178 lines
155 KiB
Plaintext
178 lines
155 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Начало лабораторной\n",
|
|||
|
"\n",
|
|||
|
"Выгрузка данных из csv файла в датафрейм"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Index(['id', 'name', 'est_diameter_min', 'est_diameter_max',\n",
|
|||
|
" 'relative_velocity', 'miss_distance', 'orbiting_body', 'sentry_object',\n",
|
|||
|
" 'absolute_magnitude', 'hazardous'],\n",
|
|||
|
" dtype='object')\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"\n",
|
|||
|
"df = pd.read_csv(\"..//..//static//csv//neo.csv\")\n",
|
|||
|
"print(df.columns)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Диаграмма №1 (Распределения)\n",
|
|||
|
"Данная диаграмма распределения отображает отношение максимального диаметра астероида к скорости. Что позволяет нам сделать вывод о том, что размер астероида влияет на его скорость.\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAIjCAYAAAB/FZhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWIUlEQVR4nOzdd5xcZd3//9cp03Zma7akENJpKVTlhoCUYJYmBhSleAORdmOiICreKC1Y+IqFJuXGElTk5y0WiiIkUgUDt3QSCSQhgZBkS7J9dto55/r9Mdkhy26S3bDJLuz7+XjsI+w515z5zORM2M9e1/X5WMYYg4iIiIiIiAw59mAHICIiIiIiIr1TwiYiIiIiIjJEKWETEREREREZopSwiYiIiIiIDFFK2ERERERERIYoJWwiIiIiIiJDlBI2ERERERGRIUoJm4iIiIiIyBClhE1ERERERGSIUsImIiIiIiIyRClhE5EPnVWrVnHhhRcyceJEotEoJSUlzJw5k5tuuolUKjXY4YmIDIgjjzwSy7L41Kc+1ePcmjVrsCyLH/3oR4VjTzzxBJZlbfXrd7/7Xbdr5HI5br75Zj72sY9RXFxMIpHgYx/7GDfffDO5XG6nvz4R6Rt3sAMQEemPv/71r5x66qlEIhHOOusspk2bRjab5emnn+Yb3/gGy5Yt48477xzsMEVEBsxf/vIXXnjhBQ488MA+jf/KV77Cxz72sR7HDznkkMJ/J5NJTjjhBJ588klOPPFEzjnnHGzb5uGHH+biiy/mT3/6E3/961+Jx+MD9jpEZMcoYRORD43Vq1dz2mmnMW7cOB577DFGjRpVODdv3jxWrlzJX//610GMUERkYO2+++60t7ezYMECHnjggT495vDDD+ezn/3sNsdceumlPPnkk9xyyy3Mnz+/cPyiiy7i1ltvZf78+Xz961/n9ttv/0Dxi8gHpyWRIvKhcf3119PR0cEvfvGLbslal8mTJ3PxxRcXvvc8j+985ztMmjSJSCTC+PHj+da3vkUmk+nx2Ntuu42pU6cSiUQYPXo08+bNo6WlpXC+a2nStr66WJbV7QegLieeeCLjx4/vdiyZTPK1r32NsWPHEolE2HPPPfnRj36EMabbuN6u2dv1fv7zn2NZFkuXLu12/G9/+xuHH3448Xic4uJiTjjhBJYtW9ZtzDnnnEMikegR9x/+8Acsy+KJJ57o9n4ceeSR3cb961//6vFedLn77rs58MADicViVFRUcNppp7F27doe47Zma+//Nddc021cb8d++MMfYllWt3iz2SxXXXUVBx54IKWlpcTjcQ4//HAef/zxbo/tWnZmWRb33Xdft3PpdJry8vIey9IA1q1bxxe/+EVqamqIRCJMnTqVX/7yl4Xz21u6tuXruOaaa7Asi+XLl/O5z32OkpISRowYwcUXX0w6ne72vAsXLuToo4+murqaSCTCPvvs0+cfuM8555we99PatWuJxWJYlsWaNWu2e42uGKuqqojFYuy55558+9vfLpzvei1bevzxx4lEIvzXf/1Xt+MvvfQSxx13HCUlJSQSCWbNmsWzzz7bbcxdd92FZVk89dRTXHjhhYwYMYKSkhLOOussmpube8S3vc95l+eee47jjz+e8vJy4vE4M2bM4Kabbiq8T9v7u+t6r8aPH88555zT7dr33nsvlmX1eK+3pri4mK9+9as8+OCDvPjii316zPa8++67/OIXv+Doo4/u9d+qefPmcdRRR/Hzn/+cd999t3B88eLFHHbYYZSVlZFIJNhzzz351re+NSAxicjWaYZNRD40HnzwQSZOnMihhx7ap/HnnXcev/rVr/jsZz/L1772NZ577jmuu+46Xn/9df785z8Xxl1zzTUsWLCAY445hosuuog33niD22+/nX/9618888wzhEIhvv3tb3PeeecBsHHjRr761a9ywQUXcPjhh+/w6zHGcNJJJ/H4449z7rnnst9++/HII4/wjW98g3Xr1nHDDTfs8LW39Jvf/Iazzz6b2tpafvCDH9DZ2cntt9/OYYcdxksvvdTnHxy355vf/Gavx7/3ve9x5ZVX8rnPfY7zzjuPxsZGbrnlFj7xiU/w0ksvUVZW1qfr77bbblx33XUAdHR0cNFFF233MS0tLYXHbKmtrY2f//znnH766Zx//vm0t7fzi1/8gtraWv7v//6P/fbbr9v4aDTKwoULmTNnTuHYn/70px4JE0B9fT3/8R//UUiyq6qq+Nvf/sa5555LW1sbl1xyCXvvvTe/+c1vCo+58847ef3117v9nc+YMaPbdT/3uc8xfvx4rrvuOp599lluvvlmmpub+fWvf10Yc/vttzN16lROOukkXNflwQcf5Etf+hJBEDBv3rztvl/vd9VVV/X6Gnvz6quvcvjhhxMKhbjgggsYP348q1at4sEHH+R73/ter4955ZVXmDNnDscffzy33npr4fiyZcs4/PDDKSkp4bLLLiMUCvE///M/HHnkkTz55JMcfPDB3a4zf/58ysrKuOaaawqf37fffruQGEPfPueQT0pOPPFERo0axcUXX8zIkSN5/fXX+ctf/sLFF1/MhRdeyDHHHFN47v/8z//k5JNP5pRTTikcq6qq6vX1ep7XLYHtq4svvpgbbriBa665pk+zbO3t7WzcuLHH8REjRmBZFn/729/wfZ+zzjprq9c466yzePzxx3n44Yc577zzWLZsGSeeeCIzZszg2muvJRKJsHLlSp555pl+vx4R6ScjIvIh0NraagDz6U9/uk/jX375ZQOY8847r9vxr3/96wYwjz32mDHGmIaGBhMOh83s2bON7/uFcT/96U8NYH75y1/2uPbq1asNYBYuXNjrcwNm3rx5PY6fcMIJZty4cYXv77vvPgOY7373u93GffaznzWWZZmVK1du85rvv54xxvzsZz8zgHnttdeMMca0t7ebsrIyc/7553cbV1dXZ0pLS7sdP/vss008Hu8R97333msA8/jjjxeOHXHEEeaII44ofP/QQw8ZwBx77LFmy/+1rFmzxjiOY773ve91u+Zrr71mXNftcXxrDj30UDNt2rTC942NjQYwV199dbdx7z922WWXmerqanPggQd2i9fzPJPJZLo9trm52dTU1JgvfvGLhWNdf9enn366cV3X1NXVFc7NmjXLnHHGGQYwP/zhDwvHzz33XDNq1CizcePGbtc/7bTTTGlpqens7Ozx+s4+++wef5ddrr76agOYk046qdvxL33pSwYwr7zySuFYb9eura01EydO7PXa24ph6dKlxrZtc9xxxxnArF69epuP/8QnPmGKi4vN22+/3e14EAQ9Xosx+Xtj1KhR5rDDDjOpVKrbY+bMmWPC4bBZtWpV4dj69etNcXGx+cQnPlE4tnDhQgOYAw880GSz2cLx66+/3gDm/vvvN8b0/XPueZ6ZMGGCGTdunGlubt7q69hSb/dhl3Hjxpmzzz678P1tt91mIpGIOeqoo7b6972lI444wkydOtUYY8yCBQsMYF544QVjzHv35pb33uOPP26ArX5t2LDBGGPMJZdcYgDz0ksvbfW5X3zxRQOYSy+91BhjzA033GAA09jYuN24RWRgaUmkiHwotLW1AfnlQX3x0EMPAfl9Glv62te+BlDY6/b3v/+dbDbLJZdcgm2/90/i+eefT0lJyQ7viUun02zcuLHb1/urrj300EM4jsNXvvKVHjEaY/jb3/62Q8+9pcWLF9PS0sLpp5/eLRbHcTj44IN7LAEEesTd3t6+zecwxnD55Zfzmc98psfMx5/+9CeCIOBzn/tct2uOHDmSKVOm9Pr8vUmn00Sj0b6/cPLLEm+55RauvPLKHks9HcchHA4DEAQBTU1NeJ7HQQcd1OuyswMOOICpU6cWZsXefvttHn/88R7L3Ywx/PGPf+RTn/oUxphur7m2tpbW1tYdXtb2/hmyL3/5y8B79zpALBYr/HdraysbN27kiCOO4K233qK1tbVfz3f55ZdzwAEHcOqpp253bGNjI0899RRf/OIX2X333bud622J7KZNm6itraW4uJgHHnig29+t7/ssWrSIOXPmMHH
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1000x600 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"plt.figure(figsize=(10,6))\n",
|
|||
|
"plt.scatter(df['est_diameter_max'], df['relative_velocity'], alpha=0.5)\n",
|
|||
|
"plt.title('Соотношение диаметра и скорости астероидов')\n",
|
|||
|
"plt.xlabel('Максимальный диаметр (км)')\n",
|
|||
|
"plt.ylabel('Скорость (км/ч)')\n",
|
|||
|
"plt.grid(True)\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Диаграмма №2 (Круговая)\n",
|
|||
|
"Данная круговая диаграмма показывает процентное соотношение потенциально опасных астероидов к неопасным. Что позволяет нам сделать вывод о доле астероидов, которые считаются опасными"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"Text(0.5, 1.0, 'Опасные и неопасные объекты')"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAGACAYAAABvMJMEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBPElEQVR4nO3deXxTVd4G8CdJs7VN90JZupetIDuIQKkoWFlU0JFXRkcWBWaEUdxGnRkRdFDUeZ3XZUTRERx0XJBdBRFBNmWHlp0KLaVl60K3tFnvef+ozRDaQvfcmzzfz6cfaHJz87s36ZOTc8+5VyWEECAiIllSe7oAIiKqG0OaiEjGGNJERDLGkCYikjGGNBGRjDGkiYhkjCFNRCRjDGkiIhljSBMRAEAIgaKiImRmZnq6FLoCQ5rIh5WVleGvf/0runTpAp1Oh/DwcHTu3BknTpzwdGn0Kz9PF9AUR44cwSuvvILNmzejoKAA4eHhGD58OP785z+je/funi6PSNYKCwuRmpqKnJwc/PGPf8SQIUOg0+mg1WoRFxfn6fLoVyqlnrtjxYoVmDhxIsLCwvDQQw8hPj4e2dnZ+Ne//oXCwkJ8/vnnGD9+vKfLJJKtqVOnYvXq1di6dSsbNTKmyJA+deoUevbsiZiYGGzduhWRkZGu+woKCpCSkoKzZ88iIyMDCQkJHqyUSJ4uXbqEdu3a4b333sO0adM8XQ5dgyL7pF9//XVUVFRg0aJFbgENABEREXj//fdhNpvx2muvuW6fO3cuVCpVnT9LlixxLZuRkYHJkycjISEBBoMBUVFRmDp1KgoLC2vUkpeXh4ceegjt27eHXq9HfHw8/vCHP8BmswEAlixZApVKhb1797o9rqCgACqVCnPnzq1RY0FBQZ3bHhcXh8mTJ7vdVlxcjNmzZyM6Ohp6vR5JSUl49dVXIUnS9XZlretbtmwZVCpVvb7yxsXFYezYsTVunzVrFlQqVY3bP/nkE/Tr1w9GoxFhYWG47777cPbs2RrLLVu2zLVcREQEHnjgAeTl5bktM3ny5Gu+pj/++KNr2W3btuHee+9FTEwM9Ho9oqOj8fjjj6OysrLGcx8/fhwTJkxAZGQkjEYjunTpgr/85S+u++t6nfbu3VvjvTR58mQEBgbWuf8A1HgfAFXvq6lTp6Jt27bQ6/Xo3r07Pvroo2uup5rD4cBLL72ExMRE6PV6xMXF4c9//jOsVqtrmT179kCSJNhsNvTv3x8GgwHh4eGYOHEicnJyXMvNnj3bbZ9eb1uqrVu3DikpKQgICIDJZMKYMWNw5MgRt2UmT55c4z32ySefQK1WY8GCBa5lrvUaq1QqZGdnA6j7vVjtxx9/rPG+UAJF9kmvXbsWcXFxSElJqfX+YcOGIS4uDt98802N+xYuXOj2RsvKysKcOXPclvn+++9x+vRpTJkyBVFRUThy5AgWLVqEI0eOYOfOna7wOXfuHAYOHIji4mJMnz4dXbt2RV5eHr766itUVFRAp9M141bXrqKiAqmpqcjLy8OMGTMQExODn376Cc899xzOnz+P//u//2vQ+hwOh1sgNaf58+fj+eefx4QJE/Dwww8jPz8fb7/9NoYNG4YDBw4gJCQEQNUH25QpUzBgwAC88soruHjxIt58803s2LHDbTkA0Ov1+PDDD92eZ8+ePXjrrbfcblu2bBkqKirwhz/8AeHh4di9ezfefvtt5ObmYtmyZa7lMjIykJKSAq1Wi+nTpyMuLg6nTp3C2rVrMX/+/BbZL1e7ePEiBg0aBJVKhVmzZiEyMhLr1q3DQw89hNLSUsyePfuaj3/44Yfx8ccf4ze/+Q2efPJJ7Nq1C6+88gqOHTuGlStXAoCrwTFr1iz069cPCxYsQH5+Pt566y1s374dBw4cQEREBH73u9+hf//+AIBFixZh//79161/6dKlmDRpEtLS0vDqq6+ioqICCxcuxNChQ3HgwIE6P/w3bNiAqVOnYtasWXj22WcBADNmzMCIESNcy/zud7/D+PHjcffdd7tuu7qh5nWEwhQXFwsA4q677rrmcnfeeacAIEpLS4UQQrzwwgsCgMjPz3dbbs+ePQKAWLx4seu2ioqKGuv77LPPBACxdetW120PPvigUKvVYs+ePTWWlyRJCCHE4sWLBYAay+Tn5wsA4oUXXnDdVleNV4qNjRWTJk1y/f7SSy+JgIAAcfLkSbflnn32WaHRaEROTk6d66ptfe+++67Q6/Vi+PDhIjY29pqPrX78mDFjatw+c+ZMceXbKzs7W2g0GjF//ny35Q4dOiT8/Pxct9tsNtGmTRvRo0cPUVlZ6Vru66+/FgDEnDlzXLdNmjRJBAQE1HjuZcuWCQBi8+bNrttqe01feeUVoVKpxJkzZ1y3DRs2TJhMJrfbhPjv6ylEw95LddV4pavfBw899JBo166dKCgocFvuvvvuE8HBwbVuS7WDBw8KAOLhhx92u/2pp54SAMSmTZuEEP99XyYnJ7utb/PmzQKAePLJJ2usuz7bUlZWJkJCQsS0adPcbr9w4YIIDg52u33SpEmu99jevXtFYGCguPfee4XT6axz/VfvqyvV9V6sVr1tV74vlEBx3R1lZWUAAJPJdM3lqu8vLS1t8HMYjUbX/y0WCwoKCjBo0CAAcLUkJEnCqlWrcMcdd7haGle6+qt+SUkJCgoKXD9FRUV1Pn9RUREKCgpgNpuvW+uyZcuQkpKC0NBQt/WPGDECTqcTW7durdc2A1Wt8hdffBGzZs1CTExMvR9nt9vdnrugoAAWi8VtmRUrVkCSJEyYMMFtuaioKHTq1AmbN28GUNVlcOnSJTzyyCMwGAyux48ZMwZdu3at9dtRfVz5mprNZhQUFGDw4MEQQuDAgQMAgPz8fGzduhVTp06tsf21dd1Uv07VPyUlJXU+f1375WpCCCxfvhx33HEHhBBu609LS0NJSck1W7PffvstAOCJJ55wu/3JJ58EgBr7b+bMmW775uabb0a/fv2uuZ+vtS3ff/89iouLMXHiRLfaNRoNbrzxRtfrfKXTp09jzJgx6N27N5YuXQq1uvGxVP1eLCwshMPhaPR65ERx3R3V4Vsd1nWpb5jXpqioCPPmzcPnn3+OS5cuud1X/YeYn5+P0tJS9OjRo17rvPIr2/V06dLF9f82bdpg2rRpmDdvHjQaTY1lMzMzkZGRUedXvqvrv5Y33ngDFosFf/7zn2v8kV/Lhg0brvuVMzMzE0IIdOrUqdb7tVotAODMmTMA3PdBta5du2L79u31rutKOTk5mDNnDtasWYPLly+73Vf9mp4+fRoA6v2a1lZjbcxms9v+iY6OxpNPPonHHnusxrL5+fkoLi7GokWLsGjRolrXd63X9MyZM1Cr1UhKSnK7PSoqCiEhIa79W/2h07Vr1xrr6NatG7766qtGbUv1RJhbbrml1scHBQXVWF9aWhouXryI8PDwWj8MG+LK96JGo0HPnj2xYMEC3HbbbU1arycpLqSDg4PRrl07ZGRkXHO5jIwMdOjQocaboj4mTJiAn376CU8//TR69+6NwMBASJKE22+/vV4H42rzz3/+E507d3b9XlpainvuuafWZZcvX46goCBUVFRg5cqVmD9/PoKCgvCnP/2pxrKSJGHkyJG13gfA7TmvpaCgAK+//jqee+45hIWF1esx1W688Ub87W9/c7vtnXfewerVq93qVKlUWLduXa0fNvU9INUYTqcTI0eORFFREZ555hl07doVAQEByMvLw+TJkxv9mla/TtVOnjyJmTNn1ljOYDBg7dq1AKoaDx999BFmz56Ndu3aYcKECW7LVtfywAMPYNKkSbU+b8+ePa9b2/XC7srWc0Ncb1uq61+6dCmioqJqPN7Pzz1yCgoKEBAQgLVr12LcuHF45ZVX8MILLzSqNsD9vXju3Dm8+uqrGD9+fI2DlkqiuJAGgLFjx+KDDz7A9u3bMXTo0Br3b9u2DdnZ2ZgxY0aD13358mX88MMPmDdvntsBxaunykZGRiIoKAiHDx+u13oHDhzo1i1yrREcw4YNQ0REBADgzjvvxI4dO7B+/fpagzgxMRHl5eUNaqn
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1500x500 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"hazardous_counts = df['hazardous'].value_counts()\n",
|
|||
|
"\n",
|
|||
|
"plt.figure(figsize=(15,5))\n",
|
|||
|
"\n",
|
|||
|
"plt.subplot(1, 3, 1)\n",
|
|||
|
"plt.pie(hazardous_counts, labels=['Не опасные', 'Опасные'], autopct='%1.1f%%', colors=['skyblue', 'lightcoral'], startangle=90)\n",
|
|||
|
"plt.title('Опасные и неопасные объекты')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Диаграмма №3 (Столбчатая)\n",
|
|||
|
"Данная столбчатая диаграмма показывает самые частовстречающиеся размеры. Что позволяет сделать вывод о том какого размера астероиды астероиды находятся рядом с нами"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAJOCAYAAABFiQ/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoSUlEQVR4nOzdeXiM1///8dckkcSSRYiERoPY952U1haClFpapXZdfC211lpUtUV1oVSrq6WtbqrVVpvaKVXUvm+1E3skQUgy5/eHX+6PETSjGWl4Pq4rl8y5z8y87zO3k3nf97nPsRljjAAAAAAAQIZyy+wAAAAAAAC4F5FwAwAAAADgAiTcAAAAAAC4AAk3AAAAAAAuQMINAAAAAIALkHADAAAAAOACJNwAAAAAALgACTcAAAAAAC5Awg0AcAljjM6dO6e9e/dmdigAAACZgoQbAJBh4uPjNWLECJUoUUKenp7KkyePihcvrt27d2d2aAAAAHcdCTcA3IbNZkvXz7Jly+56bK+99pqaN2+uoKAg2Ww2jR49+pZ1jx07pjZt2sjf31++vr567LHH9Pfff2doPGfPnlV4eLgmT56sxx9/XPPmzdPChQu1bNkyFSpUKEPfCwAAICvwyOwAAOC/7LPPPnN4PGvWLC1cuDBNealSpe5mWJKkESNGKDg4WJUqVdJvv/12y3oJCQmqV6+eLly4oOHDhytbtmyaOHGi6tSpo02bNilPnjwZEs+gQYN04sQJrV69WmXKlMmQ1wQAAMjKSLgB4DY6dOjg8PjPP//UwoUL05RnhgMHDqhQoUI6c+aMAgMDb1nvvffe0969e7V27VpVq1ZNktSkSROVLVtWb731lsaOHfuvYzl16pRmzpypadOmkWwDAAD8fwwpB4AMdOrUKT399NMKCgqSt7e3KlSooJkzZzrUOXjw4G2Hp9etWzdd75XeYdpz5sxRtWrVrGRbkkqWLKkGDRrom2+++cfnJycn65VXXlFYWJi8vLxUqFAhDR8+XFeuXLHqrFu3Tna7XVevXlXVqlXl7e2tPHnyqF27djp8+LBVr1+/fg77mitXrnTtw6+//qqHH35YOXPmlI+Pj6KiorR9+3aHOl26dEnTJp9//rnc3Nw0fvx4q84/3R5w8OBB6/nvvfeeypQpIy8vLxUoUEC9evVSbGysw3vUrVvX4fl58+ZVVFSUtm3b9o/7deNzbxdLeuO5mdGjR8tmsylfvnxKSkpy2Pbll19a73fmzBmrfN68eYqKilKBAgXk5eWlsLAwvfLKK0pJSUmzDzces6+99prc3Nw0e/Zsh/I1a9aoadOmyp07t3LmzKny5cvrnXfesbbf7DM8cuSIsmfPnqY9ChUqJJvNpn79+qXZ38jISNlsNj366KNW2dWrVzVq1ChVqVJFfn5+ypkzpx5++GEtXbr0tm1240+XLl3S1Lm+3W6mbt26Klu2bJryN998844/59Rjp0WLFmlet3v37rLZbNZ7GmNUqFAhPfbYY2nqJiYmys/PT927d7/tPthsNvXu3VtffPGFSpQoIW9vb1WpUkUrVqxwqHfo0CH17NlTJUqUUPbs2ZUnTx498cQTafZx7ty5ql69ugICApQ9e3aVLFlSr7/+uowxVp07OW6l9PcXuXLl0t9//63IyEjlzJlTBQoU0JgxY6wYMqLdAIAr3ACQQS5fvqy6detq37596t27twoXLqxvv/1WXbp0UWxsrPr27etQv127dmratKlD2bBhwzI0Jrvdri1btqhbt25ptlWvXl0LFixQfHy8fHx8bvkazzzzjGbOnKnHH39cAwcO1Jo1azRu3Djt3LlT33//vaRr929LUu/evVWlShWNHz9ep0+f1uTJk7Vy5Upt3LhRefPmVceOHVW1alVJ0ocffqgNGzb84z589tln6ty5syIjI/X666/r0qVLev/991W7dm1t3LjxliceFixYoG7duql3794aOnSopGuJSEREhFWnY8eOatmypVq1amWVpY4WGD16tF5++WVFRESoR48e2r17t95//32tW7dOq1atUrZs2aznlCxZUi+++KKMMdq/f7/efvttNW3a1OFkw62EhIRo3LhxDmW//PKLvvzyS4cyZ+K5lfj4eP38889q2bKlVTZ9+nR5e3srMTHRoe6MGTOUK1cuDRgwQLly5dKSJUs0atQoxcXF6Y033rjle0yfPl0jRozQW2+9paeeesoqX7hwoR599FHlz59fffv2VXBwsHbu3Kmff/45zf+N640aNSpNbKm8vb31xRdf6I033rD2/+jRo1q8eLG8vb0d6sbFxenjjz9Wu3bt9Oyzzyo+Pl6ffPKJIiMjtXbtWlWsWPGm73H97SP9+/e/ZZwZxZnP2dvbW/Pnz9epU6eUL18+Sdf6oa+//tph/202mzp06KAJEybo3LlzCggIsLb99NNPiouLS9eoneXLl+vrr79Wnz595OXlpffee0+NGzfW2rVrreR+3bp1+uOPP9S2bVuFhITo4MGDev/991W3bl3t2LFDOXLkkHTt86hRo4Y6d+6sbNmyKTo6WkOHDpWHh4cGDhzo8L7OHLfO9BcpKSlq3LixatasqQkTJig6OlovvfSSkpOTNWbMmAxrNwD3OQMASLdevXqZW3WdkyZNMpLM559/bpVdvXrVhIeHm1y5cpm4uDhjjDEHDhwwkswbb7yR5jXKlClj6tSp41RMp0+fNpLMSy+9dMttY8aMSbNt6tSpRpLZtWvXLV9706ZNRpJ55plnHMpfeOEFI8ksWbLEGGPM9OnTjSRTunRpc+nSJave0qVLjSQzcODANK/duXNnkzNnztvuW3x8vPH39zfPPvusQ3lMTIzx8/NzKO/cubMJDQ01xhjz119/mVy5cpknnnjCpKSk3PL1b9Vup06dMp6enqZRo0YOz3/33XeNJPPpp59aZXXq1EnzmQ0fPtxIMqdOnbrt/tWpU8eUKVMmTfkbb7xhJJkDBw44Hc/NvPTSS0aSadeunXn00Uet8kOHDhk3NzfTrl07I8mcPn3a2nb955iqe/fuJkeOHCYxMfGm+z9//nzj4eGR5vNOTk42hQsXNqGhoeb8+fMO2+x2u/X79Z+hMcZs27bNuLm5mSZNmji0hzHGhIaGmoYNG5q8efOaOXPmWOWvvPKKeeihh0xoaKiJiopyiOHKlSsO733+/HkTFBRkunXrlmZfX3zxRWOz2RzKQkNDTefOna3Hqe16fbvdjCs+59TXLF++vHnzzTet8s8++8yEhISYhx9+2OE9d+/ebSSZ999/3yGG5s2bm0KFCjl8DjcjyUgyf/31l1V26NAh4+3tbVq2bGmV3ey4Wb16tZFkZs2addv3KF26tMPx6exx62x/Ick8//zzVpndbjdRUVHG09PTes1/224AwJByAMggv/zyi4KDg9WuXTurLFu2bOrTp48SEhK0fPnyux7T5cuXJUleXl5ptqVeAUutczO//PKLJGnAgAEO5alXoObPn+9Q3qtXL2XPnt16XLduXVWpUiVNveudOXNGZ86cuelVzIULFyo2Nlbt2rWz6p05c0bu7u6qUaPGTYcD//3334qKilLFihX12Wefyc3N+T91ixYt0tWrV9WvXz+H5z/77LPy9fVNsz9JSUk6c+aMTp8+rdWrV+v7779X+fLllTdvXqffOyPiuZVu3bopOjpaMTExkqSZM2cqPDxcxYsXT1P3+s8xPj5eZ86c0cMPP6xLly5p165daeqvXbtWbdq0UevWrdNcAd+4caMOHDigfv36yd/f32GbzWa7ZbzDhg1T5cqV9cQTT9x0u6enp9q3b6/p06dbZTNmzFDXrl3T1HV3d5enp6ekayM/zp07p+TkZFWtWvWmIy2uXr160/83N3Pu3DmdOXNGFy9evGWdlJQUh2P4zJkzunTpkkOdO/mcu3bt6rD/06dPV+fOndMc98WLF1eNGjX0xRdfOMT966+/qn379rf9HFKFh4erSpUq1uMHH3xQjz32mH777TfrVoPrj5ukpCSdPXtWRYsWlb+//03b+cyZMzp69KhmzJihffv26ZFHHklTJ73H7Z30F71797Z+Tx0
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1000x600 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"filtered_data = df[['name', 'est_diameter_max']].dropna()\n",
|
|||
|
"\n",
|
|||
|
"filtered_data['name'] = filtered_data['name'].str[:20] # Сокращаем названия до 20 символов\n",
|
|||
|
"\n",
|
|||
|
"size_counts = filtered_data['est_diameter_max'].value_counts().nlargest(10)\n",
|
|||
|
"\n",
|
|||
|
"plt.figure(figsize=(10, 6))\n",
|
|||
|
"size_counts.plot(kind='bar')\n",
|
|||
|
"plt.title('Топ-10 объектов по максимальному размеру')\n",
|
|||
|
"plt.xlabel('Размер')\n",
|
|||
|
"plt.ylabel('Количество объектов')\n",
|
|||
|
"plt.xticks(rotation=45)\n",
|
|||
|
"plt.tight_layout()\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "aimenv",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.12.5"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|