", "msl", "z", "slt", "lsm"]:
|
||||||
|
downloads[download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib")] = (
|
||||||
|
f"https://data.rda.ucar.edu/ds113.1/"
|
||||||
|
f"ec.oper.an.sfc/{date.year}{date.month:02d}/ec.oper.an.sfc.128_{var_nums[v]}_{v}."
|
||||||
|
f"regn1280sc.{date.year}{date.month:02d}{date.day:02d}.grb"
|
||||||
|
)
|
||||||
|
for v in ["z", "t", "u", "v", "q"]:
|
||||||
|
for hour in [0, 6, 12, 18]:
|
||||||
|
prefix = "uv" if v in {"u", "v"} else "sc"
|
||||||
|
downloads[download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_{hour:02d}.grib")] = (
|
||||||
|
f"https://data.rda.ucar.edu/ds113.1/"
|
||||||
|
f"ec.oper.an.pl/{date.year}{date.month:02d}/ec.oper.an.pl.128_{var_nums[v]}_{v}."
|
||||||
|
f"regn1280{prefix}.{date.year}{date.month:02d}{date.day:02d}{hour:02d}.grb"
|
||||||
|
)
|
||||||
|
return downloads, download_path
|
||||||
|
|
||||||
|
|
||||||
|
def download_data(downloads):
|
||||||
|
"""Скачивает файлы, если они отсутствуют в целевой директории."""
|
||||||
|
for target, source in downloads.items():
|
||||||
|
if not target.exists():
|
||||||
|
print(f"Downloading {source}")
|
||||||
|
target.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
response = requests.get(source)
|
||||||
|
response.raise_for_status()
|
||||||
|
with open(target, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
print("Downloads finished!")
|
||||||
|
|
||||||
|
|
||||||
|
def load_surf(v, v_in_file, download_path, date):
|
||||||
|
"""Загружает переменные поверхностного уровня или статические переменные."""
|
||||||
|
ds = xr.open_dataset(download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib"), engine="cfgrib")
|
||||||
|
data = ds[v_in_file].values[:2]
|
||||||
|
data = data[None]
|
||||||
|
return torch.from_numpy(data)
|
||||||
|
|
||||||
|
|
||||||
|
def load_atmos(v, download_path, date, levels):
|
||||||
|
"""Загружает атмосферные переменные для заданных уровней давления."""
|
||||||
|
ds_00 = xr.open_dataset(
|
||||||
|
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_00.grib"), engine="cfgrib"
|
||||||
|
)
|
||||||
|
ds_06 = xr.open_dataset(
|
||||||
|
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_06.grib"), engine="cfgrib"
|
||||||
|
)
|
||||||
|
ds_00 = ds_00[v].sel(isobaricInhPa=list(levels))
|
||||||
|
ds_06 = ds_06[v].sel(isobaricInhPa=list(levels))
|
||||||
|
data = np.stack((ds_00.values, ds_06.values), axis=0)
|
||||||
|
data = data[None]
|
||||||
|
return torch.from_numpy(data)
|
||||||
|
|
||||||
|
|
||||||
|
def create_batch(date, levels, downloads, download_path):
|
||||||
|
"""Создает объект Batch с данными для модели."""
|
||||||
|
ds = xr.open_dataset(next(iter(downloads.keys())), engine="cfgrib")
|
||||||
|
batch = Batch(
|
||||||
|
surf_vars={
|
||||||
|
"2t": load_surf("2t", "t2m", download_path, date),
|
||||||
|
"10u": load_surf("10u", "u10", download_path, date),
|
||||||
|
"10v": load_surf("10v", "v10", download_path, date),
|
||||||
|
"msl": load_surf("msl", "msl", download_path, date),
|
||||||
|
},
|
||||||
|
static_vars={
|
||||||
|
"z": load_surf("z", "z", download_path, date)[0, 0],
|
||||||
|
"slt": load_surf("slt", "slt", download_path, date)[0, 0],
|
||||||
|
"lsm": load_surf("lsm", "lsm", download_path, date)[0, 0],
|
||||||
|
},
|
||||||
|
atmos_vars={
|
||||||
|
"t": load_atmos("t", download_path, date, levels),
|
||||||
|
"u": load_atmos("u", download_path, date, levels),
|
||||||
|
"v": load_atmos("v", download_path, date, levels),
|
||||||
|
"q": load_atmos("q", download_path, date, levels),
|
||||||
|
"z": load_atmos("z", download_path, date, levels),
|
||||||
|
},
|
||||||
|
metadata=Metadata(
|
||||||
|
lat=torch.from_numpy(ds.latitude.values),
|
||||||
|
lon=torch.from_numpy(ds.longitude.values),
|
||||||
|
time=(date.replace(hour=6),),
|
||||||
|
atmos_levels=levels,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return batch.regrid(res=0.1)
|
||||||
|
|
||||||
|
|
||||||
|
def create_batch_random(levels: tuple[int], date: tuple):
|
||||||
|
"""Создает объект Batch с рандомными данными для модели."""
|
||||||
|
return Batch(
|
||||||
|
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
|
||||||
|
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
|
||||||
|
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
|
||||||
|
metadata=Metadata(
|
||||||
|
lat=torch.linspace(90, -90, 17),
|
||||||
|
lon=torch.linspace(0, 360, 32 + 1)[:-1],
|
||||||
|
time=date,
|
||||||
|
atmos_levels=levels,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def run_model(batch):
|
||||||
|
"""Инициализирует модель AuroraSmall и выполняет предсказание."""
|
||||||
|
model = AuroraSmall()
|
||||||
|
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
|
||||||
|
model.eval()
|
||||||
|
model = model.to("cpu")
|
||||||
|
with torch.inference_mode():
|
||||||
|
prediction = model.forward(batch)
|
||||||
|
return prediction
|
||||||
|
|
||||||
|
|
||||||
|
def get_wind_speed_and_direction(prediction, batch: Batch, lat: float, lon: float):
|
||||||
|
target_lat = lat
|
||||||
|
target_lon = lon
|
||||||
|
|
||||||
|
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
|
||||||
|
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
|
||||||
|
|
||||||
|
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
|
||||||
|
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
|
||||||
|
wind_speeds=[]
|
||||||
|
wind_directions=[]
|
||||||
|
for i in range(u_values.numel()):
|
||||||
|
u_scalar = u_values.view(-1)[i].item() # Разворачиваем тензор в одномерный и берем элемент
|
||||||
|
v_scalar = v_values.view(-1)[i].item()
|
||||||
|
|
||||||
|
print("u value:", u_scalar)
|
||||||
|
print("v value:", v_scalar)
|
||||||
|
|
||||||
|
u_with_units = u_scalar * units("m/s")
|
||||||
|
v_with_units = v_scalar * units("m/s")
|
||||||
|
|
||||||
|
# Рассчитайте направление и скорость ветра
|
||||||
|
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
|
||||||
|
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
|
||||||
|
|
||||||
|
wind_speeds.append(wind_speed.magnitude.item())
|
||||||
|
wind_directions.append(wind_dir.magnitude.item())
|
||||||
|
|
||||||
|
return wind_speeds,wind_directions
|
||||||
|
|
||||||
|
|
||||||
|
def wind_direction_to_text(wind_dir_deg):
|
||||||
|
directions = [
|
||||||
|
"север", "северо-восток", "восток", "юго-восток",
|
||||||
|
"юг", "юго-запад", "запад", "северо-запад"
|
||||||
|
]
|
||||||
|
idx = int((wind_dir_deg + 22.5) // 45) % 8
|
||||||
|
return directions[idx]
|
||||||
|
|
||||||
|
|
||||||
|
def get_weather_predict(
|
||||||
|
dates: tuple[datetime],
|
||||||
|
latitude: float,
|
||||||
|
longitude: float,
|
||||||
|
):
|
||||||
|
levels = (100,)
|
||||||
|
batch_actual = create_batch_random(levels, dates)
|
||||||
|
prediction_actual = run_model(batch_actual)
|
||||||
|
return get_wind_speed_and_direction(prediction_actual, batch_actual, latitude, longitude)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
levels = (100,)
|
||||||
|
|
||||||
|
date1 = datetime(2024, 11, 27, 12)
|
||||||
|
date2 = datetime(2024, 11, 28, 12)
|
||||||
|
date_tuple = (date1, date2,)
|
||||||
|
# downloads, download_path = get_download_paths(date)
|
||||||
|
# download_data(downloads) # Скачиваем данные, если их нет
|
||||||
|
# batch_actual = create_batch(date, levels, downloads, download_path)
|
||||||
|
batch_actual = create_batch_random(levels, date_tuple)
|
||||||
|
prediction_actual = run_model(batch_actual)
|
||||||
|
wind_speed_and_direction = get_wind_speed_and_direction(prediction_actual, batch_actual, 50, 20)
|
||||||
|
return wind_speed_and_direction
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
print("Prediction completed!")
|
Loading…
Reference in New Issue
Block a user