EvaluationEfficiencyOptimiz.../davisAPI/davisAPI.py

190 lines
6.5 KiB
Python
Raw Normal View History

2024-11-26 23:17:03 +04:00
# import gc
# import logging
# import time
# from datetime import datetime, timedelta
# from pprint import pprint
# import mariadb
# import serial.tools.list_ports
#
# #from PyWeather.weather.stations.davis import VantagePro
# from prediction import run_prediction_module
#
# logging.basicConfig(filename="Stations.log",
# format='%(asctime)s %(message)s',
# filemode='a')
# logger = logging.getLogger('davis_api')
# logger.setLevel(logging.DEBUG)
#
# console_handler = logging.StreamHandler()
# console_handler.setLevel(logging.DEBUG)
# console_handler.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
# logger.addHandler(console_handler)
#
#
# def write_data(device, station, send=True):
# try:
# # device.parse()
# data = device.fields
# logger.info(data)
# if len(data) < 1:
# return
# else:
# logger.info(data)
# fields = ['BarTrend', 'CRC', 'DateStamp', 'DewPoint', 'HeatIndex', 'ETDay', 'HeatIndex',
# 'HumIn', 'HumOut', 'Pressure', 'RainDay', 'RainMonth', 'RainRate', 'RainStorm',
# 'RainYear', 'SunRise', 'SunSet', 'TempIn', 'TempOut', 'WindDir', 'WindSpeed',
# 'WindSpeed10Min']
#
# if send:
# placeholders = ', '.join(['%s'] * len(fields))
# field_names = ', '.join(fields)
# sql = f"INSERT INTO weather_data ({field_names}) VALUES ({placeholders})"
# values = [data[field] for field in fields]
# cursor.execute(sql, values)
# conn.commit()
# else:
# logger.info(data)
#
# del data
# del fields
# gc.collect()
# except Exception as e:
# logger.error(str(e))
# raise e
#
#
# def get_previous_values(cursor):
# cursor.execute("SELECT SunRise, SunSet, WindDir, DateStamp FROM weather_data ORDER BY DateStamp DESC LIMIT 1")
# result = cursor.fetchone()
#
# if result is None:
# return None, None, None, None
#
# sun_rise, sun_set, wind_dir, datestamp = result
# return sun_rise, sun_set, wind_dir, datestamp
#
#
# def save_prediction_to_db(predictions):
# try:
#
# sun_rise, sun_set, wind_dir, datestamp = get_previous_values(cursor)
#
# fields = ['DateStamp', 'SunRise', 'SunSet', 'WindDir'] + list(predictions.keys())
# placeholders = ', '.join(['%s'] * len(fields))
# field_names = ', '.join(fields)
#
# values = [datestamp + timedelta(minutes = 1), sun_rise, sun_set, wind_dir] + list(predictions.values())
# pprint(dict(zip(fields, values)))
# sql = f"INSERT INTO weather_data ({field_names}) VALUES ({placeholders})"
# # cursor.execute(sql, values)
# # conn.commit()
# logger.info("Save prediction to db success!")
# except Exception as e:
# logger.error(str(e))
# raise e
#
#
# try:
# conn = mariadb.connect(
# user="wind",
# password="wind",
# host="193.124.203.110",
# port=3306,
# database="wind_towers"
# )
# cursor = conn.cursor()
# except mariadb.Error as e:
# logger.error('DB_ERR: ' + str(e))
# raise e
# while True:
# try:
# ports = serial.tools.list_ports.comports()
# available_ports = {}
#
# for port in ports:
# if port.serial_number == '0001':
# available_ports[port.name] = port.vid
#
# devices = [VantagePro(port) for port in available_ports.keys()]
# while True:
# for i in range(1):
# if len(devices) != 0:
# logger.info(devices)
# # write_data(devices[i], 'st' + str(available_ports[list(available_ports.keys())[i]]), True)
# else:
# raise Exception('Can`t connect to device')
# time.sleep(60)
# except Exception as e:
# logger.error('Device_error' + str(e))
# predictions = run_prediction_module()
# #logger.info(predictions)
# if predictions is not None:
# save_prediction_to_db(predictions)
# time.sleep(60)
#todo переписать под influx, для линухи приколы сделать
import metpy.calc
from datetime import datetime
import torch
from aurora import AuroraSmall, Batch, Metadata
from metpy.units import units
def get_wind_speed_and_direction(lat:float,lon:float):
model = AuroraSmall()
model.load_checkpoint("microsoft/aurora", "aurora-0.25-small-pretrained.ckpt")
batch = Batch(
surf_vars={k: torch.randn(1, 2, 17, 32) for k in ("2t", "10u", "10v", "msl")},
static_vars={k: torch.randn(17, 32) for k in ("lsm", "z", "slt")},
atmos_vars={k: torch.randn(1, 2, 4, 17, 32) for k in ("z", "u", "v", "t", "q")},
metadata=Metadata(
lat=torch.linspace(90, -90, 17),
lon=torch.linspace(0, 360, 32 + 1)[:-1],
time=(datetime(2024, 11, 26, 23, 7),),
atmos_levels=(100,),
),
)
prediction = model.forward(batch)
2024-11-26 23:17:03 +04:00
target_lat = lat
target_lon = lon
2024-11-26 23:17:03 +04:00
lat_idx = torch.abs(batch.metadata.lat - target_lat).argmin()
lon_idx = torch.abs(batch.metadata.lon - target_lon).argmin()
2024-11-26 23:17:03 +04:00
u_values = prediction.atmos_vars["u"][:, :, :, lat_idx, lon_idx]
v_values = prediction.atmos_vars["v"][:, :, :, lat_idx, lon_idx]
2024-11-26 23:17:03 +04:00
print("u values at target location:", u_values)
print("v values at target location:", v_values)
2024-11-26 23:17:03 +04:00
u_scalar = u_values.item()
v_scalar = v_values.item()
2024-11-26 23:17:03 +04:00
print("u value:", u_scalar)
print("v value:", v_scalar)
u_with_units = u_scalar * units("m/s")
v_with_units = v_scalar * units("m/s")
2024-11-26 23:17:03 +04:00
# Рассчитайте направление и скорость ветра
wind_dir = metpy.calc.wind_direction(u_with_units, v_with_units)
wind_speed = metpy.calc.wind_speed(u_with_units, v_with_units)
2024-11-26 23:17:03 +04:00
wind_dir_text = wind_direction_to_text(wind_dir.magnitude)
print(type(wind_dir))
# Вывод результата
print(f"Направление ветра: {wind_dir_text} ({wind_dir:.2f}°)")
print(f"Скорость ветра: {wind_speed:.2f} м/с")
return wind_dir.magnitude.item(),wind_speed.magnitude.item()
2024-10-08 22:37:24 +04:00
2024-11-26 23:17:03 +04:00
def wind_direction_to_text(wind_dir_deg):
directions = [
"север", "северо-восток", "восток", "юго-восток",
"юг", "юго-запад", "запад", "северо-запад"
]
idx = int((wind_dir_deg + 22.5) // 45) % 8
return directions[idx]
2024-11-26 23:17:03 +04:00
print(get_wind_speed_and_direction(50,20))