diff --git a/lab_5/lab5.ipynb b/lab_5/lab5.ipynb
new file mode 100644
index 0000000..02261f2
--- /dev/null
+++ b/lab_5/lab5.ipynb
@@ -0,0 +1,688 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Лабораторная 5\n",
+ "\n",
+ "Датасет: Информация об онлайн обучении учеников\n",
+ "\n",
+ "## Бизнес-цель\n",
+ "Улучшение доступа к онлайн-образованию для учеников с низким уровнем финансового обеспечения."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index(['Education Level', 'Institution Type', 'Gender', 'Age', 'Device',\n",
+ " 'IT Student', 'Location', 'Financial Condition', 'Internet Type',\n",
+ " 'Network Type', 'Flexibility Level'],\n",
+ " dtype='object')\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "df = pd.read_csv(\"..\\\\static\\\\csv\\\\students_adaptability_level_online_education.csv\")\n",
+ "print(df.columns)\n",
+ "\n",
+ "map_flexibility_to_int = {'Low': 0, 'Moderate': 1, 'High': 2}\n",
+ "\n",
+ "df['Flexibility Level'] = df['Flexibility Level'].map(map_flexibility_to_int).astype('int32')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Конвеер из 4 лабораторной"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Age | \n",
+ " Flexibility Level | \n",
+ " Education Level_School | \n",
+ " Education Level_University | \n",
+ " Institution Type_Public | \n",
+ " Gender_Male | \n",
+ " Device_Mobile | \n",
+ " Device_Tab | \n",
+ " IT Student_Yes | \n",
+ " Location_Town | \n",
+ " Financial Condition_Poor | \n",
+ " Financial Condition_Rich | \n",
+ " Internet Type_Wifi | \n",
+ " Network Type_3G | \n",
+ " Network Type_4G | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1.018272 | \n",
+ " 0.510309 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1.018272 | \n",
+ " 0.510309 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.160338 | \n",
+ " 0.510309 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -1.040771 | \n",
+ " 0.510309 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.160338 | \n",
+ " -1.107907 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1200 | \n",
+ " 0.160338 | \n",
+ " -1.107907 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1201 | \n",
+ " 0.160338 | \n",
+ " 0.510309 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1202 | \n",
+ " -1.040771 | \n",
+ " 0.510309 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1203 | \n",
+ " 0.160338 | \n",
+ " -1.107907 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1204 | \n",
+ " -1.040771 | \n",
+ " 0.510309 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1205 rows × 15 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Age Flexibility Level Education Level_School \\\n",
+ "0 1.018272 0.510309 0.0 \n",
+ "1 1.018272 0.510309 0.0 \n",
+ "2 0.160338 0.510309 0.0 \n",
+ "3 -1.040771 0.510309 1.0 \n",
+ "4 0.160338 -1.107907 1.0 \n",
+ "... ... ... ... \n",
+ "1200 0.160338 -1.107907 0.0 \n",
+ "1201 0.160338 0.510309 0.0 \n",
+ "1202 -1.040771 0.510309 1.0 \n",
+ "1203 0.160338 -1.107907 0.0 \n",
+ "1204 -1.040771 0.510309 1.0 \n",
+ "\n",
+ " Education Level_University Institution Type_Public Gender_Male \\\n",
+ "0 1.0 0.0 1.0 \n",
+ "1 1.0 0.0 0.0 \n",
+ "2 0.0 1.0 0.0 \n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "... ... ... ... \n",
+ "1200 0.0 0.0 0.0 \n",
+ "1201 0.0 0.0 0.0 \n",
+ "1202 0.0 0.0 1.0 \n",
+ "1203 0.0 0.0 0.0 \n",
+ "1204 0.0 0.0 0.0 \n",
+ "\n",
+ " Device_Mobile Device_Tab IT Student_Yes Location_Town \\\n",
+ "0 0.0 1.0 0.0 1.0 \n",
+ "1 1.0 0.0 0.0 1.0 \n",
+ "2 1.0 0.0 0.0 1.0 \n",
+ "3 1.0 0.0 0.0 1.0 \n",
+ "4 1.0 0.0 0.0 1.0 \n",
+ "... ... ... ... ... \n",
+ "1200 1.0 0.0 0.0 1.0 \n",
+ "1201 1.0 0.0 0.0 0.0 \n",
+ "1202 1.0 0.0 0.0 1.0 \n",
+ "1203 1.0 0.0 0.0 0.0 \n",
+ "1204 1.0 0.0 0.0 1.0 \n",
+ "\n",
+ " Financial Condition_Poor Financial Condition_Rich Internet Type_Wifi \\\n",
+ "0 0.0 0.0 1.0 \n",
+ "1 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 1.0 \n",
+ "3 0.0 0.0 0.0 \n",
+ "4 1.0 0.0 0.0 \n",
+ "... ... ... ... \n",
+ "1200 0.0 0.0 1.0 \n",
+ "1201 0.0 0.0 1.0 \n",
+ "1202 0.0 0.0 0.0 \n",
+ "1203 0.0 0.0 1.0 \n",
+ "1204 1.0 0.0 0.0 \n",
+ "\n",
+ " Network Type_3G Network Type_4G \n",
+ "0 0.0 1.0 \n",
+ "1 0.0 1.0 \n",
+ "2 0.0 1.0 \n",
+ "3 0.0 1.0 \n",
+ "4 1.0 0.0 \n",
+ "... ... ... \n",
+ "1200 0.0 1.0 \n",
+ "1201 0.0 1.0 \n",
+ "1202 1.0 0.0 \n",
+ "1203 0.0 1.0 \n",
+ "1204 1.0 0.0 \n",
+ "\n",
+ "[1205 rows x 15 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.compose import ColumnTransformer\n",
+ "from sklearn.impute import SimpleImputer\n",
+ "from sklearn.pipeline import Pipeline\n",
+ "from sklearn.discriminant_analysis import StandardScaler\n",
+ "from sklearn.preprocessing import OneHotEncoder\n",
+ "\n",
+ "# columns_to_drop = ['Age', 'Education Level', 'Gender', 'IT Student', 'Flexibility Level']\n",
+ "num_columns = [\n",
+ " column\n",
+ " for column in df.columns\n",
+ " if df[column].dtype != \"object\"\n",
+ "]\n",
+ "cat_columns = [\n",
+ " column\n",
+ " for column in df.columns\n",
+ " if df[column].dtype == \"object\"\n",
+ "]\n",
+ "\n",
+ "num_imputer = SimpleImputer(strategy=\"median\")\n",
+ "num_scaler = StandardScaler()\n",
+ "preprocessing_num = Pipeline(\n",
+ " [\n",
+ " (\"imputer\", num_imputer),\n",
+ " (\"scaler\", num_scaler),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "cat_imputer = SimpleImputer(strategy=\"constant\", fill_value=\"unknown\")\n",
+ "cat_encoder = OneHotEncoder(handle_unknown=\"ignore\", sparse_output=False, drop=\"first\")\n",
+ "preprocessing_cat = Pipeline(\n",
+ " [\n",
+ " (\"imputer\", cat_imputer),\n",
+ " (\"encoder\", cat_encoder),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "features_preprocessing = ColumnTransformer(\n",
+ " verbose_feature_names_out=False,\n",
+ " transformers=[\n",
+ " (\"prepocessing_num\", preprocessing_num, num_columns),\n",
+ " (\"prepocessing_cat\", preprocessing_cat, cat_columns),\n",
+ " ],\n",
+ " remainder=\"passthrough\"\n",
+ ")\n",
+ "\n",
+ "pipeline_end = Pipeline(\n",
+ " [\n",
+ " (\"features_preprocessing\", features_preprocessing),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "preprocessing_result = pipeline_end.fit_transform(df)\n",
+ "preprocessed_df = pd.DataFrame(\n",
+ " preprocessing_result,\n",
+ " columns=pipeline_end.get_feature_names_out(),\n",
+ ")\n",
+ "\n",
+ "preprocessed_df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Понижение размерности (PCA) и визуализация данных."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAIjCAYAAADxz9EgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2CUlEQVR4nOzdeXhTVfoH8G/apmnTNGnTFbrvYGllrYILoGwuMIDjuMz8AHdnZFxAHJlxARxEFBT3ZcYRR8VxZHCZcYHK4gaKIFhEKN1LC3Rv03RJ0/b+/igJTbO3uU3Sfj/Pw6O99yY5OU1z73vPe94jEQRBABEREREREbmEj7sbQERERERENJQwyCIiIiIiInIhBllEREREREQuxCCLiIiIiIjIhRhkERERERERuRCDLCIiIiIiIhdikEVERERERORCDLKIiIiIiIhciEEWERERERGRCzHIIiIiIiIiciEGWUQ0rGzevBkSicTkX2RkJKZPn47PPvvM3c0jIpFNmzbN5O9frVZj0qRJ+Mc//oHu7m6z4/fs2YOFCxciOjoa/v7+iIyMxNy5c7Ft2zaLz3/s2DFIJBIEBASgsbFR5HdDRJ6KQRYRDUtr1qzBW2+9hX/+85944IEHUFNTgyuvvBL/+9//3N00IhJZbGws3nrrLbz11lt4+OGH0dnZiVtuuQV//vOfTY579NFHMX36dPz888+444478Morr2DFihXQarW45pprsGXLFrPnfvvttxEdHQ0A2Lp166C8HyLyPBJBEAR3N4KIaLBs3rwZN910E3744QdMnDjRuL2hoQFRUVG49tpr8c4777ixhUQkpmnTpqG2thY///yzcVtraysyMjLQ0NCAhoYGSKVSbN26Fddeey1+/etfY8uWLZBKpSbPs337duj1elx99dXGbYIgIDk5GQsXLkRJSQkaGhqwe/fuQXtvROQ5OJJFRAQgJCQEgYGB8PPzM24rLS2FRCLB5s2bTY696667IJFIsGTJEuO2bdu2IScnB2q1GoGBgRg1ahTWr18Pw32s3bt3QyKR4IMPPjB77S1btkAikWDfvn0AgLy8PCxZsgTJyckICAhAdHQ0br75ZtTV1Vlse2JiolkKpEQiwZ49e0yO6d1eAHj//fchkUiQmJho3Jafn4/LLrsM0dHRkMlkiIuLw5133on6+nrjMR0dHXjkkUcwYcIEqFQqBAUF4ZJLLjG7mDT034YNG8zaPGbMGEybNs1k27Rp08y2/fDDD8b305tWq8Xy5cuRnJwMqVRq8r5ra2st9lNflvqsb7+J8V737NkDiURicZRDoVCY/J4M6a0HDhyw+j769tvixYsREBCAY8eOmRw3e/ZshIaG4tSpU1afy/A+rP3r+/uprq7GLbfcgqioKAQEBOD888/Hm2++afa83d3dePbZZ5GVlYWAgABERERgzpw5Zu/LUjqvpddtbGzEvffei7i4OMhkMqSmpmL9+vUW0/0cIZfLceGFF6KlpQU1NTUAgIcffhhqtRr/+Mc/zAIsoKc/ewdYAPDtt9+itLQU119/Pa6//np89dVXqKio6FebiMi7+dk/hIho6GlqakJtbS0EQUB1dTWef/55aLVa/O53v7P5uMLCQvztb38z267RaHDBBRdg8eLFkEql+Pzzz/Hggw/Cz88Py5cvx7Rp0xAXF4d33nkHCxYsMHnsO++8g5SUFEyePBkAkJubi+LiYtx0002Ijo7G0aNH8dprr+Ho0aP47rvvzAIOALjkkktw++23A+iZE/L444/bfB+dnZ34y1/+Yra9paUFsbGxmDt3LpRKJX7++We8+OKLqKysxH//+1/je/373/+OG264Abfddhuam5vx+uuvY/bs2di/fz/Gjh1r87Wd8ac//cni9hUrVuCVV17BLbfcgosuughSqRTbtm2zGMTaMnPmTCxatAhAT0D33HPPmewfzPfqKs8++yx27dqFxYsXY9++ffD19cWrr76KHTt24K233sLIkSPtPscNN9yAK6+80mTbypUrTX5ua2vDtGnTUFhYiKVLlyIpKQnvv/8+lixZgsbGRtxzzz3GY2+55RZs3rwZV1xxBW699VZ0dnbi66+/xnfffWcyomzwzDPPIDw8HACwdu1ak32tra2YOnUqKisrcccddyA+Ph579+7FypUrcfr0aWzatMnRrjJRXFwMX19fhISEoKCgAMePH8fNN9+M4OBgh5/D8Lc8adIkjBkzBnK5HO+++y5WrFjRrzYRkRcTiIiGkTfeeEMAYPZPJpMJmzdvNjm2pKREACC88cYbxm2/+c1vhDFjxghxcXHC4sWLbb7WeeedJ1x99dXGn1euXCnIZDKhsbHRuK26ulrw8/MTHn30UeO21tZWs+d69913BQDCV199ZbYvJiZGuOmmm4w/7969WwAg7N6927gtISHBpL0vvfSSIJPJhOnTpwsJCQk238cf/vAHQaFQGH/u7OwUdDqdyTENDQ1CVFSUcPPNNxu3GfrvqaeeMnvOzMxMYerUqSbbpk6darLt008/FQAIc+bMEfqerkaMGCHMnj3bZNujjz4qABBqampsvh9BEISOjg4BgLB06VLjtvfff9+s38R4r4bfz/vvv292bFBQkMnvyfB5/eGHH6y+l779JgiCsH37dgGA8Ne//lUoLi4WFAqFMH/+fKvP0Z/3sWnTJgGA8Pbbbxu3dXR0CJMnTxYUCoWg0WgEQRCEXbt2CQCEu+++2+w5u7u7TX7+29/+JgAQysrKrL6/xx57TAgKChJOnDhh8tgHH3xQ8PX1FcrLy22+x6lTpwqjRo0SampqhJqaGuHYsWPC3XffLQAQ5s6dKwiCIHz00UcCAOGZZ56x+Vy9dXR0CGFhYcJf/vIX47Ybb7xROP/88x1+DiIaOpguSETD0osvvojc3Fzk5ubi7bffxvTp03HrrbdarRgGAAcPHsT777+PdevWwcfH8tdnbW0tKioqsHnzZhQWFuLSSy817lu0aBF0Op1Jmth7772Hzs5OkxG0wMBA4/+3t7ejtrYWF154IQDgxx9/NHvNjo4OyGQyh997a2sr1qxZg6VLlyI+Pt7iMU1NTaiqqsLOnTvxySefmLwPX19f+Pv7A+hJA6uvr0dnZycmTpxosX39IQgCVq5ciWuuuQYXXHCB2f7m5maEhYX1+/nb29sBAAEBATaPc/a9tra2ora21uRfV1eXxedubm42O9Yaw8hrc3OzQ+9v1qxZuOOOO7BmzRosXLgQAQEBePXVVx16rKM+/fRTREdH44YbbjBuk0qluPvuu6HVavHll18CAP7zn/9AIpHg0UcfNXuOvqOyHR0dAGDz8/z+++/jkksuQWhoqEnfzZgxA11dXfjqq6/stv348eOIiIhAREQERo8ejeeffx5XXXUV/vGPfwDoGcEE4NQo1meffYa6ujqT/rjhhhvw008/4ejRow4/DxENDQyyiGhYysnJwYwZMzBjxgz89re/xSeffILzzjsPS5cuNV7o9fXggw/ikksuMZuHYdDe3o6IiAjExcXh5ptvxooVK0zShEaNGoVJkyaZFNZ45513cOGFFyI1NdW4rb6+Hvfccw+ioqIQGBiIiIgIJCUlAei52O6rqakJCoXC4ff+9NNPo7293aySWm+zZ89GdHQ0ZsyYgdGjR+O9994z2f/mm28iOzsbAQEBCAsLQ0REBD755BOL7euPd955B0ePHrWa9jh58mR88MEH2Lp1K06fPo3a2lq0trY6/PyGgEalUtk91pn3+uijjxov3g3/jh8/bvF5b775ZrNjW1paLB47Y8YMREREQKlUIjQ0FH/4wx+sHmuwYcMGqNVqHD58GM899xwiIyPtvldnlJWVIS0tzeyGw+jRo437AaCoqAgjR46EWq22+5yGkue2Ps8FBQX4/PPPzfpuxowZAHrmidmTmJiI3NxcfPHFF/jmm29w5swZ/O9//zOmKCqVSgBwOKgFeqoKJiUlQSaTobCwEIWFhUhJSYFcLmcxHaJhiHOyiIgA+Pj4YPr06Xj22WdRUFCAzMxMk/07duzAF198YSxOYYm/vz9yc3PR2tqKr7/+GuvXr0dcXBzuuOMO4zGLFi3CPffcg4qKCuh0Onz33Xd44YUXTJ7nN7/5Dfbu3YsVK1Zg7NixUCgU6O7uxpw5c8wm9tfX16Ojo8NYMtqe2tpaPPXUU1i5cqXNi97nn38etbW1+OWXX7Bu3TrceeedePvttwH0XEwuWbIE8+fPx4oVKxAZGQlfX1+sW7cORUVFDrXDlo6ODjz88MO45ZZbkJ6ebvGY1157DTfccAOuvfbafr1GaWkpAJgU/bDE2fd6++23m7Xptttus/jcjzzyCC655BKTbXPnzrV47Isvvoj09HTodDrs2bPHWGDjpZdestr2Q4cOGQOOI0eOmIyweKozZ85AoVAgKCjI6jHd3d2YOXMmHnjgAYv7rX1megsKCjIGZZaMGjUKQE+/OUKj0eC///0v2tvbkZaWZrZ/y5YtWLt2rcX5lEQ0NDHIIiI6q7OzE0BP5breBEHAgw8+iAULFhjT9izx8fExXrjNmzcP9fX1eOSRR0yCrOuvvx7Lli3Du+++i7a2NkilUlx33XXG/Q0NDdi5cydWr16NRx55xLi9oKDA4mv+8ssvAM6NHtjz17/+FcHBwSZFCSyZNGkSAOCKK65AZGQkFi1ahL/85S8YPXo0tm7diuTkZGzbts3kotFSOlh/vPTSS6iursaqVausHpOYmIi3334bWVlZuPnmmzF//nz885//xFtvveXQaxiq2lkqutCbs+81LS3N7OLdWsCQlZVldqyvr6/FY3Nycoxtveqqq/DTTz/h888/t9rulpYW3HTTTTjvvPMwZcoUPPnkk1iwYIHx9+oKCQkJyMvLQ3d3t8lolmHkLiEhAQCQkpKC7du3o76+3u5o1i+//GL3s5ySkgKtVmszSBqo9PR0ZGRk4KOPPsKzzz5rd6R427ZtaG9vx8svv2wcDTPIz8/HQw89hG+//RYXX3yxaG0mIs/CdEEiIgB6vR47duyAv7+/2UXev/71L+Tl5WHdunVOPWdtbS10Op3JtvDwcFxxxRV4++238c4772DOnDkmF2WGi2yhzxKG1iqm/etf/4K/v79DF2+lpaV4+eWXsWrVKpN5X468DwDG92Kpjd9//73NUT5HNTc3Y+3atbjvvvtsjs51dnbit7/9LTIzM/HMM89gxowZSE5Odvh1tm7dioyMDOOIhTVivteB6O7uthqQAT1VGcvLy/Hmm2/i6aefRmJiIhYvXmz2eRyIK6+8EmfOnDFJJe3s7MTzzz8PhUKBqVOnAgCuueYaCIKA1atXmz1H7349efIkvv32W1x22WU2X/c3v/kN9u3bh+3bt5vta2xsNN4sGajVq1ejrq7OWA2xrx07dhgXL3/77beRnJyMO++8E7/+9a9N/t1///1QKBRMGSQaZjiSRUTD0meffWa8415dXY0tW7agoKAADz74oHE+hsGOHTtw2223ISMjw+rzXXPNNUhNTUVKSgo6Ojrw+eef45NPPsHSpUvNjl20aBF+/etfAwAee+wxk31KpRKXXnopnnzySej1esTExGDHjh0oKSkxOa6goACPPvoo3n33XYtttuTLL7/E6NGjcdNNN1k9Zs2aNaisrMSYMWMgk8nw448/4o033kB2djays7MBAFdffTW2bduGBQsW4KqrrkJJSQleeeUVnHfeeWajgEDPnfy+oy5arRY+Pj74/PPPMWfOHOP2H3/8EeHh4VZTwQxWr16NI0eO4NChQxbXMLKmuLgYTz75JPbv34+FCxcaUyCBnhLuQE8J/fj4eCQnJzv9XsWyb98+Y9C+Z88e7Ny5E/fff7/FY3ft2oWXXnoJjz76KMaPHw8AeOONNzBt2jQ8/PDDePLJJ13Spttvvx2vvvoqlixZgoMHDyIxMRFbt27Ft99+i02bNhmLRkyfPh3/93//h+eeew4FBQXGtNevv/4a06dPx9KlS/Hyyy9j3bp1kMvluPvuu22+7ooVK/Dxxx/j6quvxpIlSzBhwgS0tLTgyJEj2Lp1K0pLS81Gk/rjuuuuw5EjR7B27VocOnQIN9xwAxISElBXV4fPP/8cO3fuxJYtW3Dq1Cns3r3bartlMhlmz56N999/H88995xTn1ci8mJurGxIRDToLJVwDwgIEMaOHSu8/PLLJiWlDeWsAwMDhcrKSpPn6VsSfdWqVUJGRoYQGBgoKJVKYezYscKzzz4r6PV6szbodDohNDRUUKlUQltbm9n+iooKYcGCBUJISIigUqmEa6+9Vjh16pQAwFjq/d133xXGjBkjPPvss2ZlsK2VcAcgfPDBBybHLl682KSE+9atW4VJkyYJSqVSCAwMFFJTU4Xly5eblEXv7u4WHn/8cSEhIUGQyWTCuHHjhP/9739mz2XoP3v/DKZOnWqxbLahNLvB119/Lfj6+gqvvvqqxeNslXC3VsK/7z9D2X5n36tYJdwN//z9/YXU1FThkUceMZaW713iXKPRCAkJCcL48ePNPnv33Xef4OPjI+zbt89q/zhbdr+qqkq46aabhPDwcMHf31/IysoyWfLAoLOzU3jqqaeEUaNGCf7+/kJERIRwxRVXCAcPHhQEQRBycnKEa6+9Vjh+/LjZYy2VqG9ubhZWrlwppKamCv7+/kJ4eLgwZcoUYcOGDUJHR4fV92d4vszMTJvH9LZz507hV7/6lRAZGSn4+fkJERERwty5c4WPPvpIEARB2LhxowBA2Llzp9Xn2Lx5swDA+BgiGvokgtAnJ4WIiETV2dmJkSNHYu7cuXj99dfd3Ry32bNnD6ZPn26WGimmzZs3Y9WqVcbCF5ZMmzYNS5YswZIlSwatXURENLRwThYR0SD78MMPUVNTg0WLFrm7KURERCQCzskiIhok33//PfLy8vDYY49h3LhxxsIAw5Varcbs2bMH9TVTUlKwYMECm8fMnDkTKSkpg9QiIiIaipguSEQ0SJYsWYK3334bY8eOxebNmzFmzBh3N4mIiIhEwCCLiIiIiIjIhTgni4iIiIiIyIUYZBEREREREbkQC1/Y0d3djVOnTiE4OBgSicTdzSEiIiIiIjcRBAHNzc0YOXIkfHysj1cxyLLj1KlTiIuLc3cziIiIiIjIQ5w8eRKxsbFW9zPIsiM4OBhAT0cqlUo3t2Zo0Ov12LFjB2bNmgWpVOru5gwZ7FfxsG/Fw74VD/tWHOxX8bBvxcO+dR2NRoO4uDhjjGANgyw7DCmCSqWSQZaL6PV6yOVyKJVK/qG7EPtVPOxb8bBvxcO+FQf7VTzsW/Gwb13P3jQiFr4gIiIiIiJyIQZZRERERERELsQgi4iIiIiIyIUYZBEREREREbkQgywiIiIiIiIXYpBFRERERETkQgyyiIiIiIiIXIhBFhERERERkQsxyCIiIiIiInIhBllEREREREQuxCCLiIiIiIjIhRhkERERERERuRCDLCIiIiIiIhdikEVERERERORCfu5uABERERF5l+LqZhTXtaCpVY8QuT+SwuRIjgx2d7OIPAaDLCIiIiJy2A8ldXhqez4OlDUYt01MCMWK2RmYlBTmxpYReQ6mCxIRERGRQ4qrm80CLAA4UNaAp7bno7i62U0tI/IsDLKIiIiIyCHFdS1mAZbBgbIGFNe1DHKLiDyT1wRZ69atw6RJkxAcHIzIyEjMnz8f+fn5Nh+zefNmSCQSk38BAQGD1GIiIiKioaWpVT+g/UTDhdcEWV9++SXuuusufPfdd8jNzYVer8esWbPQ0mL7jolSqcTp06eN/8rKygapxURERERDi0ouHdB+ouHCawpffP755yY/b968GZGRkTh48CAuvfRSq4+TSCSIjo4Wu3lEREREblOtaUdhjRaaVj1UcilSIhSIVLo+eyc5LAgTE0ItpgxOTAhFcliQy1+TyBt5TZDVV1NTEwBArVbbPE6r1SIhIQHd3d0YP348Hn/8cWRmZlo9XqfTQafTGX/WaDQAAL1eD72eQ+CuYOhH9qdrsV/Fw74VD/tWPOxbcXhivx4/rcGrXxWjqPpcdk9KZBDuuDQZo0Yo7T7+dEMbCmu1aG7rhDLQDynhCowIDbR4bFxoAJbPSMGzOwtw6GSjcfu4uBDcMyMFcaEB/e4bT+zboYJ96zqO9qFEEARB5La4XHd3N+bNm4fGxkZ88803Vo/bt28fCgoKkJ2djaamJmzYsAFfffUVjh49itjYWIuPWbVqFVavXm22fcuWLZDL5S57D0RERERE5F1aW1tx4403oqmpCUql9ZsYXhlk/f73v8dnn32Gb775xmqwZIler8fo0aNxww034LHHHrN4jKWRrLi4ONTW1trsSHKcXq9Hbm4uZs6cCamUuduuwn4VD/tWPOxb8bBvxeEp/Zp3shHP7y5AakQw3tnfM988LMgfo6OVOK3Roaur5/LuL1ePwgVW1q463dCGR/77M45Wasz2ZcYosWbuGKsjWobX7/3YzBgl/jg9DdlxIf16T57St0MR+9Z1NBoNwsPD7QZZXpcuuHTpUvzvf//DV1995VSABQBSqRTjxo1DYWGh1WNkMhlkMpnFx/JD6VrsU3GwX8XDvhUP+1Y87FtxuLNfK+tb8cyuIuRVNCMuLBi6LgkA4JRGj47uZoweoURFQzsAQKsTrLazqKEBP55sBiAx2/fjyWYUNbQjPtL8IrL36/d+7I8nm/HMriKsX5iNGHX/s3/4mRUP+3bgHO0/r6kuKAgCli5dig8++AC7du1CUlKS08/R1dWFI0eOYMSIESK0kIiIiEh8J2q0yKvomZsu9TW9lKvVdqCr+9zPShvV/jR2yq1b29/79fvKq2jCiRqtzeclGg68Jsi666678Pbbb2PLli0IDg7GmTNncObMGbS1tRmPWbRoEVauXGn8ec2aNdixYweKi4vx448/4ne/+x3Kyspw6623uuMtEBEREQ1Y7+DnVFMbUiIUJvv1Z6Os9CgFUvvs681WAGZrf3+DM6LhxGvSBV9++WUAwLRp00y2v/HGG1iyZAkAoLy8HD4+5+LGhoYG3HbbbThz5gxCQ0MxYcIE7N27F+edd95gNZuIiIjIpXoHPz+U1GP+2J7pE0VnR5Ckvj5Ij1Jg6WWpNsu4p0cokB2rsjgqlR2rQrqVAK2/wRl5lqKqZpTUt6CpVQ+V3B9JajlSooLd3awhw2uCLEfqc+zZs8fk52eeeQbPPPOMSC0iIiIiGny9gyN9l4APD1dgUpIal6SFIzjADxcmhzm0TlaMWo7lMzOwMTffJNDKjlXhT7My0KrvwhfHzhgvwhPUcqRFBfc7OCPPsb+4Dht25GN/6bn1znISQ3H/rAzkJFsulELO8Zogi4iIiIjMgyN9l4C9hXXIjlVh+awMjIsPdfi5xiWEYv3CbJw4u5CxUi5FeoQClY1teOzTI1Yvwq0FZ8tnZQyo6AWJr6iq2SzAAoD9pQ3YsCMf6xZkcUTLBRhkEREREXkZa8FRfwKcGLXc5HEFdi7C1y7Icunr0+AqqW8x+90a7C9tQEl9C4MsF2CQRUREROSF+gZHrlJm5yK8rL4FaVHBor0+iavJTmESe/vJMV5TXZCIiIiIxMeL8KFNZacwib395BgGWURERERkxIvwoS1JHYScRMvz9nISQ5GkDhrkFg1NDLKIiIiIyCjBzkV4Ai/CvVpKVHBPAZM+v+OcxFCsmJPB+VguwjlZRERERGSUdvYi3FKJ7xVzMpDGi3Cvl5MchnULsnqtkyVFkjqIAZYLMcgiIiIiIhM5yWFYuyALZb0uwhPUQQywhpCUqGAGVSJikEVEREREZtKighlUEfUTgywiIiIiIg9VWd9qXI9MJZcijeuReQUGWUREREREHuhQWQM25uYjr6LJuC07VoXlMzMwLsFycRLyDKwuSERERETkYSrrW80CLADIq2jCxtx8VNa3uqll5AgGWUREREREHuZEjdYswDLIq2jCiRrtILeInMF0QRr2mtv1qGhog7a9E4oAP8SGBiI4gAstEhERkftoWvUD2k/uxSCLPF5ZrRaFNT0lZEPkUqREBCEhXOGS5y6va8W2QxWo0uiM26KUMiwcF4v4ME4qJSIiIvdQym3f8LW3n9yLQRZ5tAOl9diw/TgOljcat02ID8H9s0dhYqJ6QM/d3K43C7AAoEqjw7ZDFbjl4iSOaBEREZFbpEcokB2rspgymB2rQnqEa244kzg4J4s8Vlmt1izAAoCD5Y3YsP04ymoHlotc0dBmFmAZVGl0qGhoG9DzExEREfVXjFqO5TMzkB2rMtmeHavC8lkZLOPu4TiSRR6rsKbFLMAyOFjeiMKalgGlDWrbOwe0n4iIiEhM4xJCsX5htnGdLKVcinSuk+UVGGSRx2qyM6HT3n57FAG2P/729hMRERGJLUYtZ1DlhZguSB5LZWdCp7399sSGBiJKKbO4L0opQ2xo4ICen4iIiIiGJwZZNKjKarX4Mr8aAPBVfrXNeVWpEUGYEB9icd+E+BCkRgQNqC3BAVIsHBdrFmhFKWVYOD6WRS+IiIiIqF+YD0WDxlAp8OeKBqydCNzz3mGMiQ21WikwIVyB+2ePslpd0BVl3OPD5Ljl4iSuk0VERERELsMgiwZF70qBsl7jp4ZKgeuvybYYNE1MVGP9NdnGdbJUcilSXbhOFtAzojV6BIMqIiIiInINBlk0KAZSKTAhXOHSoIqIiIiISEwMsmhQDKRSYLWmHYVnS5eq5FKkRCgQqQxwdROJiIiIiFyCQRYNiv5WCjxa2YQXdhfiRNW5AhnpUQosnZ6KzBiVxccQEREREbkTqwvSoOhPpcBqTbtZgAUAJ6q0eGF3Iao17WI0lYiIiIhoQBhk0aAwVArsG2jZqhRYWKM1C7AMTlRpUVhjvfw7EXmeyvpW7M6vxkeHKrEnvxqV9a3ubhIREZEomC5Ig8ZQKbDgTBNaig5g03VjkRatslrUQmNnHpe9/UTkOQ6VNWBjbj7yKpqM27JjVbjvshQ3toqIiEgcDLJoUCWEKzBSJcOnRcDUjEhIpdbnaintzOOyt5+IPENlfatZgAUAeRVNeH53ARaEu6lhNKwUVTWjpN6wHIg/ktRypEQFu7tZRDREMcgij5UaoUB6lMJiymB6lAKpESzrTuQNTtRozQIsg6OVGgZZJLr9xXXYsCMf+0sbjNtyEkNx/6wM5CSHubFlRDRUcU4WeaxIZQCWTk9FepRpMJUepcDSy1JZxp3ISzC1l9ypqKrZLMACgP2lDdiwIx9FVc1uahkRDWUcySKPlhmjwup5mcZ1spRyKVK5ThaRV2FqL7lTSX2LWYBlsL+0ASX1LUwbJCKX40gWebxIZQAiFDL4+UlwurENeZVNKOCdRyKvkR6hQHas5XXtMmOUg9waGm5sLXbvyH4iov7gSBZ5PObSE3m3GLUcy2dmWKwu+MfLUlCRV+PG1tFQZ22xe0f3ExH1B4Ms8mgFdnLp1y7IQhrTPIg83riEUKxfmI0TvVJ/0yMUiAyWoiLP3a2joSxJHYScxFCLKYM5iaFIUge5oVVENNQxyCKPVmYnl76svoVBFpGXiFHLEaOWm2zT65mqReJKiQrG/bMyLGZErJiTwflYRCQKBlnk0bwpl55rsBAReaac5DCsW5DV6ztaiiR1EL+jiUg0DLLIo3lLLj3njRERebaUqGAGVUQ0aFhdkDxawtlcektyEkOR4AG59FyDhYiIiIh685oga926dZg0aRKCg4MRGRmJ+fPnIz8/3+7j3n//fYwaNQoBAQHIysrCp59+OgitJVdJO5tL3zfQMuTSe8J8LEfWYCEiIveprG/F7vxqfHSoEnvyq1FZ3+ruJhHREOc16YJffvkl7rrrLkyaNAmdnZ3485//jFmzZuGXX35BUJDl0Yy9e/fihhtuwLp163D11Vdjy5YtmD9/Pn788UeMGTNmkN8BWVNc3Yziup48+RC5P5LC5EiOPBc85SSHYe2CLJT1yqVPUAd5RIAFeNe8MSKi4eZQWYPF5QOWz8zAuATLmRJERAPlNUHW559/bvLz5s2bERkZiYMHD+LSSy+1+Jhnn30Wc+bMwYoVKwAAjz32GHJzc/HCCy/glVdeEb3NZN8PJXV4ans+DpSdGwmamBCKFbMzMCnp3FymtKhgjwmq+vKWeWNERMNNZX2rWYAFAHkVTdiYm4/1C7PNKl4SEbmC1wRZfTU19XxhqtVqq8fs27cPy5YtM9k2e/ZsfPjhh1Yfo9PpoNPpjD9rNBoAPWWGWWrYNQz9WHSmEc/syMeRikbIfM/tP1JRj2d2HMPquZlIjFC4qZWOi1fKMCVJhYPljWb7JsSHIF4pG5TPjuE1+Dl1PfateNi34mHfAvlnGpF/qhEyC5Mj8k81Iv9MIyKDnbsRxn4VD/tWPOxb13G0DyWCIAgit8Xluru7MW/ePDQ2NuKbb76xepy/vz/efPNN3HDDDcZtL730ElavXo2qqiqLj1m1ahVWr15ttn3Lli2Qy3m3i4iIiIhouGptbcWNN96IpqYmKJVKq8d55UjWXXfdhZ9//tlmgNVfK1euNBn90mg0iIuLw6xZs2x2JJmqadahuFaL5rZOKAP9kBSuQESwDEDPHYDc3Fx0Ro/BQ/89ZvU5/vqrMZg3NmawmjxgJdValDW0QHP2PSeEBiEpcvBG4gz9OnPmTEilTFF0JfateNi34mHfAl8X1OBPW/Os7l//62xckhbh1HOyX8XDvhUP+9Z1DFlu9nhdkLV06VL873//w1dffYXY2Fibx0ZHR5uNWFVVVSE6OtrqY2QyGWQymdl2qVTKD6WDjlY24YXdhThRpTVuS49SYOn0VGTGqIzblEEy6LokVp9HpQjwqj5PjwlFeoz7J1Hzsyoe9q142LfiGc59mxEdgoyRIWZzsoCe4hcZ0SH97pvh3K9iY9+Kh307cI72n9eUcBcEAUuXLsUHH3yAXbt2ISkpye5jJk+ejJ07d5psy83NxeTJk8Vq5rBXrWk3C7AA4ESVFi/sLkS1pt24LVEdhIlWKjtNTAhFcpj718AiIiLvFaOWY/nMDGTHqky2Z8eqsHxWBoteEJFovGYk66677sKWLVvw0UcfITg4GGfOnAEAqFQqBAYGAgAWLVqEmJgYrFu3DgBwzz33YOrUqdi4cSOuuuoq/Otf/8KBAwfw2muvue19DHWFNVqzAMvgRJUWhTVaTIrvOdklRiiwYnaG5eqCczJMyrgTERH1x7iEUKxfmI0TNVpoWvVQyqVIj1AwwCIiUXlNkPXyyy8DAKZNm2ay/Y033sCSJUsAAOXl5fDxOTc4N2XKFGzZsgUPPfQQ/vznPyMtLQ0ffvgh18gSkcbOmlB9909KCsMTC7OM62Sp5FIkhwUxwCIiIpeJUcs9JqiqrG81BnwquRRpDPiIhiSvCbIcKYK4Z88es23XXnstrr32WhFaNLw4elJQ2lkTytL+5MhgBlVERDTkcWFkz8TAl8TgNUEWuY8zJ4XUCAXSoxQWUwbToxRI9YJ1r4iIiFyNCyN7Jga+JBavKXxB7mHvpFBZ32qyPVIZgKXTU5EeZRpMpUcpsPSyVEQqA0RvMxERkac5UaO1WOUQ6DmnnqixPJ+ZxOPsNQ6RMziSRTY5clLoe+ctM0aF1fMyUdhrknFqhIIBFhERDVvOzlkm8fXnGofIUQyyyKb+nhQilQEMqoiIiM7qz5xlEhcDXxIT0wXJJp4UiIiIBi49QmG2XpdBdqwK6ZyzPOh4jUNiYpBFNvGkQERENHBcGNnz8BqHxMR0QbLJcFKwWHmHJwUil6rWtBvnMqrkUqRwLiPRkMKFkT0Lr3FITAyyyC6eFIjEd7SyCS/sLjRZ/iA9SoGl01ORGWP5TisReR9PWhiZeI1D4mGQRQ7hSYFIPNWadrMACwBOVGnxwu5CrJ6XyREtIiKR8BqHxMA5WUREblZYo7W4gDfQE2gVcv0cIiIir8Igi4jIzVhGmIiIaGhhkEVE5GYsI0xERDS0MMgiInKz1AgF0qMslwpOj1IglWWEiYiIvAqDLCIiN4tUBmDp9FSzQCs9SoGll6Wy6AUREZGXYXVBIiIPkBmjwup5mcZ1spRyKVK5ThYREZFXYpBFROQhIpUBDKqIiIiGAAZZXqKoqhkl9S1oatVDJfdHklqOlKhgdzeLiIiIiIj6YJDlBfYX12HDjnzsL20wbstJDMX9szKQkxzmxpYREREREVFfLHzh4Yqqms0CLADYX9qADTvyUVTV7KaWERERERGRJQyyPFxJfYtZgGWwv7QBJfUtg9wiIiIiIiKyhUGWh2tq1Q9oPxERERERDS4GWR5OJZcOaD8REREREQ0uBlkeLkkdhJzEUIv7chJDkaQOGuQWERERERGRLQyyPFxKVHBPFcE+gVZOYihWzMlgGXciIiIiIg/DEu5eICc5DOsWZPVaJ0uKJHUQAywiIiIiIg/EIMtLpEQFM6giIiIiIvICTBckIiIiIiJyIQZZRERERERELsQgi4iIiIiIyIUYZBEREREREbkQgywiIiIiIiIXYpBFRERERETkQgyyiIiIiIiIXIhBFhERERERkQsxyCIiIiIiInIhBllEREREREQuxCCLiIiIiIjIhRhkERERERERuRCDLCIiIiIiIhdikEVERERERORCDLKIiIiIiIhcyKuCrK+++gpz587FyJEjIZFI8OGHH9o8fs+ePZBIJGb/zpw5MzgNJiIiIiKiYcergqyWlhacf/75ePHFF516XH5+Pk6fPm38FxkZKVILiYiIiIhouPNzdwOcccUVV+CKK65w+nGRkZEICQlxfYOIiIiIiIj68Kogq7/Gjh0LnU6HMWPGYNWqVbjooousHqvT6aDT6Yw/azQaAIBer4derxe9rcOBoR/Zn67FfhUP+1Y87FvxsG/FwX4VD/tWPOxb13G0DyWCIAgit0UUEokEH3zwAebPn2/1mPz8fOzZswcTJ06ETqfD3//+d7z11lv4/vvvMX78eIuPWbVqFVavXm22fcuWLZDL5a5qPhEREREReZnW1lbceOONaGpqglKptHrckA6yLJk6dSri4+Px1ltvWdxvaSQrLi4OtbW1NjuSHKfX65Gbm4uZM2dCKpW6uzlDBvtVPOxb8bBvxcO+FQf7VTzsW/Gwb11Ho9EgPDzcbpA1LNIFe8vJycE333xjdb9MJoNMJjPbLpVK+aF0MfapONiv4mHfiod9Kx72rTjYr+Jh34qHfTtwjvafV1UXdIXDhw9jxIgR7m4GERERERENUV41kqXValFYWGj8uaSkBIcPH4ZarUZ8fDxWrlyJyspK/POf/wQAbNq0CUlJScjMzER7ezv+/ve/Y9euXdixY4e73gIREREREQ1xXhVkHThwANOnTzf+vGzZMgDA4sWLsXnzZpw+fRrl5eXG/R0dHVi+fDkqKyshl8uRnZ2NL774wuQ5iIiIiIiIXMmrgqxp06bBVp2OzZs3m/z8wAMP4IEHHhC5VUREREREROcMuzlZREREREREYmKQRURERERE5EIMsoiIiIiIiFyIQRYREREREZELMcgiIiIiIiJyIQZZRERERERELsQgi4iIiIiIyIUYZBEREREREbkQgywiIiIiIiIXYpBFRERERETkQgyyiIiIiIiIXIhBFhERERERkQsxyCIiIiIiInIhBllEREREREQuxCCLiIiIiIjIhZwKsl566SXMmDEDv/nNb7Bz506TfbW1tUhOTnZp44iIiIiIiLyNw0HWc889hxUrVmDUqFGQyWS48sorsW7dOuP+rq4ulJWVidJIIiIiIiIib+Hn6IGvvvoq/va3v+HGG28EAPz+97/H/Pnz0dbWhjVr1ojWQCIiIiIiIm/icJBVUlKCKVOmGH+eMmUKdu3ahRkzZkCv1+Pee+8Vo31ERERERERexeEgKzw8HCdPnkRiYqJx25gxY7Br1y5cdtllOHXqlBjtIyIiIiIi8ioOz8m6+OKLsW3bNrPt5513Hnbu3InPPvvMpQ0jIiIiIiLyRg6PZD344IM4ePCgxX2ZmZnYtWsX/vOf/7isYURERERERN7I4SArOzsb2dnZVvePGTMGY8aMcUmjiIiIiIiIvBUXIyYiIiIiInIhBllEREREREQuxCCLiIiIiIjIhRhkERERERERuRCDLCIiIiIiIhdyuLpgb1u3bsW///1vlJeXo6Ojw2Tfjz/+6JKGEREREREReSOnR7Kee+453HTTTYiKisKhQ4eQk5ODsLAwFBcX44orrhCjjURERERERF7D6SDrpZdewmuvvYbnn38e/v7+eOCBB5Cbm4u7774bTU1NYrSRiIiIiIjIazgdZJWXl2PKlCkAgMDAQDQ3NwMA/u///g/vvvuua1tHRERERETkZZwOsqKjo1FfXw8AiI+Px3fffQcAKCkpgSAIrm0dERERERGRl3E6yLrsssvw8ccfAwBuuukm3HfffZg5cyauu+46LFiwwOUNJCIiIiIi8iZOVxd87bXX0N3dDQC46667EBYWhr1792LevHm44447XN5AIiIiIiIib+J0kFVRUYG4uDjjz9dffz2uv/56lzaKiIiIiIjIWzmdLpiUlISamhox2kJEREREROT1nA6yWNyCiIiIiIjIOqfTBYGelMH29naL++Lj4wfUICIiIiIiIm/WryBr0qRJZtsEQYBEIkFXV9eAG0VEREREROSt+hVkff/994iIiHB1W4iIiIiIiLye03OyJBIJ4uPjkZCQYPGfmL766ivMnTsXI0eOhEQiwYcffmj3MXv27MH48eMhk8mQmpqKzZs3i9pGIiIiIiIa3ryq8EVLSwvOP/98vPjiiw4dX1JSgquuugrTp0/H4cOHce+99+LWW2/F9u3bRW4pERERERENV06nC5aUlLgtVfCKK67AFVdc4fDxr7zyCpKSkrBx40YAwOjRo/HNN9/gmWeewezZsy0+RqfTQafTGX/WaDQAAL1eD71eP4DWk4GhH9mfrsV+FQ/7VjzsW/Gwb8XBfhUP+1Y87FvXcbQPJYKTQ1N5eXk292dnZzvzdP0mkUjwwQcfYP78+VaPufTSSzF+/Hhs2rTJuO2NN97Avffei6amJouPWbVqFVavXm22fcuWLZDL5QNtNhEREREReanW1lbceOONaGpqglKptHqc0yNZY8eOhUQiMVYTNPDE6oJnzpxBVFSUybaoqChoNBq0tbUhMDDQ7DErV67EsmXLjD9rNBrExcVh1qxZNjuSHKfX65Gbm4uZM2dCKpW6uzlDBvtVPOxb8bBvxcO+FQf7VTzsW/Gwb13HkOVmT7/SBYGeoGrMmDH49NNPRS94MZhkMhlkMpnZdqlUyg+li7FPxcF+FQ/7VjzsW/Gwb8XBfrWusr4VJ2q00LTqoZJLkRahQIza8Wwg9q142LcD52j/OR1k9Q6oJBIJYmNjPTbIio6ORlVVlcm2qqoqKJVKi6NYRERERNR/h8oasDE3H3kV56ZlZMeqsHxmBsYlhLqxZWTPQINjMtWvdbK8xeTJk/Hpp5+abMvNzcXkyZPd1CIiIiKioamyvtUswAKAvIombMzNx/qF2TYv2ouqtQCAjw9XQqUIRIJajrSoYFHbTD0YHLue0yXce5NIJCbzssSm1Wpx+PBhHD58GEBP6uLhw4dRXl4OoGc+1aJFi4zH33nnnSguLsYDDzyA48eP46WXXsK///1v3HfffYPWZiIiIqLh4ESN1izAMsiraMKJGq3Vx+4vrsOa/x0FAPz5w59x65sH8JcPjmB/cZ0obaVz7AXHlfWtbmqZd3M6yAoNDYVarYZarYZWq8W4ceOMP6vVajHaaHTgwAGMGzcO48aNAwAsW7YM48aNwyOPPAIAOH36tDHgAoCkpCR88sknyM3Nxfnnn4+NGzfi73//u9Xy7URERETUP5pW26Wtre0vqGrGhh35OFjeaLJ9f2kDNuzIR0FVs6uaSBYMJDgm65xOF+xdDn2wTZs2zeZiyJs3b7b4mEOHDonYKiIiIiJSym0XBLC2v6y+BftLGyDzNd+3v7QBZfUtTBsUUX+DY7LN6SBr8eLFYrSDiIiIiLxYeoQC2bEqi6Mi2bEqpEcoLD6uyc5FvL39NDD9DY7Jtn7NySoqKsJDDz2EG264AdXV1QCAzz77DEePHnVp44iIiIhoYKo17dhbVIvPj5zGvqJaVGvaRXmdGLUcy2dmIDtWZbI9O1aF5bMyrBa9UNm5iLe3nwbGEBxbYis4JtucHsn68ssvccUVV+Ciiy7CV199hbVr1yIyMhI//fQTXn/9dWzdulWMdhIRERGRk45WNuGF3YU4UXVuXk16lAJLp6ciM8byhbVBQVUzyupb0NSqh0ru71C1v3EJoVi/MNtYClwplyLdTinwBHUQchJD8dPJerN9OYmhSFAH2XmXNBCG4NhidUEbwTHZ5nSQ9eCDD+Kvf/0rli1bhuDgc39ol112GV544QWXNo6IiIiInFetacfJhlZs3luKM5p2KGS+aOnogiAAJ6q0eGF3IVbPy0SkMsDi4/cX12HDjnzsL20wbstJDMX9szKQkxxm87Vj1HKnLszTooJx/6wMbMo9BuBcNcGcxFCsmJPB+ViDoD/BMdnmdJB15MgRbNmyxWx7ZGQkamtrXdIoIiIiIuofw+jV6BFKfP7zGQCAKlCKBHUQmtr1xkCrsEZrFmQVVDWjRqvDvqI6jB6pglzmh72Fdejo6jZW+1u7IMvlgU9OchgeuToT+Qe+wuPzx0ClCECCOogB1iByNjgm25wOskJCQnD69GkkJSWZbD906BBiYmJc1jAiIiIauoqqmlHSKxUtSS1HCi+oB6xa025MD0wOP5dm19SmR1l9C2JCAqHVdQEwrxpnGL0KkPriq4KeG+cpEQpcNykO7/1w0hhoiVXtLyVSgXwA88bGQCrlPCzybk4HWddffz3+9Kc/4f3334dEIkF3dze+/fZb3H///SYLARMRERFZMpBUNLKtsEZrnH8lk5rWRG9q0yMu9NxIRe+qcYa1qvaXNuDC5HPrnhadXSNpSmoY9uTX9DwPq/0R2eV0dcHHH38co0aNQlxcHLRaLc477zxceumlmDJlCh566CEx2khERERDRFGvi/neDKloRVx4dkB6j07Va3XI6DPi1Nnds95oepQCqb2qxhnWqgIAf1/Ty8OiGi2SwoMwLSMCiycnwF/qiy+OVWHnL1XYfbwKZbVcrJaoL6dHsvz9/fG3v/0NDz/8MH7++WdotVqMGzcOaWlpYrSPiIiIhpCSXhfzfe0vbUBJfQvTBgeg9+jU96X1uDprBAAg/2zw6ucj6akueFmqyXys3qNTMqkPIhT+qNF2AOgJulIjFPjqRC2Ka7Q4UtmEwycbkRKhwJTUMLz+dTHunZmBiYnnRsCIhjungyyD+Ph4xMfHu7ItRERENMRx4VlxpUYokB6lwIkqLTo6BfzvyGlcnBqORZMT0C0AIXIpVIFSyPqMVvVei+r74jpMSgxDXkUjarQdmJIahl351WjXdyImJBBHKnvKfBtSCePVgdiw/TjWX5ONhHCuqUQE9CPIWrZsmc39Tz/9dL8bQ0REREMbF54VV6QyAEunpxqLX0j9fBAVHICtByvQ0KpHUY0W3YL5HDjDWlX7Sxugae/CD6V1uCA5DDp9N6amR+DrglqcN1KJbwpqoevsNr5eUY0WF6WG4Z3vy1FY0+KWIItFVMgTOR1kHTp0yPj/33zzDSZMmIDAwEAAgEQicV3LiIiIaMhJ6nUx31dOYiiSuPDsgGXGqLB6XiZONrRC09aJX041YWKCGvlVGpTVtZqUY398QRZSo4KNa1UZ5stp2ruQ+0s1chJDMUIVgChlAEpqtSYBlkFnV888L3eMQrKICnkqp4Os3bt3G/8/ODgYW7ZsQXJysksbRURERENTSp+LeQPDwrMcgXCN0toWbNiRD5mfL74uPFeO/YacOLy7/1w59tL6FqSe7fOc5DCsXZCFMuOoUM/aWj3FMmoh87NcL83Pt+cm+2CPQtororJuQRY/T+Q2/Z6TRURERNQfOclhWLcgq1eKlxRJ6iBeELtI7+DjgiTzcuwXp4Vh13HL5djTzo5q9dbcrkeUUgZtux7hCn/Uni2IAfQEbifrWzEhPgSpEYM7CskiKuTJGGQRERHRoEuJCuYFsEhK7JRjvzitJ43Oz0cClVyKbQcrECKXIiUiyOKcquAAKRaOi8W2QxVo13fhp4pG1Go7jNUFi6qacf/sUYM+H8tdRVQq61txokYLzdkbBGkRCsSo5fYfSMOK00HWxx9/bPz/7u5u7Ny5Ez///LNx27x581zTMiIiIiKyyNaFft/gou/ok75LgL+vBGPjQqDXd+NP2/IAABPiQ3D/7FEWS7HHh8lxy8VJqGhoQ1VTGzoFARJBAokPcPOURLcUvHBHEZVDZQ3YmJuPvIom47bsWBWWz8zAuIRQl78eeS+ng6z58+eb/HzHHXcY/18ikaCrq2vAjSIiIiIiy+xd6PcOLg6U1ePC5DAcqWwyBloyXx+MjQvBXdNT8ZcPfzIee7C80WYp9uAAKUaPkGL0CKWI785xg11EpbK+1azfASCvogkbc/OxfmE2R7TIyOkgq7vbvKoMkTcprm5GcV3PPIAQuT+SwuRIjmTKChFRb/yu9EyOXOj3Dj7a9N34rrgOExN6RqcilDLMzIxCTmIo/vLhT6jSmI56HSxvdKoUe2FVM0p7lU9PVMuNhTT66+uCGjTrBLupeINdROVEjdas3w3yKppwokbLIIuMOCeLhpUfSurw1PZ8HCg792U8MSEUK2ZnYFISS70SEQH8rvRk9i70C+u0SA1T4N4Z6Xjru1IU1bRAq+vE3qJaTEgIxQ05cTjT2IZl7+dZfQ1H5zK5unx63slGAMCftuZB191TsdBeKt5gFlHR2OkXe/tpeLFci9OOL7/8EnPnzkVqaipSU1Mxb948fP31165uG5FLFVc3m100AMCBsgY8tT0fxdXNbmoZEXma4upmfHHsDP5z8CR2HqsaVt8P/K70bLYu5OX+PvCFBH/alofl7x9GvFqO+WNj8H8XJuDviydh3YIsTEoMg1w28LlMhXbKpxdWOfc5qaxvxfO7C8y2G0boKutbrT42JSoYM0ZH45oJcZgxOlq0gipKO/1ibz8NL04HWW+//TZmzJgBuVyOu+++G3fffTcCAwNx+eWXY8uWLWK0kcgliutazC4aDA6UNaC4rmWQW0REnuiHkjo8uO0Ibv/nQazYmofb/nkAD247gh9K6tzdtEHB70rPZutC/rpJ8fjHNyXIq2hCi64L7+4/iVe+LMLLe4rw+jfFCJD6AgBSI4IwIT7E4nM4Woq91E759NJ65z4nJ2q0OFqpsbjPkIrnbukRCmTHqizuy45VIT1i8It/kOdyOshau3YtnnzySbz33nvGIOu9997DE088gccee0yMNhK5hLtKvVpTVqvFzmNV2HawAruOVaGs1v0nEKLhjqM4nvddSaZsXejHqeU4dsbyZ7R3oJIQrsD9s0eZBVqG6oKOzMdy9efEG1LxYtRyLJ+ZYdb/2bEqLJ+VwflYZMLpOVnFxcWYO3eu2fZ58+bhz3/+s0saRSQGd5R6teZAaT02bD+Og+WNxm22SucS0eBwZBRnqBd/8KTvSjJnuNC3VF1Q6uOD1g7rVZ57ByoTE9VYf002CmvOzWVKtbJOliWu/px4SyreuIRQrF+YbSyfr5RLkc51ssgCp4OsuLg47Ny5E6mpqSbbv/jiC8TFxbmsYUSulhwWhIkJoRYvoCYmhCI5bHBWqi+r1ZoFWID90rlE5Bq2qqFxFMdzvivJOmsX+oU1WgiCYPVxfQOVhHCF3fONtfW4Eu2UT090snx6eoQCmTFKADVm+zwtFS9GLWdQRXY5HWQtX74cd999Nw4fPowpU6YAAL799lts3rwZzz77rMsbSOQqyZHBWDE7w3LFrDkZg3Z3urCmxSzAMnC2dC4ROcdeNTSO4njOdyXZZu1CPztWZbH6YH8CFXvrcdkqn+5sGfcYtRx/nJ6GiiOmQRZT8chbOR1k/f73v0d0dDQ2btyIf//73wCA0aNH47333sOvfvUrlzeQyJUmJYXhiYVZxrVfVHIpksOCXH7RUFDVjLJed8oT1HKk8U45kVvZq4b2+IIsjuKcNVjfleRatlIJnQ1UHFmPKyc5DI8vyOo1MixFojqo3+tkZceFoOIIsP7X2WjWCUzFI6/Wr3WyFixYgAULFri6LUSDIjkyWNQLBd4pJ/JMjlRDmzE6mqM4Z4n9XUnicNWcIUcX3k2NCh7w4sN9XZIWAal0aJ0LraVd0tDFxYiJXKjAzp3ytQuyEK+W44ox0SisboGPD9DW0YXKxjZ0dQsOl84lIuc5OorMURzydq6YM+QN1f68hb20SxqanA6y1Grblc/q6+v73Rgib1dm4075gbIGVDS04fWvizApKQwFVc34uVKLELkUaZEKBMv8sGxWBudjEYnEmVFkjuLQUFGtaUdxjRZ+PhI0tXeiXd8FdZA/UiIUiFQGWH2ct1T783SOpF1yRGtocjrIamxsxKZNm6BSWV6jgWg4s3WnPEoZgPwzGnxTVI8fy5tw9fkjMDszGu2d3QhXyDA1PcI4b0ts1Zp2FPZKW7B3siUaClxdDY3I0x2tbMLfvy7GJekReOf7chRUNWPhuJEIDw7A4ZONGB2tRFK43OLNPcN6XK4qojFcWUu79PORQNvehWNVGhypbOK5eAjqV7rg9ddfj8jISFe3hcjr2bpTrpD5oftsZd1WfRf+faDCZH9iuHxQgqyjlU14YXchTlSdW/w4PUqBpdNTkRnDmyfkXWwVmekrNSrYpdXQ3Ik3Ssieak07XthdiLGxIcYA686pyfhv3mkcO92zYLEq0A+Tk8Nw6yXJZms0urKIxnBmKa3Sz0eC9OhgFFZrsbewDl+eqAXAc/FQwzlZRC6UYONOeUpkEHT6TquPHYyqgoaTbu8ACwBOVGnxwu5CrJ6XyQs18hr2isxY4upqaO7AGyXkiMIaLU5UaTEtPQJ5FY24YVKcSYAFAE1tnSita7W6RiMX3h04S2mV8eogFFZrUd/SAX8/H+N2nouHFqeDLIlEAolEIkZbaIgqrm42TiAPkfsjXuXv7iaJJs3GnfJFFybi7ncPWn3sYFQVNJx0LTlRpUVhjZZf7OQVHCkyY2tEy5uCqt54o4QcZRhBae3oAgBEBgeYBFgG3YJgc41GLrxrm71RZUtpl/5+Pqhv6UBapAJ12g6T5+O5eOhwOsgSBAFLliyBTCazuH/btm0DbhQNHT+U1JmVQr4wUYXrot3YKJHlJIdh7YKsXilMUiSog+ADIDkiGLUtlueDJA3CfBBWi6KhwlaRmf2lDSirbxm0OY6DiTdK3KP3zUKVzMf+A85yZ9luwwiK3N8XANDW2WXxOJ+zN865RqPzHBlVtpR22dndjbRIBS4fHYVdx6vNnpfn4qHB6SBr8eLFYrSDhqDi6mazAAsADp1sxHXRQGmNFmkjvbt0qaU7WLXNOjxv4Uv3j9NTsWJWBp6yMh8kZRAuCFktioaK4bqoN2+UDL6+NwtlvgKemAT8WFaPC1KjrD5OrLLdhVXNvdJd/ZF4dq2qvlIjFEiPUqCxVY/s2BAE+vmaHaMK9DOOdHGNRuc4M6rcN+0yKMAX23+uwq7j1dB3CWbPzXPx0OB0kPXGG2+I0Q4agorrWswCrN5K61vcFmQ5M1neGkt3sM6PVWFcfAhK61pMjj1RpcXzZ7901y3IQkmvUa4kddCgBFjAuZOupTvh6VEKpLJaFHmJ4bqoN2+UDC5rNwsB4NmdBfirUm6x1L9YZbudmYcYqQzA0ump+PvXxfjtBfE41dCG0SOCcex0MyQAlIF+GKkKRHFtC9do7AdnR5V7p11Wa9rxn4OVFgMsnouHDha+INHYu5OsabNeBEJM/Zks35e1O1gltS04UdWMCxLV+LqwzmSf4Ut3Skr4oAVVfRlOuhbTGy5LZZoReQ1bRWZyEkORMETLsfNGyeCydbPw0MlGFNe1WAyyrJXtBnoCrRM1WqeDrMI+8xBlvj6YPioCcaFy7C2qRUdXN5LCgkyeNzNGhZVXjkZxjRYJ6kCMSwjFO9+Vobi2Ba0dXSiubcG4OBXunz2KazQ6aSCjyjwXDw9OB1nJyck29xcXF/e7MTS02LuTrAwc/Bh/IJPle7N2B6uzW0B+VTNmZVqedOYJqTyZMSqsnpdpTHNUyqVIZflncpIrRoMHwlaRmRVzMobkfCyAF2eDrb9pqWKkdZb2moco8/XBoikJ2JNfg8+PVgEALkhSQ+orMUtHjFQGmHwuYkMCUFhzLpsiNSKIAVY/DHRUmefioc/pq9zS0lLExsbi//7v/7hWFgGwPrE3OSwIExNCrd4FdMfCn66aLG/tBOnn0zOBWKfvyXGPVkpxz+XpaGrrRFO7Hn5+PiisanZ7ZbO+J10iZ7hiNNgVrBWZGYwAy51BJi/OBk9/01L7cwFu7zPVO6CbPioCe/JrUFB9LtDWd3Xj2Gmt3XTEhHAFgyoXcMWoMs/FQ5vTQdbhw4fx6quv4rXXXsO0adNw++23Y+bMmWK0jbyAvYm9K2ZnmOWzj4sLAVCHRDektbhqsry1E2i3IEAVKIVM6otopRR/vCwdT20/gR/K3HsxSsOPo5PjneWq0WBXSYsKHvRRK08IMnlxNjgs3SyU+vgA6MK880fCRyLBrmNVSOkzGmSpbLdBdqwK6X3Of458pnoHdHGhcuMIlrFdvj1VD/ubjkjO4agy2eN4HdKzsrOz8eKLL6K8vBxXXnklHn74YaSmpiI3N1eM9pl58cUXkZiYiICAAFxwwQXYv3+/1WM3b95sXNfL8C8ggB96V7E3sbeyvhWTksLwxMIsvLZoAp76dTZeWzQBq+dmuqnFrpssb7iD1VdLRxcuTY+Anw9wz+Xp2LjDNMACzl2MFlaZr1fSV2V9K3bnV+OjQ5XYk1+NyvpWh9pHw9v+4jr8+YMjuPXNg1j+fh5uffMA/vzBEewvrrP/YDscGQ0eyuwFmQUO/F2T90iODMaK2RmYeDb9Turrg7HxIQAAVaAUf9xyGHe8fRB/+k8eDpTWGx9nKNudHWu6OHR2rArLZ2WYBEC9P1M+EiA2JBAZ0T1VAf/5XanxM5V4dh4iAHT0KZgQpvCHvqvb+LMnpKYPB4ZR5cfmZ2LFrHQ8Nj8Tq+dlInMkFwWnARS+CAwMxNSpU3HixAm8/PLLqKiocGW7LHrvvfewbNkyvPLKK7jggguwadMmzJ49G/n5+VZTF5VKJfLz840/cyFl13F0Ym9yZLDJxGC9Xo9fBquRfbhqsry1O1hpkQrccnESIhQy5FU2mgVYBvtLG1Ba32JzZEGs8r80tPWdHG9gCAIeX5A1oBGt4Vo63cDRlGN3ro9ErmW4WVhc14LOzm6U1DQDzTXYeqASHWcDm4Pljdiw/TjWX5NtHNHqW7ZbKZci3cLnwPCZ8pH0jMyebmxDRWMbAKC0rhVzMqNR0dgGXUcX7rosFeMKayHBuWuZMIU/MqKCcfyMxrjNFVUmi6qae1XC9UeSWu62ok2ejKPKZI3TQVZnZye2bduG1157DcePH8eSJUtw+PBhJCYmitA8U08//TRuu+023HTTTQCAV155BZ988gn+8Y9/4MEHH7T4GIlEgujoIbzyrRt5ynotlvLYfSUwLhwZIvdHUlhPsOfKyfL25kU0FfT/YlSs8r809JXaCQLsBff2DNfS6QaOBJlD+QZJ70V5e3+3DnWGm4U7j1Xhxd2FWDsR6OjqAnoFOwfLG1FY02KSNti7bLc1hs/USFUgTje2QdPeU3nX39cHN1wQh//lncb3JfWIDZVD19mFsXEhWDg+BrVaHU42tEHf1Y3jZzToPDu6ZSkd0VmekBJL5O2cDrJiYmIgk8lw880348knn4Sfnx80Gg3y8vIA9KQTiqGjowMHDx7EypUrjdt8fHwwY8YM7Nu3z+rjtFotEhIS0N3djfHjx+Pxxx9HZqb1dDWdTgedTmf8WaPpuTOk1+uh1w/NO7RF1VqcbGiBpq0TykAp4kLlSIm0/wUdLJNA5mO+xkPv/Zb6zLDNFf15sLQez+0qwMHyRuO2SQkhuO2SFLyY+wuOV/fcDRwXF4J7Lk/D+AQ1xsUpsWbu6F7v2Q9xoUFIiVQ43abQQF9MijdNCzA8h1ImgczXev8orfQPAOSfaUT+qUbILCT05p9qRP6ZRkQGm17MurJfyZQ39W2Ttt3m565J2z6g9xGrlGFKksrkb85gQnwIYpUyp57fm/oWcOzv+tkvjiH/lMbk7zf/VCOe/eIY1swdgxGhgYPQUtf37Y9l9Xh2ZwEOnWw0buv93TocNGnbjec9S+e//vx9GT5TIYE+qGnWQ3Z2zeBpaaHYX1iLAKkPWnUdkPkEoFMQcKS8Ae26Dtx8USI27SxAcVUzfAH4+gCZMUr88bIURAZL+/17L6nWYlPuMfx0stHYFgD46WQ9NuUew6qrM5HkwDVCf3jb94E3Yd+6jqN9KBEEwfrZwgIfn3NnDUPqneEpJBIJurq6nHk6h506dQoxMTHYu3cvJk+ebNz+wAMP4Msvv8T3339v9ph9+/ahoKAA2dnZaGpqwoYNG/DVV1/h6NGjiI2Ntfg6q1atwurVq822b9myBXI5Rw6IiIiIiIar1tZW3HjjjWhqaoJSqbR6nNMjWSUlJQNq2GCaPHmySUA2ZcoUjB49Gq+++ioee+wxi49ZuXIlli1bZvxZo9EgLi4Os2bNstmR3qioWos1/ztq9Y70I1dn2h3RyjvZiOd3F+Bo5blc8J47aWnIjg2x+Bi9Xo/c3FzMnDkTUmn/U4v25Fdh6buHTbZJfSTQd/cE/U9fez7u3/qTyf7nrh+LaRlR/X5NZ1kaaZsQH4J7ZqRhfLz1O79fF9TgT1vzrO5f/+tsXJIWYbLNVf1K5rypb4urtVht4+/60aszkeyCu9CmI+DnRoOd5Y6+7f13KQEg9/fF2FgVbr44GfruLsSq5Darn9r6u27Q6vDwR9ZnnT501Xm4MnuEC9+Nda7s2z35Vbj7X4et7h/s71Z3OVnXgjX/zcOCyAas+dEXuu5z6YJj41RYM28M4sIsz+2tadahuFaL5rN/M0nhCkQEywD0fKbe/aHcpGLgbRclYW9xHfKrmtHZLSBrpBItunPFLe6+PBUzznN9n398uBJ//vBnq/sfnz8G88bGuPx1Ae/6rvU27FvXMWS52eN0kJWQkOB0Y1whPDwcvr6+qKoyLVlaVVXl8JwrqVSKcePGobCw0OoxMpkMMpnM4mOH2oeyQqPD3pIm9M4pN9hb0oQKjQ6jYmzPH5iQHIG1IUF2J/ZaMtA+1egE6LpM294NCc4uUYXmDvP9Gp0wqL/HC9OiEK6U9yqlLUWiOsjunJiM6BBkjAyxWv43IzrE6vsYip9VT+ENfZsRE4p7Z462OJ/ivtkZyLDzN+2oUTGhdr8fnDFYfVtU1YyndxZhf2kTJJBAFShFc0cndhU0oEFXhLnZ0Xj5yzKsmJ2BSUmW555cmBaFMKXc4vpcu/OrTS68+1IqAgb9M+SKvrX0fdt3v6f/bVhSVqs1LswbIpealWLvKzk6BH+4bBRO/7wPum6J8Xc9IT4E984aheToEIuPO1rZZLnU9/RUZMaojJ+pcQnhqNXqECD1RbjCH3nflKGzGwiV+0PX7YOOXslHKpE+SypFgM3ftViv25s3fNd6K/btwDnaf/2qLlhUVIRNmzbh2LFjAIDzzjsP99xzD1JSUvrzdA7x9/fHhAkTsHPnTsyfPx8A0N3djZ07d2Lp0qUOPUdXVxeOHDmCK6+8UrR2ehNXVQlzZGKvGOxNsFcGmH+83TEpPzUq2OlCA4byvxYnz/cp/0vUV05yGB5fkOV0cD8clPQqDCKX+aKloxP6swUDDpU34rcXxONAWQOe2p6PJxZmWS3qYG19LmfXR/IWQ7HgyYHSemzYftw4Iinz88UtFyVgXIIa7R1dUMmlSLGwyPO4+FCc/hnYdN1YaHQCVHIpUm0EZ9WadrMACwBOVGnxwu5CrJ6XiUhlANKigtHY2mFcW/JXY0ciNTIIVRodEsOD0Hy2IAbg+GK3/ZFkpwpvkoNVeImGO6eDrO3bt2PevHkYO3YsLrroIgDAt99+i8zMTPz3v/8VdWHiZcuWYfHixZg4cSJycnKwadMmtLS0GKsNLlq0CDExMVi3bh0AYM2aNbjwwguRmpqKxsZGPPXUUygrK8Ott94qWhu9ibecNCvrW1GrbUdVcwe07Z0IkUsRr5ZbLMcuCICPBBgfHwqpj+mduIkJoUi2ksZhjztK2Tpa/pfIkv4E98NB75tHUh8ftPSZR9yi67mQPVDWgOK6Fqcr5w3VGySWFuU1GMh3q7uU1WrNA6yLk7Dj6Gn887tyxIXK0dLRZTLa1NfUjEiH7mgX1mhRXt+Cy0dFQCX3R7u+CwFSXzS1duDboloU1miNgVzvcvHaNj1+PT4O7x88iZ9PaWAYxBJ7sdsUO1V4WcadyDFOB1kPPvgg7rvvPjzxxBNm2//0pz+JGmRdd911qKmpwSOPPIIzZ85g7Nix+PzzzxEV1ZOTXF5eblKYo6GhAbfddhvOnDmD0NBQTJgwAXv37sV5550nWhs9kaUS52lRwS5bM0pMeWUNOK1txytfFuPQ2ZOh1FeCyUlhWH5ZqtmJoLNbwIVJobhrehrWf3bE+DwTE3pODv0pNezOUrbuGiUkGgosrVUV0uvmkQDzuk9BsnOnxf6u+TUUb5AYFuU1jLIYDOS71Z0Ka1pM5tTNzozCjqOncexMz2iTYcps39Gm/mhu02Pe+TH4+KdKHDt9brHq0SOCMe/8GDS3mX7O+q4tmRalsLpUiFhyksOwbkFWr5uLUiSpgxhgETnB6SDr2LFj+Pe//222/eabb8amTZtc0Sabli5dajU9cM+ePSY/P/PMM3jmmWdEb5MnsxcguGrNKDFU1reioE6Lt78rNwZYAKDvErCvpA5P7RKwam4m1i7IMpsb4SsB7p11nnFbclhQvy4Ciuws7Lp2QRYqGtu44CiRh7G2VtUDszNwYVIovitpMFnQFQDGxYdA09Zh/Hkgo/lD8QZJ71GWgX63ulvfAHpkSCD+82Ol8eeu7nMB+Ikqrclok7PCg2V4bleBSYAF4OzPlVjzqzE2H++uxW5TooIZVBENgNNBVkREBA4fPoy0tDST7YcPH0ZkZKTLGkYDV+BAgJCTHGYxSHF3gAUAJ2q0EASYBFgG+i4BP1dqUFrfghmjoy221xUn/hIbC7v+UNqA0toWLH//XAXDobLgKJGYqjXtxjvzwTLrE+z7y9Zi3pu+KMADc0bhic+O4+hpDaS+Eui7BIyLD8HNFyXi4Y+OAvDOFLjB0HeUxVv1DaD1nd0mP/v2STfX9HNUE+hJQa1sbLe4r7Kx3ZiiSt6p9/eZtXl8rjZcFwX3Nk4HWbfddhtuv/12FBcXY8qUKQB65mStX7/epPQ5uV+ZjQBhf2kDyupbjJO3PSGo6kvTqrd58hEg9Dudx1HWnl8CQADQ2G66P6+iCRtz87F+YfaQu4tN5Ap9q6z5SwTcmQIcP61BVrxr0m9P1GgtFp4AeuZaaXWdxlSo5rZOSCRAfYsOD390FJo2vdemwJHjUiOCMCE+xJgyKPU7N9UgVC5F3xVElQMY1Wxo0WOkqmcBak2v1EBloBQjQwLR0DKw85g7LvKph72qkWL4oaTOctqujYqo5B5OB1kPP/wwgoODsXHjRqxcuRIAMHLkSKxatQp33323yxtI/eeq6oHuopRLoe/utrpfAonoxTnsFgcJMN+fV9GEEzVaBllEfVirsgYAr35VjEfmBbnk4tDeqENDix6XpkcaU6EMd4Ufvmq0V6fAkeMSwhW4f/YoY/GLU41tGB2twBmNDknhQdC4sJKfUi7FqcY2qIP8MVIViC6hG74SH7Tru3CqoW1AAZyli/yUcDluujgJNZp2KALsl6Wn/nG0aqQrFVc3mwVYAByqiEqDz+kgSyKR4L777sN9992H5uae/OLgYP5CPZG3VA+0Jj1Cge9adBgXH2KWMij1lWBMjBKJIhfnsFXKdlJCKIL8fS0+biCpJURDVWGN1mKABQBF1S0DmvfSm72L1r77h0oKHDlnYqIa66/JRmFNC7TteiwcFytKJb/0CAXGxChdXtbf0kV+u74TXxXWolqrw8Up4Xj162JMiA/B/bNHYWKiut/vgczZ+j4b6Dw+a4rrWixW+AT6XxGVxON0kKXX640lS/sGV1988QVmzJjhmpbRgHlD9UBbYtRypDXrcOfUZIvVBf84I7VfJaqtVVu0xFop20mJoVg2Mx2Pfpxn8XEDuTNJNFTZu/ngqpsTQ3WtKnK9hHCFySiPGJX8xCrr3/ciX9/VjbqWDrTru/FzZRPumpaKZ68bC017J2q1OhRUNXvk1ABvNVjfZ715e4bScON0kHXVVVfho48+QmBgoHGbVqvFfffdh3fffRdareWongZfmp21LrzhyzY7IRRh9a14/OrR6Pb1wanGdmjae4KjkEB/p5+vP+XYLZWyTVAH4cWdJ3C6yfwLjRdxRJY5O8LUX0N1rSoSn1iV/MQo69/3Il7f1Y12fTf8fICI4ACcamrDox//Ytx/YVIols0Uf+mR4WKwvs968/YMpeHG6SCru7sbl19+OT777DOoVCrk5ubi1ltvRXx8PA4dOiRGG2kAPLl6oKNi1HJUNrZhw6e/DGitKkeqLdoa0epbynbxRcmobdXzIo7IQakRCqRHKSym2KREBg1o3ktfQ3GtKvJuri7r3/ci3lB2PlwhQ0NLB3z6VEg8WN6IDTvy8fiCLC5U7gK2vs8GOo/PmqG2KPhQ53SQ9emnn+K6667DpZdeikmTJuHdd9/FY489hvvuuw8SietL8dLAeWr1QEdZCo4k6Mk/3rAjH6vmZULm62N3PQ9Hqy06ihdxRM6JVAZg6fRUi5PF75ia7PIRhKG4VhUNT0VVzb2yKfyRpJabXeT3LjufER2M033KxkvQc64rrW9hkOUC1r7PXDGPz5qhtij4UOd0kOXv74///Oc/WLJkCd544w189tlnmDVrlhhtIwJgHhz5SIBuARCEnhPGyfpWvP5Nid1RLTFymXkRR+SczBgVVs/LNM57UcgkqDv2PUZFK0V/bUsXqlxslTyJpc9ofUsHnrKU9j8rA3+cnornz17kS319ECD1QUa0EnMyo/HXT44ZjzecNwHO23Glvt9nrprHZ8tQWhR8qHM6yMrL65nov3z5cpw+fRq33nor3nrrLYSG9iy+mp2d7doW0rDX+4QgwbkThYGmvdOY8rduQZbViybmMhN5ht7zXvR6PT49ZucBLtCf+ZhEg8nSZ/QP01JQq9Xh0MlG02NLG/DU2XNe74t8f6kvgmW+WPLGAbR09JSh95EAfj4SdHT1nDx5rnMtsebx2cKKqN7B6SBr7NixxrRA4WyN0+nTpwPoKe/e1dXlwuYRmZ4QJBKYLxIZ0PMx3l/agJL6FqtBlrdXWyQaLGW1WhTW9NwlDZF7/zo7RXbmY9q6OeNpKutbjSnKKrkUaUxRHhKsfUa7ugXsPFaNjKhg/HxKY9wuQc+ajIZRrxC5P9KjFEiODEZBVTOyYoJxsLzReGPSEGDlJIaKvvQJEfVwOsgqKSkRox1ExgVBDSeMpDA5kiODbQZHPWtVnfsY20qDGArVFonEdqC03rhAq4G3r7NTYmc+pq2bM57kUFmD5YqJMzMwLiHUjS2jgbL2Ge04W5Y9OeJcYCQBECD1QUdnN2o0Ovzlw58BnJ2XMzsDk5LCsGym9XMd52MRDQ6ng6yEhAQx2kEexlrA40p78qug0QkIVfhDKZNi4458fF9Sb9zf+4RhCI56T/SclBCK+2am45GPDhu32UuDGArVFonEUlarNQuwgLNVybYfx/prsr1yRGsorC1TWd9qFmABPaMZG3PzsX5httmIVk2zDgDwxS9VCFEEIEXkuSLUf9Y+g/6+PgCAzl558jK/ngCrSwAUAefOeQfKGvDU9nw8sTALOclheHxBFkp7nesS1UEMsIgGkdNBFg19P5TUWa5cczbgGaiDpT2B1NJ3D0PXJcEfpqXgQGk9KhrbIPWVQH82raHvCcMQHDW06KEM8EOQvx8e+egwCmt6LiRyEkOR5EAahLdXWyQSS2FNi1mAZXCwvBGFNS1eGWQNhfmYJ2q0FhdXBnoCrRM1WpMg62hlE17efQIzg4HndhaiQ5D0VD2bnorMGNVgNZscZO0zeKqxDWmRCvj1LscuAboEYEJCKFp1nSbHHyhrQHFdC5Ijg5EaFcygisiNfNzdAPIsxdXNZgEWcC7gKa5uHtDzF1Q147ldBSbbRoQEYH9pA+q1HQhXyMxet7iuBUBPcDRjdDQS1HK8/k0JfveP/SYB1oo5GV6R8kPkqYbCiI8lSWdTji1x9OaMu/VdeNbW/mpNO17YXYii6haTY05UafHC7kJUa9r7PpzczNpnNPeXKlw7MRaxIYHnNp4NsH4/NRnrPz9u9hhv/TslGmo4kkUmiutaLC5yB5jeIeuvsvqeO+XXRZ/b1qbrKZbS3tmNrm7zx/Q9YeQkh2HdgqxeZW6lSFIHMcAiGiBvGvGp1rQbK6qp5FKbqXApduZjesN3R9+FZ23tL6zR4kSVFv4Wlq48UaVFYY2WaYMextpnNDtWhQnxIbg8IxJXnT/CeM6ra+7AA1vz0NhmHlB50t8p0XDGIItMiH0n29LjA2W+xv/v7ls6EJZPGClRwV5xYUTkTVIjgjAhPsRiyuCE+BCkRnjGiM/RyibLC4DaSIXzlpsz1qoHpkcokB2rspgymB2rQnrEuTROZ0a9yHPY+4wa/ltc3YzXviy2GGBNTAhFclj//k5ZuZLItZwOsjQajc39SqX4C0qSeMS+k23p8acb23F+rAo/VTTBR2J663UgJwwick5CuAL3zx5ltbqgJ8zHMqTC9Q6wgHOpcKvnZdoc0fK0oKo3e9UDl8/MsLx/VobJxbAzo17kWRz5jCZHBmPF7AzLc6fnZPQr24SVK4lcz+kgKyQkxLhOVm+CIHCdrCEgOSwIExNCLaYMOhPwFFQ196rg548EtRxpUT3l2CfEhwCoMx775t4yPHTVaMj8KlDZ2Gbyev09YRBR/0xMVGP9NdnGdbJUcilSB3GdrOZ2PSoa2qBt74QiwA+xoYEIDjBPhbPEUiqcM2mF7uRI9cBxCaFYvzDbONqglEuRbmG0ITVCgfQoBUotzKFNj1IgNcL9wTINzKSkMDyxMMtYBVgllyI5LKhf58v+VK4kIvv6lS64detWqNVqCIKAK6+8En//+98RExPj6raRG7jiDpmlVetzEkNx/6wM5CSH4e7L0lD1y7kgq6WjE58dOYWHrx6N6mYdGgd4wiCigUkIV7hl1Kq8rhXbDlWgSqMzbotSyrBwXCziw3ou8pxJhetPWqG7OFo90PDPlkhlAJZOT8XLu08AOPec6VEKLL0s1SODTHJecmSwS86RzlauJCLH9CvIuuiiixAZGQkA8PX1xfjx4zFq1CiXNozcZyB3yAqsrFq/v7QBG3bkY+2CLExIVOPTX4AXbhgLjU7gWlVEBK1ObxZgAUCVRodthypwy8VJCA6QOpwKN5C0Qndw9TyqzBgV/nzlaPzw9SncfXkqVIoApHroKB65F+fwEYnD6SBLrVajoqICkZGRaGhoQGtrK66++mr85z//wfnnny9GG8kN+nuHrMzKqvVAT6BVVt+CRHXPSX5aRhSkUs4NICKgsrHdLMAyqNLoUNHQhtEjpMZUOEspg71T4ZxNK3Q3MeZRRQT3LIkx4zx+15J1nMNHJA6n18m69NJLsWTJEjzxxBP41a9+hQkTJmDZsmWYOnUqNm/eLEITyZsM1XV2iEhcLe2dNvdrz+43pMKlR5mmM/ZNhfO2u/OG6oGW9K0eSORK/OwRicPpkayXXnoJy5Ytw1tvvYWkpCS8/vrrSEtLw/jx4/Gb3/wGS5YsEaGZ5C28aZ0dIvIcQQG2T0eKXvszY1RYPS/TWNBCKZeapcJ52935GLXc4eqBRK7Ezx6ROJwOsqKjo7Flyxaz7RdeeCF+/PFHlzSKvFfC2VXrLaUM5iSGIkHNcuxEQ1VZrdZYlTBELkWKE1UJY0ICEKWUWUwZjFLKEBsaaLItUhlgM93P0bRCT+Jo9UAiV+Nnj8j1XLoYcXh4uCufjrxQmpVV63MSe6oTpkUFQ6/3rDQdIhq4A6X1VtfXmpiotvt4hUyKheNiLVcXHB9rUsbdEYa0QovVBT24wp4j1QOJxMDPHpFr9SvIqqiowMcff4zy8nJ0dHSY7Hv66add0jDyXjnJYVi7IKvXOlmsHkg0lJXVas0CLAA4WN6IDduPY/012Q6NaMWHyXHLxUk218lyhiNphURERGJwOsjauXMn5s2bh+TkZBw/fhxjxoxBaWkpBEHA+PHjxWgjeaG0qGAGVUTDRGFNi1mAZXCwvBGFNS0Opw0GB0gxeoTr5kvZSyskIiISg9PVBVeuXIn7778fR44cQUBAAP7zn//g5MmTmDp1Kq699lox2khERB6MVUWJiIhMOR1kHTt2DIsWLQIA+Pn5oa2tDQqFAmvWrMH69etd3kAiIvJsrCpKRERkyukgKygoyDgPa8SIESgqKjLuq62tdV3LiIjIK6RGBGFCfIjFfRPiQ5AawaqiREQ0vDgdZF144YX45ptvAABXXnklli9fjrVr1+Lmm2/GhRde6PIGEhGRZ0sIV+D+2aPMAi1DdUFH52MRERENFU4Xvnj66aeh1faUw129ejW0Wi3ee+89pKWlsbIgEdEwNTFRjfXXZBvXyVLJpUh1Yp0sIiKiocTpICs5Odn4/0FBQXjllVdc2iAiIvJOCeEKBlVEREToR7ogERERERERWef0SFZoaCgkEonV/fX19QNqEBERERERkTdzOsjatGkTAEAQBPz+97/HmjVrEBkZ6ep2EREREREReSWng6zFixcb//+Pf/wjrrnmGpN5WkRERERERMOZ00EWERHRYKusb8WJGi00ZysXpkUoEKOWu7tZREREFg04yLI1P4uIiMhZvQOqkCApVAFSbPqiAD+WNxiPyY5VYfnMDIxLCHVjS4mIiCxzOshauHCh8f/b29tx5513IigoyLht27ZtrmkZERENO4fKGrAxNx95FU0AgCkpYahv6UCgvy+kvj7Qd3UDAPIqmrAxNx/rF2ZzRIuIiDyO0yXcVSqV8d/vfvc7jBw50mSb2F588UUkJiYiICAAF1xwAfbv32/z+Pfffx+jRo1CQEAAsrKy8Omnn4reRiIicl5lfatJgAUAI0MCsb+0AUdPaZAeZboGV15FE07UaAe7mURERHY5PZL1xhtviNEOh7z33ntYtmwZXnnlFVxwwQXYtGkTZs+ejfz8fIsVDvfu3YsbbrgB69atw9VXX40tW7Zg/vz5+PHHHzFmzBg3vAMiIrLmRI3WJMACYBy5qtV2ICPKPD1d06oflLYRERE5Y8CLEWu1WuzatQvl5eWuaI9NTz/9NG677TbcdNNNOO+88/DKK69ALpfjH//4h8Xjn332WcyZMwcrVqzA6NGj8dhjj2H8+PF44YUXRG8rERE5x1LAJPU9d5rSdwlm+5VyqahtIiIi6g+nR7K2b9+OJUuWICQkBJs3b8avf/1rVFZWQiqVYsuWLbjmmmvEaCc6Ojpw8OBBrFy50rjNx8cHM2bMwL59+yw+Zt++fVi2bJnJttmzZ+PDDz+0+jo6nQ46nc74s0ajAQDo9Xro9bxj6gqGfmR/uhb7VTzsW/H07ttgmQQyH9NAqrqxBaMjg1Bcp0Wgn2CyPzNGiZTQAP5erODnVhzsV/Gwb8XDvnUdR/tQIgiC+a1BG8aNG4cxY8YgMjISb7/9NpYsWYJHHnkEGzduxNatW5GXl9evBttz6tQpxMTEYO/evZg8ebJx+wMPPIAvv/wS33//vdlj/P398eabb+KGG24wbnvppZewevVqVFVVWXydVatWYfXq1Wbbt2zZArmck6uJiIiIiIar1tZW3HjjjWhqaoJSqbR6nNMjWfn5+di2bRvi4uLw/PPPY/HixQgKCsLixYuxbt26ATXaE6xcudJk9Euj0SAuLg6zZs2y2ZHkOL1ej9zcXMycORNSKVN9XIX9Kh72rXj69m3eyUY8v7sARys1xmPOj1Nh6fRUNLbq0dTWieBAP6SGKzAiNNCNLfd8/NyKg/0qHvateNi3rmPIcrPH6SCrvb0dCoUCfn5+kMlkCAzsOckFBASgo6PD2adzWHh4OHx9fc1GoKqqqhAdHW3xMdHR0U4dDwAymQwymcxsu1Qq5YfSxdin4mC/iod9Kx5D305IjsDakCDjOllKuRTpXHh4QPi5FQf7VTzsW/GwbwfO0f7r12LEDz/8MORyOTo6OvDXv/4VKpUKra2t/Xkqh/n7+2PChAnYuXMn5s+fDwDo7u7Gzp07sXTpUouPmTx5Mnbu3Il7773XuC03N9ck3ZCIiDxLjFrOoIqIiLya00HWpZdeivz8fADAlClTUFxcbLJPTMuWLcPixYsxceJE5OTkYNOmTWhpacFNN90EAFi0aBFiYmKMaYv33HMPpk6dio0bN+Kqq67Cv/71Lxw4cACvvfaaqO0kIiIiIqLhy+kga8+ePSI0wzHXXXcdampq8Mgjj+DMmTMYO3YsPv/8c0RFRQEAysvL4eNzrtzvlClTsGXLFjz00EP485//jLS0NHz44YdcI4uIiIiIiETTr3RBd1q6dKnV9EBLAeC1116La6+9VuRWERERERER9ehXkHXgwAH8+9//Rnl5uVmxi23btrmkYURERERERN7Ix/4hpv71r39hypQpOHbsGD744APo9XocPXoUu3btgkqlEqONREREREREXsPpIOvxxx/HM888g//+97/w9/fHs88+i+PHj+M3v/kN4uPjxWgjERERERGR13A6yCoqKsJVV10FoKesektLCyQSCe677z5W7SMiIiIiomHP6SArNDQUzc3NAICYmBj8/PPPAIDGxkbR18oiIiIiIiLydP1aJys3NxdZWVm49tprcc8992DXrl3Izc3F5ZdfLkYbiYiIiIiIvIbTQdYLL7yA9vZ2AMBf/vIXSKVS7N27F9dccw0eeughlzeQiIiIiIjImzgdZKnVauP/+/j44MEHH3Rpg4iIiIiIiLyZ00FWXl6ezf3Z2dn9bgwREREREZG3czrIGjt2LCQSCQRBMNsnkUjQ1dXlkoYRERERERF5I6eDLAD4/vvvERER4eq2EBEREREReb1+BVnx8fGIjIx0dVuIiIiIiIi8Xr+CrO3btyM8PBxBQUEYOXIkUlJSIJFIXN02IiIiIiIir9OvIGvx4sXG/5dIJAgODsbixYuxYcMGSKVSlzWOiIiIiIjI2zgdZHV3dwMA9Ho9NBoNTp06hf379+Mvf/kL5HI51q1b5/JGEhEREREReYt+jWQBgFQqRVhYGMLCwpCVlYWIiAjcddddDLKIiIiIiGhY83HVE82dOxc//fSTq56OiIiIiIjIKzkcZN1+++3QarVW90skEqjVapc0ioiIiIiIyFs5HGS9/vrraG1tFbMtREREREREXs/hIEsQBDHbQURERERENCS4bE4WERERERERORFkSSQSLjhMRERERERkh8Ml3AVBwJIlSyCTyWwet23btgE3ioiIiIiIyFs5HGQtXrxYzHYQERERERENCQ4HWW+88YaY7SAiIiIiIhoSWPiCiIiIiIjIhRhkERERERERuRCDLCIiIiIiIhdikEVERERERORCDLKIiIiIiIhciEEWERERERGRCzHIIiIiIiIiciEGWURERERERC7EIIuIiIiIiMiFGGQRERERERG5EIMsIiIiIiIiF2KQRURERERE5EIMsoiIiIiIiFyIQRYREREREZELMcgiIiIiIiJyIa8Jsurr6/Hb3/4WSqUSISEhuOWWW6DVam0+Ztq0aZBIJCb/7rzzzkFqMRERERERDUd+7m6Ao37729/i9OnTyM3NhV6vx0033YTbb78dW7Zssfm42267DWvWrDH+LJfLxW4qERERERENY14RZB07dgyff/45fvjhB0ycOBEA8Pzzz+PKK6/Ehg0bMHLkSKuPlcvliI6OHqymEhERERHRMOcVQda+ffsQEhJiDLAAYMaMGfDx8cH333+PBQsWWH3sO++8g7fffhvR0dGYO3cuHn74YZujWTqdDjqdzvizRqMBAOj1euj1ehe8GzL0I/vTtdiv4mHfiod9Kx72rTjYr+Jh34qHfes6jvahVwRZZ86cQWRkpMk2Pz8/qNVqnDlzxurjbrzxRiQkJGDkyJHIy8vDn/70J+Tn52Pbtm1WH7Nu3TqsXr3abPuOHTuYauhiubm57m7CkMR+FQ/7VjzsW/Gwb8XBfhUP+1Y87NuBa21tdeg4twZZDz74INavX2/zmGPHjvX7+W+//Xbj/2dlZWHEiBG4/PLLUVRUhJSUFIuPWblyJZYtW2b8WaPRIC4uDrNmzYJSqex3W+gcvV6P3NxczJw5E1Kp1N3NGTLYr+Jh34qHfSse9q042K/iYd+Kh33rOoYsN3vcGmQtX74cS5YssXlMcnIyoqOjUV1dbbK9s7MT9fX1Ts23uuCCCwAAhYWFVoMsmUwGmUxmtl0qlfJD6WLsU3GwX8XDvhUP+1Y87FtxsF/Fw74VD/t24BztP7cGWREREYiIiLB73OTJk9HY2IiDBw9iwoQJAIBdu3ahu7vbGDg54vDhwwCAESNG9Ku9RERERERE9njFOlmjR4/GnDlzcNttt2H//v349ttvsXTpUlx//fXGyoKVlZUYNWoU9u/fDwAoKirCY489hoMHD6K0tBQff/wxFi1ahEsvvRTZ2dnufDtERERERDSEeUWQBfRUCRw1ahQuv/xyXHnllbj44ovx2muvGffr9Xrk5+cbJ6P5+/vjiy++wKxZszBq1CgsX74c11xzDf773/+66y0QEREREdEw4BXVBQFArVbbXHg4MTERgiAYf46Li8OXX345GE0jIiIiIiIy8pogi4iIiIjIUQVVzSirb0FTqx4quT8S1HKkRQW7u1k0TDDIIiIiIqIhZX9xHTbsyMf+0gbjtpzEUNw/KwM5yWFubBkNFwyyiIiIiMgtKutbcaJGC02rHkqZxCXPWVDVbBZgAcD+0gZs2JGPtQuyOKJFomOQRURERESD7lBZAzbm5iOvogkAIPMR8ND5QN7JRkxItr/EjzVl9S1mAZbB/tIGlNW3MMgi0XlNdUEiIiIiGhoq61tNAqzent9dgMr61n4/d1OrfkD7iVyBQRYRERERDaoTNVqLARYAHK3U4ESNtt/PrZJLB7SfyBUYZBERERHRoNLYGU2yt9+WBHUQchJDLe7LSQxFgjqo389N5CgGWUREREQ0qJR2RpPs7bclLSq4p4pgn0ArJzEUK+ZkcD4WDQoWviAiIiKiQZUeoUB2rMpiymBmjBLpEYoBPX9OchjWLsjqtU6WFAnqIAZYNGgYZBERERHRoIpRy7F8ZobF4hd/vCwNMWr5gF8jLSqYQRW5DYMsIiIiIhp04xJCsX5htnGdrGCZBM0FPyA7NsTdTSMaMM7JIiIiIiK3iFHLkRAaiKAAXzS0dAAASgdQWZDIU3Aki4iIiIjc4oeSOjy1PR8Hyhog8xXwxCTg0f8exX2zRmNSUpi7m0fUbxzJIiIiIqJBV1zdbAywejt0shFPbc9HcXWzm1pGnqSsVoudx6qw7WAFdh2rQlmtd4x0ciSLiIiIiAZdcV2LWYBlcKCsAcV1LUiOZOGK4exAaT02bD+Og+WNxm0T4kNw/+xRmJiodl/DHMCRLCIiIiIadE12Fhy2t3+wVGvasbeoFp8fOY19RbWo1rS7u0nDQlmt1izAAoCD5Y3YsP24x49ocSSLiIiIiAadys6Cw/b2D4ajlU14YXchTlSdu6BPj1Jg6fRUZMao3Niyoa+wpsUswDI4WN6IwpoWJIQPbD01MXEki4iIiIgGXXJYECYmhFrcNzEhFMlhQYPcIlPVmnazAAsATlRp8cLuQo5oicxbRjqt4UgW0TBWXN2M4roWNLXqESL3R1KYnPnvRETUb0VVzSip7zmvqOT+SFLLkWJlQeDkyGCsmJ1hVvxiXFwI7pud4fbzUWGN1izAMjhRpUVhjRaRyoBBbtXw4Q0jnbYwyCIapnqXzTWYmBCKFbMzWDaXiIictr+4Dht25GN/6bnzSk5iKO6flYGcZMvnlUlJYXhiYVbPDT9tO3DqJ6yem4m0kZZHuAaTxs5Iib39NDCpEUGYEB9iMWVwQnwIUiPcO9JpD9MFiYYha2VzD5Q1sGwuERE5raiq2SzAAoD9pQ3YsCMfRVXWzyvJkcGYMToa88bGAAASIzxjno3SzkiJvf00MAnhCtw/exQmxIeYbDdUF/Tk+VgAR7KIhiWWzSUiIlcqqW8xC7AM9pc2oKS+xWraYF978qug0QluT2NPjVAgPUphMWUwPUqBVA8JBoeyiYlqrL8mG4U1hhRUKVIjgjw+wAIYZBENS94+mZS8T7WmHYU1WmjOniRTIhScy0A0hLjivPJjWT0A4O5/HYauSwLAvWnskcoALJ2earm64GWp/A4bJAnhCq8IqvpikEU0DHn7ZFLyLrZKIKdHyt3YMiJylYGeV4qrm/HszgJcF2263ZDG/sTCLLeMaGXGqLB6XqbxJpFSLkUqbxKRAzgni2gY8vSyuTR02CuBXNOsc1PLiMiVktRByEm0fF7JSQxFktr2eaW4rgWHTjZa3GdIY3eXSGUApqSEY07WCExJCWeARQ5hkEU0DBnK5vYNtCYmhGLFHPeXzaWhw14J5OJay/uInFWtacfeolp8fuQ09hXVcg2jQZYSFdxTRbBPoJWT2HNesTcfi2nsNNQwXZBomDIpm3t2nkxyWBADLHIpeyWOm9s6B6klNJTZSknNjFG5sWXDS05yGNYtyOq1TpYUSeoghwpeMI2dhhoGWUTDWHJkMIMqEpW9EsfBgX6oG6S20NBkLyV19bxMpncNopSoYIerCPaWHBaEcXEhgIVvBKaxkzdiuiAREYnGUALZkvQoBZK9sGIUeRZ7KamFNUxJdRdnUjiTI4Nxz+VpZtuZxk7eiiNZNCwUVzcb0+Lcve5GfxRUNaPMmH7hjwS1HGn9uFNINNjslUCOCJa5sXU0FNhLSbW3n8TRnxTO8QlqfHoUeO76sdDoBKaxk1djkEVD3g8ldXhqe77J4rvuXHfDWfuL67BhR77JIo85iaE9E4yTPb/9RLZKIOv1vACmgbGXkmpvv7corGpGaa+bbYlqOVI99GbbQFM4p2VEQSodGr83Gr4YZNGQVlzdbBZgAe5fd8NRBVXNZgEWAOwvbcCGHflYuyCLI1rkFSKVAZwXQ6IwpKRaShlMj1IgNcL7U1K97WabIymc/D6goY5zsmhIK65rMQuwDNy97oYjyupbzAIsg/2lDSir9+z2ExGJzZCS2nfunyEl1dsv5gv73GzzkQAjVAFoaNXjH3tLcLCsHpX1rYPersr6VuzOr8ZHhyqxJ7/apA1M4STiSBYNcd6+7oa3t5+8T1FVc6/yy/5IUsv7VSmMaDDZSkn1dqW9brb5SICUCAWqNO043dSOgmotsmNCsLeoFstnZmCclUXmXe1QWQM25uYjr6LJuC07VmVsw3BJ4SSyhUEWDWnevu6Gt7efvIu3pSSJgUVmvNdQTUntfTMtShmAKk07NO3n1pdr13chr6IJG3PzsX5hNmLUclHbU1nfahZgAUBhdTN+PtWEZl0nWjs68bsL41FW24LvS+vR0SkYjxsqKZxE9jDIoiEtOSwIExNCLaYMetK6G9Yu7BLUQchJDLWYMpiTGIoEtWe0n7xfkZ35f+sWZA35ES0GmeSJet9MU8j8cLrJtAx6gNQXAJBX0YQTNVrRg6wTNVqzAEvu74NlMzPw7v5ynNHoECTzgypACqkvcHXWCPzvyGl0dApDJoWTyBEMsmhIS44MxorZGZarC3rIuhv2Luzun5Vhcf+KORm8w04uU2Jn/l9JfcuQDrJYZIY8VWKvm22CYLrvvBHBaNWdG9UajLlOll7j+knxeHd/OX6qaEKEQgZBAJra9Qjy90VhtRYPXXkeJD4YcApntabdmBKqkkuRMkRSQmloYpBFQ96kpDA8sTDLuE6WJ6274ciFXU5yGNYuyOo10iVFgjqIF3zkUsN9/p8jRWb4N0fukBoVbLzZ1tDr7/C8EcFYOC4Wm/cWG7cNxlwnS68RoZThp7OjWz4+EgCAIABaXRfyKjW4dhIwJSV8QK/bn3W3yFxNsw6lDU0MVAcBgywaFpIjgz0iqOrL0Qs7wz8isQz3+X/DPcgkz5aTHIbHF2ThZGMb8k9r0C0ArbpObN5bDE17F4CewhPp/Zzr1NyuR0VDG7TtnVAE+CE2NBA1mnbjzckQuT+SwuRIjgxGeoQC2bEqk5TBto6eNsj8fODva164eqAjbANdd4vOefzTYzhWda4SJANV8TDIInKByvpWnOiVwpAWoXAoL54XduQpkuzM/0sa4vP/hnuQ2R9M3RpcqVHBSI0KRkiA1HJlv1kZ/ZqPVV7Xim2HKlCl0QHo+axPSw/H0ztOmKfZz87ApKQwLJ+ZYdKGQH9fyPx8EBYkg5+FIGugI2zDcd0tVxfhqWnu+f0WVbcAkBi3M1AVD4MsogGyV8rWFl7YkadI6ZWSZGn+31CejwWARWacxNQt9xmXEIr1C7ONN/aUcinSHbyx11dzu94YYCkC/HB5RgQ6urpxoLQBFyaHISY0ENt/rkJ7ZxcOlDXgqe35eGJhllkb4sICcWlaOAprzNfrckU1weG27pYYRXiKay0HqcDQDVTdzWuCrLVr1+KTTz7B4cOH4e/vj8bGRruPEQQBjz76KP72t7+hsbERF110EV5++WWkpaWJ32AaFqyVsnW0nC4v7MiT5CSHYd2CrF7rZEmRpA4a8gEWAKTZCTKZrnsOU7fcL0Ytd0kVwYqGNmOANT0jAk/nnkB7ZzfyKprg5yPBqOhg3DU9BZ8fPYP6lg78WN6I4roWJEcGm7Xh7st9LQfeLqgmOJzW3RKrCE9zW6fN/UMtUPUEXhNkdXR04Nprr8XkyZPx+uuvO/SYJ598Es899xzefPNNJCUl4eGHH8bs2bPxyy+/ICCAJwAaOEulbA0cKafb3ws7S2k6oYG+A3szROgZ0RoOQZUl7i4y4y1rdA3H1C1v5Eg6p/bseluXnw2wDpQ1YPQIJaS+EnR1C/j5lAad3d0YHa3EzrpqJEcEWb0YF3NB6NQIBdKjFBY/d0Nt3S2xivAEB/qhzsb+oRSoegqvCbJWr14NANi8ebNDxwuCgE2bNuGhhx7Cr371KwDAP//5T0RFReHDDz/E9ddfL1ZTaRhxRQqDsxd21tJ0/nBpolNtJyJz7ioy401rdGla9QiR++LmKcmQSABNeyeUgX4QuoF/7C3mHXEP4Gg6pyKg5zJQ095pnH/l59MTYHWfLRd//IwWM8+LPrsAcjvUCpnV1xVrQehIZQCWTk8VbaTMk4g1Vzs5XGE1yBpqgaqn8Jogy1klJSU4c+YMZsyYYdymUqlwwQUXYN++fVaDLJ1OB51OZ/xZo9EAAPR6PfR6njhcwdCPQ6E/g2USyHwEm/sdeZ+J6gAkqk1PEpYeV9Osw8u7T6C0ugX+5+atorS6GX//qhCXBQ+NfvU0nvSZrWnWobhWi+a2ngvbpHAFIoKtX/R4Ok/qW3cpqtZiU+4x/HSyEbJeA9I/nazHptxjeOTqTKREOn8BJFbfhsokWHppEl77uhg/nmw0bh8fF4KllyZBLnXse89befpn1tZ54uXdJ/DnK0cbvzOig/0QHeyHptZ2yHx7zmVCVxfCA33R1Gv9Lb1eD5mvgCR1AORS8d67rb5Nj5Tj4SszjN9/wYF+SD77/eepv4v+UMokxt+Ftf39eb8hAT0FSdIjA3Gius24PSUyCHdMTURooO+Q6kcxOdpPEkHou7SdZ9u8eTPuvfdeu3Oy9u7di4suuginTp3CiBEjjNt/85vfQCKR4L333rP4uFWrVhlHzXrbsmUL5HJxV1EnIiIiIiLP1draihtvvBFNTU1QKpVWj3PrSNaDDz6I9evX2zzm2LFjGDVq1CC1CFi5ciWWLVtm/Fmj0SAuLg6zZs2y2ZFkX0m1FmUNLdC06OB35mekj5uC1BEh7m7WgOWdbMTzuwtwtFJj3JYZo8QfL0tDdmyIS1/ri1+q8NzOQov7pBIBtyRrMHPmTEilzK12Jb1ej9zcXLf2bU2zDo9/euxs+V1TKZFBJnenvYkn9K27fXy4En/+8GeL+wJ8fbDpuvPx+rclOHzy3PzPsXEq3H15OsbFW69gKlbf7smvwrL38tApdBtTygDARwL4SXzw9HXZmJYR5bLX8zSe/pm1dp4IlfvitktT8Po3xfihrNG4fUJ8CO6dkYbXvirGvuJ6BMv80KzTY6RKjkCpL+LDAnFV1kgcPdWIb4vqsXxWOi5Icj6Fte+5slvoOVfecWkyWjo6ERLojxHB/vhx35ce27eD5WBpPZ7bVYCD5Y3GbRPiQ3DPjDSMj1f36zk9/XPrTQxZbva4Nchavnw5lixZYvOY5OTkfj13dHQ0AKCqqspkJKuqqgpjx461+jiZTAaZzPxCRSqV8kM5AL3nG8h8BTyZAzz2WT7unTna4+YbOGtCcgTWhgS5pJyuPSpFADoEic1j+FkVjzv7trSh6ewCkua//2NVrShtaMdItffm1A/nz61KEQBdl+W/6yuzRuDDvGp8X6ZB79/992UaPP1FIdZfk42EcNu/d1f3rUYnoFkvwM/HBz4SCQABgAT6bgFt3QI0OmFY/C499TNr7Tyx6KJUvPhlCfIqNOjo9XnbW9KErtwiPHTVedB++guOnW6GXvBFQW0bxseHYNaYGLz8dTFadN1Ij1IgPTrE6fddWd+KZ3YVIa+iGUDPnC9dZze+KmxAi74YC8fFYNPO47h+YgxU8Ny+HSwXpkUhTCkXpQjPcO9bV3C0/9waZEVERCAiIkKU505KSkJ0dDR27txpDKo0Gg2+//57/P73vxflNcmyIivlSA+WN2LDjnysW5Dl9dXMXFVO1x5bFZZSIoMAWK50SN5vuK0T420GUhnQ1lIOmSOV2Hao0uLjDpY3orCmxW6Q5WqG9fs6uwX0BFjo9V+u7+du1s4T3YKAH8sbzgbGpr4vbUCVth3rr8lGUU0LNO16QADqW3X4+zfnAqz+FpnoXYm3WwB0nd1nPz/AwbIGLJ6cgPhQOZraOqAC8H1xHdJHhAypghbOclcRHnIdryl8UV5ejvr6epSXl6OrqwuHDx8GAKSmpkKh6DnBjBo1CuvWrcOCBQsgkUhw77334q9//SvS0tKMJdxHjhyJ+fPnu++NDEMldsqRltS3eH2QNVhsVVi6Y2oiin885cbWkZiG0zox3maglQFtLeUQHRKI0jrzFFGD/lYaG4hEO+v7JXJ9v0FhrUS7tfOEVtcJXx8J9F2Wp+I3teqREK4wBu2G5/+DSj7gcuy9bwJ1CwK6+5QD0HV2o6i2Bbvzz+DJHOC5nQUIU8q5uDV5Na8Jsh555BG8+eabxp/HjRsHANi9ezemTZsGAMjPz0dT07k7+Q888ABaWlpw++23o7GxERdffDE+//xzrpE1yMQqRzpcZcaosGJWOorrzt01Tw6TIy40AMXubhyJZjitE+NNXLVwqLWlHE42tFq9KAbcM2qUamd9v1TeNBNd7xLt/n4SXJCoRkJ4EKKCZQgN8kdKhMJszarWjk6nPkuuLMfe+yZQ33prfj4SBEp9UVCtNVbX7OwWPH5x67JaLQprev5eQ+RSpEQEDfqoMnk2rwmyNm/ebHeNrL5/uBKJBGvWrMGaNWtEbBnZY+8igKklzjlU1oCNufkmiyBnx6pw32UpbmwViW04rRPjTVy5cKil9CB/XwkmxIeYTIA3mBAfgtSInlEjS+mKfZeFcKWc5DA8viALpb2CwkR1kFcHWM3telQ0tEHb3glFgB9iQwMRHOB556dqTbtJgHV11gh89vMZvLO/HKpAKWJCAjEyJBBLp6diSkq48XEFVc02RyATRByBTI9QIDtWhbyKJkj6pCtOTAhBU5vpzVY/n565fp66uPWB0nps2H7crDDF/bNHYWJi/wpT0NDjNUEWea8kO6klSUwtcVhlfatZgAUAeRVNeH53ARaEW3kgDQmZMSqzu9MDSeGhgRN7pD4hXIH7Z4+yekGXEK6wmq647HJxb7ykRgV7dVDVW3ldK7YdqkCV5tw6mVFKGRaOi0V8mGct31JYo0VDiw6r5o6GvktAflUzrswagcnJYdj640n4SCQWR4FspaWumJMh6vyfGLUcy2dmYGNuPg6fbIKPRIJuQcCEhFDcdVka/rjlEABAJfMD0GWSTuhp803LarVmf4/A2Xnm2487VIyGhgcGWSS6FCtf7BPiQ3Df7AyL87Eq61uN1fpUcinSRKrW5216Tx7u62ilhkHWMODKFB5yjqU5MIMxUj8xUY3112QbU5NUcilSz6Ym2UpXfG5XAa6LHvDLD3nN7XqzAAsAqjQ6bDtUgVsuTvKoEa3WDj3+eHk6NuWeQFObHieqe0a2zxsRjDunpiL36BkAsDgKZC0tdTAKLIxLCMX6hdk4UaNFg7YDgf6+aG7XY39xHRrb9FAF+CE+LBCADi0d3TBU0/S0+aaFNS0WR5YB9xWjIc/EIIsGRU5yGNYtyEJJfQuatO3AqZ+w6upMpMeYr/FiLR1u+cwMjEuwvibMcOBpd/SIhovec2AM0qMUuOfy1EFJwepdkKA3W+mKB8sbGWQ5oKKhzSzAMqjS6FDR0IbRIzznQn+kSo5HPzqKH8oaTOZi/nK6GUAlLsuIxGdHqwBYPme4s2pd70q8lfWtKKprQWSwDL+eEIPKhjZ0dp5t79mBLE+cb8p55uQoBlk0aFKigpESFQy9Xo9PT/2EpEjzL05b6XAbc/OxfmG2W0e0iqubjQUnQuT+SAqTIzly8E5WnnZHj2g46D0HprcTVVr864dyt6VgAbygcwVte+eA9g+2U01t+KGs57Pm06ca+y+nm3F19kjjz+44ZziaidI74IoIDsALuwtRWn0u2PXU+aacZ06OYpBFHsVWOlxeRRNO1GjdFmT9UFKHp7bn40DZuQupiQmhWDE7A5OSBmdB5d6Th/vKjFECqBmUdhANJ4U1WotVHQHg64J6/CpzhNtSsNTBUqxfmAW5zA/adj2CA6Ro0XVi3WfH0dbRIfrrDwWKANuXQvb2D7amVj18JD3rTTXrOqEM8IOmVyDYpu8C4J5RoP5mohjmm54404i6Y9/jL1ePQnq0Z66TlRoR5FAxGiLP+uagYc9TF1wtrm42C7AA4EBZA57ano8nFmYNyohW78nDfU9if7wsBRV5DLKIXM3e905Vqx7jUsLdkoKlkErx8o/FpvNdE0Kx4dps/Pv7EgDVg94mbxMbGogopcxiymCUUobY0EA3tMo6lVyKbqFnxlJNsw7JEUEA2o2BVqDU16WjQNbW4+proJkokcoAhAaG4dNjwAVJYZBKPXNEyJFiNEQAgyzyMMGBUnR2CxAEQCIBfCQSk3QId6XLFde1mAVYBgfKGlBc1zJoaYO9Jw8bKsylRygQGSxFRd6gNIG8nKMXTUPJQN6zpy4EXVjVc/PnSGUTfCWAYQmkg2UNeO2rYjxyZTqKDlXjy/xqaHQC1/KxIjhAioXjYi1XFxwf69aiF5ZS73ovBt3ZLaCwWotoVQCiVQFIiQhCTpIav54Q65K/acNcxPL6FlyUEg6V3B+HTzZi9AilWRqgJ2eiuJqtYjREBgyyyGMcrWxCV2cXzhuhxI/lhnxzCWR+PvD1kSA7VoV0N02A9bSJrr1z2Q30es7NIPusFXBYOj0VmTEqN7ZMPI6+Z2uBmKcuBF16tuiFBIDMzwfSnqWFAAlw7Ewz6s9+L9373mHounvuVnEtH8viw+S45eIkj1ony1rq3YqZGSbzALsF4FRjO3ISQ3HzxUku+90a5iKW17dg3vkx+PinShw73QwAUAZKMTlZjdsvSTGmAXpqJopYrBWjITJgkEUewfBlfqapDUsvS8Nbe0sxMzMawQF+0Oo6ESqXIiEsyKV3wSwt3mkt3YcTXWkosFXAoe+aOkOFo+/ZXiDmiQtBG27uCADaO7tN9k3LiMDHh0/hkj6ZblzLx7rgAKnHVBG0lXr31NnUO7EXgzbMRbx8VIRJgAUAmjY9yuraTNIAPXXEl8hdGGSRR+g9sXzzN8X4w2VpeG5nAQ6VNxrTBsfFh7isjLu1xTvvn5WBnGTzIhbJYUGYmBBqMWVwYkIoksM40ZU8n60CDpbW1BkKHHnPAOwGYp64ELStmztxIXL8cqoBsDCdiGv5eD5HUu+mZ0SaBVWuTAU2jDyp5P4mAZZBl9BtkgZoqzCTOzNRiNzFx90NIAJM0wgWTojDxh0n8H1JPTq6uqHr7Ea3cG7ybGV964Bey9binRt25KOgyvxkkhwZjBWzMzCxT4A3MaGnTPNglnEn6q/hls4DOPaeHQ3EIpUBmJISjjlZIzAlJdztAalhbo4lQTJf6PuMbvXG0u+erT9/q0crm/Dox0fx8IdH8dSOE3jow6N49OOjOFppOVizxzDy1H62WmFfvhIfk7YYCjNlx5qmHWfHqrB8VsaQmY9F5CiOZJFH6J1GIPX1Mc7JMpCcLX7hismzthbv3F/agLL6Fotpg5OSwvDEwizjOlkquRTJYUEMsMhrDMd0Hkfes7cGn6lRwVbX6BoXH4o3vy0CYiw/linOnk0pl0LqK8GkJDVGqgKh7+qGv58vKhtb8UNJvdnnWoxUYMNcxACpr3n7AqXG4Kt3W6wVZmKAZV9RVTNKek1hSFLLkeKmRaPJNRhkkUfoPbFcqzNd+LGnwuC5EoMDveAZSBGL5MhgBlXktTy1gIOYHHnPhpEqazw5+MxJDrM4N0fqK0HmSCWAOrPHcC0fz5ceocCtlyRj24+V2HG0yrg95ez2vql3YqQCRyoDsHR6Kr4trMHoEcEmRS9GhgTiVEObxTRAS4WZyDZnpzCQd2CQRR7B8GX+wu5CKGTnPpaG6oKuLOPOIhY0XPX+O/OkAg5icvQ9e3PwmRoVbLHgwd2Xp+P0z/tMtnEtH9cTY0kEqZ8PKhva0NTWgSB/PyyenIDokADo9N2ICJZB12mawifWaGxmjAoRwTKMiQ3B29+VobS2Fe36LpxqaMOYGCXTAF2gyM4UhnULsjii5aUYZJHHMEwsr25ux4VJahyuaDJbJ8vZybOWKgj2XmOkr5zEUCSoeYeXhi5PLOAgNnvveagGn+PiQ3H6Z2DTdWOh0Qlcy0cEYi2JUFijxQ9lDRgfF4Krzo/BP/eW4sipJkAAOrq6cUlqOO6dkW4sBCVmKnCkMgCRygAkhMqZBiiCEjtTGErqWxhkeSkGWeRRDF/mK2aPsrg+iDN3zWwNv/9pVgbWW9i3Ys7/t3fvYVGW+f/A3wMMw/kkJxXE4agpipqa9tvURGFry0OraVZipmVauolr626Z2mEt0mzXra78ha7fVtd20UxLf2pg3wjRDPJEKoiQyEFBGJAz3L8/bEaGGc7zzAwz79d1cV3Mc5jnnpuH55nPc9/3545oM407kaVQ/59Zk44+syUHnxMifCGXs4Xe0G5U1kk2JYKqugGNTQJjg/tge2ouMn4p11p/tkCllT7dGF2B2Q1QGuY2DycZDoMsMks9HTzbUQbBN2dE4s0ZkS1aueQI8nJmgEVkxawx+KTuu3JTuikR1C1PLg5ynQALuJMMqmUiKEttjbUGHMJguRhkkdnqyVOzzmQQjB7srwmqCsqqcelGFS5cV8HdSY4wdoMgIqJ2VNY0tru+J0ma1C1T1XW6x7C3tYHQcwxLbo21ZMoOhjAoOYSh12KQRRapK83vGXm39HdNNNDEx2T5sosrW2R3s8dALye9iQiIyHK4Orb/Faqn46CWTQrF5RLteRvtbW3g4mCH+l/nQGt9DLbGmgd948Hb6ikT0s5UDKtiIzgeqxdjkEUWqbPN7wVl1ToBFnB34mN1f3dDuFJSqZljy8PJHso+TkwHbwGYepfIcnQlU2Cwt7TjoIb0d4ej3Aa/CfXG2QIVZDJAAJoAq6uJoIzNWu953bknjAnug7dnRLaYJ0sOpZczA6xejkEWWaSgTmYQvHSjSifAUjPExMdqp3JL8e7hi/gh72557g3yxKqYCIxW8ot4b5Xdwdi/t2ZEskWLqJfoaqZAH1eF5OOggn1dsSI6vMeJoIzNWu95nRkP3l6LFoMqy8IgiwxC6idWXWl6B4CwDprf1ftKNbdIS1dKKnVuNgDwQ94tvHv4Iv46M9Iqnu5ZoqsdjP27WnabQZaF6eq1iHqHElVttzIFGmMcVE8TQRmbNd/zOjMenNcL68Egi3pM6idW3e2ONSa4T4cZBLszt4g6SYa6O0lHSTKulN7Wudmo/ZB3C1dKb1vsDcfSMfWudWHXUMuVfaP7mQKNMQ6qN6VPt+Z7Hu8J1BKDLOoRqZ9Y9aTpHbjTotXe+nAfFwwLcNfbZVBff/fuJMngRddyMfWu9ejptYjMmzF6NVgLa77n8Z5ALdmYugDUu3XmiVVPdKbpvSf6ezlh5ZQIDAvQ7m+vr797R0kyCsqq9R6DF13LNfDXsX/6jBnoiYFMvWsxpL4WkWl1p1eDOcq7WYVjWcVIOn0N32QVI++m/tY5KVnzPS+og3tCEO8JVoUtWdQjUj+xMsYTsc72d+9ukozgPs64N8hTbzB6b5AngvvwottbhXYw9o/jsSyHNT+dtwbqeamkyhRoDD9cLUPC4Z9xOr9cs2zUAA/ExwzCvQO9jFYOa77ndXY8OFkHBlnUI1I/sTLWE7HO9HfvbneSYF9XrIqJ0D9uLTbCYvumW4sxwX3w1ozIFvNkyTHQy5kBloWx5qfz1kA9L5WUmQKllHezSifAAoDT+eVIOPwzNj42DEHexgkUrf2e15nx4GQdGGRRj0j9xKqzqdiNQV93EZkMcLCzBWSAo70t0nJu6p1XZbSyD/46M1KTgdHdSY7gPs4Wf7OxFqF+rgyqJGCKTH5tJbYxp2sRScMYmQKlkn3jtk6AZSOTwUVhh5wb1bhYXIXrFbXtzvtlSNZ+z+toPDhZBwZZ1CNSP7Eyp6b31kkyZDLAUW6Hipp6DOrrhtwbVdhzuqDNeVWCfV2t5gZD1FNtZfJbOTUc5bdrIbeTI8THGV4uCly7VYOq2ka4ONghwNMRrg7da1XqKLGNuVyLSDrGyBQohdbdVW1kMrg7yqGqaUBtYzN+KavGv07+0u68X4bGex5ZOwZZ1GNSP7GSsuk9p7iyxQzr9lB6ObU5GaA6SYb6S5iDna0mwHrqviAkpuYC6HheFSJqX7uZ/A5fwh+mhiPu01O4L9gLT48Lwv9ml6K+sRkA4OemwMwRARjQp2vprjtKbLNx5jB2AyKz1bq7qovCThNgAYCTwhYA709ExsQgiwxC6idWUjS9d2fOm5ZJMspv16OusRkV1fVITM1FdX2zZruO5lUhora1l8nvVN4t3K5thEJug/TcMtyua8TcMQM0XaWKVXVIyriGhf9H2aUWrc4mtmE3IDJHoT7OGDXAQ/N/YCOTaQKsqEB3rZYu3p+IjIMp3Mkq5XQw501OcWWb+/b3csKkCF84ym3xyf/mYs/pAq0AS43zqhB1T4eZ/GobYGcjQ0NTMzJ+KYeNjUxrfbGqDtdu1XTpmJwniXqzIG8XxMcMwqgBHgAAAQHgToD11H0DcfBsodb2PJ+JpMeWLLJKuR3MeZNbdrvNboNqljKvCpG56TCTn4McQtx9XVXbqLONvmXt0ff/Kre1QbifC2xkMshtZUi5WKJJhEFkbu4d6IWNjw1D9o3bqKhpQF1jEyqqG7D9+1ydB4G8PxFJj0EWWSVDzHljCfOqEJmj9jL5jQ7yhLODHWQtGq9cHHRvZfqWtad1Yhu5rQ2G9nfD+esqeDjaY/9P1/F9TqlWIgwiU8u7WXUnqKpugIfTnWQwkwf7oURVi7X7z/P+RGRC7C5IVskQc96o51UJ99O+WfWWeVWIzJU6q+iYgdqBzOigO9kF1yT9hMZmAbmtDUYEeqC5WWht5+emQICnY5eOqU5sMyzgTta1cD8XTYD1QLg3Tl0tA3A3EUZBWXUPPiFRz/1wtQyr/3sGz//PaaxOOoPn/uc0Vv/3DH64Wsb7E5EZYEsWWSVlB3PeKDs5501vnleFyJzpy+Tn4ShH/OeZKCivgwwyreyCan5uCswcGdCtNO7qxDY5N6vQLICSylqUVzegpr4Jkwf7IfnnEtQ1NmslwiAyhc5MPsz7E5FpMcgiqxTSwfxbHY3Haqm3zqtCZO5aZ/LLu1mFV383VBN0hf46T1Z/TyeDzJMF3GnRKqmsw/9NvYIDZ4o0ywf3dcW8+4Lw2Yk81DU2M3EAmZS+yYfVTueXI/vGbQR5u/D+RGRCDLLIao0J7oO3Z0S2mCdLDqWXsybAKiirxqVfnwC6O8kNPuC9K3N0EdGdDGpB3rpjSQb3NdwgfvV8WapWiTOyCu9kHJ00yBeHzhUxcQCZlCHGFRORtBhkkVUL8XPVG9hk5N3SmZjUkAPeuzNHFxFJTz1fVj8PR3g6yXGrxZfVrMJKTLnHD8MC3BHOxAFkQoYYV0xE0mLiC6JW1E+yW09MaqgB7z2Zo4uIpKXuBlisqkVQH2d4tvqyqrC1wcqpERyPZeYKyqqRfLEEX2QUIOViicUlKlFPPqzPqAEeCPXp3LhiIpIOW7KIWlE/ydanowHvneliaIg5uoh6qkRVqxkQ7+4kRwgHxAO4O39QU7NAXult+Lk5INDLCU3NArY2MkQGemDEAKZvNyet05j7uzvg70cv47srdxOiWFrqffXkw62TX4wa4IH4mEF6u9USkXH1miDrzTffxMGDB5GZmQl7e3uUl5d3uE9cXBx27NihtSwmJgaHDh2SqJRkCToa0N7W+s52MWRfejK18wUV+HtyttYcOuF+Llg2KRRD+rubsGSm13K+rKZmgevlNZp1wwLcEdKHLQTm5IerZVqBho1MhuEB7nh+QgjOF1XgVvWdsXXqnggbZw6zmFZIrcmHWySDYYBFZB56TXfB+vp6zJo1C0uWLOnSfrGxsSgsLNT87Nq1S6ISkqXoaEC7vvVd6WLIvvRkSiWqWp0ACwAuFVfh78nZKFHVmqhk0sm7WYVjWcVIOn0N32QVI++m7gStaq3ny1IbFuDOboJmpq005iev3sI/UnKwIjpca7m6J4IlCfJ2weTBfpg5KgCTB/sxwCIyI72mJWvdunUAgO3bt3dpP4VCAX9//05vX1dXh7q6Os1rlUoFAGhoaEBDA1sYDEFdj+ZanyGeDhgZ6IrzBSqddUP6uyHE00Gn7Leqa/D02ABUDveHm4McHs5ybDn6MyYP6gtXBznSc27A/bodlN7OGOCmwHilu970u6MGeGCAm6JbdWPu9dqbWVLdXioqx9WSStjLdNddLanEpaJyeDoaL/mK1HWbkX8LHxy7hMxf7j4AiQp0x0uTw9vs9je0nwveevQeZN+sQmVNI1wd7RDq7YK+no696hywpPNWn8tFFTh37RYULR4Xy2QAbAXOXiuD3bhAKGy0J6pWVdX2uD4svV5NiXUrHdat4XS2DmVCCNHxZuZj+/btWLFiRae7C+7btw/29vbw9PTEgw8+iDfeeAN9+rT9BeL111/XBHQt/etf/4KTE59gEhERERFZq+rqajzxxBOoqKiAm5tbm9tZdJC1e/duODk5QalUIicnB2vWrIGLiwvS0tJga2urdx99LVmBgYG4efNmuxVJndfQ0IAjR45gypQpkMul7xrXnSfZAFB4q0bvk+yWckqqsP7AeZ1WKSe5LQb7uyI2si/e/CoLHo5y3K5r1Bx7/aND0dgkkHfrNlQ1jXBztEOQpzOUvt3v6mHserUmllS36bmlePPAz22u//PvBmGs0rgtWVLV7fGLJVjx78w217//eBQmRPga9JjmxJLOW330/X1tZDI0NDejWQAJs4Zj/f7zmnVD+rth/SNDda7jXWXp9WpKrFvpsG4NR6VSwdvbu8Mgy6TdBV955RVs3Lix3W2ysrIwaNCgbr3/nDlzNL9HRkZi2LBhCAkJQUpKCiZPnqx3H4VCAYVCobNcLpfzpDQwY9Rp3s0qbDqajdP5KgB3+0el56mw6Wg2Nj42rM0+7AN85Rjg235gfU1Vh+9zK7TeGwAc7G3w/dUKzBwdBAEbVDcCdc0yzbFzb9Vh8mA/hPc3fKYrnqvSsYS6Dff3wEBfV50xWcCd5Bfh/h4m+YxS1K2qTmj+79pa39v/np1hCeetPmH+7hga4KnzkMtWZovhge5obL573R0W4I7lUyI6vKZ3haXWqzlg3UqHddtzna0/kwZZK1euRFxcXLvbBAcHG+x4wcHB8Pb2RnZ2dptBFlmW7Bu39Y59AoDT+eXIvnG7RwOF28oEqG4fvl3XCCeFHarrmjq1H5HUfN0csGxSqP7sgg+GWlQadyaZsWxtpTGPCnRHfEwEahqbsGHaULg5yRGuZzoNIiIpmTTI8vHxgY+Pj9GOd+3aNZSWlqJv375GOyaZltTp0tv6kib79eG5868BloB2r1x+uSNTGtLfHeseHaKZJ8vNSY5QC5wnSz1ha1tJZjhha+/HNOZEZK56TXbB/Px8lJWVIT8/H01NTcjMzAQAhIaGwsXlzsV00KBBePvttzFjxgxUVVVh3bp1eOyxx+Dv74+cnBz88Y9/RGhoKGJiYkz4SciYpH6SHeTljDEDPXUmF25oEhgz0BPV9boBFr/ckTnwdXOwuKCqNU7Yah2CvF34tyQis9NrgqzXXntNa2LhESNGAACSk5MxceJEAMDFixdRUXEnuYGtrS3OnDmDHTt2oLy8HP369cPUqVOxYcMGvWOuyDJJ/SQ7zM8V8VMjkPD/LmoFWkP7uSF+agQ++TZH55j8ckdkPGzpICIiU+g1Qdb27ds7nCOrZaJER0dHHD58WOJSkbkzxpPsMcF98OaMSOSV3f0SF+TljDA/V/i5KTCHX+6ITIotHUREZGy9Jsgi6i5jPMkO83NFmJ+rznJ+uSMiIiKyPgyyyCow2CEiIiIiY7ExdQGIiIiIiIgsCYMsIiIiIiIiA2KQRUREREREZEAMsoiIiIiIiAyIQRYREREREZEBMcgiIiIiIiIyIAZZREREREREBsQgi4iIiIiIyIAYZBERERERERkQgywiIiIiIiIDYpBFRERERERkQAyyiIiIiIiIDIhBFhERERERkQExyCIiIiIiIjIgO1MXwNwJIQAAKpXKxCWxHA0NDaiuroZKpYJcLjd1cSwG61U6rFvpsG6lw7qVButVOqxb6bBuDUcdE6hjhLYwyOpAZWUlACAwMNDEJSEiIiIiInNQWVkJd3f3NtfLREdhmJVrbm7G9evX4erqCplMZuriWASVSoXAwED88ssvcHNzM3VxLAbrVTqsW+mwbqXDupUG61U6rFvpsG4NRwiByspK9OvXDzY2bY+8YktWB2xsbBAQEGDqYlgkNzc3/qNLgPUqHdatdFi30mHdSoP1Kh3WrXRYt4bRXguWGhNfEBERERERGRCDLCIiIiIiIgNikEVGp1AosHbtWigUClMXxaKwXqXDupUO61Y6rFtpsF6lw7qVDuvW+Jj4goiIiIiIyIDYkkVERERERGRADLKIiIiIiIgMiEEWERERERGRATHIIiIiIiIiMiAGWSS5N998E+PHj4eTkxM8PDw6tU9cXBxkMpnWT2xsrLQF7YW6U7dCCLz22mvo27cvHB0dER0djcuXL0tb0F6orKwM8+bNg5ubGzw8PLBw4UJUVVW1u8/EiRN1ztvnn3/eSCU2X1u3bsXAgQPh4OCAsWPH4uTJk+1u//nnn2PQoEFwcHBAZGQkvvrqKyOVtPfpSt1u375d5/x0cHAwYml7h2+//RaPPPII+vXrB5lMhn379nW4T0pKCkaOHAmFQoHQ0FBs375d8nL2Rl2t25SUFJ1zViaToaioyDgF7iXefvttjB49Gq6urvD19cX06dNx8eLFDvfjtVZaDLJIcvX19Zg1axaWLFnSpf1iY2NRWFio+dm1a5dEJey9ulO377zzDj744AN89NFHSE9Ph7OzM2JiYlBbWythSXufefPm4fz58zhy5AgOHDiAb7/9FosXL+5wv0WLFmmdt++8844RSmu+/v3vf+Pll1/G2rVr8eOPP2L48OGIiYlBSUmJ3u2///57zJ07FwsXLkRGRgamT5+O6dOn49y5c0Yuufnrat0CgJubm9b5mZeXZ8QS9w63b9/G8OHDsXXr1k5tn5ubi4cffhiTJk1CZmYmVqxYgWeffRaHDx+WuKS9T1frVu3ixYta562vr69EJeydjh8/jqVLl+LEiRM4cuQIGhoaMHXqVNy+fbvNfXitNQJBZCSJiYnC3d29U9vOnz9fTJs2TdLyWJLO1m1zc7Pw9/cX7777rmZZeXm5UCgUYteuXRKWsHe5cOGCACBOnTqlWfb1118LmUwmCgoK2txvwoQJYvny5UYoYe8xZswYsXTpUs3rpqYm0a9fP/H222/r3X727Nni4Ycf1lo2duxY8dxzz0lazt6oq3XblWsw3QFA7N27t91t/vjHP4ohQ4ZoLXv88cdFTEyMhCXr/TpTt8nJyQKAuHXrllHKZClKSkoEAHH8+PE2t+G1VnpsySKzlZKSAl9fX0RERGDJkiUoLS01dZF6vdzcXBQVFSE6OlqzzN3dHWPHjkVaWpoJS2Ze0tLS4OHhgXvvvVezLDo6GjY2NkhPT293388++wze3t4YOnQo/vSnP6G6ulrq4pqt+vp6nD59Wut8s7GxQXR0dJvnW1pamtb2ABATE8Pzs5Xu1C0AVFVVISgoCIGBgZg2bRrOnz9vjOJaNJ6z0ouKikLfvn0xZcoUpKammro4Zq+iogIA4OXl1eY2PG+lZ2fqAhDpExsbi5kzZ0KpVCInJwdr1qzBb3/7W6SlpcHW1tbUxeu11P3Y/fz8tJb7+fmxj3sLRUVFOt1R7Ozs4OXl1W49PfHEEwgKCkK/fv1w5swZrF69GhcvXkRSUpLURTZLN2/eRFNTk97z7eeff9a7T1FREc/PTuhO3UZERODTTz/FsGHDUFFRgYSEBIwfPx7nz59HQECAMYptkdo6Z1UqFWpqauDo6GiikvV+ffv2xUcffYR7770XdXV12LZtGyZOnIj09HSMHDnS1MUzS83NzVixYgXuv/9+DB06tM3teK2VHoMs6pZXXnkFGzdubHebrKwsDBo0qFvvP2fOHM3vkZGRGDZsGEJCQpCSkoLJkyd36z17C6nr1pp1tm67q+WYrcjISPTt2xeTJ09GTk4OQkJCuv2+RIYwbtw4jBs3TvN6/PjxGDx4MD7++GNs2LDBhCUj0i8iIgIRERGa1+PHj0dOTg42b96MnTt3mrBk5mvp0qU4d+4cvvvuO1MXxeoxyKJuWblyJeLi4trdJjg42GDHCw4Ohre3N7Kzsy0+yJKybv39/QEAxcXF6Nu3r2Z5cXExoqKiuvWevUln69bf318neUBjYyPKyso0ddgZY8eOBQBkZ2dbZZDl7e0NW1tbFBcXay0vLi5usx79/f27tL216k7dtiaXyzFixAhkZ2dLUUSr0dY56+bmxlYsCYwZM4YBRBuWLVumSdTUUes0r7XSY5BF3eLj4wMfHx+jHe/atWsoLS3VCgwslZR1q1Qq4e/vj2PHjmmCKpVKhfT09C5nf+yNOlu348aNQ3l5OU6fPo1Ro0YBAL755hs0NzdrAqfOyMzMBACrOG/1sbe3x6hRo3Ds2DFMnz4dwJ2uLMeOHcOyZcv07jNu3DgcO3YMK1as0Cw7cuSIVgsMda9uW2tqasLZs2fx0EMPSVhSyzdu3Did1Nc8Z6WTmZlptdfUtggh8OKLL2Lv3r1ISUmBUqnscB9ea43A1Jk3yPLl5eWJjIwMsW7dOuHi4iIyMjJERkaGqKys1GwTEREhkpKShBBCVFZWivj4eJGWliZyc3PF0aNHxciRI0VYWJiora011ccwS12tWyGE+Otf/yo8PDzEF198Ic6cOSOmTZsmlEqlqKmpMcVHMFuxsbFixIgRIj09XXz33XciLCxMzJ07V7P+2rVrIiIiQqSnpwshhMjOzhbr168XP/zwg8jNzRVffPGFCA4OFg888ICpPoJZ2L17t1AoFGL79u3iwoULYvHixcLDw0MUFRUJIYR46qmnxCuvvKLZPjU1VdjZ2YmEhASRlZUl1q5dK+RyuTh79qypPoLZ6mrdrlu3Thw+fFjk5OSI06dPizlz5ggHBwdx/vx5U30Es1RZWam5lgIQmzZtEhkZGSIvL08IIcQrr7winnrqKc32V65cEU5OTmLVqlUiKytLbN26Vdja2opDhw6Z6iOYra7W7ebNm8W+ffvE5cuXxdmzZ8Xy5cuFjY2NOHr0qKk+gllasmSJcHd3FykpKaKwsFDzU11drdmG11rjY5BFkps/f74AoPOTnJys2QaASExMFEIIUV1dLaZOnSp8fHyEXC4XQUFBYtGiRZovDnRXV+tWiDtp3F999VXh5+cnFAqFmDx5srh48aLxC2/mSktLxdy5c4WLi4twc3MTCxYs0Apec3Nzteo6Pz9fPPDAA8LLy0soFAoRGhoqVq1aJSoqKkz0CczH3/72NzFgwABhb28vxowZI06cOKFZN2HCBDF//nyt7ffs2SPCw8OFvb29GDJkiDh48KCRS9x7dKVuV6xYodnWz89PPPTQQ+LHH380QanNmzpteOsfdV3Onz9fTJgwQWefqKgoYW9vL4KDg7WuuXRXV+t248aNIiQkRDg4OAgvLy8xceJE8c0335im8GZMX522vvfzWmt8MiGEMEKDGRERERERkVXgPFlEREREREQGxCCLiIiIiIjIgBhkERERERERGRCDLCIiIiIiIgNikEVERERERGRADLKIiIiIiIgMiEEWERERERGRATHIIiIiIiIiMiAGWURERERERAbEIIuIyMLFxcVBJpPp/Dz77LOmLhpZsJdeegmjRo2CQqFAVFSUqYtDRGRUdqYuABERSS82NhaJiYlay5ycnExUGrIWzzzzDNLT03HmzBlTF4WIyKjYkkVEZAUUCgX8/f21ftzc3LS20dfalZmZCQAoLS3F3Llz0b9/fzg5OSEyMhK7du3S2n/ixIma/RwdHREVFYVDhw5p1sfFxWH69Ola+2zfvh0eHh6a1zk5OZg2bRr8/Pzg4uKC0aNH4+jRo1r7FBYWYubMmejTp49WWcvLy/V+9qtXr2p9lrq6OkRHRyM6Ohp1dXUAgObmZqxfvx4BAQGalpeWZVe/h4+PD+rr6zXLf/rpJ8hkMgwcOFDrc+qry5afEwA+/PBDhISEwN7eHhEREdi5c6fO32Pfvn06dbxixQrN67q6OsTHx6N///5wdnbG2LFjkZKS0mb9tq4P9e9t/Vy9ehVNTU1YuHAhlEolHB0dERERgS1btuit65Y++OADLF26FMHBwR1uS0RkaRhkERERhBAAgMTERBQWFuLkyZNa62trazFq1CgcPHgQ586dw+LFi/HUU0/pbLdo0SIUFhbi3LlzGDp0KObPn9+lclRVVeGhhx7CsWPHkJGRgdjYWDzyyCPIz8/XbLNy5UpcunQJhw4dQmFhIf773/92+v2bmpowZ84cVFVVYd++fVAoFACALVu24L333kNCQgLOnDmDmJgYPProo7h8+bLW/gqFAklJSZrXH3/8Mfr3769znNjYWBQWFmp+3n//fa31e/fuxfLly7Fy5UqcO3cOzz33HBYsWIDk5OROfxYAWLZsGdLS0rB7926cOXMGs2bNQmxsrE652xIYGKgpo/pvefLkSc2ywMBANDc3IyAgAJ9//jkuXLiA1157DWvWrMGePXu6VFYiImvC7oJERISGhgYAgI+PD/z9/VFbW6u1vn///oiPj9e8fvHFF3H48GHs2bMHY8aM0Sx3cnKCv78/Ghsb4evrC3d39y6VY/jw4Rg+fLjm9YYNG7B3717s378fy5YtAwBkZmbiySefxOjRowEAXl5enXpvIQQWLFiA7OxsHD9+HC4uLpp1CQkJWL16NebMmQMA2LhxI5KTk/H+++9j69atmu2eeeYZfPLJJ5gzZw6qq6uxZ88eLFq0SKdVT91yqNa6HhISEhAXF4cXXngBAPDyyy/jxIkTSEhIwKRJkzr1efLz85GYmIj8/Hz069cPABAfH49Dhw4hMTERb731VofvYWtrqymn+m+uPgdabrNu3TrNa6VSibS0NOzZswezZ8/uVFmJiKwNgywiIoJKpQIAODs7613f1NSEt956C3v27EFBQQHq6+tRV1enM67rH//4B7Zt24a6ujp4eHhg//79WusPHDigFdw0NjbCwcFB87qqqgqvv/46Dh48iMLCQjQ2NqKmpkarJUupVOKrr77C888/3+kACwBWrVqFY8eOYcGCBVr7qVQqXL9+Hffff7/W9vfffz9++uknrWWPPvootm3bhuzsbHz77beYMGEC/Pz8Ol0GtaysLCxevFjneK274c2dOxe2traa1zU1NZokEmfPnkVTUxPCw8O19qmrq0OfPn00rysqKrTqXN1q2RVbt27Fp59+ivz8fNTU1KC+vp7JLIiI2sEgi4iIcP36dQDQtIi09u6772LLli14//33ERkZCWdnZ6xYsUJrfBIAzJs3D3/+859RW1uLHTt2YNasWbhw4YJm/NekSZPw4YcfarZPSkrSanGJj4/HkSNHkJCQgNDQUDg6OuL3v/+91nE2b96MefPmwdvbG05OTmhqaurUZ8zKysLXX3+NmTNn4vHHH0dMTEznKqcFOzs7xMXFYdu2bUhOTsb69euRlZXV5ffprM2bNyM6Olrzet68eZrfq6qqYGtri9OnT2sFYgC0gipXV1f8+OOPmtcFBQWYOHFip8uwe/duxMfH47333sO4cePg6uqKd999F+np6d34RERE1oFBFhER4dSpU3B1dUVISIje9ampqZg2bRqefPJJAHcSRVy6dAn33HOP1nbu7u4IDQ0FAKxduxYJCQk4efKkJlBwdnbWrAcAX19fnePExcVhxowZAO4EElevXtXaJjw8HHFxcSgtLcWXX36p6T7YkZ07d+LBBx/Ehg0bsGjRIpw7dw5ubm5wc3NDv379kJqaigkTJmiVpWVXSLVFixYhKioKXl5emDJlSreCrMGDByM1NVVrzFpqaqpOffr7+2vVl6Ojo+b3ESNGoKmpCSUlJfjNb37T5rFsbGy03sPOrmu3/tTUVIwfP17TtRG4k6CEiIjaxiCLiMiKNTc348CBA1izZg2efvppnRYRtbCwMPznP//B999/D09PT2zatAnFxcU6QUF1dTWKiopQV1eHHTt2wM7OTusLfkfCwsKQlJSERx55BDKZDK+++iqam5u1tjlx4gTWrFmD5ORkDBkyBDdu3OjUe6u7CP7hD39AUlISXn75ZWzbtg3Ana6Ea9euRUhICKKiopCYmIjMzEx89tlnOu+jVCqxadMmBAQEwMame/mjVq1ahdmzZ2PEiBGIjo7Gl19+iaSkJJ1Miu0JDw/HvHnz8PTTT+O9997DiBEjcOPGDRw7dgzDhg3Dww8/3K2ytRYWFoZ//vOfOHz4MJRKJXbu3IlTp05BqVS2u192djaqqqpQVFSEmpoaTXbHe+65B/b29gYpGxGRuWKQRURkxW7duoUXXngB8+fPx4YNG9rc7i9/+QuuXLmCmJgYODk5YfHixZg+fToqKiq0tvvkk0/wySefwN7eHmFhYfjss8+00pt3ZNOmTXjmmWcwfvx4eHt7Y/Xq1ZrxYgBw48YNzJo1C5s2bcLIkSO7/HmBOy07iYmJiIqKwuzZszF16lS89NJLqKiowMqVK1FSUoJ77rkH+/fvR1hYmN73WLhwYbeOrTZ9+nRs2bIFCQkJWL58OZRKJRITE7vUjQ+4kw3yjTfewMqVK1FQUABvb2/cd999+N3vftej8rX03HPPISMjA48//jhkMhnmzp2LF154AV9//XW7+z377LM4fvy45vWIESMAALm5uV06J4iIeiOZ6M4IWCIiIiIiItKL82QREREREREZEIMsIiIiIiIiA2KQRUREREREZEAMsoiIiIiIiAyIQRYREREREZEBMcgiIiIiIiIyIAZZREREREREBsQgi4iIiIiIyIAYZBERERERERkQgywiIiIiIiIDYpBFRERERERkQP8fH1wMxU/QPUsAAAAASUVORK5CYII=",
+ "text/plain": [
+ "