добавление авроры с использованием открытого датасета
This commit is contained in:
parent
3ffc4467bb
commit
39cd0d0860
@ -1,190 +1,53 @@
|
||||
# import gc
|
||||
# import logging
|
||||
# import time
|
||||
# from datetime import datetime, timedelta
|
||||
# from pprint import pprint
|
||||
# import mariadb
|
||||
# import serial.tools.list_ports
|
||||
#
|
||||
# #from PyWeather.weather.stations.davis import VantagePro
|
||||
# from prediction import run_prediction_module
|
||||
#
|
||||
# logging.basicConfig(filename="Stations.log",
|
||||
# format='%(asctime)s %(message)s',
|
||||
# filemode='a')
|
||||
# logger = logging.getLogger('davis_api')
|
||||
# logger.setLevel(logging.DEBUG)
|
||||
#
|
||||
# console_handler = logging.StreamHandler()
|
||||
# console_handler.setLevel(logging.DEBUG)
|
||||
# console_handler.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
|
||||
# logger.addHandler(console_handler)
|
||||
#
|
||||
#
|
||||
# def write_data(device, station, send=True):
|
||||
# try:
|
||||
# # device.parse()
|
||||
# data = device.fields
|
||||
# logger.info(data)
|
||||
# if len(data) < 1:
|
||||
# return
|
||||
# else:
|
||||
# logger.info(data)
|
||||
# fields = ['BarTrend', 'CRC', 'DateStamp', 'DewPoint', 'HeatIndex', 'ETDay', 'HeatIndex',
|
||||
# 'HumIn', 'HumOut', 'Pressure', 'RainDay', 'RainMonth', 'RainRate', 'RainStorm',
|
||||
# 'RainYear', 'SunRise', 'SunSet', 'TempIn', 'TempOut', 'WindDir', 'WindSpeed',
|
||||
# 'WindSpeed10Min']
|
||||
#
|
||||
# if send:
|
||||
# placeholders = ', '.join(['%s'] * len(fields))
|
||||
# field_names = ', '.join(fields)
|
||||
# sql = f"INSERT INTO weather_data ({field_names}) VALUES ({placeholders})"
|
||||
# values = [data[field] for field in fields]
|
||||
# cursor.execute(sql, values)
|
||||
# conn.commit()
|
||||
# else:
|
||||
# logger.info(data)
|
||||
#
|
||||
# del data
|
||||
# del fields
|
||||
# gc.collect()
|
||||
# except Exception as e:
|
||||
# logger.error(str(e))
|
||||
# raise e
|
||||
#
|
||||
#
|
||||
# def get_previous_values(cursor):
|
||||
# cursor.execute("SELECT SunRise, SunSet, WindDir, DateStamp FROM weather_data ORDER BY DateStamp DESC LIMIT 1")
|
||||
# result = cursor.fetchone()
|
||||
#
|
||||
# if result is None:
|
||||
# return None, None, None, None
|
||||
#
|
||||
# sun_rise, sun_set, wind_dir, datestamp = result
|
||||
# return sun_rise, sun_set, wind_dir, datestamp
|
||||
#
|
||||
#
|
||||
# def save_prediction_to_db(predictions):
|
||||
# try:
|
||||
#
|
||||
# sun_rise, sun_set, wind_dir, datestamp = get_previous_values(cursor)
|
||||
#
|
||||
# fields = ['DateStamp', 'SunRise', 'SunSet', 'WindDir'] + list(predictions.keys())
|
||||
# placeholders = ', '.join(['%s'] * len(fields))
|
||||
# field_names = ', '.join(fields)
|
||||
#
|
||||
# values = [datestamp + timedelta(minutes = 1), sun_rise, sun_set, wind_dir] + list(predictions.values())
|
||||
# pprint(dict(zip(fields, values)))
|
||||
# sql = f"INSERT INTO weather_data ({field_names}) VALUES ({placeholders})"
|
||||
# # cursor.execute(sql, values)
|
||||
# # conn.commit()
|
||||
# logger.info("Save prediction to db success!")
|
||||
# except Exception as e:
|
||||
# logger.error(str(e))
|
||||
# raise e
|
||||
#
|
||||
#
|
||||
# try:
|
||||
# conn = mariadb.connect(
|
||||
# user="wind",
|
||||
# password="wind",
|
||||
# host="193.124.203.110",
|
||||
# port=3306,
|
||||
# database="wind_towers"
|
||||
# )
|
||||
# cursor = conn.cursor()
|
||||
# except mariadb.Error as e:
|
||||
# logger.error('DB_ERR: ' + str(e))
|
||||
# raise e
|
||||
# while True:
|
||||
# try:
|
||||
# ports = serial.tools.list_ports.comports()
|
||||
# available_ports = {}
|
||||
#
|
||||
# for port in ports:
|
||||
# if port.serial_number == '0001':
|
||||
# available_ports[port.name] = port.vid
|
||||
#
|
||||
# devices = [VantagePro(port) for port in available_ports.keys()]
|
||||
# while True:
|
||||
# for i in range(1):
|
||||
# if len(devices) != 0:
|
||||
# logger.info(devices)
|
||||
# # write_data(devices[i], 'st' + str(available_ports[list(available_ports.keys())[i]]), True)
|
||||
# else:
|
||||
# raise Exception('Can`t connect to device')
|
||||
# time.sleep(60)
|
||||
# except Exception as e:
|
||||
# logger.error('Device_error' + str(e))
|
||||
# predictions = run_prediction_module()
|
||||
# #logger.info(predictions)
|
||||
# if predictions is not None:
|
||||
# save_prediction_to_db(predictions)
|
||||
# time.sleep(60)
|
||||
import logging
|
||||
import time
|
||||
|
||||
import mariadb
|
||||
import serial.tools.list_ports
|
||||
|
||||
from PyWeather.weather.stations.davis import VantagePro
|
||||
|
||||
logging.basicConfig(filename="Stations.log",
|
||||
format='%(asctime)s %(message)s',
|
||||
filemode='a')
|
||||
logger = logging.getLogger('davis_api')
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setLevel(logging.DEBUG)
|
||||
console_handler.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
|
||||
logger.addHandler(console_handler)
|
||||
|
||||
try:
|
||||
conn = mariadb.connect(
|
||||
user="wind",
|
||||
password="wind",
|
||||
host="193.124.203.110",
|
||||
port=3306,
|
||||
database="wind_towers"
|
||||
)
|
||||
cursor = conn.cursor()
|
||||
except mariadb.Error as e:
|
||||
logger.error('DB_ERR: ' + str(e))
|
||||
raise e
|
||||
while True:
|
||||
try:
|
||||
ports = serial.tools.list_ports.comports()
|
||||
available_ports = {}
|
||||
|
||||
for port in ports:
|
||||
if port.serial_number == '0001':
|
||||
available_ports[port.name] = port.vid
|
||||
|
||||
devices = [VantagePro(port) for port in available_ports.keys()]
|
||||
while True:
|
||||
for i in range(1):
|
||||
if len(devices) != 0:
|
||||
logger.info(devices)
|
||||
else:
|
||||
raise Exception('Can`t connect to device')
|
||||
time.sleep(60)
|
||||
except Exception as e:
|
||||
logger.error('Device_error' + str(e))
|
||||
time.sleep(60)
|
||||
|
||||
# todo переписать под influx, для линухи приколы сделать
|
||||
import metpy.calc
|
||||
from datetime import datetime
|
||||
import torch
|
||||
from aurora import AuroraSmall, Batch, Metadata
|
||||
from metpy.units import units
|
||||
|
||||
def get_wind_speed_and_direction(lat:float,lon:float):
|
||||
model = AuroraSmall()
|
||||
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
|
||||
|
||||
batch = Batch(
|
||||
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
|
||||
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
|
||||
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
|
||||
metadata=Metadata(
|
||||
lat=torch.linspace(90, -90, 17),
|
||||
lon=torch.linspace(0, 360, 32 + 1)[:-1],
|
||||
time=(datetime(2024, 11, 26, 23, 7),),
|
||||
atmos_levels=(100,),
|
||||
),
|
||||
)
|
||||
prediction = model.forward(batch)
|
||||
|
||||
target_lat = lat
|
||||
target_lon = lon
|
||||
|
||||
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
|
||||
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
|
||||
|
||||
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
|
||||
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
|
||||
|
||||
print("u values at target location:", u_values)
|
||||
print("v values at target location:", v_values)
|
||||
|
||||
u_scalar = u_values.item()
|
||||
v_scalar = v_values.item()
|
||||
|
||||
print("u value:", u_scalar)
|
||||
print("v value:", v_scalar)
|
||||
u_with_units = u_scalar * units("m/s")
|
||||
v_with_units = v_scalar * units("m/s")
|
||||
|
||||
# Рассчитайте направление и скорость ветра
|
||||
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
|
||||
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
|
||||
|
||||
wind_dir_text = wind_direction_to_text(wind_dir.magnitude)
|
||||
print(type(wind_dir))
|
||||
# Вывод результата
|
||||
print(f"Направление ветра: {wind_dir_text} ({wind_dir:.2f}°)")
|
||||
print(f"Скорость ветра: {wind_speed:.2f} м/с")
|
||||
return wind_dir.magnitude.item(),wind_speed.magnitude.item()
|
||||
|
||||
|
||||
def wind_direction_to_text(wind_dir_deg):
|
||||
directions = [
|
||||
"север", "северо-восток", "восток", "юго-восток",
|
||||
"юг", "юго-запад", "запад", "северо-запад"
|
||||
]
|
||||
idx = int((wind_dir_deg + 22.5) // 45) % 8
|
||||
return directions[idx]
|
||||
|
||||
print(get_wind_speed_and_direction(50,20))
|
@ -1,103 +1,185 @@
|
||||
import pandas as pd
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sqlalchemy import create_engine
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import metpy.calc
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
import xarray as xr
|
||||
from aurora import AuroraSmall, Batch, Metadata
|
||||
from metpy.units import units
|
||||
|
||||
|
||||
def run_prediction_module():
|
||||
engine = create_engine('mysql+pymysql://wind:wind@193.124.203.110:3306/wind_towers')
|
||||
def get_download_paths(date):
|
||||
"""Создает список путей для загрузки данных."""
|
||||
download_path = Path("~/downloads/hres_0.1").expanduser()
|
||||
downloads = {}
|
||||
var_nums = {
|
||||
"2t": "167", "10u": "165", "10v": "166", "msl": "151", "t": "130",
|
||||
"u": "131", "v": "132", "q": "133", "z": "129", "slt": "043", "lsm": "172",
|
||||
}
|
||||
for v in ["2t", "10u", "10v", "msl", "z", "slt", "lsm"]:
|
||||
downloads[download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib")] = (
|
||||
f"https://data.rda.ucar.edu/ds113.1/"
|
||||
f"ec.oper.an.sfc/{date.year}{date.month:02d}/ec.oper.an.sfc.128_{var_nums[v]}_{v}."
|
||||
f"regn1280sc.{date.year}{date.month:02d}{date.day:02d}.grb"
|
||||
)
|
||||
for v in ["z", "t", "u", "v", "q"]:
|
||||
for hour in [0, 6, 12, 18]:
|
||||
prefix = "uv" if v in {"u", "v"} else "sc"
|
||||
downloads[download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_{hour:02d}.grib")] = (
|
||||
f"https://data.rda.ucar.edu/ds113.1/"
|
||||
f"ec.oper.an.pl/{date.year}{date.month:02d}/ec.oper.an.pl.128_{var_nums[v]}_{v}."
|
||||
f"regn1280{prefix}.{date.year}{date.month:02d}{date.day:02d}{hour:02d}.grb"
|
||||
)
|
||||
return downloads, download_path
|
||||
|
||||
query = """
|
||||
SELECT BarTrend, CRC, DateStamp, DewPoint, HeatIndex, ETDay, HumIn, HumOut,
|
||||
Pressure, RainDay, RainMonth, RainRate, RainStorm, RainYear,
|
||||
TempIn, TempOut, WindDir, WindSpeed, WindSpeed10Min
|
||||
FROM weather_data
|
||||
WHERE DateStamp >= '2024-10-14 21:00:00' - INTERVAL 36 HOUR;
|
||||
"""
|
||||
df = pd.read_sql(query, engine) # Загружаем данные из SQL-запроса в DataFrame
|
||||
|
||||
df['DateStamp'] = pd.to_datetime(df['DateStamp']) # Преобразуем столбец 'DateStamp' в формат datetime
|
||||
df.set_index('DateStamp', inplace=True) # Устанавливаем 'DateStamp' как индекс
|
||||
df.sort_index(inplace=True) # Сортируем DataFrame по индексу (по дате)
|
||||
def download_data(downloads):
|
||||
"""Скачивает файлы, если они отсутствуют в целевой директории."""
|
||||
for target, source in downloads.items():
|
||||
if not target.exists():
|
||||
print(f"Downloading {source}")
|
||||
target.parent.mkdir(parents=True, exist_ok=True)
|
||||
response = requests.get(source)
|
||||
response.raise_for_status()
|
||||
with open(target, "wb") as f:
|
||||
f.write(response.content)
|
||||
print("Downloads finished!")
|
||||
|
||||
lags = 3 # Задаем количество временных сдвигов (лагов)
|
||||
shifted_dfs = [df] # Создаем список для хранения исходного DataFrame и его лаговых версий
|
||||
|
||||
for lag in range(1, lags + 1):
|
||||
shifted_df = df.shift(lag).add_suffix(f'_t-{lag}') # Создаем сдвинутый на lag строк DataFrame
|
||||
shifted_dfs.append(shifted_df) # Добавляем его в список
|
||||
def load_surf(v, v_in_file, download_path, date):
|
||||
"""Загружает переменные поверхностного уровня или статические переменные."""
|
||||
ds = xr.open_dataset(download_path / date.strftime(f"surf_{v}_%Y-%m-%d.grib"), engine="cfgrib")
|
||||
data = ds[v_in_file].values[:2]
|
||||
data = data[None]
|
||||
return torch.from_numpy(data)
|
||||
|
||||
df_with_lags = pd.concat(shifted_dfs, axis=1) # Объединяем исходный DataFrame и все лаги по столбцам
|
||||
|
||||
df_with_lags.dropna(inplace=True) # Удаляем строки с пропущенными значениями
|
||||
df_with_lags = df_with_lags.copy() # Создаем копию DataFrame (для предотвращения предупреждений)
|
||||
def load_atmos(v, download_path, date, levels):
|
||||
"""Загружает атмосферные переменные для заданных уровней давления."""
|
||||
ds_00 = xr.open_dataset(
|
||||
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_00.grib"), engine="cfgrib"
|
||||
)
|
||||
ds_06 = xr.open_dataset(
|
||||
download_path / date.strftime(f"atmos_{v}_%Y-%m-%d_06.grib"), engine="cfgrib"
|
||||
)
|
||||
ds_00 = ds_00[v].sel(isobaricInhPa=list(levels))
|
||||
ds_06 = ds_06[v].sel(isobaricInhPa=list(levels))
|
||||
data = np.stack((ds_00.values, ds_06.values), axis=0)
|
||||
data = data[None]
|
||||
return torch.from_numpy(data)
|
||||
|
||||
# Преобразуем столбец 'BarTrend' в числовой формат, используя кодировщик категорий
|
||||
le = LabelEncoder()
|
||||
df_with_lags['BarTrend_encoded'] = le.fit_transform(df_with_lags['BarTrend'])
|
||||
|
||||
# Оставляем в DataFrame только числовые столбцы
|
||||
df_with_lags = df_with_lags.select_dtypes(include=['float64', 'int64'])
|
||||
def create_batch(date, levels, downloads, download_path):
|
||||
"""Создает объект Batch с данными для модели."""
|
||||
ds = xr.open_dataset(next(iter(downloads.keys())), engine="cfgrib")
|
||||
batch = Batch(
|
||||
surf_vars={
|
||||
"2t": load_surf("2t", "t2m", download_path, date),
|
||||
"10u": load_surf("10u", "u10", download_path, date),
|
||||
"10v": load_surf("10v", "v10", download_path, date),
|
||||
"msl": load_surf("msl", "msl", download_path, date),
|
||||
},
|
||||
static_vars={
|
||||
"z": load_surf("z", "z", download_path, date)[0, 0],
|
||||
"slt": load_surf("slt", "slt", download_path, date)[0, 0],
|
||||
"lsm": load_surf("lsm", "lsm", download_path, date)[0, 0],
|
||||
},
|
||||
atmos_vars={
|
||||
"t": load_atmos("t", download_path, date, levels),
|
||||
"u": load_atmos("u", download_path, date, levels),
|
||||
"v": load_atmos("v", download_path, date, levels),
|
||||
"q": load_atmos("q", download_path, date, levels),
|
||||
"z": load_atmos("z", download_path, date, levels),
|
||||
},
|
||||
metadata=Metadata(
|
||||
lat=torch.from_numpy(ds.latitude.values),
|
||||
lon=torch.from_numpy(ds.longitude.values),
|
||||
time=(date.replace(hour=6),),
|
||||
atmos_levels=levels,
|
||||
),
|
||||
)
|
||||
return batch.regrid(res=0.1)
|
||||
|
||||
# Создаем словари для хранения моделей и значений MSE
|
||||
models = {}
|
||||
mse_scores = {}
|
||||
|
||||
# Обучаем модели для каждого целевого столбца
|
||||
for target_column in df.columns:
|
||||
if target_column not in df_with_lags.columns: # Пропускаем, если столбец отсутствует в df_with_lags
|
||||
continue
|
||||
def create_batch_random(levels: tuple[int], date: datetime):
|
||||
"""Создает объект Batch с рандомными данными для модели."""
|
||||
return Batch(
|
||||
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
|
||||
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
|
||||
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
|
||||
metadata=Metadata(
|
||||
lat=torch.linspace(90, -90, 17),
|
||||
lon=torch.linspace(0, 360, 32 + 1)[:-1],
|
||||
time=(date,),
|
||||
atmos_levels=levels,
|
||||
),
|
||||
)
|
||||
|
||||
X = df_with_lags.drop(columns=[target_column]).values # Признаки - все столбцы, кроме целевого
|
||||
y = df_with_lags[target_column].values # Целевой столбец
|
||||
|
||||
# Разделяем данные на обучающую и тестовую выборки без перемешивания (временной ряд)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
|
||||
def run_model(batch):
|
||||
"""Инициализирует модель AuroraSmall и выполняет предсказание."""
|
||||
model = AuroraSmall()
|
||||
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
|
||||
model.eval()
|
||||
model = model.to("cpu")
|
||||
with torch.inference_mode():
|
||||
prediction = model.forward(batch)
|
||||
return prediction
|
||||
|
||||
model = RandomForestRegressor() # Инициализируем модель случайного леса
|
||||
model.fit(X_train, y_train) # Обучаем модель
|
||||
|
||||
y_pred = model.predict(X_test) # Делаем предсказания на тестовой выборке
|
||||
mse = mean_squared_error(y_test, y_pred) # Вычисляем среднеквадратичную ошибку
|
||||
mse_scores[target_column] = mse # Сохраняем MSE для целевого столбца
|
||||
models[target_column] = model # Сохраняем модель для целевого столбца
|
||||
def get_wind_speed_and_direction(prediction, batch: Batch, lat: float, lon: float):
|
||||
target_lat = lat
|
||||
target_lon = lon
|
||||
|
||||
quality = "хорошая" if mse < 1.0 else "плохая" # Определяем качество модели
|
||||
print(f"MSE для {target_column}: {mse} ({quality})") # Выводим MSE и качество
|
||||
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
|
||||
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
|
||||
|
||||
# Обучаем модель для столбца 'BarTrend_encoded' отдельно
|
||||
X_bartrend = df_with_lags.drop(columns=['BarTrend_encoded']).values # Признаки
|
||||
y_bartrend = df_with_lags['BarTrend_encoded'].values # Целевой столбец 'BarTrend_encoded'
|
||||
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
|
||||
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
|
||||
|
||||
# Разделяем данные на обучающую и тестовую выборки без перемешивания
|
||||
X_train_bartrend, X_test_bartrend, y_train_bartrend, y_test_bartrend = train_test_split(X_bartrend, y_bartrend,
|
||||
test_size=0.2,
|
||||
shuffle=False)
|
||||
u_scalar = u_values.item()
|
||||
v_scalar = v_values.item()
|
||||
|
||||
model_bartrend = RandomForestRegressor() # Инициализируем модель случайного леса
|
||||
model_bartrend.fit(X_train_bartrend, y_train_bartrend) # Обучаем модель
|
||||
print("u value:", u_scalar)
|
||||
print("v value:", v_scalar)
|
||||
u_with_units = u_scalar * units("m/s")
|
||||
v_with_units = v_scalar * units("m/s")
|
||||
|
||||
y_pred_bartrend = model_bartrend.predict(X_test_bartrend) # Предсказания на тестовой выборке для 'BarTrend_encoded'
|
||||
mse_bartrend = mean_squared_error(y_test_bartrend, y_pred_bartrend) # Вычисляем MSE
|
||||
models['BarTrend_encoded'] = model_bartrend # Сохраняем модель для 'BarTrend_encoded'
|
||||
mse_scores['BarTrend_encoded'] = mse_bartrend # Сохраняем MSE для 'BarTrend_encoded'
|
||||
# Рассчитайте направление и скорость ветра
|
||||
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
|
||||
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
|
||||
|
||||
quality_bartrend = "хорошая" if mse_bartrend < 1.0 else "плохая" # Определяем качество модели для 'BarTrend_encoded'
|
||||
print(f"MSE для BarTrend: {mse_bartrend} ({quality_bartrend})") # Выводим MSE и качество
|
||||
wind_dir_text = wind_direction_to_text(wind_dir.magnitude)
|
||||
# Вывод результата
|
||||
print(f"Направление ветра: {wind_dir_text} ({wind_dir:.2f}°)")
|
||||
print(f"Скорость ветра: {wind_speed:.2f} м/с")
|
||||
return wind_dir.magnitude.item(), wind_speed.magnitude.item()
|
||||
|
||||
last_data = X[-1].reshape(1, -1) # Берем последнюю строку данных и преобразуем в формат для предсказания
|
||||
|
||||
predictions = {} # Создаем словарь для хранения предсказаний
|
||||
for target_column, model in models.items():
|
||||
prediction = model.predict(last_data)[0] # Делаем предсказание для последней строки данных
|
||||
if target_column == 'BarTrend_encoded':
|
||||
prediction = le.inverse_transform([int(prediction)])[0] # Декодируем категориальное значение
|
||||
predictions['BarTrend'] = prediction # Сохраняем предсказание для 'BarTrend'
|
||||
#print(f"Предсказание для BarTrend: {prediction}") # Выводим предсказание
|
||||
continue # Продолжаем цикл после предсказания для 'BarTrend_encoded'
|
||||
predictions[target_column] = prediction # Сохраняем предсказание для остальных столбцов
|
||||
#print(f"Предсказание для {target_column}: {prediction}") # Выводим предсказание для столбца
|
||||
def wind_direction_to_text(wind_dir_deg):
|
||||
directions = [
|
||||
"север", "северо-восток", "восток", "юго-восток",
|
||||
"юг", "юго-запад", "запад", "северо-запад"
|
||||
]
|
||||
idx = int((wind_dir_deg + 22.5) // 45) % 8
|
||||
return directions[idx]
|
||||
|
||||
return predictions # Возвращаем словарь с предсказанными значениями и названиями столбцов
|
||||
|
||||
def main():
|
||||
levels = (100,)
|
||||
date = datetime(2024, 11, 5, 12)
|
||||
|
||||
# downloads, download_path = get_download_paths(date)
|
||||
# download_data(downloads) # Скачиваем данные, если их нет
|
||||
# batch_actual = create_batch(date, levels, downloads, download_path)
|
||||
batch_actual = create_batch_random(levels, date)
|
||||
prediction_actual = run_model(batch_actual)
|
||||
wind_speed_and_direction = get_wind_speed_and_direction(prediction_actual, batch_actual, 50, 20)
|
||||
return wind_speed_and_direction
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
print("Prediction completed!")
|
||||
|
Loading…
Reference in New Issue
Block a user