From 523bb0852dce751019d281960ca434b03cab7c45 Mon Sep 17 00:00:00 2001 From: GokaPek Date: Fri, 11 Oct 2024 13:42:11 +0400 Subject: [PATCH 1/4] init --- .gitignore | 4 +- lab_3/lab2.ipynb | 1337 ++++++++++++++++++++++++++++++++++++++++++++++ lab_3/lab3.ipynb | 94 ++++ 3 files changed, 1434 insertions(+), 1 deletion(-) create mode 100644 lab_3/lab2.ipynb create mode 100644 lab_3/lab3.ipynb diff --git a/.gitignore b/.gitignore index c5cb3da..d229cc0 100644 --- a/.gitignore +++ b/.gitignore @@ -176,4 +176,6 @@ cython_debug/ *.csv -/lab_2/aimenv \ No newline at end of file +/lab_2/aimenv + +/lab_3/aimenv \ No newline at end of file diff --git a/lab_3/lab2.ipynb b/lab_3/lab2.ipynb new file mode 100644 index 0000000..f7ec25d --- /dev/null +++ b/lab_3/lab2.ipynb @@ -0,0 +1,1337 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Выгрузка в датафрейм первый набор (игры в Steam)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "https://www.kaggle.com/datasets/wajihulhassan369/steam-games-dataset. Набор представляет собой данные об экшенах, доступных в Steam. Эта информация полезна для изучения игровых паттернов, моделирования цен и исследования корреляции между игровыми тегами и методами ценообразования. Этот набор позволяет провести предварительный анализ данных, построить модели машинного обучения или исследовать игровую индустрию. В наборе пресдтавлена дата, различные теги, рейтинг отзывов. Так можно понять, какие теги популярнее, что в играх людям нравится больше, изменилось ли качество игр со временем и т.д. Для бизнеса такой набор данных может быть полезен для прогнозирования, в разработку каки игр целесообразнее вкладываться. Так компания не потеряет деньги.\n", + "Пример цели: Разработка игры на пк в нужную фазу рынка\n", + "Входные данные: год выпуска, сумма продаж\n", + "Целевой признак: продаваемость игр в текущей фазе рынка в сравнении с предыдущими." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Name', 'Price', 'Release_date', 'Review_no', 'Review_type', 'Tags',\n", + " 'Description'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "df = pd.read_csv(\".//static//csv//steam_cleaned.csv\")\n", + "print(df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj3klEQVR4nO3dd3gU5f7//9emF5JQQwApAUQ6SFOkKxgQEVRAUY6AHjwiguLRc8QCAiJiwYIe2zkiIiqCICiKgIBSP4B0A0ivoUNCS4Dk/v3Bd/eXJW032ZJkno/rynWxs7Mz79mZXea19z332IwxRgAAAABgEQH+LgAAAAAAfIkQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBMAS9u7dK5vNps8//9zfpTiZN2+eGjdurLCwMNlsNp05c8bfJWXx+eefy2azae/evf4updB6+eWXZbPZdOLECX+XUqTY3zcA8DVCEFDEbd68WT179lTVqlUVFhamSpUqqVOnTpo4caLX1vnVV1/pnXfeyTL98OHDevnll7VhwwavrftaS5Yskc1mc/wFBwerevXqeuihh7R7926PrGPFihV6+eWXPR5QTp48qd69eys8PFwffPCBpkyZosjIyGzntQcR+19QUJAqVaqk/v3769ChQx6tq7Dq37+/bDabGjZsKGNMludtNpueeOIJP1RmDfb33/4XGhqqWrVqacSIEUpNTfV3eX5z7XdQaGioypcvr/bt2+vVV1/V8ePH873sxMREvfzyy/wAAXhBkL8LAJB/K1asUIcOHVSlShUNHDhQcXFxOnDggFatWqV3331XQ4YM8cp6v/rqK23ZskVPPfWU0/TDhw9r1KhRqlatmho3buyVdedk6NChat68uS5fvqx169bpk08+0dy5c7V582ZVrFixQMtesWKFRo0apf79+6tkyZKeKVjSmjVrdPbsWY0ZM0YdO3Z06TWjR49WfHy8UlNTtWrVKn3++edatmyZtmzZorCwMI/Vltnf/vY33X///QoNDfXK8t21efNmzZw5U/fee6+/S7Gc0NBQ/fe//5UkJScna/bs2RozZox27dqlqVOn+rk6/7J/B6Wnp+v48eNasWKFRo4cqQkTJujbb7/Vrbfe6vYyExMTNWrUKLVv317VqlXzfNGAhRGCgCJs7NixiomJ0Zo1a7KcnB87dsw/RXnB+fPnc2whsWvTpo169uwpSRowYIBq1aqloUOHavLkyRo+fLgvynSbfR+5E6y6dOmiZs2aSZL+/ve/q2zZsho/frzmzJmj3r17e6NMBQYGKjAw0CvLdld4eLgqV66s0aNH65577rFcV6oLFy4oIiLCb+sPCgpS3759HY8ff/xx3XLLLfr66681YcIElS9f3m+1+Vvm7yC7jRs36vbbb9e9996rxMREVahQwU/VAbgW3eGAImzXrl2qV69etifRsbGxWaZ9+eWXatGihSIiIlSqVCm1bdtW8+fPdzw/e/Zsde3aVRUrVlRoaKhq1KihMWPGKD093TFP+/btNXfuXO3bt8/R/aNatWpasmSJmjdvLulqCLE/l/kanP/7v/9T586dFRMTo4iICLVr107Lly93qtF+jUBiYqIeeOABlSpVSq1bt3b7vbH/6rpnz55c51u0aJHatGmjyMhIlSxZUt27d9fWrVud6nn22WclSfHx8Y7tyqt7yvTp09W0aVOFh4erbNmy6tu3r1O3tfbt26tfv36SpObNm8tms6l///5ub2ebNm0kXT0WMtu2bZt69uyp0qVLKywsTM2aNdOcOXMcz69du1Y2m02TJ0/OssxffvlFNptNP/74o6Scrwn6+eefHe9dVFSUunbtqj///NPx/Jw5c2Sz2bRp0ybHtO+++042m0333HOP07Lq1Kmj++67L8/tDQgI0IsvvqhNmzZp1qxZuc6bU9327ktLlixxTGvfvr3q16+vTZs2qV27doqIiFDNmjU1Y8YMSdJvv/2mm266SeHh4brhhhu0cOHCbNd54sQJ9e7dW9HR0SpTpoyefPLJbLuKffnll47jo3Tp0rr//vt14MABp3nsNf3xxx9q27atIiIi9Pzzz2e73jfffFM2m0379u3L8tzw4cMVEhKi06dPS5J27Nihe++9V3FxcQoLC9N1112n+++/X8nJyTm+lzmx2Wxq3bq1jDFZup/mdXzkxpX3Z+nSperVq5eqVKmi0NBQVa5cWcOGDdPFixed5jty5IgGDBig6667TqGhoapQoYK6d+/u9vGcH40aNdI777yjM2fO6P3333dM37dvnx5//HHdcMMNCg8PV5kyZdSrVy+nmj7//HP16tVLktShQwfHd0/m49YbNQNWQQgCirCqVavqjz/+0JYtW/Kcd9SoUfrb3/6m4OBgjR49WqNGjVLlypW1aNEixzyff/65SpQooaefflrvvvuumjZtqhEjRui5555zzPPCCy+ocePGKlu2rKZMmaIpU6bonXfeUZ06dTR69GhJ0qOPPup4rm3btpKuho22bdsqJSVFI0eO1KuvvqozZ87o1ltv1erVq7PU26tXL124cEGvvvqqBg4c6PZ7Yw8FZcqUyXGehQsXKiEhQceOHdPLL7+sp59+WitWrFCrVq0cJyP33HOP+vTpI0l6++23HdtVrly5HJf7+eefq3fv3goMDNS4ceM0cOBAzZw5U61bt3ZcV/TCCy/o0UcflXS1i9uUKVP0j3/8w+3ttNdZqlQpx7Q///xTN998s7Zu3arnnntOb731liIjI9WjRw9HcGjWrJmqV6+ub7/9Nssyp02bplKlSikhISHH9U6ZMkVdu3ZViRIlNH78eL300ktKTExU69atHTW1bt1aNptNv//+u+N1S5cuVUBAgJYtW+aYdvz4cW3bts1xrOTlgQce0PXXX6/Ro0dne21Qfp0+fVp33nmnbrrpJr3++usKDQ3V/fffr2nTpun+++/XHXfcoddee03nz59Xz549dfbs2SzL6N27t1JTUzVu3Djdcccdeu+99xz72W7s2LF66KGHdP3112vChAl66qmn9Ouvv6pt27ZZrjs7efKkunTposaNG+udd95Rhw4dsq29d+/estls2e7Pb7/9VrfffrtKlSqlS5cuKSEhQatWrdKQIUP0wQcf6NFHH9Xu3bvzfc1bdsegK8dHTlx9f6ZPn64LFy5o0KBBmjhxohISEjRx4kQ99NBDTsu79957NWvWLA0YMED/+c9/NHToUJ09e1b79+/3SL156dmzp8LDw51+cFqzZo1WrFih+++/X++9954ee+wx/frrr2rfvr0uXLggSWrbtq2GDh0qSXr++ecd3z116tTxes2AJRgARdb8+fNNYGCgCQwMNC1btjT/+te/zC+//GIuXbrkNN+OHTtMQECAufvuu016errTcxkZGY5/X7hwIcs6/vGPf5iIiAiTmprqmNa1a1dTtWrVLPOuWbPGSDKTJk3Kso7rr7/eJCQkZFlffHy86dSpk2PayJEjjSTTp08fl96DxYsXG0nms88+M8ePHzeHDx82c+fONdWqVTM2m82sWbPGGGPMnj17stTWuHFjExsba06ePOmYtnHjRhMQEGAeeughx7Q33njDSDJ79uzJs55Lly6Z2NhYU79+fXPx4kXH9B9//NFIMiNGjHBMmzRpkpHkqDE39nkXLlxojh8/bg4cOGBmzJhhypUrZ0JDQ82BAwcc8952222mQYMGTvssIyPD3HLLLeb66693TBs+fLgJDg42p06dckxLS0szJUuWNA8//HCWddu3/+zZs6ZkyZJm4MCBTjUeOXLExMTEOE2vV6+e6d27t+NxkyZNTK9evYwks3XrVmOMMTNnzjSSzMaNG3N9D/r162ciIyONMcZMnjzZSDIzZ850PC/JDB48OMe67ezHzOLFix3T2rVrZySZr776yjFt27ZtRpIJCAgwq1atckz/5ZdfshxL9uP2rrvuclrX448/7rRte/fuNYGBgWbs2LFO823evNkEBQU5TbfX9NFHH+X6vti1bNnSNG3a1Gna6tWrjSTzxRdfGGOMWb9+vZFkpk+f7tIyM7O//8ePHzfHjx83O3fuNG+++aax2Wymfv36js+2O8eH/X2zc+f9ye77aty4ccZms5l9+/YZY4w5ffq0kWTeeOONHLfLnXqzYz+ecntPGzVqZEqVKpVr7StXrnTaV8YYM3369CzHqidqBmAMLUFAEdapUyetXLlSd911lzZu3KjXX39dCQkJqlSpklPXp++//14ZGRkaMWKEAgKcP/aZr6kIDw93/Pvs2bM6ceKE2rRpowsXLmjbtm35rnPDhg3asWOHHnjgAZ08eVInTpzQiRMndP78ed122236/ffflZGR4fSaxx57zK11PPzwwypXrpwqVqyorl276vz585o8ebLj+plrJSUlacOGDerfv79Kly7tmN6wYUN16tRJP/30k/sbqqvdzI4dO6bHH3/caaCCrl27qnbt2po7d26+lmvXsWNHlStXTpUrV1bPnj0VGRmpOXPm6LrrrpMknTp1SosWLVLv3r0d+/DEiRM6efKkEhIStGPHDke3vPvuu0+XL1/WzJkzHcufP3++zpw5k2vXtAULFujMmTPq06ePY/knTpxQYGCgbrrpJi1evNgxb5s2bbR06VJJV4+pjRs36tFHH1XZsmUd05cuXaqSJUuqfv36Lr8PDz74oMdbg0qUKKH777/f8fiGG25QyZIlVadOHd10002O6fZ/Zzf64ODBg50e2wcnsR9PM2fOVEZGhnr37u303sXFxen66693eu+kqwMRDBgwwKX677vvPv3xxx9OXSOnTZum0NBQde/eXZIUExMj6WqXR3uLgzvOnz+vcuXKqVy5cqpZs6aeeeYZtWrVSrNnz3Z8l7hzfFzLnfcn8/fV+fPndeLECd1yyy0yxmj9+vWOeUJCQrRkyRJHd8BrFaReV5UoUcKp5TBz7ZcvX9bJkydVs2ZNlSxZUuvWrctzeb6oGSjuis3ACL///rveeOMN/fHHH0pKStKsWbPUo0cPt5ZhjNFbb72lTz75RPv27VPZsmX1+OOP64UXXvBO0YAHNG/eXDNnztSlS5e0ceNGzZo1S2+//bZ69uypDRs2qG7dutq1a5cCAgJUt27dXJf1559/6sUXX9SiRYuUkpLi9Fx+rhew27FjhyQ5roHJTnJyslN3mvj4eLfWMWLECLVp00aBgYEqW7as6tSpo6CgnL/i7NdO3HDDDVmeq1Onjn755ReXBmRwZ7m1a9d26gaWHx988IFq1aql5ORkffbZZ/r999+dRm3buXOnjDF66aWX9NJLL2W7jGPHjqlSpUpq1KiRateurWnTpumRRx6RdPWkuWzZsrmOZGXfnznNEx0d7fh3mzZt9NFHH2nnzp3atWuXbDabWrZs6QhHAwcO1NKlS9WqVassAT03gYGBevHFF9WvXz99//33uvvuu11+bU6uu+66LAMtxMTEqHLlylmmScr2pPr66693elyjRg0FBAQ4uift2LFDxpgs89kFBwc7Pa5UqZJCQkJcqr9Xr156+umnNW3aND3//PMyxmj69Onq0qWLY5/Ex8fr6aef1oQJEzR16lS1adNGd911l/r27evYrtyEhYXphx9+kCQdPHhQr7/+uo4dO+Z0Uu/O8XEtd96f/fv3a8SIEZozZ06WfWH/vgoNDdX48eP1z3/+U+XLl9fNN9+sO++8Uw899JDi4uIKXK+rzp07p6ioKMfjixcvaty4cZo0aZIOHTrkFORd+a71Rc1AcVdsQtD58+fVqFEjPfzww1kuuHXVk08+qfnz5+vNN99UgwYNdOrUKZ06dcrDlQLeERISoubNm6t58+aqVauWBgwYoOnTp2vkyJEuvf7MmTNq166doqOjNXr0aNWoUUNhYWFat26d/v3vf2dpqXGH/bVvvPFGjkNnlyhRwulx5pMqVzRo0MDlYaaLshYtWjhat3r06KHWrVvrgQce0Pbt21WiRAnHe/3MM8/keE1PzZo1Hf++7777NHbsWJ04cUJRUVGaM2eO+vTpk2uAtK9jypQpjhPJzDK/1j6oxe+//67du3erSZMmioyMVJs2bfTee+/p3LlzWr9+vcaOHevmO3G1NWjMmDEaPXp0tj965TRyXOaBPjLLaQS8nKa70gJ1bQ0ZGRmy2Wz6+eefs11uQT4HFStWVJs2bfTtt9/q+eef16pVq7R//36NHz/eab633npL/fv31+zZszV//nwNHTpU48aN06pVqxwtijkJDAx0+pwlJCSodu3a+sc//uFofXbn+LiWq+9Penq6OnXqpFOnTunf//63ateurcjISB06dEj9+/d3+r566qmn1K1bN33//ff65Zdf9NJLL2ncuHFatGiRbrzxxgLV64rLly/rr7/+cmrpHDJkiCZNmqSnnnpKLVu2VExMjGw2m+6//36Xvmu9XTNgBcXmU9KlSxd16dIlx+fT0tL0wgsv6Ouvv9aZM2dUv359jR8/Xu3bt5ckbd26VR9++KG2bNni+AXX3V+igcLCfpKclJQk6eqv0RkZGUpMTMwxhCxZskQnT57UzJkznS5Qz250tZxOLnOaXqNGDUlXf50sLEGlatWqkqTt27dneW7btm0qW7asoxXInWGYMy/32l9pt2/f7njeE+wDL3To0EHvv/++nnvuOVWvXl3S1V/MXXmv77vvPo0aNUrfffedypcvr5SUFKcuYdmx78/Y2Ng811GlShVVqVJFS5cu1e7dux2j2bVt21ZPP/20pk+frvT0dJcHRcjM3hpkP6G/lr1l8doL/rMbQc1TduzY4fR/x86dO5WRkeG4x0uNGjVkjFF8fLxq1arl8fXfd999evzxx7V9+3ZNmzZNERER6tatW5b5GjRooAYNGujFF190DAby0Ucf6ZVXXnFrfRUqVNCwYcM0atQorVq1SjfffLNbx8e1XH1/Nm/erL/++kuTJ092GghhwYIFOS73n//8p/75z39qx44daty4sd566y19+eWXBarXFTNmzNDFixedfpSYMWOG+vXrp7feessxLTU1Ncuxmtd3qrdqBqzAMtcEPfHEE1q5cqW++eYbbdq0Sb169VLnzp0dTco//PCDqlevrh9//FHx8fGqVq2a/v73v9MShEJt8eLF2f4abb/+wB7oe/TooYCAAI0ePTrLr4z219t/dc28vEuXLuk///lPluVHRkZm22XDHhqu/Y+8adOmqlGjht58802dO3cuy+sKckf1/KpQoYIaN26syZMnO9W7ZcsWzZ8/X3fccYdjWk7blZ1mzZopNjZWH330kdLS0hzTf/75Z23dulVdu3b12DZIV4dRbtGihd555x2lpqYqNjZW7du318cff+wIwZld+17XqVNHDRo00LRp0zRt2jRVqFAhz0CSkJCg6Ohovfrqq7p8+XKe62jTpo0WLVqk1atXO0JQ48aNFRUVpddee03h4eFq2rSpu5suSerbt69q1qypUaNGZXnOfqKYeXS69PR0ffLJJ/lalys++OADp8cTJ06UJMePdPfcc48CAwM1atSoLJ9dY4xOnjxZoPXfe++9CgwM1Ndff63p06frzjvvdOrSmZKSoitXrji9pkGDBgoICHA6Xt0xZMgQRURE6LXXXpPk/vGRmavvT3bfV8YYvfvuu06vuXDhQpYhymvUqKGoqCjH9hak3rxs3LhRTz31lEqVKuV0vVhgYGCW7Zs4cWKWVsqcvnu8WTNgFcWmJSg3+/fv16RJk7R//37HneOfeeYZzZs3T5MmTdKrr76q3bt3a9++fZo+fbq++OILpaena9iwYerZs6fTEMJAYTJkyBBduHBBd999t2rXrq1Lly5pxYoVmjZtmqpVq+a4oLpmzZp64YUXNGbMGLVp00b33HOPQkNDtWbNGlWsWFHjxo3TLbfcolKlSqlfv34aOnSobDabpkyZkm3Iatq0qaZNm6ann35azZs3V4kSJdStWzfVqFFDJUuW1EcffaSoqChFRkbqpptuUnx8vP773/+qS5cuqlevngYMGKBKlSrp0KFDWrx4saKjox3XGfjSG2+8oS5duqhly5Z65JFHdPHiRU2cOFExMTF6+eWXnbZXujqs9f3336/g4GB169Yt2+uFgoODNX78eA0YMEDt2rVTnz59dPToUb377ruqVq2ahg0b5vHtePbZZ9WrVy99/vnneuyxx/TBBx+odevWatCggQYOHKjq1avr6NGjWrlypQ4ePKiNGzc6vf6+++7TiBEjFBYWpkceeSTPa3Oio6P14Ycf6m9/+5uaNGmi+++/X+XKldP+/fs1d+5ctWrVyumeKG3atNHUqVMd95SRrp4E3nLLLfrll1/Uvn17l697uVZgYKBeeOGFbAcPqFevnm6++WYNHz5cp06dUunSpfXNN99kCQGetGfPHt11113q3LmzVq5cqS+//FIPPPCAGjVqJOnqCfgrr7yi4cOHa+/everRo4eioqK0Z88ezZo1S48++qieeeaZfK8/NjZWHTp00IQJE3T27NksA1wsWrRITzzxhHr16qVatWrpypUrmjJligIDA3Xvvffma51lypRxDD+9detW1alTx63jIzNX35/atWurRo0aeuaZZ3To0CFFR0fru+++y3Jt0F9//aXbbrtNvXv3Vt26dRUUFKRZs2bp6NGjjhZPd4/nnCxdulSpqalKT0/XyZMntXz5cs2ZM0cxMTGaNWuWU7e1O++8U1OmTFFMTIzq1q2rlStXauHChVmG9G/cuLECAwM1fvx4JScnKzQ0VLfeeqtiY2M9UjNgab4cis5XJJlZs2Y5HtuHpo2MjHT6CwoKcgzdOnDgQCPJbN++3fG6P/74w0gy27Zt8/UmAC75+eefzcMPP2xq165tSpQoYUJCQkzNmjXNkCFDzNGjR7PM/9lnn5kbb7zRhIaGmlKlSpl27dqZBQsWOJ5fvny5ufnmm014eLipWLGiY8htXTNE67lz58wDDzxgSpYsaSQ5DZc9e/ZsU7duXRMUFJRlGOH169ebe+65x5QpU8aEhoaaqlWrmt69e5tff/3VMY99yNzjx4+79B64MjytMdkPkW2MMQsXLjStWrUy4eHhJjo62nTr1s0kJiZmef2YMWNMpUqVTEBAgEvDZU+bNs3xXpcuXdo8+OCD5uDBg07z5GeI7OzmTU9PNzVq1DA1atQwV65cMcYYs2vXLvPQQw+ZuLg4ExwcbCpVqmTuvPNOM2PGjCyv37Fjh5FkJJlly5bluO7shppOSEgwMTExJiwszNSoUcP079/frF271mm+P//800gyderUcZr+yiuvGEnmpZdeynP7jXEeIjuzy5cvmxo1amQZItv+PnTs2NGEhoaa8uXLm+eff94sWLAg2yGy69Wrl2XZVatWNV27ds0y/dp12Y/bxMRE07NnTxMVFWVKlSplnnjiCaeh0u2+++4707p1a8f/R7Vr1zaDBw92+j8op5ry8umnnxpJJioqKsu6d+/ebR5++GFTo0YNExYWZkqXLm06dOhgFi5cmOdyc3r/jbn6PgcGBpp+/fo5prlyfFw7RLadK+9PYmKi6dixoylRooQpW7asGThwoNm4caPT5/zEiRNm8ODBpnbt2iYyMtLExMSYm266yXz77bdZ1unq8Zzd6+yfH0kmODjYlCtXzrRt29aMHTvWHDt2LMtrTp8+bQYMGGDKli1rSpQoYRISEsy2bdtM1apVnd5DY67uz+rVq5vAwMAsx21+awZgjM0YD95prpCw2WxOo8NNmzZNDz74oP78888sF1qWKFFCcXFxjps3Zm5WvnjxoiIiIjR//nx16tTJl5sAAAAAwEss0R3uxhtvVHp6uo4dO+boj36tVq1a6cqVK9q1a5ejH/lff/0lSR69kBkAAACAfxWblqBz585p586dkq6GngkTJqhDhw4qXbq0qlSpor59+2r58uV66623dOONN+r48eP69ddf1bBhQ3Xt2lUZGRmOaxveeecdZWRkaPDgwYqOjtb8+fP9vHUAAAAAPKXYhKAlS5aoQ4cOWab369dPn3/+uS5fvqxXXnlFX3zxhQ4dOqSyZcvq5ptv1qhRo9SgQQNJ0uHDhzVkyBDNnz9fkZGR6tKli9566y2nu8kDAAAAKNqKTQgCAAAAAFdY5j5BAAAAACARggAAAABYTJEeHS4jI0OHDx9WVFSUbDabv8sBAAAA4CfGGJ09e1YVK1bM88bfRToEHT58WJUrV/Z3GQAAAAAKiQMHDui6667LdZ4iHYKioqIkXd3Q6OhoP1cDAAAAwF9SUlJUuXJlR0bITZEOQfYucNHR0YQgAAAAAC5dJsPACAAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAsJcjfBQAAUJylZxit3nNKx86mKjYqTC3iSyswwObvsgDA0ghBAAB4ybwtSRr1Q6KSklMd0yrEhGlkt7rqXL+CHysDAGujOxwAAF4wb0uSBn25zikASdKR5FQN+nKd5m1J8lNlAABCEAAAHpaeYTTqh0SZbJ6zTxv1Q6LSM7KbAwDgbYQgAAA8bPWeU1lagDIzkpKSU7V6zynfFQUAcCAEAQDgYcfO5hyA8jMfAMCzCEEAAHhYbFSYR+cDAHgWIQgAAA9rEV9aFWLClNNA2DZdHSWuRXxpX5YFAPh/CEEAAHhYYIBNI7vVlaQsQcj+eGS3utwvCAD8hBAEAIAXdK5fQR/2baK4GOcub3ExYfqwbxPuEwQAfsTNUgEA8JLO9SuoU904rd5zSsfOpio26moXOFqAAMC/CEEAAHhRYIBNLWuU8XcZAIBM6A4HAAAAwFIIQQAAAAAshRAEAAAAwFL8GoLS09P10ksvKT4+XuHh4apRo4bGjBkjY4w/ywIAAABQjPl1YITx48frww8/1OTJk1WvXj2tXbtWAwYMUExMjIYOHerP0gAAAAAUU34NQStWrFD37t3VtWtXSVK1atX09ddfa/Xq1f4sCwAAAEAx5tfucLfccot+/fVX/fXXX5KkjRs3atmyZerSpUu286elpSklJcXpDwAAAADc4deWoOeee04pKSmqXbu2AgMDlZ6errFjx+rBBx/Mdv5x48Zp1KhRPq4SAAAAQHHi15agb7/9VlOnTtVXX32ldevWafLkyXrzzTc1efLkbOcfPny4kpOTHX8HDhzwccUAAAAAijqb8eNQbJUrV9Zzzz2nwYMHO6a98sor+vLLL7Vt27Y8X5+SkqKYmBglJycrOjram6UCAAAAKMTcyQZ+bQm6cOGCAgKcSwgMDFRGRoafKgIAAABQ3Pn1mqBu3bpp7NixqlKliurVq6f169drwoQJevjhh/1ZFgAAAIBizK/d4c6ePauXXnpJs2bN0rFjx1SxYkX16dNHI0aMUEhISJ6vpzscAAAAAMm9bODXEFRQhCAAAAAAUhG6JggAAAAAfI0QBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALMXvIejQoUPq27evypQpo/DwcDVo0EBr1671d1kAAAAAiqkgf6789OnTatWqlTp06KCff/5Z5cqV044dO1SqVCl/lgUAAACgGPNrCBo/frwqV66sSZMmOabFx8f7sSIAAAAAxZ1fu8PNmTNHzZo1U69evRQbG6sbb7xRn376aY7zp6WlKSUlxekPAAAAANzh1xC0e/duffjhh7r++uv1yy+/aNCgQRo6dKgmT56c7fzjxo1TTEyM469y5co+rhgAAABAUWczxhh/rTwkJETNmjXTihUrHNOGDh2qNWvWaOXKlVnmT0tLU1pamuNxSkqKKleurOTkZEVHR/ukZgAAAACFT0pKimJiYlzKBn5tCapQoYLq1q3rNK1OnTrav39/tvOHhoYqOjra6Q8AAAAA3OHXENSqVStt377dadpff/2lqlWr+qkiAAAAAMWdX0PQsGHDtGrVKr366qvauXOnvvrqK33yyScaPHiwP8sCAAAAUIz5NQQ1b95cs2bN0tdff6369etrzJgxeuedd/Tggw/6sywAAAAAxZhfB0YoKHcufgIAAABQfBWZgREAAAAAwNcIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFLcCkGXL1/Www8/rD179nirHgAAAADwKrdCUHBwsL777jtv1QIAAAAAXud2d7gePXro+++/90IpAAAAAOB9Qe6+4Prrr9fo0aO1fPlyNW3aVJGRkU7PDx061GPFAQAAAICn2Ywxxp0XxMfH57wwm027d+8ucFGuSklJUUxMjJKTkxUdHe2z9QIAAAAoXNzJBm63BDEoAgAAAICiLN9DZF+6dEnbt2/XlStXPFkPAAAAAHiV2yHowoULeuSRRxQREaF69epp//79kqQhQ4botdde83iBAAAAAOBJboeg4cOHa+PGjVqyZInCwsIc0zt27Khp06Z5tDgAAAAA8DS3rwn6/vvvNW3aNN18882y2WyO6fXq1dOuXbs8WhwAAAAAeJrbLUHHjx9XbGxslunnz593CkUAAAAAUBi5HYKaNWumuXPnOh7bg89///tftWzZ0nOVAQAAAIAXuN0d7tVXX1WXLl2UmJioK1eu6N1331ViYqJWrFih3377zRs1AgAAAIDHuN0S1Lp1a23YsEFXrlxRgwYNNH/+fMXGxmrlypVq2rSpN2oEAAAAAI+xGWOMv4vIL3fuCgsAAACg+HInG7jdHU6S0tPTNWvWLG3dulWSVLduXXXv3l1BQflaHAAAAAD4jNup5c8//9Rdd92lI0eO6IYbbpAkjR8/XuXKldMPP/yg+vXre7xIAAAAAPAUt68J+vvf/6569erp4MGDWrdundatW6cDBw6oYcOGevTRR71RIwAAAAB4jNstQRs2bNDatWtVqlQpx7RSpUpp7Nixat68uUeLAwAAAABPc7slqFatWjp69GiW6ceOHVPNmjU9UhQAAAAAeItLISglJcXxN27cOA0dOlQzZszQwYMHdfDgQc2YMUNPPfWUxo8f7+16AQAAAKBAXBoiOyAgQDabzfHY/hL7tMyP09PTvVFnthgiGwAAAIDkhSGyFy9e7JHCAAAAAMDfXApB7dq183YdAAAAAOAT+bq7aWpqqjZt2qRjx44pIyPD6bm77rrLI4UBAAAAgDe4HYLmzZunhx56SCdOnMjynK+vCQIAAAAAd7k9RPaQIUPUq1cvJSUlKSMjw+mPAAQAAACgsHM7BB09elRPP/20ypcv7416AAAAAMCr3A5BPXv21JIlS7xQCgAAAAB4n0v3CcrswoUL6tWrl8qVK6cGDRooODjY6fmhQ4d6tMDccJ8gAAAAAJIX7hOU2ddff6358+crLCxMS5YscbqJqs1m82kIAgAAAAB3uR2CXnjhBY0aNUrPPfecAgLc7k0HAAAAAH7ldoq5dOmS7rvvPgIQAAAAgCLJ7STTr18/TZs2zRu1AAAAAIDXud0dLj09Xa+//rp++eUXNWzYMMvACBMmTPBYcQAAAADgaW6HoM2bN+vGG2+UJG3ZssXpucyDJAAAAABAYeR2CFq8eLE36gAAAAAAn2B0AwAAAACW4nZLUIcOHXLt9rZo0aICFQQAAAAA3uR2CGrcuLHT48uXL2vDhg3asmWL+vXr56m6AAAAAMAr3A5Bb7/9drbTX375ZZ07d67ABQEAAACAN3nsmqC+ffvqs88+89TiAAAAAMArPBaCVq5cqbCwME8tDgAAAAC8wu3ucPfcc4/TY2OMkpKStHbtWr300kseKwwAAAAAvMHtEBQTE+P0OCAgQDfccINGjx6t22+/3WOFAQAAAIA3uB2CJk2a5I06AAAAAMAnuFkqAAAAAEtxuSUoPj4+15ukSpLNZtOuXbsKXBQAAAAAeIvLIeipp57K8bm9e/fq448/VlpamidqAgAAAACvcTkEPfnkk1mmnTp1SmPGjNGHH36om266SePHj/docQAAAADgaW4PjCBJFy9e1IQJE/Tmm2+qatWqmjlzpu644w5P1wYAAAAAHudWCEpPT9enn36qUaNGKSwsTO+995769u2b57VCAAAAAFBYuByCvv32W7344os6c+aMXnjhBQ0aNEghISHerA0AAAAAPM5mjDGuzBgQEKDw8HD16dNH0dHROc43YcIEjxWXl5SUFMXExCg5OTnXmgAAAAAUb+5kA5dbgtq2bZvnENh0iwMAAABQ2LkcgpYsWeLFMgAAAADANwL8XQAAAAAA+FKhCUGvvfaabDZbrjdlBQAAAICCKhQhaM2aNfr444/VsGFDf5cCAAAAoJjzewg6d+6cHnzwQX366acqVaqUv8sBAAAAUMz5PQQNHjxYXbt2VceOHfOcNy0tTSkpKU5/AAAAAOAOl0eHs2vbtq3at2+vdu3aqVWrVgoLC8v3yr/55hutW7dOa9ascWn+cePGadSoUfleHwAAAAC43RJ0++23a9WqVerevbtKliyp1q1b68UXX9SCBQt04cIFl5dz4MABPfnkk5o6darLQWr48OFKTk52/B04cMDd8gEAAABYnM0YY/LzwitXrmjNmjX67bfftGTJEi1atEgBAQFKTU116fXff/+97r77bgUGBjqmpaeny2azKSAgQGlpaU7PZcedu8ICAAAAKL7cyQZud4ez2717tzZv3qyNGzdq06ZNioqKUtu2bV1+/W233abNmzc7TRswYIBq166tf//733kGIAAAAADID7dD0AMPPKDffvtNaWlpatu2rdq1a6fnnntODRs2lM1mc3k5UVFRql+/vtO0yMhIlSlTJst0AAAAAPAUt0PQN998o7Jly+rvf/+7br31VrVu3VoRERHeqA0AAAAAPM7ta4JOnz6tpUuXasmSJfrtt9+0detWNW7cWO3bt1f79u11++23e6vWLLgmCAAAAIDkXjbI98AIdjt37tQrr7yiqVOnKiMjQ+np6QVZnFsIQQAAAAAkLw+McPLkSceIcEuWLFFiYqJKliypbt26qV27dvkuGgAAAAB8we0QFBsbq7Jly6pNmzYaOHCg2rdvrwYNGnijNgAAAADwOLdD0KZNm1SvXj1v1AIAAAAAXhfg7gvq1aunK1euaOHChfr444919uxZSdLhw4d17tw5jxcIAAAAAJ7kdkvQvn371LlzZ+3fv19paWnq1KmToqKiNH78eKWlpemjjz7yRp0AAAAA4BFutwQ9+eSTatasmU6fPq3w8HDH9Lvvvlu//vqrR4sDAAAAAE9zuyVo6dKlWrFihUJCQpymV6tWTYcOHfJYYQAAAADgDW63BOV0L6CDBw8qKirKI0UBAAAAgLe4HYJuv/12vfPOO47HNptN586d08iRI3XHHXd4sjYAAAAA8DibMca484KDBw8qISFBxhjt2LFDzZo1044dO1S2bFn9/vvvio2N9VatWbhzV1gAAAAAxZc72cDtECRJV65c0TfffKNNmzbp3LlzatKkiR588EGngRJ8gRAEAAAAQHIvG7g9MIIkBQUFqW/fvvkqDgAAAAD8yaUQNGfOHHXp0kXBwcGaM2dOrvPeddddHikMAAAAALzBpe5wAQEBOnLkiGJjYxUQkPNYCjabLduR47yF7nAAAAAAJC90h8vIyMj23wAAAABQ1Lg9RPaBAwe8UQcAAAAA+ITbIahatWpq166dPv30U50+fdobNQEAAACA17gdgtauXasWLVpo9OjRqlChgnr06KEZM2YoLS3NG/UBAAAAgEe5HYJuvPFGvfHGG9q/f79+/vlnlStXTo8++qjKly+vhx9+2Bs1AgAAAIDH5Otmqddat26dHnnkEW3atInR4QAAAAD4nDvZwO2WILuDBw/q9ddfV+PGjdWiRQuVKFFCH3zwQX4XBwAAAAA+4dIQ2Zl9/PHH+uqrr7R8+XLVrl1bDz74oGbPnq2qVat6oz4AAAAA8Ci3Q9Arr7yiPn366L333lOjRo28URMAAAAAeI3bIWj//v2y2WzeqAUAAAAAvM7ta4JsNpuWLl2qvn37qmXLljp06JAkacqUKVq2bJnHCwQAAAAAT3I7BH333XdKSEhQeHi41q9f77g/UHJysl599VWPFwgAAAAAnuR2CHrllVf00Ucf6dNPP1VwcLBjeqtWrbRu3TqPFgcAAAAAnuZ2CNq+fbvatm2bZXpMTIzOnDnjiZoAAAAAwGvcDkFxcXHauXNnlunLli1T9erVPVIUAAAAAHiL2yFo4MCBevLJJ/V///d/stlsOnz4sKZOnapnnnlGgwYN8kaNAAAAAOAxbg+R/dxzzykjI0O33XabLly4oLZt2yo0NFTPPPOMhgwZ4o0aAQAAAMBjbMYYk58XXrp0STt37tS5c+dUt25dlShRQhcvXlR4eLina8xRSkqKYmJilJycrOjoaJ+tFwAAAEDh4k42cLs7nF1ISIjq1q2rFi1aKDg4WBMmTFB8fHx+FwcAAAAAPuFyCEpLS9Pw4cPVrFkz3XLLLfr+++8lSZMmTVJ8fLzefvttDRs2zFt1AgAAAIBHuHxN0IgRI/Txxx+rY8eOWrFihXr16qUBAwZo1apVmjBhgnr16qXAwEBv1goAAAAABeZyCJo+fbq++OIL3XXXXdqyZYsaNmyoK1euaOPGjbLZbN6sEQAAAAA8xuXucAcPHlTTpk0lSfXr11doaKiGDRtGAAIAAABQpLgcgtLT0xUSEuJ4HBQUpBIlSnilKAAAAADwFpe7wxlj1L9/f4WGhkqSUlNT9dhjjykyMtJpvpkzZ3q2QgAAAADwIJdDUL9+/Zwe9+3b1+PFAAAAAIC3uRyCJk2a5M06AAAAAMAn8n2zVAAAAAAoighBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACwlyN8FAAAAWF16htHqPad07GyqYqPC1CK+tAIDbP4uCyi2CEEAAAB+NG9Lkkb9kKik5FTHtAoxYRrZra4616/gx8qA4ovucAAAAH4yb0uSBn25zikASdKR5FQN+nKd5m1J8lNlQPFGCAIAAPCD9AyjUT8kymTznH3aqB8SlZ6R3RwACoIQBAAA4Aer95zK0gKUmZGUlJyq1XtO+a4owCK4JggAgCKKi+mLtmNncw5A+ZkPgOsIQQAAFEFcTF/0xUaFeXQ+AK6jOxwAAEUMF9MXDy3iS6tCTJhyaruz6WqwbRFf2pdlAZZACAIAoAjhYvriIzDAppHd6kpSliBkfzyyW126OAJeQAgCAKAI4WL64qVz/Qr6sG8TxcU4d3mLiwnTh32b0LUR8BKuCQIAoAjhYvrip3P9CupUN45BLgAfIgQBAFCEcDF98RQYYFPLGmX8XQZgGXSHAwCgCOFiegAoOEIQAABFCBfTA0DBEYIAAChiuJgeAAqGa4IAACiCuJgeAPKPEAQAQBHFxfQAkD90hwMAAABgKYQgAAAAAJZCCAIAAABgKYQgAAAAAJZCCAIAAABgKX4NQePGjVPz5s0VFRWl2NhY9ejRQ9u3b/dnSQAAAACKOb+GoN9++02DBw/WqlWrtGDBAl2+fFm33367zp8/78+yAAAAABRjNmOM8XcRdsePH1dsbKx+++03tW3bNs/5U1JSFBMTo+TkZEVHR/ugQgAAAACFkTvZoFDdLDU5OVmSVLp06WyfT0tLU1pamuNxSkqKT+oCAAAAUHwUmoERMjIy9NRTT6lVq1aqX79+tvOMGzdOMTExjr/KlSv7uEoAAAAARV2h6Q43aNAg/fzzz1q2bJmuu+66bOfJriWocuXKdIcDAAAALK7IdYd74okn9OOPP+r333/PMQBJUmhoqEJDQ31YGQAAAIDixq8hyBijIUOGaNasWVqyZIni4+P9WQ4AAAAAC/BrCBo8eLC++uorzZ49W1FRUTpy5IgkKSYmRuHh4f4sDQAAAEAx5ddrgmw2W7bTJ02apP79++f5eobIBgAAACAVoWuCCsmYDAAAAAAspNAMkQ0AAAAAvkAIAgAAAGAphCAAAAAAllIo7hMEAACsIT3DaPWeUzp2NlWxUWFqEV9agQHZD5QEAN5CCAIAAD4xb0uSRv2QqKTkVMe0CjFhGtmtrjrXr+DHygBYDd3hAACA183bkqRBX65zCkCSdCQ5VYO+XKd5W5L8VBkAKyIEAQAAr0rPMBr1Q6KyuzGGfdqoHxKVnsGtMwD4BiEIAAB41eo9p7K0AGVmJCUlp2r1nlO+KwqApRGCAACAVx07m3MAys98AFBQhCAAAOBVsVFhHp0PAAqKEAQAALyqRXxpVYgJU04DYdt0dZS4FvGlfVkWAAsjBAEAAK8KDLBpZLe6kpQlCNkfj+xWl/sFAfAZQhAAAPC6zvUr6MO+TRQX49zlLS4mTB/2bcJ9ggD4FDdLBQAAPtG5fgV1qhun1XtO6djZVMVGXe0CRwsQAF8jBAEAAJ8JDLCpZY0y/i4DgMXRHQ4AAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFhKkL8LAACrSM8wWr3nlI6dTVVsVJhaxJdWYIDN32UBRQ6fJQAFRQgCAB+YtyVJo35IVFJyqmNahZgwjexWV53rV/BjZUDRwmcJgCfQHQ4AvGzeliQN+nKd00mbJB1JTtWgL9dp3pYkP1UGFC18lgB4CiEIALwoPcNo1A+JMtk8Z5826odEpWdkNwcKKj3DaOWuk5q94ZBW7jrJ+1yE8VkC4El0hwMAL1q951SWX60zM5KSklO1es8ptaxRxneFWQDdpooXPksAPImWIADwomNncz5py898cA3dpoofPksAPIkQBABeFBsV5tH5kDe6TRVPfJYAeBIhCAC8qEV8aVWICVNOg/fadLWLVov40r4sq1hzp9sUig4+SwA8iRAEAF4UGGDTyG51JSnLyZv98chudbnHiQfRbap44rMEwJMIQQDgZZ3rV9CHfZsoLsa5m05cTJg+7NuEi/Q9jG5TxRefJTDiIzyF0eEAwAc616+gTnXjuMu9D9i7TR1JTs32uiCbrp40022qaOKzZF2M+AhPshljimyETklJUUxMjJKTkxUdHe3vcgAAhYR9dDhJTkHIfppMqwEKs/QMQ8i7hv0zfe1JK59pZOZONqAlCABQ7Ni7TV37q3EcvxqjkKO1I6u8Rny06eqIj53qxlk+LMJ1hCAAQLFEtykUNTm1dtjvb2XV1g5ulAtvIAQBAIqtwAAbJ0UoEmjtyBkjPsIbGB0OAADAz7i/Vc4Y8RHeQAgCAADwM1o7csaNcuENhCAAAAA/o7UjZ9woF95ACAIAAPAzb7Z2FIcbjHKjXHgaAyMAAAD4mb21Y9CX62RT9ve3yk9rR3EacpsRH+FJ3CwVAAD4BTcFzcqToYUbjMJquFkqAAAo1IpTC4Uneaq1gyG3vYsAX/QRggAAgE9xU9DceeL+Vla4wai/gggBvnggBAEACoRfROEOWih8o7gPue2vIEKALz4IQQCAfOMXUbjLCi0UhUFxHnLbX0GEAF+8MEQ2ACBf7Cci157Q2k9E5m1J8lNlKMyKewtFYVFcbzCaVxCRrgYRbwwD7k6AR+FHCAIAuM2fJyIo2opzC0VhkvkGoznxxA1GfX0PIn8GEQJ88UJ3OACA2+jShPyyt1AcSU7NNkTbdPUGmEWthaIw6ly/gh5tG69Pl+5R5mwSYJMGtokvcJcxf3SH9WcQIcAXL7QEAQDcxi+iyK/MLRTXtkEU5KagyGreliR98rtzAJIkY6RPft9ToC6reXWHfXfhDq+0DvkziBTXLob55etWQE+jJQgA4DZ+EUVBdK5fQR/2bZKlFSHOi60Ivh7F0N+jJnrzIn5XusO+vfAvxzRPtg75syXRHuAHfblONslp/VYL8MVhUBxCEADAbXRpQkF56qagrvD1CVt264uLDlOfFlVUrWyET0KRN7us5rXsa3ly1DZ/BxF/BPjCprgME04IAgC4zd8nIigePHFT0Lz4+oQtx/WlpHqtdSQ73uyy6u5rPD18tL+DiC8DfGFTnIYJJwQBAPLF3yciQF58fcKW2/qu5e1fzb3ZZTU/r/H0YCn+DiK+CPCFUXEaFIcQBADIN3+fiAC58fUJmzvdxPITwty5zsibXVbzWnZuPDlYilWDiD8Vp0FxCEEAgALhRASFla9P2PLTTczVEObudU3e7LKa27LzwmApRVtxGhSHIbIBACjiivpQtd7i6xO2/C4nr/CU13DUOQ11be+yGhfjXFdcTFiBu+HltOycWG346OKqOA0TTksQAABFWHEYqtZbfD2KYX67ieUWngp6XZM3u6xeu+y9J87r7YU7GCylGCtOg+LQEgQAQBGV3xYCq/D1jVlzW192XPnV3J3rmnKrq2WNMureuJJa1ijj0RPUzMt+smMtfeSllidX0CLqG95sYfQlWoIAACiCitNQtd7k61EMc1pfdoyk+5tXznWeonYhur8GS6FF1LeKw6A4NmNMkY3JKSkpiomJUXJysqKjo/1dDgAAPrNy10n1+XRVnvN9PfBmBq6QeyOreXp9e0+c19er9+tISlq28+Z2ss5+zltO92ay792i1DqBgnEnG9ASBAAodnx9wusPRa2FwN88OYqhK8fXtet74tbr9f6inU43TLXL7Z5BrlxnVDIiuEhciO4NRb1F1ArfVYUVIQgAUKxYpVtMcRqqtigpyPH1zZr92U7P7WTdfp3RY1+uy3G5Zy5c1oLEI8Xq+HZVfu8FVRjCh1W+qworBkYAABQbVhoooDgNVVtUFOT4KsgAB53qxqlkRHCOr7UHqKI6EEBBBjTIT4vovC1Jaj1+kfp8ukpPfrNBfT5dpdbjF/n0+8Fb31UMDuE6WoIAAMVCUe8W467iNFRtUVDQ46sg3RdX7zmlMxcu5/gae4D6fPkelY0KLVLdqgraGuJui2hO1w/l1iXR07z1XeXue1kYWsP8iRAEACgW8tstpijz9chn/ubOSZunT/AKenwVpPuiqwFqzNytjn8XhW5V87YkZdvN79pAktu+dOdeUHmFD8k3P5R447vK3XBHVzxCEACgmLDqQAE5DVUrXR1ZrLj8yuvOSZs3TvAKenwV5Mat+bmuy5ctG/mRnmH03MzN2T6XuTUkI0MaMzfnfelOi+jKXSfzHLY8KTlV/56xUW1qlfPa58bT31XutiwVhtawwoBrggAAxYKVBwqwj0R2Z8OKkqRX5yaq+dgFfr3mwZPcuX7CW9daFPT4KsiNW/O6/is7mVs2XLkuxFPXkri6nPcX7XSpi9/jX+W9L129eaeroWLGukOOz03zsQs1+oc/PXp9jae/q9xpWXK1NcwK1xLREgQAKBYK8ku7L3i7/312rR+ZFdVfed35lVv/79/euC7ME8dXfrsv5tbakRtXu1V5quXM1eWkZxhNWr7H5eVeK7uua67cvDM/P4CcOn9Jny3fq8+W7/VYd7HT5y/lOU+FmDA1rVoqx9bczN8nO46edWm9x86mWrLbcE4IQQCAQs3V8FCYBwrwdv/7nLq3ZFZUB4dwd1S1gp7g5XS8eer4cuVkPafXZRegXJFbC4inuka5upz0DKPPl+/RmYs5twK5Kik5Ve8v2qEnO9aSlPe9oOxB1t33L/P6CvpDQnqG0Zi5iXnOd2fDOLV7Y3G23xmS8nUcxEaF6UjyRZfmLW7dhrNDCEKhZvWRS4oC9hG8yd3wUBgHCsjvSaarn63cWkquVRR/5fXGtV5Hki9m+wt7XsebJ46v/Hxn2l+TdiVDb/ZsJNmkE+fSdOJsmtNgCDk5cTZN6Rkmy3o8NUqZq8vJ7vqegnp74Q7dEBfl0nvvyj2X8mJUsB8S8gr1dp8u3Ztl2pHk1HzVbm+lPH3+kkvHi1Q8uw1fixCEQouRSwo/9pF7rB4Y3d3+/IaH/P7S7g35Pcl057Pl6klVZkXpV15vXOs1Zu5WncrUJalCTJjualRBn/y+J8u+Svp/J54f/b/jrSDHV3b7tXRkiHo0rqhOdeOyXU5ux0L/VvH677I9OXbRy7y9/122J8vx46muUa4u5/Gv8h8+cuNOKOlcv4KGdayltxf+le/1FeSHhCMp+f/s5ecqHfs7clejChr8Ve6txfb5/dlt2JcIQSiUGLmk8GMfucfqgTE/968oyC/UeXWL8ZX8nGS6+9nKT6ApKr/ypmcYZRijkuHBuXafynxT2Nyu27E7dc01GUeSU/Xx77lfo/LczM2O4y2n4yunoJ+eYfT+oh16e+GObGvJ6ZoTV44FV1s2suuWtnzn8TxfJ+V9jPk7VOcUSnLaH0/cWlNfr96nIylp+V6nq93Krq3hhI/fq7iYML3UtY7GzN3qcoiyyv3FCEHFUFH/tdlqNzwsiuxDm7KPXGP1wJif7S8uF++6enI4d/NhSVLTqqXc/v5zJ9DYf+XN7YJrf8ju/60FiUdcvu7hzoZXB0VYveeU7qgfp/8t3+vW+l05OTxz4bLeX7RTT3a8XukZRqt2n9TKXSclGbWsXlbJF692Nbo26N/VqIJmb0hyqQUg8zUnt9Yur+dnbcl1FK/nZ21W90YVXdlEp9f8355Tmr3hcJYwmJPS4SG5Hi97T1xwaTnedO1nLa8fXl6+q54G/b/wmJ8WlnX7T+uuxpWyHaggt2M4Jjw4H2tzz42VS6p/q2qOOtxpLU6oF6cth5IVFRqs5vGl9ce+045talq1lNbsPeV03N9co0yR/X/eZowpsmPgpaSkKCYmRsnJyYqOjvZ3OYVCcfi1eeWuk+rz6ao85/t64M2F+uSnOHt34V/Z/qJ5LfbR1f8YW49flON/QPaT0mX/vrXI/keSm/xu/+wNV4eozcu79zdW98aVPFSt+/L60cnV7zO70pHBOnU+7wvGvx54s+Pk5khKqsb8+KdLr7NJerRtvOZsTMrSJeuV7vV1R8O8r01qWrWU04mROwHq0pUMTVm5V/tOXVDV0hH6W8tqWrTtaJb/t0pGBOc6fHJ22xUREqjzl9Jdfk1+lIwI1qs9Guj57ze7VZ+7YsKDFGCz6bQX11EQcdGhevmueo4WpVavLSpQNy9PyPz/TV4DhQztUFNPdqqlX7Yk6cXZW1z67GTH3pUxJjxEX6/e7/QeuHsMe9o/2sZr+B1XB1Fw9fs0L9mNTFgyIliv3dOg0JxjupMNaAkqRorLr81WveFhUXF1aNO9Ls3LPvJti4YnT1ZzWqa7y8jv9vvynj/uvG+Z59174kKWE59rr+9oEV/arZMhV0/G/rt0l57+doNb1wLldt3LqfOX9PhX69Thj3J6tG0Nx3uwIPGIvr+mxSDAJmW+hUhkSKDa1CqrGyuXUvLFSwqwBahljTK6ubrzL8Rjftyi/y3b57TeV37aqux+inX35NFIXg9A0tW6vHVdS2bJF694fR0FcSQlTY99uU7DOtbS5fR0vweg0pHBaly5pFbuOun4USC3X/jfW7xTH/62U5FhBQsq9q6M2fFnAJKkT5buUa3YKFUsFaHSESEeWWZ27+mZC5edrpkrSghBxURx6kJm5RseFgWr95xyeWhTf+8jb3QNdXeZvgr12bUCX3uyWj4qVA/cVEXVykbmWLt9+46kpGr5jhNakHhEyan//wlZXHSo7m9eRVcyjOzdIexdJo4kX9Sp85dUukSo4qKvLn9h4hGX6l++84RTPXndk0WSwoIC9PuOY8owxnHC7c6Iaqv3nNLCxCOateGQU/iw2eR0Yl46MlivdK8vSXn+apz5+o6r71VlXUjz/Antr9tcu5bDLjosSK92r68nvlmf68nh4u3HtXh77su+9h6K5y+la96Wo5q35ahj2vuLdzr9QnzX+0u16WBKlmUV3b4okFSgwQU86dT5y6o3cl6WYzM3lzP8H1S8yRjpnzM2+Wx9L8/5s0icY2ZGd7hiIj9dyApygujN647s3WfyuiGdvftMbheiulOjp7epqF+blRNXm9VLRgTrjxc7uTz0q6ffp7y6hmbu038lPV07jp3V0bOXFBMWrEfbVFfLmmWztAYsSDyikbO36OjZ//9X8RIhAXrtnobq0rCi03bcUD5Kf/9itXYcO6ezqXn/Qv1S1zoqGxXq1BJxJCVVx1NS9efhZF28nK7m1cqo3y3VFBIU4PTanzYd1uNfrXf7PYoJD9bDreL1xK01cxweuCDCgmxKveL6fzE2m3RdyXCNvLOeQoMCNHX1Ps3782jeL9TV74Xa5SO198R5Xcz0docF2nRT9TK6uXpprd13SgfPpCk0UDpw6qJOF/Jf24uLitGhOlyAC9ABFA3/7lxLj7at6ddzHXeyASHIAwrDya67/ecLcu2QL647yq0/r01ydO3LqZarF6Iedhr5JXMfZm9vkyeXVxiOr8xcDdzDOtbSkx2vz3We7IeLDdbdjSupYw7DxebEuZvS+VyvWbqtdjmt2nNK59Nc7z4TGhSgtCsZ+X7ek8pHBSu+bAkdPH1RV9IzdOSsaxc35yYmLFDJLoQ1AABy48+ucUUuBH3wwQd64403dOTIETVq1EgTJ05UixYt8nxdYQhBhWUgAndagpIvXso2YNhPNXO7diincOLKa9017qdEfbp0j1PzdoBNGtjm6sV+rtwhPTvXfjg9vU2eXF5hOb4yS88wavrKgly7EUSEBGrzywn5ugdMZgUJ5gAAwD/8FYTcyQYBuT7rA9OmTdPTTz+tkSNHat26dWrUqJESEhJ07Ngxf5eWJ/tJ3LUnXvaBCOZtSfJZLfb+8zmdctp09YQyr+FXpavXDqVn07E2r+uOcnutu+ZtSdInv+/J0r/XGOmT3/fop01JLt8h/VrPzdzsqNHT2+TJ5RWm48tdoUG5f7W4eod7V7Y1p/cJAAD4x2NfrvPI+aA3+T0ETZgwQQMHDtSAAQNUt25dffTRR4qIiNBnn33m79Jy5ctA4IrAAJtGdrs6FOK1Qcj+eGS3uvpj32mXR2q6ljujPBWEK+/tS7O35Puk98yFy1q166Qkz2+Tp5ZX2I6vzFbvOZXnxaSnL1zOdRtdvWdBQYI5AADwn29X7vZ3Cbnyawi6dOmS/vjjD3Xs2NExLSAgQB07dtTKlSuzzJ+WlqaUlBSnP3/xVSBwR+f6FfRh3yaKi3EekSsuJszRBasgI1X5apQrV97bky7e4C0nK3efkOT5bfLUfIXx+LLzxDa6c4wUJJgDAAD/GP7DNn+XkCu/DpF94sQJpaenq3z58k7Ty5cvr23bsr5x48aN06hRo3xVXq4K671sOtevoE5143K8kL4gw0/7auhq37xnBX8/vDlfYT2+JM9sY36OkYIEcwAAgMz83h3OHcOHD1dycrLj78CBA36rpTDfyyYwwKaWNcqoe+NKalnD+WZ1rl471CK+dJbnCvJad7j6npWODM6xlrzYhwn39DZ5anmF+fjyxDbmtYzsFCSYAwAAZObXEFS2bFkFBgbq6FHn+0AcPXpUcXFxWeYPDQ1VdHS005+/+CoQeJqr1w5lN6pXQV7rDlffW/vNC91dW6mIYN1c/WoI8vQ2eWp5hfn48sQ2Zl5GXgoSzAEAgH98/1grf5eQK7+GoJCQEDVt2lS//vqrY1pGRoZ+/fVXtWzZ0o+V5c1XgcAbXLl2yBuvdZWr7+0dDStmW0vJiOBclz/ungZO+8XT2+SJ5RX248sT22hfRoWYnFtzChLMAQCA/zSuVtLfJeTK7/cJmjZtmvr166ePP/5YLVq00DvvvKNvv/1W27Zty3Kt0LW4T1DBFOQmnL64gaer7212tSxIPKKX5yTqSIrr+8XT2+SJ5RX248sT22hfxoLEI/p+w2GdyjToRUHuExRgk9MQ6/ZwnHlku9KRIYoJC9KekxeyXW6J0CBdSs/QJRdughodFqSgQJtOnc955LyQQJuCAm26cMl5eTabFF82QnuOX2CkOwBAkbf3ta5+WW+Ru1nq+++/77hZauPGjfXee+/ppptuyvN1hSEESb4JBFZV2IOaLxSX7XCFJ/d306ql9Me+007LkpTt8i9dydCUlXu15+R52STdWLmUKpQMd7xm1a6TWrn7hDKMFGSTPl26WxevXP3qjC8dpu8eb6PSJUIcNRw8dV5zNhzSqj2ndCVDKhUepJ+ebKe4kmFKzzBasfOEvlt3UBcuXVHzamXU75ZqCgkK0KUrGZq8Yq9W7zmpw2cu6PSFS8owNpWJDNZNNcro0mWjKxkZ2nH0nIIDbTp4+qLCgwNVrWyk3uzVWFsOJ2v5jhPaePC0jp1NU3RYsDrVKa86FaK1as9JbTxwRmlXMlS5dITuvrGSMtKN/rt8j3YfP6cSoUFqVCVGl69I51Iv6fi5S9px9KxjO3MSIKluXKSCggJ1/OwlRYQG6oa4KMWEBssWaFOVkhHKkNEf+07rwqV0NagUo+jwIC3deUJJpy/q4pV0hQRIgQEBKh0ZpiplInR3o0oKCg7QsbNpSjpzQT9tStKRlFRdvJSukECbQoIDFR0WrOjwYHWsG6u6cTFavuuE5m1J0tGUVF3OkMKDAtTguhj9vU0N/XU0RbPWH9KJs2kKDw5QUGCAjIxOnL0km82mqNAAXbicrvNpV7c1LNimEmHBqlYmQmcuXFZEcIDOpl1R6hWjy1fSdflKhtKNFBAgBdqk5IvpMkaSTQoMkNLTpdBgm8pEhuhc2hWlpKYrw1xtrcwrTlcrFaZ/d6qtn7cd0bp9Z5RyMU1nLxlHOLbp6jqjQgN0+UqGLqZfnVYmIlipV9J1Ni0jz3UAgLd8/1grv7YAFbkQlF+FJQQBAAAA8C93skGRGh0OAAAAAAqKEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACwlyN8FFIQxRpKUkpLi50oAAAAA+JM9E9gzQm6KdAg6e/asJKly5cp+rgQAAABAYXD27FnFxMTkOo/NuBKVCqmMjAwdPnxYUVFRstls/i7H8lJSUlS5cmUdOHBA0dHR/i4H12D/FG7sn8KLfVO4sX8KL/ZN4VYc948xRmfPnlXFihUVEJD7VT9FuiUoICBA1113nb/LwDWio6OLzYepOGL/FG7sn8KLfVO4sX8KL/ZN4Vbc9k9eLUB2DIwAAAAAwFIIQQAAAAAshRAEjwkNDdXIkSMVGhrq71KQDfZP4cb+KbzYN4Ub+6fwYt8UblbfP0V6YAQAAAAAcBctQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQXAybtw4NW/eXFFRUYqNjVWPHj20fft2p3lSU1M1ePBglSlTRiVKlNC9996ro0ePOs2zf/9+de3aVREREYqNjdWzzz6rK1euOM2zZMkSNWnSRKGhoapZs6Y+//xzb29ekebLfWO3fPlyBQUFqXHjxt7arGLDl/tn6tSpatSokSIiIlShQgU9/PDDOnnypNe3sSjz1P4ZOnSomjZtqtDQ0Gw/F0uWLFH37t1VoUIFRUZGqnHjxpo6dao3N63I89W+ka7eTf7NN99UrVq1FBoaqkqVKmns2LHe2rRiwRP7Z+PGjerTp48qV66s8PBw1alTR++++26WdXFe4D5f7h+7YnNuYIBMEhISzKRJk8yWLVvMhg0bzB133GGqVKlizp0755jnscceM5UrVza//vqrWbt2rbn55pvNLbfc4nj+ypUrpn79+qZjx45m/fr15qeffjJly5Y1w4cPd8yze/duExERYZ5++mmTmJhoJk6caAIDA828efN8ur1Fia/2jd3p06dN9erVze23324aNWrki00s0ny1f5YtW2YCAgLMu+++a3bv3m2WLl1q6tWrZ+6++26fbm9R44n9Y4wxQ4YMMe+//77529/+lu3nYuzYsebFF180y5cvNzt37jTvvPOOCQgIMD/88IO3N7HI8tW+sc9zww03mNmzZ5vdu3ebtWvXmvnz53tz84o8T+yf//3vf2bo0KFmyZIlZteuXWbKlCkmPDzcTJw40TEP5wX546v9Y1eczg0IQcjVsWPHjCTz22+/GWOMOXPmjAkODjbTp093zLN161YjyaxcudIYY8xPP/1kAgICzJEjRxzzfPjhhyY6OtqkpaUZY4z517/+ZerVq+e0rvvuu88kJCR4e5OKDW/tG7v77rvPvPjii2bkyJFF/ovOH7y1f9544w1TvXp1p3W99957plKlSt7epGIlP/snM3c+F3fccYcZMGCAR+q2Am/tm8TERBMUFGS2bdvmtdqtoKD7x+7xxx83HTp0cDzmvMAzvLV/7IrTuQHd4ZCr5ORkSVLp0qUlSX/88YcuX76sjh07OuapXbu2qlSpopUrV0qSVq5cqQYNGqh8+fKOeRISEpSSkqI///zTMU/mZdjnsS8DefPWvpGkSZMmaffu3Ro5cqQvNqVY8tb+admypQ4cOKCffvpJxhgdPXpUM2bM0B133OGrTSsW8rN/CrIu+3qQN2/tmx9++EHVq1fXjz/+qPj4eFWrVk1///vfderUKc9uQDHnqf1z7eeC8wLP8Nb+kYrfuUGQvwtA4ZWRkaGnnnpKrVq1Uv369SVJR44cUUhIiEqWLOk0b/ny5XXkyBHHPJlP4uzP25/LbZ6UlBRdvHhR4eHh3tikYsOb+2bHjh167rnntHTpUgUF8RWRH97cP61atdLUqVN13333KTU1VVeuXFG3bt30wQcfeHmrio/87p/8+Pbbb7VmzRp9/PHHBSnZMry5b3bv3q19+/Zp+vTp+uKLL5Senq5hw4apZ8+eWrRokSc3o9jy1P5ZsWKFpk2bprlz5zqmcV5QcN7cP8Xx3KB4bAW8YvDgwdqyZYuWLVvm71JwDW/tm/T0dD3wwAMaNWqUatWq5dFlW4k3PzuJiYl68sknNWLECCUkJCgpKUnPPvusHnvsMf3vf//z+PqKI199ty1evFgDBgzQp59+qnr16nl1XcWFN/dNRkaG0tLS9MUXXzi+3/73v/+padOm2r59u2644QaPr7O48cT+2bJli7p3766RI0fq9ttv92B18Nb+Ka7nBnSHQ7aeeOIJ/fjjj1q8eLGuu+46x/S4uDhdunRJZ86ccZr/6NGjiouLc8xz7ag99sd5zRMdHc2vPXnw5r45e/as1q5dqyeeeEJBQUEKCgrS6NGjtXHjRgUFBfFrqQu8/dkZN26cWrVqpWeffVYNGzZUQkKC/vOf/+izzz5TUlKSF7eseCjI/nHHb7/9pm7duuntt9/WQw89VNCyLcHb+6ZChQoKCgpyOomrU6eOpKujMiJ3ntg/iYmJuu222/Too4/qxRdfdHqO84KC8eb+KbbnBv6+KAmFS0ZGhhk8eLCpWLGi+euvv7I8b7/AbsaMGY5p27Zty/bi7qNHjzrm+fjjj010dLRJTU01xly9ALJ+/fpOy+7Tpw8XQObCF/smPT3dbN682elv0KBB5oYbbjCbN292Gm0Gznz12bnnnntM7969nZa9YsUKI8kcOnTIG5tWLHhi/2SW20XBixcvNpGRkeb999/3WP3Fma/2zS+//GIkmZ07dzqmbdiwwUgy27dv98zGFEOe2j9btmwxsbGx5tlnn812PZwX5I8v9k9xPTcgBMHJoEGDTExMjFmyZIlJSkpy/F24cMExz2OPPWaqVKliFi1aZNauXWtatmxpWrZs6XjePszv7bffbjZs2GDmzZtnypUrl+0Q2c8++6zZunWr+eCDDxgKMw++2jfXKg4jwPiCr/bPpEmTTFBQkPnPf/5jdu3aZZYtW2aaNWtmWrRo4dPtLWo8sX+MMWbHjh1m/fr15h//+IepVauWWb9+vVm/fr1j9L5FixaZiIgIM3z4cKf1nDx50qfbW5T4at+kp6ebJk2amLZt25p169aZtWvXmptuusl06tTJp9tb1Hhi/2zevNmUK1fO9O3b12kZx44dc8zDeUH++Gr/XKs4nBsQguBEUrZ/kyZNcsxz8eJF8/jjj5tSpUqZiIgIc/fdd5ukpCSn5ezdu9d06dLFhIeHm7Jly5p//vOf5vLly07zLF682DRu3NiEhISY6tWrO60DWfly32RWHL7ofMGX++e9994zdevWNeHh4aZChQrmwQcfNAcPHvTFZhZZnto/7dq1y3Y5e/bsMcYY069fv2yfb9eune82tojx1b4xxphDhw6Ze+65x5QoUcKUL1/e9O/fn4CaB0/sn5EjR2a7jKpVqzqti/MC9/ly/2RWHM4NbMYYk69+dAAAAABQBDEwAgAAAABLIQQBAAAAsBRCEAAAAABLIQQBAAAAsBRCEAAAAABLIQQBAAAAsBRCEAAAAABLIQQBAAAAsBRCEADAK5YsWSKbzaYzZ874uxQAAJwQggAAWfTv3182m002m03BwcGKj4/Xv/71L6Wmpvq7NI/au3evYzttNpuioqJUr149DR48WDt27HB7edWqVdM777zj+UIBAB5FCAIAZKtz585KSkrS7t279fbbb+vjjz/WyJEj/V2WVyxcuFBJSUnauHGjXn31VW3dulWNGjXSr7/+6u/SAABeQAgCAGQrNDRUcXFxqly5snr06KGOHTtqwYIFjuczMjI0btw4xcfHKzw8XI0aNdKMGTNyXeayZcvUpk0bhYeHq3Llyho6dKjOnz/veH7KlClq1qyZoqKiFBcXpwceeEDHjh1zPH/69Gk9+OCDKleunMLDw3X99ddr0qRJjucPHDig3r17q2TJkipdurS6d++uvXv35rmtZcqUUVxcnKpXr67u3btr4cKFuummm/TII48oPT1dkrRr1y51795d5cuXV4kSJdS8eXMtXLjQsYz27dtr3759GjZsmKNlydXtBgD4FiEIAJCnLVu2aMWKFQoJCXFMGzdunL744gt99NFH+vPPPzVs2DD17dtXv/32W7bL2LVrlzp37qx7771XmzZt0rRp07Rs2TI98cQTjnkuX76sMWPGaOPGjfr++++1d+9e9e/f3/H8Sy+9pMTERP3888/aunWrPvzwQ5UtW9bx2oSEBEVFRWnp0qVavny5SpQooc6dO+vSpUtubW9AQICefPJJ7du3T3/88Yck6dy5c7rjjjv066+/av369ercubO6deum/fv3S5Jmzpyp6667TqNHj1ZSUpKSkpJc3m4AgI8ZAACu0a9fPxMYGGgiIyNNaGiokWQCAgLMjBkzjDHGpKammoiICLNixQqn1z3yyCOmT58+xhhjFi9ebCSZ06dPO5579NFHneZfunSpCQgIMBcvXsy2jjVr1hhJ5uzZs8YYY7p162YGDBiQ7bxTpkwxN9xwg8nIyHBMS0tLM+Hh4eaXX37J9jV79uwxksz69euzPLd161YjyUybNi3b1xpjTL169czEiRMdj6tWrWrefvttp3nys90AAO8K8msCAwAUWh06dNCHH36o8+fP6+2331ZQUJDuvfdeSdLOnTt14cIFderUyek1ly5d0o033pjt8jZu3KhNmzZp6tSpjmnGGGVkZGjPnj2qU6eO/vjjD7388svauHGjTp8+rYyMDEnS/v37VbduXQ0aNEj33nuv1q1bp9tvv109evTQLbfc4lj+zp07FRUV5bTe1NRU7dq1y+3tN8ZIkqNb27lz5/Tyyy9r7ty5SkpK0pUrV3Tx4kVHS1BOXNluAIBvEYIAANmKjIxUzZo1JUmfffaZGjVqpP/973965JFHdO7cOUnS3LlzValSJafXhYaGZru8c+fO6R//+IeGDh2a5bkqVaro/PnzSkhIUEJCgqZOnapy5cpp//79SkhIcHRn69Kli/bt26effvpJCxYs0G233abBgwfrzTff1Llz59S0aVOnsGFXrlw5t7d/69atkqT4+HhJ0jPPPKMFCxbozTffVM2aNRUeHq6ePXvm2dUur+0GAPgeIQgAkKeAgAA9//zzevrpp/XAAw+obt26Cg0N1f79+9WuXTuXltGkSRMlJiY6gtW1Nm/erJMnT+q1115T5cqVJUlr167NMl+5cuXUr18/9evXT23atNGzzz6rN998U02aNNG0adMUGxur6Ojo/G+srg768N577yk+Pt7RsrV8+XL1799fd999t6Sr4ebaQRdCQkIcAym4ut0AAN9jYAQAgEt69eqlwMBAffDBB4qKitIzzzyjYcOGafLkydq1a5fWrVuniRMnavLkydm+/t///rdWrFihJ554Qhs2bNCOHTs0e/ZsxwABVapUUUhIiCZOnKjdu3drzpw5GjNmjNMyRowYodmzZ2vnzp36888/9eOPPzq6kz344IMqW7asunfvrqVLl2rPnj1asmSJhg4dqoMHD+a6bSdPntSRI0cc6+3YsaNWr16t//3vfwoMDJQkXX/99Zo5c6Y2bNigjRs36oEHHnB017OrVq2afv/9dx06dEgnTpxwabsBAL5HCAIAuCQoKEhPPPGEXn/9dZ0/f15jxozRSy+9pHHjxqlOnTrq3Lmz5s6d6+g+dq2GDRvqt99+019//aU2bdroxhtv1IgRI1SxYkVJV1t4Pv/8c02fPl1169bVa6+9pjfffNNpGSEhIRo+fLgaNmyotm3bKjAwUN98840kKSIiQr///ruqVKmie+65R3Xq1NEjjzyi1NTUPFuGOnbsqAoVKqhBgwZ67rnnVKdOHW3atEkdOnRwzDNhwgSVKlVKt9xyi7p166aEhAQ1adLEaTmjR4/W3r17VaNGDUcXvLy2GwDgezZjv/ITAAAAACyAliAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlvL/AYMMB76REaFVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Преобразуем дату выпуска в формат datetime\n", + "df['Release_date'] = pd.to_datetime(df['Release_date'])\n", + "\n", + "# Визуализация данных\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(df['Release_date'], df['Review_no'])\n", + "plt.xlabel('Release Date')\n", + "plt.ylabel('Review Number')\n", + "plt.title('Scatter Plot of Review Number vs Release Date')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "При проверке на шум можно заметить выброс в 2014 году. количество обзоров там запредельное. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Все выбросы удалены путём определения порогов квантилями. Зашумленность не очень высокая. Покрытие данных высокое и подошло бы для поставленной задачи по актуальности." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Выбросы:\n", + " Name Price Release_date Review_no \\\n", + "18 GUNDAM BREAKER 4 59.99 2024-08-29 1846.0 \n", + "22 LOCKDOWN Protocol 5.49 2024-07-22 2192.0 \n", + "34 CarX Street 19.99 2024-08-29 4166.0 \n", + "45 Harry Potter: Quidditch Champions 25.99 2024-09-03 1216.0 \n", + "61 SMITE 2 18.00 2024-08-27 1633.0 \n", + "... ... ... ... ... \n", + "7695 Dude Simulator 2 2.99 2018-07-28 1734.0 \n", + "7717 Golfing Over It with Alva Majo 2.39 2018-03-28 1367.0 \n", + "7740 Dungeon Siege II 4.99 2005-08-16 2274.0 \n", + "7765 Phantom Doctrine 12.99 2018-08-14 3538.0 \n", + "7768 NECROPOLIS: BRUTAL EDITION 19.99 2016-07-12 3668.0 \n", + "\n", + " Review_type Tags \\\n", + "18 Very Positive Action,Robots,Hack and Slash,RPG,Mechs,Action ... \n", + "22 Very Positive Multiplayer,Social Deduction,Conversation,Acti... \n", + "34 Mixed Racing,Open World,Automobile Sim,PvP,Multiplay... \n", + "45 Mostly Positive Action,Sports,Flight,Arcade,Third Person,Magic... \n", + "61 Mixed Action,MOBA,Third Person,Strategy,Adventure,Ca... \n", + "... ... ... \n", + "7695 Mixed Life Sim,Indie,Simulation,Racing,Action,Advent... \n", + "7717 Mostly Positive Difficult,Physics,Golf,Platformer,Precision Pl... \n", + "7740 Mostly Positive RPG,Fantasy,Action RPG,Hack and Slash,Singlepl... \n", + "7765 Mostly Positive Turn-Based Tactics,Strategy,Cold War,Stealth,R... \n", + "7768 Mixed Souls-like,Action Roguelike,Co-op,Adventure,Ro... \n", + "\n", + " Description \n", + "18 Create your own ultimate Gundam in the newest ... \n", + "22 A first person social deduction game, combinin... \n", + "34 Conquer mountain roads, highways, and city str... \n", + "45 Your next chapter takes flight! Immerse yourse... \n", + "61 Become a god and wage war in SMITE 2, the Unre... \n", + "... ... \n", + "7695 Dude Simulator 2 is an open world sandbox game... \n", + "7717 The higher you climb, the bigger the fall. \n", + "7740 NaN \n", + "7765 The year is 1983. The world teeters on the ver... \n", + "7768 NECROPOLIS: BRUTAL EDITION is a major update f... \n", + "\n", + "[1049 rows x 7 columns]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIjCAYAAAD1OgEdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde3yO9f/HX/c9O7OTYSNsZmKGIafm3EQUJWmoUD/0DUUnVEQq6YTim1Kpr1M6EEUra/o6zSEMM9Vo4xsbbbONbbbZff3+mOvuPlyHz3W4T/N+Ph4eD7vv6/C5Ptfnuu7P+/N+v19vA8dxHAiCIAiCIAiCIAhdMbq6AQRBEARBEARBEHURMrYIgiAIgiAIgiAcABlbBEEQBEEQBEEQDoCMLYIgCIIgCIIgCAdAxhZBEARBEARBEIQDIGOLIAiCIAiCIAjCAZCxRRAEQRAEQRAE4QDI2CIIgiAIgiAIgnAAZGwRBEEQBEEQBEE4ADK2CMLDyM3NhcFgwGeffebqpliRkpKChIQE+Pn5wWAwoLi42NVNsuOzzz6DwWBAbm6uq5vitsyfPx8GgwEFBQWubopHwfcb4Rq+/PJLhIWF4erVq6r2v3jxIkaNGoWGDRvCYDBg6dKl+jawDjBhwgRERUVZfWYwGDB//nzz3zfjO1bo2Y+KisKECROc3paVK1eiRYsWqKysdPq5CXHI2CLchhMnTmDUqFFo2bIl/Pz80KxZMwwaNAjvv/++w865fv16wR/VCxcuYP78+cjIyHDYuW355ZdfYDAYzP+8vb3RqlUrPPLII/jzzz91Oce+ffswf/583Q2hwsJCjB49Gv7+/lixYgXWrFmDwMBAwW35H2P+X7169dCsWTNMmDAB58+f17Vd7sqECRNgMBjQsWNHcBxn973BYMC0adNc0LKbA77/+X++vr5o06YN5s2bh2vXrrm6eS7D9h3k6+uLJk2aoH///nj99dfx999/qz52VlYW5s+f75BJeE1NDV5++WVMnz4d9evXF/y+adOmMBgM+OGHHwSPMXPmTPz444+YM2cO1qxZgyFDhmD79u1WhoQzmDBhguA18NC7QZ69e/fivvvuQ5MmTeDr64uoqChMmTIF586dU33M8vJyzJ8/H7/88ot+DXUAEyZMQFVVFT788ENXN4WwgIwtwi3Yt28fbrvtNhw7dgyTJk3C8uXL8X//938wGo1YtmyZw84rZWwtWLDAqcYWz5NPPok1a9bgo48+wrBhw7Bx40Z069YNFy5c0Hzsffv2YcGCBbobW4cOHcKVK1ewcOFCPPbYY3jooYfg7e0tuc8rr7yCNWvWYOXKlbjrrruwdu1a9OvXz6GT3YcffhgVFRVo2bKlw86hhBMnTmDTpk2ubsZNia+vL9asWYM1a9bg3XffRVRUlHn83uxYvoOee+45hIWF4eWXX0a7du2Qlpam6phZWVlYsGCBQ4yt7777Dr///jsmT54s+H1aWhry8vIQFRWFdevWiW4zYsQIPPvss3jooYfQtm1bbN++HQsWLNC9vXUZV79j33//ffTp0wcnTpzA9OnT8e9//xujRo3Cxo0b0bFjR+zbt0/VccvLy7FgwQJmY+v333/HqlWrVJ1LC35+fhg/fjzeffddwYU8wjXUc3UDCAIAXnvtNQQHB+PQoUMICQmx+u7SpUuuaZQDKCsrE/X48PTp0wejRo0CAEycOBFt2rTBk08+ic8//xxz5sxxRjMVw98j23snxV133YXbbrsNAPB///d/CA8Px+LFi7F161aMHj3aEc2El5cXvLy8HHJspfj7+6N58+Z45ZVXMHLkyJsuBK28vBwBAQEuO3+9evXw0EMPmf9+4okncPvtt2PDhg1499130aRJE5e1zdVYvoN4jh07hjvvvBP3338/srKyEBkZ6aLW2bN69WokJiaiWbNmgt+vXbsWXbp0wfjx4/HCCy8IvocvXbqk6P2lFo7jcO3aNfj7+zv8XK7Ale/YvXv3YsaMGejduzdSUlKs3i//+te/kJiYiFGjRuHkyZMIDQ11aFt8fX11O9b169dhMpng4+PDtP3o0aPx5ptvYufOnRg4cKBu7SDUQ54twi04c+YM2rdvL/hj17hxY7vP1q5di+7duyMgIAChoaHo27cvfvrpJ/P3W7ZswbBhw9C0aVP4+voiJiYGCxcuRE1NjXmb/v37Y9u2bTh79qw5bCYqKgq//PILunXrBqDW2OG/s8yROnDgAIYMGYLg4GAEBASgX79+2Lt3r1Ub+TjurKwsjB07FqGhoejdu7fivuFfljk5OZLbpaWloU+fPggMDERISAhGjBiBU6dOWbXnueeeAwBER0ebr0tupfmrr75C165d4e/vj/DwcDz00ENW4X79+/fH+PHjAQDdunWDwWBQFavep08fALVjwZLffvsNo0aNQlhYGPz8/HDbbbdh69at5u9//fVXGAwGfP7553bH/PHHH2EwGPD9998DEM8n+OGHH8x916BBAwwbNgwnT540f79161YYDAYcP37c/Nk333wDg8GAkSNHWh2rXbt2ePDBB2Wv12g04qWXXsLx48exefNmyW3F2s2HfVmutvbv3x/x8fE4fvw4+vXrh4CAALRu3Rpff/01AOC///0vevToAX9/f9x6661ITU0VPGdBQQFGjx6NoKAgNGzYEE899ZSg13Ht2rXm8REWFobk5GT873//s9qGb9Phw4fRt29fBAQE4IUXXhA879tvvw2DwYCzZ8/afTdnzhz4+Pjg8uXLAIDs7Gzcf//9iIiIgJ+fH2655RYkJyejpKREtC/FMBgM6N27NziOswvblRsfUrD0z+7du/HAAw+gRYsW8PX1RfPmzTFz5kxUVFRYbZefn4+JEyfilltuga+vLyIjIzFixAjF41kNnTp1wtKlS1FcXIzly5ebPz979iyeeOIJ3HrrrfD390fDhg3xwAMPWLXps88+wwMPPAAAGDBggPndYzlu1bb52rVrSElJQVJSkuD3FRUV2Lx5M5KTkzF69GhUVFRgy5YtVm0zGAzgOA4rVqwwt23ChAlYsWIFAFiFVvKYTCYsXboU7du3h5+fH5o0aYIpU6aYxyZPVFQU7r77bvz444+47bbb4O/vr2uIV1VVFebNm4euXbsiODgYgYGB6NOnD3bu3Gm1HZ/r+/bbb+Ojjz5CTEwMfH190a1bNxw6dMjuuN9++y3i4+Ph5+eH+Ph42XcUj9C7iu+DPXv2oHv37vDz80OrVq3wn//8x25//r3l7++PW265Ba+++ipWr17N9Fu1cOFC82+B7UJOTEwM3nzzTeTl5Vn1f//+/dG/f3+7Y1nmp+Xm5qJRo0YAgAULFpjHglSIqVDOVnFxMWbMmIHmzZvD19cXrVu3xuLFi2EymczbWN6npUuXmu9TVlYWgFrPXfv27c1zn9tuuw3r16+3Ok/Xrl0RFhZmNc4J10LGFuEWtGzZEocPH0ZmZqbstgsWLMDDDz8Mb29vvPLKK1iwYAGaN29uFd7y2WefoX79+nj66aexbNkydO3aFfPmzcPs2bPN27z44otISEhAeHi4OZxo6dKlaNeuHV555RUAwOTJk83f9e3bF0CtUdO3b1+Ulpbi5Zdfxuuvv47i4mIMHDgQBw8etGvvAw88gPLycrz++uuYNGmS4r7hjY+GDRuKbpOamorBgwfj0qVLmD9/Pp5++mns27cPiYmJ5h+okSNHYsyYMQCAJUuWmK+L/xER4rPPPsPo0aPh5eWFRYsWYdKkSdi0aRN69+5tDkV88cUXzeE7fGjglClTFF8n307LFceTJ0+iZ8+eOHXqFGbPno133nkHgYGBuPfee80//rfddhtatWqFL7/80u6YGzduRGhoKAYPHix63jVr1mDYsGGoX78+Fi9ejLlz5yIrKwu9e/c2t6l3794wGAzYtWuXeb/du3fDaDRiz5495s/+/vtv/Pbbb+axIsfYsWMRGxuLV155RdeQj8uXL+Puu+9Gjx498Oabb8LX1xfJycnYuHEjkpOTMXToULzxxhsoKyvDqFGjcOXKFbtjjB49GteuXcOiRYswdOhQvPfee3ZhWq+99hoeeeQRxMbG4t1338WMGTPw888/o2/fvnahqoWFhbjrrruQkJCApUuXYsCAAYJtHz16NAwGg+D9/PLLL3HnnXciNDQUVVVVGDx4MPbv34/p06djxYoVmDx5Mv7880/VYbJCY5BlfIjB2j9fffUVysvL8a9//Qvvv/8+Bg8ejPfffx+PPPKI1fHuv/9+bN68GRMnTsS///1vPPnkk7hy5YpVLoqW9soxatQo+Pv7Wy1sHTp0CPv27UNycjLee+89PP744/j555/Rv39/lJeXAwD69u2LJ598EgDwwgsvmN897dq109zmw4cPo6qqCl26dBH8fuvWrbh69SqSk5MRERGB/v37W4US9u3bF2vWrAEADBo0yNy2KVOmYNCgQeb28f94pkyZgueeew6JiYlYtmwZJk6ciHXr1mHw4MGorq62asPvv/+OMWPGYNCgQVi2bBkSEhJk+7qgoEDwny2lpaX4+OOP0b9/fyxevBjz58/H33//jcGDBwuGwa9fvx5vvfUWpkyZgldffRW5ubkYOXKkVZt/+ukn3H///TAYDFi0aBHuvfdeTJw4Eb/++qtsu8U4ffo0Ro0ahUGDBuGdd95BaGgoJkyYYGVQnz9/HgMGDMDJkycxZ84czJw5E+vWrWNKJSgvL8fPP/+MPn36IDo6WnCbBx98EL6+vubFN1YaNWqEDz74AABw3333mceC7UKbXPv69euHtWvX4pFHHsF7772HxMREzJkzB08//bTd9qtXr8b777+PyZMn45133kFYWBhWrVqFJ598EnFxcVi6dCkWLFiAhIQEHDhwwG7/Ll262C0AEy6EIwg34KeffuK8vLw4Ly8vrlevXtzzzz/P/fjjj1xVVZXVdtnZ2ZzRaOTuu+8+rqamxuo7k8lk/n95ebndOaZMmcIFBARw165dM382bNgwrmXLlnbbHjp0iAPArV692u4csbGx3ODBg+3OFx0dzQ0aNMj82csvv8wB4MaMGcPUBzt37uQAcJ9++in3999/cxcuXOC2bdvGRUVFcQaDgTt06BDHcRyXk5Nj17aEhASucePGXGFhofmzY8eOcUajkXvkkUfMn7311lscAC4nJ0e2PVVVVVzjxo25+Ph4rqKiwvz5999/zwHg5s2bZ/5s9erVHABzG6Xgt01NTeX+/vtv7n//+x/39ddfc40aNeJ8fX25//3vf+Zt77jjDq5Dhw5W98xkMnG33347Fxsba/5szpw5nLe3N1dUVGT+rLKykgsJCeEeffRRu3Pz13/lyhUuJCSEmzRpklUb8/PzueDgYKvP27dvz40ePdr8d5cuXbgHHniAA8CdOnWK4ziO27RpEweAO3bsmGQfjB8/ngsMDOQ4juM+//xzDgC3adMm8/cAuKlTp4q2m4cfMzt37jR/1q9fPw4At379evNnv/32GweAMxqN3P79+82f//jjj3ZjiR+3w4cPtzrXE088YXVtubm5nJeXF/faa69ZbXfixAmuXr16Vp/zbVq5cqVkv/D06tWL69q1q9VnBw8e5ABw//nPfziO47ijR49yALivvvqK6ZiW8P3/999/c3///Td3+vRp7u233+YMBgMXHx9vfraVjA++33iU9I/Q+2rRokWcwWDgzp49y3Ecx12+fJkDwL311lui16WkvULw40mqTzt16sSFhoZKtj09Pd3qXnEcx3311Vd2Y1WPNn/88cccAO7EiROC3999991cYmKi+e+PPvqIq1evHnfp0iWr7WyfOY7juKlTp3JC06Tdu3dzALh169ZZfZ6SkmL3ecuWLTkAXEpKiuR18IwfP54DIPnPsp3Xr1/nKisrrY5x+fJlrkmTJlbvPv53o2HDhlbvyS1btnAAuO+++878WUJCAhcZGckVFxebP/vpp584AHa/lwC4l19+2fy30LuK74Ndu3aZP7t06RLn6+vLPfPMM+bPpk+fzhkMBu7o0aPmzwoLC7mwsDDZ362MjAwOAPfUU0+JbsNxHNexY0cuLCzM/He/fv24fv362W03fvx4q2v9+++/7a6Vx/bZ57jaax4/frz574ULF3KBgYHcH3/8YbXd7NmzOS8vL+7cuXMcx/1zn4KCguzG6IgRI7j27dtLXh/P5MmTOX9/f6ZtCcdDni3CLRg0aBDS09MxfPhwHDt2DG+++SYGDx6MZs2aWYWMffvttzCZTJg3bx6MRuvhaxniYRkPf+XKFRQUFKBPnz4oLy/Hb7/9prqdGRkZyM7OxtixY1FYWGhebSwrK8Mdd9yBXbt2WYUEAMDjjz+u6ByPPvooGjVqhKZNm2LYsGEoKyvD559/bs5vsiUvLw8ZGRmYMGECwsLCzJ937NgRgwYNwvbt25VfKGrD8y5duoQnnngCfn5+5s+HDRuGtm3bYtu2baqOy5OUlIRGjRqhefPmGDVqFAIDA7F161bccsstAICioiKkpaVh9OjR5ntYUFCAwsJCDB48GNnZ2eZwxgcffBDV1dVWYhM//fQTiouLJUP6duzYgeLiYowZM8Zq9djLyws9evSwCsXp06cPdu/eDaB2TB07dgyTJ09GeHi4+fPdu3cjJCQE8fHxzP0wbtw43b1b9evXR3JysvnvW2+9FSEhIWjXrh169Ohh/pz/v5Da5dSpU63+nj59OgCYx9OmTZtgMpkwevRoq76LiIhAbGysXRiTr68vJk6cyNT+Bx98EIcPH7YKKd24cSN8fX0xYsQIAEBwcDCA2lBR3oOihLKyMjRq1AiNGjVC69at8eyzzyIxMRFbtmwxv0uUjA9blPSP5fuqrKwMBQUFuP3228FxHI4ePWrexsfHB7/88otdqBqPlvayUr9+fStPqGXbq6urUVhYiNatWyMkJARHjhyRPZ7WNhcWFgKAYA5OYWEhfvzxR7NHH4DZYyPkOWXlq6++QnBwMAYNGmTV5q5du6J+/fp2bY6Ojpb0rtvi5+eHHTt2CP6zxcvLy5zLYzKZUFRUhOvXr+O2224T7P8HH3zQqq/48G3+HcD/nowfP978jAG1v9FxcXHM12BLXFyc+VxArbfo1ltvtXr3pKSkoFevXlaev7CwMIwbN072+PyYbNCggeR2DRo0QGlpqcLWa+err75Cnz59EBoaajVmkpKSUFNTYxU1AdSOU9uok5CQEPz111+CYZ+2hIaGoqKiQtW7kdAfEsgg3IZu3bph06ZNqKqqwrFjx7B582YsWbIEo0aNQkZGBuLi4nDmzBkYjUbZl/7Jkyfx0ksvIS0tze7Fqiafgyc7OxsAzDlKQpSUlFj9mImFNIgxb9489OnTB15eXggPD0e7du1Qr574o8rnttx6661237Vr1w4//vgjkzCHkuO2bdvWKnxODStWrECbNm1QUlKCTz/9FLt27bJKKj59+jQ4jsPcuXMxd+5cwWNcunQJzZo1Q6dOndC2bVts3LjRrCa3ceNGhIeHSyYI8/dTbJugoCDz//v06YOVK1fi9OnTOHPmDAwGA3r16mU2wiZNmoTdu3cjMTHRbiFACi8vL7z00ksYP348vv32W9x3333M+4pxyy232AluBAcHo3nz5nafARCcvMfGxlr9HRMTA6PRaA7rys7OBsdxdtvx2KpRNmvWjDnB+4EHHsDTTz+NjRs34oUXXgDHcfjqq69w1113me9JdHQ0nn76abz77rtYt24d+vTpg+HDh+Ohhx6ymiSK4efnh++++w4A8Ndff+HNN9/EpUuXrIwHJePDFiX9c+7cOcybNw9bt261uxf8+8rX1xeLFy/GM888gyZNmqBnz564++678cgjjyAiIkJze1m5evWq1YS2oqICixYtwurVq3H+/HmrBQOWd61ebRZaqNi4cSOqq6vRuXNnnD592vx5jx49sG7dOrsFBVays7NRUlIimE8M2Is6Kf0N8PLyEs1BE+Lzzz/HO++8g99++80qHFDovC1atLD6m/+t4scd/94XGre33norkwEthO15+XNbjvezZ8+iV69edtu1bt1a9vj8mBQKibbkypUrsgaZI8jOzsbx48dFw/ZZxsysWbOQmpqK7t27o3Xr1rjzzjsxduxYJCYm2m3LPw83m/CSu0LGFuF2+Pj4oFu3bujWrRvatGmDiRMn4quvvsLLL7/MtH9xcTH69euHoKAgvPLKK4iJiYGfnx+OHDmCWbNm2XmelMDv+9Zbb4nG3dvWSFGqOtWhQwdFP7SeSvfu3c3eunvvvRe9e/fG2LFj8fvvv6N+/frmvn722WdFV4Utf4QffPBBvPbaaygoKECDBg2wdetWjBkzRtJQ5c+xZs0a84TVEst9eXGTXbt24c8//0SXLl3Myejvvfcerl69iqNHj+K1115T2BO13q2FCxfilVdewb333mv3vdgPpqXgiyViamBin7N41GzbYDKZzHWLhI6r5Tlo2rQp+vTpgy+//BIvvPAC9u/fj3PnzmHx4sVW273zzjuYMGECtmzZgp9++glPPvkkFi1ahP3795s9pGLYTmgHDx6Mtm3bYsqUKWZvupLxYQtr/9TU1GDQoEEoKirCrFmz0LZtWwQGBuL8+fOYMGGC1ftqxowZuOeee/Dtt9/ixx9/xNy5c7Fo0SKkpaWhc+fOmtrLQnV1Nf744w8rz+306dOxevVqzJgxA7169UJwcDAMBgOSk5OZ3rVa28znsl6+fNnunvO5WUKTUaDWm9OqVSvZNgq1uXHjxqIy8rYTakcqD65duxYTJkzAvffei+eeew6NGzc259jaig0B2t4BWnD0eVu3bo169epZiRjZUllZid9//90qSoQXR7FF7N2qFpPJhEGDBuH5558X/L5NmzZWfwuNmXbt2uH333/H999/j5SUFHzzzTf497//jXnz5tmVKLh8+TICAgLqrOqlp0HGFuHW8C/FvLw8ALWr6yaTCVlZWaLGzi+//ILCwkJs2rTJSqhASM1PbBIr9nlMTAyA2tVWdzGI+Homv//+u913v/32G8LDw81eLSWrXJbHtV11/v3333Wto8JPDgYMGIDly5dj9uzZ5kmQt7c3U18/+OCDWLBgAb755hs0adIEpaWlVqF0QvD3s3HjxrLnaNGiBVq0aIHdu3fjzz//NIfE9O3bF08//TS++uor1NTUMItjWMJ7t3jDwRZ+9dlW+EFIsU8vsrOzrVZXT58+DZPJZFboiomJAcdxiI6Otpso6MGDDz6IJ554Ar///js2btyIgIAA3HPPPXbbdejQAR06dMBLL71kFoVZuXIlXn31VUXni4yMxMyZM7FgwQLs378fPXv2VDQ+bGHtnxMnTuCPP/7A559/biWIIRQyxh/3mWeewTPPPIPs7GwkJCTgnXfewdq1azW1l4Wvv/4aFRUVVosfX3/9NcaPH4933nnH/Nm1a9fsxqrcO1Vtm9u2bQug9v3eoUMH8+c5OTnYt28fpk2bhn79+lntYzKZ8PDDD2P9+vV46aWXRI8t1ebU1FQkJia6fDL79ddfo1WrVti0aZNVe1kXJ23h3+u8x9ESod8YPWnZsqWVB5JH6DNbAgMDMWDAAKSlpeHs2bOCv09ffvklKisrcffdd5s/Cw0NFQyjtn23avUQxcTE4OrVq5qfy8DAQDz44IN48MEHUVVVhZEjR+K1117DnDlzrML9c3JyzAI0hOuhnC3CLdi5c6fg6hKfH8KHst17770wGo145ZVX7FZN+f35FTTL41VVVeHf//633fEDAwMFQ11448R2wtC1a1fExMTg7bffxtWrV+32+/vvv0Wv0VFERkYiISEBn3/+uVV7MzMz8dNPP2Ho0KHmz8SuS4jbbrsNjRs3xsqVK1FZWWn+/IcffsCpU6cwbNgw3a4BqJXg7d69O5YuXYpr166hcePG6N+/Pz788EOzsW2JbV+3a9cOHTp0wMaNG7Fx40ZERkbKGj6DBw9GUFAQXn/9dTsFMaFz9OnTB2lpaTh48KDZ2EpISECDBg3wxhtvwN/fH127dlV66QCAhx56CK1btxYsospPSC3j+mtqavDRRx+pOhcLvOw1z/vvvw+gtj4aUKtu6eXlhQULFtg9uxzHmXNp1HL//ffDy8sLGzZswFdffYW7777bKhS2tLQU169ft9qnQ4cOMBqNVuNVCdOnT0dAQADeeOMNAMrHhyWs/SP0vuI4zk6Brby83E56PyYmBg0aNDBfr5b2ynHs2DHMmDEDoaGhVuF3Xl5edtf3/vvv23kGxN49WtvctWtX+Pj42Cnl8V6n559/HqNGjbL6N3r0aPTr10/UMyXX5tGjR6OmpgYLFy602+f69eu6F42XQmj8HDhwAOnp6aqOZ/l7YvnbuGPHDrP8uKMYPHgw0tPTrVQUi4qKZO8Tz0svvQSO4zBhwgS7sgk5OTl4/vnnERkZaaWWGxMTg99++81qnB07dsxOyY+Xkld7b0ePHo309HT8+OOPdt8VFxfbvcuEsH2n+vj4IC4uDhzH2T07R44cwe23366qrYT+kGeLcAumT5+O8vJy3HfffWjbti2qqqqwb98+bNy4EVFRUebE+tatW+PFF1/EwoUL0adPH4wcORK+vr44dOgQmjZtikWLFuH2229HaGgoxo8fjyeffBIGgwFr1qwRNOa6du2KjRs34umnn0a3bt1Qv3593HPPPYiJiUFISAhWrlyJBg0aIDAwED169EB0dDQ+/vhj3HXXXWjfvj0mTpyIZs2a4fz589i5cyeCgoLMeSDO5K233sJdd92FXr164bHHHkNFRQXef/99BAcHW9UC4Q2BF198EcnJyfD29sY999wjmM/l7e2NxYsXY+LEiejXrx/GjBmDixcvYtmyZYiKisLMmTN1v47nnnsODzzwAD777DM8/vjjWLFiBXr37o0OHTpg0qRJaNWqFS5evIj09HT89ddfOHbsmNX+Dz74IObNmwc/Pz889thjsrlTQUFB+OCDD/Dwww+jS5cuSE5ORqNGjXDu3Dls27YNiYmJVjWF+vTpg3Xr1plrMgG1k53bb78dP/74I/r378+cl2SLl5cXXnzxRUERifbt26Nnz56YM2cOioqKEBYWhi+++ILpB1otOTk5GD58OIYMGYL09HSsXbsWY8eORadOnQDUTlJeffVVzJkzB7m5ubj33nvRoEED5OTkYPPmzZg8eTKeffZZ1edv3LgxBgwYgHfffRdXrlyxEzpJS0vDtGnT8MADD6BNmza4fv061qxZAy8vL9x///2qztmwYUOzrPqpU6fQrl07RePDEtb+adu2LWJiYvDss8/i/PnzCAoKwjfffGOXu/XHH3/gjjvuwOjRoxEXF4d69eph8+bNuHjxotmDq3Q8i7F7925cu3YNNTU1KCwsxN69e7F161YEBwdj8+bNVuF+d999N9asWYPg4GDExcUhPT0dqampdqUqEhIS4OXlhcWLF6OkpAS+vr4YOHAgGjdurKnNfn5+uPPOO5Gammou2QHUGlsJCQl2eYo8w4cPx/Tp03HkyBFR2Xj+ffnkk09i8ODB8PLyQnJyMvr164cpU6Zg0aJFyMjIwJ133glvb29kZ2fjq6++wrJly+yKQjuKu+++G5s2bcJ9992HYcOGIScnBytXrkRcXJzggiALixYtwrBhw9C7d288+uijKCoqMtd3UntMFp5//nmsXbsWgwYNwvTp0xEYGIiPP/4YLVq0QFFRkax3qW/fvnj77bfx9NNPo2PHjpgwYQIiIyPx22+/YdWqVTCZTNi+fbtVTvWjjz6Kd999F4MHD8Zjjz2GS5cuYeXKlWjfvr1Vvre/vz/i4uKwceNGtGnTBmFhYYiPj2cWQ3ruueewdetW3H333ZgwYQK6du2KsrIynDhxAl9//TVyc3MRHh4ueYw777wTERERSExMRJMmTXDq1CksX74cw4YNs8pDO3z4MIqKisxiQoQb4BTNQ4KQ4YcffuAeffRRrm3btlz9+vU5Hx8frnXr1tz06dO5ixcv2m3/6aefcp07d+Z8fX250NBQrl+/ftyOHTvM3+/du5fr2bMn5+/vzzVt2tQsJQ8b6eGrV69yY8eO5UJCQuxkbbds2cLFxcVx9erVs5PHPnr0KDdy5EiuYcOGnK+vL9eyZUtu9OjR3M8//2zehpeD/fvvv5n6gEV2meOEpd85juNSU1O5xMREzt/fnwsKCuLuueceLisry27/hQsXcs2aNeOMRiOTDPzGjRvNfR0WFsaNGzeO++uvv6y2USP9LrRtTU0NFxMTw8XExHDXr1/nOI7jzpw5wz3yyCNcREQE5+3tzTVr1oy7++67ua+//tpu/+zsbLM88p49e0TPLSShPnjwYC44OJjz8/PjYmJiuAkTJnC//vqr1XYnT57kAHDt2rWz+vzVV1/lAHBz586VvX6Os5Z+t6S6upqLiYkRlKE+c+YMl5SUxPn6+nJNmjThXnjhBW7Hjh2C0u9C8sAtW7bkhg0bZve57bn4cZuVlcWNGjWKa9CgARcaGspNmzbNqgQAzzfffMP17t2bCwwM5AIDA7m2bdtyU6dO5X7//XfZNsmxatUqDgDXoEEDu3P/+eef3KOPPsrFxMRwfn5+XFhYGDdgwAAuNTVV9rhi/c9xtf3s5eVlJdvMMj6E5J85jq1/srKyuKSkJK5+/fpceHg4N2nSJO7YsWNWz3lBQQE3depUrm3btlxgYCAXHBzM9ejRg/vyyy/tzsk6noX2458fAJy3tzfXqFEjrm/fvtxrr71mJ0XNcbUy4xMnTuTCw8O5+vXrc4MHD+Z+++03O+lrjqu9n61ateK8vLzsxq3aNnNcbckFg8Fgls8+fPiw7POYm5vLAeBmzpzJcZyw9Pv169e56dOnc40aNeIMBoPd/f3oo4+4rl27cv7+/lyDBg24Dh06cM8//zx34cIF8zZiz50YUmNTqJ0mk4l7/fXXuZYtW3K+vr5c586due+//95Oupz/3RAqHQABSfNvvvmGa9euHefr68vFxcVxmzZtsjum0L5i0u9CfSAku3706FGuT58+nK+vL3fLLbdwixYt4t577z0OAJefny/aL5bs2rWLGzFiBBceHs55e3tzLVq04CZNmsTl5uYKbr927VquVatWnI+PD5eQkMD9+OOPgte6b98+rmvXrpyPj4/VdbNIv3NcbZmDOXPmcK1bt+Z8fHy48PBw7vbbb+fefvttc5kbqfv04Ycfcn379jXPO2JiYrjnnnuOKykpsdpu1qxZXIsWLazK0xCuxcBxDs6KJAiCIAiCcBA1NTWIi4vD6NGjBUP7CM9mxowZ+PDDD3H16lVRoQ2ilsrKSkRFRWH27Nl46qmnXN0c4gaUs0UQBEEQhMfi5eWFV155BStWrHBomBvheGxzrQoLC7FmzRr07t2bDC0GVq9eDW9vb8X1PQnHQp4tgiAIgiAIwuUkJCSgf//+aNeuHS5evIhPPvkEFy5cwM8//6xK6ZUg3AESyCAIgiAIgiBcztChQ/H111/jo48+gsFgQJcuXfDJJ5+QoUV4NOTZIgiCIAiCIAiCcACUs0UQBEEQBEEQBOEAyNgiCIIgCIIgCIJwAJSzxYDJZMKFCxfQoEED2aJ6BEEQBEEQBEHUXTiOw5UrV9C0aVMYjdK+KzK2GLhw4YJoFXqCIAiCIAiCIG4+/ve//+GWW26R3IaMLQYaNGgAoLZDg4KCXNwagiAIgiAIgiBcRWlpKZo3b262EaQgY4sBPnQwKCiIjC2CIAiCIAiCIJjSi0gggyAIgiAIgiAIwgGQsUUQBEEQBEEQBOEAyNgiCIIgCIIgCIJwAGRsEQRBEARBEARBOAAytgiCIAiCIAiCIBwAGVsEQRAEQRAEQRAOgIwtgiAIgiAIgiAIB0DGFkEQBEEQBEEQhAMgY4sgCIIgCIIgCMIBkLFFEARBEARBEAThAMjYIgiCIAiCIAiCcABkbBEEQRAEQRAEQTgAMrYIgiAIgiAIgiAcgEuNrV27duGee+5B06ZNYTAY8O2335q/q66uxqxZs9ChQwcEBgaiadOmeOSRR3DhwgWrYxQVFWHcuHEICgpCSEgIHnvsMVy9etVqm+PHj6NPnz7w8/ND8+bN8eabbzrj8giCIAiCIHSlxsQh/UwhtmScR/qZQtSYOFc3yal44vV7YpsJ/ajnypOXlZWhU6dOePTRRzFy5Eir78rLy3HkyBHMnTsXnTp1wuXLl/HUU09h+PDh+PXXX83bjRs3Dnl5edixYweqq6sxceJETJ48GevXrwcAlJaW4s4770RSUhJWrlyJEydO4NFHH0VISAgmT57s1OslCIIghKkxcTiYU4RLV66hcQM/dI8Og5fR4OpmEXUQTx5rKZl5WPBdFvJKrpk/iwz2w8v3xGFIfKQLW+YcPPH6PbHNhL4YOI5zC/PaYDBg8+bNuPfee0W3OXToELp3746zZ8+iRYsWOHXqFOLi4nDo0CHcdtttAICUlBQMHToUf/31F5o2bYoPPvgAL774IvLz8+Hj4wMAmD17Nr799lv89ttvTG0rLS1FcHAwSkpKEBQUpPlaCYIgiH+gyQghhZ7GkSePtZTMPPxr7RHYTtr4nvjgoS5ufw1a8MTr98Q2E2wosQ1c6tlSSklJCQwGA0JCQgAA6enpCAkJMRtaAJCUlASj0YgDBw7gvvvuQ3p6Ovr27Ws2tABg8ODBWLx4MS5fvozQ0FC781RWVqKystL8d2lpqeMuiiAI4iZGbDKSX3IN/1p7hCYjNzlixtHcYXEIDfRRZIB58lirMXFY8F2WXdsBgEPt5H3Bd1kYFBehyUvHathWXTdhTXouzhaVo2VYAB7uFQWfeo7LTHHW9euJJ7bZEk/2ALsbHmNsXbt2DbNmzcKYMWPMFmR+fj4aN25stV29evUQFhaG/Px88zbR0dFW2zRp0sT8nZCxtWjRIixYsMARl0EQBEHcwNMnIwQbaidtYsZRXsk1PLH+iNVnct4pTx9rB3OKrAxOWzjU9sv+PwthNBhUTZBZvX6Ltmdh1e4cWKYdvbb9FCb1icacoXHmz/ScrLNe/8GcIvSKaajqHDx6tXv/n4VOa7Oe1Jg4LE/Lxuq9uSiuqDZ/7ikeYHfEI4yt6upqjB49GhzH4YMPPnD4+ebMmYOnn37a/HdpaSmaN2/u8PMSBEHcTDhzAkW4BpYJvNDkFoCocSSEnHfK08fapSvibbdk6rojqibIrF6/Rduz8OGuHLv9TRzMn88ZGqc5XNN2TOSXVMjuA7D3kxhq223b3stllXhhc6ZT2qwnKZl5mL3pBIrLq+2+0+IBvtm9ZG5vbPGG1tmzZ5GWlmYVFxkREYFLly5ZbX/9+nUUFRUhIiLCvM3FixettuH/5rexxdfXF76+vnpeBkEQBGED6yTDnSYjnoorJjssE3gAgpPb5G4tJI0jW+S8U54+1ho38GPaztLQAtgmyKxev35tGmPVbntDy5JVu3MQ3ywET244qjpcU8jgCQv0Ed3eEtZ+EjuvmjBTofYqQUub9UTs+nnUeoA9OU9SL9y6zhZvaGVnZyM1NRUNG1qvNvXq1QvFxcU4fPiw+bO0tDSYTCb06NHDvM2uXbtQXf3PC2jHjh249dZbBUMICYIgCOfAOslwl8mIp5KSmYfei9MwZtV+PPVFBsas2o/ei9OQkpnnsHPKTeABYPamE/jX2iN2k9T8kmtYkvqH4nNaeqds8fSx1j06DJHBflBqHvN9veC7LFG5cVav3+vbsyCnWG7igBc2n5C871Jt4Sf8tu25XFYleV4DaifwvFdUKSzjVajdYu1lQWub9UTq+i2ResaEEOsf3oB15DvInXCpsXX16lVkZGQgIyMDAJCTk4OMjAycO3cO1dXVGDVqFH799VesW7cONTU1yM/PR35+Pqqqah+6du3aYciQIZg0aRIOHjyIvXv3Ytq0aUhOTkbTpk0BAGPHjoWPjw8ee+wxnDx5Ehs3bsSyZcuswgQJgiAI5yM3gXSnyYin4qrJDssEvri8WnJyqxYh75SnjzUvowEv31ObD6XG4JKaILN683ILy5m2u3Ltuqq2sBg8QvD98fI9cU7JCeNhNVCk0NJmLfB1vzYfPY9Pdv+Jd376TZHByDJm1BiwdbUemUvDCH/99VcMGDDA/DdvAI0fPx7z58/H1q1bAQAJCQlW++3cuRP9+/cHAKxbtw7Tpk3DHXfcAaPRiPvvvx/vvfeeedvg4GD89NNPmDp1Krp27Yrw8HDMmzePamwRBKELN3ssuhb4CeS/1h6BAdYTKj0mUDc7rhSFcGU4npB3qi6MtSHxkfjgoS52IVkhAd6COTa2iN0TVm9eVMMA7M5ma6uatsgZPDxhgd4oKvvneiN0CElTE2bK2l4hQgK88cbIDi4Jo9Ma9giwjRmleZJ1OdzQpcZW//79IVXmi6UEWFhYmLmAsRgdO3bE7t27FbePIAhCirr84+AsxCaQekygbnZcKQqhZzierXEktV2EjXfKdjFkxdjOWLjtlMeOtSHxkRgUF2F1TSYTh3GfHJDdV+ye8F6//JJrgv3M9+sLQ+Ow7sA5yVBC1nsl1BZWg2fu3e0REeSn6wKXkjBTfkz9oMErvGJMFyTGhqveXw6xRUC5vCwWWD3ASgxYTy7LwILbC2QQBEG4I3X9x8GZCE0gyUOoHVeKQshN4FmZmRSLLw79T3YVXsg7pWeNLnfCy2iwMo5rTByTsSQ2QWb1+vn7eGFSn2hBNUKe/+sThe+P56tqC6vBExHkp/viAKvBebmsCr0Xp6n2CvHH6Wlz//R890mN+4XbtIU9AuweYNb7GV7fF89+dUw6v/ObE2jg542erRp61LPKQ8YWQRCEQjy9Zo87YjuBJLTjSlEIqQk8C/ykdNrAWEwbGGsnqy3nnZJaDJm6vnYxZERCMy2X6DboESLJ6mHm62jZ1tkyGmCus9W1ZZiqtrAaPI7Iq2Ppw+GdIjF1vXqvkJIFAbWeVqlxb1ubTilKQx9ZFlxC/OsBHGSN1+KKaoz7+IDHRo4YOJZYvZuc0tJSBAcHo6SkxEp6niCIm5P0M4UYs2q/7HYbJvUkA4JwGTUmDr0Xp8lOXvfMGuiwRYGUzDzM35qF/FJ2TwDfEjm58v1nCpH+ZwGAWkOdX/Xmr1tsAueM63YFekzcWb0sVddNWJOei7NF5WgZFoCHe0XBp94/mmtq28IbC4CwwePoiAFxr1A7OwNfKbbXL2YYqb1WuXGvlpAAb0y8PRrTBrZW/LykZObh8bXSRt7Ato2Q9tvfTMdz1jhgQYltQMYWA2RsEQRhyZaM83jqiwzZ7ZYlJ9SZ1XPCM3H15BUA9mYXMOUU8bBOysUm88H+ProthniaAI47tVdtW1ydCyvU7oM5RUxjikcuXNURCwKsi4CsTBvQGomtwzWNoRoTh66v7mAScGHFXRZLlNgGFEZIEAShEE+v2UPcPLiDAElBWSXTdo/0aom74iNlJ3dy+ZID2zZiOp9crpqrJ/1qcKdwXLVtcXUOp1C7WfMaWcewI8Rr9My9jAz2w8xBbTT3+cGcIiZDy2AAWF0/jhT2cRRkbBEEQSjElbkFBKEUV09eWRcd7oqPZPI0ydXu+ZkxJEmqXSSA41rcyWgE9B3DALthtCMrn7kf9FrcM0C/Mgis18kbWkryO11ZXkIpLi1qTBAE4YlIFRj1lJo9hHviqKKe/OR1REIz9IpxrqKXngWFtdQ2Yj2fmmKshDLcqXgtS1v0LorNahh9ujdXsvC4ZdtNHIeIIF/FRa8tiQz203UhQYkB+FhiFCKC2bf3pMgR8mwRBEGowB3Cs4i6hSeGrbGgZ0FhPVazOZnzubI+2c2AO41z1rboXRSbN95YShqIKdsKtT0kwNusiKvEfJ3aPwa9Yxvp7vHuHh1mV4RajCB/H+yZNRD7zxRi6vojKK4Q3scTI0fIs0UQBKGSIfGR2DNrIDZM6ollyQnYMKkn9swa6NETY8I18GFrtpMvPmxNanXbE+AXJ2xXriMUrqTrsZr9aGKU5PlcWZ+sruNO41xpW7SMYVvvGQBzdIQUloY9S9tLbuRHBQd4yx4b+Mcj9/SdtzrE4+1lNODVEfFM2y5N/QM7svKRGBuON+7vAAPqTuQIebYIgiA04G65BYTncbPUbZPLHWNRr9OjWPKguAjJ791VAMedlAbV4E7jXG1b1OQ/SnnPHkuMwid7c2Xba2nYs7Td39sL70/sjAO5hTjzdxl+yMy329ZZhsvQjk0x5a9iyWLYQG3bX9yciYFtm9S5yBEytgiCIAjChdxMYWtiixN6hXNJGWCs4UfuKIDjTqF3anGnca6lLUoW2OSEVmYktWE6jqVhz9r2p748Khm+F6ywSLEW5gyNg793PSz9OVtyu8KyKvRclIrX7+vgcmEfPaEwQoIgCIJwITd72Jqe4VxT+kZrDj9yNwEcdwq904I7jXNHt6XGxGFvdgFmf3NCUmjli0PnJEUthIQ3WNsklydVomPtKxaiGwUybVdUVm0e164U9tET8mwRBEEQhAtx17A1Z+CIcK7OLUI1hx+5SxiTltA7dws7dKdx7si2CHkhheA9UDOTYrE0NZtZeEPP/pEK22QZP7bbdG0ZisNnLwvuo6TdHID5W096fOg0DxlbBEEQBOFC3DFszVk4IrRMr/AjdwhjUts/7hh2yKrAd5mxCLYebdH7mRMLG5QiKjxQkWGvR94iIP1ssYwfoW2MBsBSOd9yH6Xtzi+txLT1h/FIr2iXLxRohYwtgiAIgnAhestKexJqw7nkJoN6Cde4WgBHTf+4a0FmL6MBc4fF4Yn1RyS3W7jtFAbfuIe26OWts3zmbFH7zEl5IaVo3MAPvWIaMhv2Uu8LNQg9W3LjB4DgNrYlymzHnFifi/FD5kX8kHnR5QsFWqGcLYIgCMJhuFPxUndGL2l0T0NNOJfaHCZnjkW9zqW0f9y9IHNooI/sNkJS50Dtfe+9OA1jVu3HU19kYMyq/ei9OE1TzpqQRHpIgLeqZ05pwW3bfCwl+Uli74uGDP1ri+UYq7puwgubpfPM5m89iflb2YxKDv+EBNaYOHO7wxS2M8/D8hNtIc8WQRAE4RDcMZTJnXGHsDVHIuSVUBrOpTaHyZljUc9zKe0fd1L8E0KLJ1NPb51UuN9lGeEIMe+aEjENPTzWQu+Lri1D0e+tnUyherZjJyUzDy9szpQU1uBQG96nlPzSSixPO42nkmIxJD4SA9s2Qc9FqUzFji3x1BIYZGwRBEEQuuOuoUzujqvD1lhQE8olZYAoCaFUY0w4cyzqfS6lIabupPgnhBpPpt71ueTC/aSOJzWOlQhA6CW0IvS+YAkxtB07anLNlLIk9Q/cGlEfQ+Ij4VPPiNfv64DHFYQUunqhQAsURkgQBEHoiruHMhHqURPKJRf2B4A5hFKpMeHMseiocykJMXUnxT8hukeHIUQgdI9HSOpciYHNgtrjyY3jy2WViAz2E5VxB4AQf2+s+78e2DNroPm+6R3eKjZeLLEcO2pzzdRgOf6HxEdiZlKs4mN4YgkM8mwRBEEQuuLuoUyEOtR4bVi9EntmDWQKoVRqTLCOxSU7/kBi63C7c8p58Sy/L7hS6bBxzxpi6u7Kljuy8lEsEabHwT60Tm9vnZrtWMbxwm2nMHdYHKauF/dCvnF/ByS2Djd/7qjwVtvxEh7oCxiAgquVVhLtWzLOy45bSwwAmgT5AjDgYqlyNUTb8R/buIHCI3hmCQwytgiCIAhdcfdQJkI5akO5lBreckaIUmOCdYwt33kay3eetproyk2EWesp2aJ23LOEmLqzsiU/hqQIDfDGoLgIq8/09tap2Y51HIcG+jDLuDs6vFVsvKRk5qHfWzsVj1ue+cPbA4CiEEBLLL3OC7dJjwdLXL1QoAUytgiCIAhdcfdQJkI5ar2Vehnelh6k5G4tsDT1DyZjQukY4ye6k/tG46NdOaITYbHvWXD0uHeXgsy2sKj1XS6vthtDenvr1BxPyTgekdBM1gupRx6a2txJtblZYYHeeP2+DuaFBrWwep0tcfVCgVbI2CIIgiB0xd1DmQjlqA29KrjCplxmKV1uO4HckZVvZzjweT+WIWlCxgSfIyQVumYJP9FdtVvYkOI/E/teCmeOe3dUtmQdQ3tPF1i1VW9vndzxOADJ3Zrj++MXzP2mdAFJzgupNdRaTfih1tysZaM7o8+tjZg8lEKo9ToDrl8o0AoZWwRBEISuuHMoE6EOpZNN1hA7ywmY0D5ihlJJeTU4ADOTYhEVHihqTMjlCAnBAeBkZqRKNQzkxr1exXotUaJs6Yjz2x6f1fBevvM0vjnyl9XkWm9vndjx+LpbS1KzzZ9FBvth7rA4XReQtHh8lYQfKskplKOoogqA8npigDav89xh7TAhMdqjfy/I2CIIgiB0x11DmQh1KPFWsoYqWU7AdmTlC+4jZijxHqgvDv0Pe2YNFDVg1KzAOwKpca+HSIIWY8nRNcjU5LYJGQ56e+tsj5dbUI6lqX8IGjFT1/8TOqrHApLaUGsl4YdCHmEt8G1Rk3Mo5nVmead4uqEFkLFFEARBOAh3DGUi1MHqrQTAHKrET8AGxUWg9+I0xeFNcqFWalbg9WTusHYIb+ArOe71EEnQYiw5WqRBbY6QWN6S3nXovIwGdI8Ow/4zhXh5y0nJ0NGvD5/H+8md8doPpzQvIHWPDkNEkB/yS4XHp5injDX8cHnaaUHDUQ22bVHikQoL9EFRWRXC6vsi2N8HNSbOYeGh7gwZWwRBEITD8IQivQQbLN7K9DOFTAaOZWgQ6z5iiK20q1X9MwAwGKRDBY2G2lBDLSvyeogkaDGW9C4WrOT4LDijRIQSr1thWRXmfZeJV0fEIzTQV9MC0o6sfFy7XiP4nZShwTqmV+9VJ97C0ha5PEh+/EcG+2PhNulFgJslAoKMLYIgCIIgmJDzVrJOBsMb+CreRwyxlfbcgjLFx+Inl5P61IaMAcIr7vz3WlbklYgkdI8Os+tzQNyLyH/2wuYTqKg2ISLI3ihQKtKgNFRRL8+imPdHK2q8bkVl1Zi6/ig+eKgLRiQ0c8h5QwK8sWhkB0FDg9WrVFyhLE+RH8e2RpSQ0cNSK214p0hMXc+2CHAzRECQsUUQBEEQBDNS3ko1uShqpdClRAlSMvOsRA7EMNp4sCwnl51bhEquuMt9LwerkbkjKx9Pf5lh5yFI7tZc1pgpKqvGzI0Z5n0s26ZEpEFNqKJedfQWfn8S/t5GXb0cWr1uaj1+LOf1rWe0qjVmaeSGB/oiIshPtKCwAUCwv7diY8sypJdFsl6KEP962JKRp8hjWtcjIMjYIgiCIAgPwNGKcXqgRvZfbh8hpDxIrMIYBgDLx3RBcIA30s8UAuDQq1U4et6Y9MmtuGtdkWc1Mj/dm2v3WX7JNSZj0nYfS68C6/lzC8qwNDVbcaiiXvXEisqq8a+1RzAjqQ2iwgN0GftavG5awhtZzptfWmk+tphCJ2+0CHlVJyZGKRob0wa0xsxBbcz9qUWyHgCKK64DFddFv3dGeKi7QcYWQRAEQbg5jlaM0ws1Se8sdY9Ywpt4WCfSM5LawGgEnv3qmHn75TvPWPWr3Iq7lhV5FiPT1vPGo8YjY+tVYDWMNxw8pyqvS40RLdX2Jal/mP/WOvb18LqpOYZSb6JQuGHJjecgWOSZGBQXgS8O/Y/ZmExsHc5suOrlrdT7WO6O0dUNIAiCIAhCHH7SZTt54j0LKZl5LmqZMHzSe0SwtWcjIthP1Asitc/Kh7rg8EuDsGFSTyxLTsCGST2xZ9ZAzeFrpRVVLu1X3sgE/jFEefi/ldbzksPSq8By/uRuLZBfKl4fy/J4tkgdXyu296jGxCH9TCG2ZJxH+plC1Mh0nB5eN6XHqDFx2P1HAdO24YG+suIlfvWMWPd/PeyeCb7fWfo8xN8bJo6T7S8evbyVeh/L3SHPFkEQBEG4KY5WjHMUakLs5PZh9SCxTuI2Z5x3eb9KqbENjY/AJwIhhELYegTl4A1SOTW4yusmRcezRez4WrG8RyYTh4XbTiny+mrxuiktYAzULpjM35rFJPZhAGDiOFnxkvzSShgNBkGhDr7fZ286ISlmUVxRjXEfH2D2FLJ4Q5sE+QIwSOaVKe0/TwihloKMLYIgCIJwU5QqxrkTakLs9EiUZ5kQhgX6oLCsSvQYzuxXMSPzYE4Rk7E1M6kNvjh0TpExY2mQShm5tblsyo5ni+Xxd2TlC+agqYG/R0+sP2r3nVw+mVToKst5ldR/Uqp6yAE4IOApFELKi8v3+/K0bKzemyspmsFaV02u3zgA84e3BwCmmnzpZwplDShPCaGWgsIICYIgCMJNUZLjQdTCEh43IqEp07Gc1a+8kTkioRl6xTQ0F9uNDPYTDQczoHbSOW1ga+yZNRAbJvXEktGdEBboI7uPrVdB6PwAmNsg56Xgr+eHzHzJ7fSCn+Av+C5LNEROLHTVEoPAhYcEeDO3Q73qoT5hfV5GA55KaoPDcwdh3WM9EOIv3HaW/uLh+y1YoB/4vuG3aRIkHEoMAL0Xp2HMqv146osMjFm1H4lv/IxlqX9YhYJ6Wgi1GGRsEQRBEISbokZKnZDOAVsxtguahfgzHUdNXo6S3CEpWIxG3sPCG0v3dbkFr98XL7oPB+Cu+FovE0vblLRBDr3qbrEilU/GMyQ+EntmDcTMpDbCxxDoopLyauaJvtpr7tUqXNLIBWoNG9ZQPC+jAUajQdK7xdJflpQIhCfa9411B3Ich6PnLgsbUKWVWJKabWF8pWH2phOSdeRYjEN3gMIICYIgCDOeHhtf11AjpU7UIhQed7msEgu3yecPqc3L0TvcSS6nSkpsxHYfg6HWePh0by4+3ZvL3DY1bRCC1UsYoqJOlNbzfnHoHPPxxHL6hN6dajyjEUG+6BnTEC/fE4fH1x4R3a64vBo7svJ17/8fbhhKYu9+ljzSOZtO4LKAMZZfWokPbxQLl0Muv82dQ6htIWOLIAiCAFA3YuPrGmqk1Il/sMwBS8nMw9T1R2UDtNT0q1heDmsujBRaxUZSs/Lxyd5cO2VDJW3TWlMMYPcSrhjbBUajAZeuXENuQRmWpGYrzqtSct79fxYq9j7ZTvTF3p3J3Zorbu/84e3hZTRgUFyEXckDS5SKuLD2/3/Sz+I/6WdF3/0seaRChpaj8IQQagojJAiCIOpMbHxdRI2UOmGNktwZpf0qt9IPaA93Esupktune3QYtovkSSltm5o2WMKa/9UzpqH5PE8ltcHKh7ogNNBH0bksjyflnUzJzMPUdeLeIzks62EJvTuXpGYjJMCbTYY9wBsrLcbdwZwiSSVBpWF/cv1vi9i7392MG08IoSbPFkEQxE2Op8qL30zo4Vm4mWHNnZk7rB0mJEYr6ld3Voxkbdv+M4Vmb5KasSUXfsx/LyZnL+VNHBIfiYqqGsz88hhze+S8kzUmDsvTTlsVSlZDeH1fPPvVMcl3pxx3xTfBQz2i0NPGgNVbHEepAqPYu99djBtPCqEmY4sgCOImx50ni8Q/6CGLfrPCOiENb+Cr2IB1Z8VI1nNOXvMryqpqzH8rCR+WCz8W+t5osC7YLJf/FRHMJmjCcrzamlcnJYs1y8FP9MFB9t1ZXF6NuztGYvuJPKtrNhqASX2iMWdonOC+rEZNbkEZc7uV1j0TMsbD6/siIsgXF0srVYd2asXTQqjJ2CIIgrjJcefJIkHogSNVHd1ZMZL1nJaGFlA7wWbJ55LLVZvcNxof7cqxr8d044NHE6MwKC5C1pPGUoQ4LNAbc+9uj4gg6ZpNSmpeCWE50S8oYzPYvj9uH4bNccBHu3LQuUWoYB93jw5DRJCfrFDEhoPnMG1gLLPRYekl/yEzD/9JPyu7z9T1R6xES0ICvM2eL6E80uAAb5SUV0v2s5Y8vNBAb7w6It5jQqgpZ4sgCOImx50niwShB3rVi3L2sS1RIyuvNE/HEg7S+VwsuWqrdtsbWvz3BgA/ZOaja8tQHMwpkrwuOQl6A4DX7+uA+zqL55OpqXkV6ONlV1fLMqdPyztRLmfOy2jAmO4tZI+TX1rJnLdleexeMQ1xF6OxYqsOycu+29ba4vvmjZEdAIjfqyl9oyXrmwlheUuLyqqxcNspj8klJs8WQRDETQ7JixN1HUeqOjpDMVKtUqjSPB1bLMOHbfOyTBwnG0InVKfK8vu8kmvouehnFJVVyV6XVgl6NTWvZiTFYvzt0Th89rJgPhqLx00KuRDtqPAApuOojTpQ237eWPb39sKKx7qgoKzSrm+k7tWguAj0jW2MtQdysTu7AFcra4RPZIEWNU1XY+A4qUeBAIDS0lIEBwejpKQEQUFBrm4OQRCE7vDhNYDwZNETftBuFqgWmnocWd7AUccWC31T8mwKtY2VZckJ8K1ntNtf73pYPHLXpXb8b8k4j6e+yFDcHrl7KPXuZJ1gL0tOwIiEZnafp58pxJhV+2X3n5nUBk8lxTKezRqx9rOyYVJP0VxSoXu1Iytf9Vi0hV8I3DNroNPfgUpsAzK2GCBjiyCImwFPqLN1sxsannCP5HD1PeTPn19SgaKyKoTV95XM81FzbL2urcbEoffiNNGJqZLJpmXbsi9exfKdp5naMCS+CVIyLyptuiYcMYlmNVyE2gJIG7VSdbaWpGbLnkPMYOHvv5znySDTPjmE2s9qLC55MAGN6/si/c8CALXhiT1bCYdy6pEzJ4SUwecoyNjSGTK2CIK4WXD1RFiKumBoaEEPD4ercZd76C7tkIPVQFA62VRreCjBAMBgsA//UoKWSbTtu6xry1D0e2unqpA/FuNP6N0JQNJYYjluSmYeHl8rXQtMD+OUb/+OrHx8KiDPL0agrxfKbMIAA3y8MKVvKyvhDrmFAy2IeQYdiRLbgAQyCIIgCDNaC5c6ipu96LIzCuc6Gne5h/zk1dXtYMFRSqF8ro6j4N8ak/pEm0UR1KA2FyklMw+9F6dhzKr9eOqLDIxZtR89F6Xi7o6RVu1jhaWAsNC7U07YA5DP5xsSH4mZMiGCSgsci7W/e3QYfhApgi2GraEFAOVVNViSmo2ur+4wP09qcuZYcXfxJjK2CIIgCLemLhgaWlFSC80dcZd7WGPiMHvTCcHvxNqhRgVQLxylFOplNGDusHZqmiRIfV8vq795Vbo5Q+PwwUNd7JTnwgKtVezEUDOJFjPqi8qqsWp3DpLiGtu1x1ZxUAw1xh8v7GF7TktVQzmiwgN1aZ/cWNbbICourzYvYDiqdEhogLfbizeRGiFBEATh1lDRZc+vhcZ6Dz/bm4PwBr4OC2FdnnYaxeXiog62Y8nV4YaOUgpNyczDwm2ndGkjACs1ubBAb8wd1s7cP5Z1nVhD+tReF4u8+46sS1ie3BkNG/j+o6xo4jDukwOyx1frQRHqAyXjWw+jm2Uss74/6vvWw9XK60zb8iUE3h7ViWl7W+RyxzxhiY08WwRBEIRb4+mGhh54ei001nuzcNspc9hX78Vpuob01Zg4rN6bw7TtpSvX3CLsUY8wNFvErksvLpdVY+r6o1b9Yxti51PPqPt1AeyemZe/O4nu0WHm9vSMaejwWmlaQrS11nLbfpwtdJb1/fFIL/n6X5bklVwDDFBV803OmCour3Zbjz4PGVsEQRCEW+OOhoazQ8ucVTjXUai5N3obNQdzipilysMDfd0i7BHQJwyNR01hX6Ww9o+e18XDatQXllVZTdAdYdTqiZb2bT9+AdM2CAts2N4rlly+yGA/JMY0UtD6WgquVopeg1bcfaGNwggJgiAIt8bdii67IrTMGYVzHYma4ql84dQF32VhUFyE5mtjnZCF+HsDBrhV6KrWMDQeR4oUWMLaP3pdF48So952PGgtmqwWVgVYNe1LyczDE+uPSp7f9l4N7xSJD3eJe4CHd4pEz5iGiAjyRX5pJfN1Nm7gh14xDQWvQSvu6tHnIWOLIAiCcAvEJh3uZGiIya/zXhhHyq+7ajKoB1L3UAo9jRrWCVmf2IYouMo2idx7usBp5RH4MDQt6OUBEJL7Vns+Pa6Lp3t0GMICvVFUJu/BFBoPeht/cihduFHSPt6LycqlK9dQY+Kw9Zi0J3nrsTw8P6Qd5g9vLytJD9gvhllew08n87B631nJ/Y0S5QOcvdCmFjK2CIIgCJcjN+lwB0NDTlFPTy+MGM6eDOqJ2D1kQQ8joXt0GCKC/JBfKn2sQ7mXkdy9JdMxl+88jW+O/OU2xq6cl0QvDwCLoaXn+VjxMhrw6oh4WW+OVMitnsafFGoXbljbp9SL2biBH9M+/OLHkPhIrHyoC2ZvOiEqOiO2GMZfA5+/J+ZJM6C2fMBHN773NI8+DxlbBEEQhEthnXS42tBwF1VEZ00GHYHtPSy4UsmkiqfHpN3LaMCY7i2wJPUPye3ySysBDsxhj87warIgtGAR4u+NiYlR5uKyasI51eBKj8PQjk0x5a9iyQm8qyfozli4UbJAwRuf3x+/oOjY/PO8/0wh1h7Ixe7sAitlytBAb7w6Il7yuZgzNA6dbgnFS1syUVRWZdUmfhGjc4tQj/To85CxRRAEQbgMpZMOVxoapIqoD5b3sMbE4eM9OU7Lx4sKD2DarqCskjns0VleTSnEFiyKK6qxJDUbq/fl4o2RHTAkPtJ8XY7CHTwOLBN4V+KMhRslCxT8vQqv78u0veV2XkYDEmPDkRgbju3H86z6vKisGgu3nYLRaJDs86EdIzE4XnwhzdULbVohY4sgCIJwGe7iLWLBHVURPR1n5+MpuYdKkvn5cTp/aya6tAhFRLC/0yaDLAqDfHFZ3vsmd11K8upC/L2tVB7dxeMgN4F3Jc5YuGHxYhoNwPIxFh5ZJcmUNqRk5mHqevX5rHILaZ7s0SdjiyAIgnAqlnkl2RevMu0jN+lgVfTSgrupItYVnJmPp/Qe8ivqS3b8juU7z8gef83+c1iz/xwA53lRWHNz+OKyg+IirDwFO7Ly8W3GBSsPUESwH5K7yYdcAsCKsV1gNBrczqABhCfoznhXyOHohRv+GofGR+CTvbmi2y0f0xlDO/4zPgvK2IRhbLdzh3xWd4aMLYIgCA/GHSYOShDKK2FBatLhLCl2d1JFrGs4K0xIzT30MhqQ2LoRk7FlSZ6TcrmUeD8svcSWIgUvDouz63sA+OLQOVnPSElFtdWE3Z1xRdkGIRy1cFNj4rA8LRur9+ZaeRttFf3ErlmtEehJEQquwKVFjXft2oV77rkHTZs2hcFgwLfffmv1PcdxmDdvHiIjI+Hv74+kpCRkZ2dbbVNUVIRx48YhKCgIISEheOyxx3D1qvVK6fHjx9GnTx/4+fmhefPmePPNNx19aQRBEA4nJTMPvRenYcyq/XjqiwyMWbUfvRen6VYEVm/4vBIlhpZcsV6xY+pdEJfHEYVYiVr4yf+IhGZmY0AONcWl1dxDuaLSYvDeJEcWP1bq/RAyzoT63rKQrhgmDpi6Xv/nzBEoeVc4umi5I4oop2TmoeurO7AkNduueDd3o/mPJkZhw6Se2DNroOQ4F0PsfUz5rNK41LNVVlaGTp064dFHH8XIkSPtvn/zzTfx3nvv4fPPP0d0dDTmzp2LwYMHIysrC35+tYNh3LhxyMvLw44dO1BdXY2JEydi8uTJWL9+PQCgtLQUd955J5KSkrBy5UqcOHECjz76KEJCQjB58mSnXi9BEIReuLLekxpY8kpskZt0uCp0xdOTtesKWrwUSu+h2jphgLoVfSUea36CzLqIYWmcyZ1nSHwkVoztjGkbjorWOgLcP0RMybtiR1a+U7xfeobPiv0e8PDX+ENmPl4cJm7EeRkNkkWNOQDJ3Zrbfe6osEhPi9wQw8BxnOOWWxRgMBiwefNm3HvvvQBqvVpNmzbFM888g2effRYAUFJSgiZNmuCzzz5DcnIyTp06hbi4OBw6dAi33XYbACAlJQVDhw7FX3/9haZNm+KDDz7Aiy++iPz8fPj4+AAAZs+ejW+//Ra//fYbU9tKS0sRHByMkpISBAUF6X/xBEEQCqgxcei9OE0yuT0i2A97Zg10mx+m9DOFGLNqv6J95CY4rMfcMKnnTRm6UpcRm1zyo90Riw1iIVosLEtOwIiEZkzbqjEiUzLzZAvM2r4XWM9TF54z1muYmdQGS1P/cPq40mJQyP0e2CJ1n7Yfz8MT6+WVKm3HCd8GubBIJb9J7hLyKYYS28ClYYRS5OTkID8/H0lJSebPgoOD0aNHD6SnpwMA0tPTERISYja0ACApKQlGoxEHDhwwb9O3b1+zoQUAgwcPxu+//47Lly8LnruyshKlpaVW/wiCINwFJfHx7gJr+Mi0ATFYlpwgGeqi9Jg3a+hKXUXOSwHoH7rHh+wKhWixwLqirzYsli8wGxLgLfi9rZdYyXnc6TlTG97H2rbVe3OcOq4AdeGzligtXizWF9uPX8C0DWwlAWzHid5hkc4OD3c0bmts5efnAwCaNGli9XmTJk3M3+Xn56Nx48ZW39erVw9hYWFW2wgdw/IctixatAjBwcHmf82b27tMCYIgXIU7TX5YYZ1sJrZuxDzpcKSil6NzNhyNp7dfCmcvNqjJNbREKufQEq1G5JD4SBx+aRBmJrVBiL+10WWZj6b0PO5S8kBLjipr26QMaXdcxAKUv+eF+iIlMw9PrJcOFbVEaJzolc/qisUUR0NqhALMmTMHTz/9tPnv0tJSMrgIgnAb3GXyowRHqG85StHL3cNX5PD09svhzMUGNbmGlhjAvqKvh6Kbl9GAp5JiMW1ga9HQNKXncYeSB1pzVFmuIdimXpgY7rSIBSh7zwsZ/vwYV4rQeNQjn7UuKhu6rWcrIiICAHDx4kWrzy9evGj+LiIiApcuXbL6/vr16ygqKrLaRugYluewxdfXF0FBQVb/CIIg3AU5ZTQ5BT9X4Aj1LUcpenly+Iqnt58FZy42KA3RsiQs0BsrxnZmNnD1NCKlQtOUnscRz5kS9PB0sFzDxMQopva40yIWoEwpU+g+aRnjgP14shx73aPDcDCnSNLDznvhNx/5C5/s/hMLvz+p6rzujNsaW9HR0YiIiMDPP/9s/qy0tBQHDhxAr169AAC9evVCcXExDh8+bN4mLS0NJpMJPXr0MG+za9cuVFf/s1qxY8cO3HrrrQgNDXXS1RAEQeiHqyc/anGEbLqex9Q6qXN16F5dDL8RwpmLDUpyDSfeHoUGfv8EDBWVVWPhtlPMBq6zjEg159H72VXyrOgVNip3DdMGxnrcIhbwz++B3FM9pW+04H3KL6nQdH6x8cQS9mm5zcwvj2HhtlPIyrui6bzuiEvDCK9evYrTp0+b/87JyUFGRgbCwsLQokULzJgxA6+++ipiY2PN0u9NmzY1Kxa2a9cOQ4YMwaRJk7By5UpUV1dj2rRpSE5ORtOmTQEAY8eOxYIFC/DYY49h1qxZyMzMxLJly7BkyRJXXDJBEIQu6Ckb7EwcIZuu1zG1hK+4Q+heXQy/EcKZxaVZJ3TeXl74bN8ZTaUYnBWup/Y8ej1nSp8VPT1+ctfgqUXLB8VFICTAG8Xl4mGQW4/l4fkh7azan5KZh4XbTqk6p9R4ZAn7BCApVy9Ffd96bmf0SuFSY+vXX3/FgAEDzH/zeVLjx4/HZ599hueffx5lZWWYPHkyiouL0bt3b6SkpJhrbAHAunXrMG3aNNxxxx0wGo24//778d5775m/Dw4Oxk8//YSpU6eia9euCA8Px7x586jGFkEQHo+n1nviw0zc7ZhqJ3XuUvPME4VT1OKsxQYWw6RJkC82HDynud6bs4xILefR+pypeVb09vhJXYPUuEru1gKV101IP1Podu/ZgzlFkoYWYL/QIlebSwqpccJa04zjONW5kG5StYoZt6mz5c5QnS2CIIi6j5p6Qu5U88yT6iHpVazUGUVP+UkpIGyYzEiKxZLUbNnjsPa7s7ykzvbGqn1WHFHDiaWt/LjKLSjDhoPnkF9aaf7e3QRntmScx1NfZMhux9d7U1qbyxap61dTU1ENrn6PKbENSI2QIAiCIKAuvMqdQvfcQTWOBT0n+Y7wktoi50WrvG5iOg6rR9FRHmtbw3RQXIRTPeNqnxVWTxxQO9HX41r4cZWSmYelqdlMnjhnGP5iKPX+qRHFmDusHcIb+Mpem7M8557koSdjiyAIgiCgLrzKnUL3HB2Gpsdk0l1CLpUiZQClnylkOoaShH69jUh3yClkFWIQelbkDF4Adp4ardfHGg43KC4CO7LyFfUv/yzll15D0dVKhAX6ICLYX7WBxi+0yBlQl8uqACh7H/GLNBMSo5na5izhChLIIAiCIAgPRGkukLvVPHNULpMek3Ulk1dX5MPIGZNiBpC7exSdYeDK9Z0SIQaxZ0XM4N2Rle+Q62P1xC1PO42lqX8wn1/oWeLR4uGdO6wdnlh/VHK7FzafQHCAN8ICfBQdX8kiDevzwHGcVWgmK65+ntRAxhZBEAThFFwZZqMEJWFc7jjR1jsMTa/JujuFXNqixZhU41F01rPAauA28PVGQVmlqrbI9Z0SIYYGfl64UFwhKkJha/A60oBn9f6s3psjef4XN2eioqoGEcH+uFxWhanrxfsiT4OBGBroK7tNcUU1xn18AKxdERHki/nD2ytqi5KwT6UCHe6uCikGCWQwQAIZBEEQ2nCHMCYevSe6cgIK7hoax4KeAiBKk/idhZgxoPT+sY5xZzwL/Bjfe/pvLN95RtG+Stoi13crxnbGwm2nVAkxWLZD7Jl1pCiMI4QejAaApcxdpMQzJdYXrM8XKzOT2mDawNaaFmlsx3lIgDcm3h5tPm5KZh5mbzohq6TI407CJEpsAzK2GCBjiyAIQj16TWb1aosjJrruZEyKocbI1HMy645qiXqrSbKE0zn6WZAKU2OBtS0sfRca6I2iMraJtNgxJveNxtZjeYLPVuV1k8MMeBYVxGB/bxRXqL8+KYSeA6F7GxHkizHdW6C6hsPynadtD6MYPd9bNSYOy9OysXpvrlU/8ecYFBeBxDfSkF8qPobCAn3w0rB2mnLaHAGpERIEQRBugTvl6Tgyd8Xda56pNQb1FABxx5BLNaGNUgaVlLCFM54FLbWTlLaFpe+0GFr8MT7clWP3Of/MzkiKZTpOeH35EDtbWMLhJiZGMcn+q4G5nl9ppa5teHtUJyTGhutyrB1Z+ZJqjjOS2ogaWkBtnxeWVSEi2N/l5Sq0YHR1AwiCIIi6i5LJrCORm+gCtZPLGpYYHxH4ifaIhGboFdPQrQytf609Yncf+AlPSmae6L56CoDwk1fgn8kqj6tyMZQakymZeei9OA1jVu3HU19kYMyq/ei9OE2yD3kc/SxIjXGlsLTFldLb/DVuOHgOEUF+duPJlme+zGC6R7bwgjMRwdbjOyLYDx881AXTBsYiMlj+/GqwfKb0vLdyFJQpF60QguWdu3qfvSEthCfJvAtBxhZBEAThMNxFGt1djD5no9XI5L1RYpNJA2o9ZKzeKLnJq7NDLpUYk1qMVsDxz4Ka2kla2sLad2GBPg4xRjjUenXGdG8BwN6AtyS/tNLqHtWYOKSfKcSWjPNIP1MoucgyJD4Se2YNxIZJPbEsOQEbJvXEnlkDMSQ+UnIBQQu2z5Qj7q0YBVcqmfpFDpZ3LmuulifJvAtBYYQEQRCEw3AXaXR3MfqcjVYFQEfU7nKnkEvW0MauLUPR762dmkIAHf0s7MjKV7WfFFJtYe27ucPiMHW9/fjRi6jwAHzwUBfM35olG5K24LssmEycnWiHXEitVHioWLkFLQzvFKmqnp9WjAZYSfQL9Qtr7idrm0P8vVFSUS05hkwmDlsyzrtdeDYr5NkiCIIgHIbenhG1uIvR52z0MDId4Y1yl5BL1tDGw2cva/aMOvJZqDFx+DbjguL9xGBpC2vfDe0oPH70uuUFVyoxKC4C7zzQSXbbvJJreGL9UWbvJKsHzNL7teTBBIQFequ/IABf/vqX1bmc9V6yvTzbflESRsva5omJUaJGOAegoroG4z45oDhs150gzxZBEAThMBzhGVGDO4ozOAO9jEx38kbJoVR1kaUQ9JaM80znljJa9XoWhK7vYE4RisqqmNooh5K2sBbRFho/cjWnWFm47RQ+3pODwe2bqD6GkHdSqaiMpffL39soWA6Clcvl1dj/ZyESW9cKVci9v5RiMACWWuRikvSW/WIyQfB+iQkMsb5zr1ZKhxLahhrqWYzbWZD0OwMk/U4QBKENd5BGr8v1sMRgka9WIm3u7mgZZ1JGmp6y9VraKLbvXfER+HRvrmz7WFDzXKqtXSclUx8Z7IfhnSLx0Q01QqnJqp4hihsm9URJRZVmiX6lNaRsmTagNZ4dfKvV8bQYcDyBvl749cVByPhfMS5duYaCK5VWoYNihAX6iBr0Yu8RuXfu//WJxqrdbCIZLOdzJlRnS2fI2CIIgtCO3sWE1eAORp+zcZSR6Q730xJH1rDS22hV03dS16fHRG7agBgktm7k9PvI90V+6TUUXa1EWKCPVU0lrXXDlLJkdCe8+ePvmmuv1Zg4yRpSckwbEINnB7e1+kyPvlhp8xzoWQyZtTZY5I1cvpe2nNBUHsCZNflsoTpbBEEQhNshlWTuLDwpHE4vWEO9lOBuRquja1jpHQ6r9FlguT6DSCgYKxVVNS55PuX6gn9mP9ubw+SB0UpRWZUmURke3oBUS69W9rWuLN9fO7LyJb2ZIf71UFxx3fx3RJAv5g9vb/d86pkPZhtGW2PiEOzvg+cH34qisiqE1fdFRJBl6Ku2OmyeImhExhZBEARxU+EORp+z0dPIdGRxaLVoVV1kwRFGKyss18fHKan1dG3OOI8Xhjm3zhkrXkYDwhsoL0xsi1huEvCPxyqMsQCy3ERfiyEQ7F8PPUXGqZfRgO7RYXj6ywzR/Q0A/H3qYcXYrigoq5R83ru2DJXsF8A+x0sMS8NNakHGy2jQxVDyFEEjMrYIgiAI4iZADyPT0R4ktThL2l/KaNUSVim3L2u7J94ehS3HLljl1kQG++HKteu4WnldYk+gqKzayhhlvR5nhZMqmViLeR8n9YkWzAGz9E4G+/vo0h4thsCjidGSfci6uGA0GjAioZnkuQ6fvSzrEeU4ICzQG5fLhCXaASAkwNssMMSyIKOlfzxN0IiMLYIgCIIgmHCGB0kNzpT2FzJatx/Pw0tbMu2MHC2iF5b7srZ7y7HzVqFZYYHemDusHX49e5lJQIM36ljDRJ0ZTqqkrtfCbeLex84tQiW9kzUmThflUi0KglHhgZLf67m4wHqs+xKa4ROJMVRcXo0dWfkYFBfBtCDz3+cGIMTfG8UVykIJnaliqxdUZ4sgCIKo07DWyiHkcdfi0K6s57ZoexaeWH/ETqktT6R2kyW8B0Cu7pPc9fHY5sBcLqvG1PVHEezPVvcp++JVLEvNZmoTa9v1QkldL77m1bLkBGyY1BN7Zg20kqGX+p71PHITfanjyKGX14xlO9ZjDWzbBCEB4uOIN6L2nylkWpA5fPYyJiZGM53bEi31/VwFebYIgiCIOou7CTl4Ou5aHNpV9dy2H7+AD3eJS1dzEA+rVBqSKXV9UkVhDQA2HDyHiCA/WcGG5TtPS14L36aBbZsoarteoYaseXNyIbMsohx65OeJHUcMvbxmSsLsWI8Fg33NK0t4Iyr9zwLZcwLA3tMFiGlcH/V9vXC1skZwG/7cb4/qJJt75s6QsUUQBEHUSdxRyMHTcXVxaKlJu7MFLGpMHF7akim7nVhYpdKQTLHrCwv0QaFEQWMOQH5pJWYmtcHS1D/Mn6mBb9PC708yt72kokrXBQ8tYi9KjD7b84TX9wU4oKCsEulnCpnPOSQ+EqYbY0VKfU+N10yvAtlD4yMEQwQtj1VwtVLyWPZ7SSNl2NueOzHWXpnRkyBjiyAIgqhzuKuQgyvRw7vgKg8SwOaldKa0vxLpaqGwSjUhmULXl19SgZlfHpM9TlR4gCIvixRr9p9j2i71hjy53gseasReth+/YGfwyBl9/HlSMvPw7FfHVBeinrr+qKyBq5fXLCzQByMSmiLY3wc1Jk507As9T7aqhJZtSj9TyNSuXjEN8c2Rv1TlqlkSHOCNN0Z2qBMLYmRsEQRBEHUOdxVycBV6hlO6QgJdiZfSWdL+SvLShMIq1YZk2l4f6yS4cQM/9IppaDbW9p7+G8t3nmHaVy2bM867xYLHou1ZguGeeQxGnxYPudSiD0+IvzdWjOuCnq0aKu4HS+M7NSsfmzPOo7CsCp/uzcWne3NFn3Gxa+Ll3R9NjMKguAirhQpWr3bPVg1FF2SUUCIRsuhpkEAGQRAE4TboJWbhrkIOrsARQgZyIgN6IuelBGon7c4WPmE1lhoG+giGVeol6qH0OLyxFtukAVP71WBA7XVLef4sFzwcyfbjeUx5dULjR+vYk1v0AYDiimoYDQbVBqeX0YCSiloDy7a/80qu4fG1R7D9+D/POIvX/4fMfDuPsJzgBwdg7o06bfyCTESwttxNVzzXjoCMLYIgCMItSMnMQ+/FaRizaj+e+iIDY1btR+/FaaqMAXcVcnC2MqIjDRV+0j4ioRl6xShflWdFiZfSmfBGjhwLR8QL9o0zVO+kjuPosT8ioSnTdo5c8FCaV2eL1rHnjEUfFu/ZtA1HsP34BQDarknOiFq4Lcv8vrZdkJk2IIb5muTa4WmQsUUQBEG4HL29L66UAhdDT2OSFXc1VJTgrl5K3siRMoWm9I3G0I7i3j6xyatSeWs1x2GVk1dDcIC3bsWBbVGyYFGbVycuHmKJXnl1ljhj0YfFe2bigCfWH0VKZp7maxoSH4m7Rca0bbkDywWZxNaNmM7L2g5PgnK2CIIgCJfiCDELvdW6tIotiOVI8GE+/x7bRXJSrhZ3NVSU4K5eSkBKpMAbr46Ix9CO8t4dvUQ9lB7H8hkR4+4OTTCofSQKrlRi4bZTzG0pKa/G0tQ/EBLgjZLyat2UK5XmHspJ3VuiZ14djzPUO5U8uwu+y8LbD3Ri2lbsmrYfz8Oq3crLHfB9oVScxRXPtd6QsUUQBEG4FEeJWWgVctBLVII1zGc5OjNNzpXgzoYKK66Wm5dDD2NJL1EPpccZEh+JyX2jRXOavj9xEc1CA/D8kHb4eE8Os8Icv0hisPi/VuVKNUIVRYxy5UF+9STz6tSOPWeodyp5dvNKrgEcVF+TkrDMz/bmYEJitPna+L54XMK4tyU0wNtlz7WeUBghQRAE4VIc6X1RK+SgZ1ij0jAfPXHHcEql6JXbpBU+fG3z0fP4ZPef2HzkL3MYm7Py1/SmxsRh469/SW7z4a4c/JiZLymOIAQH4HJ5NWYmxWoOk1SbexgWyBbKOLJLM4fl1ekVKioGa+4gT0FZpazQRXK3FoL7KgnLXLjtlF2Y9JD4SKx8qAtCAryZjuH50hi1kGeLIAiCUIVeIXaO9r7IrfZbXkd4fV+YajjM/uaEbmGNSsN89JLCVlKwVC/jQK8xYYsr5OYtEfJy8mgp0OtqlqedRjGDxPbcLZk4+GKSqjpdUeGB2DNroKZxodb7HRHsz3T8we3l8+q0jD1HFmJW6jHiSwBI3cslqX/gi0Pn7K5P6YKXkNeR74tZXx/D10fOS+5fXF5dJ8pzkLFFEARBKEbPuk2uDBOTmkSLoTSsUWmYjx6TC6UFS/VAyZhQY5Q5s2CxJWLhazwstZrckRoTh9V7xXNvLCksq8LBnCKre8Bap6txAz/NYZJqvd8seUIsnl1XhYqyPlND4iPx77FdMG3DEYjphdi+R/lrWp6WjSWp2XbbCxlKShe8xBanvIwG9GnTSNbYAtw7n5QVMrYIgiAIRWgp8imE0rwGR4tWsLIjK59p8qQ0MVzr5EJNwVKtKBkTWgx1ZxUs5mHJtwPERQG0nJdljCt9Fiy3L7hSieIK9sKx/Ljk70H36DB8c+S8UxZJtBSA5t8tYm1k9ew6e+wpfc8O7RiJ5eiMJ9YftTuWlBf7i0P/Ezy/kKGkRuRCbHGqLuSTskLGFkEQBMGMI5QDAfZQHWeKVsjx6d5cdI8OYzIQlIb5qIW1YOmLw/QNHWQdEzuy8nU11B0NS74djyO9kkJjXOmzoMaLa4mUIeMo8QceLd5vsXeLO4d/qn3PDu3YFCuNBuaQR6XhmXLGqxRiXkd3Fb7REzK2CIIgCGYcpRwIyIfq6OlRUzKJFkOJYakmzEcNjrw/Ws+5/0yhQwx1R6LUy8jq7RSDdYwrfRa0enHFQu2clUun1bBzVQiqWrQ8x0quVUl4Ju8VrbxuwoykNthw8JwmaX1nGuuuhowtgiAIN8RRQgNacXTdJrFQHb09anrkASg1XNSG+SjBFXW1WI+V/meB0w1BrSj1Mn6bcUG115B1jA9s20TRs1Bj4jB/60nVhpZcqJ2zDBmthp2zwwC1oPU5Zr1W1vGdW1CO3ovTrPs9yBf3dIzAd8fzJfdV43V0lvCNsyBjiyAIws3QU3xCb1wVZ6+3x0bP9ikxXJSG+SjFFfeH/Vhsk293SohXmqNSdENIQs2knnWMr0nPVfQsLE87jfxStnpTthgMwOQ+0W5jyHiah0otznqOu0eHISTAW1KRMsDHC0tT/7Az1i+WVsoaWjzuYKy7EjK2CIIg3Ai9xSf0xlVx9np7bOSuQwlKJzyOnFy44v7ITdj4c/aKaYjlO0/LHk/rBFJPr7CaQqxyY1Csfaxj92xROXM7UjLzsCT1D6btheA44KNdOejcItTlCz08nuShYsV2THRtGar7cyw07gCg+rpJcr+KqhrJ+mZy3N+lGQbFRUhuUxfvqSVkbBEEQbgJjhKf0BNXxdnrvdIrdR1KCPH3honjzIVtWXHU5MIV92dHVr7kyjh345w9WzV0uCGoxissZ5wNiY/EU3fEYtnP9vLYQkiNQan2sY7dlmEBTNuFB/ri2a+PMW0rh6vfOzxqDWl3DcsGxMfE8E6R+GhXji7Psdg5HrytOcqqaiT31boY9fWR89h7ptAtIjNcBRlbBEEQboIrxA3U4Io4e0d4bMSuwxLeYyNmkBVXVGPcxwfcJswTcO794RcIpDAYAJPJ8YagGq8wi3GWkpmHjSLy2LZI1WySa9+KsZ2ZxvjDvaLw8Z4c2e1ggGYRGMB93jtC9yos0Bv3JTRDkkQpA3cOy5YaEx/tykFSXGP8fOqSuWwDUPs8TWII7WQ5x1LGBQStSD2D7mwI64WB4zitRmudp7S0FMHBwSgpKUFQUJCrm0MQRB1lS8Z5PPVFhux2y5ITMCKhmeMbJIOzfyT5SQMgPFFXG2JpeR3h9X0BDigoqzRf046sfFnJbK1tcATOuD/pZwoxZtV+pm1XWijp6T35rTFxdgn8lvAGyJ5ZA2XVLS3vJQBFKn4rRe4/a/vmDovD1PXyY5zlWaioqsHML/XxbAGufe+wqCmKyeNL3eMVYzsjNNDXJRN9uTEhhQFs7xot59AbsWfQXQ1hOZTYBuTZIgiCcBM8rcijs+PsHeWxkbsOPsdq/5lCTF1/RLAQrLuEeVrijPujRMyC7xtH5Kwp9QqzhOzO33oSgIHJ0AoN8MaikR1ExyBr+0IDfZjGOMuz8MnuPxlaDvSNDceu7ALZ7Rz93hFbHGCtiWfrPZG7xwAwbcNRq1IMzpzoay0/wfKu0aPEhV7YPoPunp+sJ2RsEQRBuAk3U5FHtbhKucrLaIDRaBA0tHjcJdxKDEd4unILypi3tS2OqmcfKRVQYTF+WBX8XhzaDo/2jpbsSyXtG5HQjGmMyz0LYfV9mc55b0IzZF+66tL3jpSHI9jfh8lgsF3wYDE0bGveOXOir0V1k/Vdo4eyp089I6pkRDSUwNfscvf8ZD0hY4sgCMJNuJmKPGrBVcpVrqhhpReOCt3bcPCcon0c1TdKvcJ6tqNxkK/sM6m0faxjXGq7iCC2c0aG+Dv9vWNp+OcWlAtKi/OGz8TEKObjWhohau6xIyb6YoscengK5a5Rj3ME+Hjpamw1buDnMfnJekHGFkEQhBtxsxR59EQcFebp6NwqR4XrHMwpUly/yVGhaEq9ws6uM6a0fXqMCZYaYbygh5fR4LT3jpDhLwTfT1syLig+B99vatBzoi+1yDEoLkJz+Qm5a2Qdd3OHtcMr32dZPc8RQb7o3boRvj7yl8rWCZ+re3QYvj/Odk95Y9LTRTTI2CIIgnAzboYij56II8I8HZ0g7shwHSWeA0eHoslJ+XMA5g77xzvDci+bBPkCMOBiqfb7rcRrrdeYsDwnZM4JOOe9wyJ0YUthWRXq+3rhaqW0RLklfNu1GDNaJ/osixxzh7XDE+uPKm4b69hjHXdD4iMxOD7SwttYhg0Hz+lmaOHGuYd3ilTk1WvcwM+jRTR4jK5uAEEQBEF4AvzEBfhnosKjtvbNv9YesVvh5ydjKZl5GlusTDhCKUo9B44OgeW9whHBwu1auC3L3Kcs93L+8PaYP1y/+y3WvohgPzuVQb3GBMs5LeHDEkckNDPn1ukFq9CFEKyGlgHW3jqxe8wCP9HvvTgNY1btx1NfZGDMqv3ovThN9j6wiHPM3nQCr3x/SnD/yGA/TOkbDYNA25WOPdYxwN9733pGLE3NVuy15tua1K6x6DYf7cpBSmae2RAWaz1/Hy+XVTr8HekMSPqdAZJ+JwjCmdSFlby6jB73R41UuRocWU6AvwY5z4HeY1fO07D9+AVBb4GQPD9rnS09n0cp1T1HjQl3CMNSUiZADWLlF1jDFi0JC/TGiE5NsXrfWebzWKL1Wv89tguGdtS3TALLGNAiFR8Z7Ie7O0bikz05dsIjPJZjeEdWvqTXdcXYLli4Tfy+6fWOVAtJvxMEQXgoN5McrqeiR7iVsxLEHVlOQC50DwBmJsVi2sBY3SZDcpPPGhOHhduEvQVCYZMs91Lv8DoxUQtHjglnisqITeodLRwjll9mLt3wZyGmrhMu3WBLUVm1oKEFsIXfar3WF749gWB/bwyKi9Bt7LGMASVS8fwz/2hiFAbFReByWaVsSKTlGBbLTw69Uag6r6SizohokLFFEAThJtxscriejNbJq97KhmITXEeXExCbMLGsviv1trAsRMjJhAtN0FjupaONlRoTh72n5WtdAfopKTrC25WSmYf5W7OQX2ohshHkh/nD4xxap2vagNaYOaiNaPu9jAYYDdKlG5QgN9HXeq3F5dUY98kBVR5zpffUcp/si1eY2xhhs8jRe3Ea8778GLZcyNiRlY9vMy6gqKwKn+zNVXwsd4aMLYIgCDfhZpPDlcMdQp8chZ4eJzlvj6NlvdV4fpSGR7HkwMzfehKzhrRlarOrJ2jW0udlWH/gLC5eqWLaVw+jxRGhyimZeXj8RliYJfml1/D42iP499gumtX3xKntT6lx54h7LnZMreIcPEoiGtTcUzUhlgAwd1g7TEj8p7ac0uLJlmPYy2hASUUVVu/NVdVXji62rQdkbBEEQbgJnlzHSW/qet6aXh4n1rBTR8t6K/H8qAmVZZnM5ZdW4stDbOpprpygqZ3g6qXo6IhQ5RoTh9mbTkhu8+K3J/DavfGYuv6oaNipEAYDIKcusHznGSzfeUbyHeGIey50TN6QHhofochDIwRrRIPUPX187RHMTIpFVHig1UKIGmVIAAgJ8LYytABlv0mRNmNYrXCKM4pt6wUZWwRBEG6CI/NrPImbIW9NjwLWSsJO3aWcAIuHSmhiyTqZS88plPze1RM0tRNcvbyQrCp5DXy90VOBGuH+PwtRXC4done5vBrBAT6Chn9IgDcAWB0jMtgPyd2aY0lqNlMbAOl3RPfoMIQFeqOoTJ9QQlujARA2pI0GiApGsCAU0WDpGQ2v74v5W09K3lPLPoy8UVdr4bZTqjxJxeXV2JGVb9W/Sn6TbMewUq8Y4Lhi246CjC2CIAg3wdH5NZ7AzZS3ptXjpDTs1JkiCWKwTKyEQmX1WmDgoGyCpmcoqxbpc728kCz9ryZfKP2MtJFrud2zg28VNPz59ll+xlr8lkfqHeFlNOC+hGaavU08tuNIzJDmvXKPJkYhwKcelu88rep8/IKDWs8oT37JNVW1vXiE+vdyWZWsUWk0AMvHdLYbT2oiNRxRbNuRkLFFEAThJujh7fB0bra8NS0eJ08MO2Vty46sfKv7yy9EqJ1g8sxMimWeoOkdyqpmBR8AEmMaYtRtzRHs74MaE6fp+U/NymfeVspLZGuEmjgT41Fr32pihr/tZ2qMbKl3RFKc9tA+wH4csSwS/ZCZj7cf6KTa2OLrfqnxjNq2Rwu2/ZuSmYep6+XbtHxMrZy9Laz3+OGeLWAwGNAyLAAP94qCTz3PKRVMxhZBEIQb4Yz8GnfGEw0IrSj1OPETXVblMHcKO2Vty5aMC3hx2D8LC/xChJAAgxKiwgOZtnNEKKvaMbv3TCH23vAcaTH2UjLzFBkaYl4iISM00NeL6Zi9WoUraLE2oQmh/tbDaI8M9sO0gbFWn7EuEplqOMVhhXxEQ9eWoej31k4HiIuo49KVa0zeWt6jJWRoAWz32GgA1uw/Z/774z05HvV76DlmIUEQxE3CkPhI7Jk1EBsm9cSy5ARsmNQTe2YN9JgfFi1Q3po0KZl56L04DWNW7cfynWcktzVAOK/ElfB5M3IUllXhYE6R1WdD4iMxMylWZA82WMYNa15ZjcJEHD3GLG/spWTmKdqPvyalWHoxgH+MUFvDoqyyRvZYIQG1eWBK4I1s4B/vPitC/W15PLXMHWYfXcBqSB/ILVRsaNWesx3WpOdq9uzqSeMGfkzeWhMHhAb6in7Pco9t+0ztc+AqyNgiCIJwQ3hvx4iEZuZ8m5sBfpVT7Grd0YBwFmITXSHcNeyUz5thQWgCO21gLCKClBstluOmxsQh/UwhtmScR/qZQjujSUkoqxLkxjYLao09tSGMPKxeDCneGNlB1Vjkvf0Rwez3XeodMSQ+Eisf6mIW5VBKaKCP3WfshrSy648I9sPkvtFYuO2UaLFurdi2SK6Fls+SXpEIYvdYbLhoWfRwBRRGSBAEUQfx1BpVlLcmjNKJrjuHnbLmzYh5JuYPrx0fAFv+ieW42ZGVL5uH5ahQVr1CIXlj79M9OWgc5Gv1fIs991rDblm9GEI0aeCDsT1aovK6CelnClW9i2xzG1Oz8vHdcfH8s+GdIiXPwR9vedpprN6bo6jYsVR4olQoXGiAN3pEh2H5TvlzTO0fg96xjXC5rIopH0oNtaqEcVi4zT5kfXinSHy0KweA9DtYz0gE23tccKVS0sD0pPxdMrYIgiDqGJ5eo+pmz1sTgnWiO21AayS2Dndr45o1R+NyWaXgd2LjI/LGJHHrsTzBcQOAKQ/LU0JZX9v+z0RU7Nr55z63oFzVOSwVUJUqA04bEANvLy9sOHjOTnpczXPMe/trTBze+OE3yW23HsvD80PaST4DXkYDnkqKxbSBrXEwpwh7TxcwiVdIhSdKGdKXy6vx61k2b+jtMbXPcO/FaQ7L0RreKRJDO0ZicLywQE/nFqGy72C9FXQt81e3ZJxn2scT8nfJ2CIIgqhD1JUaVe5SF8pdYJ1QxDap7/arvJbeSzFMHDB1/VF8YDQIjlep8fH8kHaCsuJiE1dbIQjWCWTXlqFIP1PIPD5Z8qZCArwxtX9rK0OKhbySa/jwhifCEr6orZqQObVeDJ7yqhqs3ntG93eR2vIBYvAT/O7RYfjmyF+qDYdBcREICfAWrTdmAPD5vrOy7QGAgrJKzaGfcny0KwedW4RiSHykYD8NiY/EwLZNsCY9F2eLygVVAKUiEQDlpRYs8ZRFDxbcOmerpqYGc+fORXR0NPz9/RETE4OFCxeCsyglznEc5s2bh8jISPj7+yMpKQnZ2dYF8IqKijBu3DgEBQUhJCQEjz32GK5eversyyEIgnAojkrsdxU3a96aEHVp4gHUTuRWjO0impPBIzVexcaH0OdK8rCkEvb5v4d3ikS/t3ZizKr9eOqLDIxZtR+9F6dJJuyz1riKiwzSnNvFw/ecXMFhwF5RMCLYz8og4o1QVr7NuOCQd5GjwzwB8fsuZTgczCmS7GcOYA5XLLhSifxSx3tsbO+BZT7jstRs9H1zJxZuO4X/pJ/Fwm2n0O+tnXZjnPc0BwsY9Grz4oDa8Sa1vyfl77q1sbV48WJ88MEHWL58OU6dOoXFixfjzTffxPvvv2/e5s0338R7772HlStX4sCBAwgMDMTgwYNx7do/g3TcuHE4efIkduzYge+//x67du3C5MmTXXFJBEEQDsNRif2EcuREGJRSF4VDQgN9JJXZ9ByvOxjrS/ETdLGEfV6w4KNdOXbPmpxCGuvkv6CsUrNinhpevbeDpAIqb4ywCCiEBXqjqKxKdBst99aRCw9S913OE8d6f0P8vWX7cOG2U5i3JZPpeGoRUprklU6f+iIDS1L/sDP4pMZ4iYChWVJerVo1cEdWvqzx6in5u24dRrhv3z6MGDECw4YNAwBERUVhw4YNOHjwIIBar9bSpUvx0ksvYcSIEQCA//znP2jSpAm+/fZbJCcn49SpU0hJScGhQ4dw2223AQDef/99DB06FG+//TaaNm3qmosjCILQmZuxRpU74oicubooHOKs8ZqSmYdPGetLWU7QhUIVpWodidWlEjq2XBt6xTTEBw91wexvTigSb9BCRJCfbNgdb4zM3nRCcCLMX/F9Cc2YRFDU3Fu984RsURvCzHp/JyZGY2nqH4Jhd5ZcuXadvdEauHTlGnOxZKExzlLQWeyZEIMl5DY0wBuD4iKYjudq3Nqzdfvtt+Pnn3/GH3/8AQA4duwY9uzZg7vuugsAkJOTg/z8fCQlJZn3CQ4ORo8ePZCeng4ASE9PR0hIiNnQAoCkpCQYjUYcOHBA8LyVlZUoLS21+kcQBOHu1LVQM09ETJ5da12YGhOHYH8fPJoYhVCbOlUsq+7uiDPGq5L6UkKeQduQxMNnLzN5j/ffKEJsiVLvJB9q6WiUekWHxEfi8EuDMDMpFiH+wmMxiXESrObeag33Yz2H0hBm1vs7bWBrxVL2jiQswEeR0qmtR8wRERUsIbeXy6s9JkrDrT1bs2fPRmlpKdq2bQsvLy/U1NTgtddew7hx4wAA+fm1YQFNmjSx2q9Jkybm7/Lz89G4cWOr7+vVq4ewsDDzNrYsWrQICxYs0PtyCIIgHIqjV3wJaRyxwgsIe8rCAn1wb0JTs6CDJ3m0eJwxXpWIDMQ3C5IVuNh7+m+mY01dfwRv3N9BMAxPzDvJAbjrhjIcf097xjSUVW5kwWAAOA66eUVrlfzaYNrAWBzMKUJ+6TUUXa1EWKAPgv190LVlqOJ7q6RchSMUS7WWy1Difea9Z5/tzWGqn8XfP1ZC/L2ZPaJPfnEUlxly+mzhvZKO8FDXtSgNtza2vvzyS6xbtw7r169H+/btkZGRgRkzZqBp06YYP368w847Z84cPP300+a/S0tL0bx5c4edjyAIQg+Uhpp5ai0ud0XJCi+rYqBYeM/lsiqs3pvr0ffMEaGRtmNaicjAjqxLWLQ9C3OG2udLCRm8UhRXVAsq7okZCfxk+tO9ufh0b65V2KmU2hsrHAfMTIrFF4f+p2s5BS+jASUVVXgz5TdBGf6PduUw3dvtx/Pw0pZMqzwvudBbPRVL9Qr9VWIEehkNOF9cwXRcjgMe7tkCa/afY9p+xbguMBoM2JGVj0/35kqOHTWGFvCPV9IRHuq6FqXh1sbWc889h9mzZyM5ORkA0KFDB5w9exaLFi3C+PHjERFR66a+ePEiIiP/GcAXL15EQkICACAiIgKXLl2yOu7169dRVFRk3t8WX19f+Pr6OuCKCIIg2FBrCLH+2Ht6LS53RO/VWEd5ytwJPT0Uwh5AZWpoq3bn4Jk721rJW7PmswghdH8sjYTUrHx8sjfXTijEVh5dqI+UEhUeiD2zBuq6wCJVauKjXTmY3DdatO4Zf28Xbc8SlK3PE5GIZ303sm6nd7kMViOwxsTh2wz22mUGA9t9CvH3Rs9WDa0k7edvzdJN3ZD3SppMHLZknEd4fV9EBPniYmmlbh7quhal4dbGVnl5OYxG67QyLy8vmEwmAEB0dDQiIiLw888/m42r0tJSHDhwAP/6178AAL169UJxcTEOHz6Mrl27AgDS0tJgMpnQo0cP510MQRAEI1oNIbkf+7pSi8vd0Hs11hGeMndEDw+F2JguKlO2am/igDXpuXisTysA0gavHFL3x8toQPfoMDz9ZYbovpbGtNKwMyEaN/CzKhqrlarrJryw+YTkYsDWY3lIe6Y/1h84K1irafvxC4KGluVxLA1W1ncj63aOWtBg6eeDOUWSio22tAwLYNpuYmKUnXHfwNcb4z4R1ilQAu8hq6iusTpeSIC3ub+Eam0ld1MWHVbXBIHcWiDjnnvuwWuvvYZt27YhNzcXmzdvxrvvvov77rsPQK2VP2PGDLz66qvYunUrTpw4gUceeQRNmzbFvffeCwBo164dhgwZgkmTJuHgwYPYu3cvpk2bhuTkZFIiJAjC7dBLYEEswdvRtbj0ljz3JPSWZ69reQtSaKmppsUgEuJsUbn5/3oUlhW7P0qFBbyMBoQ3UB5144iyACmZeei56GdJY5Zvf+LinwVrNdWYOLzEIG/O9wHru1HJO9SV5TKUPLeRwX54uFeUbP210ABvTBsYa/d5QVmlihbaE3CjFputEiUv+y5UawsAlqRmy9ahs0WLDL+74daerffffx9z587FE088gUuXLqFp06aYMmUK5s2bZ97m+eefR1lZGSZPnozi4mL07t0bKSkp8PP75+asW7cO06ZNwx133AGj0Yj7778f7733nisuiSAIQhRnhI050ltys4cm6r0aW9fyFrQgFRLGahAF+HihvKpGdjtLD4IehqzY/VFjTCu91/xIS+7WAt8fv2DVd2pDlZWGVdoaZLzRMyMpltnzmF96DW+m/Cb7bhzYtomid6ieCxpK+1PJvXz5njj41DNK5u8ZACwa2UHwnHq9I8orhZ8fvm/9vb0w4Y4oLP05224b/r6vGNsFoYE+zEIoeuXluRK3NrYaNGiApUuXYunSpaLbGAwGvPLKK3jllVdEtwkLC8P69esd0EKCIAj9cEbYmKO8JRSaWIueOUh1KW9BixiLnBHPOlZfGd4ez319XNJIMBqAh3tFmf/WMkmVuz9qjGm5MWELH961JPUP82e8eIVtLhXLwogeXkR+Yr6asfYZABRdrWR6N65Jz2WW5jcaDci+eJXp/HL3Ss1CE8u9NBqA6QNbo/K6CelnCjEoLkLw/aLHuViQ2pfv2//sPyu577QNR6xyFEP8vTExMRrTBrYGAMH3hCeHSQNubmwRBEHcTDgjbMwR3pKbQchBCXqtxtaVvAUtHk8WI551rJ4vrsDkvtGSOUKT+kRbiWOonaSy3B/+2LL1hCzyeljGxIykNogKD0BuQRmWpNp7GPJKrgn2AcvCiB5hlbjRblZp8oaBPggL9GHa1jIEVIqp648wnZ9lQUPtQpPUveQJ8vPGsp9Pm//mnxulQics59ILuTw028jy4opqLEn9Ax/uOgOfekarEMW6Ehnh1jlbBEEQNxPOCBvTO68IcG3eg7uiJQfJEk/PW9CSg8iaX8jXdJLr4SWp2ejcIhRT+kbD9nYYDcCUvtF2su9yBXQNqN0vUsX98TIaMHdYO5lWAwu3WedQyo2Jp5JicXfHpvji0P9kj20JS86m3vmBtkWRhVg4Ih4Rwf5Mx2seyiYiwWpoAdIGs9YcWLF7GXoj98m2nfxzsyMrX/H7Rexc7kJ5VY1dLpjWYvDuAnm2CIIg3ARnhI05wltyMwk5uAJPzVvQ6vFkNeIPn72Ml++Jw+Nrj0i2hz/fnlkD8cydbbEmPVdQIc8WltDQ54e0U3V/QgPlBS+EQoflxoRaD5RcqHJ4fTaBDj9vI65Vm2S3m5gYjaWpf4h6Wqb0jcbQjpGoMXFMHsaPd59hzs2TIzTQG6+OiMeQ+EjRMFg9Qr9t72V4fV88w6hSqfQdYHsu3vvJ6u0y3qgHJ/b7FBrorVgBVIq6EhlBxhZBEISb4KywMT3zigAScnAGnpi3oHUiqsSI9xUxlKTOx8u7syBn3Ki9P1oWKqTOqXVhw3Z/3tjYc/pvpv2vVZsQEuCNkvJqyYWjaQNb49aI+oL10V4dEY+hHWtVo1nD4C5eYZdSl6OorBoLt53Csb+KRfPbKq/LG5SA/P2wvJfpZwqRXyquHmg7jpXmQ9qOm1sjGsjWcOOPNqlPtGSh6ldHxOOFbzPtPFRaqAslLsjYIgiCcCP0NoSkzqOXt6QuCTk4Gi1CEZ6GVo8nq3EeHuiLZ78+pnu7bGE1qJTcY0ctVGhd2LDcXyjnjgV+Qi63cMT6LuLfjXoW6JVDLr9tRlIbpuMouR9Knhs9FGDtvV3l2HDwnFUfW/7+dG4RKvr7NCguAi98Ky/nrwZPjowgY4sgCMLNcFbYmF7ekroi5OBobjZpfK2GBIs4RUiAN2CAIkPAkR5WpffYEQsVNSYOJhOHEH9vZhEKsfMplXm35HJ5NWYmxeKLQ/+TXThifRfpWaBXC7wR+cWhc4gI8sXF0krm+ydnjIczhJYCwJ9/X8V7P5/WRQHWtv+nDWwt2kap36f0M4W6erUs8eTICDK2CIIg3BBPCxtzlkfOU7lZpPEtJ5Lh9X0VT0Qt4Y14qVys4vJq/HzqInP7LMVf9PYyqrnHahcqxNqu1gsldD49ZN6jwgMVK+fJcemqPgV6tcKHt81MisVSgbwnofvHZIwzds0ne3IkhTle2HwCFdUmRAQp73O53x+x73dk5TOfg5W6EBlBxhZBEAShC54q5OBobhZpfKGJJF/nSa3Hc1BcBEICvEVXyw0AtmRcYG4jfz69vYxa7rHYQkVYoA9GJDRFsL8Pakyc7IR9eKdIfLRLeAJuiVidLdvz6SHznltQpvvCUZGbGFs8UeGBTAtNrMZ4AeP1XRUpMMxTVFaNmRszADjHg15j4vDlr3/pesy6Ehlh4DiOedGiuroaU6ZMwdy5cxEdHe3IdrkVpaWlCA4ORklJCYKCglzdHIIgCMKDSD9TiDGr9stut2FST4/yZloiNpHkjSxbg4l18sfad2GB3rhcJizGANSqqC0f0xlDOzaVbCsAVV5GPe4xb+CkZuVjc8Z5K1U3vr8AqA7rC/H3xopxXdCzVUOz50rqfEPjI/CJgsLDQkQE+WLv7Dt0nShvPvIXZn7JnqPnaPh7KuUprTFx6L04TdR45b03e2YNxIwvjuC74/p6iLSMbVaWpWZbFc/WA3cOs1ZiGyjybHl7e+Obb77B3LlzNTWQIAiCIG4WXCGN70whDhavjr+3F1Y81gUFZZWK2sPaJ/clNMOne3NFleqWj+lilhDXy8vI93F+6TXs+v0SUzulrsfLaEBJRRU+3Zsr6v0IvuEpVENxRTWMBoOVgqLU+bQaWgCQX1qJgzlF6B4dptt4ZK25xcqLQ9vhkz1/ioa7imEb3iblwWNV5nz/52zdDS3++JZjm2+TXu+HGhOH1XvFi4Ur5c64Jhh/e5R5YcDTURxGeO+99+Lbb7/FzJkzHdEegiAIgqhTOFsa39lCHKwTSaPRgBEJzRQdm7VPkuIi0C06TPa69aiLBKhX6JO6HpYCuVrFB/JLKpB+ptCcUzd/60nJ8xkNgEg9XmZSs/Lx9JcZ1iF2Qb4Y070FosIDFU/2eVERrSGOvLH0aO9oNA/zl5WVt90XYA9vY100WLXnT6bt1MCP7eVpp/HFoXO6vh8O5hQpFmOR4qesi/j1bJGV/L8no9jYio2NxSuvvIK9e/eia9euCAwMtPr+ySef1K1xBEEQBOHpOFMa3xVCHI703CnpOy+jQTZnUI+2qlHoY7nHeuRIybFw2ykUlbHXotJqaAEQ9JDll1ZiSWq2+W8lk31LUREtzeNgLT8vlHcllt+mVPiHddGgTCYPSw+EQv2Uvh9sPed5xRVM5w7wNqKcodg1UJtz9sT6o5jyVzHmDI1j2sddUWxsffLJJwgJCcHhw4dx+PBhq+8MBgMZWwRBEARhgbOk8V0lxOFIz53SvpMTY9DaVjUKfaz32Bl1hJQYWnrA6ilSOtkXM46UMDMp1upcUgI/zw9ppynsjmXRIMDHC2VVjje2hFDyfhDy6rL2hBrj/cNdOeh0SyiGdnS/vC1W5Euu25CTkyP6788/Hef+JAiCIOoWNSYO6WcKsSXjPNLPFKJGj2V0N4WfHEYEW0/iI4L9dPM2KQmR0xN+Iik24TLAWnJdKXr0HT/W8ksqEBboIzk5bBjog64tQwW/U+N9Ym2nJ9cREoP1iea3W/BdFvN7YEh8JPbMGogNk3pi2oAYxW2LCreOzBLLc9Qj/5FfNADsDRPeINXD0DJoWEPh3w/7zxSKvpd5r67tM8B6n69dZ/Nq2TJ3S6ZH/z6oln6vqqpCTk4OYmJiUK8eKcgTBEEQ7NxsBX4Bx0vju0KIA3CO505L3ynNryosq0LfN3di/nD7sai076YNiMHMQbcytZOliLMzMQAIDfS2UilUQqBCTw1rvpwlvCdTzZi2NG6l5PRtQwjVvqekahFWVNcoyscTe84m94nGR7tqhSpsv2cdU1PXH7HKv+Kvd1BchOa6a2opLKtSNC7cDcWerfLycjz22GMICAhA+/btce7cOQDA9OnT8cYbb+jeQIIgCKJuIbY6yocSpWTmuahljoefHI5IaIZeMfoqbTlbiMMSZ3juWPvO0mO6LPUPPC4w1uTIL72GxwXGotK+S2zdiPkeS3k/nA1//ldHxCMiSPl4MQCY3Fe5twkQN2iFPOH8Z9kXryhqm6WnVex9lFdyDR/uytH1PWXpjVuWnIANk3ri7VGdmA2tKX2jsVLiOZszNE70OZyZFMt0DluhC/56l6eddnhOoRTOCLN1FIpdUnPmzMGxY8fwyy+/YMiQIebPk5KSMH/+fMyePVvXBhIEQRB1h5ulwK8rYPGMhAR4w3Rjkqp3/7pDUWu1KoFizNl0wmosKvE+qQmd1CMXSQ8igv0wd1g7hAb6onOLYPyQyd4WS0/IF4fOKfbUCRm0YgWzAWUKjbae1hoTJ6rIKIbW95RtXuGWjPNM+028vaVZKELqORN7DgFg9b5cxYqW/PWu3qeftLsawuv7mpU0XfFu0YJiY+vbb7/Fxo0b0bNnTxgsgkPbt2+PM2fO6No4giAIom6hl/Q2YY9UOB9PcXk1xn1ywGEhm3ICFY5EjUqgHJfLq7H/z0Iktg4HYN3HUhigPnTSdrKcffEqlu88rab5TPBKiW+P6mSug3a5rAoLtykz+B7p1RJ3xUdaTYLlxqNQO2wNVLH7qkYG31ZFcHnaaeSXVio+jp7vqfBAX6bt7mz/z7Mq95wJfa8l54mD9rIDWnli3WGUVFw3/+1JYeeKwwj//vtvNG7c2O7zsrIyK+OLIAiCIGxxVV7RzcKQ+EisGNsFoYE+ktu5a8imWtEUNSqBrKSfKbT6m/c+RQYLh9dFqgidtL1uAOaQSd7QcwSWnp7E2HCMSGiGkooqTF2vPPTyrvhIu/BOsfBSqXZY7q/nfQ0L9MZ/nxtgvi8pmXmCMuhK0PqeSsnMwzNfHZPcRqvADM/BnCLNBlOIv7fmENcAHy9VoamWhhbgvu8wIRR7tm677TZs27YN06dPBwCzgfXxxx+jV69e+raOIAiCqFO4Mq/oZiAlMw8Lt2XJSnxbhkINbNsEh89ednl4TkpmHuZvPWnlaYgI8sX84e1lDRfH1qiyn+pbep/yS6+h6GolwgJ9EBHsb9d/cmp2tdedhfxSy6K/fmaBDj2EM0ICvFF93WQnWBEc4I03RnYw969aaXupGmK2nrrcgnJsOHjO+npFvBR63teismocPnsZvWIamq9TK1reUyyeWD1LQ+ixgDUxMQpLU7MVCW7YMqlPNJ68ow0O5hRhT/bfWPGLuqg4Two7V2xsvf7667jrrruQlZWF69evY9myZcjKysK+ffvw3//+1xFtJAiCIOoILBNHKeltQhylYXR8KFTPRalWinOuCM9JyczD4wKhefmllXh87RGslPEUOdIT2quVsGeJJWRSTnVT/LqvWV23knA8IcQ8GiU2nys1bvj23BVfa0yJGeq2fTVtYGum3D697+uOrHz0immoixGnxtvEG975JRVYuO2U7L1swrjYwIIWw5A3qKcNjMWtEQ005RR2j671fpZUVOGbI2z5amJ4Sti54jDC3r17IyMjA9evX0eHDh3w008/oXHjxkhPT0fXrl0d0UaCIAiijsCiuFZYVoV+b+30iPAQd0FLuJWttLezw3NqTBxmbzohuc3sTSckQwqVTiQN+KeQrBQhAd7oqXISJ6e6uf34BdnrnnPjulnD8ZTCwbq2lVLjhs8e+XRvLsas2o/ei9Psxg0fIrn56Hl8svtPbD7yl9kwk1OW1NvD/eneXKRk5ulixCV3a6HIm5KSmYfei9MwZtV+zPzyGFOB6XdGJ+i26CFXD08KDv9414bER2LusDiEyYQqi1FwtdL8bFh6N7Xg7mHnio0tAIiJicGqVatw8OBBZGVlYe3atejQoYPebSMIgiDqICwTR0+Kx3cH9Ay3UlNgVgv7zxTK5pIUl1djv03ulCVKJ5K8VPa7oztJbvfGyA6qwpPkVDcB4KUtmbLXzQt0ANay4QPbNtJUwNaSvJJrWJ6WDYDduLkrPgIAYDs8bJ9bKwNjYwYWbjuFmV8eEzXMbOkeHaYqv0cMPuwsvD6bKIUUUeEBzNuKGd5yFFxVLt4hhlxhZUB88YFXfgRqr2Xq+iNMxqIQl0orMfubE7rmV7p72LkqY6umpgZff/01Fi5ciIULF+Kbb77B9evX5XckCIIgCNROHP/73ACEBXoLfu/sCb+no/fKrmV4jqNJ/7NA83ZyE0kDgJlJbbAsOQHr/q8H3h7VCZXXTQj298G/x3ZGRJD15DsiyFc2dFEKFtVN1mLBlgIdXkYDfvn9ItJ++xucjo/FktRspGTmyRqtBtT2zdFzxYLfWz63249LGxh5DAsqO7Lyce06e2FkOfhxDQ6qvTw8rBN8LV5nvY0IsYUu3pgqFylCXVxefcMbm6dJsMRgAF7bfsqulpda9BIPcTSKc7ZOnjyJ4cOHIz8/H7feeisAYPHixWjUqBG+++47xMfH695IgiAIou5x+OxlyQknPzHa/2chjAaDywUcpJATQXA0eqzUC+Gc8BzWfpLeTqxGVVigDxaOiMfQjrU5Us9+dcwuh2re3e0RGuij2/3Tt9/+mdpWXTdh1W7H1DvihQbE8sP43hjTvQWWpGZLtjav5Bpe2pIpOynnwxiFBA7kchADfb3g7WW08g4G+njZiYAIUVBWqSkPTskEX43XWU50RAu2giXh9X3xzJcZTPvO3ZKJQpUeLQC6LhDoKR7iaBQbW//3f/+H9u3b49dff0VoaG0C8+XLlzFhwgRMnjwZ+/bt072RBEEQRN2DdUI6dd0Rq5VQd6uvIieC4BQUTmIaBvowTZqcEZ7TK6YhUx0plgT4IfGRMJk4vLQl02zIF96oGXXsr8v4aFeOXVfll1zD1PVH8MFDXTAioZmaS7BDz36zFOhYk55rF7qnF7wnU8xoDQ7wxsTbo9GiIVv4HGuYmZDAAYs3qIFvPex6fqCVkqaJ4zDu4wOy52zcwA+9YhoKXqfRYB8eacvcYe2YJ/hqDG8OQHK35szbK13ssRQsST9TyFRrjAM0GVp6I6Zg6Y4oNrYyMjKsDC0ACA0NxWuvvYZu3brp2jiCIAii7sI6IbUNOeHzQpTWMnIEYqvvzm5jQRlbbgdfeLZry1D0e2unqCqkI1fWbenZqiFCArwl85dCA7zRs5W8sVWbT3LU7prySq7hw13CHiE9JKRtJ7tdW4ZKqm7y/VtRdR3FFeJpGLYCHWeLyhW1S6nXhjcMeO/H8rRsrN6bi+KKahSXV2NJ6h+iob9asDVIWLxB+aWVZil3nhoTx9Tv/Li29fIUXKnEwm2nZNsbyliIGFBveC9JzcYXh/4na1BoXexxd3EJIeYOa4cJidFu79HiUZyz1aZNG1y8eNHu80uXLqF169a6NIogCIKo+6hVx3KXfC4WEQRntZFd2KC28KxPPaNssryzwnO8jAa8MVJaZGsRg1CFltwYLTlqliIQT32RgTGr9qPfWzsxvFPtRFeo1bzn4vX7pK/bVqCjZRi7KANQa1isfKgLZia1YdrechztyMrH0tRsu8UOuVwzA6DYILMdv2qLn7OIQNiOa97LMyKhGcIbsBlRl65cYy7AzfKe8/MWno7LCQXJKV6yCAwpNQbDArUXNtZKWH1fjzG0AEZjq7S01Pxv0aJFePLJJ/H111/jr7/+wl9//YWvv/4aM2bMwOLFix3dXoIgCKKOwCIDL4YzBRzEYBFBcFYbWYQNbPNMxJLleaU+Z3oNh8RHYuVDXeyU5yJvGAssbdFDkVHpKr/UZPejXTmY3DdaVHVzSWo2Fm47hSl9o5kFOh7uFQW5OabRALwzqiM2TOqJPbMGYkh8JKYNbG13Dktsxwer4Spm0Lw6Ip55IUUo/0lL8XMt45r1vLkFZXYGtpi6Ist77lq1SfBzqUWbqusmvLBZOC9OyWIP/+6Qgx8jD/eM0lVJUA0Lvz/pUUq1TGGEISEhMFhojHIch9GjR5s/425kvN1zzz2oqdFPNYYgCIKo24jlh8iFlfG4MgRG7eq7I+AndFLCBkKeKtswKlcKkGhtix79rGSVX86zaQCw9Vge/vvcAHzwyxksSf3DbjveKFsxtguTQIdPPSMm9YkWDYkEgEl9onH/bdb5Pl5GA+YPb49/3SigLDc+WA3X0EAfq9wsyzwao9FgPp8YBgiPS7ni53JhrmrHEst5QwK8BQVCpEKHxd5zLAgV7k3JzMMLm08wCQzJFfy1fHdIGVEcgIrqGiz7WVgcJTK4Nnz2++PKjaAAHy9RJUQhisqq3SaUnAUmY2vnzp2ObgdBEARxkyI0MTKZOIz7hC3R3VVoWX13BGITOrlEcstkeVegl5Kjln5Wk6PG6tk8lFOELw6dE93GAGDhtizsmTWQ6brnDK31kqzanWMl5GA01Bpa/Pe2KBkfrIbr3GHtEBHsL3jv5AwMqbwitYsHtsdQOq5ZzitmkMjl/gmJtyghNSsfvWIayqo02sJyL+XuVWiANy6XV4sugAX6GDF3WDsM7dgUd3e0zyGTMqYMAKb0jRFcjJBDS56lM2Eytvr16+fodhAEQRA3MbYTI6WJ7q5A6+q7I3AnTxULeig58sZafuk1hAV6M+UUqZm828JqkKT/WcAcbso/A3IG6JyhcXjmzrZYk56Ls0XlaBkWgId7RcGnnnR2COv4YDVci8qqMDyhmWi/WZ4vv/Qaiq5WIizQBxHB/rLjUu3igVakzpvcrYWkUSDlTRITb2Hlk7256NoyFAu3nVJ0jIIrldiScV7yXVBj4hDs74PnB9+KorIqhAT4oLi8CmH1fdG4gbw0fFmVCU+sP4qVRoPdGMstKMdSiT4b1jESLRoGMD27lrB67twBxWqEAHDt2jUcP34cly5dgslkHWc6fPhwXRpGEARB3LzosbLtaNy1jc70VGnxSumh5ChkrAnBt2hy32hsPZany+Sd3ZOmLAyS1QD1qWfEY31aCR5L6r6wjA+5hQSehdtO4eM9OQ7znLpq8YA/7/4/C28UlebQq1U4Ll1lU/20NcS1iLdYotQrZjTASl1RaBzJjTdWaXgAmL3phNnT1CumIWpMHHovTpO87u+P56kKPeTxBDVFA8cpKzGWkpKCRx55BAUF9pXcDQZDnczZKi0tRXBwMEpKShAUFOTq5hAEQdw0uEUNKxk8oY2OQMt185MwMSOJ9wpKhdYpCaeybJdeYYv8Nch5Nt9+oBNT7adpA2Lg7WUUzAfiW6fWAFUzHvn+Bdjk42cmxWLawFi39aIqRagfWb0vGyb1tDIw088UYsyq/Q5ppxr+PbaLuci30DNkOd4qr5vw1BcZzMde91gPJMbW1oZzxnXb9rWzUGIbKDa2YmNjceedd2LevHlo0qSJpoZ6CmRsEQRBuA69JseOxBPaqCcskzSpiT3rJExsIsVirIUF+uClGzlFjrofYgaJZT8MiouQNMpY0WKA2raHdayyeg55IoL8MH+4YxYZnPmMKc2LsiQ0wBu/vjTIqm1bMs4rMlgcjdEAvPdgZ7z2wynZBQ/WxQKeqf1j0Du2ES5duYbsi1eZCpYLtY+lYkakzPPgSJTYBorDCC9evIinn376pjG0CIIgCNfiagEHFjyhjazITWpZVPjkEte1KjmyiFMUllUhItif+b6omcyL5fc0CfLFmO4tUHndhIM5RZg7LA5T19uHmypBLkeF5b7M2XQC87eetAoLk/J68eF0n+3NYSr2m1/qmGLejvYeW9778EBfzN+qPuRPaD89RXLCAn1wuaxKk+Fu4oBpXxyV3IYfb6YaTlE+1WfpuVjxyxkNrWMztADXh5KzotjYGjVqFH755RfExMQ4oj0EQRAEQbgIlkktqwrfZ3tzMCExWnAypFXJUW/ZfS2TeSFBgA0Hz1mFA0YG+wnmi6lBiwF6WUBNjs+RWzG2M0IDfe2MTS+jgbnYL4+eKnF65PbJHV+NJLsYxeXVdgYxaw6cFLynSQ/DXQnTvzhqV9hairJK56QTPZYY5TFh2oqNreXLl+OBBx7A7t270aFDB3h7W1cJf/LJJ3VrHEEQBEEQzoF1UstqwEiJJ2hVctRTdl+PyTzv2UzJzMPS1D8Ej/XRrhw8eUcsakwmnL9cgc0ZF5iuwZbGDfwEvXBqhQL4tk7bcNTKo2BpbIbXZze29FSJ08OLKoWWcEEpbO+FlJgOC5aCO0PiI/GBUV3NLjUoMbScSZC/t/xGboJiY2vDhg346aef4Ofnh19++cWq2LHBYCBjiyAIgvA4bracK1uUTGqVhESJGSysSo5AbX6X7X3RS3Zfz8m83LEAiBaEZYG/pstlVXb5apHBfkju1lx8ZwZsQ7f4eze5bzS2qDAM9VCJY/WiqjHs9FIIFELoGRGVlL8RchoVHojGDfxwuawSr3yfZRXq2STIF/OHtzc/Q5be1B8y8/Cf9LMOuAr3ZsPBcx4jyKLY2HrxxRexYMECzJ49G0ajdD0HgiAIgnB3blY1QUuUTGqVhERJGSxydZQACBoV/H3RQ3Zfz8m83LG0wF/F8E6RmLpe2Au3JDUbIQHeKCmv1sWA4I/x4a4cVfvrkaekJlyUdeHEEfdLzshnkbJPycyDfbkA+/Zb5olqNba0hiSy7j9tQAximzRAbkGZoOqmEvJLKz2ixhagwtiqqqrCgw8+SIYWQRAE4fE4Oh/EU1AyqVUaEiVlsIhNPndk5TPdF61Fb/XM/XJkvZ/aXJ12ogVteaOWx1n5PEJIGRxKPchKw0WVLJyouV+W/arWyJcS0xF7H12UEB7Rmg82fWAM1uw/h2KBfD5WWM+b2LqR+dpjG9e3C11ViifU2AJUGFvjx4/Hxo0b8cILLziiPQRBEIQCbvbwNy04Oh/Ek1A6qRUzdKTgJ0ZCY9Zy8qnkvmgteqs198vyWgqusBV+lYNv+YykNogKDzBfE4sXrri8GjOT2uCLQ+fsDI6K6hrdvF5ybRcyONR4kJWEiypdOFHjebP0umox8oVQ+z7Smg92+tJVlGgwtFgQMsBDA301GVqAviqPjkSxsVVTU4M333wTP/74Izp27GgnkPHuu+/q1jiCIAhCHAp/04Yj80E8DTU5ULyh8+meHLy2XV4WPDzQV1e1Q/6+aJHd15L7JXQtrPWBpBCbtKdm5TPtHxUegD2zBop6Cx3p9RJruxoPMm/IDo2PwCd7c+3OZZvbp9RQYbn3TYJ88c7oBBRcrbQz5FmNfL3CGuU8xEoXP3h2Zxe4xADX4pVizcl0FxQbWydOnEDnzp0BAJmZmVbfWYplEARBEI6Dwt+0o7d8uCfDKlhhO0n0MhoQ11S6oCfPodwiLPs5Wze1Qz3ui9x1cwCSuzXH98cvWE2UxZ4/tYbW3GHtEN7AV3QynpKZJ2hwCNG4gZ+gASo2IddqIMq1XY3HhsWQtTTs0s8UKjZUWMb8/OHtkdg6XPCYLEa+I8Ia954uEOxnWy/vpdJKpkWQqzpLtYf4e1spGIoZ4Gq9UkpyMt0FxcbWzp07HdEOgiAIghEKf9MHPeXD6wJqc6AKrrKFz322L1dXtUO97ovYdQcH1Ebu2NbLmjssDgu3SavYsRow/Aq9WD0y4J/nnfVYUqv9Q+IjMbBtE6xJz8XZonK0DAtA4yA/PLmhtsCtkLEpRaRM2wHlHhsxQ5a78cGjiVEYFBdhZXCwev1sDRo98v7EcFRY4/Kdp/HNkb8E22dpANaYOKz45bRkLlagjxfKqvQ1tt4f0xn1vIzIL6lAUVkVwur7ItjfBzUmzmqcsOSa+Xt7wdsIlFoYhHrcG2ej2NgiCIIgXAuFv+kDy4+90QBcLqtyartciZocKNZJolS9HqVqhxFBvrqGEAkVJharl/XE+iOyxzNx/3h8eOU1tYIKrKp5HMOxxDwtQgWXI4L9MLxTJD66oUYodC8qqmuwIytfcuKrxFPJspD0Q2Y+XhwWZ+UFU+L1s0Vr3p8QLGUAXth8AhXVJkQE1Z5PidAFSwSDl9GAN0Z2wONrxcfr5L6tmFQB5w5rh6KyKqz45YzstuCAgzmFWL031+qZt/XoseSaVVTXIDjID4/1ibHKX/S0RUTFxtaAAQMkwwXT0tI0NYggCIKQhsLf9MHyx14MEwdMXX8EHxhvnrBMpTlQLLkvwQHeTGpnrGqH166bZCf5SuGvu8bEoffiNMmJMgvhDXwxIqEZAODWiAaqvSesz/GjiVGSx5LytHy0KwcrxnZGaKCvncHRuUUoZm86IXj/Ssqr8fjaI5iZFGuuE2U7GVbiqVS6kMTq9QOA0ABvUQNdS96fECwGclFZNWZuzADwjyHCKnTBGsEwJD4SKx/qgvlbs5Bfah/KOCguAl8c+p+kgdcw0AcP94rCD5l5ktfD8/i6w4LeMiEDkSXXLL/0Gpam/oEPHurisYuHivXbExIS0KlTJ/O/uLg4VFVV4ciRI+jQoYMj2kgQBEFYQOFv+jEkPhIrxnaG3ELpgu+yUKNV+aCOwhtHQvDdOvH2aKZj2aod8qF8tpSUV+Nfa4/cqEmkL3rVXyq4UoktGeeRfqYQg+IisGfWQGyY1BPLkhOwYVJP7Jk1kMlYzC0oZzrfoLgI0e9YPC0Lt51C9+gwjEhoZhYe4Y/rV094usjvuyQ1G099kYExq/aj9+I0q/tyuaxK8vkyoHby3z06TPFCkpJ7dbm8GjsYww15akwc0s8Umu8j6ztA6UIXb4gAwAcPdUFEsPy729LwlGrvkPhI7J0tPPYsn12xW1RYVoWei1Lx599Xma5FLCyR7znbd+mQ+EjMGXyr7LV68jtYsWdryZIlgp/Pnz8fV6+y3QiCIAhCPVoU1Ah75CSIhcIySXLfHiHvVUiANxaN7HBjBf2cojE7KC4C87dmAbD3qDgyN1EPj7DBUGu88KhVCU3JzMPS1D+kzwX5511L6PHBnCLkl7LL2lt6MAAIFmG2hQ9/VLqQlF9SwdwuAJj9zQk08PNGz1YNZceMUMhliL83JiZGYdrAWF1Ca3ksx/OeWQMxsG0TdH7lJ6Z8Kn68yolxiHmFWLxLRWXVWPbzaQT4eKGiqka1eqHQONt+PA9PfXlMdl9PDo3XrTLxQw89hE8//VSvwxEEQRAiSK1GeqJSk6tRupqekpmH3ovTMGbVftHV/JsJPjxNKMzs8o3P1IzZ2kk+m4GgJ3p4hDmb2ShvgPBjhMVjIuWNsjoX5J93LaHHSo1Pvr3zt57E/K3yQiIrxnY2G6H8QpLYlVh6wQCgSGE+ZXFFNcZ9fED2eeXHtK3xUVxRjSWp2ej66g7J/btHhyEiyFdR2yzH8+Gzl5mFKxo38BNtr+24E2NIfCT++9wAhAUKe5J5ym8YWlp/WSzfpU8wGOO2+3kauhlb6enp8POjkBWCIAhnwK9G2oabRAT7key7QpSspmud1NQ15AwCfrWeD2dSMmb1yk1UGgomN+FXg2UI1fbjF5iMddYQuZlJsbLPe3h9tom/0LOgxvjkAOSXVkoay0BtTmRo4D9tU2qUhzFely15Jdfw+Noj2H78gvkzfpxsPvIXXticKWkAFMuEse7Iyse16yZVbbt05Rrz2A/x90bXlqGyIaIsIXiHz15GUZl8XmV933po3MCHqX1iNG7ghxoTd8NzrWw/T0RxGOHIkSOt/uY4Dnl5efj1118xd+5c3RpGEARBSOMIFa2bEdawzK4tQ9HvrZ0kuW+B0vA0JWNWj9xENYW/WWpvqYHviyfWH7X7Lv/G5N9SaII1RC4qPFDy+5TMPMzfelJyG6lQRCUqeWrQIsceEaRt8j1tw1EshwFGIxQXBObziGyfdzEhElaUGBQTE6Nw+OxlXdRpWQ28q5XX4e0l7QGTgvdMvvfzH7LGuCVhEgIn7o5iYys4ONjqb6PRiFtvvRWvvPIK7rzzTt0aRhAEQcijt4rWzQhrQV+9JjXujNJcNDXeJ9YxqzU3UUvhb6kJf3K3Flgik0elFEuhCZ6wQDbvgZyxKTfxlws9ZlGH1IIWOXZ+jKgVNDFxYJLyF0Mol5Ml9FMMyxBJOQM3NMAb0wbG4nsL75wUvJqg1sUN4J/wYDW8fE8c3kw5hQ9vlBRg5ZFeUR67iKXY2Fq9erUj2kEQBEEQmlErXMGymr4l4zxTGzw1r0CNF8iRypisRrDQ/dWj8LfYhB+ApNiHXsjVd5MzNlkn/iwS9CwiCrZtCw3wRg0HlIjUV5NrP4tRblu+wRVadZbPu1Yly7nD2pnHW3K35oL12YDavls0soMiUZH/pJ/Ff9LPij7T3aPDEBbozRRKqIaQAG+8MbIDTCYoNrQAoGXDAAe0yjlQUWOCIAiiTqDGWLBEbjXdUyT31Ricar1AjlbGVBJSZglreONne3MwITFatH/EJvyO9PRYtlEMFiEc1on/26M6ITE2XHY7scLPQm3lABRJeD9YhXxqTBz2nylE+p8FAGrvha2SoFJDUG8sn3ctCy33dIzAwm2nrNUPb5Q+sBSfsX2nXS6rhNEASUVVS8SeaS+jAa+OiBcMc9VCSIA3Jt4ejWkDWwMAur2Wquo4R85dxvCEZh7p3TJwnK1mjjDR0dGSxYwBwGAw4MwZhurSHkZpaSmCg4NRUlKCoKAgVzeHIAiCsEHMWOB/tfQQDeGL3coZFntmDXTZhECNwclfl9hEVe66+L4HhL1PYsVylaDUgNyScR5PfZHBdGxWg9y2DZfLKgUnx8Xl1brmegGw8ziwtHnz0fPmorlSLHkwAfd1bqaqXULjjQWW9qdk5gkWU+Y9JLb7Wt6f8Pq+yDxfjEU//K6oXUqJtHku0s8UYsyq/YqPExrgLRmaN+OOWEQ3si8arTY/TOqZXrQ9S5XnSYgXh7bFo71bae4fHrUlFByBEtuA2bM1Y8YM0e9yc3Px4YcforKSvQ4DQRAEQeiBHiFjLGgJa3MGar1TWmowAdLep7s7RuKlLSetJLrVTJiU5iYq8S6y5HCJGbFzh8UhNNDHygjckZUv2herdqubxM69uz0igvwUGaxFV9nmZLbbKTFsLb1d+aXXsPD7k5JhaCH+3lgxrotsnauUzDw8vlY4l6q4vBqPrz2ClQKeme7RYea2X7l2XeqydcH2eVeTQ8ZiiL+Xlo3lYzpbPQNa8sOknuk5Q+PQ6ZZQvLQlU7G0vi1tI4KsxtKPJ7WptbI8q+4Is7H11FNP2X1WVFSEhQsX4oMPPkCPHj2wePFiXRtHEARBEHJoNRaUoDaszdFoMTj1kFgXCsFM++2ioHGR54QJkxIFPbn+kTJip66vvY4RCf94hoT6gleyVEvR1UoM79RUkSHPKrBhuZ1a9cZeMQ2RfqZQNt+nuKIaRoNBNnRQTj0RsL9far1sapmZ1MauT7yMBgzvFMnsGWoY6INHekXJCq7UCnkcxUqjwXxOrflhgLhoxtCOkUiKa4Kei1I15XBN33AUxRY5ezIBcrJ4quqrqjpbFRUVeO211xATE4OdO3di06ZN+O9//4uePXvq3T6CIAiCkESvekysDImPxJ5ZA7FhUk8sS07Ahkk9sWfWQJeutCoxOG3RKxeNn3SPSGiGy2WVkl4cXjZbrvaPWqTqNYm1R6h/5IxYQPg6LPuie3QY1qTnapoYL9x2SnHh7Ihgf0Xbaa0hp9dzWOslk/fK5ZVcw/K0WvVGsbY7ioggX3MOkiU1Jg5bj7Hdo7BAb6TPuQNR4ezCD5ZjTY/32X/Sz4rWeWOtuyVFsY04ClvikjSOKmbuSBQZWzU1NVi5ciVatWqFjz/+GO+99x6OHj2KoUOHOqp9OH/+PB566CE0bNgQ/v7+6NChA3799Vfz9xzHYd68eYiMjIS/vz+SkpKQnZ1tdYyioiKM+//2zjw8iipr4293p7uTNNkD6bAmbEIIEECBCKJiEAQVkZlRFkcdB0VBEWdccMANR8RxxAXcGMRxAVxGBwXlG5A9BEEgQAgKhAQQ0mB2yNJZur4/QjXdnaquW9VVvYTzex4eTXfVrVt1b1XfU+ec90yZgujoaMTGxuK+++7DhQsXNOszQRAE4T8CIVzhupjO7OY9JMof+LLQlSriq4O7JLUUTQ4Oc1fnSW6n9YJJrIiyNzyvjy9GLNBsBAxfuBHz1x5m7oMYxYxGDw8/rt7gx1WpUelKUUkNU7+k7kM5RsSiDUfx3YFixeF0cZFGvD15oFOIggUdgOdu7SN4z8vxNr00oS9MYXpZzyXXuabm80zIoA52VdVg758rzMbW559/jt69e+OZZ57BU089hV9++QV33XWXpGiGL5SXl2PYsGEwGo34/vvvkZ+fj3/+85+Ii4tzbvPKK6/gzTffxLvvvosff/wRFosFo0ePRl3dpUGYMmUKDh06hPXr12PNmjXYunUr7r//fs36TRAEQfgPtY2FUMQXg9ObF0hJLtquwjLmN+IsC6YmB4ecglKszj2NnIJSWd4w3gs5b1xvpu09r48vRqwW3hY5HkF+XL3dF/y4+mpUNjk4rNx1UrJP1miz5H0o14iYtzpP9jWOjTBidlYP/DR3FOIsphYiHN6IMOnhELn+rPPlpvQkjEqzAmAzioWOIXc/bwgZ1IFWVZWiqKQ60F1ghjln684770RERAQmTZqEEydO4KmnnhLc7rXXXlOtcwsXLkSnTp3canulpqY6/5/jOLz++uuYO3cuxo8fDwD46KOPkJSUhP/+97+48847cfjwYaxbtw67d+/GlVdeCQB46623MHbsWLz66qto3769av0lCIIg/I+awhVK63QFGl8l2NXMRZPzxllqQeernD/QPD/uGZaKf20vlH19lBqxvha39Yac/EOxcfW8hr6GAPICGVJMGty5xf3kec8N6hIHa7SZKZQQAEoZRRxmXt8dPZLatLiv5XpIauodeGjFPjzwawXmjE1z+451vnyfdxbDF250jsGzt6SJCoJ4wh/DoNdh3rjeklLtrLLwnrmtcvIeA8GiDUdxhTUqJIQymI2tESNGSEq7q+3l+uabbzB69Gj8/ve/x5YtW9ChQwc89NBDmDZtGgCgsLAQNpsNWVlZzn1iYmIwZMgQ5OTk4M4770ROTg5iY2OdhhYAZGVlQa/X48cff8SECRNaHNdut7spK1ZVVal6XgRBEIS6qGEsqLGwDxSexV094QDc2j/Zq+EoVWeMFdYFZ4LF5NXLoVRdUQilBrlSI1ZOOJkSWXg5BsKoNCuiwo3IKSgFwCGzayKGeoS++hqKy9qflESL299i99z4jPaqyY/zDOueKGigKvXgvLe1EP07xmFsv+Y52OTg4OA4xEYYW+QqCcHP4yWTByLOYsK9V3fBhzknRPOahOZanMUseRwHB0SFhzGrM/JjKfVMCQZCRSiD2djavHmzht0Q5vjx43jnnXfw2GOP4emnn8bu3bvxyCOPwGQy4e6774bNZgMAJCUlue2XlJTk/M5ms6Fdu3Zu34eFhSE+Pt65jScLFizA888/r8EZEQRBsBOqXpZA4YuxoObCPlCMSU/G/SNSRRep728txIDOcV7PQ67EuhCDU+OZPBPzx6eLjo0Wcv5KDHKlRhqLl8f1+Hde1VlSkc6VRIZFNiBszPxn7+kW5+urZ5S1P67bebvn3t9aiAdGpOLTH0/igr1Jst14ixHl1Q2K+u6LB2fufw9idLpVUO5fCv5YM1fuZS5I7DnXWI1cOTL4rsan1DMl0KilMqs1zMZWIHA4HLjyyivx0ksvAQAGDBiAvLw8vPvuu7j77rs1O+6cOXPw2GOPOf+uqqpCp06dNDseQRCEJ6HsZQkkSowFf9Xp0hoWJTTW8/DF0F+fb0Ndo8PrNg+MSHV6BISO5+A4TeT8lRjkSow01hpXU4d0xvPj0/F/ecXM4V4A8NCKvfjTsFTMHNldtO9yXiA0h6Sl4aEVLb0YTKG4rLfFxe1Y7rlv9hdj999G4eqXfxAt+MsbUvPG9caMFfsUhRF7M6ilKKtpwOKNR/H6hqOKQ+1YxlyvA6Zdk9pirqmZVyVklMpRVwwUoSCUEdTGVnJyMtLS3ONhe/fujf/85z8AAKu1Obnw7NmzSE6+NAHPnj2LjIwM5zbnzp1za6OxsRFlZWXO/T0xm80wm9ne0hAEQahNa/CyhBL+rNOlJWqdhy+Gvtjc5WljNuCVif0wtl97t308j2cxG7weh0fJQkuJQS7XSGOtcfXt/jOwmA14f2uhrMV6ZW0DFm04guU7CvHy7X1bjEt9owNPf32Q+QXCurxizF+bL3gsllDcEkbjcuPhsxjWPZF5ru49UY4Ft/d1hrKJGVJj0pPxjl6nOIxYzKBmYXl2keY5TRwn7JlWK69KzCj1tZaXTqeO3Ls3WL2qgURRnS1/MWzYMPzyyy9unx05cgRdunQB0CyWYbVa8cMPPzi/r6qqwo8//ojMzEwAQGZmJioqKrBnzx7nNhs3boTD4cCQIUP8cBYEQRDsqCHBTMjD33W6tEKN8/Cl1hKLKERUuBGjXRaLYserZggdA4D1h85KbuOLmqErcuT+WWtcVdY14j2ZhpYrFTUNmO4xLuvyijF0wQ9eFSFdDW8p1cR543pLGiusHpavc0+jycExz9UZFz1tQhL+1phwtxdPvta/c91/xvXdmPYBWtaS0gKxZ7/cenJiJEWbBV/i+fLM0wF4644MxFvYZfVd99Vm48AQ1J6t2bNn4+qrr8ZLL72EP/zhD9i1axfef/99vP/++wCaBTkeffRRvPjii+jRowdSU1Mxb948tG/fHrfddhuAZk/YmDFjMG3aNLz77rtoaGjAzJkzceedd5ISIUEQQUdr8bKEEoGo06U2TQ4OJefZvAti5+FrOCXLW3DXuauGYt+ag8VIXpuPv41LE/xerpdObvik2Pa8x8FfRXb5cVmfb/PqWfTEVlWHV9b9LLq9Ds0FlUenexdXGZwajzbmMFywe88NKqtuwK7CMuZ7qaK2wenN3/7kSMmx8TXnkN9/cGo8Pt15UtKQiokIQ2Utez6UL4g9+33xyl2i+Try89lWWYuy6nqUMSo9xltMbtu63mMHz1TKzvni0CyP/32e9MsUVq9qIAlqY+uqq67C119/jTlz5uCFF15AamoqXn/9dUyZMsW5zRNPPIHq6mrcf//9qKiowPDhw7Fu3TqEh1+6kT/99FPMnDkTN9xwA/R6PSZOnIg333wzEKdEEAThldbiZQklfBUHCDRCBoUQUufhq6Evd+76GqLEs3RbIQZ0inULTQTkh+PKNcyktufzgPzhgy6urMPO46WyjdeyC3bVXu44GOPFzp2vw8392ssKf+ONSc8++CoiJLb/+nwbk8fkT8O6yhI2UQOh+4wPc120/ggWbzomu82zVXWY/slexEYaZdUc458pWx6/HntOlLe4jr7kfHVrGwVA2tgK5pdgPLKNrREjRuC6667Dtddei2HDhrkZNVpw88034+abbxb9XqfT4YUXXsALL7wguk18fDxWrFihRfcIgiBUpTV4WUINNet0+RupHCkelvPw1dCXO3fVfGHw5FcHkJVmhSmsOTtCrpdOiWHGsv07Uwfiqf8c9EuoWfaxElly89aYcObcMqmx2lVYhpp6ttBP3gPLKisuZvD5KiIktv+t/ZMlc+hiI414+fa+GJVmxardJ/1ai0qophtvMMZFyg/ZAy498+QaWkDzOJrC9ILGuC8vVDK7JeA/e38N2ZdgrsjO2brxxhuxc+dOjB8/HrGxsRg+fDjmzp2L9evXo6amRos+EgRBXDbwXhaxZb0OzQuCUPiBCSX4hbFUXkgwIScML85ixJLJA7yeh6+Gvty5q+YLg/N1TRjy0ga8seEIVueexgfbjzN7bOTmScrZfkx6MpZMHujDmbHzUU6RrO2fvSWNObdMaqzkGM7z1x7G8IUbAQD3j0hlTrlxPYYvuYXe9i+urJPMoYuLDMOup7Mw5mJopZycqahwNuEXIYSe/evyijF84UZMWroTs1blYv7aw/DXOyGWZ6PSFyrJMeEY2jVB9NoG+0swT2R7tubOnQugWdFv9+7d2LJlCzZv3oxXXnkFer0edXUU2kIQBKGUUPayKCVY6ompVdTXX8h5a1xW3dC8ENPrRBdHvoZTyp27g1PjW+R6+EJ5TQMWbTgqa59z5+tkh0/K3X5otwSmkDmhaybHW8JSjwporkn10oRmBcPvDkhLzsdGGOHgODQ5ONF7Qa7hbKtsDluTA38MX3MLfc0VLK9pxJ4T5U5PDkvOFN+LPwzqhGXZRQqP7H7/iHlXtdZOmnl9Nwzr3pbp2ajkhYoOl85TjWL1wYDinK3jx4/j4MGD2L9/Pw4cOICoqCiMGDFCzb4RBEFclrSWHxgWgq2emBpFff2F3LfGUqUD1DD05cxdg16HF8enC9Z28hftosKZr+OGfBsyuyUwb5997Den0S5WB8oVT5ns5mLHnWQbkN5IsJiQM+cGmML0WJdXjBkrpENQK2obMOVfP3q9L+VKkMuxBzyNfF9zC9XIFfScA64vajbk2/B17mk3NUh+/sdEmBQZW23MBrz6+/7Oa6+GuIxSeiRFMT8j5c4Li9mAf7qcJxB6L8GEkG1sTZ48GVu2bIHdbseIESNw7bXX4qmnnkK/fv2g04XOiRMEQQQzreEHRgqqJ+Ybct8as7z1V8PQlzN3x/ZLxgO/pnpVKxvYORZ7T1awnCIzrgv4XYVlTPssyy7CVanxzNd98aYC5/8nx4Tj/hGp+GZ/sehCn/dI3DcsBVlpVgxOjceaA2eYjiUFf+X/PiEdpjC9osV6sZf70pfCwCy4Gvm+5haqkStYVNIybYZ/UZPZLQFPj0sTnP9NDk5RXaw/Zqa4XXO1xGWUIOe5I3detDEZMCqtZQ3cUHoJJoTsnK1Vq1ahoaEBf/7znzF9+nRMmzYN/fv3J0OLIAhCZeTU9RFCrfpCWkD1xHxHKkdKCNe3/mL4Wq8IkDd354xNw9uTB7SoxxMbaURspFF1Q4uHX8DLuY7Pf5uPQV3iYI2WV0jVVlmH97cW4umxvb3WHdIB+C7P5lycq5XXFhNpdDOSlC7WOYjfl2J5j74Q69FvwPfcQjWu6ardJ70+m8Tmv2uOlxyGdU90+zsQarRK84X5eRHHIMZy9nw9Fm9sVlMM5t8vucj2bJWWlmLbtm3YvHkz5syZg8OHDyMjIwPXXXcdrrvuOtx4441a9JMgCIKQQbCF53lC9cR8g89zuyndig+yi2R7E6QWa/5+kzy2X3uMTk92egOKSmrw+oYjmoRJxUYY8fLEvs77gF8As+QQFVfWYXdRGYZ3b4sv9/7KfEzeq/jcN4eYiw3z9Z7kynELEWF09xj4slj3dl+6ejWzj/3m5t1TwpJJAzGsh7uh4WtuodzQNiF8eTbxoikzV+5lyq+KizRiaFf346itRhsXaUS5xBzjANx5VSdF7Y9JT0ZtfRNmf75fcttFG46gpr6hhRc4mH6/5CLbsxUXF4dbb70Vr732Gvbs2YMDBw6gZ8+e+Mc//oGbbrpJiz4SBEEQMvBVqcsfUD0x5bgqkH1wMf9DbnBJMJYO4A28m/u1x6rdJzXLR1kypWUY3Jj0ZPxpWArT/jM+3SvL0OLhAJQyioHw8359vs1nQwto6c30dfzX59tEv+PHcfaoK2R7Xnl4L8pQkbpaY9OtooYW4D230JuCoJy++vJsirOYmIUsFtzet8W58Ea4Gswb1xs/zR0l6F32ZNGGoxi+cKOi3xBW5UsAeG9rYVD/fslFtrFVWlqKr776Co888gj69euHXr16Yc2aNbjlllvw2muvadFHgiAIgpFQCc+jemLKEDOk+eG89+ouiLeYQrp0gFb5KM4FfFdhb4RQrogQ/qiZ1S4q3Hkvq4WrcaAkBNWV1blnJJ8hrEYNq6y360sGXmTCc9+kaDNTrqe3Ug+P3tDd6748vjybWA21Pw1LETwXtYxwAEiMMmN9vg3z1x5287pGGIVNhGKFRg8/55QSTL9fcpFtbLVr1w4PPvggzpw5g2nTpmHfvn0oKSnBV199hVmzZmnRR4IgCIIROeF5/sY1Bt/h4GCNpnpicpASNdABWHfoLF4cn+782/N7IPhLB7AuRGMj2N/ss5y7rwYIK/EWo9djxEYancIdahqdrsaB3PpQnpRW1zM9Q/iQOc98HWtMON6dOhDvChg8SdFmPJrVA/ZGhzNXR+wlQ8t7Qfps+OeQvdGBV3/XH5/+eYgzN3HeuDSs2n3K6/5qPJtYDTWhFwBqG+FFJdWC17a2wSG6DwdgzlcHZRk9SvPVPI8bqN8vX5Cds3XgwAH06dNHi74QDARLPRqCIIKTYA3PE8ohi400OnNZLod6Yr7CakjHWUwhXTqAdSG6ZPJA6PU6Z47Xyl0nYasSvj4s5661oh6fSzRvXG88tGKf6HYVNQ1YvPGoasIgYjlMLPWhvMHyDFmXV4z5a/PdaqnFW4yYN663cyxclSv5cXSVu7dGh6OusYlpPM5WeVcy9ZbLWllbLymFr9azyZe8M7WMcP4YK3cpC9ktr2nAWz8cwZCuicxr0jHpyZid1cPncgZi93mwItvY6tOnDxobG7F582YUFBRg8uTJiIqKwpkzZxAdHY02bdpo0U8CwZ/wThBE4AnG8DwxiffKi2EwMR4CAKFiFPgbOYb0+IwOIVs6gHUhOtRD5XDmyO7OOkdf7fsV5TWNzu84jm05KWaA+CpSwffyzqs6w97EwWI2oNpLEWK1amtJGQeeMv1FJdXMx5Z6hojd9+XVDZixYh/euVi0ls/xWpdXLCiKImdh7a28gbdSE9M/2et8+eMNtZ5NvtS0U/NF2Z1XdcaiDUcU7//GD8fA/XDM+bfYmtTVUeDgWtaUk8v8NYcQYdSHzG+EbGPrxIkTGDNmDE6ePAm73Y5Ro0YhKioKCxcuhN1ux7vvvqtFPy97qB4NQRAs+KrUpTZSOWQ6AOFhenz65yEouWAPKaPAH7guUkrO25n24RfBoVqbRulC1KDXobK2Hh9kF7WYb2er7My/lUJ1whwODlOW/SjZ93njeiM5Jhzz1x52M9Ys5jA4OM6nha03dGh+aREeZnAzTlg9eq7zpEe7Npi5cp+ogAPLM4Tlvnc1iNQs0iukZMqSy8piTL/6u/4t1BGVorSmnVovyiJMBlTVsgm2iCG2JuVDR1m8zkooq24IqbWvbGNr1qxZuPLKK7F//34kJFy6OSdMmIBp06ap2jmiGbkPLYIgLl98eWOqBSyhb7YqO/Q6HcZndPBLn0IFoWgGvQ4+LYJDBSULUTV/Kz0NEKlitPy1v2dYKgx6nVPGfkO+Dat+OoUL9kaBvdSBP5OXb++rijdzbL/2WAwdHlrRUgqf9Rkit7SDFqIorh4gtdovqWZ74cGKkuL1akjXA0BNfZNTaEQt+P6wytr7SqisfWUbW9u2bcOOHTtgMrknO6akpOD06dOqdYy4BNWjIQhCDkrfmGpBsOaQBTti0QzeDC2gdeW5yV2IavlbKZXPxaHltd9VWKr6YlYIz/tajXXA2H7JeFev/Bki977X4v539QCp1b6vXiWxvHs5Y8byQm1cv2SsOcCmFqi/GNKnpm2khqElFWoYSmtf2caWw+FAU1PLOONff/0VUVFRqnSKcIcWKwRByEVqoeovsZ1gzCHzBbWum7d2WEKqPD1cwZjnpsa1krMQ1eq3kj8Pe6MDj2b1wPLsQlTUunuqXGsercsrxnPf5GuexD+gUwyeGNOb6boqGQslXhceufe9mve/kIdXjfZ9VSBUM+9e6oWaHLW+YFRR1wG4J7MLlu84IbltKKx9ZRtbN954I15//XW8//77AACdTocLFy7g2WefxdixY1XvINH6FisEQfgHsYWqP8V2gi2HzBfUum5S7bCEPDm45vygxChzUOa5BULQSYvfSqHzEKKypjmH5P4RqXh/a6FmBZld2XeqEuXVdslx92UslOb9yb3vWbbnRUpYrq2nl5Gl/ZhIo1O0R2ib2oYmrM+3KZq/WuTd88bwzoJS5BwvAdA8VlelxOPpr/Nk9zFYiLcY8dKEvoiJMDEZW6Gw9pVdZ+uf//wnsrOzkZaWhrq6OkyePNkZQrhw4UIt+njZI1X7g+rREATBili9Gv5HX26hSilYCpuGQuibWteNpR3WN7VnKmoxPqMDMj1U+QKNv+cYj9q/lWLnIQR38d/Sbf4xtHjmrs7zWutI7ByKLyrwfXfgjCb9knvfs2x/Q692TNf20ayeGJVmddb0yykodR7PW/sv394X70wdiJhI4fptvEEtd/6qXWjetV7h4o3H8Jcv9mPxpgIs3nQMU/71I4Yu+MFNaj+U0OmAF25Jx5j05Fa19pVtbHXs2BH79+/H008/jdmzZ2PAgAF4+eWXsW/fPrRr106LPl72tJbFCkEQgUXtH31W+JAXz+Kl1pjwkFCTUuu6sbaT2MbM1K9l2UWaGS5KCdQcA+T9VrouWPnCua4oVcfzd0hWWXWDaMgYyznMXLkP3zHm9shF7n0vtn1spBExkUZ8uZdNF6Cyth7DF27EpKU7MWtVLiYt3YnhCzcCgGR/RqVZER4mvDT2Nn+9zSc1C82vyyt2O7dFG460CFcNVUMLaM7RenjVPqzLK25Va1/ZYYQAEBYWhqlTp6rdF8ILwZTwThBEaBJIsR1f8j8CjVrXjbUdcGBWGws2Na5ACzqx/FayhNVpoY7nDV+KKIt5QlnDUR9asRfv6rV56SH3vvel7hfPBwKiJK7hetufHCnan12FZbBViSsOCs1fqfkkJ5eQz62zVdWh7IId8RYTrDERGJwaj/X5NsFQxNYGB2DOVwcxKs2KUWnWi3mSRaioDd1ajEzG1jfffIObbroJRqMR33zzjddtb731VlU6RrQklBcrBEEEnkCL7YRq3Scl101IkIC1nZJqO569JQ3TP2kpve1JsKlx+XOOiYk+ePutlMqd4esDfe8Hj2FcpBELbu8LAC0W6/EWE2rsjahrdEi2I5azIucaa2m0K1Hby+yWgCYH5/RIsSJWGsFT+l+sP3LnL0suFmtOUVFJNYYv3ChoIFujzahrdLR6Q4unvKYBj67ai59OVLgXF48w4t5hqZg5sntIrX2ZjK3bbrsNNpsN7dq1w2233Sa6nU6nE1QqJNQjVBcrBEEEHhLbUQbr9Ui0NIf/ib3pvvOqTszHy+yWgD8NSxF8S++J2saxLyqCcq+VUsSu8bxxvRFnMTv7fnO/9kwqj2rVB2KR0Y4JD8Ofhqdi5sgezr4JGYf/l2cTrHXlirecFTn3cbAZ7YA87yLvGfQ2dixeVTnPSNa6blsev17SUx0XafTqwfPmbWutfHvA1uKzytoGvL7hCK6wtgkZrxbAaGw5HA7B/ycIgiBCh9akDOhPWIuI/uWL/RifkSyoRmerrMOiDUcRe1HxjOX6j0qzMhlbahrHvqoIyrlWz92qLAxIzJtQXFmHh1bsc/tMicqjEnhTdNo1zWqEYmGBs7N6Cr6VF3qROrZfMh74NRXvbS0UPaa3nBV+LFgNlmCT0JbTH2tMOMamW5nqmnlrV84zkjVkds+JcmddLDHsDB5MJfgSnhqMyC1OHizIFsg4deqUFv0gCIIgNKY1JRz7E2/XzZWzVXV4T0T2m18k8LBcf3+qcTU5OLyx4Qim+6giKOdaqa3sJoQSlUcl8CILc8amCYowJMeE492pAzErq4es+2vO2DS8PXkA4i3uCnnJDOIyBr0O88b1Zj5WsHm0Wfszb1xvbH9yJLLSrEzbHz17XlAUBZD3jJQTcjgmPRn3j0gV3aamXv2osOjwMNUMLYvZoFJLviNHUCRY0HGct/rMLTEYDBg+fDimTp2K3/3ud4iLi9Oqb0FDVVUVYmJiUFlZiejo6EB3hyAIwicCUQOpNdBcrPaQzyE9s7N6YtXuk0zXn/fiAO5vqPmFnxpqjixFePk3+tufHMlkLLBcK7ltAkBOQSkmLd3JtK3ncV79XX9MWfajrH2FEApX9Ay1VLtouJL2WGuEAc1hbD/NHcXUR38VROdztqS8TPz8kdreE2t0uKh3leUZyToXV04bisGp8aL5WIQy3rgzA+MzOgTs+HJsA9lqhD/99BNWrFiBF154AQ8//DDGjBmDqVOn4pZbboHZ7FsMNkEQBKE9JLajjDHpyYgKN2LKv3xbsKckRnpVRPM8ppZKtGIheZ7IVRFkuVZ8mzuPl0Kv0zHNRSXeKafKo45d5VGIP2Z2wU0X6/9I3Stq5Fd7M2p4qXGxa8Y6rjys2/nzRQ3vZXrwk70twuG81eoS2l4IW1VzrbF3RWTopZ6R5dXSL12SGUMOWwvR4WGoqmv0y7GCzRPrDdnG1oABAzBgwAC88sor2Lx5M1asWIH7778fDocDt99+Oz744AMt+kkQBEGoCIntKKPkgu+J6u2iwmVdf62MYyW1pOQYO6zXasane91knb0t3n1ZYJVcsMtajHtyU3pyizHTysvjzagBWqoXul4zJeNaUdOAD7MLcc+wVNH+syjvqW1wyX3ZILa9N3iZcTnj1uTgMH/tYcntauubsD7fpllOlj+Jt5gka3gN6hKHTb/8pnlfQqWYMY/sMEIh9u7di/vuuw8HDhxolWqEFEZIEERrxV8hQWoR6P4qCWPjURI2pyVKzmXltKHMRqLSa+UZIuk65oltzPjL57k4W2WXbSzNG9cb9wxLxfp8W4vFuJhkON8foXHTyssjZtRIGYg6NF+zmAiT4jkq1n8+RE/MgNF6bsu97/nttx/7DUs2FUi2/+mfh2BY90Tn31JjK2du6wA8mtVDdr2wYKI5dDYNM1YER52vB0akYs7YtID2QdMwQp5ff/0VK1aswIoVK5CXl4fMzEwsWbJEaXMEQRCEnwm13K1g6C+r2p4nwShAIsdLpUSpUum1clUccziA+Wvdxzw20ujcRk6789cextJtxzFpcGc8MaaXW9HY8mo7ZlxUMpQKVwO08/KwyNOLwaH5mj0xppfs4/KI9T/QxaqV1urKPlbCtH1OQanT2GIZW7meqpW7TsIaHY6zVeL5Z7GRRpjD9EEp884/Y5dgoNfyCPwdItcgizIbcN7O7qz5Zn8xnhjTO2iepVLIViN87733cO211yIlJQUfffQR7rjjDhQUFGDbtm2YPn26Fn0kCIIgVIZfUPiiPOdPgqW/UmplOjS/dU32UKOzMqjH+Ru5IXlyDUVWZUIh+MX7QytajnllTXPIYUykUWBP79iq7Fi04Shmf5aL+WsP45X/+wWVtfUY26+9oIqg67jxeVJf7zuNp78+6NUgev7bfEG1Oyl8ze0prqxDmQ+hrmL9D3RBdOXIy1pjMXaf/zYfiW3YNQo4NM+7SYM7AxBXOVxwe19kP3UDPr1vCGIi5M9trZid1cP53IqzmCRrmSnxfFmj5T2LQk2NULZn68UXX8SkSZPw5ptvon///lr0iSAIgtAQ1mKcwVLHJNj6y5JH8sSY3kEfnsnqebJGm/HcrX0UGYpi1yo20oiKmgYve4rDj3mE0YAl9w1ESbUd7aLCUV5d38ILJoWnJ0csN06Osp8vXh41jJXYCKOs+lqeCPU/VAuiZ3ZNxGKGMMKocKMz9JDFgwdOvthKSmIkU/6ZXq9DZa2ye0MLerSLcv4/6/yMNOpR08Du/Tv6W7XsfgWfYS+ObGPr5MmT0OmC6weDIAiCYMffIUFS+RZS3wc6hEkIKdGKUBAgYVFvEyvCKweha+VwcD7JsPNjrtfr3OSfR6db8WF2IZN4Ad+Op7HuOW5ylf14lCwG1TBWKmob8OwtaZjupYguC679H9QlDvEWI8qqhY2AYC2IPrRbApNhv+D7n/HOlgLcPoBNSjzneCluSmcrOs7TLiocmd0SJMVu5M6bqPAwnNdQAXD+2nyMTm++N1jnp16vB6CtKEiwGfbekG1s6XQ6bNu2De+99x4KCgrw5ZdfokOHDvj444+RmpqK4cOHa9FPgiAIQiX8GRIklWfFkocVrCFMoWBQSSHmeVI7F87zWjU5OJ9k2Hk8x9yg1yExSl4ZGm/GuhJlPx4li0GleW6uxLcxY0x6Mt6dOhBPfXVQsQeR7z9/j3oztIDgykfkMeh1ePn2vkyGZ0VNA7PxtHjTMef/swiXuBqiUs8NOfNGr4OmhhbQfG8sWv8LhnVvi0Fd4pjm5wW7tn2KizQGnWHvDdk5W//5z38wevRoREREYN++fbDbm2ODKysr8dJLL6neQYIgCEJd/BUSJJVnteC7fKY8LH+HMPG5OatzTyOnoFRR7k0gUNrvMenJ2P7kSKycNhRv3JmBldOGYvuTIwUNLbWujS/5XK4IjbnSeSBkrCvJodKhpTQ163VT47rw+S9j0pOxZ+4ozM7qiViPHCApmyjeYsSgLnGi97Db8fyQj+jLvOMNz6QoE9P2SvILpdqSY4gOTo1nzmHy16Np8aYCTFq6E9f+YxNu7R/4vNPQeCJfQrb0+4ABAzB79mz88Y9/RFRUFPbv34+uXbti3759uOmmm2Cz2bTqa8Ag6XeCIFoTvIyz2NtJNWScpaSiAXa5bQCa95cnGBQPleCPfmtxjHV5xXj66zzJ+j2eeBtzqfkthpCs/erc05i1KldWvwDg0ayeSEmMFM0lk7pucnLEXEn2ck1cQ9fE1BddsUabUdfo8OoZS7CYkDPnBpjCZL+7Z0ateZd9rMTnguRSeD7TlN4f6/KKfQ4D1QodgKy0dliffy6g/ZBThkIL5NgGsu+OX375BSNGjGjxeUxMDCoqKuQ2RxAEQfiAkje+Uop6gO8hQSweASlVKz60yx/9BYJH8VAu/ui3VscYk56MeeN6y9pHaszleoeEPFE8cr1ksZFGxEQasWjDEcxalYtJS3cKKipKXTfe2yj32ni7JpndEjA+owMyuyWIqi+69bHKLhmCWFpdjz0nymX1UQ5y5p3Us1BOQfJ7r+4i6f0Tgj/kn4alePUQS8F742IFFDfDjdoZtixwAH44HFhDC2jlAhlWqxXHjh1DSkqK2+fbt29H165d1eoXQRAEIYEvb3xZFPV8Qa0fQr4drfsbbIqHrPij31ofwxoTIXN76TEXmy+eSBluLMIQ8RYT5o7rjZNlNcyFa1mum9z8s9lZPWXdB2PSkzGyVxKGLvhBtmfRFTn3upzixHLmnVChatdnYZODQ8l5dmOrY1ykTyF6X+07jb+Nk/cCyPPajEqzYlSaFTuPlyKnoBQAh8yuiTh3wY7Zn+Uq75wKBENkdasWyJg2bRpmzZqFDz74ADqdDmfOnEFOTg7++te/Yt68eVr0kSAIgvBAjaKqUop6vqDWD2FRSY3z/7XsbzAqHroitkj1R79Zj/FhdiESo8yyx4VFFCI6PAzP3dIHybERzG17zpeikhqs3HUStqpL5xITYcS9w1IwKs3aYn9WYYi/T0jHqDQrhi/cKNknV1jGhvU+ios0YubI7rKODwB7TpT7ZGgB7H2U+3KIdd4t3ngMr284IvosvH9EKr7ZX8wckmmNNiNeRh0tISpqGvDWD0fx6KieTNtLXRu+4DIA5kLNrRkdgHIf560/kW1sPfXUU3A4HLjhhhtQU1ODESNGwGw2469//SsefvhhLfpIEARBuKCmp0ErRT2WBbSUihcArNp90k16XKv+BqviIeB9IWZvZJNX9qXfrPu6yq3LyVVhkaCvqmvEvNV5GNGzLRwch6FdE5gMLs/5MnNkdyzeeAzLswtRUduAitoGLNpwFKt2n3LrL4vcu6uHLaegVHFdq+xjJaIvD/j7SKrtv9+Wruilgy/zQo7cu5KXQ6x9e29rgdcixO9tLWRqh+e5W/sgJoJNTMMbb/xwFD2T2mBsv/Zet5O6NksmD0CcxXzxhUE1Vvx4wue+hTocgBkr9uIdfXAVihdDduCnTqfD3/72N5SVlSEvLw87d+7Eb7/9hvnz56O2tlaLPhIEQRAuyPFmBAqpPCsdgJv7tfQmeOKv8wjWoq1SOStFJWzFQH3pt5J95eZy8WF/3nKIquub8H2eDVP+9SMGvbheUZ7Y+nwbXt9wBBUeRWNd+8si9x5vMeGV2/vB3uhATkEpbJXK1z+LNx1z5ncNX7ixxXndeVVnr/s/MCJVckEvhtJ5ISdXUurlEND8csgzx4q1bzX1TUzbsTA7qwfGpCfLUgQUgwPw0Ip9Xuep1LXhAMxcuQ+Tlu7ErFW5WLThKM6eV9+jEzyB0fIQmjfBiOIsO5PJhLS0NAwePBhGoxGvvfYaUlNT1ewbQRAEIUAwe2FcEVtA81LRWQKhW0L44zx4D4LYosObiIJWsCxSV+46CWu0tv2WujZCeFtEizEmPRlbHr8e8ZaWogCeVNQ0YLpMYQ7WRf/O49JeqrLqety1fJfTSGItoiyFq9G3Lq8YwxduxKINRwS3TbCY8PbkgZgzNk3x8QanxguKMLhiMRlaGB5y5N6VvhxSMu98JSXRAqDZKK9rVMeI83YP+CokpAazbuju9SVHsBIMLxVZYQ4jtNvteO6557B+/XqYTCY88cQTuO2227B8+XL87W9/g8FgwOzZs7XsK0EQBIHg9cII4S3PqjnpWxrX85CTYC8Hb6FsgSrayrJItVXZMTurJ17fcESzfrOE+Yn1T26+WHMOEXsRXjnCHKyLftZ56YqveU+ufdABmPPVQZR7UQKcndUDM0f28Mt8NIbpsfWJ67HnRLmi+07pyyGl884X2kWFM4WQysFbwezsY7+pdBTlNDk4bH9ypPO5mmgx4y9f7HfLbQxmAv1SkQVmY+uZZ57Be++9h6ysLOzYsQO///3vce+992Lnzp147bXX8Pvf/x4Gg0HLvhIEQRCQzoeSk0vhD8TyrOSeh9a1pLRWPJQL6yIiJTFS836zqvsJIWcxJHfhJMeYY287sGFJHODV0NIBWLX7FGaO7OHzsXYVlknKu1fUNGDPiXLFuZKsL30SBUQpfJl3cuCfNYO6xOHaf2xSfQZ4zj2lddS0QdfiGf3crc1GLhDou0EaoXkTbDAbW1988QU++ugj3HrrrcjLy0O/fv3Q2NiI/fv3Q6cL1WhPgiCI0CMYvTBKkHMeaqgvsqCl4qFc5HgwM7slaN5vz2tTct7OFD4ndR6u3ko58tw8587XMXk8Wa9nZtdE/Gfv6SBZCLdETWVMf4QkN8vnmyS9f499lovJQ7o4i0HzY+g6777PK8ZHOdoIRDx7Sxp2M4T1KYGfe00ODos3HhMNDQ0EHJrrk7neM/4yclUh2K1ByDC2fv31VwwaNAgAkJ6eDrPZjNmzZ5OhRRAEEQCCzQujFJbz8HcNLK0UD+Ui1/Pnj367HqPJweFf2wtle1hdDaOikuqLcuyXjCy9Tl6eSlFJDYYv3Cjp8WS9nkO7JWDeuDQ8tGIveycCgBrhU1qHJF+Sz5cOszx73u5mhMRbjHhxfDrG9mvvNu9YjS1rtBnjM9rj/YtqhGJTip8rQLPCnVy8hTi63gPr8orx3DeH3OZ6MLBkUwGWbCpocc/wRu6i9b9g8aYCv/fLYjKgmkH8pKQ6uK6nEMzGVlNTE0ymS1KYYWFhaNOmjSadIgiCIKQJJi+ML0idR7DXwNKKYPdgKukfS/iUHEMrNtLotcaSp8fzzqs6CRYe9uxvnMV36W9vxEYaUVnT4NNLeVYDyJvXT8uQZF9zn8qqG/DQin144NcKpwjI4NR4r0WmXfnnHzIwrHsiBnSOazHnEiwmjM9oj1FpVgxOjcf6fJvsvvLGicPB4aEV+1p87zqnlLQv96WDrxQL3DMGvQ7DurcNiLHFYmgBwZGbLAWzscVxHO655x6Yzc2xkXV1dZg+fTosFovbdl999ZW6PSQIgiBECRYvjK94O49QUV/UgmD3YMrpn9zFt04HcAwbS6kLjkqzYn2+zauR59lfX+tPiXU73mLEhIwOiAo34vUfWhp9rMRGGpnrW3nLc9TKoGeRz2flva2F6N8xDmP7Nfd3QkYHLMsuktyv5EKzx0PqZY7cvsZGGLFkykC3Wm/v6nUtvFZJ0WY8d2sfZ8FrOddi5vXdEabXMc0R1vuEBQ4towRYa71pAavXMNhhNrbuvvtut7+nTp2qemcIgiAIwpNQUl/UgmD3YLL0T8nim+OA3w3siO/yilvUUoqLNOKeq1MEvVSuFFfWYerSH5FTKK4wODurp1vhbMC3uWQxh+GCvdH5d4LFhP6dYpB7qhJl1fVMhoIUFTUNWJ9v82pss+Y5amHQs0iay2He6jyMTm82AFgNYdcx9PYyR25fX57YF8O6Jwp8I1RRUNm1GNY9kfk81TK0eDyjBHiDfPon/g+r5U8tGD37cmA2tpYvX65lPwiCIAhCkFBTX9QCXzyYWsnly+mf0sX3NT0TsfB3/bCzoBQ5x0sANB9naNcErDlwhqkNb4ZWs7LfScwc2d3tc6k55w1XQyveYsTtA9vjX9uKVM3j5/MUo8xGlFTbZXlrhPIc1Tbo1fYyl1bXY1dhGQZ1icOaAzbJ7fW6ZmEOFuT0NS7SiFEe9QHFjNqzVc1G7b3DUpjbd32WBbJ+lOc1GZOejNlZPQMi7HFtz0QcPF3llvcXLJ59VpiNLYIgCKL14Y+FuK99CPbcpWBGa7l8VpQuvttFhTfnjfRIxLAeiS2+8xWxfD+1ajyVVzdg6bYin/vpCd/vKct+dH7mOq6seY47C0qhv+gtUvP+18LLfO58HT7OYTNaHRyY5erl9LW8psFtrrAYtatz2V4K8PDPMpaXTHGM+WtyEbomM0d2x8pdJ/wu8LHlSAkAwGI24NoeiZgyJAVDuyWE1POejC2CIIjLlGBYiIv1Yd64NMRZTM5F4Kg0a1DnLgUj/pLLl6LJwcmWdGfxVqqZSyJkDKohf+1PVWrXcbU3Opj2mbFiLypqLy3W1br/B6fGwxptVnVh3i4qHHtOlDNvz2rgy51Hru2yGLWl1fWItxhRXu1dEMXz2rO8ZHpxfDrmrz2sashmgsUkeN8Z9Do8d2ufgNXfqrY34bu8s9hxvAwv3943pJ75+kB3gCAIgvA//ELc80eaX7CtyysOWB+KK+vw0Iq9mLR0J2atysWkpTsxfOFGAMD2J0di5bSheOPODKycNhTbnxwZUj+6/kLqjTvQHEbWpLHc2bq8YgxfuJGpHhcPq7eSX4yqgZh3Y0x6stucmzeutyrH0wLXcU20sBV6dTW0APXu//X5NlTVNUpvyEjyRcO7S3wk8z6sHiuDXod549jnkWsRXVaDbkJGB0njZN643i2eZbzBb41xPxdrTDjemToQY/u1x7O3pLXIFvOF+ePTRe87sf74k4qaBr/9RqkFGVsEQRBBSpOjudjk6tzTyCkoVW1hHAwLcbmCCfwicH2+DZndEjA+owMyQyyUxJ/IkcvXCjFjWgp+IcliRPO5JErR4dJCXgw+H218RgfcMywVyTHhqi5u1YQfVwfHKeqnGvf/urxiTP9kbwtRE6XocMnwviszBSy3vDXaLCuHU47U/18+z3Uu9FkNupG9kxAbaRT9Xgdg/trDyD5a0uJ572nwe75k4g0gb+2z8sCIVIzt5/2+G5OeHPCXDrxqotYvi9SCwggJgiCCEC1D/IKhbpVcwQQtihe3ZrSWy5fKs5NjTCfHhOPOqzojJTFSUd6Qr7kk/EKeJX/RNbQrmHl45T7ccVVHvL+1UHbOmS/3Pz/uamG9KJ/OP/NMYXpMuyYV710sVCzGc7f2aTF23sZXzn1wtsruDNcclWaVDEFMjgkHuGaPjBhSOXhSAjRj0pMRZTa67S8Hi9mAf0zsh7H92ktu2+TgZHmqtSKUaiuSsUUQBBFkaJ1rEwx1q5S03VqLF2uBlnL5LC8CWI3pv43thT8N7yrLuBJaNCvJJeGNPHujA29sOIqVu07CViX9coP3JDz1n4MtwvDUwBptxqTBnZGSaEFRSU2LfrFQUduA97cW4v4Rqfhmf7HbWMRGGJn6reQeVVvy/Z+/z2ghjPLEmN44XVGHtQeKW4y1xWTAP//Qv8WYSc1ZOfcBf8ynvz6I2gbHRYVE8ZC2W/sno6Ra/osAuc97JccAgBE9EjFhYEfEWcxocnCi9yJ/32UfKwlIzS0hQqW2IhlbBEEQQYRcyWYlBEPdKl/aDpUf2ECilVy+2IuA4so6TP9kL96ePABj+7VnHqMlmwrQKT7S62LS1bgqKqm+aHxcWljyi2Y5Yha39LNid1G5Vylrb4vdMenJiAo3Ysq/2DwJDwgYPUII1fyaObK78/wT25jxl89zcbbKzmRUfrO/GFsevx57TpQ7jVMHxzH12/MeZfH8qX1vehoQQkaTOUyH/h1j8fDIHri6e2KLPrG8vOI9VHKk/suqGzD7s1zJ7b7ZX4wRPdoxtnoJ15DOkb2S3MZQ6NorfaZuPVqCrUebFf/EXjAIXfdgIFRqK5KxRRAEEUT4I8QvGOpW+VLHKFR+YAOJFnL5LKGBM1fuw2LomMeoorbB69t7lkWe66J5+5MjvRpm8RYjJg7swFT3SurlxtCuCUxz+O3JAzG2XzL+cmMvDF3wg1u9IE8+yinCg9d1a1H6wPVed/XiSfW/uLKuhQR6k4OTff+zhjWrfW+6tidmNNU3cthdVI7q+kbB0EHWl1dqSP0LUVxZB+ig+HlXXFnXYt4IXXtfnqmux5r+yV6n0Q8AizceC0h9LSliI40hU1uRBDIIgiCCCH+E+LmquHkutf1Vt8pbH8RgETMgLiGlZCY3FJUlRMzBAQ+t2Ivy6npZAg1Cye6sAhuuHgAATjGLWVk98czNfRDvIn5QVt2AZdvZCwx7ExLh57BUW/t/bZYr33Oi3KuhBTTLhA9dsMGr0ppTECGCTRDB81nBcv/PG9cbuwrLsDr3NN7YcATTGZVL+QW/Gk8O13u9ycHhqa8Oyhb1kVNvjL+uSdFsSo5yKLlgl/28c8Vz3ghdezXVORdtOIKB8/+HgfP/F5SGFgDUNagjwOIPyNgiCIIIIvwV4qf2QlzNPgjRGooXa6Uu6Q0pJTM5yDHw56/NZ1Ys4xe8H2YXOq+JXLVKIaNoXV4xZqzY22KhquSyu5676zhGhRsRE+E9SOi9rYX47kAx8/Urq5aWth6VZsWM67sztXf07IUW883b/X//iFTMX3vYWXph0Yajgu0KGTlKXqII4apA2OTg8OSX+5kEJjyNYtZrPmNF8/Uek56Mf/4hQ3nHRWgXFa6qbDp38d9TXx1E9tESN+XC+0ek+tw+AFTWNqKyVh35fi2e2HUNDuw8XqpBy+pDYYQEQRBBhD9D/MakJ2NUmlUyD0NLhPpQXm1vUagz1IsXB7KAtJSSGStyDPziyjrEWcyyhCTmrz2MpdsK8dytaYiJMCnKD+EX13KNNSn4c1eauzJvdR7evHOArH08wxf5nKn1+Tb8N/eMpJeMZ/GmY1i86ViL+SZ879VjxoqWoXpiCIU1+1oM2rWf6/KK8dw3+cwCIdnHStyeYUrCWVkLQrPg+bz2vOaJbcx44OOfcMGuzEtTUdOAKct+dF6zUWlWfLM/dOpP+UpOQSmGdU+U3jDAkLFFEAQRRGiRayN1vEAr+wn1YXR6ckCNQDVhFZUIdvgXAawL6HPn6zA+o4MsIQlbVfM1+dOwFEV9LCqpBqCeKp7rYllsHFkora6XlbfjacSoIVAgJPjheu81OTgMX7hR0fl5epB4o+LD7EJmmfA/ZnbBTenJzntdyfVevOkY/rP3V6exJjeP6flv8/Hq7/vLOKJ3OLR8Xns+767sEofNR0p8Ok7xxbF9NKtH0IlYAOrmwPmrZTUJqTDCl19+GTqdDo8++qjzs7q6OsyYMQMJCQlo06YNJk6ciLNnz7rtd/LkSYwbNw6RkZFo164dHn/8cTQ2qlfZnCAIQk2CIcQvkLConoUKrKIS33mRjg4W5OaE8IZPZQ2bB8aVz3/6VfY+ALBow1Gsy2MP2fOG68sNAD57ylzzdlg5d74O3x04I5gzJRepgsW+GKhCHiSDXofEKPb8p5vSk51GSPbREjz1H+EcLSn4lxhvXAx/ZL3mzoLQDg46lR43s7N6SD6vr+nRVpVjcQCWZxep0laokNk1+L1aQAh5tnbv3o333nsP/fr1c/t89uzZWLt2Lb744gvExMRg5syZuP3225GdnQ0AaGpqwrhx42C1WrFjxw4UFxfjj3/8I4xGI1566aVAnApBEIQkwRDiFwgCGW6nBXJEJd7VB78hPSY9GW9PHoCZK/dJ5j4t2nAUPdpFKSqAesHeiLhIIypqGmQtuHl1OTW8E66hqzkFpT4bOyXn7UiMMuPRrB54f+txVNdLh44V/laNNzcK50wpwZuaqRIDVSqsmTWML95idHoP1ZIYX7ThCFbuOoHnbu0jK5z1x8IycCo5TFISLZLb3JWZgr9/d1hRLqEnWtR9C1ZiI40YGiL1FkPCs3XhwgVMmTIFS5cuRVxcnPPzyspKLFu2DK+99hpGjhyJQYMGYfny5dixYwd27twJAPjf//6H/Px8fPLJJ8jIyMBNN92E+fPnY8mSJaivl/+2jSAIQgq1hBD4cJPxGR2Q2S3hsjC0hNTnhJS3QgU5C1gxj0OwMbZfeyyeNFByOx2ac5WULpyHdk1wtsMKb0yAg6QqnuftZI02Y3ZWD0EhEV89ZXpdc04aLzjBYmgBwOs/HFVlEe7J93nFLZ5NckV3WMKa+TA+KV4cn471+TYm9Uk52KrsmP7JXvxiO48pQzsz7qXeBWe5pga9DuP6WlU7ZmyEURNBCrV49IbusKqg+Pjy7X1D5jcxJDxbM2bMwLhx45CVlYUXX3zR+fmePXvQ0NCArKws52e9evVC586dkZOTg6FDhyInJwd9+/ZFUlKSc5vRo0fjwQcfxKFDhzBgQMuEVbvdDrv9Ul2Oqqoqjc6MIIjWRmvzzPgLfxRzDgRyRSV8qZ/mT8b2S8bscz29ykJzuJirpJBubS2KhRZKqu2SuY+LJw1EnMXE5Dn2Vf0z2Gzoj3JO4KOcE4i3GDEhowOy0qwY1CVOVn4Ti2iNaw6qWJsPjEjF6PRkxfliLIgpKnqSHBOOzK6JWLypwOdjspSp0KJY8L3DUvH6hiOq1wtTi1W7T+GZm/s47z2+ULdrPTxvxESEYeHEfiH1exr0xtaqVauwd+9e7N69u8V3NpsNJpMJsbGxbp8nJSXBZrM5t3E1tPjv+e+EWLBgAZ5//nkVek8QxOWEWEK3UGI64Y4/ijkHAiWiEqFCSmKkpu1ndk3EsB6JbuG0JeftTGGJiRYzhvVIFDTWlChbsqiExkQ2exTKXSTKg3XBy1NW3YBl2UVYll2E5Jhw3No/Ge9vLRQ1UB/N6omUxEhZYc1i6oRtzAb8eXhXPHxDD9UETXzl1v7JGNotQdY9K8adV3X2en18EVwRI95ixIPXdQMALM8uDMqwQluVHTNWNP8ejs/oAKC5UPd0hkLdAPD2lEEhoUDoSlCHEZ46dQqzZs3Cp59+ivBwdauSe2POnDmorKx0/jt16pTfjk0QRGgi5ZkBQidMLBD4o5hzIJArKuGrB8WfyMnHkeuLdM3HcA2nvWdYKlPR3L98sd9ZN0mszpiccF+WQsB3XNkR5jCD23ehdLfbKuvw/tZC/PmaVMS5FIIGLonzzMrqoSismR+H2Vk9nMWYL9ib8PoPRzF84UYs3ea7J0kNeNn0Z29J8zkUz9vLCLVLE/BMHNgB1/5jExZtOOI0tCJNBom9mu+3tycPZK6N5ysc3H8P+VxQb1OKL2rPhxeHEkFtbO3Zswfnzp3DwIEDERYWhrCwMGzZsgVvvvkmwsLCkJSUhPr6elRUVLjtd/bsWVitzfGvVqu1hToh/ze/jSdmsxnR0dFu/wiCILwhxzNDtMRfxZwDgZyFhBr10/wF7+0ROy3+nF4cn+78mxWxfAzWorlnqy7l+QnlPq7LK8bwhRudhXsnLd2J4Qs3es0LlCoE/P7WQuZ6UFrCX5fYSKOs/fhCucu2F7rV8Iq3GDFvXG+fvfLr8214fcPRFt6W4so6bPz5N5/aVgv+Gc2PtWe+WbzFiFk39GBqy7OYtKtx/2F2oeqevFFp7fCvbUUt2q29mB/oOR8sZgPGpifh0/uGYM/cURjbLxn3DEtFvEXevFGK5++ht1zQUC9qH9RhhDfccAMOHjzo9tm9996LXr164cknn0SnTp1gNBrxww8/YOLEiQCAX375BSdPnkRmZiYAIDMzE3//+99x7tw5tGvXDgCwfv16REdHIy1NngQrQRCEGK3VM+Mv/FnMORCM7dcei6HDQytahsqE6kKCtSbcmPRkvKPX4blvDknmZVijzXju1j5eF/b8Qthbe97y/HwJ9xVSCR3UJQ7X/mNTQLxY11+RiP2/VqKs+pIBw4dJ8v38Pq8YH+WcYG7T08FXXt2AGSv24R29TrHBVd/owNNfK5Ny9zf8M1pMERYAPv/plGRuG19M2hptxlUpcdh2tFSTsL4EiwnP3doHL3132GvOa4TRgCX3DURJtV00DNSg12FCRgcs85OEvOfv4dh+yXhXP7BFIetQL2of1MZWVFQU0tPT3T6zWCxISEhwfn7ffffhscceQ3x8PKKjo/Hwww8jMzMTQ4cOBQDceOONSEtLw1133YVXXnkFNpsNc+fOxYwZM2A2+66GQhAEAbRuz4w/4BfuQnH7oWqMeMIvJNTIIQoWxPJxhM9JeuyeuVn4OjQ5OOwsKEXO8RIAzZ6qf/yuP+76YJdoW0J5fmoIsXgWpVVDFl4Jj97QA4+O6um1Lh3fTznGlie+CtSsyyvG01/nuRmEaqDXaSM84vqMFiv6zr9kYMFWZce3B4Q1ApTyt7G90S7a7Bxv1sgKvV7nzJMSIyvN6jdjS/z30H1gObW0+ANEUBtbLCxatAh6vR4TJ06E3W7H6NGj8fbbbzu/NxgMWLNmDR588EFkZmbCYrHg7rvvxgsvvBDAXhME0dpo7Z4ZfxF7sbaSKzGRRrx8e9+QNEY8aY3106TOiVUIQIdmefTR6cktPFFPfXXQbV4s3nSMKRcFcH97roUQy4Z8dRfSLFhMBjx8MZxNzCDgkXo2scByXYSMPl7OXYulshaGll4HlDMoaI5JT3aGjgbCDEhrH+0mEqFmZIUa84WVf+8oRPaxEmR2S8DQrgmi88VWZQ9pkamQM7Y2b97s9nd4eDiWLFmCJUuWiO7TpUsXfPfddxr3jCCIyxnWkKpQXlRribcFeWVN8Clq+YLU4jhY8OYx8UTsnOQIAQgt6NflFYuqlNUw1qpyfXvOuii1VdUhp6BU8tzX5RX7zQvgik7XnAPFsvB0fTb5itj1E5IwjwkPQxOnvkiIXgfcndkFy3co99aJ4eCAGSv24tFz3lUX1+UV472thaofn5WSC+7hs2pGVqg5X6RYd+gscOgsFm865swpE5svvKhGqJX/AELQ2CIIgghW5IVUETwsC/JQ/ZENVdSqF6dE0ptf0Dc5ODz3zSFZ+7ri6U2ub3TgpyI2gZr5aw65hb0le+RBnTtfh0SLGc99k8/UXmykEcO7xWPNwbPSGzNwwd4k602/2LNJLkKLdbEXJZV1jYqP4w0HB3SMYys7MDurB/6dUyQrhJED3OrHec77JgeHp746KLK3f/AcB18jK1xfrCS2MeNwcRUiTAbmFxpq4BnRIEQolv8AyNgiCIJQldYYJqY1rbXGVqiiZr04JYIw/EJyV2EZc6FTT/i7bd64NOwqLMPSbQXY9MtvYE398Fyc2yrrMP2TvYJhrixU1jRg27FS2ft5gwPwt6/zMLJXEgx6neQzx/XZJPd68PAhdvzi3FZZi/lrhYUZ5KADcP+IVHy2+1cmEYmymnpYo804W2UXPXaCxYQHr+uO+0d0Q+9n1inum+e8X7zxqKI5oAZiRpO3yApc/PuOKztizYEzgmG+ahdW1hJbZW2guyAbMrYIgiBUJlTCxLRCTvgZoE6+gdxjEsKoISDhihxBGM+FpBxDLTbC6LZIt14s0Dt/Lfsi0lsBYv5zpYtsDkBlrfqentLqegyc/z+EGfRufXP1xnjeG+XV9dj082+KDKT5a/Od/1VrcR5vMeKlCc05mcO7t/UqesKzZFMBYiONzjkpdC6l1fW49h+b8IcrO/rUP9d5f23Pdnh/63Gf2lOKVDi6lPfy9R+OOf+fnx8ANMup04oyhpy6YIOMLYIgCEI1lISf+ZpvoFbIG6G+l1Fusr3rQlKOobZk8kDo9ToXg8KOGSv2yVpExltMKA3BhdwFexMA93Av3htz/4hUfLO/2G1M9TrleVTFlXWC5QuUkmAxIWfODTCF6bEur1hW2Cifyxnjxdtoq6zDGy5GhlL4eT/4pQ2o9mNonSss4ehj0pPhcEByjIp5T22EMaQMLQCIbxN6SuJBXdSYIAiCCB348DPPxTq/8BMrGMtaHFco30DpMQlh1K4Xx1qEODkmvEV44uDUeFijpRdWyTHhGNotwVm4eHBqvOzQtqlDOmPuuN4y9ghu+ALF721tWTxXCxU/uegu/vv7hHSnofXgJ3tlhY261o+KixT2Hah9quc1ykOTYub13bD9yZGihhZfMPnrvb9i7uo85na1qPulNSdLqwPdBdmQsUUQBEH4jFT4GdAchtMksNLztiD3FjrjyzEvB/gF2Orc08gpKGW6DlrUi+NlsnUeg6vTASN7tcXKaUMFF5IGvQ7P3dpHsn3PuaFElGP/rxVBFZ7En01spJGhOlnoYXUxruUoVnrCe5zKawJjBPmLISkJomG76/KKMXzhRkxauhOzP98fVPNYCxZtOBpyL9EojJAgCOIyQ4v8Jl/Dz5QoOZKwhjhKQyu1qBe3Lq9YsB4RxwGbfv4Nf7iyk+j8G5OejHenDsST/znQIucpLtKIBQL115SIchw8XYWDp6s0K5QrF2tMOO68qjMqa+vxQQCk5bUg3mLEvJv7wBrt/sxRYhxfbsz6PBcvTUhvMddZa9i1JnwpsB0oyNgiCIK4jNAqv0mN8DO5So5qh7y1FnxRE1S7Xpxasv4RxjA3YyveYsKL41suPgF5XjdPlBhaOgBJ0Wb84cpOeGvjMdkL3+SYcMwbl4Y4iwnnztehqKQaK3eddJMf1+kgWzkwWOBHlRfB8CRY7s9b+lnx7QGbV6GUQFFWXY/pn+zFn4alYFSa1fmy46mvDgZdX7UmFF+iURghQRDEZYKW+U1qhZ/xSo7jMzogs5t46Iyax2xNqBFayXsZrTHu180qkFclhRzvoxCXcnnc2yivrseMFcJzlvfOaYFYmOtzt/ZBWvtoRQvfeePSMLZfMjK7JcAcpsfrG462yF0KJUMr0uS+tJSaN1rfnzoA1mgzHr2hByJNhhbfx0aEYXZWD2SlWTE7qweSGPIEWYmNNGLxnRloY255XCV8kF2ESUt3YvjCjZi1al/AJOiDgfX5tkB3gRnybBEEQVwGqC3p7YkW4WfBeMxgR63QSrXqxfnifVQ6Zw16HW7tn4z3thbK6qs3dGheOJvD9G6GEB/mOirNiuELNypqd/7afIxOtwKA4twlJWjlLYuJMGHpXf1RUm0XnDeeYcyDusTBGm2WFMdQ4nHi96lrdOD1H446P7eYDRjRIxE9k6Lx2e5TWLTh0nfW6HDc3C8Zaw74nhekA3BTv/a4qV97LN54DMuzC1URpbBV1qnSP195ZGR3vL/1OOoaHX4/9gfZRRicGh8SirNkbBEEQVwGaJ3fpHb4WbAeM9hRM7RSjXpxvngflc7ZJgeHb/aruxDlAJTXNODTPw+BXqdrYYDmFJQqyjvy9OwpaSM20oiGJgeq7fIkyaPDw3Dv1aluRogaFFfWQa/XYXxGhxbfCYUxx0YaUS+yWOfv3PtHpOKLPadliz/wsvCeHqBqexO+zzuL7/POttjnbJV6hkx5TYNzfs7K6oGZI7tj5/FSzPh0r09GV6AdnbGRRrx8e19EhRvx5kbfpfWVMuergyGRu0VhhARBEJcB/shvUjP8LJiPGczER5hU3c5XfJH1VzpntRRcKLlgFwxz9TXv6Nz5OlltJFhMWPSH/lg5bSj2zB2FffNuRLxF3phW1jZiWbZ63j9XhM5FLIy5oqYBNSK1q2IijXhn6kDMGZuG8f3l3ctXd40XNeK8obYh43otDHod9DpdSEquA4DRoMND13bDkskDMSrNipyC0oD2p7ymAYs3qvuyQAvIs0UQBHEZ4K/8JrXCz4L9mMHKz2fPM293zRVtNe6Nd+8jLv4tJutfcp6t5pLnnNVScOHo2fPIKShtMb8SLb7l+ci970qr62GNiXB69Ax6HV6akI7pn8grOKxV3SjP81Eq7x5hNGBUmhVNDg5f7Dkta98dx4XzAP2NP+en1jQ0cXh7SwHe3lKA5JhwZHSKCXSXsDy7CDNH9gjq5z0ZWwRBEJcB/sxvUiP8LBSO6Q/kyvSfKq9hapd1OzXgvY9PfXWwRThXbKSxxfZCoWZCiM1ZLQUXFm8qwOJNBS0VPH1c55VX2zE6PRnJMeHMXjnPRfuoNCtiL4bNBRIhT6VSbyMfYrmrsBQX7KFVSysQ89Of2Crr8H0QSPZX1DYEvTIhhRESBEFcBigtHEwEDtdipbNW5TpVyLypRnaJj2Rqm3U7NakUMAIqahow/ZO9+O5ijoxYqJkn3uaslmqEPJ4KniUX2LxwYsxfexgAnPcoC56L9l2FZQE3tHQQHhNfvDkf7TiO97Yc97Fn/kfMazs4NR7xlpYvGUKNQOeNuRLs3kIytgiCIC4TKL8pdFAq039XZgqk7GW9rnk7f8ESQjZj5V6syT3DHGrmbc66vliQbCfajE//PAQ3pScxbc/jKaPvq7eC9+CMSU/G25MHeB1DsTy3QC844y7mV6ld++z7Q+dQ0yBP/CMYiI00YlSatcXnBr0OEwTEQ+Sgu/hvVFo7n9ppLQS7t5DCCAmCIC4jKL8p+PFFpt8Upse0a1K9yp5PuybVqaDnjznAEkLGccDMVfuY2ps3rjfuGZbqVU58VJoV74qELgLu9bHO1zUIqtJJ4aokyHsryqqVe5Z4Y2lsv/ZYDB0eWtEy/8qbRy9QC85wox7TR3TFwzf0FJ1DUmHMgURMyfT+Ean4Zn+xYrGVihrx8LasNCuWZRcpahdoLur99wnNRb2/O1CMuavzZCs1tgZCpbwHGVsEQRCXGa01v6m14KtM/5yxzV6dpdsK4Vq7WK9rNrQGdI7DFxNFKgAAU4RJREFU8IUb3Y7RIgdJRdT2uCRGmd0W9UI5Xvz57Jk7SrC+ka/1sVw5d74OBr0OL45Px0Mr2AxGIVyNpbH9kvGufmCL82oTbsCC2/oKjtPg1PiA5GzVNTjw2U+/oldytOj8kRJKCRQPCBhUVpd74YkxvZ1GfGIbM/7yeS7OVtmZ+y829301PueO6+281mP7Nf/3b/89iHIZYx8bEYYGBye7ZECwEErh72RsEQRBEEQQoYZM/5yxafjLjb3wcU4RTpTVoEt8JO7KTMHGn8/iwU/2tljg8eGJWoSTqu1xcW2PD7f0dj58fSMhb67S+liuFJVUA2j2SD3wa4WiYsqxEUYM6hLn5m0clWbFnhPl+Nf2Qmfx4fN1TXj4s1zsP12Jv41zD5Vcn28LWM4Wf70fzeqJlMRIQW8pH8bsaUCGh+n9XhQ3JiIMCyf2a2FQefbb88XUc7f2wYMyFB/F5r6vxqc1JsL5/+vyigW9oFJU1jYGjdHLgl4Ht5dHVg1fEKmNjuO0qB/euqiqqkJMTAwqKysRHR0d6O4QBEEQrZicglJMWrpTcruV04bK8lA2ObgWHi1X+JCc7U+OVPVNcZODw6D5632uLeTZPzXOZ3XuacxaletTvwDgXRcjVUlY1y39rPjpRIXbuRj1OjQ4xJdog7rE4vMHrma6Fr4QaTIgOtwIW5W8tsW8pZ4hn6t2ncBqlYtQS/HpfUMwrEeion3X5RXjuW8OwVYlLorCei8JeWU9jQpv7TY5OAx6cX3AhVH8yU3pVkwd2gVDuyYE1KMlxzYggQyCIAiCCCJ8KQTsDTnhiUppcnDIKSjF6tzTyCkoRZODg0Gvw73DUmW1w6KYqcb5qOF143Pomi6ukMf2S8buv2Vh3rjeTPuHG/X49oCtxbl4M7QAYM+JCvR9dh1e+PYQPswu1KyQszlMj61PXM98PjxiYi68t4gvDN0xzr/KmPEWI4Z6vKQQmrdi38dEmLD1iZGYndVTsH054W1j0pOx/cmRWDltKN64MwMrpw3F4kkDnAIYUu3uLCi9rAwtAPg+z4a/fJ6L9fm2QHeFGQojJAiCIAKK3FpSrR1vIUa+5CmoEZ7oDW+5UzNHdm+RNyWENdqMZ25Ow/y1h0XzaOT2M/vYb6JzizdsfTFUxHLoztc1MoWI+TLTaxoc+MAHoQUWymsasOdEOc5U1MraT0rMBWi+92MjTep0lJEJGR2cfWlycFi88SiWZxe5zU1Xr5y3ef2uQFik3PA2oRzad/S6Fu0mRZsxaXBn2BsdyD5WAnDAv3OKlFyCkMdWZdcs7FkLKIyQAQojJAiC0AZvC5lQ+BHVErWvjVbhiXxfhXKn+OX1O1MHAgCmS+S78OF4LAY46/m4InT9xPoul0V3ZGDCgA5Yl1csqoIYqiy6IwPz1xxSrLYoNKdYi1erzad/HoJh3RO9jpOrIuH7Wwu9zmut1F1d74Gikhqs3HVSdihnaydZg7BnVuTYBuTZIgiCIAKClLjBkskDEWcxXbYeL7Vl+qUU0JTKKLNK1W9/ciQeGOFdlp5HSjGzycHBwXGIjTDKygUTEgLhhRt8NZCeWZ2H/DOVWLpNvkBGsJN9tEQVWXsetQxcRXDSx+c/X7qtpaHFf+/qtdNC3ZW/B9blFeP1DUeCSswiTK9Do0SYqz/wpsoaTJCxRRAEQfgdqQU6AMxcudctUfxy9HipKdOvdngi/+Y9+1gJU+7UzoJSfPbTr6LbSYWc8fjiERELbeMNW6GQMlbO1zW2SkMLAL7cKz5uLLjmxrEUueaxRofjgr0BFxjkyS0mA6rrpbc7d74Or/zfL0zH92ZPOOf18VLodTqvL0SkPLVi38u5Vv7kCmsbHDpzPtDdABD4Yt4skLFFEARB+B2WQreeCx0t5ckvF8Tkt+XmmSgxeD75scir50iqfhh/XF89IkLH4Re7KYkWLJk8ENABJRfsKCqpvhi+Ja48R3jHGm2Gg+OwOvc02kWFw+HgmObNvHG9cVdmCt7ZfAyLNhwV3e7eq1NwYx8rGhsduGv5Lsl2Sy7Uqxq6OOPTvYL5XrxXekO+DV/nnnbzDCbHhGPeuN6Is5ixPt+G/+aecVOvtF7Mz2pocvg9zJKFYDG0gMAV85YD5WwxQDlbBEEQ6qJUclsrefLLDV9ESZQaPBazgamA6ht3ZmB8RgfBPkvJm8dGGjFlcGcs2VwgeRzXHCtvuXH8tVqfb8MXe37F+bpGybaJS3h6nFhDP/80LAXf57VUafQkOSYct/ZPxn/3ncHZ896NYp0OiDIbUFWnXSFf3msciALTlxvWaDOyn7qBcrYIgiAIwhOlbyNZvB+ENErDE5WENekAxFmMzDk/YnODxRtaUdOAeAubut38NYfwc3GloACCpxc1s1sCMrsloG+HGMz+fD9T+0QznqF9rCGarCqLxZV1zIWkOQ6aGlrApfBcMrS0Z9LgziHx0o3qbBEEQRB+R6qWlBShEKfvK1K1fwIBi8HjCj++EwQ8VULERhpFBTpYxzzeYmKaW2XVDXhPwNACLi2YXetnAYA1JoKpD8GKLvjXpQCaC/sShBQpiZZAd4EJMrYIgiAIv8OLNQDK6gyFQpy+L6zLK8bwhRsxaelOzFqVi0lLd2L4wo0tCsT6G7lGrjUmHO9MHYisNCvT9lm92ol+xzrm1pgI59zyBaGiyINT42ExG3xu21/oALQxhyEmvDmQiU8ciY0womdSm8B1TIJAv1eIjTTiT8NSAtsJGVyutmmo/A6QsUUQBEEEBF6swRrj/oPp7a22Ds05GnLlyUMJPifK04PEh7YF0uBiXdzMvL4bVk4biu1PjsSY9GQM6hKHeItRcr8v954WNSqlvKGuc2NMejKWTB6giifH1cA06HWYNryronbamMMw8oq2vneIET536IK9EZUeeWYVtQ04cvaC3/oiRmyE9JzwJ5EmA2Zn9cSeuaMwivEFQTBgjQnHozf0kLyesRFG/G1sL/zzd/0wb1xv/PP3/dHGHLoZReXVoSFcE7pXmCAIggh5hGpJlVfbMWPFPgC+y5OHGqw1q6Tk0bVCqlYXAMRbjOjWLsr5Ny9AwZqzJaY6KVe6Ps5ihhoSYJ4G5sM39MA7Wwpgb3TIaueCvREbf/nN9w6JEG8xuSvaxYSjtqEpqHOH3rgjA7O/yPWphpeaLL3rSgzrkQiAba4HgpnXd2/Ot+SAkupLipmv/yCu2Mhzx1UdMW1EN+ff2cdKcMEeuoIv89cexuj05KD/PSBjiyAIgggoQmIN7+h1PsuThyJSOVGBFgjxZvDwlFU3YPZnuQCUKbJ5MyrlSNf7mtcnVuTZoNfhoeu6Y9GGIz61rxZ8P7c8fj32nCjHufN1SGxjRv6ZSvz9u58D3T2vzFy1L2jUHXU6oNJFvEPKuA+UAZaWHIWhXROwq7AMB05VYBmjkAgAvL+1EAM6xznvk5yCUo166R9CRSyJjC2CIAgi6BDyeMmRJw9VWA2EQAqEiBk8Qij1qngzKsekJ2NkryR8nFOEE2U16BIfibsyU2AKa86M4KXaj55VXgtIyos6c2R3fLD9eIvwPH8j1M/9pypa1G0KVoLF0AKa89keWrEX7+oveVTF5npMZHO4XiC8hk//Nw8vrDkMW5Wyot7uLzGCyWenjFAQS6I6WwxQnS1hWOu0+FLPxZd95VDf6BD94ZbqT5ODY9pXq3NSqz1/XWsl1Dc68O8dRdhdVIpIUxgmDuyIq7snyu4ff462ylqUVdcjvo0Z1mh15qS3z3ceL0VOQSnsjY3Y9PM5lFU3IDrCiHk39cY1vdo530bHR5jw89nzOFFWjbr6Jvzv0BlU2Zsf0V0TIvDlg8MRE2l0tufgHNBzwL+yi2BvdMAcpsOrE/rjuj5JWPB9PnJPVaDG3oRubS0Y0jUBU4emIPdUhbOPGZ1iseLHEygsqcaZilqcLKtGo4ND98Q2GJmWhE0/n0NNfSMiTAZ0a9cGRr0BV3WJQ/6ZSnyVewYl5+ug1wFmowERRgMamppQ1+BAk4ODTqeDQa9D17YWXNO9Lc7XNcJWVYf2cREY3CUev5w9j12FpbBV2WHUA6XVdpytsqPJAbQxG9AhPgKF5y6g5uJazKgD+naMwemKWlywN8Jo0CElwYKO8RGIMhlxrroexWU1sJ2vRaNDh3CjDskxEWhjDkNa+xgcP3cepytrcbbSDoNeB2tMOB65vicKy6qx50Q5wsP0qKxrwOHiKjQ6OLS1GKHX6VHb0ASAg16ng72RQ4RRjzCDDqcr6nDe3gQdgIRIAwalJuB0eS2aHMC5qlo0cUBMeBiuTInH/lMVKKtpQITRAItJh1PldbA3ctDpgEgDYDDoYHcARoMBbS1GFJTWSs5Dc5gO0eFhMIADpzcgwWJEaqIFpRcacLK0BqXVddABaGwCPJezJoMOAzrG4Lqe7VBeV4/sglL8VlWHqrpGGPU6RJgMMOj1KLtgR73joshCuB6JbcxwNDlwusKOBj+tHML0AHcxWs+bYLcOgDXahPKaBtQ1yuucnCWnHoC84EGitRGGlvcUEThWThsaEM+WHNuAjC0GyNhqiVQRSLnb+XIMX1nwXT6Wbit0Uz/S64Bp16RizthLilZC/Yk0GVDb0OSWFyC0r1bnpFZ7/rrWSljwXT7e31bYIvci0mTAa3/oz9w/oXPk8XVO3to/Gd/sLxb8/LOffg3qnAmCIAiCCEXMYXrkvzAm6Isak7HFABlb7vBKWZ4Th5/qfFIz63a+HMNXFnyX77UY4gMjmo0msf54g9+XR+1zUqs9f11rJUiNDwC8y9A/lvHTQdmcJAiCIAgiMIxKa4elf7zK78eVYxuQ9DshCymlLKA5Hri+0cG0nVCRTtZj+Frgs77RgaXbvC/kl24rRG19k2h/pPatv6hWpfY5qdWev661EljGBwCe++aQ1/55O0dPlMxJgiAIgiACw/r8c6it9xZkHHjI2CJkwaqU9XFOEbOiltJjCO0rh49ziiQLJzo44KXvpJPAxfb9OKcIgPrnpFZ7/rrWSmAZHwCwVdm99k/qHHl8mZMEQRAEQQSGl77LD3QXvELGFiELVtWXE2U1itvzlxoXax+LStm283YMtc9Jre2CWfmMdXwA7/2T23df5iRBEARBEP7Fl3WaPyBji5CFZ3FHMbrERypuj/UYrNuJwdrHlAS27bwdQ+1zUms7f11rJbCOD+C9f3L77sucJAiCIAjCv/iyTvMHZGwRsuArqovpvujQrMJ2V2YK03aexSLlHENoXznclZkCKQEbvQ54emya1/542/euzBQA6p+TWu3561orgWV8AMAabfbaP/4cpfBlThIEQRAEERieFlB/DibI2CJkwVdUB9Bi4elaXNEUpmfaTkiuk/UYvkp9msL0mHZNqtdtpl2TigiTQbQ/Uvvy9bbUPie12vPXtVYCy/gAwHO39vHaP/4cWc5AyZwkCIIgCCIwjEprhwiTIdDd8AoZW4Rs+IrqVg9vgTUm3E06m3U7X47hK3PGpuGBEaktPCh6nbt0u1h/Ik0G6CT21eqc1GrPX9daCfz4eF5jALCYDEyy78ClcxTzcCX7MCeTY8LxwIjUFm3zn8dGGiX7RxAEQRCEPLJ6tw2I7LtcqM4WA1RnS5gmB4ddhWU4d74O7aKaw6+EvAKs2/lyDF+pb3Tg45winCirQZf4SNyVmeL0Skn1p8nBMe2r1Tmp1Z6/rrUS6hsd+PeOIuwuKkWkKQwTB3bE1d0TZfePP0dbZS3KqusR38YMa7Q6c9Lb5zuPlyKnoBT2xkZs+vkcyqobEB1hxLybeuOaXu2w50Q5zp2vQ3yECT+fPY8TZdWoq2/C/+Wdxvn65uMmR5vwzcwRiG9jcrbn4BzQc8C/sotgb3TAHKbDqxP647o+SVjwfT5yT1Wgxt6Ebm0tGNI1AVOHpiD3VIWzjxmdYrHixxMoLKnGmYpanCyrRqODQ/fENhiZloRNP59DTX0jIkwGdGvXBka9AVd1iUP+mUp8lXsGJefroNcBZqMBEUYDGpqaUNfgQJODg06ng0GvQ9e2FlzTvS3O1zXCVlWH9nERGNwlHv/Lt+HTXaeYx86oA/p2jMHpilpcsDfCaNAhJcGCjvERiDIZca66HodPV+JMlV2yrSizAV0SIvHI9T1RWFaNPSfKER6mR2VdAw4XV6HRwaGtxQi9To/ahiYAHPQ6HeyNHCKMeoQZdDhdUYfz9iboACREGjAoNQGny2vR5ADOVdWiiQNiwsNwZUo89p+qQFlNAyKMBlhMOpwqr4O9kYNOB0QaAINBB7sDMBoM6JoQgYyUOGzMP4dzVXbo9UCPpChc2SUOh4urUHCuCpV2DnoAFrMBBnDg9AYkWIxITbTg6NlqHPvtglclT5NBhwEdY3Bdz3Yor6tHdkEpfquqQ1VdI4x6HSJMBhj0epRdsKPe0ezNbROux/k6R1CXP+jRLgLFFXW4UM/WS5MBMOj14Bwc6pqC+cwIghBidlZPzMrqEZBjU1FjlSFjiyAIf7MurxjPf+tediA5JhzP3pIWUG+jWqzOPY1Zq3Ilt3vjzgyMz+jA1GZOQSkmLd0pud3KaUOR2S2Bqc1QRIsXJ6zXVoo37szAzf3aY1dhGbKP/YbFmwp8bpNndlZPrNp9UrRMQ7zFiAkZHZCVZhW9JjNX7MWaA8VMx3tgRKpk0XW5JMeE486rOmHRhqOqtqsGFrMB1Xbl9Yyk7mW15pg3ruuZiM1HSjQ9BuE/YiON2DN3VEBeDMuxDcL81CeCIAiCkXV5xXjwk70tvAi2yjo8+MleZ8hjMHsjpWBVeCwqqWZukxcysVXWCXpgdGgOjw2E4Is/Meh1qhuTapU/KCqpxvCFGzWpW7dowxGv35dXN+CD7CJcJXKfrMk9w2Ro6QAsmTwAY/u1x4DOcXj66zyUVdcr7Taiw8Pw/K19YI2JcM7NVbtPic5jMfp3jMax36p9Moi80djo8Gl/qXt5Q77Np/ZZqPPxHEKZSKMBNQ2X5ka8xYiy6oYA9sh3KmoasKuwLOhfnpGxRRAEEUQ0OTg8/22+4CKLQ/NC7/lv8+FwcJi/9nDIer4Gp8bDGh0OW5X3RffKXScxc2QPJiOSFzJ58JO90AFu1zDQgi+hjq/lD3RofgsdSI+N6/0zKs3qNg++O3AGD6/ax9TOrBt6YGy/9gCAUWlWWIxh+PNHu2FXGIpYVdcIa0yE24JRbB5746+jekFv0GFHQQlOl9fC4eDwDaOXjgWl58fj7V5el1eMZdlFPrXPws7jLYvWXy7MHtUT6R1inC/nBnWJw7X/2KTJiw9/Egp1MEkggyAIIojYVVjm9cePA1BcWYeHVuxrsR3v+VqXp94CSysMeh0mDe4suZ2tyo5dhewLpGAWfAllWMpExEYIv7/l95G7VNcBiFNZYIa/f1zn1Lq8Yjy0Yh9z/1LbWpz7DV+4EXct3+WzIeK5YBSbx2JEmgx4/D8HMOVfP2LJpgL8N/cMvlXR0FIDsXu5ycHhqa8O+tx+G7OB1GJF0OuAu69OQWa3BIzP6IDMbgluqtGhTCjUwSTPFkEQRBDhy1s6b2/ug5GURLZClHKvyZj0ZIxKs4ZsiGUwIuU15AAIyoai2dC986rOkmF+rvAtLbi9L/adLMf72wohlGEux/PjCj+neE+yHNpFhYuG+ipFaMHoOo835Nu8en5q6ptQU+8ePhiMCflC9/LO46WoqPE9nO2CvQlheh0avanDXKa4lqJxZd/J8gD0Rj0CVQdULuTZIgiCCCJ8fUsn9OY+WGE9VyXXhM9b4t/ikqHlO2LelpiL3iexBfO8cb2ZDWse3hMJAO9vFTa0ACDCZEAbs/z3xvyckvIke5JgMWFQlzjRUF8lxEUaRReM/Dyed0sfvDt1IKzRZrfvk6JMIVVewvNebnJw+OIndlVSKcjQasm4vslIax+DnIJSNLlcn+8OnFFd4MXf3No/OSSe7eTZIgiCCCKkRB5YCYU4dhK0CB5YxVY8vYaJFjP+8sV+AMKGlg7A/LWH8erv+zP1Y+b13TGse6JzzIcv3Oj1PvD05kjhOafk3ifzx6djz4lyVfNcymsa8Mq6w261GYXGQ8hj6+A4TPnXj6r1RSuE7uV1ecV47ptDsDGUayCUERNuwNqDxVh7sDmklM/rHZVmxdzVeQHune98s78YT4zpHfQGFxlbBEEQQQRTuBYDoRDHToIWwYHcMgOuaoc5BaVeRU54Tys4MBnWs0f1dI53TkGpJsn7rnNKzn3ywIhUjO2XjNW5p2Udj+W+fW9rIeyNDoxKs2J3YRk+3FGEitpLBqzreLgKacjti1bwAijlNQ2S93KTg8PijUeDUt5eikiTQbaBH0gq69z7yuf1PprVI+SVCIFLURzBrkZIYYQEQRBBhjeRh7cnD5QUKgiVOHaABC0CDZ97pFRshdUzVFJtdybjC81dDs3hhq6GtRbe2RiPkDsp4Q+gub+L7xzg9DzJfZERbzExbffhjhOY8q8f8foPR90MLUB4PJocHM4FiVeIAzBhQAfMzuqJpGjxe3ldXjGGvbwxJA0tQL4nNdjgjeAPskM7fNCVUIjiIM8WQRBEEOJN5EGvR6vyBpGgRWBgLTPgTWxFTt5dZrcEvDN1YAsvGs/8tYeh1+ucBrYW3tnKmga3WnXevKs8fE0tHt5Ak/K63TssBTemWfG/Q8VYvuOET/3m+8WPx/p8m+h1VMqjN3RHats2OHL2PJYoKDb9wUUBD2u0GbOzeiAl0eJ2L6stKkIogwNQWdvot+NNHdIZn/x4UrP2QyGKgzxbBEEQQYqYyIOa3qAmB4ecglKszj3dIoHan5CgRUvkjo3c7VnLDHgTW2GRhHf1tI5JT8a8ccJy057eGxavk1xcjRb++ojdT8kx4Xh36kCnocVf3zUHzuAPV3aUPNa6PBsGdYnD53t+Va3/xZV1WLzxqKA30hf6dYzGo6OuwPiMDjAZfFsa2qrsWLThKMxheue97M2wJ1ovkUY9BqVoE2URSlEc5NkiCIIIQdTwBsnN1fEHrEINrR25Y6NkLFnDb7xtJzfvrsnBYf5aYal1IW+akuK+UrgakXyuh9T9JHR9pSiurMPTXx1AtV3d0LMPsotUN1ryTldh25HfUHLBjg93FKnS5l+/2I+RvZJgCtPLVn0kWgcOAIW/XVC93VCL4tBxnJigKsFTVVWFmJgYVFZWIjo6OtDdIQiC8BmxkB7+ZysQ+VJCC9p4ixETMjogK8162RhecsdG6VjmFJRi0tKdkv2ZndUDs7J6SvaZxdhjPebKaUOdhpASQ4eFN+7MwPiMDpLb+RL+Fmk0oKYhtPN8fKGNOQyv/r4f7I0OzFqVG+juEK2EQL8UBOTZBuTZIgiCuMxQI1dHbcQWtGXVDViWXYRl2UVB8QOrNXLHxpexHJwaD2t0uFc1QQBYueskZo7sIToXmhwcYiJMeGJML5RdsCPeYoI1JkLQOFbiTeO9Th9mF2L+2sNM+7PAkuvha/jb5WxoAcAFeyOmf7IXs7N6BLorIUsbswEXVPaOhjLxFhPmjQut3wHK2SIIgrjMUCNXR01YF7RiimzBkHOmFnLHxpexNOh1mDS4s2SfbFV20bmwLq8YwxduxKSlOzH7s1zMX3sYr/zfL6isrQeAFmPjSyHrXtZoxEZ4L+BrMRuY2o+NEC8k7Iov4W9Sfb2c+PeOIlij1c2/05IberUNir7qAEy7pluguxFUlFfXY8YKaaXUYCKoja0FCxbgqquuQlRUFNq1a4fbbrsNv/zyi9s2dXV1mDFjBhISEtCmTRtMnDgRZ8+eddvm5MmTGDduHCIjI9GuXTs8/vjjaGz0nxILQRBEMKFGro6asC5oPcUNXBf6s1blYtLSnRi+cGNI/Qh7wnrNv88rbq5xVVnrU7spiZGK9/cmGz/9k70Y9OL6FmNTXm2XXbqAH+cpy35sIYnuup8OwP3XdGU6n3uHpTB5bX25B7J6t1O8b2ujrKYBF+wNTm9rsPPna7phyeSBiAoPXABYmF6Hd6YOxMyR3VUXigllhERugp2gNra2bNmCGTNmYOfOnVi/fj0aGhpw4403orq62rnN7Nmz8e233+KLL77Ali1bcObMGdx+++3O75uamjBu3DjU19djx44d+Pe//40PP/wQzzzzTCBOiSAIIuD44l3QAjkLWt5Ts3jjMZ/qQwUrrNf8o5wTmLR0J3NYnVi7SueCVPgiAFTUtKwVNWPFPtzavzn8x3PxKJT0LmbQecIrcc4c2UNyYRoXacTMkWxhbb7cA8N6tEVyjH/uoVCAD4XzrHUWTPDGfnm1HfPX5uN8XeBezDc6OHx5Ucnyzqs6kZKjC/6OvvCVoDa21q1bh3vuuQd9+vRB//798eGHH+LkyZPYs2cPAKCyshLLli3Da6+9hpEjR2LQoEFYvnw5duzYgZ07mxNw//e//yE/Px+ffPIJMjIycNNNN2H+/PlYsmQJ6uvrA3l6BEEQAUGuXLfWKFnQLs8u9LrQD6W3nq7IlTsvr/b+OyY1lkrngpLwOn40vtlfjCWTpUsX1Dc68PTXB5kWmU+P7e1WN4vvu9D5LLi9L3Mu4qAucYi3KDMOrNHhzr60Rh69oQdiIuR5fnQAglmXjQNwZZdYPLRiX1CoJ244fA4Zz60L2SLQWhMKBY2BIDe2PKmsrAQAxMc3P/T37NmDhoYGZGVlObfp1asXOnfujJycHABATk4O+vbti6SkJOc2o0ePRlVVFQ4dOiR4HLvdjqqqKrd/BEEQrQVvC9JASOoqqackFk4GXHrrubOgNOTyuaSMBU+8nRHLWCqdC0oXOfzYxFlM2PL49Zg3rjf+mNkF88b1xpbHr3caWuvyijF0wQ8oqxYfZ1dmrdqH7w6cAeC9bharymaTg8MbG45g8N83MPfBlbjI5pywMenJmHZNiuz9gx0dgM9+OoUFE/rK2s/fBXWV8O0BW6C74Mb5ekeguxC0hEJBYyCE1AgdDgceffRRDBs2DOnp6QAAm80Gk8mE2NhYt22TkpJgs9mc27gaWvz3/HdCLFiwAM8//7zKZ0AQBBE88AtST0ltawAU/1zrKUmhAxATYfRqbPHMWLHXbbtQUTMUGxsp4i1GN8OAdSyl5sKoNCtyCkrd6k/5ushZn2/DY5/nuh3vX9sLnYafXKl1Bwc8tGIf7jtRjqw0K0Zd/KekZtu6vGI89dXBFmGQcuD7vi6vGP/aVqS4nWDlktFsxuysnli04Uigu0RcZuh1zZ7nUCBkjK0ZM2YgLy8P27dv1/xYc+bMwWOPPeb8u6qqCp06ddL8uARBEHLwtQCwGoWR1YLFwOB7de+wFKawGk+DjM/nCkQNMbm4js33ecX4KOeE5D7zbu4Da3S4orEUmwvr820YvnBji/pZ88b1RnJMOGyVdYpyST7ILmrxGT8+MZFGxfkpcsoECN0/6/NtimtquVJR04Cdx0t9ko0PBc6dr8PMkd2xctcJ2Krsge4OcRnh4IA9J8qd9fiCmZAwtmbOnIk1a9Zg69at6Nixo/Nzq9WK+vp6VFRUuHm3zp49C6vV6txm165dbu3xaoX8Np6YzWaYzWaVz4IgCEI9hAsAm/Di+HSM7cduSBj0uqD5sXJd8K/Pt+G/uWdQ5pKT5OppWbX7lOyFfqBqiCnFdWxYjC1rdLiisfQ0Om7u1x4GvU609hkvdHH/iFS8v7WwOQ9HxvH0uuaFkidiwhpKkDKshe4fa7QZdY0O1YyjnILSoMj70ZIN+Tbc3K89Jg3uTHlFhN8JlZytoDa2OI7Dww8/jK+//hqbN29Gamqq2/eDBg2C0WjEDz/8gIkTJwIAfvnlF5w8eRKZmZkAgMzMTPz973/HuXPn0K5dswzr+vXrER0djbS01pu4ShBE60W8AHA9HlqxFw/8moo5Y0Pz+cYbGJndEvC3cWmiXjc+7FDuQt9VxSpYjEwp+Jw2MeNSh2ZDVImgiZDRwXuu5q897LVYMi90MX+t+/6xkUZU1DS0GBv+b3+kznkzrEWNSNU9M63Zp9XMtwds2F20UbIwNkFoAeVsqcCMGTOwYsUKrF69GlFRUc4cq5iYGERERCAmJgb33XcfHnvsMcTHxyM6OhoPP/wwMjMzMXToUADAjTfeiLS0NNx111145ZVXYLPZMHfuXMyYMYO8VwRBhBwsBYDf21qI/h1jMbZfe7/1Swu8ed3Ewg5jGfO5tHgj6mtYpxiuOW1CBgygTNDEm+fqoRX7vO7rKnSx/cmRguF4QjlgY9OtWCYQQqgFQoY1awFtNSgsqfHDUdTBYjYgyhymyOBUamjJfVFCEK4kRZn8ppjrK0FtbL3zzjsAgOuuu87t8+XLl+Oee+4BACxatAh6vR4TJ06E3W7H6NGj8fbbbzu3NRgMWLNmDR588EFkZmbCYrHg7rvvxgsvvOCv0yAIglANVsntuavzMPqiFHZrRSjPyMFxmPKvHyX3VfuNqJiHSC1BDrUFTVjqZLFw7nydoFEslgO2q7DMb8aWax95lEjWK2XtwWJEmgyorW9SZFRYzAZUX6xNpTXV9ib8Y2I/HD13QfNwQB2Ah6/vhs/3/Ep5XoRihnVPDJnfNx0XzAUPgoSqqirExMSgsrIS0dHRge4OQRCXMatzT2PWqlymbVdOGxoyoXJq0eTgMHzhRsmQu+1PjlTth1rMQ8S3rqYgh1Lvmed+DgeHKcukjVIpPv3zEOh1Oub+sIxPbKQR5SrkbfG43gdy7h810OkAjlPuxZl2TSqWbS/UPPSSvy84jvObAWSNDsedV3XC8h2FQS8HTwQfZoMOb0waEDCxIzm2QVB7tgiCIAh35HhkQiV5WE20CrkTQ8pDpLYghxJBEyGvW2yEskK9PLxR9JfPc90W51LePG8y//zVWXB7c+2mp78+qKjGlWt7nrls/s7x4DjgdwM7IFuhWMZ/9vzqtxw3f4t5nK2qw+s/kKgGoQx7Excy6rIhVdSYIAjicmdwajziLSambUMleVhtxIraWmUUtWVFKizNNW8oEPBeN88+suS18QgVO+YAlNc0tPCC8CqA6/KKvbYZE9nS2IuNNDrHZ0x6MnbOyWKe62J95g3rJgeHnIJS2CprEW8xySqg7SuR5jDMG5cGi0n+kqtMRQ9fsEFhVYQaPP9tftAXrCfPFkEQRAhh0Ovw4vh0PLTCewHgZIXqdIFAC2EJf9UQY/UeBsLL6IsYBO8VmjcurYXaoDUmHLUNTYIS7VLePLGQS6DZeNt3stxpDJvC9HhpQrrXulcWkwFTh3bGN/uLRXPZhDx7/qTG3oQZK3yv3UUQhDuhoi5LxhZBEESIMbZfMh74NRXvbS0U/F4HdUPltERLYQl/1BBj9R4GwsvoixgEBzjHYHS6VVa+l9gCSImSppgwSBtzGP48PBUP39ADBr0OT4zpLWhYezPu/IFeB2w7+lvQG1qByNkiCLUI9pB5MrYIgiBCkDlj09C/Yyzmrs5zy2tRUwFPa7xJj4dKLL6WNbB8hXUBEmkyoKbeXfUu1iXMz9NoXZ17WtHxWY2/x/9zADGRJgztmgCDXsfkpRQyrFk9ezERRtzQqy2+3ndGtlF0Q6+2+OHn30S/H9s3GWsOeA+p9JVIox41DQ6f2uAA3JRuRUyE0Wc1wniLEf07xuKnE2U4X+cfNUXi8ibYQ+bJ2CIIgghRxvZrj9HpyZqHymmBv4UltMLfghxyYF2AeBpaAFBZ0yBq8Cr15rEaf9X2Jkz5149uLw6UeClZjbvK2gZ8te+MrLZ5/nxNN3Rv1wZLt7krBup1zUqCae1jNDe2TEYDahscir1n/Lz94KIkf2ykEfUNTYoMuHCjHmXVDdj0i7gBShBqEm8xBn3IPAlkEARBhDD8InR8RgdkdksIasPElWAXlpADH+qWFK29IIcceK+b2IzQodkoEIJfuAsln7O0K5QzKPftM6vYhhhahha5nuOcsWn4ef5NmDeuN+4a2hlThnTCAyO6wWgw4Kwf8sQqahrwaFZPRJoMivb3NNIqahoUe8rqfPSwiRFupOUqIcyEjA5B/7tHs5cgCILwO8EsLKEc92VroMtY8l43QFxR0JuIl5jBK9UuIOzNk6OkyR8fcDf4eFXB1bmnkVNQKqhCxm+zaMMR5mPJhQMwb9ylczSF6dEhLgLfHijGpz+ewjtbCrB40zG89P3PmvXBlaraekEPZWshs2vwih8QgWVkr6RAd0ESCiMkCIIg/E4wC0vIRSz37GyVPeC5Z2ICE9aYcNyUbnWGjnlDyOD11q5QziCvODm+fzKW7zjB3H9Xg6+ytl5STMWfyoPz1+ZDr4dT8XC6QO0wf/HZT6cCdmx/QGGJhCjB7dQCQMYWQRAEEQCCWVhCDqGQeyYmMLGrsIzJ2PI0eHnDyd7owKu/7w9wQEm1XTRnUA0DaH2+Dcuzi7yKqQDwq/Jg8cVjL5k8AHO+Puinowpzwd56vVoE4Y2SC8GvnknGFkEQBOF3gllYQg5ycs88ZdD9KWwiJDAhZfACzcnng7rEOf/2JtUvJGChlvT6f3OFlQJdDVqHQ7lIhC888Z8DZOwQRIAIhegHMrYIgiCIgCA3FC0YUZJ7pmVtMTl4M3h5yqobcO0/NjlztORI9ftSVJlHByDOYkRZdb3oNrxBGwg4kFeJIAJJuZdnQ7Cg4wKdwRsCVFVVISYmBpWVlYiOjg50dwiCIFoV/vbyqElOQSkmLd0pud28cb2RGGVGUUkNXt9wpIUBwp+tkvwuX6+fVJgf31JMpBEVNQ2i21hjwrH9yZHOY7NeG2/oAPxpWAqWMYQ7EgRx+ZHs8dzxF3JsA/JsEQRBEF7R2hhSUkMpWGAJxdPrgPlrD3ttR2l+lxpesjHpyRjZKwlDF/wg6EHiz0vM0OK3Ka6swwfbj6OytgGAzmc1Rr0OWDxpIOIsJjK2CIIQRChMO9ggY4sgCIIQJVhC3oIVllA8b/Lqrrjmd/ECFt4MXLF8KLGwPm/sOVHuNVSPlb9/p57UuYMD4iwmlFfbodexX0eCIC4vgr1ECBlbBEEQhCBqLuZbM2K5Z0oNhPX5Njz2ea5XA1dtFcRgXayIqRASBEHwBLtIBhlbBEEQRAtCQdJcCn/mgnnKq5ect0uGDoohJMfuaeAqVUEUI1gXK2IqhERoIub9JQilJIdAiRAytgiCIIgWqL2Y9zeBCH90zT1bnXtaURti3jBPA1eJCqI3BnWJQ7zFJBpKqAMQG2lEeU2DXxbMLCqEROhBhhahNvPGBX+JEH2gO0AQBEEEH2ov5v0JH/7oaSzy3qF1ecWa90Gup4hfKngLO3Q1cFnbLyqpkdxmXV4xRryy0auhBQALbu+Ld6cOhDVGey8YB2B8//aaH4cgiNAmzmIKdBckIc8WQRAE0QLWxXywhZ/5K/xRKkSRRaXQFWtMOMamW5lU986dr8PN/drDGm2Grcruddt/5xShc3wErDERoiIb0z/ZK9k3V4+gWuGSUqzafUqTdgmCaD0E4ws/T8jYIgiCIFowqEucpMCDXte8XTChNPxRTn4XS4iiN5VC/u/ZWT2QkmhxHm/xxmNM59guKhwGvQ6TBnfGog1HvW5bVl2P2Z/vF+xjk4PDU18d9Lq/xWzAxr9ch9xTFVide9rZV/7aNTk4LN12XNLoU0Jtg0P1NgmCaF0E2ws/IcjYIgiCIFqw50S5pJKeg2vezl85WywGkZLwRzn5XXIUGsVUCj09RXy7r2844rXPfOFgPhm8c3wk07mK9XFnQanX2lkAUG1vQuaC9aiobXJ+5nptDHodnru1j6R3jCAIQm3CjfqgF8cAyNgiCIIgBAi2nC1Wg0hu+KMc40lJiKKnSqGQkeitXc9jPHvLpWRwueIRnn3MOV7CtJ+roQW0vDZj0pPxp2EpgiqKhDs6HTB9RFe8s+V4oLtCECHPFUltgl4cAyCBDIIgCEKAYMrZkiN4wedKefv55aWCpYwnoNkwabro4pMTougKr1I4PqMDMrsltFgcSLXLMzurh5thGd/GLLmPtz4qLRIsdG1GpVmVNXaZwXFAvMUMa7T8sZNDbKQRxhBYhBKEL9zUJzTqPJKxRRAEQbRAymjRwT/1TeQaRHyuFN9HIWobmrA+3ybbeNLK28e6fUqixe1va7RyQ/fc+TrERSpX8fK8NixGrq4Vrf3NYXpYTAZF+54qr8GkwZ1V7lEzt2W0x+ysnqisaUCDUmuaIEKFEHmmkLFFEARBtMCb0cL/7RrSphVKvEl8rlRMpFFwn8qaBjz4yV6sz7cx9YE3hrTy9iltd3BqvGKDq11UOBKjfPeu8NeGZb5wrWjtb290oLq+SXpDATrFRaKhSZuLcU33RKzafZLqWRGXBd/7oYyHGpCxRRAEQQjCGy2edZWsMeFuuUxaotSbNCrNivAw4Z847uK//+5jKzzMGzlaefuUtrs+34a6RnkLfte2TpZWy9pXCFcDUGy+JEWbESti+GpFfJDW3tEBWLLpKBZvYlOelMu+UxVMIakE0Ro4cvaCM6ohmCGBDIIgCEIUFoEHLVHq9dlVWCYpR15W04A2ZgOq7U2CngBP9T8pOXdAmbdPSbtiwh7ecG1rfb5NUjZeCovJ4Mx9c50fWx6/HntOlDv/dnAcpvzrR5+ONTY9CV3bRuHI2fP4X/5Zye3/NrY3/v5dPsqqvast+hsOQEVtoyZt63TAJz+e1KRtgghGahscLcp4BCNkbBEEQRBe4QUeAoFUcWBPg4iH1SN2wd7kbIfFyJEj5y4HOe2yqBfGRoQh3GhwMzj5tkalWTF84UZF/XRlRM+2WJ9vE1WJHJ/RAQCwOpfNg+iN7/POgoO0kcWTe6o86AwtrWlNYZoEwQoVNSYIgiAIH1DqTZKTNxUXaYQ5TC9omAgZT1p5+1jbZVEvrKhtxKdTBkGv07VoK6egVJVQsyuS2niVzV8yeQDiLGasy2PLjfOGXDvi453k4SGIywEqakwQBEEQPqLEm8R7xFiMivKaBnz65yGChokYWnn7WNplfZNbcsHu9C4p2d8bcZFGrNp9yqtK5MyV+xTLyxMEQbCw8WcbhRESBEEQhK/I9SbxHrHpn+xlal/MMAlGfFVFVONN8D1Xp2LRhiNetyFDiyAIrVm2vQiPj+4Nk4ggUjAQvD0jCIIgCBekigN7MiY9GbOzejC1HQqhKDxy1AubHBxyCkqxOvc0cgpK0eTgmPd/e/IAQRXB2EgjKmvrVTobgiAI5Tg44OOcokB3wyvk2SIIgiBaLTNH9sDKXadgqxIPnfNHcWY1Meh1mDcuDQ+taOm181QcFBOvYMmDA4CKmpYiE5U1Dfggu0iVcyEIgvCVE2U1ge6CV8izRRAEQbRaDHodxmd4Vwi8tX+yZlL2Qp4lX1mXV4z5a/MFv4uJNOLRrJ5wOIAHP9nbImeNF68AgCWTByLOox4VX0NtVJoVz38rfAyKDiQIIpjoEh8Z6C54hTxbBEEQRKulvtGBL/Z4lx7/Zn8xnhjTW3WDa11esahnSalEvFR9rYqaBizacAR6nbBRxKHZezXnq4Mwh+lRVn0pHDDeYsS8cb0xJj1ZNcVCgiAILdEBuCszJdDd8AoZWwRBEESrZF1eMZ7++qBkvaXiyjrVC2OKGUWXZNGbvUosYh980WBbVR3mrznE5Fny5kDj0KzA6El5dQNmrNiHd/Q62BsdDEchCIIILGnJUUEtjgGQsUUQBEG0QqQ8QJ6oWRjTW9HhS7Loe90MIjGPl5B3TCt4r9fz3+bjlYn9ND8eQRCEr9w2IPhVZIPbFCQIgiBUR4s8IjVQq1/ejB0x1FQjZCk67HlqvMdrXV6x8zPeYPRnOB+HZk/fz7Yq5n08/XH83xazQa1uEQRBCNLLGh3oLkhCni2CIIjLCC3yiIKtXyzGDo8OzaIQaqoRKvGSuXqVRqVZgYv/Hygz+FR5LdN29w1LwXd5NsFi0yN7JWHg/P/hgr1Jq24SBHGZs/mXc7imZ9tAd8MrZGwRBEFcJkjlEb0zdWBADC61+yXX2Hn2ljRVxTGUesl4r9KuwjLg4v8HClZ1r6w0K54elyZabPq6K9phzYFiiVYIgiCU8XXuaTw9Tt1nuNpQGCFBEMRlAEse0fPf5vs9pFCLfrEaOwkWkyYGplTRYCnOna9TNYdMDnxB47syU5gLJ4sVm25ycPipqNxfXScI4jKkrLrB+YIqWCFjiyAIws8EImdKKrTO06viL7ToF4uxE28xImfODZp48gx6nbMosBKDq6ikRtUcMlZcCxqbwvSi5+C6nbe3ybyCIkEQhJYE6uUUK2RsEQRB+JF1ecUYvnAjJi3diVmrcjFp6U4MX7jRTRhBC1h/jPz9o6VFv7wZO7qL/16a0FdTueAx6cl4Z+pAWGPcjSaWSJdVu09iUJc4Wd4xNQJo4ixGLJk8wGmA8ueQFG122y4p2szkEQz2BRBBEK2DQLyckgMZWwRBEH5CTF1OSIlObVh/jPz9o6VVv8SMHWtMuN9y08akJ2P7kyOxctpQvHFnBlZOG4qHR3aX3K+4sg57TpTj2VvSmAUy1PCNllU3YP7awwLzUMy35R3WMZs4MPilmwmCCF4GdYkLdBe8QgIZBEEQfkAqN8lViU6LRF8+tM5WWSfYBy1U+QLdrzHpyRiVZhUVb3CFLxzMUmRYDnw+E48cT974jA6YndUDizYc9bkfrLiKkgAQFC45W+UuXCJ27VjGNt5iwtVdE/B/h87igr1R69MjCKIVsruwDMN6JAa6G6KQsUUQBOEH5OQmuS7O1YIPrXvwk73Qwd0TwpqDowVa98vT2BHCn3L4cj15KYkWVY8vhavhz3GcpHCJwwHMXyt+7cTGlm+ntLoef/nygBanIptHRnbHWxuPBUxunyAIZew4XhLUxhaFERIEQfiBYMiZCobQumDrlxahnd4EUKTEO1xV/oDA5CLwhr+tyu51u+LKOjy0wvu1ExvbYORf2wvJ0CKIEOQMY13AQEGeLYIgCD8QLDlTckLr/Ekg+qVFaKeUl0yuJ08qFC8Y8bx2Y9KTMbJXEj7OKUJRaQ3+m/srztcFX6Hjmvrg6xNBENK0j40IdBe8QsYWQRCEHwimnCmW0LpA4O9+qR3ayVqcmff2eBplVoHQRW/GWTDjeu0qa+tbnCtBEIRaXN0teEMIATK2CIIg/EKw5kxdzqgZ2slSnPnprw9iZK8kmML0sjx5YsaZVugAxEQYUVHb4HNbG/Jt+CC7KGSMRIIgQguDHhgahC8PXaGcLYIgCD8RrDlTlytqhnZKecmAZmn1oQt+cOaB8Z688RkdkNktwWloCeV8ucrIX9dTu7e4vKl377BUVdr7Ovc0GVoEQWhG1hWJQf+SkjxbBEEQfiRYc6YuR9QM7WT1kpVV13uVTS+vrveq7seHM24+UsJ0PNdzSYo2459/yEDJBbvosWIijbj36lQ8eF03rNp90qsBqdcBHCce2tjGHIayat+9YwRBEGJs/LkETQ4uqH9DydgiCILwM8GaM3W5oWZop1xhk2bZdA7z1x6W9Ih55nzxRqLckMLnbu2DYd3dvWKj061YvPEolmcXoaK2ARU1DVi04QhW7T6JW/sn4/2twgp9OgDTrknFe1sLRY9HdbMIgtCaBg7Yeby0xbMtmKAwQoIgCOKyRa3QTilJd1d48YiHVuxjMphc61rxb3DnjUtj6hcAxFuMoueyPt+G1zccbZGfZausw/tbC3H/iFQke1yb5IvX5okxvREbaWTuB0EQhBbkFJQGugteIc8WQRAEcVmjRminq5dMCzyVEWMi2Iyc6PAw7JyTBVNYy3erLNL33+wvxpbHr8eeE+Utrk1OQSkqaihMkCCIwOLgHIHuglfI2CIIgiAue9QI7eS9ZE9/fVCzXCU+NyznOFvO1rDuCYKGFsAufb/nRLngtdGyADdBEAQrseGmQHfBKxRGSBAEQRAqMSY9GTvnZCHeos2P/6XcMDavW7e2UaLf+Sp9r3UBboIgCBZKauyB7oJXyNgiCIIgCBUxhenx0oR06NDSJFKql6VDc64Ur4zI6oXztp2v0vdy8tQIgiC0YtsvZwPdBa9cVsbWkiVLkJKSgvDwcAwZMgS7du0KdJcIgiCIVog34Y23Jw9ELGPOFSCsjDi0a4KkOEVcpBFDu4obW1LGkqeB5wmfp+baR88+C31HEAShJkVlwR3SfNkYW5999hkee+wxPPvss9i7dy/69++P0aNH49y5c4HuGkEQBNEKcS1E/MadGVg5bSi2PzkSY/sl495hKcztCCkjGvQ6vHx7X6/7Lbi9r1eRDxZjSUr63ptR+e7UgXhX4LvkmHA8IKByeDmQHBOOtycPwMppQ3GfjDlAEEToouM47rIo7j5kyBBcddVVWLx4MQDA4XCgU6dOePjhh/HUU0953beqqgoxMTGorKxEdHS0P7pLEARBtGKaHBwGvbjeq5pfbKQRSyYNxNBuCaIGz7q8Yjz3TT5sVcJFkFlYl1eM578VL6TMej5iao5i3zU5OHyYXYj5aw8zHcMTvjaayaBHfVPwqpHNG9cbiVFmQZXLNzYcxaINRwLYO4IIfQZ2jMZXM6/x6zHl2AaXhbFVX1+PyMhIfPnll7jtttucn999992oqKjA6tWr3ba32+2w2y8l21VVVaFTp05kbBEEQRCqsS6vGA9+sreF9Dq/FGet8+XN0GFFjTaU0OTgMHzhRtgq6wQl6L3BG4TX9myH3s+s06R/QujQ7Ln720298MhnuXCIdJzfbvuTI0WvZZODw7CXf4CtKrgT/K3RZvzhyk74/KdTQd9X4vJj/zM3IsbPNf/kGFuXRRhhSUkJmpqakJSU5PZ5UlISbDZbi+0XLFiAmJgY579OnTr5q6sEQRDEZQIfgucZTie3oDIvWz8+owMyvXjBtG5DCd5CGcW4b1iKMyRzTHoyIkwGPDAi1es+N/dLxn3DUhDnsSCTG9LoGl55c0YHLJ40UHI7qVDO527tIyimEgzc0KstVk4biuynbsBjN16BnU9nYVRaO7/2IRivCxE8dEmI8LuhJZfLwrN15swZdOjQATt27EBmZqbz8yeeeAJbtmzBjz/+6LY9ebYIgiAIfxEor1IwIRTK6Ik12oznbu0jaoQu+C4fS7cVunma9Dpg2jWpmDO22aDzFtK4q7AMtspalFXXI76NGSdLq7Fy10k3T45QeKUaYZhCbcRbjJiQ0QEjeydhV2Ep/r3jBCpqL4Wdhhv1cDg41DddOmGL2YBrurfFgM6x2HuyHNuPlaDa3uTW5u0ZHfBV7hmUVde7XSfX6xZvMeLF8ekY26+9YH9r65vwwMc/YfvREvgawBkbEYYXx6ejuMqOXYWlqKlvRILFhE4JFlzdLRFDuyagvtGBF9cewv5TFQB0GN4jEeFheqzcdRJnz9dLHcJnOsVH4EJdI8pdwn49r5nxosXc4OWCxEaEoUNcBA6dOS+6jWe7vhIepkOTA2iQaJQPy/WViDCgttGjDwaggQPUjvbtkhCBLY+PVLdRRiiM0AO5YYSeUM4WQRAEQWiLpyE0qEsc9pwol2WE1jc68HFOEU6U1aBLfCTuykwRLeqspE9iffBHKKfQ9wBk7+NqXPpyrV3bt1XW4tx5Ow4XV6G6vhFJUWYM6BSH9nGRyOgUixU/nsCJshp0iotEz7ZtsPtkGYBmb+rQrso9qUJGcrs2ZkAHlFywo11UODI6xeLfOwrx9b7TqG9yYGjXeDxzczoMeh0+zilCUWk1AKB/x1hU1jagjdmADYfPobbBgdTESDw9Ng0RJgPTNfMcD7HrWt/owPLsQqzPPwuOc6BXUjQGpcQjOTYCg1PjUd/owAtr8rDzeBlMBj0mDOiAqUNTsHLXSadBmmgJR8eECFzdNRFXpcZjz4lynCmvQe6vFQB0SEm4NP/5vp+pqMWeE2X4xXYe0AFXJEVhUOfmcRrUJQ67i8qw41gJfi2vAQC0j4tAfKT5Ys6hGY4mDj8WlTrH7qqUeMHz8zZXfy2vwf8O2VDb0IRO8RHoEBuJzb+cQ1VtA+IjjYBOh1NlNaipb4JeB5jDDGgXZUJURBgOF1+AvdGBHu3aYPm9QwLq0SJjS4AhQ4Zg8ODBeOuttwA0C2R07twZM2fOJIEMgiAIgiAIgiCYkGMbhPmpTwHnsccew913340rr7wSgwcPxuuvv47q6mrce++9ge4aQRAEQRAEQRCtkMvG2Lrjjjvw22+/4ZlnnoHNZkNGRgbWrVvXQjSDIAiCIAiCIAhCDS6bMEJfoDBCgiAIgiAIgiAAkn4nCIIgCIIgCIIIOGRsEQRBEARBEARBaAAZWwRBEARBEARBEBpAxhZBEARBEARBEIQGkLFFEARBEARBEAShAWRsEQRBEARBEARBaAAZWwRBEARBEARBEBpAxhZBEARBEARBEIQGkLFFEARBEARBEAShAWRsEQRBEARBEARBaEBYoDsQCnAcBwCoqqoKcE8IgiAIgiAIgggkvE3A2wjeIGOLgfPnzwMAOnXqFOCeEARBEARBEAQRDJw/fx4xMTFet9FxLCbZZY7D4cCZM2cQFRUFnU4X6O4QaH6j0KlTJ5w6dQrR0dGB7g7hAo1NcEPjE7zQ2AQ3ND7BDY1P8NIax4bjOJw/fx7t27eHXu89K4s8Wwzo9Xp07Ngx0N0gBIiOjm41N25rg8YmuKHxCV5obIIbGp/ghsYneGltYyPl0eIhgQyCIAiCIAiCIAgNIGOLIAiCIAiCIAhCA8jYIkISs9mMZ599FmazOdBdITygsQluaHyCFxqb4IbGJ7ih8QleLvexIYEMgiAIgiAIgiAIDSDPFkEQBEEQBEEQhAaQsUUQBEEQBEEQBKEBZGwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFhEQFixYgKuuugpRUVFo164dbrvtNvzyyy9u29TV1WHGjBlISEhAmzZtMHHiRJw9e9Ztm5MnT2LcuHGIjIxEu3bt8Pjjj6OxsdFtm82bN2PgwIEwm83o3r07PvzwQ61PL+Tx5/jwZGdnIywsDBkZGVqdVqvAn2Pz6aefon///oiMjERycjL+9Kc/obS0VPNzDGXUGp9HHnkEgwYNgtlsFrwnNm/ejPHjxyM5ORkWiwUZGRn49NNPtTy1kMdfYwMAHMfh1VdfRc+ePWE2m9GhQwf8/e9/1+rUWgVqjM/+/fsxadIkdOrUCREREejduzfeeOONFseidYF8/Dk+PK1mXcARRAAYPXo0t3z5ci4vL4/Lzc3lxo4dy3Xu3Jm7cOGCc5vp06dznTp14n744Qfup59+4oYOHcpdffXVzu8bGxu59PR0Lisri9u3bx/33XffcYmJidycOXOc2xw/fpyLjIzkHnvsMS4/P5976623OIPBwK1bt86v5xtq+Gt8eMrLy7muXbtyN954I9e/f39/nGLI4q+x2b59O6fX67k33niDO378OLdt2zauT58+3IQJE/x6vqGGGuPDcRz38MMPc4sXL+buuusuwXvi73//Ozd37lwuOzubO3bsGPf6669zer2e+/bbb7U+xZDFX2PDb3PFFVdwq1ev5o4fP8799NNP3P/+9z8tTy/kUWN8li1bxj3yyCPc5s2buYKCAu7jjz/mIiIiuLfeesu5Da0LlOGv8eFpTesCMraIoODcuXMcAG7Lli0cx3FcRUUFZzQauS+++MK5zeHDhzkAXE5ODsdxHPfdd99xer2es9lszm3eeecdLjo6mrPb7RzHcdwTTzzB9enTx+1Yd9xxBzd69GitT6lVodX48Nxxxx3c3LlzuWeffTbkH6r+Rqux+cc//sF17drV7Vhvvvkm16FDB61PqVWhZHxckXNPjB07lrv33ntV6fflgFZjk5+fz4WFhXE///yzZn2/HPB1fHgeeugh7vrrr3f+TesCddBqfHha07qAwgiJoKCyshIAEB8fDwDYs2cPGhoakJWV5dymV69e6Ny5M3JycgAAOTk56Nu3L5KSkpzbjB49GlVVVTh06JBzG9c2+G34Ngg2tBofAFi+fDmOHz+OZ5991h+n0urQamwyMzNx6tQpfPfdd+A4DmfPnsWXX36JsWPH+uvUWgVKxseXY/HHIaTRamy+/fZbdO3aFWvWrEFqaipSUlLw5z//GWVlZeqeQCtHrfHxvC9oXaAOWo0P0PrWBWGB7gBBOBwOPProoxg2bBjS09MBADabDSaTCbGxsW7bJiUlwWazObdxXSzy3/PfedumqqoKtbW1iIiI0OKUWhVajs/Ro0fx1FNPYdu2bQgLo8eRXLQcm2HDhuHTTz/FHXfcgbq6OjQ2NuKWW27BkiVLND6r1oPS8VHC559/jt27d+O9997zpcuXDVqOzfHjx3HixAl88cUX+Oijj9DU1ITZs2fjd7/7HTZu3KjmabRa1BqfHTt24LPPPsPatWudn9G6wHe0HJ/WuC5oHWdBhDQzZsxAXl4etm/fHuiuEAJoNT5NTU2YPHkynn/+efTs2VPVti8XtLx38vPzMWvWLDzzzDMYPXo0iouL8fjjj2P69OlYtmyZ6sdrjfjr2bZp0ybce++9WLp0Kfr06aPpsVoLWo6Nw+GA3W7HRx995Hy2LVu2DIMGDcIvv/yCK664QvVjtjbUGJ+8vDyMHz8ezz77LG688UYVe0doNT6tdV1AYYREQJk5cybWrFmDTZs2oWPHjs7PrVYr6uvrUVFR4bb92bNnYbVandt4qkTxf0ttEx0dTW+vGNByfM6fP4+ffvoJM2fORFhYGMLCwvDCCy9g//79CAsLozfAEmh97yxYsADDhg3D448/jn79+mH06NF4++238cEHH6C4uFjDM2sd+DI+ctiyZQtuueUWLFq0CH/84x997fZlgdZjk5ycjLCwMLfFYu/evQE0q4AS3lFjfPLz83HDDTfg/vvvx9y5c92+o3WBb2g5Pq12XRDopDHi8sThcHAzZszg2rdvzx05cqTF93yi5Zdffun87OeffxZM8j979qxzm/fee4+Ljo7m6urqOI5rToRNT093a3vSpEmUCCuBP8anqamJO3jwoNu/Bx98kLviiiu4gwcPuikcEZfw171z++23c3/4wx/c2t6xYwcHgDt9+rQWp9YqUGN8XPGWHL5p0ybOYrFwixcvVq3/rRl/jc3//d//cQC4Y8eOOT/Lzc3lAHC//PKLOifTClFrfPLy8rh27dpxjz/+uOBxaF2gDH+MT2tdF5CxRQSEBx98kIuJieE2b97MFRcXO//V1NQ4t5k+fTrXuXNnbuPGjdxPP/3EZWZmcpmZmc7vefnqG2+8kcvNzeXWrVvHtW3bVlD6/fHHH+cOHz7MLVmyhCReGfDX+HjSGlSHtMZfY7N8+XIuLCyMe/vtt7mCggJu+/bt3JVXXskNHjzYr+cbaqgxPhzHcUePHuX27dvHPfDAA1zPnj25ffv2cfv27XOqRW7cuJGLjIzk5syZ43ac0tJSv55vKOGvsWlqauIGDhzIjRgxgtu7dy/3008/cUOGDOFGjRrl1/MNNdQYn4MHD3Jt27blpk6d6tbGuXPnnNvQukAZ/hofT1rDuoCMLSIgABD8t3z5cuc2tbW13EMPPcTFxcVxkZGR3IQJE7ji4mK3doqKiribbrqJi4iI4BITE7m//OUvXENDg9s2mzZt4jIyMjiTycR17drV7RiEMP4cH1daw0NVa/w5Nm+++SaXlpbGRUREcMnJydyUKVO4X3/91R+nGbKoNT7XXnutYDuFhYUcx3Hc3XffLfj9tdde67+TDTH8NTYcx3GnT5/mbr/9dq5NmzZcUlISd88995AhLIEa4/Pss88KttGlSxe3Y9G6QD7+HB9XWsO6QMdxHKco/pAgCIIgCIIgCIIQhQQyCIIgCIIgCIIgNICMLYIgCIIgCIIgCA0gY4sgCIIgCIIgCEIDyNgiCIIgCIIgCILQADK2CIIgCIIgCIIgNICMLYIgCIIgCIIgCA0gY4sgCIIgCIIgCEIDyNgiCIIgCIIgCILQADK2CIIgiJBm8+bN0Ol0qKioCHRXCIIgCMINMrYIgiCIgHHPPfdAp9NBp9PBaDQiNTUVTzzxBOrq6gLdNVUpKipynqdOp0NUVBT69OmDGTNm4OjRo7LbS0lJweuvv65+RwmCIAhVIWOLIAiCCChjxoxBcXExjh8/jkWLFuG9997Ds88+G+huacKGDRtQXFyM/fv346WXXsLhw4fRv39//PDDD4HuGkEQBKEBZGwRBEEQAcVsNsNqtaJTp0647bbbkJWVhfXr1zu/dzgcWLBgAVJTUxEREYH+/fvjyy+/9Nrm9u3bcc011yAiIgKdOnXCI488gurqauf3H3/8Ma688kpERUXBarVi8uTJOHfunPP78vJyTJkyBW3btkVERAR69OiB5cuXO78/deoU/vCHPyA2Nhbx8fEYP348ioqKJM81ISEBVqsVXbt2xfjx47FhwwYMGTIE9913H5qamgAABQUFGD9+PJKSktCmTRtcddVV2LBhg7ON6667DidOnMDs2bOdnjLW8yYIgiD8CxlbBEEQRNCQl5eHHTt2wGQyOT9bsGABPvroI7z77rs4dOgQZs+ejalTp2LLli2CbRQUFGDMmDGYOHEiDhw4gM8++wzbt2/HzJkznds0NDRg/vz52L9/P/773/+iqKgI99xzj/P7efPmIT8/H99//z0OHz6Md955B4mJic59R48ejaioKGzbtg3Z2dlo06YNxowZg/r6elnnq9frMWvWLJw4cQJ79uwBAFy4cAFjx47FDz/8gH379mHMmDG45ZZbcPLkSQDAV199hY4dO+KFF15AcXExiouLmc+bIAiC8DMcQRAEQQSIu+++mzMYDJzFYuHMZjMHgNPr9dyXX37JcRzH1dXVcZGRkdyOHTvc9rvvvvu4SZMmcRzHcZs2beIAcOXl5c7v7r//frftt23bxun1eq62tlawH7t37+YAcOfPn+c4juNuueUW7t577xXc9uOPP+auuOIKzuFwOD+z2+1cREQE93//93+C+xQWFnIAuH379rX47vDhwxwA7rPPPhPcl+M4rk+fPtxbb73l/LtLly7cokWL3LZRct4EQRCEtoQF1NIjCIIgLnuuv/56vPPOO6iursaiRYsQFhaGiRMnAgCOHTuGmpoajBo1ym2f+vp6DBgwQLC9/fv348CBA/j000+dn3EcB4fDgcLCQvTu3Rt79uzBc889h/3796O8vBwOhwMAcPLkSaSlpeHBBx/ExIkTsXfvXtx444247bbbcPXVVzvbP3bsGKKiotyOW1dXh4KCAtnnz3EcADjDAS9cuIDnnnsOa9euRXFxMRobG1FbW+v0bInBct4EQRCEfyFjiyAIgggoFosF3bt3BwB88MEH6N+/P5YtW4b77rsPFy5cAACsXbsWHTp0cNvPbDYLtnfhwgU88MADeOSRR1p817lzZ1RXV2P06NEYPXo0Pv30U7Rt2xYnT57E6NGjnWGAN910E06cOIHvvvsO69evxw033IAZM2bg1VdfxYULFzBo0CA3o4anbdu2ss//8OHDAIDU1FQAwF//+lesX78er776Krp3746IiAj87ne/kwxRlDpvgiAIwv+QsUUQBEEEDXq9Hk8//TQee+wxTJ48GWlpaTCbzTh58iSuvfZapjYGDhyI/Px8pwHnycGDB1FaWoqXX34ZnTp1AgD89NNPLbZr27Yt7r77btx999245ppr8Pjjj+PVV1/FwIED8dlnn6Fdu3aIjo5WfrJoFv948803kZqa6vTUZWdn45577sGECRMANBtRnuIbJpPJKajBet4EQRCE/yGBDIIgCCKo+P3vfw+DwYAlS5YgKioKf/3rXzF79mz8+9//RkFBAfbu3Yu33noL//73vwX3f/LJJ7Fjxw7MnDkTubm5OHr0KFavXu0UiujcuTNMJhPeeustHD9+HN988w3mz5/v1sYzzzyD1atX49ixYzh06BDWrFnjDMObMmUKEhMTMX78eGzbtg2FhYXYvHkzHnnkEfz6669ez620tBQ2m8153KysLOzatQvLli2DwWAAAPTo0QNfffUVcnNzsX//fkyePNkZ5siTkpKCrVu34vTp0ygpKWE6b4IgCML/kLFFEARBBBVhYWGYOXMmXnnlFVRXV2P+/PmYN28eFixYgN69e2PMmDFYu3atM+zOk379+mHLli04cuQIrrnmGgwYMADPPPMM2rdvD6DZY/Xhhx/iiy++QFpaGl5++WW8+uqrbm2YTCbMmTMH/fr1w4gRI2AwGLBq1SoAQGRkJLZu3YrOnTvj9ttvR+/evXHfffehrq5O0tOVlZWF5ORk9O3bF0899RR69+6NAwcO4Prrr3du89prryEuLg5XX301brnlFowePRoDBw50a+eFF15AUVERunXr5gxdlDpvgiAIwv/oOD4zlyAIgiAIgiAIglAN8mwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFkEQBEEQBEEQhAaQsUUQBEEQBEEQBKEBZGwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFkEQBEEQBEEQhAaQsUUQBEEQBEEQBKEBZGwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFkEQBEEQBEEQhAb8P/kLMFYSWP7KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Преобразуем дату выпуска в формат datetime\n", + "df['Release_date'] = pd.to_datetime(df['Release_date'])\n", + "\n", + "# Статистический анализ для определения выбросов\n", + "Q1 = df['Review_no'].quantile(0.25)\n", + "Q3 = df['Review_no'].quantile(0.75)\n", + "IQR = Q3 - Q1\n", + "\n", + "# Определение порога для выбросов\n", + "threshold = 1.5 * IQR\n", + "outliers = (df['Review_no'] < (Q1 - threshold)) | (df['Review_no'] > (Q3 + threshold))\n", + "\n", + "# Вывод выбросов\n", + "print(\"Выбросы:\")\n", + "print(df[outliers])\n", + "\n", + "# Обработка выбросов\n", + "# В данном случае мы заменим выбросы на медианное значение\n", + "median_review_no = df['Review_no'].median()\n", + "df.loc[outliers, 'Review_no'] = median_review_no\n", + "\n", + "# Визуализация данных после обработки\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(df['Release_date'], df['Review_no'])\n", + "plt.xlabel('Release Date')\n", + "plt.ylabel('Review Number')\n", + "plt.title('Scatter Plot of Review Number vs Release Date (After Handling Outliers)')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Очистим от строк с пустыми значениями наш датасет" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Количество удаленных строк: 515\n", + "\n", + "DataFrame после удаления строк с пропущенными значениями:\n", + " Name Price Release_date \\\n", + "0 Black Myth: Wukong 59.99 2024-08-20 \n", + "2 Counter-Strike 2 0.00 2012-08-21 \n", + "4 Grand Theft Auto V 10.48 2015-04-14 \n", + "5 Red Dead Redemption 2 17.99 2019-12-05 \n", + "6 PUBG: BATTLEGROUNDS 0.00 2017-12-21 \n", + "... ... ... ... \n", + "7807 Monster Hunter World: Iceborne - MHW:I Monster... 2.99 2020-02-06 \n", + "7808 Gene Shift Auto: Deluxe Edition 8.99 2022-11-28 \n", + "7809 Run Ralph Run 0.45 2021-03-03 \n", + "7810 Quadroids 6.19 2024-02-22 \n", + "7811 Divekick 4.99 2013-08-20 \n", + "\n", + " Review_no Review_type \\\n", + "0 270.0 Overwhelmingly Positive \n", + "2 270.0 Very Positive \n", + "4 270.0 Very Positive \n", + "5 270.0 Very Positive \n", + "6 270.0 Mixed \n", + "... ... ... \n", + "7807 39.0 Positive \n", + "7808 16.0 Positive \n", + "7809 26.0 Mostly Positive \n", + "7810 15.0 Positive \n", + "7811 1118.0 Very Positive \n", + "\n", + " Tags \\\n", + "0 Mythology,Action RPG,Action,Souls-like,RPG,Com... \n", + "2 FPS,Shooter,Multiplayer,Competitive,Action,Tea... \n", + "4 Open World,Action,Multiplayer,Crime,Automobile... \n", + "5 Open World,Story Rich,Western,Adventure,Multip... \n", + "6 Survival,Shooter,Battle Royale,Multiplayer,FPS... \n", + "... ... \n", + "7807 Action \n", + "7808 Indie,Action,Free to Play,Battle Royale,Roguel... \n", + "7809 Adventure,Action,Puzzle,Arcade,Platformer,Shoo... \n", + "7810 Precision Platformer,Puzzle Platformer,2D Plat... \n", + "7811 Fighting,Indie,2D Fighter,Parody ,Local Multip... \n", + "\n", + " Description \n", + "0 Black Myth: Wukong is an action RPG rooted in ... \n", + "2 For over two decades, Counter-Strike has offer... \n", + "4 Grand Theft Auto V for PC offers players the o... \n", + "5 Winner of over 175 Game of the Year Awards and... \n", + "6 Play PUBG: BATTLEGROUNDS for free.\\n\\nLand on ... \n", + "... ... \n", + "7807 A monster figure you can use to decorate your ... \n", + "7808 Gene Shift Auto is a roguelike-inspired battle... \n", + "7809 Ralph is a smart dinosaur, and a great shooter. \n", + "7810 Quadroids is a single-player puzzle platformer... \n", + "7811 Divekick is the world’s first two-button fight... \n", + "\n", + "[7297 rows x 7 columns]\n" + ] + } + ], + "source": [ + "# Удаление строк с пропущенными значениями\n", + "df_dropna = df.dropna()\n", + "\n", + "# Вывод количества удаленных строк\n", + "num_deleted_rows = len(df) - len(df_dropna)\n", + "print(f\"\\nКоличество удаленных строк: {num_deleted_rows}\")\n", + "\n", + "print(\"\\nDataFrame после удаления строк с пропущенными значениями:\")\n", + "print(df_dropna)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Теперь создадим выборки." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер обучающей выборки: 4687\n", + "Размер контрольной выборки: 1562\n", + "Размер тестовой выборки: 1563\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "df = pd.read_csv(\".//static//csv//steam_cleaned.csv\")\n", + "\n", + "train_df, temp_df = train_test_split(df, test_size=0.4, random_state=42)\n", + "\n", + "# Разделение остатка на контрольную и тестовую выборки\n", + "val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)\n", + "\n", + "# Проверка размеров выборок\n", + "print(\"Размер обучающей выборки:\", len(train_df))\n", + "print(\"Размер контрольной выборки:\", len(val_df))\n", + "print(\"Размер тестовой выборки:\", len(test_df))\n", + "\n", + "# Сохранение выборок в файлы\n", + "train_df.to_csv(\".//static//csv//train_data.csv\", index=False)\n", + "val_df.to_csv(\".//static//csv//val_data.csv\", index=False)\n", + "test_df.to_csv(\".//static//csv//test_data.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Проанализируем сбалансированность выборок" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Распределение Review_type в обучающей выборке:\n", + "Review_type\n", + "Very Positive 2117\n", + "Mostly Positive 810\n", + "Mixed 797\n", + "Positive 710\n", + "Overwhelmingly Positive 209\n", + "Mostly Negative 15\n", + "Very Negative 2\n", + "Overwhelmingly Negative 1\n", + "Name: count, dtype: int64\n", + "Процент положительных отзывов: 17.28%\n", + "Процент отрицательных отзывов: 4.46%\n", + "\n", + "Распределение Review_type в контрольной выборке:\n", + "Review_type\n", + "Very Positive 708\n", + "Mostly Positive 290\n", + "Mixed 241\n", + "Positive 224\n", + "Overwhelmingly Positive 78\n", + "Mostly Negative 6\n", + "Very Negative 2\n", + "Name: count, dtype: int64\n", + "Процент положительных отзывов: 18.57%\n", + "Процент отрицательных отзывов: 4.99%\n", + "\n", + "Распределение Review_type в тестовой выборке:\n", + "Review_type\n", + "Very Positive 713\n", + "Mostly Positive 276\n", + "Mixed 253\n", + "Positive 240\n", + "Overwhelmingly Positive 67\n", + "Mostly Negative 5\n", + "Very Negative 1\n", + "Name: count, dtype: int64\n", + "Процент положительных отзывов: 17.66%\n", + "Процент отрицательных отзывов: 4.29%\n", + "\n", + "Необходима аугментация данных для балансировки классов.\n", + "Необходима аугментация данных для балансировки классов.\n", + "Необходима аугментация данных для балансировки классов.\n" + ] + } + ], + "source": [ + "train_df = pd.read_csv(\".//static//csv//train_data.csv\")\n", + "val_df = pd.read_csv(\".//static//csv//val_data.csv\")\n", + "test_df = pd.read_csv(\".//static//csv//test_data.csv\")\n", + "\n", + "# Оценка сбалансированности\n", + "def check_balance(df, name):\n", + " counts = df['Review_type'].value_counts()\n", + " print(f\"Распределение Review_type в {name}:\")\n", + " print(counts)\n", + " print(f\"Процент положительных отзывов: {counts['Mostly Positive'] / len(df) * 100:.2f}%\")\n", + " print(f\"Процент отрицательных отзывов: {counts['Overwhelmingly Positive'] / len(df) * 100:.2f}%\")\n", + " print()\n", + "\n", + "# Определение необходимости аугментации данных\n", + "def need_augmentation(df):\n", + " counts = df['Review_type'].value_counts()\n", + " ratio = counts['Mostly Positive'] / counts['Overwhelmingly Positive']\n", + " if ratio > 1.5 or ratio < 0.67:\n", + " print(\"Необходима аугментация данных для балансировки классов.\")\n", + " else:\n", + " print(\"Аугментация данных не требуется.\")\n", + " \n", + "check_balance(train_df, \"обучающей выборке\")\n", + "check_balance(val_df, \"контрольной выборке\")\n", + "check_balance(test_df, \"тестовой выборке\")\n", + "\n", + "\n", + "\n", + "need_augmentation(train_df)\n", + "need_augmentation(val_df)\n", + "need_augmentation(test_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "По результатам анализа требуется приращение, соотношения отзывов вне допустимого диапазона" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Оверсэмплинг:\n", + "Распределение Review_type в обучающей выборке:\n", + "Review_type\n", + "Mostly Positive 2117\n", + "Mixed 2117\n", + "Very Positive 2117\n", + "Positive 2117\n", + "Overwhelmingly Positive 2117\n", + "Mostly Negative 2117\n", + "Very Negative 2117\n", + "Overwhelmingly Negative 2117\n", + "Name: count, dtype: int64\n", + "Отсутствуют один или оба класса (Positive/Negative).\n", + "\n", + "Распределение Review_type в контрольной выборке:\n", + "Review_type\n", + "Very Negative 708\n", + "Mostly Positive 708\n", + "Mixed 708\n", + "Overwhelmingly Positive 708\n", + "Overwhelmingly Negative 708\n", + "Positive 708\n", + "Mostly Negative 708\n", + "Very Positive 708\n", + "Name: count, dtype: int64\n", + "Отсутствуют один или оба класса (Positive/Negative).\n", + "\n", + "Распределение Review_type в тестовой выборке:\n", + "Review_type\n", + "Very Negative 713\n", + "Mostly Positive 713\n", + "Overwhelmingly Positive 713\n", + "Mixed 713\n", + "Overwhelmingly Negative 713\n", + "Very Positive 713\n", + "Mostly Negative 713\n", + "Positive 713\n", + "Name: count, dtype: int64\n", + "Отсутствуют один или оба класса (Positive/Negative).\n", + "\n", + "Андерсэмплинг:\n", + "Распределение Review_type в обучающей выборке:\n", + "Review_type\n", + "Mixed 1\n", + "Mostly Negative 1\n", + "Mostly Positive 1\n", + "Overwhelmingly Negative 1\n", + "Overwhelmingly Positive 1\n", + "Positive 1\n", + "Very Negative 1\n", + "Very Positive 1\n", + "Name: count, dtype: int64\n", + "Отсутствуют один или оба класса (Positive/Negative).\n", + "\n", + "Распределение Review_type в контрольной выборке:\n", + "Review_type\n", + "Mixed 2\n", + "Mostly Negative 2\n", + "Mostly Positive 2\n", + "Overwhelmingly Negative 2\n", + "Overwhelmingly Positive 2\n", + "Positive 2\n", + "Very Negative 2\n", + "Very Positive 2\n", + "Name: count, dtype: int64\n", + "Отсутствуют один или оба класса (Positive/Negative).\n", + "\n", + "Распределение Review_type в тестовой выборке:\n", + "Review_type\n", + "Mixed 1\n", + "Mostly Negative 1\n", + "Mostly Positive 1\n", + "Overwhelmingly Negative 1\n", + "Overwhelmingly Positive 1\n", + "Positive 1\n", + "Very Negative 1\n", + "Very Positive 1\n", + "Name: count, dtype: int64\n", + "Отсутствуют один или оба класса (Positive/Negative).\n", + "\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from imblearn.over_sampling import RandomOverSampler\n", + "from imblearn.under_sampling import RandomUnderSampler\n", + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "# Загрузка данных\n", + "train_df = pd.read_csv(\".//static//csv//train_data.csv\")\n", + "val_df = pd.read_csv(\".//static//csv//val_data.csv\")\n", + "test_df = pd.read_csv(\".//static//csv//test_data.csv\")\n", + "\n", + "# Преобразование категориальных признаков в числовые\n", + "def encode(df):\n", + " label_encoders = {}\n", + " for column in df.select_dtypes(include=['object']).columns:\n", + " if column != 'Review_type': # Пропускаем целевую переменную\n", + " le = LabelEncoder()\n", + " df[column] = le.fit_transform(df[column])\n", + " label_encoders[column] = le\n", + " return label_encoders\n", + "\n", + "# Преобразование целевой переменной в числовые значения\n", + "def encode_target(df):\n", + " le = LabelEncoder()\n", + " df['Review_type'] = le.fit_transform(df['Review_type'])\n", + " return le\n", + "\n", + "# Применение кодирования\n", + "label_encoders = encode(train_df)\n", + "encode(val_df)\n", + "encode(test_df)\n", + "\n", + "# Кодирование целевой переменной\n", + "le_target = encode_target(train_df)\n", + "encode_target(val_df)\n", + "encode_target(test_df)\n", + "\n", + "# Проверка типов данных\n", + "def check_data_types(df):\n", + " for column in df.columns:\n", + " if df[column].dtype == 'object':\n", + " print(f\"Столбец '{column}' содержит строковые данные.\")\n", + "\n", + "check_data_types(train_df)\n", + "check_data_types(val_df)\n", + "check_data_types(test_df)\n", + "\n", + "# Функция для выполнения oversampling\n", + "def oversample(df):\n", + " if 'Review_type' not in df.columns:\n", + " print(\"Столбец 'Review_type' отсутствует.\")\n", + " return df\n", + " \n", + " X = df.drop('Review_type', axis=1)\n", + " y = df['Review_type']\n", + " \n", + " oversampler = RandomOverSampler(random_state=42)\n", + " X_resampled, y_resampled = oversampler.fit_resample(X, y)\n", + " \n", + " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", + " return resampled_df\n", + "\n", + "# Функция для выполнения undersampling\n", + "def undersample(df):\n", + " if 'Review_type' not in df.columns:\n", + " print(\"Столбец 'Review_type' отсутствует.\")\n", + " return df\n", + " \n", + " X = df.drop('Review_type', axis=1)\n", + " y = df['Review_type']\n", + " \n", + " undersampler = RandomUnderSampler(random_state=42)\n", + " X_resampled, y_resampled = undersampler.fit_resample(X, y)\n", + " \n", + " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", + " return resampled_df\n", + "\n", + "# Применение oversampling и undersampling к каждой выборке\n", + "train_df_oversampled = oversample(train_df)\n", + "val_df_oversampled = oversample(val_df)\n", + "test_df_oversampled = oversample(test_df)\n", + "\n", + "train_df_undersampled = undersample(train_df)\n", + "val_df_undersampled = undersample(val_df)\n", + "test_df_undersampled = undersample(test_df)\n", + "\n", + "# Обратное преобразование целевой переменной в строковые метки\n", + "def decode_target(df, le_target):\n", + " df['Review_type'] = le_target.inverse_transform(df['Review_type'])\n", + "\n", + "decode_target(train_df_oversampled, le_target)\n", + "decode_target(val_df_oversampled, le_target)\n", + "decode_target(test_df_oversampled, le_target)\n", + "\n", + "decode_target(train_df_undersampled, le_target)\n", + "decode_target(val_df_undersampled, le_target)\n", + "decode_target(test_df_undersampled, le_target)\n", + "\n", + "# Проверка результатов\n", + "def check_balance(df, name):\n", + " if 'Review_type' not in df.columns:\n", + " print(f\"Столбец 'Review_type' отсутствует в {name}.\")\n", + " return\n", + " \n", + " counts = df['Review_type'].value_counts()\n", + " print(f\"Распределение Review_type в {name}:\")\n", + " print(counts)\n", + " \n", + " if 'Positive' in counts and 'Negative' in counts:\n", + " print(f\"Процент положительных отзывов: {counts['Positive'] / len(df) * 100:.2f}%\")\n", + " print(f\"Процент отрицательных отзывов: {counts['Negative'] / len(df) * 100:.2f}%\")\n", + " else:\n", + " print(\"Отсутствуют один или оба класса (Positive/Negative).\")\n", + " print()\n", + "\n", + "# Проверка сбалансированности после oversampling\n", + "print(\"Оверсэмплинг:\")\n", + "check_balance(train_df_oversampled, \"обучающей выборке\")\n", + "check_balance(val_df_oversampled, \"контрольной выборке\")\n", + "check_balance(test_df_oversampled, \"тестовой выборке\")\n", + "\n", + "# Проверка сбалансированности после undersampling\n", + "print(\"Андерсэмплинг:\")\n", + "check_balance(train_df_undersampled, \"обучающей выборке\")\n", + "check_balance(val_df_undersampled, \"контрольной выборке\")\n", + "check_balance(test_df_undersampled, \"тестовой выборке\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 14,400 Classic Rock Tracks (with Spotify Data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "https://www.kaggle.com/datasets/thebumpkin/14400-classic-rock-tracks-with-spotify-data Этот набор данных, содержащий 1200 уникальных альбомов и 14 400 треков, представляет собой не просто коллекцию — это хроника эволюции классического рока. Каждый трек тщательно каталогизирован с 18 столбцами данных, включая ключевые метаданные, такие как название трека, исполнитель, альбом и год выпуска, наряду с функциями Spotify audio, которые позволяют получить представление о звуковом ландшафте этих неподвластных времени мелодий. Бизнес-цель может заключаться в улучшении стратегии маркетинга и продвижения музыкальных треков. Предположим как этот набор может быть полезен для бизнеса:\n", + "Персонализированные рекомендации: Создание алгоритмов, которые будут рекомендовать пользователям музыку на основе их предпочтений.\n", + "Цель технического проекта: Разработать и внедрить систему рекомендаций, которая будет предсказывать и рекомендовать пользователям музыкальные треки на основе их предпочтений и поведения.\n", + "Входные данные:\n", + "Данные о пользователях: Идентификатор пользователя, история прослушиваний, оценки треков, время прослушивания, частота прослушивания.\n", + "Данные о треках: Атрибуты треков (название, исполнитель, альбом, год, длительность, танцевальность, энергичность, акустичность и т.д.).\n", + "Данные о взаимодействии: Время и частота взаимодействия пользователя с определенными треками.\n", + "Целевой признак:\n", + "Рекомендации: Булева переменная, указывающая, должен ли конкретный трек быть рекомендован пользователю (1 - рекомендуется, 0 - не рекомендуется)." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Track', 'Artist', 'Album', 'Year', 'Duration', 'Time_Signature',\n", + " 'Danceability', 'Energy', 'Key', 'Loudness', 'Mode', 'Speechiness',\n", + " 'Acousticness', 'Instrumentalness', 'Liveness', 'Valence', 'Tempo',\n", + " 'Popularity'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "df = pd.read_csv(\".//static//csv//UltimateClassicRock.csv\")\n", + "print(df.columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Анализируем датафрейм при помощи \"ящика с усами\". Естьсмещение в сторону меньших значений, это можно исправить при помощи oversampling и undersampling." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAIjCAYAAABia6bHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzVUlEQVR4nO3dd5RV5dnw4XsGptBRUYoCgg3ELqhAFFQs2DXqp6KIvUAUjTEaC9iisb72khcBA/ZEUINRFEskRikLSxTUCKJB5FXpAgPM/v5wzQnDDFV8BsbrWosVdjvnmT07zvmxy+RlWZYFAADATyy/qgcAAAD8PIgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPgCo0ZcqUyMvLi0GDBlX1UFiBXr16xZZbbrnOXzcvLy/69++/zl8XYH0mPoBqYdCgQZGXl1fuz2abbRb77rtvvPDCC8nH89prr5UbS0FBQbRu3Tp69uwZn3322Tp5j3/84x/Rv3//mDVr1jp5vaqQYj9tKKrD9xNgVWpW9QAA1qVrr702WrVqFVmWxddffx2DBg2KQw45JJ577rk47LDDko/nggsuiA4dOsTixYtj/Pjx8dBDD8Vf//rXeP/996NZs2Y/6rX/8Y9/xDXXXBO9evWKhg0brpsBV5Gfcj+trxYsWBA1a/73x3B1+n4CrIj4AKqV7t27R/v27XPTZ5xxRjRu3Dgee+yxKomPvffeO4499tiIiDjttNNi2223jQsuuCAGDx4cl19+efLxrK9+LvuptLQ0SkpKori4OIqLi6t6OADJuewKqNYaNmwYtWrVKvcvzBER8+fPj1//+tfRvHnzKCoqiu222y5uvfXWyLIsIn74V+k2bdpEmzZtYsGCBbntvvvuu2jatGl06tQpli5dusbj2W+//SIiYvLkyStdb9SoUbH33ntHnTp1omHDhnHkkUfGRx99lFvev3//+M1vfhMREa1atcpdtjRlypRVjmH5y9PK/rz22msV1u3Vq1el6y5/r8LTTz8d7du3j3r16pVb79Zbb13leCpT2X667777ol27dlFUVBTNmjWL3r17V7hEqWvXrrHDDjvEuHHjolOnTlGrVq1o1apVPPDAA+XWK7tMb/n9VXYZWGX7Ylm33nprdOrUKTbZZJOoVatW7L777vH0009XWC8vLy/69OkTQ4cOzY39b3/7W25Z2X5c2fezS5cusfPOO1c6ju222y4OOuiglY4VYH3izAdQrcyePTu++eabyLIsZsyYEXfffXfMmzcvTj755Nw6WZbFEUccEa+++mqcccYZscsuu8SLL74Yv/nNb+I///lP3HHHHVGrVq0YPHhwdO7cOa644oq4/fbbIyKid+/eMXv27Bg0aFDUqFFjjcf373//OyIiNtlkkxWu8/LLL0f37t2jdevW0b9//1iwYEHcfffd0blz5xg/fnxsueWWccwxx8THH38cjz32WNxxxx3RqFGjiIjYdNNNV2scBxxwQPTs2TMiIsaMGRN33XXXCtdt1KhR3HHHHbnpU045pdzyt956K44//vjYeeed46abbooGDRrEN998ExdddNFqjaUyy++n/v37xzXXXBPdunWL8847LyZNmhT3339/jBkzJkaPHh0FBQW5bWfOnBmHHHJIHH/88XHiiSfGk08+Geedd14UFhbG6aefvtZjWtadd94ZRxxxRPTo0SNKSkri8ccfj+OOOy6ef/75OPTQQ8utO2rUqHjyySejT58+0ahRo0pvXl/Z9/OUU06Js846Kz744IPYYYcdctuMGTMmPv7447jyyivXydcEkEQGUA0MHDgwi4gKf4qKirJBgwaVW3fYsGFZRGTXX399ufnHHntslpeXl3366ae5eZdffnmWn5+fvfHGG9lTTz2VRUT2P//zP6scz6uvvppFRPbwww9n//d//5dNmzYt++tf/5ptueWWWV5eXjZmzJgsy7Js8uTJWURkAwcOzG27yy67ZJtttln27bff5ua9++67WX5+ftazZ8/cvFtuuSWLiGzy5MmrvZ9KSkqyiMj69OmTm1f2db366qsV1u/Ro0fWqlWrcvMiIuvXr19u+vLLL88iIvvqq69y88q+rltuuWWl41md/TRjxoyssLAwO/DAA7OlS5fmtr3nnnty25bp0qVLFhHZbbfdlpu3aNGi3D4tKSnJsuy/x8vy+65sPMvui1NPPTVr2bJlufW+//77ctMlJSXZDjvskO23334V9lV+fn72r3/9q8LXvvx+XNH3c9asWVlxcXH229/+ttz8Cy64IKtTp042b968Cq8NsL5y2RVQrdx7770xcuTIGDlyZAwZMiT23XffOPPMM+Mvf/lLbp0RI0ZEjRo14oILLii37a9//evIsqzc07H69+8f7dq1i1NPPTXOP//86NKlS4XtVub000+PTTfdNJo1axaHHnpozJ8/PwYPHlzuvpRlffXVVzFhwoTo1atXbLzxxrn5O+20UxxwwAExYsSI1X7vyixcuDAiYrXvNygpKYmioqKVrjN37tzIz8//UTdJr2w/vfzyy1FSUhJ9+/aN/Pz//tg666yzon79+vHXv/613GvVrFkzzjnnnNx0YWFhnHPOOTFjxowYN27cWo9xWbVq1cr9febMmTF79uzYe++9Y/z48RXW7dKlS2y//fZr/V4NGjSII488Mh577LHcZYFLly6NJ554Io466qioU6fOWr82QGouuwKqlT322KPcB/sTTzwxdt111+jTp08cdthhUVhYGJ9//nk0a9Ys6tWrV27btm3bRkTE559/nptXWFgYDz/8cHTo0CGKi4tj4MCBkZeXt9rjufrqq2PvvfeOGjVqRKNGjaJt27YV7j9ZVtl7b7fddhWWtW3bNl588cWYP3/+Wn/g/OabbyLihw+0q2PWrFlRt27dla7TsWPHuOeee+LCCy+MSy+9NBo0aBAzZ85co3GtbD+taJ8UFhZG69aty32/IiKaNWtWYf9su+22EfHD71XZa6+91mhslXn++efj+uuvjwkTJsSiRYty8ys7Nlq1avWj369nz57xxBNPxN///vfYZ5994uWXX46vv/66wiVwAOs78QFUa/n5+bHvvvvGnXfeGZ988km0a9dujV/jxRdfjIgfzhp88skna/Rhcscdd4xu3bqt8Xv+VMpusF7dX5o3ffr0aNmy5UrXOeGEE2L8+PFx9913x0MPPbRW40q9n1YUkKvzEIG///3vccQRR8Q+++wT9913XzRt2jQKCgpi4MCB8eijj1ZYf9mzJGvroIMOisaNG8eQIUNin332iSFDhkSTJk3Wq2MLYHW47Aqo9pYsWRIREfPmzYuIiJYtW8a0adNi7ty55dabOHFibnmZ9957L6699to47bTTYtddd40zzzwzZs+e/ZONtey9J02aVGHZxIkTo1GjRrl/1V+TMzBlxo4dGxGxwsu+lrV48eL49NNPc2eEViQ/Pz9uvfXW6Nq1a2yzzTa5S97WlRXtk5KSkpg8eXKFOJo2bVrMnz+/3LyPP/44Iv4bXRtttFFERIWnZS1/FqUyf/7zn6O4uDhefPHFOP3006N79+7rJAJW9v2sUaNGnHTSSfH000/HzJkzY9iwYXHiiSeu1UMPAKqS+ACqtcWLF8dLL70UhYWFuQ/RhxxySCxdujTuueeecuvecccdkZeXF927d89t26tXr2jWrFnceeedMWjQoPj6669/1FOcVqVp06axyy67xODBg8t9MP7ggw/ipZdeikMOOSQ3ryxC1uQ3Yj/99NOx3XbbRZs2bVa57vDhw2PBggW5x96uzN133x2jRo2KoUOHRrdu3aJz586rPaZV6datWxQWFsZdd92Vu+chImLAgAExe/bsCk+XWrJkSTz44IO56ZKSknjwwQdj0003jd133z0iIrbaaquIiHjjjTdy6y1dunS1ztzUqFEj8vLyyp0lmTJlSgwbNmytvr4yq/p+nnLKKTFz5sw455xzKjzBDWBD4bIroFp54YUXcmcwZsyYEY8++mh88skncdlll0X9+vUjIuLwww+PfffdN6644oqYMmVK7LzzzvHSSy/F8OHDo2/fvrkPpmXX9L/yyitRr1692GmnneLqq6+OK6+8Mo499thyIbAu3XLLLdG9e/fo2LFjnHHGGblH7TZo0KDc79co+yB9xRVXxAknnBAFBQVx+OGHV3o/yGeffRY333xzvPPOO3HMMceUOzMxZsyYiIgYOXJktGjRIpo0aRL9+vWL++67Lzp16hQHHnjgSsf7r3/9Ky699NLo379/dOjQYR3sgfI23XTTuPzyy+Oaa66Jgw8+OI444oiYNGlS3HfffdGhQ4cKH8KbNWsWf/jDH2LKlCmx7bbbxhNPPBETJkyIhx56KPdI3nbt2sVee+0Vl19+eXz33Xex8cYbx+OPP547S7Yyhx56aNx+++1x8MEHx0knnRQzZsyIe++9N7beeut477331vrrXNX3c9ddd40ddtghnnrqqWjbtm3stttua/1eAFWmip+2BbBOVPao3eLi4myXXXbJ7r///qy0tLTc+nPnzs0uuuiirFmzZllBQUG2zTbbZLfccktuvXHjxmU1a9bMfvWrX5XbbsmSJVmHDh2yZs2aZTNnzlzheMoe2frUU0+tdNyVPWo3y7Ls5Zdfzjp37pzVqlUrq1+/fnb44YdnH374YYXtr7vuumzzzTfP8vPzV/rY3RU9inj5PwMHDsy+/PLLrHnz5lnfvn2z2bNnV3itWOYRsQsXLsx22mmn7Be/+EW2ZMmSCl/X6j5qd1X7Kct+eLRumzZtsoKCgqxx48bZeeedV+F70KVLl6xdu3bZ2LFjs44dO2bFxcVZy5Yts3vuuafC6/373//OunXrlhUVFWWNGzfOfve732UjR45crUftDhgwINtmm22yoqKirE2bNtnAgQOzfv36Zcv/WI2IrHfv3pV+PbHco3azbNXfz5tvvjmLiOz3v//9SvcVwPoqL8uWOYcNQLU0aNCg6N+//0p/A3rXrl2jV69e0atXr2TjWte6du0a33zzTXzwwQdVPZSfxJ133hkXXXRRTJkyJVq0aFHVwwFYY+75AIANQJZlMWDAgOjSpYvwADZY7vkA+BnYaqut4uijj17pOgcccEDufhfWH/Pnz49nn302Xn311Xj//fdj+PDhVT0kgLXmsisAqo3qeNnVlClTolWrVtGwYcM4//zz44YbbqjqIQGsNfEBAAAk4Z4PAAAgCfEBAAAksdY3nJeWlsa0adOiXr16kZeXty7HBAAAbECyLIu5c+dGs2bNIj9/xec31jo+pk2bFs2bN1/bzQEAgGrmiy++iC222GKFy9c6PurVq5d7g/r166/tywAAABu4OXPmRPPmzXONsCJrHR9ll1rVr19ffAAAAKu8HcMN5wAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASKJmVQ+An6evv/46Zs+eXdXD4GegQYMG0bhx46oeBgAQ4oMq8PXXX8fJp/SMxSWLqnoo/AwUFBbFkD89IkAAYD0gPkhu9uzZsbhkUSxo3SVKixtU9XDWG/kLZkWtyW/Eglb7RGmthlU9nGohf+HsiM9ej9mzZ4sPAFgPiA+qTGlxgyit06iqh7HeKa3V0H4BAKolN5wDAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIolrEx8KFC+Pjjz+OhQsXVvVQAIDV5Oc3/PxUi/iYOnVqnH322TF16tSqHgoAsJr8/Iafn2oRHwAAwPpPfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSqFnVAwAAWNaIESPi5ptvzk1feumlccghh+Sm33jjjbj66qtz09dee23ss88+uelPP/00zjrrrMiyLPLy8uKPf/xjbL311rnlb775Zlx55ZW56euvvz5+8YtfrHJZRMQ//vGP+N3vfpeb/v3vfx+dOnXKTU+cODHOPffc3PQDDzwQbdq0yU1//PHHcfbZZ+emH3roodh2220jIuLDDz+M888/P7fsvvvui+233361to2ImD59epx33nkxb968qFu3btx///3RpEmTiIiYMmVKnHHGGbF06dKoUaNGDBgwILbccsvctlOnTo0zzjgjFi9eHAUFBTFgwIBo0aJFbvm8efPixhtvjGnTpkWzZs3i8ssvj7p16+aWf/fdd3HxxRfHt99+G5tsskncfvvtsfHGG69yXBERJSUlMXz48NxrH3nkkVFYWLjayxcsWBAPPvhgfPnll7HFFlvEOeecE7Vq1frR20ZELF26NN5777347rvvYuONN46ddtopatSosdpj+ymtamzrq7wsy7K12XDOnDnRoEGDmD17dtSvX39dj2uNlP2fcfn/E7J+Kvt+zd/+iCit06iqh7PeyJ//TdT58Fn7ZR0q26f+2wDrp8p+fnft2nWF67/22ms/6fKVWd/f++CDD46FCxdWWFZcXByLFi2Kyj7u5eXlxauvvhr77bdflJaWVlien58fo0aNinPPPTcmTpxYYXmbNm3igQceiGOOOSa+++67Css33njj+P7771c4rr/97W/xwAMPxFNPPRVLly7NLatRo0Ycd9xxce65565y+RVXXBGjR4+u8PqdO3eO5s2br/W2N9xwQ7zxxhtx3333xfTp03PLmjRpEueff37ss88+qxzbT2lVY6sKq9sGLrsCANYLy3/AXvZf5itbvuOOO65weY0aNeKUU04p9y/By2+/yy67rHAsyy9bftvdd999hcvz8vLil7/8ZeTl5VW6PD8/P0444YTIz6/8Y9iRRx65wteubNuuXbvmPuA3adIk+vXrlzuzsHDhwlx4FBUVxTnnnBNFRUUREZFlWXTt2jUXHrVr145f/epXUbt27YiIKC0tja5du8bEiRMjLy8vDjzwwPjf//3fOPDAAyMvLy8mTpwY+++/fy48tt9++7jttttyZ2u+++67lY5r//33j8cffzzq168fl1xySfz5z3+OSy65JOrXrx+PP/54nHvuuStd3qNHjxg9enQUFBTESSedFEOGDImTTjopCgoKYvTo0T9q23PPPTf69esXrVu3jnvvvTdGjBgR9957b7Ru3Tr69esXV1xxxUpf/4EHHqj0e7suvPHGGysd2xtvvPGTvfe64MwHyTnzUTlnPtY9Zz5g/bbsz+9PP/00d6nV1VdfHfvtt19uvVGjRsW1116bm7755ptjjz32yE2/8847cemll+amhwwZEltssUVu+ssvv4yTTz45N33rrbdG+/btc9MDBgyIP/3pTxERceqpp8Zpp52WWzZ27Ni45JJLctO333577Lbbbrnp8ePHx8UXX5ybHjRoULlomjJlSvTq1Ss3/cgjj5S7nOnll1+O66+/PiIirrrqqth///1zyz777LM4/fTTV7jt1KlTo2fPnrnpYcOGRcOGDXPTH3zwQfTp0yciIu6+++5ysTZ9+vQ44YQTctNPPvlkbLbZZrnpGTNmxPHHH5+b/tvf/hbFxcW56YULF8bBBx+cm37++efLXYY1efLk3H5cfp/MmjUrjjrqqIiIqFu3bgwbNixq1vzvnQBLliyJ4447LmbOnBkNGzaMp59+usLyY489NmbNmhU1a9aMESNGlLvUad68eXHYYYdFRMRzzz0X9erVW+1tS0pK4pBDDoklS5bEnnvuGTfeeGO50CstLY3f/e538c9//nOFYzvuuONizpw58cILL6zzS7CWLl0aPXr0iNatW8f1119fYWxXXnllTJ48OYYMGZL8EqzVbYPVvudj0aJFsWjRonJvsL75/PPPq3oIrAbfJ1JzzMH6adn/by57j8ey4VE2vWx8LBselU0vGx6VTS8bHhGRC4+IiMGDB5eLj+XXXTY8Kpte/mzN8tPLxkNE5MIjIuK6664rFx+tW7de6bbLTy8bHhERF154Ye7vV199dTzzzDO56WXvuYiIcuFRNp2fnx+lpaWRl5dXLjwifrhsqnbt2vH9999HnTp1yoVHRJQLsv79+8egQYPKjbNevXoxd+7cKC0tLffhPSKiZs2asfPOO8drr70Wu+yyS6XLW7ZsGbNmzYodd9yxwgf8F154Iff3AQMGRN++fVd728LCwthnn31i1KhRUVRUVOHsVH5+fmy++eYREXHggQdWOrbTTz89brvtthg+fHgcd9xxsS699957MX369LjqqqsqHVuPHj2id+/e8d5778Wuu+66Tt97XVnt+Ljxxhvjmmuu+SnH8qPdcMMNVT0EYD3kvw2w4Vj+wzprb9l7EebNm7fG29evXz9mzZpV6f0iy6pTp06Fecu+37ffflth+bbbbhvjxo2LkpKSSl+zLHaWj54yZWNq1KjilQLTpk3L/f3LL79co20jfriXZdSoUTF37txKl5f9Y3yzZs0qXd6xY8cK41hXyi5xa9WqVaXLy+ZXdg/O+mK14+Pyyy8vV7Fz5syJ5s2b/ySDWltXXHFFtGzZsqqHwSp8/vnnPgySlP82wPqpsp8HU6ZMqZrBVEM1atTIBcjyZyZWR9lVLsveu1KZ+fPnV5hXt27dmDlzZkREbLLJJhWWf/zxxxERK7wsqexekcpuVl92TN98802FZctGwfJnvVa1bUTkbq5f9nKtZZXdM7OiuHjrrbcqjGNdKXuC2OTJk6Ndu3YVlk+ePLnceuuj1Y6PoqKi3M5eX7Vs2dJ13UAF/tsA679LL700d+nVqFGjKtzzsax33nmnwj0fyyp7bOqy08saO3ZsucupTjnllHL3fCy/7rLGjx9f4Z6PZU2ZMqXCPR/Lmjp1arnLpa688spy93ws67PPPlvptlOnTi23fNasWeUuvbrzzjtz93wse9laRJR7SlLED/d4LH/PR9mN6FmWxcKFCyvc8/H9999HxA/xUfYY3TK333577vK1/v37Vxhn2VmF/Pz8WLJkSYX7Jt59992IiJgwYUKly8su2Xv//fejpKSkXMR079497r333oiIOOOMM8q996q2LSkpyd2wvWjRoigtLa1wX8V//vOfiIh46aWX4uyzz64wtocffjhq1KhR4cEB68JOO+0UTZo0iaFDh1Z6z8fQoUOjadOmsdNOO63z915X3HBOcm44r5wbztc9N5zD+m35n9/LP1Fq8803z33Qq0ybNm0qfQRsxH8febr8o1CX1a5du/jXv/61xssifvgQ+N5771W6LC8vLw4//PB47rnnKr1kKT8/P44++uh45plnKn3E7SGHHBIjRoyo9LVXtW2TJk3ijDPOiAEDBlQIjKKioujRo0cMHTq03H28ZWrXrh09e/aMRx55JBcWy35N3bp1y+3Tl19+ObIsK3d2pW3btnHaaafFwIED46OPPlrluMq23WijjeL000+Pjh07xltvvRUPP/xwzJw5M/f9XdHysuOjoKAgjj322Nx+e/rpp2Px4sUREWu9bZs2bWLSpEnRsWPH6NGjR7Rq1SomT54cQ4cOjbfeeis6deoUo0ePXuHrn3DCCT/Z43bLnna1orFdc801VfK43dVtA/FBcuKjcuJj3RMfsH7zez7W3Xv7PR/l/VS/56Np06Zx3nnnrZe/52PZsVUF8cF6S3xUTnyse+ID1m8r+vntN5z/wG84X73lfsP5+vEbzsUH6y3xUTnxse6JD1i/+fkN1YffcA4AAKxXxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASVSL+GjRokU89NBD0aJFi6oeCgCwmvz8hp+fmlU9gHWhuLg4tt1226oeBgCwBvz8hp+fanHmAwAAWP+JDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEnUrOoB8POVv3B2VQ9hvZK/YFa5/+XHc4wBwPpFfJBcgwYNoqCwKOKz16t6KOulWpPfqOohVCsFhUXRoEGDqh4GABDigyrQuHHjGPKnR2L2bP8qzU+vQYMG0bhx46oeBgAQ4oMq0rhxYx8IAQB+ZtxwDgAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJGqu7YZZlkVExJw5c9bZYAAAgA1PWROUNcKKrHV8zJ07NyIimjdvvrYvAQAAVCNz586NBg0arHB5XraqPFmB0tLSmDZtWtSrVy/y8vLWeoDrwpw5c6J58+bxxRdfRP369at0LFRvjjVScayRimONFBxn1V+WZTF37txo1qxZ5Oev+M6OtT7zkZ+fH1tsscXabv6TqF+/vgOaJBxrpOJYIxXHGik4zqq3lZ3xKOOGcwAAIAnxAQAAJFEt4qOoqCj69esXRUVFVT0UqjnHGqk41kjFsUYKjjPKrPUN5wAAAGuiWpz5AAAA1n/iAwAASEJ8AAAASYgPAAAgiWoRH/fee29sueWWUVxcHHvuuWe88847VT0kNmA33nhjdOjQIerVqxebbbZZHHXUUTFp0qRy6yxcuDB69+4dm2yySdStWzd++ctfxtdff11FI6a6uOmmmyIvLy/69u2bm+dYY135z3/+EyeffHJssskmUatWrdhxxx1j7NixueVZlsXVV18dTZs2jVq1akW3bt3ik08+qcIRsyFaunRpXHXVVdGqVauoVatWbLXVVnHdddfFss83cqz9vG3w8fHEE0/ExRdfHP369Yvx48fHzjvvHAcddFDMmDGjqofGBur111+P3r17xz//+c8YOXJkLF68OA488MCYP39+bp2LLroonnvuuXjqqafi9ddfj2nTpsUxxxxThaNmQzdmzJh48MEHY6eddio337HGujBz5szo3LlzFBQUxAsvvBAffvhh3HbbbbHRRhvl1rn55pvjrrvuigceeCDefvvtqFOnThx00EGxcOHCKhw5G5o//OEPcf/998c999wTH330UfzhD3+Im2++Oe6+++7cOo61n7lsA7fHHntkvXv3zk0vXbo0a9asWXbjjTdW4aioTmbMmJFFRPb6669nWZZls2bNygoKCrKnnnoqt85HH32URUT21ltvVdUw2YDNnTs322abbbKRI0dmXbp0yS688MIsyxxrrDu//e1vs1/84hcrXF5aWpo1adIku+WWW3LzZs2alRUVFWWPPfZYiiFSTRx66KHZ6aefXm7eMccck/Xo0SPLMscaWbZBn/koKSmJcePGRbdu3XLz8vPzo1u3bvHWW29V4cioTmbPnh0RERtvvHFERIwbNy4WL15c7rhr06ZNtGjRwnHHWundu3cceuih5Y6pCMca686zzz4b7du3j+OOOy4222yz2HXXXeOPf/xjbvnkyZNj+vTp5Y61Bg0axJ577ulYY4106tQpXnnllfj4448jIuLdd9+NN998M7p37x4RjjUialb1AH6Mb775JpYuXRqNGzcuN79x48YxceLEKhoV1UlpaWn07ds3OnfuHDvssENEREyfPj0KCwujYcOG5dZt3LhxTJ8+vQpGyYbs8ccfj/Hjx8eYMWMqLHOssa589tlncf/998fFF18cv/vd72LMmDFxwQUXRGFhYZx66qm546myn6eONdbEZZddFnPmzIk2bdpEjRo1YunSpXHDDTdEjx49IiIca2zY8QE/td69e8cHH3wQb775ZlUPhWroiy++iAsvvDBGjhwZxcXFVT0cqrHS0tJo3759/P73v4+IiF133TU++OCDeOCBB+LUU0+t4tFRnTz55JMxdOjQePTRR6Ndu3YxYcKE6Nu3bzRr1syxRkRs4DecN2rUKGrUqFHhyS9ff/11NGnSpIpGRXXRp0+feP755+PVV1+NLbbYIje/SZMmUVJSErNmzSq3vuOONTVu3LiYMWNG7LbbblGzZs2oWbNmvP7663HXXXdFzZo1o3Hjxo411ommTZvG9ttvX25e27ZtY+rUqRERuePJz1N+rN/85jdx2WWXxQknnBA77rhjnHLKKXHRRRfFjTfeGBGONTbw+CgsLIzdd989Xnnlldy80tLSeOWVV6Jjx45VODI2ZFmWRZ8+feKZZ56JUaNGRatWrcot33333aOgoKDccTdp0qSYOnWq4441sv/++8f7778fEyZMyP1p37599OjRI/d3xxrrQufOnSs8Mvzjjz+Oli1bRkREq1atokmTJuWOtTlz5sTbb7/tWGONfP/995GfX/7jZY0aNaK0tDQiHGvEhv+0q8cffzwrKirKBg0alH344YfZ2WefnTVs2DCbPn16VQ+NDdR5552XNWjQIHvttdeyr776Kvfn+++/z61z7rnnZi1atMhGjRqVjR07NuvYsWPWsWPHKhw11cWyT7vKMsca68Y777yT1axZM7vhhhuyTz75JBs6dGhWu3btbMiQIbl1brrppqxhw4bZ8OHDs/feey878sgjs1atWmULFiyowpGzoTn11FOzzTffPHv++eezyZMnZ3/5y1+yRo0aZZdeemluHcfaz9sGHx9ZlmV333131qJFi6ywsDDbY489sn/+859VPSQ2YBFR6Z+BAwfm1lmwYEF2/vnnZxtttFFWu3bt7Oijj86++uqrqhs01cby8eFYY1157rnnsh122CErKirK2rRpkz300EPllpeWlmZXXXVV1rhx46yoqCjbf//9s0mTJlXRaNlQzZkzJ7vwwguzFi1aZMXFxVnr1q2zK664Ilu0aFFuHcfaz1teli3zKycBAAB+Ihv0PR8AAMCGQ3wAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDgB+la9eu0bdv3x/9Ov37949ddtnlR78OAOsv8QGwAevVq1fk5eVFXl5eFBYWxtZbbx3XXnttLFmypKqHtsYuueSSeOWVV3LTvXr1iqOOOqrqBgTAOlezqgcAwI9z8MEHx8CBA2PRokUxYsSI6N27dxQUFMTll19e1UNbLVmWxdKlS6Nu3bpRt27dqh4OAD8hZz4ANnBFRUXRpEmTaNmyZZx33nnRrVu3ePbZZ2PmzJnRs2fP2GijjaJ27drRvXv3+OSTT3LbDRo0KBo2bBjDhg2LbbbZJoqLi+Oggw6KL774IrdOZWcf+vbtG127dl3heP70pz9F+/bto169etGkSZM46aSTYsaMGbnlr732WuTl5cULL7wQu+++exQVFcWbb75Z7rKr/v37x+DBg2P48OG5MzuvvfZa7LffftGnT59y7/d///d/UVhYWO6sCQDrJ/EBUM3UqlUrSkpKolevXjF27Nh49tln46233oosy+KQQw6JxYsX59b9/vvv44YbbohHHnkkRo8eHbNmzYoTTjjhR73/4sWL47rrrot33303hg0bFlOmTIlevXpVWO+yyy6Lm266KT766KPYaaedyi275JJL4vjjj4+DDz44vvrqq/jqq6+iU6dOceaZZ8ajjz4aixYtyq07ZMiQ2HzzzWO//fb7UeMG4KfnsiuAaiLLsnjllVfixRdfjO7du8ewYcNi9OjR0alTp4iIGDp0aDRv3jyGDRsWxx13XET8EAr33HNP7LnnnhERMXjw4Gjbtm288847sccee6zVOE4//fTc31u3bh133XVXdOjQIebNm1fusqprr702DjjggEpfo27dulGrVq1YtGhRNGnSJDf/mGOOiT59+sTw4cPj+OOPj4gfzuCU3fsCwPrNmQ+ADdzzzz8fdevWjeLi4ujevXv8v//3/6JXr15Rs2bNXFRERGyyySax3XbbxUcffZSbV7NmzejQoUNuuk2bNtGwYcNy66ypcePGxeGHHx4tWrSIevXqRZcuXSIiYurUqeXWa9++/Rq/dnFxcZxyyinx8MMPR0TE+PHj44MPPqj0zAoA6x/xAbCB23fffWPChAnxySefxIIFC2Lw4MHr7CxAfn5+ZFlWbt6yl20tb/78+XHQQQdF/fr1Y+jQoTFmzJh45plnIiKipKSk3Lp16tRZqzGdeeaZMXLkyPjyyy9j4MCBsd9++0XLli3X6rUASEt8AGzg6tSpE1tvvXW0aNEiatb84Wratm3bxpIlS+Ltt9/Orfftt9/GpEmTYvvtt8/NW7JkSYwdOzY3PWnSpJg1a1a0bds2IiI23XTT+Oqrr8q934QJE1Y4lokTJ8a3334bN910U+y9997Rpk2bcjebr4nCwsJYunRphfk77rhjtG/fPv74xz/Go48+Wu4yLwDWb+IDoBraZptt4sgjj4yzzjor3nzzzXj33Xfj5JNPjs033zyOPPLI3HoFBQXxq1/9Kt5+++0YN25c9OrVK/baa6/c/R777bdfjB07Nh555JH45JNPol+/fvHBBx+s8H1btGgRhYWFcffdd8dnn30Wzz77bFx33XVr9TVsueWW8d5778WkSZPim2++KXfG5cwzz4ybbropsiyLo48+eq1eH4D0xAdANTVw4MDYfffd47DDDouOHTtGlmUxYsSIKCgoyK1Tu3bt+O1vfxsnnXRSdO7cOerWrRtPPPFEbvlBBx0UV111VVx66aXRoUOHmDt3bvTs2XOF77npppvGoEGD4qmnnortt98+brrpprj11lvXavxnnXVWbLfddtG+ffvYdNNNY/To0bllJ554YtSsWTNOPPHEKC4uXqvXByC9vGz5i3kB+FkYNGhQ9O3bN2bNmlXVQ1ljU6ZMia222irGjBkTu+22W1UPB4DV5FG7AGwwFi9eHN9++21ceeWVsddeewkPgA2My64A2GCMHj06mjZtGmPGjIkHHnigqocDwBpy2RUAAJCEMx8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACS+P87fxg1bSChrgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Box plot для столбца 'Popularity'\n", + "plt.figure(figsize=(10, 6))\n", + "sns.boxplot(x=df['Popularity'])\n", + "plt.title('Box Plot для Popularity')\n", + "plt.xlabel('Popularity')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Решим проблему пустых значений при помощи удаления таких строк." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "df_cleaned = df.dropna()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Разбиение набора данных на обучающую, контрольную и тестовую выборки" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер обучающей выборки: 8650\n", + "Размер контрольной выборки: 2884\n", + "Размер тестовой выборки: 2884\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Разделение на обучающую и тестовую выборки\n", + "train_df, test_df = train_test_split(df_cleaned, test_size=0.2, random_state=42)\n", + "\n", + "# Разделение обучающей выборки на обучающую и контрольную\n", + "train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n", + "\n", + "print(\"Размер обучающей выборки:\", len(train_df))\n", + "print(\"Размер контрольной выборки:\", len(val_df))\n", + "print(\"Размер тестовой выборки:\", len(test_df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Оценка сбалансированности выборок, по результатам видно что баланса тут мало" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Распределение Popularity в обучающей выборке:\n", + "Popularity\n", + "23 258\n", + "15 250\n", + "26 246\n", + "21 245\n", + "14 245\n", + " ... \n", + "84 1\n", + "87 1\n", + "91 1\n", + "79 1\n", + "86 1\n", + "Name: count, Length: 88, dtype: int64\n", + "\n", + "Распределение Popularity в контрольной выборке:\n", + "Popularity\n", + "17 90\n", + "26 86\n", + "21 83\n", + "24 83\n", + "28 80\n", + " ..\n", + "85 1\n", + "83 1\n", + "84 1\n", + "80 1\n", + "77 1\n", + "Name: count, Length: 85, dtype: int64\n", + "\n", + "Распределение Popularity в тестовой выборке:\n", + "Popularity\n", + "22 86\n", + "21 85\n", + "12 84\n", + "20 82\n", + "26 81\n", + " ..\n", + "76 2\n", + "71 2\n", + "79 1\n", + "82 1\n", + "80 1\n", + "Name: count, Length: 80, dtype: int64\n", + "\n" + ] + } + ], + "source": [ + "def check_balance(df, name):\n", + " counts = df['Popularity'].value_counts()\n", + " print(f\"Распределение Popularity в {name}:\")\n", + " print(counts)\n", + " print()\n", + "\n", + "check_balance(train_df, \"обучающей выборке\")\n", + "check_balance(val_df, \"контрольной выборке\")\n", + "check_balance(test_df, \"тестовой выборке\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Выполним овер- и андер- слемпинг." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Распределение Popularity в обучающей выборке после oversampling:\n", + "Popularity\n", + "44 258\n", + "20 258\n", + "30 258\n", + "27 258\n", + "8 258\n", + " ... \n", + "78 258\n", + "79 258\n", + "74 258\n", + "81 258\n", + "86 258\n", + "Name: count, Length: 88, dtype: int64\n", + "\n", + "Распределение Popularity в контрольной выборке после oversampling:\n", + "Popularity\n", + "21 90\n", + "11 90\n", + "28 90\n", + "23 90\n", + "37 90\n", + " ..\n", + "61 90\n", + "84 90\n", + "80 90\n", + "77 90\n", + "0 90\n", + "Name: count, Length: 85, dtype: int64\n", + "\n", + "Распределение Popularity в тестовой выборке после oversampling:\n", + "Popularity\n", + "14 86\n", + "47 86\n", + "27 86\n", + "13 86\n", + "66 86\n", + " ..\n", + "63 86\n", + "79 86\n", + "71 86\n", + "82 86\n", + "80 86\n", + "Name: count, Length: 80, dtype: int64\n", + "\n" + ] + } + ], + "source": [ + "from imblearn.over_sampling import RandomOverSampler\n", + "\n", + "def oversample(df):\n", + " X = df.drop('Popularity', axis=1)\n", + " y = df['Popularity']\n", + " \n", + " oversampler = RandomOverSampler(random_state=42)\n", + " X_resampled, y_resampled = oversampler.fit_resample(X, y)\n", + " \n", + " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", + " return resampled_df\n", + "\n", + "train_df_oversampled = oversample(train_df)\n", + "val_df_oversampled = oversample(val_df)\n", + "test_df_oversampled = oversample(test_df)\n", + "\n", + "check_balance(train_df_oversampled, \"обучающей выборке после oversampling\")\n", + "check_balance(val_df_oversampled, \"контрольной выборке после oversampling\")\n", + "check_balance(test_df_oversampled, \"тестовой выборке после oversampling\")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Распределение Popularity в обучающей выборке после undersampling:\n", + "Popularity\n", + "0 1\n", + "1 1\n", + "2 1\n", + "3 1\n", + "4 1\n", + " ..\n", + "84 1\n", + "85 1\n", + "86 1\n", + "87 1\n", + "91 1\n", + "Name: count, Length: 88, dtype: int64\n", + "\n", + "Распределение Popularity в контрольной выборке после undersampling:\n", + "Popularity\n", + "0 1\n", + "1 1\n", + "2 1\n", + "3 1\n", + "4 1\n", + " ..\n", + "82 1\n", + "83 1\n", + "84 1\n", + "85 1\n", + "87 1\n", + "Name: count, Length: 85, dtype: int64\n", + "\n", + "Распределение Popularity в тестовой выборке после undersampling:\n", + "Popularity\n", + "0 1\n", + "1 1\n", + "2 1\n", + "3 1\n", + "4 1\n", + " ..\n", + "76 1\n", + "77 1\n", + "79 1\n", + "80 1\n", + "82 1\n", + "Name: count, Length: 80, dtype: int64\n", + "\n" + ] + } + ], + "source": [ + "from imblearn.under_sampling import RandomUnderSampler\n", + "\n", + "def undersample(df):\n", + " X = df.drop('Popularity', axis=1)\n", + " y = df['Popularity']\n", + " \n", + " undersampler = RandomUnderSampler(random_state=42)\n", + " X_resampled, y_resampled = undersampler.fit_resample(X, y)\n", + " \n", + " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", + " return resampled_df\n", + "\n", + "train_df_undersampled = undersample(train_df)\n", + "val_df_undersampled = undersample(val_df)\n", + "test_df_undersampled = undersample(test_df)\n", + "\n", + "check_balance(train_df_undersampled, \"обучающей выборке после undersampling\")\n", + "check_balance(val_df_undersampled, \"контрольной выборке после undersampling\")\n", + "check_balance(test_df_undersampled, \"тестовой выборке после undersampling\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Police Shootings in the United States: 2015-2024" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "В этом наборе данных, составленном The Washington Post, регистрируется каждый человек, застреленный дежурным полицейским в Соединенных Штатах с 2015 по 2024 год. Он решает проблему занижения органами власти статистики реальных инцедентов. Это может быть использовано в журналисткой работе, например для прогнозирования или выявления закономерностей преступлений. Цель технического проекта установить закономерность в убийствах полицейскими определённых групп граждан. Входные данные: возраст, пол, штат, вооружённость. Целевой признак: общий портрет убитого гражданина." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['date', 'name', 'age', 'gender', 'armed', 'race', 'city', 'state',\n", + " 'flee', 'body_camera', 'signs_of_mental_illness',\n", + " 'police_departments_involved'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "df = pd.read_csv(\".//static//csv//2024-07-23-washington-post-police-shootings-export.csv\")\n", + "print(df.columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "При помощи ящика с усами и колонки возраста проверим набор на баланс. Он достаточно сбалансирован." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAIjCAYAAABia6bHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuRklEQVR4nO3deZhWdd348c8MywwKM4gLOwhmYCZpCoXkgxioiKkRmokpiY9omICWSaRQuSWWlahAoegjuWDmkpiioKaSIobYj0DKcQOBTBkWGYGZ8/uDa+4YhmVE/A7L63Vdc+V9tvs70wHOe85y52VZlgUAAMCnLL+2BwAAAOwexAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAfAbuCNN96IvLy8mDhxYm0PBYDdmPgA+BgmTpwYeXl5Vb7222+/6NGjRzz66KPJx/PUU09VGUu9evWiffv2cdZZZ8Xrr7++Xd7j+eefj1GjRsWyZcu2y/YA2H3Vre0BAOyMfvrTn0a7du0iy7JYsmRJTJw4MU444YR4+OGH48QTT0w+nosuuig6d+4ca9eujZdffjnGjx8fjzzySLz66qvRokWLT7Tt559/Pn7yk5/EgAEDonHjxttnwADslsQHwDbo3bt3HHHEEbnXAwcOjKZNm8Zdd91VK/Fx1FFHRb9+/SIi4jvf+U589rOfjYsuuihuv/32GD58ePLxAMCmuOwKYDto3LhxNGjQIOrWrfo7nVWrVsUll1wSrVu3joKCgujQoUNcf/31kWVZRESsXr06OnbsGB07dozVq1fn1nv//fejefPmceSRR0Z5efnHHs8xxxwTERElJSVbXG7atGlx1FFHxZ577hmNGzeOk08+Of7xj3/k5o8aNSp+8IMfREREu3btcpd3vfHGG1sdw8aXp1V+PfXUU9WWHTBgwCaXHTVqVJXl7rvvvjjiiCOiUaNGVZa7/vrrtziW999/P77//e/HIYccEg0bNoyioqLo3bt3vPLKK9WWffPNN+Okk06KPffcM/bbb78YNmxYPPbYY5sc+wsvvBDHH398FBcXxx577BHdu3eP5557bqs/G4DdlTMfANugtLQ03nvvvciyLJYuXRo33nhjrFy5Ms4888zcMlmWxUknnRTTp0+PgQMHxqGHHhqPPfZY/OAHP4iFCxfGDTfcEA0aNIjbb789unXrFiNGjIhf/vKXERExePDgKC0tjYkTJ0adOnU+9vj+9a9/RUTE3nvvvdllnnjiiejdu3e0b98+Ro0aFatXr44bb7wxunXrFi+//HLsv//+0bdv33jttdfirrvuihtuuCH22WefiIjYd999azSOXr16xVlnnRURETNnzozf/OY3m112n332iRtuuCH3+tvf/naV+TNmzIjTTjstvvCFL8S1114bxcXF8d5778WwYcO2Oo7XX389HnjggTj11FOjXbt2sWTJkhg3blx079495s6dm7s0bdWqVXHMMcfEu+++G0OGDIlmzZrF73//+5g+fXq1bU6bNi169+4dhx9+eIwcOTLy8/Pjtttui2OOOSb+8pe/RJcuXWr0MwLYrWQA1Nhtt92WRUS1r4KCgmzixIlVln3ggQeyiMiuvPLKKtP79euX5eXlZf/85z9z04YPH57l5+dnzzzzTDZ58uQsIrJf/epXWx3P9OnTs4jIbr311uzf//53tmjRouyRRx7J9t9//ywvLy+bOXNmlmVZVlJSkkVEdtttt+XWPfTQQ7P99tsv+89//pOb9sorr2T5+fnZWWedlZs2evToLCKykpKSGv+c1qxZk0VEduGFF+amVX5f06dPr7Z8//79s3bt2lWZFhHZyJEjc6+HDx+eRUT27rvv5qZVfl+jR4/e4njKysqy8vLyKtNKSkqygoKC7Kc//Wlu2i9+8YssIrIHHnggN2316tVZx44dq4y9oqIiO/DAA7Pjjjsuq6ioyC374YcfZu3atct69eq1xfEA7K5cdgWwDW666aaYOnVqTJ06Ne68887o0aNHnHvuuXH//ffnlpkyZUrUqVMnLrrooirrXnLJJZFlWZWnY40aNSoOPvjgOPvss+O73/1udO/evdp6W3LOOefEvvvuGy1atIg+ffrEqlWr4vbbb69yX8qG3n333Zg9e3YMGDAgmjRpkpveqVOn6NWrV0yZMqXG770pZWVlERFRWFhYo+XXrFkTBQUFW1xmxYoVkZ+fv003vRcUFER+/vp/8srLy+M///lPNGzYMDp06BAvv/xybrk///nP0bJlyzjppJNy0woLC+N///d/q2xv9uzZsWDBgjjjjDPiP//5T7z33nvx3nvvxapVq+KrX/1qPPPMM1FRUfGxxwmwq3PZFcA26NKlS5UD+29961tx2GGHxYUXXhgnnnhi1K9fP958881o0aJFNGrUqMq6Bx10UESsv7egUv369ePWW2+Nzp07R2FhYdx2222Rl5dX4/FcccUVcdRRR0WdOnVin332iYMOOqja/ScbqnzvDh06VJt30EEHxWOPPRarVq2KPffcs8Zj2NB7770XERHFxcU1Wn7ZsmXRsGHDLS7TtWvXGDNmTAwZMiQuvfTSKC4ujg8++KBG26+oqIhf//rXcfPNN0dJSUmV+2g2vDTtzTffjAMOOKDaz/4zn/lMldcLFiyIiIizzz57s+9ZWloae+21V43GB7C7EB8A20F+fn706NEjfv3rX8eCBQvi4IMP/tjbeOyxxyJi/VmDBQsWRLt27Wq87iGHHBI9e/b82O/5aam8IX3//fev0fKLFy+Otm3bbnGZ008/PV5++eW48cYbY/z48R9rPFdffXVcfvnlcc4558TPfvazaNKkSeTn58fQoUO36QxF5TqjR4+OQw89dJPLbC2mAHZH4gNgO1m3bl1ERKxcuTIiItq2bRtPPPFErFixosrZj3nz5uXmV5ozZ0789Kc/je985zsxe/bsOPfcc+PVV1+t8ZmDj6vyvefPn19t3rx582KfffbJnfX4OGdgKr300ksREZu97GtDa9eujX/+859x/PHHb3G5/Pz8uP766+PVV1+NkpKSuPnmm2PJkiVVbvLfnPvuuy969OgREyZMqDJ92bJluZvoI9b/XObOnRtZllX5vv/5z39WWe+AAw6IiIiioqIdKvoAdnTu+QDYDtauXRuPP/541K9fP3dZ1QknnBDl5eUxZsyYKsvecMMNkZeXF717986tO2DAgGjRokX8+te/jokTJ8aSJUtq9BSnbdW8efM49NBD4/bbb6/yyeV///vf4/HHH48TTjghN60yQj7OJ5zfd9990aFDh+jYseNWl33wwQdj9erVuccDb8mNN94Y06ZNi0mTJkXPnj2jW7duNRpPnTp1co83rjR58uRYuHBhlWnHHXdcLFy4MB566KHctLKysvjtb39bZbnDDz88DjjggLj++utzsbmhf//73zUaF8DuxpkPgG3w6KOP5s5gLF26NH7/+9/HggUL4rLLLouioqKIiPja174WPXr0iBEjRsQbb7wRX/jCF+Lxxx+PBx98MIYOHZr77fmVV14Zs2fPjieffDIaNWoUnTp1iiuuuCJ+/OMfR79+/aqEwPY0evTo6N27d3Tt2jUGDhyYe9RucXFxlc/XOPzwwyMiYsSIEXH66adHvXr14mtf+9om7wd5/fXX47rrrosXX3wx+vbtG3feeWdu3syZMyMiYurUqdGmTZto1qxZjBw5Mm6++eY48sgj49hjj93ieP/f//t/cemll8aoUaOic+fOH+t7PfHEE3Nnlo488sh49dVXY9KkSdG+ffsqyw0aNCjGjBkT3/rWt2LIkCHRvHnzmDRpUu7G+cqzIfn5+fG73/0uevfuHQcffHB85zvfiZYtW8bChQtj+vTpUVRUFA8//PDHGiPAbqGWn7YFsFPZ1KN2CwsLs0MPPTS75ZZbqjx2NcuybMWKFdmwYcOyFi1aZPXq1csOPPDAbPTo0bnlZs2aldWtWzf73ve+V2W9devWZZ07d85atGiRffDBB5sdT+WjdidPnrzFcW/qUbtZlmVPPPFE1q1bt6xBgwZZUVFR9rWvfS2bO3dutfV/9rOfZS1btszy8/O3+NjdzT2KeOOv2267LXvnnXey1q1bZ0OHDs1KS0urbSs2eNRuWVlZ1qlTp+wrX/lKtm7dumrfV00etXvJJZdkzZs3zxo0aJB169YtmzFjRta9e/ese/fuVZZ9/fXXsz59+mQNGjTI9t133+ySSy7J/vCHP2QRkf31r3+tsuzf/va3rG/fvtnee++dFRQUZG3bts1OO+207Mknn9zieAB2V3lZttF5aADYRhMnToxRo0Zt8RPQjz766BgwYEAMGDAg2bg+qV/96lcxbNiweOedd6Jly5a1PRyAnZZ7PgBgA6tXr67yuqysLMaNGxcHHnig8AD4hNzzAcB2c8ABB8TXv/71LS7Tq1ev3P0uO6K+fftGmzZt4tBDD43S0tK48847Y968eTFp0qTaHhrATs9lVwCwgV/96lfxu9/9Lt54440oLy+Pz33uc3HppZfGN7/5zdoeGsBOT3wAAABJuOcDAABIQnwAAABJbPMN5xUVFbFo0aJo1KhR7kOXAACA3U+WZbFixYpo0aJF5Odv/vzGNsfHokWLonXr1tu6OgAAsIt5++23o1WrVpudv83x0ahRo9wbFBUVbetmAACAndzy5cujdevWuUbYnG2Oj8pLrYqKisQHAACw1dsx3HAOAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAk6tb2AID0lixZEqWlpbU9DHYgxcXF0bRp09oeBgC7OPEBu5klS5bEmd8+K9au+ai2h8IOpF79grjz/+4QIAB8qsQH7GZKS0tj7ZqPYnX77lFRWFzbw9lu8lcviwYlz8Tqdv8TFQ0a1/Zwdir5ZaURrz8dpaWl4gOAT5X4gN1URWFxVOy5T20PY7uraNB4l/y+AGBX4IZzAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYiPiCgrK4vXXnstysrKansoAEAtcTwAnz7xERFvvfVWnHfeefHWW2/V9lAAgFrieAA+feIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkqhb2wP4pMrLy2POnDnx/vvvR5MmTaJTp05Rp06d2h4WALALee211+K8887LvR4/fnx89rOfzb1evHhxXHDBBbFy5cpo2LBh3HLLLdGsWbPc/DfeeCMGDhwY5eXlUadOnZgwYULsv//+NZ7/1ltvxcCBA2Pt2rVRr169mDBhQrRp06ZGY1u0aFGcd955sXr16mjQoEGMHz8+WrRokZtfWloaI0aMiCVLlkTTpk3jqquuiuLi4tz8lStXxjXXXBOLFi2KFi1axPDhw6Nhw4a5+f/+97/jwgsvjNLS0iguLo4xY8bEvvvuW6P5W9v2Jx3b1o4TV69eHePGjYt33nknWrVqFYMGDYoGDRpU+/9/U7a27ic9Rl2zZk08+OCDue/t5JNPjvr162+37deWvCzLsm1Zcfny5VFcXBylpaVRVFS0vcdVI88880zcfPPNsXjx4ty0Zs2axXe/+934n//5nxpvp/IP7cZ/WGFXVLm/r/rcSVGx5z61PZztJn/Ve7Hn3Id2ue8rhcqfnb8D2d1t7njg6KOP3uw6Tz31VBx//PFRVlZWbV5hYWH8+c9/jh49esSmDrfy8vJi+vTpW51/zDHHREVFRbX5+fn5m5y+4dh69eoVa9eurTavXr16MXXq1Ojfv38sXLiw2vyWLVvGpEmT4vzzz4958+ZVm9+xY8cYO3ZsnHjiibFy5cpq8xs2bBh/+tOftji/VatWW9z2Jx3b1o4TR4wYEc8991y19bt16xZXXXVVtekb2tq6n/QYdezYsTF58uQoLy/PTatTp06ceuqpcf7552+3Y+DtqaZtsNNedvXMM8/EyJEjo3379nHTTTfFlClT4qabbor27dvHyJEj45lnnqntIQIAO7kNwyM/Pz9OP/30yM/PrzK/MjyaNWsWI0eOzJ3xKCsri6OPPjoXFgUFBTFo0KAoKCiIiIgsy2o0vzIw9thjj/je974Xe+yxR0RElfDY3Ngqw6NJkyYxfPjwaNKkSURErF27No4++ujcwX2XLl1izJgx0aVLl4iIWLhwYfTq1SvmzZsXeXl5ceyxx8bvfve7OPbYYyMvLy/mzZsXxxxzTC4s9t9//7j66qtzZ2tWrlwZRx999Bbnb2nbvXr1+kRj69+//xaPE88///x47rnnol69enHGGWfEnXfeGWeccUbUq1cvnnvuuRgxYsRm94nK8Njcuueff/4nOkYdO3Zs3H333VFUVBTf//734w9/+EN8//vfj6Kiorj77rtjxIgRO/Ux8E555qO8vDz69+8f7du3jyuvvLLKH7SKior48Y9/HCUlJXHnnXfW6PSTMx/sTpz5YGPOfMB6Gx8PbHg50x133JG7zCli/WVQZ511Vu71Aw88EI0bN869XrZsWZxyyim513fffXeVy7AWL14cp59+eo3n33vvvbHffvvlXj///PPxox/9KCIirrvuutyB+abGdv/99+eiIyLi/fffj759++ZeT5kyJRc0EREffvhhnHDCCbnXf/7zn6OwsDD3uqysLI4//vjc64ceeqjKseDy5cvjpJNO2uz8RYsWxRlnnBEREZMmTYqWLVtudtufZGxdunSJa6+9ttpx4vDhw+OFF16IunXrxpQpU6pcyrRmzZro06dPrF27Nh599NFql2CtXr06evfuHfXq1YtHHnlks+t+6UtfimuuueZjH6OuWbMmevfuHUVFRTF58uSoW/e/d0isW7cu+vXrF8uWLYsvf/nLcfXVV3/iY+DtqaZtUON7Pj766KP46KOPqrxBbZkzZ04sXrw4Lr/88io/9Ij15d+/f/8YPHhwzJkzJw477LAab/fNN9/c3kOFHY79nM2xb7C72/jPQGV45OfnVwmPiKj2esPw2NTrDcNiW15vGB4RkQuPiPW/iZ86depmx7ZheFS+rlOnTpSXl0d+fn6Vg/uI9WdYNjyI3PDgPmL95WQFBQXx0UcfRWFhYbUDzaKiotwlYfn5+dXm33TTTbn/vvjii+Oee+6psu2ioqLcgey2jO3www+PWbNmRVlZ2SaPEyvPLHXv3r1KPERE1K9fP/r16xd33XVXjBs3LoYOHVpl/rhx4yIi4tRTT93kukcddVRMmzYtCgoKtukY9cEHH4zy8vIYOHBglfCIiKhbt24ce+yxce+990bLli236zFwSjWOj2uuuSZ+8pOffJpjqbH3338/IiLatWu3yfmV0yuXq6mtXd8HsCvzdyBs2mmnnVbbQ9iiTd3TsTUNGjSIlStXbvaekcLCwigtLd3sb88rL5zZ8ObuDVXGx6bWX7RoUe6/S0tLq82vXGfj8Nhw7KWlpdUOvisddthhMWvWrE1uOyJixYoVERHRoUOHTc4/4YQT4q677op33nmn2rzKaRuefdlQhw4dYtq0abn32NjWjlErfzZdu3bd5PzKBwWsWbNmm7a/I6hxfAwfPjwuvvji3Ovly5dH69atP5VBbU1lwZeUlMTBBx9cbX5JSUmV5WpqxIgR0bZt208+QNiBvfnmmw4y2SR/B7K729zfj/fee2+cf/75tTCimqlXr97HXmf16tUREZs9gK+8j2XDG543lJeXFxGxyZvJI/57P8qm1m/RokXuWG3DJ1dVqlznww8/3OLYNxdOf/vb3za77YiIRo0aRUTE/PnzNzl/ypQpERHRqlWravNatWoVL730UkyZMqXKE8YqVW6z8j02trVj1Mq4mDFjRpx44onV5lfGycZnXWq6/R1BjeOjoKAgd5qqtnXq1CmaNWsWkyZN2uQ9H5MmTYrmzZtHp06dPtZ227Zt63pnYLfl70Coavz48XHeeedFRUVFvPXWW9Xu+djQsmXLqt3zsaHFixdXu6fj48xfunRplUuvrr766tylVxsH08Zjq3wU64avKw/wKyoq4sMPP6x2X0XlWYPly5dHWVlZtfsqKi/FLysri+XLl1e756MyDCoqKqrNHzx4cO5JUb/85S+rjLVyexHrz4psy9hmzZoVEevP3lRe+lWpoqIiN/ann346fvjDH1a7b+O+++6LiIhBgwbFxgYNGhQPPPBATJ48OQYMGFBt3b/85S8Rsf52hU2999aOUU8++eQYO3ZsTJgwIY4//vhq93w8/vjjEbH+pvtt2f6OYKe84Tziv0+76tq1a/Tv3z/atWsXJSUlMWnSpJgxY0b85Cc/qfGjxtxwzu7EDedszA3nsN6mjgc2ftrV17/+9fjjH/+4yd+6N2vWLAYOHBgTJkyoFg8R63+R279//5g0aVKV+2hrOn+PPfaIs846K+64445qZwW2NrYmTZrEOeecE7feeusmL8np3LlzfPvb347/+7//i5kzZ0bE+jMqa9eujby8vOjZs2eceuqpMXny5HjiiSciy7Iqj/pt27Zt7nvf1P1jm5u/uW1Xvve2jq1ly5axaNGizR4ndujQIebNmxf16tWLfv36xQknnBBTpkyJ++67L9auXbvFx+1u+LSrTa3bsWPHmD9//jYfo1Y+7WqvvfaKc845J7p27RozZsyIW2+9NT744IPo1q1bPP/889vlGHh7qmkb7LTxEbHpz/lo3rx5XHDBBT7nAzZDfLAx8QHr+ZyP/9pVP+djw+PE1J/z8XGOUbflcz625Rh4e9ot4iNi+3y6o/hgdyI+2Jj4gPW2dDzgE859wvnGfMJ5VbtNfGwP4oPdifhgY+ID1nM8ANtul/+EcwAAYOciPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnxERJs2bWL8+PHRpk2b2h4KAFBLHA/Ap69ubQ9gR1BYWBif/exna3sYAEAtcjwAnz5nPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTq1vYAgNqRX1Za20PYrvJXL6vyv9TcrrYvALDjEh+wmykuLo569QsiXn+6tofyqWhQ8kxtD2GnVK9+QRQXF9f2MADYxYkP2M00bdo07vy/O6K01G+7+a/i4uJo2rRpbQ8DgF2c+IDdUNOmTR1oAgDJueEcAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJ1N3WFbMsi4iI5cuXb7fBAAAAO5/KJqhshM3Z5vhYsWJFRES0bt16WzcBAADsQlasWBHFxcWbnZ+XbS1PNqOioiIWLVoUjRo1iry8vG0eYMT6UmrdunW8/fbbUVRU9Im2BTVhnyM1+xwp2d9IzT5HlmWxYsWKaNGiReTnb/7Ojm0+85Gfnx+tWrXa1tU3qaioyA5LUvY5UrPPkZL9jdTsc7u3LZ3xqOSGcwAAIAnxAQAAJLFDxEdBQUGMHDkyCgoKanso7Cbsc6RmnyMl+xup2eeoqW2+4RwAAODj2CHOfAAAALs+8QEAACQhPgAAgCTEBwAAkMQOER833XRT7L///lFYWBhf+tKX4sUXX6ztIbELuOaaa6Jz587RqFGj2G+//eKUU06J+fPnV1mmrKwsBg8eHHvvvXc0bNgwvvGNb8SSJUtqacTsaq699trIy8uLoUOH5qbZ59ieFi5cGGeeeWbsvffe0aBBgzjkkEPipZdeys3PsiyuuOKKaN68eTRo0CB69uwZCxYsqMURszMrLy+Pyy+/PNq1axcNGjSIAw44IH72s5/Fhs8uss+xNbUeH/fcc09cfPHFMXLkyHj55ZfjC1/4Qhx33HGxdOnS2h4aO7mnn346Bg8eHH/9619j6tSpsXbt2jj22GNj1apVuWWGDRsWDz/8cEyePDmefvrpWLRoUfTt27cWR82uYubMmTFu3Ljo1KlTlen2ObaXDz74ILp16xb16tWLRx99NObOnRu/+MUvYq+99sotc91118VvfvObGDt2bLzwwgux5557xnHHHRdlZWW1OHJ2Vj//+c/jlltuiTFjxsQ//vGP+PnPfx7XXXdd3Hjjjbll7HNsVVbLunTpkg0ePDj3ury8PGvRokV2zTXX1OKo2BUtXbo0i4js6aefzrIsy5YtW5bVq1cvmzx5cm6Zf/zjH1lEZDNmzKitYbILWLFiRXbggQdmU6dOzbp3754NGTIkyzL7HNvXD3/4w+wrX/nKZudXVFRkzZo1y0aPHp2btmzZsqygoCC76667UgyRXUyfPn2yc845p8q0vn37Zv3798+yzD5HzdTqmY81a9bErFmzomfPnrlp+fn50bNnz5gxY0YtjoxdUWlpaURENGnSJCIiZs2aFWvXrq2y/3Xs2DHatGlj/+MTGTx4cPTp06fKvhVhn2P7euihh+KII46IU089Nfbbb7847LDD4re//W1ufklJSSxevLjK/lZcXBxf+tKX7G9skyOPPDKefPLJeO211yIi4pVXXolnn302evfuHRH2OWqmbm2++XvvvRfl5eXRtGnTKtObNm0a8+bNq6VRsSuqqKiIoUOHRrdu3eLzn/98REQsXrw46tevH40bN66ybNOmTWPx4sW1MEp2BXfffXe8/PLLMXPmzGrz7HNsT6+//nrccsstcfHFF8ePfvSjmDlzZlx00UVRv379OPvss3P71Kb+jbW/sS0uu+yyWL58eXTs2DHq1KkT5eXlcdVVV0X//v0jIuxz1EitxgekMnjw4Pj73/8ezz77bG0PhV3Y22+/HUOGDImpU6dGYWFhbQ+HXVxFRUUcccQRcfXVV0dExGGHHRZ///vfY+zYsXH22WfX8ujYFd17770xadKk+P3vfx8HH3xwzJ49O4YOHRotWrSwz1FjtXrZ1T777BN16tSp9qSXJUuWRLNmzWppVOxqLrzwwvjTn/4U06dPj1atWuWmN2vWLNasWRPLli2rsrz9j201a9asWLp0aXzxi1+MunXrRt26dePpp5+O3/zmN1G3bt1o2rSpfY7tpnnz5vG5z32uyrSDDjoo3nrrrYiI3D7l31i2lx/84Adx2WWXxemnnx6HHHJIfPvb345hw4bFNddcExH2OWqmVuOjfv36cfjhh8eTTz6Zm1ZRURFPPvlkdO3atRZHxq4gy7K48MIL449//GNMmzYt2rVrV2X+4YcfHvXq1auy/82fPz/eeust+x/b5Ktf/Wq8+uqrMXv27NzXEUccEf3798/9t32O7aVbt27VHh/+2muvRdu2bSMiol27dtGsWbMq+9vy5cvjhRdesL+xTT788MPIz6966FinTp2oqKiICPscNVTbd7zffffdWUFBQTZx4sRs7ty52XnnnZc1btw4W7x4cW0PjZ3cBRdckBUXF2dPPfVU9u677+a+Pvzww9wy559/ftamTZts2rRp2UsvvZR17do169q1ay2Oml3Nhk+7yjL7HNvPiy++mNWtWze76qqrsgULFmSTJk3K9thjj+zOO+/MLXPttddmjRs3zh588MFszpw52cknn5y1a9cuW716dS2OnJ3V2WefnbVs2TL705/+lJWUlGT3339/ts8++2SXXnppbhn7HFtT6/GRZVl24403Zm3atMnq16+fdenSJfvrX/9a20NiFxARm/y67bbbcsusXr06++53v5vttdde2R577JF9/etfz959993aGzS7nI3jwz7H9vTwww9nn//857OCgoKsY8eO2fjx46vMr6ioyC6//PKsadOmWUFBQfbVr341mz9/fi2Nlp3d8uXLsyFDhmRt2rTJCgsLs/bt22cjRozIPvroo9wy9jm2Ji/LNvhYSgAAgE9JrX/COQAAsHsQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwBs0owZM6JOnTrRp0+f2h4KALuIvCzLstoeBAA7nnPPPTcaNmwYEyZMiPnz50eLFi1qe0gA7OSc+QCgmpUrV8Y999wTF1xwQfTp0ycmTpxYZf5DDz0UBx54YBQWFkaPHj3i9ttvj7y8vFi2bFlumWeffTaOOuqoaNCgQbRu3TouuuiiWLVqVdpvBIAdivgAoJp77703OnbsGB06dIgzzzwzbr311qg8UV5SUhL9+vWLU045JV555ZUYNGhQjBgxosr6//rXv+L444+Pb3zjGzFnzpy455574tlnn40LL7ywNr4dAHYQLrsCoJpu3brFaaedFkOGDIl169ZF8+bNY/LkyXH00UfHZZddFo888ki8+uqrueV//OMfx1VXXRUffPBBNG7cOM4999yoU6dOjBs3LrfMs88+G927d49Vq1ZFYWFhbXxbANQyZz4AqGL+/Pnx4osvxre+9a2IiKhbt25885vfjAkTJuTmd+7cuco6Xbp0qfL6lVdeiYkTJ0bDhg1zX8cdd1xUVFRESUlJmm8EgB1O3doeAAA7lgkTJsS6deuq3GCeZVkUFBTEmDFjarSNlStXxqBBg+Kiiy6qNq9NmzbbbawA7FzEBwA569atizvuuCN+8YtfxLHHHltl3imnnBJ33XVXdOjQIaZMmVJl3syZM6u8/uIXvxhz586Nz3zmM5/6mAHYebjnA4CcBx54IL75zW/G0qVLo7i4uMq8H/7whzFt2rS49957o0OHDjFs2LAYOHBgzJ49Oy655JJ45513YtmyZVFcXBxz5syJL3/5y3HOOefEueeeG3vuuWfMnTs3pk6dWuOzJwDsetzzAUDOhAkTomfPntXCIyLiG9/4Rrz00kuxYsWKuO++++L++++PTp06xS233JJ72lVBQUFERHTq1CmefvrpeO211+Koo46Kww47LK644gqfFQKwm3PmA4BP7KqrroqxY8fG22+/XdtDAWAH5p4PAD62m2++OTp37hx77713PPfcczF69Gif4QHAVokPAD62BQsWxJVXXhnvv/9+tGnTJi655JIYPnx4bQ8LgB2cy64AAIAk3HAOAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgif8P5WBwh7W7alwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Box plot для столбца 'age'\n", + "plt.figure(figsize=(10, 6))\n", + "sns.boxplot(x=df['age'])\n", + "plt.title('Box Plot для age')\n", + "plt.xlabel('Age')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Теперь проверим на шум, здесь тоже особо проблем нет, однако смущает сочетание white и black, вероятно это мулаты." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAIAAAIjCAYAAACZALkcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACg80lEQVR4nOzdeVhU9f4H8PcIDNswAzIqiwvk4A5hagsqi1a4pqhZpBnazcq0qMglLbfcKkvT22IpWLmkKdxuXlNTcEFzKXC/hSaupIEwI/t2fn94mZ/jMHOQwziD8349zzyPns/5fs/nfOfMmXM+nDlHJgiCACIiIiIiIiKyC02snQARERERERER3T0sBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERHdoezsbMhkMiQlJVk7FSIiojvGQgARERHpHT9+HCNGjECbNm3g4uICf39/PPbYY1i2bJnFlrl27VosWbLEaPqVK1cwa9YsZGZmWmzZt0tLS4NMJtO/nJyccN9992HMmDH4888/G2QZ+/fvx6xZs1BQUNAg/REREd0pFgKIiIgIwM0T1O7du+Po0aN44YUXsHz5cvzjH/9AkyZNsHTpUost11whYPbs2Xe1EFDj1VdfxTfffIMVK1Zg4MCB+O6779CjRw9cuXJFct/79+/H7NmzWQggIiKrcbR2AkRERGQb5s2bB5VKhcOHD8PT09Mgdu3aNeskZQFFRUVwd3c3O0/v3r0xYsQIAMDYsWPRrl07vPrqq1i9ejWmTZt2N9IkKystLYVcLkeTJvy7GRHde7hnIyIiIgDA2bNn0blzZ6MiAAA0b97caNq3336LBx98EG5ubvDy8kJ4eDi2b9+uj//rX//CwIED4efnB2dnZ7Rt2xZz585FVVWVfp7IyEhs2bIF58+f11+OHxAQgLS0NPTo0QPAzRPxmtitv8k/ePAg+vXrB5VKBTc3N0RERCA9Pd0gx1mzZkEmk+HUqVN45pln4OXlhV69et3x2PTp0wcAcO7cObPz7dq1C71794a7uzs8PT0xZMgQnD592iCft956CwAQGBioX6/s7GzRHG79ycKtr7S0NKN54+Liap131qxZBvN9//336N69Ozw8PAzm+/DDD83mcv36dSQkJCA4OBgKhQJKpRL9+/fH0aNHjeY9f/48nnjiCbi7u6N58+Z4/fXXsW3btlpzr8t7Wpuan3Tc3t/AgQNrXW9T7devX48ZM2bA398fbm5u0Ol0d7SupaWlmDVrFtq1awcXFxf4+vpi2LBhOHv2rH6e6upqLFmyBJ07d4aLiwtatGiBF198Efn5+aLrSUTUUHhFABEREQEA2rRpgwMHDuDEiRPo0qWL2Xlnz56NWbNmISwsDHPmzIFcLsfBgwexa9cuPP744wCApKQkKBQKvPHGG1AoFNi1axfeffdd6HQ6fPDBBwCA6dOnQ6vV4tKlS/j4448BAAqFAh07dsScOXPw7rvvYvz48ejduzcAICwsDMDNE+7+/fujW7dumDlzJpo0aYLExET06dMHe/fuxYMPPmiQ75NPPomgoCDMnz8fgiDc8djUnMh5e3ubnOfnn39G//79cd9992HWrFkoKSnBsmXL0LNnT/z2228ICAjAsGHD8Mcff2DdunX4+OOPoVarAQDNmjWrUx6PPfYYxowZAwA4fPgwPvnkE5PzqtVq/ZgCwLPPPmsQP3DgAEaOHIn7778fCxcuhEqlQm5uLl5//XXRPP7880+kpKTgySefRGBgIK5evYovvvgCEREROHXqFPz8/ADcvPqiT58+yMnJwWuvvQYfHx+sXbsWqampRn3e6XsqZs+ePfjPf/5zR23mzp0LuVyOhIQElJWVQS6X49SpU3Va16qqKgwaNAg7d+7E008/jddeew03btzAjh07cOLECbRt2xYA8OKLLyIpKQljx47Fq6++inPnzmH58uXIyMhAeno6nJyc7ihnIqJ6EYiIiIgEQdi+fbvg4OAgODg4CI888ogwefJkYdu2bUJ5ebnBfFlZWUKTJk2EmJgYoaqqyiBWXV2t/3dxcbHRMl588UXBzc1NKC0t1U8bOHCg0KZNG6N5Dx8+LAAQEhMTjZYRFBQkREdHGy0vMDBQeOyxx/TTZs6cKQAQYmNj6zQGqampAgBh1apVwt9//y1cuXJF2LJlixAQECDIZDLh8OHDgiAIwrlz54xyCw0NFZo3by7k5eXppx09elRo0qSJMGbMGP20Dz74QAAgnDt3rk45CYIglJeXCwCEiRMn6qdt3LhRACCkpqYazT9q1CghMDDQYBoAYebMmfr/T5s2TQAg5OTk6KfVrNcHH3xgNp/S0lKj9/7cuXOCs7OzMGfOHP20xYsXCwCElJQU/bSSkhKhQ4cOBrnfyXtam5r37daxeOihh4T+/fsbrbe59vfdd5/RdlvXdV21apUAQPjoo4+M+q9Zp7179woAhDVr1hjEf/rpp1qnExFZCn8aQERERABu/rX5wIEDeOKJJ3D06FG8//77iI6Ohr+/P3744Qf9fCkpKaiursa7775r9PtpmUym/7erq6v+3zdu3EBubi569+6N4uJi/Pe//613npmZmcjKysIzzzyDvLw85ObmIjc3F0VFRejbty/27NmD6upqgzYvvfTSHS1j3LhxaNasGfz8/DBw4EAUFRVh9erV6N69e63z5+TkIDMzE3FxcWjatKl+ekhICB577LE7/sv07UpLSwEALi4udZq/vLwczs7OZue5ceMGmjRpUutPQcQ4Ozvr3/uqqirk5eVBoVCgffv2+O233/Tz/fTTT/D398cTTzyhn+bi4oIXXnjBoL/6vKfmbN68GYcPH8bChQvvaL2ee+45g+32TtZ106ZNUKvVmDRpklG/NZ+LjRs3QqVS4bHHHtOvY25uLrp16waFQlHrlRJERJbAnwYQERGRXo8ePbB582aUl5fj6NGjSE5Oxscff4wRI0YgMzMTnTp1wtmzZ9GkSRN06tTJbF8nT57EjBkzsGvXLuh0OoOYVqutd45ZWVkAbp60maLVauHl5aX/f2Bg4B0t491330Xv3r3h4OAAtVqNjh07wtHR9GHT+fPnAQDt27c3inXs2BHbtm2r000KTcnNzQUAqFSqOs1fUFAAhUJhdp5HHnkEy5cvx2uvvYbJkydDpVLV+Xfq1dXVWLp0KT799FOcO3fO4L4Pt/584vz582jbtq1BgQgANBqNwf/r856aUlVVhbfffhujRo1CSEhIndanRm3bSV3X9ezZs2jfvr3Z7SQrKwtarbbWe24A99ZNOYnItrEQQEREREbkcjl69OiBHj16oF27dhg7diw2btyImTNn1ql9QUEBIiIioFQqMWfOHLRt2xYuLi747bffMGXKlDv66+7tatp+8MEHCA0NrXWe20+Cb/8rr5jg4GA8+uij9crPEmpuJhgQEFCn+f/66y+0adPG7DxPP/00fvvtNyxbtgwrVqy4o3zmz5+Pd955B+PGjcPcuXPRtGlTNGnSBPHx8fV6b+vznpqycuVKZGdnY9u2bXecR23bSUOua3V1NZo3b441a9bUGq/rvSKIiKRiIYCIiIjMqrkcPicnBwDQtm1bVFdX49SpUyZP2tLS0pCXl4fNmzcjPDxcP722u+7f/tdisek1N11TKpU2c7Jec9L9+++/G8X++9//Qq1W668GMLVe5hw5cgQATP404VYVFRU4c+YM+vXrZ3a+Jk2a4MMPP8Tx48dx7tw5fPrpp7h69SpGjx4tuozvv/8eUVFRWLlypcH0goIC/Q0QgZvjcurUKQiCYLDeZ86cMWjXUO9pcXExZs+ejQkTJogWQuqqruvatm1bHDx4EBUVFSZv+Ne2bVv8/PPP6Nmz5x0Xp4iIGhLvEUBEREQAgNTU1FrvqF/z+/aay96HDh2KJk2aYM6cOUZ/Ea1p7+DgYPB/4Obv1j/99FOj/t3d3Wv9qUDNiXNBQYHB9G7duqFt27b48MMPUVhYaNTu77//NrmOluLr64vQ0FCsXr3aIN8TJ05g+/btGDBggH6aqfUy5/vvv0f79u3RoUMH0Xn/9a9/oaSkRP/IQ3OWLVuGXbt2Yc2aNXj00UfRs2fPOuXj4OBgtK1s3LgRly9fNpgWHR2Ny5cvG9xjorS0FF9++aXBfA31ni5duhRFRUWYPn16neavi7qu6/Dhw5Gbm4vly5cb9VHTfuTIkaiqqsLcuXON5qmsrLyjbYKISApeEUBEREQAgEmTJqG4uBgxMTHo0KEDysvLsX//fnz33XcICAjA2LFjAdz8fff06dMxd+5c9O7dG8OGDYOzszMOHz4MPz8/LFiwAGFhYfDy8sJzzz2HV199FTKZDN98802thYZu3brhu+++wxtvvIEePXpAoVBg8ODBaNu2LTw9PfH555/Dw8MD7u7ueOihhxAYGIivvvoK/fv3R+fOnTF27Fj4+/vj8uXLSE1NhVKpxL///e+7PXz44IMP0L9/fzzyyCN4/vnn9Y8PVKlUBs+x79atG4Cbj058+umn4eTkhMGDB9d6/4A///wT77//Pg4dOoRhw4bh22+/1ccOHz4MANixYwdat24NHx8fzJw5E59++inCwsL0j3E05eTJk5g8eTJmzZqFHj163NG6Dho0CHPmzMHYsWMRFhaG48ePY82aNbjvvvsM5nvxxRexfPlyxMbG4rXXXoOvry/WrFmjv+lhzVUCTZo0aZD3dPv27Zg3b57Zxzzeqbqu65gxY/D111/jjTfewKFDh9C7d28UFRXh559/xoQJEzBkyBBERETgxRdfxIIFC5CZmYnHH38cTk5OyMrKwsaNG7F06VKMGDGiwXInIjLJeg8sICIiIluydetWYdy4cUKHDh0EhUIhyOVyQaPRCJMmTRKuXr1qNP+qVauErl27Cs7OzoKXl5cQEREh7NixQx9PT08XHn74YcHV1VXw8/PTP44Qtz3mrbCwUHjmmWcET09PAYDBowT/9a9/CZ06dRIcHR2NHteXkZEhDBs2TPD29hacnZ2FNm3aCCNHjhR27typn6fm8YF///13ncag5jFyGzduNDtfbY8PFARB+Pnnn4WePXsKrq6uglKpFAYPHiycOnXKqP3cuXMFf39/oUmTJmYfJZiYmCgAEH0lJiYKly5dElq1aiXEx8cLWq3WqC/c8hi90tJSISQkROjVq5dQWVlptF51eXzgm2++Kfj6+gqurq5Cz549hQMHDggRERFCRESEwbx//vmnMHDgQMHV1VVo1qyZ8OabbwqbNm0SAAi//PKLwbx1eU9rU/O++fr6CkVFRSbXW6x9be/7naxrcXGxMH36dCEwMFBwcnISfHx8hBEjRghnz541mG/FihVCt27dBFdXV8HDw0MIDg4WJk+eLFy5csVsnkREDUUmCLWU5omIiIjI6pKSkjBr1iz9zQJrExkZibi4OMTFxd21vKRasmQJXn/9dVy6dAn+/v7WToeIyO7wHgFEREREZDElJSUG/y8tLcUXX3yBoKAgFgGIiKyE9wggIiIislFt27ZFTEyM2Xkee+wx/V33bdGwYcPQunVrhIaGQqvV4ttvv8V///tfk4/QIyIiy+NPA4iIiIjIYpYsWYKvvvoK2dnZqKqqQqdOnTB58mQ89dRT1k6NiMhusRBAREREREREZEd4jwAiIiIiIiIiO8JCABEREREREZEd4c0CiRq56upqXLlyBR4eHpDJZNZOh4iIiIiIrEQQBNy4cQN+fn5o0sT03/1ZCCBq5K5cuYJWrVpZOw0iIiIiIrIRFy9eRMuWLU3GWQggauQ8PDwA3PywK5VKK2dDRERERETWotPp0KpVK/05giksBBA1cjU/B1AqlSwEEBERERGR6E+GebNAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEENWDTCZDSkqKyXhaWhpkMhkKCgruWk5ERERERER14WjtBIis6fPPP8dbb72F/Px8ODre/DgUFhbCy8sLPXv2RFpamn7etLQ0REVF4cyZM6L9hoWFIScnByqVCgCQlJSE+Pj4e7owoC0uR25hOXSlFVC6OkHtLofKTX5Xln1VV4r8onLoSiuhdHWEl5scLZQud2XZUlk690v5xbhRWgldSQVUrk5QuDiipZdbg8Qt2bc9527LuTF324zbcm7Mnbkx9/9vezm/GLpb4h4ujvC/JS52TCDW/kpBCbQlFfq40tUJfp6udcpd6rLF4pY8TrT0sZRY/9Y8BpaChQCya1FRUSgsLMSRI0fw8MMPAwD27t0LHx8fHDx4EKWlpXBxuflBT01NRevWrdG2bVvRfuVyOXx8fCyauy25UlCCKZuOYW9Wrn5aeJAaC4eHGHwBWcKFvCJMSz6O9DN5+mm9NN6YHxOM1t7uFl22VJbO/XxeEd6upf95McFo4+0uKd4EwFQL9W3puCOAKTaamwyodZuwhdzMxefHBEMAbDK3e3nc58UEwwG2uz1zm7FOvDHvnxtz7lK3CbFjAkvmLgeQYMFlW/I40dLHUmL9W/MYWCqZIAiCtZMgsiY/Pz+8+uqrmDp1KgBgypQpKCoqwq5du/Dpp58iMjISABAREYHAwEAkJSVBJpPhyy+/xJYtW7Bt2zb4+/tj8eLFeOKJJwD8/9UD+fn5yMzMRFRUlMEyZ86ciVmzZqGsrAzTp0/HunXrUFBQgC5dumDRokX6ZdaFTqeDSqWCVquFUqlskDG5E9rickxcl2GwA6wRHqTGstiuFquKXtWV4o0NmQY75xq9NN5YPDLUZq8MsHTul/KLMWXTMZP9LxweIik+sY8GT684aJG+LR2fM6QL+izebXO59Q5So38XH7ydfMLmchOLL4jpgv8cz8FeG8xNdNw1avQPbpzj3kvjjekDO6L/0n02mZv5bSYY/zl+hduMBeKNdf/cW+ONAcG+mGaj49qYtwmx+LyYYER8kGaxZU/bfNwix4mWPpYS6//9EfcbFQFqWPoY2Jy6nhvwHgFk96KiopCamqr/f2pqKiIjIxEREaGfXlJSgoMHDxqc0M+ePRsjR47EsWPHMGDAAIwaNQrXr1836j8sLAxLliyBUqlETk4OcnJykJCQAACYOHEiDhw4gPXr1+PYsWN48skn0a9fP2RlZZnMt6ysDDqdzuBlTbmF5bXuAAFgT1YucgvLLbbs/KLyWnfOALDvTB7yiyy3bKksnfuN0kqz/UuNuzvXfkFZQ/Rt6XhZZbVN5rY3K9fkAYu1cxOLN1e61HpCZwu5iY77mcY77vvO5EGAzGZzM7/NOHObsVC8se6f957JQ3MbHtfGvE2IxYvLqyy6bEsdJ1r6WEqsf21JhdWOgRsCCwFk96KiopCeno7KykrcuHEDGRkZiIiIQHh4uP4eAQcOHEBZWZlBISAuLg6xsbHQaDSYP38+CgsLcejQIaP+5XI5VCoVZDIZfHx84OPjA4VCgQsXLiAxMREbN25E79690bZtWyQkJKBXr15ITEw0me+CBQugUqn0r1atWjX4mNwJXWmF2fgNkbi0ZVdKiluTpXPXlYi8LyJxsfaFpbUfNNSlrdTcpOZurr21czNVpGiIZUvNzVzcXN4NsWxLt5cy7pbe3i25PVszN6nbjDW3d8B8/tbej1hz/2zNz6K19zO2vE1Y83tRtL2E40SLH0uJ9W/BdbsbeI8AsnuRkZEoKirC4cOHkZ+fj3bt2qFZs2aIiIjA2LFjUVpairS0NNx3331o3bq1vl1ISIj+3+7u7lAqlbh27Vqdl3v8+HFUVVWhXbt2BtPLysrg7e1tst20adPwxhtv6P+v0+msWgxQujiZjXuIxKUt2/wuTCxuTZbOXekq8r6IxMXaK1wc6t1Wam5SczfX3tq5OTuars9LXbbU3MzFzeXdEMu2dHsp427p7d2S27M1c5O6zVhzewfM52/t/Yg198/W/Cxaez9jy9uENb8XRdtLOE60+LGUWP8WXLe7gVcEkN3TaDRo2bIlUlNTkZqaioiICAA37x3QqlUr7N+/H6mpqejTp49BOycnww+3TCZDdbX5v3DcqrCwEA4ODvj111+RmZmpf50+fRpLly412c7Z2RlKpdLgZU1qhRzhQepaY+FBaqgVlvttlJe7HL00tRdNemm84eVuu3dstXTuHi6OZvuXGi8qq71K3hB9Wzpu6mDN2rn1DlLjmq7UJnMTi1/TlaK3if2AtXMTHXdN4x33XhpvyFD7rZ5sITfz20wZettobo19m2ms++feGm9cu1Fmk7k19m1CLO4mr7141FDLttRxoqWPpcT6V7k6We0YuCGwEECEmz8PSEtLQ1pamsGN+sLDw7F161YcOnTI6IZ/d0Iul6OqyvBSva5du6KqqgrXrl2DRqMxeDWmJw6o3ORYODzEaEcYHqTGouEhFr1JSgulC+bHBBvtpHtpbt7N1VZvFAhYPveWXm6YZ6L/eTHBkuP+KleL9W3puHMTmU3m9t7QLuipUdtkbmLxnho13hvaxSZzEx33mMY77vNiguEhNz4It5XczG8z3njPRnNr7NtMY90/vxcTjF5tvW0yt7uxTZg7JrD0usn/929LLdtSx4mWPpYS69/P09Vqx8ANgU8NIAKQmJiIV155BRUVFbh06RJatGgBAPj6668xceJE3LhxA1euXIGvry+Am3/9T05OxtChQ/V9eHp6YsmSJYiLizN4aoCnpyf279+Pnj174ueff8b9998PNzc3uLm5YfTo0UhPT8fixYvRtWtX/P3339i5cydCQkIwcODAOuVu7acG1Kh5huqN0gp4uDhBrbh7z1A1eL6riyO83Bv2+bGWZOnca54ZXPO+eJh4HnJ94pbs255zt+XcmLttxm05N+bO3Jj7/7e9nF8M3S1xpYsj/G+Jix0TiLW/UlACbUmFPq5ydTJ4hJ25/KQuWyxuyeNESx9LifVvzWPg2tT13ICFACIA2dnZCAwMRIcOHXD69Gn99PPnzyMgIADt27fHf//7X/30Oy0EAMDLL7+MjRs3Ii8vT//4wIqKCrz33nv4+uuvcfnyZajVajz88MOYPXs2goOD65S7rRQCiIiIiIjIulgIILITLAQQERERERFQ93MD3iOAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIIGoA2dnZkMlkyMzMtHYqREREREREZjlaOwEiW3PgwAH06tUL/fr1w5YtW+rUplWrVsjJyYFarbZwdmRvtMXlyC0sh660AkpXJ6jd5VC5yRus/ZWCEmhLKqArqYDK1QlKVyf4ebrWqe/L+cXQlVbq23q4OMLfy63OfYvFxfoXi1/VlSK/qBy60kooXR3h5SZHC6VLg6zbpfxi3LglrnBxRMsGiovlbcllS42LtZX6nor1L2XsLD1uUrd3c+2lfhalthcbd3Nxsb7F9mFiy5a6DzVH6v5VrL01cyeiex8LAUS3WblyJSZNmoSVK1fiypUr8PPzE23j4OAAHx+fu5Ad2ZMrBSWYsukY9mbl6qeFB6mxcHhInU7WxdqfzyvC28nHkX4mTx/vpfHGvJhgtPF2N9u3WFtrxy/kFWFaLfH5McFobcPr5gBgipm8rT2upuLzY4IhADb9nptrLwNqbWvtca1L3Nq5i427uThEchfbh4ktW+o+1Byp+1ex9tbMnYjsg0wQBMHaSRDZisLCQvj6+uLIkSOYOXMmQkJC8PbbbwMA8vPzMXHiRGzfvh2FhYVo2bIl3n77bYwdOxbZ2dkIDAxERkYGQkNDUVVVhfHjx2PXrl3466+/0Lp1a0yYMAGvvfaafllxcXEoKChAr169sHjxYpSXl+Ppp5/GkiVL4OTkVOecdTodVCoVtFotlEplg48JWYe2uBwT12UYHKjVCA9SY1lsV7N/vRFrv2BYMCZvOmZwkFqjl8Yb74+43+QB4eX8YrNtFw4PwRQbji8eGWryygBrr9vEPho8veKgVZYtJb4gpgv+czwHe20wN7F4b40a/YN98HbyCZvLTTT3IDX6d7Hd3BcNDzH5eeqt8caAYF9MM5H7ouEhmLr5uMl92MLhIXjr+6Nm92G3n+ze2l5sH2qO1P2r2Lp98OT9SNh41Cq5S+mbiGxDXc8NeI8Aolts2LABHTp0QPv27TF69GisWrUKNbWyd955B6dOncLWrVtx+vRpfPbZZyZ/ClBdXY2WLVti48aNOHXqFN599128/fbb2LBhg8F8qampOHv2LFJTU7F69WokJSUhKSnJbI5lZWXQ6XQGL7r35BaW13qgBgB7snKRW1guqb2utLLWg1QA2HcmD9qSCpN9i7W9YePx/CLTY2ftdXN3rv1CPVsYN3Px5kqXWosAtpCbWHzvmVyThSFr5yaae5Zt527u87T3TB6am8ldV1ppdh+mLakQ3YdJ2YeaI3X/KrZu+UXS9v/mSP1uIaJ7B38aQHSLlStXYvTo0QCAfv36QavVYvfu3YiMjMSFCxfQtWtXdO/eHQAQEBBgsh8nJyfMnj1b///AwEAcOHAAGzZswMiRI/XTvby8sHz5cjg4OKBDhw4YOHAgdu7ciRdeeMFk3wsWLDDom+5NulLTJ+IAcEMkLtZeZ+ZEX6x/0bYWjktdvq60st59S42L5VZYWmW1ZUuJl1VWm21r8dwlbu/m8rf0uEodGym5W/p9sWbuYtuEWNzssi24f73Zv+l9VF3am+/bcuNCRI0Lrwgg+p/ff/8dhw4dQmxsLADA0dERTz31FFauXAkAePnll7F+/XqEhoZi8uTJ2L9/v9n+/vnPf6Jbt25o1qwZFAoFVqxYgQsXLhjM07lzZzg4OOj/7+vri2vXrpntd9q0adBqtfrXxYsX67O6ZOOULuZ/HuIhEhdrr3Stf/+ibS0cl7p8pYvpGrhY31LjYrkpXBxMxiy9bClxZ0fzhxMWz13i9m4uf0uPq9SxkZK7pd8Xa+Yutk2Ixc0u24L715v9m/87nSVzl9I3ETUuLAQQ/c/KlStRWVkJPz8/ODo6wtHREZ999hk2bdoErVaL/v374/z583j99ddx5coV9O3bFwkJCbX2tX79eiQkJOD555/H9u3bkZmZibFjx6K83PCSu9vvBSCTyVBdbf4va87OzlAqlQYvuveoFXKEB9X+05PwIDXUCvO/4RRrr3RxRC+Nd63xXhpvqMwcyIq19bDxuJe76bGz9roVldV+RYAtjJu5+DVdKXprat/erJ2bWLy3Ro1rulKbzE009yDbzt3c56m3xtts7koXR7P7MJWrk+g+TMo+1Byp+1exdfNyl7b/N0fqdwsR3TtYCCACUFlZia+//hqLFy9GZmam/nX06FH4+flh3bp1AIBmzZrhueeew7fffoslS5ZgxYoVtfaXnp6OsLAwTJgwAV27doVGo8HZs2fv5ipRI6dyk2Ph8BCjA7bwIDUWDQ8RvZmTWHt/LzfMiwk2Olituau1uTtHi7VtaQPx+Sbi82OCzT5C0OrrpnIxmbctjKupeE+NGu/FdLHZ99xc+/diuqCnRm2T4yoaH2r93M2Nu7+Z+LyYYLO5+3u5md2H+Xm6ml22n6erpH2oOVL3r2Lr1kLpYrXceaNAIvvBpwYQAUhJScFTTz2Fa9euQaVSGcSmTJmCXbt2oX///ujWrRs6d+6MsrIyTJ06FdeuXcPBgweNnhrwySef4J133sGGDRsQGBiIb775Bp988gkCAwORmZkJ4P+fGpCSkqJfVnx8PDIzM5GWllbn3PnUgHtbzbOeb5RWwMPFCWrFnT3rWax9zXOua+Kq255zbU7Ns8dr2ipNPHvcVN9icbH+xeIGzxd3cYSXu9xsEeBO1q3mmfE1cQ8Tz5SvT1wsb0suW2pcrK3U91SsfyljZ+lxk7q9m2sv9bMotb3YuJuLi/Uttg8TW7bUfag5UvevYu2tmTsRNV51PTdgIYAIwODBg1FdXY0tW7YYxQ4dOoSHHnoIs2fPxvr165GdnQ1XV1f07t0bH3/8MQIDA40KAWVlZXjppZeQnJwMmUyG2NhYqFQqbN26lYUAIiIiIiKyCBYCiOwECwFERERERATU/dyA9wggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYC6J6VlJQET09Pa6dhIDs7GzKZDJmZmdZOhYiIiIiI7JRMEATB2kkQ3am4uDgUFBQgJSXFYHpaWhqioqKQn58PZ2dn3LhxA82bN7dOkrWoqqrC33//DbVaDUdHxwbpU6fTQaVSQavVQqlUNkifZDuu6kqRX1QOXWkllK6O8HKTo4XSRR+/nF8MXWkldCUVULk6wcPFEf5ebvr4pfxi3LglrnBxRMsGiluyb3vO3ZZzY+62Gbfl3Ow59ysFJdCWVOjjSlcn+Hm66uNS9+/m2ostWyx3sdykMpeflPWuC21xOXILy6ErrYDS1QlqdzlUbvK71t6SbDk3unvqem7QMGciRDbI1dUVrq6u4jPeRQ4ODvDx8bF2GtRIXMgrwrTk40g/k6ef1kvjjfkxwWjt7Y7zeUV4u5b4vJhgtLFwvAmAqVZattS4DKh1XK2d2/yYYAiAzY5bYx1X5s7cGzq+KCYYlZD2WZW6fzfVfmFMMKosnJtUUvaBUnO7UlCCKZuOYW9Wrn5aeJAaC4eHGBRKLNXekmw5N7JN/GkA3bNu/2nA0aNHERUVBQ8PDyiVSnTr1g1HjhwxmDclJQVBQUFwcXFBdHQ0Ll68qG9/9uxZDBkyBC1atIBCoUCPHj3w888/GywzICAA8+fPx7hx4+Dh4YHWrVtjxYoV+nhtPw04efIkBg0aBKVSCQ8PD/Tu3Rtnz561zKBQo3FVV2p0sAMA+87k4e3k47iUX2x0sFQTn34X4pe1JVZbtpT4jOQT2Hcm1yZzSz+Tixk2Om7i43oc6TY6rqK5p9juNnFPj7sNfxbF4mXVguS+pe7fTbW/pC2xaG5XdaWQ4kqB6fzS9du0ZXLTFpcbnSgDwJ6sXEzddAza4nKLtrckW86NbBcLAWQ3Ro0ahZYtW+Lw4cP49ddfMXXqVDg5OenjxcXFmDdvHr7++mukp6ejoKAATz/9tD5eWFiIAQMGYOfOncjIyEC/fv0wePBgXLhwwWA5ixcvRvfu3ZGRkYEJEybg5Zdfxu+//15rTpcvX0Z4eDicnZ2xa9cu/Prrrxg3bhwqKytNrkdZWRl0Op3Bi+49+UXlRgc7NfadycON0kqrxt2da7+gzBZyMxffeybX5CWk1s6tudIFe2103MTHNQ/NbXRcRXPPst1t4p4edxv+LIrFyyqrbTY3d2dHiy47v0jaCaW2pMLMPtBZ0j5QLLfcwnKjE+Uae7JykVto2faWZMu5ke3iTwOo0frxxx+hUCgMplVVVZmc/8KFC3jrrbfQoUMHAEBQUJBBvKKiAsuXL8dDDz0EAFi9ejU6duyIQ4cO4cEHH8T999+P+++/Xz//3LlzkZycjB9++AETJ07UTx8wYAAmTJgAAJgyZQo+/vhjpKamon379kY5/fOf/4RKpcL69ev1RYl27dqZXe8FCxZg9uzZZuehxk9XaroYBAA3SirMt7dwvLDU9GdNat9i6yZ13csqq+vdVmpu5uLm8qpL31Jzl/q+mcvf0rlLjVtym7D058GauVty3K29vZtrb+19mLn25vbNUvsGxL+bxJhbvuR9oEhuulKRdReJS21vSbacG9kuXhFAjVZUVBQyMzMNXl999ZXJ+d944w384x//wKOPPoqFCxcaXX7v6OiIHj166P/foUMHeHp64vTp0wBuXhGQkJCAjh07wtPTEwqFAqdPnza6IiAkJET/b5lMBh8fH1y7dq3WnDIzM9G7d2+DKxPETJs2DVqtVv+69ecLdO9Qupiv03q4mt9mlBaOK1wcLNa32LpJXXdnR9NffZbOzVzcXF516Vtq7lLfN3P5Wzp3qXFLbhOW/jxYM3dLjru1t3dz7a29DzPX3ty+WWrfgPh3kxhzy5e8DxTJTekisu4icantLcmWcyPbxUIANVru7u7QaDQGL39/f5Pzz5o1CydPnsTAgQOxa9cudOrUCcnJyXVeXkJCApKTkzF//nzs3bsXmZmZCA4ORnm54eVWt5/Uy2QyVFfXXuWuz80MnZ2doVQqDV507/Fyl6OXxrvWWC+NNzxcHK0aLyqr/a9OtpCbuXhvjRrXTPyO1Nq5XdOVoreNjpv4uHrjmq7MJnMTzT3IdreJOo37jUY67jb8WRSLOzs2sdncisoqLbpsL3dpd6BXuTqZ2QeWSdoHiuWmVsgRHqSuNRYepIZaYdn2lmTLuZHtYiGA7Eq7du3w+uuvY/v27Rg2bBgSExP1scrKSv3NAwHg999/R0FBATp27AgASE9PR1xcHGJiYhAcHAwfHx9kZ2dLyickJAR79+5FRQUv2SJDLZQumB8TbHTQU3N35JZebphnIj7vLsT9VS5WW7aU+HsxXdBTo7bJ3Hpq1HjPRsdNfFyD0VPjbZO5ieY+1Ha3iTqNe9tGOu42/FkUizs3kUnuW+r+3VT7lipXi+Ym9RGCfp6m8+v5v23aUrmp3ORYODzE6IQ5PEiNRcNDRB+zJ7W9JdlybmS7ZIIgCNZOguhOxcXFoaCgACkpKQbT09LSEBUVhfz8fKSkpCA+Ph4FBQUoKSnBW2+9hREjRiAwMBCXLl3Cc889h+HDh2PRokVISkrC+PHj0bVrV3zyySdwdHTU/+7/wIEDAIBhw4bh3LlzSExMhEwmwzvvvIO0tDSMGzcOS5YsAXDzqQHx8fGIj4/X5xQaGoqhQ4di1qxZyM7ORmBgIDIyMhAaGoq8vDy0b98eERERmDZtGlQqFX755Rc8+OCDtd5ToDZ1fVYoNU4Gz0t2cYSXe+3Pmb5RWgEPFycob3vecs2zomviHiaekV2fuCX7tufcbTk35m6bcVvOzZ5zv1JQAm1JhT6ucnUyeIyb1P27ufZiyxbLXSw3qczlJ2W960JbXI7cwnJ9/2qF/I5OlKW2tyRbzo3unrqeG/BmgWQXHBwckJeXhzFjxuDq1atQq9UYNmyYwU333NzcMGXKFDzzzDO4fPkyevfujZUrV+rjH330EcaNG4ewsDCo1WpMmTJF8h37vb29sWvXLrz11luIiIiAg4MDQkND0bNnT0n90r2jhdLF7AGOv5cbTP8gBgYHdg0dt2Tflo4zN8vEbTk3sbgt5yYWt+XcxOK2nJtYXKytn6er2ee3S92/m2svtmyx3MVyk8pcflLWuy5UbtJOjqW2tyRbzo1sD68IIAKQlJSkv3qgseEVAUREREREBNT93ID3CCAiIiIiIiKyIywEEBEREREREdkRFgKI8P83HyQiIiIiIrrXsRBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgOgOZGdnQyaTITMzs8H6lMlkSElJabD+iIiIiIiIzHG0dgJEtiQuLg6rV6/W/79p06bo0aMH3n//fYSEhFgxs3uftrgcuYXl0JVWQOnqBLW7HCo3+T2/bDFiuYnFL+UX40ZpJXQlFVC5OkHh4oiWXm4NErdk3/acuy3nxtxtM27LuTF368SvFJRAW1KhjyldneDn6apve1VXivyicuhKK6F0dYSXmxwtlC76+OX8Yuhu6dvDxRH+DZi7ue8uqd97Ur/TxcZGCkv2LZUtHwuJacy5WxMLAUS36devHxITEwEAf/31F2bMmIFBgwbhwoULVs7s3nWloARTNh3D3qxc/bTwIDUWDg8xOHC515YtRiw3sfj5vCK8nXwc6Wfy9PFeGm/MiwlGG293SfEmAKZaqG9Lxx0BTLHR3BxsODexuAzANBvN7V7NfX5MMATAJnO7l/cjtj7uYuN6Ia+o1u19fkwwWt+F3M19d8kATJbwvSf1O11sbKSwZN9S2fKxkJjGnLu1yQRBEKydBJGtiIuLQ0FBgcGl+vv27UPv3r1x7do1FBUVITAwEBkZGQgNDUVVVRXGjx+PXbt24a+//kLr1q0xYcIEvPbaawb9rlq1CosXL8aZM2fQtGlTDB8+HMuXLwdw86cBycnJGDp0KABg5syZWLFiBbZt21anqxB0Oh1UKhW0Wi2USmWDjcXdoi0ux8R1GQY78BrhQWosi+1qsaquNZctRiy3D568Hwkbj5qMzx8WjCmbjhkccNTopfHGwuEh9Y731nhjQLAvpiWfaPC+70Z8zpAu6LN4t03mNn1gR/Rfus8mczO/TajRP9gHbzfCbaIxb88LYrrgP8dzsNcGc6tLfGIfDZ5ecdAmc2vM427r4zpt83GT3139g30xbfPxWmNi33ticbHv9Ku6UryxIdNk7otHhtb7r/eW7FsqWz4WEtOYc7ekup4b8B4BRGYUFhbi22+/hUajgbe3t1G8uroaLVu2xMaNG3Hq1Cm8++67ePvtt7Fhwwb9PJ999hleeeUVjB8/HsePH8cPP/wAjUZj1JcgCJg0aRK+/vpr7N2712QRoKysDDqdzuDVmOUWlte6AweAPVm5yC0svyeXLUYst/wi8/EbpZW1HnAAwL4zeZLie8/kobmJAxapfd+NeFlltc3mJkBms7mZ3yZyTR7EWju3e3l7bq50qfVk1BZyq0vc3bn2C1NtIbfGPO62Pq7mvruaezibjIl974nFxb7T84vKzeaeX1T/YwJL9i2VLR8LiWnMudsC/jSA6DY//vgjFAoFAKCoqAi+vr748ccf0aSJcd3MyckJs2fP1v8/MDAQBw4cwIYNGzBy5EgAwHvvvYc333zT4CqBHj16GPRTWVmJ0aNHIyMjA/v27YO/v7/J/BYsWGCwzMZOV1phNn5DJN5Yly1GLDddaaX5eIlIe5H4DZG4qZPpurSVmpvU3M3FpfZtydwtPS6W3CZseVwBy+ZuyXE3l3ddlm3pbUKsfWFplcWWbcvjbs1xtfZnTdJnUex7TyQu9p0utX9r9S2VLR8LiWnMudsCXhFAdJuoqChkZmYiMzMThw4dQnR0NPr374/z58/XOv8///lPdOvWDc2aNYNCocCKFSv09xO4du0arly5gr59+5pd5uuvv46DBw9iz549ZosAADBt2jRotVr96+LFi/VbURuhdHEyG/cQiTfWZYsRy03pYr6Oq3QVaS8S9xCJOzua/voQays1N6m5m4tL7duSuVt6XCy5TdjyuAKWzd2S424u77os29LbhFh7hYuDxZZty+NuzXG19mdN0mdR7HtPJC72nS61f2v1LZUtHwuJacy52wIWAohu4+7uDo1GA41Ggx49euCrr75CUVERvvzyS6N5169fj4SEBDz//PPYvn07MjMzMXbsWJSX37wUydW1bjcpeeyxx3D58mVs27ZNdF5nZ2colUqDV2OmVsgRHqSuNRYepIZaYbnfdllz2WLEcvNyNx/3cHFEL43xz1mAm79HlBLvrfHGtRtlFun7bsRNHWjaQm4y1H7bHlvIzfw2ocY1XalN5lan7VnXOLfna7pS9DaxH7B2bnWJF5XV/ldQW8itMY+7rY+rue8uU98tdfneE4uLfad7ucvN5u7lXv9jAkv2LZUtHwuJacy52wIWAohEyGQyNGnSBCUlJUax9PR0hIWFYcKECejatSs0Gg3Onj2rj3t4eCAgIAA7d+40u4wnnngCa9euxT/+8Q+sX7++wdfBlqnc5Fg4PMRoRx4epMai4SEWvcmLNZctRiy3FkoXs/GWXm6YFxNsdODRS3Pzzs1S4u/FBKNXW2+L9H034s5NZDabm4fc+CDaVnIzv010QU+N2iZzq8v23FPTOLfnnho13hvaxSZzq0vcX+Vqs7k15nEXG9f5JtrOv0u5m/vuimzXrN7fe2Jxse/0FkoXs2Mj5WZ+luxbKls+FhLTmHO3BXxqANEt4uLicPXqVf3jA/Pz87F8+XJ89tln2LVrFwICAgyeGvDJJ5/gnXfewYYNGxAYGIhvvvkGn3zyCQIDA5GZmQkAWL16NV566SUsWrQI/fv3x40bN5Ceno5JkyYBMHxqwPfff49nn30W33zzDUaMGFGnnBv7UwNq1DwD9kZpBTxcnKBW3L1nwFpz2WLEchOL1zzLuSbuYeJZz/WJW7Jve87dlnNj7rYZt+XcmLt14lcKSqAtqdDHVK5OBo9SM3ievYsjvNwNn2d/Ob8Yulv6Vro4wr8Bczf33SX1e0/qd7rY2Ehhyb6lsuVjITGNOXdLqOu5AQsBRLeIi4vD6tWr9f/38PBAhw4dMGXKFAwfPhzZ2dkGhYCysjK89NJLSE5OhkwmQ2xsLFQqFbZu3aovBADAF198gY8//hh//vkn1Go1RowYgU8++QSA8eMDN2zYgOeeew5r1qzBsGHDRHO+VwoBREREREQkDQsBRHaChQAiIiIiIgLqfm7AewQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHbE0doJEN0LkpKSEB8fj4KCAmunQnTXXNWVIr+oHLrSSihdHeHlJkcLpUud22uLy5FbWA5daQWUrk5Qu8uhcpPflfZSly1GbGzMLV9KW2vHpfYttu5Stzlz7aWOuxhLb3O2umypbDl3a+dm7eUTUePGQgDRLS5evIiZM2fip59+Qm5uLnx9fTF06FC8++678Pb2BgAEBAQgPj4e8fHx1k2WyIou5BVhWvJxpJ/J00/rpfHG/JhgtPZ2F21/paAEUzYdw96sXP208CA1Fg4PgZ+nq0XbS122GLGxMbX894eHoLyqul5ta3K3VnzR8BAIgKS+xcZN6jZnrr0MwFQJ4y7G0tucrS5bKlvO3dq5WXv5RNT48acBRP/z559/onv37sjKysK6detw5swZfP7559i5cyceeeQRXL9+/a7nVFFRcdeXSSTmqq7U6IQKAPadycPbycdxVVdqtr22uNzoABYA9mTlYuqmY9AWl1usvdRlixEbm9oO3muWn329uN5tp246hqu6UqvF0/74G1O+r3/fVwpKzK775XzzYyO2zZl7X6YnH8e+M7n1HndLbq9SWXPZUtly7tbOzdrLJ6J7AwsBRP/zyiuvQC6XY/v27YiIiEDr1q3Rv39//Pzzz7h8+TKmT5+OyMhInD9/Hq+//jpkMhlkMplBH9u2bUPHjh2hUCjQr18/5OTkGMS/+uordOzYES4uLujQoQM+/fRTfSw7OxsymQzfffcdIiIi4OLigjVr1hjlWVZWBp1OZ/Aiupvyi8qNTppq7DuTh/wi8wehuYXlRgewNfZk5SK30HLtpS5bjNjYaEsqTC7f3dmh3m33ZOUiv8j8ulky3tzDGXvP1L9vbUmF2XXXlVZK2ubMvS97z+ShuYmfF9Rl3C25vUplzWVLZcu5Wzs3ay+fiO4NLAQQAbh+/Tq2bduGCRMmwNXV8JI6Hx8fjBo1Ct999x02bdqEli1bYs6cOcjJyTE40S8uLsaHH36Ib775Bnv27MGFCxeQkJCgj69Zswbvvvsu5s2bh9OnT2P+/Pl45513sHr1aoPlTZ06Fa+99hpOnz6N6Ohoo1wXLFgAlUqlf7Vq1aqBR4PIPF1ppcS4+StdbojEpbSXumwxYuturv/C0irzfZeIjYvU96X+8bLKaml9i62bhdfdXP5i24Qlt1eprLlsqWw5d2vnZu3lE9G9gfcIIAKQlZUFQRDQsWPHWuMdO3ZEfn4+qqqq4ODgAA8PD/j4+BjMU1FRgc8//xxt27YFAEycOBFz5szRx2fOnInFixdj2LBhAIDAwECcOnUKX3zxBZ577jn9fPHx8fp5ajNt2jS88cYb+v/rdDoWA+iuUrqY/+oQjzuZjXuIxKW0l7psMWLrbq5/hYuD+b5dxcZF6vtS/7izo/m/K4j2LbZuFl53c/mLbROW3F6lsuaypbLl3K2dm7WXT0T3Bl4RQHQLQRDq3dbNzU1fBAAAX19fXLt2DQBQVFSEs2fP4vnnn4dCodC/3nvvPZw9e9agn+7du5tdjrOzM5RKpcGL6G7ycpejl8a71lgvjTe83M3ftVqtkCM8SF1rLDxIDbXCcu2lLluM2NioXJ1MLr+orKrebcOD1PByN79uloxfu1EmqW+Vq5PZdVe6OEra5sy9L7013rhm4h4DdRl3S26vUllz2VLZcu7Wzs3ayyeiewMLAUQANBoNZDIZTp8+XWv89OnT8PLyQrNmzUz24eRkWIGXyWT6wkJhYSEA4Msvv0RmZqb+deLECfzyyy8G7dzdxe9+TWRNLZQumB8TbHRiVXOXdbHHuanc5Fg4PMToQLbm7vNij7+S0l7qssWIjY2fp6vJ5Qc2dat320XDQ9BC6WK1eFS7ZpL69vN0Nbvu/l7mx0ZsmzP3vsyLCUYvjbre427J7VUqay5bKlvO3dq5WXv5RHRvkAlS/gRKdA+Jjo7GyZMnkZWVZXCfgL/++gtt27bFmDFj8Nlnn6Fdu3Z48cUX8eabb+rnSUpKQnx8PAoKCvTTUlJSEBMToy8G+Pv746WXXsI777xT6/Kzs7MRGBiIjIwMhIaG1jlvnU4HlUoFrVbLqwPorjJ47rqLI7zc7+yZ7jXPwL5RWgEPFyeoFfV7Lnt92ktdthixsTG3fCltrR2X2rfYukvd5sy1lzruYiy9zdnqsqWy5dytnZu1l09Etqmu5wa8RwDR/yxfvhxhYWGIjo7Ge++9h8DAQJw8eRJvvfUW/P39MW/ePABAQEAA9uzZg6effhrOzs5Qq2u/PO92s2fPxquvvgqVSoV+/fqhrKwMR44cQX5+vsFv/okaixZKlzs6Cbudyk3aQauU9lKXLUZsbMwtX0pba8el9i227lK3OXPtpY67GEtvc7a6bKlsOXdr52bt5RNR48afBhD9T1BQEI4cOYL77rsPI0eORNu2bTF+/HhERUXhwIEDaNq0KQBgzpw5yM7ORtu2bc3+VOB2//jHP/DVV18hMTERwcHBiIiIQFJSEgIDAy21SkREREREREb40wCiRo4/DSAiIiIiIqDu5wa8IoCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAgguxEQEIAlS5ZYOw0iIiIiIiKrcrR2AkRiIiMjERoaanQSn5SUhPj4eBQUFFglLyJboC0uR25hOXSlFVC6OkHtLofKTa6PX9WVIr+oHLrSSihdHeHlJkcLpYs+fim/GDdKK6ErqYDK1QkKF0e09HLTxy/nF0N3S9zDxRH+/4uLtbXlOHNj7szdNuK2nJvU3M3tP62dm7Xj5sbmSkEJtCUV+pjS1Ql+nq76tmLfe2Jxqbmby08sd6lxMWLtzR0TSB1XqaSuuzmWzr2xYiGAiKiRulJQgimbjmFvVq5+WniQGguHh8DP0xUX8oowLfk40s/k6eO9NN6YHxOM1t7uOJ9XhLdric+LCUYbkbgMqLXvurS1ZnxhTDCqAJvMjeNqvbgDgCk2mtu9us0wd8vFHdF4t2dHAJPNtBX73hOLWzL3JgCmWnDcxIi1N3dM4OTQBJMljKtUUtfdHEvn3pjxpwF0T4iLi8PQoUPx4YcfwtfXF97e3njllVdQUVFhss1XX30FT09P7Ny5E8DNKw9effVVTJ48GU2bNoWPjw9mzZpl0ObChQsYMmQIFAoFlEolRo4ciatXrwIAtFotHBwccOTIEQBAdXU1mjZtiocffljf/ttvv0WrVq0AANnZ2ZDJZNi8eTOioqLg5uaG+++/HwcOHGjIoaF7lLa43OiLDQD2ZOVi6qZjuFJQYvSFDwD7zuTh7eTjuJRfbPSlWxOfLhKfkXIC+87k1qutteM3yqtsNrcZyceR3kjH9ZK21GZzq0v8RnmlzeZ2r34WG/P2buvjXlYt2GxuUnK/nF9s9nvvqq7UbNzSuV/Wllis7ysFJTDnSkGJaP+mjgmmJx9H2u9/13tctcXlZnMTI5a72LqbI3asJDX3xo6FALpnpKam4uzZs0hNTcXq1auRlJSEpKSkWud9//33MXXqVGzfvh19+/bVT1+9ejXc3d1x8OBBvP/++5gzZw527NgB4OaJ/ZAhQ3D9+nXs3r0bO3bswJ9//omnnnoKAKBSqRAaGoq0tDQAwPHjxyGTyZCRkYHCwkIAwO7duxEREWGQy/Tp05GQkIDMzEy0a9cOsbGxqKysNLmeZWVl0Ol0Bi+yP7mF5UZfbDX2ZOVCW1Jh9KVaY9+ZPNwoNT7xqWt8b1auwc8LGrJvS8cFwGZz23smD80b6bi6OzvYbG51iQuQ2Wxu9+pnsTFv77Y+7mWV1Tabm5TcdaWVZr/38ovMfy9aOnd359ovtG6IvrUlpv+wBUDSd/7Nz6JzrbG6jGtuobSTabHcxdbdHLFjJam5N3YsBNA9w8vLC8uXL0eHDh0waNAgDBw4UP/X/ltNmTIFS5Yswe7du/Hggw8axEJCQjBz5kwEBQVhzJgx6N69u76PnTt34vjx41i7di26deuGhx56CF9//TV2796Nw4cPA7h5VUFNISAtLQ2PPfYYOnbsiH379umn3V4ISEhIwMCBA9GuXTvMnj0b58+fx5kzZ0yu54IFC6BSqfSvmisMyL7oSs1/Md4QietEvljF4qYO1gDghsS+xdpLiUvtW2ruUsbV0suW0r6wtMpifdelvSX7t3Zu1txmrJm7pZdtyc+qJfdhgGW3Z0uPq6T9t9j3WqnpP6IAll83c/tByeMm8TtdrH+z+xGRcRXLTYxo7hL6l3qsdK9jIYDuGZ07d4aDg4P+/76+vrh27ZrBPIsXL8aXX36Jffv2oXPnzkZ9hISEGPz/1j5Onz6NVq1aGZx4d+rUCZ6enjh9+jQAICIiAvv27UNVVRV2796NyMhIfXHgypUrOHPmDCIjI00u09fXFwCM8r7VtGnToNVq9a+LFy+aGxa6RyldnMzGPUTiSldpcWdH018fHhL7FmsvJS61b6m5SxlXSy9bSnuFi4PJmNS+69Lekv1bOzdrbjPWzN3Sy7bkZ9WS+zDAstuzpcdV0v5b7HvNxfytzyy9bub2g5LHTeJ3ulj/ZvcjIuMqlpsY0dwl9C/1WOlex0IA2TylUgmtVms0vaCgACqVSv9/JyfDD7NMJkN1tWGFs3fv3qiqqsKGDRtqXVZd+jAnPDwcN27cwG+//YY9e/YYFAJ2794NPz8/BAUFmVymTHbz8lRzy3R2doZSqTR4kf1RK+QID1LXGgsPUkPl6oReGu9a47003vBwcax3vHeQGtd0pRbp29Jx2f/mscXcemu8G+24FpVV2WxudYnLINhsbvfqZ/Hm9l5mk7k19nE3dVJnC7lJyV3p4mj2e8/L3fz3oqVzLyqr/S/nDdG3SuRkWcp3fm+NN67dqP2zWJdxVSuk3X1fLHexdTdH7FhJau6NHQsBZPPat2+P3377zWj6b7/9hnbt2t1RXw8++CC2bt2K+fPn48MPP7yjth07dsTFixcN/gJ/6tQpFBQUoFOnTgAAT09PhISEYPny5XByckKHDh0QHh6OjIwM/Pjjj0Y/CyCqL5WbHAuHhxh9wYUHqbHof3fCnR8TbPTlWnOH4JZebphnIj5PJP7e0C7oqVHXq6214x5yB5vN7b2Y4EY7ri1VLjabW13iHnLjg2Rbye1e/Sze3N69bTK3xj7uzk1kNpublNz9vdzMfu+1ULqYjVs6d3+Vq8X6Fru7vZ+nq2j/po4J5sUEI7Jds3qPq9TH8InlLuXO/mLHSvb+CEGZIAi1l8GJbMSff/6Jzp0744UXXsA//vEPODs7Y8uWLZgyZQr+/e9/o1+/foiLi0NBQQFSUlL07eLj45GZman/zX5AQADi4+MRHx+Pffv2oX///pg7dy7i4+MB3Px9f2hoKJYsWaLvY+jQofD09ERSUhIEQcADDzwADw8PLFmyBJWVlZgwYQIUCoV+GQDw+uuvY9myZRgxYgTWr18PAAgNDcWJEyfwz3/+Ey+++CKAm08NCAwMREZGBkJDQwHcvMrBy8sLqampRj8hMEWn00GlUkGr1fLqADtU82zcG6UV8HBxglph+Gxcg2cGuzjCy11ucJOrmucl17T3MPGs55q48pZnPYu1teU4c2PuzN024racm9Tcze0/rZ2btePmxqbmefI1MdVtz5MX+94Ti0vN3Vx+YrlLjYsRa2/umEDquEoldd3NsXTutqau5wbmf/RhRmVlJdLS0nD27Fk888wz8PDwwJUrV6BUKqFQKOrbLZGR++67D3v27MH06dPx6KOPory8HB06dMDGjRvRr1+/evXZq1cvbNmyBQMGDICDgwMmTZok2kYmk+Ff//oXJk2ahPDwcDRp0gT9+vXDsmXLDOaLiIjAkiVLDE7kIyMjcfTo0Tqf3BPVlcrN/JdZC6WLybtbAzA4uKmNv5cb/OvZ1pbjzM0ycVvOTSxuy7mJxW05N7G4LecmFpey/5S6bLG4LY8bYH5s/DxdzZ4Ain3vicWl5m4uP7HcpcbFiLU3d0wgdVylkrru5lg698aqXlcEnD9/Hv369cOFCxdQVlaGP/74A/fddx9ee+01lJWV4fPPP7dErkRUC14RQEREREREQN3PDep1j4DXXnsN3bt3R35+Plxd/79yExMTU+vj2oiIiIiIiIjINtTrpwF79+7F/v37IZcbXmIREBCAy5cvN0hiRERERERERNTw6nVFQHV1NaqqqoymX7p0CR4eHpKTIiIiIiIiIiLLqFch4PHHHze4s7pMJkNhYSFmzpyJAQMGNFRuRERERERERNTA6nWzwEuXLiE6OhqCICArKwvdu3dHVlYW1Go19uzZg+bNm1siVyKqBW8WSEREREREQN3PDepVCABuPj7wu+++w9GjR1FYWIgHHngAo0aNMrh5IBFZHgsBREREREQE3IVCABHZBhYCiIiIiIgIsPDjAxcsWIBVq1YZTV+1ahUWLVpUny6JiIiIiIiI6C6oVyHgiy++QIcOHYymd+7cGZ9//rnkpIiIiIiIiIjIMupVCPjrr7/g6+trNL1Zs2bIycmRnBQRERERERERWUa9CgGtWrVCenq60fT09HT4+flJToqIiIiIiIiILMOxPo1eeOEFxMfHo6KiAn369AEA7Ny5E5MnT8abb77ZoAkSERERERERUcOpVyHgrbfeQl5eHiZMmIDy8nIAgIuLC6ZMmYJp06Y1aIJERERERERE1HAkPT6wsLAQp0+fhqurK4KCguDs7NyQuRFRHfDxgUREREREBNT93KBeVwTUUCgU6NGjh5QuiIiIiIiIiOguqnch4MiRI9iwYQMuXLig/3lAjc2bN0tOjIiIiIiIiIgaXr2eGrB+/XqEhYXh9OnTSE5ORkVFBU6ePIldu3ZBpVI1dI5ERERERERE1EDqVQiYP38+Pv74Y/z73/+GXC7H0qVL8d///hcjR45E69atGzpHIiIiIiIiImog9SoEnD17FgMHDgQAyOVyFBUVQSaT4fXXX8eKFSsaNEEiIiIiIiIiajj1KgR4eXnhxo0bAAB/f3+cOHECAFBQUIDi4uKGy46IiIiIiIiIGlS9bhYYHh6OHTt2IDg4GE8++SRee+017Nq1Czt27ECfPn0aOkciIiIiIiIiaiD1KgQsX74cpaWlAIDp06fDyckJ+/fvx/Dhw5GQkNCgCRIRERERERFRw6nXTwOaNm0KPz+/mx00aYKpU6diw4YN8PPzQ9euXRs0QSIiIiIiIiJqOHdUCCgrK8O0adPQvXt3hIWFISUlBQCQmJiItm3bYunSpXj99dctkScRERERERERNYA7+mnAu+++iy+++AKPPvoo9u/fjyeffBJjx47FL7/8gsWLF+PJJ5+Eg4ODpXIlIiIiIiIiIonuqBCwceNGfP3113jiiSdw4sQJhISEoLKyEkePHoVMJrNUjkRERERERETUQO7opwGXLl1Ct27dAABdunSBs7MzXn/9dRYB7FBaWhpkMhkKCgqsncpdJ5PJ9D+LISIiIiIiamzu6IqAqqoqyOXy/2/s6AiFQtHgSZF0cXFxWL16NRYsWICpU6fqp6ekpCAmJgaCINS5r8jISISGhmLJkiX6aWFhYcjJyYFKpWrItE2Kjo7Gzz//jF9++QU9evS4K8s0JScnB15eXlbNgaiGtrgcuYXl0JVWQOnqBLW7HCo3uXjDu7DsKwUl0JZUQFdSAZWrE5SuTvDzdG2w+FVdKfKLyqErrYTS1RFebnK0ULrUqf2l/GLcKK3UxxQujmjp5aZvKxa/nF8M3S1xDxdH+N9Be3NxqX2LjYsl103quEp9z6X0L9a32PZu6XUTi5sj9bMq1t6SuVl6H2fJdSMismV3VAgQBAFxcXFwdnYGAJSWluKll16Cu7u7wXybN29uuAyp3lxcXLBo0SK8+OKLDX7iKpfL4ePj06B9mnLhwgXs378fEydOxKpVq6xWCCgvL7+r600k5kpBCaZsOoa9Wbn6aeFBaiwcHmJwEG+NZZ/PK8LbyceRfiZPH++l8ca8mGC08XaXHL+QV4RptcTnxwSjtZn282OCAaDWtg2Vm5S4TGJu9R0XqbkviAlGNWCT77lY/+a2iZq+Lb29i62bWNwcqbmLtbdkbpbex1ly3YiIbN0d/TTgueeeQ/PmzaFSqaBSqTB69Gj4+fnp/1/zItvw6KOPwsfHBwsWLDA5T15eHmJjY+Hv7w83NzcEBwdj3bp1+nhcXBx2796NpUuXQiaTQSaTITs72+CnATqdDq6urti6datB38nJyfDw8EBxcTEA4OLFixg5ciQ8PT3RtGlTDBkyBNnZ2aLrkZiYiEGDBuHll1/GunXrUFJSYhCPjIzEpEmTEB8fDy8vL7Ro0QJffvklioqKMHbsWHh4eECj0Rjld+LECfTv3x8KhQItWrTAs88+i9zcXIN+J06ciPj4eKjVakRHRwMw/mnApUuXEBsbi6ZNm8Ld3R3du3fHwYMHAQBnz57FkCFD0KJFCygUCvTo0QM///yzQR4BAQGYP38+xo0bBw8PD7Ru3RorVqwQHReyb9ricqMDWADYk5WLqZuOQVtcbrVlX84vNjqxAIB9Z/IwPfk4LjVA/PaD85r422LtU05g35lci+ZW3/iM5ONIl5hbvcdFYvyytsR233ORePqZXEw303dtJ4vA/2/vll63yyLxq7pSmCL1s3o5v9hs+ysFJRbL7aqu1KL7OLHlS1k3IqLG4I4KAYmJiXV6kW1wcHDA/PnzsWzZMly6dKnWeUpLS9GtWzds2bIFJ06cwPjx4/Hss8/i0KFDAIClS5fikUcewQsvvICcnBzk5OSgVatWBn0olUoMGjQIa9euNZi+Zs0aDB06FG5ubqioqEB0dDQ8PDywd+9epKenQ6FQoF+/figvN/1lLggCEhMTMXr0aHTo0AEajQbff/+90XyrV6+GWq3GoUOHMGnSJLz88st48sknERYWht9++w2PP/44nn32WX1RoqCgAH369EHXrl1x5MgR/PTTT7h69SpGjhxp1K9cLkd6ejo+//xzo+UWFhYiIiICly9fxg8//ICjR49i8uTJqK6u1scHDBiAnTt3IiMjA/369cPgwYNx4cIFg34WL16M7t27IyMjAxMmTMDLL7+M33//vdYxKSsrg06nM3iR/cktLDc6gK2xJysXuYWWKwSILVtXWml08Fxj35k83LBifG9WrsnLeq2e25k8NLfR3MTi7s6ONpubWLy50gV7zbTVllSY3d4tnbvY5ym/yPRnXepnVVdaaba9tqTCYrnlF1l2Hye2fCnrRkTUGNxRIYAan5iYGISGhmLmzJm1xv39/ZGQkIDQ0FDcd999mDRpEvr164cNGzYAAFQqFeRyOdzc3ODj4wMfH59aHxE5atQopKSk6E+0dTodtmzZglGjRgEAvvvuO1RXV+Orr75CcHAwOnbsiMTERFy4cAFpaWkm8//5559RXFys/2v86NGjsXLlSqP57r//fsyYMQNBQUGYNm0aXFxcoFar8cILLyAoKAjvvvsu8vLycOzYMQDA8uXL0bVrV8yfPx8dOnRA165dsWrVKqSmpuKPP/7Q9xsUFIT3338f7du3R/v27Y2Wu3btWvz9999ISUlBr169oNFoMHLkSDzyyCP6vF588UV06dIFQUFBmDt3Ltq2bYsffvjBoJ8BAwZgwoQJ0Gg0mDJlCtRqNVJTU2sdkwULFhhcgXN7YYbsg660wmz8hkjcossuMR/XicTF2kvtv6yyut5tpS7blnOT0r6wtMpifVu6vbkxB8Q/S1Z/X0orzcQkLltie0m5mWkLSN/HSR0bsfyIiGwdCwF2YNGiRVi9ejVOnz5tFKuqqsLcuXMRHByMpk2bQqFQYNu2bUZ/sRYzYMAAODk56U9wN23aBKVSiUcffRQAcPToUZw5cwYeHh5QKBRQKBRo2rQpSktLcfbsWZP9rlq1Ck899RQcHW/eziI2Nhbp6elGbUJCQvT/dnBwgLe3N4KDg/XTWrRoAQC4du2aPp/U1FR9LgqFAh06dAAAg75rnpJhSmZmJrp27YqmTZvWGi8sLERCQgI6duwIT09PKBQKnD592mh8b81fJpPBx8dHn+vtpk2bBq1Wq39dvHjRbI50b1K6OJmNe4jELbpsV/NxpUhcrL3U/p0dTX/1Sc1NrL0t5yalvcLFuEDcUH1bur25MQfEP0tWf19cTN/uSeyzKrpsie0l5WamLSB9Hyd1bMTyIyKydSwE2IHw8HBER0dj2rRpRrEPPvgAS5cuxZQpU5CamorMzExER0ebvVy/NnK5HCNGjND/PGDt2rUGJ/CFhYXo1q0bMjMzDV5//PEHnnnmmVr7vH79OpKTk/Hpp5/C0dERjo6O8Pf3R2VlJVatWmUwr5OT4Re2TCYzmFbziMtbL9kfPHiwUT5ZWVkIDw/Xt7v9Rpi3c3U1f7OihIQEJCcnY/78+di7dy8yMzMRHBxsNL615V+T6+2cnZ2hVCoNXmR/1Ao5woPUtcbCg9RQKyz35ACxZStdHNFL411rvJfGGx5WjPcOUuOaid/2Wj03jbfN5iYWLyqrtNncxOLXdKXoral9e+6l8YbK1cns9m7p3MU+T17upj/rUj+rShdHs+1Vrk4Wy83L3bL7OLHlS1k3IqLGgIUAO7Fw4UL8+9//xoEDBwymp6enY8iQIRg9ejTuv/9+3HfffQaXxgM3T/Krqsxf9gnc/HnATz/9hJMnT2LXrl36nwUAwAMPPICsrCw0b94cGo3G4GXqBpNr1qxBy5YtcfToUYOT9cWLFyMpKalOOZnywAMP4OTJkwgICDDKR+zk/1YhISHIzMzE9evXa42np6cjLi4OMTExCA4Oho+PT51ukEgkRuUmx8LhIUYHsuFBaiwaHmLRRwiKLdvfyw3zYoKNDqJr7kTesgHi803E54u1H9oFPTVqi+ZW3/h7McGSc6v3uEiM+6tcbfc9F4n31KgxL6aLyb79PF3Nbu+WXjd/kbi5R9lJ/az6e7mZbe/n6Wqx3FooXSy6jxNbvpR1IyJqDGTCnTxQnhqNuLg4FBQUGNzdfsyYMdi4cSNKS0tR87a/8cYb+P7777F+/Xp4eXnho48+woYNGxAVFaVvO378eGRmZmLDhg36S/r37NmDqKgo5Ofnw9PTE8DNG/u1adMGTZs2RWFhIc6cOaNfdnFxMUJDQ+Hv7485c+agZcuWOH/+PDZv3ozJkyejZcuWRusQGhqKfv36YeHChQbTtVotmjdvjs2bN2PgwIGIjIxEaGgolixZop8nICAA8fHxiI+P10+TyWRITk7G0KFDceXKFYSGhiIiIgKTJ09G06ZNcebMGaxfvx5fffUVHBwcau339n7Ky8sRHByMFi1aYMGCBfD19UVGRgb8/PzwyCOPYNiwYTh37hwSExMhk8nwzjvvIC0tDePGjdP3W1uuoaGhGDp0KGbNmiX6Xut0OqhUKmi1Wl4dYIdqnoF9o7QCHi5OUCsa9hnbUpZd82zymrjqtmeTS40bPN/bxRFe7obP9zbXvuaZ7zUxDxPPuzcVv5xfDN0tcaWLI/zvoL25uNS+xcbFkusmdVylvudS+hfrW2x7t/S6icXNkfpZFWtvydwsvY+z5LoREVlDXc8N+AMnOzJnzhx89913BtNmzJiBP//8E9HR0XBzc8P48eMxdOhQaLVa/TwJCQl47rnn0KlTJ5SUlODcuXO19i+TyRAbG4v3338f7777rkHMzc0Ne/bswZQpUzBs2DDcuHED/v7+6Nu3b60b6K+//oqjR4/iyy+/NIqpVCr07dsXK1euxMCBA+szFPDz80N6ejqmTJmCxx9/HGVlZWjTpg369euHJk3qfqGMXC7H9u3b8eabb2LAgAGorKxEp06d8M9//hMA8NFHH2HcuHEICwuDWq3GlClTeJd/alAqt7t34n+ny/bzdDX7rG+p8RZKF7MH5Oba33qCVp+4v5cb/CW0NxeX2rfYuFhy3aSOq9T3XEr/Yn2Lbe+WXjexuDlSP6ti7S2Zm6X3cZZcNyIiW8YrAogaOV4RQEREREREQN3PDXiPACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1plIUAmUyGlJQUk/G0tDTIZDIUFBTctZxulZSUBE9Pzwbrz9rrUxtbzOluEdv+iIiIiIiIbJnVCgGff/45PDw8UFlZqZ9WWFgIJycnREZGGsxbc9J59uzZOvUdFhaGnJwcqFQqAA17Yh4QEACZTAaZTAYHBwf4+fnh+eefR35+foP031Di4uIgk8mwcOFCg+kpKSmQyWR31FdkZCTi4+MNpt0+xpYWHR0NBwcHHD58+K4sz5ycnBz079/f2mkQEVED0haX4+y1QmRcyMfZvwuhLS63dkpEREQWY7VCQFRUFAoLC3HkyBH9tL1798LHxwcHDx5EaWmpfnpqaipat26Ntm3b1qlvuVwOHx+fOz7hras5c+YgJycHFy5cwJo1a7Bnzx68+uqrFlmWFC4uLli0aJFFihSWHuNbXbhwAfv378fEiROxatUqiy/PlPLymweFPj4+cHZ2tloeRETUsK4UlGDiugz0/Wg3Yj7dj76Ld2PSugxcKSixdmpEREQWYbVCQPv27eHr64u0tDT9tLS0NAwZMgSBgYH45ZdfDKZHRUUZtM/NzUVMTAzc3NwQFBSEH374wWD+msvW09LSMHbsWGi1Wv1f8mfNmgUAKCsrQ0JCAvz9/eHu7o6HHnrIIB9TPDw84OPjA39/f0RFReG5557Db7/9ZnL+s2fPYsiQIWjRogUUCgV69OiBn3/+2WCesrIyTJkyBa1atYKzszM0Gg1WrlxZa3/FxcXo378/evbsafbS/EcffRQ+Pj5YsGCByXny8vIQGxsLf39/uLm5ITg4GOvWrdPH4+LisHv3bixdulQ/ftnZ2QZjrNPp4Orqiq1btxr0nZycDA8PDxQXFwMALl68iJEjR8LT0xNNmzbFkCFDkJ2dbTK3GomJiRg0aBBefvllrFu3DiUlhgdmkZGRmDRpEuLj4+Hl5YUWLVrgyy+/RFFREcaOHQsPDw9oNBqj/E6cOIH+/ftDoVCgRYsWePbZZ5Gbm2vQ78SJExEfHw+1Wo3o6GgAxj8NuHTpEmJjY9G0aVO4u7uje/fuOHjwIIC6vfcBAQGYP38+xo0bBw8PD7Ru3RorVqwQHRciIpJOW1yOKZuOYW9WrsH0PVm5mLrpGK8MICKie5JV7xEQFRWF1NRU/f9TU1MRGRmJiIgI/fSSkhIcPHjQqBAwe/ZsjBw5EseOHcOAAQMwatQoXL9+3WgZYWFhWLJkCZRKJXJycpCTk4OEhAQAwMSJE3HgwAGsX78ex44dw5NPPol+/fohKyurzutw+fJl/Pvf/8ZDDz1kcp7CwkIMGDAAO3fuREZGBvr164fBgwfjwoUL+nnGjBmDdevW4ZNPPsHp06fxxRdfQKFQGPVVUFCAxx57DNXV1dixY4fZnzw4ODhg/vz5WLZsGS5dulTrPKWlpejWrRu2bNmCEydOYPz48Xj22Wdx6NAhAMDSpUvxyCOP4IUXXtCPX6tWrQz6UCqVGDRoENauXWswfc2aNRg6dCjc3NxQUVGB6OhoeHh4YO/evUhPT4dCoUC/fv30f2mvjSAISExMxOjRo9GhQwdoNBp8//33RvOtXr0aarUahw4dwqRJk/Dyyy/jySefRFhYGH777Tc8/vjjePbZZ/VFiYKCAvTp0wddu3bFkSNH8NNPP+Hq1asYOXKkUb9yuRzp6en4/PPPjZZbWFiIiIgIXL58GT/88AOOHj2KyZMno7q6Wh8Xe+8BYPHixejevTsyMjIwYcIEvPzyy/j9999rHZOysjLodDqDFxER1U9uYblREaDGnqxc5BayEEBERPcgwYq+/PJLwd3dXaioqBB0Op3g6OgoXLt2TVi7dq0QHh4uCIIg7Ny5UwAgnD9/Xt8OgDBjxgz9/wsLCwUAwtatWwVBEITU1FQBgJCfny8IgiAkJiYKKpXKYNnnz58XHBwchMuXLxtM79u3rzBt2jSTObdp00aQy+WCu7u74OLiIgAQHnroIf2yTC3vdp07dxaWLVsmCIIg/P777wIAYceOHbXOW7M+p0+fFkJCQoThw4cLZWVlZvt/7rnnhCFDhgiCIAgPP/ywMG7cOEEQBCE5OVkQe9sHDhwovPnmm/r/R0RECK+99lqtOdWsd3JysqBQKISioiJBEARBq9UKLi4u+vfkm2++Edq3by9UV1fr+ygrKxNcXV2Fbdu2mcxl+/btQrNmzYSKigpBEATh448/FiIiIgzmiYiIEHr16qX/f2VlpeDu7i48++yz+mk5OTkCAOHAgQOCIAjC3Llzhccff9ygn4sXLwoAhN9//13fb9euXY1yAiAkJycLgiAIX3zxheDh4SHk5eWZXIfb3freC8LNbWr06NH6/1dXVwvNmzcXPvvss1rbz5w5UwBg9NJqtXXOgYiIbvrt/HWhzZQfTb4yzl+3dopERER1ptVq63RuYNUrAiIjI1FUVITDhw9j7969aNeuHZo1a4aIiAj9fQLS0tJw3333oXXr1gZtQ0JC9P92d3eHUqnEtWvX6rzs48ePo6qqCu3atYNCodC/du/eLXpTwrfeeguZmZk4duwYdu7cCQAYOHAgqqqqap2/sLAQCQkJ6NixIzw9PaFQKHD69Gn9X4UzMzPh4OCAiIgIs8t97LHHoNFo8N1330Eul9d5XRctWoTVq1fj9OnTRrGqqirMnTsXwcHBaNq0KRQKBbZt22b0F2sxAwYMgJOTk/4nGps2bYJSqcSjjz4KADh69CjOnDkDDw8P/Vg3bdoUpaWlZsd71apVeOqpp+Do6AgAiI2NRXp6ulGbW7cHBwcHeHt7Izg4WD+tRYsWAKDfRo4ePYrU1FSD975Dhw4AYNB3t27dzK53ZmYmunbtiqZNm9YaF3vva8tfJpPBx8fH5PY8bdo0aLVa/evixYtmcyQiItOULk5m4x4icSIiosbI0ZoL12g0aNmyJVJTU5Gfn68/Efbz80OrVq2wf/9+pKamok+fPkZtnZwMv5hlMpn+cuy6KCwshIODA3799Vc4ODgYxGq7JP9WarUaGo0GABAUFIQlS5bgkUceQWpqqv7E91YJCQnYsWMHPvzwQ2g0Gri6umLEiBH6S+JdXV3rlPPAgQOxadMmnDp1yuAkV0x4eDiio6Mxbdo0xMXFGcQ++OADLF26FEuWLEFwcDDc3d0RHx9v9nL92sjlcowYMQJr167F008/jbVr1xqcwBcWFqJbt25Ys2aNUdtmzZrV2uf169eRnJyMiooKfPbZZ/rpVVVVWLVqFebNm6efVtv2cOu0mpsa3nrJ/uDBg7Fo0SKj5fr6+ur/7e7ubna9xd47sffeXP6mtmdnZ2ferJCIqIGoFXKEB6mxp5afB4QHqaFW1L3wTkRE1FhYtRAA3LxPQFpaGvLz8/HWW2/pp4eHh2Pr1q04dOgQXn75ZUnLkMvlRn+t79q1K6qqqnDt2jX07t1bUv81hYTbb2JXIz09HXFxcYiJiQFw8yT01pvkBQcHo7q6Grt37661kFBj4cKFUCgU6Nu3L9LS0tCpU6c657hw4UKEhoaiffv2RrkNGTIEo0ePBnDzRPmPP/4w6Lu28avNqFGj8Nhjj+HkyZPYtWsX3nvvPX3sgQcewHfffYfmzZtDqVTWKec1a9agZcuWBjfmA4Dt27dj8eLFmDNnjlERp64eeOABbNq0CQEBAfpiRX2EhITgq6++wvXr12u9KkDsvSciIutSucmxcHgIpm46ZlAMCA9SY9HwEKjcWAggIqJ7j1V/GgDcLATs27cPmZmZBpfGR0RE4IsvvkB5ebnRjQLvVEBAAAoLC7Fz507k5uaiuLgY7dq1w6hRozBmzBhs3rwZ586dw6FDh7BgwQJs2bLFbH83btzAX3/9hZycHBw6dAhvvfUWmjVrhrCwsFrnDwoKwubNm5GZmYmjR4/imWeeMfhrb0BAAJ577jmMGzcOKSkpOHfuHNLS0rBhwwajvj788EOMGjUKffr0wX//+986j0FwcDBGjRqFTz75xCi3HTt2YP/+/Th9+jRefPFFXL161WCegIAAHDx4ENnZ2cjNzTX5l+rw8HD4+Phg1KhRCAwMNLiB4qhRo6BWqzFkyBDs3btXv46vvvqqyRsZrly5EiNGjECXLl0MXs8//zxyc3Px008/1Xn9b/fKK6/g+vXriI2NxeHDh3H27Fls27YNY8eOrVPRo0ZsbCx8fHwwdOhQpKen488//8SmTZtw4MABAOLvPRERWZ+fpyuWxXbFzjcikDIhDDvfiMCy2K7w9azbFXtERESNjU0UAkpKSqDRaPS/4wZuFgJu3Lihf8ygFGFhYXjppZfw1FNPoVmzZnj//fcB3Hws3ZgxY/Dmm2+iffv2GDp0KA4fPmxwPwKZTIakpCSD/t599134+vrCz88PgwYNgru7O7Zv3w5vb+9al//RRx/By8sLYWFhGDx4MKKjo/HAAw8YzPPZZ59hxIgRmDBhAjp06IAXXngBRUVFtfb38ccfY+TIkejTpw/++OMPADfvt3D7Zf+3mzNnjtFJ6IwZM/DAAw8gOjoakZGR+pPaWyUkJMDBwQGdOnVCs2bNTN4/QCaTITY2FkePHsWoUaMMYm5ubtizZw9at26NYcOGoWPHjnj++edRWlpa6xUCv/76K44ePYrhw4cbxVQqFfr27Wvy8Yp14efnh/T0dFRVVeHxxx9HcHAw4uPj4enpiSZN6v6xkMvl2L59O5o3b44BAwYgODgYCxcu1F+pUJf3noiIrE/lJkfb5gqEtvZC2+YKXglARET3NJkgCIK1k7BV586dQ7t27XDq1CkEBQVZOx2z2rRpg9mzZ4sWA+jeo9PpoFKpoNVq6/yzCyIiIiIiuvfU9dzA6lcE2LL//Oc/GD9+vM0XAU6ePAmVSoUxY8ZYOxUiIiIiIiKycbwigKiR4xUBREREREQE8IoAIiIiIiIiIqoFCwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYC6iktLQ0ymQwFBQXWTuWuk8lkSElJsXYadZKUlARPT09rp2EgOzsbMpkMmZmZ1k6FiIiIiIjs0D1bCIiLi4NMJsPChQsNpqekpEAmk91RX5GRkYiPjzeYFhYWhpycHKhUKqmp1kl0dDQcHBxw+PDhu7I8c3JyctC/f3+r5hAXF4ehQ4caTb+9QPPUU0/hjz/+uLvJiWjVqhVycnLQpUsXa6dCRBaiLS7H2WuFyLiQj7N/F0JbXG7tlIiIiIj0HK2dgCW5uLhg0aJFePHFF+Hl5dWgfcvlcvj4+DRon6ZcuHAB+/fvx8SJE7Fq1Sr06NHjriz3duXl5Xd1vRuCq6srXF1drZ2GAQcHh0Y1hkR0Z64UlGDKpmPYm5WrnxYepMbC4SHw87St/RERERHZp3v2igAAePTRR+Hj44MFCxaYnCcvLw+xsbHw9/eHm5sbgoODsW7dOn08Li4Ou3fvxtKlSyGTySCTyZCdnW3wl2edTgdXV1ds3brVoO/k5GR4eHiguLgYAHDx4kWMHDkSnp6eaNq0KYYMGYLs7GzR9UhMTMSgQYPw8ssvY926dSgpKTGIR0ZGYtKkSYiPj4eXlxdatGiBL7/8EkVFRRg7diw8PDyg0WiM8jtx4gT69+8PhUKBFi1a4Nlnn0Vubq5BvxMnTkR8fDzUajWio6MBGP804NKlS4iNjUXTpk3h7u6O7t274+DBgwCAs2fPYsiQIWjRogUUCgV69OiBn3/+2SCPgIAAzJ8/H+PGjYOHhwdat26NFStWiI5LXdz+04CjR48iKioKHh4eUCqV6NatG44cOWIwb0pKCoKCguDi4oLo6GhcvHhR374h1qe2nwacPHkSgwYNglKphIeHB3r37o2zZ882yBgQ0d2jLS43KgIAwJ6sXEzddIxXBhAREZFNuKcLAQ4ODpg/fz6WLVuGS5cu1TpPaWkpunXrhi1btuDEiRMYP348nn32WRw6dAgAsHTpUjzyyCN44YUXkJOTg5ycHLRq1cqgD6VSiUGDBmHt2rUG09esWYOhQ4fCzc0NFRUViI6OhoeHB/bu3Yv09HQoFAr069cP5eWmDwwFQUBiYiJGjx6NDh06QKPR4Pvvvzeab/Xq1VCr1Th06BAmTZqEl19+GU8++STCwsLw22+/4fHHH8ezzz6rL0oUFBSgT58+6Nq1K44cOYKffvoJV69exciRI436lcvlSE9Px+eff2603MLCQkRERODy5cv44YcfcPToUUyePBnV1dX6+IABA7Bz505kZGSgX79+GDx4MC5cuGDQz+LFi9G9e3dkZGRgwoQJePnll/H777+bHJf6GjVqFFq2bInDhw/j119/xdSpU+Hk5KSPFxcXY968efj666+Rnp6OgoICPP300wbr29Drc/nyZYSHh8PZ2Rm7du3Cr7/+inHjxqGysrLW+cvKyqDT6QxeRGQbcgvLjYoANfZk5SK3kIUAIiIisgHCPeq5554ThgwZIgiCIDz88MPCuHHjBEEQhOTkZEFstQcOHCi8+eab+v9HREQIr732msE8qampAgAhPz9f369CoRCKiooEQRAErVYruLi4CFu3bhUEQRC++eYboX379kJ1dbW+j7KyMsHV1VXYtm2byVy2b98uNGvWTKioqBAEQRA+/vhjISIiwmCeiIgIoVevXvr/V1ZWCu7u7sKzzz6rn5aTkyMAEA4cOCAIgiDMnTtXePzxxw36uXjxogBA+P333/X9du3a1SgnAEJycrIgCILwxRdfCB4eHkJeXp7Jdbhd586dhWXLlun/36ZNG2H06NH6/1dXVwvNmzcXPvvsM5N9PPfcc4KDg4Pg7u5u8HJxcTF4XxITEwWVSqVv5+HhISQlJdXaZ2JiogBA+OWXX/TTTp8+LQAQDh482GDrc+7cOQGAkJGRIQiCIEybNk0IDAwUysvLTS7jVjNnzhQAGL20Wm2d2hOR5fx2/rrQZsqPJl8Z569bO0UiIiK6h2m12jqdG9zTVwTUWLRoEVavXo3Tp08bxaqqqjB37lwEBwejadOmUCgU2LZtm9FfeMUMGDAATk5O+OGHHwAAmzZtglKpxKOPPgrg5iXpZ86cgYeHBxQKBRQKBZo2bYrS0lKzl4CvWrUKTz31FBwdb97OITY2Funp6UZtQkJC9P92cHCAt7c3goOD9dNatGgBALh27Zo+n9TUVH0uCoUCHTp0AACDvrt162Z2vTMzM9G1a1c0bdq01nhhYSESEhLQsWNHeHp6QqFQ4PTp00bje2v+MpkMPj4++lxNiYqKQmZmpsHrq6++MtvmjTfewD/+8Q88+uijWLhwodE4Ojo6GtyDoUOHDvD09NRvO5ZYn8zMTPTu3dvgygRzpk2bBq1Wq3/d+tMFIrIupYv5z7GHSJyIiIjobrinbxZYIzw8HNHR0Zg2bRri4uIMYh988AGWLl2KJUuWIDg4GO7u7oiPjzd7uX5t5HI5RowYgbVr1+Lpp5/G2rVrDU7gCwsL0a1bN6xZs8aobbNmzWrt8/r160hOTkZFRQU+++wz/fSqqiqsWrUK8+bN00+7/SRSJpMZTKt5UsKtl+wPHjwYixYtMlqur6+v/t/u7u5m11vsRnwJCQnYsWMHPvzwQ2g0Gri6umLEiBFG41tb/jW5muLu7g6NRmMwzdRPQGrMmjULzzzzDLZs2YKtW7di5syZWL9+PWJiYsy2s+T63OnNDJ2dneHs7HxHbYjo7lAr5AgPUmNPLT8PCA9SQ62QWyErIiIiIkN2UQgAgIULFyI0NBTt27c3mJ6eno4hQ4Zg9OjRAG6eKP/xxx/o1KmTfh65XI6qqirRZYwaNQqPPfYYTp48iV27duG9997Txx544AF89913aN68OZRKZZ1yXrNmDVq2bGlwYz4A2L59OxYvXow5c+bAwcGhTn3d7oEHHsCmTZsQEBCgL1bUR0hICL766itcv3691qsC0tPTERcXpz/RLiwsrNMNEi2pXbt2aNeuHV5//XXExsYiMTFRn19lZSWOHDmCBx98EADw+++/o6CgAB07dgRgmfUJCQnB6tWrUVFRUeerAojINqnc5Fg4PARTNx0zKAaEB6mxaHgIVG4sBBAREZH12cVPAwAgODgYo0aNwieffGIwPSgoCDt27MD+/ftx+vRpvPjii7h69arBPAEBATh48CCys7ORm5tr8i+74eHh8PHxwahRoxAYGIiHHnpIHxs1ahTUajWGDBmCvXv34ty5c0hLS8Orr75q8q/YK1euxIgRI9ClSxeD1/PPP4/c3Fz89NNP9R6PV155BdevX0dsbCwOHz6Ms2fPYtu2bRg7dmydih41YmNj4ePjg6FDhyI9PR1//vknNm3ahAMHDgC4Ob6bN29GZmYmjh49imeeeUb0L/2WUlJSgokTJyItLQ3nz59Heno6Dh8+rD/JB27+JX/SpEk4ePAgfv31V8TFxeHhhx/WFwYssT4TJ06ETqfD008/jSNHjiArKwvffPONRW6WSESW5+fpimWxXbHzjQikTAjDzjcisCy2K3z56EAiIiKyEXZTCACAOXPmGJ20zZgxAw888ACio6MRGRmpP6m9VUJCAhwcHNCpUyc0a9bM5P0DZDIZYmNjcfToUYwaNcog5ubmhj179qB169YYNmwYOnbsiOeffx6lpaW1XiHw66+/4ujRoxg+fLhRTKVSoW/fvli5cuUdjsD/8/PzQ3p6OqqqqvD4448jODgY8fHx8PT0RJMmdd8s5HI5tm/fjubNm2PAgAEIDg7GwoUL9VcqfPTRR/Dy8kJYWBgGDx6M6OhoPPDAA3ecb2RkpNHPOu6Ug4MD8vLyMGbMGLRr1w4jR45E//79MXv2bP08bm5umDJlCp555hn07NkTCoUC3333nT7eUOtzK29vb+zatUv/BIZu3brhyy+/5NUBRI2Yyk2Ots0VCG3thbbNFbwSgIiIiGyKTBAEwdpJEIlp06YNZs+eLbkYYE5SUhLi4+NRUFBgsWVYgk6ng0qlglarrfPPToiIiIiI6N5T13MDu7oigBqnkydPQqVSYcyYMdZOhYiIiIiIqNGzm5sFUuPVuXNnHDt2zNppEBERERER3RN4RQDR/8TFxTW6nwUQERERERHdKRYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBFC9yWQypKSkmIynpaVBJpOhoKDgruV0u7i4OAwdOtRqy69NUlISPD09rZ0GERERERHZKRYCCJ9//jk8PDxQWVmpn1ZYWAgnJydERkYazFtzcn/27FnRfsPCwpCTkwOVSgWgYU+AAwICsGTJEqPps2bNQmhoqP7/S5cuRVJSUoMss6E89dRT+OOPP6ydBpFk2uJynL1WiIwL+Tj7dyG0xeXWTomIiIiI6sDR2gmQ9UVFRaGwsBBHjhzBww8/DADYu3cvfHx8cPDgQZSWlsLFxQUAkJqaitatW6Nt27ai/crlcvj4+Fg0dzE1RQhb4urqCldXV2unQSTJlYISTNl0DHuzcvXTwoPUWDg8BH6e3L6JiIiIbBmvCCC0b98evr6+SEtL009LS0vDkCFDEBgYiF9++cVgelRUlP7/ubm5iImJgZubG4KCgvDDDz8YzFvz04C0tDSMHTsWWq0WMpkMMpkMs2bNAgCUlZUhISEB/v7+cHd3x0MPPWSQixS3/zTg+++/R3BwMFxdXeHt7Y1HH30URUVFBvPOnj0bzZo1g1KpxEsvvYTy8v//K+dPP/2EXr16wdPTE97e3hg0aJDB1RHZ2dmQyWTYvHkzoqKi4Obmhvvvvx8HDhzQz1PblRH//ve/0aNHD7i4uECtViMmJqZB1p/IErTF5UZFAADYk5WLqZuO8coAIiIiIhvHQgABuHlVQGpqqv7/qampiIyMREREhH56SUkJDh48aFAImD17NkaOHIljx45hwIABGDVqFK5fv27Uf1hYGJYsWQKlUomcnBzk5OQgISEBADBx4kQcOHAA69evx7Fjx/Dkk0+iX79+yMrKatB1zMnJQWxsLMaNG4fTp08jLS0Nw4YNgyAI+nl27typj61btw6bN2/G7Nmz9fGioiK88cYbOHLkCHbu3IkmTZogJiYG1dXVBsuaPn06EhISkJmZiXbt2iE2Ntbgpxe32rJlC2JiYjBgwABkZGRg586dePDBB02uR1lZGXQ6ncGL6G7KLSw3KgLU2JOVi9xCFgKIiIiIbBl/GkAAbhYC4uPjUVlZiZKSEmRkZCAiIgIVFRX4/PPPAQAHDhxAWVmZQSEgLi4OsbGxAID58+fjk08+waFDh9CvXz+D/uVyOVQqFWQymcHPBS5cuIDExERcuHABfn5+AICEhAT89NNPSExMxPz5803mPGXKFMyYMcNgWnl5OTp16lTr/Dk5OaisrMSwYcPQpk0bAEBwcLBRnqtWrYKbmxs6d+6MOXPm4K233sLcuXPRpEkTDB8+3GD+VatWoVmzZjh16hS6dOmin56QkICBAwcCuFks6dy5M86cOYMOHToY5TVv3jw8/fTTBgWH+++/3+R6L1iwwGBeortNV1phNn5DJE5ERERE1sUrAggAEBkZiaKiIhw+fBh79+5Fu3bt0KxZM0REROjvE5CWlob77rsPrVu31rcLCQnR/9vd3R1KpRLXrl2r83KPHz+OqqoqtGvXDgqFQv/avXu36A0J33rrLWRmZhq8XnrpJZPz33///ejbty+Cg4Px5JNP4ssvv0R+fr7RPG5ubvr/P/LIIygsLMTFixcBAFlZWYiNjcV9990HpVKJgIAAADcLGre6dVx8fX0BwOS4ZGZmom/fvmbX9VbTpk2DVqvVv2pyI7pblC5OZuMeInEiIiIisi5eEUAAAI1Gg5YtWyI1NRX5+fmIiIgAAPj5+aFVq1bYv38/UlNT0adPH4N2Tk6GB/wymczoMnlzCgsL4eDggF9//RUODg4GMYVCYbatWq2GRqMxmNa0aVOT8zs4OGDHjh3Yv38/tm/fjmXLlmH69Ok4ePAgAgMD65Tv4MGD0aZNG3z55Zfw8/NDdXU1unTpYnAfAcBwXGQyGQCYHJc7vXGgs7MznJ2d76gNUUNSK+QID1JjTy0/DwgPUkOtkFshKyIiIiKqK14RQHpRUVFIS0tDWlqawWMDw8PDsXXrVhw6dMjgZwF3Si6Xo6qqymBa165dUVVVhWvXrkGj0Ri8LPHEAZlMhp49e2L27NnIyMiAXC5HcnKyPn706FGUlJTo///LL79AoVCgVatWyMvLw++//44ZM2agb9++6Nixo9EVBfUREhKCnTt3Su6H6G5RucmxcHgIwoPUBtPDg9RYNDwEKjcWAoiIiIhsGa8IIL2oqCi88sorqKio0F8RAAARERGYOHEiysvLJRUCAgICUFhYiJ07d+ovwW/Xrh1GjRqFMWPGYPHixejatSv+/vtv7Ny5EyEhIfrf2TeEgwcPYufOnXj88cfRvHlzHDx4EH///Tc6duyon6e8vBzPP/88ZsyYgezsbMycORMTJ05EkyZN4OXlBW9vb6xYsQK+vr64cOECpk6dKjmvmTNnom/fvmjbti2efvppVFZW4j//+Q+mTJkiuW8iS/HzdMWy2K7ILSzHjdIKeLg4Qa2QswhARERE1AjwigDSi4qKQklJCTQaDVq0aKGfHhERgRs3bugfM1hfYWFheOmll/DUU0+hWbNmeP/99wEAiYmJGDNmDN588020b98eQ4cOxeHDhw3uRSCTyZCUlFTvZQOAUqnEnj17MGDAALRr1w4zZszA4sWL0b9/f/08ffv2RVBQEMLDw/HUU0/hiSee0D/msEmTJli/fj1+/fVXdOnSBa+//jo++OADSTkBN+/PsHHjRvzwww8IDQ1Fnz59cOjQIcn9Elmayk2Ots0VCG3thbbNFSwCEBERETUSMuHWZ6cR2aBz586hXbt2OHXqFIKCgiy2nLi4OBQUFCAlJcViy7AEnU4HlUoFrVYLpVJp7XSIiIiIiMhK6npuwCsCyOb95z//wfjx4y1aBCAiIiIiIrIXvEcA2bxXXnnF2ikQERERERHdM1gIIPofqfcgICIiIiIiagz40wAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQC6I9nZ2ZDJZMjMzGywPmUyGVJSUhqsvxqWyLUhBAQEYMmSJdZOg4iIiIiI7BQLAWQgLi4OMplM//L29ka/fv1w7Ngxa6eml5SUBE9Pz1pjtxYVWrVqhZycHHTp0uXuJVcHhw8fxvjx462dBpHVaYvLcfZaITIu5OPs34XQFpdbO6UGcy+vGxERETV+jtZOgGxPv379kJiYCAD466+/MGPGDAwaNAgXLlywcmZ3xsHBAT4+PtZOw0izZs2snQKR1V0pKMGUTcewNytXPy08SI2Fw0Pg5+lqxcyku5fXjYiIiO4NvCKAjDg7O8PHxwc+Pj4IDQ3F1KlTcfHiRfz9999G81ZVVeH5559HYGAgXF1d0b59eyxdutRovlWrVqFz585wdnaGr68vJk6caHL5M2fOhK+vr+SrEG7/aUB+fj5GjRqFZs2awdXVFUFBQfqCR82869evR1hYGFxcXNClSxfs3r37jtY1Li4OQ4cOxYcffghfX194e3vjlVdeQUVFhX6e238aUFBQgBdffBEtWrTQL/fHH3+UtO5EtkxbXG50ogwAe7JyMXXTsUb91/N7ed2IiIjo3sErAsiswsJCfPvtt9BoNPD29kZRUZFBvLq6Gi1btsTGjRvh7e2N/fv3Y/z48fD19cXIkSMBAJ999hneeOMNLFy4EP3794dWq0V6errRsgRBwKuvvooff/wRe/fuhUajadB1eeedd3Dq1Cls3boVarUaZ86cQUlJicE8b731FpYsWYJOnTrho48+wuDBg3Hu3Dl4e3vXaV0BIDU1Fb6+vkhNTcWZM2fw1FNPITQ0FC+88IJRTtXV1ejfvz9u3LiBb7/9Fm3btsWpU6fg4OBgcj3KyspQVlam/79Op2uA0SG6e3ILy41OlGvsycpFbmE5VG7yu5xVw7iX142IiIjuHSwEkJEff/wRCoUCAFBUVARfX1/8+OOPaNLE+AISJycnzJ49W///wMBAHDhwABs2bNCfHL/33nt488038dprr+nn69Gjh0E/lZWVGD16NDIyMrBv3z74+/ubzVGr1epzrKsLFy6ga9eu6N69O4Cbf5m/3cSJEzF8+HAANwsYP/30E1auXInJkyfXaV0BwMvLC8uXL4eDgwM6dOiAgQMHYufOnbUWAn7++WccOnQIp0+fRrt27fB/7d17UNV1/sfx1+GOXI4myiVhQc9RXBMX85KYInmPdVMxXceSvJQlpGK06raau2WS5WXM0mxNtnbLy9a22uaWS8Cmq4IX0kYTx9W01FgnkUsKwvn+/mg8v86gSIoc4DwfM2eG8/18vp/v+8O8Z+D7Pp/v50hS+/bta53H4sWLHeIAmpqSy1dqbS+9QXtj1pznBgAAmg8KAaghISFBq1evlvTDcvrXXntNw4cPV15e3jX7v/rqq3rzzTd16tQpXbp0SZWVlfrFL34hSSoqKtKZM2c0cODAWq+ZlpYmb29v7d69W0FBQTeMMSAgQPv3769x3Gq1XvecJ554QklJSdq/f7+GDBmikSNHKi4uzqFPnz597D97eHioR48eOnLkSJ3melWXLl0cPtEPDQ3VoUOHrhlTQUGB2rVrZy8C1MW8efM0e/Zs+/uSkhKFh4fX+XzA2QJ9PGttD7hBe2PWnOcGAACaD/YIQA1+fn6yWCyyWCzq2bOn/vjHP6q8vFxvvPFGjb4bNmxQenq6pkyZok8++UQFBQWaNGmSKit/eA7W17duG2MNHjxY33zzjT7++OM69Xdzc7PH+ONXbYYPH66vvvpKaWlp9uJEenp6na4n3XiuV3l6Ov6jbzKZZLPZrjlmXX8/P+bt7a3AwECHF9CUBPl7qb/12gW//tYgBfk33aXzzXluAACg+aAQgBsymUxyc3Or8Ty9JO3cuVNxcXGaPn26YmNjZbFYdPz4cXt7QECAIiMjlZWVVes1fvWrX+mdd97R1KlTtWHDhnqfw1Vt2rRRcnKy/vznP2vFihVau3atQ/vu3bvtP1dVVWnfvn3q3LmzpBvP9WbExMTo66+/VmFh4S2NAzQl5hZeykiKqXHD3N8apBeTYpr0M/TNeW4AAKD54NEA1FBRUaFz585J+uHRgFWrVqmsrEwjRoyo0ddqteqtt97Sxx9/rKioKL399tvKz89XVFSUvc/ChQv1+OOPq23btvaN8Xbu3Kknn3zSYaxRo0bp7bff1sMPPywPDw+NGTOmXue1YMEC3X333erSpYsqKir04Ycf2m/yr3r11VdltVrVuXNnLV++XBcuXNDkyZPrPNefKj4+Xv3791dSUpKWLVsmi8WiL7/8UiaTScOGDbul+QKNWVhLX70yPlbnyypVevmKAnw8FeTv1SxulJvz3AAAQPNAIQA1/POf/1RoaKikHz7Rj46O1ubNmzVgwACdPHnSoe+0adN04MABjRs3TiaTSePHj9f06dO1bds2e5/k5GRdvnxZy5cvV3p6uoKCgq57kz9mzBjZbDY9/PDDcnNz0+jRo7Vw4UJlZmbWuPZP5eXlpXnz5unkyZPy9fVVv379aqw+yMjIUEZGhgoKCmSxWLRlyxb7ngV1mevNeO+995Senq7x48ervLxcFotFGRkZtzQm0BSYWzTfm+PmPDcAAND0mQzDMJwdBFCb5ORkmUwmZWZm3rZrnDx5UlFRUTpw4ECNzf8au5KSEpnNZl28eJH9AgAAAAAXVtd7A1YEoFEzDEM5OTnasWOHs0MBAAAAgGaBQgAaNZPJpK+++srZYQAAAABAs0EhAJAUGRkpnpIBAAAA4Ar4+kAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQA0KiaTSR988MF123NycmQymVRcXNxgMf1YZmamWrZsWW/jOXs+AAAAAFwPhQDcFmvWrFFAQICqqqrsx8rKyuTp6akBAwY49L16M3z8+PEbjhsXF6ezZ8/KbDZLqt8b88jISJlMJplMJrm7uyssLExTpkzRhQsX6mV8AA3r4veVOl5UpgOnLuj4/8p08fvKBjkXAACgsfNwdgBonhISElRWVqa9e/fqnnvukSR99tlnCgkJ0Z49e3T58mX5+PhIkrKzsxUREaEOHTrccFwvLy+FhITctrj/8Ic/6NFHH1V1dbUKCwv12GOPacaMGXr77bdv2zUB1L8zxZc0572D+uzYefux/tYgZSTFKKyl7207FwAAoClgRQBui06dOik0NFQ5OTn2Yzk5OXrggQcUFRWl3bt3OxxPSEiwvz9//rxGjRqlFi1ayGq1asuWLQ59ry6lz8nJ0aRJk3Tx4kX7J/kLFy6UJFVUVCg9PV133nmn/Pz81Lt3b4dYricgIEAhISG68847lZCQoOTkZO3fv/+6/Y8fP64HHnhAwcHB8vf3V8+ePfWvf/3LoU9FRYXmzJmj8PBweXt7y2KxaN26ddcc7/vvv9fw4cPVt29fHhcAbtLF7ytr3MhL0r+Pndfc9w7W+un+rZwLAADQVFAIwG2TkJCg7Oxs+/vs7GwNGDBA8fHx9uOXLl3Snj17HAoBv//97zV27FgdPHhQ999/vyZMmKDvvvuuxvhxcXFasWKFAgMDdfbsWZ09e1bp6emSpNTUVO3atUsbNmzQwYMH9eCDD2rYsGE6duxYneP/5ptvtHXrVvXu3fu6fcrKynT//fcrKytLBw4c0LBhwzRixAidOnXK3mfixIl69913tXLlSh05ckSvv/66/P39a4xVXFyswYMHy2azafv27dd95KGiokIlJSUOLwD/73xZZY0b+av+fey8zpdd/2b+Vs4FAABoKigE4LZJSEjQzp07VVVVpdLSUh04cEDx8fHq37+//dP5Xbt2qaKiwqEQ8Mgjj2j8+PGyWCx64YUXVFZWpry8vBrje3l5yWw2y2QyKSQkRCEhIfL399epU6e0fv16bd68Wf369VOHDh2Unp6ue++9V+vXr6815jlz5sjf31++vr5q166dTCaTli1bdt3+3bp107Rp03TXXXfJarXqueeeU4cOHeyrGAoLC7Vp0ya9+eabGjVqlNq3b6+BAwdq3LhxDuOcO3dO8fHxCg0N1datW9WiRYvrXnPx4sUym832V3h4eK1zAlxNyeUrtbaX1tJ+K+cCAAA0FRQCcNsMGDBA5eXlys/P12effaaOHTuqTZs2io+Pt+8TkJOTo/bt2ysiIsJ+XkxMjP1nPz8/BQYGqqioqM7XPXTokKqrq9WxY0f5+/vbX7m5uTfckPDpp59WQUGBDh48qKysLElSYmKiqqurr9m/rKxM6enp6ty5s1q2bCl/f38dOXLEviKgoKBA7u7uio+Pr/W6gwcPlsVi0caNG+Xl5VVr33nz5unixYv21+nTp2vtD7iaQB/PWtsDamm/lXMBAACaCjYLxG1jsVjUrl07ZWdn68KFC/ab4bCwMIWHh+s///mPsrOzdd999zmc5+np+I+2yWSSzWar83XLysrk7u6uffv2yd3d3aHtWkvyfywoKEgWi0WSZLVatWLFCvXp00fZ2dkaNGhQjf7p6enavn27Xn75ZVksFvn6+mrMmDGqrPxh+bCvb902FktMTNR7772nw4cPq2vXrrX29fb2lre3d53GBVxRkL+X+luD9O9rLPHvbw1SkP/1i223ci4AAEBTwYoA3FYJCQnKyclRTk6Ow9cG9u/fX9u2bVNeXp7DYwE/lZeXV41P62NjY1VdXa2ioiJZLBaH10/9xoGrhYRLly5ds33nzp165JFHNGrUKHXt2lUhISE6efKkvb1r166y2WzKzc2t9ToZGRlKTk7WwIEDdfjw4Z8UIwBH5hZeykiKUX9rkMPx/tYgvZgUI3OL69/M38q5AAAATQUrAnBbJSQkKCUlRVeuXHFYHh8fH6/U1FRVVlbeUiEgMjJSZWVlysrKUrdu3dSiRQt17NhREyZM0MSJE7V06VLFxsbqf//7n7KyshQTE6PExMTrjldaWqpz587JMAydPn1av/nNb9SmTRvFxcVds7/VatX777+vESNGyGQyaf78+Q6rFyIjI5WcnKzJkydr5cqV6tatm7766isVFRVp7NixDmO9/PLLqq6u1n333aecnBxFR0ff9O8FcHVhLX31yvhYnS+rVOnlKwrw8VSQv1edbuRv5VwAAICmgBUBuK0SEhJ06dIlWSwWBQcH24/Hx8ertLTU/jWDNysuLk6PP/64xo0bpzZt2mjJkiWSpPXr12vixIl66qmn1KlTJ40cOVL5+fkOexGYTCZlZmY6jLdgwQKFhoYqLCxMv/zlL+Xn56dPPvlErVu3vub1ly1bplatWikuLk4jRozQ0KFD1b17d4c+q1ev1pgxYzR9+nRFR0fr0UcfVXl5+TXHW758ucaOHav77rtPhYWFN/17AfDDp/sd2vrrFxGt1KGt/0+6kb+VcwEAABo7k2EYhrODABraiRMn1LFjRx0+fFhWq9XZ4dySkpISmc1mXbx4UYGBgc4OBwAAAICT1PXegBUBcEkfffSRHnvssSZfBAAAAACAn4o9AuCSUlJSnB0CAAAAADgFKwIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhHs4OAMCtMQxDklRSUuLkSAAAAAA409V7gqv3CNdDIQBo4kpLSyVJ4eHhTo4EAAAAQGNQWloqs9l83XaTcaNSAYBGzWaz6cyZMwoICJDJZLqlsUpKShQeHq7Tp08rMDCwniIEro+cQ0Mj59CQyDc0NHIOhmGotLRUYWFhcnO7/k4ArAgAmjg3Nze1a9euXscMDAzkjwcaFDmHhkbOoSGRb2ho5Jxrq20lwFVsFggAAAAAgAuhEAAAAAAAgAuhEADAztvbW88++6y8vb2dHQpcBDmHhkbOoSGRb2ho5Bzqis0CAQAAAABwIawIAAAAAADAhVAIAAAAAADAhVAIAAAAAADAhVAIAAAAAADAhVAIAGD36quvKjIyUj4+Purdu7fy8vKcHRKagcWLF6tnz54KCAhQ27ZtNXLkSB09etShz+XLl5WSkqLWrVvL399fSUlJ+vbbb50UMZqbjIwMmUwmzZo1y36MnEN9+uabb/TQQw+pdevW8vX1VdeuXbV37157u2EYWrBggUJDQ+Xr66tBgwbp2LFjTowYTVl1dbXmz5+vqKgo+fr6qkOHDnruuef04z3gyTncCIUAAJKkjRs3avbs2Xr22We1f/9+devWTUOHDlVRUZGzQ0MTl5ubq5SUFO3evVvbt2/XlStXNGTIEJWXl9v7pKWlaevWrdq8ebNyc3N15swZjR492olRo7nIz8/X66+/rpiYGIfj5Bzqy4ULF9S3b195enpq27ZtOnz4sJYuXapWrVrZ+yxZskQrV67UmjVrtGfPHvn5+Wno0KG6fPmyEyNHU/Xiiy9q9erVWrVqlY4cOaIXX3xRS5Ys0SuvvGLvQ87hhgwAMAyjV69eRkpKiv19dXW1ERYWZixevNiJUaE5KioqMiQZubm5hmEYRnFxseHp6Wls3rzZ3ufIkSOGJGPXrl3OChPNQGlpqWG1Wo3t27cb8fHxxsyZMw3DIOdQv+bMmWPce++912232WxGSEiI8dJLL9mPFRcXG97e3sa7777bECGimUlMTDQmT57scGz06NHGhAkTDMMg51A3rAgAoMrKSu3bt0+DBg2yH3Nzc9OgQYO0a9cuJ0aG5ujixYuSpDvuuEOStG/fPl25csUh/6KjoxUREUH+4ZakpKQoMTHRIbckcg71a8uWLerRo4cefPBBtW3bVrGxsXrjjTfs7SdOnNC5c+cc8s1sNqt3797kG25KXFycsrKyVFhYKEn6/PPPtWPHDg0fPlwSOYe68XB2AACc7/z586qurlZwcLDD8eDgYH355ZdOigrNkc1m06xZs9S3b1/dddddkqRz587Jy8tLLVu2dOgbHBysc+fOOSFKNAcbNmzQ/v37lZ+fX6ONnEN9+u9//6vVq1dr9uzZ+u1vf6v8/HzNmDFDXl5eSk5OtufUtf7Gkm+4GXPnzlVJSYmio6Pl7u6u6upqLVq0SBMmTJAkcg51QiEAANBgUlJS9MUXX2jHjh3ODgXN2OnTpzVz5kxt375dPj4+zg4HzZzNZlOPHj30wgsvSJJiY2P1xRdfaM2aNUpOTnZydGiONm3apL/85S9655131KVLFxUUFGjWrFkKCwsj51BnPBoAQEFBQXJ3d6+xY/a3336rkJAQJ0WF5iY1NVUffvihsrOz1a5dO/vxkJAQVVZWqri42KE/+YebtW/fPhUVFal79+7y8PCQh4eHcnNztXLlSnl4eCg4OJicQ70JDQ3Vz3/+c4djnTt31qlTpyTJnlP8jUV9efrppzV37lz9+te/VteuXfXwww8rLS1NixcvlkTOoW4oBACQl5eX7r77bmVlZdmP2Ww2ZWVlqU+fPk6MDM2BYRhKTU3V3/72N3366aeKiopyaL/77rvl6enpkH9Hjx7VqVOnyD/clIEDB+rQoUMqKCiwv3r06KEJEybYfybnUF/69u1b4ytRCwsL9bOf/UySFBUVpZCQEId8Kykp0Z49e8g33JTvv/9ebm6Ot3Hu7u6y2WySyDnUDY8GAJAkzZ49W8nJyerRo4d69eqlFStWqLy8XJMmTXJ2aGjiUlJS9M477+jvf/+7AgIC7M8nms1m+fr6ymw2a8qUKZo9e7buuOMOBQYG6sknn1SfPn10zz33ODl6NEUBAQH2PSiu8vPzU+vWre3HyTnUl7S0NMXFxemFF17Q2LFjlZeXp7Vr12rt2rWSJJPJpFmzZun555+X1WpVVFSU5s+fr7CwMI0cOdK5waNJGjFihBYtWqSIiAh16dJFBw4c0LJlyzR58mRJ5BzqyNlfWwCg8XjllVeMiIgIw8vLy+jVq5exe/duZ4eEZkDSNV/r16+397l06ZIxffp0o1WrVkaLFi2MUaNGGWfPnnVe0Gh2fvz1gYZBzqF+bd261bjrrrsMb29vIzo62li7dq1Du81mM+bPn28EBwcb3t7exsCBA42jR486KVo0dSUlJcbMmTONiIgIw8fHx2jfvr3xzDPPGBUVFfY+5BxuxGQYhuHMQgQAAAAAAGg47BEAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAADQiO3atUvu7u5KTEx0digAgGbCZBiG4ewgAAAAcG1Tp06Vv7+/1q1bp6NHjyosLMzZIQEAmjhWBAAAADRSZWVl2rhxo5544gklJiYqMzPToX3Lli2yWq3y8fFRQkKC/vSnP8lkMqm4uNjeZ8eOHerXr598fX0VHh6uGTNmqLy8vGEnAgBoVCgEAAAANFKbNm1SdHS0OnXqpIceekhvvvmmri7mPHHihMaMGaORI0fq888/17Rp0/TMM884nH/8+HENGzZMSUlJOnjwoDZu3KgdO3YoNTXVGdMBADQSPBoAAADQSPXt21djx47VzJkzVVVVpdDQUG3evFkDBgzQ3Llz9Y9//EOHDh2y9//d736nRYsW6cKFC2rZsqWmTp0qd3d3vf766/Y+O3bsUHx8vMrLy+Xj4+OMaQEAnIwVAQAAAI3Q0aNHlZeXp/Hjx0uSPDw8NG7cOK1bt87e3rNnT4dzevXq5fD+888/V2Zmpvz9/e2voUOHymaz6cSJEw0zEQBAo+Ph7AAAAABQ07p161RVVeWwOaBhGPL29taqVavqNEZZWZmmTZumGTNm1GiLiIiot1gBAE0LhQAAAIBGpqqqSm+99ZaWLl2qIUOGOLSNHDlS7777rjp16qSPPvrIoS0/P9/hfffu3XX48GFZLJbbHjMAoOlgjwAAAIBG5oMPPtC4ceNUVFQks9ns0DZnzhx9+umn2rRpkzp16qS0tDRNmTJFBQUFeuqpp/T111+ruLhYZrNZBw8e1D333KPJkydr6tSp8vPz0+HDh7V9+/Y6ryoAADQ/7BEAAADQyKxbt06DBg2qUQSQpKSkJO3du1elpaX661//qvfff18xMTFavXq1/VsDvL29JUkxMTHKzc1VYWGh+vXrp9jYWC1YsMDhcQMAgOthRQAAAEAzsWjRIq1Zs0anT592digAgEaMPQIAAACaqNdee009e/ZU69attXPnTr300ktKTU11dlgAgEaOQgAAAEATdezYMT3//PP67rvvFBERoaeeekrz5s1zdlgAgEaORwMAAAAAAHAhbBYIAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIAL+T/iJeh2g2hCyQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Scatter plot для столбцов 'age' и 'race'\n", + "plt.figure(figsize=(10, 6))\n", + "sns.scatterplot(x='age', y='race', data=df)\n", + "plt.title('Scatter Plot для age и race')\n", + "plt.xlabel('Age')\n", + "plt.ylabel('Race')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Удаление строк с пустыми значениями" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "df_cleaned = df.dropna()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Разбиение набора данных на обучающую, контрольную и тестовую выборки" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер обучающей выборки: 4770\n", + "Размер контрольной выборки: 1591\n", + "Размер тестовой выборки: 1591\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Разделение на обучающую и тестовую выборки\n", + "train_df, test_df = train_test_split(df_cleaned, test_size=0.2, random_state=42)\n", + "\n", + "# Разделение обучающей выборки на обучающую и контрольную\n", + "train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n", + "\n", + "print(\"Размер обучающей выборки:\", len(train_df))\n", + "print(\"Размер контрольной выборки:\", len(val_df))\n", + "print(\"Размер тестовой выборки:\", len(test_df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Применение методов приращения данных (аугментации)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Распределение reace в обучающей выборке после oversampling:\n", + "race\n", + "Black 2187\n", + "White 2187\n", + "Hispanic 2187\n", + "Unknown 2187\n", + "Native American 2187\n", + "Asian 2187\n", + "White,Black,Native American 2187\n", + "Other 2187\n", + "White,Black 2187\n", + "Name: count, dtype: int64\n", + "\n", + "Распределение reace в контрольной выборке после oversampling:\n", + "race\n", + "White 718\n", + "Black 718\n", + "Unknown 718\n", + "Hispanic 718\n", + "Asian 718\n", + "Native American 718\n", + "Other 718\n", + "Name: count, dtype: int64\n", + "\n", + "Распределение reace в тестовой выборке после oversampling:\n", + "race\n", + "Unknown 750\n", + "White 750\n", + "Black 750\n", + "Hispanic 750\n", + "Asian 750\n", + "Native American 750\n", + "Black,Hispanic 750\n", + "Other 750\n", + "White,Black 750\n", + "Native American,Hispanic 750\n", + "Name: count, dtype: int64\n", + "\n", + "Распределение reace в обучающей выборке после undersampling:\n", + "race\n", + "Asian 1\n", + "Black 1\n", + "Hispanic 1\n", + "Native American 1\n", + "Other 1\n", + "Unknown 1\n", + "White 1\n", + "White,Black 1\n", + "White,Black,Native American 1\n", + "Name: count, dtype: int64\n", + "\n", + "Распределение reace в контрольной выборке после undersampling:\n", + "race\n", + "Asian 7\n", + "Black 7\n", + "Hispanic 7\n", + "Native American 7\n", + "Other 7\n", + "Unknown 7\n", + "White 7\n", + "Name: count, dtype: int64\n", + "\n", + "Распределение reace в тестовой выборке после undersampling:\n", + "race\n", + "Asian 1\n", + "Black 1\n", + "Black,Hispanic 1\n", + "Hispanic 1\n", + "Native American 1\n", + "Native American,Hispanic 1\n", + "Other 1\n", + "Unknown 1\n", + "White 1\n", + "White,Black 1\n", + "Name: count, dtype: int64\n", + "\n" + ] + } + ], + "source": [ + "from imblearn.over_sampling import RandomOverSampler\n", + "\n", + "def check_balance(df, name):\n", + " counts = df['race'].value_counts()\n", + " print(f\"Распределение reace в {name}:\")\n", + " print(counts)\n", + " print()\n", + "\n", + "def oversample(df):\n", + " X = df.drop('race', axis=1)\n", + " y = df['race']\n", + " \n", + " oversampler = RandomOverSampler(random_state=42)\n", + " X_resampled, y_resampled = oversampler.fit_resample(X, y)\n", + " \n", + " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", + " return resampled_df\n", + "\n", + "train_df_oversampled = oversample(train_df)\n", + "val_df_oversampled = oversample(val_df)\n", + "test_df_oversampled = oversample(test_df)\n", + "\n", + "check_balance(train_df_oversampled, \"обучающей выборке после oversampling\")\n", + "check_balance(val_df_oversampled, \"контрольной выборке после oversampling\")\n", + "check_balance(test_df_oversampled, \"тестовой выборке после oversampling\")\n", + "\n", + "def undersample(df):\n", + " X = df.drop('race', axis=1)\n", + " y = df['race']\n", + " \n", + " undersampler = RandomUnderSampler(random_state=42)\n", + " X_resampled, y_resampled = undersampler.fit_resample(X, y)\n", + " \n", + " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", + " return resampled_df\n", + "\n", + "train_df_undersampled = undersample(train_df)\n", + "val_df_undersampled = undersample(val_df)\n", + "test_df_undersampled = undersample(test_df)\n", + "\n", + "check_balance(train_df_undersampled, \"обучающей выборке после undersampling\")\n", + "check_balance(val_df_undersampled, \"контрольной выборке после undersampling\")\n", + "check_balance(test_df_undersampled, \"тестовой выборке после undersampling\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "aimenv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lab_3/lab3.ipynb b/lab_3/lab3.ipynb new file mode 100644 index 0000000..024426d --- /dev/null +++ b/lab_3/lab3.ipynb @@ -0,0 +1,94 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Вариант задания: Прогнозирование цен на автомобили\n", + "### Бизнес-цели:\n", + "Повышение эффективности ценообразования на вторичном рынке автомобилей:\n", + "Цель: Разработать модель машинного обучения, которая позволит точно прогнозировать рыночную стоимость автомобилей на вторичном рынке.\n", + "Ключевые показатели успеха (KPI):\n", + "Точность прогнозирования цены (например, RMSE, MAE).\n", + "Сокращение времени на оценку стоимости автомобиля.\n", + "Увеличение количества продаж за счет более конкурентоспособных цен.\n", + "Оптимизация рекламных бюджетов для онлайн-площадок по продаже автомобилей:\n", + "Цель: Использовать прогнозы цен на автомобили для оптимизации таргетинга рекламы и повышения конверсии на онлайн-площадках.\n", + "Ключевые показатели успеха (KPI):\n", + "Увеличение CTR (Click-Through Rate) рекламных объявлений.\n", + "Повышение конверсии (процент пользователей, совершивших покупку после клика на рекламу).\n", + "Снижение стоимости привлечения клиента (CPA).\n", + "### Цели технического проекта:\n", + "Для бизнес-цели 1:\n", + "Сбор и подготовка данных:\n", + "Очистка данных от пропусков, выбросов и дубликатов.\n", + "Преобразование категориальных переменных в числовые.\n", + "Разделение данных на обучающую и тестовую выборки.\n", + "Разработка и обучение модели:\n", + "Исследование различных алгоритмов машинного обучения (линейная регрессия, деревья решений, случайный лес и т.д.).\n", + "Обучение моделей на обучающей выборке.\n", + "Оценка качества моделей на тестовой выборке с помощью метрик RMSE, MAE и др.\n", + "Развертывание модели:\n", + "Интеграция модели в существующую систему или разработка нового API для доступа к прогнозам.\n", + "Создание веб-интерфейса или мобильного приложения для удобного использования модели.\n", + "Для бизнес-цели 2:\n", + "Анализ данных о пользователях и поведении:\n", + "Анализ данных о просмотрах, кликах и покупках на онлайн-площадке.\n", + "Определение сегментов пользователей с разным уровнем интереса к покупке автомобилей.\n", + "Разработка рекомендательной системы:\n", + "Создание модели, которая будет рекомендовать пользователям автомобили, соответствующие их предпочтениям и бюджету.\n", + "Интеграция рекомендательной системы в рекламные кампании.\n", + "Оптимизация таргетинга рекламы:\n", + "Использование прогнозов цен на автомобили для более точного таргетинга рекламы на пользователей, готовых к покупке.\n", + "Тестирование различных стратегий таргетинга и оценка их эффективности." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['ID', 'Price', 'Levy', 'Manufacturer', 'Model', 'Prod. year',\n", + " 'Category', 'Leather interior', 'Fuel type', 'Engine volume', 'Mileage',\n", + " 'Cylinders', 'Gear box type', 'Drive wheels', 'Doors', 'Wheel', 'Color',\n", + " 'Airbags'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "import pandas as pn\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib\n", + "import matplotlib.ticker as ticker\n", + "df = pn.read_csv(\".//static//csv//car_price_prediction.csv\").head(15000)\n", + "print(df.columns)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} -- 2.25.1 From 9926ca3e2d421c0913ad19e447695e3ee7b7dd31 Mon Sep 17 00:00:00 2001 From: GokaPek Date: Fri, 11 Oct 2024 23:17:25 +0400 Subject: [PATCH 2/4] =?UTF-8?q?=D0=BF=D0=BE=D1=87=D1=82=D0=B8=20=D0=B2?= =?UTF-8?q?=D1=81=D1=91?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- lab_3/lab3.ipynb | 461 ++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 459 insertions(+), 2 deletions(-) diff --git a/lab_3/lab3.ipynb b/lab_3/lab3.ipynb index 024426d..337db01 100644 --- a/lab_3/lab3.ipynb +++ b/lab_3/lab3.ipynb @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -65,9 +65,466 @@ "import matplotlib.pyplot as plt\n", "import matplotlib\n", "import matplotlib.ticker as ticker\n", - "df = pn.read_csv(\".//static//csv//car_price_prediction.csv\").head(15000)\n", + "df = pn.read_csv(\".//static//csv//car_price_prediction.csv\")\n", "print(df.columns)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Разделим на 3 выборки\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер обучающей выборки: 12311\n", + "Размер контрольной выборки: 3078\n", + "Размер тестовой выборки: 3848\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Разделение данных на обучающую и тестовую выборки (80% - обучение, 20% - тест)\n", + "train_data, test_data = train_test_split(df, test_size=0.2, random_state=42)\n", + "\n", + "# Разделение обучающей выборки на обучающую и контрольную (80% - обучение, 20% - контроль)\n", + "train_data, val_data = train_test_split(train_data, test_size=0.2, random_state=42)\n", + "\n", + "print(\"Размер обучающей выборки:\", len(train_data))\n", + "print(\"Размер контрольной выборки:\", len(val_data))\n", + "print(\"Размер тестовой выборки:\", len(test_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABI9UlEQVR4nO3deVxVdf7H8fdlVxRckK1IERVzNysHHbdCFJdyssylxMbSccAWW4yZTLQF08bMdHSaUmu0sWyxpmks3LKS1FTcM3Uw0wR3rmKiwPf3hz/ueL2gQsIFz+v5eJzHg3PO95zzOd+7vTnLvTZjjBEAAICFebi7AAAAAHcjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAGAm5w4cUK7d+9Wfn6+u0vBVWSM0bFjx7Rr1y53l4JSIBABQAU5d+6cJk+erNatW8vX11e1a9dW48aNtWzZMneXViVs3bpVixcvdoxnZGTo3//+t/sKusDJkyf1zDPPKDo6Wj4+Pqpbt66aNGminTt3urs0XCEvdxeAymHevHl64IEHHOO+vr664YYbFBcXp3HjxikkJMSN1QFVX15enuLi4vTtt9/qD3/4g5577jlVr15dnp6eateunbvLqxJOnjypkSNHKjQ0VHXr1tUjjzyi+Ph49e7d2611HT16VF26dNG+ffs0evRodezYUT4+PvL29laDBg3cWhuuHIEITiZOnKjIyEidOXNGX3/9tWbNmqXPPvtMW7duVfXq1d1dHlBlvfTSS1qzZo0+//xzde3a1d3lVEkxMTGOQZKaNGmihx56yM1VSU8++aQOHjyo9PR0NW/e3N3loIwIRHASHx+vm2++WZL04IMPqm7dupo6dao+/vhjDRo0yM3VAVVTfn6+pk2bpscff5ww9CstXrxY27dv1y+//KKWLVvKx8fHrfUcOnRIb731lmbPnk0YquK4hgiXdNttt0mSMjMzJUnHjh3TE088oZYtW6pGjRoKCAhQfHy8Nm3a5LLsmTNnlJKSoiZNmsjPz09hYWG66667tGfPHknS3r17ZbPZShwu/OBYuXKlbDab3n33Xf3pT39SaGio/P39dccdd+inn35y2faaNWvUs2dPBQYGqnr16urSpYu++eabYvexa9euxW4/JSXFpe38+fPVrl07VatWTXXq1NHAgQOL3f6l9u1ChYWFmjZtmpo3by4/Pz+FhIRo5MiROn78uFO7Bg0aqE+fPi7bSUpKcllncbVPmTLFpU+l86dxxo8fr0aNGsnX11cRERF66qmnlJeXV2xfXahr165q0aKFy/SXX35ZNptNe/fudZp+4sQJPfroo4qIiJCvr68aNWqkl156SYWFhY42Rf328ssvu6y3RYsWxT4n3n///RJrHDZs2BWdsmjQoIHj8fHw8FBoaKjuvfde7du377LLStJf//pXNW/eXL6+vgoPD1diYqJOnDjhmL9z504dP35cNWvWVJcuXVS9enUFBgaqT58+2rp1q6PdihUrZLPZ9NFHH7ls45133pHNZlN6erqj5mHDhjm1KeqTlStXOqZ99dVXuueee3TDDTc4HuPHHntMv/zyi9OyKSkpLs+lBQsWqE2bNvLz81PdunU1aNAglz4ZNmyYatSo4TTt/fffd6lDkmrUqOFSs3Rlr6uuXbs6Hv9mzZqpXbt22rRpU7Gvq+Jc/DoPCgpS7969nfpfOv/6SUpKKnE98+bNc3p+r1u3ToWFhTp79qxuvvnmS/aVJC1fvlydOnWSv7+/atWqpTvvvFM7duxwalP0WHz//fcaMGCAAgICHKcIz5w541Lvha/3/Px89erVS3Xq1NH27dud2l7p+5dVcYQIl1QUXurWrStJ+u9//6vFixfrnnvuUWRkpLKzs/W3v/1NXbp00fbt2xUeHi5JKigoUJ8+fbRs2TINHDhQjzzyiE6ePKm0tDRt3bpVUVFRjm0MGjRIvXr1ctpucnJysfW88MILstlsGjt2rA4dOqRp06YpNjZWGRkZqlatmqTzbzjx8fFq166dxo8fLw8PD82dO1e33XabvvrqK916660u673++uuVmpoqSTp16pRGjRpV7LbHjRunAQMG6MEHH9Thw4f12muvqXPnztq4caNq1arlssyIESPUqVMnSdKHH37o8kE3cuRIx/VbDz/8sDIzMzVjxgxt3LhR33zzjby9vYvth9I4ceKEY98uVFhYqDvuuENff/21RowYoRtvvFFbtmzRK6+8oh9++MHp4tVf6/Tp0+rSpYsOHDigkSNH6oYbbtDq1auVnJysgwcPatq0aVdtW2XVqVMnjRgxQoWFhdq6daumTZumn3/+WV999dUll0tJSdGECRMUGxurUaNGaefOnZo1a5bWrVvneAyPHj0q6fzzunHjxpowYYLOnDmjmTNnqmPHjlq3bp2aNGmirl27KiIiQgsWLNDvfvc7p+0sWLBAUVFRjtNFV2rRokU6ffq0Ro0apbp162rt2rV67bXXtH//fi1atKjE5d555x3dd999at26tVJTU3X06FFNnz5dX3/9tTZu3KigoKBS1VGSsryuiowdO7ZU22ratKn+/Oc/yxijPXv2aOrUqerVq9cVB9/iFD22SUlJateunSZNmqTDhw8X21dLly5VfHy8GjZsqJSUFP3yyy967bXX1LFjR23YsMElvA8YMEANGjRQamqqvv32W02fPl3Hjx/X22+/XWI9Dz74oFauXKm0tDQ1a9bMMf3X9LNlGMAYM3fuXCPJLF261Bw+fNj89NNPZuHChaZu3bqmWrVqZv/+/cYYY86cOWMKCgqcls3MzDS+vr5m4sSJjmlz5swxkszUqVNdtlVYWOhYTpKZMmWKS5vmzZubLl26OMZXrFhhJJnrrrvO2O12x/T33nvPSDKvvvqqY92NGzc2PXr0cGzHGGNOnz5tIiMjTffu3V221aFDB9OiRQvH+OHDh40kM378eMe0vXv3Gk9PT/PCCy84Lbtlyxbj5eXlMn3Xrl1Gknnrrbcc08aPH28ufMl99dVXRpJZsGCB07JLlixxmV6/fn3Tu3dvl9oTExPNxS/ji2t/6qmnTHBwsGnXrp1Tn/7jH/8wHh4e5quvvnJafvbs2UaS+eabb1y2d6EuXbqY5s2bu0yfMmWKkWQyMzMd05577jnj7+9vfvjhB6e2Tz/9tPH09DT79u0zxpTtObFo0aISa0xISDD169e/5H4Yc75/ExISnKYNHjzYVK9e/ZLLHTp0yPj4+Ji4uDin18WMGTOMJDNnzhynWoOCgsyRI0cc7X744Qfj7e1t+vfv75iWnJxsfH19zYkTJ5y24+Xl5fS4RkZGmqFDhzrVU7SdFStWOKadPn3ape7U1FRjs9nMjz/+6Jh24fMzPz/fhISEmKioKHPq1ClHm5UrVxpJ5vHHH3dMS0hIMP7+/k7rX7RokUsdxhjj7+/v1M+leV116dLF6fH/7LPPjCTTs2dPl9dAcS5e3hhj/vSnPxlJ5tChQ45pkkxiYmKJ6yl6ryx6fheNN2vWzKmvix6LC/uqTZs2Jjg42Bw9etQxbdOmTcbDw8PpsSx6LO644w6nbf/xj380ksymTZuc6i16XiQnJxtPT0+zePFip+VK+/5lVZwyg5PY2FjVq1dPERERGjhwoGrUqKGPPvpI1113naTzd595eJx/2hQUFOjo0aOqUaOGoqOjtWHDBsd6PvjgAwUFBWn06NEu27iSw9slGTp0qGrWrOkYv/vuuxUWFqbPPvtM0vnbcHft2qXBgwfr6NGjOnLkiI4cOaLc3FzdfvvtWrVqldMpGun8qT0/P79LbvfDDz9UYWGhBgwY4FjnkSNHFBoaqsaNG2vFihVO7c+ePSvpfH+VZNGiRQoMDFT37t2d1tmuXTvVqFHDZZ3nzp1zanfkyBGXw+cXO3DggF577TWNGzfO5bTGokWLdOONN6pp06ZO6yw6TXrx9n+NRYsWqVOnTqpdu7bTtmJjY1VQUKBVq1Y5tT99+rTLvhYUFBS77pMnT+rIkSNOp6jKIi8vT0eOHNGhQ4eUlpam5cuX6/bbb7/kMkuXLtXZs2f16KOPOl4XkvTQQw8pICDA5ZbwBx54wHG0VZIaN26sO+64Q0uWLHHs39ChQ5WXl+d0KvDdd99Vfn6+7rvvPse04OBg7d+//7L7VXTkVJJyc3N15MgRdejQQcYYbdy40aX9kSNHtHLlSmVnZ2vkyJHy9/d3zOvSpYvatWt31W51L+3rqogxRsnJyerfv7/at29/xdsreg0dPnxY6enp+uijj9SqVSuXo11nzpzRkSNHdPToUZf3i5IkJiY69XXXrl2d+urgwYPKyMjQsGHDVKdOHUe7Vq1aqXv37o73sIvXeaGi99Pi2s6YMUOpqamaPn267rzzTqd5Ze1nq+GUGZzMnDlTTZo0kZeXl0JCQhQdHe30Rl9YWKhXX31Vf/3rX5WZmen0IXXhG/2ePXsUHR0tL6+r+xRr3Lix07jNZlOjRo0c5/OLvggtISGhxHXk5OSodu3ajvEjR464rPdiu3btkjGmxHYXn9oq+nC+OIRcvM6cnBwFBwcXO//QoUNO41988YXq1at3yTovNn78eIWHh2vkyJEu19rs2rVLO3bsKHGdF2//19i1a5c2b958xdsaP368xo8f79KuuK9/+P3vf+/4u0aNGurbt69eeeWVUn9VxMKFC7Vw4ULH+C233KI33njjksv8+OOPkqTo6Gin6T4+PmrYsKFjftE/AU2bNnVZx4033qgPPvhAR44cUUhIiJo2bapbbrlFCxYs0PDhwyWdP132m9/8Ro0aNXIs16FDB02fPl0LFy7UbbfdJg8PD+Xk5Lisf9++fXr22Wf1ySefuFybVlz7Cx+ji/erqN5LXbdVGqV9XRVZsGCBtm3bpvfee0/vvPPOFW9v9erVTvvXuHFjLV682OWftDfffFNvvvmmpPOPZfv27TV16lTHDScXutxjW9RXJT1Xitp9/vnnys3NdQqgF/dLVFSUPDw8XK7P+89//qPvvvtO0vnrPC9W1n62GgIRnNx6663FvuiLvPjiixo3bpx+//vf67nnnlOdOnXk4eGhRx999Ir/kypPRTVMmTJFbdq0KbbNhSHl7NmzOnjwoLp3737Z9dpsNv3nP/+Rp6fnJdcpSVlZWZKk0NDQS64zODhYCxYsKHb+xeGhffv2ev75552mzZgxQx9//HGxy+/YsUPz5s3T/Pnzi33DKywsVMuWLTV16tRil4+IiCix9tIqLCxU9+7d9dRTTxU7v0mTJk7jI0aM0D333OM0raTbq5999ll16tRJ586d0/r16zVx4kSdOHGi2P+iLyUuLk5PPvmkJGn//v166aWX1K1bN3333XdO//mXRWmXHzp0qB555BHt379feXl5+vbbbzVjxgynNn/605/0zTffXPLuz4KCAnXv3l3Hjh3T2LFj1bRpU/n7++vAgQMaNmxYsa/ZtLQ0paen69lnny1VzWVR2teVdP41O27cOA0fPtzleXM5rVq10l/+8hdJclzn07VrV23YsMHptXrnnXcqKSlJxhhlZmZq4sSJ6tOnT7HfPP1rnxulUdLR9bVr1+qhhx6Sv7+/nn/+ed1zzz1Owass/WxFBCKUyvvvv69u3bo5/nsqcuLECafDzlFRUVqzZo3OnTt3Vf/7uPgNyRij3bt3q1WrVo7tSlJAQIBiY2Mvu75Nmzbp3LlzlwyBRes1xigyMvKK3oS3b98um81W7H+DF65z6dKl6tix4xW9qQYFBbns06UufE5OTlabNm107733lrj9TZs26fbbb/9VpzGvRFRUlE6dOnVFj4l0/j/ji9te+J/zhVq2bOloGx8fr3379umtt94q9c9hhIWFOW0zOjpaHTp00OLFi0sMHfXr15d0/i6yhg0bOqafPXtWmZmZjvVFRkY62l3s+++/l7+/v9PrZ+DAgRozZoz++c9/6pdffpG3t7fL4xgUFKT09HRt377dEcA3bdqkJ554wtFmy5Yt+uGHH/TWW29p6NChjulpaWkl9kNsbKwCAwP17LPPlljv1fqywdK+rqTzd/QdOnSo2LtAL6d27dpOj3HXrl0VHh6uuXPnOt3Icf311zu1q1GjhoYMGVLsKcYLH9ui081FLuyrC58rF/v+++8VFBTk8hzftWuXY/2StHv3bhUWFrr0f/fu3TVr1iydOXNGixcv1ogRIxx3HEpl62cr4hoilIqnp6eMMU7TFi1apAMHDjhN69+/v44cOeLyX60kl+VL4+2339bJkycd4++//74OHjyo+Ph4SVK7du0UFRWll19+WadOnXJZ/vDhwy61e3p6FntL+4XuuusueXp6asKECS71G2Mcd5pI5297/eCDD3Trrbde8j+vAQMGqKCgQM8995zLvPz8/F91TUx6ero+/vhjTZo0qcSwM2DAAB04cEB///vfXeb98ssvys3NLfP2i9tWenq6Pv/8c5d5J06cuKq/5VVYWCgPD49fHfKKbku/1FcQxMbGysfHR9OnT3d6Xrz55pvKyclxfINyvXr1dPPNN+utt95yOm21Z88effLJJ4qPj3f6zz0oKEjx8fGaP3++FixYoJ49exZ7V5eHh4datGih2NhYxcbGunzjddE6L6zNGKNXX331kvvepk0bhYSE6O9//7tOnz7tmP7VV1/pu+++u+zr5UqV5nUlnb9e7IUXXtBjjz12yaOvV+pKHmPpf0eeizu60rZtW4WGhmr27NlO67m4r8LCwtSmTRu99dZbTq/trVu36osvvnC501Y6fwnDhV577TVJcrzfFenQoYM8PT3l7++v2bNna9WqVU6v69L2s1VxhAil0qdPH02cOFEPPPCAOnTooC1btmjBggVO/x1L5w/5v/322xozZozWrl2rTp06KTc3V0uXLtUf//hHl4v+rlSdOnX029/+Vg888ICys7M1bdo0NWrUyHE6xcPDQ2+88Ybi4+PVvHlzPfDAA7ruuut04MABrVixQgEBAfrXv/6l3NxczZw5U9OnT1eTJk2cvi+lKEht3rxZ6enpiomJUVRUlJ5//nklJydr79696tevn2rWrKnMzEx99NFHGjFihJ544gktXbpU48aN0+bNm/Wvf/3rkvvSpUsXjRw5UqmpqcrIyFBcXJy8vb21a9cuLVq0SK+++qruvvvuMvXTF198oe7du1/yiMz999+v9957T3/4wx+0YsUKdezYUQUFBfr+++/13nvv6fPPP7/skbNTp05pyZIlTtOK/gP+8ssv5e3treuuu05PPvmkPvnkE/Xp00fDhg1Tu3btlJubqy1btuj999/X3r17y3wbd0ZGhmrUqKH8/HytX79eb7/9tu68885iP7wu5b///a/mz58v6fzF6DNmzFBAQMAlL6yuV6+ekpOTNWHCBPXs2VN33HGHdu7cqb/+9a+65ZZbnC6Cnjx5suLi4hQTE6MHH3zQcdu9n5+fXnjhBZd1Dx061PH4Fxear0TTpk0VFRWlJ554QgcOHFBAQIA++OADl2uJLubt7a2XXnpJw4YNU8eOHZWQkKBjx47p1Vdf1XXXXedyu3tBQYHT8yAjI0PS+VM5F174X1BQoAMHDmjt2rW69dZbr/h1VWTDhg0KCgoq8dTr5WRnZzse4yNHjuhvf/ubvLy8XALevn37tGTJEscpsxdeeEH169dX27ZtXY5Se3l5afLkyRo6dKg6deqkIUOGOE7HXX/99U59NWXKFMXHxysmJkbDhw933HYfGBhY7BGvzMxM3XHHHerZs6fS09M1f/58DR48WK1bty5xH3v06KH77rtPTz31lPr27auwsLBS97NlVeQtbai8im4dXbdu3SXbnTlzxjz++OMmLCzMVKtWzXTs2NGkp6cXe0vr6dOnzZ///GcTGRlpvL29TWhoqLn77rvNnj17jDFlu8X6n//8p0lOTjbBwcGmWrVqpnfv3k63DhfZuHGjueuuu0zdunWNr6+vqV+/vhkwYIBZtmyZ07YvN1x8K/YHH3xgfvvb3xp/f3/j7+9vmjZtahITE83OnTuNMcaMHj3adO7c2SxZssSlpotvuy/y+uuvm3bt2plq1aqZmjVrmpYtW5qnnnrK/Pzzz442pb3t3mazmfXr1ztNL+4xOnv2rHnppZdM8+bNja+vr6ldu7Zp166dmTBhgsnJyXHZ3sXru1z/zZ0719H+5MmTJjk52TRq1Mj4+PiYoKAg06FDB/Pyyy+bs2fPGmPK9pwoGry8vEz9+vXNww8/bI4fP26MKd1t9xeuKygoyMTFxZn09PTLLmvM+dvsmzZtary9vU1ISIgZNWqUo4YLLVu2zHTs2NFUq1bNBAQEmN69e5stW7YUu868vDxTu3ZtExgYaH755ZcrqqO42+63b99uYmNjTY0aNUxQUJB56KGHzKZNm1wen+KenwsXLjRt2rRxPDfuvfdes3fvXqc2CQkJV/RaunC4+Hl4udeVMf97vr3yyitOy5b0urrYxc/XWrVqmY4dO5rPPvvMqd2FbWw2mwkNDTV33XWX2bFjhzHG9bb7Iu+9955p27at8fX1NXXq1DGDBg0q9r1p6dKlTs+Bvn37mu3btxe7T9u3bzd33323qVmzpqldu7ZJSkpyeS7ooq/ZMMaYI0eOmHr16pnf/e53TtOvpJ+tzGbMrzh/AVSQlStXqlu3blq0aFGZj5pcaO/evYqMjFRmZmaJ10OkpKRo7969mjdv3q/enhU1aNBAKSkpxX4zMS4vPz9f4eHh6tu3r8s1e1XZvHnzNG/ePJdvscb/FH3Z5+HDh6/aF2Di8riGCAAqocWLF+vw4cNOF0MDKD9cQwRLKrpr5FIXPbdq1crxUyQovS5duji+0BNXbs2aNdq8ebOee+45tW3bVl26dHF3SVfVddddV+zP5wDuRiCCJQUFBTkurizJXXfdVUHVXJveeustd5dQJc2aNUvz589XmzZtrsnTtd27d7/s934B7sA1RAAAwPK4hggAAFgegQgAAFge1xBdgcLCQv3888+qWbNmuf/EAQAAuDqMMTp58qTCw8Odfqi8OASiK/Dzzz9f1R+6BAAAFeenn37S9ddff8k2BKIrULNmTUnnOzQgIMDN1QAAgCtht9sVERHh+By/FALRFSg6TRYQEEAgAgCgirmSy124qBoAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFieWwPRqlWr1LdvX4WHh8tms2nx4sVO8202W7HDlClTHG0aNGjgMn/SpElO69m8ebM6deokPz8/RUREaPLkyRWxewAAoIpwayDKzc1V69atNXPmzGLnHzx40GmYM2eObDab+vfv79Ru4sSJTu1Gjx7tmGe32xUXF6f69etr/fr1mjJlilJSUvT666+X674BAICqw8udG4+Pj1d8fHyJ80NDQ53GP/74Y3Xr1k0NGzZ0ml6zZk2XtkUWLFigs2fPas6cOfLx8VHz5s2VkZGhqVOnasSIEb9+JwAAQJVXZa4hys7O1r///W8NHz7cZd6kSZNUt25dtW3bVlOmTFF+fr5jXnp6ujp37iwfHx/HtB49emjnzp06fvx4sdvKy8uT3W53GgAAwLXLrUeISuOtt95SzZo1dddddzlNf/jhh3XTTTepTp06Wr16tZKTk3Xw4EFNnTpVkpSVlaXIyEinZUJCQhzzateu7bKt1NRUTZgwoZz2BAAAVDZVJhDNmTNHQ4YMkZ+fn9P0MWPGOP5u1aqVfHx8NHLkSKWmpsrX17dM20pOTnZar91uV0RERNkKBwAAlV6VCERfffWVdu7cqXffffeybdu3b6/8/Hzt3btX0dHRCg0NVXZ2tlObovGSrjvy9fUtc5gCAABVT5W4hujNN99Uu3bt1Lp168u2zcjIkIeHh4KDgyVJMTExWrVqlc6dO+dok5aWpujo6GJPlwEAAOtxayA6deqUMjIylJGRIUnKzMxURkaG9u3b52hjt9u1aNEiPfjggy7Lp6ena9q0adq0aZP++9//asGCBXrsscd03333OcLO4MGD5ePjo+HDh2vbtm1699139eqrrzqdEgMAANbm1lNm3333nbp16+YYLwopCQkJmjdvniRp4cKFMsZo0KBBLsv7+vpq4cKFSklJUV5eniIjI/XYY485hZ3AwEB98cUXSkxMVLt27RQUFKRnn32WW+4BAICDzRhj3F1EZWe32xUYGKicnBwFBAS4uxwAAHAFSvP5XSWuIQIAAChPBCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5bg1Eq1atUt++fRUeHi6bzabFixc7zR82bJhsNpvT0LNnT6c2x44d05AhQxQQEKBatWpp+PDhOnXqlFObzZs3q1OnTvLz81NERIQmT55c3rsGAACqELcGotzcXLVu3VozZ84ssU3Pnj118OBBx/DPf/7Taf6QIUO0bds2paWl6dNPP9WqVas0YsQIx3y73a64uDjVr19f69ev15QpU5SSkqLXX3+93PYLAABULV7u3Hh8fLzi4+Mv2cbX11ehoaHFztuxY4eWLFmidevW6eabb5Ykvfbaa+rVq5defvllhYeHa8GCBTp79qzmzJkjHx8fNW/eXBkZGZo6dapTcAIAANZV6a8hWrlypYKDgxUdHa1Ro0bp6NGjjnnp6emqVauWIwxJUmxsrDw8PLRmzRpHm86dO8vHx8fRpkePHtq5c6eOHz9e7Dbz8vJkt9udBgAAcO2q1IGoZ8+eevvtt7Vs2TK99NJL+vLLLxUfH6+CggJJUlZWloKDg52W8fLyUp06dZSVleVoExIS4tSmaLyozcVSU1MVGBjoGCIiIq72rgEAgErErafMLmfgwIGOv1u2bKlWrVopKipKK1eu1O23315u201OTtaYMWMc43a7nVAEAMA1rFIfIbpYw4YNFRQUpN27d0uSQkNDdejQIac2+fn5OnbsmOO6o9DQUGVnZzu1KRov6dokX19fBQQEOA0AAODaVaUC0f79+3X06FGFhYVJkmJiYnTixAmtX7/e0Wb58uUqLCxU+/btHW1WrVqlc+fOOdqkpaUpOjpatWvXrtgdAAAAlZJbA9GpU6eUkZGhjIwMSVJmZqYyMjK0b98+nTp1Sk8++aS+/fZb7d27V8uWLdOdd96pRo0aqUePHpKkG2+8UT179tRDDz2ktWvX6ptvvlFSUpIGDhyo8PBwSdLgwYPl4+Oj4cOHa9u2bXr33Xf16quvOp0SAwAA1mYzxhh3bXzlypXq1q2by/SEhATNmjVL/fr108aNG3XixAmFh4crLi5Ozz33nNNF0seOHVNSUpL+9a9/ycPDQ/3799f06dNVo0YNR5vNmzcrMTFR69atU1BQkEaPHq2xY8decZ12u12BgYHKycnh9BkAAFVEaT6/3RqIqgoCEQAAVU9pPr+r1DVEAAAA5YFABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALM+tgWjVqlXq27evwsPDZbPZtHjxYse8c+fOaezYsWrZsqX8/f0VHh6uoUOH6ueff3ZaR4MGDWSz2ZyGSZMmObXZvHmzOnXqJD8/P0VERGjy5MkVsXsAAKCKcGsgys3NVevWrTVz5kyXeadPn9aGDRs0btw4bdiwQR9++KF27typO+64w6XtxIkTdfDgQccwevRoxzy73a64uDjVr19f69ev15QpU5SSkqLXX3+9XPcNAABUHV7u3Hh8fLzi4+OLnRcYGKi0tDSnaTNmzNCtt96qffv26YYbbnBMr1mzpkJDQ4tdz4IFC3T27FnNmTNHPj4+at68uTIyMjR16lSNGDHi6u0MAACosqrUNUQ5OTmy2WyqVauW0/RJkyapbt26atu2raZMmaL8/HzHvPT0dHXu3Fk+Pj6OaT169NDOnTt1/PjxYreTl5cnu93uNAAAgGuXW48QlcaZM2c0duxYDRo0SAEBAY7pDz/8sG666SbVqVNHq1evVnJysg4ePKipU6dKkrKyshQZGem0rpCQEMe82rVru2wrNTVVEyZMKMe9AQAAlUmVCETnzp3TgAEDZIzRrFmznOaNGTPG8XerVq3k4+OjkSNHKjU1Vb6+vmXaXnJystN67Xa7IiIiylY8AACo9Cp9ICoKQz/++KOWL1/udHSoOO3bt1d+fr727t2r6OhohYaGKjs726lN0XhJ1x35+vqWOUwBAICqp1JfQ1QUhnbt2qWlS5eqbt26l10mIyNDHh4eCg4OliTFxMRo1apVOnfunKNNWlqaoqOjiz1dBgAArMetR4hOnTql3bt3O8YzMzOVkZGhOnXqKCwsTHfffbc2bNigTz/9VAUFBcrKypIk1alTRz4+PkpPT9eaNWvUrVs31axZU+np6Xrsscd03333OcLO4MGDNWHCBA0fPlxjx47V1q1b9eqrr+qVV15xyz4DAIDKx2aMMe7a+MqVK9WtWzeX6QkJCUpJSXG5GLrIihUr1LVrV23YsEF//OMf9f333ysvL0+RkZG6//77NWbMGKdTXps3b1ZiYqLWrVunoKAgjR49WmPHjr3iOu12uwIDA5WTk3PZU3YAAKByKM3nt1sDUVVBIAIAoOopzed3pb6GCAAAoCIQiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOWVKRA1bNhQR48edZl+4sQJNWzY8FcXBQAAUJHKFIj27t2rgoICl+l5eXk6cODAry4KAACgInmVpvEnn3zi+Pvzzz9XYGCgY7ygoEDLli1TgwYNrlpxAAAAFaFUgahfv36SJJvNpoSEBKd53t7eatCggf7yl79cteIAAAAqQqkCUWFhoSQpMjJS69atU1BQULkUBQAAUJFKFYiKZGZmXu06AAAA3KZMgUiSli1bpmXLlunQoUOOI0dF5syZ86sLAwAAqChlCkQTJkzQxIkTdfPNNyssLEw2m+1q1wUAAFBhyhSIZs+erXnz5un++++/2vUAAABUuDJ9D9HZs2fVoUOHX73xVatWqW/fvgoPD5fNZtPixYud5htj9OyzzyosLEzVqlVTbGysdu3a5dTm2LFjGjJkiAICAlSrVi0NHz5cp06dcmqzefNmderUSX5+foqIiNDkyZN/de0AAODaUaZA9OCDD+qdd9751RvPzc1V69atNXPmzGLnT548WdOnT9fs2bO1Zs0a+fv7q0ePHjpz5oyjzZAhQ7Rt2zalpaXp008/1apVqzRixAjHfLvdrri4ONWvX1/r16/XlClTlJKSotdff/1X1w8AAK4NNmOMKe1CjzzyiN5++221atVKrVq1kre3t9P8qVOnlr4Qm00fffSR47uOjDEKDw/X448/rieeeEKSlJOTo5CQEM2bN08DBw7Ujh071KxZM61bt04333yzJGnJkiXq1auX9u/fr/DwcM2aNUt//vOflZWVJR8fH0nS008/rcWLF+v777+/otrsdrsCAwOVk5OjgICAUu8bAACoeKX5/C7TEaLNmzerTZs28vDw0NatW7Vx40bHkJGRUZZVusjMzFRWVpZiY2Md0wIDA9W+fXulp6dLktLT01WrVi1HGJKk2NhYeXh4aM2aNY42nTt3doQhSerRo4d27typ48ePF7vtvLw82e12pwEAAFy7ynRR9YoVK652HS6ysrIkSSEhIU7TQ0JCHPOysrIUHBzsNN/Ly0t16tRxahMZGemyjqJ5tWvXdtl2amqqJkyYcHV2BAAAVHplOkJ0rUtOTlZOTo5j+Omnn9xdEgAAKEdlOkLUrVu3S3730PLly8tcUJHQ0FBJUnZ2tsLCwhzTs7Oz1aZNG0ebQ4cOOS2Xn5+vY8eOOZYPDQ1Vdna2U5ui8aI2F/P19ZWvr++v3gcAAFA1lOkIUZs2bdS6dWvH0KxZM509e1YbNmxQy5Ytr0phkZGRCg0N1bJlyxzT7Ha71qxZo5iYGElSTEyMTpw4ofXr1zvaLF++XIWFhWrfvr2jzapVq3Tu3DlHm7S0NEVHRxd7ugwAAFhPmY4QvfLKK8VOT0lJcfkOoEs5deqUdu/e7RjPzMxURkaG6tSpoxtuuEGPPvqonn/+eTVu3FiRkZEaN26cwsPDHXei3XjjjerZs6ceeughzZ49W+fOnVNSUpIGDhyo8PBwSdLgwYM1YcIEDR8+XGPHjtXWrVv16quvlrgPAADAgsxVtGvXLlO7du0rbr9ixQojyWVISEgwxhhTWFhoxo0bZ0JCQoyvr6+5/fbbzc6dO53WcfToUTNo0CBTo0YNExAQYB544AFz8uRJpzabNm0yv/3tb42vr6+57rrrzKRJk0q1Xzk5OUaSycnJKdVyAADAfUrz+V2m7yEqyT/+8Q+NHTtWP//889VaZaXA9xABAFD1lObzu0ynzO666y6ncWOMDh48qO+++07jxo0ryyoBAADcpkyBKDAw0Gncw8ND0dHRmjhxouLi4q5KYQAAABWlTIFo7ty5V7sOAAAAtylTICqyfv167dixQ5LUvHlztW3b9qoUBQAAUJHKFIgOHTqkgQMHauXKlapVq5Yk6cSJE+rWrZsWLlyoevXqXc0aAQAAylWZvphx9OjROnnypLZt26Zjx47p2LFj2rp1q+x2ux5++OGrXSMAAEC5KtNt94GBgVq6dKluueUWp+lr165VXFycTpw4cbXqqxS47R4AgKqnNJ/fZTpCVFhYKG9vb5fp3t7eKiwsLMsqAQAA3KZMgei2227TI4884vQFjAcOHNBjjz2m22+//aoVBwAAUBHKFIhmzJghu92uBg0aKCoqSlFRUYqMjJTdbtdrr712tWsEAAAoV2W6yywiIkIbNmzQ0qVL9f3330s6/0OrsbGxV7U4AACAilCqI0TLly9Xs2bNZLfbZbPZ1L17d40ePVqjR4/WLbfcoubNm+urr74qr1oBAADKRakC0bRp0/TQQw8Ve6V2YGCgRo4cqalTp1614gAAACpCqQLRpk2b1LNnzxLnx8XFaf369b+6KAAAgIpUqkCUnZ1d7O32Rby8vHT48OFfXRQAAEBFKlUguu6667R169YS52/evFlhYWG/uigAAICKVKpA1KtXL40bN05nzpxxmffLL79o/Pjx6tOnz1UrDgAAoCKU6qc7srOzddNNN8nT01NJSUmKjo6WJH3//feaOXOmCgoKtGHDBoWEhJRbwe7AT3cAAFD1lObzu1TfQxQSEqLVq1dr1KhRSk5OVlGWstls6tGjh2bOnHnNhSEAAHDtK/UXM9avX1+fffaZjh8/rt27d8sYo8aNG6t27drlUR8AAEC5K9M3VUtS7dq1XX7tHgAAoCoq02+ZAQAAXEsIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIqfSBq0KCBbDaby5CYmChJ6tq1q8u8P/zhD07r2Ldvn3r37q3q1asrODhYTz75pPLz892xOwAAoBLycncBl7Nu3ToVFBQ4xrdu3aru3bvrnnvucUx76KGHNHHiRMd49erVHX8XFBSod+/eCg0N1erVq3Xw4EENHTpU3t7eevHFFytmJwAAQKVW6QNRvXr1nMYnTZqkqKgodenSxTGtevXqCg0NLXb5L774Qtu3b9fSpUsVEhKiNm3a6LnnntPYsWOVkpIiHx+fcq0fAABUfpX+lNmFzp49q/nz5+v3v/+9bDabY/qCBQsUFBSkFi1aKDk5WadPn3bMS09PV8uWLRUSEuKY1qNHD9ntdm3btq3Y7eTl5clutzsNAADg2lXpjxBdaPHixTpx4oSGDRvmmDZ48GDVr19f4eHh2rx5s8aOHaudO3fqww8/lCRlZWU5hSFJjvGsrKxit5OamqoJEyaUz04AAIBKp0oFojfffFPx8fEKDw93TBsxYoTj75YtWyosLEy333679uzZo6ioqDJtJzk5WWPGjHGM2+12RURElL1wAABQqVWZQPTjjz9q6dKljiM/JWnfvr0kaffu3YqKilJoaKjWrl3r1CY7O1uSSrzuyNfXV76+vlehagAAUBVUmWuI5s6dq+DgYPXu3fuS7TIyMiRJYWFhkqSYmBht2bJFhw4dcrRJS0tTQECAmjVrVm71AgCAqqNKHCEqLCzU3LlzlZCQIC+v/5W8Z88evfPOO+rVq5fq1q2rzZs367HHHlPnzp3VqlUrSVJcXJyaNWum+++/X5MnT1ZWVpaeeeYZJSYmchQIAABIqiKBaOnSpdq3b59+//vfO0338fHR0qVLNW3aNOXm5ioiIkL9+/fXM88842jj6empTz/9VKNGjVJMTIz8/f2VkJDg9L1FAADA2mzGGOPuIio7u92uwMBA5eTkKCAgwN3lAACAK1Caz+8qcw0RAABAeSEQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAyyMQAQAAy6vUgSglJUU2m81paNq0qWP+mTNnlJiYqLp166pGjRrq37+/srOzndaxb98+9e7dW9WrV1dwcLCefPJJ5efnV/SuAACASszL3QVcTvPmzbV06VLHuJfX/0p+7LHH9O9//1uLFi1SYGCgkpKSdNddd+mbb76RJBUUFKh3794KDQ3V6tWrdfDgQQ0dOlTe3t568cUXK3xfAABA5VTpA5GXl5dCQ0Ndpufk5OjNN9/UO++8o9tuu02SNHfuXN1444369ttv9Zvf/EZffPGFtm/frqVLlyokJERt2rTRc889p7FjxyolJUU+Pj4VvTsAAKASqtSnzCRp165dCg8PV8OGDTVkyBDt27dPkrR+/XqdO3dOsbGxjrZNmzbVDTfcoPT0dElSenq6WrZsqZCQEEebHj16yG63a9u2bSVuMy8vT3a73WkAAADXrkodiNq3b6958+ZpyZIlmjVrljIzM9WpUyedPHlSWVlZ8vHxUa1atZyWCQkJUVZWliQpKyvLKQwVzS+aV5LU1FQFBgY6hoiIiKu7YwAAoFKp1KfM4uPjHX+3atVK7du3V/369fXee++pWrVq5bbd5ORkjRkzxjFut9sJRQAAXMMq9RGii9WqVUtNmjTR7t27FRoaqrNnz+rEiRNObbKzsx3XHIWGhrrcdVY0Xtx1SUV8fX0VEBDgNAAAgGtXlQpEp06d0p49exQWFqZ27drJ29tby5Ytc8zfuXOn9u3bp5iYGElSTEyMtmzZokOHDjnapKWlKSAgQM2aNavw+gEAQOVUqU+ZPfHEE+rbt6/q16+vn3/+WePHj5enp6cGDRqkwMBADR8+XGPGjFGdOnUUEBCg0aNHKyYmRr/5zW8kSXFxcWrWrJnuv/9+TZ48WVlZWXrmmWeUmJgoX19fN+8dAACoLCp1INq/f78GDRqko0ePql69evrtb3+rb7/9VvXq1ZMkvfLKK/Lw8FD//v2Vl5enHj166K9//atjeU9PT3366acaNWqUYmJi5O/vr4SEBE2cONFduwQAACohmzHGuLuIys5utyswMFA5OTlcTwQAQBVRms/vKnUNEQAAQHkgEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMur1IEoNTVVt9xyi2rWrKng4GD169dPO3fudGrTtWtX2Ww2p+EPf/iDU5t9+/apd+/eql69uoKDg/Xkk08qPz+/IncFAABUYl7uLuBSvvzySyUmJuqWW25Rfn6+/vSnPykuLk7bt2+Xv7+/o91DDz2kiRMnOsarV6/u+LugoEC9e/dWaGioVq9erYMHD2ro0KHy9vbWiy++WKH7AwAAKiebMca4u4grdfjwYQUHB+vLL79U586dJZ0/QtSmTRtNmzat2GX+85//qE+fPvr5558VEhIiSZo9e7bGjh2rw4cPy8fH57LbtdvtCgwMVE5OjgICAq7a/gAAgPJTms/vSn3K7GI5OTmSpDp16jhNX7BggYKCgtSiRQslJyfr9OnTjnnp6elq2bKlIwxJUo8ePWS327Vt27Zit5OXlye73e40AACAa1elPmV2ocLCQj366KPq2LGjWrRo4Zg+ePBg1a9fX+Hh4dq8ebPGjh2rnTt36sMPP5QkZWVlOYUhSY7xrKysYreVmpqqCRMmlNOeAACAyqbKBKLExERt3bpVX3/9tdP0ESNGOP5u2bKlwsLCdPvtt2vPnj2Kiooq07aSk5M1ZswYx7jdbldERETZCgcAAJVelThllpSUpE8//VQrVqzQ9ddff8m27du3lyTt3r1bkhQaGqrs7GynNkXjoaGhxa7D19dXAQEBTgMAALh2VepAZIxRUlKSPvroIy1fvlyRkZGXXSYjI0OSFBYWJkmKiYnRli1bdOjQIUebtLQ0BQQEqFmzZuVSNwAAqFoq9SmzxMREvfPOO/r4449Vs2ZNxzU/gYGBqlatmvbs2aN33nlHvXr1Ut26dbV582Y99thj6ty5s1q1aiVJiouLU7NmzXT//fdr8uTJysrK0jPPPKPExET5+vq6c/cAAEAlUalvu7fZbMVOnzt3roYNG6affvpJ9913n7Zu3arc3FxFRETod7/7nZ555hmn01w//vijRo0apZUrV8rf318JCQmaNGmSvLyuLA9y2z0AAFVPaT6/K3UgqiwIRAAAVD3X7PcQAQAAlAcCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCkRudOVeg9T8e11e7Dru7FAAALI1A5EZHc8+q/6zVGv7Wd+LroAAAcB8CkRvVquYtSTqbX6gz5wrdXA0AANZFIHKj6j6e8vY8//MkJ3456+ZqAACwLgKRG9lsNgVW85EknTh9zs3VAABgXQQiN6tV/fxpMwIRAADuQyBys6LriE6c5pQZAADuQiByM8cRol84QgQAgLsQiNyMa4gAAHA/ApGb/e8IEafMAABwFwKRmxVdQ5TDESIAANyGQORm3GUGAID7EYjcLLD6/19DxCkzAADchkDkZv+77Z4jRAAAuAuByM2KTpnlcNs9AABuQyBys9rVue0eAAB3IxC5WeD/HyH65VyBzpwrcHM1AABYE4HIzWr6esnT4/wv3ts5bQYAgFsQiNzMZrPJx/P8w8DPdwAA4B4EokrA1/v/AxHXEQEA4BYEokrAz8tTEr94DwCAuxCIKgE/b06ZAQDgTgSiSsDP+/wRIn7PDAAA9yAQVQKOU2b8fAcAAG5BIKoEuKgaAAD3IhBVAkWnzLiGCAAA9yAQVQJFF1VzDREAAO5BIKoEuIYIAAD3IhBVAkWnzI7ncoQIAAB3IBBVAkUXVedwDREAAG5BIKoEqv3/EaJTefk6V1Do5moAALAeSwWimTNnqkGDBvLz81P79u21du1ad5ckSfLx8pDt/A/ec5QIAAA3sEwgevfddzVmzBiNHz9eGzZsUOvWrdWjRw8dOnTI3aXJw2ZTgJ+3JL6LCAAAd7AZY4y7i6gI7du31y233KIZM2ZIkgoLCxUREaHRo0fr6aefvuSydrtdgYGBysnJUUBAwFWv7ZW0H7Q444B+PHpaN9evrTvbhKu2v49LO5tszuM2lyYqZhIAAJWer7eHbmsaclXXWZrPb6+ruuVK6uzZs1q/fr2Sk5Md0zw8PBQbG6v09HSX9nl5ecrLy3OM5+TkSDrfseXhTO4p1fLMV2beaa394bTW/nCgXLYDAEBlVa+Gj1Y82e2qrrPoc/tKjv1YIhAdOXJEBQUFCglxTp4hISH6/vvvXdqnpqZqwoQJLtMjIiLKrUYAAKzsJ0mBz5fPuk+ePKnAwMBLtrFEICqt5ORkjRkzxjFeWFioY8eOqW7durIVd57qV7Db7YqIiNBPP/1ULqfjrIp+vfro0/JBv5YP+vXqq4p9aozRyZMnFR4eftm2lghEQUFB8vT0VHZ2ttP07OxshYaGurT39fWVr6+v07RatWqVZ4kKCAioMk+wqoR+vfro0/JBv5YP+vXqq2p9erkjQ0UscZeZj4+P2rVrp2XLljmmFRYWatmyZYqJiXFjZQAAoDKwxBEiSRozZowSEhJ0880369Zbb9W0adOUm5urBx54wN2lAQAAN7NMILr33nt1+PBhPfvss8rKylKbNm20ZMkSlwutK5qvr6/Gjx/vcooOvw79evXRp+WDfi0f9OvVd633qWW+hwgAAKAklriGCAAA4FIIRAAAwPIIRAAAwPIIRAAAwPIIRBVg5syZatCggfz8/NS+fXutXbv2ku0XLVqkpk2bys/PTy1bttRnn31WQZVWLaXp13nz5slmszkNfn5+FVht5bdq1Sr17dtX4eHhstlsWrx48WWXWblypW666Sb5+vqqUaNGmjdvXrnXWdWUtl9Xrlzp8ly12WzKysqqmIKrgNTUVN1yyy2qWbOmgoOD1a9fP+3cufOyy/Heemll6ddr6b2VQFTO3n33XY0ZM0bjx4/Xhg0b1Lp1a/Xo0UOHDh0qtv3q1as1aNAgDR8+XBs3blS/fv3Ur18/bd26tYIrr9xK26/S+W9XPXjwoGP48ccfK7Diyi83N1etW7fWzJkzr6h9ZmamevfurW7duikjI0OPPvqoHnzwQX3++eflXGnVUtp+LbJz506n52twcHA5VVj1fPnll0pMTNS3336rtLQ0nTt3TnFxccrNzS1xGd5bL68s/SpdQ++tBuXq1ltvNYmJiY7xgoICEx4eblJTU4ttP2DAANO7d2+nae3btzcjR44s1zqrmtL269y5c01gYGAFVVf1STIfffTRJds89dRTpnnz5k7T7r33XtOjR49yrKxqu5J+XbFihZFkjh8/XiE1XQsOHTpkJJkvv/yyxDa8t5belfTrtfTeyhGicnT27FmtX79esbGxjmkeHh6KjY1Venp6scukp6c7tZekHj16lNjeisrSr5J06tQp1a9fXxEREbrzzju1bdu2iij3msVztXy1adNGYWFh6t69u7755ht3l1Op5eTkSJLq1KlTYhuer6V3Jf0qXTvvrQSicnTkyBEVFBS4fBt2SEhIidcDZGVllaq9FZWlX6OjozVnzhx9/PHHmj9/vgoLC9WhQwft37+/Ikq+JpX0XLXb7frll1/cVFXVFxYWptmzZ+uDDz7QBx98oIiICHXt2lUbNmxwd2mVUmFhoR599FF17NhRLVq0KLEd762lc6X9ei29t1rmpztgbTExMU4/5NuhQwfdeOON+tvf/qbnnnvOjZUBzqKjoxUdHe0Y79Chg/bs2aNXXnlF//jHP9xYWeWUmJiorVu36uuvv3Z3KdeUK+3Xa+m9lSNE5SgoKEienp7Kzs52mp6dna3Q0NBilwkNDS1VeysqS79ezNvbW23bttXu3bvLo0RLKOm5GhAQoGrVqrmpqmvTrbfeynO1GElJSfr000+1YsUKXX/99Zdsy3vrlStNv16sKr+3EojKkY+Pj9q1a6dly5Y5phUWFmrZsmVOifpCMTExTu0lKS0trcT2VlSWfr1YQUGBtmzZorCwsPIq85rHc7XiZGRk8Fy9gDFGSUlJ+uijj7R8+XJFRkZedhmer5dXln69WJV+b3X3Vd3XuoULFxpfX18zb948s337djNixAhTq1Ytk5WVZYwx5v777zdPP/20o/0333xjvLy8zMsvv2x27Nhhxo8fb7y9vc2WLVvctQuVUmn7dcKECebzzz83e/bsMevXrzcDBw40fn5+Ztu2be7ahUrn5MmTZuPGjWbjxo1Gkpk6darZuHGj+fHHH40xxjz99NPm/vvvd7T/73//a6pXr26efPJJs2PHDjNz5kzj6elplixZ4q5dqJRK26+vvPKKWbx4sdm1a5fZsmWLeeSRR4yHh4dZunSpu3ah0hk1apQJDAw0K1euNAcPHnQMp0+fdrThvbX0ytKv19J7K4GoArz22mvmhhtuMD4+PubWW2813377rWNely5dTEJCglP79957zzRp0sT4+PiY5s2bm3//+98VXHHVUJp+ffTRRx1tQ0JCTK9evcyGDRvcUHXlVXS798VDUT8mJCSYLl26uCzTpk0b4+PjYxo2bGjmzp1b4XVXdqXt15deeslERUUZPz8/U6dOHdO1a1ezfPly9xRfSRXXn5Kcnn+8t5ZeWfr1WnpvtRljTMUdjwIAAKh8uIYIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIgGU1aNBA06ZNc3cZgKWtWrVKffv2VXh4uGw2mxYvXlyq5VNSUmSz2VwGf3//Uq2HQATgmjBs2DDHG6GPj48aNWqkiRMnKj8/v8Rl1q1bpxEjRlRglQAulpubq9atW2vmzJllWv6JJ57QwYMHnYZmzZrpnnvuKdV6CEQArhk9e/bUwYMHtWvXLj3++ONKSUnRlClTXNqdPXtWklSvXj1Vr169ossEcIH4+Hg9//zz+t3vflfs/Ly8PD3xxBO67rrr5O/vr/bt22vlypWO+TVq1FBoaKhjyM7O1vbt2zV8+PBS1UEgAnDN8PX1VWhoqOrXr69Ro0YpNjZWn3zyiYYNG6Z+/frphRdeUHh4uKKjoyW5njI7ceKERo4cqZCQEPn5+alFixb69NNPHfO//vprderUSdWqVVNERIQefvhh5ebmVvRuApaSlJSk9PR0LVy4UJs3b9Y999yjnj17ateuXcW2f+ONN9SkSRN16tSpVNvxuhrFAkBlVK1aNR09elSStGzZMgUEBCgtLa3YtoWFhYqPj9fJkyc1f/58RUVFafv27fL09JQk7dmzRz179tTzzz+vOXPm6PDhw0pKSlJSUpLmzp1bYfsEWMm+ffs0d+5c7du3T+Hh4ZLOnyJbsmSJ5s6dqxdffNGp/ZkzZ7RgwQI9/fTTpd4WgQjANccYo2XLlunzzz/X6NGjdfjwYfn7++uNN96Qj49PscssXbpUa9eu1Y4dO9SkSRNJUsOGDR3zU1NTNWTIED366KOSpMaNG2v69Onq0qWLZs2aJT8/v3LfL8BqtmzZooKCAsdrskheXp7q1q3r0v6jjz7SyZMnlZCQUOptEYgAXDM+/fRT1ahRQ+fOnVNhYaEGDx6slJQUJSYmqmXLliWGIUnKyMjQ9ddf7/LGW2TTpk3avHmzFixY4JhmjFFhYaEyMzN14403XvX9Aazu1KlT8vT01Pr16x1Ha4vUqFHDpf0bb7yhPn36KCQkpNTbIhABuGZ069ZNs2bNko+Pj8LDw+Xl9b+3uMvdglutWrVLzj916pRGjhyphx9+2GXeDTfcULaCAVxS27ZtVVBQoEOHDl32mqDMzEytWLFCn3zySZm2RSACcM3w9/dXo0aNyrRsq1attH//fv3www/FHiW66aabtH379jKvH0DxTp06pd27dzvGMzMzlZGRoTp16qhJkyYaMmSIhg4dqr/85S9q27atDh8+rGXLlqlVq1bq3bu3Y7k5c+YoLCxM8fHxZaqDu8wAQFKXLl3UuXNn9e/fX2lpacrMzNR//vMfLVmyRJI0duxYrV69WklJScrIyNCuXbv08ccfKykpyc2VA1Xbd999p7Zt26pt27aSpDFjxqht27Z69tlnJUlz587V0KFD9fjjjys6Olr9+vXTunXrnI7MFhYWat68eRo2bJjLqbUrxREiAPh/H3zwgZ544gkNGjRIubm5atSokSZNmiTp/BGkL7/8Un/+85/VqVMnGWMUFRWle++9181VA1Vb165dZYwpcb63t7cmTJigCRMmlNjGw8NDP/3006+qw2YuVQUAAIAFcMoMAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABY3v8Bq4Zo92ISkscAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWY0lEQVR4nO3deVxU5f4H8M/sbA6rMKAIKCIuoIUbpVlJImHL1W6bt7Rral600rKiW7l0u1b2M8u05VZqt8WkzfKapriUiqYkIqKIhqIou6wCAzPP7w+aEyOggMAA5/N+veal55znnPM9z2wfzjYKIYQAERERkQwobV0AERERUXth8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZUNu6ACIioq7AaDSisLAQZrMZPj4+ti6HGsE9PkRE1KF9+umnOH36tDS8Zs0aZGVl2a6gOg4ePIgHH3wQHh4e0Ol08Pb2xqRJk2xdFl0Bg08XsmbNGigUCulhZ2eHoKAgzJ49Gzk5ObYuj4ioRX755Rc888wzOH36NLZs2YKYmBgolbb/+tqwYQNGjRqF1NRUvPLKK9i6dSu2bt2K999/39al0RXwUFcXtHjxYgQEBKCyshK7d+/Gu+++i02bNiElJQUODg62Lo+IqFnmzp2Lm2++GQEBAQCAefPmwdvb26Y1FRYW4tFHH0VkZCTi4uKg1WptWg81HYNPFxQVFYWhQ4cCAB599FG4u7tj2bJl2LBhAx544AEbV0dE1DzBwcE4deoUUlJS4OHhgT59+ti6JKxevRqVlZVYs2YNQ08nY/t9hdTmbr31VgBARkYGgNq/VJ5++mmEhITAyckJer0eUVFROHz4cL15KysrsXDhQgQFBcHOzg7e3t6YOHEiTp06BQA4ffq01eG1yx8333yztKydO3dCoVDgyy+/xPPPPw+DwQBHR0fceeedOHv2bL1179+/H+PHj4ezszMcHBwwZswY7Nmzp8FtvPnmmxtc/8KFC+u1/fTTTxEWFgZ7e3u4ubnh/vvvb3D9V9q2usxmM5YvX46BAwfCzs4OXl5emDlzJi5evGjVzt/fHxMmTKi3ntmzZ9dbZkO1L126tF6fAkBVVRUWLFiAwMBA6HQ6+Pr64plnnkFVVVWDfVXXzTffjEGDBtUb/8Ybb0ChUFidVwEARUVFePLJJ+Hr6wudTofAwEC89tprMJvNUhtLv73xxhv1ljto0KAGXxNfffVVozVOnToV/v7+V90Wf39/6flRKpUwGAy47777kJmZ2aR5p06dajVuxowZsLOzw86dO63Gr1q1CgMHDoROp4OPjw9iYmJQVFRk1aap/Vq35oYelu2u26dvvvkm/Pz8YG9vjzFjxiAlJaXeerZv347Ro0fD0dERLi4uuOuuu3Ds2LGr9lvdR93tbuy1W1dznncAyM3NxbRp0+Dl5QU7OzsMHjwYa9eubXCZa9asgaOjI0aMGIE+ffogJiYGCoWi3nPWWE2Wh0ajgb+/P+bPnw+j0Si1s5wmcPDgwUaXdfPNN1ttw759+zBkyBD8+9//lt4Pffv2xauvvmr1fgCAmpoavPzyy+jTpw90Oh38/f3x/PPP13uPWvr5p59+wpAhQ2BnZ4cBAwbgm2++sWpnqbfu+/Po0aNwdXXFhAkTUFNTI41vyntWbrjHRwYsIcXd3R0A8Pvvv+O7777DX//6VwQEBCAnJwfvv/8+xowZg9TUVOlqBJPJhAkTJiA+Ph73338/nnjiCZSWlmLr1q1ISUmx+qvrgQcewO2332613tjY2AbreeWVV6BQKPDss88iNzcXy5cvR0REBJKSkmBvbw+g9oM7KioKYWFhWLBgAZRKJVavXo1bb70Vv/zyC4YPH15vuT179sSSJUsAAGVlZZg1a1aD637xxRdx77334tFHH0VeXh5WrFiBm266CYcOHYKLi0u9eWbMmIHRo0cDAL755ht8++23VtNnzpyJNWvW4JFHHsHjjz+OjIwMvPPOOzh06BD27NkDjUbTYD80R1FRkbRtdZnNZtx5553YvXs3ZsyYgf79++PIkSN48803ceLECXz33XfXvG6LS5cuYcyYMcjKysLMmTPRq1cv7N27F7Gxsbhw4QKWL1/eautqqdGjR2PGjBkwm81ISUnB8uXLcf78efzyyy/NWs6CBQvw0Ucf4csvv7T6slu4cCEWLVqEiIgIzJo1C2lpaXj33Xdx4MCBFj3Xy5cvR1lZGQDg2LFj+Pe//43nn38e/fv3BwA4OTlZtf/kk09QWlqKmJgYVFZW4q233sKtt96KI0eOwMvLCwCwbds2REVFoXfv3li4cCEqKiqwYsUK3Hjjjfjtt98aDJGWfqtbR1uqqKjAzTffjJMnT2L27NkICAhAXFwcpk6diqKiIjzxxBONznvy5En85z//adb6LO/hqqoqbNmyBW+88Qbs7Ozw8ssvt3gbCgoKsHv3buzevRt///vfERYWhvj4eMTGxuL06dN47733pLaPPvoo1q5di3vuuQdPPfUU9u/fjyVLluDYsWP1Pk/S09Nx33334bHHHsOUKVOwevVq/PWvf8XmzZtx2223NVjL2bNnMX78eAQHB2P9+vVQq2u/2jvDe9YmBHUZq1evFgDEtm3bRF5enjh79qxYt26dcHd3F/b29uLcuXNCCCEqKyuFyWSymjcjI0PodDqxePFiadzHH38sAIhly5bVW5fZbJbmAyCWLl1ar83AgQPFmDFjpOEdO3YIAKJHjx6ipKREGr9+/XoBQLz11lvSsvv27SsiIyOl9QghxKVLl0RAQIC47bbb6q3rhhtuEIMGDZKG8/LyBACxYMECadzp06eFSqUSr7zyitW8R44cEWq1ut749PR0AUCsXbtWGrdgwQJR923zyy+/CADis88+s5p38+bN9cb7+fmJ6OjoerXHxMSIy9+Kl9f+zDPPCE9PTxEWFmbVp//973+FUqkUv/zyi9X87733ngAg9uzZU299dY0ZM0YMHDiw3vilS5cKACIjI0Ma9/LLLwtHR0dx4sQJq7bPPfecUKlUIjMzUwjRstdEXFxcozVOmTJF+Pn5XXE7hKjt3ylTpliNe/DBB4WDg0Oz5n3//fcFALFixQqrNrm5uUKr1Ypx48ZZvX/eeecdAUB8/PHH0rjm9KuFpS927NhRb5qlT+u+j4UQYv/+/QKAmDt3rjRuyJAhwtPTUxQUFEjjDh8+LJRKpXj44YfrLbtHjx7ikUceuWIdjb12G6qxKc/78uXLBQDx6aefSuOMRqMIDw8XTk5O0ueDZZmrV6+W2t17771i0KBBwtfXt97z3VhNdecXQggfHx9x++23S8OWz84DBw40uqwxY8ZYbcOYMWMEALFw4UKrdlOnThUAxJEjR4QQQiQlJQkA4tFHH7Vq9/TTTwsAYvv27dI4Pz8/AUB8/fXX0rji4mLh7e0trrvuunr1ZmRkiMLCQjFgwADRr18/kZ+fb7WOpr5n5YaHurqgiIgIdO/eHb6+vrj//vvh5OSEb7/9Fj169AAA6HQ66YoIk8mEgoICODk5oV+/fvjtt9+k5Xz99dfw8PDAnDlz6q3j8kMzzfHwww+jW7du0vA999wDb29vbNq0CQCQlJSE9PR0PPjggygoKEB+fj7y8/NRXl6OsWPH4ueff663m7ayshJ2dnZXXO8333wDs9mMe++9V1pmfn4+DAYD+vbtix07dli1t+wK1+l0jS4zLi4Ozs7OuO2226yWGRYWBicnp3rLrK6utmqXn5+PysrKK9adlZWFFStW4MUXX6y3ByAuLg79+/dHcHCw1TIthzcvX/+1iIuLw+jRo+Hq6mq1roiICJhMJvz8889W7S9dulRvW00mU4PLLi0tRX5+fr1DRs1VVVWF/Px85ObmYuvWrdi+fTvGjh3b5Pk3bNiAf/zjH5g/fz5mz55tNW3btm0wGo148sknra4omj59OvR6Pf73v/9ZtTeZTPW2/9KlS9e0fXfffbf0PgaA4cOHY8SIEdJ758KFC0hKSsLUqVPh5uYmtQsNDcVtt90mtavLaDRe8TVuYXntFhQUWB1KuVxTnvdNmzbBYDBYnXOo0Wjw+OOPo6ysDLt27Wpw2YmJiYiLi8OSJUuadVVXWVkZ8vPzkZWVhQ8++ADZ2dkNvi6Ki4uRn5+P0tLSJi1XpVJh7ty5VuOeeuopAJBeD5Y+nzdv3hXbWfj4+OAvf/mLNKzX6/Hwww/j0KFDyM7OtmpbWVmJO++8E3l5edi8ebO0V9+iue9ZueChri5o5cqVCAoKglqthpeXF/r162f1IWE2m/HWW29h1apVyMjIsPpQqvvGOXXqFPr16yftNm0tffv2tRpWKBQIDAyUjlenp6cDAKZMmdLoMoqLi+Hq6ioN5+fn11vu5dLT0yGEaLTd5YcpLF/Cl4eNy5dZXFwMT0/PBqfn5uZaDf/000/o3r37Feu83IIFC+Dj44OZM2fWOxcmPT0dx44da3SZl6//WqSnpyM5ObnJ61qwYAEWLFhQr53lkExdf//736X/Ozk54Y477sCbb77ZYNsrWbduHdatWycNDxs2DB9++GGT5k1KSsL69ethMplQWFhYb/qZM2cAAP369bMar9Vq0bt3b2m6xfHjx5v9XF9NQ6/doKAgrF+//oo1AkD//v2xZcsWlJeXw9HRURpfXFx8xde4Rd3XrkqlQmhoKF599VWMGzfOql1TnvczZ86gb9++9cKL5RDf5X1p8dxzz2H06NGYMGFCvWB6JXPmzLH6A+6RRx6pF1iA2j8aLVxcXPDAAw9g6dKlVv1loVAo4OPjA71ebzXe8nlr+Tw7c+YMlEolAgMDrdoZDAa4uLjU29bAwMB6f1gGBQUBqD1nyWAwWG3Hvn37YGdn12AYbe57Vi4YfLqg4cOHS1d1NeTf//43XnzxRfz973/Hyy+/DDc3NyiVSjz55JMd4oQ3Sw1Lly7FkCFDGmxT94PaaDTiwoULjR7/rrtchUKBH3/8ESqV6orLBCD9dVX3g6ahZXp6euKzzz5rcPrlHzgjRozAv/71L6tx77zzDjZs2NDg/MeOHcOaNWvw6aefNnj+iNlsRkhICJYtW9bg/L6+vo3W3lxmsxm33XYbnnnmmQanWz6cLWbMmIG//vWvVuOmT5/e4LwvvfQSRo8ejerqaiQmJmLx4sUoKipqcA/FlYwbNw7z588HAJw7dw6vvfYabrnlFhw8eFA6f6wxhw8fRlRUFMaOHYv58+fjb3/7W70TcpvD39+/3rkocXFx+OCDD1q8zNZWWFgIo9F4xde4Rd3X7vnz5/Haa6/hL3/5C44ePWp13lBznvfm+Omnn7Bt2zYkJCQ0e9758+dj3LhxMJlMOHr0KBYvXgwhBFavXm3VzvJHY1VVFXbu3CmdqL1q1ap6y7za6+ly17KXvDG//fYbNmzYgNmzZ2PGjBnYvn271fTmvmflgsFHhr766ivccsst+Oijj6zGFxUVwcPDQxru06cP9u/fj+rq6lY5QdfCskfHQgiBkydPIjQ0VFovULuLt+5fYI05fPgwqqurrxj2LMsVQiAgIKBJb/jU1FQoFIoG/3quu8xt27bhxhtvbNIHoYeHR71tutIJyLGxsRgyZAjuu+++Rtd/+PBhjB07tk0+WC9fV1lZWZOeE6B278TlbRv6yxkAQkJCpLZRUVHIzMzE2rVrr3hIpSHe3t5W6+zXrx9uuOEGfPfdd1e9lUNISAji4uJgb2+PuLg4zJgxA8nJydIhVD8/PwBAWloaevfuLc1nNBqRkZHR4LZePi4pKalZ23O5y987AHDixAkpeNSt8XLHjx+Hh4eH1XOQmpoK4M89LVdy+Ws3MDAQN954I37++Wer4NOU593Pzw/Jyckwm81We32OHz9utR0WQgg899xz+Mtf/oKRI0detdbLDRgwQKopMjISVVVVeP755/HKK69Y/bRE3T8ao6OjcfjwYWzevLnBZQYEBOCnn35CaWmp1aH7EydOwGw2Wz0nZrMZ6enpVv2ck5ODoqKiett68uRJCCGs3s8nTpwAgHonpn/44Ye48847oVKpMGHCBHz00UeYNm2aNL2571m54Dk+MqRSqSCEsBoXFxdX7xbwkyZNQn5+Pt555516y7h8/uawXJli8dVXX+HChQuIiooCAISFhaFPnz544403pCte6srLy6tXu+WNfyUTJ06ESqXCokWL6tUvhEBBQYE0XFNTg6+//hrDhw+/4mGAe++9FyaTqcGrQ2pqaq7pnJWEhARs2LABr776aqOh5t5770VWVlaDV7lUVFSgvLy8xetvaF0JCQnYsmVLvWlFRUXNDilXYvlCvNYwV1FRAQBNurT/+uuvh6OjI5RKJT788EOcPn0aixcvlqZHRERAq9Xi7bfftnr9fPTRRyguLkZ0dPQ11doU3333ndX79Ndff8X+/ful9463tzeGDBmCtWvXWr32UlJS8NNPP9W78nLdunXQarUYNWpUs2ux7JltaO/p1dx+++3Izs7Gl19+KY2rqanBihUr4OTkhDFjxtSrMzk5ucErG1vC8rqoe0l7Q8xmc6Pbd/vtt8NkMtX7fLTsfbW8Hix9fvkVVJe3szh//rzVlV4lJSX45JNPMGTIkHp75ixXm0ZHR+P+++/H/Pnzre7S357v2c6Ee3xkaMKECVi8eDEeeeQR3HDDDThy5Ag+++wzq79igdqTkD/55BPMmzcPv/76K0aPHo3y8nJs27YN//jHP3DXXXe1aP1ubm4YNWoUHnnkEeTk5GD58uUIDAyUdodbvniioqIwcOBAPPLII+jRoweysrKwY8cO6PV6/PDDDygvL8fKlSvx9ttvIygoyOq+I5bAlJycjISEBISHh6NPnz7417/+JV1uevfdd6Nbt27IyMjAt99+ixkzZuDpp5/Gtm3b8OKLLyI5ORk//PDDFbdlzJgxmDlzJpYsWYKkpCSMGzcOGo0G6enpiIuLw1tvvYV77rmnRf30008/4bbbbrviX2sPPfQQ1q9fj8ceeww7duzAjTfeCJPJhOPHj2P9+vXYsmXLVfeElZWV1fur1rLHYNeuXdBoNOjRowfmz5+P77//HhMmTMDUqVMRFhaG8vJyHDlyBF999RVOnz5ttcewOZKSkuDk5ISamhokJibik08+wV133dXsL9Xff/8dn376KYDak8Lfeecd6PX6Zp3gDNTed+bZZ5/Fq6++ivvvvx+hoaHo3r07YmNjsWjRIowfPx533nkn0tLSsGrVKgwbNgx/+9vfmrWOlggMDMSoUaMwa9YsVFVVYfny5XB3d7c6lLF06VJERUUhPDwc06ZNky5nd3Z2lu4NlZ6ejgULFuCLL77Ac889V+88lYZYTqAFak+ifu211+Ds7Ixbbrml2dsxY8YMvP/++5g6dSoSExPh7++Pr776Cnv27MHy5cut9qAAte+F6dOnX3Hv65UkJCRArVZLh7pWrFiB6667rt4elISEBOTn50uHuuLj4/H00083uMzbb78dERER+Oc//4mMjAwMGTIE27dvx9dff43HHntMuo/T4MGDMWXKFHzwwQcoKirCmDFj8Ouvv2Lt2rW4++676/VfUFAQpk2bhgMHDsDLywsff/wxcnJy6h2Wu9xbb72F/v37Y86cOdI5X235nu3UbHQ1GbWBplySKUTt5exPPfWU8Pb2Fvb29uLGG28UCQkJ9S7XFKL2EvJ//vOfIiAgQGg0GmEwGMQ999wjTp06JYRo2aXLX3zxhYiNjRWenp7C3t5eREdHizNnztSb/9ChQ2LixInC3d1d6HQ64efnJ+69914RHx9vte6rPS6/5PXrr78Wo0aNEo6OjsLR0VEEBweLmJgYkZaWJoQQYs6cOeKmm24SmzdvrlfT5ZezW3zwwQciLCxM2Nvbi27duomQkBDxzDPPiPPnz0ttmns5u0KhEImJiVbjG3qOjEajeO2118TAgQOFTqcTrq6uIiwsTCxatEgUFxfXW9/ly7ta/9W9FLi0tFTExsaKwMBAodVqhYeHh7jhhhvEG2+8IYxGoxCiZa8Jy0OtVgs/Pz/x+OOPi4sXLwohmnc5e91leXh4iHHjxomEhIQmzXv566SyslIEBweLYcOGiZqaGmn8O++8I4KDg4VGoxFeXl5i1qxZUq0WbXU5+9KlS8X//d//CV9fX6HT6cTo0aPF4cOH67Xftm2buPHGG4W9vb3Q6/XijjvuEKmpqdL0L774QgwaNEi89dZbVreMaKyOxvp23759DdZ4ucufdyGEyMnJEY888ojw8PAQWq1WhISE1LvsvO5l/FlZWVbTGnrOGus3y0OpVIqePXuKKVOmWN0WwPLZaXlotVoRGBgoXnrpJVFVVSWEaPi9V1ZWJubOnSt8fHyERqMRgYGB4tVXX613u5Dq6mqxaNEi6XPU19dXxMbGisrKynrbFB0dLbZs2SJCQ0OFTqcTwcHB9W73UPdy9rrWrl0rAIjvv/9eGteU96zcKIS4hmMWRM2wc+dO3HLLLYiLi2vxXpC6Tp8+jYCAAGRkZDR6Z9+FCxfi9OnTWLNmzTWvT478/f2xcOHCq94hl9qW5bW+dOnSRvdAUOfn7++PQYMGYePGjbYupUvjOT5EREQkGzzHhzotJycnTJ48+YonH4eGhlpdtUHNM2bMGKsb5hERdXYMPtRpeXh4SCeyNmbixIntVE3XdPmPRhIRdXY8x4eIiIhkg+f4EBERkWww+BAREZFs8Bwf1N6d8/z58+jWrVub3/afiIiIWocQAqWlpfDx8an3o7eNYfBB7S3CW/PHHImIiKj9nD17Fj179mxSWwYfQLo9+tmzZ5t063YiIiKyvZKSEvj6+tb7mZMrYfABpMNber2ewYeIiKiTac5pKjy5mYiIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkQ23rAroyo9GI5ORkq3GhoaHQarU2qoiIiEjeGHzaUHJyMpat3w6DXx8AQPaZU5gHYOjQobYtjIiISKYYfNqYwa8PfINCbF0GERERgef4EBERkYww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbNg0+CxcuBAKhcLqERwcLE2vrKxETEwM3N3d4eTkhEmTJiEnJ8dqGZmZmYiOjoaDgwM8PT0xf/581NTUtPemEBERUSegtnUBAwcOxLZt26RhtfrPkubOnYv//e9/iIuLg7OzM2bPno2JEydiz549AACTyYTo6GgYDAbs3bsXFy5cwMMPPwyNRoN///vf7b4tRERE1LHZPPio1WoYDIZ644uLi/HRRx/h888/x6233goAWL16Nfr37499+/Zh5MiR+Omnn5Camopt27bBy8sLQ4YMwcsvv4xnn30WCxcuhFarbe/NISIiog7M5uf4pKenw8fHB71798bkyZORmZkJAEhMTER1dTUiIiKktsHBwejVqxcSEhIAAAkJCQgJCYGXl5fUJjIyEiUlJTh69Gij66yqqkJJSYnVg4iIiLo+mwafESNGYM2aNdi8eTPeffddZGRkYPTo0SgtLUV2dja0Wi1cXFys5vHy8kJ2djYAIDs72yr0WKZbpjVmyZIlcHZ2lh6+vr6tu2FERETUIdn0UFdUVJT0/9DQUIwYMQJ+fn5Yv3497O3t22y9sbGxmDdvnjRcUlLC8ENERCQDNj/UVZeLiwuCgoJw8uRJGAwGGI1GFBUVWbXJycmRzgkyGAz1rvKyDDd03pCFTqeDXq+3ehAREVHX16GCT1lZGU6dOgVvb2+EhYVBo9EgPj5emp6WlobMzEyEh4cDAMLDw3HkyBHk5uZKbbZu3Qq9Xo8BAwa0e/1ERETUsdn0UNfTTz+NO+64A35+fjh//jwWLFgAlUqFBx54AM7Ozpg2bRrmzZsHNzc36PV6zJkzB+Hh4Rg5ciQAYNy4cRgwYAAeeughvP7668jOzsYLL7yAmJgY6HQ6W24aERERdUA2DT7nzp3DAw88gIKCAnTv3h2jRo3Cvn370L17dwDAm2++CaVSiUmTJqGqqgqRkZFYtWqVNL9KpcLGjRsxa9YshIeHw9HREVOmTMHixYtttUlERETUgSmEEMLWRdhaSUkJnJ2dUVxc3Krn+xw8eBCf7z8D36AQAMDZE0fw4Ag/DB06tNXWQUREJFct+f7uUOf4EBEREbUlBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIikg0GHyIiIpINBh8iIiKSDQYfIiIiko0OE3xeffVVKBQKPPnkk9K4yspKxMTEwN3dHU5OTpg0aRJycnKs5svMzER0dDQcHBzg6emJ+fPno6ampp2rJyIios6gQwSfAwcO4P3330doaKjV+Llz5+KHH35AXFwcdu3ahfPnz2PixInSdJPJhOjoaBiNRuzduxdr167FmjVr8NJLL7X3JhAREVEnYPPgU1ZWhsmTJ+M///kPXF1dpfHFxcX46KOPsGzZMtx6660ICwvD6tWrsXfvXuzbtw8A8NNPPyE1NRWffvophgwZgqioKLz88stYuXIljEajrTaJiIiIOiibB5+YmBhER0cjIiLCanxiYiKqq6utxgcHB6NXr15ISEgAACQkJCAkJAReXl5Sm8jISJSUlODo0aONrrOqqgolJSVWDyIiIur61LZc+bp16/Dbb7/hwIED9aZlZ2dDq9XCxcXFaryXlxeys7OlNnVDj2W6ZVpjlixZgkWLFl1j9URERNTZ2GyPz9mzZ/HEE0/gs88+g52dXbuuOzY2FsXFxdLj7Nmz7bp+IiIisg2bBZ/ExETk5ubi+uuvh1qthlqtxq5du/D2229DrVbDy8sLRqMRRUVFVvPl5OTAYDAAAAwGQ72rvCzDljYN0el00Ov1Vg8iIiLq+mwWfMaOHYsjR44gKSlJegwdOhSTJ0+W/q/RaBAfHy/Nk5aWhszMTISHhwMAwsPDceTIEeTm5kpttm7dCr1ejwEDBrT7NhEREVHHZrNzfLp164ZBgwZZjXN0dIS7u7s0ftq0aZg3bx7c3Nyg1+sxZ84chIeHY+TIkQCAcePGYcCAAXjooYfw+uuvIzs7Gy+88AJiYmKg0+nafZuIiIioY7Ppyc1X8+abb0KpVGLSpEmoqqpCZGQkVq1aJU1XqVTYuHEjZs2ahfDwcDg6OmLKlClYvHixDasmIiKijqpDBZ+dO3daDdvZ2WHlypVYuXJlo/P4+flh06ZNbVwZERERdQU2v48PERERUXth8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZaFHw6d27NwoKCuqNLyoqQu/eva+5KCIiIqK20KLgc/r0aZhMpnrjq6qqkJWVdc1FEREREbUFdXMaf//999L/t2zZAmdnZ2nYZDIhPj4e/v7+rVYcERERUWtqVvC5++67AQAKhQJTpkyxmqbRaODv74//+7//a7XiiIiIiFpTsw51mc1mmM1m9OrVC7m5udKw2WxGVVUV0tLSMGHChCYv791330VoaCj0ej30ej3Cw8Px448/StMrKysRExMDd3d3ODk5YdKkScjJybFaRmZmJqKjo+Hg4ABPT0/Mnz8fNTU1zdksIiIikokWneOTkZEBDw+Pa155z5498eqrryIxMREHDx7ErbfeirvuugtHjx4FAMydOxc//PAD4uLisGvXLpw/fx4TJ06U5jeZTIiOjobRaMTevXuxdu1arFmzBi+99NI110ZERERdj0IIIVoyY3x8POLj46U9P3V9/PHHLS7Izc0NS5cuxT333IPu3bvj888/xz333AMAOH78OPr374+EhASMHDkSP/74IyZMmIDz58/Dy8sLAPDee+/h2WefRV5eHrRabZPWWVJSAmdnZxQXF0Ov17e49ssdPHgQn+8/A9+gEADA2RNH8OAIPwwdOrTV1kFERCRXLfn+btEen0WLFmHcuHGIj49Hfn4+Ll68aPVoCZPJhHXr1qG8vBzh4eFITExEdXU1IiIipDbBwcHo1asXEhISAAAJCQkICQmRQg8AREZGoqSkRNpr1JCqqiqUlJRYPYiIiKjra9bJzRbvvfce1qxZg4ceeuiaCzhy5AjCw8NRWVkJJycnfPvttxgwYACSkpKg1Wrh4uJi1d7LywvZ2dkAgOzsbKvQY5lumdaYJUuWYNGiRddcOxEREXUuLdrjYzQaccMNN7RKAf369UNSUhL279+PWbNmYcqUKUhNTW2VZTcmNjYWxcXF0uPs2bNtuj4iIiLqGFoUfB599FF8/vnnrVKAVqtFYGAgwsLCsGTJEgwePBhvvfUWDAYDjEYjioqKrNrn5OTAYDAAAAwGQ72rvCzDljYN0el00pVklgcRERF1fS061FVZWYkPPvgA27ZtQ2hoKDQajdX0ZcuWtbggy6XxYWFh0Gg0iI+Px6RJkwAAaWlpyMzMRHh4OAAgPDwcr7zyCnJzc+Hp6QkA2Lp1K/R6PQYMGNDiGoiIiKhralHwSU5OxpAhQwAAKSkpVtMUCkWTlxMbG4uoqCj06tULpaWl+Pzzz7Fz507prtDTpk3DvHnz4ObmBr1ejzlz5iA8PBwjR44EAIwbNw4DBgzAQw89hNdffx3Z2dl44YUXEBMTA51O15JNIyIioi6sRcFnx44drbLy3NxcPPzww7hw4QKcnZ0RGhqKLVu24LbbbgMAvPnmm1AqlZg0aRKqqqoQGRmJVatWSfOrVCps3LgRs2bNQnh4OBwdHTFlyhQsXry4VeojIiKirqXF9/HpSngfHyIios6nJd/fLdrjc8stt1zxkNb27dtbslgiIiKiNtWi4GM5v8eiuroaSUlJSElJqffjpUREREQdRYuCz5tvvtng+IULF6KsrOyaCiIiIiJqKy26j09j/va3v13T73QRERERtaVWDT4JCQmws7NrzUUSERERtZoWHeqaOHGi1bAQAhcuXMDBgwfx4osvtkphRERERK2tRcHH2dnZalipVKJfv35YvHgxxo0b1yqFEREREbW2FgWf1atXt3YdRERERG2uRcHHIjExEceOHQMADBw4ENddd12rFEVERETUFloUfHJzc3H//fdj586dcHFxAQAUFRXhlltuwbp169C9e/fWrJGIiIioVbToqq45c+agtLQUR48eRWFhIQoLC5GSkoKSkhI8/vjjrV0jERERUato0R6fzZs3Y9u2bejfv780bsCAAVi5ciVPbiYiIqIOq0V7fMxmMzQaTb3xGo0GZrP5mosiIiIiagstCj633nornnjiCZw/f14al5WVhblz52Ls2LGtVhwRERFRa2pR8HnnnXdQUlICf39/9OnTB3369EFAQABKSkqwYsWK1q6RiIiIqFW06BwfX19f/Pbbb9i2bRuOHz8OAOjfvz8iIiJatTgiIiKi1tSsPT7bt2/HgAEDUFJSAoVCgdtuuw1z5szBnDlzMGzYMAwcOBC//PJLW9VKREREdE2aFXyWL1+O6dOnQ6/X15vm7OyMmTNnYtmyZa1WHBEREVFralbwOXz4MMaPH9/o9HHjxiExMfGaiyIiIiJqC80KPjk5OQ1exm6hVquRl5d3zUURERERtYVmBZ8ePXogJSWl0enJycnw9va+5qKIiIiI2kKzgs/tt9+OF198EZWVlfWmVVRUYMGCBZgwYUKrFUdERETUmpp1OfsLL7yAb775BkFBQZg9ezb69esHADh+/DhWrlwJk8mEf/7zn21SKBEREdG1albw8fLywt69ezFr1izExsZCCAEAUCgUiIyMxMqVK+Hl5dUmhcqR0WhEcnKy1bjQ0FBotVobVURERNS5NfsGhn5+fti0aRMuXryIkydPQgiBvn37wtXVtS3qk7Xk5GQsW78dBr8+AIDsM6cwD8DQoUNtWxgREVEn1aI7NwOAq6srhg0b1pq1UAMMfn3gGxRi6zKIiIi6hBb9VhcRERFRZ8TgQ0RERLLR4kNd1PHwZGgiIqIrY/DpQngyNBER0ZUx+HQxPBmaiIiocTzHh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIM/UmojJ3JKkVVUgQB3R/R0tYda1XAGLTIqcDo9D+eLKnHpkgZ7fsjCTUfLcEeQAxw0SoSGhkKr1bZz9URERJ0Tg48NJJ4pxAMf7IfRZAYAOGhViBrkjb9c1wMGZzuYzAI70nLx+d4CZBbrABT9MacKJTVA3LFybEgrg2/NebwGYOjQoTbaEiIios6Fwaed5V0y4cX/JsJoMqN7Nx1KKqpxyWjC17+dw9e/navXXgmB3t27oY+nI84e2Y8anR55Gi9cvFSNU8oe2J1ZAeYeIiKipmHwaUcmM/Da3iLkl9Wgv7ceXz0WDnuNCr9lXsTXv51D/LFcXKoyQgjAz1mNQM1FVAslggYGAQBKj5RBpVIjcoQffknPR9K5IrxzoATDB+fjhj4eNt46IiKijo8nN7ejrAolThfVwN1Ri/88HAZHnRpKpQJD/d2wZGIoVkW6ILQyBZGGCgTblyItcQ/KigrrLUepVOCmIA/0sDehRgAz/5uI7OJKG2wRERFR58Lg045yK1UAgHuH+aKnq0ODbQx+feAbFALfoBC4G3o0uiyFQoGh7tUIdFWjtLIGr20+3iY1ExERdSUMPu1ECIHcytruHhXYOoelVApg+vV6KBTAt4eycKLA2CrLJSIi6qoYfNpJYbkRlWYFtEogzM+11Zbbx1WDv4b1BAB8nFQKIVpt0URERF0Og087OXuxAgAQ7KGFnUbVqst+OrIfnHRqnLxYg3MVfEqJiIgaw2/JdpJZeAkAEOLZ+jcb9Oxmh+mjewMATpbyQj0iIqLGMPi0A7NZIOuPPT6hXm1zl+XJI3tBrQQuGpW8wouIiKgRNg0+S5YswbBhw9CtWzd4enri7rvvRlpamlWbyspKxMTEwN3dHU5OTpg0aRJycnKs2mRmZiI6OhoODg7w9PTE/PnzUVNT056bckU5pZUwmszQKgX8Xdpmj4yHkw439LQDABw+V9Qm6yAiIursbBp8du3ahZiYGOzbtw9bt25FdXU1xo0bh/LycqnN3Llz8cMPPyAuLg67du3C+fPnMXHiRGm6yWRCdHQ0jEYj9u7di7Vr12LNmjV46aWXbLFJDbIc5uquM0OlULTZem4PrL1E/kROKcqrOk7wIyIi6ihsekLI5s2brYbXrFkDT09PJCYm4qabbkJxcTE++ugjfP7557j11lsBAKtXr0b//v2xb98+jBw5Ej/99BNSU1Oxbds2eHl5YciQIXj55Zfx7LPPYuHChR3iBzzzy2ovM3fTmdt0PYFuGrhpzSg0KpFyvhg+bbo2IiKizqdDneNTXFwMAHBzcwMAJCYmorq6GhEREVKb4OBg9OrVCwkJCQCAhIQEhISEwMvLS2oTGRmJkpISHD16tMH1VFVVoaSkxOrRloou1QYfJ3XbX2ve26l2T8+xC7y0nYiI6HIdJviYzWY8+eSTuPHGGzFo0CAAQHZ2NrRaLVxcXKzaenl5ITs7W2pTN/RYplumNWTJkiVwdnaWHr6+vq28NX8SAiiuqAbQPsHHx94MlVKB4opqFFe33WE1IiKizqjDBJ+YmBikpKRg3bp1bb6u2NhYFBcXS4+zZ8+22boqzUC1SUABwLEdgo9aCfi7157rc+5S694viIiIqLPrEMFn9uzZ2LhxI3bs2IGePXtK4w0GA4xGI4qKiqza5+TkwGAwSG0uv8rLMmxpczmdTge9Xm/1aCtlf+x10dtroGynHTBBXt0A1P4oquDxLiIiIolNg48QArNnz8a3336L7du3IyAgwGp6WFgYNBoN4uPjpXFpaWnIzMxEeHg4ACA8PBxHjhxBbm6u1Gbr1q3Q6/UYMGBA+2zIFZTV1Haxi4Om3dbp7+4ItVKB8holMop4dRcREZGFTa/qiomJweeff44NGzagW7du0jk5zs7OsLe3h7OzM6ZNm4Z58+bBzc0Ner0ec+bMQXh4OEaOHAkAGDduHAYMGICHHnoIr7/+OrKzs/HCCy8gJiYGOp3OlpsHACivqd3N42LffsFHq1bC390RJ/PKkHCuEve225qJiIg6NpsGn3fffRcAcPPNN1uNX716NaZOnQoAePPNN6FUKjFp0iRUVVUhMjISq1atktqqVCps3LgRs2bNQnh4OBwdHTFlyhQsXry4vTbjisoswcdBC1S07rJNNdVITU2VhlNTU2Ey2QMA+no54WReGfaeq4IQAoo2vH8QERFRZ2HT4NOU80/s7OywcuVKrFy5stE2fn5+2LRpU2uW1mr+DD6aVg8+eVlnsO5oEYJLHQEAR/cfhGfvgfBH7eEuBQRyyk3IyC9H7+5OrbtyIiKiTqhDnNzcVZmF+DP4tNGhLncff/gGhcA3KATuhh7SeK1aCY8/bpj4S3p+m6ybiIios2HwaUMFFWaYhQJKBaC3a79zfCw87SzBJ6/d101ERNQRMfi0oQultVdU6e01ULbXtex1eP0RfBJOFcBY07Y/l0FERNQZMPi0oQtlJgCAq4Ntfi/MSWGEo8qMcqMJX2zdh4MHD8JoNNqkFiIioo7Apic3d3XZfwSfxs7vMRqNSE5OlobrXpXVGvLPn4G62hPQeeLz3/LgXpyGeQCGDh3aausgIiLqTBh82tCFstpDXY3dvDA5ORnL1m+Hwa8PAOurslqLl5MaxdXARThi4B/rISIikisGnzZkOdTl8sehrobuu9O9ZwB8g0IAANlnTrZ6Da7KSgBAbmkVqrq1+uKJiIg6FQafNjTUW4ea6lK4/rHH50r33WkrWoUZ7o5aFJQbkV/FU7qIiEjeGHza0EOh3aCqKES3OpeyW+67A7TNHp6G9HCxZ/AhIiICr+qSBR+X2hOmCxh8iIhI5vhNKAM+LnYAgKJqBSqqeT8fIiKSLwYfGehmp4HeTg1AgbSCaluXQ0REZDMMPjJhOdx1nMGHiIhkjMFHJizB51g+79xMRETyxeAjEz3+CD7phdX83S4iIpItBh+ZcHXQQKsUMJqAlPPFti6HiIjIJhh8ZEKhUMBdV7un50BGoY2rISIisg0GHxlx19YGn6SzRbYthIiIyEYYfGTElcGHiIhkjsFHRly1AkoAF4orkVNSaetyiIiI2h2Dj4yolYCvc+3Psx3KLLJtMURERDbA4CMzfd1qfzCVh7uIiEiOGHxk5s/gc9HGlRAREbU/Bh+ZsQSfI+eKYTILG1dDRETUvhh8ZMRUU42Scydgp1ag3GjCdzv2wWjkT1gQEZF8MPjISF7WGazfcwzdVDUAgFVbjiA5OdnGVREREbUfBh+Zcffxh5/BAwBg6uZl42qIiIjaF4OPDBmc7QAAhUY+/UREJC/85pMhg742+JRUK1DBX2onIiIZYfCRIUedGk46NQAFThXW2LocIiKidsPgI1OWw13phdU2roSIiKj9MPjIlOVwF4MPERHJCYOPTNUNPkLwRoZERCQPDD4y5anXQQGBi5VmXCjmL7UTEZE8MPjIlEalhF5Tu6eHP1hKRERyweAjY27a2kvZGXyIiEguGHxkzFX7xx6fzCLbFkJERNROGHxkzE1Xu8fnSFYxaky8kSEREXV9DD4y1k0t4KBWoKLahLScUluXQ0RE1OYYfGRMoQD6uGkA8DwfIiKSBwYfmetrCT48z4eIiGSAwUfm+rqpAXCPDxERyQODj8xZ9viczCtDaSV/voKIiLo2Bh+Zc7FToYeLPYQAks8V27ocIiKiNsXgQxjSywUAD3cREVHXx+BDuM7XBQBwiCc4ExFRF8fgQxjyR/BJOlvEX2onIqIujcGHMKiHM9RKBfLLqpBVVGHrcoiIiNoMgw/BTqNCf289AOA3Hu4iIqIujMFHxkw11UhNTcXBgwfRy772UvZ9p/JsXBUREVHbUdu6ALKdvKwzWHe0CMGljsi/pASgxe60bACDbV0aERFRm+AeH5lz9/GHb1AIQvr3AwCcLa5B8SXeyJCIiLomBh8CADjq1HBSmyEAHDxTaOtyiIiI2gSDD0k8dGYAwK+nGXyIiKhrsmnw+fnnn3HHHXfAx8cHCoUC3333ndV0IQReeukleHt7w97eHhEREUhPT7dqU1hYiMmTJ0Ov18PFxQXTpk1DWVlZO25F1+FuCT4ZDD5ERNQ12TT4lJeXY/DgwVi5cmWD019//XW8/fbbeO+997B//344OjoiMjISlZWVUpvJkyfj6NGj2Lp1KzZu3Iiff/4ZM2bMaK9N6FI8dLU3LzxyrhgVRpONqyEiImp9Nr2qKyoqClFRUQ1OE0Jg+fLleOGFF3DXXXcBAD755BN4eXnhu+++w/33349jx45h8+bNOHDgAIYOHQoAWLFiBW6//Xa88cYb8PHxabdt6QocVAJu9koUVphx6OxF3NDHw9YlERERtaoOe45PRkYGsrOzERERIY1zdnbGiBEjkJCQAABISEiAi4uLFHoAICIiAkqlEvv372902VVVVSgpKbF6EKBQAP09NAB4uIuIiLqmDht8srOzAQBeXl5W4728vKRp2dnZ8PT0tJquVqvh5uYmtWnIkiVL4OzsLD18fX1bufrOa1B3LQBgz8l8G1dCRETU+jps8GlLsbGxKC4ulh5nz561dUkdxmAvHYDan64oreT9fIiIqGvpsMHHYDAAAHJycqzG5+TkSNMMBgNyc3OtptfU1KCwsFBq0xCdTge9Xm/1oFqejir09nCEySyw91SBrcshIiJqVR02+AQEBMBgMCA+Pl4aV1JSgv379yM8PBwAEB4ejqKiIiQmJkpttm/fDrPZjBEjRrR7zV3F6L61JzX/ks7f7SIioq7Fpld1lZWV4eTJk9JwRkYGkpKS4Obmhl69euHJJ5/Ev/71L/Tt2xcBAQF48cUX4ePjg7vvvhsA0L9/f4wfPx7Tp0/He++9h+rqasyePRv3338/r+i6BqP7dsfahDP4+QTP8yEioq7FpsHn4MGDuOWWW6ThefPmAQCmTJmCNWvW4JlnnkF5eTlmzJiBoqIijBo1Cps3b4adnZ00z2effYbZs2dj7NixUCqVmDRpEt5+++1235auJLyPOzQqBTILL+FMQTn83B1tXRIREVGrsGnwufnmmyGEaHS6QqHA4sWLsXjx4kbbuLm54fPPP2+L8mTLUafG9b1csT+jED+n5+MhBh8iIuoiOuw5PmRbNwV1BwD8fILn+RARUdfB4EMNGvNH8Nmdns+fryAioi6DwYcaNNBHj56u9qioNmHXidyrz0BERNQJMPhQgxQKBaIG1d4L6ceUxu+CTURE1Jkw+FCjxg/yBgDEH8tFVQ0PdxERUefH4EONus7XBV56HcqqarA7nff0ISKizs+ml7NTx2KqqUZqaqrVuOs9lfixpPZw19j+Xo3MSURE1Dkw+JAkL+sM1h0tQnDpn/ftyTxzAVAGYGtqDow1ZmjV3ElIRESdF4MPWXH38YdvUIg0XFNdjcx8M4orqvHBxr0Y2dMOoaGh0Gq1NqySiIioZfjnO11R/vkz0JZmAQD+m1SIZeu3Izk52cZVERERtQyDD11VgHPtjsGcShX0PfrYuBoiIqKWY/Chq7JXmtDT1R4AcLqcR0eJiKjzYvChJhnk4wwAOFOugukKPyxLRETUkTH4UJP06e4IO7USFSYFDl0w2rocIiKiFmHwoSZRq5QY+Mden+/Sym1cDRERUcsw+FCTDenlAiUEjhdU49eMQluXQ0RE1GwMPtRkTjo1/Bxrf7Nr5Y6TNq6GiIio+Rh8qFn66k1QAth1Ig8pWcW2LoeIiKhZGHyoWZzUAjf42gEAlm87YeNqiIiImofBh5rtr/0doVYqsO1YLn+1nYiIOhUGH2q2Hno1/jbSDwDw8sZU1JjMNq6IiIioaRh8qEWejOgLZ3sN0nJK8eXBs7Yuh4iIqEkYfKhFXBy0eDKiLwBg6ZY05JZU2rgiIiKiq2PwoRb720g/DPTRo+hSNWK/OQLBn7IgIqIOjsGHWkyjUmLZvUOgVSkRfzwXcYnnbF0SERHRFfGntqlZTDXVSE1NtRr3xK19sHRrOhb/kIqhfq7o3d3JRtURERFdGYMPNUte1hmsO1qE4FJHAEDW72mICu2JYHcDjhdU46EPduP7OaPhrne0caVERET18VAXNZu7jz98g0LgGxQClUqF9XuOobeuFPYqgaxSE6Z/vBcmM8/3ISKijofBh66Zu48/+vYPwV3X94JSIfBbthEvfJcCM8MPERF1MAw+1Gq89HYY6lYNJYAvfs3Egu+P8kovIiLqUBh8qFX1dDDjH8P0UCiA/+47g9hvjqCad3YmIqIOgsGHWpWpphqe5Rl47Ho9FADWHTiLhz7cj6JLRluXRkRExOBDrSsv6wzW7T6GnNxcjPQwQilM2JdRiDve2Y1fMwptXR4REckcL2enVidd9QVAdzgJScV2OFtYgfveT0B0oB0m9bNHN3ut1D40NBRarbbxBRIREbUSBh9qU8bcDHgVlcLZdxjOlKux8WQlNp8oxmAPBXo5mJGTeQrzAAwdOtTWpRIRkQzwUBe1OU8fX9w9sj/uHOwDnTCiRqlDYqEWP1/Uw9S9L8y88ouIiNoJgw+1mwAPR1wn0uGvLoZWrURBuRH7C7SYv60QW45m89J3IiJqcww+1K6UEPBVl+LvN/hjeIAb1AqBM8U1mPnfRExYsRtbU3MYgIiIqM0w+JBN6DQqhPd2x3jvKkwKdoSjVoWj50sw/ZODuGvlHiSeuWjrEomIqAviyc1kUypRjcHKTERHBuOHE+XYdPISks8VY9K7e3HfUF/MHdsb504dt5qHV4EREVFLMfiQTdX9tXcFgIGVpyC698GhIjt8efAsvj90Bt7G8xjs5wGFAsg+w6vAiIio5Xioi2yu7q+926kEqn4/iJs8q6DXmFFhUuJ3VU/sK3WBvU8QDH59bF0uERF1Ygw+1OG4+/jjupBBmDIqCP7mC1DBjAvFlfji10ykFKlRVcOTn4mIqGV4qIs6LKVSAR8UwFMHFOgDcSqvHCdK1Zi3tQCvu+VhTFD3qy7DaDQiOTnZahzPESIiki8GH+rwdAoTJoT64FReGbYdPY+cchOmfPwrRgV64ImIvhjm79bovMnJyVi2frt0iIznCBERyRuDD3Uafbo7QWGogtneDVt+r8Duk/nYfTIfg3roMen6nrg9xBuudkqrPTypqano3jMAvkEhNqyciIg6CgYf6lQ0SuDBId3w3MQRWLXzFL5KPIuUrBKkZKVi0Q+p8HFSwVSaBz8PJ3jozDh18CA8ew+Ev60LJyKiDoHBhzolXzcHLJkYgvmR/fB9Uha+TTqP5HNFOF9mAhRuyCmobWfvPQal1dXwKLyEni72ti2aiIhsjsGHOhVTTTVSU1Ol4erqavRTAi+O0KHsuu7YcugU9hfao0ThiPwyIyoUdqgw2eHbQ1mw16hg0KoRmmvEdWYBlVJhwy0hIiJbYPChTqXuDQ8B4Oj+XVDZOSJ48NA/hhPQo/dA3HHjLagwmrBz104Ua9xRrOyGimoTMqrVWPjzRaw8FI/bBxkwYbAPwnq5QskQREQkCww+1OlYbngIANlnTkLl4GI1bGGvVcEDJfDSKDE4fDDOXbyEQ+mZKDBqkFdahbUJZ7A24Qy8ne0QHeKNW4M9cb2fK+w0KptsFxERtT0GH5IFlVIBP3dHKAtq8NdhPqjU++GH5PPYejQHF4or8eHuDHy4OwMalQIDvPXoZ+iG3t2d4NlNBw8nHbr/8a+rgwZq1Z/3/eR9goiIOhcGH5IVU0010o8fw4ABCjzYG7jHzw0X7byx7Xg+Ek4VILukEofPFePwueJGl+GgVsBJp4STVgGF8RKKSi/BWe8EB5WA8WI2/l5YjXE3hsHVQQOFgofQiIg6EgYfkpXLzxHK+j0N0YN7YvKAAXiwtx57Dl/A/9JKoHLtgfIaBQouXoRJZQ9oHVBlBgAFLtUIXKoxIbccALSAUouCsj9WoPTFc9sL8dz2rXDSqdHLzR4uKiO8ndTwdlLB4KRCxIhQeLk4MhQREdlAlwk+K1euxNKlS5GdnY3BgwdjxYoVGD58uK3Log7o8nOE1u0+Vudk6V9h6D0Q1w/rDwA4sPVbqBxccP2NQ2A2C+yL/wFmO1f0CR2KymozUg/9CrPWCe49A1BSWYO8gouoFkqU1ihRVlWD1Aulf6y1Slr/Czt3wU6jtDqE5uGkhd5eA0eNEqUFOXDQKOCoUcJBo8B1g4Lh3s0Bens17DUqBiYiomvQJYLPl19+iXnz5uG9997DiBEjsHz5ckRGRiItLQ2enp62Lo86uMuDUGOUSgU0MEGlrIG3c+09gfJRBJUauL6PBwDgwNYEFBUVoW/oUFyqUSD16FFovXrDycsPRZeMyC8pR6VJgcpqM85drMC5ixVXL3Bnwp81KAC9vQbO9hro7TSwUytQVXEJWhWgViqgUgholIBOrYJGpYBGCfTwNsBep4FOrYRKIZB74Tw0SkCtUkClAPz8/KFW134U1NTU4MyZ09L6TDUmKBSATqOGUlG7jr6BfWCn00KtVECrVkKnVv7xrwpKUYO0Y6nQKCEFtGs956mtz6Pq7OdptXf9nb2/iLpE8Fm2bBmmT5+ORx55BADw3nvv4X//+x8+/vhjPPfcczaujuTG3ccf/v1qg1T5+XSo1GW4Prg2gB/Y+i0Ki4rhN3AoKk1A+vFUmHXd4Orth2qzArm52dA4ucHe2R3GGjNKSkpQLZQwK9UQUMAsgKJL1Si6VN30gtJ+v/L0hMPN28CfDzapmRICCmGG0w95cLLXQatWQqtSoNpYCQjADAAC0NnZAVBAQMAsgBqTGZcqq2A21w5XVdegqsYMKFUQAIRZQPPNBWhUKqiUteHNTqeFWqWEWqWoDYBKJTQqBVRKBZQAqirKoVQooFICKoUCbq7O0Khqr94rvFiIE2dzYefgBACovFSGfvuK0N3DHSrln8ur/fePYVUj46Xpf45XKWr/NZkFTGaBGrOAyWxGtcl6uMYsUGMSqKquQXZOLswCMInaPnBxdQMUCtSYBcxmAZNA7b9mgYtFF3HyXC4cHJ2gVAhUlpXgukMl8DEYpD5Qq5TQ/FG3RqmESqmARqWQTtSvNtXWU2My//l/sxk1JgGjySw9F2YhkJubh+Tfs2DnpAcAVJSVYvBvJfD28qzXX+qG+kmlaLBflQoFWrIzszasn7Ea5+fnB4269b/eRN3/i7rjRYPj689z2cRmLMu6zeXzi4anNWW5zayj/jqs120yC1RX1yDr/Pk/XjO1Dy8vL0wd1RsuDrYPyJ0++BiNRiQmJiI2NlYap1QqERERgYSEhAbnqaqqQlXVn4ceiotrT2QtKSlp1drKyspw9sRRVFVcAgDkZGZAaeeAk04OnWK4I9TQVYfV1eVwAmBfcg5KOwf09qv9oVWRewjKEgcEuV0HqIDjZ/ZAaeeAvgOvg1kAqUkHUFJ2CR49A2CCCjkXzsGpuw88e/jDLIDssxmARgc3zx4wC6C0tAQ9XB3gpHdGtQkoLC5BTqkRGjsHmKFAVWUFXOy1cHCo3YN16VIFiiqM0Opqh8vLSqBQKqGzd4IAUHHpEsxmM1QarRTE1BoNzFCi2mz9+rcMXjRW4WJJGRrX/PddDYAm7Ctr3OmLl43QAMYq6f95py4Cpy5vY0sFV5let347XEgtAFKvNs+1sAMKjX/8X4fsYwXAsbZcX3NdsHUBVE8ubgnUQ+nh1KpLtXxvNxYqGyQ6uaysLAFA7N2712r8/PnzxfDhwxucZ8GCBQK14ZQPPvjggw8++Ojkj7NnzzY5N3T6PT4tERsbi3nz5knDZrMZhYWFcHd3b9UTR0tKSuDr64uzZ89Cr9e32nLJGvu5fbCf2wf7uX2wn9tHW/ezEAKlpaXw8fFp8jydPvh4eHhApVIhJyfHanxOTg4MBkOD8+h0Ouh0OqtxLi4ubVUi9Ho931jtgP3cPtjP7YP93D7Yz+2jLfvZ2dm5We2VV2/SsWm1WoSFhSE+Pl4aZzabER8fj/DwcBtWRkRERB1Np9/jAwDz5s3DlClTMHToUAwfPhzLly9HeXm5dJUXEREREdBFgs99992HvLw8vPTSS8jOzsaQIUOwefNmeHl52bQunU6HBQsW1DusRq2L/dw+2M/tg/3cPtjP7aMj9rNCiOZcA0ZERETUeXX6c3yIiIiImorBh4iIiGSDwYeIiIhkg8GHiIiIZIPBpw2tXLkS/v7+sLOzw4gRI/Drr7/auqQOYeHChVAoFFaP4OBgaXplZSViYmLg7u4OJycnTJo0qd4NKjMzMxEdHQ0HBwd4enpi/vz5qKmpsWqzc+dOXH/99dDpdAgMDMSaNWvq1dKVnqOff/4Zd9xxB3x8fKBQKPDdd99ZTRdC4KWXXoK3tzfs7e0RERGB9PR0qzaFhYWYPHky9Ho9XFxcMG3aNJSVWf/OVnJyMkaPHg07Ozv4+vri9ddfr1dLXFwcgoODYWdnh5CQEGzatKnZtXRUV+vnqVOn1nt9jx8/3qoN+/nqlixZgmHDhqFbt27w9PTE3XffjbS0NKs2Hemzoim1dERN6eebb7653mv6scces2rTqfq5hT+RRVexbt06odVqxccffyyOHj0qpk+fLlxcXEROTo6tS7O5BQsWiIEDB4oLFy5Ij7y8PGn6Y489Jnx9fUV8fLw4ePCgGDlypLjhhhuk6TU1NWLQoEEiIiJCHDp0SGzatEl4eHiI2NhYqc3vv/8uHBwcxLx580RqaqpYsWKFUKlUYvPmzVKbrvYcbdq0Sfzzn/8U33zzjQAgvv32W6vpr776qnB2dhbfffedOHz4sLjzzjtFQECAqKiokNqMHz9eDB48WOzbt0/88ssvIjAwUDzwwAPS9OLiYuHl5SUmT54sUlJSxBdffCHs7e3F+++/L7XZs2ePUKlU4vXXXxepqanihRdeEBqNRhw5cqRZtXRUV+vnKVOmiPHjx1u9vgsLC63asJ+vLjIyUqxevVqkpKSIpKQkcfvtt4tevXqJsrIyqU1H+qy4Wi0dVVP6ecyYMWL69OlWr+ni4mJpemfrZwafNjJ8+HARExMjDZtMJuHj4yOWLFliw6o6hgULFojBgwc3OK2oqEhoNBoRFxcnjTt27JgAIBISEoQQtV88SqVSZGdnS23effddodfrRVVVlRBCiGeeeUYMHDjQatn33XefiIyMlIa78nN0+Rey2WwWBoNBLF26VBpXVFQkdDqd+OKLL4QQQqSmpgoA4sCBA1KbH3/8USgUCpGVlSWEEGLVqlXC1dVV6mchhHj22WdFv379pOF7771XREdHW9UzYsQIMXPmzCbX0lk0FnzuuuuuRudhP7dMbm6uACB27dolhOhYnxVNqaWzuLyfhagNPk888USj83S2fuahrjZgNBqRmJiIiIgIaZxSqURERAQSEhJsWFnHkZ6eDh8fH/Tu3RuTJ09GZmYmACAxMRHV1dVWfRccHIxevXpJfZeQkICQkBCrG1RGRkaipKQER48eldrUXYaljWUZcnuOMjIykJ2dbbW9zs7OGDFihFW/uri4YOjQoVKbiIgIKJVK7N+/X2pz0003QavVSm0iIyORlpaGixcvSm2u1PdNqaWz27lzJzw9PdGvXz/MmjULBQUF0jT2c8sUFxcDANzc3AB0rM+KptTSWVzezxafffYZPDw8MGjQIMTGxuLSpUvStM7Wz13izs0dTX5+PkwmU707R3t5eeH48eM2qqrjGDFiBNasWYN+/frhwoULWLRoEUaPHo2UlBRkZ2dDq9XW+9FYLy8vZGdnAwCys7Mb7FvLtCu1KSkpQUVFBS5evCir58jSLw1tb90+8/T0tJquVqvh5uZm1SYgIKDeMizTXF1dG+37usu4Wi2d2fjx4zFx4kQEBATg1KlTeP755xEVFYWEhASoVCr2cwuYzWY8+eSTuPHGGzFo0CAA6FCfFU2ppTNoqJ8B4MEHH4Sfnx98fHyQnJyMZ599Fmlpafjmm28AdL5+ZvChdhcVFSX9PzQ0FCNGjICfnx/Wr18Pe3t7G1ZGdO3uv/9+6f8hISEIDQ1Fnz59sHPnTowdO9aGlXVeMTExSElJwe7du21dSpfWWD/PmDFD+n9ISAi8vb0xduxYnDp1Cn369GnvMq8ZD3W1AQ8PD6hUqnpnmufk5MBgMNioqo7LxcUFQUFBOHnyJAwGA4xGI4qKiqza1O07g8HQYN9apl2pjV6vh729veyeI8s2XWl7DQYDcnNzrabX1NSgsLCwVfq+7vSr1dKV9O7dGx4eHjh58iQA9nNzzZ49Gxs3bsSOHTvQs2dPaXxH+qxoSi0dXWP93JARI0YAgNVrujP1M4NPG9BqtQgLC0N8fLw0zmw2Iz4+HuHh4TasrGMqKyvDqVOn4O3tjbCwMGg0Gqu+S0tLQ2ZmptR34eHhOHLkiNWXx9atW6HX6zFgwACpTd1lWNpYliG35yggIAAGg8Fqe0tKSrB//36rfi0qKkJiYqLUZvv27TCbzdIHXXh4OH7++WdUV1dLbbZu3Yp+/frB1dVVanOlvm9KLV3JuXPnUFBQAG9vbwDs56YSQmD27Nn49ttvsX379nqH/jrSZ0VTaumortbPDUlKSgIAq9d0p+rnJp8GTc2ybt06odPpxJo1a0RqaqqYMWOGcHFxsTrrXa6eeuopsXPnTpGRkSH27NkjIiIihIeHh8jNzRVC1F6u2KtXL7F9+3Zx8OBBER4eLsLDw6X5LZdOjhs3TiQlJYnNmzeL7t27N3jp5Pz588WxY8fEypUrG7x0sis9R6WlpeLQoUPi0KFDAoBYtmyZOHTokDhz5owQovbSZhcXF7FhwwaRnJws7rrrrgYvZ7/uuuvE/v37xe7du0Xfvn2tLrMuKioSXl5e4qGHHhIpKSli3bp1wsHBod5l1mq1Wrzxxhvi2LFjYsGCBQ1eZn21WjqqK/VzaWmpePrpp0VCQoLIyMgQ27ZtE9dff73o27evqKyslJbBfr66WbNmCWdnZ7Fz506ry6gvXboktelInxVXq6Wjulo/nzx5UixevFgcPHhQZGRkiA0bNojevXuLm266SVpGZ+tnBp82tGLFCtGrVy+h1WrF8OHDxb59+2xdUodw3333CW9vb6HVakWPHj3EfffdJ06ePClNr6ioEP/4xz+Eq6urcHBwEH/5y1/EhQsXrJZx+vRpERUVJezt7YWHh4d46qmnRHV1tVWbHTt2iCFDhgitVit69+4tVq9eXa+WrvQc7dixQwCo95gyZYoQovby5hdffFF4eXkJnU4nxo4dK9LS0qyWUVBQIB544AHh5OQk9Hq9eOSRR0RpaalVm8OHD4tRo0YJnU4nevToIV599dV6taxfv14EBQUJrVYrBg4cKP73v/9ZTW9KLR3Vlfr50qVLYty4caJ79+5Co9EIPz8/MX369Hphmv18dQ31MQCr93FH+qxoSi0d0dX6OTMzU9x0003Czc1N6HQ6ERgYKObPn291Hx8hOlc/K/7YcCIiIqIuj+f4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BBRl+Tv74/ly5fbugwi6mAYfIiow5s6dSoUCgUUCgW0Wi0CAwOxePFi1NTUNDrPgQMHrH5VmogIANS2LoCIqCnGjx+P1atXo6qqCps2bUJMTAw0Gg1iY2Ot2hmNRmi1WnTv3t1GlRJRR8Y9PkTUKeh0OhgMBvj5+WHWrFmIiIjA999/j6lTp+Luu+/GK6+8Ah8fH/Tr1w9A/UNdRUVFmDlzJry8vGBnZ4dBgwZh48aN0vTdu3dj9OjRsLe3h6+vLx5//HGUl5e392YSURvjHh8i6pTs7e1RUFAAAIiPj4der8fWrVsbbGs2mxEVFYXS0lJ8+umn6NOnD1JTU6FSqQAAp06dwvjx4/Gvf/0LH3/8MfLy8jB79mzMnj0bq1evbrdtIqK2x+BDRJ2KEALx8fHYsmUL5syZg7y8PDg6OuLDDz+EVqttcJ5t27bh119/xbFjxxAUFAQA6N27tzR9yZIlmDx5Mp588kkAQN++ffH2229jzJgxePfdd2FnZ9fm20VE7YOHuoioU9i4cSOcnJxgZ2eHqKgo3HfffVi4cCEAICQkpNHQAwBJSUno2bOnFHoud/jwYaxZswZOTk7SIzIyEmazGRkZGW2xOURkI9zjQ0Sdwi233IJ3330XWq0WPj4+UKv//PhydHS84rz29vZXnF5WVoaZM2fi8ccfrzetV69eLSuYiDokBh8i6hQcHR0RGBjYonlDQ0Nx7tw5nDhxosG9Ptdffz1SU1NbvHwi6jx4qIuIurwxY8bgpptuwqRJk7B161ZkZGTgxx9/xObNmwEAzz77LPbu3YvZs2cjKSkJ6enp2LBhA2bPnm3jyomotTH4EJEsfP311xg2bBgeeOABDBgwAM888wxMJhOA2j1Cu3btwokTJzB69Ghcd911eOmll+Dj42PjqomotSmEEMLWRRARERG1B+7xISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2fh/YxZfIUT4P/YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWe0lEQVR4nO3deVxU5f4H8M/srMMiMAMKiAsqroUblqlJLtl21dtmZl1T84eWWlq0uNXN0kozTetWaqs3K7XMJcWtEk1JVMRYFEVRNhEGUJaZeX5/IOc6AgpHYFg+79dr7mXOec453/PMjPPpnOecUQghBIiIiIioRpT2LoCIiIioMWKIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIio2TObzcjMzERqaqq9S6FGhCGKiIjqzKZNmxAbGys937BhA44fP26/gq6RlJSECRMmwNfXF1qtFgaDAWFhYeAPeVB1MUSRjdWrV0OhUEgPBwcHBAcHY8qUKcjIyLB3eUTUyBw7dgzPP/88kpKSsH//fjz77LPIz8+3d1nYv38/evfujZ07d+Lll1/Gtm3bsH37dmzYsAEKhcLe5VEjoeBv59G1Vq9ejaeffhrz589HUFAQioqK8Pvvv+PLL79EYGAg4uLi4OTkZO8yiaiRyMrKQr9+/ZCcnAwAGDlyJH744Qe71lRSUoLu3btDr9fj119/hZubm13rocZLbe8CqGEaPnw4evbsCQB45pln0KJFC7z//vvYuHEjHnvsMTtXR0SNhbe3N+Li4qT/AOvUqZO9S8LPP/+MhIQE/P333wxQdEt4Oo+q5e677wYApKSkAABycnLw4osvomvXrnBxcYFer8fw4cNx5MiRCssWFRVh7ty5CA4OhoODA3x9fTFy5EicPHkSAHD69GmbU4jXPwYOHCita/fu3VAoFPjvf/+LV155BUajEc7OznjggQdw9uzZCts+cOAAhg0bBjc3Nzg5OWHAgAH4448/Kt3HgQMHVrr9uXPnVmj71VdfITQ0FI6OjvD09MSjjz5a6fZvtG/XslqtWLJkCTp37gwHBwcYDAZMmjQJly5dsmnXunVr3HfffRW2M2XKlArrrKz2RYsWVehTACguLsacOXPQrl076HQ6+Pv7Y9asWSguLq60r641cOBAdOnSpcL0d999FwqFAqdPn7aZnpubi2nTpsHf3x86nQ7t2rXDO++8A6vVKrUp77d33323wnq7dOlS6Xvi+++/r7LGp556Cq1bt77pvrRu3Vp6fZRKJYxGIx555JGbDja+drnKHtduu7qvNQBs2bIFAwYMgKurK/R6PXr16oVvvvkGQNXv18reY2azGW+88Qbatm0LnU6H1q1b45VXXqnw+lZ3/wsLC/HCCy9Ir2GHDh3w7rvvVhhLVP4e1Ol0CA0NRadOnap8D1bm2n1RqVRo2bIlJk6ciNzcXKmNnNd///79CAoKwg8//IC2bdtCq9UiICAAs2bNwpUrVyos/9FHH6Fz587Q6XTw8/NDRESETQ3A/z4HMTEx6NevHxwdHREUFISVK1fatCuvd/fu3dK08+fPo3Xr1ujZsycKCgqk6bfyuaT6wSNRVC3lgadFixYAgFOnTmHDhg345z//iaCgIGRkZODjjz/GgAEDEB8fDz8/PwCAxWLBfffdh6ioKDz66KN4/vnnkZ+fj+3btyMuLg5t27aVtvHYY4/h3nvvtdluZGRkpfX8+9//hkKhwEsvvYTMzEwsWbIE4eHhiI2NhaOjIwBg586dGD58OEJDQzFnzhwolUqsWrUKd999N3777Tf07t27wnpbtWqFBQsWAAAKCgowefLkSrf9+uuv4+GHH8YzzzyDrKwsfPjhh7jrrrtw+PBhuLu7V1hm4sSJ6N+/PwDgxx9/xPr1623mT5o0STqV+txzzyElJQXLli3D4cOH8ccff0Cj0VTaDzWRm5sr7du1rFYrHnjgAfz++++YOHEiOnXqhGPHjmHx4sVITEzEhg0bbnnb5S5fvowBAwYgLS0NkyZNQkBAAPbt24fIyEhcuHABS5YsqbVtydW/f39MnDgRVqsVcXFxWLJkCc6fP4/ffvutymWWLFkiffmdOHECb731Fl555RXpqIuLi4vUtrqv9erVq/Gvf/0LnTt3RmRkJNzd3XH48GFs3boVjz/+OF599VU888wzAIDs7GxMnz7d5n12rWeeeQZr1qzB6NGj8cILL+DAgQNYsGABTpw4UeG9eLP9F0LggQcewK5duzB+/Hj06NED27Ztw8yZM5GWlobFixdX2U9VvQdv5B//+AdGjhwJs9mM6OhofPLJJ7hy5Qq+/PLLGq3nWhcvXsSpU6fwyiuvYOTIkXjhhRdw6NAhLFq0CHFxcfjll1+kEDp37lzMmzcP4eHhmDx5MhISErBixQocPHiwwmfz0qVLuPfee/Hwww/jsccew3fffYfJkydDq9XiX//6V6W15OXlYfjw4dBoNNi8ebP0XqnPzyXdAkF0jVWrVgkAYseOHSIrK0ucPXtWrF27VrRo0UI4OjqKc+fOCSGEKCoqEhaLxWbZlJQUodPpxPz586Vpn3/+uQAg3n///Qrbslqt0nIAxKJFiyq06dy5sxgwYID0fNeuXQKAaNmypTCZTNL07777TgAQH3zwgbTu9u3bi6FDh0rbEUKIy5cvi6CgIHHPPfdU2Fa/fv1Ely5dpOdZWVkCgJgzZ4407fTp00KlUol///vfNsseO3ZMqNXqCtOTkpIEALFmzRpp2pw5c8S1H73ffvtNABBff/21zbJbt26tMD0wMFCMGDGiQu0RERHi+o/z9bXPmjVL+Pj4iNDQUJs+/fLLL4VSqRS//fabzfIrV64UAMQff/xRYXvXGjBggOjcuXOF6YsWLRIAREpKijTtjTfeEM7OziIxMdGm7csvvyxUKpVITU0VQsh7T6xbt67KGseNGycCAwNvuB9ClPXvuHHjbKY9/vjjwsnJ6abLXl/Prl27Ksyr7mudm5srXF1dRZ8+fcSVK1ds2l77fi5X3l+rVq2qMC82NlYAEM8884zN9BdffFEAEDt37pSmVWf/N2zYIACIN99806bd6NGjhUKhEMnJydK06r4Hq3L98kKUfU5DQkKk53Je/3HjxgkA4qmnnrJpV/7Z/Pnnn4UQQmRmZgqtViuGDBli8+/dsmXLBADx+eefS9MGDBggAIj33ntPmlZcXCx69OghfHx8RElJiU29u3btEkVFRWLgwIHCx8fHpt+EuPXPJdUPns6jSoWHh8Pb2xv+/v549NFH4eLigvXr16Nly5YAAJ1OB6Wy7O1jsVhw8eJFuLi4oEOHDvjrr7+k9fzwww/w8vLC1KlTK2zjVq6AefLJJ+Hq6io9Hz16NHx9fbF582YAQGxsLJKSkvD444/j4sWLyM7ORnZ2NgoLCzF48GDs3bvX5vQRUHba0cHB4Ybb/fHHH2G1WvHwww9L68zOzobRaET79u2xa9cum/YlJSUAyvqrKuvWrYObmxvuuecem3WGhobCxcWlwjpLS0tt2mVnZ6OoqOiGdaelpeHDDz/E66+/bnNUpHz7nTp1QseOHW3WWX4K9/rt34p169ahf//+8PDwsNlWeHg4LBYL9u7da9P+8uXLFfbVYrFUuu78/HxkZ2dXOM1SU8XFxcjOzkZmZia2b9+OnTt3YvDgwbe0znLVfa23b9+O/Px8vPzyyxXekzX93JR/JmbMmGEz/YUXXgAA/PLLLzbTb7b/mzdvhkqlwnPPPVdhfUIIbNmypdI6bvQevJHy90B6ejp++OEHHDlypNLXQ87rP3PmTJvn06dPh0qlkvpkx44dKCkpwbRp06R/7wBgwoQJ0Ov1FfpOrVZj0qRJ0nOtVotJkyYhMzMTMTExNm2tViuefPJJ7N+/H5s3b7Y5Kg/U7+eS5OPpPKrU8uXLERwcDLVaDYPBgA4dOtj8I2K1WvHBBx/go48+QkpKis0XW/kpP6DsNGCHDh2gVtfuW619+/Y2zxUKBdq1ayeNv0lKSgIAjBs3rsp15OXlwcPDQ3qenZ1dYb3XS0pKghCiynbXn3Yr/wf9Rl8aSUlJyMvLg4+PT6XzMzMzbZ7/+uuv8Pb2vmGd15szZw78/PwwadKkCmNHkpKScOLEiSrXef32b0VSUhKOHj1a7W3NmTMHc+bMqdDOYDBUmHbt6RIXFxfcf//9WLx4caVtb2Tt2rVYu3at9LxXr1749NNPa7SOqlT3tS4/fV7ZWLOaOnPmDJRKJdq1a2cz3Wg0wt3dHWfOnLGZfrP9P3PmDPz8/Gz+IwaAdOry+vWVu9F78EYWLVqERYsWSc+HDRuGd955p0K7mrz+5WO+rv8cu7m5wdfXV/p3pHxfOnToYNNOq9WiTZs2FfbVz88Pzs7ONtOCg4MBlI3z69u3rzT91Vdfxf79+6FQKHD58uUKNdbn55LkY4iiSvXu3Vu6Oq8yb731Fl5//XX861//whtvvAFPT08olUpMmzatwhEeeyivYdGiRejRo0elba4NNiUlJbhw4QLuueeem65XoVBgy5YtUKlUN1wnAKSnpwMo+8K60Tp9fHzw9ddfVzr/+n9E+/TpgzfffNNm2rJly7Bx48ZKlz9x4gRWr16Nr776qtKxVVarFV27dsX7779f6fL+/v5V1l5TVqsV99xzD2bNmlXp/PIvnHITJ07EP//5T5tpEyZMqHTZ2bNno3///igtLUVMTAzmz5+P3Nxc6UhMdQ0ZMkQ6QnHu3Dm88847GDRoEA4dOiSNt5Orpq91baruEay62P+bvQdvZOzYsXjyySdhtVpx6tQpvPHGG7jvvvuwY8cOm32qyetfvh/2vB/UgQMHsHr1aixbtgwTJ05EbGyszRHr+vxcknwMUSTL999/j0GDBuGzzz6zmZ6bmwsvLy/pedu2bXHgwAGUlpbWyuDocuVHmsoJIZCcnIxu3bpJ2wUAvV6P8PDwm67vyJEjKC0tvWFwLF+vEAJBQUEVvvArEx8fD4VCUeG/ZK9f544dO3DHHXdU60vKy8urwj7daJBpZGQkevTogUceeaTK7ZefIqnrL5W2bduioKCgWq8JUHbE8fq21/+XfrmuXbtKbYcPH47U1FSsWbMGZrO5RjX6+vrabLNDhw7o168fNmzYcMu396jua13+/o2Li6twBKmmAgMDYbVakZSUZHN7gYyMDOTm5iIwMNCm/c32PzAwEDt27EB+fr7N0ai///5b2t71bvYevJE2bdrY1OPm5obHH38c+/fvR1hYmDS9Jq9/UFBQpX1iMplw4cIF6QrY8n1JSEhAmzZtpHYlJSVISUmp8N48f/48CgsLbd6jiYmJAFDh6tB58+Zh3Lhx6NGjB3r27Ik333wTb7zxhjS/Pj+XJB/HRJEsKpWqwuXM69atQ1pams20UaNGITs7G8uWLauwjuuXr4kvvvjC5q7H33//PS5cuIDhw4cDAEJDQ9G2bVu8++67NpcMl8vKyqpQu0qlqvT2AdcaOXIkVCoV5s2bV6F+IQQuXrwoPTebzfjhhx/Qu3fvG57Oe/jhh2GxWGz+Ab12Hbcyxic6OhobN27E22+/XeU/xA8//DDS0tLwn//8p8K8K1euoLCwUPb2K9tWdHQ0tm3bVmFebm5ujQPPjVitViiVylv+Aiq/5L02Liuv7ms9ZMgQuLq6YsGCBRXGu9X0c1N+xev1Vz6WH+EYMWLEDZe/fv/vvfdeWCyWCp/pxYsXQ6FQSJ/BctV5D9ZEdV+PG73+VfXJBx98IF1RDJSNDdVqtVi6dKlNv3/22WfIy8ur0Hdmsxkff/yx9LykpAQff/wxvL29ERoaatO2/CrK7t2748UXX8Q777yDuLg4aX59fi5JPh6JIlnuu+8+zJ8/H08//TT69euHY8eO4euvv7b5rzWgbAD4F198gRkzZuDPP/9E//79UVhYiB07duD//u//8OCDD8ravqenJ+688048/fTTyMjIwJIlS9CuXTvpVI9SqcSnn36K4cOHo3Pnznj66afRsmVLpKWlYdeuXdDr9fj5559RWFiI5cuXY+nSpQgODra5d0t5+Dp69Ciio6MRFhaGtm3b4s0330RkZCROnz6Nhx56CK6urkhJScH69esxceJEvPjii9ixYwdef/11HD16FD///PMN92XAgAGYNGkSFixYgNjYWAwZMgQajQZJSUlYt24dPvjgA4wePVpWP/3666+45557bnjkZ+zYsfjuu+/w7LPPYteuXbjjjjtgsVjw999/47vvvsO2bdtueoSuoKAAW7dutZmWkJAAANizZw80Gg1atmyJmTNn4qeffsJ9992Hp556CqGhoSgsLMSxY8fw/fff4/Tp0zZHMmsiNjYWLi4uMJvNiImJwRdffIEHH3yw0tOuN3Lq1Cl89dVXAMoGQy9btgx6vb5WBpdX97XW6/VYvHgxnnnmGfTq1QuPP/44PDw8cOTIEVy+fBlr1qyp9ja7d++OcePG4ZNPPkFubi4GDBiAP//8E2vWrMFDDz2EQYMG1Wj/77//fgwaNAivvvoqTp8+je7du+PXX3/Fxo0bMW3atAoDpKvzHryRo0eP4quvvoIQAidPnsTSpUvRqlWrCu/Jmrz+nTt3xvjx4/HJJ5/g0qVLGDhwIP766y98/vnnGD58uBSyvL29ERkZiXnz5mHYsGF44IEHkJCQgI8++gi9evXCE088YbNePz8/vPPOOzh9+jSCg4Px3//+F7Gxsfjkk09ueCR+zpw5+OGHHzBhwgT88ccfUCqVtfK5pHpgp6sCqYEqv8XBwYMHb9iuqKhIvPDCC8LX11c4OjqKO+64Q0RHR4sBAwZUuHT58uXL4tVXXxVBQUFCo9EIo9EoRo8eLU6ePCmEkHc5+7fffisiIyOFj4+PcHR0FCNGjBBnzpypsPzhw4fFyJEjRYsWLYROpxOBgYHi4YcfFlFRUTbbvtnj+su+f/jhB3HnnXcKZ2dn4ezsLDp27CgiIiJEQkKCEEKIqVOnirvuukts3bq1Qk3X3+Kg3CeffCJCQ0OFo6OjcHV1FV27dhWzZs0S58+fl9rU9BYHCoVCxMTE2Eyv7DUqKSkR77zzjujcubPQ6XTCw8NDhIaGinnz5om8vLwK27t+fTfrv2svvc/PzxeRkZGiXbt2QqvVCi8vL9GvXz/x7rvvSpeBy3lPlD/UarUIDAwUzz33nLh06ZIQoma3OLh2XV5eXmLIkCEiOjr6psteX09ltzgoV53XWgghfvrpJ9GvXz/h6Ogo9Hq96N27t/j2228rrO9GtzgQQojS0lIxb9486TPo7+8vIiMjRVFRkaz9z8/PF9OnTxd+fn5Co9GI9u3bi0WLFlW4/UJN3oOVubYWhUIhjEajGDlypDhx4oTURu7rX1paKubPn2/TJ7NmzRKXL1+uUMeyZctEx44dhUajEQaDQUyePFla97X71LlzZ3Ho0CERFhYmHBwcRGBgoFi2bJlNu6reH7t37xYKhUK6TYsQt/a5pPrB386jRmX37t0YNGgQ1q1bJ/vozLVOnz6NoKAgpKSkVHlH67lz5+L06dNYvXr1LW+vOWrdujXmzp2Lp556yt6lENWZgQMHIjs72+aUHDV9HBNFREREJAPHRFGz5uLigjFjxtxw4He3bt2kn7GhmhswYIB0k1YioqaEIYqaNS8vL2kQbVVGjhxZT9U0TTUZBE1E1JhwTBQRERGRDBwTRURERCQDQxQRERGRDBwThbI7254/fx6urq68vT4REVEjIYRAfn4+/Pz8oFTW/3EhhiiU/d4Rf8yRiIiocTp79ixatWpV79tliAKkH9E8e/Ys9Hq9nashIiKi6jCZTPD397f5Mez6xBAFSKfw9Ho9QxQREVEjY6+hOBxYTkRERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDGp7F9CUmc1mJCYmSs+Dg4OhVrPLiYiImgJ+o9ehxMREvPf9Hnj5BSL7/Bm8MBoICQmxd1lERERUCxii6piXXyCMge3sXQYRERHVMo6JIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGSwe4hKS0vDE088gRYtWsDR0RFdu3bFoUOHpPlCCMyePRu+vr5wdHREeHg4kpKSbNaRk5ODMWPGQK/Xw93dHePHj0dBQUF97woRERE1I3YNUZcuXcIdd9wBjUaDLVu2ID4+Hu+99x48PDykNgsXLsTSpUuxcuVKHDhwAM7Ozhg6dCiKioqkNmPGjMHx48exfft2bNq0CXv37sXEiRPtsUtERETUTNj1Z1/eeecd+Pv7Y9WqVdK0oKAg6W8hBJYsWYLXXnsNDz74IADgiy++gMFgwIYNG/Doo4/ixIkT2Lp1Kw4ePIiePXsCAD788EPce++9ePfdd+Hn51e/O0VERETNgl2PRP3000/o2bMn/vnPf8LHxwe33XYb/vOf/0jzU1JSkJ6ejvDwcGmam5sb+vTpg+joaABAdHQ03N3dpQAFAOHh4VAqlThw4ECl2y0uLobJZLJ5EBEREdWEXUPUqVOnsGLFCrRv3x7btm3D5MmT8dxzz2HNmjUAgPT0dACAwWCwWc5gMEjz0tPT4ePjYzNfrVbD09NTanO9BQsWwM3NTXr4+/vX9q4RERFRE2fXEGW1WnH77bfjrbfewm233YaJEydiwoQJWLlyZZ1uNzIyEnl5edLj7Nmzdbo9IiIianrsGqJ8fX0REhJiM61Tp05ITU0FABiNRgBARkaGTZuMjAxpntFoRGZmps18s9mMnJwcqc31dDod9Hq9zYOIiIioJuwaou644w4kJCTYTEtMTERgYCCAskHmRqMRUVFR0nyTyYQDBw4gLCwMABAWFobc3FzExMRIbXbu3Amr1Yo+ffrUw14QERFRc2TXq/OmT5+Ofv364a233sLDDz+MP//8E5988gk++eQTAIBCocC0adPw5ptvon379ggKCsLrr78OPz8/PPTQQwDKjlwNGzZMOg1YWlqKKVOm4NFHH+WVeURERFRn7BqievXqhfXr1yMyMhLz589HUFAQlixZgjFjxkhtZs2ahcLCQkycOBG5ubm48847sXXrVjg4OEhtvv76a0yZMgWDBw+GUqnEqFGjsHTpUnvsEhERETUTCiGEsHcR9mYymeDm5oa8vLxaHR8VHx+PNftOwxjYDulnkjGuX+sKY8CIiIhInrr6/q4uu//sCxEREVFjxBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCSDXUPU3LlzoVAobB4dO3aU5hcVFSEiIgItWrSAi4sLRo0ahYyMDJt1pKamYsSIEXBycoKPjw9mzpwJs9lc37tCREREzYza3gV07twZO3bskJ6r1f8rafr06fjll1+wbt06uLm5YcqUKRg5ciT++OMPAIDFYsGIESNgNBqxb98+XLhwAU8++SQ0Gg3eeuutet8XIiIiaj7sHqLUajWMRmOF6Xl5efjss8/wzTff4O677wYArFq1Cp06dcL+/fvRt29f/Prrr4iPj8eOHTtgMBjQo0cPvPHGG3jppZcwd+5caLXa+t4dIiIiaibsPiYqKSkJfn5+aNOmDcaMGYPU1FQAQExMDEpLSxEeHi617dixIwICAhAdHQ0AiI6ORteuXWEwGKQ2Q4cOhclkwvHjx6vcZnFxMUwmk82DiIiIqCbsGqL69OmD1atXY+vWrVixYgVSUlLQv39/5OfnIz09HVqtFu7u7jbLGAwGpKenAwDS09NtAlT5/PJ5VVmwYAHc3Nykh7+/f+3uGBERETV5dj2dN3z4cOnvbt26oU+fPggMDMR3330HR0fHOttuZGQkZsyYIT03mUwMUkRERFQjdj+ddy13d3cEBwcjOTkZRqMRJSUlyM3NtWmTkZEhjaEyGo0VrtYrf17ZOKtyOp0Oer3e5kFERERUEw0qRBUUFODkyZPw9fVFaGgoNBoNoqKipPkJCQlITU1FWFgYACAsLAzHjh1DZmam1Gb79u3Q6/UICQmp9/qJiIio+bDr6bwXX3wR999/PwIDA3H+/HnMmTMHKpUKjz32GNzc3DB+/HjMmDEDnp6e0Ov1mDp1KsLCwtC3b18AwJAhQxASEoKxY8di4cKFSE9Px2uvvYaIiAjodDp77hoRERE1cXYNUefOncNjjz2GixcvwtvbG3feeSf2798Pb29vAMDixYuhVCoxatQoFBcXY+jQofjoo4+k5VUqFTZt2oTJkycjLCwMzs7OGDduHObPn2+vXSIiIqJmQiGEEPYuwt5MJhPc3NyQl5dXq+Oj4uPjsWbfaRgD2yH9TDLG9WvN04xERES1pK6+v6urQY2JIiIiImosGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRpMiHr77behUCgwbdo0aVpRUREiIiLQokULuLi4YNSoUcjIyLBZLjU1FSNGjICTkxN8fHwwc+ZMmM3meq6eiIiImpsGEaIOHjyIjz/+GN26dbOZPn36dPz8889Yt24d9uzZg/Pnz2PkyJHSfIvFghEjRqCkpAT79u3DmjVrsHr1asyePbu+d4GIiIiaGbuHqIKCAowZMwb/+c9/4OHhIU3Py8vDZ599hvfffx933303QkNDsWrVKuzbtw/79+8HAPz666+Ij4/HV199hR49emD48OF44403sHz5cpSUlNhrl4iIiKgZsHuIioiIwIgRIxAeHm4zPSYmBqWlpTbTO3bsiICAAERHRwMAoqOj0bVrVxgMBqnN0KFDYTKZcPz48Sq3WVxcDJPJZPMgIiIiqgm1PTe+du1a/PXXXzh48GCFeenp6dBqtXB3d7eZbjAYkJ6eLrW5NkCVzy+fV5UFCxZg3rx5t1g9ERERNWd2OxJ19uxZPP/88/j666/h4OBQr9uOjIxEXl6e9Dh79my9bp+IiIgaP7uFqJiYGGRmZuL222+HWq2GWq3Gnj17sHTpUqjVahgMBpSUlCA3N9dmuYyMDBiNRgCA0WiscLVe+fPyNpXR6XTQ6/U2DyIiIqKasFuIGjx4MI4dO4bY2Fjp0bNnT4wZM0b6W6PRICoqSlomISEBqampCAsLAwCEhYXh2LFjyMzMlNps374der0eISEh9b5PRERE1HzYbUyUq6srunTpYjPN2dkZLVq0kKaPHz8eM2bMgKenJ/R6PaZOnYqwsDD07dsXADBkyBCEhIRg7NixWLhwIdLT0/Haa68hIiICOp2u3veJiIiImg+7Diy/mcWLF0OpVGLUqFEoLi7G0KFD8dFHH0nzVSoVNm3ahMmTJyMsLAzOzs4YN24c5s+fb8eqiYiIqDlQCCGEvYuwN5PJBDc3N+Tl5dXq+Kj4+His2XcaxsB2SD+TjHH9WvM0IxERUS2pq+/v6rL7faKIiIiIGiOGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZJAVotq0aYOLFy9WmJ6bm4s2bdrcclFEREREDZ2sEHX69GlYLJYK04uLi5GWlnbLRRERERE1dOqaNP7pp5+kv7dt2wY3NzfpucViQVRUFFq3bl1rxRERERE1VDUKUQ899BAAQKFQYNy4cTbzNBoNWrdujffee6/WiiMiIiJqqGoUoqxWKwAgKCgIBw8ehJeXV50URURERNTQ1ShElUtJSantOoiIiIgaFVkhCgCioqIQFRWFzMxM6QhVuc8///yWCyMiIiJqyGSFqHnz5mH+/Pno2bMnfH19oVAoarsuIiIiogZNVohauXIlVq9ejbFjx9Z2PURERESNgqz7RJWUlKBfv361XQsRERFRoyErRD3zzDP45ptvarsWIiIiokZD1um8oqIifPLJJ9ixYwe6desGjUZjM//999+vleKIiIiIGipZIero0aPo0aMHACAuLs5mHgeZExERUXMgK0Tt2rWrtusgIiIialRkjYkiIiIiau5kHYkaNGjQDU/b7dy5U3ZBRERERI2BrBBVPh6qXGlpKWJjYxEXF1fhh4mJiIiImiJZIWrx4sWVTp87dy4KCgpuqSAiIiKixqBWx0Q98cQT/N08IiIiahZqNURFR0fDwcGhNldJRERE1CDJOp03cuRIm+dCCFy4cAGHDh3C66+/XiuFERERETVkskKUm5ubzXOlUokOHTpg/vz5GDJkSK0URkRERNSQyQpRq1atqu06iIiIiBoVWSGqXExMDE6cOAEA6Ny5M2677bZaKYqIiIiooZMVojIzM/Hoo49i9+7dcHd3BwDk5uZi0KBBWLt2Lby9vWuzRiIiIqIGR9bVeVOnTkV+fj6OHz+OnJwc5OTkIC4uDiaTCc8991xt10hERETU4Mg6ErV161bs2LEDnTp1kqaFhIRg+fLlHFhOREREzYKsI1FWqxUajabCdI1GA6vVestFERERETV0skLU3Xffjeeffx7nz5+XpqWlpWH69OkYPHhwrRVHRERE1FDJClHLli2DyWRC69at0bZtW7Rt2xZBQUEwmUz48MMPa7tGIiIiogZHVojy9/fHX3/9hV9++QXTpk3DtGnTsHnzZvz1119o1apVtdezYsUKdOvWDXq9Hnq9HmFhYdiyZYs0v6ioCBEREWjRogVcXFwwatQoZGRk2KwjNTUVI0aMgJOTE3x8fDBz5kyYzWY5u0VERERUbTUKUTt37kRISAhMJhMUCgXuueceTJ06FVOnTkWvXr3QuXNn/Pbbb9VeX6tWrfD2228jJiYGhw4dwt13340HH3wQx48fBwBMnz4dP//8M9atW4c9e/bg/PnzNj85Y7FYMGLECJSUlGDfvn1Ys2YNVq9ejdmzZ9dkt4iIiIhqTCGEENVt/MADD2DQoEGYPn16pfOXLl2KXbt2Yf369bIL8vT0xKJFizB69Gh4e3vjm2++wejRowEAf//9Nzp16oTo6Gj07dsXW7ZswX333Yfz58/DYDAAAFauXImXXnoJWVlZ0Gq11dqmyWSCm5sb8vLyoNfrZdd+vfj4eKzZdxrGwHZIP5OMcf1aIyQkpNbWT0RE1JzV1fd3ddXoSNSRI0cwbNiwKucPGTIEMTExsgqxWCxYu3YtCgsLERYWhpiYGJSWliI8PFxq07FjRwQEBCA6OhoAEB0dja5du0oBCgCGDh0Kk8kkHc2qTHFxMUwmk82DiIiIqCZqFKIyMjIqvbVBObVajaysrBoVcOzYMbi4uECn0+HZZ5/F+vXrERISgvT0dGi1WumO6OUMBgPS09MBAOnp6TYBqnx++byqLFiwAG5ubtLD39+/RjUTERER1ShEtWzZEnFxcVXOP3r0KHx9fWtUQIcOHRAbG4sDBw5g8uTJGDduHOLj42u0jpqKjIxEXl6e9Dh79mydbo+IiIianhqFqHvvvRevv/46ioqKKsy7cuUK5syZg/vuu69GBWi1WrRr1w6hoaFYsGABunfvjg8++ABGoxElJSXIzc21aZ+RkQGj0QgAMBqNFa7WK39e3qYyOp1OuiKw/EFERERUEzUKUa+99hpycnIQHByMhQsXYuPGjdi4cSPeeecddOjQATk5OXj11VdvqSCr1Yri4mKEhoZCo9EgKipKmpeQkIDU1FSEhYUBAMLCwnDs2DFkZmZKbbZv3w69Xs8B3ERERFSnavTbeQaDAfv27cPkyZMRGRmJ8gv7FAoFhg4diuXLl1cYo3QjkZGRGD58OAICApCfn49vvvkGu3fvxrZt2+Dm5obx48djxowZ8PT0hF6vx9SpUxEWFoa+ffsCKBvIHhISgrFjx2LhwoVIT0/Ha6+9hoiICOh0uprsGhEREVGN1PgHiAMDA7F582ZcunQJycnJEEKgffv28PDwqPHGMzMz8eSTT+LChQtwc3NDt27dsG3bNtxzzz0AgMWLF0OpVGLUqFEoLi7G0KFD8dFHH0nLq1QqbNq0CZMnT0ZYWBicnZ0xbtw4zJ8/v8a1EBEREdVEje4T1VTxPlFERESNT6O6TxQRERERlWGIIiIiIpKhxmOiqG6ZzWYkJibaTAsODoZazZeKiIioIeE3cwOTmJiI977fAy+/QABA9vkzeGE0OJaKiIiogWGIaoC8/AJhDGwHALBaLEhOTpbm8agUERFRw8Bv4wYuJyMNXybmoU2mmkeliIiIGhCGqEbAw9BSOjJFREREDQOvziMiIiKSgSGKiIiISAaezmsirr81AgegExER1S1+yzYR194agQPQiYiI6h5DVBNy7a0RiIiIqG4xRDVgqTmXkVTihsuljoiPOYcABwH+XjQREVHDwBDVABWUCvx05DxSsgsBXP1V6twrOAdg1rYLWGZojSAvZ3uWSERE1Ozx6jw7SMu9gnk/H8er648hLi1Pml5UasFXsZewJRVIyS6EUgH4qgrQyakQvVt7QqUAjmcWY+IXh1BUarHjHhARERGPRNUjIQQWbfsb//ktBSVmKwDg6wOpCPHVw0WnRmrOZaSbigAA/h6OGNjBB+eP/g6Vgws6tW0Bb0s2fktXICmzAK98uw8LHw/jFXhERER2wm/gevRH6mUs35MJAOgT5AkfvQO2HLuA+AsmqY23kwrt9Rb0DGkJhUKB89csX3QxDYYrFpjUrfFjfB767D2CR+4Oree9ICIiIoAhql7FpF0GAIzpE4A3H+oChUKB9Hs7Ieb0RaSdPw+1EnC9fAF/ZimhUCgqXUeQjxu0DnocP2/Ch/sv4p8DBZTKytsSERFR3eGYqHoihMDhC2Wn6sJDDFJIMro5IEiThwMHDyHhbBa+jTqEvNzcG66rf3svqBXAOVMpDqTk1HXpREREVAmGqHpSaAYyC83QqBTo3dqzwvzyezx5+PjddF06tQoBrmV/f3fobG2XSkRERNXAEFVPMsrO5OE2fw846279LGqbq3c+2HzsAvKulN7y+oiIiKhmGKLqScaVsv+/o51XrazPUwcEumtQbLbipyPnb74AERER1SqGqHoghJCORN3ZvkXtrNNqxe3uxQCANb8lIjk5GVartVbWTURERDfHEFUPsgqKUWIFHNUKdGvlXivrzMlIQ0pSApQAki+WYOX2uJsOSCciIqLawxBVD87mlJ3L62p0gEZVe13uYzCipYcjAMDsHlBr6yUiIqKbY4iqB9kFZafdOnk71Pq6W3k4AQAuWXW1vm4iIiKqGkNUPcgvMgMADC61f29Tf8+yI1GXLDoIUeurJyIioiowRNWD/KKyWxD4ONd+iPJxdYBGpYAZKuRbVLW+fiIiIqocQ1QdswqBguKyI1F1EaJUSgX83K8ejTLzV3yIiIjqC0NUHSu2AFYBKAB4ONbNkSL/q+OiLpYyRBEREdUXfuvWscKyg1BwVJcdNSpnNpuRmJgIAFfv8SQ/z7a6eoVerlkDq5UDo4iIiOoDQ1Qdu3z1F1muP5OXmJiI977fAy+/QCTFHoJXQDBu/qt5lfN21UENK8xCicz84luql4iIiKqHp/Pq2OWrR6KcKomrNfnR4RtRKhRwVxUBANJyr9zSuoiIiKh6GKLqWPnpPCdN3W5HrywBAGTxSBQREVG9YIiqYzc6ElWbXJVl5w0ZooiIiOoHx0TVsfIxUXUfosqORF26XAIzf4eYiIiozvFIVB2rryNROoUVWoUVAkAuD0YRERHVOYaoOnSl1IqSq0eFnOt4TBQA6NUWAMClkrrfFhERUXPHEFWHsq6OKtepldBcc4+ouuKqKtsej0QRERHVPYaoOlQeolwd6mfomWv5kSiGKCIiojrHEFWH/hei6uFcHgC9qixE5RUDZt65nIiIqE4xRNWhzMKyUOOqq58jUY5KK7RqJawAUnM5MIqIiKguMUTVocx6Pp2nUADeLjoAwMkchigiIqK6xBBVh+r7dB5Q9jt6AEMUERFRXWOIqkP1PbAc+F+IOs37HBAREdUpu4aoBQsWoFevXnB1dYWPjw8eeughJCQk2LQpKipCREQEWrRoARcXF4waNQoZGRk2bVJTUzFixAg4OTnBx8cHM2fOhNlsrs9dqdTTt3uiWwvAw0lbb9ts4Vy2rbN5pfW2TSIioubIriFqz549iIiIwP79+7F9+3aUlpZiyJAhKCwslNpMnz4dP//8M9atW4c9e/bg/PnzGDlypDTfYrFgxIgRKCkpwb59+7BmzRqsXr0as2fPtscu2ejf2hmdPBRw1KrqbZvlge1SkQW5l3k0ioiIqK7Y9bfztm7davN89erV8PHxQUxMDO666y7k5eXhs88+wzfffIO7774bALBq1Sp06tQJ+/fvR9++ffHrr78iPj4eO3bsgMFgQI8ePfDGG2/gpZdewty5c6HV1t9RoBuxWixITk6WnicnJ8Nqrf0Mq1Ur4aQu+7mZ5MwC9GztWevbICIiogY2JiovLw8A4OlZ9sUfExOD0tJShIeHS206duyIgIAAREdHAwCio6PRtWtXGAwGqc3QoUNhMplw/PjxSrdTXFwMk8lk86hrORlp+HLPCazZdxpr9p3G6l8PIS83t062pb+aG5MyC+pk/URERNSAQpTVasW0adNwxx13oEuXLgCA9PR0aLVauLu727Q1GAxIT0+X2lwboMrnl8+rzIIFC+Dm5iY9/P39a3lvKudhaAljYDsYA9vBw8evzrajv3oxYFIGQxQREVFdaTAhKiIiAnFxcVi7dm2dbysyMhJ5eXnS4+zZs3W+zfpUfiQqOYshioiIqK7YdUxUuSlTpmDTpk3Yu3cvWrVqJU03Go0oKSlBbm6uzdGojIwMGI1Gqc2ff/5ps77yq/fK21xPp9NBp9PV8l40HFKIysi3byFERERNmF2PRAkhMGXKFKxfvx47d+5EUFCQzfzQ0FBoNBpERUVJ0xISEpCamoqwsDAAQFhYGI4dO4bMzEypzfbt26HX6xESElI/O9LAlIeo83lFKCi2/60eiIiImiK7HomKiIjAN998g40bN8LV1VUaw+Tm5gZHR0e4ublh/PjxmDFjBjw9PaHX6zF16lSEhYWhb9++AIAhQ4YgJCQEY8eOxcKFC5Geno7XXnsNERERTfpo043oVAp4OChxqciCk5kF6O7vbu+SiIiImhy7HolasWIF8vLyMHDgQPj6+kqP//73v1KbxYsX47777sOoUaNw1113wWg04scff5Tmq1QqbNq0CSqVCmFhYXjiiSfw5JNPYv78+fbYpQbBarHAS1t2BGpvbEKDuPEoERFRU2PXI1FCiJu2cXBwwPLly7F8+fIq2wQGBmLz5s21WVqjlpORhrx8J0DVAt8fOInBbV2b7alNIiKiutJgrs6j2uXp6ggAKNW52bkSIiKipokhqolyVlkAACb+8gsREVGdYIhqolyuhqjCUqDEYrVzNURERE0PQ1QTpVUI6NRKCABpJg4sJyIiqm0MUU2UQgF4OpfdMCo1l+f0iIiIahtDVBNWHqLO5pXauRIiIqKmhyGqCZOOROXxSBQREVFtY4hqwngkioiIqO4wRDVhnk5lISrNVAozr9AjIiKqVQxRTZirgxpqBWC2AmdyLtu7HCIioiaFIaoJUygUcC07GIWkjAL7FkNERNTEMEQ1cfqrISo5M9++hRARETUxDFFNnJsUongkioiIqDYxRDVxek3Z/ycxRBEREdUqhqgmrvx03smsAlitwr7FEBERNSEMUU2cswZQK4GiUivScq/YuxwiIqImgyGqiVMqFGh19Zwex0URERHVHoaoZsD/6ujyJF6hR0REVGsYopqBAHceiSIiIqptDFHNgL9bWYjiFXpERES1hyGqGQi4ejovOaMAQvAKPSIiotrAENUMtNRroFIqkF9sRmZ+sb3LISIiahIYopoBjUqBQE8nAPwNPSIiotrCENVMtPNxAcDf0CMiIqotDFHNRHmI4uByIiKi2sEQ1Uy0N5QfiWKIIiIiqg0MUc1EO29XAAxRREREtYUhqplo6+MMALhYWIKcwhI7V0NERNT4MUQ1E05aNVq6OwLg0SgiIqLawBDVjJSPi+Jv6BEREd06hqhmJNhQNi4qIZ0hioiI6FYxRDUjnf30AIC4tDw7V0JERNT4MUQ1I5393AAAJy7kw2Llb+gRERHdCoaoZiTIyxlOWhWulFqQks3B5URERLeCIaoZUSkV6ORbfkrPZOdqiIiIGjeGqGamC8dFERER1QqGqGamfFzU8fM8EkVERHQr1PYugOqW1WJBcnKy9Lyj0QgAOH4+D0IIKBQKe5VGRETUqDFENXE5GWn4MjEPbTLVyD5/Bs/94y5oVUqYisw4d+kK/D2d7F0iERFRo8TTec2Ah6EljIHt4OUXCI1KgWBj2Z3LOS6KiIhIPoaoZqT81F5LRysAYPfRkzCbzXauioiIqHFiiGpGcjLS8OWeE8jKK7tH1Pbj6UhMTLRzVURERI0TQ1Qz42FoieDW/gCAfDjCKnjnciIiIjkYopohbxcdNCoFSq3AmdxSe5dDRETUKDFENUNKpQJGNwcAQHxmkZ2rISIiapzsGqL27t2L+++/H35+flAoFNiwYYPNfCEEZs+eDV9fXzg6OiI8PBxJSUk2bXJycjBmzBjo9Xq4u7tj/PjxKCjg78LdjJ+bIwDgOEMUERGRLHYNUYWFhejevTuWL19e6fyFCxdi6dKlWLlyJQ4cOABnZ2cMHToURUX/++IfM2YMjh8/ju3bt2PTpk3Yu3cvJk6cWF+70Gj5uTNEERER3Qq73mxz+PDhGD58eKXzhBBYsmQJXnvtNTz44IMAgC+++AIGgwEbNmzAo48+ihMnTmDr1q04ePAgevbsCQD48MMPce+99+Ldd9+Fn59fve1LY2PUO0ABIKvQgrTcK2h5NVQRERFR9TTYMVEpKSlIT09HeHi4NM3NzQ19+vRBdHQ0ACA6Ohru7u5SgAKA8PBwKJVKHDhwoMp1FxcXw2Qy2TyaG61aCXdd2d+HTufYtxgiIqJGqMGGqPT0dACAwWCwmW4wGKR56enp8PHxsZmvVqvh6ekptanMggUL4ObmJj38/f1rufrGwbtsbDkOnb5k30KIiIgaoQYboupSZGQk8vLypMfZs2ftXZJdeF89g3eQR6KIiIhqrMGGKKPRCADIyMiwmZ6RkSHNMxqNyMzMtJlvNpuRk5MjtamMTqeDXq+3eTRHXlePRCVk5COnsMS+xRARETUyDTZEBQUFwWg0IioqSppmMplw4MABhIWFAQDCwsKQm5uLmJgYqc3OnTthtVrRp0+feq+5sXFQK9DGQwshgL2JWfYuh4iIqFGxa4gqKChAbGwsYmNjAZQNJo+NjUVqaioUCgWmTZuGN998Ez/99BOOHTuGJ598En5+fnjooYcAAJ06dcKwYcMwYcIE/Pnnn/jjjz8wZcoUPProo7wyr5p6tiw7p7fz78ybtCQiIqJr2fUWB4cOHcKgQYOk5zNmzAAAjBs3DqtXr8asWbNQWFiIiRMnIjc3F3feeSe2bt0KBwcHaZmvv/4aU6ZMweDBg6FUKjFq1CgsXbq03velMbJaLPBDDgAVdp5IR3FJKXRajb3LIiIiahTsGqIGDhwIcYMfwFUoFJg/fz7mz59fZRtPT0988803dVFek5eTkYaUvDxodF1QUGLFz/uOYfTA2+1dFhERUaPQYMdEUf3wNLREkJcLAOBg2mU7V0NERNR4MEQRWns5AwAOpV2xcyVERESNB0MUIbCFEwDgZE4JMkz8LT0iIqLqYIgiOGnV8Lz6EzBb46q+0zsRERH9D0MUAQACXcv+/8fDafYthIiIqJFgiCIAQIALoFQAR87m4mRWgb3LISIiavAYoghA2d3Lb/cru/HmBh6NIiIiuimGKJLc3absVgfrD6fd8P5dRERExBBF1+jr7wQXnRrnLl3BoTOX7F0OERFRg8YQRRIHtRLDuhgBAF/vP2PnaoiIiBo2hiiy8VS/1gCAn49eQOpF3sGciIioKgxRZKNLSzcMCPaGxSqwcu9Je5dDRETUYNn1B4ipYZp8VxD2JGbhu4OpGOYv4OWkRnBwMNRq27eL2WxGYmKi9LyyNkRERE0Vv/GoAn1JFtyVRci1OuCN7WcRUJqKF0YDISEhNu0SExPx3vd74OUXiOzzZyptQ0RE1FQxRBEAwGqxIDk5GQCQnJyMrj46/JYOJJuAgJYBVS7n5RcIY2C7+iqTiIiowWCIIgBATkYavkzMQ5tMNZJiD8ErIBgdDAFIyMjH/nTgcqnV3iUSERE1KBxYThIPQ0sYA9vBw8cPADCogzdcHdQoNAMrDlzkDTiJiIiuwRBFVdJpVBgaYoQCQNSpAjz7VQwKis32LouIiKhB4Ok8uqGWHo7o6QMczga2Hc9A0oe/46EOjrgzwBnnzpyC1cocTkREzRNDFN1UG70Cj4UasfCPSziVXYj3swuxdF82nEvzYNQ7wNGnxN4lEhER1TseRqBq6ejtgM3P98e42zzgogHMAshTeyLhshO+2H8G21IFfozPQyFP9xERUTPBEEXV5umsxSNd3XFvAPBIL3+00+SihboUSgWQWwJ8eigHd76zEyt2n0RRqcXe5RIREdUphiiqMYVCAaPeAYGafITqC/BM/zYI9Qb8XNW4dLkU72z9G/cs3oOoExn2LpWIiKjOMETRLXPUqNDGxYqZXYrxwh1e8HJS4WzOFYxfcwjPrDmIszn8IWMiImp6OLCcakVORhq+ScxDm05q3GUUiEnNwzmLG3acyMRvSdn4Z2c9Rndxg1al5G/sERFRk8BvMqo15TfrBACNMhmDQvzwxfEi7Dt5EV8dycWG+Fy0VWZiwSP8jT0iImr8eDqP6kyAuxZfP9MHL/X3hqMKKCgFjhT74I1dGTzFR0REjR6PRFGduPYHjVta0jHUX4lUqwcOp15C9NnLCH9vN8b28MCDnfTo1LEDT+8REVGjw28uuqlrA1FycnK17lJe2Q8a978tGJrME4i/rEc+nPFpTA6+++s8nutxEv26lp0G5HgpIiJqLPhtRTdVWSDyq8Zy5WOkss+nStNclGb0bVECqyEIvyVlw2RxwFt/WdD3QgocTal4YTTHSxERUePAMVFULeWByMOnOvHpxhQKoEtLN4zpGwB3ZRGsChX2pQPntAEwW0UtVEtERFT3GKLIbvQOGtymy0KgQxEAICEXmP5TCn4/dBTx8fEwm/kTMkRE1HAxRJFdKRVAB6crGNHVFypYcdKkwDPrz2L2f6ORmJho7/KIiIiqxBBFDUI7Hxf0dsiAi8qCIgtwuMSI304X2rssIiKiKjFEUYPhpDSjt96EIC9nWASwYG8mlu9KhhAcJ0VERA0PQxQ1KGoFcF83X7R3K3u+aFsCZn5/FCVmq30LIyIiug5DFDU4SoUCPTytGB1khVIBfB9zDmM/24+8y6X2Lo2IiEjCEEUNUk5GGs4kxuNOI6CCFQdSLuG+D3Zh54EjvHKPiIgaBIYoarA8DC1xW0h7hDpkQiNKcTavFJN/Oscr94iIqEFgiKIGz1VZijCPQni76FB89cq9fam8co+IiOyLIYoaBQelwOjQVghs4QSLAP69OxOLtyfCwjucExGRnTBEUaOhVSvxQDc/tNUDAsAHUUkY+9kBpOcV2bs0IiJqhhiiqFFRKhW4vYUVT7SzQqdWYN/Jixj07m4s25mEolKLvcsjIqJmRG3vAohqKicjDaa8PNzdtgv2nStGXqkO7/6aiM9+T8GDPVrivm6+6OznBo1S2AxADw4OhlrNtzwREdUOfqNQo+RhaIng9u3hrEyAs8aKzec1yCosxep9p7F632koFYDRRY2CwkI46HSwllxG18BMBBi84OqgRknBJbhqldDrVPBxUeOOHh2hd3Kw2YbZbLZ7CGsINRARUeX4rzE1apcy03AmLw8DO3ZB0rlMuPkG4Xi2GdkFxTifbwagg+kKADhh16lC4FQVV/X9lAZ3ByUMLhq09/VAQAtnqIty8dvhePgZDbicmYqZ/wRCQkIqLFqXQScxMRHvfb8HXn6ByD5/Bi+MrrwGIiKqf00mRC1fvhyLFi1Ceno6unfvjg8//BC9e/e2d1lUDzwMLeHXuj2UCgXG9fNBSEgIMk1F2HnoODYdS4ezpwGnE0+gsKgYei9fZGZmQO3sAa2LOy6XmJFbUAQzlMgtsiK3qBgJ2enXrN2Aw2cABQIQ90MqDFEX4aJTSw8nnRr5ubmIPXkOzi56XMm/hBC/k/DxagG1UgG1EvAzGqDTqKFSCORkZcJBrYCDWoHgtq3h6qiFo1YNR40KKoUCCiWgUiigUiqgUAAWq0AL3wAYA9vZrX+JiKhyTSJE/fe//8WMGTOwcuVK9OnTB0uWLMHQoUORkJAAHx8fe5dHduCjd0A3oyMOn1LAaNTDnFIIlasLOt3WHnHRZ6FyKESn2zoDAOKid8KqdYWxfVfEHTmMS1dK4eDpi8yLubBoXVEENSxWgaxCC7IKTVVsUQ/kAoAHzpwFcPbSNfNyqlgmvYrplTiZBAWAbefOwFufBQ8nLTycNfB01sLDSSv9v4ez5n/PnbVw1amhUCiqvx0iIqq2JhGi3n//fUyYMAFPP/00AGDlypX45Zdf8Pnnn+Pll1+2c3VUX6wWC5KTk6XnycnJsFqrdwGqRingo3eAj/oKfL3Lw9ZOqBwEOvbohVNJiWjvLuDu7YfLpVYUFJtxudSKUqsCWRdzcDpfASe9B7IunAVUWug9vWEVAjlZGSgtLYWjixsKTLlQOjhD6+iCK0VFUCkAC1S4UmqBWdw86Ajg6tGygmr3iUoBuGiVcNQo4aBWwFGjhKfeBS4Oajhr1VCryrZrtQqYTHkQAjALAYsVcHRyhkUAJWYrTPkFMAug1GyFRQhYhAJmq4DZImARAkDZUTe1EtColFArFXB1doRWrYJGpYRGpYRWrYBaafu32WLBxUu5MFsBs8UKs1XACgWsQkAJQKkoW59KqYCnuxs0ahXUyrIjdWqlAuqr26rsuUalgEp5zXxV2TaVirK+FKK8X8U1fwNC/O/eY5W2EbbthPQ/la3Ldrq0ZiGkv4UALBYLMjIzpXV5eXtDqSx77yoUCigVZb8pqVSUP//fNEX5PGV5m//Nv/a9c/3+2D4vn29737Uq21ex3P/2r/LlqluLEAJm89U+EYAVgJeXF5RK5dV9tu0TVKOPrl3m2k/b9Xeas6218v6ofLmq71l3/axr11thXjW3UWFrsuuWt9z1hYvrZpktFmRkZMIqAKsQaOHlhSf6BsHNSXP9mhq1Rh+iSkpKEBMTg8jISGmaUqlEeHg4oqOjK12muLgYxcXF0vO8vDwAgMlU1VEGeQoKCnD+1N8ovnIZmedSoNI6wcmxbPDytc+r+ru22zX1dZ88dhAH8/LgF9gGAHAuOR6efkEoLS665RrOHDuIuOvWrdQ4wC+wjbSdQJfOMGcehkrrhNZeZUe5TmYdKnvu3xknzx2FqsgJrQ2dcfLMQeRfXd+55Hh4+AUhMDgEAsCpuL+Qb8qDr38QzqUkwt0YCP+2HZDy9xGYCorg4RuAUiiRlZkJoXWGg5snTPkFsKgcoXJwQbHZAotSC6FUwwrgUhFw7XGx659VLasmb/dKVHc71ZVZy+tryM7Zu4AGiH3SuKXhztYuCPJyqdW1ln9v3yjE1qVGH6Kys7NhsVhgMBhsphsMBvz999+VLrNgwQLMmzevwnR/f/86qZGIiKi567Gk7tadn58PNze3uttAFRp9iJIjMjISM2bMkJ5brVbk5OSgRYsWtTp+xGQywd/fH2fPnoVer6+19TZ17Dd52G/yse/kYb/Jw36Tp7J+E0IgPz8ffn5+dqmp0YcoLy8vqFQqZGRk2EzPyMiA0WisdBmdTgedTmczzd3dva5KhF6v5wdFBvabPOw3+dh38rDf5GG/yXN9v9njCFS5Rv+zL1qtFqGhoYiKipKmWa1WREVFISwszI6VERERUVPW6I9EAcCMGTMwbtw49OzZE71798aSJUtQWFgoXa1HREREVNuaRIh65JFHkJWVhdmzZyM9PR09evTA1q1bKww2r286nQ5z5sypcOqQboz9Jg/7TT72nTzsN3nYb/I0xH5TCHtdF0hERETUiDX6MVFERERE9sAQRURERCQDQxQRERGRDAxRRERERDIwRNWh5cuXo3Xr1nBwcECfPn3w559/2rukOjN37lworv4waPmjY8eO0vyioiJERESgRYsWcHFxwahRoyrcIDU1NRUjRoyAk5MTfHx8MHPmTJjNZps2u3fvxu233w6dTod27dph9erVFWppyP2+d+9e3H///fDz84NCocCGDRts5gshMHv2bPj6+sLR0RHh4eFISkqyaZOTk4MxY8ZAr9fD3d0d48ePR0GB7Y8SHz16FP3794eDgwP8/f2xcOHCCrWsW7cOHTt2hIODA7p27YrNmzfXuJb6crN+e+qppyq8/4YNG2bTpjn224IFC9CrVy+4urrCx8cHDz30EBISEmzaNKTPZnVqqQ/V6beBAwdWeM89++yzNm2aW7+tWLEC3bp1k26GGRYWhi1bttSozkbXZ4LqxNq1a4VWqxWff/65OH78uJgwYYJwd3cXGRkZ9i6tTsyZM0d07txZXLhwQXpkZWVJ85999lnh7+8voqKixKFDh0Tfvn1Fv379pPlms1l06dJFhIeHi8OHD4vNmzcLLy8vERkZKbU5deqUcHJyEjNmzBDx8fHiww8/FCqVSmzdulVq09D7ffPmzeLVV18VP/74owAg1q9fbzP/7bffFm5ubmLDhg3iyJEj4oEHHhBBQUHiypUrUpthw4aJ7t27i/3794vffvtNtGvXTjz22GPS/Ly8PGEwGMSYMWNEXFyc+Pbbb4Wjo6P4+OOPpTZ//PGHUKlUYuHChSI+Pl689tprQqPRiGPHjtWolvpys34bN26cGDZsmM37Lycnx6ZNc+y3oUOHilWrVom4uDgRGxsr7r33XhEQECAKCgqkNg3ps3mzWupLdfptwIABYsKECTbvuby8PGl+c+y3n376Sfzyyy8iMTFRJCQkiFdeeUVoNBoRFxdXrTobY58xRNWR3r17i4iICOm5xWIRfn5+YsGCBXasqu7MmTNHdO/evdJ5ubm5QqPRiHXr1knTTpw4IQCI6OhoIUTZl6RSqRTp6elSmxUrVgi9Xi+Ki4uFEELMmjVLdO7c2WbdjzzyiBg6dKj0vDH1+/VhwGq1CqPRKBYtWiRNy83NFTqdTnz77bdCCCHi4+MFAHHw4EGpzZYtW4RCoRBpaWlCCCE++ugj4eHhIfWbEEK89NJLokOHDtLzhx9+WIwYMcKmnj59+ohJkyZVuxZ7qSpEPfjgg1Uuw34rk5mZKQCIPXv2CCEa1mezOrXYy/X9JkRZiHr++eerXIb9VsbDw0N8+umnTfa9xtN5daCkpAQxMTEIDw+XpimVSoSHhyM6OtqOldWtpKQk+Pn5oU2bNhgzZgxSU1MBADExMSgtLbXpj44dOyIgIEDqj+joaHTt2tXmBqlDhw6FyWTC8ePHpTbXrqO8Tfk6Gnu/p6SkID093aZ+Nzc39OnTx6af3N3d0bNnT6lNeHg4lEolDhw4ILW56667oNVqpTZDhw5FQkICLl26JLW5UV9Wp5aGZvfu3fDx8UGHDh0wefJkXLx4UZrHfiuTl5cHAPD09ATQsD6b1anFXq7vt3Jff/01vLy80KVLF0RGRuLy5cvSvObebxaLBWvXrkVhYSHCwsKa7HutSdyxvKHJzs6GxWKpcMd0g8GAv//+205V1a0+ffpg9erV6NChAy5cuIB58+ahf//+iIuLQ3p6OrRabYUfeTYYDEhPTwcApKenV9pf5fNu1MZkMuHKlSu4dOlSo+738v2srP5r+8DHx8dmvlqthqenp02boKCgCuson+fh4VFlX167jpvV0pAMGzYMI0eORFBQEE6ePIlXXnkFw4cPR3R0NFQqFfsNZb8pOm3aNNxxxx3o0qULADSoz2Z1arGHyvoNAB5//HEEBgbCz88PR48exUsvvYSEhAT8+OOPAJpvvx07dgxhYWEoKiqCi4sL1q9fj5CQEMTGxjbJ9xpDFNWK4cOHS39369YNffr0QWBgIL777js4OjrasTJqDh599FHp765du6Jbt25o27Ytdu/ejcGDB9uxsoYjIiICcXFx+P333+1dSqNSVb9NnDhR+rtr167w9fXF4MGDcfLkSbRt27a+y2wwOnTogNjYWOTl5eH777/HuHHjsGfPHnuXVWd4Oq8OeHl5QaVSVRjpn5GRAaPRaKeq6pe7uzuCg4ORnJwMo9GIkpIS5Obm2rS5tj+MRmOl/VU+70Zt9Ho9HB0dG32/l9d4o/qNRiMyMzNt5pvNZuTk5NRKX147/2a1NGRt2rSBl5cXkpOTAbDfpkyZgk2bNmHXrl1o1aqVNL0hfTarU0t9q6rfKtOnTx8AsHnPNcd+02q1aNeuHUJDQ7FgwQJ0794dH3zwQZN9rzFE1QGtVovQ0FBERUVJ06xWK6KiohAWFmbHyupPQUEBTp48CV9fX4SGhkKj0dj0R0JCAlJTU6X+CAsLw7Fjx2y+6LZv3w69Xo+QkBCpzbXrKG9Tvo7G3u9BQUEwGo029ZtMJhw4cMCmn3JzcxETEyO12blzJ6xWq/SPeFhYGPbu3YvS0lKpzfbt29GhQwd4eHhIbW7Ul9WppSE7d+4cLl68CF9fXwDNt9+EEJgyZQrWr1+PnTt3Vjhd2ZA+m9Wppb7crN8qExsbCwA277nm1m+VsVqtKC4ubrrvtRoNQ6dqW7t2rdDpdGL16tUiPj5eTJw4Ubi7u9tcddCUvPDCC2L37t0iJSVF/PHHHyI8PFx4eXmJzMxMIUTZ5aQBAQFi586d4tChQyIsLEyEhYVJy5df2jpkyBARGxsrtm7dKry9vSu9tHXmzJnixIkTYvny5ZVe2tqQ+z0/P18cPnxYHD58WAAQ77//vjh8+LA4c+aMEKLs8nh3d3exceNGcfToUfHggw9WeouD2267TRw4cED8/vvvon379jaX6ufm5gqDwSDGjh0r4uLixNq1a4WTk1OFS/XVarV49913xYkTJ8ScOXMqvVT/ZrXUlxv1W35+vnjxxRdFdHS0SElJETt27BC33367aN++vSgqKpLW0Rz7bfLkycLNzU3s3r3b5lL8y5cvS20a0mfzZrXUl5v1W3Jyspg/f744dOiQSElJERs3bhRt2rQRd911l7SO5thvL7/8stizZ49ISUkRR48eFS+//LJQKBTi119/rVadjbHPGKLq0IcffigCAgKEVqsVvXv3Fvv377d3SXXmkUceEb6+vkKr1YqWLVuKRx55RCQnJ0vzr1y5Iv7v//5PeHh4CCcnJ/GPf/xDXLhwwWYdp0+fFsOHDxeOjo7Cy8tLvPDCC6K0tNSmza5du0SPHj2EVqsVbdq0EatWrapQS0Pu9127dgkAFR7jxo0TQpRdIv/6668Lg8EgdDqdGDx4sEhISLBZx8WLF8Vjjz0mXFxchF6vF08//bTIz8+3aXPkyBFx5513Cp1OJ1q2bCnefvvtCrV89913Ijg4WGi1WtG5c2fxyy+/2MyvTi315Ub9dvnyZTFkyBDh7e0tNBqNCAwMFBMmTKgQnJtjv1XWZwBsPjcN6bNZnVrqw836LTU1Vdx1113C09NT6HQ60a5dOzFz5kyb+0QJ0fz67V//+pcIDAwUWq1WeHt7i8GDB0sBqrp1NrY+UwghRM2OXRERERERx0QRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFE1CS1bt0aS5YssXcZRNSEMUQRUYP31FNPQaFQQKFQSD9wOn/+fJjN5iqXOXjwICZOnFiPVRJRc6O2dwFERNUxbNgwrFq1CsXFxdi8eTMiIiKg0WgQGRlp066kpARarRbe3t52qpSImgseiSKiRkGn08FoNCIwMBCTJ09GeHg4fvrpJzz11FN46KGH8O9//xt+fn7o0KEDgIqn83JzczFp0iQYDAY4ODigS5cu2LRpkzT/999/R//+/eHo6Ah/f38899xzKCwsrO/dJKJGhEeiiKhRcnR0xMWLFwEAUVFR0Ov12L59e6VtrVYrhg8fjvz8fHz11Vdo27Yt4uPjoVKpAAAnT57EsGHD8Oabb+Lzzz9HVlYWpkyZgilTpmDVqlX1tk9E1LgwRBFRoyKEQFRUFLZt24apU6ciKysLzs7O+PTTT6HVaitdZseOHfjzzz9x4sQJBAcHAwDatGkjzV+wYAHGjBmDadOmAQDat2+PpUuXYsCAAVixYgUcHBzqfL+IqPHh6TwiahQ2bdoEFxcXODg4YPjw4XjkkUcwd+5cAEDXrl2rDFAAEBsbi1atWkkB6npHjhzB6tWr4eLiIj2GDh0Kq9WKlJSUutgdImoCeCSKiBqFQYMGYcWKFdBqtfDz84Na/b9/vpydnW+4rKOj4w3nFxQUYNKkSXjuuecqzAsICJBXMBE1eQxRRNQoODs7o127drKW7datG86dO4fExMRKj0bdfvvtiI+Pl71+ImqeeDqPiJq8AQMG4K677sKoUaOwfft2pKSkYMuWLdi6dSsA4KWXXsK+ffswZcoUxMbGIikpCRs3bsSUKVPsXDkRNWQMUUTULPzwww/o1asXHnvsMYSEhGDWrFmwWCwAyo5U7dmzB4mJiejfvz9uu+02zJ49G35+fnaumogaMoUQQti7CCIiIqLGhkeiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGf4fGwmjYBb9VM8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Пример оценки сбалансированности целевой переменной (цена автомобиля)\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Гистограмма распределения цены в обучающей выборке\n", + "sns.histplot(train_data['Price'], kde=True)\n", + "plt.title('Распределение цены в обучающей выборке')\n", + "plt.show()\n", + "\n", + "# Гистограмма распределения цены в контрольной выборке\n", + "sns.histplot(val_data['Price'], kde=True)\n", + "plt.title('Распределение цены в контрольной выборке')\n", + "plt.show()\n", + "\n", + "# Гистограмма распределения цены в тестовой выборке\n", + "sns.histplot(test_data['Price'], kde=True)\n", + "plt.title('Распределение цены в тестовой выборке')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Процесс конструирования признаков\n", + "Задача 1: Прогнозирование цен на автомобили\n", + "Цель технического проекта: Разработка модели машинного обучения для точного прогнозирования рыночной стоимости автомобилей.\n", + "\n", + "Задача 2: Оптимизация рекламных бюджетов\n", + "Цель технического проекта: Использование прогнозов цен на автомобили для оптимизации таргетинга рекламы и повышения конверсии на онлайн-площадках.\n", + "\n", + "\n", + "### Унитарное кодирование категориальных признаков (one-hot encoding)\n", + "\n", + "One-hot encoding: Преобразование категориальных признаков в бинарные векторы." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ID Price Levy Manufacturer Prod. year Engine volume \\\n", + "3438 45793776 13485 781 VOLKSWAGEN 2012 2.5 \n", + "3185 45760664 314 781 SUBARU 2012 2.5 \n", + "5529 45777845 5645 5908 BMW 1999 2.5 \n", + "7891 45651201 7997 1850 LEXUS 2008 3.5 \n", + "12167 45798755 15681 765 VOLKSWAGEN 2015 2 \n", + "... ... ... ... ... ... ... \n", + "2750 45656065 941 1055 LEXUS 2013 3.5 \n", + "17390 45785069 12000 - FORD 1998 2.5 \n", + "5563 45815001 941 777 TOYOTA 2014 2.5 \n", + "3813 45809829 54850 831 HONDA 2018 1.5 \n", + "6041 45397141 9095 - FORD 2003 1.7 \n", + "\n", + " Mileage Cylinders Drive wheels Doors ... Fuel type_Hybrid \\\n", + "3438 160000 km 4.0 Rear 04-May ... False \n", + "3185 204579 km 4.0 4x4 04-May ... False \n", + "5529 0 km 6.0 Rear 04-May ... False \n", + "7891 244731 km 6.0 Front 04-May ... True \n", + "12167 103000 km 4.0 Front 04-May ... False \n", + "... ... ... ... ... ... ... \n", + "2750 361603 km 6.0 Front 04-May ... True \n", + "17390 220000 km 4.0 Rear 04-May ... False \n", + "5563 202355 km 4.0 Front 04-May ... False \n", + "3813 13048 km 4.0 Front 04-May ... False \n", + "6041 159000 km 4.0 Front 04-May ... False \n", + "\n", + " Fuel type_LPG Fuel type_Petrol Fuel type_Plug-in Hybrid \\\n", + "3438 False True False \n", + "3185 False True False \n", + "5529 False True False \n", + "7891 False False False \n", + "12167 False True False \n", + "... ... ... ... \n", + "2750 False False False \n", + "17390 False False False \n", + "5563 False True False \n", + "3813 False True False \n", + "6041 False False False \n", + "\n", + " Gear box type_Automatic Gear box type_Manual Gear box type_Tiptronic \\\n", + "3438 True False False \n", + "3185 True False False \n", + "5529 False False True \n", + "7891 True False False \n", + "12167 False False True \n", + "... ... ... ... \n", + "2750 True False False \n", + "17390 False True False \n", + "5563 True False False \n", + "3813 True False False \n", + "6041 False True False \n", + "\n", + " Gear box type_Variator Leather interior_No Leather interior_Yes \n", + "3438 False False True \n", + "3185 False False True \n", + "5529 False True False \n", + "7891 False False True \n", + "12167 False True False \n", + "... ... ... ... \n", + "2750 False False True \n", + "17390 False True False \n", + "5563 False False True \n", + "3813 False False True \n", + "6041 False True False \n", + "\n", + "[12311 rows x 1247 columns]\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Пример категориальных признаков\n", + "categorical_features = ['Model', 'Category', 'Fuel type', 'Gear box type', 'Leather interior']\n", + "\n", + "# Применение one-hot encoding\n", + "train_data_encoded = pd.get_dummies(train_data, columns=categorical_features)\n", + "val_data_encoded = pd.get_dummies(val_data, columns=categorical_features)\n", + "test_data_encoded = pd.get_dummies(test_data, columns=categorical_features)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Дискретизация числовых признаков \n", + "это процесс преобразования непрерывных числовых значений в дискретные категории или интервалы (бины). Этот процесс может быть полезен по нескольким причинам" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ID Price Levy Manufacturer Prod. year Engine volume \\\n", + "736 45753963 27284 259 CHEVROLET 2014 1.4 \n", + "8674 45786053 10349 - MERCEDES-BENZ 1997 2.9 Turbo \n", + "5971 45757478 40769 - MERCEDES-BENZ 1996 1.8 \n", + "1957 45732345 38737 639 HYUNDAI 2014 2 \n", + "11075 45729790 42102 831 SSANGYONG 2017 1.6 \n", + "... ... ... ... ... ... ... \n", + "12026 45786994 12231 650 CHEVROLET 2016 1.4 Turbo \n", + "17893 45756187 15681 - FORD 2003 2.4 Turbo \n", + "5339 45769967 314 2410 MERCEDES-BENZ 2010 6.2 \n", + "11859 45801865 14069 687 HYUNDAI 2010 1.6 \n", + "9276 45803366 15681 891 HYUNDAI 2016 2 \n", + "\n", + " Mileage Cylinders Drive wheels Doors ... Fuel type_LPG \\\n", + "736 65000 km 4.0 Front 04-May ... False \n", + "8674 3333 km 6.0 Rear 02-Mar ... False \n", + "5971 212485 km 8.0 Rear 04-May ... False \n", + "1957 132756 km 4.0 Front 04-May ... False \n", + "11075 50750 km 4.0 Front 04-May ... False \n", + "... ... ... ... ... ... ... \n", + "12026 9000 km 4.0 Front 04-May ... False \n", + "17893 250000 km 4.0 Rear 04-May ... False \n", + "5339 274771 km 8.0 Rear 04-May ... False \n", + "11859 100403 km 4.0 Front 04-May ... False \n", + "9276 322292 km 4.0 Front 04-May ... True \n", + "\n", + " Fuel type_Petrol Fuel type_Plug-in Hybrid Gear box type_Automatic \\\n", + "736 False True True \n", + "8674 False False False \n", + "5971 True False False \n", + "1957 False False True \n", + "11075 True False True \n", + "... ... ... ... \n", + "12026 True False False \n", + "17893 False False False \n", + "5339 True False True \n", + "11859 True False True \n", + "9276 False False True \n", + "\n", + " Gear box type_Manual Gear box type_Tiptronic Gear box type_Variator \\\n", + "736 False False False \n", + "8674 True False False \n", + "5971 True False False \n", + "1957 False False False \n", + "11075 False False False \n", + "... ... ... ... \n", + "12026 False True False \n", + "17893 True False False \n", + "5339 False False False \n", + "11859 False False False \n", + "9276 False False False \n", + "\n", + " Leather interior_No Leather interior_Yes Year bin \n", + "736 True False 4 \n", + "8674 False True 3 \n", + "5971 True False 3 \n", + "1957 False True 4 \n", + "11075 False True 4 \n", + "... ... ... ... \n", + "12026 True False 4 \n", + "17893 True False 3 \n", + "5339 False True 4 \n", + "11859 False True 4 \n", + "9276 False True 4 \n", + "\n", + "[3848 rows x 658 columns]\n" + ] + } + ], + "source": [ + "# Пример дискретизации признака 'year'\n", + "train_data_encoded['Year bin'] = pd.cut(train_data_encoded['Prod. year'], bins=5, labels=False)\n", + "val_data_encoded['Year bin'] = pd.cut(val_data_encoded['Prod. year'], bins=5, labels=False)\n", + "test_data_encoded['Year bin'] = pd.cut(test_data_encoded['Prod. year'], bins=5, labels=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Ручной синтез\n", + "Создание новых признаков на основе экспертных знаний и логики предметной области. Например, для данных о продаже автомобилей можно создать признак \"возраст автомобиля\" как разницу между текущим годом и годом выпуска." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ID Price Levy Manufacturer Prod. year Engine volume \\\n", + "3438 45793776 13485 781 VOLKSWAGEN 2012 2.5 \n", + "3185 45760664 314 781 SUBARU 2012 2.5 \n", + "5529 45777845 5645 5908 BMW 1999 2.5 \n", + "7891 45651201 7997 1850 LEXUS 2008 3.5 \n", + "12167 45798755 15681 765 VOLKSWAGEN 2015 2 \n", + "... ... ... ... ... ... ... \n", + "2750 45656065 941 1055 LEXUS 2013 3.5 \n", + "17390 45785069 12000 - FORD 1998 2.5 \n", + "5563 45815001 941 777 TOYOTA 2014 2.5 \n", + "3813 45809829 54850 831 HONDA 2018 1.5 \n", + "6041 45397141 9095 - FORD 2003 1.7 \n", + "\n", + " Mileage Cylinders Drive wheels Doors ... Fuel type_Petrol \\\n", + "3438 160000 km 4.0 Rear 04-May ... True \n", + "3185 204579 km 4.0 4x4 04-May ... True \n", + "5529 0 km 6.0 Rear 04-May ... True \n", + "7891 244731 km 6.0 Front 04-May ... False \n", + "12167 103000 km 4.0 Front 04-May ... True \n", + "... ... ... ... ... ... ... \n", + "2750 361603 km 6.0 Front 04-May ... False \n", + "17390 220000 km 4.0 Rear 04-May ... False \n", + "5563 202355 km 4.0 Front 04-May ... True \n", + "3813 13048 km 4.0 Front 04-May ... True \n", + "6041 159000 km 4.0 Front 04-May ... False \n", + "\n", + " Fuel type_Plug-in Hybrid Gear box type_Automatic Gear box type_Manual \\\n", + "3438 False True False \n", + "3185 False True False \n", + "5529 False False False \n", + "7891 False True False \n", + "12167 False False False \n", + "... ... ... ... \n", + "2750 False True False \n", + "17390 False False True \n", + "5563 False True False \n", + "3813 False True False \n", + "6041 False False True \n", + "\n", + " Gear box type_Tiptronic Gear box type_Variator Leather interior_No \\\n", + "3438 False False False \n", + "3185 False False False \n", + "5529 True False True \n", + "7891 False False False \n", + "12167 True False True \n", + "... ... ... ... \n", + "2750 False False False \n", + "17390 False False True \n", + "5563 False False False \n", + "3813 False False False \n", + "6041 False False True \n", + "\n", + " Leather interior_Yes Year bin Age \n", + "3438 True 4 12 \n", + "3185 True 4 12 \n", + "5529 False 3 25 \n", + "7891 True 4 16 \n", + "12167 False 4 9 \n", + "... ... ... ... \n", + "2750 True 4 11 \n", + "17390 False 3 26 \n", + "5563 True 4 10 \n", + "3813 True 4 6 \n", + "6041 False 3 21 \n", + "\n", + "[12311 rows x 1249 columns]\n" + ] + } + ], + "source": [ + "# Пример синтеза признака \"возраст автомобиля\"\n", + "train_data_encoded['Age'] = 2024 - train_data_encoded['Prod. year']\n", + "val_data_encoded['Age'] = 2024 - val_data_encoded['Prod. year']\n", + "test_data_encoded['Age'] = 2024 - test_data_encoded['Prod. year']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Масштабирование признаков - это процесс преобразования числовых признаков таким образом, чтобы они имели одинаковый масштаб. Это важно для многих алгоритмов машинного обучения, которые чувствительны к масштабу признаков, таких как линейная регрессия, метод опорных векторов (SVM) и нейронные сети." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", + "\n", + "# Пример масштабирования числовых признаков\n", + "numerical_features = ['Airbags', 'Age']\n", + "\n", + "scaler = StandardScaler()\n", + "train_data_encoded[numerical_features] = scaler.fit_transform(train_data_encoded[numerical_features])\n", + "val_data_encoded[numerical_features] = scaler.transform(val_data_encoded[numerical_features])\n", + "test_data_encoded[numerical_features] = scaler.transform(test_data_encoded[numerical_features])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Конструирование признаков с применением фреймворка Featuretools" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'pkg_resources'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[25], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mft\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m# Определение сущностей\u001b[39;00m\n\u001b[0;32m 4\u001b[0m es \u001b[38;5;241m=\u001b[39m ft\u001b[38;5;241m.\u001b[39mEntitySet(\u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcar_data\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\__init__.py:4\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mversion\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m __version__\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconfig_init\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m config\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m primitives\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesis\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n", + "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\__init__.py:2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n", + "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\api.py:2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdeserialize\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m read_entityset\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m EntitySet\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrelationship\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Relationship\n", + "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\deserialize.py:8\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01minspect\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m getfullargspec\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwoodwork\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtype_sys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtype_system\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mww_type_system\u001b[39;00m\n\u001b[0;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mwoodwork\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdeserialize\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m read_woodwork_table\n\u001b[0;32m 11\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrelationship\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Relationship\n", + "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\__init__.py:2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpkg_resources\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01msys\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwarnings\u001b[39;00m\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'pkg_resources'" + ] + } + ], + "source": [ + "import featuretools as ft\n", + "\n", + "# Определение сущностей\n", + "es = ft.EntitySet(id='car_data')\n", + "es = es.entity_from_dataframe(entity_id='cars', dataframe=train_data_encoded, index='id')\n", + "\n", + "# Определение связей между сущностями (если есть)\n", + "# es = es.add_relationship(...)\n", + "\n", + "# Генерация признаков\n", + "feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='cars', max_depth=2)\n", + "\n", + "# Преобразование признаков для контрольной и тестовой выборок\n", + "val_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=val_data_encoded.index)\n", + "test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)" + ] } ], "metadata": { -- 2.25.1 From 1f9b7fcbe97e147f4e5adc18db1413bec63375c8 Mon Sep 17 00:00:00 2001 From: GokaPek Date: Fri, 11 Oct 2024 23:18:43 +0400 Subject: [PATCH 3/4] =?UTF-8?q?=D0=BF=D0=BE=D1=87=D1=82=D0=B8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- lab_3/lab3.ipynb | 484 +++++++++++++++++++++++------------------------ 1 file changed, 239 insertions(+), 245 deletions(-) diff --git a/lab_3/lab3.ipynb b/lab_3/lab3.ipynb index 337db01..7c9e25e 100644 --- a/lab_3/lab3.ipynb +++ b/lab_3/lab3.ipynb @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -181,82 +181,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ID Price Levy Manufacturer Prod. year Engine volume \\\n", - "3438 45793776 13485 781 VOLKSWAGEN 2012 2.5 \n", - "3185 45760664 314 781 SUBARU 2012 2.5 \n", - "5529 45777845 5645 5908 BMW 1999 2.5 \n", - "7891 45651201 7997 1850 LEXUS 2008 3.5 \n", - "12167 45798755 15681 765 VOLKSWAGEN 2015 2 \n", - "... ... ... ... ... ... ... \n", - "2750 45656065 941 1055 LEXUS 2013 3.5 \n", - "17390 45785069 12000 - FORD 1998 2.5 \n", - "5563 45815001 941 777 TOYOTA 2014 2.5 \n", - "3813 45809829 54850 831 HONDA 2018 1.5 \n", - "6041 45397141 9095 - FORD 2003 1.7 \n", - "\n", - " Mileage Cylinders Drive wheels Doors ... Fuel type_Hybrid \\\n", - "3438 160000 km 4.0 Rear 04-May ... False \n", - "3185 204579 km 4.0 4x4 04-May ... False \n", - "5529 0 km 6.0 Rear 04-May ... False \n", - "7891 244731 km 6.0 Front 04-May ... True \n", - "12167 103000 km 4.0 Front 04-May ... False \n", - "... ... ... ... ... ... ... \n", - "2750 361603 km 6.0 Front 04-May ... True \n", - "17390 220000 km 4.0 Rear 04-May ... False \n", - "5563 202355 km 4.0 Front 04-May ... False \n", - "3813 13048 km 4.0 Front 04-May ... False \n", - "6041 159000 km 4.0 Front 04-May ... False \n", - "\n", - " Fuel type_LPG Fuel type_Petrol Fuel type_Plug-in Hybrid \\\n", - "3438 False True False \n", - "3185 False True False \n", - "5529 False True False \n", - "7891 False False False \n", - "12167 False True False \n", - "... ... ... ... \n", - "2750 False False False \n", - "17390 False False False \n", - "5563 False True False \n", - "3813 False True False \n", - "6041 False False False \n", - "\n", - " Gear box type_Automatic Gear box type_Manual Gear box type_Tiptronic \\\n", - "3438 True False False \n", - "3185 True False False \n", - "5529 False False True \n", - "7891 True False False \n", - "12167 False False True \n", - "... ... ... ... \n", - "2750 True False False \n", - "17390 False True False \n", - "5563 True False False \n", - "3813 True False False \n", - "6041 False True False \n", - "\n", - " Gear box type_Variator Leather interior_No Leather interior_Yes \n", - "3438 False False True \n", - "3185 False False True \n", - "5529 False True False \n", - "7891 False False True \n", - "12167 False True False \n", - "... ... ... ... \n", - "2750 False False True \n", - "17390 False True False \n", - "5563 False False True \n", - "3813 False False True \n", - "6041 False True False \n", - "\n", - "[12311 rows x 1247 columns]\n" - ] - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "\n", @@ -279,82 +206,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 16, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ID Price Levy Manufacturer Prod. year Engine volume \\\n", - "736 45753963 27284 259 CHEVROLET 2014 1.4 \n", - "8674 45786053 10349 - MERCEDES-BENZ 1997 2.9 Turbo \n", - "5971 45757478 40769 - MERCEDES-BENZ 1996 1.8 \n", - "1957 45732345 38737 639 HYUNDAI 2014 2 \n", - "11075 45729790 42102 831 SSANGYONG 2017 1.6 \n", - "... ... ... ... ... ... ... \n", - "12026 45786994 12231 650 CHEVROLET 2016 1.4 Turbo \n", - "17893 45756187 15681 - FORD 2003 2.4 Turbo \n", - "5339 45769967 314 2410 MERCEDES-BENZ 2010 6.2 \n", - "11859 45801865 14069 687 HYUNDAI 2010 1.6 \n", - "9276 45803366 15681 891 HYUNDAI 2016 2 \n", - "\n", - " Mileage Cylinders Drive wheels Doors ... Fuel type_LPG \\\n", - "736 65000 km 4.0 Front 04-May ... False \n", - "8674 3333 km 6.0 Rear 02-Mar ... False \n", - "5971 212485 km 8.0 Rear 04-May ... False \n", - "1957 132756 km 4.0 Front 04-May ... False \n", - "11075 50750 km 4.0 Front 04-May ... False \n", - "... ... ... ... ... ... ... \n", - "12026 9000 km 4.0 Front 04-May ... False \n", - "17893 250000 km 4.0 Rear 04-May ... False \n", - "5339 274771 km 8.0 Rear 04-May ... False \n", - "11859 100403 km 4.0 Front 04-May ... False \n", - "9276 322292 km 4.0 Front 04-May ... True \n", - "\n", - " Fuel type_Petrol Fuel type_Plug-in Hybrid Gear box type_Automatic \\\n", - "736 False True True \n", - "8674 False False False \n", - "5971 True False False \n", - "1957 False False True \n", - "11075 True False True \n", - "... ... ... ... \n", - "12026 True False False \n", - "17893 False False False \n", - "5339 True False True \n", - "11859 True False True \n", - "9276 False False True \n", - "\n", - " Gear box type_Manual Gear box type_Tiptronic Gear box type_Variator \\\n", - "736 False False False \n", - "8674 True False False \n", - "5971 True False False \n", - "1957 False False False \n", - "11075 False False False \n", - "... ... ... ... \n", - "12026 False True False \n", - "17893 True False False \n", - "5339 False False False \n", - "11859 False False False \n", - "9276 False False False \n", - "\n", - " Leather interior_No Leather interior_Yes Year bin \n", - "736 True False 4 \n", - "8674 False True 3 \n", - "5971 True False 3 \n", - "1957 False True 4 \n", - "11075 False True 4 \n", - "... ... ... ... \n", - "12026 True False 4 \n", - "17893 True False 3 \n", - "5339 False True 4 \n", - "11859 False True 4 \n", - "9276 False True 4 \n", - "\n", - "[3848 rows x 658 columns]\n" - ] - } - ], + "outputs": [], "source": [ "# Пример дискретизации признака 'year'\n", "train_data_encoded['Year bin'] = pd.cut(train_data_encoded['Prod. year'], bins=5, labels=False)\n", @@ -372,82 +226,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 15, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ID Price Levy Manufacturer Prod. year Engine volume \\\n", - "3438 45793776 13485 781 VOLKSWAGEN 2012 2.5 \n", - "3185 45760664 314 781 SUBARU 2012 2.5 \n", - "5529 45777845 5645 5908 BMW 1999 2.5 \n", - "7891 45651201 7997 1850 LEXUS 2008 3.5 \n", - "12167 45798755 15681 765 VOLKSWAGEN 2015 2 \n", - "... ... ... ... ... ... ... \n", - "2750 45656065 941 1055 LEXUS 2013 3.5 \n", - "17390 45785069 12000 - FORD 1998 2.5 \n", - "5563 45815001 941 777 TOYOTA 2014 2.5 \n", - "3813 45809829 54850 831 HONDA 2018 1.5 \n", - "6041 45397141 9095 - FORD 2003 1.7 \n", - "\n", - " Mileage Cylinders Drive wheels Doors ... Fuel type_Petrol \\\n", - "3438 160000 km 4.0 Rear 04-May ... True \n", - "3185 204579 km 4.0 4x4 04-May ... True \n", - "5529 0 km 6.0 Rear 04-May ... True \n", - "7891 244731 km 6.0 Front 04-May ... False \n", - "12167 103000 km 4.0 Front 04-May ... True \n", - "... ... ... ... ... ... ... \n", - "2750 361603 km 6.0 Front 04-May ... False \n", - "17390 220000 km 4.0 Rear 04-May ... False \n", - "5563 202355 km 4.0 Front 04-May ... True \n", - "3813 13048 km 4.0 Front 04-May ... True \n", - "6041 159000 km 4.0 Front 04-May ... False \n", - "\n", - " Fuel type_Plug-in Hybrid Gear box type_Automatic Gear box type_Manual \\\n", - "3438 False True False \n", - "3185 False True False \n", - "5529 False False False \n", - "7891 False True False \n", - "12167 False False False \n", - "... ... ... ... \n", - "2750 False True False \n", - "17390 False False True \n", - "5563 False True False \n", - "3813 False True False \n", - "6041 False False True \n", - "\n", - " Gear box type_Tiptronic Gear box type_Variator Leather interior_No \\\n", - "3438 False False False \n", - "3185 False False False \n", - "5529 True False True \n", - "7891 False False False \n", - "12167 True False True \n", - "... ... ... ... \n", - "2750 False False False \n", - "17390 False False True \n", - "5563 False False False \n", - "3813 False False False \n", - "6041 False False True \n", - "\n", - " Leather interior_Yes Year bin Age \n", - "3438 True 4 12 \n", - "3185 True 4 12 \n", - "5529 False 3 25 \n", - "7891 True 4 16 \n", - "12167 False 4 9 \n", - "... ... ... ... \n", - "2750 True 4 11 \n", - "17390 False 3 26 \n", - "5563 True 4 10 \n", - "3813 True 4 6 \n", - "6041 False 3 21 \n", - "\n", - "[12311 rows x 1249 columns]\n" - ] - } - ], + "outputs": [], "source": [ "# Пример синтеза признака \"возраст автомобиля\"\n", "train_data_encoded['Age'] = 2024 - train_data_encoded['Prod. year']\n", @@ -464,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -488,23 +269,33 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 51, "metadata": {}, "outputs": [ { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'pkg_resources'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[25], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mft\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m# Определение сущностей\u001b[39;00m\n\u001b[0;32m 4\u001b[0m es \u001b[38;5;241m=\u001b[39m ft\u001b[38;5;241m.\u001b[39mEntitySet(\u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcar_data\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\__init__.py:4\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mversion\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m __version__\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconfig_init\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m config\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m primitives\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msynthesis\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n", - "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\__init__.py:2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n", - "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\api.py:2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdeserialize\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m read_entityset\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m EntitySet\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrelationship\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Relationship\n", - "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\deserialize.py:8\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01minspect\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m getfullargspec\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwoodwork\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtype_sys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtype_system\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mww_type_system\u001b[39;00m\n\u001b[0;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mwoodwork\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdeserialize\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m read_woodwork_table\n\u001b[0;32m 11\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfeaturetools\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mentityset\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrelationship\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Relationship\n", - "File \u001b[1;32mc:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\__init__.py:2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# flake8: noqa\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpkg_resources\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01msys\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwarnings\u001b[39;00m\n", - "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'pkg_resources'" + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\entityset.py:724: UserWarning: A Woodwork-initialized DataFrame was provided, so the following parameters were ignored: index\n", + " warnings.warn(\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", + " warnings.warn(\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:143: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", + " df = pd.concat([df, default_df], sort=True)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:143: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", + " df = pd.concat([df, default_df], sort=True)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n" ] } ], @@ -513,17 +304,220 @@ "\n", "# Определение сущностей\n", "es = ft.EntitySet(id='car_data')\n", - "es = es.entity_from_dataframe(entity_id='cars', dataframe=train_data_encoded, index='id')\n", + "es = es.add_dataframe(dataframe_name='cars', dataframe=train_data_encoded, index='id')\n", "\n", "# Определение связей между сущностями (если есть)\n", "# es = es.add_relationship(...)\n", "\n", "# Генерация признаков\n", - "feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='cars', max_depth=2)\n", + "feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='cars', max_depth=2)\n", "\n", "# Преобразование признаков для контрольной и тестовой выборок\n", "val_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=val_data_encoded.index)\n", - "test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)" + "test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Оценка качества каждого набора признаков\n", + "Предсказательная способность\n", + "Метрики: RMSE, MAE, R²\n", + "\n", + "Методы: Обучение модели на обучающей выборке и оценка на контрольной и тестовой выборках.\n", + "\n", + "Скорость вычисления\n", + "Методы: Измерение времени выполнения генерации признаков и обучения модели.\n", + "\n", + "Надежность\n", + "Методы: Кросс-валидация, анализ чувствительности модели к изменениям в данных.\n", + "\n", + "Корреляция\n", + "Методы: Анализ корреляционной матрицы признаков, удаление мультиколлинеарных признаков.\n", + "\n", + "Цельность\n", + "Методы: Проверка логической связи между признаками и целевой переменной, интерпретация результатов модели." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\entityset\\entityset.py:724: UserWarning: A Woodwork-initialized DataFrame was provided, so the following parameters were ignored: index\n", + " warnings.warn(\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", + " warnings.warn(\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:143: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", + " df = pd.concat([df, default_df], sort=True)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:143: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", + " df = pd.concat([df, default_df], sort=True)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\woodwork\\logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n" + ] + } + ], + "source": [ + "import featuretools as ft\n", + "\n", + "# Определение сущностей\n", + "es = ft.EntitySet(id='car_data')\n", + "es = es.add_dataframe(dataframe_name='cars', dataframe=train_data_encoded, index='id')\n", + "\n", + "# Генерация признаков\n", + "feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='cars', max_depth=2)\n", + "\n", + "# Преобразование признаков для контрольной и тестовой выборок\n", + "val_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=val_data_encoded.index)\n", + "test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 234661.34107821883\n", + "R²: 0.8029264507217629\n", + "MAE: 7964.677649030692\n", + "Cross-validated RMSE: 259310.71680259163\n", + "Train RMSE: 109324.02870848698\n", + "Train R²: 0.7887252013114727\n", + "Train MAE: 3471.173866063129\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Egor\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzjElEQVR4nO3deZiN9eP/8deZfYyZ0cRgmBDGzthDtgiRohRKlhAxlmxZKlvIvkeytSAVSiolRLasY8ky1uxbmDGW2c79+8Ov+/s5WWYOM3PP8nxc17ku533f58zrjGOc17zv+33bDMMwBAAAAAC4LxerAwAAAABAWkdxAgAAAIBEUJwAAAAAIBEUJwAAAABIBMUJAAAAABJBcQIAAACARFCcAAAAACARFCcAAAAASATFCQAAAAASQXECACTKZrNpyJAhVsewXK1atVSrVi3z/okTJ2Sz2TR//nzLMv3XfzOmlLT42gEgJVGcACCVffzxx7LZbKpcufJDP8fZs2c1ZMgQhYeHJ1+wNO7333+XzWYzb+7u7nryySfVunVrHTt2zOp4Ttm0aZOGDBmia9euWZYhf/78Dt/PwMBAVa9eXcuWLbMsEwCkZW5WBwCAzGbBggXKnz+/tm7dqiNHjqhQoUJOP8fZs2c1dOhQ5c+fX6GhockfMg3r3r27KlasqLi4OO3cuVOzZs3Sjz/+qL179yooKChVs+TLl0+3bt2Su7u7U4/btGmThg4dqrZt2ypbtmwpEy4JQkND1bt3b0l33lOffPKJXnrpJc2YMUOdO3d+4GMf9rUDQHrFjBMApKLjx49r06ZNmjBhgnLkyKEFCxZYHSndqV69ulq1aqV27dpp6tSpGjdunK5cuaLPPvvsvo+5ceNGimSx2Wzy8vKSq6trijx/SsuTJ49atWqlVq1aqV+/ftq4caN8fHw0ceLE+z4mPj5esbGx6f61A4CzKE4AkIoWLFigxx57TI0aNVKzZs3uW5yuXbumd955R/nz55enp6fy5s2r1q1b6/Lly/r9999VsWJFSVK7du3MQ63+Pdckf/78atu27V3P+d9zX2JjY/XBBx+ofPny8vf3l4+Pj6pXr661a9c6/bouXLggNzc3DR069K5thw4dks1m07Rp0yRJcXFxGjp0qAoXLiwvLy89/vjjevrpp7Vq1Sqnv64kPfPMM5LulFJJGjJkiGw2m/bv36/XXntNjz32mJ5++mlz/y+//FLly5eXt7e3AgIC1KJFC506dequ5501a5YKFiwob29vVapUSX/88cdd+9zvPJ+DBw/q1VdfVY4cOeTt7a0iRYpo0KBBZr6+fftKkgoUKGD+/Z04cSJFMjojV65cKlasmPm9/Pf1jRs3TpMmTVLBggXl6emp/fv3P9Rr/9eZM2f05ptvKmfOnPL09FSJEiU0d+7cR8oOACmNQ/UAIBUtWLBAL730kjw8PNSyZUvNmDFD27ZtM4uQJEVHR6t69eo6cOCA3nzzTZUrV06XL1/W8uXLdfr0aRUrVkzDhg3TBx98oLfeekvVq1eXJFWtWtWpLFFRUZo9e7Zatmypjh076vr165ozZ47q16+vrVu3OnUIYM6cOVWzZk19/fXXGjx4sMO2xYsXy9XVVa+88oqkO8Vh1KhR6tChgypVqqSoqCht375dO3fu1LPPPuvUa5Cko0ePSpIef/xxh/FXXnlFhQsX1siRI2UYhiRpxIgRev/99/Xqq6+qQ4cOunTpkqZOnaoaNWpo165d5mFzc+bMUadOnVS1alX17NlTx44d0wsvvKCAgAAFBwc/MM+ePXtUvXp1ubu766233lL+/Pl19OhR/fDDDxoxYoReeuklRUREaNGiRZo4caKyZ88uScqRI0eqZbyfuLg4nTp16q7v5bx583T79m299dZb8vT0VEBAgOx2u9OvXbpTsp966inZbDaFhYUpR44c+vnnn9W+fXtFRUWpZ8+eD5UdAFKcAQBIFdu3bzckGatWrTIMwzDsdruRN29eo0ePHg77ffDBB4YkY+nSpXc9h91uNwzDMLZt22ZIMubNm3fXPvny5TPatGlz13jNmjWNmjVrmvfj4+ONmJgYh32uXr1q5MyZ03jzzTcdxiUZgwcPfuDr++STTwxJxt69ex3GixcvbjzzzDPm/TJlyhiNGjV64HPdy9q1aw1Jxty5c41Lly4ZZ8+eNX788Ucjf/78hs1mM7Zt22YYhmEMHjzYkGS0bNnS4fEnTpwwXF1djREjRjiM792713BzczPHY2NjjcDAQCM0NNTh+zNr1ixDksP38Pjx43f9PdSoUcPw9fU1/v77b4ev8+/fnWEYxtixYw1JxvHjx1M84/3ky5fPqFevnnHp0iXj0qVLxu7du40WLVoYkoxu3bo5vD4/Pz/j4sWLDo9/2Nfevn17I3fu3Mbly5cd9mnRooXh7+9v3Lx5M9HsAGAFDtUDgFSyYMEC5cyZU7Vr15Z05/yY5s2b66uvvlJCQoK535IlS1SmTBk1bdr0ruew2WzJlsfV1VUeHh6SJLvdritXrig+Pl4VKlTQzp07nX6+l156SW5ublq8eLE5tm/fPu3fv1/Nmzc3x7Jly6a//vpLhw8ffqjcb775pnLkyKGgoCA1atRIN27c0GeffaYKFSo47PffxQ2WLl0qu92uV199VZcvXzZvuXLlUuHChc1DFLdv366LFy+qc+fO5vdHktq2bSt/f/8HZrt06ZLWr1+vN998U0888YTDtqT83aVGxv/166+/KkeOHMqRI4fKlCmjb775Rm+88YZGjx7tsN/LL79szojdT1Jeu2EYWrJkiRo3bizDMBxeY/369RUZGflQ7z0ASA2ZujitX79ejRs3VlBQkGw2m7777junHv/vcfT/vfn4+KRMYADpVkJCgr766ivVrl1bx48f15EjR3TkyBFVrlxZFy5c0OrVq819jx49qpIlS6ZKrs8++0ylS5c2zzXKkSOHfvzxR0VGRjr9XNmzZ1edOnX09ddfm2OLFy+Wm5ubXnrpJXNs2LBhunbtmkJCQlSqVCn17dtXe/bsSfLX+eCDD7Rq1SqtWbNGe/bs0dmzZ/XGG2/ctV+BAgUc7h8+fFiGYahw4cJmWfj3duDAAV28eFGS9Pfff0uSChcu7PD4f5c/f5B/l0V/2L+/1Mj4vypXrqxVq1bpt99+06ZNm3T58mV9/vnn8vb2dtjvv9/Le0nKa7906ZKuXbumWbNm3fX62rVrJ0nmawSAtCZTn+N048YNlSlTRm+++abDf+pJ1adPn7t+o1mnTh2HcxUAQJLWrFmjc+fO6auvvtJXX3111/YFCxaoXr16yfK17jezkZCQ4LAC2pdffqm2bduqSZMm6tu3rwIDA+Xq6qpRo0aZ5w05q0WLFmrXrp3Cw8MVGhqqr7/+WnXq1DHP45GkGjVq6OjRo/r+++/166+/avbs2Zo4caJmzpypDh06JPo1SpUqpbp16ya6338//NvtdtlsNv3888/3XAkua9asSXiFKSu1M2bPnv2hvpcP69/zolq1aqU2bdrcc5/SpUsny9cCgOSWqYvTc889p+eee+6+22NiYjRo0CAtWrRI165dU8mSJTV69GhzVaqsWbM6/Ce2e/du7d+/XzNnzkzp6ADSmQULFigwMFDTp0+/a9vSpUu1bNkyzZw5U97e3ipYsKD27dv3wOd70GFfjz322D0vrPr33387zEZ8++23evLJJ7V06VKH5/vv4g7OaNKkiTp16mQerhcREaEBAwbctV9AQIDatWundu3aKTo6WjVq1NCQIUOSVJweVsGCBWUYhgoUKKCQkJD77pcvXz5Jd2Z//l2xT7qzcMLx48dVpkyZ+z723+/vw/79pUbGlJKU154jRw75+voqISEhSYUNANKSTH2oXmLCwsK0efNmffXVV9qzZ49eeeUVNWjQ4L7H5c+ePVshISHmClcAIEm3bt3S0qVL9fzzz6tZs2Z33cLCwnT9+nUtX75c0p3zSXbv3q1ly5bd9VzG/18d7t9Dgu9VkAoWLKgtW7YoNjbWHFuxYsVdy1n/O6Px73NK0p9//qnNmzc/9GvNli2b6tevr6+//lpfffWVPDw81KRJE4d9/vnnH4f7WbNmVaFChRQTE/PQXzcpXnrpJbm6umro0KEOr1m68z34N1eFChWUI0cOzZw50+F7OH/+/Ht+v/9Xjhw5VKNGDc2dO1cnT56862v8635/f6mRMaUk5bW7urrq5Zdf1pIlS+5ZsC5dupQqWQHgYWTqGacHOXnypObNm6eTJ0+aV6Lv06ePVq5cqXnz5mnkyJEO+9++fVsLFixQ//79rYgLIA1bvny5rl+/rhdeeOGe25966inzYrjNmzdX37599e233+qVV17Rm2++qfLly+vKlStavny5Zs6cqTJlyqhgwYLKli2bZs6cKV9fX/n4+Khy5coqUKCAOnTooG+//VYNGjTQq6++qqNHj+rLL79UwYIFHb7u888/r6VLl6pp06Zq1KiRjh8/rpkzZ6p48eKKjo5+6NfbvHlztWrVSh9//LHq169vLp/9r+LFi6tWrVoqX768AgICtH37dn377bcKCwt76K+ZFAULFtSHH36oAQMG6MSJE2rSpIl8fX11/PhxLVu2TG+99Zb69Okjd3d3ffjhh+rUqZOeeeYZNW/eXMePH9e8efOSdP7QlClT9PTTT6tcuXJ66623VKBAAZ04cUI//vijwsPDJUnly5eXJA0aNEgtWrSQu7u7GjdunGoZU0pSXvtHH32ktWvXqnLlyurYsaOKFy+uK1euaOfOnfrtt9905coVy/IDwANZsZRfWiTJWLZsmXl/xYoVhiTDx8fH4ebm5ma8+uqrdz1+4cKFhpubm3H+/PlUTA0gPWjcuLHh5eVl3Lhx4777tG3b1nB3dzeXaP7nn3+MsLAwI0+ePIaHh4eRN29eo02bNg5LOH///fdG8eLFDTc3t7uWhR4/fryRJ08ew9PT06hWrZqxffv2u5Yjt9vtxsiRI418+fIZnp6eRtmyZY0VK1YYbdq0MfLly+eQT0lYjvxfUVFRhre3tyHJ+PLLL+/a/uGHHxqVKlUysmXLZnh7extFixY1RowYYcTGxj7wef9djvybb7554H7/Lkd+6dKle25fsmSJ8fTTT5s/14sWLWp07drVOHTokMN+H3/8sVGgQAHD09PTqFChgrF+/fq7vof3WpLbMAxj3759RtOmTY1s2bIZXl5eRpEiRYz333/fYZ/hw4cbefLkMVxcXO5amjw5M95Pvnz5El0W/t/XN3bs2Ptue5jXfuHCBaNr165GcHCw4e7ubuTKlcuoU6eOMWvWrERzA4BVbIbxn2MBMimbzaZly5aZh5QsXrxYr7/+uv7666+7TtDNmjWrcuXK5TBWp04d+fn53fPQGgAAAADpG4fq3UfZsmWVkJCgixcvJnrO0vHjx7V27Vrz/AQAAAAAGUumLk7R0dE6cuSIef/48eMKDw9XQECAQkJC9Prrr6t169YaP368ypYtq0uXLmn16tUqXbq0GjVqZD5u7ty5yp079wNX6AMAAACQfmXqQ/V+//131a5d+67xNm3aaP78+YqLi9OHH36ozz//XGfOnFH27Nn11FNPaejQoSpVqpSkO9ekyJcvn1q3bq0RI0ak9ksAAAAAkAoydXECAAAAgKTgOk4AAAAAkAiKEwAAAAAkItMtDmG323X27Fn5+vrKZrNZHQcAAACARQzD0PXr1xUUFCQXlwfPKWW64nT27FkFBwdbHQMAAABAGnHq1CnlzZv3gftkuuLk6+sr6c43x8/Pz+I0AAAAAKwSFRWl4OBgsyM8SKYrTv8enufn50dxAgAAAJCkU3hYHAIAAAAAEkFxAgAAAIBEUJwAAAAAIBEUJwAAAABIBMUJAAAAABJBcQIAAACARFCcAAAAACARFCcAAAAASATFCQAAAAASQXECAAAAgERQnAAAAAAgERQnAAAAAEgExQkAAAAAEkFxAgAAAIBEUJwAAAAAIBEUJwAAAABIBMUJAAAAQKq4du2aLl26ZHWMh0JxAgAAAJCi7Ha75s6dq5CQEPXs2dPqOA+F4gQAAAAgxezYsUPVqlVT+/btdenSJS1cuFDr16+3OpbTKE4AAAAAkt0///yjzp07q2LFitqyZYs5/sorr6hAgQIWJns4blYHAAAAAJBxJCQkaPbs2Ro4cKCuXLlijhctWlRTp05V3bp1LUz38ChOAAAAAJLF9u3b1blzZ+3YscMcy5o1qwYPHqzu3bvLw8PDwnSPhuIEAAAAIFkcOXLEoTS99tprGjt2rIKCgixMlTxshmEYVodITVFRUfL391dkZKT8/PysjgMAAABkGIZh6JlnntHly5c1bdo01axZ0+pID+RMN2DGCQAAAIDTNm3apBUrVmjkyJHmmM1m0+LFixUQECA3t4xVNTLWqwEAAACQos6fP693331Xn3/+uSSpVq1aqlevnrk9MDDQqmgpiuXIAQAAACQqLi5OkyZNUpEiRczSJEmzZ8+2MFXqoTgBAAAAeKB169apXLlyeueddxQVFSVJypYtm6ZPn65FixZZnC51UJwAAAAA3NOZM2f02muvqVatWtq3b5853r59e0VERKhLly5ydXW1MGHq4RwnAAAAAHc5fvy4SpcurejoaHOsQoUKmj59uipVqmRhMmsw4wQAAADgLvnz51f16tUlSY8//rhmzZqlLVu2ZMrSJDHjBAAAAEDSxYsXlSNHDtlsNkl3lhafPHmyChQooGHDhunxxx+3OKG1mHECAAAAMrGYmBiNGjVKBQoU0PLlyx22FS5cWNOnT8/0pUmiOAEAAACZ1sqVK1WqVCkNHDhQN2/eVM+ePXXr1i2rY6VJFCcAAAAgkzlx4oSaNGmi5557TocPH5Ykubi4qHHjxoqPj7c4XdpkaXEaNWqUKlasKF9fXwUGBqpJkyY6dOjQAx8zf/582Ww2h5uXl1cqJQYAAADSr1u3bmnYsGEqVqyYvv/+e3P86aef1s6dOzVlyhT5+vpamDDtsnRxiHXr1qlr166qWLGi4uPjNXDgQNWrV0/79++Xj4/PfR/n5+fnULD+PYENAAAAwL398MMP6tGjh44fP26O5cqVS2PHjtXrr7/OZ+pEWFqcVq5c6XB//vz5CgwM1I4dO1SjRo37Ps5msylXrlwpHQ8AAADIMObNm2eWJldXV/Xo0UODBw+Wn5+fxcnShzR1jlNkZKQkKSAg4IH7RUdHK1++fAoODtaLL76ov/766777xsTEKCoqyuEGAAAAZDYTJ06Ul5eXateurd27d2v8+PGUJifYDMMwrA4hSXa7XS+88IKuXbumDRs23He/zZs36/DhwypdurQiIyM1btw4rV+/Xn/99Zfy5s171/5DhgzR0KFD7xqPjIzkjQIAAIAMxzAMLVu2TB4eHnr++ecdth04cEBFixblsLz/LyoqSv7+/knqBmmmOL399tv6+eeftWHDhnsWoPuJi4tTsWLF1LJlSw0fPvyu7TExMYqJiTHvR0VFKTg4mOIEAACADOfQoUPq1q2bVq1apTx58ujgwYPKmjWr1bHSLGeKU5o4VC8sLEwrVqzQ2rVrnSpNkuTu7q6yZcvqyJEj99zu6ekpPz8/hxsAAACQkURHR6t///4qVaqUVq1aJUk6c+aMFi5caHGyjMPS4mQYhsLCwrRs2TKtWbNGBQoUcPo5EhIStHfvXuXOnTsFEgIAAABpl2EYWrx4sYoWLarRo0crLi5OkvTEE09oyZIl6tixo8UJMw5LV9Xr2rWrFi5cqO+//16+vr46f/68JMnf31/e3t6SpNatWytPnjwaNWqUJGnYsGF66qmnVKhQIV27dk1jx47V33//rQ4dOlj2OgAAAIDU9tdff6lbt25au3atOebh4aF+/fppwIABypIli4XpMh5Li9OMGTMkSbVq1XIYnzdvntq2bStJOnnypFxc/m9i7OrVq+rYsaPOnz+vxx57TOXLl9emTZtUvHjx1IoNAAAAWGrhwoVq3bq1EhISzLGGDRtq8uTJKlSokIXJMq40szhEanHmBDAAAAAgLTp79qyKFCmi6OhoFShQQJMnT9bzzz/PanlOcqYbWDrjBAAAACBx0dHRDqvjBQUFaeTIkbp69ar69u1rnuaClENxAgAAANKoa9eu6YMPPtCSJUv0119/KVu2bOa2bt26WRcsE0oTy5EDAAAA+D92u13z5s1TSEiIpk6dqrNnz2rw4MFWx8rUmHECAAAA0pAdO3YoLCxMW7ZsMceyZMni9PVOkbyYcQIAAADSgCtXrujtt99WxYoVHUrTK6+8ooMHD6pv374WpgMzTgAAAICFEhISNGfOHA0cOFD//POPOV6sWDFNnTpVderUsTAd/sWMEwAAAGChq1ev6t133zVLU9asWTV27FiFh4dTmtIQihMAAABgoezZs2v48OGSpNdee02HDh1Snz595OHhYXEy/C+KEwAAAJBK4uPjNWPGDF2+fNlhvHPnztq0aZMWLFigoKAgi9LhQShOAAAAQCrYuHGjKlSooC5dumjgwIEO29zc3FSlShWLkiEpKE4AAABACjp//rzatGmjp59+Wrt375YkzZkzR8ePH7c4GZxBcQIAAABSQHx8vCZNmqQiRYro888/N8dDQ0P1xx9/qECBAhamg7NYjhwAAABIZuvWrVNYWJj27dtnjmXLlk0jRoxQp06d5OrqamE6PAyKEwAAAJCMunfvrqlTpzqMtW/fXqNGjVKOHDksSoVHRXECAAAAklGZMmXMP1eoUEHTp09XpUqVLEyE5EBxAgAAAB5BXFyc3N3dzfvt2rXT0qVL9eKLL6p9+/YclpdBUJwAAACAh3Dy5En16tVLWbJkcVj8wcXFRT/++KOFyZASWFUPAAAAcEJMTIxGjBihokWLasmSJfriiy+0YcMGq2MhhTHjBAAAACTRzz//rO7du+vIkSPmWI4cOXTlyhULUyE1MOMEAAAAJOL48eNq0qSJGjZsaJYmFxcXde/eXREREXrhhRcsToiUxowTAAAAcB+3bt3SmDFj9NFHH+n27dvmePXq1TVt2jSVLl3awnRITRQnAAAA4D5WrFihIUOGmPdz5cqlcePG6bXXXpPNZrMuGFIdh+oBAAAA99GsWTPVqFFDbm5u6t27tw4dOqTXX3+d0pQJMeMEAAAASLp586a+//57tWzZ0hyz2WyaNWuWEhISVLx4cQvTwWoUJwAAAGRqhmFo6dKl6tWrl06ePKkcOXKobt265vYiRYpYmA5pBYfqAQAAINM6ePCg6tevr2bNmunkyZOSpD59+sgwDIuTIa2hOAEAACDTuX79uvr166dSpUpp1apV5ni9evW0ePFizmHCXThUDwAAAJmGYRhavHixevfurbNnz5rjTzzxhCZNmqQmTZpQmnBPFCcAAABkClFRUXrxxRf1+++/m2Oenp7q16+f+vfvryxZslgXDmkexQkAAACZgq+vr9zd3c37jRo10uTJk1WwYEELUyG94BwnAAAAZEj/XeDBZrNp6tSpKlq0qH744QetWLGC0oQkozgBAAAgw9m9e7dq1KihFStWOIwXKVJEf/31l55//nmLkiG94lA9AAAAZBjXrl3T+++/r48//lh2u11nz55V3bp15eXlZe7j4sLcAZzHuwYAAADpnt1u19y5cxUSEqJp06bJbrdLklxdXc3rMwGPguIEAACAdG3Hjh2qWrWq2rdvr0uXLkmSsmTJopEjR2rv3r0KCQmxOCEyAg7VAwAAQLr0zz//aNCgQZo1a5bDQhCvvPKKxo8fr+DgYAvTIaOhOAEAACBd6tmzp7788kvzfrFixTR16lTVqVPHwlTIqDhUDwAAAOnSsGHD5OnpqaxZs2rs2LEKDw+nNCHFMOMEAACANO/SpUs6fvy4KlWqZI4VKFBAixYtUuXKlRUUFGRhOmQGzDgBAAAgzUpISND06dMVEhKiZs2a6caNGw7bmzZtSmlCqqA4AQAAIE3auHGjKlSooLCwMF27dk2nTp3S6NGjrY6FTIriBAAAgDTl/PnzatOmjZ5++mmFh4eb423atFGXLl2sC4ZMjXOcAAAAkCbExcVp+vTpGjx4sKKioszx0NBQTZs2TdWqVbMwHTI7ihMAAAAst2fPHr3++uvat2+fOZYtWzaNGDFCnTp1kqurq4XpAIoTAAAA0oCAgAAdP35ckmSz2dS+fXuNHDlSOXLksDgZcAfnOAEAAMByefPm1fvvv68KFSpoy5Yt+vTTTylNSFMoTgAAAEhVv/32m2rXru1wHpMk9erVS1u2bHG4VhOQVlCcAAAAkCpOnjypZs2a6dlnn9Xvv/+uoUOHOmx3d3fnXCakWRQnAAAApKiYmBiNHDlSxYoV05IlS8zxbdu2KSEhwcJkQNJRnAAAAJBifv75Z5UsWVKDBg3SzZs3JUk5cuTQvHnz9PvvvzPDhHSD4gQAAIBkd/z4cTVp0kQNGzbUkSNHJEkuLi7q3r27IiIi1LZtW7m48FEU6QfLkQMAACBZxcTEqEqVKrpw4YI5Vr16dU2bNk2lS5e2MBnw8Kj5AAAASFaenp4aMGCAJClXrlz68ssvtW7dOkoT0jVmnAAAAPBIjhw5ooCAAAUEBJhjXbt21e3bt/X222/Lz8/PwnRA8mDGCQAAAA/l5s2beu+991SiRAm99957Dtvc3Nz07rvvUpqQYVCcAAAA4BTDMLRkyRIVK1ZMI0aMUGxsrGbOnKmdO3daHQ1IMRyqBwAAgCQ7dOiQunXrplWrVplj7u7u6t27t0JCQixMBqQsihMAAAASFR0dreHDh2vixImKi4szx+vVq6cpU6aoSJEiFqYDUh7FCQAAAA/03XffKSwsTGfOnDHH8uXLp4kTJ6pJkyay2WwWpgNSB8UJAAAAD3Tx4kWzNHl6eqpfv37q37+/smTJYnEyIPXYDMMwrA6RmqKiouTv76/IyEhWeQEAAEiChIQEVa5cWbly5dLkyZNVsGBBqyMBycKZbsCMEwAAACTdWS3vyy+/1N69ezVmzBhz3NXVVatXr5a/v7+F6QBrUZwAAACg3bt3q2vXrtq4caMkqWnTpqpSpYq5ndKEzI7rOAEAAGRi165dU7du3VSuXDmzNEnS8uXLLUwFpD3MOAEAAGRCdrtd8+fPV//+/XXp0iVzvHDhwpo6darq169vYTog7aE4AQAAZDI7duxQWFiYtmzZYo5lyZJF77//vt555x15enpamA5ImyhOAAAAmciWLVtUtWpV/e/Cyq+88orGjx+v4OBgC5MBaRvnOAEAAGQilStXVtWqVSVJxYoV02+//aavv/6a0gQkghknAACADOzIkSMqVKiQed9ms2natGn67bff1L17d3l4eFiYDkg/LJ1xGjVqlCpWrChfX18FBgaqSZMmOnToUKKP++abb1S0aFF5eXmpVKlS+umnn1IhLQAAQPpx8eJFtW/fXiEhIVq7dq3DttDQUPXp04fSBDjB0uK0bt06de3aVVu2bNGqVasUFxenevXq6caNG/d9zKZNm9SyZUu1b99eu3btUpMmTdSkSRPt27cvFZMDAACkTfHx8Zo2bZqKFCmiuXPnyjAMdevWTXFxcVZHA9I1m/G/ZwZa7NKlSwoMDNS6detUo0aNe+7TvHlz3bhxQytWrDDHnnrqKYWGhmrmzJl37R8TE6OYmBjzflRUlIKDgxUZGSk/P7/kfxEAAAAW2bBhg8LCwrR7925zzM/PT8OHD1eXLl3k5sZZGsD/ioqKkr+/f5K6QZpaHCIyMlKSFBAQcN99Nm/erLp16zqM1a9fX5s3b77n/qNGjZK/v79548RHAACQ0Zw/f16tW7dW9erVHUpT27ZtFRERoe7du1OagEeUZoqT3W5Xz549Va1aNZUsWfK++50/f145c+Z0GMuZM6fOnz9/z/0HDBigyMhI83bq1KlkzQ0AAGAVu92uSZMmqUiRIvriiy/M8bJly2rjxo2aN2/eXZ+bADycNPOrh65du2rfvn3asGFDsj6vp6cnF3EDAAAZks1m0w8//KCoqChJ0mOPPaYRI0borbfekqurq8XpgIwlTcw4hYWFacWKFVq7dq3y5s37wH1z5cqlCxcuOIxduHBBuXLlSsmIAAAAaY7NZtPUqVPl4eGhjh07KiIiQm+//TalCUgBlhYnwzAUFhamZcuWac2aNSpQoECij6lSpYpWr17tMLZq1SpVqVIlpWICAABYLjY2VmPGjNGvv/7qMF68eHEdP35cs2bNUvbs2S1KB2R8lh6q17VrVy1cuFDff/+9fH19zfOU/P395e3tLUlq3bq18uTJo1GjRkmSevTooZo1a2r8+PFq1KiRvvrqK23fvl2zZs2y7HUAAACkpFWrVqlbt246dOiQChUqpH379jmcihAUFGRhOiBzsHTGacaMGYqMjFStWrWUO3du87Z48WJzn5MnT+rcuXPm/apVq2rhwoWaNWuWypQpo2+//VbffffdAxeUAAAASI9OnjypZs2aqV69ejp06JAk6ejRo3dd0BZAyktT13FKDc6s1Q4AAGCFmJgYjRs3TiNGjNCtW7fM8SpVqmjatGkqV66chemAjMOZbpBmVtUDAACA9NNPP6lHjx46cuSIORYYGKgxY8bojTfekItLmljbC8h0+JcHAACQRowcOVKNGjUyS5Orq6t69OihQ4cOqU2bNpQmwEL86wMAAEgjmjdvLg8PD0lS9erVtXPnTk2aNEnZsmWzNhgADtUDAACwgmEYunTpkgIDA82xggUL6qOPPlLOnDnVsmVL2Ww2CxMC+F8UJwAAgFR25MgRde/eXX/99ZcOHDigLFmymNveeecdC5MBuB8O1QMAAEglN27c0HvvvacSJUro559/1smTJ/XRRx9ZHQtAEjDjBAAAkMIMw9DSpUv1zjvv6NSpU+Z4njx5VKZMGQuTAUgqZpwAAABS0MGDB1W/fn01a9bMLE3u7u7q37+/Dh48qJdfftnihACSghknAACAFBAdHa1hw4Zp4sSJio+PN8fr1aunKVOmqEiRIhamA+AsZpwAAABSwJUrVzR9+nSzNOXLl09Lly7VypUrKU1AOkRxAgAASAFPPPGEBg0aJE9PT73//vvav3+/mjZtyhLjQDpFcQIAAHhEkZGRev/993X9+nWH8d69e+uvv/7SsGHDHJYcB5D+cI4TAADAQzIMQ19++aX69u2rCxcuKCYmRmPGjDG3e3p6qmDBghYmBJBcmHECAAB4COHh4apevbpat26tCxcuSJI++eQTRUZGWpwMQEqgOAEAADjh6tWrCgsLU/ny5bVx40ZzvGnTptq9e7f8/f0tTAcgpXCoHgAAQBLY7XbNnz9f/fv316VLl8zxwoULa+rUqapfv76F6QCkNIoTAABAIgzDUIMGDbRq1SpzLEuWLHr//ff1zjvvyNPT08J0AFIDh+oBAAAkwmazqUGDBub9V199VQcPHlT//v0pTUAmwYwTAADAfyQkJCg2Nlbe3t7mWLdu3bRx40Z16dJFderUsTAdACsw4wQAAPA/tmzZosqVK6tfv34O4+7u7lqyZAmlCcikKE4AAACSLl26pPbt26tKlSrasWOHPv74Y+3evdvqWADSCIoTAADI1OLj4zVt2jSFhIRo7ty55niJEiUUFxdnYTIAaQnFCQAAZFobNmxQhQoV1K1bN127dk2S5Ofnp8mTJ2vnzp2qUKGCtQEBpBkUJwAAkOmcO3dOrVu3VvXq1R0Ox2vbtq0iIiLUvXt3ubmxhhaA/8NPBAAAkOl8//33+uKLL8z7ZcuW1bRp01S1alULUwFIy5hxAgAAmU7Hjh0VGhqqxx57TB9//LG2bdtGaQLwQMw4AQCADO3MmTP6+eef1aFDB3PM1dVVixYtUvbs2ZU9e3YL0wFIL5hxAgAAGVJsbKzGjh2rokWLqmPHjvrzzz8dthctWpTSBCDJKE4AACDD+e2331SmTBn169dP0dHRkqTBgwdbnApAekZxAgAAGcbJkyfVrFkzPfvsszp48KAkycXFRV26dNHChQstTgcgPeMcJwAAkO7FxMRo3LhxGjFihG7dumWOV6lSRdOnT1fZsmUtTAcgI6A4AQCAdO306dOqXbu2jhw5Yo4FBgZqzJgxeuONN+TiwgE2AB4dP0kAAEC6FhQUZC7y4Orqqh49eujQoUNq06YNpQlAsuGnCQAASFfi4uIc7ru4uGjatGmqVauWdu7cqUmTJilbtmzWhAOQYVGcAABAumAYhr7//nsVKVJE69evd9hWvnx5rV27VqVLl7YoHYCMjuIEAADSvMOHD6thw4Zq0qSJjh8/rrCwMMXHx1sdC0AmQnECAABp1o0bNzRo0CCVLFlSK1euNMdz5Mihq1evWpgMQGbDqnoAACDNMQxDS5YsUa9evXTq1ClzPG/evJowYYKaNWsmm81mYUIAmQ3FCQAApCkHDx5Ut27d9Ntvv5lj7u7u6t27twYNGqSsWbNamA5AZkVxAgAAaUr37t0dSlO9evU0ZcoUFSlSxMJUADI7znECAABpyoQJE+Tq6qonnnhCS5cu1cqVKylNACzHjBMAALDMvn37FB0draeeesocK1mypH744QfVrFlTWbJksTAdAPwfZpwAAECqi4yM1DvvvKPQ0FC1bdtWsbGxDtufe+45ShOANIXiBAAAUo1hGPr8889VpEgRTZo0SQkJCTp06JBmzZpldTQAeCAO1QMAAKkiPDxcYWFh2rhxoznm7e2tgQMHqkOHDhYmA4DEUZwAAECKunr1qt5//33NmDFDdrvdHG/atKkmTpyofPnyWZgOAJKG4gQAAFLMr7/+qlatWunSpUvmWEhIiKZMmaL69etbmAwAnMM5TgAAIMXkz59f165dkyT5+Pjoo48+0t69eylNANIdZpwAAECyMQxDNpvNvB8SEqI+ffro2LFjGjdunPLmzWthOgB4eDbDMAyrQ6SmqKgo+fv7KzIyUn5+flbHAQAgQ0hISNCnn36qOXPmaP369fL29ja32e12ubhwkAuAtMeZbsBPMQAA8Ei2bNmiypUr6+2339b27ds1ZswYh+2UJgAZAT/JAADAQ7l48aLefPNNValSRTt27DDHT58+bWEqAEgZD1WcvvjiC1WrVk1BQUH6+++/JUmTJk3S999/n6zhAABA2hMfH6+pU6cqJCRE8+bNM8dLlSqldevW6dNPP7UwHQCkDKeL04wZM9SrVy81bNhQ165dU0JCgiQpW7ZsmjRpUnLnAwAAacgff/yh8uXLq3v37oqMjJQk+fn5afLkydq5c6dq1KhhcUIASBlOF6epU6fq008/1aBBg+Tq6mqOV6hQQXv37k3WcAAAIO34559/VL9+fe3Zs8cca9u2rSIiItS9e3e5ubFYL4CMy+nidPz4cZUtW/aucU9PT924cSNZQgEAgLTn8ccf14ABAyRJZcuW1aZNmzRv3jzlzJnT4mQAkPKc/tVQgQIFFB4ernz58jmMr1y5UsWKFUu2YAAAwFrr1q1T+fLllTVrVnOsb9++yps3r1q3bu1w5AkAZHROzzj16tVLXbt21eLFi2UYhrZu3aoRI0ZowIAB6tevX0pkBAAAqej06dNq2bKlatWqpQ8//NBhm5eXl9q1a0dpApDpPNQFcBcsWKAhQ4bo6NGjkqSgoCANHTpU7du3T/aAyY0L4AIAcG+xsbGaNGmShg0bZh5+7+7urgMHDqhgwYIWpwOA5OdMN3ioszhff/11vf7667p586aio6MVGBj4UEEBAEDasGrVKnXr1k2HDh0yxx5//HF99NFHKlCggIXJAGQkdruhM9du6UZsvHw83JQnm7dcXGxWx0oSp4vT8ePHFR8fr8KFCytLlizKkiWLJOnw4cNyd3dX/vz5kzsjAABIIX///bd69eqlpUuXmmMuLi7q3Lmzhg8froCAAAvTAchIjly8rl/2XdDRS9G6HZ8gLzdXFcyRVfVL5lShQF+r4yXK6XOc2rZtq02bNt01/ueff6pt27bJkQkAAKSCCRMmqFixYg6lqUqVKtq+fbumT59OaQKQbI5cvK55G09o39lIZcviriezZ1W2LO7adzZS8zae0JGL162OmCini9OuXbtUrVq1u8afeuophYeHJ0cmAACQChISEnTr1i1JUmBgoObPn68NGzbc87IjAPCw7HZDv+y7oCs3YlU4MKt8vdzl6mKTr5e7Cgdm1ZUbsfr1rwuy251eeiFVOV2cbDabrl+/uxFGRkYqISEhWUIBAICU16NHD5UsWVI9evTQoUOH1KZNG7m4OP3RAAAe6My1Wzp6KVq5/b1kszmez2Sz2ZTb30tHLkbrzLVbFiVMGqfPcapRo4ZGjRqlRYsWmUuRJiQkaNSoUXr66aeTPSAAAHg0t27d0ujRo3X79m199NFH5riHh4e2b98uT09PC9MByOhuxMbrdnyCsnh433O7t4erLkTd1o3Y+FRO5hyni9Po0aNVo0YNFSlSRNWrV5ck/fHHH4qKitKaNWuSPSAAAHg4hmFo+fLl6tmzp06cOCFXV1e9/vrrKlWqlLkPpQlASvPxcJOXm6tuxsbL18v9ru23YhPk6eYqH4+HWvA71Tg9H1+8eHHt2bNHr776qi5evKjr16+rdevWOnjwoEqWLJkSGQEAgJMOHz6sRo0aqUmTJjpx4oSkO4fEbNmyxdpgADKdPNm8VTBHVp2LvK3/XkLWMAydi7ytQoFZlSfbvWek0oqHqnVBQUEaOXJkcmcBAACP6MaNGxo5cqTGjRun2NhYc/yZZ57R1KlTVbx4cQvTAciMXFxsql8yp85G3tLhi3fOdfL2cNWt2ASdi7ytAB8P1SuRM81fzylJM0579uyR3W43//ygmzPWr1+vxo0bKygoSDabTd99990D9//9999ls9nuup0/f96prwsAQEZjGIa+/fZbFStWTCNHjjRLU968efX111/rt99+ozQBsEyhQF+1q5ZfJYP8de1mnE5cvqFrN+NUKo+/2lXLny6u45SkGafQ0FCdP39egYGBCg0Nlc1mu2uaTbpzCIAzK+vduHFDZcqU0ZtvvqmXXnopyY87dOiQ/Pz8zPuBgYFJfiwAABnR0qVL9corr5j33d3d1adPHw0aNEg+Pj4WJgOAOwoF+urJWll15tot3YiNl4+Hm/Jk807zM03/SlJxOn78uHLkyGH+Obk899xzeu6555x+XGBgoLJly5ZsOQAASO9efPFFlS5dWnv27FH9+vU1ZcoUhYSEWB0LABy4uNgUHJDF6hgPJUnFKV++fJKkuLg4DR06VO+//74KFCiQosEeJDQ0VDExMSpZsqSGDBlyzwvy/ismJkYxMTHm/aioqNSICABAijEMQ9u3b1fFihXNMTc3N33yySc6f/68XnzxxbuulQIAeDROrarn7u6uJUuWpFSWROXOnVszZ87UkiVLtGTJEgUHB6tWrVrauXPnfR8zatQo+fv7m7fg4OBUTAwAQPLat2+fnnnmGVWuXFnbt2932PbUU0+pSZMmlCYASAE2414nKz1AmzZtFBoaqnfeeSd5g9hsWrZsmZo0aeLU42rWrKknnnhCX3zxxT2332vGKTg4WJGRkQ7nSQEAkJZFRkZqyJAhmjp1qnk+ceXKlbVp0ya5uDh9dREAgO50A39//yR1A6eXIy9cuLCGDRumjRs3qnz58nedcNq9e3dnn/KRVKpUSRs2bLjvdk9PTy7uBwBItwzD0BdffKF+/frpwoUL5viTTz6p9957j9IEAKnE6eI0Z84cZcuWTTt27NCOHTscttlstlQvTuHh4cqdO3eqfk0AAFJDeHi4wsLCtHHjRnPMy8tLAwcOVN++feXl5WVhOgDIXJwuTsm5ql50dLSOHDni8Nzh4eEKCAjQE088oQEDBujMmTP6/PPPJUmTJk1SgQIFVKJECd2+fVuzZ8/WmjVr9OuvvyZbJgAArHbr1i317dtXM2bMMK+jKElNmzbVhAkTlD9/fuvCAUAm5VRx2rJli3744QfFxsaqTp06atCgwSN98e3bt6t27drm/V69ekm6cx7V/Pnzde7cOZ08edLcHhsbq969e+vMmTPKkiWLSpcurd9++83hOQAASO88PT21detWszSFhIRoypQpql+/vsXJACDzSvLiEN9++62aN28ub29vubu7KyoqSqNHj1afPn1SOmOycuYEMAAArLJt2zbVqVNHgwYNUs+ePTlfFwBSgDPdIMlnlI4aNUodO3ZUZGSkrl69qg8//FAjR4585LAAAGRm//zzjzp37nzXQkcVK1bUqVOn9O6771KaACANSPKMU9asWRUeHq5ChQpJunPYnI+Pj86cOaPAwMAUDZmcmHECAKQFCQkJmj17tgYOHKgrV66oTJky2r59u9zcnD79GADwkFJkxunmzZsOT+bh4SEvLy9FR0c/fFIAADKhLVu2qHLlyurcubOuXLkiSTp27Jj27dtncTIAwP049Wut2bNnK2vWrOb9+Ph4zZ8/X9mzZzfHUns5cgAA0ouLFy9qwIABmjt3rsN4q1atNGbMGC6vAQBpWJIP1cufP79sNtuDn8xm07Fjx5IlWErhUD0AQGqLj4/XzJkz9f777+vatWvmeKlSpTR9+nRVr17dunAAkIk50w2SPON04sSJR80FAECm1KVLF3366afmfT8/Pw0fPlxdunThnCYASCeSfI4TAAB4OGFhYXJxufNfbtu2bRUREaHu3btTmgAgHeEnNgAAySguLk5nzpxR/vz5zbHSpUtr/Pjxqly5sqpUqWJdOADAQ6M4AQCQTNauXauwsDAZhqHw8HB5eHiY23r27GldMADAI+NQPQAAHtHp06fVvHlzPfPMM9q/f78OHDigqVOnWh0LAJCMKE4AADyk2NhYjR49WkWLFtXXX39tjleqVEk1a9a0MBkAILkl6VC9qKioJD8hS3wDADKDX3/9Vd26dVNERIQ5lj17dn300Udq166duRgEACBjSFJxypYtW6LXcPpXQkLCIwUCACAtO336tHr06KGlS5eaYy4uLnr77bc1bNgwBQQEWJgOAJBSklSc1q5da/75xIkT6t+/v9q2bWuuDLR582Z99tlnGjVqVMqkBAAgjYiOjtby5cvN+1WrVtX06dMVGhpqXSgAQIqzGYZhOPOAOnXqqEOHDmrZsqXD+MKFCzVr1iz9/vvvyZkv2TlzdWAAAO6lX79++vzzzzVmzBi98cYbST4qAwCQtjjTDZwuTlmyZNHu3btVuHBhh/GIiAiFhobq5s2bzidORRQnAEBSHTt2TGPGjNGkSZPk5eVljkdHRyshIUH+/v4WpgMAPCpnuoHTZ64GBwfr008/vWt89uzZCg4OdvbpAABIc27duqXBgwerePHi+uSTTzRu3DiH7VmzZqU0AUAm4/SM008//aSXX35ZhQoVUuXKlSVJW7du1eHDh7VkyRI1bNgwRYImF2acAAD3YxiGli9frp49e+rEiRPmeMGCBXXgwAG5u7tbFw4AkOxSdMapYcOGioiIUOPGjXXlyhVduXJFjRs3VkRERJovTQAA3M/hw4fVsGFDNWnSxCxNbm5u6tu3r3bt2kVpAoBMzukZp/SOGScAwP+6ceOGRo4cqXHjxik2NtYcr1OnjqZOnapixYpZmA4AkJJSdMZJkv744w+1atVKVatW1ZkzZyRJX3zxhTZs2PAwTwcAgCXi4uJUrlw5jRw50ixNwcHB+uabb7Rq1SpKEwDA5HRxWrJkierXry9vb2/t3LlTMTExkqTIyEiNHDky2QMCAJBS3N3d1aJFC/PPAwYM0IEDB9SsWTOWGAcAOHC6OH344YeaOXOmPv30U4fjvatVq6adO3cmazgAAJLT9evX77psRv/+/dWuXTvt27dPI0eOlI+Pj0XpAABpmdPF6dChQ6pRo8Zd4/7+/rp27VpyZAIAIFkZhqFFixapaNGiGjFihMM2b29vzZ07VyEhIRalAwCkB04Xp1y5cunIkSN3jW/YsEFPPvlksoQCACC57Nu3T7Vr19Zrr72ms2fPaty4cTp8+LDVsQAA6YzTxaljx47q0aOH/vzzT9lsNp09e1YLFixQnz599Pbbb6dERgAAnBYZGamePXsqNDRU69atM8fr168vDw8PC5MBANIjN2cf0L9/f9ntdtWpU0c3b95UjRo15OnpqT59+qhbt24pkREAgCSz2+368ssv1a9fP124cMEcL1iwoCZPnqxGjRpZmA4AkF499HWcYmNjdeTIEUVHR6t48eLKmjVrcmdLEVzHCQAyrvDwcHXt2lWbNm0yx7y9vTVw4ED16dNHXl5eFqYDAKQ1KXodpzfffFPXr1+Xh4eHihcvrkqVKilr1qy6ceOG3nzzzYcODQDAo1q5cqVDaXrppZd04MABvffee5QmAMAjcXrGydXVVefOnVNgYKDD+OXLl5UrVy7Fx8cna8DkxowTAGRcMTExKl26tCRp6tSpqlevnsWJAABpmTPdIMnnOEVFRckwDBmGoevXrzv85i4hIUE//fTTXWUKAICUsn37dm3dulVdunQxxzw9PfXTTz8pODiYBSAAAMkqycUpW7Zsstlsstls97zWhc1m09ChQ5M1HAAA/3X58mUNHDhQs2fPlouLi2rWrKkSJUqY2wsWLGhhOgBARpXk4rR27VoZhqFnnnlGS5YsUUBAgLnNw8ND+fLlU1BQUIqEBAAgISFBn376qQYNGqQrV66YY5MmTdKnn35qcToAQEaX5OJUs2ZNSdLx48f1xBNPyGazpVgoAAD+1+bNmxUWFqadO3eaY76+vhoyZAiXwgAApAqnV9Vbs2aNvv3227vGv/nmG3322WfJEgoAAEm6ePGi3nzzTVWtWtWhNLVq1UqHDh1Sr1695O7ubmFCAEBm4XRxGjVqlLJnz37XeGBgoEaOHJksoQAA2L17t0JCQjRv3jxzrHTp0lq/fr2++OIL5c6d28J0AIDMxunidPLkSRUoUOCu8Xz58unkyZPJEgoAgBIlSig4OFiS5O/vrylTpmjHjh2qXr26xckAAJmR08UpMDBQe/bsuWt89+7devzxx5MlFAAg84mOjna47+bmpmnTpqldu3aKiIhQt27d5OaW5FNzAQBIVk4Xp5YtW6p79+5au3atEhISlJCQoDVr1qhHjx5q0aJFSmQEAGRgcXFxmjBhgoKDg7Vr1y6HbTVr1tTcuXO5TiAAwHJO/+pu+PDhOnHihOrUqWP+5s9ut6t169ac4wQAcMratWsVFham/fv3S5K6du2qDRs2yMXF6d/rAQCQopwuTh4eHlq8eLGGDx+u3bt3y9vbW6VKlVK+fPlSIh8AIAM6ffq0+vTpo8WLF5tjNptNpUqVUkxMjLy9vS1MBwDA3R76YPGQkBCFhIQkZxYAQAYXGxuriRMnavjw4bpx44Y5XqlSJU2bNk0VK1a0MB0AAPeXpOLUq1cvDR8+XD4+PurVq9cD950wYUKyBAMAZCy//vqrunXrpoiICHMse/bs+uijj9SuXTsOzwMApGlJKk67du1SXFyc+ef7sdlsyZMKAJCh2O12DRw40CxNLi4uevvttzVs2DAFBARYnA4AgMTZDMMwrA6RmqKiouTv76/IyEj5+flZHQcAMo0tW7aoSpUqqlq1qqZNm6ayZctaHQkAkMk50w24IAYAINn99NNPypEjh8M5S0899ZQ2bNigqlWrcoQCACDdSVJxeumll5L8hEuXLn3oMACA9O3YsWPq2bOnfvjhB5UrV05bt26Vq6urub1atWoWpgMA4OEl6Uxcf39/8+bn56fVq1dr+/bt5vYdO3Zo9erV8vf3T7GgAIC069atWxo8eLCKFy+uH374QZK0c+dOfffdd9YGAwAgmSRpxmnevHnmn9999129+uqrmjlzpvlbxISEBHXp0oVzhgAgkzEMQ8uXL1fPnj114sQJczx37twaN26cU0csAACQljm9OESOHDm0YcMGFSlSxGH80KFDqlq1qv75559kDZjcWBwCAJLH4cOH1b17d61cudIcc3NzU8+ePfXBBx/I19fXwnQAACTOmW7g9EUz4uPjdfDgwbvGDx48KLvd7uzTAQDSoblz56pkyZIOpalOnTras2ePxo4dS2kCAGQ4Tq+q165dO7Vv315Hjx5VpUqVJEl//vmneQFDAEDGV65cOcXHx0uS8ubNqwkTJqhZs2aslgcAyLCcLk7jxo1Trly5NH78eJ07d07SnWPZ+/btq969eyd7QACA9eLj4+Xm9n//ZYSGhqpHjx7y8vLSoEGD5OPjY2E6AABS3iNdADcqKkqS0tW5QpzjBABJd/36dQ0bNkyrV6/Wn3/+KXd3d6sjAQCQbFL0HCfpzm8ef/vtNy1atMg8LOPs2bOKjo5+mKcDAKQxhmFo0aJFKlq0qMaNG6ddu3Zp2rRpVscCAMAyTh+q9/fff6tBgwY6efKkYmJi9Oyzz8rX11ejR49WTEyMZs6cmRI5AQCpZN++fQoLC9O6devMMU9PT/OcJgAAMiOnZ5x69OihChUq6OrVq/L29jbHmzZtqtWrVydrOABA6omMjFTPnj0VGhrqUJoaN26s/fv3q2/fvhamAwDAWk7POP3xxx/atGmTPDw8HMbz58+vM2fOJFswAEDqsNvt+uKLL9SvXz9dvHjRHC9YsKAmT56sRo0aWZgOAIC0weniZLfblZCQcNf46dOnuW4HAKRDx44dU4cOHcxD8by9vTVw4ED16dNHXl5eFqcDACBtcPpQvXr16mnSpEnmfZvNpujoaA0ePFgNGzZMzmwAgFRQqFAhde/eXdKdw64PHDig9957j9IEAMD/cHo58lOnTqlBgwYyDEOHDx9WhQoVdPjwYWXPnl3r169XYGBgSmVNFixHDiAzs9vtWrRokZo1ayZPT09zPCoqSlu2bFG9evUsTAcAQOpyphs4fahecHCwdu/ercWLF2v37t2Kjo5W+/bt9frrrzssFgEASFu2bdumrl27atu2bTp58qQGDBhgbvPz86M0AQDwAE7NOMXFxalo0aJasWKFihUrlpK5UgwzTgAym8uXL2vgwIGaPXu2/v2RnyVLFp08eVKPP/64xekAALBOil0A193dXbdv336kcACA1JGQkKAZM2YoJCREn376qVmaihcvrhUrVlCaAABwgtOLQ3Tt2lWjR4/mQogAkIZt3rxZlSpVUpcuXXT16lVJkq+vryZMmKDw8HDVrl3b4oQAAKQvTp/jtG3bNq1evVq//vqrSpUqJR8fH4ftS5cuTbZwAADndenSRTNmzHAYe+ONNzR69Gjlzp3bolQAAKRvThenbNmy6eWXX06JLACAZBAQEGD+uXTp0po+fbqefvppCxMBAJD+Ob0ceXrH4hAAMhrDMGSz2cz7N2/eVJUqVdSxY0d17txZbm5O/44MAIBMIUWWI7fb7Ro7dqyWL1+u2NhY1alTR4MHD2YJcgCwyLlz59S3b18VLFhQQ4cONcezZMmiXbt2ycXF6dNYAQDAfST5f9URI0Zo4MCBypo1q/LkyaPJkyera9euj/TF169fr8aNGysoKEg2m03fffddoo/5/fffVa5cOXl6eqpQoUKaP3/+I2UAgPQmLi5OEyZMUJEiRbRgwQKNHj1aR48eddiH0gQAQPJK8v+sn3/+uT7++GP98ssv+u677/TDDz9owYIFstvtD/3Fb9y4oTJlymj69OlJ2v/48eNq1KiRateurfDwcPXs2VMdOnTQL7/88tAZACA9Wbt2rUJDQ9W7d29dv35d0p0ZpoiICIuTAQCQsSX5HCdPT08dOXJEwcHB5piXl5eOHDmivHnzPnoQm03Lli1TkyZN7rvPu+++qx9//FH79u0zx1q0aKFr165p5cqVSfo6nOMEID06ffq0evfura+//tocs9ls6tixo0aMGKHs2bNbmA4AgPQpRS6AGx8fLy8vL4cxd3d3xcXFPVzKh7B582bVrVvXYax+/fravHnzfR8TExOjqKgohxsApBexsbEaPXq0ihYt6lCaKlWqpK1bt+qTTz6hNAEAkAqSvDiEYRhq27atPD09zbHbt2+rc+fODtdySsnrOJ0/f145c+Z0GMuZM6eioqJ069atey5UMWrUKIeTpgEgPfnkk0/Uv39/83727Nn10UcfqV27dpzHBABAKkry/7pt2rRRYGCg/P39zVurVq0UFBTkMJbWDBgwQJGRkebt1KlTVkcCgCTr2LGjChYsKBcXF3Xt2lURERFq3749pQkAgFSW5BmnefPmpWSOJMmVK5cuXLjgMHbhwgX5+fndd1l0T09Ph1kyAEirbt++rY0bN6pOnTrmmJeXlz777DP5+PgoNDTUunAAAGRy6epXllWqVNHq1asdxlatWqUqVapYlAgAksePP/6okiVLqkGDBjp48KDDtmrVqlGaAACwmKXFKTo6WuHh4QoPD5d0Z7nx8PBwnTx5UtKdw+xat25t7t+5c2cdO3ZM/fr108GDB/Xxxx/r66+/1jvvvGNFfAB4ZEePHlXjxo31/PPP6+jRo4qPj+dnGgAAaZClxWn79u0qW7asypYtK0nq1auXypYtqw8++ECSdO7cObNESVKBAgX0448/atWqVSpTpozGjx+v2bNnq379+pbkB4CHdfPmTX3wwQcqUaKEVqxYYY7XqFFDY8aMsTAZAAC4lyRfxymj4DpOAKxkGIa+//579ezZU3///bc5HhQUpHHjxqlFixay2WwWJgQAIPNwphskeXEIAMCjuXTpkt544w398ssv5pibm5veeecdvf/++/L19bUwHQAAeBCKEwCkkmzZsjkcflynTh1NnTpVxYoVszAVAABIinS1qh4ApGfu7u6aNm2agoOD9c0332jVqlWUJgAA0gmKEwCkgAMHDqh+/fravXu3w/gzzzyjw4cPq1mzZpzLBABAOsKhegCQjK5fv65hw4Zp0qRJio+P182bN7V+/XqHksRFuQEASH+YcQKAZGAYhhYuXKgiRYpo3Lhxio+PlySdPn1aZ86csTgdAAB4VBQnAHhEe/fuVa1atfT666/r3Llzku7MKg0ePFj79+9X3rx5LU4IAAAeFYfqAcBDunbtmoYMGaJp06YpISHBHH/hhRc0ceJEPfnkkxamAwAAyYniBAAPqUWLFg7XZCpYsKCmTJmihg0bWpgKAACkBA7VA4CH9P7770uSvL299eGHH2rfvn2UJgAAMihmnAAgCa5evap//vlHhQoVMseqVaum6dOnq1GjRsqXL5+F6QAAQEpjxgkAHsBut2v27NkKCQnRa6+9Jrvd7rC9S5culCYAADIBihMA3Mf27dtVpUoVdezYUZcvX9a2bds0Z84cq2MBAAALUJwA4D8uX76st956S5UqVdLWrVvN8ebNm+u5556zMBkAALAK5zgBwP+XkJCgWbNmadCgQbp69ao5Xrx4cU2bNk21a9e2MB0AALASxQkAJO3atUsdOnTQzp07zTFfX18NHTpUYWFhcnd3tzAdAACwGsUJAHRnEYhdu3aZ91u1aqUxY8Yod+7cFqYCAABpBec4AYCk8uXL66233lLp0qW1fv16ffHFF5QmAABgojgByHT++OMPvfbaa4qPj3cYHz9+vHbs2KHq1atblAwAAKRVFCcAmca5c+f0xhtvqEaNGlq0aJFmzJjhsN3Hx0dubhzBDAAA7kZxApDhxcXFacKECSpSpIi+/PJLc/y7776TYRgWJgMAAOkFxQlAhrZ27VqFhoaqd+/eun79uiTpscce04wZM/Trr7/KZrNZnBAAAKQHFCcAGdLp06fVvHlzPfPMM9q/f78kyWaz6a233lJERIQ6d+4sV1dXi1MCAID0goP5AWQ4kZGRKlmypCIjI82xSpUqadq0aapYsaKFyQAAQHrFjBOADMff31/t2rWTJGXPnl2zZ8/W5s2bKU0AAOChMeMEIN07efKkcuXKJQ8PD3NsyJAhcnd3V//+/RUQEGBhOgAAkBEw4wQg3bp9+7Y+/PBDFS1aVJMnT3bY5u/vrzFjxlCaAABAsqA4AUiXfvzxR5UsWVLvv/++bt26paFDh+rMmTNWxwIAABkUh+oBSFeOHTumHj16aMWKFeaYq6ur3nrrLfn6+lqYDAAAZGQUJwDpws2bNzV69GiNHj1aMTEx5njNmjU1bdo0lSxZ0sJ0AAAgo6M4AUjzli9fru7du+vvv/82x4KCgjR+/Hg1b96ci9gCAIAUxzlOANK8zZs3m6XJzc1Nffv21cGDB9WiRQtKEwAASBU2wzAMq0OkpqioKPn7+ysyMlJ+fn5WxwGQBNHR0SpWrJiKFi2qqVOnqmjRolZHAgAAGYAz3YBD9QCkGYZh6Ntvv9XFixfVtWtXczxr1qz6888/lTt3bmaYAACAJShOANKEAwcOqFu3blq9erW8vLzUsGFDFShQwNweFBRkYToAAJDZcY4TAEtdv35dffv2VenSpbV69WpJdy5su3DhQouTAQAA/B9mnABYwjAMLVq0SH369NG5c+fM8fz582vy5Mlq3LixhekAAAAcUZwApLq9e/cqLCxM69evN8c8PT3Vv39/vfvuu/L29rYwHQAAwN0oTgBS1S+//KJGjRopISHBHHvhhRc0ceJEPfnkkxYmAwAAuD/OcQKQqmrUqKEnnnhCklSoUCH9+OOP+v777ylNAAAgTWPGCUCKunjxogIDA8373t7emjZtmnbt2qXevXvLy8vLwnQAAABJw4wTgBRx5coVde3aVfny5dOhQ4cctjVs2FCDBg2iNAEAgHSD4gQgWdntds2ePVtFihTRxx9/rNu3b6t79+4yDMPqaAAAAA+NQ/UAJJvt27era9eu2rp1qznm4+OjOnXqyG63y9XV1cJ0AAAAD4/iBOCRXb58WQMHDtTs2bMdZpZatGihsWPHKm/evBamAwAAeHQUJwAPLSEhQbNmzdKgQYN09epVc7x48eKaNm2aateubWE6AACA5MM5TgAeWkJCgiZPnmyWJl9fX02YMEHh4eGUJgAAkKFQnAA8NA8PD02dOlWS9MYbbygiIkLvvPOO3N3dLU4GAACQvDhUD0CSxMfH6+OPP1bt2rVVqlQpc/zZZ5/VX3/9peLFi1uYDgAAIGUx4wQgUevXr1e5cuXUo0cPdevW7a6lxSlNAAAgo6M4Abivs2fPqlWrVqpZs6b27t0rSVq3bp3DcuMAAACZAcUJwF3i4uI0fvx4FSlSRAsWLDDHy5Urp82bN6ty5coWpgMAAEh9nOMEwMHq1avVrVs3HThwwBwLCAjQyJEj1aFDBy5iCwAAMiVmnACYBg0apLp165qlyWazqVOnToqIiFCnTp0oTQAAINOiOAEwNWjQwPxz5cqVtXXrVs2cOVOPP/64hakAAACsx6F6QCYWHR2trFmzmverV6+uHj16qHTp0mrbtq1cXPjdCgAAgERxAjKlEydOqFevXjp79qw2bdrkUJAmTZpkXTAAAIA0il8nA5nI7du3NXz4cBUrVkzLli3Tn3/+qc8++8zqWAAAAGkeM05AJrFixQr16NFDx44dM8dy5swpX19fC1MBAACkD8w4ARnc0aNH1bhxYzVu3NgsTa6ururZs6cOHTqkZs2aWZwQAAAg7WPGCcigbt68qY8++khjxoxRTEyMOV6zZk1NmzZNJUuWtDAdAABA+kJxAjKo/fv368MPP5RhGJKkoKAgjR8/Xs2bN5fNZrM4HQAAQPrCoXpABlWhQgW1b99ebm5u6tevnw4ePKgWLVpQmgAAAB6Czfj319GZRFRUlPz9/RUZGSk/Pz+r4wDJ4saNG5o1a5a6d+8uV1dXc/zy5cu6fPmyihYtamE6AACAtMmZbsChekA6ZhiGvv32W/Xq1UunT5+Wp6enunTpYm7Pnj27smfPbmFCAACAjIFD9YB06sCBA3r22Wf16quv6vTp05KkYcOGOSwEAQAAgORBcQLSmevXr6tv374qXbq0Vq9ebY4/99xz+uOPP+Tp6WlhOgAAgIyJQ/WAdMIwDC1atEh9+vTRuXPnzPH8+fNr0qRJeuGFF1j4AQAAIIVQnIB0ICEhQfXq1dOaNWvMMU9PT/Xv31/vvvuuvL29LUwHAACQ8aWJQ/WmT5+u/Pnzy8vLS5UrV9bWrVvvu+/8+fNls9kcbl5eXqmYFkh9rq6uKlGihHn/hRde0P79+zVkyBBKEwAAQCqwvDgtXrxYvXr10uDBg7Vz506VKVNG9evX18WLF+/7GD8/P507d868/f3336mYGEh5drtdCQkJDmPDhg1T1apV9eOPP+r777/Xk08+aVE6AACAzMfy4jRhwgR17NhR7dq1U/HixTVz5kxlyZJFc+fOve9jbDabcuXKZd5y5syZiomBlLVr1y49/fTTmjx5ssN4tmzZtHHjRjVs2NCiZAAAAJmXpcUpNjZWO3bsUN26dc0xFxcX1a1bV5s3b77v46Kjo5UvXz4FBwfrxRdf1F9//XXffWNiYhQVFeVwA9KiK1euqEuXLqpQoYI2b96sIUOGOCwCAQAAAOtYWpwuX76shISEu2aMcubMqfPnz9/zMUWKFNHcuXP1/fff68svv5TdblfVqlXN69j816hRo+Tv72/egoODk/11AI/Cbrfr008/VUhIiGbMmCG73S5JypMnjy5cuGBxOgAAAEhp4FA9Z1WpUkWtW7dWaGioatasqaVLlypHjhz65JNP7rn/gAEDFBkZad5OnTqVyomB+9u2bZueeuopvfXWW/rnn38kST4+PhozZox2796t0NBQawMCAABAksXLkWfPnl2urq53/Vb9woULypUrV5Kew93dXWXLltWRI0fuud3T05MLgiLNuXz5sgYMGKA5c+bIMAxzvGXLlho7dqzy5MljYToAAAD8l6UzTh4eHipfvrxWr15tjtntdq1evVpVqlRJ0nMkJCRo7969yp07d0rFTDF2u6FTV27q4PkonbpyU3a7kfiDkCFMmjRJs2fPNktTiRIltHbtWi1cuJDSBAAAkAZZfgHcXr16qU2bNqpQoYIqVaqkSZMm6caNG2rXrp0kqXXr1sqTJ49GjRol6c6SzE899ZQKFSqka9euaezYsfr777/VoUMHK1+G045cvK5f9l3Q0UvRuh2fIC83VxXMkVX1S+ZUoUBfq+Mhhb377ruaO3euoqOjNXToUIWFhcnd3d3qWAAAALgPy4tT8+bNdenSJX3wwQc6f/68QkNDtXLlSnPBiJMnT8rF5f8mxq5evaqOHTvq/Pnzeuyxx1S+fHlt2rRJxYsXt+olOO3Ixeuat/GErtyIVW5/L2Xx8NbN2HjtOxups5G31K5afspTBnLhwgVt27ZNzz//vDnm6+urb775RgULFkzyYakAAACwjs343xMsMoGoqCj5+/srMjJSfn5+qf717XZDM34/qn1nI1U4MKtsNpu5zTAMHb4YrVJ5/NW5ZkG5uNge8ExI6+Lj4/Xxxx/rgw8+UGxsrA4cOKB8+fJZHQsAAAD/nzPdIN2tqpfenbl2S0cvRSu3v5dDaZLuXNg3t7+XjlyM1plrtyxKiOSwfv16lStXTj169FBkZKRu3bql999/3+pYAAAAeEgUp1R2IzZet+MTlMXj3kdJenu4KiY+QTdi41M5GZLD2bNn1apVK9WsWVN79+41x9u3b69x48ZZmAwAAACPwvJznDIbHw83ebm56mZsvHy97l4M4FZsgjzdXOVzn2KFtCkuLk5TpkzRkCFDFB0dbY6XL19e06dPV+XKlS1MBwAAgEfFp/NUliebtwrmyKp9ZyOV1dPtrnOczkXeVqk8/sqTzdvClHDG4cOH9eKLL+rAgQPmWEBAgEaOHKkOHTrI1dXVwnQAAABIDhyql8pcXGyqXzKnAnw8dPhitK7fjlO83a7rt+N0+GK0Anw8VK9EThaGSEfy5MmjmzdvSrpznlqnTp0UERGhTp06UZoAAAAyCIqTBQoF+qpdtfwqGeSvazfjdOLyDV27GadSefxZijwd+O9ClFmyZNHEiRNVuXJlbd26VTNnztTjjz9uUToAAACkBJYjt5DdbujMtVu6ERsvHw835cnmzUxTGvfLL7+ob9++WrJkiQoXLmyOG4YhwzAcrjkGAACAtI3lyNMJFxebggOyqGguPwUHZKE0pWEnTpxQ06ZN1aBBA+3du1c9evRwmHmy2WyUJgAAgAyMT3rAA9y+fVvDhw9XsWLF9N1335njUVFRDqvnAQAAIGOjOAH3sWLFCpUoUUIffPCBbt++LUnKmTOnPv/8c/3xxx/y9eVcNAAAgMyC4gT8x9GjR9W4cWM1btxYx44dkyS5urrqnXfeUUREhN544w2HZeQBAACQ8XEdJ+B/GIahl156SXv27DHHatWqpWnTpqlEiRIWJgMAAICVmHEC/ofNZtPo0aMlSUFBQVq0aJHWrFlDaQIAAMjkmHFCpnbo0CG5uLg4LC3eoEEDzZ8/Xy+//LKyZs1qYToAAACkFcw4IVOKjo5W//79VapUKXXu3Pmui9q2adOG0gQAAAATxQmZimEY+vrrr1WsWDGNHj1acXFxWrNmjZYtW2Z1NAAAAKRhHKqHTGP//v3q1q2b1qxZY455eHiob9++ql+/voXJAAAAkNZRnJDhRUVFaejQoZoyZYri4+PN8eeee06TJ092OL8JAAAAuBeKEzK0H3/8UR06dND58+fNsfz582vy5Mlq3Lgx12MCAABAklCckKH5+PiYpcnLy0v9+/dXv3795O3tbXEyAAAApCcUJ2RotWrVUosWLXTz5k1NmjRJBQoUsDoSAAAA0iGKEzIEu92uzz//XMuXL9e3334rF5f/WzBy/vz58vT0tDAdAAAA0juWI0e6t3PnTj399NNq166dli1bpi+//NJhO6UJAAAAj4rihHTrypUr6tKliypUqKDNmzeb41u2bLEwFQAAADIiDtVDumO32zVnzhwNGDBA//zzjzlepEgRTZ06Vc8++6yF6QAAAJARUZyQrmzdulVhYWHatm2bOebj46PBgwerR48e8vDwsDAdAAAAMiqKE9KN48ePq0qVKrLb7eZYy5YtNXbsWOXJk8fCZAAAAMjoOMcJ6UaBAgXUpk0bSVKJEiW0du1aLVy4kNIEAACAFMeME9KsHTt2KDQ0VK6urubYRx99pNDQUL399ttyd3e3MB0AAAAyE2ackOZcuHBBbdu2VYUKFTR79myHbYGBgerevTulCQAAAKmK4oQ0Iz4+XpMnT1ZISIg+++wzSdLAgQMdVs4DAAAArMChekgT1q9fr7CwMO3du9ccy5Ytm4YNGyZ/f38LkwEAAADMOMFiZ8+e1euvv66aNWs6lKY333xThw4dUteuXeXmRr8HAACAtfhECstMnDhRH3zwgaKjo82x8uXLa/r06apcubKFyQAAAABHzDjBMkeOHDFLU0BAgGbOnKk///yT0gQAAIA0h+IEywwfPlyBgYHq1KmTIiIi1KlTJ4elxwEAAIC0gkP1kOJiYmI0YcIEBQQEqFOnTuZ4QECAIiIiWPwBAAAAaR7FCSlq5cqV6t69uw4fPiw/Pz+9+OKLypUrl7md0gQAAID0gEP1kCJOnDihpk2b6rnnntPhw4clSdHR0frtt98sTgYAAAA4j+KEZHX79m0NGzZMxYoV03fffWeOV6tWTTt27FCrVq2sCwcAAAA8JA7VQ7L54Ycf1LNnTx07dswcy5kzp8aOHatWrVrJZrNZmA4AAAB4eBQnJItPP/1Ub731lnnf1dVV3bt31+DBgzmPCQAAAOkeh+ohWTRv3txc9KFmzZoKDw/XhAkTKE0AAADIEJhxgtMMw9DRo0dVqFAhc8zPz08ff/yxYmJi1Lx5cw7LAwAAQIbCjBOcEhERoQYNGqhMmTI6ffq0w7amTZuqRYsWlCYAAABkOBQnJEl0dLQGDBigkiVL6tdff9XNmzfVu3dvq2MBAAAAqYJD9fBAhmHom2++Ue/evR1mmJ544gk1b97cwmQAAABA6qE44b7279+vbt26ac2aNeaYh4eH+vXrpwEDBihLliwWpgMAAABSD8UJd4mOjtbgwYM1ZcoUxcfHm+MNGzbU5MmTHRaFAAAAADIDihPuYrPZ9M0335ilqUCBApo8ebKef/55Fn4AAABApsTiELiLj4+PJkyYIC8vLw0ZMkR//fWXGjduTGkCAABApkVxyuSuXbumXr166dixYw7jL7/8so4cOaLBgwfL29vbonQAAABA2sChepmU3W7X559/rnfffVcXL17UkSNHtHz5cnO7zWZTnjx5LEwIAAAApB3MOGVCO3fu1NNPP6127drp4sWLkqTVq1fr+PHjFicDAAAA0iaKUyZy5coVdenSRRUqVNDmzZvN8WbNmunAgQMqUKCAhekAAACAtItD9TIBu92uOXPmaMCAAfrnn3/M8aJFi2rKlCl69tlnLUwHAAAApH0Up0zgtdde0+LFi837Pj4+Gjx4sHr06CEPDw8LkwEAAADpA4fqZQJvvPGG+eeWLVvq0KFD6tu3L6UJAAAASCJmnDKYhIQEXb16VdmzZzfHGjVqpHfeeUcvvPCCatWqZV04AAAAIJ2iOGUgmzZtUteuXZU9e3b9+uuvDhesnTBhgoXJAAAAgPSNQ/UygAsXLqht27aqVq2awsPD9dtvv2np0qVWxwIAAAAyDIpTOhYfH6/JkycrJCREn332mTlepkwZLl4LAAAAJCMO1Uun1q9fr7CwMO3du9ccy5Ytmz788EN16tRJbm781QIAAADJhRmndObs2bN6/fXXVbNmTYfS1L59e0VERKhr166UJgAAACCZ8Qk7DbLbDZ25dks3YuPl4+GmPNm85eJyZ6GHAwcOaOHChea+5cuX1/Tp01W5cmWr4gIAAAAZHsUpjTly8bp+2XdBRy9F61ZcguyGodz+XqpTLKeqFcyuOnXq6JVXXtHq1as1atQotW/fXq6urlbHBgAAADI0m2EYhtUhUlNUVJT8/f0VGRkpPz8/q+PIbje0PuKM3vpst2L//9+Eq6SnCvjp8sWLili/XIG1WimLh5tqFwnUa089IV/jptzc3PT4449bmh0AAABIz5zpBsw4WSh//x/vOR4fH6efFs5W5ObFMuJi5J/7CXmVfEYbjl7W7fgEvfl0ARV63DeV0wIAAACZF4tDWOR+penWsR06O7errq3/XEZcjCQpYtVCebnb5CLpzLVb+vWvC7LbM9VEIQAAAGCpNFGcpk+frvz588vLy0uVK1fW1q1bH7j/N998o6JFi8rLy0ulSpXSTz/9lEpJk8e9SlN85AVdXPqhLn4zWPFXz94ZtLnIt3xj5Ws1UtExCYqz2/VYFg8duRitM9dupXJqAAAAIPOyvDgtXrxYvXr10uDBg7Vz506VKVNG9evX18WLF++5/6ZNm9SyZUu1b99eu3btUpMmTdSkSRPt27cvlZM/nP+WJntcjK5tXKSzs9/WrcNbzHHPvMWVu+0kBdTtpDi3rLoZmyDDsMnXy00x8Qm6ERuf2tEBAACATMvyxSEqV66sihUratq0aZIku92u4OBgdevWTf37979r/+bNm+vGjRtasWKFOfbUU08pNDRUM2fOTPTrWb04xP8WJ3vMTZ2b313x186bY64+jylb7TflU7yWbLY7S5DbJGXxcFWhwKwq90Q2Rd6K1zvPhig4IEtqxwcAAAAyDGe6gaUzTrGxsdqxY4fq1q1rjrm4uKhu3bravHnzPR+zefNmh/0lqX79+vfdPyYmRlFRUQ63tMLFM4s88xa/c8fmIt+KTRTU8RNlLVHbLE3/cnd1UYHsPjofFaNCgVmVJ5u3BYkBAACAzMnSVfUuX76shIQE5cyZ02E8Z86cOnjw4D0fc/78+Xvuf/78+XvuP2rUKA0dOjR5AqeAx2q2k/12tLLVaCOPHPnuuU9WDykom5duxyXo8ayeqlcip3lBXAAAAAApz/JznFLagAEDFBkZad5OnTpldSQHrlkfU+DLH9y3NEnSYz7eCsrmrdJ5s6ldtfwqFMhS5AAAAEBqsnTGKXv27HJ1ddWFCxccxi9cuKBcuXLd8zG5cuVyan9PT095enomT2ALvFWjgCrkD1CxXH7Kk82bmSYAAADAApbOOHl4eKh8+fJavXq1OWa327V69WpVqVLlno+pUqWKw/6StGrVqvvun9ac+KhRkvbL7eumP/rVVv8GxVSveC4FB2ShNAEAAAAWsXTGSZJ69eqlNm3aqEKFCqpUqZImTZqkGzduqF27dpKk1q1bK0+ePBo1apQkqUePHqpZs6bGjx+vRo0a6auvvtL27ds1a9YsK1+GU0581Oi+F8CVpO0Daiu7PyvmAQAAAGmF5cWpefPmunTpkj744AOdP39eoaGhWrlypbkAxMmTJ+Xi8n8TY1WrVtXChQv13nvvaeDAgSpcuLC+++47lSxZ0qqX8FDuV56SOiMFAAAAIPVYfh2n1Gb1dZwAAAAApA3p5jpOAAAAAJAeUJwAAAAAIBEUJwAAAABIBMUJAAAAABJBcQIAAACARFCcAAAAACARFCcAAAAASATFCQAAAAASQXECAAAAgERQnAAAAAAgERQnAAAAAEgExQkAAAAAEkFxAgAAAIBEuFkdILUZhiFJioqKsjgJAAAAACv92wn+7QgPkumK0/Xr1yVJwcHBFicBAAAAkBZcv35d/v7+D9zHZiSlXmUgdrtdZ8+ela+vr2w2m9VxFBUVpeDgYJ06dUp+fn5Wx0EawHsC98L7AvfC+wL3wvsC98L74t4Mw9D169cVFBQkF5cHn8WU6WacXFxclDdvXqtj3MXPz483MRzwnsC98L7AvfC+wL3wvsC98L64W2IzTf9icQgAAAAASATFCQAAAAASQXGymKenpwYPHixPT0+royCN4D2Be+F9gXvhfYF74X2Be+F98egy3eIQAAAAAOAsZpwAAAAAIBEUJwAAAABIBMUJAAAAABJBcQIAAACARFCcUtj06dOVP39+eXl5qXLlytq6desD9//mm29UtGhReXl5qVSpUvrpp59SKSlSkzPvi/nz58tmszncvLy8UjEtUsP69evVuHFjBQUFyWaz6bvvvkv0Mb///rvKlSsnT09PFSpUSPPnz0/xnEhdzr4vfv/997t+XthsNp0/fz51AiPFjRo1ShUrVpSvr68CAwPVpEkTHTp0KNHH8fkiY3uY9wWfL5xHcUpBixcvVq9evTR48GDt3LlTZcqUUf369XXx4sV77r9p0ya1bNlS7du3165du9SkSRM1adJE+/btS+XkSEnOvi+kO1f5PnfunHn7+++/UzExUsONGzdUpkwZTZ8+PUn7Hz9+XI0aNVLt2rUVHh6unj17qkOHDvrll19SOClSk7Pvi38dOnTI4WdGYGBgCiVEalu3bp26du2qLVu2aNWqVYqLi1O9evV048aN+z6GzxcZ38O8LyQ+XzjNQIqpVKmS0bVrV/N+QkKCERQUZIwaNeqe+7/66qtGo0aNHMYqV65sdOrUKUVzInU5+76YN2+e4e/vn0rpkBZIMpYtW/bAffr162eUKFHCYax58+ZG/fr1UzAZrJSU98XatWsNScbVq1dTJROsd/HiRUOSsW7duvvuw+eLzCcp7ws+XziPGacUEhsbqx07dqhu3brmmIuLi+rWravNmzff8zGbN2922F+S6tevf9/9kf48zPtCkqKjo5UvXz4FBwfrxRdf1F9//ZUacZGG8fMCDxIaGqrcuXPr2Wef1caNG62OgxQUGRkpSQoICLjvPvy8yHyS8r6Q+HzhLIpTCrl8+bISEhKUM2dOh/GcOXPe91jz8+fPO7U/0p+HeV8UKVJEc+fO1ffff68vv/xSdrtdVatW1enTp1MjMtKo+/28iIqK0q1btyxKBavlzp1bM2fO1JIlS7RkyRIFBwerVq1a2rlzp9XRkALsdrt69uypatWqqWTJkvfdj88XmUtS3xd8vnCem9UBADxYlSpVVKVKFfN+1apVVaxYMX3yyScaPny4hckApDVFihRRkSJFzPtVq1bV0aNHNXHiRH3xxRcWJkNK6Nq1q/bt26cNGzZYHQVpSFLfF3y+cB4zTikke/bscnV11YULFxzGL1y4oFy5ct3zMbly5XJqf6Q/D/O++C93d3eVLVtWR44cSYmISCfu9/PCz89P3t7eFqVCWlSpUiV+XmRAYWFhWrFihdauXau8efM+cF8+X2Qezrwv/ovPF4mjOKUQDw8PlS9fXqtXrzbH7Ha7Vq9e7dDu/1eVKlUc9pekVatW3Xd/pD8P8774r4SEBO3du1e5c+dOqZhIB/h5gaQKDw/n50UGYhiGwsLCtGzZMq1Zs0YFChRI9DH8vMj4HuZ98V98vkgCq1enyMi++uorw9PT05g/f76xf/9+46233jKyZctmnD9/3jAMw3jjjTeM/v37m/tv3LjRcHNzM8aNG2ccOHDAGDx4sOHu7m7s3bvXqpeAFODs+2Lo0KHGL7/8Yhw9etTYsWOH0aJFC8PLy8v466+/rHoJSAHXr183du3aZezatcuQZEyYMMHYtWuX8ffffxuGYRj9+/c33njjDXP/Y8eOGVmyZDH69u1rHDhwwJg+fbrh6upqrFy50qqXgBTg7Pti4sSJxnfffWccPnzY2Lt3r9GjRw/DxcXF+O2336x6CUhmb7/9tuHv72/8/vvvxrlz58zbzZs3zX34fJH5PMz7gs8XzqM4pbCpU6caTzzxhOHh4WFUqlTJ2LJli7mtZs2aRps2bRz2//rrr42QkBDDw8PDKFGihPHjjz+mcmKkBmfeFz179jT3zZkzp9GwYUNj586dFqRGSvp3Gen/3v59L7Rp08aoWbPmXY8JDQ01PDw8jCeffNKYN29equdGynL2fTF69GijYMGChpeXlxEQEGDUqlXLWLNmjTXhkSLu9X6Q5PDvn88Xmc/DvC/4fOE8m2EYRurNbwEAAABA+sM5TgAAAACQCIoTAAAAACSC4gQAAAAAiaA4AQAAAEAiKE4AAAAAkAiKEwAAAAAkguIEAAAAAImgOAEAAABIs9avX6/GjRsrKChINptN3333nVOPHzJkiGw22103Hx8fp56H4gQAyLQe5j/gpMifP78mTZqU7M8LAJnRjRs3VKZMGU2fPv2hHt+nTx+dO3fO4Va8eHG98sorTj0PxQkAkOI2b94sV1dXNWrUyOnHWllC2rZta/5m0sPDQ4UKFdKwYcMUHx//wMdt27ZNb731ViqlBICM7bnnntOHH36opk2b3nN7TEyM+vTpozx58sjHx0eVK1fW77//bm7PmjWrcuXKZd4uXLig/fv3q3379k7loDgBAFLcnDlz1K1bN61fv15nz561Oo5TGjRooHPnzunw4cPq3bu3hgwZorFjx95z39jYWElSjhw5lCVLltSMCQCZVlhYmDZv3qyvvvpKe/bs0SuvvKIGDRro8OHD99x/9uzZCgkJUfXq1Z36OhQnAECKio6O1uLFi/X222+rUaNGmj9//l37/PDDD6pYsaK8vLyUPXt287eKtWrV0t9//6133nnHnPmR7hyvHhoa6vAckyZNUv78+c3727Zt07PPPqvs2bPL399fNWvW1M6dO53O7+npqVy5cilfvnx6++23VbduXS1fvlzSnRmpJk2aaMSIEQoKClKRIkUk3T1Ldu3aNXXq1Ek5c+aUl5eXSpYsqRUrVpjbN2zYoOrVq8vb21vBwcHq3r27bty44XRWAMhsTp48qXnz5umbb75R9erVVbBgQfXp00dPP/205s2bd9f+t2/f1oIFC5yebZIoTgCAFPb111+raNGiKlKkiFq1aqW5c+fKMAxz+48//qimTZuqYcOG2rVrl1avXq1KlSpJkpYuXaq8efNq2LBh5nHpSXX9+nW1adNGGzZs0JYtW1S4cGE1bNhQ169ff6TX4+3tbc4sSdLq1at16NAhrVq1yqEM/ctut+u5557Txo0b9eWXX2r//v366KOP5OrqKkk6evSoGjRooJdffll79uzR4sWLtWHDBoWFhT1STgDIDPbu3auEhASFhIQoa9as5m3dunU6evToXfsvW7bM/P/BWW7JERgAgPuZM2eOWrVqJenOYW+RkZFat26datWqJUkaMWKEWrRooaFDh5qPKVOmjCQpICBArq6u8vX1Va5cuZz6us8884zD/VmzZilbtmxat26dnn/+eadfh2EYWr16tX755Rd169bNHPfx8dHs2bPl4eFxz8f99ttv2rp1qw4cOKCQkBBJ0pNPPmluHzVqlF5//XX17NlTklS4cGFNmTJFNWvW1IwZM+Tl5eV0VgDILKKjo+Xq6qodO3aYv5D6V9asWe/af/bs2Xr++eeVM2dOp78WxQkAkGIOHTqkrVu3atmyZZIkNzc3NW/eXHPmzDGLU3h4uDp27JjsX/vChQt677339Pvvv+vixYtKSEjQzZs3dfLkSaeeZ8WKFcqaNavi4uJkt9v12muvaciQIeb2UqVK3bc0SXdeX968ec3S9F+7d+/Wnj17tGDBAnPMMAzZ7XYdP35cxYoVcyovAGQmZcuWVUJCgi5evJjoOUvHjx/X2rVrzcOtnUVxAgCkmDlz5ig+Pl5BQUHmmGEY8vT01LRp0+Tv7y9vb2+nn9fFxcXhcD9JiouLc7jfpk0b/fPPP5o8ebLy5csnT09PValSxeEwu6SoXbu2ZsyYIQ8PDwUFBcnNzfG/zsSuA5LY64uOjlanTp3UvXv3u7Y98cQTTmUFgIwoOjpaR44cMe8fP35c4eHhCggIUEhIiF5//XW1bt1a48ePV9myZXXp0iWtXr1apUuXdljNde7cucqdO7eee+65h8pBcQIApIj4+Hh9/vnnGj9+vOrVq+ewrUmTJlq0aJE6d+6s0qVLa/Xq1WrXrt09n8fDw0MJCQkOYzly5ND58+dlGIa5YER4eLjDPhs3btTHH3+shg0bSpJOnTqly5cvO/06fHx8VKhQIacf96/SpUvr9OnTioiIuOesU7ly5bR///5H+hoAkJFt375dtWvXNu/36tVL0p1fkM2fP1/z5s3Thx9+qN69e+vMmTPKnj27nnrqKYfDsu12u+bPn6+2bdvedUhfUlGcAAApYsWKFbp69arat28vf39/h20vv/yy5syZo86dO2vw4MGqU6eOChYsqBYtWig+Pl4//fST3n33XUl3Vqhbv369WrRoIU9PT2XPnl21atXSpUuXNGbMGDVr1kwrV67Uzz//LD8/P/NrFC5cWF988YUqVKigqKgo9e3b96Fmtx5VzZo1VaNGDb388suaMGGCChUqpIMHD8pms6lBgwZ699139dRTTyksLEwdOnSQj4+P9u/fr1WrVmnatGmpnhcA0ppatWrddZTB/3J3d9fQoUMdzpX9LxcXF506deqRcrCqHgAgRcyZM0d169a9qzRJd4rT9u3btWfPHtWqVUvffPONli9frtDQUD3zzDPaunWrue+wYcN04sQJFSxYUDly5JAkFStWTB9//LGmT5+uMmXKaOvWrerTp89dX//q1asqV66c3njjDXXv3l2BgYEp+6LvY8mSJapYsaJatmyp4sWLq1+/fuYsWunSpbVu3TpFRESoevXqKlu2rD744AOHwxsBANazGQ+qbwAAAAAAZpwAAAAAIDEUJwAAAABIBMUJAAAAABJBcQIAAACARFCcAAAAACARFCcAAAAASATFCQAAAAASQXECAAAAgERQnAAAAAAgERQnAAAAAEgExQkAAAAAEvH/ADkyCDY9Et2KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n", + "from sklearn.model_selection import cross_val_score\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Удаление строк с NaN\n", + "feature_matrix = feature_matrix.dropna()\n", + "val_feature_matrix = val_feature_matrix.dropna()\n", + "test_feature_matrix = test_feature_matrix.dropna()\n", + "\n", + "# Разделение данных на обучающую и тестовую выборки\n", + "X_train = feature_matrix.drop('Price', axis=1)\n", + "y_train = feature_matrix['Price']\n", + "X_val = val_feature_matrix.drop('Price', axis=1)\n", + "y_val = val_feature_matrix['Price']\n", + "X_test = test_feature_matrix.drop('Price', axis=1)\n", + "y_test = test_feature_matrix['Price']\n", + "\n", + "# Выбор модели\n", + "model = RandomForestRegressor(random_state=42)\n", + "\n", + "# Обучение модели\n", + "model.fit(X_train, y_train)\n", + "\n", + "# Предсказание и оценка\n", + "y_pred = model.predict(X_test)\n", + "\n", + "rmse = mean_squared_error(y_test, y_pred, squared=False)\n", + "r2 = r2_score(y_test, y_pred)\n", + "mae = mean_absolute_error(y_test, y_pred)\n", + "\n", + "print(f\"RMSE: {rmse}\")\n", + "print(f\"R²: {r2}\")\n", + "print(f\"MAE: {mae}\")\n", + "\n", + "# Кросс-валидация\n", + "scores = cross_val_score(model, X_train, y_train, cv=5, scoring='neg_mean_squared_error')\n", + "rmse_cv = (-scores.mean())**0.5\n", + "print(f\"Cross-validated RMSE: {rmse_cv}\")\n", + "\n", + "# Анализ важности признаков\n", + "feature_importances = model.feature_importances_\n", + "feature_names = X_train.columns\n", + "\n", + "# importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})\n", + "# importance_df = importance_df.sort_values(by='Importance', ascending=False)\n", + "\n", + "# plt.figure(figsize=(10, 6))\n", + "# sns.barplot(x='Importance', y='Feature', data=importance_df)\n", + "# plt.title('Feature Importance')\n", + "# plt.show()\n", + "\n", + "# Проверка на переобучение\n", + "y_train_pred = model.predict(X_train)\n", + "\n", + "rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)\n", + "r2_train = r2_score(y_train, y_train_pred)\n", + "mae_train = mean_absolute_error(y_train, y_train_pred)\n", + "\n", + "print(f\"Train RMSE: {rmse_train}\")\n", + "print(f\"Train R²: {r2_train}\")\n", + "print(f\"Train MAE: {mae_train}\")\n", + "\n", + "# Визуализация результатов\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(y_test, y_pred, alpha=0.5)\n", + "plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)\n", + "plt.xlabel('Actual Price')\n", + "plt.ylabel('Predicted Price')\n", + "plt.title('Actual vs Predicted Price')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Точность предсказаний: Модель показывает довольно высокий R² (0.8029), что указывает на хорошее объяснение вариации цен. Однако, значения RMSE и MAE довольно высоки, что говорит о том, что модель не очень точно предсказывает цены, особенно для высоких значений.\n", + "\n", + "Переобучение: Разница между RMSE на обучающей и тестовой выборках не очень большая, что указывает на то, что переобучение не является критическим. Однако, стоит быть осторожным и продолжать мониторинг этого показателя.\n", + "\n", + "Кросс-валидация: Значение RMSE после кросс-валидации немного выше, чем на тестовой выборке, что может указывать на некоторую нестабильность модели." ] } ], -- 2.25.1 From b9f5eaf38d95f7bd377248bda444c3c1b35bdcb4 Mon Sep 17 00:00:00 2001 From: GokaPek Date: Fri, 11 Oct 2024 23:52:22 +0400 Subject: [PATCH 4/4] =?UTF-8?q?=D1=84=D0=B8=D0=BD=D0=B0=D0=BB?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- lab_3/lab2.ipynb | 1337 ---------------------------------------------- 1 file changed, 1337 deletions(-) delete mode 100644 lab_3/lab2.ipynb diff --git a/lab_3/lab2.ipynb b/lab_3/lab2.ipynb deleted file mode 100644 index f7ec25d..0000000 --- a/lab_3/lab2.ipynb +++ /dev/null @@ -1,1337 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Выгрузка в датафрейм первый набор (игры в Steam)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://www.kaggle.com/datasets/wajihulhassan369/steam-games-dataset. Набор представляет собой данные об экшенах, доступных в Steam. Эта информация полезна для изучения игровых паттернов, моделирования цен и исследования корреляции между игровыми тегами и методами ценообразования. Этот набор позволяет провести предварительный анализ данных, построить модели машинного обучения или исследовать игровую индустрию. В наборе пресдтавлена дата, различные теги, рейтинг отзывов. Так можно понять, какие теги популярнее, что в играх людям нравится больше, изменилось ли качество игр со временем и т.д. Для бизнеса такой набор данных может быть полезен для прогнозирования, в разработку каки игр целесообразнее вкладываться. Так компания не потеряет деньги.\n", - "Пример цели: Разработка игры на пк в нужную фазу рынка\n", - "Входные данные: год выпуска, сумма продаж\n", - "Целевой признак: продаваемость игр в текущей фазе рынка в сравнении с предыдущими." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Index(['Name', 'Price', 'Release_date', 'Review_no', 'Review_type', 'Tags',\n", - " 'Description'],\n", - " dtype='object')\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "df = pd.read_csv(\".//static//csv//steam_cleaned.csv\")\n", - "print(df.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj3klEQVR4nO3dd3gU5f7//9emF5JQQwApAUQ6SFOkKxgQEVRAUY6AHjwiguLRc8QCAiJiwYIe2zkiIiqCICiKgIBSP4B0A0ivoUNCS4Dk/v3Bd/eXJW032ZJkno/rynWxs7Mz79mZXea19z332IwxRgAAAABgEQH+LgAAAAAAfIkQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBMAS9u7dK5vNps8//9zfpTiZN2+eGjdurLCwMNlsNp05c8bfJWXx+eefy2azae/evf4updB6+eWXZbPZdOLECX+XUqTY3zcA8DVCEFDEbd68WT179lTVqlUVFhamSpUqqVOnTpo4caLX1vnVV1/pnXfeyTL98OHDevnll7VhwwavrftaS5Yskc1mc/wFBwerevXqeuihh7R7926PrGPFihV6+eWXPR5QTp48qd69eys8PFwffPCBpkyZosjIyGzntQcR+19QUJAqVaqk/v3769ChQx6tq7Dq37+/bDabGjZsKGNMludtNpueeOIJP1RmDfb33/4XGhqqWrVqacSIEUpNTfV3eX5z7XdQaGioypcvr/bt2+vVV1/V8ePH873sxMREvfzyy/wAAXhBkL8LAJB/K1asUIcOHVSlShUNHDhQcXFxOnDggFatWqV3331XQ4YM8cp6v/rqK23ZskVPPfWU0/TDhw9r1KhRqlatmho3buyVdedk6NChat68uS5fvqx169bpk08+0dy5c7V582ZVrFixQMtesWKFRo0apf79+6tkyZKeKVjSmjVrdPbsWY0ZM0YdO3Z06TWjR49WfHy8UlNTtWrVKn3++edatmyZtmzZorCwMI/Vltnf/vY33X///QoNDfXK8t21efNmzZw5U/fee6+/S7Gc0NBQ/fe//5UkJScna/bs2RozZox27dqlqVOn+rk6/7J/B6Wnp+v48eNasWKFRo4cqQkTJujbb7/Vrbfe6vYyExMTNWrUKLVv317VqlXzfNGAhRGCgCJs7NixiomJ0Zo1a7KcnB87dsw/RXnB+fPnc2whsWvTpo169uwpSRowYIBq1aqloUOHavLkyRo+fLgvynSbfR+5E6y6dOmiZs2aSZL+/ve/q2zZsho/frzmzJmj3r17e6NMBQYGKjAw0CvLdld4eLgqV66s0aNH65577rFcV6oLFy4oIiLCb+sPCgpS3759HY8ff/xx3XLLLfr66681YcIElS9f3m+1+Vvm7yC7jRs36vbbb9e9996rxMREVahQwU/VAbgW3eGAImzXrl2qV69etifRsbGxWaZ9+eWXatGihSIiIlSqVCm1bdtW8+fPdzw/e/Zsde3aVRUrVlRoaKhq1KihMWPGKD093TFP+/btNXfuXO3bt8/R/aNatWpasmSJmjdvLulqCLE/l/kanP/7v/9T586dFRMTo4iICLVr107Lly93qtF+jUBiYqIeeOABlSpVSq1bt3b7vbH/6rpnz55c51u0aJHatGmjyMhIlSxZUt27d9fWrVud6nn22WclSfHx8Y7tyqt7yvTp09W0aVOFh4erbNmy6tu3r1O3tfbt26tfv36SpObNm8tms6l///5ub2ebNm0kXT0WMtu2bZt69uyp0qVLKywsTM2aNdOcOXMcz69du1Y2m02TJ0/OssxffvlFNptNP/74o6Scrwn6+eefHe9dVFSUunbtqj///NPx/Jw5c2Sz2bRp0ybHtO+++042m0333HOP07Lq1Kmj++67L8/tDQgI0IsvvqhNmzZp1qxZuc6bU9327ktLlixxTGvfvr3q16+vTZs2qV27doqIiFDNmjU1Y8YMSdJvv/2mm266SeHh4brhhhu0cOHCbNd54sQJ9e7dW9HR0SpTpoyefPLJbLuKffnll47jo3Tp0rr//vt14MABp3nsNf3xxx9q27atIiIi9Pzzz2e73jfffFM2m0379u3L8tzw4cMVEhKi06dPS5J27Nihe++9V3FxcQoLC9N1112n+++/X8nJyTm+lzmx2Wxq3bq1jDFZup/mdXzkxpX3Z+nSperVq5eqVKmi0NBQVa5cWcOGDdPFixed5jty5IgGDBig6667TqGhoapQoYK6d+/u9vGcH40aNdI777yjM2fO6P3333dM37dvnx5//HHdcMMNCg8PV5kyZdSrVy+nmj7//HP16tVLktShQwfHd0/m49YbNQNWQQgCirCqVavqjz/+0JYtW/Kcd9SoUfrb3/6m4OBgjR49WqNGjVLlypW1aNEixzyff/65SpQooaefflrvvvuumjZtqhEjRui5555zzPPCCy+ocePGKlu2rKZMmaIpU6bonXfeUZ06dTR69GhJ0qOPPup4rm3btpKuho22bdsqJSVFI0eO1KuvvqozZ87o1ltv1erVq7PU26tXL124cEGvvvqqBg4c6PZ7Yw8FZcqUyXGehQsXKiEhQceOHdPLL7+sp59+WitWrFCrVq0cJyP33HOP+vTpI0l6++23HdtVrly5HJf7+eefq3fv3goMDNS4ceM0cOBAzZw5U61bt3ZcV/TCCy/o0UcflXS1i9uUKVP0j3/8w+3ttNdZqlQpx7Q///xTN998s7Zu3arnnntOb731liIjI9WjRw9HcGjWrJmqV6+ub7/9Nssyp02bplKlSikhISHH9U6ZMkVdu3ZViRIlNH78eL300ktKTExU69atHTW1bt1aNptNv//+u+N1S5cuVUBAgJYtW+aYdvz4cW3bts1xrOTlgQce0PXXX6/Ro0dne21Qfp0+fVp33nmnbrrpJr3++usKDQ3V/fffr2nTpun+++/XHXfcoddee03nz59Xz549dfbs2SzL6N27t1JTUzVu3Djdcccdeu+99xz72W7s2LF66KGHdP3112vChAl66qmn9Ouvv6pt27ZZrjs7efKkunTposaNG+udd95Rhw4dsq29d+/estls2e7Pb7/9VrfffrtKlSqlS5cuKSEhQatWrdKQIUP0wQcf6NFHH9Xu3bvzfc1bdsegK8dHTlx9f6ZPn64LFy5o0KBBmjhxohISEjRx4kQ99NBDTsu79957NWvWLA0YMED/+c9/NHToUJ09e1b79+/3SL156dmzp8LDw51+cFqzZo1WrFih+++/X++9954ee+wx/frrr2rfvr0uXLggSWrbtq2GDh0qSXr++ecd3z116tTxes2AJRgARdb8+fNNYGCgCQwMNC1btjT/+te/zC+//GIuXbrkNN+OHTtMQECAufvuu016errTcxkZGY5/X7hwIcs6/vGPf5iIiAiTmprqmNa1a1dTtWrVLPOuWbPGSDKTJk3Kso7rr7/eJCQkZFlffHy86dSpk2PayJEjjSTTp08fl96DxYsXG0nms88+M8ePHzeHDx82c+fONdWqVTM2m82sWbPGGGPMnj17stTWuHFjExsba06ePOmYtnHjRhMQEGAeeughx7Q33njDSDJ79uzJs55Lly6Z2NhYU79+fXPx4kXH9B9//NFIMiNGjHBMmzRpkpHkqDE39nkXLlxojh8/bg4cOGBmzJhhypUrZ0JDQ82BAwcc8952222mQYMGTvssIyPD3HLLLeb66693TBs+fLgJDg42p06dckxLS0szJUuWNA8//HCWddu3/+zZs6ZkyZJm4MCBTjUeOXLExMTEOE2vV6+e6d27t+NxkyZNTK9evYwks3XrVmOMMTNnzjSSzMaNG3N9D/r162ciIyONMcZMnjzZSDIzZ850PC/JDB48OMe67ezHzOLFix3T2rVrZySZr776yjFt27ZtRpIJCAgwq1atckz/5ZdfshxL9uP2rrvuclrX448/7rRte/fuNYGBgWbs2LFO823evNkEBQU5TbfX9NFHH+X6vti1bNnSNG3a1Gna6tWrjSTzxRdfGGOMWb9+vZFkpk+f7tIyM7O//8ePHzfHjx83O3fuNG+++aax2Wymfv36js+2O8eH/X2zc+f9ye77aty4ccZms5l9+/YZY4w5ffq0kWTeeOONHLfLnXqzYz+ecntPGzVqZEqVKpVr7StXrnTaV8YYM3369CzHqidqBmAMLUFAEdapUyetXLlSd911lzZu3KjXX39dCQkJqlSpklPXp++//14ZGRkaMWKEAgKcP/aZr6kIDw93/Pvs2bM6ceKE2rRpowsXLmjbtm35rnPDhg3asWOHHnjgAZ08eVInTpzQiRMndP78ed122236/ffflZGR4fSaxx57zK11PPzwwypXrpwqVqyorl276vz585o8ebLj+plrJSUlacOGDerfv79Kly7tmN6wYUN16tRJP/30k/sbqqvdzI4dO6bHH3/caaCCrl27qnbt2po7d26+lmvXsWNHlStXTpUrV1bPnj0VGRmpOXPm6LrrrpMknTp1SosWLVLv3r0d+/DEiRM6efKkEhIStGPHDke3vPvuu0+XL1/WzJkzHcufP3++zpw5k2vXtAULFujMmTPq06ePY/knTpxQYGCgbrrpJi1evNgxb5s2bbR06VJJV4+pjRs36tFHH1XZsmUd05cuXaqSJUuqfv36Lr8PDz74oMdbg0qUKKH777/f8fiGG25QyZIlVadOHd10002O6fZ/Zzf64ODBg50e2wcnsR9PM2fOVEZGhnr37u303sXFxen66693eu+kqwMRDBgwwKX677vvPv3xxx9OXSOnTZum0NBQde/eXZIUExMj6WqXR3uLgzvOnz+vcuXKqVy5cqpZs6aeeeYZtWrVSrNnz3Z8l7hzfFzLnfcn8/fV+fPndeLECd1yyy0yxmj9+vWOeUJCQrRkyRJHd8BrFaReV5UoUcKp5TBz7ZcvX9bJkydVs2ZNlSxZUuvWrctzeb6oGSjuis3ACL///rveeOMN/fHHH0pKStKsWbPUo0cPt5ZhjNFbb72lTz75RPv27VPZsmX1+OOP64UXXvBO0YAHNG/eXDNnztSlS5e0ceNGzZo1S2+//bZ69uypDRs2qG7dutq1a5cCAgJUt27dXJf1559/6sUXX9SiRYuUkpLi9Fx+rhew27FjhyQ5roHJTnJyslN3mvj4eLfWMWLECLVp00aBgYEqW7as6tSpo6CgnL/i7NdO3HDDDVmeq1Onjn755ReXBmRwZ7m1a9d26gaWHx988IFq1aql5ORkffbZZ/r999+dRm3buXOnjDF66aWX9NJLL2W7jGPHjqlSpUpq1KiRateurWnTpumRRx6RdPWkuWzZsrmOZGXfnznNEx0d7fh3mzZt9NFHH2nnzp3atWuXbDabWrZs6QhHAwcO1NKlS9WqVassAT03gYGBevHFF9WvXz99//33uvvuu11+bU6uu+66LAMtxMTEqHLlylmmScr2pPr66693elyjRg0FBAQ4uift2LFDxpgs89kFBwc7Pa5UqZJCQkJcqr9Xr156+umnNW3aND3//PMyxmj69Onq0qWLY5/Ex8fr6aef1oQJEzR16lS1adNGd911l/r27evYrtyEhYXphx9+kCQdPHhQr7/+uo4dO+Z0Uu/O8XEtd96f/fv3a8SIEZozZ06WfWH/vgoNDdX48eP1z3/+U+XLl9fNN9+sO++8Uw899JDi4uIKXK+rzp07p6ioKMfjixcvaty4cZo0aZIOHTrkFORd+a71Rc1AcVdsQtD58+fVqFEjPfzww1kuuHXVk08+qfnz5+vNN99UgwYNdOrUKZ06dcrDlQLeERISoubNm6t58+aqVauWBgwYoOnTp2vkyJEuvf7MmTNq166doqOjNXr0aNWoUUNhYWFat26d/v3vf2dpqXGH/bVvvPFGjkNnlyhRwulx5pMqVzRo0MDlYaaLshYtWjhat3r06KHWrVvrgQce0Pbt21WiRAnHe/3MM8/keE1PzZo1Hf++7777NHbsWJ04cUJRUVGaM2eO+vTpk2uAtK9jypQpjhPJzDK/1j6oxe+//67du3erSZMmioyMVJs2bfTee+/p3LlzWr9+vcaOHevmO3G1NWjMmDEaPXp0tj965TRyXOaBPjLLaQS8nKa70gJ1bQ0ZGRmy2Wz6+eefs11uQT4HFStWVJs2bfTtt9/q+eef16pVq7R//36NHz/eab633npL/fv31+zZszV//nwNHTpU48aN06pVqxwtijkJDAx0+pwlJCSodu3a+sc//uFofXbn+LiWq+9Penq6OnXqpFOnTunf//63ateurcjISB06dEj9+/d3+r566qmn1K1bN33//ff65Zdf9NJLL2ncuHFatGiRbrzxxgLV64rLly/rr7/+cmrpHDJkiCZNmqSnnnpKLVu2VExMjGw2m+6//36Xvmu9XTNgBcXmU9KlSxd16dIlx+fT0tL0wgsv6Ouvv9aZM2dUv359jR8/Xu3bt5ckbd26VR9++KG2bNni+AXX3V+igcLCfpKclJQk6eqv0RkZGUpMTMwxhCxZskQnT57UzJkznS5Qz250tZxOLnOaXqNGDUlXf50sLEGlatWqkqTt27dneW7btm0qW7asoxXInWGYMy/32l9pt2/f7njeE+wDL3To0EHvv/++nnvuOVWvXl3S1V/MXXmv77vvPo0aNUrfffedypcvr5SUFKcuYdmx78/Y2Ng811GlShVVqVJFS5cu1e7dux2j2bVt21ZPP/20pk+frvT0dJcHRcjM3hpkP6G/lr1l8doL/rMbQc1TduzY4fR/x86dO5WRkeG4x0uNGjVkjFF8fLxq1arl8fXfd999evzxx7V9+3ZNmzZNERER6tatW5b5GjRooAYNGujFF190DAby0Ucf6ZVXXnFrfRUqVNCwYcM0atQorVq1SjfffLNbx8e1XH1/Nm/erL/++kuTJ092GghhwYIFOS73n//8p/75z39qx44daty4sd566y19+eWXBarXFTNmzNDFixedfpSYMWOG+vXrp7feessxLTU1Ncuxmtd3qrdqBqzAMtcEPfHEE1q5cqW++eYbbdq0Sb169VLnzp0dTco//PCDqlevrh9//FHx8fGqVq2a/v73v9MShEJt8eLF2f4abb/+wB7oe/TooYCAAI0ePTrLr4z219t/dc28vEuXLuk///lPluVHRkZm22XDHhqu/Y+8adOmqlGjht58802dO3cuy+sKckf1/KpQoYIaN26syZMnO9W7ZcsWzZ8/X3fccYdjWk7blZ1mzZopNjZWH330kdLS0hzTf/75Z23dulVdu3b12DZIV4dRbtGihd555x2lpqYqNjZW7du318cff+wIwZld+17XqVNHDRo00LRp0zRt2jRVqFAhz0CSkJCg6Ohovfrqq7p8+XKe62jTpo0WLVqk1atXO0JQ48aNFRUVpddee03h4eFq2rSpu5suSerbt69q1qypUaNGZXnOfqKYeXS69PR0ffLJJ/lalys++OADp8cTJ06UJMePdPfcc48CAwM1atSoLJ9dY4xOnjxZoPXfe++9CgwM1Ndff63p06frzjvvdOrSmZKSoitXrji9pkGDBgoICHA6Xt0xZMgQRURE6LXXXpPk/vGRmavvT3bfV8YYvfvuu06vuXDhQpYhymvUqKGoqCjH9hak3rxs3LhRTz31lEqVKuV0vVhgYGCW7Zs4cWKWVsqcvnu8WTNgFcWmJSg3+/fv16RJk7R//37HneOfeeYZzZs3T5MmTdKrr76q3bt3a9++fZo+fbq++OILpaena9iwYerZs6fTEMJAYTJkyBBduHBBd999t2rXrq1Lly5pxYoVmjZtmqpVq+a4oLpmzZp64YUXNGbMGLVp00b33HOPQkNDtWbNGlWsWFHjxo3TLbfcolKlSqlfv34aOnSobDabpkyZkm3Iatq0qaZNm6ann35azZs3V4kSJdStWzfVqFFDJUuW1EcffaSoqChFRkbqpptuUnx8vP773/+qS5cuqlevngYMGKBKlSrp0KFDWrx4saKjox3XGfjSG2+8oS5duqhly5Z65JFHdPHiRU2cOFExMTF6+eWXnbZXujqs9f3336/g4GB169Yt2+uFgoODNX78eA0YMEDt2rVTnz59dPToUb377ruqVq2ahg0b5vHtePbZZ9WrVy99/vnneuyxx/TBBx+odevWatCggQYOHKjq1avr6NGjWrlypQ4ePKiNGzc6vf6+++7TiBEjFBYWpkceeSTPa3Oio6P14Ycf6m9/+5uaNGmi+++/X+XKldP+/fs1d+5ctWrVyumeKG3atNHUqVMd95SRrp4E3nLLLfrll1/Uvn17l697uVZgYKBeeOGFbAcPqFevnm6++WYNHz5cp06dUunSpfXNN99kCQGetGfPHt11113q3LmzVq5cqS+//FIPPPCAGjVqJOnqCfgrr7yi4cOHa+/everRo4eioqK0Z88ezZo1S48++qieeeaZfK8/NjZWHTp00IQJE3T27NksA1wsWrRITzzxhHr16qVatWrpypUrmjJligIDA3Xvvffma51lypRxDD+9detW1alTx63jIzNX35/atWurRo0aeuaZZ3To0CFFR0fru+++y3Jt0F9//aXbbrtNvXv3Vt26dRUUFKRZs2bp6NGjjhZPd4/nnCxdulSpqalKT0/XyZMntXz5cs2ZM0cxMTGaNWuWU7e1O++8U1OmTFFMTIzq1q2rlStXauHChVmG9G/cuLECAwM1fvx4JScnKzQ0VLfeeqtiY2M9UjNgab4cis5XJJlZs2Y5HtuHpo2MjHT6CwoKcgzdOnDgQCPJbN++3fG6P/74w0gy27Zt8/UmAC75+eefzcMPP2xq165tSpQoYUJCQkzNmjXNkCFDzNGjR7PM/9lnn5kbb7zRhIaGmlKlSpl27dqZBQsWOJ5fvny5ufnmm014eLipWLGiY8htXTNE67lz58wDDzxgSpYsaSQ5DZc9e/ZsU7duXRMUFJRlGOH169ebe+65x5QpU8aEhoaaqlWrmt69e5tff/3VMY99yNzjx4+79B64MjytMdkPkW2MMQsXLjStWrUy4eHhJjo62nTr1s0kJiZmef2YMWNMpUqVTEBAgEvDZU+bNs3xXpcuXdo8+OCD5uDBg07z5GeI7OzmTU9PNzVq1DA1atQwV65cMcYYs2vXLvPQQw+ZuLg4ExwcbCpVqmTuvPNOM2PGjCyv37Fjh5FkJJlly5bluO7shppOSEgwMTExJiwszNSoUcP079/frF271mm+P//800gyderUcZr+yiuvGEnmpZdeynP7jXEeIjuzy5cvmxo1amQZItv+PnTs2NGEhoaa8uXLm+eff94sWLAg2yGy69Wrl2XZVatWNV27ds0y/dp12Y/bxMRE07NnTxMVFWVKlSplnnjiCaeh0u2+++4707p1a8f/R7Vr1zaDBw92+j8op5ry8umnnxpJJioqKsu6d+/ebR5++GFTo0YNExYWZkqXLm06dOhgFi5cmOdyc3r/jbn6PgcGBpp+/fo5prlyfFw7RLadK+9PYmKi6dixoylRooQpW7asGThwoNm4caPT5/zEiRNm8ODBpnbt2iYyMtLExMSYm266yXz77bdZ1unq8Zzd6+yfH0kmODjYlCtXzrRt29aMHTvWHDt2LMtrTp8+bQYMGGDKli1rSpQoYRISEsy2bdtM1apVnd5DY67uz+rVq5vAwMAsx21+awZgjM0YD95prpCw2WxOo8NNmzZNDz74oP78888sF1qWKFFCcXFxjps3Zm5WvnjxoiIiIjR//nx16tTJl5sAAAAAwEss0R3uxhtvVHp6uo4dO+boj36tVq1a6cqVK9q1a5ejH/lff/0lSR69kBkAAACAfxWblqBz585p586dkq6GngkTJqhDhw4qXbq0qlSpor59+2r58uV66623dOONN+r48eP69ddf1bBhQ3Xt2lUZGRmOaxveeecdZWRkaPDgwYqOjtb8+fP9vHUAAAAAPKXYhKAlS5aoQ4cOWab369dPn3/+uS5fvqxXXnlFX3zxhQ4dOqSyZcvq5ptv1qhRo9SgQQNJ0uHDhzVkyBDNnz9fkZGR6tKli9566y2nu8kDAAAAKNqKTQgCAAAAAFdY5j5BAAAAACARggAAAABYTJEeHS4jI0OHDx9WVFSUbDabv8sBAAAA4CfGGJ09e1YVK1bM88bfRToEHT58WJUrV/Z3GQAAAAAKiQMHDui6667LdZ4iHYKioqIkXd3Q6OhoP1cDAAAAwF9SUlJUuXJlR0bITZEOQfYucNHR0YQgAAAAAC5dJsPACAAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAsJcjfBQAAUJylZxit3nNKx86mKjYqTC3iSyswwObvsgDA0ghBAAB4ybwtSRr1Q6KSklMd0yrEhGlkt7rqXL+CHysDAGujOxwAAF4wb0uSBn25zikASdKR5FQN+nKd5m1J8lNlAABCEAAAHpaeYTTqh0SZbJ6zTxv1Q6LSM7KbAwDgbYQgAAA8bPWeU1lagDIzkpKSU7V6zynfFQUAcCAEAQDgYcfO5hyA8jMfAMCzCEEAAHhYbFSYR+cDAHgWIQgAAA9rEV9aFWLClNNA2DZdHSWuRXxpX5YFAPh/CEEAAHhYYIBNI7vVlaQsQcj+eGS3utwvCAD8hBAEAIAXdK5fQR/2baK4GOcub3ExYfqwbxPuEwQAfsTNUgEA8JLO9SuoU904rd5zSsfOpio26moXOFqAAMC/CEEAAHhRYIBNLWuU8XcZAIBM6A4HAAAAwFIIQQAAAAAshRAEAAAAwFL8GoLS09P10ksvKT4+XuHh4apRo4bGjBkjY4w/ywIAAABQjPl1YITx48frww8/1OTJk1WvXj2tXbtWAwYMUExMjIYOHerP0gAAAAAUU34NQStWrFD37t3VtWtXSVK1atX09ddfa/Xq1f4sCwAAAEAx5tfucLfccot+/fVX/fXXX5KkjRs3atmyZerSpUu286elpSklJcXpDwAAAADc4deWoOeee04pKSmqXbu2AgMDlZ6errFjx+rBBx/Mdv5x48Zp1KhRPq4SAAAAQHHi15agb7/9VlOnTtVXX32ldevWafLkyXrzzTc1efLkbOcfPny4kpOTHX8HDhzwccUAAAAAijqb8eNQbJUrV9Zzzz2nwYMHO6a98sor+vLLL7Vt27Y8X5+SkqKYmBglJycrOjram6UCAAAAKMTcyQZ+bQm6cOGCAgKcSwgMDFRGRoafKgIAAABQ3Pn1mqBu3bpp7NixqlKliurVq6f169drwoQJevjhh/1ZFgAAAIBizK/d4c6ePauXXnpJs2bN0rFjx1SxYkX16dNHI0aMUEhISJ6vpzscAAAAAMm9bODXEFRQhCAAAAAAUhG6JggAAAAAfI0QBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALIUQBAAAAMBSCEEAAAAALMXvIejQoUPq27evypQpo/DwcDVo0EBr1671d1kAAAAAiqkgf6789OnTatWqlTp06KCff/5Z5cqV044dO1SqVCl/lgUAAACgGPNrCBo/frwqV66sSZMmOabFx8f7sSIAAAAAxZ1fu8PNmTNHzZo1U69evRQbG6sbb7xRn376aY7zp6WlKSUlxekPAAAAANzh1xC0e/duffjhh7r++uv1yy+/aNCgQRo6dKgmT56c7fzjxo1TTEyM469y5co+rhgAAABAUWczxhh/rTwkJETNmjXTihUrHNOGDh2qNWvWaOXKlVnmT0tLU1pamuNxSkqKKleurOTkZEVHR/ukZgAAAACFT0pKimJiYlzKBn5tCapQoYLq1q3rNK1OnTrav39/tvOHhoYqOjra6Q8AAAAA3OHXENSqVStt377dadpff/2lqlWr+qkiAAAAAMWdX0PQsGHDtGrVKr366qvauXOnvvrqK33yyScaPHiwP8sCAAAAUIz5NQQ1b95cs2bN0tdff6369etrzJgxeuedd/Tggw/6sywAAAAAxZhfB0YoKHcufgIAAABQfBWZgREAAAAAwNcIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFLcCkGXL1/Www8/rD179nirHgAAAADwKrdCUHBwsL777jtv1QIAAAAAXud2d7gePXro+++/90IpAAAAAOB9Qe6+4Prrr9fo0aO1fPlyNW3aVJGRkU7PDx061GPFAQAAAICn2Ywxxp0XxMfH57wwm027d+8ucFGuSklJUUxMjJKTkxUdHe2z9QIAAAAoXNzJBm63BDEoAgAAAICiLN9DZF+6dEnbt2/XlStXPFkPAAAAAHiV2yHowoULeuSRRxQREaF69epp//79kqQhQ4botdde83iBAAAAAOBJboeg4cOHa+PGjVqyZInCwsIc0zt27Khp06Z5tDgAAAAA8DS3rwn6/vvvNW3aNN18882y2WyO6fXq1dOuXbs8WhwAAAAAeJrbLUHHjx9XbGxslunnz593CkUAAAAAUBi5HYKaNWumuXPnOh7bg89///tftWzZ0nOVAQAAAIAXuN0d7tVXX1WXLl2UmJioK1eu6N1331ViYqJWrFih3377zRs1AgAAAIDHuN0S1Lp1a23YsEFXrlxRgwYNNH/+fMXGxmrlypVq2rSpN2oEAAAAAI+xGWOMv4vIL3fuCgsAAACg+HInG7jdHU6S0tPTNWvWLG3dulWSVLduXXXv3l1BQflaHAAAAAD4jNup5c8//9Rdd92lI0eO6IYbbpAkjR8/XuXKldMPP/yg+vXre7xIAAAAAPAUt68J+vvf/6569erp4MGDWrdundatW6cDBw6oYcOGevTRR71RIwAAAAB4jNstQRs2bNDatWtVqlQpx7RSpUpp7Nixat68uUeLAwAAAABPc7slqFatWjp69GiW6ceOHVPNmjU9UhQAAAAAeItLISglJcXxN27cOA0dOlQzZszQwYMHdfDgQc2YMUNPPfWUxo8f7+16AQAAAKBAXBoiOyAgQDabzfHY/hL7tMyP09PTvVFnthgiGwAAAIDkhSGyFy9e7JHCAAAAAMDfXApB7dq183YdAAAAAOAT+bq7aWpqqjZt2qRjx44pIyPD6bm77rrLI4UBAAAAgDe4HYLmzZunhx56SCdOnMjynK+vCQIAAAAAd7k9RPaQIUPUq1cvJSUlKSMjw+mPAAQAAACgsHM7BB09elRPP/20ypcv7416AAAAAMCr3A5BPXv21JIlS7xQCgAAAAB4n0v3CcrswoUL6tWrl8qVK6cGDRooODjY6fmhQ4d6tMDccJ8gAAAAAJIX7hOU2ddff6358+crLCxMS5YscbqJqs1m82kIAgAAAAB3uR2CXnjhBY0aNUrPPfecAgLc7k0HAAAAAH7ldoq5dOmS7rvvPgIQAAAAgCLJ7STTr18/TZs2zRu1AAAAAIDXud0dLj09Xa+//rp++eUXNWzYMMvACBMmTPBYcQAAAADgaW6HoM2bN+vGG2+UJG3ZssXpucyDJAAAAABAYeR2CFq8eLE36gAAAAAAn2B0AwAAAACW4nZLUIcOHXLt9rZo0aICFQQAAAAA3uR2CGrcuLHT48uXL2vDhg3asmWL+vXr56m6AAAAAMAr3A5Bb7/9drbTX375ZZ07d67ABQEAAACAN3nsmqC+ffvqs88+89TiAAAAAMArPBaCVq5cqbCwME8tDgAAAAC8wu3ucPfcc4/TY2OMkpKStHbtWr300kseKwwAAAAAvMHtEBQTE+P0OCAgQDfccINGjx6t22+/3WOFAQAAAIA3uB2CJk2a5I06AAAAAMAnuFkqAAAAAEtxuSUoPj4+15ukSpLNZtOuXbsKXBQAAAAAeIvLIeipp57K8bm9e/fq448/VlpamidqAgAAAACvcTkEPfnkk1mmnTp1SmPGjNGHH36om266SePHj/docQAAAADgaW4PjCBJFy9e1IQJE/Tmm2+qatWqmjlzpu644w5P1wYAAAAAHudWCEpPT9enn36qUaNGKSwsTO+995769u2b57VCAAAAAFBYuByCvv32W7344os6c+aMXnjhBQ0aNEghISHerA0AAAAAPM5mjDGuzBgQEKDw8HD16dNH0dHROc43YcIEjxWXl5SUFMXExCg5OTnXmgAAAAAUb+5kA5dbgtq2bZvnENh0iwMAAABQ2LkcgpYsWeLFMgAAAADANwL8XQAAAAAA+FKhCUGvvfaabDZbrjdlBQAAAICCKhQhaM2aNfr444/VsGFDf5cCAAAAoJjzewg6d+6cHnzwQX366acqVaqUv8sBAAAAUMz5PQQNHjxYXbt2VceOHfOcNy0tTSkpKU5/AAAAAOAOl0eHs2vbtq3at2+vdu3aqVWrVgoLC8v3yr/55hutW7dOa9ascWn+cePGadSoUfleHwAAAAC43RJ0++23a9WqVerevbtKliyp1q1b68UXX9SCBQt04cIFl5dz4MABPfnkk5o6darLQWr48OFKTk52/B04cMDd8gEAAABYnM0YY/LzwitXrmjNmjX67bfftGTJEi1atEgBAQFKTU116fXff/+97r77bgUGBjqmpaeny2azKSAgQGlpaU7PZcedu8ICAAAAKL7cyQZud4ez2717tzZv3qyNGzdq06ZNioqKUtu2bV1+/W233abNmzc7TRswYIBq166tf//733kGIAAAAADID7dD0AMPPKDffvtNaWlpatu2rdq1a6fnnntODRs2lM1mc3k5UVFRql+/vtO0yMhIlSlTJst0AAAAAPAUt0PQN998o7Jly+rvf/+7br31VrVu3VoRERHeqA0AAAAAPM7ta4JOnz6tpUuXasmSJfrtt9+0detWNW7cWO3bt1f79u11++23e6vWLLgmCAAAAIDkXjbI98AIdjt37tQrr7yiqVOnKiMjQ+np6QVZnFsIQQAAAAAkLw+McPLkSceIcEuWLFFiYqJKliypbt26qV27dvkuGgAAAAB8we0QFBsbq7Jly6pNmzYaOHCg2rdvrwYNGnijNgAAAADwOLdD0KZNm1SvXj1v1AIAAAAAXhfg7gvq1aunK1euaOHChfr444919uxZSdLhw4d17tw5jxcIAAAAAJ7kdkvQvn371LlzZ+3fv19paWnq1KmToqKiNH78eKWlpemjjz7yRp0AAAAA4BFutwQ9+eSTatasmU6fPq3w8HDH9Lvvvlu//vqrR4sDAAAAAE9zuyVo6dKlWrFihUJCQpymV6tWTYcOHfJYYQAAAADgDW63BOV0L6CDBw8qKirKI0UBAAAAgLe4HYJuv/12vfPOO47HNptN586d08iRI3XHHXd4sjYAAAAA8DibMca484KDBw8qISFBxhjt2LFDzZo1044dO1S2bFn9/vvvio2N9VatWbhzV1gAAAAAxZc72cDtECRJV65c0TfffKNNmzbp3LlzatKkiR588EGngRJ8gRAEAAAAQHIvG7g9MIIkBQUFqW/fvvkqDgAAAAD8yaUQNGfOHHXp0kXBwcGaM2dOrvPeddddHikMAAAAALzBpe5wAQEBOnLkiGJjYxUQkPNYCjabLduR47yF7nAAAAAAJC90h8vIyMj23wAAAABQ1Lg9RPaBAwe8UQcAAAAA+ITbIahatWpq166dPv30U50+fdobNQEAAACA17gdgtauXasWLVpo9OjRqlChgnr06KEZM2YoLS3NG/UBAAAAgEe5HYJuvPFGvfHGG9q/f79+/vlnlStXTo8++qjKly+vhx9+2Bs1AgAAAIDH5Otmqddat26dHnnkEW3atInR4QAAAAD4nDvZwO2WILuDBw/q9ddfV+PGjdWiRQuVKFFCH3zwQX4XBwAAAAA+4dIQ2Zl9/PHH+uqrr7R8+XLVrl1bDz74oGbPnq2qVat6oz4AAAAA8Ci3Q9Arr7yiPn366L333lOjRo28URMAAAAAeI3bIWj//v2y2WzeqAUAAAAAvM7ta4JsNpuWLl2qvn37qmXLljp06JAkacqUKVq2bJnHCwQAAAAAT3I7BH333XdKSEhQeHi41q9f77g/UHJysl599VWPFwgAAAAAnuR2CHrllVf00Ucf6dNPP1VwcLBjeqtWrbRu3TqPFgcAAAAAnuZ2CNq+fbvatm2bZXpMTIzOnDnjiZoAAAAAwGvcDkFxcXHauXNnlunLli1T9erVPVIUAAAAAHiL2yFo4MCBevLJJ/V///d/stlsOnz4sKZOnapnnnlGgwYN8kaNAAAAAOAxbg+R/dxzzykjI0O33XabLly4oLZt2yo0NFTPPPOMhgwZ4o0aAQAAAMBjbMYYk58XXrp0STt37tS5c+dUt25dlShRQhcvXlR4eLina8xRSkqKYmJilJycrOjoaJ+tFwAAAEDh4k42cLs7nF1ISIjq1q2rFi1aKDg4WBMmTFB8fHx+FwcAAAAAPuFyCEpLS9Pw4cPVrFkz3XLLLfr+++8lSZMmTVJ8fLzefvttDRs2zFt1AgAAAIBHuHxN0IgRI/Txxx+rY8eOWrFihXr16qUBAwZo1apVmjBhgnr16qXAwEBv1goAAAAABeZyCJo+fbq++OIL3XXXXdqyZYsaNmyoK1euaOPGjbLZbN6sEQAAAAA8xuXucAcPHlTTpk0lSfXr11doaKiGDRtGAAIAAABQpLgcgtLT0xUSEuJ4HBQUpBIlSnilKAAAAADwFpe7wxlj1L9/f4WGhkqSUlNT9dhjjykyMtJpvpkzZ3q2QgAAAADwIJdDUL9+/Zwe9+3b1+PFAAAAAIC3uRyCJk2a5M06AAAAAMAn8n2zVAAAAAAoighBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACwlyN8FAAAAWF16htHqPad07GyqYqPC1CK+tAIDbP4uCyi2CEEAAAB+NG9Lkkb9kKik5FTHtAoxYRrZra4616/gx8qA4ovucAAAAH4yb0uSBn25zikASdKR5FQN+nKd5m1J8lNlQPFGCAIAAPCD9AyjUT8kymTznH3aqB8SlZ6R3RwACoIQBAAA4Aer95zK0gKUmZGUlJyq1XtO+a4owCK4JggAgCKKi+mLtmNncw5A+ZkPgOsIQQAAFEFcTF/0xUaFeXQ+AK6jOxwAAEUMF9MXDy3iS6tCTJhyaruz6WqwbRFf2pdlAZZACAIAoAjhYvriIzDAppHd6kpSliBkfzyyW126OAJeQAgCAKAI4WL64qVz/Qr6sG8TxcU4d3mLiwnTh32b0LUR8BKuCQIAoAjhYvrip3P9CupUN45BLgAfIgQBAFCEcDF98RQYYFPLGmX8XQZgGXSHAwCgCOFiegAoOEIQAABFCBfTA0DBEYIAAChiuJgeAAqGa4IAACiCuJgeAPKPEAQAQBHFxfQAkD90hwMAAABgKYQgAAAAAJZCCAIAAABgKYQgAAAAAJZCCAIAAABgKX4NQePGjVPz5s0VFRWl2NhY9ejRQ9u3b/dnSQAAAACKOb+GoN9++02DBw/WqlWrtGDBAl2+fFm33367zp8/78+yAAAAABRjNmOM8XcRdsePH1dsbKx+++03tW3bNs/5U1JSFBMTo+TkZEVHR/ugQgAAAACFkTvZoFDdLDU5OVmSVLp06WyfT0tLU1pamuNxSkqKT+oCAAAAUHwUmoERMjIy9NRTT6lVq1aqX79+tvOMGzdOMTExjr/KlSv7uEoAAAAARV2h6Q43aNAg/fzzz1q2bJmuu+66bOfJriWocuXKdIcDAAAALK7IdYd74okn9OOPP+r333/PMQBJUmhoqEJDQ31YGQAAAIDixq8hyBijIUOGaNasWVqyZIni4+P9WQ4AAAAAC/BrCBo8eLC++uorzZ49W1FRUTpy5IgkKSYmRuHh4f4sDQAAAEAx5ddrgmw2W7bTJ02apP79++f5eobIBgAAACAVoWuCCsmYDAAAAAAspNAMkQ0AAAAAvkAIAgAAAGAphCAAAAAAllIo7hMEAACsIT3DaPWeUzp2NlWxUWFqEV9agQHZD5QEAN5CCAIAAD4xb0uSRv2QqKTkVMe0CjFhGtmtrjrXr+DHygBYDd3hAACA183bkqRBX65zCkCSdCQ5VYO+XKd5W5L8VBkAKyIEAQAAr0rPMBr1Q6KyuzGGfdqoHxKVnsGtMwD4BiEIAAB41eo9p7K0AGVmJCUlp2r1nlO+KwqApRGCAACAVx07m3MAys98AFBQhCAAAOBVsVFhHp0PAAqKEAQAALyqRXxpVYgJU04DYdt0dZS4FvGlfVkWAAsjBAEAAK8KDLBpZLe6kpQlCNkfj+xWl/sFAfAZQhAAAPC6zvUr6MO+TRQX49zlLS4mTB/2bcJ9ggD4FDdLBQAAPtG5fgV1qhun1XtO6djZVMVGXe0CRwsQAF8jBAEAAJ8JDLCpZY0y/i4DgMXRHQ4AAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFgKIQgAAACApRCCAAAAAFhKkL8LAACrSM8wWr3nlI6dTVVsVJhaxJdWYIDN32UBRQ6fJQAFRQgCAB+YtyVJo35IVFJyqmNahZgwjexWV53rV/BjZUDRwmcJgCfQHQ4AvGzeliQN+nKd00mbJB1JTtWgL9dp3pYkP1UGFC18lgB4CiEIALwoPcNo1A+JMtk8Z5826odEpWdkNwcKKj3DaOWuk5q94ZBW7jrJ+1yE8VkC4El0hwMAL1q951SWX60zM5KSklO1es8ptaxRxneFWQDdpooXPksAPImWIADwomNncz5py898cA3dpoofPksAPIkQBABeFBsV5tH5kDe6TRVPfJYAeBIhCAC8qEV8aVWICVNOg/fadLWLVov40r4sq1hzp9sUig4+SwA8iRAEAF4UGGDTyG51JSnLyZv98chudbnHiQfRbap44rMEwJMIQQDgZZ3rV9CHfZsoLsa5m05cTJg+7NuEi/Q9jG5TxRefJTDiIzyF0eEAwAc616+gTnXjuMu9D9i7TR1JTs32uiCbrp40022qaOKzZF2M+AhPshljimyETklJUUxMjJKTkxUdHe3vcgAAhYR9dDhJTkHIfppMqwEKs/QMQ8i7hv0zfe1JK59pZOZONqAlCABQ7Ni7TV37q3EcvxqjkKO1I6u8Rny06eqIj53qxlk+LMJ1hCAAQLFEtykUNTm1dtjvb2XV1g5ulAtvIAQBAIqtwAAbJ0UoEmjtyBkjPsIbGB0OAADAz7i/Vc4Y8RHeQAgCAADwM1o7csaNcuENhCAAAAA/o7UjZ9woF95ACAIAAPAzb7Z2FIcbjHKjXHgaAyMAAAD4mb21Y9CX62RT9ve3yk9rR3EacpsRH+FJ3CwVAAD4BTcFzcqToYUbjMJquFkqAAAo1IpTC4Uneaq1gyG3vYsAX/QRggAAgE9xU9DceeL+Vla4wai/gggBvnggBAEACoRfROEOWih8o7gPue2vIEKALz4IQQCAfOMXUbjLCi0UhUFxHnLbX0GEAF+8MEQ2ACBf7Cci157Q2k9E5m1J8lNlKMyKewtFYVFcbzCaVxCRrgYRbwwD7k6AR+FHCAIAuM2fJyIo2opzC0VhkvkGoznxxA1GfX0PIn8GEQJ88UJ3OACA2+jShPyyt1AcSU7NNkTbdPUGmEWthaIw6ly/gh5tG69Pl+5R5mwSYJMGtokvcJcxf3SH9WcQIcAXL7QEAQDcxi+iyK/MLRTXtkEU5KagyGreliR98rtzAJIkY6RPft9ToC6reXWHfXfhDq+0DvkziBTXLob55etWQE+jJQgA4DZ+EUVBdK5fQR/2bZKlFSHOi60Ivh7F0N+jJnrzIn5XusO+vfAvxzRPtg75syXRHuAHfblONslp/VYL8MVhUBxCEADAbXRpQkF56qagrvD1CVt264uLDlOfFlVUrWyET0KRN7us5rXsa3ly1DZ/BxF/BPjCprgME04IAgC4zd8nIigePHFT0Lz4+oQtx/WlpHqtdSQ73uyy6u5rPD18tL+DiC8DfGFTnIYJJwQBAPLF3yciQF58fcKW2/qu5e1fzb3ZZTU/r/H0YCn+DiK+CPCFUXEaFIcQBADIN3+fiAC58fUJmzvdxPITwty5zsibXVbzWnZuPDlYilWDiD8Vp0FxCEEAgALhRASFla9P2PLTTczVEObudU3e7LKa27LzwmApRVtxGhSHIbIBACjiivpQtd7i6xO2/C4nr/CU13DUOQ11be+yGhfjXFdcTFiBu+HltOycWG346OKqOA0TTksQAABFWHEYqtZbfD2KYX67ieUWngp6XZM3u6xeu+y9J87r7YU7GCylGCtOg+LQEgQAQBGV3xYCq/D1jVlzW192XPnV3J3rmnKrq2WNMureuJJa1ijj0RPUzMt+smMtfeSllidX0CLqG95sYfQlWoIAACiCitNQtd7k61EMc1pfdoyk+5tXznWeonYhur8GS6FF1LeKw6A4NmNMkY3JKSkpiomJUXJysqKjo/1dDgAAPrNy10n1+XRVnvN9PfBmBq6QeyOreXp9e0+c19er9+tISlq28+Z2ss5+zltO92ay792i1DqBgnEnG9ASBAAodnx9wusPRa2FwN88OYqhK8fXtet74tbr9f6inU43TLXL7Z5BrlxnVDIiuEhciO4NRb1F1ArfVYUVIQgAUKxYpVtMcRqqtigpyPH1zZr92U7P7WTdfp3RY1+uy3G5Zy5c1oLEI8Xq+HZVfu8FVRjCh1W+qworBkYAABQbVhoooDgNVVtUFOT4KsgAB53qxqlkRHCOr7UHqKI6EEBBBjTIT4vovC1Jaj1+kfp8ukpPfrNBfT5dpdbjF/n0+8Fb31UMDuE6WoIAAMVCUe8W467iNFRtUVDQ46sg3RdX7zmlMxcu5/gae4D6fPkelY0KLVLdqgraGuJui2hO1w/l1iXR07z1XeXue1kYWsP8iRAEACgW8tstpijz9chn/ubOSZunT/AKenwVpPuiqwFqzNytjn8XhW5V87YkZdvN79pAktu+dOdeUHmFD8k3P5R447vK3XBHVzxCEACgmLDqQAE5DVUrXR1ZrLj8yuvOSZs3TvAKenwV5Mat+bmuy5ctG/mRnmH03MzN2T6XuTUkI0MaMzfnfelOi+jKXSfzHLY8KTlV/56xUW1qlfPa58bT31XutiwVhtawwoBrggAAxYKVBwqwj0R2Z8OKkqRX5yaq+dgFfr3mwZPcuX7CW9daFPT4KsiNW/O6/is7mVs2XLkuxFPXkri6nPcX7XSpi9/jX+W9L129eaeroWLGukOOz03zsQs1+oc/PXp9jae/q9xpWXK1NcwK1xLREgQAKBYK8ku7L3i7/312rR+ZFdVfed35lVv/79/euC7ME8dXfrsv5tbakRtXu1V5quXM1eWkZxhNWr7H5eVeK7uua67cvDM/P4CcOn9Jny3fq8+W7/VYd7HT5y/lOU+FmDA1rVoqx9bczN8nO46edWm9x86mWrLbcE4IQQCAQs3V8FCYBwrwdv/7nLq3ZFZUB4dwd1S1gp7g5XS8eer4cuVkPafXZRegXJFbC4inuka5upz0DKPPl+/RmYs5twK5Kik5Ve8v2qEnO9aSlPe9oOxB1t33L/P6CvpDQnqG0Zi5iXnOd2fDOLV7Y3G23xmS8nUcxEaF6UjyRZfmLW7dhrNDCEKhZvWRS4oC9hG8yd3wUBgHCsjvSaarn63cWkquVRR/5fXGtV5Hki9m+wt7XsebJ46v/Hxn2l+TdiVDb/ZsJNmkE+fSdOJsmtNgCDk5cTZN6Rkmy3o8NUqZq8vJ7vqegnp74Q7dEBfl0nvvyj2X8mJUsB8S8gr1dp8u3Ztl2pHk1HzVbm+lPH3+kkvHi1Q8uw1fixCEQouRSwo/9pF7rB4Y3d3+/IaH/P7S7g35Pcl057Pl6klVZkXpV15vXOs1Zu5WncrUJalCTJjualRBn/y+J8u+Svp/J54f/b/jrSDHV3b7tXRkiHo0rqhOdeOyXU5ux0L/VvH677I9OXbRy7y9/122J8vx46muUa4u5/Gv8h8+cuNOKOlcv4KGdayltxf+le/1FeSHhCMp+f/s5ecqHfs7clejChr8Ve6txfb5/dlt2JcIQSiUGLmk8GMfucfqgTE/968oyC/UeXWL8ZX8nGS6+9nKT6ApKr/ypmcYZRijkuHBuXafynxT2Nyu27E7dc01GUeSU/Xx77lfo/LczM2O4y2n4yunoJ+eYfT+oh16e+GObGvJ6ZoTV44FV1s2suuWtnzn8TxfJ+V9jPk7VOcUSnLaH0/cWlNfr96nIylp+V6nq93Krq3hhI/fq7iYML3UtY7GzN3qcoiyyv3FCEHFUFH/tdlqNzwsiuxDm7KPXGP1wJif7S8uF++6enI4d/NhSVLTqqXc/v5zJ9DYf+XN7YJrf8ju/60FiUdcvu7hzoZXB0VYveeU7qgfp/8t3+vW+l05OTxz4bLeX7RTT3a8XukZRqt2n9TKXSclGbWsXlbJF692Nbo26N/VqIJmb0hyqQUg8zUnt9Yur+dnbcl1FK/nZ21W90YVXdlEp9f8355Tmr3hcJYwmJPS4SG5Hi97T1xwaTnedO1nLa8fXl6+q54G/b/wmJ8WlnX7T+uuxpWyHaggt2M4Jjw4H2tzz42VS6p/q2qOOtxpLU6oF6cth5IVFRqs5vGl9ce+045talq1lNbsPeV03N9co0yR/X/eZowpsmPgpaSkKCYmRsnJyYqOjvZ3OYVCcfi1eeWuk+rz6ao85/t64M2F+uSnOHt34V/Z/qJ5LfbR1f8YW49flON/QPaT0mX/vrXI/keSm/xu/+wNV4eozcu79zdW98aVPFSt+/L60cnV7zO70pHBOnU+7wvGvx54s+Pk5khKqsb8+KdLr7NJerRtvOZsTMrSJeuV7vV1R8O8r01qWrWU04mROwHq0pUMTVm5V/tOXVDV0hH6W8tqWrTtaJb/t0pGBOc6fHJ22xUREqjzl9Jdfk1+lIwI1qs9Guj57ze7VZ+7YsKDFGCz6bQX11EQcdGhevmueo4WpVavLSpQNy9PyPz/TV4DhQztUFNPdqqlX7Yk6cXZW1z67GTH3pUxJjxEX6/e7/QeuHsMe9o/2sZr+B1XB1Fw9fs0L9mNTFgyIliv3dOg0JxjupMNaAkqRorLr81WveFhUXF1aNO9Ls3LPvJti4YnT1ZzWqa7y8jv9vvynj/uvG+Z59174kKWE59rr+9oEV/arZMhV0/G/rt0l57+doNb1wLldt3LqfOX9PhX69Thj3J6tG0Nx3uwIPGIvr+mxSDAJmW+hUhkSKDa1CqrGyuXUvLFSwqwBahljTK6ubrzL8Rjftyi/y3b57TeV37aqux+inX35NFIXg9A0tW6vHVdS2bJF694fR0FcSQlTY99uU7DOtbS5fR0vweg0pHBaly5pFbuOun4USC3X/jfW7xTH/62U5FhBQsq9q6M2fFnAJKkT5buUa3YKFUsFaHSESEeWWZ27+mZC5edrpkrSghBxURx6kJm5RseFgWr95xyeWhTf+8jb3QNdXeZvgr12bUCX3uyWj4qVA/cVEXVykbmWLt9+46kpGr5jhNakHhEyan//wlZXHSo7m9eRVcyjOzdIexdJo4kX9Sp85dUukSo4qKvLn9h4hGX6l++84RTPXndk0WSwoIC9PuOY8owxnHC7c6Iaqv3nNLCxCOateGQU/iw2eR0Yl46MlivdK8vSXn+apz5+o6r71VlXUjz/Antr9tcu5bDLjosSK92r68nvlmf68nh4u3HtXh77su+9h6K5y+la96Wo5q35ahj2vuLdzr9QnzX+0u16WBKlmUV3b4okFSgwQU86dT5y6o3cl6WYzM3lzP8H1S8yRjpnzM2+Wx9L8/5s0icY2ZGd7hiIj9dyApygujN647s3WfyuiGdvftMbheiulOjp7epqF+blRNXm9VLRgTrjxc7uTz0q6ffp7y6hmbu038lPV07jp3V0bOXFBMWrEfbVFfLmmWztAYsSDyikbO36OjZ//9X8RIhAXrtnobq0rCi03bcUD5Kf/9itXYcO6ezqXn/Qv1S1zoqGxXq1BJxJCVVx1NS9efhZF28nK7m1cqo3y3VFBIU4PTanzYd1uNfrXf7PYoJD9bDreL1xK01cxweuCDCgmxKveL6fzE2m3RdyXCNvLOeQoMCNHX1Ps3782jeL9TV74Xa5SO198R5Xcz0docF2nRT9TK6uXpprd13SgfPpCk0UDpw6qJOF/Jf24uLitGhOlyAC9ABFA3/7lxLj7at6ddzHXeyASHIAwrDya67/ecLcu2QL647yq0/r01ydO3LqZarF6Iedhr5JXMfZm9vkyeXVxiOr8xcDdzDOtbSkx2vz3We7IeLDdbdjSupYw7DxebEuZvS+VyvWbqtdjmt2nNK59Nc7z4TGhSgtCsZ+X7ek8pHBSu+bAkdPH1RV9IzdOSsaxc35yYmLFDJLoQ1AABy48+ucUUuBH3wwQd64403dOTIETVq1EgTJ05UixYt8nxdYQhBhWUgAndagpIvXso2YNhPNXO7diincOLKa9017qdEfbp0j1PzdoBNGtjm6sV+rtwhPTvXfjg9vU2eXF5hOb4yS88wavrKgly7EUSEBGrzywn5ugdMZgUJ5gAAwD/8FYTcyQYBuT7rA9OmTdPTTz+tkSNHat26dWrUqJESEhJ07Ngxf5eWJ/tJ3LUnXvaBCOZtSfJZLfb+8zmdctp09YQyr+FXpavXDqVn07E2r+uOcnutu+ZtSdInv+/J0r/XGOmT3/fop01JLt8h/VrPzdzsqNHT2+TJ5RWm48tdoUG5f7W4eod7V7Y1p/cJAAD4x2NfrvPI+aA3+T0ETZgwQQMHDtSAAQNUt25dffTRR4qIiNBnn33m79Jy5ctA4IrAAJtGdrs6FOK1Qcj+eGS3uvpj32mXR2q6ljujPBWEK+/tS7O35Puk98yFy1q166Qkz2+Tp5ZX2I6vzFbvOZXnxaSnL1zOdRtdvWdBQYI5AADwn29X7vZ3Cbnyawi6dOmS/vjjD3Xs2NExLSAgQB07dtTKlSuzzJ+WlqaUlBSnP3/xVSBwR+f6FfRh3yaKi3EekSsuJszRBasgI1X5apQrV97bky7e4C0nK3efkOT5bfLUfIXx+LLzxDa6c4wUJJgDAAD/GP7DNn+XkCu/DpF94sQJpaenq3z58k7Ty5cvr23bsr5x48aN06hRo3xVXq4K671sOtevoE5143K8kL4gw0/7auhq37xnBX8/vDlfYT2+JM9sY36OkYIEcwAAgMz83h3OHcOHD1dycrLj78CBA36rpTDfyyYwwKaWNcqoe+NKalnD+WZ1rl471CK+dJbnCvJad7j6npWODM6xlrzYhwn39DZ5anmF+fjyxDbmtYzsFCSYAwAAZObXEFS2bFkFBgbq6FHn+0AcPXpUcXFxWeYPDQ1VdHS005+/+CoQeJqr1w5lN6pXQV7rDlffW/vNC91dW6mIYN1c/WoI8vQ2eWp5hfn48sQ2Zl5GXgoSzAEAgH98/1grf5eQK7+GoJCQEDVt2lS//vqrY1pGRoZ+/fVXtWzZ0o+V5c1XgcAbXLl2yBuvdZWr7+0dDStmW0vJiOBclz/ungZO+8XT2+SJ5RX248sT22hfRoWYnFtzChLMAQCA/zSuVtLfJeTK7/cJmjZtmvr166ePP/5YLVq00DvvvKNvv/1W27Zty3Kt0LW4T1DBFOQmnL64gaer7212tSxIPKKX5yTqSIrr+8XT2+SJ5RX248sT22hfxoLEI/p+w2GdyjToRUHuExRgk9MQ6/ZwnHlku9KRIYoJC9KekxeyXW6J0CBdSs/QJRdughodFqSgQJtOnc955LyQQJuCAm26cMl5eTabFF82QnuOX2CkOwBAkbf3ta5+WW+Ru1nq+++/77hZauPGjfXee+/ppptuyvN1hSEESb4JBFZV2IOaLxSX7XCFJ/d306ql9Me+007LkpTt8i9dydCUlXu15+R52STdWLmUKpQMd7xm1a6TWrn7hDKMFGSTPl26WxevXP3qjC8dpu8eb6PSJUIcNRw8dV5zNhzSqj2ndCVDKhUepJ+ebKe4kmFKzzBasfOEvlt3UBcuXVHzamXU75ZqCgkK0KUrGZq8Yq9W7zmpw2cu6PSFS8owNpWJDNZNNcro0mWjKxkZ2nH0nIIDbTp4+qLCgwNVrWyk3uzVWFsOJ2v5jhPaePC0jp1NU3RYsDrVKa86FaK1as9JbTxwRmlXMlS5dITuvrGSMtKN/rt8j3YfP6cSoUFqVCVGl69I51Iv6fi5S9px9KxjO3MSIKluXKSCggJ1/OwlRYQG6oa4KMWEBssWaFOVkhHKkNEf+07rwqV0NagUo+jwIC3deUJJpy/q4pV0hQRIgQEBKh0ZpiplInR3o0oKCg7QsbNpSjpzQT9tStKRlFRdvJSukECbQoIDFR0WrOjwYHWsG6u6cTFavuuE5m1J0tGUVF3OkMKDAtTguhj9vU0N/XU0RbPWH9KJs2kKDw5QUGCAjIxOnL0km82mqNAAXbicrvNpV7c1LNimEmHBqlYmQmcuXFZEcIDOpl1R6hWjy1fSdflKhtKNFBAgBdqk5IvpMkaSTQoMkNLTpdBgm8pEhuhc2hWlpKYrw1xtrcwrTlcrFaZ/d6qtn7cd0bp9Z5RyMU1nLxlHOLbp6jqjQgN0+UqGLqZfnVYmIlipV9J1Ni0jz3UAgLd8/1grv7YAFbkQlF+FJQQBAAAA8C93skGRGh0OAAAAAAqKEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACyFEAQAAADAUghBAAAAACwlyN8FFIQxRpKUkpLi50oAAAAA+JM9E9gzQm6KdAg6e/asJKly5cp+rgQAAABAYXD27FnFxMTkOo/NuBKVCqmMjAwdPnxYUVFRstls/i7H8lJSUlS5cmUdOHBA0dHR/i4H12D/FG7sn8KLfVO4sX8KL/ZN4VYc948xRmfPnlXFihUVEJD7VT9FuiUoICBA1113nb/LwDWio6OLzYepOGL/FG7sn8KLfVO4sX8KL/ZN4Vbc9k9eLUB2DIwAAAAAwFIIQQAAAAAshRAEjwkNDdXIkSMVGhrq71KQDfZP4cb+KbzYN4Ub+6fwYt8UblbfP0V6YAQAAAAAcBctQQAAAAAshRAEAAAAwFIIQQAAAAAshRAEAAAAwFIIQXAybtw4NW/eXFFRUYqNjVWPHj20fft2p3lSU1M1ePBglSlTRiVKlNC9996ro0ePOs2zf/9+de3aVREREYqNjdWzzz6rK1euOM2zZMkSNWnSRKGhoapZs6Y+//xzb29ekebLfWO3fPlyBQUFqXHjxt7arGLDl/tn6tSpatSokSIiIlShQgU9/PDDOnnypNe3sSjz1P4ZOnSomjZtqtDQ0Gw/F0uWLFH37t1VoUIFRUZGqnHjxpo6dao3N63I89W+ka7eTf7NN99UrVq1FBoaqkqVKmns2LHe2rRiwRP7Z+PGjerTp48qV66s8PBw1alTR++++26WdXFe4D5f7h+7YnNuYIBMEhISzKRJk8yWLVvMhg0bzB133GGqVKlizp0755jnscceM5UrVza//vqrWbt2rbn55pvNLbfc4nj+ypUrpn79+qZjx45m/fr15qeffjJly5Y1w4cPd8yze/duExERYZ5++mmTmJhoJk6caAIDA828efN8ur1Fia/2jd3p06dN9erVze23324aNWrki00s0ny1f5YtW2YCAgLMu+++a3bv3m2WLl1q6tWrZ+6++26fbm9R44n9Y4wxQ4YMMe+//77529/+lu3nYuzYsebFF180y5cvNzt37jTvvPOOCQgIMD/88IO3N7HI8tW+sc9zww03mNmzZ5vdu3ebtWvXmvnz53tz84o8T+yf//3vf2bo0KFmyZIlZteuXWbKlCkmPDzcTJw40TEP5wX546v9Y1eczg0IQcjVsWPHjCTz22+/GWOMOXPmjAkODjbTp093zLN161YjyaxcudIYY8xPP/1kAgICzJEjRxzzfPjhhyY6OtqkpaUZY4z517/+ZerVq+e0rvvuu88kJCR4e5OKDW/tG7v77rvPvPjii2bkyJFF/ovOH7y1f9544w1TvXp1p3W99957plKlSt7epGIlP/snM3c+F3fccYcZMGCAR+q2Am/tm8TERBMUFGS2bdvmtdqtoKD7x+7xxx83HTp0cDzmvMAzvLV/7IrTuQHd4ZCr5ORkSVLp0qUlSX/88YcuX76sjh07OuapXbu2qlSpopUrV0qSVq5cqQYNGqh8+fKOeRISEpSSkqI///zTMU/mZdjnsS8DefPWvpGkSZMmaffu3Ro5cqQvNqVY8tb+admypQ4cOKCffvpJxhgdPXpUM2bM0B133OGrTSsW8rN/CrIu+3qQN2/tmx9++EHVq1fXjz/+qPj4eFWrVk1///vfderUKc9uQDHnqf1z7eeC8wLP8Nb+kYrfuUGQvwtA4ZWRkaGnnnpKrVq1Uv369SVJR44cUUhIiEqWLOk0b/ny5XXkyBHHPJlP4uzP25/LbZ6UlBRdvHhR4eHh3tikYsOb+2bHjh167rnntHTpUgUF8RWRH97cP61atdLUqVN13333KTU1VVeuXFG3bt30wQcfeHmrio/87p/8+Pbbb7VmzRp9/PHHBSnZMry5b3bv3q19+/Zp+vTp+uKLL5Senq5hw4apZ8+eWrRokSc3o9jy1P5ZsWKFpk2bprlz5zqmcV5QcN7cP8Xx3KB4bAW8YvDgwdqyZYuWLVvm71JwDW/tm/T0dD3wwAMaNWqUatWq5dFlW4k3PzuJiYl68sknNWLECCUkJCgpKUnPPvusHnvsMf3vf//z+PqKI199ty1evFgDBgzQp59+qnr16nl1XcWFN/dNRkaG0tLS9MUXXzi+3/73v/+padOm2r59u2644QaPr7O48cT+2bJli7p3766RI0fq9ttv92B18Nb+Ka7nBnSHQ7aeeOIJ/fjjj1q8eLGuu+46x/S4uDhdunRJZ86ccZr/6NGjiouLc8xz7ag99sd5zRMdHc2vPXnw5r45e/as1q5dqyeeeEJBQUEKCgrS6NGjtXHjRgUFBfFrqQu8/dkZN26cWrVqpWeffVYNGzZUQkKC/vOf/+izzz5TUlKSF7eseCjI/nHHb7/9pm7duuntt9/WQw89VNCyLcHb+6ZChQoKCgpyOomrU6eOpKujMiJ3ntg/iYmJuu222/Too4/qxRdfdHqO84KC8eb+KbbnBv6+KAmFS0ZGhhk8eLCpWLGi+euvv7I8b7/AbsaMGY5p27Zty/bi7qNHjzrm+fjjj010dLRJTU01xly9ALJ+/fpOy+7Tpw8XQObCF/smPT3dbN682elv0KBB5oYbbjCbN292Gm0Gznz12bnnnntM7969nZa9YsUKI8kcOnTIG5tWLHhi/2SW20XBixcvNpGRkeb999/3WP3Fma/2zS+//GIkmZ07dzqmbdiwwUgy27dv98zGFEOe2j9btmwxsbGx5tlnn812PZwX5I8v9k9xPTcgBMHJoEGDTExMjFmyZIlJSkpy/F24cMExz2OPPWaqVKliFi1aZNauXWtatmxpWrZs6XjePszv7bffbjZs2GDmzZtnypUrl+0Q2c8++6zZunWr+eCDDxgKMw++2jfXKg4jwPiCr/bPpEmTTFBQkPnPf/5jdu3aZZYtW2aaNWtmWrRo4dPtLWo8sX+MMWbHjh1m/fr15h//+IepVauWWb9+vVm/fr1j9L5FixaZiIgIM3z4cKf1nDx50qfbW5T4at+kp6ebJk2amLZt25p169aZtWvXmptuusl06tTJp9tb1Hhi/2zevNmUK1fO9O3b12kZx44dc8zDeUH++Gr/XKs4nBsQguBEUrZ/kyZNcsxz8eJF8/jjj5tSpUqZiIgIc/fdd5ukpCSn5ezdu9d06dLFhIeHm7Jly5p//vOf5vLly07zLF682DRu3NiEhISY6tWrO60DWfly32RWHL7ofMGX++e9994zdevWNeHh4aZChQrmwQcfNAcPHvTFZhZZnto/7dq1y3Y5e/bsMcYY069fv2yfb9eune82tojx1b4xxphDhw6Ze+65x5QoUcKUL1/e9O/fn4CaB0/sn5EjR2a7jKpVqzqti/MC9/ly/2RWHM4NbMYYk69+dAAAAABQBDEwAgAAAABLIQQBAAAAsBRCEAAAAABLIQQBAAAAsBRCEAAAAABLIQQBAAAAsBRCEAAAAABLIQQBAAAAsBRCEADAK5YsWSKbzaYzZ874uxQAAJwQggAAWfTv3182m002m03BwcGKj4/Xv/71L6Wmpvq7NI/au3evYzttNpuioqJUr149DR48WDt27HB7edWqVdM777zj+UIBAB5FCAIAZKtz585KSkrS7t279fbbb+vjjz/WyJEj/V2WVyxcuFBJSUnauHGjXn31VW3dulWNGjXSr7/+6u/SAABeQAgCAGQrNDRUcXFxqly5snr06KGOHTtqwYIFjuczMjI0btw4xcfHKzw8XI0aNdKMGTNyXeayZcvUpk0bhYeHq3Llyho6dKjOnz/veH7KlClq1qyZoqKiFBcXpwceeEDHjh1zPH/69Gk9+OCDKleunMLDw3X99ddr0qRJjucPHDig3r17q2TJkipdurS6d++uvXv35rmtZcqUUVxcnKpXr67u3btr4cKFuummm/TII48oPT1dkrRr1y51795d5cuXV4kSJdS8eXMtXLjQsYz27dtr3759GjZsmKNlydXtBgD4FiEIAJCnLVu2aMWKFQoJCXFMGzdunL744gt99NFH+vPPPzVs2DD17dtXv/32W7bL2LVrlzp37qx7771XmzZt0rRp07Rs2TI98cQTjnkuX76sMWPGaOPGjfr++++1d+9e9e/f3/H8Sy+9pMTERP3888/aunWrPvzwQ5UtW9bx2oSEBEVFRWnp0qVavny5SpQooc6dO+vSpUtubW9AQICefPJJ7du3T3/88Yck6dy5c7rjjjv066+/av369ercubO6deum/fv3S5Jmzpyp6667TqNHj1ZSUpKSkpJc3m4AgI8ZAACu0a9fPxMYGGgiIyNNaGiokWQCAgLMjBkzjDHGpKammoiICLNixQqn1z3yyCOmT58+xhhjFi9ebCSZ06dPO5579NFHneZfunSpCQgIMBcvXsy2jjVr1hhJ5uzZs8YYY7p162YGDBiQ7bxTpkwxN9xwg8nIyHBMS0tLM+Hh4eaXX37J9jV79uwxksz69euzPLd161YjyUybNi3b1xpjTL169czEiRMdj6tWrWrefvttp3nys90AAO8K8msCAwAUWh06dNCHH36o8+fP6+2331ZQUJDuvfdeSdLOnTt14cIFderUyek1ly5d0o033pjt8jZu3KhNmzZp6tSpjmnGGGVkZGjPnj2qU6eO/vjjD7388svauHGjTp8+rYyMDEnS/v37VbduXQ0aNEj33nuv1q1bp9tvv109evTQLbfc4lj+zp07FRUV5bTe1NRU7dq1y+3tN8ZIkqNb27lz5/Tyyy9r7ty5SkpK0pUrV3Tx4kVHS1BOXNluAIBvEYIAANmKjIxUzZo1JUmfffaZGjVqpP/973965JFHdO7cOUnS3LlzValSJafXhYaGZru8c+fO6R//+IeGDh2a5bkqVaro/PnzSkhIUEJCgqZOnapy5cpp//79SkhIcHRn69Kli/bt26effvpJCxYs0G233abBgwfrzTff1Llz59S0aVOnsGFXrlw5t7d/69atkqT4+HhJ0jPPPKMFCxbozTffVM2aNRUeHq6ePXvm2dUur+0GAPgeIQgAkKeAgAA9//zzevrpp/XAAw+obt26Cg0N1f79+9WuXTuXltGkSRMlJiY6gtW1Nm/erJMnT+q1115T5cqVJUlr167NMl+5cuXUr18/9evXT23atNGzzz6rN998U02aNNG0adMUGxur6Ojo/G+srg768N577yk+Pt7RsrV8+XL1799fd999t6Sr4ebaQRdCQkIcAym4ut0AAN9jYAQAgEt69eqlwMBAffDBB4qKitIzzzyjYcOGafLkydq1a5fWrVuniRMnavLkydm+/t///rdWrFihJ554Qhs2bNCOHTs0e/ZsxwABVapUUUhIiCZOnKjdu3drzpw5GjNmjNMyRowYodmzZ2vnzp36888/9eOPPzq6kz344IMqW7asunfvrqVLl2rPnj1asmSJhg4dqoMHD+a6bSdPntSRI0cc6+3YsaNWr16t//3vfwoMDJQkXX/99Zo5c6Y2bNigjRs36oEHHnB017OrVq2afv/9dx06dEgnTpxwabsBAL5HCAIAuCQoKEhPPPGEXn/9dZ0/f15jxozRSy+9pHHjxqlOnTrq3Lmz5s6d6+g+dq2GDRvqt99+019//aU2bdroxhtv1IgRI1SxYkVJV1t4Pv/8c02fPl1169bVa6+9pjfffNNpGSEhIRo+fLgaNmyotm3bKjAwUN98840kKSIiQr///ruqVKmie+65R3Xq1NEjjzyi1NTUPFuGOnbsqAoVKqhBgwZ67rnnVKdOHW3atEkdOnRwzDNhwgSVKlVKt9xyi7p166aEhAQ1adLEaTmjR4/W3r17VaNGDUcXvLy2GwDgezZjv/ITAAAAACyAliAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlkIIAgAAAGAphCAAAAAAlvL/AYMMB76REaFVAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Преобразуем дату выпуска в формат datetime\n", - "df['Release_date'] = pd.to_datetime(df['Release_date'])\n", - "\n", - "# Визуализация данных\n", - "plt.figure(figsize=(10, 6))\n", - "plt.scatter(df['Release_date'], df['Review_no'])\n", - "plt.xlabel('Release Date')\n", - "plt.ylabel('Review Number')\n", - "plt.title('Scatter Plot of Review Number vs Release Date')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "При проверке на шум можно заметить выброс в 2014 году. количество обзоров там запредельное. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Все выбросы удалены путём определения порогов квантилями. Зашумленность не очень высокая. Покрытие данных высокое и подошло бы для поставленной задачи по актуальности." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Выбросы:\n", - " Name Price Release_date Review_no \\\n", - "18 GUNDAM BREAKER 4 59.99 2024-08-29 1846.0 \n", - "22 LOCKDOWN Protocol 5.49 2024-07-22 2192.0 \n", - "34 CarX Street 19.99 2024-08-29 4166.0 \n", - "45 Harry Potter: Quidditch Champions 25.99 2024-09-03 1216.0 \n", - "61 SMITE 2 18.00 2024-08-27 1633.0 \n", - "... ... ... ... ... \n", - "7695 Dude Simulator 2 2.99 2018-07-28 1734.0 \n", - "7717 Golfing Over It with Alva Majo 2.39 2018-03-28 1367.0 \n", - "7740 Dungeon Siege II 4.99 2005-08-16 2274.0 \n", - "7765 Phantom Doctrine 12.99 2018-08-14 3538.0 \n", - "7768 NECROPOLIS: BRUTAL EDITION 19.99 2016-07-12 3668.0 \n", - "\n", - " Review_type Tags \\\n", - "18 Very Positive Action,Robots,Hack and Slash,RPG,Mechs,Action ... \n", - "22 Very Positive Multiplayer,Social Deduction,Conversation,Acti... \n", - "34 Mixed Racing,Open World,Automobile Sim,PvP,Multiplay... \n", - "45 Mostly Positive Action,Sports,Flight,Arcade,Third Person,Magic... \n", - "61 Mixed Action,MOBA,Third Person,Strategy,Adventure,Ca... \n", - "... ... ... \n", - "7695 Mixed Life Sim,Indie,Simulation,Racing,Action,Advent... \n", - "7717 Mostly Positive Difficult,Physics,Golf,Platformer,Precision Pl... \n", - "7740 Mostly Positive RPG,Fantasy,Action RPG,Hack and Slash,Singlepl... \n", - "7765 Mostly Positive Turn-Based Tactics,Strategy,Cold War,Stealth,R... \n", - "7768 Mixed Souls-like,Action Roguelike,Co-op,Adventure,Ro... \n", - "\n", - " Description \n", - "18 Create your own ultimate Gundam in the newest ... \n", - "22 A first person social deduction game, combinin... \n", - "34 Conquer mountain roads, highways, and city str... \n", - "45 Your next chapter takes flight! Immerse yourse... \n", - "61 Become a god and wage war in SMITE 2, the Unre... \n", - "... ... \n", - "7695 Dude Simulator 2 is an open world sandbox game... \n", - "7717 The higher you climb, the bigger the fall. \n", - "7740 NaN \n", - "7765 The year is 1983. The world teeters on the ver... \n", - "7768 NECROPOLIS: BRUTAL EDITION is a major update f... \n", - "\n", - "[1049 rows x 7 columns]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIjCAYAAAD1OgEdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde3yO9f/HX/c9O7OTYSNsZmKGIafm3EQUJWmoUD/0DUUnVEQq6YTim1Kpr1M6EEUra/o6zSEMM9Vo4xsbbbONbbbZff3+mOvuPlyHz3W4T/N+Ph4eD7vv6/C5Ptfnuu7P+/N+v19vA8dxHAiCIAiCIAiCIAhdMbq6AQRBEARBEARBEHURMrYIgiAIgiAIgiAcABlbBEEQBEEQBEEQDoCMLYIgCIIgCIIgCAdAxhZBEARBEARBEIQDIGOLIAiCIAiCIAjCAZCxRRAEQRAEQRAE4QDI2CIIgiAIgiAIgnAAZGwRBEEQBEEQBEE4ADK2CMLDyM3NhcFgwGeffebqpliRkpKChIQE+Pn5wWAwoLi42NVNsuOzzz6DwWBAbm6uq5vitsyfPx8GgwEFBQWubopHwfcb4Rq+/PJLhIWF4erVq6r2v3jxIkaNGoWGDRvCYDBg6dKl+jawDjBhwgRERUVZfWYwGDB//nzz3zfjO1bo2Y+KisKECROc3paVK1eiRYsWqKysdPq5CXHI2CLchhMnTmDUqFFo2bIl/Pz80KxZMwwaNAjvv/++w865fv16wR/VCxcuYP78+cjIyHDYuW355ZdfYDAYzP+8vb3RqlUrPPLII/jzzz91Oce+ffswf/583Q2hwsJCjB49Gv7+/lixYgXWrFmDwMBAwW35H2P+X7169dCsWTNMmDAB58+f17Vd7sqECRNgMBjQsWNHcBxn973BYMC0adNc0LKbA77/+X++vr5o06YN5s2bh2vXrrm6eS7D9h3k6+uLJk2aoH///nj99dfx999/qz52VlYW5s+f75BJeE1NDV5++WVMnz4d9evXF/y+adOmMBgM+OGHHwSPMXPmTPz444+YM2cO1qxZgyFDhmD79u1WhoQzmDBhguA18NC7QZ69e/fivvvuQ5MmTeDr64uoqChMmTIF586dU33M8vJyzJ8/H7/88ot+DXUAEyZMQFVVFT788ENXN4WwgIwtwi3Yt28fbrvtNhw7dgyTJk3C8uXL8X//938wGo1YtmyZw84rZWwtWLDAqcYWz5NPPok1a9bgo48+wrBhw7Bx40Z069YNFy5c0Hzsffv2YcGCBbobW4cOHcKVK1ewcOFCPPbYY3jooYfg7e0tuc8rr7yCNWvWYOXKlbjrrruwdu1a9OvXz6GT3YcffhgVFRVo2bKlw86hhBMnTmDTpk2ubsZNia+vL9asWYM1a9bg3XffRVRUlHn83uxYvoOee+45hIWF4eWXX0a7du2Qlpam6phZWVlYsGCBQ4yt7777Dr///jsmT54s+H1aWhry8vIQFRWFdevWiW4zYsQIPPvss3jooYfQtm1bbN++HQsWLNC9vXUZV79j33//ffTp0wcnTpzA9OnT8e9//xujRo3Cxo0b0bFjR+zbt0/VccvLy7FgwQJmY+v333/HqlWrVJ1LC35+fhg/fjzeffddwYU8wjXUc3UDCAIAXnvtNQQHB+PQoUMICQmx+u7SpUuuaZQDKCsrE/X48PTp0wejRo0CAEycOBFt2rTBk08+ic8//xxz5sxxRjMVw98j23snxV133YXbbrsNAPB///d/CA8Px+LFi7F161aMHj3aEc2El5cXvLy8HHJspfj7+6N58+Z45ZVXMHLkyJsuBK28vBwBAQEuO3+9evXw0EMPmf9+4okncPvtt2PDhg1499130aRJE5e1zdVYvoN4jh07hjvvvBP3338/srKyEBkZ6aLW2bN69WokJiaiWbNmgt+vXbsWXbp0wfjx4/HCCy8IvocvXbqk6P2lFo7jcO3aNfj7+zv8XK7Ale/YvXv3YsaMGejduzdSUlKs3i//+te/kJiYiFGjRuHkyZMIDQ11aFt8fX11O9b169dhMpng4+PDtP3o0aPx5ptvYufOnRg4cKBu7SDUQ54twi04c+YM2rdvL/hj17hxY7vP1q5di+7duyMgIAChoaHo27cvfvrpJ/P3W7ZswbBhw9C0aVP4+voiJiYGCxcuRE1NjXmb/v37Y9u2bTh79qw5bCYqKgq//PILunXrBqDW2OG/s8yROnDgAIYMGYLg4GAEBASgX79+2Lt3r1Ub+TjurKwsjB07FqGhoejdu7fivuFfljk5OZLbpaWloU+fPggMDERISAhGjBiBU6dOWbXnueeeAwBER0ebr0tupfmrr75C165d4e/vj/DwcDz00ENW4X79+/fH+PHjAQDdunWDwWBQFavep08fALVjwZLffvsNo0aNQlhYGPz8/HDbbbdh69at5u9//fVXGAwGfP7553bH/PHHH2EwGPD9998DEM8n+OGHH8x916BBAwwbNgwnT540f79161YYDAYcP37c/Nk333wDg8GAkSNHWh2rXbt2ePDBB2Wv12g04qWXXsLx48exefNmyW3F2s2HfVmutvbv3x/x8fE4fvw4+vXrh4CAALRu3Rpff/01AOC///0vevToAX9/f9x6661ITU0VPGdBQQFGjx6NoKAgNGzYEE899ZSg13Ht2rXm8REWFobk5GT873//s9qGb9Phw4fRt29fBAQE4IUXXhA879tvvw2DwYCzZ8/afTdnzhz4+Pjg8uXLAIDs7Gzcf//9iIiIgJ+fH2655RYkJyejpKREtC/FMBgM6N27NziOswvblRsfUrD0z+7du/HAAw+gRYsW8PX1RfPmzTFz5kxUVFRYbZefn4+JEyfilltuga+vLyIjIzFixAjF41kNnTp1wtKlS1FcXIzly5ebPz979iyeeOIJ3HrrrfD390fDhg3xwAMPWLXps88+wwMPPAAAGDBggPndYzlu1bb52rVrSElJQVJSkuD3FRUV2Lx5M5KTkzF69GhUVFRgy5YtVm0zGAzgOA4rVqwwt23ChAlYsWIFAFiFVvKYTCYsXboU7du3h5+fH5o0aYIpU6aYxyZPVFQU7r77bvz444+47bbb4O/vr2uIV1VVFebNm4euXbsiODgYgYGB6NOnD3bu3Gm1HZ/r+/bbb+Ojjz5CTEwMfH190a1bNxw6dMjuuN9++y3i4+Ph5+eH+Ph42XcUj9C7iu+DPXv2oHv37vDz80OrVq3wn//8x25//r3l7++PW265Ba+++ipWr17N9Fu1cOFC82+B7UJOTEwM3nzzTeTl5Vn1f//+/dG/f3+7Y1nmp+Xm5qJRo0YAgAULFpjHglSIqVDOVnFxMWbMmIHmzZvD19cXrVu3xuLFi2EymczbWN6npUuXmu9TVlYWgFrPXfv27c1zn9tuuw3r16+3Ok/Xrl0RFhZmNc4J10LGFuEWtGzZEocPH0ZmZqbstgsWLMDDDz8Mb29vvPLKK1iwYAGaN29uFd7y2WefoX79+nj66aexbNkydO3aFfPmzcPs2bPN27z44otISEhAeHi4OZxo6dKlaNeuHV555RUAwOTJk83f9e3bF0CtUdO3b1+Ulpbi5Zdfxuuvv47i4mIMHDgQBw8etGvvAw88gPLycrz++uuYNGmS4r7hjY+GDRuKbpOamorBgwfj0qVLmD9/Pp5++mns27cPiYmJ5h+okSNHYsyYMQCAJUuWmK+L/xER4rPPPsPo0aPh5eWFRYsWYdKkSdi0aRN69+5tDkV88cUXzeE7fGjglClTFF8n307LFceTJ0+iZ8+eOHXqFGbPno133nkHgYGBuPfee80//rfddhtatWqFL7/80u6YGzduRGhoKAYPHix63jVr1mDYsGGoX78+Fi9ejLlz5yIrKwu9e/c2t6l3794wGAzYtWuXeb/du3fDaDRiz5495s/+/vtv/Pbbb+axIsfYsWMRGxuLV155RdeQj8uXL+Puu+9Gjx498Oabb8LX1xfJycnYuHEjkpOTMXToULzxxhsoKyvDqFGjcOXKFbtjjB49GteuXcOiRYswdOhQvPfee3ZhWq+99hoeeeQRxMbG4t1338WMGTPw888/o2/fvnahqoWFhbjrrruQkJCApUuXYsCAAYJtHz16NAwGg+D9/PLLL3HnnXciNDQUVVVVGDx4MPbv34/p06djxYoVmDx5Mv7880/VYbJCY5BlfIjB2j9fffUVysvL8a9//Qvvv/8+Bg8ejPfffx+PPPKI1fHuv/9+bN68GRMnTsS///1vPPnkk7hy5YpVLoqW9soxatQo+Pv7Wy1sHTp0CPv27UNycjLee+89PP744/j555/Rv39/lJeXAwD69u2LJ598EgDwwgsvmN897dq109zmw4cPo6qqCl26dBH8fuvWrbh69SqSk5MRERGB/v37W4US9u3bF2vWrAEADBo0yNy2KVOmYNCgQeb28f94pkyZgueeew6JiYlYtmwZJk6ciHXr1mHw4MGorq62asPvv/+OMWPGYNCgQVi2bBkSEhJk+7qgoEDwny2lpaX4+OOP0b9/fyxevBjz58/H33//jcGDBwuGwa9fvx5vvfUWpkyZgldffRW5ubkYOXKkVZt/+ukn3H///TAYDFi0aBHuvfdeTJw4Eb/++qtsu8U4ffo0Ro0ahUGDBuGdd95BaGgoJkyYYGVQnz9/HgMGDMDJkycxZ84czJw5E+vWrWNKJSgvL8fPP/+MPn36IDo6WnCbBx98EL6+vubFN1YaNWqEDz74AABw3333mceC7UKbXPv69euHtWvX4pFHHsF7772HxMREzJkzB08//bTd9qtXr8b777+PyZMn45133kFYWBhWrVqFJ598EnFxcVi6dCkWLFiAhIQEHDhwwG7/Ll262C0AEy6EIwg34KeffuK8vLw4Ly8vrlevXtzzzz/P/fjjj1xVVZXVdtnZ2ZzRaOTuu+8+rqamxuo7k8lk/n95ebndOaZMmcIFBARw165dM382bNgwrmXLlnbbHjp0iAPArV692u4csbGx3ODBg+3OFx0dzQ0aNMj82csvv8wB4MaMGcPUBzt37uQAcJ9++in3999/cxcuXOC2bdvGRUVFcQaDgTt06BDHcRyXk5Nj17aEhASucePGXGFhofmzY8eOcUajkXvkkUfMn7311lscAC4nJ0e2PVVVVVzjxo25+Ph4rqKiwvz5999/zwHg5s2bZ/5s9erVHABzG6Xgt01NTeX+/vtv7n//+x/39ddfc40aNeJ8fX25//3vf+Zt77jjDq5Dhw5W98xkMnG33347Fxsba/5szpw5nLe3N1dUVGT+rLKykgsJCeEeffRRu3Pz13/lyhUuJCSEmzRpklUb8/PzueDgYKvP27dvz40ePdr8d5cuXbgHHniAA8CdOnWK4ziO27RpEweAO3bsmGQfjB8/ngsMDOQ4juM+//xzDgC3adMm8/cAuKlTp4q2m4cfMzt37jR/1q9fPw4At379evNnv/32GweAMxqN3P79+82f//jjj3ZjiR+3w4cPtzrXE088YXVtubm5nJeXF/faa69ZbXfixAmuXr16Vp/zbVq5cqVkv/D06tWL69q1q9VnBw8e5ABw//nPfziO47ijR49yALivvvqK6ZiW8P3/999/c3///Td3+vRp7u233+YMBgMXHx9vfraVjA++33iU9I/Q+2rRokWcwWDgzp49y3Ecx12+fJkDwL311lui16WkvULw40mqTzt16sSFhoZKtj09Pd3qXnEcx3311Vd2Y1WPNn/88cccAO7EiROC3999991cYmKi+e+PPvqIq1evHnfp0iWr7WyfOY7juKlTp3JC06Tdu3dzALh169ZZfZ6SkmL3ecuWLTkAXEpKiuR18IwfP54DIPnPsp3Xr1/nKisrrY5x+fJlrkmTJlbvPv53o2HDhlbvyS1btnAAuO+++878WUJCAhcZGckVFxebP/vpp584AHa/lwC4l19+2fy30LuK74Ndu3aZP7t06RLn6+vLPfPMM+bPpk+fzhkMBu7o0aPmzwoLC7mwsDDZ362MjAwOAPfUU0+JbsNxHNexY0cuLCzM/He/fv24fv362W03fvx4q2v9+++/7a6Vx/bZ57jaax4/frz574ULF3KBgYHcH3/8YbXd7NmzOS8vL+7cuXMcx/1zn4KCguzG6IgRI7j27dtLXh/P5MmTOX9/f6ZtCcdDni3CLRg0aBDS09MxfPhwHDt2DG+++SYGDx6MZs2aWYWMffvttzCZTJg3bx6MRuvhaxniYRkPf+XKFRQUFKBPnz4oLy/Hb7/9prqdGRkZyM7OxtixY1FYWGhebSwrK8Mdd9yBXbt2WYUEAMDjjz+u6ByPPvooGjVqhKZNm2LYsGEoKyvD559/bs5vsiUvLw8ZGRmYMGECwsLCzJ937NgRgwYNwvbt25VfKGrD8y5duoQnnngCfn5+5s+HDRuGtm3bYtu2baqOy5OUlIRGjRqhefPmGDVqFAIDA7F161bccsstAICioiKkpaVh9OjR5ntYUFCAwsJCDB48GNnZ2eZwxgcffBDV1dVWYhM//fQTiouLJUP6duzYgeLiYowZM8Zq9djLyws9evSwCsXp06cPdu/eDaB2TB07dgyTJ09GeHi4+fPdu3cjJCQE8fHxzP0wbtw43b1b9evXR3JysvnvW2+9FSEhIWjXrh169Ohh/pz/v5Da5dSpU63+nj59OgCYx9OmTZtgMpkwevRoq76LiIhAbGysXRiTr68vJk6cyNT+Bx98EIcPH7YKKd24cSN8fX0xYsQIAEBwcDCA2lBR3oOihLKyMjRq1AiNGjVC69at8eyzzyIxMRFbtmwxv0uUjA9blPSP5fuqrKwMBQUFuP3228FxHI4ePWrexsfHB7/88otdqBqPlvayUr9+fStPqGXbq6urUVhYiNatWyMkJARHjhyRPZ7WNhcWFgKAYA5OYWEhfvzxR7NHH4DZYyPkOWXlq6++QnBwMAYNGmTV5q5du6J+/fp2bY6Ojpb0rtvi5+eHHTt2CP6zxcvLy5zLYzKZUFRUhOvXr+O2224T7P8HH3zQqq/48G3+HcD/nowfP978jAG1v9FxcXHM12BLXFyc+VxArbfo1ltvtXr3pKSkoFevXlaev7CwMIwbN072+PyYbNCggeR2DRo0QGlpqcLWa+err75Cnz59EBoaajVmkpKSUFNTYxU1AdSOU9uok5CQEPz111+CYZ+2hIaGoqKiQtW7kdAfEsgg3IZu3bph06ZNqKqqwrFjx7B582YsWbIEo0aNQkZGBuLi4nDmzBkYjUbZl/7Jkyfx0ksvIS0tze7Fqiafgyc7OxsAzDlKQpSUlFj9mImFNIgxb9489OnTB15eXggPD0e7du1Qr574o8rnttx6661237Vr1w4//vgjkzCHkuO2bdvWKnxODStWrECbNm1QUlKCTz/9FLt27bJKKj59+jQ4jsPcuXMxd+5cwWNcunQJzZo1Q6dOndC2bVts3LjRrCa3ceNGhIeHSyYI8/dTbJugoCDz//v06YOVK1fi9OnTOHPmDAwGA3r16mU2wiZNmoTdu3cjMTHRbiFACi8vL7z00ksYP348vv32W9x3333M+4pxyy232AluBAcHo3nz5nafARCcvMfGxlr9HRMTA6PRaA7rys7OBsdxdtvx2KpRNmvWjDnB+4EHHsDTTz+NjRs34oUXXgDHcfjqq69w1113me9JdHQ0nn76abz77rtYt24d+vTpg+HDh+Ohhx6ymiSK4efnh++++w4A8Ndff+HNN9/EpUuXrIwHJePDFiX9c+7cOcybNw9bt261uxf8+8rX1xeLFy/GM888gyZNmqBnz564++678cgjjyAiIkJze1m5evWq1YS2oqICixYtwurVq3H+/HmrBQOWd61ebRZaqNi4cSOqq6vRuXNnnD592vx5jx49sG7dOrsFBVays7NRUlIimE8M2Is6Kf0N8PLyEs1BE+Lzzz/HO++8g99++80qHFDovC1atLD6m/+t4scd/94XGre33norkwEthO15+XNbjvezZ8+iV69edtu1bt1a9vj8mBQKibbkypUrsgaZI8jOzsbx48dFw/ZZxsysWbOQmpqK7t27o3Xr1rjzzjsxduxYJCYm2m3LPw83m/CSu0LGFuF2+Pj4oFu3bujWrRvatGmDiRMn4quvvsLLL7/MtH9xcTH69euHoKAgvPLKK4iJiYGfnx+OHDmCWbNm2XmelMDv+9Zbb4nG3dvWSFGqOtWhQwdFP7SeSvfu3c3eunvvvRe9e/fG2LFj8fvvv6N+/frmvn722WdFV4Utf4QffPBBvPbaaygoKECDBg2wdetWjBkzRtJQ5c+xZs0a84TVEst9eXGTXbt24c8//0SXLl3Myejvvfcerl69iqNHj+K1115T2BO13q2FCxfilVdewb333mv3vdgPpqXgiyViamBin7N41GzbYDKZzHWLhI6r5Tlo2rQp+vTpgy+//BIvvPAC9u/fj3PnzmHx4sVW273zzjuYMGECtmzZgp9++glPPvkkFi1ahP3795s9pGLYTmgHDx6Mtm3bYsqUKWZvupLxYQtr/9TU1GDQoEEoKirCrFmz0LZtWwQGBuL8+fOYMGGC1ftqxowZuOeee/Dtt9/ixx9/xNy5c7Fo0SKkpaWhc+fOmtrLQnV1Nf744w8rz+306dOxevVqzJgxA7169UJwcDAMBgOSk5OZ3rVa28znsl6+fNnunvO5WUKTUaDWm9OqVSvZNgq1uXHjxqIy8rYTakcqD65duxYTJkzAvffei+eeew6NGzc259jaig0B2t4BWnD0eVu3bo169epZiRjZUllZid9//90qSoQXR7FF7N2qFpPJhEGDBuH5558X/L5NmzZWfwuNmXbt2uH333/H999/j5SUFHzzzTf497//jXnz5tmVKLh8+TICAgLqrOqlp0HGFuHW8C/FvLw8ALWr6yaTCVlZWaLGzi+//ILCwkJs2rTJSqhASM1PbBIr9nlMTAyA2tVWdzGI+Homv//+u913v/32G8LDw81eLSWrXJbHtV11/v3333Wto8JPDgYMGIDly5dj9uzZ5kmQt7c3U18/+OCDWLBgAb755hs0adIEpaWlVqF0QvD3s3HjxrLnaNGiBVq0aIHdu3fjzz//NIfE9O3bF08//TS++uor1NTUMItjWMJ7t3jDwRZ+9dlW+EFIsU8vsrOzrVZXT58+DZPJZFboiomJAcdxiI6Otpso6MGDDz6IJ554Ar///js2btyIgIAA3HPPPXbbdejQAR06dMBLL71kFoVZuXIlXn31VUXni4yMxMyZM7FgwQLs378fPXv2VDQ+bGHtnxMnTuCPP/7A559/biWIIRQyxh/3mWeewTPPPIPs7GwkJCTgnXfewdq1azW1l4Wvv/4aFRUVVosfX3/9NcaPH4933nnH/Nm1a9fsxqrcO1Vtm9u2bQug9v3eoUMH8+c5OTnYt28fpk2bhn79+lntYzKZ8PDDD2P9+vV46aWXRI8t1ebU1FQkJia6fDL79ddfo1WrVti0aZNVe1kXJ23h3+u8x9ESod8YPWnZsqWVB5JH6DNbAgMDMWDAAKSlpeHs2bOCv09ffvklKisrcffdd5s/Cw0NFQyjtn23avUQxcTE4OrVq5qfy8DAQDz44IN48MEHUVVVhZEjR+K1117DnDlzrML9c3JyzAI0hOuhnC3CLdi5c6fg6hKfH8KHst17770wGo145ZVX7FZN+f35FTTL41VVVeHf//633fEDAwMFQ11448R2wtC1a1fExMTg7bffxtWrV+32+/vvv0Wv0VFERkYiISEBn3/+uVV7MzMz8dNPP2Ho0KHmz8SuS4jbbrsNjRs3xsqVK1FZWWn+/IcffsCpU6cwbNgw3a4BqJXg7d69O5YuXYpr166hcePG6N+/Pz788EOzsW2JbV+3a9cOHTp0wMaNG7Fx40ZERkbKGj6DBw9GUFAQXn/9dTsFMaFz9OnTB2lpaTh48KDZ2EpISECDBg3wxhtvwN/fH127dlV66QCAhx56CK1btxYsospPSC3j+mtqavDRRx+pOhcLvOw1z/vvvw+gtj4aUKtu6eXlhQULFtg9uxzHmXNp1HL//ffDy8sLGzZswFdffYW7777bKhS2tLQU169ft9qnQ4cOMBqNVuNVCdOnT0dAQADeeOMNAMrHhyWs/SP0vuI4zk6Brby83E56PyYmBg0aNDBfr5b2ynHs2DHMmDEDoaGhVuF3Xl5edtf3/vvv23kGxN49WtvctWtX+Pj42Cnl8V6n559/HqNGjbL6N3r0aPTr10/UMyXX5tGjR6OmpgYLFy602+f69eu6F42XQmj8HDhwAOnp6aqOZ/l7YvnbuGPHDrP8uKMYPHgw0tPTrVQUi4qKZO8Tz0svvQSO4zBhwgS7sgk5OTl4/vnnERkZaaWWGxMTg99++81qnB07dsxOyY+Xkld7b0ePHo309HT8+OOPdt8VFxfbvcuEsH2n+vj4IC4uDhzH2T07R44cwe23366qrYT+kGeLcAumT5+O8vJy3HfffWjbti2qqqqwb98+bNy4EVFRUebE+tatW+PFF1/EwoUL0adPH4wcORK+vr44dOgQmjZtikWLFuH2229HaGgoxo8fjyeffBIGgwFr1qwRNOa6du2KjRs34umnn0a3bt1Qv3593HPPPYiJiUFISAhWrlyJBg0aIDAwED169EB0dDQ+/vhj3HXXXWjfvj0mTpyIZs2a4fz589i5cyeCgoLMeSDO5K233sJdd92FXr164bHHHkNFRQXef/99BAcHW9UC4Q2BF198EcnJyfD29sY999wjmM/l7e2NxYsXY+LEiejXrx/GjBmDixcvYtmyZYiKisLMmTN1v47nnnsODzzwAD777DM8/vjjWLFiBXr37o0OHTpg0qRJaNWqFS5evIj09HT89ddfOHbsmNX+Dz74IObNmwc/Pz889thjsrlTQUFB+OCDD/Dwww+jS5cuSE5ORqNGjXDu3Dls27YNiYmJVjWF+vTpg3Xr1plrMgG1k53bb78dP/74I/r378+cl2SLl5cXXnzxRUERifbt26Nnz56YM2cOioqKEBYWhi+++ILpB1otOTk5GD58OIYMGYL09HSsXbsWY8eORadOnQDUTlJeffVVzJkzB7m5ubj33nvRoEED5OTkYPPmzZg8eTKeffZZ1edv3LgxBgwYgHfffRdXrlyxEzpJS0vDtGnT8MADD6BNmza4fv061qxZAy8vL9x///2qztmwYUOzrPqpU6fQrl07RePDEtb+adu2LWJiYvDss8/i/PnzCAoKwjfffGOXu/XHH3/gjjvuwOjRoxEXF4d69eph8+bNuHjxotmDq3Q8i7F7925cu3YNNTU1KCwsxN69e7F161YEBwdj8+bNVuF+d999N9asWYPg4GDExcUhPT0dqampdqUqEhIS4OXlhcWLF6OkpAS+vr4YOHAgGjdurKnNfn5+uPPOO5Gammou2QHUGlsJCQl2eYo8w4cPx/Tp03HkyBFR2Xj+ffnkk09i8ODB8PLyQnJyMvr164cpU6Zg0aJFyMjIwJ133glvb29kZ2fjq6++wrJly+yKQjuKu+++G5s2bcJ9992HYcOGIScnBytXrkRcXJzggiALixYtwrBhw9C7d288+uijKCoqMtd3UntMFp5//nmsXbsWgwYNwvTp0xEYGIiPP/4YLVq0QFFRkax3qW/fvnj77bfx9NNPo2PHjpgwYQIiIyPx22+/YdWqVTCZTNi+fbtVTvWjjz6Kd999F4MHD8Zjjz2GS5cuYeXKlWjfvr1Vvre/vz/i4uKwceNGtGnTBmFhYYiPj2cWQ3ruueewdetW3H333ZgwYQK6du2KsrIynDhxAl9//TVyc3MRHh4ueYw777wTERERSExMRJMmTXDq1CksX74cw4YNs8pDO3z4MIqKisxiQoQb4BTNQ4KQ4YcffuAeffRRrm3btlz9+vU5Hx8frnXr1tz06dO5ixcv2m3/6aefcp07d+Z8fX250NBQrl+/ftyOHTvM3+/du5fr2bMn5+/vzzVt2tQsJQ8b6eGrV69yY8eO5UJCQuxkbbds2cLFxcVx9erVs5PHPnr0KDdy5EiuYcOGnK+vL9eyZUtu9OjR3M8//2zehpeD/fvvv5n6gEV2meOEpd85juNSU1O5xMREzt/fnwsKCuLuueceLisry27/hQsXcs2aNeOMRiOTDPzGjRvNfR0WFsaNGzeO++uvv6y2USP9LrRtTU0NFxMTw8XExHDXr1/nOI7jzpw5wz3yyCNcREQE5+3tzTVr1oy7++67ua+//tpu/+zsbLM88p49e0TPLSShPnjwYC44OJjz8/PjYmJiuAkTJnC//vqr1XYnT57kAHDt2rWz+vzVV1/lAHBz586VvX6Os5Z+t6S6upqLiYkRlKE+c+YMl5SUxPn6+nJNmjThXnjhBW7Hjh2C0u9C8sAtW7bkhg0bZve57bn4cZuVlcWNGjWKa9CgARcaGspNmzbNqgQAzzfffMP17t2bCwwM5AIDA7m2bdtyU6dO5X7//XfZNsmxatUqDgDXoEEDu3P/+eef3KOPPsrFxMRwfn5+XFhYGDdgwAAuNTVV9rhi/c9xtf3s5eVlJdvMMj6E5J85jq1/srKyuKSkJK5+/fpceHg4N2nSJO7YsWNWz3lBQQE3depUrm3btlxgYCAXHBzM9ejRg/vyyy/tzsk6noX2458fAJy3tzfXqFEjrm/fvtxrr71mJ0XNcbUy4xMnTuTCw8O5+vXrc4MHD+Z+++03O+lrjqu9n61ateK8vLzsxq3aNnNcbckFg8Fgls8+fPiw7POYm5vLAeBmzpzJcZyw9Pv169e56dOnc40aNeIMBoPd/f3oo4+4rl27cv7+/lyDBg24Dh06cM8//zx34cIF8zZiz50YUmNTqJ0mk4l7/fXXuZYtW3K+vr5c586due+//95Oupz/3RAqHQABSfNvvvmGa9euHefr68vFxcVxmzZtsjum0L5i0u9CfSAku3706FGuT58+nK+vL3fLLbdwixYt4t577z0OAJefny/aL5bs2rWLGzFiBBceHs55e3tzLVq04CZNmsTl5uYKbr927VquVatWnI+PD5eQkMD9+OOPgte6b98+rmvXrpyPj4/VdbNIv3NcbZmDOXPmcK1bt+Z8fHy48PBw7vbbb+fefvttc5kbqfv04Ycfcn379jXPO2JiYrjnnnuOKykpsdpu1qxZXIsWLazK0xCuxcBxDs6KJAiCIAiCcBA1NTWIi4vD6NGjBUP7CM9mxowZ+PDDD3H16lVRoQ2ilsrKSkRFRWH27Nl46qmnXN0c4gaUs0UQBEEQhMfi5eWFV155BStWrHBomBvheGxzrQoLC7FmzRr07t2bDC0GVq9eDW9vb8X1PQnHQp4tgiAIgiAIwuUkJCSgf//+aNeuHS5evIhPPvkEFy5cwM8//6xK6ZUg3AESyCAIgiAIgiBcztChQ/H111/jo48+gsFgQJcuXfDJJ5+QoUV4NOTZIgiCIAiCIAiCcACUs0UQBEEQBEEQBOEAyNgiCIIgCIIgCIJwAJSzxYDJZMKFCxfQoEED2aJ6BEEQBEEQBEHUXTiOw5UrV9C0aVMYjdK+KzK2GLhw4YJoFXqCIAiCIAiCIG4+/ve//+GWW26R3IaMLQYaNGgAoLZDg4KCXNwagiAIgiAIgiBcRWlpKZo3b262EaQgY4sBPnQwKCiIjC2CIAiCIAiCIJjSi0gggyAIgiAIgiAIwgGQsUUQBEEQBEEQBOEAyNgiCIIgCIIgCIJwAGRsEQRBEARBEARBOAAytgiCIAiCIAiCIBwAGVsEQRAEQRAEQRAOgIwtgiAIgiAIgiAIB0DGFkEQBEEQBEEQhAMgY4sgCIIgCIIgCMIBkLFFEARBEARBEAThAMjYIgiCIAiCIAiCcABkbBEEQRAEQRAEQTgAMrYIgiAIgiAIgiAcgEuNrV27duGee+5B06ZNYTAY8O2335q/q66uxqxZs9ChQwcEBgaiadOmeOSRR3DhwgWrYxQVFWHcuHEICgpCSEgIHnvsMVy9etVqm+PHj6NPnz7w8/ND8+bN8eabbzrj8giCIAiCIHSlxsQh/UwhtmScR/qZQtSYOFc3yal44vV7YpsJ/ajnypOXlZWhU6dOePTRRzFy5Eir78rLy3HkyBHMnTsXnTp1wuXLl/HUU09h+PDh+PXXX83bjRs3Dnl5edixYweqq6sxceJETJ48GevXrwcAlJaW4s4770RSUhJWrlyJEydO4NFHH0VISAgmT57s1OslCIIghKkxcTiYU4RLV66hcQM/dI8Og5fR4OpmEXUQTx5rKZl5WPBdFvJKrpk/iwz2w8v3xGFIfKQLW+YcPPH6PbHNhL4YOI5zC/PaYDBg8+bNuPfee0W3OXToELp3746zZ8+iRYsWOHXqFOLi4nDo0CHcdtttAICUlBQMHToUf/31F5o2bYoPPvgAL774IvLz8+Hj4wMAmD17Nr799lv89ttvTG0rLS1FcHAwSkpKEBQUpPlaCYIgiH+gyQghhZ7GkSePtZTMPPxr7RHYTtr4nvjgoS5ufw1a8MTr98Q2E2wosQ1c6tlSSklJCQwGA0JCQgAA6enpCAkJMRtaAJCUlASj0YgDBw7gvvvuQ3p6Ovr27Ws2tABg8ODBWLx4MS5fvozQ0FC781RWVqKystL8d2lpqeMuiiAI4iZGbDKSX3IN/1p7hCYjNzlixtHcYXEIDfRRZIB58lirMXFY8F2WXdsBgEPt5H3Bd1kYFBehyUvHathWXTdhTXouzhaVo2VYAB7uFQWfeo7LTHHW9euJJ7bZEk/2ALsbHmNsXbt2DbNmzcKYMWPMFmR+fj4aN25stV29evUQFhaG/Px88zbR0dFW2zRp0sT8nZCxtWjRIixYsMARl0EQBEHcwNMnIwQbaidtYsZRXsk1PLH+iNVnct4pTx9rB3OKrAxOWzjU9sv+PwthNBhUTZBZvX6Ltmdh1e4cWKYdvbb9FCb1icacoXHmz/ScrLNe/8GcIvSKaajqHDx6tXv/n4VOa7Oe1Jg4LE/Lxuq9uSiuqDZ/7ikeYHfEI4yt6upqjB49GhzH4YMPPnD4+ebMmYOnn37a/HdpaSmaN2/u8PMSBEHcTDhzAkW4BpYJvNDkFoCocSSEnHfK08fapSvibbdk6rojqibIrF6/Rduz8OGuHLv9TRzMn88ZGqc5XNN2TOSXVMjuA7D3kxhq223b3stllXhhc6ZT2qwnKZl5mL3pBIrLq+2+0+IBvtm9ZG5vbPGG1tmzZ5GWlmYVFxkREYFLly5ZbX/9+nUUFRUhIiLCvM3FixettuH/5rexxdfXF76+vnpeBkEQBGED6yTDnSYjnoorJjssE3gAgpPb5G4tJI0jW+S8U54+1ho38GPaztLQAtgmyKxev35tGmPVbntDy5JVu3MQ3ywET244qjpcU8jgCQv0Ed3eEtZ+EjuvmjBTofYqQUub9UTs+nnUeoA9OU9SL9y6zhZvaGVnZyM1NRUNG1qvNvXq1QvFxcU4fPiw+bO0tDSYTCb06NHDvM2uXbtQXf3PC2jHjh249dZbBUMICYIgCOfAOslwl8mIp5KSmYfei9MwZtV+PPVFBsas2o/ei9OQkpnnsHPKTeABYPamE/jX2iN2k9T8kmtYkvqH4nNaeqds8fSx1j06DJHBflBqHvN9veC7LFG5cVav3+vbsyCnWG7igBc2n5C871Jt4Sf8tu25XFYleV4DaifwvFdUKSzjVajdYu1lQWub9UTq+i2ResaEEOsf3oB15DvInXCpsXX16lVkZGQgIyMDAJCTk4OMjAycO3cO1dXVGDVqFH799VesW7cONTU1yM/PR35+Pqqqah+6du3aYciQIZg0aRIOHjyIvXv3Ytq0aUhOTkbTpk0BAGPHjoWPjw8ee+wxnDx5Ehs3bsSyZcuswgQJgiAI5yM3gXSnyYin4qrJDssEvri8WnJyqxYh75SnjzUvowEv31ObD6XG4JKaILN683ILy5m2u3Ltuqq2sBg8QvD98fI9cU7JCeNhNVCk0NJmLfB1vzYfPY9Pdv+Jd376TZHByDJm1BiwdbUemUvDCH/99VcMGDDA/DdvAI0fPx7z58/H1q1bAQAJCQlW++3cuRP9+/cHAKxbtw7Tpk3DHXfcAaPRiPvvvx/vvfeeedvg4GD89NNPmDp1Krp27Yrw8HDMmzePamwRBKELN3ssuhb4CeS/1h6BAdYTKj0mUDc7rhSFcGU4npB3qi6MtSHxkfjgoS52IVkhAd6COTa2iN0TVm9eVMMA7M5ma6uatsgZPDxhgd4oKvvneiN0CElTE2bK2l4hQgK88cbIDi4Jo9Ma9giwjRmleZJ1OdzQpcZW//79IVXmi6UEWFhYmLmAsRgdO3bE7t27FbePIAhCirr84+AsxCaQekygbnZcKQqhZzierXEktV2EjXfKdjFkxdjOWLjtlMeOtSHxkRgUF2F1TSYTh3GfHJDdV+ye8F6//JJrgv3M9+sLQ+Ow7sA5yVBC1nsl1BZWg2fu3e0REeSn6wKXkjBTfkz9oMErvGJMFyTGhqveXw6xRUC5vCwWWD3ASgxYTy7LwILbC2QQBEG4I3X9x8GZCE0gyUOoHVeKQshN4FmZmRSLLw79T3YVXsg7pWeNLnfCy2iwMo5rTByTsSQ2QWb1+vn7eGFSn2hBNUKe/+sThe+P56tqC6vBExHkp/viAKvBebmsCr0Xp6n2CvHH6Wlz//R890mN+4XbtIU9AuweYNb7GV7fF89+dUw6v/ObE2jg542erRp61LPKQ8YWQRCEQjy9Zo87YjuBJLTjSlEIqQk8C/ykdNrAWEwbGGsnqy3nnZJaDJm6vnYxZERCMy2X6DboESLJ6mHm62jZ1tkyGmCus9W1ZZiqtrAaPI7Iq2Ppw+GdIjF1vXqvkJIFAbWeVqlxb1ubTilKQx9ZFlxC/OsBHGSN1+KKaoz7+IDHRo4YOJZYvZuc0tJSBAcHo6SkxEp6niCIm5P0M4UYs2q/7HYbJvUkA4JwGTUmDr0Xp8lOXvfMGuiwRYGUzDzM35qF/FJ2TwDfEjm58v1nCpH+ZwGAWkOdX/Xmr1tsAueM63YFekzcWb0sVddNWJOei7NF5WgZFoCHe0XBp94/mmtq28IbC4CwwePoiAFxr1A7OwNfKbbXL2YYqb1WuXGvlpAAb0y8PRrTBrZW/LykZObh8bXSRt7Ato2Q9tvfTMdz1jhgQYltQMYWA2RsEQRhyZaM83jqiwzZ7ZYlJ9SZ1XPCM3H15BUA9mYXMOUU8bBOysUm88H+ProthniaAI47tVdtW1ydCyvU7oM5RUxjikcuXNURCwKsi4CsTBvQGomtwzWNoRoTh66v7mAScGHFXRZLlNgGFEZIEAShEE+v2UPcPLiDAElBWSXTdo/0aom74iNlJ3dy+ZID2zZiOp9crpqrJ/1qcKdwXLVtcXUOp1C7WfMaWcewI8Rr9My9jAz2w8xBbTT3+cGcIiZDy2AAWF0/jhT2cRRkbBEEQSjElbkFBKEUV09eWRcd7oqPZPI0ydXu+ZkxJEmqXSSA41rcyWgE9B3DALthtCMrn7kf9FrcM0C/Mgis18kbWkryO11ZXkIpLi1qTBAE4YlIFRj1lJo9hHviqKKe/OR1REIz9IpxrqKXngWFtdQ2Yj2fmmKshDLcqXgtS1v0LorNahh9ujdXsvC4ZdtNHIeIIF/FRa8tiQz203UhQYkB+FhiFCKC2bf3pMgR8mwRBEGowB3Cs4i6hSeGrbGgZ0FhPVazOZnzubI+2c2AO41z1rboXRSbN95YShqIKdsKtT0kwNusiKvEfJ3aPwa9Yxvp7vHuHh1mV4RajCB/H+yZNRD7zxRi6vojKK4Q3scTI0fIs0UQBKGSIfGR2DNrIDZM6ollyQnYMKkn9swa6NETY8I18GFrtpMvPmxNanXbE+AXJ2xXriMUrqTrsZr9aGKU5PlcWZ+sruNO41xpW7SMYVvvGQBzdIQUloY9S9tLbuRHBQd4yx4b+Mcj9/SdtzrE4+1lNODVEfFM2y5N/QM7svKRGBuON+7vAAPqTuQIebYIgiA04G65BYTncbPUbZPLHWNRr9OjWPKguAjJ791VAMedlAbV4E7jXG1b1OQ/SnnPHkuMwid7c2Xba2nYs7Td39sL70/sjAO5hTjzdxl+yMy329ZZhsvQjk0x5a9iyWLYQG3bX9yciYFtm9S5yBEytgiCIAjChdxMYWtiixN6hXNJGWCs4UfuKIDjTqF3anGnca6lLUoW2OSEVmYktWE6jqVhz9r2p748Khm+F6ywSLEW5gyNg793PSz9OVtyu8KyKvRclIrX7+vgcmEfPaEwQoIgCIJwITd72Jqe4VxT+kZrDj9yNwEcdwq904I7jXNHt6XGxGFvdgFmf3NCUmjli0PnJEUthIQ3WNsklydVomPtKxaiGwUybVdUVm0e164U9tET8mwRBEEQhAtx17A1Z+CIcK7OLUI1hx+5SxiTltA7dws7dKdx7si2CHkhheA9UDOTYrE0NZtZeEPP/pEK22QZP7bbdG0ZisNnLwvuo6TdHID5W096fOg0DxlbBEEQBOFC3DFszVk4IrRMr/AjdwhjUts/7hh2yKrAd5mxCLYebdH7mRMLG5QiKjxQkWGvR94iIP1ssYwfoW2MBsBSOd9yH6Xtzi+txLT1h/FIr2iXLxRohYwtgiAIgnAhestKexJqw7nkJoN6Cde4WgBHTf+4a0FmL6MBc4fF4Yn1RyS3W7jtFAbfuIe26OWts3zmbFH7zEl5IaVo3MAPvWIaMhv2Uu8LNQg9W3LjB4DgNrYlymzHnFifi/FD5kX8kHnR5QsFWqGcLYIgCMJhuFPxUndGL2l0T0NNOJfaHCZnjkW9zqW0f9y9IHNooI/sNkJS50Dtfe+9OA1jVu3HU19kYMyq/ei9OE1TzpqQRHpIgLeqZ05pwW3bfCwl+Uli74uGDP1ri+UYq7puwgubpfPM5m89iflb2YxKDv+EBNaYOHO7wxS2M8/D8hNtIc8WQRAE4RDcMZTJnXGHsDVHIuSVUBrOpTaHyZljUc9zKe0fd1L8E0KLJ1NPb51UuN9lGeEIMe+aEjENPTzWQu+Lri1D0e+tnUyherZjJyUzDy9szpQU1uBQG96nlPzSSixPO42nkmIxJD4SA9s2Qc9FqUzFji3x1BIYZGwRBEEQuuOuoUzujqvD1lhQE8olZYAoCaFUY0w4cyzqfS6lIabupPgnhBpPpt71ueTC/aSOJzWOlQhA6CW0IvS+YAkxtB07anLNlLIk9Q/cGlEfQ+Ij4VPPiNfv64DHFYQUunqhQAsURkgQBEHoiruHMhHqURPKJRf2B4A5hFKpMeHMseiocykJMXUnxT8hukeHIUQgdI9HSOpciYHNgtrjyY3jy2WViAz2E5VxB4AQf2+s+78e2DNroPm+6R3eKjZeLLEcO2pzzdRgOf6HxEdiZlKs4mN4YgkM8mwRBEEQuuLuoUyEOtR4bVi9EntmDWQKoVRqTLCOxSU7/kBi63C7c8p58Sy/L7hS6bBxzxpi6u7Kljuy8lEsEabHwT60Tm9vnZrtWMbxwm2nMHdYHKauF/dCvnF/ByS2Djd/7qjwVtvxEh7oCxiAgquVVhLtWzLOy45bSwwAmgT5AjDgYqlyNUTb8R/buIHCI3hmCQwytgiCIAhdcfdQJkI5akO5lBreckaIUmOCdYwt33kay3eetproyk2EWesp2aJ23LOEmLqzsiU/hqQIDfDGoLgIq8/09tap2Y51HIcG+jDLuDs6vFVsvKRk5qHfWzsVj1ue+cPbA4CiEEBLLL3OC7dJjwdLXL1QoAUytgiCIAhdcfdQJkI5ar2Vehnelh6k5G4tsDT1DyZjQukY4ye6k/tG46NdOaITYbHvWXD0uHeXgsy2sKj1XS6vthtDenvr1BxPyTgekdBM1gupRx6a2txJtblZYYHeeP2+DuaFBrWwep0tcfVCgVbI2CIIgiB0xd1DmQjlqA29KrjCplxmKV1uO4HckZVvZzjweT+WIWlCxgSfIyQVumYJP9FdtVvYkOI/E/teCmeOe3dUtmQdQ3tPF1i1VW9vndzxOADJ3Zrj++MXzP2mdAFJzgupNdRaTfih1tysZaM7o8+tjZg8lEKo9ToDrl8o0AoZWwRBEISuuHMoE6EOpZNN1hA7ywmY0D5ihlJJeTU4ADOTYhEVHihqTMjlCAnBAeBkZqRKNQzkxr1exXotUaJs6Yjz2x6f1fBevvM0vjnyl9XkWm9vndjx+LpbS1KzzZ9FBvth7rA4XReQtHh8lYQfKskplKOoogqA8npigDav89xh7TAhMdqjfy/I2CIIgiB0x11DmQh1KPFWsoYqWU7AdmTlC+4jZijxHqgvDv0Pe2YNFDVg1KzAOwKpca+HSIIWY8nRNcjU5LYJGQ56e+tsj5dbUI6lqX8IGjFT1/8TOqrHApLaUGsl4YdCHmEt8G1Rk3Mo5nVmead4uqEFkLFFEARBOAh3DGUi1MHqrQTAHKrET8AGxUWg9+I0xeFNcqFWalbg9WTusHYIb+ArOe71EEnQYiw5WqRBbY6QWN6S3nXovIwGdI8Ow/4zhXh5y0nJ0NGvD5/H+8md8doPpzQvIHWPDkNEkB/yS4XHp5injDX8cHnaaUHDUQ22bVHikQoL9EFRWRXC6vsi2N8HNSbOYeGh7gwZWwRBEITD8IQivQQbLN7K9DOFTAaOZWgQ6z5iiK20q1X9MwAwGKRDBY2G2lBDLSvyeogkaDGW9C4WrOT4LDijRIQSr1thWRXmfZeJV0fEIzTQV9MC0o6sfFy7XiP4nZShwTqmV+9VJ97C0ha5PEh+/EcG+2PhNulFgJslAoKMLYIgCIIgmJDzVrJOBsMb+CreRwyxlfbcgjLFx+Inl5P61IaMAcIr7vz3WlbklYgkdI8Os+tzQNyLyH/2wuYTqKg2ISLI3ihQKtKgNFRRL8+imPdHK2q8bkVl1Zi6/ig+eKgLRiQ0c8h5QwK8sWhkB0FDg9WrVFyhLE+RH8e2RpSQ0cNSK214p0hMXc+2CHAzRECQsUUQBEEQBDNS3ko1uShqpdClRAlSMvOsRA7EMNp4sCwnl51bhEquuMt9LwerkbkjKx9Pf5lh5yFI7tZc1pgpKqvGzI0Z5n0s26ZEpEFNqKJedfQWfn8S/t5GXb0cWr1uaj1+LOf1rWe0qjVmaeSGB/oiIshPtKCwAUCwv7diY8sypJdFsl6KEP962JKRp8hjWtcjIMjYIgiCIAgPwNGKcXqgRvZfbh8hpDxIrMIYBgDLx3RBcIA30s8UAuDQq1U4et6Y9MmtuGtdkWc1Mj/dm2v3WX7JNSZj0nYfS68C6/lzC8qwNDVbcaiiXvXEisqq8a+1RzAjqQ2iwgN0GftavG5awhtZzptfWmk+tphCJ2+0CHlVJyZGKRob0wa0xsxBbcz9qUWyHgCKK64DFddFv3dGeKi7QcYWQRAEQbg5jlaM0ws1Se8sdY9Ywpt4WCfSM5LawGgEnv3qmHn75TvPWPWr3Iq7lhV5FiPT1vPGo8YjY+tVYDWMNxw8pyqvS40RLdX2Jal/mP/WOvb18LqpOYZSb6JQuGHJjecgWOSZGBQXgS8O/Y/ZmExsHc5suOrlrdT7WO6O0dUNIAiCIAhCHH7SZTt54j0LKZl5LmqZMHzSe0SwtWcjIthP1Asitc/Kh7rg8EuDsGFSTyxLTsCGST2xZ9ZAzeFrpRVVLu1X3sgE/jFEefi/ldbzksPSq8By/uRuLZBfKl4fy/J4tkgdXyu296jGxCH9TCG2ZJxH+plC1Mh0nB5eN6XHqDFx2P1HAdO24YG+suIlfvWMWPd/PeyeCb7fWfo8xN8bJo6T7S8evbyVeh/L3SHPFkEQBEG4KY5WjHMUakLs5PZh9SCxTuI2Z5x3eb9KqbENjY/AJwIhhELYegTl4A1SOTW4yusmRcezRez4WrG8RyYTh4XbTiny+mrxuiktYAzULpjM35rFJPZhAGDiOFnxkvzSShgNBkGhDr7fZ286ISlmUVxRjXEfH2D2FLJ4Q5sE+QIwSOaVKe0/TwihloKMLYIgCIJwU5QqxrkTakLs9EiUZ5kQhgX6oLCsSvQYzuxXMSPzYE4Rk7E1M6kNvjh0TpExY2mQShm5tblsyo5ni+Xxd2TlC+agqYG/R0+sP2r3nVw+mVToKst5ldR/Uqp6yAE4IOApFELKi8v3+/K0bKzemyspmsFaV02u3zgA84e3BwCmmnzpZwplDShPCaGWgsIICYIgCMJNUZLjQdTCEh43IqEp07Gc1a+8kTkioRl6xTQ0F9uNDPYTDQczoHbSOW1ga+yZNRAbJvXEktGdEBboI7uPrVdB6PwAmNsg56Xgr+eHzHzJ7fSCn+Av+C5LNEROLHTVEoPAhYcEeDO3Q73qoT5hfV5GA55KaoPDcwdh3WM9EOIv3HaW/uLh+y1YoB/4vuG3aRIkHEoMAL0Xp2HMqv146osMjFm1H4lv/IxlqX9YhYJ6Wgi1GGRsEQRBEISbokZKnZDOAVsxtguahfgzHUdNXo6S3CEpWIxG3sPCG0v3dbkFr98XL7oPB+Cu+FovE0vblLRBDr3qbrEilU/GMyQ+EntmDcTMpDbCxxDoopLyauaJvtpr7tUqXNLIBWoNG9ZQPC+jAUajQdK7xdJflpQIhCfa9411B3Ich6PnLgsbUKWVWJKabWF8pWH2phOSdeRYjEN3gMIICYIgCDOeHhtf11AjpU7UIhQed7msEgu3yecPqc3L0TvcSS6nSkpsxHYfg6HWePh0by4+3ZvL3DY1bRCC1UsYoqJOlNbzfnHoHPPxxHL6hN6dajyjEUG+6BnTEC/fE4fH1x4R3a64vBo7svJ17/8fbhhKYu9+ljzSOZtO4LKAMZZfWokPbxQLl0Muv82dQ6htIWOLIAiCAFA3YuPrGmqk1Il/sMwBS8nMw9T1R2UDtNT0q1heDmsujBRaxUZSs/Lxyd5cO2VDJW3TWlMMYPcSrhjbBUajAZeuXENuQRmWpGYrzqtSct79fxYq9j7ZTvTF3p3J3Zorbu/84e3hZTRgUFyEXckDS5SKuLD2/3/Sz+I/6WdF3/0seaRChpaj8IQQagojJAiCIOpMbHxdRI2UOmGNktwZpf0qt9IPaA93Esupktune3QYtovkSSltm5o2WMKa/9UzpqH5PE8ltcHKh7ogNNBH0bksjyflnUzJzMPUdeLeIzks62EJvTuXpGYjJMCbTYY9wBsrLcbdwZwiSSVBpWF/cv1vi9i7392MG08IoSbPFkEQxE2Op8qL30zo4Vm4mWHNnZk7rB0mJEYr6ld3Voxkbdv+M4Vmb5KasSUXfsx/LyZnL+VNHBIfiYqqGsz88hhze+S8kzUmDsvTTlsVSlZDeH1fPPvVMcl3pxx3xTfBQz2i0NPGgNVbHEepAqPYu99djBtPCqEmY4sgCOImx50ni8Q/6CGLfrPCOiENb+Cr2IB1Z8VI1nNOXvMryqpqzH8rCR+WCz8W+t5osC7YLJf/FRHMJmjCcrzamlcnJYs1y8FP9MFB9t1ZXF6NuztGYvuJPKtrNhqASX2iMWdonOC+rEZNbkEZc7uV1j0TMsbD6/siIsgXF0srVYd2asXTQqjJ2CIIgrjJcefJIkHogSNVHd1ZMZL1nJaGFlA7wWbJ55LLVZvcNxof7cqxr8d044NHE6MwKC5C1pPGUoQ4LNAbc+9uj4gg6ZpNSmpeCWE50S8oYzPYvj9uH4bNccBHu3LQuUWoYB93jw5DRJCfrFDEhoPnMG1gLLPRYekl/yEzD/9JPyu7z9T1R6xES0ICvM2eL6E80uAAb5SUV0v2s5Y8vNBAb7w6It5jQqgpZ4sgCOImx50niwShB3rVi3L2sS1RIyuvNE/HEg7S+VwsuWqrdtsbWvz3BgA/ZOaja8tQHMwpkrwuOQl6A4DX7+uA+zqL55OpqXkV6ONlV1fLMqdPyztRLmfOy2jAmO4tZI+TX1rJnLdleexeMQ1xF6OxYqsOycu+29ba4vvmjZEdAIjfqyl9oyXrmwlheUuLyqqxcNspj8klJs8WQRDETQ7JixN1HUeqOjpDMVKtUqjSPB1bLMOHbfOyTBwnG0InVKfK8vu8kmvouehnFJVVyV6XVgl6NTWvZiTFYvzt0Th89rJgPhqLx00KuRDtqPAApuOojTpQ237eWPb39sKKx7qgoKzSrm+k7tWguAj0jW2MtQdysTu7AFcra4RPZIEWNU1XY+A4qUeBAIDS0lIEBwejpKQEQUFBrm4OQRCE7vDhNYDwZNETftBuFqgWmnocWd7AUccWC31T8mwKtY2VZckJ8K1ntNtf73pYPHLXpXb8b8k4j6e+yFDcHrl7KPXuZJ1gL0tOwIiEZnafp58pxJhV+2X3n5nUBk8lxTKezRqx9rOyYVJP0VxSoXu1Iytf9Vi0hV8I3DNroNPfgUpsAzK2GCBjiyCImwFPqLN1sxsannCP5HD1PeTPn19SgaKyKoTV95XM81FzbL2urcbEoffiNNGJqZLJpmXbsi9exfKdp5naMCS+CVIyLyptuiYcMYlmNVyE2gJIG7VSdbaWpGbLnkPMYOHvv5znySDTPjmE2s9qLC55MAGN6/si/c8CALXhiT1bCYdy6pEzJ4SUwecoyNjSGTK2CIK4WXD1RFiKumBoaEEPD4ercZd76C7tkIPVQFA62VRreCjBAMBgsA//UoKWSbTtu6xry1D0e2unqpA/FuNP6N0JQNJYYjluSmYeHl8rXQtMD+OUb/+OrHx8KiDPL0agrxfKbMIAA3y8MKVvKyvhDrmFAy2IeQYdiRLbgAQyCIIgCDNaC5c6ipu96LIzCuc6Gne5h/zk1dXtYMFRSqF8ro6j4N8ak/pEm0UR1KA2FyklMw+9F6dhzKr9eOqLDIxZtR89F6Xi7o6RVu1jhaWAsNC7U07YA5DP5xsSH4mZMiGCSgsci7W/e3QYfhApgi2GraEFAOVVNViSmo2ur+4wP09qcuZYcXfxJjK2CIIgCLemLhgaWlFSC80dcZd7WGPiMHvTCcHvxNqhRgVQLxylFOplNGDusHZqmiRIfV8vq795Vbo5Q+PwwUNd7JTnwgKtVezEUDOJFjPqi8qqsWp3DpLiGtu1x1ZxUAw1xh8v7GF7TktVQzmiwgN1aZ/cWNbbICourzYvYDiqdEhogLfbizeRGiFBEATh1lDRZc+vhcZ6Dz/bm4PwBr4OC2FdnnYaxeXiog62Y8nV4YaOUgpNyczDwm2ndGkjACs1ubBAb8wd1s7cP5Z1nVhD+tReF4u8+46sS1ie3BkNG/j+o6xo4jDukwOyx1frQRHqAyXjWw+jm2Uss74/6vvWw9XK60zb8iUE3h7ViWl7W+RyxzxhiY08WwRBEIRb4+mGhh54ei001nuzcNspc9hX78Vpuob01Zg4rN6bw7TtpSvX3CLsUY8wNFvErksvLpdVY+r6o1b9Yxti51PPqPt1AeyemZe/O4nu0WHm9vSMaejwWmlaQrS11nLbfpwtdJb1/fFIL/n6X5bklVwDDFBV803OmCour3Zbjz4PGVsEQRCEW+OOhoazQ8ucVTjXUai5N3obNQdzipilysMDfd0i7BHQJwyNR01hX6Ww9o+e18XDatQXllVZTdAdYdTqiZb2bT9+AdM2CAts2N4rlly+yGA/JMY0UtD6WgquVopeg1bcfaGNwggJgiAIt8bdii67IrTMGYVzHYma4ql84dQF32VhUFyE5mtjnZCF+HsDBrhV6KrWMDQeR4oUWMLaP3pdF48So952PGgtmqwWVgVYNe1LyczDE+uPSp7f9l4N7xSJD3eJe4CHd4pEz5iGiAjyRX5pJfN1Nm7gh14xDQWvQSvu6tHnIWOLIAiCcAvEJh3uZGiIya/zXhhHyq+7ajKoB1L3UAo9jRrWCVmf2IYouMo2idx7usBp5RH4MDQt6OUBEJL7Vns+Pa6Lp3t0GMICvVFUJu/BFBoPeht/cihduFHSPt6LycqlK9dQY+Kw9Zi0J3nrsTw8P6Qd5g9vLytJD9gvhllew08n87B631nJ/Y0S5QOcvdCmFjK2CIIgCJcjN+lwB0NDTlFPTy+MGM6eDOqJ2D1kQQ8joXt0GCKC/JBfKn2sQ7mXkdy9JdMxl+88jW+O/OU2xq6cl0QvDwCLoaXn+VjxMhrw6oh4WW+OVMitnsafFGoXbljbp9SL2biBH9M+/OLHkPhIrHyoC2ZvOiEqOiO2GMZfA5+/J+ZJM6C2fMBHN773NI8+DxlbBEEQhEthnXS42tBwF1VEZ00GHYHtPSy4UsmkiqfHpN3LaMCY7i2wJPUPye3ySysBDsxhj87warIgtGAR4u+NiYlR5uKyasI51eBKj8PQjk0x5a9iyQm8qyfozli4UbJAwRuf3x+/oOjY/PO8/0wh1h7Ixe7sAitlytBAb7w6Il7yuZgzNA6dbgnFS1syUVRWZdUmfhGjc4tQj/To85CxRRAEQbgMpZMOVxoapIqoD5b3sMbE4eM9OU7Lx4sKD2DarqCskjns0VleTSnEFiyKK6qxJDUbq/fl4o2RHTAkPtJ8XY7CHTwOLBN4V+KMhRslCxT8vQqv78u0veV2XkYDEmPDkRgbju3H86z6vKisGgu3nYLRaJDs86EdIzE4XnwhzdULbVohY4sgCIJwGe7iLWLBHVURPR1n5+MpuYdKkvn5cTp/aya6tAhFRLC/0yaDLAqDfHFZ3vsmd11K8upC/L2tVB7dxeMgN4F3Jc5YuGHxYhoNwPIxFh5ZJcmUNqRk5mHqevX5rHILaZ7s0SdjiyAIgnAqlnkl2RevMu0jN+lgVfTSgrupItYVnJmPp/Qe8ivqS3b8juU7z8gef83+c1iz/xwA53lRWHNz+OKyg+IirDwFO7Ly8W3GBSsPUESwH5K7yYdcAsCKsV1gNBrczqABhCfoznhXyOHohRv+GofGR+CTvbmi2y0f0xlDO/4zPgvK2IRhbLdzh3xWd4aMLYIgCA/GHSYOShDKK2FBatLhLCl2d1JFrGs4K0xIzT30MhqQ2LoRk7FlSZ6TcrmUeD8svcSWIgUvDouz63sA+OLQOVnPSElFtdWE3Z1xRdkGIRy1cFNj4rA8LRur9+ZaeRttFf3ErlmtEehJEQquwKVFjXft2oV77rkHTZs2hcFgwLfffmv1PcdxmDdvHiIjI+Hv74+kpCRkZ2dbbVNUVIRx48YhKCgIISEheOyxx3D1qvVK6fHjx9GnTx/4+fmhefPmePPNNx19aQRBEA4nJTMPvRenYcyq/XjqiwyMWbUfvRen6VYEVm/4vBIlhpZcsV6xY+pdEJfHEYVYiVr4yf+IhGZmY0AONcWl1dxDuaLSYvDeJEcWP1bq/RAyzoT63rKQrhgmDpi6Xv/nzBEoeVc4umi5I4oop2TmoeurO7AkNduueDd3o/mPJkZhw6Se2DNroOQ4F0PsfUz5rNK41LNVVlaGTp064dFHH8XIkSPtvn/zzTfx3nvv4fPPP0d0dDTmzp2LwYMHIysrC35+tYNh3LhxyMvLw44dO1BdXY2JEydi8uTJWL9+PQCgtLQUd955J5KSkrBy5UqcOHECjz76KEJCQjB58mSnXi9BEIReuLLekxpY8kpskZt0uCp0xdOTtesKWrwUSu+h2jphgLoVfSUea36CzLqIYWmcyZ1nSHwkVoztjGkbjorWOgLcP0RMybtiR1a+U7xfeobPiv0e8PDX+ENmPl4cJm7EeRkNkkWNOQDJ3Zrbfe6osEhPi9wQw8BxnOOWWxRgMBiwefNm3HvvvQBqvVpNmzbFM888g2effRYAUFJSgiZNmuCzzz5DcnIyTp06hbi4OBw6dAi33XYbACAlJQVDhw7FX3/9haZNm+KDDz7Aiy++iPz8fPj4+AAAZs+ejW+//Ra//fYbU9tKS0sRHByMkpISBAUF6X/xBEEQCqgxcei9OE0yuT0i2A97Zg10mx+m9DOFGLNqv6J95CY4rMfcMKnnTRm6UpcRm1zyo90Riw1iIVosLEtOwIiEZkzbqjEiUzLzZAvM2r4XWM9TF54z1muYmdQGS1P/cPq40mJQyP0e2CJ1n7Yfz8MT6+WVKm3HCd8GubBIJb9J7hLyKYYS28ClYYRS5OTkID8/H0lJSebPgoOD0aNHD6SnpwMA0tPTERISYja0ACApKQlGoxEHDhwwb9O3b1+zoQUAgwcPxu+//47Lly8LnruyshKlpaVW/wiCINwFJfHx7gJr+Mi0ATFYlpwgGeqi9Jg3a+hKXUXOSwHoH7rHh+wKhWixwLqirzYsli8wGxLgLfi9rZdYyXnc6TlTG97H2rbVe3OcOq4AdeGzligtXizWF9uPX8C0DWwlAWzHid5hkc4OD3c0bmts5efnAwCaNGli9XmTJk3M3+Xn56Nx48ZW39erVw9hYWFW2wgdw/IctixatAjBwcHmf82b27tMCYIgXIU7TX5YYZ1sJrZuxDzpcKSil6NzNhyNp7dfCmcvNqjJNbREKufQEq1G5JD4SBx+aRBmJrVBiL+10WWZj6b0PO5S8kBLjipr26QMaXdcxAKUv+eF+iIlMw9PrJcOFbVEaJzolc/qisUUR0NqhALMmTMHTz/9tPnv0tJSMrgIgnAb3GXyowRHqG85StHL3cNX5PD09svhzMUGNbmGlhjAvqKvh6Kbl9GAp5JiMW1ga9HQNKXncYeSB1pzVFmuIdimXpgY7rSIBSh7zwsZ/vwYV4rQeNQjn7UuKhu6rWcrIiICAHDx4kWrzy9evGj+LiIiApcuXbL6/vr16ygqKrLaRugYluewxdfXF0FBQVb/CIIg3AU5ZTQ5BT9X4Aj1LUcpenly+Iqnt58FZy42KA3RsiQs0BsrxnZmNnD1NCKlQtOUnscRz5kS9PB0sFzDxMQopva40yIWoEwpU+g+aRnjgP14shx73aPDcDCnSNLDznvhNx/5C5/s/hMLvz+p6rzujNsaW9HR0YiIiMDPP/9s/qy0tBQHDhxAr169AAC9evVCcXExDh8+bN4mLS0NJpMJPXr0MG+za9cuVFf/s1qxY8cO3HrrrQgNDXXS1RAEQeiHqyc/anGEbLqex9Q6qXN16F5dDL8RwpmLDUpyDSfeHoUGfv8EDBWVVWPhtlPMBq6zjEg159H72VXyrOgVNip3DdMGxnrcIhbwz++B3FM9pW+04H3KL6nQdH6x8cQS9mm5zcwvj2HhtlPIyrui6bzuiEvDCK9evYrTp0+b/87JyUFGRgbCwsLQokULzJgxA6+++ipiY2PN0u9NmzY1Kxa2a9cOQ4YMwaRJk7By5UpUV1dj2rRpSE5ORtOmTQEAY8eOxYIFC/DYY49h1qxZyMzMxLJly7BkyRJXXDJBEIQu6Ckb7EwcIZuu1zG1hK+4Q+heXQy/EcKZxaVZJ3TeXl74bN8ZTaUYnBWup/Y8ej1nSp8VPT1+ctfgqUXLB8VFICTAG8Xl4mGQW4/l4fkh7azan5KZh4XbTqk6p9R4ZAn7BCApVy9Ffd96bmf0SuFSY+vXX3/FgAEDzH/zeVLjx4/HZ599hueffx5lZWWYPHkyiouL0bt3b6SkpJhrbAHAunXrMG3aNNxxxx0wGo24//778d5775m/Dw4Oxk8//YSpU6eia9euCA8Px7x586jGFkEQHo+n1nviw0zc7ZhqJ3XuUvPME4VT1OKsxQYWw6RJkC82HDynud6bs4xILefR+pypeVb09vhJXYPUuEru1gKV101IP1Podu/ZgzlFkoYWYL/QIlebSwqpccJa04zjONW5kG5StYoZt6mz5c5QnS2CIIi6j5p6Qu5U88yT6iHpVazUGUVP+UkpIGyYzEiKxZLUbNnjsPa7s7ykzvbGqn1WHFHDiaWt/LjKLSjDhoPnkF9aaf7e3QRntmScx1NfZMhux9d7U1qbyxap61dTU1ENrn6PKbENSI2QIAiCIKAuvMqdQvfcQTWOBT0n+Y7wktoi50WrvG5iOg6rR9FRHmtbw3RQXIRTPeNqnxVWTxxQO9HX41r4cZWSmYelqdlMnjhnGP5iKPX+qRHFmDusHcIb+Mpem7M8557koSdjiyAIgiCgLrzKnUL3HB2Gpsdk0l1CLpUiZQClnylkOoaShH69jUh3yClkFWIQelbkDF4Adp4ardfHGg43KC4CO7LyFfUv/yzll15D0dVKhAX6ICLYX7WBxi+0yBlQl8uqACh7H/GLNBMSo5na5izhChLIIAiCIAgPRGkukLvVPHNULpMek3Ulk1dX5MPIGZNiBpC7exSdYeDK9Z0SIQaxZ0XM4N2Rle+Q62P1xC1PO42lqX8wn1/oWeLR4uGdO6wdnlh/VHK7FzafQHCAN8ICfBQdX8kiDevzwHGcVWgmK65+ntRAxhZBEAThFFwZZqMEJWFc7jjR1jsMTa/JujuFXNqixZhU41F01rPAauA28PVGQVmlqrbI9Z0SIYYGfl64UFwhKkJha/A60oBn9f6s3psjef4XN2eioqoGEcH+uFxWhanrxfsiT4OBGBroK7tNcUU1xn18AKxdERHki/nD2ytqi5KwT6UCHe6uCikGCWQwQAIZBEEQ2nCHMCYevSe6cgIK7hoax4KeAiBKk/idhZgxoPT+sY5xZzwL/Bjfe/pvLN95RtG+Stoi13crxnbGwm2nVAkxWLZD7Jl1pCiMI4QejAaApcxdpMQzJdYXrM8XKzOT2mDawNaaFmlsx3lIgDcm3h5tPm5KZh5mbzohq6TI407CJEpsAzK2GCBjiyAIQj16TWb1aosjJrruZEyKocbI1HMy645qiXqrSbKE0zn6WZAKU2OBtS0sfRca6I2iMraJtNgxJveNxtZjeYLPVuV1k8MMeBYVxGB/bxRXqL8+KYSeA6F7GxHkizHdW6C6hsPynadtD6MYPd9bNSYOy9OysXpvrlU/8ecYFBeBxDfSkF8qPobCAn3w0rB2mnLaHAGpERIEQRBugTvl6Tgyd8Xda56pNQb1FABxx5BLNaGNUgaVlLCFM54FLbWTlLaFpe+0GFr8MT7clWP3Of/MzkiKZTpOeH35EDtbWMLhJiZGMcn+q4G5nl9ppa5teHtUJyTGhutyrB1Z+ZJqjjOS2ogaWkBtnxeWVSEi2N/l5Sq0YHR1AwiCIIi6i5LJrCORm+gCtZPLGpYYHxH4ifaIhGboFdPQrQytf609Yncf+AlPSmae6L56CoDwk1fgn8kqj6tyMZQakymZeei9OA1jVu3HU19kYMyq/ei9OE2yD3kc/SxIjXGlsLTFldLb/DVuOHgOEUF+duPJlme+zGC6R7bwgjMRwdbjOyLYDx881AXTBsYiMlj+/GqwfKb0vLdyFJQpF60QguWdu3qfvSEthCfJvAtBxhZBEAThMNxFGt1djD5no9XI5L1RYpNJA2o9ZKzeKLnJq7NDLpUYk1qMVsDxz4Ka2kla2sLad2GBPg4xRjjUenXGdG8BwN6AtyS/tNLqHtWYOKSfKcSWjPNIP1MoucgyJD4Se2YNxIZJPbEsOQEbJvXEnlkDMSQ+UnIBQQu2z5Qj7q0YBVcqmfpFDpZ3LmuulifJvAtBYYQEQRCEw3AXaXR3MfqcjVYFQEfU7nKnkEvW0MauLUPR762dmkIAHf0s7MjKV7WfFFJtYe27ucPiMHW9/fjRi6jwAHzwUBfM35olG5K24LssmEycnWiHXEitVHioWLkFLQzvFKmqnp9WjAZYSfQL9Qtr7idrm0P8vVFSUS05hkwmDlsyzrtdeDYr5NkiCIIgHIbenhG1uIvR52z0MDId4Y1yl5BL1tDGw2cva/aMOvJZqDFx+DbjguL9xGBpC2vfDe0oPH70uuUFVyoxKC4C7zzQSXbbvJJreGL9UWbvJKsHzNL7teTBBIQFequ/IABf/vqX1bmc9V6yvTzbflESRsva5omJUaJGOAegoroG4z45oDhs150gzxZBEAThMBzhGVGDO4ozOAO9jEx38kbJoVR1kaUQ9JaM80znljJa9XoWhK7vYE4RisqqmNooh5K2sBbRFho/cjWnWFm47RQ+3pODwe2bqD6GkHdSqaiMpffL39soWA6Clcvl1dj/ZyESW9cKVci9v5RiMACWWuRikvSW/WIyQfB+iQkMsb5zr1ZKhxLahhrqWYzbWZD0OwMk/U4QBKENd5BGr8v1sMRgka9WIm3u7mgZZ1JGmp6y9VraKLbvXfER+HRvrmz7WFDzXKqtXSclUx8Z7IfhnSLx0Q01QqnJqp4hihsm9URJRZVmiX6lNaRsmTagNZ4dfKvV8bQYcDyBvl749cVByPhfMS5duYaCK5VWoYNihAX6iBr0Yu8RuXfu//WJxqrdbCIZLOdzJlRnS2fI2CIIgtCO3sWE1eAORp+zcZSR6Q730xJH1rDS22hV03dS16fHRG7agBgktm7k9PvI90V+6TUUXa1EWKCPVU0lrXXDlLJkdCe8+ePvmmuv1Zg4yRpSckwbEINnB7e1+kyPvlhp8xzoWQyZtTZY5I1cvpe2nNBUHsCZNflsoTpbBEEQhNshlWTuLDwpHE4vWEO9lOBuRquja1jpHQ6r9FlguT6DSCgYKxVVNS55PuX6gn9mP9ubw+SB0UpRWZUmURke3oBUS69W9rWuLN9fO7LyJb2ZIf71UFxx3fx3RJAv5g9vb/d86pkPZhtGW2PiEOzvg+cH34qisiqE1fdFRJBl6Ku2OmyeImhExhZBEARxU+EORp+z0dPIdGRxaLVoVV1kwRFGKyss18fHKan1dG3OOI8Xhjm3zhkrXkYDwhsoL0xsi1huEvCPxyqMsQCy3ERfiyEQ7F8PPUXGqZfRgO7RYXj6ywzR/Q0A/H3qYcXYrigoq5R83ru2DJXsF8A+x0sMS8NNakHGy2jQxVDyFEEjMrYIgiAI4iZADyPT0R4ktThL2l/KaNUSVim3L2u7J94ehS3HLljl1kQG++HKteu4WnldYk+gqKzayhhlvR5nhZMqmViLeR8n9YkWzAGz9E4G+/vo0h4thsCjidGSfci6uGA0GjAioZnkuQ6fvSzrEeU4ICzQG5fLhCXaASAkwNssMMSyIKOlfzxN0IiMLYIgCIIgmHCGB0kNzpT2FzJatx/Pw0tbMu2MHC2iF5b7srZ7y7HzVqFZYYHemDusHX49e5lJQIM36ljDRJ0ZTqqkrtfCbeLex84tQiW9kzUmThflUi0KglHhgZLf67m4wHqs+xKa4ROJMVRcXo0dWfkYFBfBtCDz3+cGIMTfG8UVykIJnaliqxdUZ4sgCIKo07DWyiHkcdfi0K6s57ZoexaeWH/ETqktT6R2kyW8B0Cu7pPc9fHY5sBcLqvG1PVHEezPVvcp++JVLEvNZmoTa9v1QkldL77m1bLkBGyY1BN7Zg20kqGX+p71PHITfanjyKGX14xlO9ZjDWzbBCEB4uOIN6L2nylkWpA5fPYyJiZGM53bEi31/VwFebYIgiCIOou7CTl4Ou5aHNpV9dy2H7+AD3eJS1dzEA+rVBqSKXV9UkVhDQA2HDyHiCA/WcGG5TtPS14L36aBbZsoarteoYaseXNyIbMsohx65OeJHUcMvbxmSsLsWI8Fg33NK0t4Iyr9zwLZcwLA3tMFiGlcH/V9vXC1skZwG/7cb4/qJJt75s6QsUUQBEHUSdxRyMHTcXVxaKlJu7MFLGpMHF7akim7nVhYpdKQTLHrCwv0QaFEQWMOQH5pJWYmtcHS1D/Mn6mBb9PC708yt72kokrXBQ8tYi9KjD7b84TX9wU4oKCsEulnCpnPOSQ+EqYbY0VKfU+N10yvAtlD4yMEQwQtj1VwtVLyWPZ7SSNl2NueOzHWXpnRkyBjiyAIgqhzuKuQgyvRw7vgKg8SwOaldKa0vxLpaqGwSjUhmULXl19SgZlfHpM9TlR4gCIvixRr9p9j2i71hjy53gseasReth+/YGfwyBl9/HlSMvPw7FfHVBeinrr+qKyBq5fXLCzQByMSmiLY3wc1Jk507As9T7aqhJZtSj9TyNSuXjEN8c2Rv1TlqlkSHOCNN0Z2qBMLYmRsEQRBEHUOdxVycBV6hlO6QgJdiZfSWdL+SvLShMIq1YZk2l4f6yS4cQM/9IppaDbW9p7+G8t3nmHaVy2bM867xYLHou1ZguGeeQxGnxYPudSiD0+IvzdWjOuCnq0aKu4HS+M7NSsfmzPOo7CsCp/uzcWne3NFn3Gxa+Ll3R9NjMKguAirhQpWr3bPVg1FF2SUUCIRsuhpkEAGQRAE4TboJWbhrkIOrsARQgZyIgN6IuelBGon7c4WPmE1lhoG+giGVeol6qH0OLyxFtukAVP71WBA7XVLef4sFzwcyfbjeUx5dULjR+vYk1v0AYDiimoYDQbVBqeX0YCSiloDy7a/80qu4fG1R7D9+D/POIvX/4fMfDuPsJzgBwdg7o06bfyCTESwttxNVzzXjoCMLYIgCMItSMnMQ+/FaRizaj+e+iIDY1btR+/FaaqMAXcVcnC2MqIjDRV+0j4ioRl6xShflWdFiZfSmfBGjhwLR8QL9o0zVO+kjuPosT8ioSnTdo5c8FCaV2eL1rHnjEUfFu/ZtA1HsP34BQDarknOiFq4Lcv8vrZdkJk2IIb5muTa4WmQsUUQBEG4HL29L66UAhdDT2OSFXc1VJTgrl5K3siRMoWm9I3G0I7i3j6xyatSeWs1x2GVk1dDcIC3bsWBbVGyYFGbVycuHmKJXnl1ljhj0YfFe2bigCfWH0VKZp7maxoSH4m7Rca0bbkDywWZxNaNmM7L2g5PgnK2CIIgCJfiCDELvdW6tIotiOVI8GE+/x7bRXJSrhZ3NVSU4K5eSkBKpMAbr46Ix9CO8t4dvUQ9lB7H8hkR4+4OTTCofSQKrlRi4bZTzG0pKa/G0tQ/EBLgjZLyat2UK5XmHspJ3VuiZ14djzPUO5U8uwu+y8LbD3Ri2lbsmrYfz8Oq3crLHfB9oVScxRXPtd6QsUUQBEG4FEeJWWgVctBLVII1zGc5OjNNzpXgzoYKK66Wm5dDD2NJL1EPpccZEh+JyX2jRXOavj9xEc1CA/D8kHb4eE8Os8Icv0hisPi/VuVKNUIVRYxy5UF+9STz6tSOPWeodyp5dvNKrgEcVF+TkrDMz/bmYEJitPna+L54XMK4tyU0wNtlz7WeUBghQRAE4VIc6X1RK+SgZ1ij0jAfPXHHcEql6JXbpBU+fG3z0fP4ZPef2HzkL3MYm7Py1/SmxsRh469/SW7z4a4c/JiZLymOIAQH4HJ5NWYmxWoOk1SbexgWyBbKOLJLM4fl1ekVKioGa+4gT0FZpazQRXK3FoL7KgnLXLjtlF2Y9JD4SKx8qAtCAryZjuH50hi1kGeLIAiCUIVeIXaO9r7IrfZbXkd4fV+YajjM/uaEbmGNSsN89JLCVlKwVC/jQK8xYYsr5OYtEfJy8mgp0OtqlqedRjGDxPbcLZk4+GKSqjpdUeGB2DNroKZxodb7HRHsz3T8we3l8+q0jD1HFmJW6jHiSwBI3cslqX/gi0Pn7K5P6YKXkNeR74tZXx/D10fOS+5fXF5dJ8pzkLFFEARBKEbPuk2uDBOTmkSLoTSsUWmYjx6TC6UFS/VAyZhQY5Q5s2CxJWLhazwstZrckRoTh9V7xXNvLCksq8LBnCKre8Bap6txAz/NYZJqvd8seUIsnl1XhYqyPlND4iPx77FdMG3DEYjphdi+R/lrWp6WjSWp2XbbCxlKShe8xBanvIwG9GnTSNbYAtw7n5QVMrYIgiAIRWgp8imE0rwGR4tWsLIjK59p8qQ0MVzr5EJNwVKtKBkTWgx1ZxUs5mHJtwPERQG0nJdljCt9Fiy3L7hSieIK9sKx/Ljk70H36DB8c+S8UxZJtBSA5t8tYm1k9ew6e+wpfc8O7RiJ5eiMJ9YftTuWlBf7i0P/Ezy/kKGkRuRCbHGqLuSTskLGFkEQBMGMI5QDAfZQHWeKVsjx6d5cdI8OYzIQlIb5qIW1YOmLw/QNHWQdEzuy8nU11B0NS74djyO9kkJjXOmzoMaLa4mUIeMo8QceLd5vsXeLO4d/qn3PDu3YFCuNBuaQR6XhmXLGqxRiXkd3Fb7REzK2CIIgCGYcpRwIyIfq6OlRUzKJFkOJYakmzEcNjrw/Ws+5/0yhQwx1R6LUy8jq7RSDdYwrfRa0enHFQu2clUun1bBzVQiqWrQ8x0quVUl4Ju8VrbxuwoykNthw8JwmaX1nGuuuhowtgiAIN8RRQgNacXTdJrFQHb09anrkASg1XNSG+SjBFXW1WI+V/meB0w1BrSj1Mn6bcUG115B1jA9s20TRs1Bj4jB/60nVhpZcqJ2zDBmthp2zwwC1oPU5Zr1W1vGdW1CO3ovTrPs9yBf3dIzAd8fzJfdV43V0lvCNsyBjiyAIws3QU3xCb1wVZ6+3x0bP9ikxXJSG+SjFFfeH/Vhsk293SohXmqNSdENIQs2knnWMr0nPVfQsLE87jfxStnpTthgMwOQ+0W5jyHiah0otznqOu0eHISTAW1KRMsDHC0tT/7Az1i+WVsoaWjzuYKy7EjK2CIIg3Ai9xSf0xlVx9np7bOSuQwlKJzyOnFy44v7ITdj4c/aKaYjlO0/LHk/rBFJPr7CaQqxyY1Csfaxj92xROXM7UjLzsCT1D6btheA44KNdOejcItTlCz08nuShYsV2THRtGar7cyw07gCg+rpJcr+KqhrJ+mZy3N+lGQbFRUhuUxfvqSVkbBEEQbgJjhKf0BNXxdnrvdIrdR1KCPH3honjzIVtWXHU5MIV92dHVr7kyjh345w9WzV0uCGoxissZ5wNiY/EU3fEYtnP9vLYQkiNQan2sY7dlmEBTNuFB/ri2a+PMW0rh6vfOzxqDWl3DcsGxMfE8E6R+GhXji7Psdg5HrytOcqqaiT31boY9fWR89h7ptAtIjNcBRlbBEEQboIrxA3U4Io4e0d4bMSuwxLeYyNmkBVXVGPcxwfcJswTcO794RcIpDAYAJPJ8YagGq8wi3GWkpmHjSLy2LZI1WySa9+KsZ2ZxvjDvaLw8Z4c2e1ggGYRGMB93jtC9yos0Bv3JTRDkkQpA3cOy5YaEx/tykFSXGP8fOqSuWwDUPs8TWII7WQ5x1LGBQStSD2D7mwI64WB4zitRmudp7S0FMHBwSgpKUFQUJCrm0MQRB1lS8Z5PPVFhux2y5ITMCKhmeMbJIOzfyT5SQMgPFFXG2JpeR3h9X0BDigoqzRf046sfFnJbK1tcATOuD/pZwoxZtV+pm1XWijp6T35rTFxdgn8lvAGyJ5ZA2XVLS3vJQBFKn4rRe4/a/vmDovD1PXyY5zlWaioqsHML/XxbAGufe+wqCmKyeNL3eMVYzsjNNDXJRN9uTEhhQFs7xot59AbsWfQXQ1hOZTYBuTZIgiCcBM8rcijs+PsHeWxkbsOPsdq/5lCTF1/RLAQrLuEeVrijPujRMyC7xtH5Kwp9QqzhOzO33oSgIHJ0AoN8MaikR1ExyBr+0IDfZjGOMuz8MnuPxlaDvSNDceu7ALZ7Rz93hFbHGCtiWfrPZG7xwAwbcNRq1IMzpzoay0/wfKu0aPEhV7YPoPunp+sJ2RsEQRBuAk3U5FHtbhKucrLaIDRaBA0tHjcJdxKDEd4unILypi3tS2OqmcfKRVQYTF+WBX8XhzaDo/2jpbsSyXtG5HQjGmMyz0LYfV9mc55b0IzZF+66tL3jpSHI9jfh8lgsF3wYDE0bGveOXOir0V1k/Vdo4eyp089I6pkRDSUwNfscvf8ZD0hY4sgCMJNuJmKPGrBVcpVrqhhpReOCt3bcPCcon0c1TdKvcJ6tqNxkK/sM6m0faxjXGq7iCC2c0aG+Dv9vWNp+OcWlAtKi/OGz8TEKObjWhohau6xIyb6YoscengK5a5Rj3ME+Hjpamw1buDnMfnJekHGFkEQhBtxsxR59EQcFebp6NwqR4XrHMwpUly/yVGhaEq9ws6uM6a0fXqMCZYaYbygh5fR4LT3jpDhLwTfT1syLig+B99vatBzoi+1yDEoLkJz+Qm5a2Qdd3OHtcMr32dZPc8RQb7o3boRvj7yl8rWCZ+re3QYvj/Odk95Y9LTRTTI2CIIgnAzboYij56II8I8HZ0g7shwHSWeA0eHoslJ+XMA5g77xzvDci+bBPkCMOBiqfb7rcRrrdeYsDwnZM4JOOe9wyJ0YUthWRXq+3rhaqW0RLklfNu1GDNaJ/osixxzh7XDE+uPKm4b69hjHXdD4iMxOD7SwttYhg0Hz+lmaOHGuYd3ilTk1WvcwM+jRTR4jK5uAEEQBEF4AvzEBfhnosKjtvbNv9YesVvh5ydjKZl5GlusTDhCKUo9B44OgeW9whHBwu1auC3L3Kcs93L+8PaYP1y/+y3WvohgPzuVQb3GBMs5LeHDEkckNDPn1ukFq9CFEKyGlgHW3jqxe8wCP9HvvTgNY1btx1NfZGDMqv3ovThN9j6wiHPM3nQCr3x/SnD/yGA/TOkbDYNA25WOPdYxwN9733pGLE3NVuy15tua1K6x6DYf7cpBSmae2RAWaz1/Hy+XVTr8HekMSPqdAZJ+JwjCmdSFlby6jB73R41UuRocWU6AvwY5z4HeY1fO07D9+AVBb4GQPD9rnS09n0cp1T1HjQl3CMNSUiZADWLlF1jDFi0JC/TGiE5NsXrfWebzWKL1Wv89tguGdtS3TALLGNAiFR8Z7Ie7O0bikz05dsIjPJZjeEdWvqTXdcXYLli4Tfy+6fWOVAtJvxMEQXgoN5McrqeiR7iVsxLEHVlOQC50DwBmJsVi2sBY3SZDcpPPGhOHhduEvQVCYZMs91Lv8DoxUQtHjglnisqITeodLRwjll9mLt3wZyGmrhMu3WBLUVm1oKEFsIXfar3WF749gWB/bwyKi9Bt7LGMASVS8fwz/2hiFAbFReByWaVsSKTlGBbLTw69Uag6r6SizohokLFFEAThJtxscriejNbJq97KhmITXEeXExCbMLGsviv1trAsRMjJhAtN0FjupaONlRoTh72n5WtdAfopKTrC25WSmYf5W7OQX2ohshHkh/nD4xxap2vagNaYOaiNaPu9jAYYDdKlG5QgN9HXeq3F5dUY98kBVR5zpffUcp/si1eY2xhhs8jRe3Ea8778GLZcyNiRlY9vMy6gqKwKn+zNVXwsd4aMLYIgCDfhZpPDlcMdQp8chZ4eJzlvj6NlvdV4fpSGR7HkwMzfehKzhrRlarOrJ2jW0udlWH/gLC5eqWLaVw+jxRGhyimZeXj8RliYJfml1/D42iP499gumtX3xKntT6lx54h7LnZMreIcPEoiGtTcUzUhlgAwd1g7TEj8p7ac0uLJlmPYy2hASUUVVu/NVdVXji62rQdkbBEEQbgJnlzHSW/qet6aXh4n1rBTR8t6K/H8qAmVZZnM5ZdW4stDbOpprpygqZ3g6qXo6IhQ5RoTh9mbTkhu8+K3J/DavfGYuv6oaNipEAYDIKcusHznGSzfeUbyHeGIey50TN6QHhofochDIwRrRIPUPX187RHMTIpFVHig1UKIGmVIAAgJ8LYytABlv0mRNmNYrXCKM4pt6wUZWwRBEG6CI/NrPImbIW9NjwLWSsJO3aWcAIuHSmhiyTqZS88plPze1RM0tRNcvbyQrCp5DXy90VOBGuH+PwtRXC4done5vBrBAT6Chn9IgDcAWB0jMtgPyd2aY0lqNlMbAOl3RPfoMIQFeqOoTJ9QQlujARA2pI0GiApGsCAU0WDpGQ2v74v5W09K3lPLPoy8UVdr4bZTqjxJxeXV2JGVb9W/Sn6TbMewUq8Y4Lhi246CjC2CIAg3wdH5NZ7AzZS3ptXjpDTs1JkiCWKwTKyEQmX1WmDgoGyCpmcoqxbpc728kCz9ryZfKP2MtJFrud2zg28VNPz59ll+xlr8lkfqHeFlNOC+hGaavU08tuNIzJDmvXKPJkYhwKcelu88rep8/IKDWs8oT37JNVW1vXiE+vdyWZWsUWk0AMvHdLYbT2oiNRxRbNuRkLFFEAThJujh7fB0bra8NS0eJ08MO2Vty46sfKv7yy9EqJ1g8sxMimWeoOkdyqpmBR8AEmMaYtRtzRHs74MaE6fp+U/NymfeVspLZGuEmjgT41Fr32pihr/tZ2qMbKl3RFKc9tA+wH4csSwS/ZCZj7cf6KTa2OLrfqnxjNq2Rwu2/ZuSmYep6+XbtHxMrZy9Laz3+OGeLWAwGNAyLAAP94qCTz3PKRVMxhZBEIQb4Yz8GnfGEw0IrSj1OPETXVblMHcKO2Vty5aMC3hx2D8LC/xChJAAgxKiwgOZtnNEKKvaMbv3TCH23vAcaTH2UjLzFBkaYl4iISM00NeL6Zi9WoUraLE2oQmh/tbDaI8M9sO0gbFWn7EuEplqOMVhhXxEQ9eWoej31k4HiIuo49KVa0zeWt6jJWRoAWz32GgA1uw/Z/774z05HvV76DlmIUEQxE3CkPhI7Jk1EBsm9cSy5ARsmNQTe2YN9JgfFi1Q3po0KZl56L04DWNW7cfynWcktzVAOK/ElfB5M3IUllXhYE6R1WdD4iMxMylWZA82WMYNa15ZjcJEHD3GLG/spWTmKdqPvyalWHoxgH+MUFvDoqyyRvZYIQG1eWBK4I1s4B/vPitC/W15PLXMHWYfXcBqSB/ILVRsaNWesx3WpOdq9uzqSeMGfkzeWhMHhAb6in7Pco9t+0ztc+AqyNgiCIJwQ3hvx4iEZuZ8m5sBfpVT7Grd0YBwFmITXSHcNeyUz5thQWgCO21gLCKClBstluOmxsQh/UwhtmScR/qZQjujSUkoqxLkxjYLao09tSGMPKxeDCneGNlB1Vjkvf0Rwez3XeodMSQ+Eisf6mIW5VBKaKCP3WfshrSy648I9sPkvtFYuO2UaLFurdi2SK6Fls+SXpEIYvdYbLhoWfRwBRRGSBAEUQfx1BpVlLcmjNKJrjuHnbLmzYh5JuYPrx0fAFv+ieW42ZGVL5uH5ahQVr1CIXlj79M9OWgc5Gv1fIs991rDblm9GEI0aeCDsT1aovK6CelnClW9i2xzG1Oz8vHdcfH8s+GdIiXPwR9vedpprN6bo6jYsVR4olQoXGiAN3pEh2H5TvlzTO0fg96xjXC5rIopH0oNtaqEcVi4zT5kfXinSHy0KweA9DtYz0gE23tccKVS0sD0pPxdMrYIgiDqGJ5eo+pmz1sTgnWiO21AayS2Dndr45o1R+NyWaXgd2LjI/LGJHHrsTzBcQOAKQ/LU0JZX9v+z0RU7Nr55z63oFzVOSwVUJUqA04bEANvLy9sOHjOTnpczXPMe/trTBze+OE3yW23HsvD80PaST4DXkYDnkqKxbSBrXEwpwh7TxcwiVdIhSdKGdKXy6vx61k2b+jtMbXPcO/FaQ7L0RreKRJDO0ZicLywQE/nFqGy72C9FXQt81e3ZJxn2scT8nfJ2CIIgqhD1JUaVe5SF8pdYJ1QxDap7/arvJbeSzFMHDB1/VF8YDQIjlep8fH8kHaCsuJiE1dbIQjWCWTXlqFIP1PIPD5Z8qZCArwxtX9rK0OKhbySa/jwhifCEr6orZqQObVeDJ7yqhqs3ntG93eR2vIBYvAT/O7RYfjmyF+qDYdBcREICfAWrTdmAPD5vrOy7QGAgrJKzaGfcny0KwedW4RiSHykYD8NiY/EwLZNsCY9F2eLygVVAKUiEQDlpRYs8ZRFDxbcOmerpqYGc+fORXR0NPz9/RETE4OFCxeCsyglznEc5s2bh8jISPj7+yMpKQnZ2dYF8IqKijBu3DgEBQUhJCQEjz32GK5eversyyEIgnAojkrsdxU3a96aEHVp4gHUTuRWjO0impPBIzVexcaH0OdK8rCkEvb5v4d3ikS/t3ZizKr9eOqLDIxZtR+9F6dJJuyz1riKiwzSnNvFw/ecXMFhwF5RMCLYz8og4o1QVr7NuOCQd5GjwzwB8fsuZTgczCmS7GcOYA5XLLhSifxSx3tsbO+BZT7jstRs9H1zJxZuO4X/pJ/Fwm2n0O+tnXZjnPc0BwsY9Grz4oDa8Sa1vyfl77q1sbV48WJ88MEHWL58OU6dOoXFixfjzTffxPvvv2/e5s0338R7772HlStX4sCBAwgMDMTgwYNx7do/g3TcuHE4efIkduzYge+//x67du3C5MmTXXFJBEEQDsNRif2EcuREGJRSF4VDQgN9JJXZ9ByvOxjrS/ETdLGEfV6w4KNdOXbPmpxCGuvkv6CsUrNinhpevbeDpAIqb4ywCCiEBXqjqKxKdBst99aRCw9S913OE8d6f0P8vWX7cOG2U5i3JZPpeGoRUprklU6f+iIDS1L/sDP4pMZ4iYChWVJerVo1cEdWvqzx6in5u24dRrhv3z6MGDECw4YNAwBERUVhw4YNOHjwIIBar9bSpUvx0ksvYcSIEQCA//znP2jSpAm+/fZbJCcn49SpU0hJScGhQ4dw2223AQDef/99DB06FG+//TaaNm3qmosjCILQmZuxRpU74oicubooHOKs8ZqSmYdPGetLWU7QhUIVpWodidWlEjq2XBt6xTTEBw91wexvTigSb9BCRJCfbNgdb4zM3nRCcCLMX/F9Cc2YRFDU3Fu984RsURvCzHp/JyZGY2nqH4Jhd5ZcuXadvdEauHTlGnOxZKExzlLQWeyZEIMl5DY0wBuD4iKYjudq3Nqzdfvtt+Pnn3/GH3/8AQA4duwY9uzZg7vuugsAkJOTg/z8fCQlJZn3CQ4ORo8ePZCeng4ASE9PR0hIiNnQAoCkpCQYjUYcOHBA8LyVlZUoLS21+kcQBOHu1LVQM09ETJ5da12YGhOHYH8fPJoYhVCbOlUsq+7uiDPGq5L6UkKeQduQxMNnLzN5j/ffKEJsiVLvJB9q6WiUekWHxEfi8EuDMDMpFiH+wmMxiXESrObeag33Yz2H0hBm1vs7bWBrxVL2jiQswEeR0qmtR8wRERUsIbeXy6s9JkrDrT1bs2fPRmlpKdq2bQsvLy/U1NTgtddew7hx4wAA+fm1YQFNmjSx2q9Jkybm7/Lz89G4cWOr7+vVq4ewsDDzNrYsWrQICxYs0PtyCIIgHIqjV3wJaRyxwgsIe8rCAn1wb0JTs6CDJ3m0eJwxXpWIDMQ3C5IVuNh7+m+mY01dfwRv3N9BMAxPzDvJAbjrhjIcf097xjSUVW5kwWAAOA66eUVrlfzaYNrAWBzMKUJ+6TUUXa1EWKAPgv190LVlqOJ7q6RchSMUS7WWy1Difea9Z5/tzWGqn8XfP1ZC/L2ZPaJPfnEUlxly+mzhvZKO8FDXtSgNtza2vvzyS6xbtw7r169H+/btkZGRgRkzZqBp06YYP368w847Z84cPP300+a/S0tL0bx5c4edjyAIQg+Uhpp5ai0ud0XJCi+rYqBYeM/lsiqs3pvr0ffMEaGRtmNaicjAjqxLWLQ9C3OG2udLCRm8UhRXVAsq7okZCfxk+tO9ufh0b65V2KmU2hsrHAfMTIrFF4f+p2s5BS+jASUVVXgz5TdBGf6PduUw3dvtx/Pw0pZMqzwvudBbPRVL9Qr9VWIEehkNOF9cwXRcjgMe7tkCa/afY9p+xbguMBoM2JGVj0/35kqOHTWGFvCPV9IRHuq6FqXh1sbWc889h9mzZyM5ORkA0KFDB5w9exaLFi3C+PHjERFR66a+ePEiIiP/GcAXL15EQkICACAiIgKXLl2yOu7169dRVFRk3t8WX19f+Pr6OuCKCIIg2FBrCLH+2Ht6LS53RO/VWEd5ytwJPT0Uwh5AZWpoq3bn4Jk721rJW7PmswghdH8sjYTUrHx8sjfXTijEVh5dqI+UEhUeiD2zBuq6wCJVauKjXTmY3DdatO4Zf28Xbc8SlK3PE5GIZ303sm6nd7kMViOwxsTh2wz22mUGA9t9CvH3Rs9WDa0k7edvzdJN3ZD3SppMHLZknEd4fV9EBPniYmmlbh7quhal4dbGVnl5OYxG67QyLy8vmEwmAEB0dDQiIiLw888/m42r0tJSHDhwAP/6178AAL169UJxcTEOHz6Mrl27AgDS0tJgMpnQo0cP510MQRAEI1oNIbkf+7pSi8vd0Hs11hGeMndEDw+F2JguKlO2am/igDXpuXisTysA0gavHFL3x8toQPfoMDz9ZYbovpbGtNKwMyEaN/CzKhqrlarrJryw+YTkYsDWY3lIe6Y/1h84K1irafvxC4KGluVxLA1W1ncj63aOWtBg6eeDOUWSio22tAwLYNpuYmKUnXHfwNcb4z4R1ilQAu8hq6iusTpeSIC3ub+Eam0ld1MWHVbXBIHcWiDjnnvuwWuvvYZt27YhNzcXmzdvxrvvvov77rsPQK2VP2PGDLz66qvYunUrTpw4gUceeQRNmzbFvffeCwBo164dhgwZgkmTJuHgwYPYu3cvpk2bhuTkZFIiJAjC7dBLYEEswdvRtbj0ljz3JPSWZ69reQtSaKmppsUgEuJsUbn5/3oUlhW7P0qFBbyMBoQ3UB5144iyACmZeei56GdJY5Zvf+LinwVrNdWYOLzEIG/O9wHru1HJO9SV5TKUPLeRwX54uFeUbP210ABvTBsYa/d5QVmlihbaE3CjFputEiUv+y5UawsAlqRmy9ahs0WLDL+74daerffffx9z587FE088gUuXLqFp06aYMmUK5s2bZ97m+eefR1lZGSZPnozi4mL07t0bKSkp8PP75+asW7cO06ZNwx133AGj0Yj7778f7733nisuiSAIQhRnhI050ltys4cm6r0aW9fyFrQgFRLGahAF+HihvKpGdjtLD4IehqzY/VFjTCu91/xIS+7WAt8fv2DVd2pDlZWGVdoaZLzRMyMpltnzmF96DW+m/Cb7bhzYtomid6ieCxpK+1PJvXz5njj41DNK5u8ZACwa2UHwnHq9I8orhZ8fvm/9vb0w4Y4oLP05224b/r6vGNsFoYE+zEIoeuXluRK3NrYaNGiApUuXYunSpaLbGAwGvPLKK3jllVdEtwkLC8P69esd0EKCIAj9cEbYmKO8JRSaWIueOUh1KW9BixiLnBHPOlZfGd4ez319XNJIMBqAh3tFmf/WMkmVuz9qjGm5MWELH961JPUP82e8eIVtLhXLwogeXkR+Yr6asfYZABRdrWR6N65Jz2WW5jcaDci+eJXp/HL3Ss1CE8u9NBqA6QNbo/K6CelnCjEoLkLw/aLHuViQ2pfv2//sPyu577QNR6xyFEP8vTExMRrTBrYGAMH3hCeHSQNubmwRBEHcTDgjbMwR3pKbQchBCXqtxtaVvAUtHk8WI551rJ4vrsDkvtGSOUKT+kRbiWOonaSy3B/+2LL1hCzyeljGxIykNogKD0BuQRmWpNp7GPJKrgn2AcvCiB5hlbjRblZp8oaBPggL9GHa1jIEVIqp648wnZ9lQUPtQpPUveQJ8vPGsp9Pm//mnxulQics59ILuTw028jy4opqLEn9Ax/uOgOfekarEMW6Ehnh1jlbBEEQNxPOCBvTO68IcG3eg7uiJQfJEk/PW9CSg8iaX8jXdJLr4SWp2ejcIhRT+kbD9nYYDcCUvtF2su9yBXQNqN0vUsX98TIaMHdYO5lWAwu3WedQyo2Jp5JicXfHpvji0P9kj20JS86m3vmBtkWRhVg4Ih4Rwf5Mx2seyiYiwWpoAdIGs9YcWLF7GXoj98m2nfxzsyMrX/H7Rexc7kJ5VY1dLpjWYvDuAnm2CIIg3ARnhI05wltyMwk5uAJPzVvQ6vFkNeIPn72Ml++Jw+Nrj0i2hz/fnlkD8cydbbEmPVdQIc8WltDQ54e0U3V/QgPlBS+EQoflxoRaD5RcqHJ4fTaBDj9vI65Vm2S3m5gYjaWpf4h6Wqb0jcbQjpGoMXFMHsaPd59hzs2TIzTQG6+OiMeQ+EjRMFg9Qr9t72V4fV88w6hSqfQdYHsu3vvJ6u0y3qgHJ/b7FBrorVgBVIq6EhlBxhZBEISb4KywMT3zigAScnAGnpi3oHUiqsSI9xUxlKTOx8u7syBn3Ki9P1oWKqTOqXVhw3Z/3tjYc/pvpv2vVZsQEuCNkvJqyYWjaQNb49aI+oL10V4dEY+hHWtVo1nD4C5eYZdSl6OorBoLt53Csb+KRfPbKq/LG5SA/P2wvJfpZwqRXyquHmg7jpXmQ9qOm1sjGsjWcOOPNqlPtGSh6ldHxOOFbzPtPFRaqAslLsjYIgiCcCP0NoSkzqOXt6QuCTk4Gi1CEZ6GVo8nq3EeHuiLZ78+pnu7bGE1qJTcY0ctVGhd2LDcXyjnjgV+Qi63cMT6LuLfjXoW6JVDLr9tRlIbpuMouR9Knhs9FGDtvV3l2HDwnFUfW/7+dG4RKvr7NCguAi98Ky/nrwZPjowgY4sgCMLNcFbYmF7ekroi5OBobjZpfK2GBIs4RUiAN2CAIkPAkR5WpffYEQsVNSYOJhOHEH9vZhEKsfMplXm35HJ5NWYmxeKLQ/+TXThifRfpWaBXC7wR+cWhc4gI8sXF0krm+ydnjIczhJYCwJ9/X8V7P5/WRQHWtv+nDWwt2kap36f0M4W6erUs8eTICDK2CIIg3BBPCxtzlkfOU7lZpPEtJ5Lh9X0VT0Qt4Y14qVys4vJq/HzqInP7LMVf9PYyqrnHahcqxNqu1gsldD49ZN6jwgMVK+fJcemqPgV6tcKHt81MisVSgbwnofvHZIwzds0ne3IkhTle2HwCFdUmRAQp73O53x+x73dk5TOfg5W6EBlBxhZBEAShC54q5OBobhZpfKGJJF/nSa3Hc1BcBEICvEVXyw0AtmRcYG4jfz69vYxa7rHYQkVYoA9GJDRFsL8Pakyc7IR9eKdIfLRLeAJuiVidLdvz6SHznltQpvvCUZGbGFs8UeGBTAtNrMZ4AeP1XRUpMMxTVFaNmRszADjHg15j4vDlr3/pesy6Ehlh4DiOedGiuroaU6ZMwdy5cxEdHe3IdrkVpaWlCA4ORklJCYKCglzdHIIgCMKDSD9TiDGr9stut2FST4/yZloiNpHkjSxbg4l18sfad2GB3rhcJizGANSqqC0f0xlDOzaVbCsAVV5GPe4xb+CkZuVjc8Z5K1U3vr8AqA7rC/H3xopxXdCzVUOz50rqfEPjI/CJgsLDQkQE+WLv7Dt0nShvPvIXZn7JnqPnaPh7KuUprTFx6L04TdR45b03e2YNxIwvjuC74/p6iLSMbVaWpWZbFc/WA3cOs1ZiGyjybHl7e+Obb77B3LlzNTWQIAiCIG4WXCGN70whDhavjr+3F1Y81gUFZZWK2sPaJ/clNMOne3NFleqWj+lilhDXy8vI93F+6TXs+v0SUzulrsfLaEBJRRU+3Zsr6v0IvuEpVENxRTWMBoOVgqLU+bQaWgCQX1qJgzlF6B4dptt4ZK25xcqLQ9vhkz1/ioa7imEb3iblwWNV5nz/52zdDS3++JZjm2+TXu+HGhOH1XvFi4Ur5c64Jhh/e5R5YcDTURxGeO+99+Lbb7/FzJkzHdEegiAIgqhTOFsa39lCHKwTSaPRgBEJzRQdm7VPkuIi0C06TPa69aiLBKhX6JO6HpYCuVrFB/JLKpB+ptCcUzd/60nJ8xkNgEg9XmZSs/Lx9JcZ1iF2Qb4Y070FosIDFU/2eVERrSGOvLH0aO9oNA/zl5WVt90XYA9vY100WLXnT6bt1MCP7eVpp/HFoXO6vh8O5hQpFmOR4qesi/j1bJGV/L8no9jYio2NxSuvvIK9e/eia9euCAwMtPr+ySef1K1xBEEQBOHpOFMa3xVCHI703CnpOy+jQTZnUI+2qlHoY7nHeuRIybFw2ykUlbHXotJqaAEQ9JDll1ZiSWq2+W8lk31LUREtzeNgLT8vlHcllt+mVPiHddGgTCYPSw+EQv2Uvh9sPed5xRVM5w7wNqKcodg1UJtz9sT6o5jyVzHmDI1j2sddUWxsffLJJwgJCcHhw4dx+PBhq+8MBgMZWwRBEARhgbOk8V0lxOFIz53SvpMTY9DaVjUKfaz32Bl1hJQYWnrA6ilSOtkXM46UMDMp1upcUgI/zw9ppynsjmXRIMDHC2VVjje2hFDyfhDy6rL2hBrj/cNdOeh0SyiGdnS/vC1W5Euu25CTkyP6788/Hef+JAiCIOoWNSYO6WcKsSXjPNLPFKJGj2V0N4WfHEYEW0/iI4L9dPM2KQmR0xN+Iik24TLAWnJdKXr0HT/W8ksqEBboIzk5bBjog64tQwW/U+N9Ym2nJ9cREoP1iea3W/BdFvN7YEh8JPbMGogNk3pi2oAYxW2LCreOzBLLc9Qj/5FfNADsDRPeINXD0DJoWEPh3w/7zxSKvpd5r67tM8B6n69dZ/Nq2TJ3S6ZH/z6oln6vqqpCTk4OYmJiUK8eKcgTBEEQ7NxsBX4Bx0vju0KIA3CO505L3ynNryosq0LfN3di/nD7sai076YNiMHMQbcytZOliLMzMQAIDfS2UilUQqBCTw1rvpwlvCdTzZi2NG6l5PRtQwjVvqekahFWVNcoyscTe84m94nGR7tqhSpsv2cdU1PXH7HKv+Kvd1BchOa6a2opLKtSNC7cDcWerfLycjz22GMICAhA+/btce7cOQDA9OnT8cYbb+jeQIIgCKJuIbY6yocSpWTmuahljoefHI5IaIZeMfoqbTlbiMMSZ3juWPvO0mO6LPUPPC4w1uTIL72GxwXGotK+S2zdiPkeS3k/nA1//ldHxCMiSPl4MQCY3Fe5twkQN2iFPOH8Z9kXryhqm6WnVex9lFdyDR/uytH1PWXpjVuWnIANk3ri7VGdmA2tKX2jsVLiOZszNE70OZyZFMt0DluhC/56l6eddnhOoRTOCLN1FIpdUnPmzMGxY8fwyy+/YMiQIebPk5KSMH/+fMyePVvXBhIEQRB1h5ulwK8rYPGMhAR4w3Rjkqp3/7pDUWu1KoFizNl0wmosKvE+qQmd1CMXSQ8igv0wd1g7hAb6onOLYPyQyd4WS0/IF4fOKfbUCRm0YgWzAWUKjbae1hoTJ6rIKIbW95RtXuGWjPNM+028vaVZKELqORN7DgFg9b5cxYqW/PWu3qeftLsawuv7mpU0XfFu0YJiY+vbb7/Fxo0b0bNnTxgsgkPbt2+PM2fO6No4giAIom6hl/Q2YY9UOB9PcXk1xn1ywGEhm3ICFY5EjUqgHJfLq7H/z0Iktg4HYN3HUhigPnTSdrKcffEqlu88rab5TPBKiW+P6mSug3a5rAoLtykz+B7p1RJ3xUdaTYLlxqNQO2wNVLH7qkYG31ZFcHnaaeSXVio+jp7vqfBAX6bt7mz/z7Mq95wJfa8l54mD9rIDWnli3WGUVFw3/+1JYeeKwwj//vtvNG7c2O7zsrIyK+OLIAiCIGxxVV7RzcKQ+EisGNsFoYE+ktu5a8imWtEUNSqBrKSfKbT6m/c+RQYLh9dFqgidtL1uAOaQSd7QcwSWnp7E2HCMSGiGkooqTF2vPPTyrvhIu/BOsfBSqXZY7q/nfQ0L9MZ/nxtgvi8pmXmCMuhK0PqeSsnMwzNfHZPcRqvADM/BnCLNBlOIv7fmENcAHy9VoamWhhbgvu8wIRR7tm677TZs27YN06dPBwCzgfXxxx+jV69e+raOIAiCqFO4Mq/oZiAlMw8Lt2XJSnxbhkINbNsEh89ednl4TkpmHuZvPWnlaYgI8sX84e1lDRfH1qiyn+pbep/yS6+h6GolwgJ9EBHsb9d/cmp2tdedhfxSy6K/fmaBDj2EM0ICvFF93WQnWBEc4I03RnYw969aaXupGmK2nrrcgnJsOHjO+npFvBR63teismocPnsZvWIamq9TK1reUyyeWD1LQ+ixgDUxMQpLU7MVCW7YMqlPNJ68ow0O5hRhT/bfWPGLuqg4Two7V2xsvf7667jrrruQlZWF69evY9myZcjKysK+ffvw3//+1xFtJAiCIOoILBNHKeltQhylYXR8KFTPRalWinOuCM9JyczD4wKhefmllXh87RGslPEUOdIT2quVsGeJJWRSTnVT/LqvWV23knA8IcQ8GiU2nys1bvj23BVfa0yJGeq2fTVtYGum3D697+uOrHz0immoixGnxtvEG975JRVYuO2U7L1swrjYwIIWw5A3qKcNjMWtEQ005RR2j671fpZUVOGbI2z5amJ4Sti54jDC3r17IyMjA9evX0eHDh3w008/oXHjxkhPT0fXrl0d0UaCIAiijsCiuFZYVoV+b+30iPAQd0FLuJWttLezw3NqTBxmbzohuc3sTSckQwqVTiQN+KeQrBQhAd7oqXISJ6e6uf34BdnrnnPjulnD8ZTCwbq2lVLjhs8e+XRvLsas2o/ei9Psxg0fIrn56Hl8svtPbD7yl9kwk1OW1NvD/eneXKRk5ulixCV3a6HIm5KSmYfei9MwZtV+zPzyGFOB6XdGJ+i26CFXD08KDv9414bER2LusDiEyYQqi1FwtdL8bFh6N7Xg7mHnio0tAIiJicGqVatw8OBBZGVlYe3atejQoYPebSMIgiDqICwTR0+Kx3cH9Ay3UlNgVgv7zxTK5pIUl1djv03ulCVKJ5K8VPa7oztJbvfGyA6qwpPkVDcB4KUtmbLXzQt0ANay4QPbNtJUwNaSvJJrWJ6WDYDduLkrPgIAYDs8bJ9bKwNjYwYWbjuFmV8eEzXMbOkeHaYqv0cMPuwsvD6bKIUUUeEBzNuKGd5yFFxVLt4hhlxhZUB88YFXfgRqr2Xq+iNMxqIQl0orMfubE7rmV7p72LkqY6umpgZff/01Fi5ciIULF+Kbb77B9evX5XckCIIgCNROHP/73ACEBXoLfu/sCb+no/fKrmV4jqNJ/7NA83ZyE0kDgJlJbbAsOQHr/q8H3h7VCZXXTQj298G/x3ZGRJD15DsiyFc2dFEKFtVN1mLBlgIdXkYDfvn9ItJ++xucjo/FktRspGTmyRqtBtT2zdFzxYLfWz63249LGxh5DAsqO7Lyce06e2FkOfhxDQ6qvTw8rBN8LV5nvY0IsYUu3pgqFylCXVxefcMbm6dJsMRgAF7bfsqulpda9BIPcTSKc7ZOnjyJ4cOHIz8/H7feeisAYPHixWjUqBG+++47xMfH695IgiAIou5x+OxlyQknPzHa/2chjAaDywUcpJATQXA0eqzUC+Gc8BzWfpLeTqxGVVigDxaOiMfQjrU5Us9+dcwuh2re3e0RGuij2/3Tt9/+mdpWXTdh1W7H1DvihQbE8sP43hjTvQWWpGZLtjav5Bpe2pIpOynnwxiFBA7kchADfb3g7WW08g4G+njZiYAIUVBWqSkPTskEX43XWU50RAu2giXh9X3xzJcZTPvO3ZKJQpUeLQC6LhDoKR7iaBQbW//3f/+H9u3b49dff0VoaG0C8+XLlzFhwgRMnjwZ+/bt072RBEEQRN2DdUI6dd0Rq5VQd6uvIieC4BQUTmIaBvowTZqcEZ7TK6YhUx0plgT4IfGRMJk4vLQl02zIF96oGXXsr8v4aFeOXVfll1zD1PVH8MFDXTAioZmaS7BDz36zFOhYk55rF7qnF7wnU8xoDQ7wxsTbo9GiIVv4HGuYmZDAAYs3qIFvPex6fqCVkqaJ4zDu4wOy52zcwA+9YhoKXqfRYB8eacvcYe2YJ/hqDG8OQHK35szbK13ssRQsST9TyFRrjAM0GVp6I6Zg6Y4oNrYyMjKsDC0ACA0NxWuvvYZu3brp2jiCIAii7sI6IbUNOeHzQpTWMnIEYqvvzm5jQRlbbgdfeLZry1D0e2unqCqkI1fWbenZqiFCArwl85dCA7zRs5W8sVWbT3LU7prySq7hw13CHiE9JKRtJ7tdW4ZKqm7y/VtRdR3FFeJpGLYCHWeLyhW1S6nXhjcMeO/H8rRsrN6bi+KKahSXV2NJ6h+iob9asDVIWLxB+aWVZil3nhoTx9Tv/Li29fIUXKnEwm2nZNsbyliIGFBveC9JzcYXh/4na1BoXexxd3EJIeYOa4cJidFu79HiUZyz1aZNG1y8eNHu80uXLqF169a6NIogCIKo+6hVx3KXfC4WEQRntZFd2KC28KxPPaNssryzwnO8jAa8MVJaZGsRg1CFltwYLTlqliIQT32RgTGr9qPfWzsxvFPtRFeo1bzn4vX7pK/bVqCjZRi7KANQa1isfKgLZia1YdrechztyMrH0tRsu8UOuVwzA6DYILMdv2qLn7OIQNiOa97LMyKhGcIbsBlRl65cYy7AzfKe8/MWno7LCQXJKV6yCAwpNQbDArUXNtZKWH1fjzG0AEZjq7S01Pxv0aJFePLJJ/H111/jr7/+wl9//YWvv/4aM2bMwOLFix3dXoIgCKKOwCIDL4YzBRzEYBFBcFYbWYQNbPNMxJLleaU+Z3oNh8RHYuVDXeyU5yJvGAssbdFDkVHpKr/UZPejXTmY3DdaVHVzSWo2Fm47hSl9o5kFOh7uFQW5OabRALwzqiM2TOqJPbMGYkh8JKYNbG13Dktsxwer4Spm0Lw6Ip55IUUo/0lL8XMt45r1vLkFZXYGtpi6Ist77lq1SfBzqUWbqusmvLBZOC9OyWIP/+6Qgx8jD/eM0lVJUA0Lvz/pUUq1TGGEISEhMFhojHIch9GjR5s/425kvN1zzz2oqdFPNYYgCIKo24jlh8iFlfG4MgRG7eq7I+AndFLCBkKeKtswKlcKkGhtix79rGSVX86zaQCw9Vge/vvcAHzwyxksSf3DbjveKFsxtguTQIdPPSMm9YkWDYkEgEl9onH/bdb5Pl5GA+YPb49/3SigLDc+WA3X0EAfq9wsyzwao9FgPp8YBgiPS7ni53JhrmrHEst5QwK8BQVCpEKHxd5zLAgV7k3JzMMLm08wCQzJFfy1fHdIGVEcgIrqGiz7WVgcJTK4Nnz2++PKjaAAHy9RJUQhisqq3SaUnAUmY2vnzp2ObgdBEARxkyI0MTKZOIz7hC3R3VVoWX13BGITOrlEcstkeVegl5Kjln5Wk6PG6tk8lFOELw6dE93GAGDhtizsmTWQ6brnDK31kqzanWMl5GA01Bpa/Pe2KBkfrIbr3GHtEBHsL3jv5AwMqbwitYsHtsdQOq5ZzitmkMjl/gmJtyghNSsfvWIayqo02sJyL+XuVWiANy6XV4sugAX6GDF3WDsM7dgUd3e0zyGTMqYMAKb0jRFcjJBDS56lM2Eytvr16+fodhAEQRA3MbYTI6WJ7q5A6+q7I3AnTxULeig58sZafuk1hAV6M+UUqZm828JqkKT/WcAcbso/A3IG6JyhcXjmzrZYk56Ls0XlaBkWgId7RcGnnnR2COv4YDVci8qqMDyhmWi/WZ4vv/Qaiq5WIizQBxHB/rLjUu3igVakzpvcrYWkUSDlTRITb2Hlk7256NoyFAu3nVJ0jIIrldiScV7yXVBj4hDs74PnB9+KorIqhAT4oLi8CmH1fdG4gbw0fFmVCU+sP4qVRoPdGMstKMdSiT4b1jESLRoGMD27lrB67twBxWqEAHDt2jUcP34cly5dgslkHWc6fPhwXRpGEARB3LzosbLtaNy1jc70VGnxSumh5ChkrAnBt2hy32hsPZany+Sd3ZOmLAyS1QD1qWfEY31aCR5L6r6wjA+5hQSehdtO4eM9OQ7znLpq8YA/7/4/C28UlebQq1U4Ll1lU/20NcS1iLdYotQrZjTASl1RaBzJjTdWaXgAmL3phNnT1CumIWpMHHovTpO87u+P56kKPeTxBDVFA8cpKzGWkpKCRx55BAUF9pXcDQZDnczZKi0tRXBwMEpKShAUFOTq5hAEQdw0uEUNKxk8oY2OQMt185MwMSOJ9wpKhdYpCaeybJdeYYv8Nch5Nt9+oBNT7adpA2Lg7WUUzAfiW6fWAFUzHvn+Bdjk42cmxWLawFi39aIqRagfWb0vGyb1tDIw088UYsyq/Q5ppxr+PbaLuci30DNkOd4qr5vw1BcZzMde91gPJMbW1oZzxnXb9rWzUGIbKDa2YmNjceedd2LevHlo0qSJpoZ6CmRsEQRBuA69JseOxBPaqCcskzSpiT3rJExsIsVirIUF+uClGzlFjrofYgaJZT8MiouQNMpY0WKA2raHdayyeg55IoL8MH+4YxYZnPmMKc2LsiQ0wBu/vjTIqm1bMs4rMlgcjdEAvPdgZ7z2wynZBQ/WxQKeqf1j0Du2ES5duYbsi1eZCpYLtY+lYkakzPPgSJTYBorDCC9evIinn376pjG0CIIgCNfiagEHFjyhjazITWpZVPjkEte1KjmyiFMUllUhItif+b6omcyL5fc0CfLFmO4tUHndhIM5RZg7LA5T19uHmypBLkeF5b7M2XQC87eetAoLk/J68eF0n+3NYSr2m1/qmGLejvYeW9778EBfzN+qPuRPaD89RXLCAn1wuaxKk+Fu4oBpXxyV3IYfb6YaTlE+1WfpuVjxyxkNrWMztADXh5KzotjYGjVqFH755RfExMQ4oj0EQRAEQbgIlkktqwrfZ3tzMCExWnAypFXJUW/ZfS2TeSFBgA0Hz1mFA0YG+wnmi6lBiwF6WUBNjs+RWzG2M0IDfe2MTS+jgbnYL4+eKnF65PbJHV+NJLsYxeXVdgYxaw6cFLynSQ/DXQnTvzhqV9hairJK56QTPZYY5TFh2oqNreXLl+OBBx7A7t270aFDB3h7W1cJf/LJJ3VrHEEQBEEQzoF1UstqwEiJJ2hVctRTdl+PyTzv2UzJzMPS1D8Ej/XRrhw8eUcsakwmnL9cgc0ZF5iuwZbGDfwEvXBqhQL4tk7bcNTKo2BpbIbXZze29FSJ08OLKoWWcEEpbO+FlJgOC5aCO0PiI/GBUV3NLjUoMbScSZC/t/xGboJiY2vDhg346aef4Ofnh19++cWq2LHBYCBjiyAIgvA4bracK1uUTGqVhESJGSysSo5AbX6X7X3RS3Zfz8m83LEAiBaEZYG/pstlVXb5apHBfkju1lx8ZwZsQ7f4eze5bzS2qDAM9VCJY/WiqjHs9FIIFELoGRGVlL8RchoVHojGDfxwuawSr3yfZRXq2STIF/OHtzc/Q5be1B8y8/Cf9LMOuAr3ZsPBcx4jyKLY2HrxxRexYMECzJ49G0ajdD0HgiAIgnB3blY1QUuUTGqVhERJGSxydZQACBoV/H3RQ3Zfz8m83LG0wF/F8E6RmLpe2Au3JDUbIQHeKCmv1sWA4I/x4a4cVfvrkaekJlyUdeHEEfdLzshnkbJPycyDfbkA+/Zb5olqNba0hiSy7j9tQAximzRAbkGZoOqmEvJLKz2ixhagwtiqqqrCgw8+SIYWQRAE4fE4Oh/EU1AyqVUaEiVlsIhNPndk5TPdF61Fb/XM/XJkvZ/aXJ12ogVteaOWx1n5PEJIGRxKPchKw0WVLJyouV+W/arWyJcS0xF7H12UEB7Rmg82fWAM1uw/h2KBfD5WWM+b2LqR+dpjG9e3C11ViifU2AJUGFvjx4/Hxo0b8cILLziiPQRBEIQCbvbwNy04Oh/Ek1A6qRUzdKTgJ0ZCY9Zy8qnkvmgteqs198vyWgqusBV+lYNv+YykNogKDzBfE4sXrri8GjOT2uCLQ+fsDI6K6hrdvF5ybRcyONR4kJWEiypdOFHjebP0umox8oVQ+z7Smg92+tJVlGgwtFgQMsBDA301GVqAviqPjkSxsVVTU4M333wTP/74Izp27GgnkPHuu+/q1jiCIAhCHAp/04Yj80E8DTU5ULyh8+meHLy2XV4WPDzQV1e1Q/6+aJHd15L7JXQtrPWBpBCbtKdm5TPtHxUegD2zBop6Cx3p9RJruxoPMm/IDo2PwCd7c+3OZZvbp9RQYbn3TYJ88c7oBBRcrbQz5FmNfL3CGuU8xEoXP3h2Zxe4xADX4pVizcl0FxQbWydOnEDnzp0BAJmZmVbfWYplEARBEI6Dwt+0o7d8uCfDKlhhO0n0MhoQ11S6oCfPodwiLPs5Wze1Qz3ui9x1cwCSuzXH98cvWE2UxZ4/tYbW3GHtEN7AV3QynpKZJ2hwCNG4gZ+gASo2IddqIMq1XY3HhsWQtTTs0s8UKjZUWMb8/OHtkdg6XPCYLEa+I8Ia954uEOxnWy/vpdJKpkWQqzpLtYf4e1spGIoZ4Gq9UkpyMt0FxcbWzp07HdEOgiAIghEKf9MHPeXD6wJqc6AKrrKFz322L1dXtUO97ovYdQcH1Ebu2NbLmjssDgu3SavYsRow/Aq9WD0y4J/nnfVYUqv9Q+IjMbBtE6xJz8XZonK0DAtA4yA/PLmhtsCtkLEpRaRM2wHlHhsxQ5a78cGjiVEYFBdhZXCwev1sDRo98v7EcFRY4/Kdp/HNkb8E22dpANaYOKz45bRkLlagjxfKqvQ1tt4f0xn1vIzIL6lAUVkVwur7ItjfBzUmzmqcsOSa+Xt7wdsIlFoYhHrcG2ej2NgiCIIgXAuFv+kDy4+90QBcLqtyartciZocKNZJolS9HqVqhxFBvrqGEAkVJharl/XE+iOyxzNx/3h8eOU1tYIKrKp5HMOxxDwtQgWXI4L9MLxTJD66oUYodC8qqmuwIytfcuKrxFPJspD0Q2Y+XhwWZ+UFU+L1s0Vr3p8QLGUAXth8AhXVJkQE1Z5PidAFSwSDl9GAN0Z2wONrxcfr5L6tmFQB5w5rh6KyKqz45YzstuCAgzmFWL031+qZt/XoseSaVVTXIDjID4/1ibHKX/S0RUTFxtaAAQMkwwXT0tI0NYggCIKQhsLf9MHyx14MEwdMXX8EHxhvnrBMpTlQLLkvwQHeTGpnrGqH166bZCf5SuGvu8bEoffiNMmJMgvhDXwxIqEZAODWiAaqvSesz/GjiVGSx5LytHy0KwcrxnZGaKCvncHRuUUoZm86IXj/Ssqr8fjaI5iZFGuuE2U7GVbiqVS6kMTq9QOA0ABvUQNdS96fECwGclFZNWZuzADwjyHCKnTBGsEwJD4SKx/qgvlbs5Bfah/KOCguAl8c+p+kgdcw0AcP94rCD5l5ktfD8/i6w4LeMiEDkSXXLL/0Gpam/oEPHurisYuHivXbExIS0KlTJ/O/uLg4VFVV4ciRI+jQoYMj2kgQBEFYQOFv+jEkPhIrxnaG3ELpgu+yUKNV+aCOwhtHQvDdOvH2aKZj2aod8qF8tpSUV+Nfa4/cqEmkL3rVXyq4UoktGeeRfqYQg+IisGfWQGyY1BPLkhOwYVJP7Jk1kMlYzC0oZzrfoLgI0e9YPC0Lt51C9+gwjEhoZhYe4Y/rV094usjvuyQ1G099kYExq/aj9+I0q/tyuaxK8vkyoHby3z06TPFCkpJ7dbm8GjsYww15akwc0s8Umu8j6ztA6UIXb4gAwAcPdUFEsPy729LwlGrvkPhI7J0tPPYsn12xW1RYVoWei1Lx599Xma5FLCyR7znbd+mQ+EjMGXyr7LV68jtYsWdryZIlgp/Pnz8fV6+y3QiCIAhCPVoU1Ah75CSIhcIySXLfHiHvVUiANxaN7HBjBf2cojE7KC4C87dmAbD3qDgyN1EPj7DBUGu88KhVCU3JzMPS1D+kzwX5511L6PHBnCLkl7LL2lt6MAAIFmG2hQ9/VLqQlF9SwdwuAJj9zQk08PNGz1YNZceMUMhliL83JiZGYdrAWF1Ca3ksx/OeWQMxsG0TdH7lJ6Z8Kn68yolxiHmFWLxLRWXVWPbzaQT4eKGiqka1eqHQONt+PA9PfXlMdl9PDo3XrTLxQw89hE8//VSvwxEEQRAiSK1GeqJSk6tRupqekpmH3ovTMGbVftHV/JsJPjxNKMzs8o3P1IzZ2kk+m4GgJ3p4hDmb2ShvgPBjhMVjIuWNsjoX5J93LaHHSo1Pvr3zt57E/K3yQiIrxnY2G6H8QpLYlVh6wQCgSGE+ZXFFNcZ9fED2eeXHtK3xUVxRjSWp2ej66g7J/btHhyEiyFdR2yzH8+Gzl5mFKxo38BNtr+24E2NIfCT++9wAhAUKe5J5ym8YWlp/WSzfpU8wGOO2+3kauhlb6enp8POjkBWCIAhnwK9G2oabRAT7key7QpSspmud1NQ15AwCfrWeD2dSMmb1yk1UGgomN+FXg2UI1fbjF5iMddYQuZlJsbLPe3h9tom/0LOgxvjkAOSXVkoay0BtTmRo4D9tU2qUhzFely15Jdfw+Noj2H78gvkzfpxsPvIXXticKWkAFMuEse7Iyse16yZVbbt05Rrz2A/x90bXlqGyIaIsIXiHz15GUZl8XmV933po3MCHqX1iNG7ghxoTd8NzrWw/T0RxGOHIkSOt/uY4Dnl5efj1118xd+5c3RpGEARBSOMIFa2bEdawzK4tQ9HvrZ0kuW+B0vA0JWNWj9xENYW/WWpvqYHviyfWH7X7Lv/G5N9SaII1RC4qPFDy+5TMPMzfelJyG6lQRCUqeWrQIsceEaRt8j1tw1EshwFGIxQXBObziGyfdzEhElaUGBQTE6Nw+OxlXdRpWQ28q5XX4e0l7QGTgvdMvvfzH7LGuCVhEgIn7o5iYys4ONjqb6PRiFtvvRWvvPIK7rzzTt0aRhAEQcijt4rWzQhrQV+9JjXujNJcNDXeJ9YxqzU3UUvhb6kJf3K3Flgik0elFEuhCZ6wQDbvgZyxKTfxlws9ZlGH1IIWOXZ+jKgVNDFxYJLyF0Mol5Ml9FMMyxBJOQM3NMAb0wbG4nsL75wUvJqg1sUN4J/wYDW8fE8c3kw5hQ9vlBRg5ZFeUR67iKXY2Fq9erUj2kEQBEEQmlErXMGymr4l4zxTGzw1r0CNF8iRypisRrDQ/dWj8LfYhB+ApNiHXsjVd5MzNlkn/iwS9CwiCrZtCw3wRg0HlIjUV5NrP4tRblu+wRVadZbPu1Yly7nD2pnHW3K35oL12YDavls0soMiUZH/pJ/Ff9LPij7T3aPDEBbozRRKqIaQAG+8MbIDTCYoNrQAoGXDAAe0yjlQUWOCIAiiTqDGWLBEbjXdUyT31Ricar1AjlbGVBJSZglreONne3MwITFatH/EJvyO9PRYtlEMFiEc1on/26M6ITE2XHY7scLPQm3lABRJeD9YhXxqTBz2nylE+p8FAGrvha2SoFJDUG8sn3ctCy33dIzAwm2nrNUPb5Q+sBSfsX2nXS6rhNEASUVVS8SeaS+jAa+OiBcMc9VCSIA3Jt4ejWkDWwMAur2Wquo4R85dxvCEZh7p3TJwnK1mjjDR0dGSxYwBwGAw4MwZhurSHkZpaSmCg4NRUlKCoKAgVzeHIAiCsEHMWOB/tfQQDeGL3coZFntmDXTZhECNwclfl9hEVe66+L4HhL1PYsVylaDUgNyScR5PfZHBdGxWg9y2DZfLKgUnx8Xl1brmegGw8ziwtHnz0fPmorlSLHkwAfd1bqaqXULjjQWW9qdk5gkWU+Y9JLb7Wt6f8Pq+yDxfjEU//K6oXUqJtHku0s8UYsyq/YqPExrgLRmaN+OOWEQ3si8arTY/TOqZXrQ9S5XnSYgXh7bFo71bae4fHrUlFByBEtuA2bM1Y8YM0e9yc3Px4YcforKSvQ4DQRAEQeiBHiFjLGgJa3MGar1TWmowAdLep7s7RuKlLSetJLrVTJiU5iYq8S6y5HCJGbFzh8UhNNDHygjckZUv2herdqubxM69uz0igvwUGaxFV9nmZLbbKTFsLb1d+aXXsPD7k5JhaCH+3lgxrotsnauUzDw8vlY4l6q4vBqPrz2ClQKeme7RYea2X7l2XeqydcH2eVeTQ8ZiiL+Xlo3lYzpbPQNa8sOknuk5Q+PQ6ZZQvLQlU7G0vi1tI4KsxtKPJ7WptbI8q+4Is7H11FNP2X1WVFSEhQsX4oMPPkCPHj2wePFiXRtHEARBEHJoNRaUoDaszdFoMTj1kFgXCsFM++2ioHGR54QJkxIFPbn+kTJip66vvY4RCf94hoT6gleyVEvR1UoM79RUkSHPKrBhuZ1a9cZeMQ2RfqZQNt+nuKIaRoNBNnRQTj0RsL9far1sapmZ1MauT7yMBgzvFMnsGWoY6INHekXJCq7UCnkcxUqjwXxOrflhgLhoxtCOkUiKa4Kei1I15XBN33AUxRY5ezIBcrJ4quqrqjpbFRUVeO211xATE4OdO3di06ZN+O9//4uePXvq3T6CIAiCkESvekysDImPxJ5ZA7FhUk8sS07Ahkk9sWfWQJeutCoxOG3RKxeNn3SPSGiGy2WVkl4cXjZbrvaPWqTqNYm1R6h/5IxYQPg6LPuie3QY1qTnapoYL9x2SnHh7Ihgf0Xbaa0hp9dzWOslk/fK5ZVcw/K0WvVGsbY7ioggX3MOkiU1Jg5bj7Hdo7BAb6TPuQNR4ezCD5ZjTY/32X/Sz4rWeWOtuyVFsY04ClvikjSOKmbuSBQZWzU1NVi5ciVatWqFjz/+GO+99x6OHj2KoUOHOqp9OH/+PB566CE0bNgQ/v7+6NChA3799Vfz9xzHYd68eYiMjIS/vz+SkpKQnZ1tdYyioiKM+//2zjw8iipr4293p7uTNNkD6bAmbEIIEECBCKJiEAQVkZlRFkcdB0VBEWdccMANR8RxxAXcGMRxAVxGBwXlG5A9BEEgQAgKhAQQ0mB2yNJZur4/QjXdnaquW9VVvYTzex4eTXfVrVt1b1XfU+ec90yZgujoaMTGxuK+++7DhQsXNOszQRAE4T8CIVzhupjO7OY9JMof+LLQlSriq4O7JLUUTQ4Oc1fnSW6n9YJJrIiyNzyvjy9GLNBsBAxfuBHz1x5m7oMYxYxGDw8/rt7gx1WpUelKUUkNU7+k7kM5RsSiDUfx3YFixeF0cZFGvD15oFOIggUdgOdu7SN4z8vxNr00oS9MYXpZzyXXuabm80zIoA52VdVg758rzMbW559/jt69e+OZZ57BU089hV9++QV33XWXpGiGL5SXl2PYsGEwGo34/vvvkZ+fj3/+85+Ii4tzbvPKK6/gzTffxLvvvosff/wRFosFo0ePRl3dpUGYMmUKDh06hPXr12PNmjXYunUr7r//fs36TRAEQfgPtY2FUMQXg9ObF0hJLtquwjLmN+IsC6YmB4ecglKszj2NnIJSWd4w3gs5b1xvpu09r48vRqwW3hY5HkF+XL3dF/y4+mpUNjk4rNx1UrJP1miz5H0o14iYtzpP9jWOjTBidlYP/DR3FOIsphYiHN6IMOnhELn+rPPlpvQkjEqzAmAzioWOIXc/bwgZ1IFWVZWiqKQ60F1ghjln684770RERAQmTZqEEydO4KmnnhLc7rXXXlOtcwsXLkSnTp3canulpqY6/5/jOLz++uuYO3cuxo8fDwD46KOPkJSUhP/+97+48847cfjwYaxbtw67d+/GlVdeCQB46623MHbsWLz66qto3769av0lCIIg/I+awhVK63QFGl8l2NXMRZPzxllqQeernD/QPD/uGZaKf20vlH19lBqxvha39Yac/EOxcfW8hr6GAPICGVJMGty5xf3kec8N6hIHa7SZKZQQAEoZRRxmXt8dPZLatLiv5XpIauodeGjFPjzwawXmjE1z+451vnyfdxbDF250jsGzt6SJCoJ4wh/DoNdh3rjeklLtrLLwnrmtcvIeA8GiDUdxhTUqJIQymI2tESNGSEq7q+3l+uabbzB69Gj8/ve/x5YtW9ChQwc89NBDmDZtGgCgsLAQNpsNWVlZzn1iYmIwZMgQ5OTk4M4770ROTg5iY2OdhhYAZGVlQa/X48cff8SECRNaHNdut7spK1ZVVal6XgRBEIS6qGEsqLGwDxSexV094QDc2j/Zq+EoVWeMFdYFZ4LF5NXLoVRdUQilBrlSI1ZOOJkSWXg5BsKoNCuiwo3IKSgFwCGzayKGeoS++hqKy9qflESL299i99z4jPaqyY/zDOueKGigKvXgvLe1EP07xmFsv+Y52OTg4OA4xEYYW+QqCcHP4yWTByLOYsK9V3fBhzknRPOahOZanMUseRwHB0SFhzGrM/JjKfVMCQZCRSiD2djavHmzht0Q5vjx43jnnXfw2GOP4emnn8bu3bvxyCOPwGQy4e6774bNZgMAJCUlue2XlJTk/M5ms6Fdu3Zu34eFhSE+Pt65jScLFizA888/r8EZEQRBsBOqXpZA4YuxoObCPlCMSU/G/SNSRRep728txIDOcV7PQ67EuhCDU+OZPBPzx6eLjo0Wcv5KDHKlRhqLl8f1+Hde1VlSkc6VRIZFNiBszPxn7+kW5+urZ5S1P67bebvn3t9aiAdGpOLTH0/igr1Jst14ixHl1Q2K+u6LB2fufw9idLpVUO5fCv5YM1fuZS5I7DnXWI1cOTL4rsan1DMl0KilMqs1zMZWIHA4HLjyyivx0ksvAQAGDBiAvLw8vPvuu7j77rs1O+6cOXPw2GOPOf+uqqpCp06dNDseQRCEJ6HsZQkkSowFf9Xp0hoWJTTW8/DF0F+fb0Ndo8PrNg+MSHV6BISO5+A4TeT8lRjkSow01hpXU4d0xvPj0/F/ecXM4V4A8NCKvfjTsFTMHNldtO9yXiA0h6Sl4aEVLb0YTKG4rLfFxe1Y7rlv9hdj999G4eqXfxAt+MsbUvPG9caMFfsUhRF7M6ilKKtpwOKNR/H6hqOKQ+1YxlyvA6Zdk9pirqmZVyVklMpRVwwUoSCUEdTGVnJyMtLS3ONhe/fujf/85z8AAKu1Obnw7NmzSE6+NAHPnj2LjIwM5zbnzp1za6OxsRFlZWXO/T0xm80wm9ne0hAEQahNa/CyhBL+rNOlJWqdhy+Gvtjc5WljNuCVif0wtl97t308j2cxG7weh0fJQkuJQS7XSGOtcfXt/jOwmA14f2uhrMV6ZW0DFm04guU7CvHy7X1bjEt9owNPf32Q+QXCurxizF+bL3gsllDcEkbjcuPhsxjWPZF5ru49UY4Ft/d1hrKJGVJj0pPxjl6nOIxYzKBmYXl2keY5TRwn7JlWK69KzCj1tZaXTqeO3Ls3WL2qgURRnS1/MWzYMPzyyy9unx05cgRdunQB0CyWYbVa8cMPPzi/r6qqwo8//ojMzEwAQGZmJioqKrBnzx7nNhs3boTD4cCQIUP8cBYEQRDsqCHBTMjD33W6tEKN8/Cl1hKLKERUuBGjXRaLYserZggdA4D1h85KbuOLmqErcuT+WWtcVdY14j2ZhpYrFTUNmO4xLuvyijF0wQ9eFSFdDW8p1cR543pLGiusHpavc0+jycExz9UZFz1tQhL+1phwtxdPvta/c91/xvXdmPYBWtaS0gKxZ7/cenJiJEWbBV/i+fLM0wF4644MxFvYZfVd99Vm48AQ1J6t2bNn4+qrr8ZLL72EP/zhD9i1axfef/99vP/++wCaBTkeffRRvPjii+jRowdSU1Mxb948tG/fHrfddhuAZk/YmDFjMG3aNLz77rtoaGjAzJkzceedd5ISIUEQQUdr8bKEEoGo06U2TQ4OJefZvAti5+FrOCXLW3DXuauGYt+ag8VIXpuPv41LE/xerpdObvik2Pa8x8FfRXb5cVmfb/PqWfTEVlWHV9b9LLq9Ds0FlUenexdXGZwajzbmMFywe88NKqtuwK7CMuZ7qaK2wenN3/7kSMmx8TXnkN9/cGo8Pt15UtKQiokIQ2Utez6UL4g9+33xyl2i+Try89lWWYuy6nqUMSo9xltMbtu63mMHz1TKzvni0CyP/32e9MsUVq9qIAlqY+uqq67C119/jTlz5uCFF15AamoqXn/9dUyZMsW5zRNPPIHq6mrcf//9qKiowPDhw7Fu3TqEh1+6kT/99FPMnDkTN9xwA/R6PSZOnIg333wzEKdEEAThldbiZQklfBUHCDRCBoUQUufhq6Evd+76GqLEs3RbIQZ0inULTQTkh+PKNcyktufzgPzhgy6urMPO46WyjdeyC3bVXu44GOPFzp2vw8392ssKf+ONSc8++CoiJLb/+nwbk8fkT8O6yhI2UQOh+4wPc120/ggWbzomu82zVXWY/slexEYaZdUc458pWx6/HntOlLe4jr7kfHVrGwVA2tgK5pdgPLKNrREjRuC6667Dtddei2HDhrkZNVpw88034+abbxb9XqfT4YUXXsALL7wguk18fDxWrFihRfcIgiBUpTV4WUINNet0+RupHCkelvPw1dCXO3fVfGHw5FcHkJVmhSmsOTtCrpdOiWHGsv07Uwfiqf8c9EuoWfaxElly89aYcObcMqmx2lVYhpp6ttBP3gPLKisuZvD5KiIktv+t/ZMlc+hiI414+fa+GJVmxardJ/1ai0qophtvMMZFyg/ZAy498+QaWkDzOJrC9ILGuC8vVDK7JeA/e38N2ZdgrsjO2brxxhuxc+dOjB8/HrGxsRg+fDjmzp2L9evXo6amRos+EgRBXDbwXhaxZb0OzQuCUPiBCSX4hbFUXkgwIScML85ixJLJA7yeh6+Gvty5q+YLg/N1TRjy0ga8seEIVueexgfbjzN7bOTmScrZfkx6MpZMHujDmbHzUU6RrO2fvSWNObdMaqzkGM7z1x7G8IUbAQD3j0hlTrlxPYYvuYXe9i+urJPMoYuLDMOup7Mw5mJopZycqahwNuEXIYSe/evyijF84UZMWroTs1blYv7aw/DXOyGWZ6PSFyrJMeEY2jVB9NoG+0swT2R7tubOnQugWdFv9+7d2LJlCzZv3oxXXnkFer0edXUU2kIQBKGUUPayKCVY6ompVdTXX8h5a1xW3dC8ENPrRBdHvoZTyp27g1PjW+R6+EJ5TQMWbTgqa59z5+tkh0/K3X5otwSmkDmhaybHW8JSjwporkn10oRmBcPvDkhLzsdGGOHgODQ5ONF7Qa7hbKtsDluTA38MX3MLfc0VLK9pxJ4T5U5PDkvOFN+LPwzqhGXZRQqP7H7/iHlXtdZOmnl9Nwzr3pbp2ajkhYoOl85TjWL1wYDinK3jx4/j4MGD2L9/Pw4cOICoqCiMGDFCzb4RBEFclrSWHxgWgq2emBpFff2F3LfGUqUD1DD05cxdg16HF8enC9Z28hftosKZr+OGfBsyuyUwb5997Den0S5WB8oVT5ns5mLHnWQbkN5IsJiQM+cGmML0WJdXjBkrpENQK2obMOVfP3q9L+VKkMuxBzyNfF9zC9XIFfScA64vajbk2/B17mk3NUh+/sdEmBQZW23MBrz6+/7Oa6+GuIxSeiRFMT8j5c4Li9mAf7qcJxB6L8GEkG1sTZ48GVu2bIHdbseIESNw7bXX4qmnnkK/fv2g04XOiRMEQQQzreEHRgqqJ+Ybct8as7z1V8PQlzN3x/ZLxgO/pnpVKxvYORZ7T1awnCIzrgv4XYVlTPssyy7CVanxzNd98aYC5/8nx4Tj/hGp+GZ/sehCn/dI3DcsBVlpVgxOjceaA2eYjiUFf+X/PiEdpjC9osV6sZf70pfCwCy4Gvm+5haqkStYVNIybYZ/UZPZLQFPj0sTnP9NDk5RXaw/Zqa4XXO1xGWUIOe5I3detDEZMCqtZQ3cUHoJJoTsnK1Vq1ahoaEBf/7znzF9+nRMmzYN/fv3J0OLIAhCZeTU9RFCrfpCWkD1xHxHKkdKCNe3/mL4Wq8IkDd354xNw9uTB7SoxxMbaURspFF1Q4uHX8DLuY7Pf5uPQV3iYI2WV0jVVlmH97cW4umxvb3WHdIB+C7P5lycq5XXFhNpdDOSlC7WOYjfl2J5j74Q69FvwPfcQjWu6ardJ70+m8Tmv2uOlxyGdU90+zsQarRK84X5eRHHIMZy9nw9Fm9sVlMM5t8vucj2bJWWlmLbtm3YvHkz5syZg8OHDyMjIwPXXXcdrrvuOtx4441a9JMgCIKQQbCF53lC9cR8g89zuyndig+yi2R7E6QWa/5+kzy2X3uMTk92egOKSmrw+oYjmoRJxUYY8fLEvs77gF8As+QQFVfWYXdRGYZ3b4sv9/7KfEzeq/jcN4eYiw3z9Z7kynELEWF09xj4slj3dl+6ejWzj/3m5t1TwpJJAzGsh7uh4WtuodzQNiF8eTbxoikzV+5lyq+KizRiaFf346itRhsXaUS5xBzjANx5VSdF7Y9JT0ZtfRNmf75fcttFG46gpr6hhRc4mH6/5CLbsxUXF4dbb70Vr732Gvbs2YMDBw6gZ8+e+Mc//oGbbrpJiz4SBEEQMvBVqcsfUD0x5bgqkH1wMf9DbnBJMJYO4A28m/u1x6rdJzXLR1kypWUY3Jj0ZPxpWArT/jM+3SvL0OLhAJQyioHw8359vs1nQwto6c30dfzX59tEv+PHcfaoK2R7Xnl4L8pQkbpaY9OtooYW4D230JuCoJy++vJsirOYmIUsFtzet8W58Ea4Gswb1xs/zR0l6F32ZNGGoxi+cKOi3xBW5UsAeG9rYVD/fslFtrFVWlqKr776Co888gj69euHXr16Yc2aNbjlllvw2muvadFHgiAIgpFQCc+jemLKEDOk+eG89+ouiLeYQrp0gFb5KM4FfFdhb4RQrogQ/qiZ1S4q3Hkvq4WrcaAkBNWV1blnJJ8hrEYNq6y360sGXmTCc9+kaDNTrqe3Ug+P3tDd6748vjybWA21Pw1LETwXtYxwAEiMMmN9vg3z1x5287pGGIVNhGKFRg8/55QSTL9fcpFtbLVr1w4PPvggzpw5g2nTpmHfvn0oKSnBV199hVmzZmnRR4IgCIIROeF5/sY1Bt/h4GCNpnpicpASNdABWHfoLF4cn+782/N7IPhLB7AuRGMj2N/ss5y7rwYIK/EWo9djxEYancIdahqdrsaB3PpQnpRW1zM9Q/iQOc98HWtMON6dOhDvChg8SdFmPJrVA/ZGhzNXR+wlQ8t7Qfps+OeQvdGBV3/XH5/+eYgzN3HeuDSs2n3K6/5qPJtYDTWhFwBqG+FFJdWC17a2wSG6DwdgzlcHZRk9SvPVPI8bqN8vX5Cds3XgwAH06dNHi74QDARLPRqCIIKTYA3PE8ohi400OnNZLod6Yr7CakjHWUwhXTqAdSG6ZPJA6PU6Z47Xyl0nYasSvj4s5661oh6fSzRvXG88tGKf6HYVNQ1YvPGoasIgYjlMLPWhvMHyDFmXV4z5a/PdaqnFW4yYN663cyxclSv5cXSVu7dGh6OusYlpPM5WeVcy9ZbLWllbLymFr9azyZe8M7WMcP4YK3cpC9ktr2nAWz8cwZCuicxr0jHpyZid1cPncgZi93mwItvY6tOnDxobG7F582YUFBRg8uTJiIqKwpkzZxAdHY02bdpo0U8CwZ/wThBE4AnG8DwxiffKi2EwMR4CAKFiFPgbOYb0+IwOIVs6gHUhOtRD5XDmyO7OOkdf7fsV5TWNzu84jm05KWaA+CpSwffyzqs6w97EwWI2oNpLEWK1amtJGQeeMv1FJdXMx5Z6hojd9+XVDZixYh/euVi0ls/xWpdXLCiKImdh7a28gbdSE9M/2et8+eMNtZ5NvtS0U/NF2Z1XdcaiDUcU7//GD8fA/XDM+bfYmtTVUeDgWtaUk8v8NYcQYdSHzG+EbGPrxIkTGDNmDE6ePAm73Y5Ro0YhKioKCxcuhN1ux7vvvqtFPy97qB4NQRAs+KrUpTZSOWQ6AOFhenz65yEouWAPKaPAH7guUkrO25n24RfBoVqbRulC1KDXobK2Hh9kF7WYb2er7My/lUJ1whwODlOW/SjZ93njeiM5Jhzz1x52M9Ys5jA4OM6nha03dGh+aREeZnAzTlg9eq7zpEe7Npi5cp+ogAPLM4Tlvnc1iNQs0iukZMqSy8piTL/6u/4t1BGVorSmnVovyiJMBlTVsgm2iCG2JuVDR1m8zkooq24IqbWvbGNr1qxZuPLKK7F//34kJFy6OSdMmIBp06ap2jmiGbkPLYIgLl98eWOqBSyhb7YqO/Q6HcZndPBLn0IFoWgGvQ4+LYJDBSULUTV/Kz0NEKlitPy1v2dYKgx6nVPGfkO+Dat+OoUL9kaBvdSBP5OXb++rijdzbL/2WAwdHlrRUgqf9Rkit7SDFqIorh4gtdovqWZ74cGKkuL1akjXA0BNfZNTaEQt+P6wytr7SqisfWUbW9u2bcOOHTtgMrknO6akpOD06dOqdYy4BNWjIQhCDkrfmGpBsOaQBTti0QzeDC2gdeW5yV2IavlbKZXPxaHltd9VWKr6YlYIz/tajXXA2H7JeFev/Bki977X4v539QCp1b6vXiWxvHs5Y8byQm1cv2SsOcCmFqi/GNKnpm2khqElFWoYSmtf2caWw+FAU1PLOONff/0VUVFRqnSKcIcWKwRByEVqoeovsZ1gzCHzBbWum7d2WEKqPD1cwZjnpsa1krMQ1eq3kj8Pe6MDj2b1wPLsQlTUunuqXGsercsrxnPf5GuexD+gUwyeGNOb6boqGQslXhceufe9mve/kIdXjfZ9VSBUM+9e6oWaHLW+YFRR1wG4J7MLlu84IbltKKx9ZRtbN954I15//XW8//77AACdTocLFy7g2WefxdixY1XvINH6FisEQfgHsYWqP8V2gi2HzBfUum5S7bCEPDm45vygxChzUOa5BULQSYvfSqHzEKKypjmH5P4RqXh/a6FmBZld2XeqEuXVdslx92UslOb9yb3vWbbnRUpYrq2nl5Gl/ZhIo1O0R2ib2oYmrM+3KZq/WuTd88bwzoJS5BwvAdA8VlelxOPpr/Nk9zFYiLcY8dKEvoiJMDEZW6Gw9pVdZ+uf//wnsrOzkZaWhrq6OkyePNkZQrhw4UIt+njZI1X7g+rREATBili9Gv5HX26hSilYCpuGQuibWteNpR3WN7VnKmoxPqMDMj1U+QKNv+cYj9q/lWLnIQR38d/Sbf4xtHjmrs7zWutI7ByKLyrwfXfgjCb9knvfs2x/Q692TNf20ayeGJVmddb0yykodR7PW/sv394X70wdiJhI4fptvEEtd/6qXWjetV7h4o3H8Jcv9mPxpgIs3nQMU/71I4Yu+MFNaj+U0OmAF25Jx5j05Fa19pVtbHXs2BH79+/H008/jdmzZ2PAgAF4+eWXsW/fPrRr106LPl72tJbFCkEQgUXtH31W+JAXz+Kl1pjwkFCTUuu6sbaT2MbM1K9l2UWaGS5KCdQcA+T9VrouWPnCua4oVcfzd0hWWXWDaMgYyznMXLkP3zHm9shF7n0vtn1spBExkUZ8uZdNF6Cyth7DF27EpKU7MWtVLiYt3YnhCzcCgGR/RqVZER4mvDT2Nn+9zSc1C82vyyt2O7dFG460CFcNVUMLaM7RenjVPqzLK25Va1/ZYYQAEBYWhqlTp6rdF8ILwZTwThBEaBJIsR1f8j8CjVrXjbUdcGBWGws2Na5ACzqx/FayhNVpoY7nDV+KKIt5QlnDUR9asRfv6rV56SH3vvel7hfPBwKiJK7hetufHCnan12FZbBViSsOCs1fqfkkJ5eQz62zVdWh7IId8RYTrDERGJwaj/X5NsFQxNYGB2DOVwcxKs2KUWnWi3mSRaioDd1ajEzG1jfffIObbroJRqMR33zzjddtb731VlU6RrQklBcrBEEEnkCL7YRq3Scl101IkIC1nZJqO569JQ3TP2kpve1JsKlx+XOOiYk+ePutlMqd4esDfe8Hj2FcpBELbu8LAC0W6/EWE2rsjahrdEi2I5azIucaa2m0K1Hby+yWgCYH5/RIsSJWGsFT+l+sP3LnL0suFmtOUVFJNYYv3ChoIFujzahrdLR6Q4unvKYBj67ai59OVLgXF48w4t5hqZg5sntIrX2ZjK3bbrsNNpsN7dq1w2233Sa6nU6nE1QqJNQjVBcrBEEEHhLbUQbr9Ui0NIf/ib3pvvOqTszHy+yWgD8NSxF8S++J2saxLyqCcq+VUsSu8bxxvRFnMTv7fnO/9kwqj2rVB2KR0Y4JD8Ofhqdi5sgezr4JGYf/l2cTrHXlirecFTn3cbAZ7YA87yLvGfQ2dixeVTnPSNa6blsev17SUx0XafTqwfPmbWutfHvA1uKzytoGvL7hCK6wtgkZrxbAaGw5HA7B/ycIgiBCh9akDOhPWIuI/uWL/RifkSyoRmerrMOiDUcRe1HxjOX6j0qzMhlbahrHvqoIyrlWz92qLAxIzJtQXFmHh1bsc/tMicqjEnhTdNo1zWqEYmGBs7N6Cr6VF3qROrZfMh74NRXvbS0UPaa3nBV+LFgNlmCT0JbTH2tMOMamW5nqmnlrV84zkjVkds+JcmddLDHsDB5MJfgSnhqMyC1OHizIFsg4deqUFv0gCIIgNKY1JRz7E2/XzZWzVXV4T0T2m18k8LBcf3+qcTU5OLyx4Qim+6giKOdaqa3sJoQSlUcl8CILc8amCYowJMeE492pAzErq4es+2vO2DS8PXkA4i3uCnnJDOIyBr0O88b1Zj5WsHm0Wfszb1xvbH9yJLLSrEzbHz17XlAUBZD3jJQTcjgmPRn3j0gV3aamXv2osOjwMNUMLYvZoFJLviNHUCRY0HGct/rMLTEYDBg+fDimTp2K3/3ud4iLi9Oqb0FDVVUVYmJiUFlZiejo6EB3hyAIwicCUQOpNdBcrPaQzyE9s7N6YtXuk0zXn/fiAO5vqPmFnxpqjixFePk3+tufHMlkLLBcK7ltAkBOQSkmLd3JtK3ncV79XX9MWfajrH2FEApX9Ay1VLtouJL2WGuEAc1hbD/NHcXUR38VROdztqS8TPz8kdreE2t0uKh3leUZyToXV04bisGp8aL5WIQy3rgzA+MzOgTs+HJsA9lqhD/99BNWrFiBF154AQ8//DDGjBmDqVOn4pZbboHZ7FsMNkEQBKE9JLajjDHpyYgKN2LKv3xbsKckRnpVRPM8ppZKtGIheZ7IVRFkuVZ8mzuPl0Kv0zHNRSXeKafKo45d5VGIP2Z2wU0X6/9I3Stq5Fd7M2p4qXGxa8Y6rjys2/nzRQ3vZXrwk70twuG81eoS2l4IW1VzrbF3RWTopZ6R5dXSL12SGUMOWwvR4WGoqmv0y7GCzRPrDdnG1oABAzBgwAC88sor2Lx5M1asWIH7778fDocDt99+Oz744AMt+kkQBEGoCIntKKPkgu+J6u2iwmVdf62MYyW1pOQYO6zXasane91knb0t3n1ZYJVcsMtajHtyU3pyizHTysvjzagBWqoXul4zJeNaUdOAD7MLcc+wVNH+syjvqW1wyX3ZILa9N3iZcTnj1uTgMH/tYcntauubsD7fpllOlj+Jt5gka3gN6hKHTb/8pnlfQqWYMY/sMEIh9u7di/vuuw8HDhxolWqEFEZIEERrxV8hQWoR6P4qCWPjURI2pyVKzmXltKHMRqLSa+UZIuk65oltzPjL57k4W2WXbSzNG9cb9wxLxfp8W4vFuJhkON8foXHTyssjZtRIGYg6NF+zmAiT4jkq1n8+RE/MgNF6bsu97/nttx/7DUs2FUi2/+mfh2BY90Tn31JjK2du6wA8mtVDdr2wYKI5dDYNM1YER52vB0akYs7YtID2QdMwQp5ff/0VK1aswIoVK5CXl4fMzEwsWbJEaXMEQRCEnwm13K1g6C+r2p4nwShAIsdLpUSpUum1clUccziA+Wvdxzw20ujcRk6789cextJtxzFpcGc8MaaXW9HY8mo7ZlxUMpQKVwO08/KwyNOLwaH5mj0xppfs4/KI9T/QxaqV1urKPlbCtH1OQanT2GIZW7meqpW7TsIaHY6zVeL5Z7GRRpjD9EEp884/Y5dgoNfyCPwdItcgizIbcN7O7qz5Zn8xnhjTO2iepVLIViN87733cO211yIlJQUfffQR7rjjDhQUFGDbtm2YPn26Fn0kCIIgVIZfUPiiPOdPgqW/UmplOjS/dU32UKOzMqjH+Ru5IXlyDUVWZUIh+MX7QytajnllTXPIYUykUWBP79iq7Fi04Shmf5aL+WsP45X/+wWVtfUY26+9oIqg67jxeVJf7zuNp78+6NUgev7bfEG1Oyl8ze0prqxDmQ+hrmL9D3RBdOXIy1pjMXaf/zYfiW3YNQo4NM+7SYM7AxBXOVxwe19kP3UDPr1vCGIi5M9trZid1cP53IqzmCRrmSnxfFmj5T2LQk2NULZn68UXX8SkSZPw5ptvon///lr0iSAIgtAQ1mKcwVLHJNj6y5JH8sSY3kEfnsnqebJGm/HcrX0UGYpi1yo20oiKmgYve4rDj3mE0YAl9w1ESbUd7aLCUV5d38ILJoWnJ0csN06Osp8vXh41jJXYCKOs+lqeCPU/VAuiZ3ZNxGKGMMKocKMz9JDFgwdOvthKSmIkU/6ZXq9DZa2ye0MLerSLcv4/6/yMNOpR08Du/Tv6W7XsfgWfYS+ObGPr5MmT0OmC6weDIAiCYMffIUFS+RZS3wc6hEkIKdGKUBAgYVFvEyvCKweha+VwcD7JsPNjrtfr3OSfR6db8WF2IZN4Ad+Op7HuOW5ylf14lCwG1TBWKmob8OwtaZjupYguC679H9QlDvEWI8qqhY2AYC2IPrRbApNhv+D7n/HOlgLcPoBNSjzneCluSmcrOs7TLiocmd0SJMVu5M6bqPAwnNdQAXD+2nyMTm++N1jnp16vB6CtKEiwGfbekG1s6XQ6bNu2De+99x4KCgrw5ZdfokOHDvj444+RmpqK4cOHa9FPgiAIQiX8GRIklWfFkocVrCFMoWBQSSHmeVI7F87zWjU5OJ9k2Hk8x9yg1yExSl4ZGm/GuhJlPx4li0GleW6uxLcxY0x6Mt6dOhBPfXVQsQeR7z9/j3oztIDgykfkMeh1ePn2vkyGZ0VNA7PxtHjTMef/swiXuBqiUs8NOfNGr4OmhhbQfG8sWv8LhnVvi0Fd4pjm5wW7tn2KizQGnWHvDdk5W//5z38wevRoREREYN++fbDbm2ODKysr8dJLL6neQYIgCEJd/BUSJJVnteC7fKY8LH+HMPG5OatzTyOnoFRR7k0gUNrvMenJ2P7kSKycNhRv3JmBldOGYvuTIwUNLbWujS/5XK4IjbnSeSBkrCvJodKhpTQ163VT47rw+S9j0pOxZ+4ozM7qiViPHCApmyjeYsSgLnGi97Db8fyQj+jLvOMNz6QoE9P2SvILpdqSY4gOTo1nzmHy16Np8aYCTFq6E9f+YxNu7R/4vNPQeCJfQrb0+4ABAzB79mz88Y9/RFRUFPbv34+uXbti3759uOmmm2Cz2bTqa8Ag6XeCIFoTvIyz2NtJNWScpaSiAXa5bQCa95cnGBQPleCPfmtxjHV5xXj66zzJ+j2eeBtzqfkthpCs/erc05i1KldWvwDg0ayeSEmMFM0lk7pucnLEXEn2ck1cQ9fE1BddsUabUdfo8OoZS7CYkDPnBpjCZL+7Z0ateZd9rMTnguRSeD7TlN4f6/KKfQ4D1QodgKy0dliffy6g/ZBThkIL5NgGsu+OX375BSNGjGjxeUxMDCoqKuQ2RxAEQfiAkje+Uop6gO8hQSweASlVKz60yx/9BYJH8VAu/ui3VscYk56MeeN6y9pHaszleoeEPFE8cr1ksZFGxEQasWjDEcxalYtJS3cKKipKXTfe2yj32ni7JpndEjA+owMyuyWIqi+69bHKLhmCWFpdjz0nymX1UQ5y5p3Us1BOQfJ7r+4i6f0Tgj/kn4alePUQS8F742IFFDfDjdoZtixwAH44HFhDC2jlAhlWqxXHjh1DSkqK2+fbt29H165d1eoXQRAEIYEvb3xZFPV8Qa0fQr4drfsbbIqHrPij31ofwxoTIXN76TEXmy+eSBluLMIQ8RYT5o7rjZNlNcyFa1mum9z8s9lZPWXdB2PSkzGyVxKGLvhBtmfRFTn3upzixHLmnVChatdnYZODQ8l5dmOrY1ykTyF6X+07jb+Nk/cCyPPajEqzYlSaFTuPlyKnoBQAh8yuiTh3wY7Zn+Uq75wKBENkdasWyJg2bRpmzZqFDz74ADqdDmfOnEFOTg7++te/Yt68eVr0kSAIgvBAjaKqUop6vqDWD2FRSY3z/7XsbzAqHroitkj1R79Zj/FhdiESo8yyx4VFFCI6PAzP3dIHybERzG17zpeikhqs3HUStqpL5xITYcS9w1IwKs3aYn9WYYi/T0jHqDQrhi/cKNknV1jGhvU+ios0YubI7rKODwB7TpT7ZGgB7H2U+3KIdd4t3ngMr284IvosvH9EKr7ZX8wckmmNNiNeRh0tISpqGvDWD0fx6KieTNtLXRu+4DIA5kLNrRkdgHIf560/kW1sPfXUU3A4HLjhhhtQU1ODESNGwGw2469//SsefvhhLfpIEARBuKCmp0ErRT2WBbSUihcArNp90k16XKv+BqviIeB9IWZvZJNX9qXfrPu6yq3LyVVhkaCvqmvEvNV5GNGzLRwch6FdE5gMLs/5MnNkdyzeeAzLswtRUduAitoGLNpwFKt2n3LrL4vcu6uHLaegVHFdq+xjJaIvD/j7SKrtv9+Wruilgy/zQo7cu5KXQ6x9e29rgdcixO9tLWRqh+e5W/sgJoJNTMMbb/xwFD2T2mBsv/Zet5O6NksmD0CcxXzxhUE1Vvx4wue+hTocgBkr9uIdfXAVihdDduCnTqfD3/72N5SVlSEvLw87d+7Eb7/9hvnz56O2tlaLPhIEQRAuyPFmBAqpPCsdgJv7tfQmeOKv8wjWoq1SOStFJWzFQH3pt5J95eZy8WF/3nKIquub8H2eDVP+9SMGvbheUZ7Y+nwbXt9wBBUeRWNd+8si9x5vMeGV2/vB3uhATkEpbJXK1z+LNx1z5ncNX7ixxXndeVVnr/s/MCJVckEvhtJ5ISdXUurlEND8csgzx4q1bzX1TUzbsTA7qwfGpCfLUgQUgwPw0Ip9Xuep1LXhAMxcuQ+Tlu7ErFW5WLThKM6eV9+jEzyB0fIQmjfBiOIsO5PJhLS0NAwePBhGoxGvvfYaUlNT1ewbQRAEIUAwe2FcEVtA81LRWQKhW0L44zx4D4LYosObiIJWsCxSV+46CWu0tv2WujZCeFtEizEmPRlbHr8e8ZaWogCeVNQ0YLpMYQ7WRf/O49JeqrLqety1fJfTSGItoiyFq9G3Lq8YwxduxKINRwS3TbCY8PbkgZgzNk3x8QanxguKMLhiMRlaGB5y5N6VvhxSMu98JSXRAqDZKK9rVMeI83YP+CokpAazbuju9SVHsBIMLxVZYQ4jtNvteO6557B+/XqYTCY88cQTuO2227B8+XL87W9/g8FgwOzZs7XsK0EQBIHg9cII4S3PqjnpWxrX85CTYC8Hb6FsgSrayrJItVXZMTurJ17fcESzfrOE+Yn1T26+WHMOEXsRXjnCHKyLftZ56YqveU+ufdABmPPVQZR7UQKcndUDM0f28Mt8NIbpsfWJ67HnRLmi+07pyyGl884X2kWFM4WQysFbwezsY7+pdBTlNDk4bH9ypPO5mmgx4y9f7HfLbQxmAv1SkQVmY+uZZ57Be++9h6ysLOzYsQO///3vce+992Lnzp147bXX8Pvf/x4Gg0HLvhIEQRCQzoeSk0vhD8TyrOSeh9a1pLRWPJQL6yIiJTFS836zqvsJIWcxJHfhJMeYY287sGFJHODV0NIBWLX7FGaO7OHzsXYVlknKu1fUNGDPiXLFuZKsL30SBUQpfJl3cuCfNYO6xOHaf2xSfQZ4zj2lddS0QdfiGf3crc1GLhDou0EaoXkTbDAbW1988QU++ugj3HrrrcjLy0O/fv3Q2NiI/fv3Q6cL1WhPgiCI0CMYvTBKkHMeaqgvsqCl4qFc5HgwM7slaN5vz2tTct7OFD4ndR6u3ko58tw8587XMXk8Wa9nZtdE/Gfv6SBZCLdETWVMf4QkN8vnmyS9f499lovJQ7o4i0HzY+g6777PK8ZHOdoIRDx7Sxp2M4T1KYGfe00ODos3HhMNDQ0EHJrrk7neM/4yclUh2K1ByDC2fv31VwwaNAgAkJ6eDrPZjNmzZ5OhRRAEEQCCzQujFJbz8HcNLK0UD+Ui1/Pnj367HqPJweFf2wtle1hdDaOikuqLcuyXjCy9Tl6eSlFJDYYv3Cjp8WS9nkO7JWDeuDQ8tGIveycCgBrhU1qHJF+Sz5cOszx73u5mhMRbjHhxfDrG9mvvNu9YjS1rtBnjM9rj/YtqhGJTip8rQLPCnVy8hTi63gPr8orx3DeH3OZ6MLBkUwGWbCpocc/wRu6i9b9g8aYCv/fLYjKgmkH8pKQ6uK6nEMzGVlNTE0ymS1KYYWFhaNOmjSadIgiCIKQJJi+ML0idR7DXwNKKYPdgKukfS/iUHEMrNtLotcaSp8fzzqs6CRYe9uxvnMV36W9vxEYaUVnT4NNLeVYDyJvXT8uQZF9zn8qqG/DQin144NcKpwjI4NR4r0WmXfnnHzIwrHsiBnSOazHnEiwmjM9oj1FpVgxOjcf6fJvsvvLGicPB4aEV+1p87zqnlLQv96WDrxQL3DMGvQ7DurcNiLHFYmgBwZGbLAWzscVxHO655x6Yzc2xkXV1dZg+fTosFovbdl999ZW6PSQIgiBECRYvjK94O49QUV/UgmD3YMrpn9zFt04HcAwbS6kLjkqzYn2+zauR59lfX+tPiXU73mLEhIwOiAo34vUfWhp9rMRGGpnrW3nLc9TKoGeRz2flva2F6N8xDmP7Nfd3QkYHLMsuktyv5EKzx0PqZY7cvsZGGLFkykC3Wm/v6nUtvFZJ0WY8d2sfZ8FrOddi5vXdEabXMc0R1vuEBQ4towRYa71pAavXMNhhNrbuvvtut7+nTp2qemcIgiAIwpNQUl/UgmD3YLL0T8nim+OA3w3siO/yilvUUoqLNOKeq1MEvVSuFFfWYerSH5FTKK4wODurp1vhbMC3uWQxh+GCvdH5d4LFhP6dYpB7qhJl1fVMhoIUFTUNWJ9v82pss+Y5amHQs0iay2He6jyMTm82AFgNYdcx9PYyR25fX57YF8O6Jwp8I1RRUNm1GNY9kfk81TK0eDyjBHiDfPon/g+r5U8tGD37cmA2tpYvX65lPwiCIAhCkFBTX9QCXzyYWsnly+mf0sX3NT0TsfB3/bCzoBQ5x0sANB9naNcErDlwhqkNb4ZWs7LfScwc2d3tc6k55w1XQyveYsTtA9vjX9uKVM3j5/MUo8xGlFTbZXlrhPIc1Tbo1fYyl1bXY1dhGQZ1icOaAzbJ7fW6ZmEOFuT0NS7SiFEe9QHFjNqzVc1G7b3DUpjbd32WBbJ+lOc1GZOejNlZPQMi7HFtz0QcPF3llvcXLJ59VpiNLYIgCKL14Y+FuK99CPbcpWBGa7l8VpQuvttFhTfnjfRIxLAeiS2+8xWxfD+1ajyVVzdg6bYin/vpCd/vKct+dH7mOq6seY47C0qhv+gtUvP+18LLfO58HT7OYTNaHRyY5erl9LW8psFtrrAYtatz2V4K8PDPMpaXTHGM+WtyEbomM0d2x8pdJ/wu8LHlSAkAwGI24NoeiZgyJAVDuyWE1POejC2CIIjLlGBYiIv1Yd64NMRZTM5F4Kg0a1DnLgUj/pLLl6LJwcmWdGfxVqqZSyJkDKohf+1PVWrXcbU3Opj2mbFiLypqLy3W1br/B6fGwxptVnVh3i4qHHtOlDNvz2rgy51Hru2yGLWl1fWItxhRXu1dEMXz2rO8ZHpxfDrmrz2sashmgsUkeN8Z9Do8d2ufgNXfqrY34bu8s9hxvAwv3943pJ75+kB3gCAIgvA//ELc80eaX7CtyysOWB+KK+vw0Iq9mLR0J2atysWkpTsxfOFGAMD2J0di5bSheOPODKycNhTbnxwZUj+6/kLqjTvQHEbWpLHc2bq8YgxfuJGpHhcPq7eSX4yqgZh3Y0x6stucmzeutyrH0wLXcU20sBV6dTW0APXu//X5NlTVNUpvyEjyRcO7S3wk8z6sHiuDXod549jnkWsRXVaDbkJGB0njZN643i2eZbzBb41xPxdrTDjemToQY/u1x7O3pLXIFvOF+ePTRe87sf74k4qaBr/9RqkFGVsEQRBBSpOjudjk6tzTyCkoVW1hHAwLcbmCCfwicH2+DZndEjA+owMyQyyUxJ/IkcvXCjFjWgp+IcliRPO5JErR4dJCXgw+H218RgfcMywVyTHhqi5u1YQfVwfHKeqnGvf/urxiTP9kbwtRE6XocMnwviszBSy3vDXaLCuHU47U/18+z3Uu9FkNupG9kxAbaRT9Xgdg/trDyD5a0uJ572nwe75k4g0gb+2z8sCIVIzt5/2+G5OeHPCXDrxqotYvi9SCwggJgiCCEC1D/IKhbpVcwQQtihe3ZrSWy5fKs5NjTCfHhOPOqzojJTFSUd6Qr7kk/EKeJX/RNbQrmHl45T7ccVVHvL+1UHbOmS/3Pz/uamG9KJ/OP/NMYXpMuyYV710sVCzGc7f2aTF23sZXzn1wtsruDNcclWaVDEFMjgkHuGaPjBhSOXhSAjRj0pMRZTa67S8Hi9mAf0zsh7H92ktu2+TgZHmqtSKUaiuSsUUQBBFkaJ1rEwx1q5S03VqLF2uBlnL5LC8CWI3pv43thT8N7yrLuBJaNCvJJeGNPHujA29sOIqVu07CViX9coP3JDz1n4MtwvDUwBptxqTBnZGSaEFRSU2LfrFQUduA97cW4v4Rqfhmf7HbWMRGGJn6reQeVVvy/Z+/z2ghjPLEmN44XVGHtQeKW4y1xWTAP//Qv8WYSc1ZOfcBf8ynvz6I2gbHRYVE8ZC2W/sno6Ra/osAuc97JccAgBE9EjFhYEfEWcxocnCi9yJ/32UfKwlIzS0hQqW2IhlbBEEQQYRcyWYlBEPdKl/aDpUf2ECilVy+2IuA4so6TP9kL96ePABj+7VnHqMlmwrQKT7S62LS1bgqKqm+aHxcWljyi2Y5Yha39LNid1G5Vylrb4vdMenJiAo3Ysq/2DwJDwgYPUII1fyaObK78/wT25jxl89zcbbKzmRUfrO/GFsevx57TpQ7jVMHxzH12/MeZfH8qX1vehoQQkaTOUyH/h1j8fDIHri6e2KLPrG8vOI9VHKk/suqGzD7s1zJ7b7ZX4wRPdoxtnoJ15DOkb2S3MZQ6NorfaZuPVqCrUebFf/EXjAIXfdgIFRqK5KxRRAEEUT4I8QvGOpW+VLHKFR+YAOJFnL5LKGBM1fuw2LomMeoorbB69t7lkWe66J5+5MjvRpm8RYjJg7swFT3SurlxtCuCUxz+O3JAzG2XzL+cmMvDF3wg1u9IE8+yinCg9d1a1H6wPVed/XiSfW/uLKuhQR6k4OTff+zhjWrfW+6tidmNNU3cthdVI7q+kbB0EHWl1dqSP0LUVxZB+ig+HlXXFnXYt4IXXtfnqmux5r+yV6n0Q8AizceC0h9LSliI40hU1uRBDIIgiCCCH+E+LmquHkutf1Vt8pbH8RgETMgLiGlZCY3FJUlRMzBAQ+t2Ivy6npZAg1Cye6sAhuuHgAATjGLWVk98czNfRDvIn5QVt2AZdvZCwx7ExLh57BUW/t/bZYr33Oi3KuhBTTLhA9dsMGr0ppTECGCTRDB81nBcv/PG9cbuwrLsDr3NN7YcATTGZVL+QW/Gk8O13u9ycHhqa8Oyhb1kVNvjL+uSdFsSo5yKLlgl/28c8Vz3ghdezXVORdtOIKB8/+HgfP/F5SGFgDUNagjwOIPyNgiCIIIIvwV4qf2QlzNPgjRGooXa6Uu6Q0pJTM5yDHw56/NZ1Ys4xe8H2YXOq+JXLVKIaNoXV4xZqzY22KhquSyu5676zhGhRsRE+E9SOi9rYX47kAx8/Urq5aWth6VZsWM67sztXf07IUW883b/X//iFTMX3vYWXph0Yajgu0KGTlKXqII4apA2OTg8OSX+5kEJjyNYtZrPmNF8/Uek56Mf/4hQ3nHRWgXFa6qbDp38d9TXx1E9tESN+XC+0ek+tw+AFTWNqKyVh35fi2e2HUNDuw8XqpBy+pDYYQEQRBBhD9D/MakJ2NUmlUyD0NLhPpQXm1vUagz1IsXB7KAtJSSGStyDPziyjrEWcyyhCTmrz2MpdsK8dytaYiJMCnKD+EX13KNNSn4c1eauzJvdR7evHOArH08wxf5nKn1+Tb8N/eMpJeMZ/GmY1i86ViL+SZ879VjxoqWoXpiCIU1+1oM2rWf6/KK8dw3+cwCIdnHStyeYUrCWVkLQrPg+bz2vOaJbcx44OOfcMGuzEtTUdOAKct+dF6zUWlWfLM/dOpP+UpOQSmGdU+U3jDAkLFFEAQRRGiRayN1vEAr+wn1YXR6ckCNQDVhFZUIdvgXAawL6HPn6zA+o4MsIQlbVfM1+dOwFEV9LCqpBqCeKp7rYllsHFkora6XlbfjacSoIVAgJPjheu81OTgMX7hR0fl5epB4o+LD7EJmmfA/ZnbBTenJzntdyfVevOkY/rP3V6exJjeP6flv8/Hq7/vLOKJ3OLR8Xns+767sEofNR0p8Ok7xxbF9NKtH0IlYAOrmwPmrZTUJqTDCl19+GTqdDo8++qjzs7q6OsyYMQMJCQlo06YNJk6ciLNnz7rtd/LkSYwbNw6RkZFo164dHn/8cTQ2qlfZnCAIQk2CIcQvkLConoUKrKIS33mRjg4W5OaE8IZPZQ2bB8aVz3/6VfY+ALBow1Gsy2MP2fOG68sNAD57ylzzdlg5d74O3x04I5gzJRepgsW+GKhCHiSDXofEKPb8p5vSk51GSPbREjz1H+EcLSn4lxhvXAx/ZL3mzoLQDg46lR43s7N6SD6vr+nRVpVjcQCWZxep0laokNk1+L1aQAh5tnbv3o333nsP/fr1c/t89uzZWLt2Lb744gvExMRg5syZuP3225GdnQ0AaGpqwrhx42C1WrFjxw4UFxfjj3/8I4xGI1566aVAnApBEIQkwRDiFwgCGW6nBXJEJd7VB78hPSY9GW9PHoCZK/dJ5j4t2nAUPdpFKSqAesHeiLhIIypqGmQtuHl1OTW8E66hqzkFpT4bOyXn7UiMMuPRrB54f+txVNdLh44V/laNNzcK50wpwZuaqRIDVSqsmTWML95idHoP1ZIYX7ThCFbuOoHnbu0jK5z1x8IycCo5TFISLZLb3JWZgr9/d1hRLqEnWtR9C1ZiI40YGiL1FkPCs3XhwgVMmTIFS5cuRVxcnPPzyspKLFu2DK+99hpGjhyJQYMGYfny5dixYwd27twJAPjf//6H/Px8fPLJJ8jIyMBNN92E+fPnY8mSJaivl/+2jSAIQgq1hBD4cJPxGR2Q2S3hsjC0hNTnhJS3QgU5C1gxj0OwMbZfeyyeNFByOx2ac5WULpyHdk1wtsMKb0yAg6QqnuftZI02Y3ZWD0EhEV89ZXpdc04aLzjBYmgBwOs/HFVlEe7J93nFLZ5NckV3WMKa+TA+KV4cn471+TYm9Uk52KrsmP7JXvxiO48pQzsz7qXeBWe5pga9DuP6WlU7ZmyEURNBCrV49IbusKqg+Pjy7X1D5jcxJDxbM2bMwLhx45CVlYUXX3zR+fmePXvQ0NCArKws52e9evVC586dkZOTg6FDhyInJwd9+/ZFUlKSc5vRo0fjwQcfxKFDhzBgQMuEVbvdDrv9Ul2Oqqoqjc6MIIjWRmvzzPgLfxRzDgRyRSV8qZ/mT8b2S8bscz29ykJzuJirpJBubS2KhRZKqu2SuY+LJw1EnMXE5Dn2Vf0z2Gzoj3JO4KOcE4i3GDEhowOy0qwY1CVOVn4Ti2iNaw6qWJsPjEjF6PRkxfliLIgpKnqSHBOOzK6JWLypwOdjspSp0KJY8L3DUvH6hiOq1wtTi1W7T+GZm/s47z2+ULdrPTxvxESEYeHEfiH1exr0xtaqVauwd+9e7N69u8V3NpsNJpMJsbGxbp8nJSXBZrM5t3E1tPjv+e+EWLBgAZ5//nkVek8QxOWEWEK3UGI64Y4/ijkHAiWiEqFCSmKkpu1ndk3EsB6JbuG0JeftTGGJiRYzhvVIFDTWlChbsqiExkQ2exTKXSTKg3XBy1NW3YBl2UVYll2E5Jhw3No/Ge9vLRQ1UB/N6omUxEhZYc1i6oRtzAb8eXhXPHxDD9UETXzl1v7JGNotQdY9K8adV3X2en18EVwRI95ixIPXdQMALM8uDMqwQluVHTNWNP8ejs/oAKC5UPd0hkLdAPD2lEEhoUDoSlCHEZ46dQqzZs3Cp59+ivBwdauSe2POnDmorKx0/jt16pTfjk0QRGgi5ZkBQidMLBD4o5hzIJArKuGrB8WfyMnHkeuLdM3HcA2nvWdYKlPR3L98sd9ZN0mszpiccF+WQsB3XNkR5jCD23ehdLfbKuvw/tZC/PmaVMS5FIIGLonzzMrqoSismR+H2Vk9nMWYL9ib8PoPRzF84UYs3ea7J0kNeNn0Z29J8zkUz9vLCLVLE/BMHNgB1/5jExZtOOI0tCJNBom9mu+3tycPZK6N5ysc3H8P+VxQb1OKL2rPhxeHEkFtbO3Zswfnzp3DwIEDERYWhrCwMGzZsgVvvvkmwsLCkJSUhPr6elRUVLjtd/bsWVitzfGvVqu1hToh/ze/jSdmsxnR0dFu/wiCILwhxzNDtMRfxZwDgZyFhBr10/wF7+0ROy3+nF4cn+78mxWxfAzWorlnqy7l+QnlPq7LK8bwhRudhXsnLd2J4Qs3es0LlCoE/P7WQuZ6UFrCX5fYSKOs/fhCucu2F7rV8Iq3GDFvXG+fvfLr8214fcPRFt6W4so6bPz5N5/aVgv+Gc2PtWe+WbzFiFk39GBqy7OYtKtx/2F2oeqevFFp7fCvbUUt2q29mB/oOR8sZgPGpifh0/uGYM/cURjbLxn3DEtFvEXevFGK5++ht1zQUC9qH9RhhDfccAMOHjzo9tm9996LXr164cknn0SnTp1gNBrxww8/YOLEiQCAX375BSdPnkRmZiYAIDMzE3//+99x7tw5tGvXDgCwfv16REdHIy1NngQrQRCEGK3VM+Mv/FnMORCM7dcei6HDQytahsqE6kKCtSbcmPRkvKPX4blvDknmZVijzXju1j5eF/b8Qthbe97y/HwJ9xVSCR3UJQ7X/mNTQLxY11+RiP2/VqKs+pIBw4dJ8v38Pq8YH+WcYG7T08FXXt2AGSv24R29TrHBVd/owNNfK5Ny9zf8M1pMERYAPv/plGRuG19M2hptxlUpcdh2tFSTsL4EiwnP3doHL3132GvOa4TRgCX3DURJtV00DNSg12FCRgcs85OEvOfv4dh+yXhXP7BFIetQL2of1MZWVFQU0tPT3T6zWCxISEhwfn7ffffhscceQ3x8PKKjo/Hwww8jMzMTQ4cOBQDceOONSEtLw1133YVXXnkFNpsNc+fOxYwZM2A2+66GQhAEAbRuz4w/4BfuQnH7oWqMeMIvJNTIIQoWxPJxhM9JeuyeuVn4OjQ5OOwsKEXO8RIAzZ6qf/yuP+76YJdoW0J5fmoIsXgWpVVDFl4Jj97QA4+O6um1Lh3fTznGlie+CtSsyyvG01/nuRmEaqDXaSM84vqMFiv6zr9kYMFWZce3B4Q1ApTyt7G90S7a7Bxv1sgKvV7nzJMSIyvN6jdjS/z30H1gObW0+ANEUBtbLCxatAh6vR4TJ06E3W7H6NGj8fbbbzu/NxgMWLNmDR588EFkZmbCYrHg7rvvxgsvvBDAXhME0dpo7Z4ZfxF7sbaSKzGRRrx8e9+QNEY8aY3106TOiVUIQIdmefTR6cktPFFPfXXQbV4s3nSMKRcFcH97roUQy4Z8dRfSLFhMBjx8MZxNzCDgkXo2scByXYSMPl7OXYulshaGll4HlDMoaI5JT3aGjgbCDEhrH+0mEqFmZIUa84WVf+8oRPaxEmR2S8DQrgmi88VWZQ9pkamQM7Y2b97s9nd4eDiWLFmCJUuWiO7TpUsXfPfddxr3jCCIyxnWkKpQXlRribcFeWVN8Clq+YLU4jhY8OYx8UTsnOQIAQgt6NflFYuqlNUw1qpyfXvOuii1VdUhp6BU8tzX5RX7zQvgik7XnAPFsvB0fTb5itj1E5IwjwkPQxOnvkiIXgfcndkFy3co99aJ4eCAGSv24tFz3lUX1+UV472thaofn5WSC+7hs2pGVqg5X6RYd+gscOgsFm865swpE5svvKhGqJX/AELQ2CIIgghW5IVUETwsC/JQ/ZENVdSqF6dE0ptf0Dc5ODz3zSFZ+7ri6U2ub3TgpyI2gZr5aw65hb0le+RBnTtfh0SLGc99k8/UXmykEcO7xWPNwbPSGzNwwd4k602/2LNJLkKLdbEXJZV1jYqP4w0HB3SMYys7MDurB/6dUyQrhJED3OrHec77JgeHp746KLK3f/AcB18jK1xfrCS2MeNwcRUiTAbmFxpq4BnRIEQolv8AyNgiCIJQldYYJqY1rbXGVqiiZr04JYIw/EJyV2EZc6FTT/i7bd64NOwqLMPSbQXY9MtvYE398Fyc2yrrMP2TvYJhrixU1jRg27FS2ft5gwPwt6/zMLJXEgx6neQzx/XZJPd68PAhdvzi3FZZi/lrhYUZ5KADcP+IVHy2+1cmEYmymnpYo804W2UXPXaCxYQHr+uO+0d0Q+9n1inum+e8X7zxqKI5oAZiRpO3yApc/PuOKztizYEzgmG+ahdW1hJbZW2guyAbMrYIgiBUJlTCxLRCTvgZoE6+gdxjEsKoISDhihxBGM+FpBxDLTbC6LZIt14s0Dt/Lfsi0lsBYv5zpYtsDkBlrfqentLqegyc/z+EGfRufXP1xnjeG+XV9dj082+KDKT5a/Od/1VrcR5vMeKlCc05mcO7t/UqesKzZFMBYiONzjkpdC6l1fW49h+b8IcrO/rUP9d5f23Pdnh/63Gf2lOKVDi6lPfy9R+OOf+fnx8ANMup04oyhpy6YIOMLYIgCEI1lISf+ZpvoFbIG6G+l1Fusr3rQlKOobZk8kDo9ToXg8KOGSv2yVpExltMKA3BhdwFexMA93Av3htz/4hUfLO/2G1M9TrleVTFlXWC5QuUkmAxIWfODTCF6bEur1hW2Cifyxnjxdtoq6zDGy5GhlL4eT/4pQ2o9mNonSss4ehj0pPhcEByjIp5T22EMaQMLQCIbxN6SuJBXdSYIAiCCB348DPPxTq/8BMrGMtaHFco30DpMQlh1K4Xx1qEODkmvEV44uDUeFijpRdWyTHhGNotwVm4eHBqvOzQtqlDOmPuuN4y9ghu+ALF721tWTxXCxU/uegu/vv7hHSnofXgJ3tlhY261o+KixT2Hah9quc1ykOTYub13bD9yZGihhZfMPnrvb9i7uo85na1qPulNSdLqwPdBdmQsUUQBEH4jFT4GdAchtMksNLztiD3FjrjyzEvB/gF2Orc08gpKGW6DlrUi+NlsnUeg6vTASN7tcXKaUMFF5IGvQ7P3dpHsn3PuaFElGP/rxVBFZ7En01spJGhOlnoYXUxruUoVnrCe5zKawJjBPmLISkJomG76/KKMXzhRkxauhOzP98fVPNYCxZtOBpyL9EojJAgCOIyQ4v8Jl/Dz5QoOZKwhjhKQyu1qBe3Lq9YsB4RxwGbfv4Nf7iyk+j8G5OejHenDsST/znQIucpLtKIBQL115SIchw8XYWDp6s0K5QrF2tMOO68qjMqa+vxQQCk5bUg3mLEvJv7wBrt/sxRYhxfbsz6PBcvTUhvMddZa9i1JnwpsB0oyNgiCIK4jNAqv0mN8DO5So5qh7y1FnxRE1S7Xpxasv4RxjA3YyveYsKL41suPgF5XjdPlBhaOgBJ0Wb84cpOeGvjMdkL3+SYcMwbl4Y4iwnnztehqKQaK3eddJMf1+kgWzkwWOBHlRfB8CRY7s9b+lnx7QGbV6GUQFFWXY/pn+zFn4alYFSa1fmy46mvDgZdX7UmFF+iURghQRDEZYKW+U1qhZ/xSo7jMzogs5t46Iyax2xNqBFayXsZrTHu180qkFclhRzvoxCXcnnc2yivrseMFcJzlvfOaYFYmOtzt/ZBWvtoRQvfeePSMLZfMjK7JcAcpsfrG462yF0KJUMr0uS+tJSaN1rfnzoA1mgzHr2hByJNhhbfx0aEYXZWD2SlWTE7qweSGPIEWYmNNGLxnRloY255XCV8kF2ESUt3YvjCjZi1al/AJOiDgfX5tkB3gRnybBEEQVwGqC3p7YkW4WfBeMxgR63QSrXqxfnifVQ6Zw16HW7tn4z3thbK6qs3dGheOJvD9G6GEB/mOirNiuELNypqd/7afIxOtwKA4twlJWjlLYuJMGHpXf1RUm0XnDeeYcyDusTBGm2WFMdQ4nHi96lrdOD1H446P7eYDRjRIxE9k6Lx2e5TWLTh0nfW6HDc3C8Zaw74nhekA3BTv/a4qV97LN54DMuzC1URpbBV1qnSP195ZGR3vL/1OOoaHX4/9gfZRRicGh8SirNkbBEEQVwGaJ3fpHb4WbAeM9hRM7RSjXpxvngflc7ZJgeHb/aruxDlAJTXNODTPw+BXqdrYYDmFJQqyjvy9OwpaSM20oiGJgeq7fIkyaPDw3Dv1aluRogaFFfWQa/XYXxGhxbfCYUxx0YaUS+yWOfv3PtHpOKLPadliz/wsvCeHqBqexO+zzuL7/POttjnbJV6hkx5TYNzfs7K6oGZI7tj5/FSzPh0r09GV6AdnbGRRrx8e19EhRvx5kbfpfWVMuergyGRu0VhhARBEJcB/shvUjP8LJiPGczER5hU3c5XfJH1VzpntRRcKLlgFwxz9TXv6Nz5OlltJFhMWPSH/lg5bSj2zB2FffNuRLxF3phW1jZiWbZ63j9XhM5FLIy5oqYBNSK1q2IijXhn6kDMGZuG8f3l3ctXd40XNeK8obYh43otDHod9DpdSEquA4DRoMND13bDkskDMSrNipyC0oD2p7ymAYs3qvuyQAvIs0UQBHEZ4K/8JrXCz4L9mMHKz2fPM293zRVtNe6Nd+8jLv4tJutfcp6t5pLnnNVScOHo2fPIKShtMb8SLb7l+ci970qr62GNiXB69Ax6HV6akI7pn8grOKxV3SjP81Eq7x5hNGBUmhVNDg5f7Dkta98dx4XzAP2NP+en1jQ0cXh7SwHe3lKA5JhwZHSKCXSXsDy7CDNH9gjq5z0ZWwRBEJcB/sxvUiP8LBSO6Q/kyvSfKq9hapd1OzXgvY9PfXWwRThXbKSxxfZCoWZCiM1ZLQUXFm8qwOJNBS0VPH1c55VX2zE6PRnJMeHMXjnPRfuoNCtiL4bNBRIhT6VSbyMfYrmrsBQX7KFVSysQ89Of2Crr8H0QSPZX1DYEvTIhhRESBEFcBigtHEwEDtdipbNW5TpVyLypRnaJj2Rqm3U7NakUMAIqahow/ZO9+O5ijoxYqJkn3uaslmqEPJ4KniUX2LxwYsxfexgAnPcoC56L9l2FZQE3tHQQHhNfvDkf7TiO97Yc97Fn/kfMazs4NR7xlpYvGUKNQOeNuRLs3kIytgiCIC4TKL8pdFAq039XZgqk7GW9rnk7f8ESQjZj5V6syT3DHGrmbc66vliQbCfajE//PAQ3pScxbc/jKaPvq7eC9+CMSU/G25MHeB1DsTy3QC844y7mV6ld++z7Q+dQ0yBP/CMYiI00YlSatcXnBr0OEwTEQ+Sgu/hvVFo7n9ppLQS7t5DCCAmCIC4jKL8p+PFFpt8Upse0a1K9yp5PuybVqaDnjznAEkLGccDMVfuY2ps3rjfuGZbqVU58VJoV74qELgLu9bHO1zUIqtJJ4aokyHsryqqVe5Z4Y2lsv/ZYDB0eWtEy/8qbRy9QC85wox7TR3TFwzf0FJ1DUmHMgURMyfT+Ean4Zn+xYrGVihrx8LasNCuWZRcpahdoLur99wnNRb2/O1CMuavzZCs1tgZCpbwHGVsEQRCXGa01v6m14KtM/5yxzV6dpdsK4Vq7WK9rNrQGdI7DFxNFKgAAU4RJREFU8IUb3Y7RIgdJRdT2uCRGmd0W9UI5Xvz57Jk7SrC+ka/1sVw5d74OBr0OL45Px0Mr2AxGIVyNpbH9kvGufmCL82oTbsCC2/oKjtPg1PiA5GzVNTjw2U+/oldytOj8kRJKCRQPCBhUVpd74YkxvZ1GfGIbM/7yeS7OVtmZ+y829301PueO6+281mP7Nf/3b/89iHIZYx8bEYYGBye7ZECwEErh72RsEQRBEEQQoYZM/5yxafjLjb3wcU4RTpTVoEt8JO7KTMHGn8/iwU/2tljg8eGJWoSTqu1xcW2PD7f0dj58fSMhb67S+liuFJVUA2j2SD3wa4WiYsqxEUYM6hLn5m0clWbFnhPl+Nf2Qmfx4fN1TXj4s1zsP12Jv41zD5Vcn28LWM4Wf70fzeqJlMRIQW8pH8bsaUCGh+n9XhQ3JiIMCyf2a2FQefbb88XUc7f2wYMyFB/F5r6vxqc1JsL5/+vyigW9oFJU1jYGjdHLgl4Ht5dHVg1fEKmNjuO0qB/euqiqqkJMTAwqKysRHR0d6O4QBEEQrZicglJMWrpTcruV04bK8lA2ObgWHi1X+JCc7U+OVPVNcZODw6D5632uLeTZPzXOZ3XuacxaletTvwDgXRcjVUlY1y39rPjpRIXbuRj1OjQ4xJdog7rE4vMHrma6Fr4QaTIgOtwIW5W8tsW8pZ4hn6t2ncBqlYtQS/HpfUMwrEeion3X5RXjuW8OwVYlLorCei8JeWU9jQpv7TY5OAx6cX3AhVH8yU3pVkwd2gVDuyYE1KMlxzYggQyCIAiCCCJ8KQTsDTnhiUppcnDIKSjF6tzTyCkoRZODg0Gvw73DUmW1w6KYqcb5qOF143Pomi6ukMf2S8buv2Vh3rjeTPuHG/X49oCtxbl4M7QAYM+JCvR9dh1e+PYQPswu1KyQszlMj61PXM98PjxiYi68t4gvDN0xzr/KmPEWI4Z6vKQQmrdi38dEmLD1iZGYndVTsH054W1j0pOx/cmRWDltKN64MwMrpw3F4kkDnAIYUu3uLCi9rAwtAPg+z4a/fJ6L9fm2QHeFGQojJAiCIAKK3FpSrR1vIUa+5CmoEZ7oDW+5UzNHdm+RNyWENdqMZ25Ow/y1h0XzaOT2M/vYb6JzizdsfTFUxHLoztc1MoWI+TLTaxoc+MAHoQUWymsasOdEOc5U1MraT0rMBWi+92MjTep0lJEJGR2cfWlycFi88SiWZxe5zU1Xr5y3ef2uQFik3PA2oRzad/S6Fu0mRZsxaXBn2BsdyD5WAnDAv3OKlFyCkMdWZdcs7FkLKIyQAQojJAiC0AZvC5lQ+BHVErWvjVbhiXxfhXKn+OX1O1MHAgCmS+S78OF4LAY46/m4InT9xPoul0V3ZGDCgA5Yl1csqoIYqiy6IwPz1xxSrLYoNKdYi1erzad/HoJh3RO9jpOrIuH7Wwu9zmut1F1d74Gikhqs3HVSdihnaydZg7BnVuTYBuTZIgiCIAKClLjBkskDEWcxXbYeL7Vl+qUU0JTKKLNK1W9/ciQeGOFdlp5HSjGzycHBwXGIjTDKygUTEgLhhRt8NZCeWZ2H/DOVWLpNvkBGsJN9tEQVWXsetQxcRXDSx+c/X7qtpaHFf+/qtdNC3ZW/B9blFeP1DUeCSswiTK9Do0SYqz/wpsoaTJCxRRAEQfgdqQU6AMxcudctUfxy9HipKdOvdngi/+Y9+1gJU+7UzoJSfPbTr6LbSYWc8fjiERELbeMNW6GQMlbO1zW2SkMLAL7cKz5uLLjmxrEUueaxRofjgr0BFxjkyS0mA6rrpbc7d74Or/zfL0zH92ZPOOf18VLodTqvL0SkPLVi38u5Vv7kCmsbHDpzPtDdABD4Yt4skLFFEARB+B2WQreeCx0t5ckvF8Tkt+XmmSgxeD75scir50iqfhh/XF89IkLH4Re7KYkWLJk8ENABJRfsKCqpvhi+Ja48R3jHGm2Gg+OwOvc02kWFw+HgmObNvHG9cVdmCt7ZfAyLNhwV3e7eq1NwYx8rGhsduGv5Lsl2Sy7Uqxq6OOPTvYL5XrxXekO+DV/nnnbzDCbHhGPeuN6Is5ixPt+G/+aecVOvtF7Mz2pocvg9zJKFYDG0gMAV85YD5WwxQDlbBEEQ6qJUclsrefLLDV9ESZQaPBazgamA6ht3ZmB8RgfBPkvJm8dGGjFlcGcs2VwgeRzXHCtvuXH8tVqfb8MXe37F+bpGybaJS3h6nFhDP/80LAXf57VUafQkOSYct/ZPxn/3ncHZ896NYp0OiDIbUFWnXSFf3msciALTlxvWaDOyn7qBcrYIgiAIwhOlbyNZvB+ENErDE5WENekAxFmMzDk/YnODxRtaUdOAeAubut38NYfwc3GloACCpxc1s1sCMrsloG+HGMz+fD9T+0QznqF9rCGarCqLxZV1zIWkOQ6aGlrApfBcMrS0Z9LgziHx0o3qbBEEQRB+R6qWlBShEKfvK1K1fwIBi8HjCj++EwQ8VULERhpFBTpYxzzeYmKaW2XVDXhPwNACLi2YXetnAYA1JoKpD8GKLvjXpQCaC/sShBQpiZZAd4EJMrYIgiAIv8OLNQDK6gyFQpy+L6zLK8bwhRsxaelOzFqVi0lLd2L4wo0tCsT6G7lGrjUmHO9MHYisNCvT9lm92ol+xzrm1pgI59zyBaGiyINT42ExG3xu21/oALQxhyEmvDmQiU8ciY0womdSm8B1TIJAv1eIjTTiT8NSAtsJGVyutmmo/A6QsUUQBEEEBF6swRrj/oPp7a22Ds05GnLlyUMJPifK04PEh7YF0uBiXdzMvL4bVk4biu1PjsSY9GQM6hKHeItRcr8v954WNSqlvKGuc2NMejKWTB6giifH1cA06HWYNryronbamMMw8oq2vneIET536IK9EZUeeWYVtQ04cvaC3/oiRmyE9JzwJ5EmA2Zn9cSeuaMwivEFQTBgjQnHozf0kLyesRFG/G1sL/zzd/0wb1xv/PP3/dHGHLoZReXVoSFcE7pXmCAIggh5hGpJlVfbMWPFPgC+y5OHGqw1q6Tk0bVCqlYXAMRbjOjWLsr5Ny9AwZqzJaY6KVe6Ps5ihhoSYJ4G5sM39MA7Wwpgb3TIaueCvREbf/nN9w6JEG8xuSvaxYSjtqEpqHOH3rgjA7O/yPWphpeaLL3rSgzrkQiAba4HgpnXd2/Ot+SAkupLipmv/yCu2Mhzx1UdMW1EN+ff2cdKcMEeuoIv89cexuj05KD/PSBjiyAIgggoQmIN7+h1PsuThyJSOVGBFgjxZvDwlFU3YPZnuQCUKbJ5MyrlSNf7mtcnVuTZoNfhoeu6Y9GGIz61rxZ8P7c8fj32nCjHufN1SGxjRv6ZSvz9u58D3T2vzFy1L2jUHXU6oNJFvEPKuA+UAZaWHIWhXROwq7AMB05VYBmjkAgAvL+1EAM6xznvk5yCUo166R9CRSyJjC2CIAgi6BDyeMmRJw9VWA2EQAqEiBk8Qij1qngzKsekJ2NkryR8nFOEE2U16BIfibsyU2AKa86M4KXaj55VXgtIyos6c2R3fLD9eIvwPH8j1M/9pypa1G0KVoLF0AKa89keWrEX7+oveVTF5npMZHO4XiC8hk//Nw8vrDkMW5Wyot7uLzGCyWenjFAQS6I6WwxQnS1hWOu0+FLPxZd95VDf6BD94ZbqT5ODY9pXq3NSqz1/XWsl1Dc68O8dRdhdVIpIUxgmDuyIq7snyu4ff462ylqUVdcjvo0Z1mh15qS3z3ceL0VOQSnsjY3Y9PM5lFU3IDrCiHk39cY1vdo530bHR5jw89nzOFFWjbr6Jvzv0BlU2Zsf0V0TIvDlg8MRE2l0tufgHNBzwL+yi2BvdMAcpsOrE/rjuj5JWPB9PnJPVaDG3oRubS0Y0jUBU4emIPdUhbOPGZ1iseLHEygsqcaZilqcLKtGo4ND98Q2GJmWhE0/n0NNfSMiTAZ0a9cGRr0BV3WJQ/6ZSnyVewYl5+ug1wFmowERRgMamppQ1+BAk4ODTqeDQa9D17YWXNO9Lc7XNcJWVYf2cREY3CUev5w9j12FpbBV2WHUA6XVdpytsqPJAbQxG9AhPgKF5y6g5uJazKgD+naMwemKWlywN8Jo0CElwYKO8RGIMhlxrroexWU1sJ2vRaNDh3CjDskxEWhjDkNa+xgcP3cepytrcbbSDoNeB2tMOB65vicKy6qx50Q5wsP0qKxrwOHiKjQ6OLS1GKHX6VHb0ASAg16ng72RQ4RRjzCDDqcr6nDe3gQdgIRIAwalJuB0eS2aHMC5qlo0cUBMeBiuTInH/lMVKKtpQITRAItJh1PldbA3ctDpgEgDYDDoYHcARoMBbS1GFJTWSs5Dc5gO0eFhMIADpzcgwWJEaqIFpRcacLK0BqXVddABaGwCPJezJoMOAzrG4Lqe7VBeV4/sglL8VlWHqrpGGPU6RJgMMOj1KLtgR73joshCuB6JbcxwNDlwusKOBj+tHML0AHcxWs+bYLcOgDXahPKaBtQ1yuucnCWnHoC84EGitRGGlvcUEThWThsaEM+WHNuAjC0GyNhqiVQRSLnb+XIMX1nwXT6Wbit0Uz/S64Bp16RizthLilZC/Yk0GVDb0OSWFyC0r1bnpFZ7/rrWSljwXT7e31bYIvci0mTAa3/oz9w/oXPk8XVO3to/Gd/sLxb8/LOffg3qnAmCIAiCCEXMYXrkvzAm6Isak7HFABlb7vBKWZ4Th5/qfFIz63a+HMNXFnyX77UY4gMjmo0msf54g9+XR+1zUqs9f11rJUiNDwC8y9A/lvHTQdmcJAiCIAgiMIxKa4elf7zK78eVYxuQ9DshCymlLKA5Hri+0cG0nVCRTtZj+Frgs77RgaXbvC/kl24rRG19k2h/pPatv6hWpfY5qdWev661EljGBwCe++aQ1/55O0dPlMxJgiAIgiACw/r8c6it9xZkHHjI2CJkwaqU9XFOEbOiltJjCO0rh49ziiQLJzo44KXvpJPAxfb9OKcIgPrnpFZ7/rrWSmAZHwCwVdm99k/qHHl8mZMEQRAEQQSGl77LD3QXvELGFiELVtWXE2U1itvzlxoXax+LStm283YMtc9Jre2CWfmMdXwA7/2T23df5iRBEARBEP7Fl3WaPyBji5CFZ3FHMbrERypuj/UYrNuJwdrHlAS27bwdQ+1zUms7f11rJbCOD+C9f3L77sucJAiCIAjCv/iyTvMHZGwRsuArqovpvujQrMJ2V2YK03aexSLlHENoXznclZkCKQEbvQ54emya1/542/euzBQA6p+TWu3561orgWV8AMAabfbaP/4cpfBlThIEQRAEERieFlB/DibI2CJkwVdUB9Bi4elaXNEUpmfaTkiuk/UYvkp9msL0mHZNqtdtpl2TigiTQbQ/Uvvy9bbUPie12vPXtVYCy/gAwHO39vHaP/4cWc5AyZwkCIIgCCIwjEprhwiTIdDd8AoZW4Rs+IrqVg9vgTUm3E06m3U7X47hK3PGpuGBEaktPCh6nbt0u1h/Ik0G6CT21eqc1GrPX9daCfz4eF5jALCYDEyy78ClcxTzcCX7MCeTY8LxwIjUFm3zn8dGGiX7RxAEQRCEPLJ6tw2I7LtcqM4WA1RnS5gmB4ddhWU4d74O7aKaw6+EvAKs2/lyDF+pb3Tg45winCirQZf4SNyVmeL0Skn1p8nBMe2r1Tmp1Z6/rrUS6hsd+PeOIuwuKkWkKQwTB3bE1d0TZfePP0dbZS3KqusR38YMa7Q6c9Lb5zuPlyKnoBT2xkZs+vkcyqobEB1hxLybeuOaXu2w50Q5zp2vQ3yECT+fPY8TZdWoq2/C/+Wdxvn65uMmR5vwzcwRiG9jcrbn4BzQc8C/sotgb3TAHKbDqxP647o+SVjwfT5yT1Wgxt6Ebm0tGNI1AVOHpiD3VIWzjxmdYrHixxMoLKnGmYpanCyrRqODQ/fENhiZloRNP59DTX0jIkwGdGvXBka9AVd1iUP+mUp8lXsGJefroNcBZqMBEUYDGpqaUNfgQJODg06ng0GvQ9e2FlzTvS3O1zXCVlWH9nERGNwlHv/Lt+HTXaeYx86oA/p2jMHpilpcsDfCaNAhJcGCjvERiDIZca66HodPV+JMlV2yrSizAV0SIvHI9T1RWFaNPSfKER6mR2VdAw4XV6HRwaGtxQi9To/ahiYAHPQ6HeyNHCKMeoQZdDhdUYfz9iboACREGjAoNQGny2vR5ADOVdWiiQNiwsNwZUo89p+qQFlNAyKMBlhMOpwqr4O9kYNOB0QaAINBB7sDMBoM6JoQgYyUOGzMP4dzVXbo9UCPpChc2SUOh4urUHCuCpV2DnoAFrMBBnDg9AYkWIxITbTg6NlqHPvtglclT5NBhwEdY3Bdz3Yor6tHdkEpfquqQ1VdI4x6HSJMBhj0epRdsKPe0ezNbROux/k6R1CXP+jRLgLFFXW4UM/WS5MBMOj14Bwc6pqC+cwIghBidlZPzMrqEZBjU1FjlSFjiyAIf7MurxjPf+tediA5JhzP3pIWUG+jWqzOPY1Zq3Ilt3vjzgyMz+jA1GZOQSkmLd0pud3KaUOR2S2Bqc1QRIsXJ6zXVoo37szAzf3aY1dhGbKP/YbFmwp8bpNndlZPrNp9UrRMQ7zFiAkZHZCVZhW9JjNX7MWaA8VMx3tgRKpk0XW5JMeE486rOmHRhqOqtqsGFrMB1Xbl9Yyk7mW15pg3ruuZiM1HSjQ9BuE/YiON2DN3VEBeDMuxDcL81CeCIAiCkXV5xXjwk70tvAi2yjo8+MleZ8hjMHsjpWBVeCwqqWZukxcysVXWCXpgdGgOjw2E4Is/Meh1qhuTapU/KCqpxvCFGzWpW7dowxGv35dXN+CD7CJcJXKfrMk9w2Ro6QAsmTwAY/u1x4DOcXj66zyUVdcr7Taiw8Pw/K19YI2JcM7NVbtPic5jMfp3jMax36p9Moi80djo8Gl/qXt5Q77Np/ZZqPPxHEKZSKMBNQ2X5ka8xYiy6oYA9sh3KmoasKuwLOhfnpGxRRAEEUQ0OTg8/22+4CKLQ/NC7/lv8+FwcJi/9nDIer4Gp8bDGh0OW5X3RffKXScxc2QPJiOSFzJ58JO90AFu1zDQgi+hjq/lD3RofgsdSI+N6/0zKs3qNg++O3AGD6/ax9TOrBt6YGy/9gCAUWlWWIxh+PNHu2FXGIpYVdcIa0yE24JRbB5746+jekFv0GFHQQlOl9fC4eDwDaOXjgWl58fj7V5el1eMZdlFPrXPws7jLYvWXy7MHtUT6R1inC/nBnWJw7X/2KTJiw9/Egp1MEkggyAIIojYVVjm9cePA1BcWYeHVuxrsR3v+VqXp94CSysMeh0mDe4suZ2tyo5dhewLpGAWfAllWMpExEYIv7/l95G7VNcBiFNZYIa/f1zn1Lq8Yjy0Yh9z/1LbWpz7DV+4EXct3+WzIeK5YBSbx2JEmgx4/D8HMOVfP2LJpgL8N/cMvlXR0FIDsXu5ycHhqa8O+tx+G7OB1GJF0OuAu69OQWa3BIzP6IDMbgluqtGhTCjUwSTPFkEQRBDhy1s6b2/ug5GURLZClHKvyZj0ZIxKs4ZsiGUwIuU15AAIyoai2dC986rOkmF+rvAtLbi9L/adLMf72wohlGEux/PjCj+neE+yHNpFhYuG+ipFaMHoOo835Nu8en5q6ptQU+8ePhiMCflC9/LO46WoqPE9nO2CvQlheh0avanDXKa4lqJxZd/J8gD0Rj0CVQdULuTZIgiCCCJ8fUsn9OY+WGE9VyXXhM9b4t/ikqHlO2LelpiL3iexBfO8cb2ZDWse3hMJAO9vFTa0ACDCZEAbs/z3xvyckvIke5JgMWFQlzjRUF8lxEUaRReM/Dyed0sfvDt1IKzRZrfvk6JMIVVewvNebnJw+OIndlVSKcjQasm4vslIax+DnIJSNLlcn+8OnFFd4MXf3No/OSSe7eTZIgiCCCKkRB5YCYU4dhK0CB5YxVY8vYaJFjP+8sV+AMKGlg7A/LWH8erv+zP1Y+b13TGse6JzzIcv3Oj1PvD05kjhOafk3ifzx6djz4lyVfNcymsa8Mq6w261GYXGQ8hj6+A4TPnXj6r1RSuE7uV1ecV47ptDsDGUayCUERNuwNqDxVh7sDmklM/rHZVmxdzVeQHune98s78YT4zpHfQGFxlbBEEQQQRTuBYDoRDHToIWwYHcMgOuaoc5BaVeRU54Tys4MBnWs0f1dI53TkGpJsn7rnNKzn3ywIhUjO2XjNW5p2Udj+W+fW9rIeyNDoxKs2J3YRk+3FGEitpLBqzreLgKacjti1bwAijlNQ2S93KTg8PijUeDUt5eikiTQbaBH0gq69z7yuf1PprVI+SVCIFLURzBrkZIYYQEQRBBhjeRh7cnD5QUKgiVOHaABC0CDZ97pFRshdUzVFJtdybjC81dDs3hhq6GtRbe2RiPkDsp4Q+gub+L7xzg9DzJfZERbzExbffhjhOY8q8f8foPR90MLUB4PJocHM4FiVeIAzBhQAfMzuqJpGjxe3ldXjGGvbwxJA0tQL4nNdjgjeAPskM7fNCVUIjiIM8WQRBEEOJN5EGvR6vyBpGgRWBgLTPgTWxFTt5dZrcEvDN1YAsvGs/8tYeh1+ucBrYW3tnKmga3WnXevKs8fE0tHt5Ak/K63TssBTemWfG/Q8VYvuOET/3m+8WPx/p8m+h1VMqjN3RHats2OHL2PJYoKDb9wUUBD2u0GbOzeiAl0eJ2L6stKkIogwNQWdvot+NNHdIZn/x4UrP2QyGKgzxbBEEQQYqYyIOa3qAmB4ecglKszj3dIoHan5CgRUvkjo3c7VnLDHgTW2GRhHf1tI5JT8a8ccJy057eGxavk1xcjRb++ojdT8kx4Xh36kCnocVf3zUHzuAPV3aUPNa6PBsGdYnD53t+Va3/xZV1WLzxqKA30hf6dYzGo6OuwPiMDjAZfFsa2qrsWLThKMxheue97M2wJ1ovkUY9BqVoE2URSlEc5NkiCIIIQdTwBsnN1fEHrEINrR25Y6NkLFnDb7xtJzfvrsnBYf5aYal1IW+akuK+UrgakXyuh9T9JHR9pSiurMPTXx1AtV3d0LMPsotUN1ryTldh25HfUHLBjg93FKnS5l+/2I+RvZJgCtPLVn0kWgcOAIW/XVC93VCL4tBxnJigKsFTVVWFmJgYVFZWIjo6OtDdIQiC8BmxkB7+ZysQ+VJCC9p4ixETMjogK8162RhecsdG6VjmFJRi0tKdkv2ZndUDs7J6SvaZxdhjPebKaUOdhpASQ4eFN+7MwPiMDpLb+RL+Fmk0oKYhtPN8fKGNOQyv/r4f7I0OzFqVG+juEK2EQL8UBOTZBuTZIgiCuMxQI1dHbcQWtGXVDViWXYRl2UVB8QOrNXLHxpexHJwaD2t0uFc1QQBYueskZo7sIToXmhwcYiJMeGJML5RdsCPeYoI1JkLQOFbiTeO9Th9mF2L+2sNM+7PAkuvha/jb5WxoAcAFeyOmf7IXs7N6BLorIUsbswEXVPaOhjLxFhPmjQut3wHK2SIIgrjMUCNXR01YF7RiimzBkHOmFnLHxpexNOh1mDS4s2SfbFV20bmwLq8YwxduxKSlOzH7s1zMX3sYr/zfL6isrQeAFmPjSyHrXtZoxEZ4L+BrMRuY2o+NEC8k7Iov4W9Sfb2c+PeOIlij1c2/05IberUNir7qAEy7pluguxFUlFfXY8YKaaXUYCKoja0FCxbgqquuQlRUFNq1a4fbbrsNv/zyi9s2dXV1mDFjBhISEtCmTRtMnDgRZ8+eddvm5MmTGDduHCIjI9GuXTs8/vjjaGz0nxILQRBEMKFGro6asC5oPcUNXBf6s1blYtLSnRi+cGNI/Qh7wnrNv88rbq5xVVnrU7spiZGK9/cmGz/9k70Y9OL6FmNTXm2XXbqAH+cpy35sIYnuup8OwP3XdGU6n3uHpTB5bX25B7J6t1O8b2ujrKYBF+wNTm9rsPPna7phyeSBiAoPXABYmF6Hd6YOxMyR3VUXigllhERugp2gNra2bNmCGTNmYOfOnVi/fj0aGhpw4403orq62rnN7Nmz8e233+KLL77Ali1bcObMGdx+++3O75uamjBu3DjU19djx44d+Pe//40PP/wQzzzzTCBOiSAIIuD44l3QAjkLWt5Ts3jjMZ/qQwUrrNf8o5wTmLR0J3NYnVi7SueCVPgiAFTUtKwVNWPFPtzavzn8x3PxKJT0LmbQecIrcc4c2UNyYRoXacTMkWxhbb7cA8N6tEVyjH/uoVCAD4XzrHUWTPDGfnm1HfPX5uN8XeBezDc6OHx5Ucnyzqs6kZKjC/6OvvCVoDa21q1bh3vuuQd9+vRB//798eGHH+LkyZPYs2cPAKCyshLLli3Da6+9hpEjR2LQoEFYvnw5duzYgZ07mxNw//e//yE/Px+ffPIJMjIycNNNN2H+/PlYsmQJ6uvrA3l6BEEQAUGuXLfWKFnQLs8u9LrQD6W3nq7IlTsvr/b+OyY1lkrngpLwOn40vtlfjCWTpUsX1Dc68PTXB5kWmU+P7e1WN4vvu9D5LLi9L3Mu4qAucYi3KDMOrNHhzr60Rh69oQdiIuR5fnQAglmXjQNwZZdYPLRiX1CoJ244fA4Zz60L2SLQWhMKBY2BIDe2PKmsrAQAxMc3P/T37NmDhoYGZGVlObfp1asXOnfujJycHABATk4O+vbti6SkJOc2o0ePRlVVFQ4dOiR4HLvdjqqqKrd/BEEQrQVvC9JASOoqqackFk4GXHrrubOgNOTyuaSMBU+8nRHLWCqdC0oXOfzYxFlM2PL49Zg3rjf+mNkF88b1xpbHr3caWuvyijF0wQ8oqxYfZ1dmrdqH7w6cAeC9bharymaTg8MbG45g8N83MPfBlbjI5pywMenJmHZNiuz9gx0dgM9+OoUFE/rK2s/fBXWV8O0BW6C74Mb5ekeguxC0hEJBYyCE1AgdDgceffRRDBs2DOnp6QAAm80Gk8mE2NhYt22TkpJgs9mc27gaWvz3/HdCLFiwAM8//7zKZ0AQBBE88AtST0ltawAU/1zrKUmhAxATYfRqbPHMWLHXbbtQUTMUGxsp4i1GN8OAdSyl5sKoNCtyCkrd6k/5ushZn2/DY5/nuh3vX9sLnYafXKl1Bwc8tGIf7jtRjqw0K0Zd/KekZtu6vGI89dXBFmGQcuD7vi6vGP/aVqS4nWDlktFsxuysnli04Uigu0RcZuh1zZ7nUCBkjK0ZM2YgLy8P27dv1/xYc+bMwWOPPeb8u6qqCp06ddL8uARBEHLwtQCwGoWR1YLFwOB7de+wFKawGk+DjM/nCkQNMbm4js33ecX4KOeE5D7zbu4Da3S4orEUmwvr820YvnBji/pZ88b1RnJMOGyVdYpyST7ILmrxGT8+MZFGxfkpcsoECN0/6/NtimtquVJR04Cdx0t9ko0PBc6dr8PMkd2xctcJ2Krsge4OcRnh4IA9J8qd9fiCmZAwtmbOnIk1a9Zg69at6Nixo/Nzq9WK+vp6VFRUuHm3zp49C6vV6txm165dbu3xaoX8Np6YzWaYzWaVz4IgCEI9hAsAm/Di+HSM7cduSBj0uqD5sXJd8K/Pt+G/uWdQ5pKT5OppWbX7lOyFfqBqiCnFdWxYjC1rdLiisfQ0Om7u1x4GvU609hkvdHH/iFS8v7WwOQ9HxvH0uuaFkidiwhpKkDKshe4fa7QZdY0O1YyjnILSoMj70ZIN+Tbc3K89Jg3uTHlFhN8JlZytoDa2OI7Dww8/jK+//hqbN29Gamqq2/eDBg2C0WjEDz/8gIkTJwIAfvnlF5w8eRKZmZkAgMzMTPz973/HuXPn0K5dswzr+vXrER0djbS01pu4ShBE60W8AHA9HlqxFw/8moo5Y0Pz+cYbGJndEvC3cWmiXjc+7FDuQt9VxSpYjEwp+Jw2MeNSh2ZDVImgiZDRwXuu5q897LVYMi90MX+t+/6xkUZU1DS0GBv+b3+kznkzrEWNSNU9M63Zp9XMtwds2F20UbIwNkFoAeVsqcCMGTOwYsUKrF69GlFRUc4cq5iYGERERCAmJgb33XcfHnvsMcTHxyM6OhoPP/wwMjMzMXToUADAjTfeiLS0NNx111145ZVXYLPZMHfuXMyYMYO8VwRBhBwsBYDf21qI/h1jMbZfe7/1Swu8ed3Ewg5jGfO5tHgj6mtYpxiuOW1CBgygTNDEm+fqoRX7vO7rKnSx/cmRguF4QjlgY9OtWCYQQqgFQoY1awFtNSgsqfHDUdTBYjYgyhymyOBUamjJfVFCEK4kRZn8ppjrK0FtbL3zzjsAgOuuu87t8+XLl+Oee+4BACxatAh6vR4TJ06E3W7H6NGj8fbbbzu3NRgMWLNmDR588EFkZmbCYrHg7rvvxgsvvOCv0yAIglANVsntuavzMPqiFHZrRSjPyMFxmPKvHyX3VfuNqJiHSC1BDrUFTVjqZLFw7nydoFEslgO2q7DMb8aWax95lEjWK2XtwWJEmgyorW9SZFRYzAZUX6xNpTXV9ib8Y2I/HD13QfNwQB2Ah6/vhs/3/Ep5XoRihnVPDJnfNx0XzAUPgoSqqirExMSgsrIS0dHRge4OQRCXMatzT2PWqlymbVdOGxoyoXJq0eTgMHzhRsmQu+1PjlTth1rMQ8S3rqYgh1Lvmed+DgeHKcukjVIpPv3zEOh1Oub+sIxPbKQR5SrkbfG43gdy7h810OkAjlPuxZl2TSqWbS/UPPSSvy84jvObAWSNDsedV3XC8h2FQS8HTwQfZoMOb0waEDCxIzm2QVB7tgiCIAh35HhkQiV5WE20CrkTQ8pDpLYghxJBEyGvW2yEskK9PLxR9JfPc90W51LePG8y//zVWXB7c+2mp78+qKjGlWt7nrls/s7x4DjgdwM7IFuhWMZ/9vzqtxw3f4t5nK2qw+s/kKgGoQx7Excy6rIhVdSYIAjicmdwajziLSambUMleVhtxIraWmUUtWVFKizNNW8oEPBeN88+suS18QgVO+YAlNc0tPCC8CqA6/KKvbYZE9nS2IuNNDrHZ0x6MnbOyWKe62J95g3rJgeHnIJS2CprEW8xySqg7SuR5jDMG5cGi0n+kqtMRQ9fsEFhVYQaPP9tftAXrCfPFkEQRAhh0Ovw4vh0PLTCewHgZIXqdIFAC2EJf9UQY/UeBsLL6IsYBO8VmjcurYXaoDUmHLUNTYIS7VLePLGQS6DZeNt3stxpDJvC9HhpQrrXulcWkwFTh3bGN/uLRXPZhDx7/qTG3oQZK3yv3UUQhDuhoi5LxhZBEESIMbZfMh74NRXvbS0U/F4HdUPltERLYQl/1BBj9R4GwsvoixgEBzjHYHS6VVa+l9gCSImSppgwSBtzGP48PBUP39ADBr0OT4zpLWhYezPu/IFeB2w7+lvQG1qByNkiCLUI9pB5MrYIgiBCkDlj09C/Yyzmrs5zy2tRUwFPa7xJj4dKLL6WNbB8hXUBEmkyoKbeXfUu1iXMz9NoXZ17WtHxWY2/x/9zADGRJgztmgCDXsfkpRQyrFk9ezERRtzQqy2+3ndGtlF0Q6+2+OHn30S/H9s3GWsOeA+p9JVIox41DQ6f2uAA3JRuRUyE0Wc1wniLEf07xuKnE2U4X+cfNUXi8ibYQ+bJ2CIIgghRxvZrj9HpyZqHymmBv4UltMLfghxyYF2AeBpaAFBZ0yBq8Cr15rEaf9X2Jkz5149uLw6UeClZjbvK2gZ8te+MrLZ5/nxNN3Rv1wZLt7krBup1zUqCae1jNDe2TEYDahscir1n/Lz94KIkf2ykEfUNTYoMuHCjHmXVDdj0i7gBShBqEm8xBn3IPAlkEARBhDD8InR8RgdkdksIasPElWAXlpADH+qWFK29IIcceK+b2IzQodkoEIJfuAsln7O0K5QzKPftM6vYhhhahha5nuOcsWn4ef5NmDeuN+4a2hlThnTCAyO6wWgw4Kwf8sQqahrwaFZPRJoMivb3NNIqahoUe8rqfPSwiRFupOUqIcyEjA5B/7tHs5cgCILwO8EsLKEc92VroMtY8l43QFxR0JuIl5jBK9UuIOzNk6OkyR8fcDf4eFXB1bmnkVNQKqhCxm+zaMMR5mPJhQMwb9ylczSF6dEhLgLfHijGpz+ewjtbCrB40zG89P3PmvXBlaraekEPZWshs2vwih8QgWVkr6RAd0ESCiMkCIIg/E4wC0vIRSz37GyVPeC5Z2ICE9aYcNyUbnWGjnlDyOD11q5QziCvODm+fzKW7zjB3H9Xg6+ytl5STMWfyoPz1+ZDr4dT8XC6QO0wf/HZT6cCdmx/QGGJhCjB7dQCQMYWQRAEEQCCWVhCDqGQeyYmMLGrsIzJ2PI0eHnDyd7owKu/7w9wQEm1XTRnUA0DaH2+Dcuzi7yKqQDwq/Jg8cVjL5k8AHO+Puinowpzwd56vVoE4Y2SC8GvnknGFkEQBOF3gllYQg5ycs88ZdD9KWwiJDAhZfACzcnng7rEOf/2JtUvJGChlvT6f3OFlQJdDVqHQ7lIhC888Z8DZOwQRIAIhegHMrYIgiCIgCA3FC0YUZJ7pmVtMTl4M3h5yqobcO0/NjlztORI9ftSVJlHByDOYkRZdb3oNrxBGwg4kFeJIAJJuZdnQ7Cg4wKdwRsCVFVVISYmBpWVlYiOjg50dwiCIFoV/vbyqElOQSkmLd0pud28cb2RGGVGUUkNXt9wpIUBwp+tkvwuX6+fVJgf31JMpBEVNQ2i21hjwrH9yZHOY7NeG2/oAPxpWAqWMYQ7EgRx+ZHs8dzxF3JsA/JsEQRBEF7R2hhSUkMpWGAJxdPrgPlrD3ttR2l+lxpesjHpyRjZKwlDF/wg6EHiz0vM0OK3Ka6swwfbj6OytgGAzmc1Rr0OWDxpIOIsJjK2CIIQRChMO9ggY4sgCIIQJVhC3oIVllA8b/Lqrrjmd/ECFt4MXLF8KLGwPm/sOVHuNVSPlb9/p57UuYMD4iwmlFfbodexX0eCIC4vgr1ECBlbBEEQhCBqLuZbM2K5Z0oNhPX5Njz2ea5XA1dtFcRgXayIqRASBEHwBLtIBhlbBEEQRAtCQdJcCn/mgnnKq5ect0uGDoohJMfuaeAqVUEUI1gXK2IqhERoIub9JQilJIdAiRAytgiCIIgWqL2Y9zeBCH90zT1bnXtaURti3jBPA1eJCqI3BnWJQ7zFJBpKqAMQG2lEeU2DXxbMLCqEROhBhhahNvPGBX+JEH2gO0AQBEEEH2ov5v0JH/7oaSzy3qF1ecWa90Gup4hfKngLO3Q1cFnbLyqpkdxmXV4xRryy0auhBQALbu+Ld6cOhDVGey8YB2B8//aaH4cgiNAmzmIKdBckIc8WQRAE0QLWxXywhZ/5K/xRKkSRRaXQFWtMOMamW5lU986dr8PN/drDGm2Grcruddt/5xShc3wErDERoiIb0z/ZK9k3V4+gWuGSUqzafUqTdgmCaD0E4ws/T8jYIgiCIFowqEucpMCDXte8XTChNPxRTn4XS4iiN5VC/u/ZWT2QkmhxHm/xxmNM59guKhwGvQ6TBnfGog1HvW5bVl2P2Z/vF+xjk4PDU18d9Lq/xWzAxr9ch9xTFVide9rZV/7aNTk4LN12XNLoU0Jtg0P1NgmCaF0E2ws/IcjYIgiCIFqw50S5pJKeg2vezl85WywGkZLwRzn5XXIUGsVUCj09RXy7r2844rXPfOFgPhm8c3wk07mK9XFnQanX2lkAUG1vQuaC9aiobXJ+5nptDHodnru1j6R3jCAIQm3CjfqgF8cAyNgiCIIgBAi2nC1Wg0hu+KMc40lJiKKnSqGQkeitXc9jPHvLpWRwueIRnn3MOV7CtJ+roQW0vDZj0pPxp2EpgiqKhDs6HTB9RFe8s+V4oLtCECHPFUltgl4cAyCBDIIgCEKAYMrZkiN4wedKefv55aWCpYwnoNkwabro4pMTougKr1I4PqMDMrsltFgcSLXLMzurh5thGd/GLLmPtz4qLRIsdG1GpVmVNXaZwXFAvMUMa7T8sZNDbKQRxhBYhBKEL9zUJzTqPJKxRRAEQbRAymjRwT/1TeQaRHyuFN9HIWobmrA+3ybbeNLK28e6fUqixe1va7RyQ/fc+TrERSpX8fK8NixGrq4Vrf3NYXpYTAZF+54qr8GkwZ1V7lEzt2W0x+ysnqisaUCDUmuaIEKFEHmmkLFFEARBtMCb0cL/7RrSphVKvEl8rlRMpFFwn8qaBjz4yV6sz7cx9YE3hrTy9iltd3BqvGKDq11UOBKjfPeu8NeGZb5wrWjtb290oLq+SXpDATrFRaKhSZuLcU33RKzafZLqWRGXBd/7oYyHGpCxRRAEQQjCGy2edZWsMeFuuUxaotSbNCrNivAw4Z847uK//+5jKzzMGzlaefuUtrs+34a6RnkLfte2TpZWy9pXCFcDUGy+JEWbESti+GpFfJDW3tEBWLLpKBZvYlOelMu+UxVMIakE0Ro4cvaCM6ohmCGBDIIgCEIUFoEHLVHq9dlVWCYpR15W04A2ZgOq7U2CngBP9T8pOXdAmbdPSbtiwh7ecG1rfb5NUjZeCovJ4Mx9c50fWx6/HntOlDv/dnAcpvzrR5+ONTY9CV3bRuHI2fP4X/5Zye3/NrY3/v5dPsqqvast+hsOQEVtoyZt63TAJz+e1KRtgghGahscLcp4BCNkbBEEQRBe4QUeAoFUcWBPg4iH1SN2wd7kbIfFyJEj5y4HOe2yqBfGRoQh3GhwMzj5tkalWTF84UZF/XRlRM+2WJ9vE1WJHJ/RAQCwOpfNg+iN7/POgoO0kcWTe6o86AwtrWlNYZoEwQoVNSYIgiAIH1DqTZKTNxUXaYQ5TC9omAgZT1p5+1jbZVEvrKhtxKdTBkGv07VoK6egVJVQsyuS2niVzV8yeQDiLGasy2PLjfOGXDvi453k4SGIywEqakwQBEEQPqLEm8R7xFiMivKaBnz65yGChokYWnn7WNplfZNbcsHu9C4p2d8bcZFGrNp9yqtK5MyV+xTLyxMEQbCw8WcbhRESBEEQhK/I9SbxHrHpn+xlal/MMAlGfFVFVONN8D1Xp2LRhiNetyFDiyAIrVm2vQiPj+4Nk4ggUjAQvD0jCIIgCBekigN7MiY9GbOzejC1HQqhKDxy1AubHBxyCkqxOvc0cgpK0eTgmPd/e/IAQRXB2EgjKmvrVTobgiAI5Tg44OOcokB3wyvk2SIIgiBaLTNH9sDKXadgqxIPnfNHcWY1Meh1mDcuDQ+taOm181QcFBOvYMmDA4CKmpYiE5U1Dfggu0iVcyEIgvCVE2U1ge6CV8izRRAEQbRaDHodxmd4Vwi8tX+yZlL2Qp4lX1mXV4z5a/MFv4uJNOLRrJ5wOIAHP9nbImeNF68AgCWTByLOox4VX0NtVJoVz38rfAyKDiQIIpjoEh8Z6C54hTxbBEEQRKulvtGBL/Z4lx7/Zn8xnhjTW3WDa11esahnSalEvFR9rYqaBizacAR6nbBRxKHZezXnq4Mwh+lRVn0pHDDeYsS8cb0xJj1ZNcVCgiAILdEBuCszJdDd8AoZWwRBEESrZF1eMZ7++qBkvaXiyjrVC2OKGUWXZNGbvUosYh980WBbVR3mrznE5Fny5kDj0KzA6El5dQNmrNiHd/Q62BsdDEchCIIILGnJUUEtjgGQsUUQBEG0QqQ8QJ6oWRjTW9HhS7Loe90MIjGPl5B3TCt4r9fz3+bjlYn9ND8eQRCEr9w2IPhVZIPbFCQIgiBUR4s8IjVQq1/ejB0x1FQjZCk67HlqvMdrXV6x8zPeYPRnOB+HZk/fz7Yq5n08/XH83xazQa1uEQRBCNLLGh3oLkhCni2CIIjLCC3yiIKtXyzGDo8OzaIQaqoRKvGSuXqVRqVZgYv/Hygz+FR5LdN29w1LwXd5NsFi0yN7JWHg/P/hgr1Jq24SBHGZs/mXc7imZ9tAd8MrZGwRBEFcJkjlEb0zdWBADC61+yXX2Hn2ljRVxTGUesl4r9KuwjLg4v8HClZ1r6w0K54elyZabPq6K9phzYFiiVYIgiCU8XXuaTw9Tt1nuNpQGCFBEMRlAEse0fPf5vs9pFCLfrEaOwkWkyYGplTRYCnOna9TNYdMDnxB47syU5gLJ4sVm25ycPipqNxfXScI4jKkrLrB+YIqWCFjiyAIws8EImdKKrTO06viL7ToF4uxE28xImfODZp48gx6nbMosBKDq6ikRtUcMlZcCxqbwvSi5+C6nbe3ybyCIkEQhJYE6uUUK2RsEQRB+JF1ecUYvnAjJi3diVmrcjFp6U4MX7jRTRhBC1h/jPz9o6VFv7wZO7qL/16a0FdTueAx6cl4Z+pAWGPcjSaWSJdVu09iUJc4Wd4xNQJo4ixGLJk8wGmA8ueQFG122y4p2szkEQz2BRBBEK2DQLyckgMZWwRBEH5CTF1OSIlObVh/jPz9o6VVv8SMHWtMuN9y08akJ2P7kyOxctpQvHFnBlZOG4qHR3aX3K+4sg57TpTj2VvSmAUy1PCNllU3YP7awwLzUMy35R3WMZs4MPilmwmCCF4GdYkLdBe8QgIZBEEQfkAqN8lViU6LRF8+tM5WWSfYBy1U+QLdrzHpyRiVZhUVb3CFLxzMUmRYDnw+E48cT974jA6YndUDizYc9bkfrLiKkgAQFC45W+UuXCJ27VjGNt5iwtVdE/B/h87igr1R69MjCKIVsruwDMN6JAa6G6KQsUUQBOEH5OQmuS7O1YIPrXvwk73Qwd0TwpqDowVa98vT2BHCn3L4cj15KYkWVY8vhavhz3GcpHCJwwHMXyt+7cTGlm+ntLoef/nygBanIptHRnbHWxuPBUxunyAIZew4XhLUxhaFERIEQfiBYMiZCobQumDrlxahnd4EUKTEO1xV/oDA5CLwhr+tyu51u+LKOjy0wvu1ExvbYORf2wvJ0CKIEOQMY13AQEGeLYIgCD8QLDlTckLr/Ekg+qVFaKeUl0yuJ08qFC8Y8bx2Y9KTMbJXEj7OKUJRaQ3+m/srztcFX6Hjmvrg6xNBENK0j40IdBe8QsYWQRCEHwimnCmW0LpA4O9+qR3ayVqcmff2eBplVoHQRW/GWTDjeu0qa+tbnCtBEIRaXN0teEMIATK2CIIg/EKw5kxdzqgZ2slSnPnprw9iZK8kmML0sjx5YsaZVugAxEQYUVHb4HNbG/Jt+CC7KGSMRIIgQguDHhgahC8PXaGcLYIgCD8RrDlTlytqhnZKecmAZmn1oQt+cOaB8Z688RkdkNktwWloCeV8ucrIX9dTu7e4vKl377BUVdr7Ovc0GVoEQWhG1hWJQf+SkjxbBEEQfiRYc6YuR9QM7WT1kpVV13uVTS+vrveq7seHM24+UsJ0PNdzSYo2459/yEDJBbvosWIijbj36lQ8eF03rNp90qsBqdcBHCce2tjGHIayat+9YwRBEGJs/LkETQ4uqH9DydgiCILwM8GaM3W5oWZop1xhk2bZdA7z1x6W9Ih55nzxRqLckMLnbu2DYd3dvWKj061YvPEolmcXoaK2ARU1DVi04QhW7T6JW/sn4/2twgp9OgDTrknFe1sLRY9HdbMIgtCaBg7Yeby0xbMtmKAwQoIgCOKyRa3QTilJd1d48YiHVuxjMphc61rxb3DnjUtj6hcAxFuMoueyPt+G1zccbZGfZausw/tbC3H/iFQke1yb5IvX5okxvREbaWTuB0EQhBbkFJQGugteIc8WQRAEcVmjRminq5dMCzyVEWMi2Iyc6PAw7JyTBVNYy3erLNL33+wvxpbHr8eeE+Utrk1OQSkqaihMkCCIwOLgHIHuglfI2CIIgiAue9QI7eS9ZE9/fVCzXCU+NyznOFvO1rDuCYKGFsAufb/nRLngtdGyADdBEAQrseGmQHfBKxRGSBAEQRAqMSY9GTvnZCHeos2P/6XcMDavW7e2UaLf+Sp9r3UBboIgCBZKauyB7oJXyNgiCIIgCBUxhenx0oR06NDSJFKql6VDc64Ur4zI6oXztp2v0vdy8tQIgiC0YtsvZwPdBa9cVsbWkiVLkJKSgvDwcAwZMgS7du0KdJcIgiCIVog34Y23Jw9ELGPOFSCsjDi0a4KkOEVcpBFDu4obW1LGkqeB5wmfp+baR88+C31HEAShJkVlwR3SfNkYW5999hkee+wxPPvss9i7dy/69++P0aNH49y5c4HuGkEQBNEKcS1E/MadGVg5bSi2PzkSY/sl495hKcztCCkjGvQ6vHx7X6/7Lbi9r1eRDxZjSUr63ptR+e7UgXhX4LvkmHA8IKByeDmQHBOOtycPwMppQ3GfjDlAEEToouM47rIo7j5kyBBcddVVWLx4MQDA4XCgU6dOePjhh/HUU0953beqqgoxMTGorKxEdHS0P7pLEARBtGKaHBwGvbjeq5pfbKQRSyYNxNBuCaIGz7q8Yjz3TT5sVcJFkFlYl1eM578VL6TMej5iao5i3zU5OHyYXYj5aw8zHcMTvjaayaBHfVPwqpHNG9cbiVFmQZXLNzYcxaINRwLYO4IIfQZ2jMZXM6/x6zHl2AaXhbFVX1+PyMhIfPnll7jtttucn999992oqKjA6tWr3ba32+2w2y8l21VVVaFTp05kbBEEQRCqsS6vGA9+sreF9Dq/FGet8+XN0GFFjTaU0OTgMHzhRtgq6wQl6L3BG4TX9myH3s+s06R/QujQ7Ln720298MhnuXCIdJzfbvuTI0WvZZODw7CXf4CtKrgT/K3RZvzhyk74/KdTQd9X4vJj/zM3IsbPNf/kGFuXRRhhSUkJmpqakJSU5PZ5UlISbDZbi+0XLFiAmJgY579OnTr5q6sEQRDEZQIfgucZTie3oDIvWz8+owMyvXjBtG5DCd5CGcW4b1iKMyRzTHoyIkwGPDAi1es+N/dLxn3DUhDnsSCTG9LoGl55c0YHLJ40UHI7qVDO527tIyimEgzc0KstVk4biuynbsBjN16BnU9nYVRaO7/2IRivCxE8dEmI8LuhJZfLwrN15swZdOjQATt27EBmZqbz8yeeeAJbtmzBjz/+6LY9ebYIgiAIfxEor1IwIRTK6Ik12oznbu0jaoQu+C4fS7cVunma9Dpg2jWpmDO22aDzFtK4q7AMtspalFXXI76NGSdLq7Fy10k3T45QeKUaYZhCbcRbjJiQ0QEjeydhV2Ep/r3jBCpqL4Wdhhv1cDg41DddOmGL2YBrurfFgM6x2HuyHNuPlaDa3uTW5u0ZHfBV7hmUVde7XSfX6xZvMeLF8ekY26+9YH9r65vwwMc/YfvREvgawBkbEYYXx6ejuMqOXYWlqKlvRILFhE4JFlzdLRFDuyagvtGBF9cewv5TFQB0GN4jEeFheqzcdRJnz9dLHcJnOsVH4EJdI8pdwn49r5nxosXc4OWCxEaEoUNcBA6dOS+6jWe7vhIepkOTA2iQaJQPy/WViDCgttGjDwaggQPUjvbtkhCBLY+PVLdRRiiM0AO5YYSeUM4WQRAEQWiLpyE0qEsc9pwol2WE1jc68HFOEU6U1aBLfCTuykwRLeqspE9iffBHKKfQ9wBk7+NqXPpyrV3bt1XW4tx5Ow4XV6G6vhFJUWYM6BSH9nGRyOgUixU/nsCJshp0iotEz7ZtsPtkGYBmb+rQrso9qUJGcrs2ZkAHlFywo11UODI6xeLfOwrx9b7TqG9yYGjXeDxzczoMeh0+zilCUWk1AKB/x1hU1jagjdmADYfPobbBgdTESDw9Ng0RJgPTNfMcD7HrWt/owPLsQqzPPwuOc6BXUjQGpcQjOTYCg1PjUd/owAtr8rDzeBlMBj0mDOiAqUNTsHLXSadBmmgJR8eECFzdNRFXpcZjz4lynCmvQe6vFQB0SEm4NP/5vp+pqMWeE2X4xXYe0AFXJEVhUOfmcRrUJQ67i8qw41gJfi2vAQC0j4tAfKT5Ys6hGY4mDj8WlTrH7qqUeMHz8zZXfy2vwf8O2VDb0IRO8RHoEBuJzb+cQ1VtA+IjjYBOh1NlNaipb4JeB5jDDGgXZUJURBgOF1+AvdGBHu3aYPm9QwLq0SJjS4AhQ4Zg8ODBeOuttwA0C2R07twZM2fOJIEMgiAIgiAIgiCYkGMbhPmpTwHnsccew913340rr7wSgwcPxuuvv47q6mrce++9ge4aQRAEQRAEQRCtkMvG2Lrjjjvw22+/4ZlnnoHNZkNGRgbWrVvXQjSDIAiCIAiCIAhCDS6bMEJfoDBCgiAIgiAIgiAAkn4nCIIgCIIgCIIIOGRsEQRBEARBEARBaAAZWwRBEARBEARBEBpAxhZBEARBEARBEIQGkLFFEARBEARBEAShAWRsEQRBEARBEARBaAAZWwRBEARBEARBEBpAxhZBEARBEARBEIQGkLFFEARBEARBEAShAWRsEQRBEARBEARBaEBYoDsQCnAcBwCoqqoKcE8IgiAIgiAIgggkvE3A2wjeIGOLgfPnzwMAOnXqFOCeEARBEARBEAQRDJw/fx4xMTFet9FxLCbZZY7D4cCZM2cQFRUFnU4X6O4QaH6j0KlTJ5w6dQrR0dGB7g7hAo1NcEPjE7zQ2AQ3ND7BDY1P8NIax4bjOJw/fx7t27eHXu89K4s8Wwzo9Xp07Ngx0N0gBIiOjm41N25rg8YmuKHxCV5obIIbGp/ghsYneGltYyPl0eIhgQyCIAiCIAiCIAgNIGOLIAiCIAiCIAhCA8jYIkISs9mMZ599FmazOdBdITygsQluaHyCFxqb4IbGJ7ih8QleLvexIYEMgiAIgiAIgiAIDSDPFkEQBEEQBEEQhAaQsUUQBEEQBEEQBKEBZGwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFhEQFixYgKuuugpRUVFo164dbrvtNvzyyy9u29TV1WHGjBlISEhAmzZtMHHiRJw9e9Ztm5MnT2LcuHGIjIxEu3bt8Pjjj6OxsdFtm82bN2PgwIEwm83o3r07PvzwQ61PL+Tx5/jwZGdnIywsDBkZGVqdVqvAn2Pz6aefon///oiMjERycjL+9Kc/obS0VPNzDGXUGp9HHnkEgwYNgtlsFrwnNm/ejPHjxyM5ORkWiwUZGRn49NNPtTy1kMdfYwMAHMfh1VdfRc+ePWE2m9GhQwf8/e9/1+rUWgVqjM/+/fsxadIkdOrUCREREejduzfeeOONFseidYF8/Dk+PK1mXcARRAAYPXo0t3z5ci4vL4/Lzc3lxo4dy3Xu3Jm7cOGCc5vp06dznTp14n744Qfup59+4oYOHcpdffXVzu8bGxu59PR0Lisri9u3bx/33XffcYmJidycOXOc2xw/fpyLjIzkHnvsMS4/P5976623OIPBwK1bt86v5xtq+Gt8eMrLy7muXbtyN954I9e/f39/nGLI4q+x2b59O6fX67k33niDO378OLdt2zauT58+3IQJE/x6vqGGGuPDcRz38MMPc4sXL+buuusuwXvi73//Ozd37lwuOzubO3bsGPf6669zer2e+/bbb7U+xZDFX2PDb3PFFVdwq1ev5o4fP8799NNP3P/+9z8tTy/kUWN8li1bxj3yyCPc5s2buYKCAu7jjz/mIiIiuLfeesu5Da0LlOGv8eFpTesCMraIoODcuXMcAG7Lli0cx3FcRUUFZzQauS+++MK5zeHDhzkAXE5ODsdxHPfdd99xer2es9lszm3eeecdLjo6mrPb7RzHcdwTTzzB9enTx+1Yd9xxBzd69GitT6lVodX48Nxxxx3c3LlzuWeffTbkH6r+Rqux+cc//sF17drV7Vhvvvkm16FDB61PqVWhZHxckXNPjB07lrv33ntV6fflgFZjk5+fz4WFhXE///yzZn2/HPB1fHgeeugh7vrrr3f+TesCddBqfHha07qAwgiJoKCyshIAEB8fDwDYs2cPGhoakJWV5dymV69e6Ny5M3JycgAAOTk56Nu3L5KSkpzbjB49GlVVVTh06JBzG9c2+G34Ngg2tBofAFi+fDmOHz+OZ5991h+n0urQamwyMzNx6tQpfPfdd+A4DmfPnsWXX36JsWPH+uvUWgVKxseXY/HHIaTRamy+/fZbdO3aFWvWrEFqaipSUlLw5z//GWVlZeqeQCtHrfHxvC9oXaAOWo0P0PrWBWGB7gBBOBwOPProoxg2bBjS09MBADabDSaTCbGxsW7bJiUlwWazObdxXSzy3/PfedumqqoKtbW1iIiI0OKUWhVajs/Ro0fx1FNPYdu2bQgLo8eRXLQcm2HDhuHTTz/FHXfcgbq6OjQ2NuKWW27BkiVLND6r1oPS8VHC559/jt27d+O9997zpcuXDVqOzfHjx3HixAl88cUX+Oijj9DU1ITZs2fjd7/7HTZu3KjmabRa1BqfHTt24LPPPsPatWudn9G6wHe0HJ/WuC5oHWdBhDQzZsxAXl4etm/fHuiuEAJoNT5NTU2YPHkynn/+efTs2VPVti8XtLx38vPzMWvWLDzzzDMYPXo0iouL8fjjj2P69OlYtmyZ6sdrjfjr2bZp0ybce++9WLp0Kfr06aPpsVoLWo6Nw+GA3W7HRx995Hy2LVu2DIMGDcIvv/yCK664QvVjtjbUGJ+8vDyMHz8ezz77LG688UYVe0doNT6tdV1AYYREQJk5cybWrFmDTZs2oWPHjs7PrVYr6uvrUVFR4bb92bNnYbVandt4qkTxf0ttEx0dTW+vGNByfM6fP4+ffvoJM2fORFhYGMLCwvDCCy9g//79CAsLozfAEmh97yxYsADDhg3D448/jn79+mH06NF4++238cEHH6C4uFjDM2sd+DI+ctiyZQtuueUWLFq0CH/84x997fZlgdZjk5ycjLCwMLfFYu/evQE0q4AS3lFjfPLz83HDDTfg/vvvx9y5c92+o3WBb2g5Pq12XRDopDHi8sThcHAzZszg2rdvzx05cqTF93yi5Zdffun87OeffxZM8j979qxzm/fee4+Ljo7m6urqOI5rToRNT093a3vSpEmUCCuBP8anqamJO3jwoNu/Bx98kLviiiu4gwcPuikcEZfw171z++23c3/4wx/c2t6xYwcHgDt9+rQWp9YqUGN8XPGWHL5p0ybOYrFwixcvVq3/rRl/jc3//d//cQC4Y8eOOT/Lzc3lAHC//PKLOifTClFrfPLy8rh27dpxjz/+uOBxaF2gDH+MT2tdF5CxRQSEBx98kIuJieE2b97MFRcXO//V1NQ4t5k+fTrXuXNnbuPGjdxPP/3EZWZmcpmZmc7vefnqG2+8kcvNzeXWrVvHtW3bVlD6/fHHH+cOHz7MLVmyhCReGfDX+HjSGlSHtMZfY7N8+XIuLCyMe/vtt7mCggJu+/bt3JVXXskNHjzYr+cbaqgxPhzHcUePHuX27dvHPfDAA1zPnj25ffv2cfv27XOqRW7cuJGLjIzk5syZ43ac0tJSv55vKOGvsWlqauIGDhzIjRgxgtu7dy/3008/cUOGDOFGjRrl1/MNNdQYn4MHD3Jt27blpk6d6tbGuXPnnNvQukAZ/hofT1rDuoCMLSIgABD8t3z5cuc2tbW13EMPPcTFxcVxkZGR3IQJE7ji4mK3doqKiribbrqJi4iI4BITE7m//OUvXENDg9s2mzZt4jIyMjiTycR17drV7RiEMP4cH1daw0NVa/w5Nm+++SaXlpbGRUREcMnJydyUKVO4X3/91R+nGbKoNT7XXnutYDuFhYUcx3Hc3XffLfj9tdde67+TDTH8NTYcx3GnT5/mbr/9dq5NmzZcUlISd88995AhLIEa4/Pss88KttGlSxe3Y9G6QD7+HB9XWsO6QMdxHKco/pAgCIIgCIIgCIIQhQQyCIIgCIIgCIIgNICMLYIgCIIgCIIgCA0gY4sgCIIgCIIgCEIDyNgiCIIgCIIgCILQADK2CIIgCIIgCIIgNICMLYIgCIIgCIIgCA0gY4sgCIIgCIIgCEIDyNgiCIIgCIIgCILQADK2CIIgiJBm8+bN0Ol0qKioCHRXCIIgCMINMrYIgiCIgHHPPfdAp9NBp9PBaDQiNTUVTzzxBOrq6gLdNVUpKipynqdOp0NUVBT69OmDGTNm4OjRo7LbS0lJweuvv65+RwmCIAhVIWOLIAiCCChjxoxBcXExjh8/jkWLFuG9997Ds88+G+huacKGDRtQXFyM/fv346WXXsLhw4fRv39//PDDD4HuGkEQBKEBZGwRBEEQAcVsNsNqtaJTp0647bbbkJWVhfXr1zu/dzgcWLBgAVJTUxEREYH+/fvjyy+/9Nrm9u3bcc011yAiIgKdOnXCI488gurqauf3H3/8Ma688kpERUXBarVi8uTJOHfunPP78vJyTJkyBW3btkVERAR69OiB5cuXO78/deoU/vCHPyA2Nhbx8fEYP348ioqKJM81ISEBVqsVXbt2xfjx47FhwwYMGTIE9913H5qamgAABQUFGD9+PJKSktCmTRtcddVV2LBhg7ON6667DidOnMDs2bOdnjLW8yYIgiD8CxlbBEEQRNCQl5eHHTt2wGQyOT9bsGABPvroI7z77rs4dOgQZs+ejalTp2LLli2CbRQUFGDMmDGYOHEiDhw4gM8++wzbt2/HzJkznds0NDRg/vz52L9/P/773/+iqKgI99xzj/P7efPmIT8/H99//z0OHz6Md955B4mJic59R48ejaioKGzbtg3Z2dlo06YNxowZg/r6elnnq9frMWvWLJw4cQJ79uwBAFy4cAFjx47FDz/8gH379mHMmDG45ZZbcPLkSQDAV199hY4dO+KFF15AcXExiouLmc+bIAiC8DMcQRAEQQSIu+++mzMYDJzFYuHMZjMHgNPr9dyXX37JcRzH1dXVcZGRkdyOHTvc9rvvvvu4SZMmcRzHcZs2beIAcOXl5c7v7r//frftt23bxun1eq62tlawH7t37+YAcOfPn+c4juNuueUW7t577xXc9uOPP+auuOIKzuFwOD+z2+1cREQE93//93+C+xQWFnIAuH379rX47vDhwxwA7rPPPhPcl+M4rk+fPtxbb73l/LtLly7cokWL3LZRct4EQRCEtoQF1NIjCIIgLnuuv/56vPPOO6iursaiRYsQFhaGiRMnAgCOHTuGmpoajBo1ym2f+vp6DBgwQLC9/fv348CBA/j000+dn3EcB4fDgcLCQvTu3Rt79uzBc889h/3796O8vBwOhwMAcPLkSaSlpeHBBx/ExIkTsXfvXtx444247bbbcPXVVzvbP3bsGKKiotyOW1dXh4KCAtnnz3EcADjDAS9cuIDnnnsOa9euRXFxMRobG1FbW+v0bInBct4EQRCEfyFjiyAIgggoFosF3bt3BwB88MEH6N+/P5YtW4b77rsPFy5cAACsXbsWHTp0cNvPbDYLtnfhwgU88MADeOSRR1p817lzZ1RXV2P06NEYPXo0Pv30U7Rt2xYnT57E6NGjnWGAN910E06cOIHvvvsO69evxw033IAZM2bg1VdfxYULFzBo0CA3o4anbdu2ss//8OHDAIDU1FQAwF//+lesX78er776Krp3746IiAj87ne/kwxRlDpvgiAIwv+QsUUQBEEEDXq9Hk8//TQee+wxTJ48GWlpaTCbzTh58iSuvfZapjYGDhyI/Px8pwHnycGDB1FaWoqXX34ZnTp1AgD89NNPLbZr27Yt7r77btx999245ppr8Pjjj+PVV1/FwIED8dlnn6Fdu3aIjo5WfrJoFv948803kZqa6vTUZWdn45577sGECRMANBtRnuIbJpPJKajBet4EQRCE/yGBDIIgCCKo+P3vfw+DwYAlS5YgKioKf/3rXzF79mz8+9//RkFBAfbu3Yu33noL//73vwX3f/LJJ7Fjxw7MnDkTubm5OHr0KFavXu0UiujcuTNMJhPeeustHD9+HN988w3mz5/v1sYzzzyD1atX49ixYzh06BDWrFnjDMObMmUKEhMTMX78eGzbtg2FhYXYvHkzHnnkEfz6669ez620tBQ2m8153KysLOzatQvLli2DwWAAAPTo0QNfffUVcnNzsX//fkyePNkZ5siTkpKCrVu34vTp0ygpKWE6b4IgCML/kLFFEARBBBVhYWGYOXMmXnnlFVRXV2P+/PmYN28eFixYgN69e2PMmDFYu3atM+zOk379+mHLli04cuQIrrnmGgwYMADPPPMM2rdvD6DZY/Xhhx/iiy++QFpaGl5++WW8+uqrbm2YTCbMmTMH/fr1w4gRI2AwGLBq1SoAQGRkJLZu3YrOnTvj9ttvR+/evXHfffehrq5O0tOVlZWF5ORk9O3bF0899RR69+6NAwcO4Prrr3du89prryEuLg5XX301brnlFowePRoDBw50a+eFF15AUVERunXr5gxdlDpvgiAIwv/oOD4zlyAIgiAIgiAIglAN8mwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFkEQBEEQBEEQhAaQsUUQBEEQBEEQBKEBZGwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFkEQBEEQBEEQhAaQsUUQBEEQBEEQBKEBZGwRBEEQBEEQBEFoABlbBEEQBEEQBEEQGkDGFkEQBEEQBEEQhAb8P/kLMFYSWP7KAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "# Преобразуем дату выпуска в формат datetime\n", - "df['Release_date'] = pd.to_datetime(df['Release_date'])\n", - "\n", - "# Статистический анализ для определения выбросов\n", - "Q1 = df['Review_no'].quantile(0.25)\n", - "Q3 = df['Review_no'].quantile(0.75)\n", - "IQR = Q3 - Q1\n", - "\n", - "# Определение порога для выбросов\n", - "threshold = 1.5 * IQR\n", - "outliers = (df['Review_no'] < (Q1 - threshold)) | (df['Review_no'] > (Q3 + threshold))\n", - "\n", - "# Вывод выбросов\n", - "print(\"Выбросы:\")\n", - "print(df[outliers])\n", - "\n", - "# Обработка выбросов\n", - "# В данном случае мы заменим выбросы на медианное значение\n", - "median_review_no = df['Review_no'].median()\n", - "df.loc[outliers, 'Review_no'] = median_review_no\n", - "\n", - "# Визуализация данных после обработки\n", - "plt.figure(figsize=(10, 6))\n", - "plt.scatter(df['Release_date'], df['Review_no'])\n", - "plt.xlabel('Release Date')\n", - "plt.ylabel('Review Number')\n", - "plt.title('Scatter Plot of Review Number vs Release Date (After Handling Outliers)')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Очистим от строк с пустыми значениями наш датасет" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Количество удаленных строк: 515\n", - "\n", - "DataFrame после удаления строк с пропущенными значениями:\n", - " Name Price Release_date \\\n", - "0 Black Myth: Wukong 59.99 2024-08-20 \n", - "2 Counter-Strike 2 0.00 2012-08-21 \n", - "4 Grand Theft Auto V 10.48 2015-04-14 \n", - "5 Red Dead Redemption 2 17.99 2019-12-05 \n", - "6 PUBG: BATTLEGROUNDS 0.00 2017-12-21 \n", - "... ... ... ... \n", - "7807 Monster Hunter World: Iceborne - MHW:I Monster... 2.99 2020-02-06 \n", - "7808 Gene Shift Auto: Deluxe Edition 8.99 2022-11-28 \n", - "7809 Run Ralph Run 0.45 2021-03-03 \n", - "7810 Quadroids 6.19 2024-02-22 \n", - "7811 Divekick 4.99 2013-08-20 \n", - "\n", - " Review_no Review_type \\\n", - "0 270.0 Overwhelmingly Positive \n", - "2 270.0 Very Positive \n", - "4 270.0 Very Positive \n", - "5 270.0 Very Positive \n", - "6 270.0 Mixed \n", - "... ... ... \n", - "7807 39.0 Positive \n", - "7808 16.0 Positive \n", - "7809 26.0 Mostly Positive \n", - "7810 15.0 Positive \n", - "7811 1118.0 Very Positive \n", - "\n", - " Tags \\\n", - "0 Mythology,Action RPG,Action,Souls-like,RPG,Com... \n", - "2 FPS,Shooter,Multiplayer,Competitive,Action,Tea... \n", - "4 Open World,Action,Multiplayer,Crime,Automobile... \n", - "5 Open World,Story Rich,Western,Adventure,Multip... \n", - "6 Survival,Shooter,Battle Royale,Multiplayer,FPS... \n", - "... ... \n", - "7807 Action \n", - "7808 Indie,Action,Free to Play,Battle Royale,Roguel... \n", - "7809 Adventure,Action,Puzzle,Arcade,Platformer,Shoo... \n", - "7810 Precision Platformer,Puzzle Platformer,2D Plat... \n", - "7811 Fighting,Indie,2D Fighter,Parody ,Local Multip... \n", - "\n", - " Description \n", - "0 Black Myth: Wukong is an action RPG rooted in ... \n", - "2 For over two decades, Counter-Strike has offer... \n", - "4 Grand Theft Auto V for PC offers players the o... \n", - "5 Winner of over 175 Game of the Year Awards and... \n", - "6 Play PUBG: BATTLEGROUNDS for free.\\n\\nLand on ... \n", - "... ... \n", - "7807 A monster figure you can use to decorate your ... \n", - "7808 Gene Shift Auto is a roguelike-inspired battle... \n", - "7809 Ralph is a smart dinosaur, and a great shooter. \n", - "7810 Quadroids is a single-player puzzle platformer... \n", - "7811 Divekick is the world’s first two-button fight... \n", - "\n", - "[7297 rows x 7 columns]\n" - ] - } - ], - "source": [ - "# Удаление строк с пропущенными значениями\n", - "df_dropna = df.dropna()\n", - "\n", - "# Вывод количества удаленных строк\n", - "num_deleted_rows = len(df) - len(df_dropna)\n", - "print(f\"\\nКоличество удаленных строк: {num_deleted_rows}\")\n", - "\n", - "print(\"\\nDataFrame после удаления строк с пропущенными значениями:\")\n", - "print(df_dropna)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Теперь создадим выборки." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Размер обучающей выборки: 4687\n", - "Размер контрольной выборки: 1562\n", - "Размер тестовой выборки: 1563\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "from sklearn.model_selection import train_test_split\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "df = pd.read_csv(\".//static//csv//steam_cleaned.csv\")\n", - "\n", - "train_df, temp_df = train_test_split(df, test_size=0.4, random_state=42)\n", - "\n", - "# Разделение остатка на контрольную и тестовую выборки\n", - "val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)\n", - "\n", - "# Проверка размеров выборок\n", - "print(\"Размер обучающей выборки:\", len(train_df))\n", - "print(\"Размер контрольной выборки:\", len(val_df))\n", - "print(\"Размер тестовой выборки:\", len(test_df))\n", - "\n", - "# Сохранение выборок в файлы\n", - "train_df.to_csv(\".//static//csv//train_data.csv\", index=False)\n", - "val_df.to_csv(\".//static//csv//val_data.csv\", index=False)\n", - "test_df.to_csv(\".//static//csv//test_data.csv\", index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Проанализируем сбалансированность выборок" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Распределение Review_type в обучающей выборке:\n", - "Review_type\n", - "Very Positive 2117\n", - "Mostly Positive 810\n", - "Mixed 797\n", - "Positive 710\n", - "Overwhelmingly Positive 209\n", - "Mostly Negative 15\n", - "Very Negative 2\n", - "Overwhelmingly Negative 1\n", - "Name: count, dtype: int64\n", - "Процент положительных отзывов: 17.28%\n", - "Процент отрицательных отзывов: 4.46%\n", - "\n", - "Распределение Review_type в контрольной выборке:\n", - "Review_type\n", - "Very Positive 708\n", - "Mostly Positive 290\n", - "Mixed 241\n", - "Positive 224\n", - "Overwhelmingly Positive 78\n", - "Mostly Negative 6\n", - "Very Negative 2\n", - "Name: count, dtype: int64\n", - "Процент положительных отзывов: 18.57%\n", - "Процент отрицательных отзывов: 4.99%\n", - "\n", - "Распределение Review_type в тестовой выборке:\n", - "Review_type\n", - "Very Positive 713\n", - "Mostly Positive 276\n", - "Mixed 253\n", - "Positive 240\n", - "Overwhelmingly Positive 67\n", - "Mostly Negative 5\n", - "Very Negative 1\n", - "Name: count, dtype: int64\n", - "Процент положительных отзывов: 17.66%\n", - "Процент отрицательных отзывов: 4.29%\n", - "\n", - "Необходима аугментация данных для балансировки классов.\n", - "Необходима аугментация данных для балансировки классов.\n", - "Необходима аугментация данных для балансировки классов.\n" - ] - } - ], - "source": [ - "train_df = pd.read_csv(\".//static//csv//train_data.csv\")\n", - "val_df = pd.read_csv(\".//static//csv//val_data.csv\")\n", - "test_df = pd.read_csv(\".//static//csv//test_data.csv\")\n", - "\n", - "# Оценка сбалансированности\n", - "def check_balance(df, name):\n", - " counts = df['Review_type'].value_counts()\n", - " print(f\"Распределение Review_type в {name}:\")\n", - " print(counts)\n", - " print(f\"Процент положительных отзывов: {counts['Mostly Positive'] / len(df) * 100:.2f}%\")\n", - " print(f\"Процент отрицательных отзывов: {counts['Overwhelmingly Positive'] / len(df) * 100:.2f}%\")\n", - " print()\n", - "\n", - "# Определение необходимости аугментации данных\n", - "def need_augmentation(df):\n", - " counts = df['Review_type'].value_counts()\n", - " ratio = counts['Mostly Positive'] / counts['Overwhelmingly Positive']\n", - " if ratio > 1.5 or ratio < 0.67:\n", - " print(\"Необходима аугментация данных для балансировки классов.\")\n", - " else:\n", - " print(\"Аугментация данных не требуется.\")\n", - " \n", - "check_balance(train_df, \"обучающей выборке\")\n", - "check_balance(val_df, \"контрольной выборке\")\n", - "check_balance(test_df, \"тестовой выборке\")\n", - "\n", - "\n", - "\n", - "need_augmentation(train_df)\n", - "need_augmentation(val_df)\n", - "need_augmentation(test_df)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "По результатам анализа требуется приращение, соотношения отзывов вне допустимого диапазона" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Оверсэмплинг:\n", - "Распределение Review_type в обучающей выборке:\n", - "Review_type\n", - "Mostly Positive 2117\n", - "Mixed 2117\n", - "Very Positive 2117\n", - "Positive 2117\n", - "Overwhelmingly Positive 2117\n", - "Mostly Negative 2117\n", - "Very Negative 2117\n", - "Overwhelmingly Negative 2117\n", - "Name: count, dtype: int64\n", - "Отсутствуют один или оба класса (Positive/Negative).\n", - "\n", - "Распределение Review_type в контрольной выборке:\n", - "Review_type\n", - "Very Negative 708\n", - "Mostly Positive 708\n", - "Mixed 708\n", - "Overwhelmingly Positive 708\n", - "Overwhelmingly Negative 708\n", - "Positive 708\n", - "Mostly Negative 708\n", - "Very Positive 708\n", - "Name: count, dtype: int64\n", - "Отсутствуют один или оба класса (Positive/Negative).\n", - "\n", - "Распределение Review_type в тестовой выборке:\n", - "Review_type\n", - "Very Negative 713\n", - "Mostly Positive 713\n", - "Overwhelmingly Positive 713\n", - "Mixed 713\n", - "Overwhelmingly Negative 713\n", - "Very Positive 713\n", - "Mostly Negative 713\n", - "Positive 713\n", - "Name: count, dtype: int64\n", - "Отсутствуют один или оба класса (Positive/Negative).\n", - "\n", - "Андерсэмплинг:\n", - "Распределение Review_type в обучающей выборке:\n", - "Review_type\n", - "Mixed 1\n", - "Mostly Negative 1\n", - "Mostly Positive 1\n", - "Overwhelmingly Negative 1\n", - "Overwhelmingly Positive 1\n", - "Positive 1\n", - "Very Negative 1\n", - "Very Positive 1\n", - "Name: count, dtype: int64\n", - "Отсутствуют один или оба класса (Positive/Negative).\n", - "\n", - "Распределение Review_type в контрольной выборке:\n", - "Review_type\n", - "Mixed 2\n", - "Mostly Negative 2\n", - "Mostly Positive 2\n", - "Overwhelmingly Negative 2\n", - "Overwhelmingly Positive 2\n", - "Positive 2\n", - "Very Negative 2\n", - "Very Positive 2\n", - "Name: count, dtype: int64\n", - "Отсутствуют один или оба класса (Positive/Negative).\n", - "\n", - "Распределение Review_type в тестовой выборке:\n", - "Review_type\n", - "Mixed 1\n", - "Mostly Negative 1\n", - "Mostly Positive 1\n", - "Overwhelmingly Negative 1\n", - "Overwhelmingly Positive 1\n", - "Positive 1\n", - "Very Negative 1\n", - "Very Positive 1\n", - "Name: count, dtype: int64\n", - "Отсутствуют один или оба класса (Positive/Negative).\n", - "\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "from imblearn.over_sampling import RandomOverSampler\n", - "from imblearn.under_sampling import RandomUnderSampler\n", - "from sklearn.preprocessing import LabelEncoder\n", - "\n", - "# Загрузка данных\n", - "train_df = pd.read_csv(\".//static//csv//train_data.csv\")\n", - "val_df = pd.read_csv(\".//static//csv//val_data.csv\")\n", - "test_df = pd.read_csv(\".//static//csv//test_data.csv\")\n", - "\n", - "# Преобразование категориальных признаков в числовые\n", - "def encode(df):\n", - " label_encoders = {}\n", - " for column in df.select_dtypes(include=['object']).columns:\n", - " if column != 'Review_type': # Пропускаем целевую переменную\n", - " le = LabelEncoder()\n", - " df[column] = le.fit_transform(df[column])\n", - " label_encoders[column] = le\n", - " return label_encoders\n", - "\n", - "# Преобразование целевой переменной в числовые значения\n", - "def encode_target(df):\n", - " le = LabelEncoder()\n", - " df['Review_type'] = le.fit_transform(df['Review_type'])\n", - " return le\n", - "\n", - "# Применение кодирования\n", - "label_encoders = encode(train_df)\n", - "encode(val_df)\n", - "encode(test_df)\n", - "\n", - "# Кодирование целевой переменной\n", - "le_target = encode_target(train_df)\n", - "encode_target(val_df)\n", - "encode_target(test_df)\n", - "\n", - "# Проверка типов данных\n", - "def check_data_types(df):\n", - " for column in df.columns:\n", - " if df[column].dtype == 'object':\n", - " print(f\"Столбец '{column}' содержит строковые данные.\")\n", - "\n", - "check_data_types(train_df)\n", - "check_data_types(val_df)\n", - "check_data_types(test_df)\n", - "\n", - "# Функция для выполнения oversampling\n", - "def oversample(df):\n", - " if 'Review_type' not in df.columns:\n", - " print(\"Столбец 'Review_type' отсутствует.\")\n", - " return df\n", - " \n", - " X = df.drop('Review_type', axis=1)\n", - " y = df['Review_type']\n", - " \n", - " oversampler = RandomOverSampler(random_state=42)\n", - " X_resampled, y_resampled = oversampler.fit_resample(X, y)\n", - " \n", - " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", - " return resampled_df\n", - "\n", - "# Функция для выполнения undersampling\n", - "def undersample(df):\n", - " if 'Review_type' not in df.columns:\n", - " print(\"Столбец 'Review_type' отсутствует.\")\n", - " return df\n", - " \n", - " X = df.drop('Review_type', axis=1)\n", - " y = df['Review_type']\n", - " \n", - " undersampler = RandomUnderSampler(random_state=42)\n", - " X_resampled, y_resampled = undersampler.fit_resample(X, y)\n", - " \n", - " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", - " return resampled_df\n", - "\n", - "# Применение oversampling и undersampling к каждой выборке\n", - "train_df_oversampled = oversample(train_df)\n", - "val_df_oversampled = oversample(val_df)\n", - "test_df_oversampled = oversample(test_df)\n", - "\n", - "train_df_undersampled = undersample(train_df)\n", - "val_df_undersampled = undersample(val_df)\n", - "test_df_undersampled = undersample(test_df)\n", - "\n", - "# Обратное преобразование целевой переменной в строковые метки\n", - "def decode_target(df, le_target):\n", - " df['Review_type'] = le_target.inverse_transform(df['Review_type'])\n", - "\n", - "decode_target(train_df_oversampled, le_target)\n", - "decode_target(val_df_oversampled, le_target)\n", - "decode_target(test_df_oversampled, le_target)\n", - "\n", - "decode_target(train_df_undersampled, le_target)\n", - "decode_target(val_df_undersampled, le_target)\n", - "decode_target(test_df_undersampled, le_target)\n", - "\n", - "# Проверка результатов\n", - "def check_balance(df, name):\n", - " if 'Review_type' not in df.columns:\n", - " print(f\"Столбец 'Review_type' отсутствует в {name}.\")\n", - " return\n", - " \n", - " counts = df['Review_type'].value_counts()\n", - " print(f\"Распределение Review_type в {name}:\")\n", - " print(counts)\n", - " \n", - " if 'Positive' in counts and 'Negative' in counts:\n", - " print(f\"Процент положительных отзывов: {counts['Positive'] / len(df) * 100:.2f}%\")\n", - " print(f\"Процент отрицательных отзывов: {counts['Negative'] / len(df) * 100:.2f}%\")\n", - " else:\n", - " print(\"Отсутствуют один или оба класса (Positive/Negative).\")\n", - " print()\n", - "\n", - "# Проверка сбалансированности после oversampling\n", - "print(\"Оверсэмплинг:\")\n", - "check_balance(train_df_oversampled, \"обучающей выборке\")\n", - "check_balance(val_df_oversampled, \"контрольной выборке\")\n", - "check_balance(test_df_oversampled, \"тестовой выборке\")\n", - "\n", - "# Проверка сбалансированности после undersampling\n", - "print(\"Андерсэмплинг:\")\n", - "check_balance(train_df_undersampled, \"обучающей выборке\")\n", - "check_balance(val_df_undersampled, \"контрольной выборке\")\n", - "check_balance(test_df_undersampled, \"тестовой выборке\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 14,400 Classic Rock Tracks (with Spotify Data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://www.kaggle.com/datasets/thebumpkin/14400-classic-rock-tracks-with-spotify-data Этот набор данных, содержащий 1200 уникальных альбомов и 14 400 треков, представляет собой не просто коллекцию — это хроника эволюции классического рока. Каждый трек тщательно каталогизирован с 18 столбцами данных, включая ключевые метаданные, такие как название трека, исполнитель, альбом и год выпуска, наряду с функциями Spotify audio, которые позволяют получить представление о звуковом ландшафте этих неподвластных времени мелодий. Бизнес-цель может заключаться в улучшении стратегии маркетинга и продвижения музыкальных треков. Предположим как этот набор может быть полезен для бизнеса:\n", - "Персонализированные рекомендации: Создание алгоритмов, которые будут рекомендовать пользователям музыку на основе их предпочтений.\n", - "Цель технического проекта: Разработать и внедрить систему рекомендаций, которая будет предсказывать и рекомендовать пользователям музыкальные треки на основе их предпочтений и поведения.\n", - "Входные данные:\n", - "Данные о пользователях: Идентификатор пользователя, история прослушиваний, оценки треков, время прослушивания, частота прослушивания.\n", - "Данные о треках: Атрибуты треков (название, исполнитель, альбом, год, длительность, танцевальность, энергичность, акустичность и т.д.).\n", - "Данные о взаимодействии: Время и частота взаимодействия пользователя с определенными треками.\n", - "Целевой признак:\n", - "Рекомендации: Булева переменная, указывающая, должен ли конкретный трек быть рекомендован пользователю (1 - рекомендуется, 0 - не рекомендуется)." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Index(['Track', 'Artist', 'Album', 'Year', 'Duration', 'Time_Signature',\n", - " 'Danceability', 'Energy', 'Key', 'Loudness', 'Mode', 'Speechiness',\n", - " 'Acousticness', 'Instrumentalness', 'Liveness', 'Valence', 'Tempo',\n", - " 'Popularity'],\n", - " dtype='object')\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "df = pd.read_csv(\".//static//csv//UltimateClassicRock.csv\")\n", - "print(df.columns)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Анализируем датафрейм при помощи \"ящика с усами\". Естьсмещение в сторону меньших значений, это можно исправить при помощи oversampling и undersampling." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAIjCAYAAABia6bHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzVUlEQVR4nO3dd5RV5dnw4XsGptBRUYoCgg3ELqhAFFQs2DXqp6KIvUAUjTEaC9iisb72khcBA/ZEUINRFEskRikLSxTUCKJB5FXpAgPM/v5wzQnDDFV8BsbrWosVdjvnmT07zvmxy+RlWZYFAADATyy/qgcAAAD8PIgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPgCo0ZcqUyMvLi0GDBlX1UFiBXr16xZZbbrnOXzcvLy/69++/zl8XYH0mPoBqYdCgQZGXl1fuz2abbRb77rtvvPDCC8nH89prr5UbS0FBQbRu3Tp69uwZn3322Tp5j3/84x/Rv3//mDVr1jp5vaqQYj9tKKrD9xNgVWpW9QAA1qVrr702WrVqFVmWxddffx2DBg2KQw45JJ577rk47LDDko/nggsuiA4dOsTixYtj/Pjx8dBDD8Vf//rXeP/996NZs2Y/6rX/8Y9/xDXXXBO9evWKhg0brpsBV5Gfcj+trxYsWBA1a/73x3B1+n4CrIj4AKqV7t27R/v27XPTZ5xxRjRu3Dgee+yxKomPvffeO4499tiIiDjttNNi2223jQsuuCAGDx4cl19+efLxrK9+LvuptLQ0SkpKori4OIqLi6t6OADJuewKqNYaNmwYtWrVKvcvzBER8+fPj1//+tfRvHnzKCoqiu222y5uvfXWyLIsIn74V+k2bdpEmzZtYsGCBbntvvvuu2jatGl06tQpli5dusbj2W+//SIiYvLkyStdb9SoUbH33ntHnTp1omHDhnHkkUfGRx99lFvev3//+M1vfhMREa1atcpdtjRlypRVjmH5y9PK/rz22msV1u3Vq1el6y5/r8LTTz8d7du3j3r16pVb79Zbb13leCpT2X667777ol27dlFUVBTNmjWL3r17V7hEqWvXrrHDDjvEuHHjolOnTlGrVq1o1apVPPDAA+XWK7tMb/n9VXYZWGX7Ylm33nprdOrUKTbZZJOoVatW7L777vH0009XWC8vLy/69OkTQ4cOzY39b3/7W25Z2X5c2fezS5cusfPOO1c6ju222y4OOuiglY4VYH3izAdQrcyePTu++eabyLIsZsyYEXfffXfMmzcvTj755Nw6WZbFEUccEa+++mqcccYZscsuu8SLL74Yv/nNb+I///lP3HHHHVGrVq0YPHhwdO7cOa644oq4/fbbIyKid+/eMXv27Bg0aFDUqFFjjcf373//OyIiNtlkkxWu8/LLL0f37t2jdevW0b9//1iwYEHcfffd0blz5xg/fnxsueWWccwxx8THH38cjz32WNxxxx3RqFGjiIjYdNNNV2scBxxwQPTs2TMiIsaMGRN33XXXCtdt1KhR3HHHHbnpU045pdzyt956K44//vjYeeed46abbooGDRrEN998ExdddNFqjaUyy++n/v37xzXXXBPdunWL8847LyZNmhT3339/jBkzJkaPHh0FBQW5bWfOnBmHHHJIHH/88XHiiSfGk08+Geedd14UFhbG6aefvtZjWtadd94ZRxxxRPTo0SNKSkri8ccfj+OOOy6ef/75OPTQQ8utO2rUqHjyySejT58+0ahRo0pvXl/Z9/OUU06Js846Kz744IPYYYcdctuMGTMmPv7447jyyivXydcEkEQGUA0MHDgwi4gKf4qKirJBgwaVW3fYsGFZRGTXX399ufnHHntslpeXl3366ae5eZdffnmWn5+fvfHGG9lTTz2VRUT2P//zP6scz6uvvppFRPbwww9n//d//5dNmzYt++tf/5ptueWWWV5eXjZmzJgsy7Js8uTJWURkAwcOzG27yy67ZJtttln27bff5ua9++67WX5+ftazZ8/cvFtuuSWLiGzy5MmrvZ9KSkqyiMj69OmTm1f2db366qsV1u/Ro0fWqlWrcvMiIuvXr19u+vLLL88iIvvqq69y88q+rltuuWWl41md/TRjxoyssLAwO/DAA7OlS5fmtr3nnnty25bp0qVLFhHZbbfdlpu3aNGi3D4tKSnJsuy/x8vy+65sPMvui1NPPTVr2bJlufW+//77ctMlJSXZDjvskO23334V9lV+fn72r3/9q8LXvvx+XNH3c9asWVlxcXH229/+ttz8Cy64IKtTp042b968Cq8NsL5y2RVQrdx7770xcuTIGDlyZAwZMiT23XffOPPMM+Mvf/lLbp0RI0ZEjRo14oILLii37a9//evIsqzc07H69+8f7dq1i1NPPTXOP//86NKlS4XtVub000+PTTfdNJo1axaHHnpozJ8/PwYPHlzuvpRlffXVVzFhwoTo1atXbLzxxrn5O+20UxxwwAExYsSI1X7vyixcuDAiYrXvNygpKYmioqKVrjN37tzIz8//UTdJr2w/vfzyy1FSUhJ9+/aN/Pz//tg666yzon79+vHXv/613GvVrFkzzjnnnNx0YWFhnHPOOTFjxowYN27cWo9xWbVq1cr9febMmTF79uzYe++9Y/z48RXW7dKlS2y//fZr/V4NGjSII488Mh577LHcZYFLly6NJ554Io466qioU6fOWr82QGouuwKqlT322KPcB/sTTzwxdt111+jTp08cdthhUVhYGJ9//nk0a9Ys6tWrV27btm3bRkTE559/nptXWFgYDz/8cHTo0CGKi4tj4MCBkZeXt9rjufrqq2PvvfeOGjVqRKNGjaJt27YV7j9ZVtl7b7fddhWWtW3bNl588cWYP3/+Wn/g/OabbyLihw+0q2PWrFlRt27dla7TsWPHuOeee+LCCy+MSy+9NBo0aBAzZ85co3GtbD+taJ8UFhZG69aty32/IiKaNWtWYf9su+22EfHD71XZa6+91mhslXn++efj+uuvjwkTJsSiRYty8ys7Nlq1avWj369nz57xxBNPxN///vfYZ5994uWXX46vv/66wiVwAOs78QFUa/n5+bHvvvvGnXfeGZ988km0a9dujV/jxRdfjIgfzhp88skna/Rhcscdd4xu3bqt8Xv+VMpusF7dX5o3ffr0aNmy5UrXOeGEE2L8+PFx9913x0MPPbRW40q9n1YUkKvzEIG///3vccQRR8Q+++wT9913XzRt2jQKCgpi4MCB8eijj1ZYf9mzJGvroIMOisaNG8eQIUNin332iSFDhkSTJk3Wq2MLYHW47Aqo9pYsWRIREfPmzYuIiJYtW8a0adNi7ty55dabOHFibnmZ9957L6699to47bTTYtddd40zzzwzZs+e/ZONtey9J02aVGHZxIkTo1GjRrl/1V+TMzBlxo4dGxGxwsu+lrV48eL49NNPc2eEViQ/Pz9uvfXW6Nq1a2yzzTa5S97WlRXtk5KSkpg8eXKFOJo2bVrMnz+/3LyPP/44Iv4bXRtttFFERIWnZS1/FqUyf/7zn6O4uDhefPHFOP3006N79+7rJAJW9v2sUaNGnHTSSfH000/HzJkzY9iwYXHiiSeu1UMPAKqS+ACqtcWLF8dLL70UhYWFuQ/RhxxySCxdujTuueeecuvecccdkZeXF927d89t26tXr2jWrFnceeedMWjQoPj6669/1FOcVqVp06axyy67xODBg8t9MP7ggw/ipZdeikMOOSQ3ryxC1uQ3Yj/99NOx3XbbRZs2bVa57vDhw2PBggW5x96uzN133x2jRo2KoUOHRrdu3aJz586rPaZV6datWxQWFsZdd92Vu+chImLAgAExe/bsCk+XWrJkSTz44IO56ZKSknjwwQdj0003jd133z0iIrbaaquIiHjjjTdy6y1dunS1ztzUqFEj8vLyyp0lmTJlSgwbNmytvr4yq/p+nnLKKTFz5sw455xzKjzBDWBD4bIroFp54YUXcmcwZsyYEY8++mh88skncdlll0X9+vUjIuLwww+PfffdN6644oqYMmVK7LzzzvHSSy/F8OHDo2/fvrkPpmXX9L/yyitRr1692GmnneLqq6+OK6+8Mo499thyIbAu3XLLLdG9e/fo2LFjnHHGGblH7TZo0KDc79co+yB9xRVXxAknnBAFBQVx+OGHV3o/yGeffRY333xzvPPOO3HMMceUOzMxZsyYiIgYOXJktGjRIpo0aRL9+vWL++67Lzp16hQHHnjgSsf7r3/9Ky699NLo379/dOjQYR3sgfI23XTTuPzyy+Oaa66Jgw8+OI444oiYNGlS3HfffdGhQ4cKH8KbNWsWf/jDH2LKlCmx7bbbxhNPPBETJkyIhx56KPdI3nbt2sVee+0Vl19+eXz33Xex8cYbx+OPP547S7Yyhx56aNx+++1x8MEHx0knnRQzZsyIe++9N7beeut477331vrrXNX3c9ddd40ddtghnnrqqWjbtm3stttua/1eAFWmip+2BbBOVPao3eLi4myXXXbJ7r///qy0tLTc+nPnzs0uuuiirFmzZllBQUG2zTbbZLfccktuvXHjxmU1a9bMfvWrX5XbbsmSJVmHDh2yZs2aZTNnzlzheMoe2frUU0+tdNyVPWo3y7Ls5Zdfzjp37pzVqlUrq1+/fnb44YdnH374YYXtr7vuumzzzTfP8vPzV/rY3RU9inj5PwMHDsy+/PLLrHnz5lnfvn2z2bNnV3itWOYRsQsXLsx22mmn7Be/+EW2ZMmSCl/X6j5qd1X7Kct+eLRumzZtsoKCgqxx48bZeeedV+F70KVLl6xdu3bZ2LFjs44dO2bFxcVZy5Yts3vuuafC6/373//OunXrlhUVFWWNGzfOfve732UjR45crUftDhgwINtmm22yoqKirE2bNtnAgQOzfv36Zcv/WI2IrHfv3pV+PbHco3azbNXfz5tvvjmLiOz3v//9SvcVwPoqL8uWOYcNQLU0aNCg6N+//0p/A3rXrl2jV69e0atXr2TjWte6du0a33zzTXzwwQdVPZSfxJ133hkXXXRRTJkyJVq0aFHVwwFYY+75AIANQJZlMWDAgOjSpYvwADZY7vkA+BnYaqut4uijj17pOgcccEDufhfWH/Pnz49nn302Xn311Xj//fdj+PDhVT0kgLXmsisAqo3qeNnVlClTolWrVtGwYcM4//zz44YbbqjqIQGsNfEBAAAk4Z4PAAAgCfEBAAAksdY3nJeWlsa0adOiXr16kZeXty7HBAAAbECyLIu5c+dGs2bNIj9/xec31jo+pk2bFs2bN1/bzQEAgGrmiy++iC222GKFy9c6PurVq5d7g/r166/tywAAABu4OXPmRPPmzXONsCJrHR9ll1rVr19ffAAAAKu8HcMN5wAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASKJmVQ+An6evv/46Zs+eXdXD4GegQYMG0bhx46oeBgAQ4oMq8PXXX8fJp/SMxSWLqnoo/AwUFBbFkD89IkAAYD0gPkhu9uzZsbhkUSxo3SVKixtU9XDWG/kLZkWtyW/Eglb7RGmthlU9nGohf+HsiM9ej9mzZ4sPAFgPiA+qTGlxgyit06iqh7HeKa3V0H4BAKolN5wDAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIolrEx8KFC+Pjjz+OhQsXVvVQAIDV5Oc3/PxUi/iYOnVqnH322TF16tSqHgoAsJr8/Iafn2oRHwAAwPpPfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSqFnVAwAAWNaIESPi5ptvzk1feumlccghh+Sm33jjjbj66qtz09dee23ss88+uelPP/00zjrrrMiyLPLy8uKPf/xjbL311rnlb775Zlx55ZW56euvvz5+8YtfrHJZRMQ//vGP+N3vfpeb/v3vfx+dOnXKTU+cODHOPffc3PQDDzwQbdq0yU1//PHHcfbZZ+emH3roodh2220jIuLDDz+M888/P7fsvvvui+233361to2ImD59epx33nkxb968qFu3btx///3RpEmTiIiYMmVKnHHGGbF06dKoUaNGDBgwILbccsvctlOnTo0zzjgjFi9eHAUFBTFgwIBo0aJFbvm8efPixhtvjGnTpkWzZs3i8ssvj7p16+aWf/fdd3HxxRfHt99+G5tsskncfvvtsfHGG69yXBERJSUlMXz48NxrH3nkkVFYWLjayxcsWBAPPvhgfPnll7HFFlvEOeecE7Vq1frR20ZELF26NN5777347rvvYuONN46ddtopatSosdpj+ymtamzrq7wsy7K12XDOnDnRoEGDmD17dtSvX39dj2uNlP2fcfn/E7J+Kvt+zd/+iCit06iqh7PeyJ//TdT58Fn7ZR0q26f+2wDrp8p+fnft2nWF67/22ms/6fKVWd/f++CDD46FCxdWWFZcXByLFi2Kyj7u5eXlxauvvhr77bdflJaWVlien58fo0aNinPPPTcmTpxYYXmbNm3igQceiGOOOSa+++67Css33njj+P7771c4rr/97W/xwAMPxFNPPRVLly7NLatRo0Ycd9xxce65565y+RVXXBGjR4+u8PqdO3eO5s2br/W2N9xwQ7zxxhtx3333xfTp03PLmjRpEueff37ss88+qxzbT2lVY6sKq9sGLrsCANYLy3/AXvZf5itbvuOOO65weY0aNeKUU04p9y/By2+/yy67rHAsyy9bftvdd999hcvz8vLil7/8ZeTl5VW6PD8/P0444YTIz6/8Y9iRRx65wteubNuuXbvmPuA3adIk+vXrlzuzsHDhwlx4FBUVxTnnnBNFRUUREZFlWXTt2jUXHrVr145f/epXUbt27YiIKC0tja5du8bEiRMjLy8vDjzwwPjf//3fOPDAAyMvLy8mTpwY+++/fy48tt9++7jttttyZ2u+++67lY5r//33j8cffzzq168fl1xySfz5z3+OSy65JOrXrx+PP/54nHvuuStd3qNHjxg9enQUFBTESSedFEOGDImTTjopCgoKYvTo0T9q23PPPTf69esXrVu3jnvvvTdGjBgR9957b7Ru3Tr69esXV1xxxUpf/4EHHqj0e7suvPHGGysd2xtvvPGTvfe64MwHyTnzUTlnPtY9Zz5g/bbsz+9PP/00d6nV1VdfHfvtt19uvVGjRsW1116bm7755ptjjz32yE2/8847cemll+amhwwZEltssUVu+ssvv4yTTz45N33rrbdG+/btc9MDBgyIP/3pTxERceqpp8Zpp52WWzZ27Ni45JJLctO333577Lbbbrnp8ePHx8UXX5ybHjRoULlomjJlSvTq1Ss3/cgjj5S7nOnll1+O66+/PiIirrrqqth///1zyz777LM4/fTTV7jt1KlTo2fPnrnpYcOGRcOGDXPTH3zwQfTp0yciIu6+++5ysTZ9+vQ44YQTctNPPvlkbLbZZrnpGTNmxPHHH5+b/tvf/hbFxcW56YULF8bBBx+cm37++efLXYY1efLk3H5cfp/MmjUrjjrqqIiIqFu3bgwbNixq1vzvnQBLliyJ4447LmbOnBkNGzaMp59+usLyY489NmbNmhU1a9aMESNGlLvUad68eXHYYYdFRMRzzz0X9erVW+1tS0pK4pBDDoklS5bEnnvuGTfeeGO50CstLY3f/e538c9//nOFYzvuuONizpw58cILL6zzS7CWLl0aPXr0iNatW8f1119fYWxXXnllTJ48OYYMGZL8EqzVbYPVvudj0aJFsWjRonJvsL75/PPPq3oIrAbfJ1JzzMH6adn/by57j8ey4VE2vWx8LBselU0vGx6VTS8bHhGRC4+IiMGDB5eLj+XXXTY8Kpte/mzN8tPLxkNE5MIjIuK6664rFx+tW7de6bbLTy8bHhERF154Ye7vV199dTzzzDO56WXvuYiIcuFRNp2fnx+lpaWRl5dXLjwifrhsqnbt2vH9999HnTp1yoVHRJQLsv79+8egQYPKjbNevXoxd+7cKC0tLffhPSKiZs2asfPOO8drr70Wu+yyS6XLW7ZsGbNmzYodd9yxwgf8F154Iff3AQMGRN++fVd728LCwthnn31i1KhRUVRUVOHsVH5+fmy++eYREXHggQdWOrbTTz89brvtthg+fHgcd9xxsS699957MX369LjqqqsqHVuPHj2id+/e8d5778Wuu+66Tt97XVnt+Ljxxhvjmmuu+SnH8qPdcMMNVT0EYD3kvw2w4Vj+wzprb9l7EebNm7fG29evXz9mzZpV6f0iy6pTp06Fecu+37ffflth+bbbbhvjxo2LkpKSSl+zLHaWj54yZWNq1KjilQLTpk3L/f3LL79co20jfriXZdSoUTF37txKl5f9Y3yzZs0qXd6xY8cK41hXyi5xa9WqVaXLy+ZXdg/O+mK14+Pyyy8vV7Fz5syJ5s2b/ySDWltXXHFFtGzZsqqHwSp8/vnnPgySlP82wPqpsp8HU6ZMqZrBVEM1atTIBcjyZyZWR9lVLsveu1KZ+fPnV5hXt27dmDlzZkREbLLJJhWWf/zxxxERK7wsqexekcpuVl92TN98802FZctGwfJnvVa1bUTkbq5f9nKtZZXdM7OiuHjrrbcqjGNdKXuC2OTJk6Ndu3YVlk+ePLnceuuj1Y6PoqKi3M5eX7Vs2dJ13UAF/tsA679LL700d+nVqFGjKtzzsax33nmnwj0fyyp7bOqy08saO3ZsucupTjnllHL3fCy/7rLGjx9f4Z6PZU2ZMqXCPR/Lmjp1arnLpa688spy93ws67PPPlvptlOnTi23fNasWeUuvbrzzjtz93wse9laRJR7SlLED/d4LH/PR9mN6FmWxcKFCyvc8/H9999HxA/xUfYY3TK333577vK1/v37Vxhn2VmF/Pz8WLJkSYX7Jt59992IiJgwYUKly8su2Xv//fejpKSkXMR079497r333oiIOOOMM8q996q2LSkpyd2wvWjRoigtLa1wX8V//vOfiIh46aWX4uyzz64wtocffjhq1KhR4cEB68JOO+0UTZo0iaFDh1Z6z8fQoUOjadOmsdNOO63z915X3HBOcm44r5wbztc9N5zD+m35n9/LP1Fq8803z33Qq0ybNm0qfQRsxH8febr8o1CX1a5du/jXv/61xssifvgQ+N5771W6LC8vLw4//PB47rnnKr1kKT8/P44++uh45plnKn3E7SGHHBIjRoyo9LVXtW2TJk3ijDPOiAEDBlQIjKKioujRo0cMHTq03H28ZWrXrh09e/aMRx55JBcWy35N3bp1y+3Tl19+ObIsK3d2pW3btnHaaafFwIED46OPPlrluMq23WijjeL000+Pjh07xltvvRUPP/xwzJw5M/f9XdHysuOjoKAgjj322Nx+e/rpp2Px4sUREWu9bZs2bWLSpEnRsWPH6NGjR7Rq1SomT54cQ4cOjbfeeis6deoUo0ePXuHrn3DCCT/Z43bLnna1orFdc801VfK43dVtA/FBcuKjcuJj3RMfsH7zez7W3Xv7PR/l/VS/56Np06Zx3nnnrZe/52PZsVUF8cF6S3xUTnyse+ID1m8r+vntN5z/wG84X73lfsP5+vEbzsUH6y3xUTnxse6JD1i/+fkN1YffcA4AAKxXxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASVSL+GjRokU89NBD0aJFi6oeCgCwmvz8hp+fmlU9gHWhuLg4tt1226oeBgCwBvz8hp+fanHmAwAAWP+JDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEnUrOoB8POVv3B2VQ9hvZK/YFa5/+XHc4wBwPpFfJBcgwYNoqCwKOKz16t6KOulWpPfqOohVCsFhUXRoEGDqh4GABDigyrQuHHjGPKnR2L2bP8qzU+vQYMG0bhx46oeBgAQ4oMq0rhxYx8IAQB+ZtxwDgAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACSEB8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJGqu7YZZlkVExJw5c9bZYAAAgA1PWROUNcKKrHV8zJ07NyIimjdvvrYvAQAAVCNz586NBg0arHB5XraqPFmB0tLSmDZtWtSrVy/y8vLWeoDrwpw5c6J58+bxxRdfRP369at0LFRvjjVScayRimONFBxn1V+WZTF37txo1qxZ5Oev+M6OtT7zkZ+fH1tsscXabv6TqF+/vgOaJBxrpOJYIxXHGik4zqq3lZ3xKOOGcwAAIAnxAQAAJFEt4qOoqCj69esXRUVFVT0UqjnHGqk41kjFsUYKjjPKrPUN5wAAAGuiWpz5AAAA1n/iAwAASEJ8AAAASYgPAAAgiWoRH/fee29sueWWUVxcHHvuuWe88847VT0kNmA33nhjdOjQIerVqxebbbZZHHXUUTFp0qRy6yxcuDB69+4dm2yySdStWzd++ctfxtdff11FI6a6uOmmmyIvLy/69u2bm+dYY135z3/+EyeffHJssskmUatWrdhxxx1j7NixueVZlsXVV18dTZs2jVq1akW3bt3ik08+qcIRsyFaunRpXHXVVdGqVauoVatWbLXVVnHdddfFss83cqz9vG3w8fHEE0/ExRdfHP369Yvx48fHzjvvHAcddFDMmDGjqofGBur111+P3r17xz//+c8YOXJkLF68OA488MCYP39+bp2LLroonnvuuXjqqafi9ddfj2nTpsUxxxxThaNmQzdmzJh48MEHY6eddio337HGujBz5szo3LlzFBQUxAsvvBAffvhh3HbbbbHRRhvl1rn55pvjrrvuigceeCDefvvtqFOnThx00EGxcOHCKhw5G5o//OEPcf/998c999wTH330UfzhD3+Im2++Oe6+++7cOo61n7lsA7fHHntkvXv3zk0vXbo0a9asWXbjjTdW4aioTmbMmJFFRPb6669nWZZls2bNygoKCrKnnnoqt85HH32URUT21ltvVdUw2YDNnTs322abbbKRI0dmXbp0yS688MIsyxxrrDu//e1vs1/84hcrXF5aWpo1adIku+WWW3LzZs2alRUVFWWPPfZYiiFSTRx66KHZ6aefXm7eMccck/Xo0SPLMscaWbZBn/koKSmJcePGRbdu3XLz8vPzo1u3bvHWW29V4cioTmbPnh0RERtvvHFERIwbNy4WL15c7rhr06ZNtGjRwnHHWundu3cceuih5Y6pCMca686zzz4b7du3j+OOOy4222yz2HXXXeOPf/xjbvnkyZNj+vTp5Y61Bg0axJ577ulYY4106tQpXnnllfj4448jIuLdd9+NN998M7p37x4RjjUialb1AH6Mb775JpYuXRqNGzcuN79x48YxceLEKhoV1UlpaWn07ds3OnfuHDvssENEREyfPj0KCwujYcOG5dZt3LhxTJ8+vQpGyYbs8ccfj/Hjx8eYMWMqLHOssa589tlncf/998fFF18cv/vd72LMmDFxwQUXRGFhYZx66qm546myn6eONdbEZZddFnPmzIk2bdpEjRo1YunSpXHDDTdEjx49IiIca2zY8QE/td69e8cHH3wQb775ZlUPhWroiy++iAsvvDBGjhwZxcXFVT0cqrHS0tJo3759/P73v4+IiF133TU++OCDeOCBB+LUU0+t4tFRnTz55JMxdOjQePTRR6Ndu3YxYcKE6Nu3bzRr1syxRkRs4DecN2rUKGrUqFHhyS9ff/11NGnSpIpGRXXRp0+feP755+PVV1+NLbbYIje/SZMmUVJSErNmzSq3vuOONTVu3LiYMWNG7LbbblGzZs2oWbNmvP7663HXXXdFzZo1o3Hjxo411ommTZvG9ttvX25e27ZtY+rUqRERuePJz1N+rN/85jdx2WWXxQknnBA77rhjnHLKKXHRRRfFjTfeGBGONTbw+CgsLIzdd989Xnnlldy80tLSeOWVV6Jjx45VODI2ZFmWRZ8+feKZZ56JUaNGRatWrcot33333aOgoKDccTdp0qSYOnWq4441sv/++8f7778fEyZMyP1p37599OjRI/d3xxrrQufOnSs8Mvzjjz+Oli1bRkREq1atokmTJuWOtTlz5sTbb7/tWGONfP/995GfX/7jZY0aNaK0tDQiHGvEhv+0q8cffzwrKirKBg0alH344YfZ2WefnTVs2DCbPn16VQ+NDdR5552XNWjQIHvttdeyr776Kvfn+++/z61z7rnnZi1atMhGjRqVjR07NuvYsWPWsWPHKhw11cWyT7vKMsca68Y777yT1axZM7vhhhuyTz75JBs6dGhWu3btbMiQIbl1brrppqxhw4bZ8OHDs/feey878sgjs1atWmULFiyowpGzoTn11FOzzTffPHv++eezyZMnZ3/5y1+yRo0aZZdeemluHcfaz9sGHx9ZlmV333131qJFi6ywsDDbY489sn/+859VPSQ2YBFR6Z+BAwfm1lmwYEF2/vnnZxtttFFWu3bt7Oijj86++uqrqhs01cby8eFYY1157rnnsh122CErKirK2rRpkz300EPllpeWlmZXXXVV1rhx46yoqCjbf//9s0mTJlXRaNlQzZkzJ7vwwguzFi1aZMXFxVnr1q2zK664Ilu0aFFuHcfaz1teli3zKycBAAB+Ihv0PR8AAMCGQ3wAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDgB+la9eu0bdv3x/9Ov37949ddtnlR78OAOsv8QGwAevVq1fk5eVFXl5eFBYWxtZbbx3XXnttLFmypKqHtsYuueSSeOWVV3LTvXr1iqOOOqrqBgTAOlezqgcAwI9z8MEHx8CBA2PRokUxYsSI6N27dxQUFMTll19e1UNbLVmWxdKlS6Nu3bpRt27dqh4OAD8hZz4ANnBFRUXRpEmTaNmyZZx33nnRrVu3ePbZZ2PmzJnRs2fP2GijjaJ27drRvXv3+OSTT3LbDRo0KBo2bBjDhg2LbbbZJoqLi+Oggw6KL774IrdOZWcf+vbtG127dl3heP70pz9F+/bto169etGkSZM46aSTYsaMGbnlr732WuTl5cULL7wQu+++exQVFcWbb75Z7rKr/v37x+DBg2P48OG5MzuvvfZa7LffftGnT59y7/d///d/UVhYWO6sCQDrJ/EBUM3UqlUrSkpKolevXjF27Nh49tln46233oosy+KQQw6JxYsX59b9/vvv44YbbohHHnkkRo8eHbNmzYoTTjjhR73/4sWL47rrrot33303hg0bFlOmTIlevXpVWO+yyy6Lm266KT766KPYaaedyi275JJL4vjjj4+DDz44vvrqq/jqq6+iU6dOceaZZ8ajjz4aixYtyq07ZMiQ2HzzzWO//fb7UeMG4KfnsiuAaiLLsnjllVfixRdfjO7du8ewYcNi9OjR0alTp4iIGDp0aDRv3jyGDRsWxx13XET8EAr33HNP7LnnnhERMXjw4Gjbtm288847sccee6zVOE4//fTc31u3bh133XVXdOjQIebNm1fusqprr702DjjggEpfo27dulGrVq1YtGhRNGnSJDf/mGOOiT59+sTw4cPj+OOPj4gfzuCU3fsCwPrNmQ+ADdzzzz8fdevWjeLi4ujevXv8v//3/6JXr15Rs2bNXFRERGyyySax3XbbxUcffZSbV7NmzejQoUNuuk2bNtGwYcNy66ypcePGxeGHHx4tWrSIevXqRZcuXSIiYurUqeXWa9++/Rq/dnFxcZxyyinx8MMPR0TE+PHj44MPPqj0zAoA6x/xAbCB23fffWPChAnxySefxIIFC2Lw4MHr7CxAfn5+ZFlWbt6yl20tb/78+XHQQQdF/fr1Y+jQoTFmzJh45plnIiKipKSk3Lp16tRZqzGdeeaZMXLkyPjyyy9j4MCBsd9++0XLli3X6rUASEt8AGzg6tSpE1tvvXW0aNEiatb84Wratm3bxpIlS+Ltt9/Orfftt9/GpEmTYvvtt8/NW7JkSYwdOzY3PWnSpJg1a1a0bds2IiI23XTT+Oqrr8q934QJE1Y4lokTJ8a3334bN910U+y9997Rpk2bcjebr4nCwsJYunRphfk77rhjtG/fPv74xz/Go48+Wu4yLwDWb+IDoBraZptt4sgjj4yzzjor3nzzzXj33Xfj5JNPjs033zyOPPLI3HoFBQXxq1/9Kt5+++0YN25c9OrVK/baa6/c/R777bdfjB07Nh555JH45JNPol+/fvHBBx+s8H1btGgRhYWFcffdd8dnn30Wzz77bFx33XVr9TVsueWW8d5778WkSZPim2++KXfG5cwzz4ybbropsiyLo48+eq1eH4D0xAdANTVw4MDYfffd47DDDouOHTtGlmUxYsSIKCgoyK1Tu3bt+O1vfxsnnXRSdO7cOerWrRtPPPFEbvlBBx0UV111VVx66aXRoUOHmDt3bvTs2XOF77npppvGoEGD4qmnnortt98+brrpprj11lvXavxnnXVWbLfddtG+ffvYdNNNY/To0bllJ554YtSsWTNOPPHEKC4uXqvXByC9vGz5i3kB+FkYNGhQ9O3bN2bNmlXVQ1ljU6ZMia222irGjBkTu+22W1UPB4DV5FG7AGwwFi9eHN9++21ceeWVsddeewkPgA2My64A2GCMHj06mjZtGmPGjIkHHnigqocDwBpy2RUAAJCEMx8AAEAS4gMAAEhCfAAAAEmIDwAAIAnxAQAAJCE+AACAJMQHAACQhPgAAACS+P87fxg1bSChrgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "# Box plot для столбца 'Popularity'\n", - "plt.figure(figsize=(10, 6))\n", - "sns.boxplot(x=df['Popularity'])\n", - "plt.title('Box Plot для Popularity')\n", - "plt.xlabel('Popularity')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Решим проблему пустых значений при помощи удаления таких строк." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "df_cleaned = df.dropna()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Разбиение набора данных на обучающую, контрольную и тестовую выборки" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Размер обучающей выборки: 8650\n", - "Размер контрольной выборки: 2884\n", - "Размер тестовой выборки: 2884\n" - ] - } - ], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "\n", - "# Разделение на обучающую и тестовую выборки\n", - "train_df, test_df = train_test_split(df_cleaned, test_size=0.2, random_state=42)\n", - "\n", - "# Разделение обучающей выборки на обучающую и контрольную\n", - "train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n", - "\n", - "print(\"Размер обучающей выборки:\", len(train_df))\n", - "print(\"Размер контрольной выборки:\", len(val_df))\n", - "print(\"Размер тестовой выборки:\", len(test_df))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Оценка сбалансированности выборок, по результатам видно что баланса тут мало" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Распределение Popularity в обучающей выборке:\n", - "Popularity\n", - "23 258\n", - "15 250\n", - "26 246\n", - "21 245\n", - "14 245\n", - " ... \n", - "84 1\n", - "87 1\n", - "91 1\n", - "79 1\n", - "86 1\n", - "Name: count, Length: 88, dtype: int64\n", - "\n", - "Распределение Popularity в контрольной выборке:\n", - "Popularity\n", - "17 90\n", - "26 86\n", - "21 83\n", - "24 83\n", - "28 80\n", - " ..\n", - "85 1\n", - "83 1\n", - "84 1\n", - "80 1\n", - "77 1\n", - "Name: count, Length: 85, dtype: int64\n", - "\n", - "Распределение Popularity в тестовой выборке:\n", - "Popularity\n", - "22 86\n", - "21 85\n", - "12 84\n", - "20 82\n", - "26 81\n", - " ..\n", - "76 2\n", - "71 2\n", - "79 1\n", - "82 1\n", - "80 1\n", - "Name: count, Length: 80, dtype: int64\n", - "\n" - ] - } - ], - "source": [ - "def check_balance(df, name):\n", - " counts = df['Popularity'].value_counts()\n", - " print(f\"Распределение Popularity в {name}:\")\n", - " print(counts)\n", - " print()\n", - "\n", - "check_balance(train_df, \"обучающей выборке\")\n", - "check_balance(val_df, \"контрольной выборке\")\n", - "check_balance(test_df, \"тестовой выборке\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Выполним овер- и андер- слемпинг." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Распределение Popularity в обучающей выборке после oversampling:\n", - "Popularity\n", - "44 258\n", - "20 258\n", - "30 258\n", - "27 258\n", - "8 258\n", - " ... \n", - "78 258\n", - "79 258\n", - "74 258\n", - "81 258\n", - "86 258\n", - "Name: count, Length: 88, dtype: int64\n", - "\n", - "Распределение Popularity в контрольной выборке после oversampling:\n", - "Popularity\n", - "21 90\n", - "11 90\n", - "28 90\n", - "23 90\n", - "37 90\n", - " ..\n", - "61 90\n", - "84 90\n", - "80 90\n", - "77 90\n", - "0 90\n", - "Name: count, Length: 85, dtype: int64\n", - "\n", - "Распределение Popularity в тестовой выборке после oversampling:\n", - "Popularity\n", - "14 86\n", - "47 86\n", - "27 86\n", - "13 86\n", - "66 86\n", - " ..\n", - "63 86\n", - "79 86\n", - "71 86\n", - "82 86\n", - "80 86\n", - "Name: count, Length: 80, dtype: int64\n", - "\n" - ] - } - ], - "source": [ - "from imblearn.over_sampling import RandomOverSampler\n", - "\n", - "def oversample(df):\n", - " X = df.drop('Popularity', axis=1)\n", - " y = df['Popularity']\n", - " \n", - " oversampler = RandomOverSampler(random_state=42)\n", - " X_resampled, y_resampled = oversampler.fit_resample(X, y)\n", - " \n", - " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", - " return resampled_df\n", - "\n", - "train_df_oversampled = oversample(train_df)\n", - "val_df_oversampled = oversample(val_df)\n", - "test_df_oversampled = oversample(test_df)\n", - "\n", - "check_balance(train_df_oversampled, \"обучающей выборке после oversampling\")\n", - "check_balance(val_df_oversampled, \"контрольной выборке после oversampling\")\n", - "check_balance(test_df_oversampled, \"тестовой выборке после oversampling\")" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Распределение Popularity в обучающей выборке после undersampling:\n", - "Popularity\n", - "0 1\n", - "1 1\n", - "2 1\n", - "3 1\n", - "4 1\n", - " ..\n", - "84 1\n", - "85 1\n", - "86 1\n", - "87 1\n", - "91 1\n", - "Name: count, Length: 88, dtype: int64\n", - "\n", - "Распределение Popularity в контрольной выборке после undersampling:\n", - "Popularity\n", - "0 1\n", - "1 1\n", - "2 1\n", - "3 1\n", - "4 1\n", - " ..\n", - "82 1\n", - "83 1\n", - "84 1\n", - "85 1\n", - "87 1\n", - "Name: count, Length: 85, dtype: int64\n", - "\n", - "Распределение Popularity в тестовой выборке после undersampling:\n", - "Popularity\n", - "0 1\n", - "1 1\n", - "2 1\n", - "3 1\n", - "4 1\n", - " ..\n", - "76 1\n", - "77 1\n", - "79 1\n", - "80 1\n", - "82 1\n", - "Name: count, Length: 80, dtype: int64\n", - "\n" - ] - } - ], - "source": [ - "from imblearn.under_sampling import RandomUnderSampler\n", - "\n", - "def undersample(df):\n", - " X = df.drop('Popularity', axis=1)\n", - " y = df['Popularity']\n", - " \n", - " undersampler = RandomUnderSampler(random_state=42)\n", - " X_resampled, y_resampled = undersampler.fit_resample(X, y)\n", - " \n", - " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", - " return resampled_df\n", - "\n", - "train_df_undersampled = undersample(train_df)\n", - "val_df_undersampled = undersample(val_df)\n", - "test_df_undersampled = undersample(test_df)\n", - "\n", - "check_balance(train_df_undersampled, \"обучающей выборке после undersampling\")\n", - "check_balance(val_df_undersampled, \"контрольной выборке после undersampling\")\n", - "check_balance(test_df_undersampled, \"тестовой выборке после undersampling\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Police Shootings in the United States: 2015-2024" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "В этом наборе данных, составленном The Washington Post, регистрируется каждый человек, застреленный дежурным полицейским в Соединенных Штатах с 2015 по 2024 год. Он решает проблему занижения органами власти статистики реальных инцедентов. Это может быть использовано в журналисткой работе, например для прогнозирования или выявления закономерностей преступлений. Цель технического проекта установить закономерность в убийствах полицейскими определённых групп граждан. Входные данные: возраст, пол, штат, вооружённость. Целевой признак: общий портрет убитого гражданина." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Index(['date', 'name', 'age', 'gender', 'armed', 'race', 'city', 'state',\n", - " 'flee', 'body_camera', 'signs_of_mental_illness',\n", - " 'police_departments_involved'],\n", - " dtype='object')\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "df = pd.read_csv(\".//static//csv//2024-07-23-washington-post-police-shootings-export.csv\")\n", - "print(df.columns)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "При помощи ящика с усами и колонки возраста проверим набор на баланс. Он достаточно сбалансирован." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAIjCAYAAABia6bHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuRklEQVR4nO3deZhWdd348c8MywwKM4gLOwhmYCZpCoXkgxioiKkRmokpiY9omICWSaRQuSWWlahAoegjuWDmkpiioKaSIobYj0DKcQOBTBkWGYGZ8/uDa+4YhmVE/A7L63Vdc+V9tvs70wHOe85y52VZlgUAAMCnLL+2BwAAAOwexAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAfAbuCNN96IvLy8mDhxYm0PBYDdmPgA+BgmTpwYeXl5Vb7222+/6NGjRzz66KPJx/PUU09VGUu9evWiffv2cdZZZ8Xrr7++Xd7j+eefj1GjRsWyZcu2y/YA2H3Vre0BAOyMfvrTn0a7du0iy7JYsmRJTJw4MU444YR4+OGH48QTT0w+nosuuig6d+4ca9eujZdffjnGjx8fjzzySLz66qvRokWLT7Tt559/Pn7yk5/EgAEDonHjxttnwADslsQHwDbo3bt3HHHEEbnXAwcOjKZNm8Zdd91VK/Fx1FFHRb9+/SIi4jvf+U589rOfjYsuuihuv/32GD58ePLxAMCmuOwKYDto3LhxNGjQIOrWrfo7nVWrVsUll1wSrVu3joKCgujQoUNcf/31kWVZRESsXr06OnbsGB07dozVq1fn1nv//fejefPmceSRR0Z5efnHHs8xxxwTERElJSVbXG7atGlx1FFHxZ577hmNGzeOk08+Of7xj3/k5o8aNSp+8IMfREREu3btcpd3vfHGG1sdw8aXp1V+PfXUU9WWHTBgwCaXHTVqVJXl7rvvvjjiiCOiUaNGVZa7/vrrtziW999/P77//e/HIYccEg0bNoyioqLo3bt3vPLKK9WWffPNN+Okk06KPffcM/bbb78YNmxYPPbYY5sc+wsvvBDHH398FBcXxx577BHdu3eP5557bqs/G4DdlTMfANugtLQ03nvvvciyLJYuXRo33nhjrFy5Ms4888zcMlmWxUknnRTTp0+PgQMHxqGHHhqPPfZY/OAHP4iFCxfGDTfcEA0aNIjbb789unXrFiNGjIhf/vKXERExePDgKC0tjYkTJ0adOnU+9vj+9a9/RUTE3nvvvdllnnjiiejdu3e0b98+Ro0aFatXr44bb7wxunXrFi+//HLsv//+0bdv33jttdfirrvuihtuuCH22WefiIjYd999azSOXr16xVlnnRURETNnzozf/OY3m112n332iRtuuCH3+tvf/naV+TNmzIjTTjstvvCFL8S1114bxcXF8d5778WwYcO2Oo7XX389HnjggTj11FOjXbt2sWTJkhg3blx079495s6dm7s0bdWqVXHMMcfEu+++G0OGDIlmzZrF73//+5g+fXq1bU6bNi169+4dhx9+eIwcOTLy8/Pjtttui2OOOSb+8pe/RJcuXWr0MwLYrWQA1Nhtt92WRUS1r4KCgmzixIlVln3ggQeyiMiuvPLKKtP79euX5eXlZf/85z9z04YPH57l5+dnzzzzTDZ58uQsIrJf/epXWx3P9OnTs4jIbr311uzf//53tmjRouyRRx7J9t9//ywvLy+bOXNmlmVZVlJSkkVEdtttt+XWPfTQQ7P99tsv+89//pOb9sorr2T5+fnZWWedlZs2evToLCKykpKSGv+c1qxZk0VEduGFF+amVX5f06dPr7Z8//79s3bt2lWZFhHZyJEjc6+HDx+eRUT27rvv5qZVfl+jR4/e4njKysqy8vLyKtNKSkqygoKC7Kc//Wlu2i9+8YssIrIHHnggN2316tVZx44dq4y9oqIiO/DAA7Pjjjsuq6ioyC374YcfZu3atct69eq1xfEA7K5cdgWwDW666aaYOnVqTJ06Ne68887o0aNHnHvuuXH//ffnlpkyZUrUqVMnLrrooirrXnLJJZFlWZWnY40aNSoOPvjgOPvss+O73/1udO/evdp6W3LOOefEvvvuGy1atIg+ffrEqlWr4vbbb69yX8qG3n333Zg9e3YMGDAgmjRpkpveqVOn6NWrV0yZMqXG770pZWVlERFRWFhYo+XXrFkTBQUFW1xmxYoVkZ+fv003vRcUFER+/vp/8srLy+M///lPNGzYMDp06BAvv/xybrk///nP0bJlyzjppJNy0woLC+N///d/q2xv9uzZsWDBgjjjjDPiP//5T7z33nvx3nvvxapVq+KrX/1qPPPMM1FRUfGxxwmwq3PZFcA26NKlS5UD+29961tx2GGHxYUXXhgnnnhi1K9fP958881o0aJFNGrUqMq6Bx10UESsv7egUv369ePWW2+Nzp07R2FhYdx2222Rl5dX4/FcccUVcdRRR0WdOnVin332iYMOOqja/ScbqnzvDh06VJt30EEHxWOPPRarVq2KPffcs8Zj2NB7770XERHFxcU1Wn7ZsmXRsGHDLS7TtWvXGDNmTAwZMiQuvfTSKC4ujg8++KBG26+oqIhf//rXcfPNN0dJSUmV+2g2vDTtzTffjAMOOKDaz/4zn/lMldcLFiyIiIizzz57s+9ZWloae+21V43GB7C7EB8A20F+fn706NEjfv3rX8eCBQvi4IMP/tjbeOyxxyJi/VmDBQsWRLt27Wq87iGHHBI9e/b82O/5aam8IX3//fev0fKLFy+Otm3bbnGZ008/PV5++eW48cYbY/z48R9rPFdffXVcfvnlcc4558TPfvazaNKkSeTn58fQoUO36QxF5TqjR4+OQw89dJPLbC2mAHZH4gNgO1m3bl1ERKxcuTIiItq2bRtPPPFErFixosrZj3nz5uXmV5ozZ0789Kc/je985zsxe/bsOPfcc+PVV1+t8ZmDj6vyvefPn19t3rx582KfffbJnfX4OGdgKr300ksREZu97GtDa9eujX/+859x/PHHb3G5/Pz8uP766+PVV1+NkpKSuPnmm2PJkiVVbvLfnPvuuy969OgREyZMqDJ92bJluZvoI9b/XObOnRtZllX5vv/5z39WWe+AAw6IiIiioqIdKvoAdnTu+QDYDtauXRuPP/541K9fP3dZ1QknnBDl5eUxZsyYKsvecMMNkZeXF717986tO2DAgGjRokX8+te/jokTJ8aSJUtq9BSnbdW8efM49NBD4/bbb6/yyeV///vf4/HHH48TTjghN60yQj7OJ5zfd9990aFDh+jYseNWl33wwQdj9erVuccDb8mNN94Y06ZNi0mTJkXPnj2jW7duNRpPnTp1co83rjR58uRYuHBhlWnHHXdcLFy4MB566KHctLKysvjtb39bZbnDDz88DjjggLj++utzsbmhf//73zUaF8DuxpkPgG3w6KOP5s5gLF26NH7/+9/HggUL4rLLLouioqKIiPja174WPXr0iBEjRsQbb7wRX/jCF+Lxxx+PBx98MIYOHZr77fmVV14Zs2fPjieffDIaNWoUnTp1iiuuuCJ+/OMfR79+/aqEwPY0evTo6N27d3Tt2jUGDhyYe9RucXFxlc/XOPzwwyMiYsSIEXH66adHvXr14mtf+9om7wd5/fXX47rrrosXX3wx+vbtG3feeWdu3syZMyMiYurUqdGmTZto1qxZjBw5Mm6++eY48sgj49hjj93ieP/f//t/cemll8aoUaOic+fOH+t7PfHEE3Nnlo488sh49dVXY9KkSdG+ffsqyw0aNCjGjBkT3/rWt2LIkCHRvHnzmDRpUu7G+cqzIfn5+fG73/0uevfuHQcffHB85zvfiZYtW8bChQtj+vTpUVRUFA8//PDHGiPAbqGWn7YFsFPZ1KN2CwsLs0MPPTS75ZZbqjx2NcuybMWKFdmwYcOyFi1aZPXq1csOPPDAbPTo0bnlZs2aldWtWzf73ve+V2W9devWZZ07d85atGiRffDBB5sdT+WjdidPnrzFcW/qUbtZlmVPPPFE1q1bt6xBgwZZUVFR9rWvfS2bO3dutfV/9rOfZS1btszy8/O3+NjdzT2KeOOv2267LXvnnXey1q1bZ0OHDs1KS0urbSs2eNRuWVlZ1qlTp+wrX/lKtm7dumrfV00etXvJJZdkzZs3zxo0aJB169YtmzFjRta9e/ese/fuVZZ9/fXXsz59+mQNGjTI9t133+ySSy7J/vCHP2QRkf31r3+tsuzf/va3rG/fvtnee++dFRQUZG3bts1OO+207Mknn9zieAB2V3lZttF5aADYRhMnToxRo0Zt8RPQjz766BgwYEAMGDAg2bg+qV/96lcxbNiweOedd6Jly5a1PRyAnZZ7PgBgA6tXr67yuqysLMaNGxcHHnig8AD4hNzzAcB2c8ABB8TXv/71LS7Tq1ev3P0uO6K+fftGmzZt4tBDD43S0tK48847Y968eTFp0qTaHhrATs9lVwCwgV/96lfxu9/9Lt54440oLy+Pz33uc3HppZfGN7/5zdoeGsBOT3wAAABJuOcDAABIQnwAAABJbPMN5xUVFbFo0aJo1KhR7kOXAACA3U+WZbFixYpo0aJF5Odv/vzGNsfHokWLonXr1tu6OgAAsIt5++23o1WrVpudv83x0ahRo9wbFBUVbetmAACAndzy5cujdevWuUbYnG2Oj8pLrYqKisQHAACw1dsx3HAOAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAk6tb2AID0lixZEqWlpbU9DHYgxcXF0bRp09oeBgC7OPEBu5klS5bEmd8+K9au+ai2h8IOpF79grjz/+4QIAB8qsQH7GZKS0tj7ZqPYnX77lFRWFzbw9lu8lcviwYlz8Tqdv8TFQ0a1/Zwdir5ZaURrz8dpaWl4gOAT5X4gN1URWFxVOy5T20PY7uraNB4l/y+AGBX4IZzAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYiPiCgrK4vXXnstysrKansoAEAtcTwAnz7xERFvvfVWnHfeefHWW2/V9lAAgFrieAA+feIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkqhb2wP4pMrLy2POnDnx/vvvR5MmTaJTp05Rp06d2h4WALALee211+K8887LvR4/fnx89rOfzb1evHhxXHDBBbFy5cpo2LBh3HLLLdGsWbPc/DfeeCMGDhwY5eXlUadOnZgwYULsv//+NZ7/1ltvxcCBA2Pt2rVRr169mDBhQrRp06ZGY1u0aFGcd955sXr16mjQoEGMHz8+WrRokZtfWloaI0aMiCVLlkTTpk3jqquuiuLi4tz8lStXxjXXXBOLFi2KFi1axPDhw6Nhw4a5+f/+97/jwgsvjNLS0iguLo4xY8bEvvvuW6P5W9v2Jx3b1o4TV69eHePGjYt33nknWrVqFYMGDYoGDRpU+/9/U7a27ic9Rl2zZk08+OCDue/t5JNPjvr162+37deWvCzLsm1Zcfny5VFcXBylpaVRVFS0vcdVI88880zcfPPNsXjx4ty0Zs2axXe/+934n//5nxpvp/IP7cZ/WGFXVLm/r/rcSVGx5z61PZztJn/Ve7Hn3Id2ue8rhcqfnb8D2d1t7njg6KOP3uw6Tz31VBx//PFRVlZWbV5hYWH8+c9/jh49esSmDrfy8vJi+vTpW51/zDHHREVFRbX5+fn5m5y+4dh69eoVa9eurTavXr16MXXq1Ojfv38sXLiw2vyWLVvGpEmT4vzzz4958+ZVm9+xY8cYO3ZsnHjiibFy5cpq8xs2bBh/+tOftji/VatWW9z2Jx3b1o4TR4wYEc8991y19bt16xZXXXVVtekb2tq6n/QYdezYsTF58uQoLy/PTatTp06ceuqpcf7552+3Y+DtqaZtsNNedvXMM8/EyJEjo3379nHTTTfFlClT4qabbor27dvHyJEj45lnnqntIQIAO7kNwyM/Pz9OP/30yM/PrzK/MjyaNWsWI0eOzJ3xKCsri6OPPjoXFgUFBTFo0KAoKCiIiIgsy2o0vzIw9thjj/je974Xe+yxR0RElfDY3Ngqw6NJkyYxfPjwaNKkSURErF27No4++ujcwX2XLl1izJgx0aVLl4iIWLhwYfTq1SvmzZsXeXl5ceyxx8bvfve7OPbYYyMvLy/mzZsXxxxzTC4s9t9//7j66qtzZ2tWrlwZRx999Bbnb2nbvXr1+kRj69+//xaPE88///x47rnnol69enHGGWfEnXfeGWeccUbUq1cvnnvuuRgxYsRm94nK8Njcuueff/4nOkYdO3Zs3H333VFUVBTf//734w9/+EN8//vfj6Kiorj77rtjxIgRO/Ux8E555qO8vDz69+8f7du3jyuvvLLKH7SKior48Y9/HCUlJXHnnXfW6PSTMx/sTpz5YGPOfMB6Gx8PbHg50x133JG7zCli/WVQZ511Vu71Aw88EI0bN869XrZsWZxyyim513fffXeVy7AWL14cp59+eo3n33vvvbHffvvlXj///PPxox/9KCIirrvuutyB+abGdv/99+eiIyLi/fffj759++ZeT5kyJRc0EREffvhhnHDCCbnXf/7zn6OwsDD3uqysLI4//vjc64ceeqjKseDy5cvjpJNO2uz8RYsWxRlnnBEREZMmTYqWLVtudtufZGxdunSJa6+9ttpx4vDhw+OFF16IunXrxpQpU6pcyrRmzZro06dPrF27Nh599NFql2CtXr06evfuHfXq1YtHHnlks+t+6UtfimuuueZjH6OuWbMmevfuHUVFRTF58uSoW/e/d0isW7cu+vXrF8uWLYsvf/nLcfXVV3/iY+DtqaZtUON7Pj766KP46KOPqrxBbZkzZ04sXrw4Lr/88io/9Ij15d+/f/8YPHhwzJkzJw477LAab/fNN9/c3kOFHY79nM2xb7C72/jPQGV45OfnVwmPiKj2esPw2NTrDcNiW15vGB4RkQuPiPW/iZ86depmx7ZheFS+rlOnTpSXl0d+fn6Vg/uI9WdYNjyI3PDgPmL95WQFBQXx0UcfRWFhYbUDzaKiotwlYfn5+dXm33TTTbn/vvjii+Oee+6psu2ioqLcgey2jO3www+PWbNmRVlZ2SaPEyvPLHXv3r1KPERE1K9fP/r16xd33XVXjBs3LoYOHVpl/rhx4yIi4tRTT93kukcddVRMmzYtCgoKtukY9cEHH4zy8vIYOHBglfCIiKhbt24ce+yxce+990bLli236zFwSjWOj2uuuSZ+8pOffJpjqbH3338/IiLatWu3yfmV0yuXq6mtXd8HsCvzdyBs2mmnnVbbQ9iiTd3TsTUNGjSIlStXbvaekcLCwigtLd3sb88rL5zZ8ObuDVXGx6bWX7RoUe6/S0tLq82vXGfj8Nhw7KWlpdUOvisddthhMWvWrE1uOyJixYoVERHRoUOHTc4/4YQT4q677op33nmn2rzKaRuefdlQhw4dYtq0abn32NjWjlErfzZdu3bd5PzKBwWsWbNmm7a/I6hxfAwfPjwuvvji3Ovly5dH69atP5VBbU1lwZeUlMTBBx9cbX5JSUmV5WpqxIgR0bZt208+QNiBvfnmmw4y2SR/B7K729zfj/fee2+cf/75tTCimqlXr97HXmf16tUREZs9gK+8j2XDG543lJeXFxGxyZvJI/57P8qm1m/RokXuWG3DJ1dVqlznww8/3OLYNxdOf/vb3za77YiIRo0aRUTE/PnzNzl/ypQpERHRqlWravNatWoVL730UkyZMqXKE8YqVW6z8j02trVj1Mq4mDFjRpx44onV5lfGycZnXWq6/R1BjeOjoKAgd5qqtnXq1CmaNWsWkyZN2uQ9H5MmTYrmzZtHp06dPtZ227Zt63pnYLfl70Coavz48XHeeedFRUVFvPXWW9Xu+djQsmXLqt3zsaHFixdXu6fj48xfunRplUuvrr766tylVxsH08Zjq3wU64avKw/wKyoq4sMPP6x2X0XlWYPly5dHWVlZtfsqKi/FLysri+XLl1e756MyDCoqKqrNHzx4cO5JUb/85S+rjLVyexHrz4psy9hmzZoVEevP3lRe+lWpoqIiN/ann346fvjDH1a7b+O+++6LiIhBgwbFxgYNGhQPPPBATJ48OQYMGFBt3b/85S8Rsf52hU2999aOUU8++eQYO3ZsTJgwIY4//vhq93w8/vjjEbH+pvtt2f6OYKe84Tziv0+76tq1a/Tv3z/atWsXJSUlMWnSpJgxY0b85Cc/qfGjxtxwzu7EDedszA3nsN6mjgc2ftrV17/+9fjjH/+4yd+6N2vWLAYOHBgTJkyoFg8R63+R279//5g0aVKV+2hrOn+PPfaIs846K+64445qZwW2NrYmTZrEOeecE7feeusmL8np3LlzfPvb347/+7//i5kzZ0bE+jMqa9eujby8vOjZs2eceuqpMXny5HjiiSciy7Iqj/pt27Zt7nvf1P1jm5u/uW1Xvve2jq1ly5axaNGizR4ndujQIebNmxf16tWLfv36xQknnBBTpkyJ++67L9auXbvFx+1u+LSrTa3bsWPHmD9//jYfo1Y+7WqvvfaKc845J7p27RozZsyIW2+9NT744IPo1q1bPP/889vlGHh7qmkb7LTxEbHpz/lo3rx5XHDBBT7nAzZDfLAx8QHr+ZyP/9pVP+djw+PE1J/z8XGOUbflcz625Rh4e9ot4iNi+3y6o/hgdyI+2Jj4gPW2dDzgE859wvnGfMJ5VbtNfGwP4oPdifhgY+ID1nM8ANtul/+EcwAAYOciPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnxERJs2bWL8+PHRpk2b2h4KAFBLHA/Ap69ubQ9gR1BYWBif/exna3sYAEAtcjwAnz5nPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTq1vYAgNqRX1Za20PYrvJXL6vyv9TcrrYvALDjEh+wmykuLo569QsiXn+6tofyqWhQ8kxtD2GnVK9+QRQXF9f2MADYxYkP2M00bdo07vy/O6K01G+7+a/i4uJo2rRpbQ8DgF2c+IDdUNOmTR1oAgDJueEcAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJiA8AACAJ8QEAACQhPgAAgCTEBwAAkIT4AAAAkhAfAABAEuIDAABIQnwAAABJ1N3WFbMsi4iI5cuXb7fBAAAAO5/KJqhshM3Z5vhYsWJFRES0bt16WzcBAADsQlasWBHFxcWbnZ+XbS1PNqOioiIWLVoUjRo1iry8vG0eYMT6UmrdunW8/fbbUVRU9Im2BTVhnyM1+xwp2d9IzT5HlmWxYsWKaNGiReTnb/7Ojm0+85Gfnx+tWrXa1tU3qaioyA5LUvY5UrPPkZL9jdTsc7u3LZ3xqOSGcwAAIAnxAQAAJLFDxEdBQUGMHDkyCgoKanso7Cbsc6RmnyMl+xup2eeoqW2+4RwAAODj2CHOfAAAALs+8QEAACQhPgAAgCTEBwAAkMQOER833XRT7L///lFYWBhf+tKX4sUXX6ztIbELuOaaa6Jz587RqFGj2G+//eKUU06J+fPnV1mmrKwsBg8eHHvvvXc0bNgwvvGNb8SSJUtqacTsaq699trIy8uLoUOH5qbZ59ieFi5cGGeeeWbsvffe0aBBgzjkkEPipZdeys3PsiyuuOKKaN68eTRo0CB69uwZCxYsqMURszMrLy+Pyy+/PNq1axcNGjSIAw44IH72s5/Fhs8uss+xNbUeH/fcc09cfPHFMXLkyHj55ZfjC1/4Qhx33HGxdOnS2h4aO7mnn346Bg8eHH/9619j6tSpsXbt2jj22GNj1apVuWWGDRsWDz/8cEyePDmefvrpWLRoUfTt27cWR82uYubMmTFu3Ljo1KlTlen2ObaXDz74ILp16xb16tWLRx99NObOnRu/+MUvYq+99sotc91118VvfvObGDt2bLzwwgux5557xnHHHRdlZWW1OHJ2Vj//+c/jlltuiTFjxsQ//vGP+PnPfx7XXXdd3Hjjjbll7HNsVVbLunTpkg0ePDj3ury8PGvRokV2zTXX1OKo2BUtXbo0i4js6aefzrIsy5YtW5bVq1cvmzx5cm6Zf/zjH1lEZDNmzKitYbILWLFiRXbggQdmU6dOzbp3754NGTIkyzL7HNvXD3/4w+wrX/nKZudXVFRkzZo1y0aPHp2btmzZsqygoCC76667UgyRXUyfPn2yc845p8q0vn37Zv3798+yzD5HzdTqmY81a9bErFmzomfPnrlp+fn50bNnz5gxY0YtjoxdUWlpaURENGnSJCIiZs2aFWvXrq2y/3Xs2DHatGlj/+MTGTx4cPTp06fKvhVhn2P7euihh+KII46IU089Nfbbb7847LDD4re//W1ufklJSSxevLjK/lZcXBxf+tKX7G9skyOPPDKefPLJeO211yIi4pVXXolnn302evfuHRH2OWqmbm2++XvvvRfl5eXRtGnTKtObNm0a8+bNq6VRsSuqqKiIoUOHRrdu3eLzn/98REQsXrw46tevH40bN66ybNOmTWPx4sW1MEp2BXfffXe8/PLLMXPmzGrz7HNsT6+//nrccsstcfHFF8ePfvSjmDlzZlx00UVRv379OPvss3P71Kb+jbW/sS0uu+yyWL58eXTs2DHq1KkT5eXlcdVVV0X//v0jIuxz1EitxgekMnjw4Pj73/8ezz77bG0PhV3Y22+/HUOGDImpU6dGYWFhbQ+HXVxFRUUcccQRcfXVV0dExGGHHRZ///vfY+zYsXH22WfX8ujYFd17770xadKk+P3vfx8HH3xwzJ49O4YOHRotWrSwz1FjtXrZ1T777BN16tSp9qSXJUuWRLNmzWppVOxqLrzwwvjTn/4U06dPj1atWuWmN2vWLNasWRPLli2rsrz9j201a9asWLp0aXzxi1+MunXrRt26dePpp5+O3/zmN1G3bt1o2rSpfY7tpnnz5vG5z32uyrSDDjoo3nrrrYiI3D7l31i2lx/84Adx2WWXxemnnx6HHHJIfPvb345hw4bFNddcExH2OWqmVuOjfv36cfjhh8eTTz6Zm1ZRURFPPvlkdO3atRZHxq4gy7K48MIL449//GNMmzYt2rVrV2X+4YcfHvXq1auy/82fPz/eeust+x/b5Ktf/Wq8+uqrMXv27NzXEUccEf3798/9t32O7aVbt27VHh/+2muvRdu2bSMiol27dtGsWbMq+9vy5cvjhRdesL+xTT788MPIz6966FinTp2oqKiICPscNVTbd7zffffdWUFBQTZx4sRs7ty52XnnnZc1btw4W7x4cW0PjZ3cBRdckBUXF2dPPfVU9u677+a+Pvzww9wy559/ftamTZts2rRp2UsvvZR17do169q1ay2Oml3Nhk+7yjL7HNvPiy++mNWtWze76qqrsgULFmSTJk3K9thjj+zOO+/MLXPttddmjRs3zh588MFszpw52cknn5y1a9cuW716dS2OnJ3V2WefnbVs2TL705/+lJWUlGT3339/ts8++2SXXnppbhn7HFtT6/GRZVl24403Zm3atMnq16+fdenSJfvrX/9a20NiFxARm/y67bbbcsusXr06++53v5vttdde2R577JF9/etfz959993aGzS7nI3jwz7H9vTwww9nn//857OCgoKsY8eO2fjx46vMr6ioyC6//PKsadOmWUFBQfbVr341mz9/fi2Nlp3d8uXLsyFDhmRt2rTJCgsLs/bt22cjRozIPvroo9wy9jm2Ji/LNvhYSgAAgE9JrX/COQAAsHsQHwAAQBLiAwAASEJ8AAAASYgPAAAgCfEBAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwBs0owZM6JOnTrRp0+f2h4KALuIvCzLstoeBAA7nnPPPTcaNmwYEyZMiPnz50eLFi1qe0gA7OSc+QCgmpUrV8Y999wTF1xwQfTp0ycmTpxYZf5DDz0UBx54YBQWFkaPHj3i9ttvj7y8vFi2bFlumWeffTaOOuqoaNCgQbRu3TouuuiiWLVqVdpvBIAdivgAoJp77703OnbsGB06dIgzzzwzbr311qg8UV5SUhL9+vWLU045JV555ZUYNGhQjBgxosr6//rXv+L444+Pb3zjGzFnzpy455574tlnn40LL7ywNr4dAHYQLrsCoJpu3brFaaedFkOGDIl169ZF8+bNY/LkyXH00UfHZZddFo888ki8+uqrueV//OMfx1VXXRUffPBBNG7cOM4999yoU6dOjBs3LrfMs88+G927d49Vq1ZFYWFhbXxbANQyZz4AqGL+/Pnx4osvxre+9a2IiKhbt25885vfjAkTJuTmd+7cuco6Xbp0qfL6lVdeiYkTJ0bDhg1zX8cdd1xUVFRESUlJmm8EgB1O3doeAAA7lgkTJsS6deuq3GCeZVkUFBTEmDFjarSNlStXxqBBg+Kiiy6qNq9NmzbbbawA7FzEBwA569atizvuuCN+8YtfxLHHHltl3imnnBJ33XVXdOjQIaZMmVJl3syZM6u8/uIXvxhz586Nz3zmM5/6mAHYebjnA4CcBx54IL75zW/G0qVLo7i4uMq8H/7whzFt2rS49957o0OHDjFs2LAYOHBgzJ49Oy655JJ45513YtmyZVFcXBxz5syJL3/5y3HOOefEueeeG3vuuWfMnTs3pk6dWuOzJwDsetzzAUDOhAkTomfPntXCIyLiG9/4Rrz00kuxYsWKuO++++L++++PTp06xS233JJ72lVBQUFERHTq1CmefvrpeO211+Koo46Kww47LK644gqfFQKwm3PmA4BP7KqrroqxY8fG22+/XdtDAWAH5p4PAD62m2++OTp37hx77713PPfcczF69Gif4QHAVokPAD62BQsWxJVXXhnvv/9+tGnTJi655JIYPnx4bQ8LgB2cy64AAIAk3HAOAAAkIT4AAIAkxAcAAJCE+AAAAJIQHwAAQBLiAwAASEJ8AAAASYgPAAAgif8P5WBwh7W7alwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "# Box plot для столбца 'age'\n", - "plt.figure(figsize=(10, 6))\n", - "sns.boxplot(x=df['age'])\n", - "plt.title('Box Plot для age')\n", - "plt.xlabel('Age')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Теперь проверим на шум, здесь тоже особо проблем нет, однако смущает сочетание white и black, вероятно это мулаты." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAIAAAIjCAYAAACZALkcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACg80lEQVR4nOzdeVhU9f4H8PcIDNswAzIqiwvk4A5hagsqi1a4pqhZpBnazcq0qMglLbfcKkvT22IpWLmkKdxuXlNTcEFzKXC/hSaupIEwI/t2fn94mZ/jMHOQwziD8349zzyPns/5fs/nfOfMmXM+nDlHJgiCACIiIiIiIiKyC02snQARERERERER3T0sBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERHdoezsbMhkMiQlJVk7FSIiojvGQgARERHpHT9+HCNGjECbNm3g4uICf39/PPbYY1i2bJnFlrl27VosWbLEaPqVK1cwa9YsZGZmWmzZt0tLS4NMJtO/nJyccN9992HMmDH4888/G2QZ+/fvx6xZs1BQUNAg/REREd0pFgKIiIgIwM0T1O7du+Po0aN44YUXsHz5cvzjH/9AkyZNsHTpUost11whYPbs2Xe1EFDj1VdfxTfffIMVK1Zg4MCB+O6779CjRw9cuXJFct/79+/H7NmzWQggIiKrcbR2AkRERGQb5s2bB5VKhcOHD8PT09Mgdu3aNeskZQFFRUVwd3c3O0/v3r0xYsQIAMDYsWPRrl07vPrqq1i9ejWmTZt2N9IkKystLYVcLkeTJvy7GRHde7hnIyIiIgDA2bNn0blzZ6MiAAA0b97caNq3336LBx98EG5ubvDy8kJ4eDi2b9+uj//rX//CwIED4efnB2dnZ7Rt2xZz585FVVWVfp7IyEhs2bIF58+f11+OHxAQgLS0NPTo0QPAzRPxmtitv8k/ePAg+vXrB5VKBTc3N0RERCA9Pd0gx1mzZkEmk+HUqVN45pln4OXlhV69et3x2PTp0wcAcO7cObPz7dq1C71794a7uzs8PT0xZMgQnD592iCft956CwAQGBioX6/s7GzRHG79ycKtr7S0NKN54+Liap131qxZBvN9//336N69Ozw8PAzm+/DDD83mcv36dSQkJCA4OBgKhQJKpRL9+/fH0aNHjeY9f/48nnjiCbi7u6N58+Z4/fXXsW3btlpzr8t7Wpuan3Tc3t/AgQNrXW9T7devX48ZM2bA398fbm5u0Ol0d7SupaWlmDVrFtq1awcXFxf4+vpi2LBhOHv2rH6e6upqLFmyBJ07d4aLiwtatGiBF198Efn5+aLrSUTUUHhFABEREQEA2rRpgwMHDuDEiRPo0qWL2Xlnz56NWbNmISwsDHPmzIFcLsfBgwexa9cuPP744wCApKQkKBQKvPHGG1AoFNi1axfeffdd6HQ6fPDBBwCA6dOnQ6vV4tKlS/j4448BAAqFAh07dsScOXPw7rvvYvz48ejduzcAICwsDMDNE+7+/fujW7dumDlzJpo0aYLExET06dMHe/fuxYMPPmiQ75NPPomgoCDMnz8fgiDc8djUnMh5e3ubnOfnn39G//79cd9992HWrFkoKSnBsmXL0LNnT/z2228ICAjAsGHD8Mcff2DdunX4+OOPoVarAQDNmjWrUx6PPfYYxowZAwA4fPgwPvnkE5PzqtVq/ZgCwLPPPmsQP3DgAEaOHIn7778fCxcuhEqlQm5uLl5//XXRPP7880+kpKTgySefRGBgIK5evYovvvgCEREROHXqFPz8/ADcvPqiT58+yMnJwWuvvQYfHx+sXbsWqampRn3e6XsqZs+ePfjPf/5zR23mzp0LuVyOhIQElJWVQS6X49SpU3Va16qqKgwaNAg7d+7E008/jddeew03btzAjh07cOLECbRt2xYA8OKLLyIpKQljx47Fq6++inPnzmH58uXIyMhAeno6nJyc7ihnIqJ6EYiIiIgEQdi+fbvg4OAgODg4CI888ogwefJkYdu2bUJ5ebnBfFlZWUKTJk2EmJgYoaqqyiBWXV2t/3dxcbHRMl588UXBzc1NKC0t1U8bOHCg0KZNG6N5Dx8+LAAQEhMTjZYRFBQkREdHGy0vMDBQeOyxx/TTZs6cKQAQYmNj6zQGqampAgBh1apVwt9//y1cuXJF2LJlixAQECDIZDLh8OHDgiAIwrlz54xyCw0NFZo3by7k5eXppx09elRo0qSJMGbMGP20Dz74QAAgnDt3rk45CYIglJeXCwCEiRMn6qdt3LhRACCkpqYazT9q1CghMDDQYBoAYebMmfr/T5s2TQAg5OTk6KfVrNcHH3xgNp/S0lKj9/7cuXOCs7OzMGfOHP20xYsXCwCElJQU/bSSkhKhQ4cOBrnfyXtam5r37daxeOihh4T+/fsbrbe59vfdd5/RdlvXdV21apUAQPjoo4+M+q9Zp7179woAhDVr1hjEf/rpp1qnExFZCn8aQERERABu/rX5wIEDeOKJJ3D06FG8//77iI6Ohr+/P3744Qf9fCkpKaiursa7775r9PtpmUym/7erq6v+3zdu3EBubi569+6N4uJi/Pe//613npmZmcjKysIzzzyDvLw85ObmIjc3F0VFRejbty/27NmD6upqgzYvvfTSHS1j3LhxaNasGfz8/DBw4EAUFRVh9erV6N69e63z5+TkIDMzE3FxcWjatKl+ekhICB577LE7/sv07UpLSwEALi4udZq/vLwczs7OZue5ceMGmjRpUutPQcQ4Ozvr3/uqqirk5eVBoVCgffv2+O233/Tz/fTTT/D398cTTzyhn+bi4oIXXnjBoL/6vKfmbN68GYcPH8bChQvvaL2ee+45g+32TtZ106ZNUKvVmDRpklG/NZ+LjRs3QqVS4bHHHtOvY25uLrp16waFQlHrlRJERJbAnwYQERGRXo8ePbB582aUl5fj6NGjSE5Oxscff4wRI0YgMzMTnTp1wtmzZ9GkSRN06tTJbF8nT57EjBkzsGvXLuh0OoOYVqutd45ZWVkAbp60maLVauHl5aX/f2Bg4B0t491330Xv3r3h4OAAtVqNjh07wtHR9GHT+fPnAQDt27c3inXs2BHbtm2r000KTcnNzQUAqFSqOs1fUFAAhUJhdp5HHnkEy5cvx2uvvYbJkydDpVLV+Xfq1dXVWLp0KT799FOcO3fO4L4Pt/584vz582jbtq1BgQgANBqNwf/r856aUlVVhbfffhujRo1CSEhIndanRm3bSV3X9ezZs2jfvr3Z7SQrKwtarbbWe24A99ZNOYnItrEQQEREREbkcjl69OiBHj16oF27dhg7diw2btyImTNn1ql9QUEBIiIioFQqMWfOHLRt2xYuLi747bffMGXKlDv66+7tatp+8MEHCA0NrXWe20+Cb/8rr5jg4GA8+uij9crPEmpuJhgQEFCn+f/66y+0adPG7DxPP/00fvvtNyxbtgwrVqy4o3zmz5+Pd955B+PGjcPcuXPRtGlTNGnSBPHx8fV6b+vznpqycuVKZGdnY9u2bXecR23bSUOua3V1NZo3b441a9bUGq/rvSKIiKRiIYCIiIjMqrkcPicnBwDQtm1bVFdX49SpUyZP2tLS0pCXl4fNmzcjPDxcP722u+7f/tdisek1N11TKpU2c7Jec9L9+++/G8X++9//Qq1W668GMLVe5hw5cgQATP404VYVFRU4c+YM+vXrZ3a+Jk2a4MMPP8Tx48dx7tw5fPrpp7h69SpGjx4tuozvv/8eUVFRWLlypcH0goIC/Q0QgZvjcurUKQiCYLDeZ86cMWjXUO9pcXExZs+ejQkTJogWQuqqruvatm1bHDx4EBUVFSZv+Ne2bVv8/PPP6Nmz5x0Xp4iIGhLvEUBEREQAgNTU1FrvqF/z+/aay96HDh2KJk2aYM6cOUZ/Ea1p7+DgYPB/4Obv1j/99FOj/t3d3Wv9qUDNiXNBQYHB9G7duqFt27b48MMPUVhYaNTu77//NrmOluLr64vQ0FCsXr3aIN8TJ05g+/btGDBggH6aqfUy5/vvv0f79u3RoUMH0Xn/9a9/oaSkRP/IQ3OWLVuGXbt2Yc2aNXj00UfRs2fPOuXj4OBgtK1s3LgRly9fNpgWHR2Ny5cvG9xjorS0FF9++aXBfA31ni5duhRFRUWYPn16neavi7qu6/Dhw5Gbm4vly5cb9VHTfuTIkaiqqsLcuXON5qmsrLyjbYKISApeEUBEREQAgEmTJqG4uBgxMTHo0KEDysvLsX//fnz33XcICAjA2LFjAdz8fff06dMxd+5c9O7dG8OGDYOzszMOHz4MPz8/LFiwAGFhYfDy8sJzzz2HV199FTKZDN98802thYZu3brhu+++wxtvvIEePXpAoVBg8ODBaNu2LTw9PfH555/Dw8MD7u7ueOihhxAYGIivvvoK/fv3R+fOnTF27Fj4+/vj8uXLSE1NhVKpxL///e+7PXz44IMP0L9/fzzyyCN4/vnn9Y8PVKlUBs+x79atG4Cbj058+umn4eTkhMGDB9d6/4A///wT77//Pg4dOoRhw4bh22+/1ccOHz4MANixYwdat24NHx8fzJw5E59++inCwsL0j3E05eTJk5g8eTJmzZqFHj163NG6Dho0CHPmzMHYsWMRFhaG48ePY82aNbjvvvsM5nvxxRexfPlyxMbG4rXXXoOvry/WrFmjv+lhzVUCTZo0aZD3dPv27Zg3b57Zxzzeqbqu65gxY/D111/jjTfewKFDh9C7d28UFRXh559/xoQJEzBkyBBERETgxRdfxIIFC5CZmYnHH38cTk5OyMrKwsaNG7F06VKMGDGiwXInIjLJeg8sICIiIluydetWYdy4cUKHDh0EhUIhyOVyQaPRCJMmTRKuXr1qNP+qVauErl27Cs7OzoKXl5cQEREh7NixQx9PT08XHn74YcHV1VXw8/PTP44Qtz3mrbCwUHjmmWcET09PAYDBowT/9a9/CZ06dRIcHR2NHteXkZEhDBs2TPD29hacnZ2FNm3aCCNHjhR27typn6fm8YF///13ncag5jFyGzduNDtfbY8PFARB+Pnnn4WePXsKrq6uglKpFAYPHiycOnXKqP3cuXMFf39/oUmTJmYfJZiYmCgAEH0lJiYKly5dElq1aiXEx8cLWq3WqC/c8hi90tJSISQkROjVq5dQWVlptF51eXzgm2++Kfj6+gqurq5Cz549hQMHDggRERFCRESEwbx//vmnMHDgQMHV1VVo1qyZ8OabbwqbNm0SAAi//PKLwbx1eU9rU/O++fr6CkVFRSbXW6x9be/7naxrcXGxMH36dCEwMFBwcnISfHx8hBEjRghnz541mG/FihVCt27dBFdXV8HDw0MIDg4WJk+eLFy5csVsnkREDUUmCLWU5omIiIjI6pKSkjBr1iz9zQJrExkZibi4OMTFxd21vKRasmQJXn/9dVy6dAn+/v7WToeIyO7wHgFEREREZDElJSUG/y8tLcUXX3yBoKAgFgGIiKyE9wggIiIislFt27ZFTEyM2Xkee+wx/V33bdGwYcPQunVrhIaGQqvV4ttvv8V///tfk4/QIyIiy+NPA4iIiIjIYpYsWYKvvvoK2dnZqKqqQqdOnTB58mQ89dRT1k6NiMhusRBAREREREREZEd4jwAiIiIiIiIiO8JCABEREREREZEd4c0CiRq56upqXLlyBR4eHpDJZNZOh4iIiIiIrEQQBNy4cQN+fn5o0sT03/1ZCCBq5K5cuYJWrVpZOw0iIiIiIrIRFy9eRMuWLU3GWQggauQ8PDwA3PywK5VKK2dDRERERETWotPp0KpVK/05giksBBA1cjU/B1AqlSwEEBERERGR6E+GebNAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEENWDTCZDSkqKyXhaWhpkMhkKCgruWk5ERERERER14WjtBIis6fPPP8dbb72F/Px8ODre/DgUFhbCy8sLPXv2RFpamn7etLQ0REVF4cyZM6L9hoWFIScnByqVCgCQlJSE+Pj4e7owoC0uR25hOXSlFVC6OkHtLofKTX5Xln1VV4r8onLoSiuhdHWEl5scLZQud2XZUlk690v5xbhRWgldSQVUrk5QuDiipZdbg8Qt2bc9527LuTF324zbcm7Mnbkx9/9vezm/GLpb4h4ujvC/JS52TCDW/kpBCbQlFfq40tUJfp6udcpd6rLF4pY8TrT0sZRY/9Y8BpaChQCya1FRUSgsLMSRI0fw8MMPAwD27t0LHx8fHDx4EKWlpXBxuflBT01NRevWrdG2bVvRfuVyOXx8fCyauy25UlCCKZuOYW9Wrn5aeJAaC4eHGHwBWcKFvCJMSz6O9DN5+mm9NN6YHxOM1t7uFl22VJbO/XxeEd6upf95McFo4+0uKd4EwFQL9W3puCOAKTaamwyodZuwhdzMxefHBEMAbDK3e3nc58UEwwG2uz1zm7FOvDHvnxtz7lK3CbFjAkvmLgeQYMFlW/I40dLHUmL9W/MYWCqZIAiCtZMgsiY/Pz+8+uqrmDp1KgBgypQpKCoqwq5du/Dpp58iMjISABAREYHAwEAkJSVBJpPhyy+/xJYtW7Bt2zb4+/tj8eLFeOKJJwD8/9UD+fn5yMzMRFRUlMEyZ86ciVmzZqGsrAzTp0/HunXrUFBQgC5dumDRokX6ZdaFTqeDSqWCVquFUqlskDG5E9rickxcl2GwA6wRHqTGstiuFquKXtWV4o0NmQY75xq9NN5YPDLUZq8MsHTul/KLMWXTMZP9LxweIik+sY8GT684aJG+LR2fM6QL+izebXO59Q5So38XH7ydfMLmchOLL4jpgv8cz8FeG8xNdNw1avQPbpzj3kvjjekDO6L/0n02mZv5bSYY/zl+hduMBeKNdf/cW+ONAcG+mGaj49qYtwmx+LyYYER8kGaxZU/bfNwix4mWPpYS6//9EfcbFQFqWPoY2Jy6nhvwHgFk96KiopCamqr/f2pqKiIjIxEREaGfXlJSgoMHDxqc0M+ePRsjR47EsWPHMGDAAIwaNQrXr1836j8sLAxLliyBUqlETk4OcnJykJCQAACYOHEiDhw4gPXr1+PYsWN48skn0a9fP2RlZZnMt6ysDDqdzuBlTbmF5bXuAAFgT1YucgvLLbbs/KLyWnfOALDvTB7yiyy3bKksnfuN0kqz/UuNuzvXfkFZQ/Rt6XhZZbVN5rY3K9fkAYu1cxOLN1e61HpCZwu5iY77mcY77vvO5EGAzGZzM7/NOHObsVC8se6f957JQ3MbHtfGvE2IxYvLqyy6bEsdJ1r6WEqsf21JhdWOgRsCCwFk96KiopCeno7KykrcuHEDGRkZiIiIQHh4uP4eAQcOHEBZWZlBISAuLg6xsbHQaDSYP38+CgsLcejQIaP+5XI5VCoVZDIZfHx84OPjA4VCgQsXLiAxMREbN25E79690bZtWyQkJKBXr15ITEw0me+CBQugUqn0r1atWjX4mNwJXWmF2fgNkbi0ZVdKiluTpXPXlYi8LyJxsfaFpbUfNNSlrdTcpOZurr21czNVpGiIZUvNzVzcXN4NsWxLt5cy7pbe3i25PVszN6nbjDW3d8B8/tbej1hz/2zNz6K19zO2vE1Y83tRtL2E40SLH0uJ9W/BdbsbeI8AsnuRkZEoKirC4cOHkZ+fj3bt2qFZs2aIiIjA2LFjUVpairS0NNx3331o3bq1vl1ISIj+3+7u7lAqlbh27Vqdl3v8+HFUVVWhXbt2BtPLysrg7e1tst20adPwxhtv6P+v0+msWgxQujiZjXuIxKUt2/wuTCxuTZbOXekq8r6IxMXaK1wc6t1Wam5SczfX3tq5OTuars9LXbbU3MzFzeXdEMu2dHsp427p7d2S27M1c5O6zVhzewfM52/t/Yg198/W/Cxaez9jy9uENb8XRdtLOE60+LGUWP8WXLe7gVcEkN3TaDRo2bIlUlNTkZqaioiICAA37x3QqlUr7N+/H6mpqejTp49BOycnww+3TCZDdbX5v3DcqrCwEA4ODvj111+RmZmpf50+fRpLly412c7Z2RlKpdLgZU1qhRzhQepaY+FBaqgVlvttlJe7HL00tRdNemm84eVuu3dstXTuHi6OZvuXGi8qq71K3hB9Wzpu6mDN2rn1DlLjmq7UJnMTi1/TlaK3if2AtXMTHXdN4x33XhpvyFD7rZ5sITfz20wZettobo19m2ms++feGm9cu1Fmk7k19m1CLO4mr7141FDLttRxoqWPpcT6V7k6We0YuCGwEECEmz8PSEtLQ1pamsGN+sLDw7F161YcOnTI6IZ/d0Iul6OqyvBSva5du6KqqgrXrl2DRqMxeDWmJw6o3ORYODzEaEcYHqTGouEhFr1JSgulC+bHBBvtpHtpbt7N1VZvFAhYPveWXm6YZ6L/eTHBkuP+KleL9W3puHMTmU3m9t7QLuipUdtkbmLxnho13hvaxSZzEx33mMY77vNiguEhNz4It5XczG8z3njPRnNr7NtMY90/vxcTjF5tvW0yt7uxTZg7JrD0usn/929LLdtSx4mWPpYS69/P09Vqx8ANgU8NIAKQmJiIV155BRUVFbh06RJatGgBAPj6668xceJE3LhxA1euXIGvry+Am3/9T05OxtChQ/V9eHp6YsmSJYiLizN4aoCnpyf279+Pnj174ueff8b9998PNzc3uLm5YfTo0UhPT8fixYvRtWtX/P3339i5cydCQkIwcODAOuVu7acG1Kh5huqN0gp4uDhBrbh7z1A1eL6riyO83Bv2+bGWZOnca54ZXPO+eJh4HnJ94pbs255zt+XcmLttxm05N+bO3Jj7/7e9nF8M3S1xpYsj/G+Jix0TiLW/UlACbUmFPq5ydTJ4hJ25/KQuWyxuyeNESx9LifVvzWPg2tT13ICFACIA2dnZCAwMRIcOHXD69Gn99PPnzyMgIADt27fHf//7X/30Oy0EAMDLL7+MjRs3Ii8vT//4wIqKCrz33nv4+uuvcfnyZajVajz88MOYPXs2goOD65S7rRQCiIiIiIjIulgIILITLAQQERERERFQ93MD3iOAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIIGoA2dnZkMlkyMzMtHYqREREREREZjlaOwEiW3PgwAH06tUL/fr1w5YtW+rUplWrVsjJyYFarbZwdmRvtMXlyC0sh660AkpXJ6jd5VC5yRus/ZWCEmhLKqArqYDK1QlKVyf4ebrWqe/L+cXQlVbq23q4OMLfy63OfYvFxfoXi1/VlSK/qBy60kooXR3h5SZHC6VLg6zbpfxi3LglrnBxRMsGiovlbcllS42LtZX6nor1L2XsLD1uUrd3c+2lfhalthcbd3Nxsb7F9mFiy5a6DzVH6v5VrL01cyeiex8LAUS3WblyJSZNmoSVK1fiypUr8PPzE23j4OAAHx+fu5Ad2ZMrBSWYsukY9mbl6qeFB6mxcHhInU7WxdqfzyvC28nHkX4mTx/vpfHGvJhgtPF2N9u3WFtrxy/kFWFaLfH5McFobcPr5gBgipm8rT2upuLzY4IhADb9nptrLwNqbWvtca1L3Nq5i427uThEchfbh4ktW+o+1Byp+1ex9tbMnYjsg0wQBMHaSRDZisLCQvj6+uLIkSOYOXMmQkJC8PbbbwMA8vPzMXHiRGzfvh2FhYVo2bIl3n77bYwdOxbZ2dkIDAxERkYGQkNDUVVVhfHjx2PXrl3466+/0Lp1a0yYMAGvvfaafllxcXEoKChAr169sHjxYpSXl+Ppp5/GkiVL4OTkVOecdTodVCoVtFotlEplg48JWYe2uBwT12UYHKjVCA9SY1lsV7N/vRFrv2BYMCZvOmZwkFqjl8Yb74+43+QB4eX8YrNtFw4PwRQbji8eGWryygBrr9vEPho8veKgVZYtJb4gpgv+czwHe20wN7F4b40a/YN98HbyCZvLTTT3IDX6d7Hd3BcNDzH5eeqt8caAYF9MM5H7ouEhmLr5uMl92MLhIXjr+6Nm92G3n+ze2l5sH2qO1P2r2Lp98OT9SNh41Cq5S+mbiGxDXc8NeI8Aolts2LABHTp0QPv27TF69GisWrUKNbWyd955B6dOncLWrVtx+vRpfPbZZyZ/ClBdXY2WLVti48aNOHXqFN599128/fbb2LBhg8F8qampOHv2LFJTU7F69WokJSUhKSnJbI5lZWXQ6XQGL7r35BaW13qgBgB7snKRW1guqb2utLLWg1QA2HcmD9qSCpN9i7W9YePx/CLTY2ftdXN3rv1CPVsYN3Px5kqXWosAtpCbWHzvmVyThSFr5yaae5Zt527u87T3TB6am8ldV1ppdh+mLakQ3YdJ2YeaI3X/KrZu+UXS9v/mSP1uIaJ7B38aQHSLlStXYvTo0QCAfv36QavVYvfu3YiMjMSFCxfQtWtXdO/eHQAQEBBgsh8nJyfMnj1b///AwEAcOHAAGzZswMiRI/XTvby8sHz5cjg4OKBDhw4YOHAgdu7ciRdeeMFk3wsWLDDom+5NulLTJ+IAcEMkLtZeZ+ZEX6x/0bYWjktdvq60st59S42L5VZYWmW1ZUuJl1VWm21r8dwlbu/m8rf0uEodGym5W/p9sWbuYtuEWNzssi24f73Zv+l9VF3am+/bcuNCRI0Lrwgg+p/ff/8dhw4dQmxsLADA0dERTz31FFauXAkAePnll7F+/XqEhoZi8uTJ2L9/v9n+/vnPf6Jbt25o1qwZFAoFVqxYgQsXLhjM07lzZzg4OOj/7+vri2vXrpntd9q0adBqtfrXxYsX67O6ZOOULuZ/HuIhEhdrr3Stf/+ibS0cl7p8pYvpGrhY31LjYrkpXBxMxiy9bClxZ0fzhxMWz13i9m4uf0uPq9SxkZK7pd8Xa+Yutk2Ixc0u24L715v9m/87nSVzl9I3ETUuLAQQ/c/KlStRWVkJPz8/ODo6wtHREZ999hk2bdoErVaL/v374/z583j99ddx5coV9O3bFwkJCbX2tX79eiQkJOD555/H9u3bkZmZibFjx6K83PCSu9vvBSCTyVBdbf4va87OzlAqlQYvuveoFXKEB9X+05PwIDXUCvO/4RRrr3RxRC+Nd63xXhpvqMwcyIq19bDxuJe76bGz9roVldV+RYAtjJu5+DVdKXprat/erJ2bWLy3Ro1rulKbzE009yDbzt3c56m3xtts7koXR7P7MJWrk+g+TMo+1Byp+1exdfNyl7b/N0fqdwsR3TtYCCACUFlZia+//hqLFy9GZmam/nX06FH4+flh3bp1AIBmzZrhueeew7fffoslS5ZgxYoVtfaXnp6OsLAwTJgwAV27doVGo8HZs2fv5ipRI6dyk2Ph8BCjA7bwIDUWDQ8RvZmTWHt/LzfMiwk2Olituau1uTtHi7VtaQPx+Sbi82OCzT5C0OrrpnIxmbctjKupeE+NGu/FdLHZ99xc+/diuqCnRm2T4yoaH2r93M2Nu7+Z+LyYYLO5+3u5md2H+Xm6ml22n6erpH2oOVL3r2Lr1kLpYrXceaNAIvvBpwYQAUhJScFTTz2Fa9euQaVSGcSmTJmCXbt2oX///ujWrRs6d+6MsrIyTJ06FdeuXcPBgweNnhrwySef4J133sGGDRsQGBiIb775Bp988gkCAwORmZkJ4P+fGpCSkqJfVnx8PDIzM5GWllbn3PnUgHtbzbOeb5RWwMPFCWrFnT3rWax9zXOua+Kq255zbU7Ns8dr2ipNPHvcVN9icbH+xeIGzxd3cYSXu9xsEeBO1q3mmfE1cQ8Tz5SvT1wsb0suW2pcrK3U91SsfyljZ+lxk7q9m2sv9bMotb3YuJuLi/Uttg8TW7bUfag5UvevYu2tmTsRNV51PTdgIYAIwODBg1FdXY0tW7YYxQ4dOoSHHnoIs2fPxvr165GdnQ1XV1f07t0bH3/8MQIDA40KAWVlZXjppZeQnJwMmUyG2NhYqFQqbN26lYUAIiIiIiKyCBYCiOwECwFERERERATU/dyA9wggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYC6J6VlJQET09Pa6dhIDs7GzKZDJmZmdZOhYiIiIiI7JRMEATB2kkQ3am4uDgUFBQgJSXFYHpaWhqioqKQn58PZ2dn3LhxA82bN7dOkrWoqqrC33//DbVaDUdHxwbpU6fTQaVSQavVQqlUNkifZDuu6kqRX1QOXWkllK6O8HKTo4XSRR+/nF8MXWkldCUVULk6wcPFEf5ebvr4pfxi3LglrnBxRMsGiluyb3vO3ZZzY+62Gbfl3Ow59ysFJdCWVOjjSlcn+Hm66uNS9+/m2ostWyx3sdykMpeflPWuC21xOXILy6ErrYDS1QlqdzlUbvK71t6SbDk3unvqem7QMGciRDbI1dUVrq6u4jPeRQ4ODvDx8bF2GtRIXMgrwrTk40g/k6ef1kvjjfkxwWjt7Y7zeUV4u5b4vJhgtLFwvAmAqVZattS4DKh1XK2d2/yYYAiAzY5bYx1X5s7cGzq+KCYYlZD2WZW6fzfVfmFMMKosnJtUUvaBUnO7UlCCKZuOYW9Wrn5aeJAaC4eHGBRKLNXekmw5N7JN/GkA3bNu/2nA0aNHERUVBQ8PDyiVSnTr1g1HjhwxmDclJQVBQUFwcXFBdHQ0Ll68qG9/9uxZDBkyBC1atIBCoUCPHj3w888/GywzICAA8+fPx7hx4+Dh4YHWrVtjxYoV+nhtPw04efIkBg0aBKVSCQ8PD/Tu3Rtnz561zKBQo3FVV2p0sAMA+87k4e3k47iUX2x0sFQTn34X4pe1JVZbtpT4jOQT2Hcm1yZzSz+Tixk2Om7i43oc6TY6rqK5p9juNnFPj7sNfxbF4mXVguS+pe7fTbW/pC2xaG5XdaWQ4kqB6fzS9du0ZXLTFpcbnSgDwJ6sXEzddAza4nKLtrckW86NbBcLAWQ3Ro0ahZYtW+Lw4cP49ddfMXXqVDg5OenjxcXFmDdvHr7++mukp6ejoKAATz/9tD5eWFiIAQMGYOfOncjIyEC/fv0wePBgXLhwwWA5ixcvRvfu3ZGRkYEJEybg5Zdfxu+//15rTpcvX0Z4eDicnZ2xa9cu/Prrrxg3bhwqKytNrkdZWRl0Op3Bi+49+UXlRgc7NfadycON0kqrxt2da7+gzBZyMxffeybX5CWk1s6tudIFe2103MTHNQ/NbXRcRXPPst1t4p4edxv+LIrFyyqrbTY3d2dHiy47v0jaCaW2pMLMPtBZ0j5QLLfcwnKjE+Uae7JykVto2faWZMu5ke3iTwOo0frxxx+hUCgMplVVVZmc/8KFC3jrrbfQoUMHAEBQUJBBvKKiAsuXL8dDDz0EAFi9ejU6duyIQ4cO4cEHH8T999+P+++/Xz//3LlzkZycjB9++AETJ07UTx8wYAAmTJgAAJgyZQo+/vhjpKamon379kY5/fOf/4RKpcL69ev1RYl27dqZXe8FCxZg9uzZZuehxk9XaroYBAA3SirMt7dwvLDU9GdNat9i6yZ13csqq+vdVmpu5uLm8qpL31Jzl/q+mcvf0rlLjVtym7D058GauVty3K29vZtrb+19mLn25vbNUvsGxL+bxJhbvuR9oEhuulKRdReJS21vSbacG9kuXhFAjVZUVBQyMzMNXl999ZXJ+d944w384x//wKOPPoqFCxcaXX7v6OiIHj166P/foUMHeHp64vTp0wBuXhGQkJCAjh07wtPTEwqFAqdPnza6IiAkJET/b5lMBh8fH1y7dq3WnDIzM9G7d2+DKxPETJs2DVqtVv+69ecLdO9Qupiv03q4mt9mlBaOK1wcLNa32LpJXXdnR9NffZbOzVzcXF516Vtq7lLfN3P5Wzp3qXFLbhOW/jxYM3dLjru1t3dz7a29DzPX3ty+WWrfgPh3kxhzy5e8DxTJTekisu4icantLcmWcyPbxUIANVru7u7QaDQGL39/f5Pzz5o1CydPnsTAgQOxa9cudOrUCcnJyXVeXkJCApKTkzF//nzs3bsXmZmZCA4ORnm54eVWt5/Uy2QyVFfXXuWuz80MnZ2doVQqDV507/Fyl6OXxrvWWC+NNzxcHK0aLyqr/a9OtpCbuXhvjRrXTPyO1Nq5XdOVoreNjpv4uHrjmq7MJnMTzT3IdreJOo37jUY67jb8WRSLOzs2sdncisoqLbpsL3dpd6BXuTqZ2QeWSdoHiuWmVsgRHqSuNRYepIZaYdn2lmTLuZHtYiGA7Eq7du3w+uuvY/v27Rg2bBgSExP1scrKSv3NAwHg999/R0FBATp27AgASE9PR1xcHGJiYhAcHAwfHx9kZ2dLyickJAR79+5FRQUv2SJDLZQumB8TbHTQU3N35JZebphnIj7vLsT9VS5WW7aU+HsxXdBTo7bJ3Hpq1HjPRsdNfFyD0VPjbZO5ieY+1Ha3iTqNe9tGOu42/FkUizs3kUnuW+r+3VT7lipXi+Ym9RGCfp6m8+v5v23aUrmp3ORYODzE6IQ5PEiNRcNDRB+zJ7W9JdlybmS7ZIIgCNZOguhOxcXFoaCgACkpKQbT09LSEBUVhfz8fKSkpCA+Ph4FBQUoKSnBW2+9hREjRiAwMBCXLl3Cc889h+HDh2PRokVISkrC+PHj0bVrV3zyySdwdHTU/+7/wIEDAIBhw4bh3LlzSExMhEwmwzvvvIO0tDSMGzcOS5YsAXDzqQHx8fGIj4/X5xQaGoqhQ4di1qxZyM7ORmBgIDIyMhAaGoq8vDy0b98eERERmDZtGlQqFX755Rc8+OCDtd5ToDZ1fVYoNU4Gz0t2cYSXe+3Pmb5RWgEPFycob3vecs2zomviHiaekV2fuCX7tufcbTk35m6bcVvOzZ5zv1JQAm1JhT6ucnUyeIyb1P27ufZiyxbLXSw3qczlJ2W960JbXI7cwnJ9/2qF/I5OlKW2tyRbzo3unrqeG/BmgWQXHBwckJeXhzFjxuDq1atQq9UYNmyYwU333NzcMGXKFDzzzDO4fPkyevfujZUrV+rjH330EcaNG4ewsDCo1WpMmTJF8h37vb29sWvXLrz11luIiIiAg4MDQkND0bNnT0n90r2jhdLF7AGOv5cbTP8gBgYHdg0dt2Tflo4zN8vEbTk3sbgt5yYWt+XcxOK2nJtYXKytn6er2ee3S92/m2svtmyx3MVyk8pcflLWuy5UbtJOjqW2tyRbzo1sD68IIAKQlJSkv3qgseEVAUREREREBNT93ID3CCAiIiIiIiKyIywEEBEREREREdkRFgKI8P83HyQiIiIiIrrXsRBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgIiIiIiIiMiOsBBAREREREREZEdYCCAiIiIiIiKyIywEEBEREREREdkRFgKIiIiIiIiI7AgLAURERERERER2hIUAIiIiIiIiIjvCQgARERERERGRHWEhgOgOZGdnQyaTITMzs8H6lMlkSElJabD+iIiIiIiIzHG0dgJEtiQuLg6rV6/W/79p06bo0aMH3n//fYSEhFgxs3uftrgcuYXl0JVWQOnqBLW7HCo3+T2/bDFiuYnFL+UX40ZpJXQlFVC5OkHh4oiWXm4NErdk3/acuy3nxtxtM27LuTF368SvFJRAW1KhjyldneDn6apve1VXivyicuhKK6F0dYSXmxwtlC76+OX8Yuhu6dvDxRH+DZi7ue8uqd97Ur/TxcZGCkv2LZUtHwuJacy5WxMLAUS36devHxITEwEAf/31F2bMmIFBgwbhwoULVs7s3nWloARTNh3D3qxc/bTwIDUWDg8xOHC515YtRiw3sfj5vCK8nXwc6Wfy9PFeGm/MiwlGG293SfEmAKZaqG9Lxx0BTLHR3BxsODexuAzANBvN7V7NfX5MMATAJnO7l/cjtj7uYuN6Ia+o1u19fkwwWt+F3M19d8kATJbwvSf1O11sbKSwZN9S2fKxkJjGnLu1yQRBEKydBJGtiIuLQ0FBgcGl+vv27UPv3r1x7do1FBUVITAwEBkZGQgNDUVVVRXGjx+PXbt24a+//kLr1q0xYcIEvPbaawb9rlq1CosXL8aZM2fQtGlTDB8+HMuXLwdw86cBycnJGDp0KABg5syZWLFiBbZt21anqxB0Oh1UKhW0Wi2USmWDjcXdoi0ux8R1GQY78BrhQWosi+1qsaquNZctRiy3D568Hwkbj5qMzx8WjCmbjhkccNTopfHGwuEh9Y731nhjQLAvpiWfaPC+70Z8zpAu6LN4t03mNn1gR/Rfus8mczO/TajRP9gHbzfCbaIxb88LYrrgP8dzsNcGc6tLfGIfDZ5ecdAmc2vM427r4zpt83GT3139g30xbfPxWmNi33ticbHv9Ku6UryxIdNk7otHhtb7r/eW7FsqWz4WEtOYc7ekup4b8B4BRGYUFhbi22+/hUajgbe3t1G8uroaLVu2xMaNG3Hq1Cm8++67ePvtt7Fhwwb9PJ999hleeeUVjB8/HsePH8cPP/wAjUZj1JcgCJg0aRK+/vpr7N2712QRoKysDDqdzuDVmOUWlte6AweAPVm5yC0svyeXLUYst/wi8/EbpZW1HnAAwL4zeZLie8/kobmJAxapfd+NeFlltc3mJkBms7mZ3yZyTR7EWju3e3l7bq50qfVk1BZyq0vc3bn2C1NtIbfGPO62Pq7mvruaezibjIl974nFxb7T84vKzeaeX1T/YwJL9i2VLR8LiWnMudsC/jSA6DY//vgjFAoFAKCoqAi+vr748ccf0aSJcd3MyckJs2fP1v8/MDAQBw4cwIYNGzBy5EgAwHvvvYc333zT4CqBHj16GPRTWVmJ0aNHIyMjA/v27YO/v7/J/BYsWGCwzMZOV1phNn5DJN5Yly1GLDddaaX5eIlIe5H4DZG4qZPpurSVmpvU3M3FpfZtydwtPS6W3CZseVwBy+ZuyXE3l3ddlm3pbUKsfWFplcWWbcvjbs1xtfZnTdJnUex7TyQu9p0utX9r9S2VLR8LiWnMudsCXhFAdJuoqChkZmYiMzMThw4dQnR0NPr374/z58/XOv8///lPdOvWDc2aNYNCocCKFSv09xO4du0arly5gr59+5pd5uuvv46DBw9iz549ZosAADBt2jRotVr96+LFi/VbURuhdHEyG/cQiTfWZYsRy03pYr6Oq3QVaS8S9xCJOzua/voQays1N6m5m4tL7duSuVt6XCy5TdjyuAKWzd2S424u77os29LbhFh7hYuDxZZty+NuzXG19mdN0mdR7HtPJC72nS61f2v1LZUtHwuJacy52wIWAohu4+7uDo1GA41Ggx49euCrr75CUVERvvzyS6N5169fj4SEBDz//PPYvn07MjMzMXbsWJSX37wUydW1bjcpeeyxx3D58mVs27ZNdF5nZ2colUqDV2OmVsgRHqSuNRYepIZaYbnfdllz2WLEcvNyNx/3cHFEL43xz1mAm79HlBLvrfHGtRtlFun7bsRNHWjaQm4y1H7bHlvIzfw2ocY1XalN5lan7VnXOLfna7pS9DaxH7B2bnWJF5XV/ldQW8itMY+7rY+rue8uU98tdfneE4uLfad7ucvN5u7lXv9jAkv2LZUtHwuJacy52wIWAohEyGQyNGnSBCUlJUax9PR0hIWFYcKECejatSs0Gg3Onj2rj3t4eCAgIAA7d+40u4wnnngCa9euxT/+8Q+sX7++wdfBlqnc5Fg4PMRoRx4epMai4SEWvcmLNZctRiy3FkoXs/GWXm6YFxNsdODRS3Pzzs1S4u/FBKNXW2+L9H034s5NZDabm4fc+CDaVnIzv010QU+N2iZzq8v23FPTOLfnnho13hvaxSZzq0vcX+Vqs7k15nEXG9f5JtrOv0u5m/vuimzXrN7fe2Jxse/0FkoXs2Mj5WZ+luxbKls+FhLTmHO3BXxqANEt4uLicPXqVf3jA/Pz87F8+XJ89tln2LVrFwICAgyeGvDJJ5/gnXfewYYNGxAYGIhvvvkGn3zyCQIDA5GZmQkAWL16NV566SUsWrQI/fv3x40bN5Ceno5JkyYBMHxqwPfff49nn30W33zzDUaMGFGnnBv7UwNq1DwD9kZpBTxcnKBW3L1nwFpz2WLEchOL1zzLuSbuYeJZz/WJW7Jve87dlnNj7rYZt+XcmLt14lcKSqAtqdDHVK5OBo9SM3ievYsjvNwNn2d/Ob8Yulv6Vro4wr8Bczf33SX1e0/qd7rY2Ehhyb6lsuVjITGNOXdLqOu5AQsBRLeIi4vD6tWr9f/38PBAhw4dMGXKFAwfPhzZ2dkGhYCysjK89NJLSE5OhkwmQ2xsLFQqFbZu3aovBADAF198gY8//hh//vkn1Go1RowYgU8++QSA8eMDN2zYgOeeew5r1qzBsGHDRHO+VwoBREREREQkDQsBRHaChQAiIiIiIgLqfm7AewQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHbE0doJEN0LkpKSEB8fj4KCAmunQnTXXNWVIr+oHLrSSihdHeHlJkcLpUud22uLy5FbWA5daQWUrk5Qu8uhcpPflfZSly1GbGzMLV9KW2vHpfYttu5Stzlz7aWOuxhLb3O2umypbDl3a+dm7eUTUePGQgDRLS5evIiZM2fip59+Qm5uLnx9fTF06FC8++678Pb2BgAEBAQgPj4e8fHx1k2WyIou5BVhWvJxpJ/J00/rpfHG/JhgtPZ2F21/paAEUzYdw96sXP208CA1Fg4PgZ+nq0XbS122GLGxMbX894eHoLyqul5ta3K3VnzR8BAIgKS+xcZN6jZnrr0MwFQJ4y7G0tucrS5bKlvO3dq5WXv5RNT48acBRP/z559/onv37sjKysK6detw5swZfP7559i5cyceeeQRXL9+/a7nVFFRcdeXSSTmqq7U6IQKAPadycPbycdxVVdqtr22uNzoABYA9mTlYuqmY9AWl1usvdRlixEbm9oO3muWn329uN5tp246hqu6UqvF0/74G1O+r3/fVwpKzK775XzzYyO2zZl7X6YnH8e+M7n1HndLbq9SWXPZUtly7tbOzdrLJ6J7AwsBRP/zyiuvQC6XY/v27YiIiEDr1q3Rv39//Pzzz7h8+TKmT5+OyMhInD9/Hq+//jpkMhlkMplBH9u2bUPHjh2hUCjQr18/5OTkGMS/+uordOzYES4uLujQoQM+/fRTfSw7OxsymQzfffcdIiIi4OLigjVr1hjlWVZWBp1OZ/Aiupvyi8qNTppq7DuTh/wi8wehuYXlRgewNfZk5SK30HLtpS5bjNjYaEsqTC7f3dmh3m33ZOUiv8j8ulky3tzDGXvP1L9vbUmF2XXXlVZK2ubMvS97z+ShuYmfF9Rl3C25vUplzWVLZcu5Wzs3ay+fiO4NLAQQAbh+/Tq2bduGCRMmwNXV8JI6Hx8fjBo1Ct999x02bdqEli1bYs6cOcjJyTE40S8uLsaHH36Ib775Bnv27MGFCxeQkJCgj69Zswbvvvsu5s2bh9OnT2P+/Pl45513sHr1aoPlTZ06Fa+99hpOnz6N6Ohoo1wXLFgAlUqlf7Vq1aqBR4PIPF1ppcS4+StdbojEpbSXumwxYuturv/C0irzfZeIjYvU96X+8bLKaml9i62bhdfdXP5i24Qlt1eprLlsqWw5d2vnZu3lE9G9gfcIIAKQlZUFQRDQsWPHWuMdO3ZEfn4+qqqq4ODgAA8PD/j4+BjMU1FRgc8//xxt27YFAEycOBFz5szRx2fOnInFixdj2LBhAIDAwECcOnUKX3zxBZ577jn9fPHx8fp5ajNt2jS88cYb+v/rdDoWA+iuUrqY/+oQjzuZjXuIxKW0l7psMWLrbq5/hYuD+b5dxcZF6vtS/7izo/m/K4j2LbZuFl53c/mLbROW3F6lsuaypbLl3K2dm7WXT0T3Bl4RQHQLQRDq3dbNzU1fBAAAX19fXLt2DQBQVFSEs2fP4vnnn4dCodC/3nvvPZw9e9agn+7du5tdjrOzM5RKpcGL6G7ycpejl8a71lgvjTe83M3ftVqtkCM8SF1rLDxIDbXCcu2lLluM2NioXJ1MLr+orKrebcOD1PByN79uloxfu1EmqW+Vq5PZdVe6OEra5sy9L7013rhm4h4DdRl3S26vUllz2VLZcu7Wzs3ayyeiewMLAUQANBoNZDIZTp8+XWv89OnT8PLyQrNmzUz24eRkWIGXyWT6wkJhYSEA4Msvv0RmZqb+deLECfzyyy8G7dzdxe9+TWRNLZQumB8TbHRiVXOXdbHHuanc5Fg4PMToQLbm7vNij7+S0l7qssWIjY2fp6vJ5Qc2dat320XDQ9BC6WK1eFS7ZpL69vN0Nbvu/l7mx0ZsmzP3vsyLCUYvjbre427J7VUqay5bKlvO3dq5WXv5RHRvkAlS/gRKdA+Jjo7GyZMnkZWVZXCfgL/++gtt27bFmDFj8Nlnn6Fdu3Z48cUX8eabb+rnSUpKQnx8PAoKCvTTUlJSEBMToy8G+Pv746WXXsI777xT6/Kzs7MRGBiIjIwMhIaG1jlvnU4HlUoFrVbLqwPorjJ47rqLI7zc7+yZ7jXPwL5RWgEPFyeoFfV7Lnt92ktdthixsTG3fCltrR2X2rfYukvd5sy1lzruYiy9zdnqsqWy5dytnZu1l09Etqmu5wa8RwDR/yxfvhxhYWGIjo7Ge++9h8DAQJw8eRJvvfUW/P39MW/ePABAQEAA9uzZg6effhrOzs5Qq2u/PO92s2fPxquvvgqVSoV+/fqhrKwMR44cQX5+vsFv/okaixZKlzs6Cbudyk3aQauU9lKXLUZsbMwtX0pba8el9i227lK3OXPtpY67GEtvc7a6bKlsOXdr52bt5RNR48afBhD9T1BQEI4cOYL77rsPI0eORNu2bTF+/HhERUXhwIEDaNq0KQBgzpw5yM7ORtu2bc3+VOB2//jHP/DVV18hMTERwcHBiIiIQFJSEgIDAy21SkREREREREb40wCiRo4/DSAiIiIiIqDu5wa8IoCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAgguxEQEIAlS5ZYOw0iIiIiIiKrcrR2AkRiIiMjERoaanQSn5SUhPj4eBQUFFglLyJboC0uR25hOXSlFVC6OkHtLofKTa6PX9WVIr+oHLrSSihdHeHlJkcLpYs+fim/GDdKK6ErqYDK1QkKF0e09HLTxy/nF0N3S9zDxRH+/4uLtbXlOHNj7szdNuK2nJvU3M3tP62dm7Xj5sbmSkEJtCUV+pjS1Ql+nq76tmLfe2Jxqbmby08sd6lxMWLtzR0TSB1XqaSuuzmWzr2xYiGAiKiRulJQgimbjmFvVq5+WniQGguHh8DP0xUX8oowLfk40s/k6eO9NN6YHxOM1t7uOJ9XhLdric+LCUYbkbgMqLXvurS1ZnxhTDCqAJvMjeNqvbgDgCk2mtu9us0wd8vFHdF4t2dHAJPNtBX73hOLWzL3JgCmWnDcxIi1N3dM4OTQBJMljKtUUtfdHEvn3pjxpwF0T4iLi8PQoUPx4YcfwtfXF97e3njllVdQUVFhss1XX30FT09P7Ny5E8DNKw9effVVTJ48GU2bNoWPjw9mzZpl0ObChQsYMmQIFAoFlEolRo4ciatXrwIAtFotHBwccOTIEQBAdXU1mjZtiocffljf/ttvv0WrVq0AANnZ2ZDJZNi8eTOioqLg5uaG+++/HwcOHGjIoaF7lLa43OiLDQD2ZOVi6qZjuFJQYvSFDwD7zuTh7eTjuJRfbPSlWxOfLhKfkXIC+87k1qutteM3yqtsNrcZyceR3kjH9ZK21GZzq0v8RnmlzeZ2r34WG/P2buvjXlYt2GxuUnK/nF9s9nvvqq7UbNzSuV/Wllis7ysFJTDnSkGJaP+mjgmmJx9H2u9/13tctcXlZnMTI5a72LqbI3asJDX3xo6FALpnpKam4uzZs0hNTcXq1auRlJSEpKSkWud9//33MXXqVGzfvh19+/bVT1+9ejXc3d1x8OBBvP/++5gzZw527NgB4OaJ/ZAhQ3D9+nXs3r0bO3bswJ9//omnnnoKAKBSqRAaGoq0tDQAwPHjxyGTyZCRkYHCwkIAwO7duxEREWGQy/Tp05GQkIDMzEy0a9cOsbGxqKysNLmeZWVl0Ol0Bi+yP7mF5UZfbDX2ZOVCW1Jh9KVaY9+ZPNwoNT7xqWt8b1auwc8LGrJvS8cFwGZz23smD80b6bi6OzvYbG51iQuQ2Wxu9+pnsTFv77Y+7mWV1Tabm5TcdaWVZr/38ovMfy9aOnd359ovtG6IvrUlpv+wBUDSd/7Nz6JzrbG6jGtuobSTabHcxdbdHLFjJam5N3YsBNA9w8vLC8uXL0eHDh0waNAgDBw4UP/X/ltNmTIFS5Yswe7du/Hggw8axEJCQjBz5kwEBQVhzJgx6N69u76PnTt34vjx41i7di26deuGhx56CF9//TV2796Nw4cPA7h5VUFNISAtLQ2PPfYYOnbsiH379umn3V4ISEhIwMCBA9GuXTvMnj0b58+fx5kzZ0yu54IFC6BSqfSvmisMyL7oSs1/Md4QietEvljF4qYO1gDghsS+xdpLiUvtW2ruUsbV0suW0r6wtMpifdelvSX7t3Zu1txmrJm7pZdtyc+qJfdhgGW3Z0uPq6T9t9j3WqnpP6IAll83c/tByeMm8TtdrH+z+xGRcRXLTYxo7hL6l3qsdK9jIYDuGZ07d4aDg4P+/76+vrh27ZrBPIsXL8aXX36Jffv2oXPnzkZ9hISEGPz/1j5Onz6NVq1aGZx4d+rUCZ6enjh9+jQAICIiAvv27UNVVRV2796NyMhIfXHgypUrOHPmDCIjI00u09fXFwCM8r7VtGnToNVq9a+LFy+aGxa6RyldnMzGPUTiSldpcWdH018fHhL7FmsvJS61b6m5SxlXSy9bSnuFi4PJmNS+69Lekv1bOzdrbjPWzN3Sy7bkZ9WS+zDAstuzpcdV0v5b7HvNxfytzyy9bub2g5LHTeJ3ulj/ZvcjIuMqlpsY0dwl9C/1WOlex0IA2TylUgmtVms0vaCgACqVSv9/JyfDD7NMJkN1tWGFs3fv3qiqqsKGDRtqXVZd+jAnPDwcN27cwG+//YY9e/YYFAJ2794NPz8/BAUFmVymTHbz8lRzy3R2doZSqTR4kf1RK+QID1LXGgsPUkPl6oReGu9a47003vBwcax3vHeQGtd0pRbp29Jx2f/mscXcemu8G+24FpVV2WxudYnLINhsbvfqZ/Hm9l5mk7k19nE3dVJnC7lJyV3p4mj2e8/L3fz3oqVzLyqr/S/nDdG3SuRkWcp3fm+NN67dqP2zWJdxVSuk3X1fLHexdTdH7FhJau6NHQsBZPPat2+P3377zWj6b7/9hnbt2t1RXw8++CC2bt2K+fPn48MPP7yjth07dsTFixcN/gJ/6tQpFBQUoFOnTgAAT09PhISEYPny5XByckKHDh0QHh6OjIwM/Pjjj0Y/CyCqL5WbHAuHhxh9wYUHqbHof3fCnR8TbPTlWnOH4JZebphnIj5PJP7e0C7oqVHXq6214x5yB5vN7b2Y4EY7ri1VLjabW13iHnLjg2Rbye1e/Sze3N69bTK3xj7uzk1kNpublNz9vdzMfu+1ULqYjVs6d3+Vq8X6Fru7vZ+nq2j/po4J5sUEI7Jds3qPq9TH8InlLuXO/mLHSvb+CEGZIAi1l8GJbMSff/6Jzp0744UXXsA//vEPODs7Y8uWLZgyZQr+/e9/o1+/foiLi0NBQQFSUlL07eLj45GZman/zX5AQADi4+MRHx+Pffv2oX///pg7dy7i4+MB3Px9f2hoKJYsWaLvY+jQofD09ERSUhIEQcADDzwADw8PLFmyBJWVlZgwYQIUCoV+GQDw+uuvY9myZRgxYgTWr18PAAgNDcWJEyfwz3/+Ey+++CKAm08NCAwMREZGBkJDQwHcvMrBy8sLqampRj8hMEWn00GlUkGr1fLqADtU82zcG6UV8HBxglph+Gxcg2cGuzjCy11ucJOrmucl17T3MPGs55q48pZnPYu1teU4c2PuzN024racm9Tcze0/rZ2btePmxqbmefI1MdVtz5MX+94Ti0vN3Vx+YrlLjYsRa2/umEDquEoldd3NsXTutqau5wbmf/RhRmVlJdLS0nD27Fk888wz8PDwwJUrV6BUKqFQKOrbLZGR++67D3v27MH06dPx6KOPory8HB06dMDGjRvRr1+/evXZq1cvbNmyBQMGDICDgwMmTZok2kYmk+Ff//oXJk2ahPDwcDRp0gT9+vXDsmXLDOaLiIjAkiVLDE7kIyMjcfTo0Tqf3BPVlcrN/JdZC6WLybtbAzA4uKmNv5cb/OvZ1pbjzM0ycVvOTSxuy7mJxW05N7G4LecmFpey/5S6bLG4LY8bYH5s/DxdzZ4Ain3vicWl5m4uP7HcpcbFiLU3d0wgdVylkrru5lg698aqXlcEnD9/Hv369cOFCxdQVlaGP/74A/fddx9ee+01lJWV4fPPP7dErkRUC14RQEREREREQN3PDep1j4DXXnsN3bt3R35+Plxd/79yExMTU+vj2oiIiIiIiIjINtTrpwF79+7F/v37IZcbXmIREBCAy5cvN0hiRERERERERNTw6nVFQHV1NaqqqoymX7p0CR4eHpKTIiIiIiIiIiLLqFch4PHHHze4s7pMJkNhYSFmzpyJAQMGNFRuRERERERERNTA6nWzwEuXLiE6OhqCICArKwvdu3dHVlYW1Go19uzZg+bNm1siVyKqBW8WSEREREREQN3PDepVCABuPj7wu+++w9GjR1FYWIgHHngAo0aNMrh5IBFZHgsBREREREQE3IVCABHZBhYCiIiIiIgIsPDjAxcsWIBVq1YZTV+1ahUWLVpUny6JiIiIiIiI6C6oVyHgiy++QIcOHYymd+7cGZ9//rnkpIiIiIiIiIjIMupVCPjrr7/g6+trNL1Zs2bIycmRnBQRERERERERWUa9CgGtWrVCenq60fT09HT4+flJToqIiIiIiIiILMOxPo1eeOEFxMfHo6KiAn369AEA7Ny5E5MnT8abb77ZoAkSERERERERUcOpVyHgrbfeQl5eHiZMmIDy8nIAgIuLC6ZMmYJp06Y1aIJERERERERE1HAkPT6wsLAQp0+fhqurK4KCguDs7NyQuRFRHfDxgUREREREBNT93KBeVwTUUCgU6NGjh5QuiIiIiIiIiOguqnch4MiRI9iwYQMuXLig/3lAjc2bN0tOjIiIiIiIiIgaXr2eGrB+/XqEhYXh9OnTSE5ORkVFBU6ePIldu3ZBpVI1dI5ERERERERE1EDqVQiYP38+Pv74Y/z73/+GXC7H0qVL8d///hcjR45E69atGzpHIiIiIiIiImog9SoEnD17FgMHDgQAyOVyFBUVQSaT4fXXX8eKFSsaNEEiIiIiIiIiajj1KgR4eXnhxo0bAAB/f3+cOHECAFBQUIDi4uKGy46IiIiIiIiIGlS9bhYYHh6OHTt2IDg4GE8++SRee+017Nq1Czt27ECfPn0aOkciIiIiIiIiaiD1KgQsX74cpaWlAIDp06fDyckJ+/fvx/Dhw5GQkNCgCRIRERERERFRw6nXTwOaNm0KPz+/mx00aYKpU6diw4YN8PPzQ9euXRs0QSIiIiIiIiJqOHdUCCgrK8O0adPQvXt3hIWFISUlBQCQmJiItm3bYunSpXj99dctkScRERERERERNYA7+mnAu+++iy+++AKPPvoo9u/fjyeffBJjx47FL7/8gsWLF+PJJ5+Eg4ODpXIlIiIiIiIiIonuqBCwceNGfP3113jiiSdw4sQJhISEoLKyEkePHoVMJrNUjkRERERERETUQO7opwGXLl1Ct27dAABdunSBs7MzXn/9dRYB7FBaWhpkMhkKCgqsncpdJ5PJ9D+LISIiIiIiamzu6IqAqqoqyOXy/2/s6AiFQtHgSZF0cXFxWL16NRYsWICpU6fqp6ekpCAmJgaCINS5r8jISISGhmLJkiX6aWFhYcjJyYFKpWrItE2Kjo7Gzz//jF9++QU9evS4K8s0JScnB15eXlbNgaiGtrgcuYXl0JVWQOnqBLW7HCo3uXjDu7DsKwUl0JZUQFdSAZWrE5SuTvDzdG2w+FVdKfKLyqErrYTS1RFebnK0ULrUqf2l/GLcKK3UxxQujmjp5aZvKxa/nF8M3S1xDxdH+N9Be3NxqX2LjYsl103quEp9z6X0L9a32PZu6XUTi5sj9bMq1t6SuVl6H2fJdSMismV3VAgQBAFxcXFwdnYGAJSWluKll16Cu7u7wXybN29uuAyp3lxcXLBo0SK8+OKLDX7iKpfL4ePj06B9mnLhwgXs378fEydOxKpVq6xWCCgvL7+r600k5kpBCaZsOoa9Wbn6aeFBaiwcHmJwEG+NZZ/PK8LbyceRfiZPH++l8ca8mGC08XaXHL+QV4RptcTnxwSjtZn282OCAaDWtg2Vm5S4TGJu9R0XqbkviAlGNWCT77lY/+a2iZq+Lb29i62bWNwcqbmLtbdkbpbex1ly3YiIbN0d/TTgueeeQ/PmzaFSqaBSqTB69Gj4+fnp/1/zItvw6KOPwsfHBwsWLDA5T15eHmJjY+Hv7w83NzcEBwdj3bp1+nhcXBx2796NpUuXQiaTQSaTITs72+CnATqdDq6urti6datB38nJyfDw8EBxcTEA4OLFixg5ciQ8PT3RtGlTDBkyBNnZ2aLrkZiYiEGDBuHll1/GunXrUFJSYhCPjIzEpEmTEB8fDy8vL7Ro0QJffvklioqKMHbsWHh4eECj0Rjld+LECfTv3x8KhQItWrTAs88+i9zcXIN+J06ciPj4eKjVakRHRwMw/mnApUuXEBsbi6ZNm8Ld3R3du3fHwYMHAQBnz57FkCFD0KJFCygUCvTo0QM///yzQR4BAQGYP38+xo0bBw8PD7Ru3RorVqwQHReyb9ricqMDWADYk5WLqZuOQVtcbrVlX84vNjqxAIB9Z/IwPfk4LjVA/PaD85r422LtU05g35lci+ZW3/iM5ONIl5hbvcdFYvyytsR233ORePqZXEw303dtJ4vA/2/vll63yyLxq7pSmCL1s3o5v9hs+ysFJRbL7aqu1KL7OLHlS1k3IqLG4I4KAYmJiXV6kW1wcHDA/PnzsWzZMly6dKnWeUpLS9GtWzds2bIFJ06cwPjx4/Hss8/i0KFDAIClS5fikUcewQsvvICcnBzk5OSgVatWBn0olUoMGjQIa9euNZi+Zs0aDB06FG5ubqioqEB0dDQ8PDywd+9epKenQ6FQoF+/figvN/1lLggCEhMTMXr0aHTo0AEajQbff/+90XyrV6+GWq3GoUOHMGnSJLz88st48sknERYWht9++w2PP/44nn32WX1RoqCgAH369EHXrl1x5MgR/PTTT7h69SpGjhxp1K9cLkd6ejo+//xzo+UWFhYiIiICly9fxg8//ICjR49i8uTJqK6u1scHDBiAnTt3IiMjA/369cPgwYNx4cIFg34WL16M7t27IyMjAxMmTMDLL7+M33//vdYxKSsrg06nM3iR/cktLDc6gK2xJysXuYWWKwSILVtXWml08Fxj35k83LBifG9WrsnLeq2e25k8NLfR3MTi7s6ONpubWLy50gV7zbTVllSY3d4tnbvY5ym/yPRnXepnVVdaaba9tqTCYrnlF1l2Hye2fCnrRkTUGNxRIYAan5iYGISGhmLmzJm1xv39/ZGQkIDQ0FDcd999mDRpEvr164cNGzYAAFQqFeRyOdzc3ODj4wMfH59aHxE5atQopKSk6E+0dTodtmzZglGjRgEAvvvuO1RXV+Orr75CcHAwOnbsiMTERFy4cAFpaWkm8//5559RXFys/2v86NGjsXLlSqP57r//fsyYMQNBQUGYNm0aXFxcoFar8cILLyAoKAjvvvsu8vLycOzYMQDA8uXL0bVrV8yfPx8dOnRA165dsWrVKqSmpuKPP/7Q9xsUFIT3338f7du3R/v27Y2Wu3btWvz9999ISUlBr169oNFoMHLkSDzyyCP6vF588UV06dIFQUFBmDt3Ltq2bYsffvjBoJ8BAwZgwoQJ0Gg0mDJlCtRqNVJTU2sdkwULFhhcgXN7YYbsg660wmz8hkjcossuMR/XicTF2kvtv6yyut5tpS7blnOT0r6wtMpifVu6vbkxB8Q/S1Z/X0orzcQkLltie0m5mWkLSN/HSR0bsfyIiGwdCwF2YNGiRVi9ejVOnz5tFKuqqsLcuXMRHByMpk2bQqFQYNu2bUZ/sRYzYMAAODk56U9wN23aBKVSiUcffRQAcPToUZw5cwYeHh5QKBRQKBRo2rQpSktLcfbsWZP9rlq1Ck899RQcHW/eziI2Nhbp6elGbUJCQvT/dnBwgLe3N4KDg/XTWrRoAQC4du2aPp/U1FR9LgqFAh06dAAAg75rnpJhSmZmJrp27YqmTZvWGi8sLERCQgI6duwIT09PKBQKnD592mh8b81fJpPBx8dHn+vtpk2bBq1Wq39dvHjRbI50b1K6OJmNe4jELbpsV/NxpUhcrL3U/p0dTX/1Sc1NrL0t5yalvcLFuEDcUH1bur25MQfEP0tWf19cTN/uSeyzKrpsie0l5WamLSB9Hyd1bMTyIyKydSwE2IHw8HBER0dj2rRpRrEPPvgAS5cuxZQpU5CamorMzExER0ebvVy/NnK5HCNGjND/PGDt2rUGJ/CFhYXo1q0bMjMzDV5//PEHnnnmmVr7vH79OpKTk/Hpp5/C0dERjo6O8Pf3R2VlJVatWmUwr5OT4Re2TCYzmFbziMtbL9kfPHiwUT5ZWVkIDw/Xt7v9Rpi3c3U1f7OihIQEJCcnY/78+di7dy8yMzMRHBxsNL615V+T6+2cnZ2hVCoNXmR/1Ao5woPUtcbCg9RQKyz35ACxZStdHNFL411rvJfGGx5WjPcOUuOaid/2Wj03jbfN5iYWLyqrtNncxOLXdKXoral9e+6l8YbK1cns9m7p3MU+T17upj/rUj+rShdHs+1Vrk4Wy83L3bL7OLHlS1k3IqLGgIUAO7Fw4UL8+9//xoEDBwymp6enY8iQIRg9ejTuv/9+3HfffQaXxgM3T/Krqsxf9gnc/HnATz/9hJMnT2LXrl36nwUAwAMPPICsrCw0b94cGo3G4GXqBpNr1qxBy5YtcfToUYOT9cWLFyMpKalOOZnywAMP4OTJkwgICDDKR+zk/1YhISHIzMzE9evXa42np6cjLi4OMTExCA4Oho+PT51ukEgkRuUmx8LhIUYHsuFBaiwaHmLRRwiKLdvfyw3zYoKNDqJr7kTesgHi803E54u1H9oFPTVqi+ZW3/h7McGSc6v3uEiM+6tcbfc9F4n31KgxL6aLyb79PF3Nbu+WXjd/kbi5R9lJ/az6e7mZbe/n6Wqx3FooXSy6jxNbvpR1IyJqDGTCnTxQnhqNuLg4FBQUGNzdfsyYMdi4cSNKS0tR87a/8cYb+P7777F+/Xp4eXnho48+woYNGxAVFaVvO378eGRmZmLDhg36S/r37NmDqKgo5Ofnw9PTE8DNG/u1adMGTZs2RWFhIc6cOaNfdnFxMUJDQ+Hv7485c+agZcuWOH/+PDZv3ozJkyejZcuWRusQGhqKfv36YeHChQbTtVotmjdvjs2bN2PgwIGIjIxEaGgolixZop8nICAA8fHxiI+P10+TyWRITk7G0KFDceXKFYSGhiIiIgKTJ09G06ZNcebMGaxfvx5fffUVHBwcau339n7Ky8sRHByMFi1aYMGCBfD19UVGRgb8/PzwyCOPYNiwYTh37hwSExMhk8nwzjvvIC0tDePGjdP3W1uuoaGhGDp0KGbNmiX6Xut0OqhUKmi1Wl4dYIdqnoF9o7QCHi5OUCsa9hnbUpZd82zymrjqtmeTS40bPN/bxRFe7obP9zbXvuaZ7zUxDxPPuzcVv5xfDN0tcaWLI/zvoL25uNS+xcbFkusmdVylvudS+hfrW2x7t/S6icXNkfpZFWtvydwsvY+z5LoREVlDXc8N+AMnOzJnzhx89913BtNmzJiBP//8E9HR0XBzc8P48eMxdOhQaLVa/TwJCQl47rnn0KlTJ5SUlODcuXO19i+TyRAbG4v3338f7777rkHMzc0Ne/bswZQpUzBs2DDcuHED/v7+6Nu3b60b6K+//oqjR4/iyy+/NIqpVCr07dsXK1euxMCBA+szFPDz80N6ejqmTJmCxx9/HGVlZWjTpg369euHJk3qfqGMXC7H9u3b8eabb2LAgAGorKxEp06d8M9//hMA8NFHH2HcuHEICwuDWq3GlClTeJd/alAqt7t34n+ny/bzdDX7rG+p8RZKF7MH5Oba33qCVp+4v5cb/CW0NxeX2rfYuFhy3aSOq9T3XEr/Yn2Lbe+WXjexuDlSP6ti7S2Zm6X3cZZcNyIiW8YrAogaOV4RQEREREREQN3PDXiPACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1plIUAmUyGlJQUk/G0tDTIZDIUFBTctZxulZSUBE9Pzwbrz9rrUxtbzOluEdv+iIiIiIiIbJnVCgGff/45PDw8UFlZqZ9WWFgIJycnREZGGsxbc9J59uzZOvUdFhaGnJwcqFQqAA17Yh4QEACZTAaZTAYHBwf4+fnh+eefR35+foP031Di4uIgk8mwcOFCg+kpKSmQyWR31FdkZCTi4+MNpt0+xpYWHR0NBwcHHD58+K4sz5ycnBz079/f2mkQEVED0haX4+y1QmRcyMfZvwuhLS63dkpEREQWY7VCQFRUFAoLC3HkyBH9tL1798LHxwcHDx5EaWmpfnpqaipat26Ntm3b1qlvuVwOHx+fOz7hras5c+YgJycHFy5cwJo1a7Bnzx68+uqrFlmWFC4uLli0aJFFihSWHuNbXbhwAfv378fEiROxatUqiy/PlPLymweFPj4+cHZ2tloeRETUsK4UlGDiugz0/Wg3Yj7dj76Ld2PSugxcKSixdmpEREQWYbVCQPv27eHr64u0tDT9tLS0NAwZMgSBgYH45ZdfDKZHRUUZtM/NzUVMTAzc3NwQFBSEH374wWD+msvW09LSMHbsWGi1Wv1f8mfNmgUAKCsrQ0JCAvz9/eHu7o6HHnrIIB9TPDw84OPjA39/f0RFReG5557Db7/9ZnL+s2fPYsiQIWjRogUUCgV69OiBn3/+2WCesrIyTJkyBa1atYKzszM0Gg1WrlxZa3/FxcXo378/evbsafbS/EcffRQ+Pj5YsGCByXny8vIQGxsLf39/uLm5ITg4GOvWrdPH4+LisHv3bixdulQ/ftnZ2QZjrNPp4Orqiq1btxr0nZycDA8PDxQXFwMALl68iJEjR8LT0xNNmzbFkCFDkJ2dbTK3GomJiRg0aBBefvllrFu3DiUlhgdmkZGRmDRpEuLj4+Hl5YUWLVrgyy+/RFFREcaOHQsPDw9oNBqj/E6cOIH+/ftDoVCgRYsWePbZZ5Gbm2vQ78SJExEfHw+1Wo3o6GgAxj8NuHTpEmJjY9G0aVO4u7uje/fuOHjwIIC6vfcBAQGYP38+xo0bBw8PD7Ru3RorVqwQHRciIpJOW1yOKZuOYW9WrsH0PVm5mLrpGK8MICKie5JV7xEQFRWF1NRU/f9TU1MRGRmJiIgI/fSSkhIcPHjQqBAwe/ZsjBw5EseOHcOAAQMwatQoXL9+3WgZYWFhWLJkCZRKJXJycpCTk4OEhAQAwMSJE3HgwAGsX78ex44dw5NPPol+/fohKyurzutw+fJl/Pvf/8ZDDz1kcp7CwkIMGDAAO3fuREZGBvr164fBgwfjwoUL+nnGjBmDdevW4ZNPPsHp06fxxRdfQKFQGPVVUFCAxx57DNXV1dixY4fZnzw4ODhg/vz5WLZsGS5dulTrPKWlpejWrRu2bNmCEydOYPz48Xj22Wdx6NAhAMDSpUvxyCOP4IUXXtCPX6tWrQz6UCqVGDRoENauXWswfc2aNRg6dCjc3NxQUVGB6OhoeHh4YO/evUhPT4dCoUC/fv30f2mvjSAISExMxOjRo9GhQwdoNBp8//33RvOtXr0aarUahw4dwqRJk/Dyyy/jySefRFhYGH777Tc8/vjjePbZZ/VFiYKCAvTp0wddu3bFkSNH8NNPP+Hq1asYOXKkUb9yuRzp6en4/PPPjZZbWFiIiIgIXL58GT/88AOOHj2KyZMno7q6Wh8Xe+8BYPHixejevTsyMjIwYcIEvPzyy/j9999rHZOysjLodDqDFxER1U9uYblREaDGnqxc5BayEEBERPcgwYq+/PJLwd3dXaioqBB0Op3g6OgoXLt2TVi7dq0QHh4uCIIg7Ny5UwAgnD9/Xt8OgDBjxgz9/wsLCwUAwtatWwVBEITU1FQBgJCfny8IgiAkJiYKKpXKYNnnz58XHBwchMuXLxtM79u3rzBt2jSTObdp00aQy+WCu7u74OLiIgAQHnroIf2yTC3vdp07dxaWLVsmCIIg/P777wIAYceOHbXOW7M+p0+fFkJCQoThw4cLZWVlZvt/7rnnhCFDhgiCIAgPP/ywMG7cOEEQBCE5OVkQe9sHDhwovPnmm/r/R0RECK+99lqtOdWsd3JysqBQKISioiJBEARBq9UKLi4u+vfkm2++Edq3by9UV1fr+ygrKxNcXV2Fbdu2mcxl+/btQrNmzYSKigpBEATh448/FiIiIgzmiYiIEHr16qX/f2VlpeDu7i48++yz+mk5OTkCAOHAgQOCIAjC3Llzhccff9ygn4sXLwoAhN9//13fb9euXY1yAiAkJycLgiAIX3zxheDh4SHk5eWZXIfb3freC8LNbWr06NH6/1dXVwvNmzcXPvvss1rbz5w5UwBg9NJqtXXOgYiIbvrt/HWhzZQfTb4yzl+3dopERER1ptVq63RuYNUrAiIjI1FUVITDhw9j7969aNeuHZo1a4aIiAj9fQLS0tJw3333oXXr1gZtQ0JC9P92d3eHUqnEtWvX6rzs48ePo6qqCu3atYNCodC/du/eLXpTwrfeeguZmZk4duwYdu7cCQAYOHAgqqqqap2/sLAQCQkJ6NixIzw9PaFQKHD69Gn9X4UzMzPh4OCAiIgIs8t97LHHoNFo8N1330Eul9d5XRctWoTVq1fj9OnTRrGqqirMnTsXwcHBaNq0KRQKBbZt22b0F2sxAwYMgJOTk/4nGps2bYJSqcSjjz4KADh69CjOnDkDDw8P/Vg3bdoUpaWlZsd71apVeOqpp+Do6AgAiI2NRXp6ulGbW7cHBwcHeHt7Izg4WD+tRYsWAKDfRo4ePYrU1FSD975Dhw4AYNB3t27dzK53ZmYmunbtiqZNm9YaF3vva8tfJpPBx8fH5PY8bdo0aLVa/evixYtmcyQiItOULk5m4x4icSIiosbI0ZoL12g0aNmyJVJTU5Gfn68/Efbz80OrVq2wf/9+pKamok+fPkZtnZwMv5hlMpn+cuy6KCwshIODA3799Vc4ODgYxGq7JP9WarUaGo0GABAUFIQlS5bgkUceQWpqqv7E91YJCQnYsWMHPvzwQ2g0Gri6umLEiBH6S+JdXV3rlPPAgQOxadMmnDp1yuAkV0x4eDiio6Mxbdo0xMXFGcQ++OADLF26FEuWLEFwcDDc3d0RHx9v9nL92sjlcowYMQJr167F008/jbVr1xqcwBcWFqJbt25Ys2aNUdtmzZrV2uf169eRnJyMiooKfPbZZ/rpVVVVWLVqFebNm6efVtv2cOu0mpsa3nrJ/uDBg7Fo0SKj5fr6+ur/7e7ubna9xd47sffeXP6mtmdnZ2ferJCIqIGoFXKEB6mxp5afB4QHqaFW1L3wTkRE1FhYtRAA3LxPQFpaGvLz8/HWW2/pp4eHh2Pr1q04dOgQXn75ZUnLkMvlRn+t79q1K6qqqnDt2jX07t1bUv81hYTbb2JXIz09HXFxcYiJiQFw8yT01pvkBQcHo7q6Grt37661kFBj4cKFUCgU6Nu3L9LS0tCpU6c657hw4UKEhoaiffv2RrkNGTIEo0ePBnDzRPmPP/4w6Lu28avNqFGj8Nhjj+HkyZPYtWsX3nvvPX3sgQcewHfffYfmzZtDqVTWKec1a9agZcuWBjfmA4Dt27dj8eLFmDNnjlERp64eeOABbNq0CQEBAfpiRX2EhITgq6++wvXr12u9KkDsvSciIutSucmxcHgIpm46ZlAMCA9SY9HwEKjcWAggIqJ7j1V/GgDcLATs27cPmZmZBpfGR0RE4IsvvkB5ebnRjQLvVEBAAAoLC7Fz507k5uaiuLgY7dq1w6hRozBmzBhs3rwZ586dw6FDh7BgwQJs2bLFbH83btzAX3/9hZycHBw6dAhvvfUWmjVrhrCwsFrnDwoKwubNm5GZmYmjR4/imWeeMfhrb0BAAJ577jmMGzcOKSkpOHfuHNLS0rBhwwajvj788EOMGjUKffr0wX//+986j0FwcDBGjRqFTz75xCi3HTt2YP/+/Th9+jRefPFFXL161WCegIAAHDx4ENnZ2cjNzTX5l+rw8HD4+Phg1KhRCAwMNLiB4qhRo6BWqzFkyBDs3btXv46vvvqqyRsZrly5EiNGjECXLl0MXs8//zxyc3Px008/1Xn9b/fKK6/g+vXriI2NxeHDh3H27Fls27YNY8eOrVPRo0ZsbCx8fHwwdOhQpKen488//8SmTZtw4MABAOLvPRERWZ+fpyuWxXbFzjcikDIhDDvfiMCy2K7w9azbFXtERESNjU0UAkpKSqDRaPS/4wZuFgJu3Lihf8ygFGFhYXjppZfw1FNPoVmzZnj//fcB3Hws3ZgxY/Dmm2+iffv2GDp0KA4fPmxwPwKZTIakpCSD/t599134+vrCz88PgwYNgru7O7Zv3w5vb+9al//RRx/By8sLYWFhGDx4MKKjo/HAAw8YzPPZZ59hxIgRmDBhAjp06IAXXngBRUVFtfb38ccfY+TIkejTpw/++OMPADfvt3D7Zf+3mzNnjtFJ6IwZM/DAAw8gOjoakZGR+pPaWyUkJMDBwQGdOnVCs2bNTN4/QCaTITY2FkePHsWoUaMMYm5ubtizZw9at26NYcOGoWPHjnj++edRWlpa6xUCv/76K44ePYrhw4cbxVQqFfr27Wvy8Yp14efnh/T0dFRVVeHxxx9HcHAw4uPj4enpiSZN6v6xkMvl2L59O5o3b44BAwYgODgYCxcu1F+pUJf3noiIrE/lJkfb5gqEtvZC2+YKXglARET3NJkgCIK1k7BV586dQ7t27XDq1CkEBQVZOx2z2rRpg9mzZ4sWA+jeo9PpoFKpoNVq6/yzCyIiIiIiuvfU9dzA6lcE2LL//Oc/GD9+vM0XAU6ePAmVSoUxY8ZYOxUiIiIiIiKycbwigKiR4xUBREREREQE8IoAIiIiIiIiIqoFCwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYC6iktLQ0ymQwFBQXWTuWuk8lkSElJsXYadZKUlARPT09rp2EgOzsbMpkMmZmZ1k6FiIiIiIjs0D1bCIiLi4NMJsPChQsNpqekpEAmk91RX5GRkYiPjzeYFhYWhpycHKhUKqmp1kl0dDQcHBxw+PDhu7I8c3JyctC/f3+r5hAXF4ehQ4caTb+9QPPUU0/hjz/+uLvJiWjVqhVycnLQpUsXa6dCRBaiLS7H2WuFyLiQj7N/F0JbXG7tlIiIiIj0HK2dgCW5uLhg0aJFePHFF+Hl5dWgfcvlcvj4+DRon6ZcuHAB+/fvx8SJE7Fq1Sr06NHjriz3duXl5Xd1vRuCq6srXF1drZ2GAQcHh0Y1hkR0Z64UlGDKpmPYm5WrnxYepMbC4SHw87St/RERERHZp3v2igAAePTRR+Hj44MFCxaYnCcvLw+xsbHw9/eHm5sbgoODsW7dOn08Li4Ou3fvxtKlSyGTySCTyZCdnW3wl2edTgdXV1ds3brVoO/k5GR4eHiguLgYAHDx4kWMHDkSnp6eaNq0KYYMGYLs7GzR9UhMTMSgQYPw8ssvY926dSgpKTGIR0ZGYtKkSYiPj4eXlxdatGiBL7/8EkVFRRg7diw8PDyg0WiM8jtx4gT69+8PhUKBFi1a4Nlnn0Vubq5BvxMnTkR8fDzUajWio6MBGP804NKlS4iNjUXTpk3h7u6O7t274+DBgwCAs2fPYsiQIWjRogUUCgV69OiBn3/+2SCPgIAAzJ8/H+PGjYOHhwdat26NFStWiI5LXdz+04CjR48iKioKHh4eUCqV6NatG44cOWIwb0pKCoKCguDi4oLo6GhcvHhR374h1qe2nwacPHkSgwYNglKphIeHB3r37o2zZ882yBgQ0d2jLS43KgIAwJ6sXEzddIxXBhAREZFNuKcLAQ4ODpg/fz6WLVuGS5cu1TpPaWkpunXrhi1btuDEiRMYP348nn32WRw6dAgAsHTpUjzyyCN44YUXkJOTg5ycHLRq1cqgD6VSiUGDBmHt2rUG09esWYOhQ4fCzc0NFRUViI6OhoeHB/bu3Yv09HQoFAr069cP5eWmDwwFQUBiYiJGjx6NDh06QKPR4Pvvvzeab/Xq1VCr1Th06BAmTZqEl19+GU8++STCwsLw22+/4fHHH8ezzz6rL0oUFBSgT58+6Nq1K44cOYKffvoJV69exciRI436lcvlSE9Px+eff2603MLCQkRERODy5cv44YcfcPToUUyePBnV1dX6+IABA7Bz505kZGSgX79+GDx4MC5cuGDQz+LFi9G9e3dkZGRgwoQJePnll/H777+bHJf6GjVqFFq2bInDhw/j119/xdSpU+Hk5KSPFxcXY968efj666+Rnp6OgoICPP300wbr29Drc/nyZYSHh8PZ2Rm7du3Cr7/+inHjxqGysrLW+cvKyqDT6QxeRGQbcgvLjYoANfZk5SK3kIUAIiIisgHCPeq5554ThgwZIgiCIDz88MPCuHHjBEEQhOTkZEFstQcOHCi8+eab+v9HREQIr732msE8qampAgAhPz9f369CoRCKiooEQRAErVYruLi4CFu3bhUEQRC++eYboX379kJ1dbW+j7KyMsHV1VXYtm2byVy2b98uNGvWTKioqBAEQRA+/vhjISIiwmCeiIgIoVevXvr/V1ZWCu7u7sKzzz6rn5aTkyMAEA4cOCAIgiDMnTtXePzxxw36uXjxogBA+P333/X9du3a1SgnAEJycrIgCILwxRdfCB4eHkJeXp7Jdbhd586dhWXLlun/36ZNG2H06NH6/1dXVwvNmzcXPvvsM5N9PPfcc4KDg4Pg7u5u8HJxcTF4XxITEwWVSqVv5+HhISQlJdXaZ2JiogBA+OWXX/TTTp8+LQAQDh482GDrc+7cOQGAkJGRIQiCIEybNk0IDAwUysvLTS7jVjNnzhQAGL20Wm2d2hOR5fx2/rrQZsqPJl8Z569bO0UiIiK6h2m12jqdG9zTVwTUWLRoEVavXo3Tp08bxaqqqjB37lwEBwejadOmUCgU2LZtm9FfeMUMGDAATk5O+OGHHwAAmzZtglKpxKOPPgrg5iXpZ86cgYeHBxQKBRQKBZo2bYrS0lKzl4CvWrUKTz31FBwdb97OITY2Funp6UZtQkJC9P92cHCAt7c3goOD9dNatGgBALh27Zo+n9TUVH0uCoUCHTp0AACDvrt162Z2vTMzM9G1a1c0bdq01nhhYSESEhLQsWNHeHp6QqFQ4PTp00bje2v+MpkMPj4++lxNiYqKQmZmpsHrq6++MtvmjTfewD/+8Q88+uijWLhwodE4Ojo6GtyDoUOHDvD09NRvO5ZYn8zMTPTu3dvgygRzpk2bBq1Wq3/d+tMFIrIupYv5z7GHSJyIiIjobrinbxZYIzw8HNHR0Zg2bRri4uIMYh988AGWLl2KJUuWIDg4GO7u7oiPjzd7uX5t5HI5RowYgbVr1+Lpp5/G2rVrDU7gCwsL0a1bN6xZs8aobbNmzWrt8/r160hOTkZFRQU+++wz/fSqqiqsWrUK8+bN00+7/SRSJpMZTKt5UsKtl+wPHjwYixYtMlqur6+v/t/u7u5m11vsRnwJCQnYsWMHPvzwQ2g0Gri6umLEiBFG41tb/jW5muLu7g6NRmMwzdRPQGrMmjULzzzzDLZs2YKtW7di5syZWL9+PWJiYsy2s+T63OnNDJ2dneHs7HxHbYjo7lAr5AgPUmNPLT8PCA9SQ62QWyErIiIiIkN2UQgAgIULFyI0NBTt27c3mJ6eno4hQ4Zg9OjRAG6eKP/xxx/o1KmTfh65XI6qqirRZYwaNQqPPfYYTp48iV27duG9997Txx544AF89913aN68OZRKZZ1yXrNmDVq2bGlwYz4A2L59OxYvXow5c+bAwcGhTn3d7oEHHsCmTZsQEBCgL1bUR0hICL766itcv3691qsC0tPTERcXpz/RLiwsrNMNEi2pXbt2aNeuHV5//XXExsYiMTFRn19lZSWOHDmCBx98EADw+++/o6CgAB07dgRgmfUJCQnB6tWrUVFRUeerAojINqnc5Fg4PARTNx0zKAaEB6mxaHgIVG4sBBAREZH12cVPAwAgODgYo0aNwieffGIwPSgoCDt27MD+/ftx+vRpvPjii7h69arBPAEBATh48CCys7ORm5tr8i+74eHh8PHxwahRoxAYGIiHHnpIHxs1ahTUajWGDBmCvXv34ty5c0hLS8Orr75q8q/YK1euxIgRI9ClSxeD1/PPP4/c3Fz89NNP9R6PV155BdevX0dsbCwOHz6Ms2fPYtu2bRg7dmydih41YmNj4ePjg6FDhyI9PR1//vknNm3ahAMHDgC4Ob6bN29GZmYmjh49imeeeUb0L/2WUlJSgokTJyItLQ3nz59Heno6Dh8+rD/JB27+JX/SpEk4ePAgfv31V8TFxeHhhx/WFwYssT4TJ06ETqfD008/jSNHjiArKwvffPONRW6WSESW5+fpimWxXbHzjQikTAjDzjcisCy2K3z56EAiIiKyEXZTCACAOXPmGJ20zZgxAw888ACio6MRGRmpP6m9VUJCAhwcHNCpUyc0a9bM5P0DZDIZYmNjcfToUYwaNcog5ubmhj179qB169YYNmwYOnbsiOeffx6lpaW1XiHw66+/4ujRoxg+fLhRTKVSoW/fvli5cuUdjsD/8/PzQ3p6OqqqqvD4448jODgY8fHx8PT0RJMmdd8s5HI5tm/fjubNm2PAgAEIDg7GwoUL9VcqfPTRR/Dy8kJYWBgGDx6M6OhoPPDAA3ecb2RkpNHPOu6Ug4MD8vLyMGbMGLRr1w4jR45E//79MXv2bP08bm5umDJlCp555hn07NkTCoUC3333nT7eUOtzK29vb+zatUv/BIZu3brhyy+/5NUBRI2Yyk2Ots0VCG3thbbNFbwSgIiIiGyKTBAEwdpJEIlp06YNZs+eLbkYYE5SUhLi4+NRUFBgsWVYgk6ng0qlglarrfPPToiIiIiI6N5T13MDu7oigBqnkydPQqVSYcyYMdZOhYiIiIiIqNGzm5sFUuPVuXNnHDt2zNppEBERERER3RN4RQDR/8TFxTW6nwUQERERERHdKRYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBBARERERERHZERYCiIiIiIiIiOwICwFEREREREREdoSFACIiIiIiIiI7wkIAERERERERkR1hIYCIiIiIiIjIjrAQQERERERERGRHWAggIiIiIiIisiMsBFC9yWQypKSkmIynpaVBJpOhoKDgruV0u7i4OAwdOtRqy69NUlISPD09rZ0GERERERHZKRYCCJ9//jk8PDxQWVmpn1ZYWAgnJydERkYazFtzcn/27FnRfsPCwpCTkwOVSgWgYU+AAwICsGTJEqPps2bNQmhoqP7/S5cuRVJSUoMss6E89dRT+OOPP6ydBpFk2uJynL1WiIwL+Tj7dyG0xeXWTomIiIiI6sDR2gmQ9UVFRaGwsBBHjhzBww8/DADYu3cvfHx8cPDgQZSWlsLFxQUAkJqaitatW6Nt27ai/crlcvj4+Fg0dzE1RQhb4urqCldXV2unQSTJlYISTNl0DHuzcvXTwoPUWDg8BH6e3L6JiIiIbBmvCCC0b98evr6+SEtL009LS0vDkCFDEBgYiF9++cVgelRUlP7/ubm5iImJgZubG4KCgvDDDz8YzFvz04C0tDSMHTsWWq0WMpkMMpkMs2bNAgCUlZUhISEB/v7+cHd3x0MPPWSQixS3/zTg+++/R3BwMFxdXeHt7Y1HH30URUVFBvPOnj0bzZo1g1KpxEsvvYTy8v//K+dPP/2EXr16wdPTE97e3hg0aJDB1RHZ2dmQyWTYvHkzoqKi4Obmhvvvvx8HDhzQz1PblRH//ve/0aNHD7i4uECtViMmJqZB1p/IErTF5UZFAADYk5WLqZuO8coAIiIiIhvHQgABuHlVQGpqqv7/qampiIyMREREhH56SUkJDh48aFAImD17NkaOHIljx45hwIABGDVqFK5fv27Uf1hYGJYsWQKlUomcnBzk5OQgISEBADBx4kQcOHAA69evx7Fjx/Dkk0+iX79+yMrKatB1zMnJQWxsLMaNG4fTp08jLS0Nw4YNgyAI+nl27typj61btw6bN2/G7Nmz9fGioiK88cYbOHLkCHbu3IkmTZogJiYG1dXVBsuaPn06EhISkJmZiXbt2iE2Ntbgpxe32rJlC2JiYjBgwABkZGRg586dePDBB02uR1lZGXQ6ncGL6G7KLSw3KgLU2JOVi9xCFgKIiIiIbBl/GkAAbhYC4uPjUVlZiZKSEmRkZCAiIgIVFRX4/PPPAQAHDhxAWVmZQSEgLi4OsbGxAID58+fjk08+waFDh9CvXz+D/uVyOVQqFWQymcHPBS5cuIDExERcuHABfn5+AICEhAT89NNPSExMxPz5803mPGXKFMyYMcNgWnl5OTp16lTr/Dk5OaisrMSwYcPQpk0bAEBwcLBRnqtWrYKbmxs6d+6MOXPm4K233sLcuXPRpEkTDB8+3GD+VatWoVmzZjh16hS6dOmin56QkICBAwcCuFks6dy5M86cOYMOHToY5TVv3jw8/fTTBgWH+++/3+R6L1iwwGBeortNV1phNn5DJE5ERERE1sUrAggAEBkZiaKiIhw+fBh79+5Fu3bt0KxZM0REROjvE5CWlob77rsPrVu31rcLCQnR/9vd3R1KpRLXrl2r83KPHz+OqqoqtGvXDgqFQv/avXu36A0J33rrLWRmZhq8XnrpJZPz33///ejbty+Cg4Px5JNP4ssvv0R+fr7RPG5ubvr/P/LIIygsLMTFixcBAFlZWYiNjcV9990HpVKJgIAAADcLGre6dVx8fX0BwOS4ZGZmom/fvmbX9VbTpk2DVqvVv2pyI7pblC5OZuMeInEiIiIisi5eEUAAAI1Gg5YtWyI1NRX5+fmIiIgAAPj5+aFVq1bYv38/UlNT0adPH4N2Tk6GB/wymczoMnlzCgsL4eDggF9//RUODg4GMYVCYbatWq2GRqMxmNa0aVOT8zs4OGDHjh3Yv38/tm/fjmXLlmH69Ok4ePAgAgMD65Tv4MGD0aZNG3z55Zfw8/NDdXU1unTpYnAfAcBwXGQyGQCYHJc7vXGgs7MznJ2d76gNUUNSK+QID1JjTy0/DwgPUkOtkFshKyIiIiKqK14RQHpRUVFIS0tDWlqawWMDw8PDsXXrVhw6dMjgZwF3Si6Xo6qqymBa165dUVVVhWvXrkGj0Ri8LPHEAZlMhp49e2L27NnIyMiAXC5HcnKyPn706FGUlJTo///LL79AoVCgVatWyMvLw++//44ZM2agb9++6Nixo9EVBfUREhKCnTt3Su6H6G5RucmxcHgIwoPUBtPDg9RYNDwEKjcWAoiIiIhsGa8IIL2oqCi88sorqKio0F8RAAARERGYOHEiysvLJRUCAgICUFhYiJ07d+ovwW/Xrh1GjRqFMWPGYPHixejatSv+/vtv7Ny5EyEhIfrf2TeEgwcPYufOnXj88cfRvHlzHDx4EH///Tc6duyon6e8vBzPP/88ZsyYgezsbMycORMTJ05EkyZN4OXlBW9vb6xYsQK+vr64cOECpk6dKjmvmTNnom/fvmjbti2efvppVFZW4j//+Q+mTJkiuW8iS/HzdMWy2K7ILSzHjdIKeLg4Qa2QswhARERE1AjwigDSi4qKQklJCTQaDVq0aKGfHhERgRs3bugfM1hfYWFheOmll/DUU0+hWbNmeP/99wEAiYmJGDNmDN588020b98eQ4cOxeHDhw3uRSCTyZCUlFTvZQOAUqnEnj17MGDAALRr1w4zZszA4sWL0b9/f/08ffv2RVBQEMLDw/HUU0/hiSee0D/msEmTJli/fj1+/fVXdOnSBa+//jo++OADSTkBN+/PsHHjRvzwww8IDQ1Fnz59cOjQIcn9Elmayk2Ots0VCG3thbbNFSwCEBERETUSMuHWZ6cR2aBz586hXbt2OHXqFIKCgiy2nLi4OBQUFCAlJcViy7AEnU4HlUoFrVYLpVJp7XSIiIiIiMhK6npuwCsCyOb95z//wfjx4y1aBCAiIiIiIrIXvEcA2bxXXnnF2ikQERERERHdM1gIIPofqfcgICIiIiIiagz40wAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQAiIiIiIiIiO8JCABEREREREZEdYSGAiIiIiIiIyI6wEEBERERERERkR1gIICIiIiIiIrIjLAQQERERERER2REWAoiIiIiIiIjsCAsBRERERERERHaEhQC6I9nZ2ZDJZMjMzGywPmUyGVJSUhqsvxqWyLUhBAQEYMmSJdZOg4iIiIiI7BQLAWQgLi4OMplM//L29ka/fv1w7Ngxa6eml5SUBE9Pz1pjtxYVWrVqhZycHHTp0uXuJVcHhw8fxvjx462dBpHVaYvLcfZaITIu5OPs34XQFpdbO6UGcy+vGxERETV+jtZOgGxPv379kJiYCAD466+/MGPGDAwaNAgXLlywcmZ3xsHBAT4+PtZOw0izZs2snQKR1V0pKMGUTcewNytXPy08SI2Fw0Pg5+lqxcyku5fXjYiIiO4NvCKAjDg7O8PHxwc+Pj4IDQ3F1KlTcfHiRfz9999G81ZVVeH5559HYGAgXF1d0b59eyxdutRovlWrVqFz585wdnaGr68vJk6caHL5M2fOhK+vr+SrEG7/aUB+fj5GjRqFZs2awdXVFUFBQfqCR82869evR1hYGFxcXNClSxfs3r37jtY1Li4OQ4cOxYcffghfX194e3vjlVdeQUVFhX6e238aUFBQgBdffBEtWrTQL/fHH3+UtO5EtkxbXG50ogwAe7JyMXXTsUb91/N7ed2IiIjo3sErAsiswsJCfPvtt9BoNPD29kZRUZFBvLq6Gi1btsTGjRvh7e2N/fv3Y/z48fD19cXIkSMBAJ999hneeOMNLFy4EP3794dWq0V6errRsgRBwKuvvooff/wRe/fuhUajadB1eeedd3Dq1Cls3boVarUaZ86cQUlJicE8b731FpYsWYJOnTrho48+wuDBg3Hu3Dl4e3vXaV0BIDU1Fb6+vkhNTcWZM2fw1FNPITQ0FC+88IJRTtXV1ejfvz9u3LiBb7/9Fm3btsWpU6fg4OBgcj3KyspQVlam/79Op2uA0SG6e3ILy41OlGvsycpFbmE5VG7yu5xVw7iX142IiIjuHSwEkJEff/wRCoUCAFBUVARfX1/8+OOPaNLE+AISJycnzJ49W///wMBAHDhwABs2bNCfHL/33nt488038dprr+nn69Gjh0E/lZWVGD16NDIyMrBv3z74+/ubzVGr1epzrKsLFy6ga9eu6N69O4Cbf5m/3cSJEzF8+HAANwsYP/30E1auXInJkyfXaV0BwMvLC8uXL4eDgwM6dOiAgQMHYufOnbUWAn7++WccOnQIp0+fRrt27fB/7d17UNV1/sfx1+GOXI4myiVhQc9RXBMX85KYInmPdVMxXceSvJQlpGK06raau2WS5WXM0mxNtnbLy9a22uaWS8Cmq4IX0kYTx9W01FgnkUsKwvn+/mg8v86gSIoc4DwfM2eG8/18vp/v+8O8Z+D7Pp/v50hS+/bta53H4sWLHeIAmpqSy1dqbS+9QXtj1pznBgAAmg8KAaghISFBq1evlvTDcvrXXntNw4cPV15e3jX7v/rqq3rzzTd16tQpXbp0SZWVlfrFL34hSSoqKtKZM2c0cODAWq+ZlpYmb29v7d69W0FBQTeMMSAgQPv3769x3Gq1XvecJ554QklJSdq/f7+GDBmikSNHKi4uzqFPnz597D97eHioR48eOnLkSJ3melWXLl0cPtEPDQ3VoUOHrhlTQUGB2rVrZy8C1MW8efM0e/Zs+/uSkhKFh4fX+XzA2QJ9PGttD7hBe2PWnOcGAACaD/YIQA1+fn6yWCyyWCzq2bOn/vjHP6q8vFxvvPFGjb4bNmxQenq6pkyZok8++UQFBQWaNGmSKit/eA7W17duG2MNHjxY33zzjT7++OM69Xdzc7PH+ONXbYYPH66vvvpKaWlp9uJEenp6na4n3XiuV3l6Ov6jbzKZZLPZrjlmXX8/P+bt7a3AwECHF9CUBPl7qb/12gW//tYgBfk33aXzzXluAACg+aAQgBsymUxyc3Or8Ty9JO3cuVNxcXGaPn26YmNjZbFYdPz4cXt7QECAIiMjlZWVVes1fvWrX+mdd97R1KlTtWHDhnqfw1Vt2rRRcnKy/vznP2vFihVau3atQ/vu3bvtP1dVVWnfvn3q3LmzpBvP9WbExMTo66+/VmFh4S2NAzQl5hZeykiKqXHD3N8apBeTYpr0M/TNeW4AAKD54NEA1FBRUaFz585J+uHRgFWrVqmsrEwjRoyo0ddqteqtt97Sxx9/rKioKL399tvKz89XVFSUvc/ChQv1+OOPq23btvaN8Xbu3Kknn3zSYaxRo0bp7bff1sMPPywPDw+NGTOmXue1YMEC3X333erSpYsqKir04Ycf2m/yr3r11VdltVrVuXNnLV++XBcuXNDkyZPrPNefKj4+Xv3791dSUpKWLVsmi8WiL7/8UiaTScOGDbul+QKNWVhLX70yPlbnyypVevmKAnw8FeTv1SxulJvz3AAAQPNAIQA1/POf/1RoaKikHz7Rj46O1ubNmzVgwACdPHnSoe+0adN04MABjRs3TiaTSePHj9f06dO1bds2e5/k5GRdvnxZy5cvV3p6uoKCgq57kz9mzBjZbDY9/PDDcnNz0+jRo7Vw4UJlZmbWuPZP5eXlpXnz5unkyZPy9fVVv379aqw+yMjIUEZGhgoKCmSxWLRlyxb7ngV1mevNeO+995Senq7x48ervLxcFotFGRkZtzQm0BSYWzTfm+PmPDcAAND0mQzDMJwdBFCb5ORkmUwmZWZm3rZrnDx5UlFRUTpw4ECNzf8au5KSEpnNZl28eJH9AgAAAAAXVtd7A1YEoFEzDEM5OTnasWOHs0MBAAAAgGaBQgAaNZPJpK+++srZYQAAAABAs0EhAJAUGRkpnpIBAAAA4Ar4+kAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQAAAAAAAFwIhQA0KiaTSR988MF123NycmQymVRcXNxgMf1YZmamWrZsWW/jOXs+AAAAAFwPhQDcFmvWrFFAQICqqqrsx8rKyuTp6akBAwY49L16M3z8+PEbjhsXF6ezZ8/KbDZLqt8b88jISJlMJplMJrm7uyssLExTpkzRhQsX6mV8AA3r4veVOl5UpgOnLuj4/8p08fvKBjkXAACgsfNwdgBonhISElRWVqa9e/fqnnvukSR99tlnCgkJ0Z49e3T58mX5+PhIkrKzsxUREaEOHTrccFwvLy+FhITctrj/8Ic/6NFHH1V1dbUKCwv12GOPacaMGXr77bdv2zUB1L8zxZc0572D+uzYefux/tYgZSTFKKyl7207FwAAoClgRQBui06dOik0NFQ5OTn2Yzk5OXrggQcUFRWl3bt3OxxPSEiwvz9//rxGjRqlFi1ayGq1asuWLQ59ry6lz8nJ0aRJk3Tx4kX7J/kLFy6UJFVUVCg9PV133nmn/Pz81Lt3b4dYricgIEAhISG68847lZCQoOTkZO3fv/+6/Y8fP64HHnhAwcHB8vf3V8+ePfWvf/3LoU9FRYXmzJmj8PBweXt7y2KxaN26ddcc7/vvv9fw4cPVt29fHhcAbtLF7ytr3MhL0r+Pndfc9w7W+un+rZwLAADQVFAIwG2TkJCg7Oxs+/vs7GwNGDBA8fHx9uOXLl3Snj17HAoBv//97zV27FgdPHhQ999/vyZMmKDvvvuuxvhxcXFasWKFAgMDdfbsWZ09e1bp6emSpNTUVO3atUsbNmzQwYMH9eCDD2rYsGE6duxYneP/5ptvtHXrVvXu3fu6fcrKynT//fcrKytLBw4c0LBhwzRixAidOnXK3mfixIl69913tXLlSh05ckSvv/66/P39a4xVXFyswYMHy2azafv27dd95KGiokIlJSUOLwD/73xZZY0b+av+fey8zpdd/2b+Vs4FAABoKigE4LZJSEjQzp07VVVVpdLSUh04cEDx8fHq37+//dP5Xbt2qaKiwqEQ8Mgjj2j8+PGyWCx64YUXVFZWpry8vBrje3l5yWw2y2QyKSQkRCEhIfL399epU6e0fv16bd68Wf369VOHDh2Unp6ue++9V+vXr6815jlz5sjf31++vr5q166dTCaTli1bdt3+3bp107Rp03TXXXfJarXqueeeU4cOHeyrGAoLC7Vp0ya9+eabGjVqlNq3b6+BAwdq3LhxDuOcO3dO8fHxCg0N1datW9WiRYvrXnPx4sUym832V3h4eK1zAlxNyeUrtbaX1tJ+K+cCAAA0FRQCcNsMGDBA5eXlys/P12effaaOHTuqTZs2io+Pt+8TkJOTo/bt2ysiIsJ+XkxMjP1nPz8/BQYGqqioqM7XPXTokKqrq9WxY0f5+/vbX7m5uTfckPDpp59WQUGBDh48qKysLElSYmKiqqurr9m/rKxM6enp6ty5s1q2bCl/f38dOXLEviKgoKBA7u7uio+Pr/W6gwcPlsVi0caNG+Xl5VVr33nz5unixYv21+nTp2vtD7iaQB/PWtsDamm/lXMBAACaCjYLxG1jsVjUrl07ZWdn68KFC/ab4bCwMIWHh+s///mPsrOzdd999zmc5+np+I+2yWSSzWar83XLysrk7u6uffv2yd3d3aHtWkvyfywoKEgWi0WSZLVatWLFCvXp00fZ2dkaNGhQjf7p6enavn27Xn75ZVksFvn6+mrMmDGqrPxh+bCvb902FktMTNR7772nw4cPq2vXrrX29fb2lre3d53GBVxRkL+X+luD9O9rLPHvbw1SkP/1i223ci4AAEBTwYoA3FYJCQnKyclRTk6Ow9cG9u/fX9u2bVNeXp7DYwE/lZeXV41P62NjY1VdXa2ioiJZLBaH10/9xoGrhYRLly5ds33nzp165JFHNGrUKHXt2lUhISE6efKkvb1r166y2WzKzc2t9ToZGRlKTk7WwIEDdfjw4Z8UIwBH5hZeykiKUX9rkMPx/tYgvZgUI3OL69/M38q5AAAATQUrAnBbJSQkKCUlRVeuXHFYHh8fH6/U1FRVVlbeUiEgMjJSZWVlysrKUrdu3dSiRQt17NhREyZM0MSJE7V06VLFxsbqf//7n7KyshQTE6PExMTrjldaWqpz587JMAydPn1av/nNb9SmTRvFxcVds7/VatX777+vESNGyGQyaf78+Q6rFyIjI5WcnKzJkydr5cqV6tatm7766isVFRVp7NixDmO9/PLLqq6u1n333aecnBxFR0ff9O8FcHVhLX31yvhYnS+rVOnlKwrw8VSQv1edbuRv5VwAAICmgBUBuK0SEhJ06dIlWSwWBQcH24/Hx8ertLTU/jWDNysuLk6PP/64xo0bpzZt2mjJkiWSpPXr12vixIl66qmn1KlTJ40cOVL5+fkOexGYTCZlZmY6jLdgwQKFhoYqLCxMv/zlL+Xn56dPPvlErVu3vub1ly1bplatWikuLk4jRozQ0KFD1b17d4c+q1ev1pgxYzR9+nRFR0fr0UcfVXl5+TXHW758ucaOHav77rtPhYWFN/17AfDDp/sd2vrrFxGt1KGt/0+6kb+VcwEAABo7k2EYhrODABraiRMn1LFjRx0+fFhWq9XZ4dySkpISmc1mXbx4UYGBgc4OBwAAAICT1PXegBUBcEkfffSRHnvssSZfBAAAAACAn4o9AuCSUlJSnB0CAAAAADgFKwIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhFAIAAAAAAHAhHs4OAMCtMQxDklRSUuLkSAAAAAA409V7gqv3CNdDIQBo4kpLSyVJ4eHhTo4EAAAAQGNQWloqs9l83XaTcaNSAYBGzWaz6cyZMwoICJDJZLqlsUpKShQeHq7Tp08rMDCwniIEro+cQ0Mj59CQyDc0NHIOhmGotLRUYWFhcnO7/k4ArAgAmjg3Nze1a9euXscMDAzkjwcaFDmHhkbOoSGRb2ho5Jxrq20lwFVsFggAAAAAgAuhEAAAAAAAgAuhEADAztvbW88++6y8vb2dHQpcBDmHhkbOoSGRb2ho5Bzqis0CAQAAAABwIawIAAAAAADAhVAIAAAAAADAhVAIAAAAAADAhVAIAAAAAADAhVAIAGD36quvKjIyUj4+Purdu7fy8vKcHRKagcWLF6tnz54KCAhQ27ZtNXLkSB09etShz+XLl5WSkqLWrVvL399fSUlJ+vbbb50UMZqbjIwMmUwmzZo1y36MnEN9+uabb/TQQw+pdevW8vX1VdeuXbV37157u2EYWrBggUJDQ+Xr66tBgwbp2LFjTowYTVl1dbXmz5+vqKgo+fr6qkOHDnruuef04z3gyTncCIUAAJKkjRs3avbs2Xr22We1f/9+devWTUOHDlVRUZGzQ0MTl5ubq5SUFO3evVvbt2/XlStXNGTIEJWXl9v7pKWlaevWrdq8ebNyc3N15swZjR492olRo7nIz8/X66+/rpiYGIfj5Bzqy4ULF9S3b195enpq27ZtOnz4sJYuXapWrVrZ+yxZskQrV67UmjVrtGfPHvn5+Wno0KG6fPmyEyNHU/Xiiy9q9erVWrVqlY4cOaIXX3xRS5Ys0SuvvGLvQ87hhgwAMAyjV69eRkpKiv19dXW1ERYWZixevNiJUaE5KioqMiQZubm5hmEYRnFxseHp6Wls3rzZ3ufIkSOGJGPXrl3OChPNQGlpqWG1Wo3t27cb8fHxxsyZMw3DIOdQv+bMmWPce++912232WxGSEiI8dJLL9mPFRcXG97e3sa7777bECGimUlMTDQmT57scGz06NHGhAkTDMMg51A3rAgAoMrKSu3bt0+DBg2yH3Nzc9OgQYO0a9cuJ0aG5ujixYuSpDvuuEOStG/fPl25csUh/6KjoxUREUH+4ZakpKQoMTHRIbckcg71a8uWLerRo4cefPBBtW3bVrGxsXrjjTfs7SdOnNC5c+cc8s1sNqt3797kG25KXFycsrKyVFhYKEn6/PPPtWPHDg0fPlwSOYe68XB2AACc7/z586qurlZwcLDD8eDgYH355ZdOigrNkc1m06xZs9S3b1/dddddkqRz587Jy8tLLVu2dOgbHBysc+fOOSFKNAcbNmzQ/v37lZ+fX6ONnEN9+u9//6vVq1dr9uzZ+u1vf6v8/HzNmDFDXl5eSk5OtufUtf7Gkm+4GXPnzlVJSYmio6Pl7u6u6upqLVq0SBMmTJAkcg51QiEAANBgUlJS9MUXX2jHjh3ODgXN2OnTpzVz5kxt375dPj4+zg4HzZzNZlOPHj30wgsvSJJiY2P1xRdfaM2aNUpOTnZydGiONm3apL/85S9655131KVLFxUUFGjWrFkKCwsj51BnPBoAQEFBQXJ3d6+xY/a3336rkJAQJ0WF5iY1NVUffvihsrOz1a5dO/vxkJAQVVZWqri42KE/+YebtW/fPhUVFal79+7y8PCQh4eHcnNztXLlSnl4eCg4OJicQ70JDQ3Vz3/+c4djnTt31qlTpyTJnlP8jUV9efrppzV37lz9+te/VteuXfXwww8rLS1NixcvlkTOoW4oBACQl5eX7r77bmVlZdmP2Ww2ZWVlqU+fPk6MDM2BYRhKTU3V3/72N3366aeKiopyaL/77rvl6enpkH9Hjx7VqVOnyD/clIEDB+rQoUMqKCiwv3r06KEJEybYfybnUF/69u1b4ytRCwsL9bOf/UySFBUVpZCQEId8Kykp0Z49e8g33JTvv/9ebm6Ot3Hu7u6y2WySyDnUDY8GAJAkzZ49W8nJyerRo4d69eqlFStWqLy8XJMmTXJ2aGjiUlJS9M477+jvf/+7AgIC7M8nms1m+fr6ymw2a8qUKZo9e7buuOMOBQYG6sknn1SfPn10zz33ODl6NEUBAQH2PSiu8vPzU+vWre3HyTnUl7S0NMXFxemFF17Q2LFjlZeXp7Vr12rt2rWSJJPJpFmzZun555+X1WpVVFSU5s+fr7CwMI0cOdK5waNJGjFihBYtWqSIiAh16dJFBw4c0LJlyzR58mRJ5BzqyNlfWwCg8XjllVeMiIgIw8vLy+jVq5exe/duZ4eEZkDSNV/r16+397l06ZIxffp0o1WrVkaLFi2MUaNGGWfPnnVe0Gh2fvz1gYZBzqF+bd261bjrrrsMb29vIzo62li7dq1Du81mM+bPn28EBwcb3t7exsCBA42jR486KVo0dSUlJcbMmTONiIgIw8fHx2jfvr3xzDPPGBUVFfY+5BxuxGQYhuHMQgQAAAAAAGg47BEAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAADQiO3atUvu7u5KTEx0digAgGbCZBiG4ewgAAAAcG1Tp06Vv7+/1q1bp6NHjyosLMzZIQEAmjhWBAAAADRSZWVl2rhxo5544gklJiYqMzPToX3Lli2yWq3y8fFRQkKC/vSnP8lkMqm4uNjeZ8eOHerXr598fX0VHh6uGTNmqLy8vGEnAgBoVCgEAAAANFKbNm1SdHS0OnXqpIceekhvvvmmri7mPHHihMaMGaORI0fq888/17Rp0/TMM884nH/8+HENGzZMSUlJOnjwoDZu3KgdO3YoNTXVGdMBADQSPBoAAADQSPXt21djx47VzJkzVVVVpdDQUG3evFkDBgzQ3Llz9Y9//EOHDh2y9//d736nRYsW6cKFC2rZsqWmTp0qd3d3vf766/Y+O3bsUHx8vMrLy+Xj4+OMaQEAnIwVAQAAAI3Q0aNHlZeXp/Hjx0uSPDw8NG7cOK1bt87e3rNnT4dzevXq5fD+888/V2Zmpvz9/e2voUOHymaz6cSJEw0zEQBAo+Ph7AAAAABQ07p161RVVeWwOaBhGPL29taqVavqNEZZWZmmTZumGTNm1GiLiIiot1gBAE0LhQAAAIBGpqqqSm+99ZaWLl2qIUOGOLSNHDlS7777rjp16qSPPvrIoS0/P9/hfffu3XX48GFZLJbbHjMAoOlgjwAAAIBG5oMPPtC4ceNUVFQks9ns0DZnzhx9+umn2rRpkzp16qS0tDRNmTJFBQUFeuqpp/T111+ruLhYZrNZBw8e1D333KPJkydr6tSp8vPz0+HDh7V9+/Y6ryoAADQ/7BEAAADQyKxbt06DBg2qUQSQpKSkJO3du1elpaX661//qvfff18xMTFavXq1/VsDvL29JUkxMTHKzc1VYWGh+vXrp9jYWC1YsMDhcQMAgOthRQAAAEAzsWjRIq1Zs0anT592digAgEaMPQIAAACaqNdee009e/ZU69attXPnTr300ktKTU11dlgAgEaOQgAAAEATdezYMT3//PP67rvvFBERoaeeekrz5s1zdlgAgEaORwMAAAAAAHAhbBYIAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIALoRAAAAAAAIAL+T/iJeh2g2hCyQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "# Scatter plot для столбцов 'age' и 'race'\n", - "plt.figure(figsize=(10, 6))\n", - "sns.scatterplot(x='age', y='race', data=df)\n", - "plt.title('Scatter Plot для age и race')\n", - "plt.xlabel('Age')\n", - "plt.ylabel('Race')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Удаление строк с пустыми значениями" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "df_cleaned = df.dropna()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Разбиение набора данных на обучающую, контрольную и тестовую выборки" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Размер обучающей выборки: 4770\n", - "Размер контрольной выборки: 1591\n", - "Размер тестовой выборки: 1591\n" - ] - } - ], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "\n", - "# Разделение на обучающую и тестовую выборки\n", - "train_df, test_df = train_test_split(df_cleaned, test_size=0.2, random_state=42)\n", - "\n", - "# Разделение обучающей выборки на обучающую и контрольную\n", - "train_df, val_df = train_test_split(train_df, test_size=0.25, random_state=42)\n", - "\n", - "print(\"Размер обучающей выборки:\", len(train_df))\n", - "print(\"Размер контрольной выборки:\", len(val_df))\n", - "print(\"Размер тестовой выборки:\", len(test_df))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Применение методов приращения данных (аугментации)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Распределение reace в обучающей выборке после oversampling:\n", - "race\n", - "Black 2187\n", - "White 2187\n", - "Hispanic 2187\n", - "Unknown 2187\n", - "Native American 2187\n", - "Asian 2187\n", - "White,Black,Native American 2187\n", - "Other 2187\n", - "White,Black 2187\n", - "Name: count, dtype: int64\n", - "\n", - "Распределение reace в контрольной выборке после oversampling:\n", - "race\n", - "White 718\n", - "Black 718\n", - "Unknown 718\n", - "Hispanic 718\n", - "Asian 718\n", - "Native American 718\n", - "Other 718\n", - "Name: count, dtype: int64\n", - "\n", - "Распределение reace в тестовой выборке после oversampling:\n", - "race\n", - "Unknown 750\n", - "White 750\n", - "Black 750\n", - "Hispanic 750\n", - "Asian 750\n", - "Native American 750\n", - "Black,Hispanic 750\n", - "Other 750\n", - "White,Black 750\n", - "Native American,Hispanic 750\n", - "Name: count, dtype: int64\n", - "\n", - "Распределение reace в обучающей выборке после undersampling:\n", - "race\n", - "Asian 1\n", - "Black 1\n", - "Hispanic 1\n", - "Native American 1\n", - "Other 1\n", - "Unknown 1\n", - "White 1\n", - "White,Black 1\n", - "White,Black,Native American 1\n", - "Name: count, dtype: int64\n", - "\n", - "Распределение reace в контрольной выборке после undersampling:\n", - "race\n", - "Asian 7\n", - "Black 7\n", - "Hispanic 7\n", - "Native American 7\n", - "Other 7\n", - "Unknown 7\n", - "White 7\n", - "Name: count, dtype: int64\n", - "\n", - "Распределение reace в тестовой выборке после undersampling:\n", - "race\n", - "Asian 1\n", - "Black 1\n", - "Black,Hispanic 1\n", - "Hispanic 1\n", - "Native American 1\n", - "Native American,Hispanic 1\n", - "Other 1\n", - "Unknown 1\n", - "White 1\n", - "White,Black 1\n", - "Name: count, dtype: int64\n", - "\n" - ] - } - ], - "source": [ - "from imblearn.over_sampling import RandomOverSampler\n", - "\n", - "def check_balance(df, name):\n", - " counts = df['race'].value_counts()\n", - " print(f\"Распределение reace в {name}:\")\n", - " print(counts)\n", - " print()\n", - "\n", - "def oversample(df):\n", - " X = df.drop('race', axis=1)\n", - " y = df['race']\n", - " \n", - " oversampler = RandomOverSampler(random_state=42)\n", - " X_resampled, y_resampled = oversampler.fit_resample(X, y)\n", - " \n", - " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", - " return resampled_df\n", - "\n", - "train_df_oversampled = oversample(train_df)\n", - "val_df_oversampled = oversample(val_df)\n", - "test_df_oversampled = oversample(test_df)\n", - "\n", - "check_balance(train_df_oversampled, \"обучающей выборке после oversampling\")\n", - "check_balance(val_df_oversampled, \"контрольной выборке после oversampling\")\n", - "check_balance(test_df_oversampled, \"тестовой выборке после oversampling\")\n", - "\n", - "def undersample(df):\n", - " X = df.drop('race', axis=1)\n", - " y = df['race']\n", - " \n", - " undersampler = RandomUnderSampler(random_state=42)\n", - " X_resampled, y_resampled = undersampler.fit_resample(X, y)\n", - " \n", - " resampled_df = pd.concat([X_resampled, y_resampled], axis=1)\n", - " return resampled_df\n", - "\n", - "train_df_undersampled = undersample(train_df)\n", - "val_df_undersampled = undersample(val_df)\n", - "test_df_undersampled = undersample(test_df)\n", - "\n", - "check_balance(train_df_undersampled, \"обучающей выборке после undersampling\")\n", - "check_balance(val_df_undersampled, \"контрольной выборке после undersampling\")\n", - "check_balance(test_df_undersampled, \"тестовой выборке после undersampling\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "aimenv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} -- 2.25.1