lab_1 #3

Merged
Arutunyan-Dmitry merged 7 commits from lab_1 into main 2024-09-28 09:59:08 +04:00
7 changed files with 0 additions and 8205 deletions
Showing only changes of commit 190f392d59 - Show all commits

View File

@ -1,52 +0,0 @@
import importlib
import os
import traceback
import matplotlib
from apiflask import APIBlueprint, APIFlask
from flask_cors import CORS
matplotlib.use("agg")
cors = CORS()
api_bp = APIBlueprint("api", __name__, url_prefix="/api/v1")
dataset_path: str | None = None
class Config:
SECRET_KEY = "secret!"
SEND_FILE_MAX_AGE_DEFAULT = -1
def create_app():
global dataset_path
# Create and configure app
app = APIFlask(
"MAI Service",
title="MAI Service API",
docs_path="/",
version="1.0",
static_folder="",
template_folder="",
)
app.config.from_object(Config)
dataset_path = os.path.join(app.instance_path, "dataset")
os.makedirs(dataset_path, exist_ok=True)
@app.errorhandler(Exception)
def my_error_processor(error):
traceback.print_exception(error)
return {"message": str(error), "detail": "No details"}, 500
# Import custom REST methods
importlib.import_module("backend.api")
# Enable REST API
app.register_blueprint(api_bp)
# Enable app extensions
cors.init_app(app)
return app

View File

@ -1,57 +0,0 @@
from apiflask import FileSchema, Schema, fields
from flask import send_file
from backend import api_bp, dataset_path
from backend.service import Service
class FileUpload(Schema):
file = fields.File(required=True)
class ColumnInfoDto(Schema):
datatype = fields.String()
items = fields.List(fields.String())
class TableColumnDto(Schema):
name = fields.String()
datatype = fields.String()
items = fields.List(fields.String())
service = Service(dataset_path)
@api_bp.post("/dataset")
@api_bp.input(FileUpload, location="files")
def upload_dataset(files_data):
uploaded_file = files_data["file"]
return service.upload_dataset(uploaded_file)
@api_bp.get("/dataset")
def get_all_datasets():
return service.get_all_datasets()
@api_bp.get("/dataset/<string:name>")
@api_bp.output(TableColumnDto(many=True))
def get_dataset_info(name: str):
return service.get_dataset_info(name)
@api_bp.get("/dataset/<string:name>/<string:column>")
@api_bp.output(ColumnInfoDto)
def get_column_info(name: str, column: str):
return service.get_column_info(name, column)
@api_bp.get("/dataset/draw/hist/<string:name>/<string:column>")
@api_bp.output(
FileSchema(type="string", format="binary"), content_type="image/png", example=""
)
def get_dataset_hist(name: str, column: str):
data = service.get_hist(name, column)
data.seek(0)
return send_file(data, download_name=f"{name}.hist.png", mimetype="image/png")

View File

@ -1,59 +0,0 @@
import io
import os
import pathlib
from typing import BinaryIO, Dict, List
import pandas as pd
from matplotlib.figure import Figure
from werkzeug.datastructures import FileStorage
from werkzeug.utils import secure_filename
class Service:
def __init__(self, dataset_path: str | None) -> None:
if dataset_path is None:
raise Exception("Dataset path is not defined")
self.__path: str = dataset_path
def __get_dataset(self, filename: str) -> pd.DataFrame:
full_file_name = os.path.join(self.__path, secure_filename(filename))
return pd.read_csv(full_file_name)
def upload_dataset(self, file: FileStorage) -> str:
if file.filename is None:
raise Exception("Dataset upload error")
file_name: str = file.filename
full_file_name = os.path.join(self.__path, secure_filename(file_name))
file.save(full_file_name)
return file_name
def get_all_datasets(self) -> List[str]:
return [file.name for file in pathlib.Path(self.__path).glob("*.csv")]
def get_dataset_info(self, filename) -> List[Dict]:
dataset = self.__get_dataset(filename)
dataset_info = []
for column in dataset.columns:
items = dataset[column].astype(str)
column_info = {
"name": column,
"datatype": dataset.dtypes[column],
"items": items,
}
dataset_info.append(column_info)
return dataset_info
def get_column_info(self, filename, column) -> Dict:
dataset = self.__get_dataset(filename)
datatype = dataset.dtypes[column]
items = sorted(dataset[column].astype(str).unique())
return {"datatype": datatype, "items": items}
def get_hist(self, filename, column) -> BinaryIO:
dataset = self.__get_dataset(filename)
bytes = io.BytesIO()
plot: Figure | None = dataset.plot.hist(column=[column], bins=80).get_figure()
if plot is None:
raise Exception("Can't create hist plot")
plot.savefig(bytes, dpi=300, format="png")
return bytes

File diff suppressed because it is too large Load Diff