AIM-PIbd-32-Kuzin-P-S/lab_1/lab1.ipynb

158 lines
181 KiB
Plaintext
Raw Normal View History

2024-09-27 19:59:23 +04:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Hello** \n",
"#Блок комментов \n",
"Толстый - ** **\n",
"Курсив - * *\n",
"Зачеркнутый - ~~ ~~ \n",
"Выводок колонок: print(df.columns)\n",
"\n",
"df.info() - информация о всех колонках в таблице (сколько записей в каждой колонке, какой тип данных в записи)\n",
"\n",
".transpose() - транспонировать матрицу\n",
"df.drop() - возвращает таблицу с убраннами столбцами () axis = ось (0 или index - значит строки/1 или coloumns - столбцы) "
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Date', ylabel='High'>"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACVcAAAFzCAYAAAAwz6t9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXL0lEQVR4nO3deZiVdf0//tdhGxZhFBhWlUVwyRU1UDHUItHUj6aloeaSaRaK5pakZZZKmTtqroGmQWqaZi6ZoCRiKkKJC4KAO8giMywJOvP+/dGP+XLgMBxwZs4sj8d1zXXNvO/73Od1znmd+5xzn+e870xKKQUAAAAAAAAAAABZmhS6AAAAAAAAAAAAgLpIuAoAAAAAAAAAACAH4SoAAAAAAAAAAIAchKsAAAAAAAAAAAByEK4CAAAAAAAAAADIQbgKAAAAAAAAAAAgB+EqAAAAAAAAAACAHISrAAAAAAAAAAAAcmhW6AJqWkVFRXz44YfRtm3byGQyhS4HAAAAAAAAAAAosJRSLF26NLp16xZNmqx/fqoGH6768MMPY6uttip0GQAAAAAAAAAAQB3z3nvvxZZbbrne5Q0+XNW2bduI+N8d0a5duwJXAwAAAAAAAAAAFFpZWVlstdVWldmi9Wnw4arVpwJs166dcBUAAAAAAAAAAFBpdbZofdZ/wkAAAAAAAAAAAIBGTLgKAAAAAAAAAAAgB+EqAAAAAAAAAACAHISrAAAAAAAAAAAAchCuAgAAAAAAAAAAyEG4CgAAAAAAAAAAIAfhKgAAAAAAAAAAgByaFboAAAAAAAAAAABoKGYvWBbvLF4RPTu0iV4d2xS6HL4g4SoAAAAAAAAAAPiClqxYFcPHTouJMxdUjg3qWxKjhvaL4tbNC1gZX4TTAgIAAAAAAAAAwBc0fOy0mDRrYdbYpFkL48yxUwtUEdVBuAoAAAAAAAAAAL6A2QuWxcSZC6I8pazx8pRi4swFMWfh8gJVxhclXAUAAAAAAAAAAF/AO4tXVLl87iLhqvpKuAoAAAAAAAAAAL6AHu1bV7m8Z4c2tVQJ1U24CgAAAAAAAAAAvoDeJZvFoL4l0TSTyRpvmsnEoL4l0aujcFV9JVwFAAAAAAAAAABf0Kih/WJgn45ZYwP7dIxRQ/sVqCKqQ7NCFwAAAAAAAAAAAPVdcevmcfcp/WPOwuUxd9Hy6NmhjRmrGgDhKgAAAAAAAAAAqCa9OgpVNSROCwgAAAAAAAAAAJCDcBUAAAAAAAAAAEAOwlUAAAAAAAAAAAA5CFcBAAAAAAAAAADkIFwFAAAAAAAAAACQg3AVAAAAAAAAAABADsJVAAAAAAAAAAAAOTQrdAEAAAAAAAAAAPXZ7AXL4p3FK6JnhzbRq2ObQpcDVCPhKgAAAAAAAACATbBkxaoYPnZaTJy5oHJsUN+SGDW0XxS3bl7AyoDq4rSAAAAAAAAAAACbYPjYaTFp1sKssUmzFsaZY6cWqCKguglXAQAAAAAAAABspNkLlsXEmQuiPKWs8fKUYuLMBTFn4fICVQZUJ+EqAAAAAAAAAICN9M7iFVUun7tIuAoaAuEqAAAAAAAAAICN1KN96yqX9+zQppYqAWqScBUAAAAAAAAAwEbqXbJZDOpbEk0zmazxpplMDOpbEr06CldBQyBcBQAAAAAAAACwCUYN7RcD+3TMGhvYp2OMGtqvQBUB1a1ZoQsAAAAAAAAAAKiPils3j7tP6R9zFi6PuYuWR88ObcxYBQ2McBUAAAAAAAAAwBfQq6NQFTRUTgsIAAAAAAAAAACQg3AVAAAAAAAAAABADgUNV5WXl8fPfvaz6NWrV7Rq1Sq22Wab+NWvfhUppcp1Ukrx85//PLp27RqtWrWKwYMHx8yZMwtYNQAAAAAAAAAA0BgUNFz1m9/8Jn73u9/FjTfeGG+88Ub85je/iSuvvDJGjRpVuc6VV14ZN9xwQ9xyyy3xr3/9K9q0aRNDhgyJTz/9tICVAwAAAAAAAAAADV0mrTlNVC079NBDo3PnznHnnXdWjh111FHRqlWruOeeeyKlFN26dYtzzz03zjvvvIiIKC0tjc6dO8eYMWPiO9/5zgavo6ysLIqLi6O0tDTatWtXY7cFAAAAAAAAAACoH/LNFBV05qp99tknnn766XjrrbciIuLf//53PPfcc3HwwQdHRMScOXNi3rx5MXjw4MrLFBcXx4ABA2Ly5Mk5t7ly5cooKyvL+gEAAAAAAAAAANhYzQp55RdeeGGUlZXF9ttvH02bNo3y8vK4/PLL47jjjouIiHnz5kVEROfOnbMu17lz58plaxs5cmRceumlNVs4AAAAAAAAAADQ4BV05qr77rsv7r333vjjH/8Yr7zyStx1111x1VVXxV133bXJ2xwxYkSUlpZW/rz33nvVWDEAAAAAAAAAANBYFHTmqvPPPz8uvPDC+M53vhMRETvvvHO88847MXLkyDjxxBOjS5cuERExf/786Nq1a+Xl5s+fH7vttlvObRYVFUVRUVGN1w4AAAAAAAAAADRsBZ25asWKFdGkSXYJTZs2jYqKioiI6NWrV3Tp0iWefvrpyuVlZWXxr3/9K/bee+9arRUAAAAAAAAAAGhcCjpz1WGHHRaXX355bL311rHjjjvG1KlT45prronvfe97ERGRyWTi7LPPjssuuyz69u0bvXr1ip/97GfRrVu3OOKIIwpZOgAAAAAAAAAA0MAVNFw1atSo+NnPfhY/+tGP4uOPP45u3brFD37wg/j5z39euc4FF1wQy5cvj9NOOy2WLFkS++67bzzxxBPRsmXLAlYOAAAAAAAAAAA0dJmUUip0ETWprKwsiouLo7S0NNq1a1focgAAAAAAAAAAgALLN1PUpBZrAgAAAAAAAAAAqDeEqwAAAAAAAAAAAHIQrgIAAAAAAAAAAMhBuAoAAAAAAAAAACAH4SoAAAAAAAAAAIAchKsAAAAAAAAAAAByEK4CAAAAAAAAAADIoVmhCwAAAAAAAACA+mb2gmXxzuIV0bNDm+jVsU2hywGghghXAQAAAAAAAECelqxYFcPHTouJMxdUjg3qWxKjhvaL4tbNC1gZADXBaQEBAAAAAAAAIE/Dx06LSbMWZo1NmrUwzhw7tUAVAVCThKsAAAAAAAAAIA+zFyyLiTMXRHlKWePlKcXEmQtizsLlBaoMgJoiXAUAAAAAAAAAeXhn8Yoql89dJFwF0NAIVwEAAAAAAABAHnq0b13l8p4d2tRSJQDUFuEqAAAAAAAAAMhD75LNYlDfkmiayWSNN81kYlDfkujVUbgKoKERrgIAAAAAAACAPI0a2i8G9umYNTawT8cYNbRfgSoCoCY1K3QBAAAAAAAAAFBfFLduHnef0j/mLFwecxctj54d2pixCqABE64CAAAAAAAAgI3Uq6NQFUBj4LSAAAAAAAAAAAAAOQhXAQAAAAAAAAAA5CBcBQAAAAAAAAAAkINwFQAAAAAAAAAAQA7CVQAAAAAAAAAAADkIVwEAAAAAAAAAAOQgXAUAAAAAAAAAAJCDcBUAAAAAAAAAAEAOwlUAAAAAAAAAAAA5CFcBAAAAAAAAAADkIFwFAAAAAAAAAACQg3AVAAAAAAAAAABADsJVAAAAAAAAAAAAOQhXAQAAAAAAAAAA5CBcBQAAAAAAAAAAkINwFQAAAAAAAAAAQA7CVQAAAAAAAAAAADkIVwEAAAAAAAAAAOQgXAUAAAAAAAAAAJCDcBUAAAAAAAAAAEAOwlUAAAAAAAAAAAA5CFcBAAAAAAAAAADkIFwFAAAAAAAAAACQg3AVAAAAAAAAAABADsJVAAAAAAAAAAAAOQhXAQAAAAAAAAAA5CBcBQAAAAAAAAAAkINwFQAAAAAAAAAAQA7CVQAAAAAAAAAAADkIVwEAAAAAAAAAAOQgXAUAAAAAAAAAAJCDcBUAAAAAAAAAAEAOwlUAAAAAAAAAAAA5CFcBAAAAAAAAAADkIFwFAAAAAAAAAACQQ8HDVR988EEcf/zx0aFDh2jVqlXsvPPO8fLLL1cuTynFz3/+8+jatWu0atUqBg8eHDNnzixgxQAAAAAAAAAAQGNQ0HDVJ598EgM
"text/plain": [
"<Figure size 3000x400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"## Начало начал\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from datetime import date\n",
"\n",
"df = pd.read_csv(\".//static//csv//Starbucks Dataset.csv\")\n",
"\n",
"viborka = df.groupby(df.index // 500).head(1)\n",
"viborka.plot.scatter(x=\"Date\", y=\"High\", figsize=(30, 4))\n",
"# Диаграмма цен:"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAAShCAYAAAAEBeMZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zdVf3H8fcdudl7NU1aOimjjLKnCCogCsj4oaIgynQrMhSFiqKiKCjTwQZL2VCg7Fla6N4rHdl7JzfJ3d/fHymB2pWk9+bc8Xo+Ht9H6b03977bR7ntfedzzrFZlmUJAAAAAAAAiBC76QAAAAAAAACIbxRQAAAAAAAAiCgKKAAAAAAAAEQUBRQAAAAAAAAiigIKAAAAAAAAEUUBBQAAAAAAgIiigAIAAAAAAEBEUUABAAAAAAAgoiigAAAAAAAAEFEUUAAAAAAAAIgoCigAAAAAAABEFAUUAAAAAAAAIooCCgAAAAAAABFFAQUAAAAAAICIooACAAAAAABARFFAAQAAAAAAIKIooAAAAAAAABBRFFAAAAAAAACIKAooAAAAAAAARBQFFAAAAAAAACKKAgoAAAAAAAARRQEFAAAAAACAiKKAAgAAAAAAQERRQAEAAAAAACCiKKAAAAAAAAAQURRQAAAAAAAAiCgKKAAAAAAAAEQUBRQAAAAAAAAiigIKAAAAAAAAEUUBBQAAAAAAgIiigAIAAAAAAEBEUUABAAAAAAAgoiigAAAAAAAAEFEUUAAAAAAAAIgoCigAAAAAAABEFAUUAAAAAAAAIooCCgAAAAAAABFFAQUAAAAAAICIooACAAAAAABARFFAAQAAAAAAIKIooAAAAAAAABBRFFAAAAAAAACIKAooAAAAAAAARBQFFAAAAAAAACKKAgoAAAAAAAARRQEFAAAAAACAiKKAAgAAAAAAQERRQAEAAAAAACCiKKAAAAAAAAAQURRQADBCfX19CoVCpmMAAAAAQNSjgAKAEVi5cqVuvfVWPf/886ajAAAAAEDUo4ACgBEoLCxUMBjUzJkz5fP5TMcBAAAAgKhGAQUAQxQIBGRZliRp7NixOuqoo7Ru3Trde++9hpMBAAAAQHSjgAKAXWhvb1dHR4eCwaAkyel0ymaz6e2339Zxxx2n888/X1/60pc0ZcoUw0kBAAAAILpRQAHALvz5z3/WFVdcIYfDIUl6/vnnddBBB+m0005TYWGhXnzxRT3++OM644wzDCcFAAAAgOhmsz5ZTwIA2M5HH32kE044Qb///e/1wAMPqLa2Vueff74uvfRSzZgxQ7m5uYOPtSxLNpvNYFoAAAAAiF4UUACwG2eccYZee+01XXXVVfr2t7+t6dOnKysry3QsAAAAAIgpFFAAsBsffvihPve5z2nFihU6+OCDd7j/6aef1lNPPaWioiJdeumlOuywwwykBAAAAIDoxh5QALAbJ5xwgg444ADNmTNHkgZPwfN4PPrGN76hCy+8UJZlaf369fre976n1157zWRcAAAAAIhKTtMBACDaPfzww2pqapKkwX2etmzZokWLFmn27Nk677zz5Ha79c9//lNXX321Tj/9dJNxAQAAACDqMAEFAHtwxBFH6LTTTtPcuXNVXV0tSSovL1dvb6/OOecc+Xw+paWl6ZxzzpHb7da6desMJwYAAACA6EIBBQBDsGbNGv3lL3+R1+uVNLA5eUtLi5YtWyaXyyW73a6VK1dq/PjxKisrM5wWAAAAAKILS/AAYAgOPfRQbdq0Se+++66mTp2q5ORkzZw5U9ddd50uuOAC9fT06G9/+5vOPPNMZWZmmo4LAAAAAFGFAgoAhuj666/XnXfeqfT0dH3rW9/SlVdeqfLycl199dWy2Wy66KKLdPvttw/uEwUAAAAAGGCzPjnSCQCwR9ddd51mz54tp9Op3t5eTZo0SQ6HQ//3f/+niy66SHl5eaYjAgAAAEDUoYACgGFav369PvzwQ6WlpSkpKUnHH3+8SktL1dfXp8cee0wffPCBDjjgAH3zm9/UpEmTTMcFAAAAAOMooAAgDFpbW3X++efr448/1sknn6zu7m55PB69/PLLKikpMR0PAAAAAIziFDwA2EuhUEgLFizQ5s2btWzZMr366quaM2eOpkyZouuvv950PAAAAAAwjgIKAEagublZc+bMUVdXl+x2uxYuXKjx48frgAMOkNvtVn5+vi6++GItXrxY/f39puMCAAAAgFEUUAAwAm+//bbuv/9+fbKK+ayzztLHH38sScrIyJAkLVmyRDNmzFBKSopY7QwAAAAgkbEHFACMQGNjoyZOnKgFCxZoxowZkgZKqOzsbJ1++umqq6vTzJkzdfPNN+u6664znBYAAAAAzKKAAoAR+sY3vqHe3l794Ac/0Je//GVt2rRJP/jBD/TOO+8oLS1Nv/zlL/XrX//adEwAAAAAMI4CCgBGqL6+Xr/+9a/14osvqrS0VFVVVZo2bZrGjRunc889V2eddZaysrJUWVmp5ORkTsMDAAAAkLAooABgLwQCAS1atEgLFy5UWVmZUlNTNWPGDJWWlg4+5r777tObb76pyy67TGeccYbBtAAAAABgBgUUAERIIBCQ0+nUpk2b9MADD2jOnDlat26d6VgAAAAAMOo4BQ8AwiAYDA7+t8/nkyQ5nU5J0tSpUzVz5kz5fD49/PDDJuIBAAAAgFEUUACwlzo7O/W73/1O1113nTZv3iyXyzV4XyAQkCSlpqbq7LPP1oIFC0zFBAAAAABjnKYDAECsy8nJ0euvv65FixZp7ty5ysnJ0WmnnaZvf/vbmjhxogKBgMrLy/Xiiy/qBz/4gem4AAAAADDq2AMKAMJg7ty5+sY3vqHFixfr+eef1yuvvKLy8nJNnjxZxcXF8vv9qqio0GOPPabDDjvMdFwAAAAAGFUUUAAQJiUlJfrd736nyy+/XIFAQOvWrdNrr72mhoYG9fb26qqrrqJ8AgAAAJCQKKAAIEzuv/9+3XLLLaqsrJRlWbLZbJIGNih3OByG0wEAAACAORRQABBGdrtdjzzyiC666KId7gsEAoMn4wEAAABAIuEUPAAIo/fee09nnnnm4M8DgYB+8IMfaMOGDXI6nQqFQgbTAQAAAIAZTEABQIR99atfVWpqqp5++mmW4wEAAABISBRQABBhy5Yt0wknnKDy8nKVlZWZjgMAAAAAo44leAAQYYcddph++MMfav369ZKkUCikjRs3qre3V/39/YbTAQAAAEDkMQEFAKPE5/Ppzjvv1Ny5c9Xb26vy8nKdeOKJ+u53v6tzzjnHdDwAAAAAiBgKKACIMJ/Pp0cffVT33HOPvF6vTjrpJE2dOlVlZWVauHChHnzwQVVWVio7O9t0VAAAAACICAooAIiw1157TTfccIOOPPJInXfeeTriiCOUl5c3eP/xxx+vU089VTNnzjSYEgAAAAAix2k6AADEs9bWVn3ve9/TF7/4Rd16663Kzc3d7n6fz6ekpCRlZWUZSggAAAAAkccm5AAQQRs2bFBxcbF+//vf71A+tbe3629/+5tWr16t4447zlBCAAAAAIg8JqAAIIJKSkq0ceNGeTyewdt6enpUXl6u+++/X3PmzNHPf/5zHXXUUQZTAgAAAEBksQcUAETYWWedpZ6eHu23336aMGGCVq5cqRdeeEEFBQW65ZZbdPHFF5uOCAAAAAARRQEFABHW2NioRx55RM8884xSUlJkt9t1+eWX69vf/vbgY5qbm1VUVGQwJQAAAABEDgUUAIySQCCgtrY2FRcXS5JCoZDuvvtuPfnkk8rOzlZnZ6euvPJKnXbaaRozZozhtAAAAAAQPhRQADBKLMuSzWaT1+vVXXfdpdtuu00tLS068sgjdcYZZyg5OVnvvPOOXC6XXn75ZdNxAQAAACBsKKAAYJTddddd+vvf/65x48apqKhIbrdbWVlZmj17tmpqanT00Ufrzjvv1Pnnn286KgAAAACEBQUUAIyiNWvW6Mgjj9RPfvIT/ehHP9K4ceNUVVWlr3/96/rKV76iG2+8Ub/85S81f/58zZs3z3RcAAAAAAgLp+kAAJBIVq1apaOOOko
"text/plain": [
"<Figure size 1500x1500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df_subset = df.groupby(df.index // 1000).head(1)\n",
"\n",
"value_counts = df_subset['Volume'].value_counts()\n",
"year = df_subset[\"Date\"]\n",
"\n",
"plt.figure(figsize=(15, 15))\n",
"plt.pie(\n",
" df_subset[\"Volume\"],\n",
" labels= df_subset[\"Date\"], # type: ignore\n",
" autopct=\"%1.1f%%\", rotatelabels=True\n",
")\n",
"plt.show()\n",
"#Сравнение объема продаж от общего числа:"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Date'>"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGwCAYAAABCV9SaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeUElEQVR4nO3dd3gVddrG8e9JD6mEkIQSeonUAIEAFkBBUCyoK+irArGLghgLsu6CLqtRd1VUmroKLLiKBVERQQhFmvTQpLcQSqjppJ55/5gQiIAQIJmTc+7PdeXancmcOc9kMOfOzG9+j80wDAMRERERJ+dmdQEiIiIiFUGhR0RERFyCQo+IiIi4BIUeERERcQkKPSIiIuISFHpERETEJSj0iIiIiEvwsLqAq8Fut3Pw4EECAgKw2WxWlyMiIiKXwDAMMjMzqVmzJm5u5X8dxilCz8GDB4mMjLS6DBEREbkM+/fvp3bt2uX+Pk4RegICAgDzhxYYGGhxNSIiInIpMjIyiIyMLPkcL29OEXpO39IKDAxU6BEREalkKmpoigYyi4iIiEtQ6BERERGXoNAjIiIiLsEpxvSIiIiUJ7vdTn5+vtVlVEqenp64u7tbXQag0CMiIvKn8vPz2bNnD3a73epSKq3g4GAiIiIsn0tPoUdEROQCDMPg0KFDuLu7ExkZWSET6DkTwzDIycnhyJEjANSoUcPSehR6RERELqCwsJCcnBxq1qxJlSpVrC6nUvL19QXgyJEjhIWFWXqrS5FVRETkAoqKigDw8vKyuJLK7XRgLCgosLQOhR4REZGLsHosSmXnKD8/hR4RERFxCQo9IiIi4hIUekRERFzQpEmTCA4OLtNrBg4cSJ8+fcqlnoqg0CMiDs0wDHLyC60uQ6RSuVA4WbhwITabjbS0NPr168f27dsrvjgL6ZF1EXEouQVFrN+fxprkk6zZe5I1ySdJyyngrja1ePWO5gT5elpdoohT8PX1LXmc3FUo9IiIpY5k5prhZt9JVu87yeaD6RQUGeds9926A/y2+zhv/6UV1zeubkGlIuaVx1MFRZa8t6+n+1V9CmrSpEkMHTqUtLS0knX//Oc/+eCDDzh16hT9+vUjNDSU2bNnk5SUVOq1//73v3nnnXfIz8/nvvvuY/To0Xh6Ov4fJAo9IlJhiuwGO45ksro45KzZd5LkEznnbFc9wJuYulVpV7cqMfVCyC+089I369l7PIeHPl3JgE51efmWa/D1cox+PuI6ThUU0WzEHEve+/d/9KSKV/l9bH/++ee8/vrrjBs3jmuvvZYvv/ySd955h/r165fabsGCBdSoUYMFCxawc+dO+vXrR3R0NI899li51Xa1KPSISLnJziskaX9ayVWcdftOkplXenyOzQZNwwOIqVcccuqGULuq7zl/0c569noSZm1lym/7mLx8H4t3HOOdvq1pU6dqRR6SSKUxc+ZM/P39S607Pdni+Xz44Yc88sgjxMXFATBixAh++eUXsrKySm1XtWpVxowZg7u7O1FRUfTu3ZvExESFHhFxLQfTTrF630nW7D3BmuSTbDmUSZG99K2qKl7utKkTTLu6IbSrW5U2dYIJ9Ln4ZfEqXh6M6tOC7s3Ceemb9ew+ls0945fxdLdGDL6xMV4eei5Dyp+vpzu//6OnZe9dFt26dWP8+PGl1q1YsYIHH3zwvNtv27aNQYMGlVrXoUMH5s+fX2pd8+bNS7WSqFGjBhs3bixTbVa5rNAzduxY/vWvf3H48GFat27Nhx9+SIcOHc677fTp03njjTfYuXMnBQUFNG7cmOeff56HHnqoZJsL3aN8++23efHFFy+nRBEpZ4VFdrYezmT13hOs3neStftOcjA995ztagX70rZu1ZLbVVERAXi4X35A6dKkOr8M7cKIHzbxfdJBPpy/kwXbjvBu32iahAdcySGJXJTNZivXW0xXk5+fH40aNSq1LiUl5Yr3+8exOzabrdJ0oC/zmZs2bRrx8fFMmDCB2NhYRo8eTc+ePdm2bRthYWHnbB8SEsIrr7xCVFQUXl5ezJw5k7i4OMLCwujZ00zLhw4dKvWan3/+mUceeYR77rnnMg9LRK62jNwC1haHm9X7TpK0P42c/NKXyt3dbDSrEUi7kvE4VakRdPWfDgmq4sn797WhR7Nw/jZjE5sOZHDbh0t4qWdTHr62Pm5ujjHlvUhl0rRpU1atWkX//v1L1q1atcrCiq6+Moeed999l8cee6zknt+ECRP46aef+Oyzz3j55ZfP2b5r166llp999lkmT57MkiVLSkJPREREqW2+//57unXrRoMGDc5bQ15eHnl5eSXLGRkZZT0MEfkThmGw/8QpVu87cxVnW2omxh8eqgrw8aBtneKrOPWq0rp2MH7eFfdX8G2tatKhXgjDvt3Agm1H+edPW5j7eyr/vrc1kSHqiC1SFoMHD+axxx4jJiaGzp07M23aNDZs2HDBz+LKqEy/nfLz81mzZg3Dhw8vWefm5kb37t1Zvnz5RV9vGAbz589n27ZtvPXWW+fdJjU1lZ9++onJkydfcD8JCQm89tprZSldRP5EfqGdzQfTzQHHxXPjHM3MO2e7utWq0K6OGXBi6obQOMzf8qsqYYE+fDawPV+u2s+omb+zYs8Jeo3+lZG3N+femNoO0+hQxNE98MAD7N69mxdeeIHc3Fz69u3LwIEDWblypdWlXTU2w/jj324XdvDgQWrVqsWyZcvo1KlTyfqXXnqJRYsWsWLFivO+Lj09nVq1apGXl4e7uzvjxo3j4YcfPu+2b7/9Nm+++SYHDx7Ex8fnvNuc70pPZGQk6enpBAYGXurhiLisk9n55iPjxRMArk9JI6+w9D15T3cbLWoFlYzFaVu3KmEB5/9v0lHsO57N81+tZ/W+kwB0vyaMhLtbUT3A2+LKpLLKzc1lz5491K9f/4KfSc6sR48eREREMGXKlCvaz4V+jhkZGQQFBVXY53eFXIcOCAggKSmJrKwsEhMTiY+Pp0GDBufc+gL47LPPeOCBB/70H5e3tzfe3volJnIpDMNg97Fs1uw9yep9J1iz7yS7jmafs13VKp7FY3HMp6pa1Q7Cp4xPi1itbjU/pj3RiU8W7+bdX7Yzb8sR1o7+lTfuakGvFjWsLk/EoeXk5DBhwgR69uyJu7s7X3zxBfPmzWPu3LlWl3bVlCn0hIaG4u7uTmpqaqn1qamp54zLOZubm1vJCPLo6Gi2bNlCQkLCOaFn8eLFbNu2jWnTppWlLBE5S25BERsPpBdPAGiGnJM5Beds17C6X8m8OO3qVaVBqJ9T3Apyd7PxZJeGdG1aneemrWfLoQyenLqWu9vUYqTaWIhckM1mY9asWbz++uvk5ubStGlTvv32W7p37251aVdNmUKPl5cX7dq1IzExsaSRmd1uJzExkWeeeeaS92O320vdnjrt008/pV27drRu3bosZYm4tKOZeSXhZvW+k2w6cG4bB28PN1rXDi55dLxt3aqE+HlZVHHFiIoIZMbTnXl/3g4mLNrF9OI2Fv+6tzXXNgq1ujwRh+Pr68u8efOsLqNclfn2Vnx8PAMGDCAmJoYOHTowevRosrOzS57m6t+/P7Vq1SIhIQEwBx3HxMTQsGFD8vLymDVrFlOmTDlnwqSMjAy+/vpr3nnnnatwWCLOyW432HEkq+Q21Zp9J9l3/Nw2DqH+ZhuHmHpmwGlRM8glJ+/z9nDnpV5R3HRNGPFfrWff8Rwe+M8KBnaux7BeUWpjIeJiyhx6+vXrx9GjRxkxYgSHDx8mOjqa2bNnEx4eDkBycjJubmd+uWZnZzNo0CBSUlLw9fUlKiqKqVOn0q9fv1L7/fLLLzEMg/vvv/8KD0nEeeTkF7dx2GtexVmbfJLM3PO3cTh9FSembgiRIee2cXBl7eqGMGvI9ST8vIWpvyUzadleft1xlHf7RhMdGWx1eSJSQcr09JajqujR3yLl5VD6qVLNOH8/lHHeNg7RkcElEwC2qVNV41TKYOG2I7z0zQaOZObh7mYrbmPRCM8rmCVanJerP711tbjU01sicq7TbRxOj8VZu+8kB9JOnbNdjSCf4gHH5pN
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from sqlite3 import Date\n",
"\n",
"\n",
"\n",
"\n",
"# year_groups = pd.cut(dates, everyFiveYears, right=False) # type: ignore\n",
"\n",
"# group_counts = year_groups.value_counts().sort_index() # type: ignore\n",
"\n",
"\n",
"# plt.figure(figsize=(10, 6))\n",
"# plt.show()\n",
2024-09-28 09:15:50 +04:00
"\n",
"df.head(5).plot(x=\"Date\", y=[\"High\", \"Low\"])\n",
"#ВЫсоты и впадины в зависимости от времени"
2024-09-27 19:59:23 +04:00
]
}
],
"metadata": {
"kernelspec": {
"display_name": "aisenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}