From 52e8ba9c44ca236443f7bd193de9aecd4287dbef Mon Sep 17 00:00:00 2001 From: ChaZIR Date: Fri, 15 Nov 2024 15:49:04 +0400 Subject: [PATCH 1/2] lab 3 is done --- .DS_Store | Bin 0 -> 8196 bytes README.md | 18 +- lab_3/lab3.ipynb | 1128 ++++++++++++++++++++++++++++++++++++++++++ static/.DS_Store | Bin 6148 -> 6148 bytes static/csv/.DS_Store | Bin 0 -> 6148 bytes 5 files changed, 1129 insertions(+), 17 deletions(-) create mode 100644 .DS_Store create mode 100644 lab_3/lab3.ipynb create mode 100644 static/csv/.DS_Store diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..215d648e8a5f25644890a27614e49a80194f0219 GIT binary patch literal 8196 zcmeHMy>AmS6n{?A_CiIK0i-Zgxfp#S%g~bO5BLf}ureu8Go!%Q;G}WT+~_ z3L_H>>K}jvBLi~>CME_@1%CpJOz`~C#J=WOkU~{#$$oeCd-tAyKgYgz0RU3mt7QO^ z0AOKdGBJ(Kh{DEMJyjyIXAUJndsuVnj^k1X?-QrAO@~3iAYc$M2p9wm0%rjMJhNG` zLe70LYFdMULEyhcfb9=9RwfHl_J!nI2R1wfKpDesUhtZ~`lGa22g-t!eIc<23lXL$ zg(;CK29cQq5#~5vkotWgg*g!J8J{CP6Pck9nRpPJs{<(rXSN5y^Ubk57Y_huzN?qsVy6W6-)_ax2rQ6i=t4*)o;RelG9aXj- zG`$+_73rQ=>vG$&7_j12ypl-n@8=iuDLb>AKSn83YSTi|F4FB{~v!~#-l;N zATTxrNUT&Y717b)|FC_M0 j8T*HT!T*!y{73i$XZtXB3p?A@_qH${bN=(CeWsh=b2|}K literal 0 HcmV?d00001 diff --git a/README.md b/README.md index acbed71..8b89ec6 100644 --- a/README.md +++ b/README.md @@ -12,20 +12,4 @@ ### **Датасет** Товары Jio Mart -Ссылка на датасет: [Jio Mart Product Items](https://www.kaggle.com/datasets/mohit2512/jio-mart-product-items). - -## Лабораторная работа №2 - -### **Датасеты** - -1. Зарплаты сотрудникам DataScientist - -Ссылка на датасет: [Data Scientists Salary](https://www.kaggle.com/datasets/henryshan/2023-data-scientists-salary?resource=download). - -2. Цены на бриллианты - -Ссылка на датасет: [Diamonds Prices](https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices). - -3. Цены на ноутбуки - -Ссылка на датасет: [Laptop Price](https://www.kaggle.com/datasets/muhammetvarl/laptop-price). \ No newline at end of file +Ссылка на датасет: [Jio Mart Product Items](https://www.kaggle.com/datasets/mohit2512/jio-mart-product-items). \ No newline at end of file diff --git a/lab_3/lab3.ipynb b/lab_3/lab3.ipynb new file mode 100644 index 0000000..d073c32 --- /dev/null +++ b/lab_3/lab3.ipynb @@ -0,0 +1,1128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Лабораторная работа №3\n", + "\n", + "*Вариант задания:* Товары Jio Mart (вариант - 23) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Для выполнения лабораторной работы по датасету 'jio mart product items', приведу пример двух бизнес-целей:\n", + "\n", + "### Бизнес-цели:\n", + "\n", + "1. **Оптимизация ассортимента товаров в онлайн-магазине**\n", + " \n", + " **Формулировка:** Разработать модель, которая позволяет онлайн-магазину Jio Mart анализировать, какие товары наиболее востребованы, и автоматизировать оптимизацию ассортимента. Это поможет поддерживать в наличии наиболее популярные продукты и своевременно пополнять запасы.\n", + " \n", + " **Цель:** Увеличить объем продаж за счет оптимизации ассортимента и сокращения вероятности отсутствия популярных товаров на складе. Повысить клиентскую удовлетворенность за счет улучшения доступности товаров.\n", + " \n", + " **Ключевые показатели успеха (KPI):** \n", + " - *Точность прогнозирования популярности товаров:* Модель должна иметь точность не менее 90% в прогнозировании популярных товаров.\n", + " - *Увеличение продаж:* Увеличение продаж наиболее популярных товаров на 15% за счет правильного планирования запасов.\n", + " - *Снижение потерь от неликвидов:* Снижение доли товаров, которые остаются нераспроданными, до уровня ниже 5%.\n", + "\n", + "2. **Оптимизация ценовой политики**\n", + " \n", + " **Формулировка:** Разработать модель для автоматической корректировки цен в зависимости от спроса и конкуренции, чтобы максимизировать доход. Модель должна учитывать такие факторы, как сезонные колебания спроса, конкуренция и изменения цен.\n", + " \n", + " **Цель:** Повысить доходность онлайн-магазина Jio Mart за счет гибкой и динамической ценовой стратегии.\n", + " \n", + " **Ключевые показатели успеха (KPI):** \n", + " - *Рост среднего чека:* Увеличение среднего чека покупок на 10% за счет оптимизации цен.\n", + " - *Увеличение объема продаж:* Повышение объема продаж на 20% за счет корректировки цен в зависимости от спроса.\n", + " - *Конкурентоспособность цен:* Цены должны быть ниже или на уровне с ключевыми конкурентами для 80% ассортимента." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Технические цели проекта для каждой выделенной бизнес-цели\n", + "\n", + "1. **Создание модели для оптимизации ассортимента товаров в онлайн-магазине.** \n", + " \n", + " - **Сбор и подготовка данных:** \n", + " Необходимо собрать данные о продажах товаров, наличии на складе, временных трендах и сезонных изменениях спроса. Провести очистку данных от пропусков, дубликатов, аномальных значений (например, нулевые продажи при наличии товара). Преобразовать категориальные переменные (категории товаров, бренды, регионы) в числовую форму с помощью методов, таких как One-Hot-Encoding или Label Encoding. Выполнить временное сглаживание данных и стандартизацию числовых признаков для приведения их к одному масштабу. Разбить данные на обучающую и тестовую выборки.\n", + " \n", + " - **Разработка и обучение модели:** \n", + " Провести эксперименты с различными алгоритмами машинного обучения, такими как регрессия, градиентный бустинг, нейронные сети, для прогнозирования спроса на товары. Обучить модель с использованием метрик оценки, таких как MAE (Mean Absolute Error) и MSE (Mean Squared Error). Оценить производительность моделей на тестовых данных, обеспечивая точность прогнозирования популярности товаров.\n", + " \n", + " - **Развёртывание модели:** \n", + " Интеграция модели в систему управления запасами магазина для автоматической корректировки ассортимента. Создание API или интерфейса для отображения прогноза спроса и рекомендаций по пополнению запасов товаров. Модель должна предлагать автоматическое обновление ассортимента с учетом прогноза популярности и доступности товаров.\n", + "\n", + "2. **Создание модели для оптимизации ценовой политики.** \n", + " \n", + " - **Сбор и подготовка данных:** \n", + " Сбор данных о ценах товаров, продажах, спросе, а также информации о конкурентах и сезонных трендах. Очистка данных от пропусков и аномальных значений. Преобразование категориальных признаков (категории товаров, регионы продаж) в числовой формат. Нормализация числовых данных (например, цены, скидки, объем продаж). Разбиение данных на тренировочную и тестовую выборки для корректного обучения модели.\n", + " \n", + " - **Разработка и обучение модели:** \n", + " Исследование и выбор подходящих моделей для прогнозирования динамических изменений цен с учетом спроса (например, случайные леса, градиентный бустинг, временные ряды). Обучение модели для прогнозирования изменения объема продаж в зависимости от цен и конкурентов. Оценка модели с использованием метрик MSE и RMSE для минимизации ошибки прогнозирования. Прогнозирование оптимальной цены для каждого товара, которая максимизирует продажи и прибыль.\n", + " \n", + " - **Развёртывание модели:** \n", + " Создание системы, которая автоматически рекомендует изменение цен в зависимости от спроса и данных о конкурентах. Разработка API для интеграции в систему ценообразования магазина. Создание интерфейса для мониторинга изменения цен и влияния на продажи в реальном времени." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['category', 'sub_category', 'href', 'items', 'price'], dtype='object')\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as ticker\n", + "import seaborn as sns\n", + "\n", + "# Загрузка данных\n", + "df = pd.read_csv(\"..//static//csv//jio_mart_items.csv\")\n", + "\n", + "# Срез данных, первые 15000 строк\n", + "df = df.iloc[:15000]\n", + "\n", + "# Вывод\n", + "print(df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
categorysub_categoryhrefitemsprice
0GroceriesFruits & Vegetableshttps://www.jiomart.com/c/groceries/fruits-veg...Fresh Dates (Pack) (Approx 450 g - 500 g)109.0
1GroceriesFruits & Vegetableshttps://www.jiomart.com/c/groceries/fruits-veg...Tender Coconut Cling Wrapped (1 pc) (Approx 90...49.0
2GroceriesFruits & Vegetableshttps://www.jiomart.com/c/groceries/fruits-veg...Mosambi 1 kg69.0
3GroceriesFruits & Vegetableshttps://www.jiomart.com/c/groceries/fruits-veg...Orange Imported 1 kg125.0
4GroceriesFruits & Vegetableshttps://www.jiomart.com/c/groceries/fruits-veg...Banana Robusta 6 pcs (Box) (Approx 800 g - 110...44.0
\n", + "
" + ], + "text/plain": [ + " category sub_category \\\n", + "0 Groceries Fruits & Vegetables \n", + "1 Groceries Fruits & Vegetables \n", + "2 Groceries Fruits & Vegetables \n", + "3 Groceries Fruits & Vegetables \n", + "4 Groceries Fruits & Vegetables \n", + "\n", + " href \\\n", + "0 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "1 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "2 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "3 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "4 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "\n", + " items price \n", + "0 Fresh Dates (Pack) (Approx 450 g - 500 g) 109.0 \n", + "1 Tender Coconut Cling Wrapped (1 pc) (Approx 90... 49.0 \n", + "2 Mosambi 1 kg 69.0 \n", + "3 Orange Imported 1 kg 125.0 \n", + "4 Banana Robusta 6 pcs (Box) (Approx 800 g - 110... 44.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Для наглядности\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
price
count15000.000000
mean373.427633
std463.957949
min5.000000
25%123.000000
50%250.000000
75%446.000000
max14999.000000
\n", + "
" + ], + "text/plain": [ + " price\n", + "count 15000.000000\n", + "mean 373.427633\n", + "std 463.957949\n", + "min 5.000000\n", + "25% 123.000000\n", + "50% 250.000000\n", + "75% 446.000000\n", + "max 14999.000000" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Описание данных (основные статистические показатели)\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "category 0\n", + "sub_category 0\n", + "href 0\n", + "items 0\n", + "price 0\n", + "dtype: int64\n" + ] + }, + { + "data": { + "text/plain": [ + "category False\n", + "sub_category False\n", + "href False\n", + "items False\n", + "price False\n", + "dtype: bool" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Процент пропущенных значений признаков\n", + "for i in df.columns:\n", + " null_rate = df[i].isnull().sum() / len(df) * 100\n", + " if null_rate > 0:\n", + " print(f'{i} Процент пустых значений: %{null_rate:.2f}')\n", + "\n", + "# Проверка на пропущенные данные\n", + "print(df.isnull().sum())\n", + "\n", + "df.isnull().any()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Нет пропущенных данных." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Разбиваем на выборки (обучающую, тестовую, контрольную)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер обучающей выборки: 12000\n", + "Размер контрольной выборки: 3000\n", + "Размер тестовой выборки: 3000\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Разделение данных на обучающую и тестовую выборки (80% - обучение, 20% - тестовая)\n", + "train_data, test_data = train_test_split(df, test_size=0.2, random_state=42)\n", + "\n", + "# Разделение данных на обучающую и контрольную выборки (80% - обучение, 20% - контроль)\n", + "train_data, val_data = train_test_split(df, test_size=0.2, random_state=42)\n", + "\n", + "print(\"Размер обучающей выборки: \", len(train_data))\n", + "print(\"Размер контрольной выборки: \", len(val_data))\n", + "print(\"Размер тестовой выборки: \", len(test_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3ElEQVR4nO3deVxUVeMG8Gd2NlkEAXEl94XUMA0tNcW9svLN9GepZWqmlVZqvOWWGWm+5ZpWb6m9WaaVtpnmXhruS+5aorgBorLNwKzn9wfOjQFEhBlm5vJ8Px8+NfeeufecWeDxLPcqhBACRERERDKldHcFiIiIiFyJYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiMgFMjMz8ddff8Fisbi7KuREQghcv34dZ86ccXdV6A4w7BAROYHZbMbs2bPRqlUr6HQ6hISEoFGjRti8ebO7q+YVjh49irVr10qPDx06hJ9//tl9FSokJycHb775Jpo0aQKtVovQ0FA0btwYp06dcnfVqIzU7q4Aud6yZcvwzDPPSI91Oh3q1q2LHj16YPLkyYiIiHBj7Yi8n9FoRI8ePbBr1y48//zzmDFjBvz8/KBSqRAbG+vu6nmFnJwcjBo1CpGRkQgNDcXLL7+M3r17o2/fvm6t17Vr19C5c2ekpKTgxRdfRMeOHaHVaqHRaFC/fn231o3KjmGnCnnrrbcQHR2N/Px87NixA4sXL8a6detw9OhR+Pn5ubt6RF5r1qxZ2L17NzZs2IAuXbq4uzpeKS4uTvoBgMaNG2PEiBFurhUwYcIEXLlyBUlJSWjRooW7q0PlxLBThfTu3Rtt27YFADz33HMIDQ3F+++/j++//x6DBg1yc+2IvJPFYsHcuXPx6quvMuhU0Nq1a3H8+HHk5eUhJiYGWq3WrfVJT0/H8uXLsWTJEgYdL8c5O1VY165dAQDJyckAgOvXr+O1115DTEwMAgICEBgYiN69e+Pw4cPFnpufn49p06ahcePG8PHxQc2aNfH444/j77//BgCcO3cOCoXilj+F/yhs27YNCoUCX3/9Nf79738jMjIS/v7+eOSRR3DhwoVi5969ezd69eqFoKAg+Pn5oXPnzti5c2eJbezSpUuJ5582bVqxsl988QViY2Ph6+uL6tWrY+DAgSWev7S2FWaz2TB37ly0aNECPj4+iIiIwKhRo3Djxg2HcvXr18dDDz1U7Dxjx44tdsyS6v7ee+8Ve02BgqGVqVOnomHDhtDpdKhTpw4mTpwIo9FY4mtVWJcuXdCyZcti2+fMmQOFQoFz5845bM/MzMS4ceNQp04d6HQ6NGzYELNmzYLNZpPK2F+3OXPmFDtuy5YtS/xMfPPNN7es47Bhw8o0jFC/fn3p/VEqlYiMjMSTTz6JlJSU2z4XAD788EO0aNECOp0OUVFRGDNmDDIzM6X9p06dwo0bN1CtWjV07twZfn5+CAoKwkMPPYSjR49K5bZu3QqFQoE1a9YUO8eXX34JhUKBpKQkqc7Dhg1zKGN/TbZt2yZt+/333/HEE0+gbt260ns8fvx45OXlOTx32rRpxT5LK1asQOvWreHj44PQ0FAMGjSo2GsybNgwBAQEOGz75ptvitUDAAICAorVGSjb96pLly7S+9+8eXPExsbi8OHDJX6vSlL0ex4WFoa+ffs6vP5Awfdn7NixtzzOsmXLHD7fe/fuhc1mg8lkQtu2bUt9rQBgy5YteOCBB+Dv74/g4GD069cPJ06ccChjfy9OnjyJAQMGIDAwUBq2y8/PL1bfwt93i8WCPn36oHr16jh+/LhD2bL+/qqq2LNThdmDSWhoKADg7NmzWLt2LZ544glER0cjLS0NH330ETp37ozjx48jKioKAGC1WvHQQw9h8+bNGDhwIF5++WXk5ORg48aNOHr0KBo0aCCdY9CgQejTp4/DeRMSEkqsz8yZM6FQKDBp0iSkp6dj7ty5iI+Px6FDh+Dr6wug4JdJ7969ERsbi6lTp0KpVGLp0qXo2rUrfv/9d7Rr167YcWvXro3ExEQAQG5uLkaPHl3iuSdPnowBAwbgueeew9WrV7FgwQJ06tQJBw8eRHBwcLHnjBw5Eg888AAA4Lvvviv2R2zUqFHSfKmXXnoJycnJWLhwIQ4ePIidO3dCo9GU+DrciczMTKlthdlsNjzyyCPYsWMHRo4ciWbNmuHIkSP44IMPcPr0aYeJoBVlMBjQuXNnXLp0CaNGjULdunXxxx9/ICEhAVeuXMHcuXOddq7yeuCBBzBy5EjYbDYcPXoUc+fOxeXLl/H777+X+rxp06Zh+vTpiI+Px+jRo3Hq1CksXrwYe/fuld7Da9euASj4XDdq1AjTp09Hfn4+Fi1ahI4dO2Lv3r1o3LgxunTpgjp16mDFihV47LHHHM6zYsUKNGjQQBrCKavVq1fDYDBg9OjRCA0NxZ49e7BgwQJcvHgRq1evvuXzvvzySzz11FNo1aoVEhMTce3aNcyfPx87duzAwYMHERYWdkf1uJXyfK/sJk2adEfnatq0Kd544w0IIfD333/j/fffR58+fcocaktif2/Hjh2L2NhYvPvuu7h69WqJr9WmTZvQu3dv3HXXXZg2bRry8vKwYMECdOzYEQcOHCgWzAcMGID69esjMTERu3btwvz583Hjxg18/vnnt6zPc889h23btmHjxo1o3ry5tL0ir3OVIUj2li5dKgCITZs2iatXr4oLFy6IlStXitDQUOHr6ysuXrwohBAiPz9fWK1Wh+cmJycLnU4n3nrrLWnbZ599JgCI999/v9i5bDab9DwA4r333itWpkWLFqJz587S461btwoAolatWiI7O1vavmrVKgFAzJs3Tzp2o0aNRM+ePaXzCCGEwWAQ0dHRonv37sXO1aFDB9GyZUvp8dWrVwUAMXXqVGnbuXPnhEqlEjNnznR47pEjR4RarS62/cyZMwKAWL58ubRt6tSpovDX6ffffxcAxIoVKxyeu379+mLb69WrJ/r27Vus7mPGjBFFv6JF6z5x4kQRHh4uYmNjHV7T//3vf0KpVIrff//d4flLliwRAMTOnTuLna+wzp07ixYtWhTb/t577wkAIjk5Wdo2Y8YM4e/vL06fPu1Q9vXXXxcqlUqkpKQIIcr3mVi9evUt6zh06FBRr169UtshRMHrO3ToUIdt//d//yf8/PxKfV56errQarWiR48eDt+LhQsXCgDis88+c6hrWFiYyMjIkMqdPn1aaDQa0b9/f2lbQkKC0Ol0IjMz0+E8arXa4X2Njo4WQ4YMcaiP/Txbt26VthkMhmL1TkxMFAqFQpw/f17aVvjzabFYREREhGjQoIHIzc2Vymzbtk0AEK+++qq0bejQocLf39/h+KtXry5WDyGE8Pf3d3id7+R71blzZ4f3f926dQKA6NWrV7HvQEmKPl8IIf79738LACI9PV3aBkCMGTPmlsex/660f77tj5s3b+7wWtvfi8KvVevWrUV4eLi4du2atO3w4cNCqVQ6vJf29+KRRx5xOPcLL7wgAIjDhw871Nf+uUhISBAqlUqsXbvW4Xl3+vurquIwVhUSHx+PGjVqoE6dOhg4cCACAgKwZs0a1KpVC0DBKi2lsuAjYbVace3aNQQEBKBJkyY4cOCAdJxvv/0WYWFhePHFF4udoyxdzrcyZMgQVKtWTXr8r3/9CzVr1sS6desAFCxFPXPmDP7v//4P165dQ0ZGBjIyMqDX69GtWzf89ttvDsMmQMFwm4+PT6nn/e6772Cz2TBgwADpmBkZGYiMjESjRo2wdetWh/ImkwlAwet1K6tXr0ZQUBC6d+/ucMzY2FgEBAQUO6bZbHYol5GRUaxLu6hLly5hwYIFmDx5crGhhtWrV6NZs2Zo2rSpwzHtQ5dFz18Rq1evxgMPPICQkBCHc8XHx8NqteK3335zKG8wGIq11Wq1lnjsnJwcZGRkOAwblYfRaERGRgbS09OxceNGbNmyBd26dSv1OZs2bYLJZMK4ceOk7wUAjBgxAoGBgcWWRT/zzDNSLykANGrUCI888gjWr18vtW/IkCEwGo0Ow3Nff/01LBYLnnrqKWlbeHg4Ll68eNt22Xs8AUCv1yMjIwMdOnSAEAIHDx4sVj4jIwPbtm1DWloaRo0aBX9/f2lf586dERsb67Tl3nf6vbITQiAhIQH9+/dH+/bty3w++3fo6tWrSEpKwpo1a3D33XcX66XKz89HRkYGrl27Vuz3xa2MGTPG4bXu0qWLw2t15coVHDp0CMOGDUP16tWlcnfffTe6d+8u/Q4reszC7L9PSyq7cOFCJCYmYv78+ejXr5/DvvK+zlUNh7GqkEWLFqFx48ZQq9WIiIhAkyZNHH6J22w2zJs3Dx9++CGSk5Md/gAV/iX+999/o0mTJlCrnfvxadSokcNjhUKBhg0bSuPn9ot4DR069JbHyMrKQkhIiPQ4IyOj2HGLOnPmDIQQtyxXdLjJ/oe3aMAoesysrCyEh4eXuD89Pd3h8a+//ooaNWqUWs+ipk6diqioKIwaNarY3JYzZ87gxIkTtzxm0fNXxJkzZ/Dnn3+W+VxTp07F1KlTi5Ur6RIIzz77rPT/AQEBePjhh/HBBx/c8eUSVq5ciZUrV0qP7733Xvz3v/8t9Tnnz58HADRp0sRhu1arxV133SXttwf8pk2bFjtGs2bN8O233yIjIwMRERFo2rQp7r33XqxYsQLDhw8HUDCEdd9996Fhw4bS8zp06ID58+dj5cqV6Nq1K5RKJbKysoodPyUlBVOmTMEPP/xQbC5YSeULv0dF22Wvb2nzpO7EnX6v7FasWIFjx45h1apV+PLLL8t8vj/++MOhfY0aNcLatWuL/QPs008/xaeffgqg4L1s37493n//fWnxRmG3e2/tr9WtPiv2chs2bIBer3cIl0VflwYNGkCpVBabD/fLL79g3759AArmVRZV3te5qmHYqULatWtX4hfa7p133sHkyZPx7LPPYsaMGahevTqUSiXGjRtX5n8BuZK9Du+99x5at25dYpnCAcRkMuHKlSvo3r37bY+rUCjwyy+/QKVSlXpMAEhNTQUAREZGlnrM8PBwrFixosT9RYNB+/bt8fbbbztsW7hwIb7//vsSn3/ixAksW7YMX3zxRYm/zGw2G2JiYvD++++X+Pw6dercsu53ymazoXv37pg4cWKJ+xs3buzweOTIkXjiiScctt1qifGUKVPwwAMPwGw2Y//+/XjrrbeQmZlZ4r9+S9OjRw9MmDABAHDx4kXMmjULDz74IPbt2+fwL/byuNPnDxkyBC+//DIuXrwIo9GIXbt2YeHChQ5l/v3vf2Pnzp2lrpK0Wq3o3r07rl+/jkmTJqFp06bw9/fHpUuXMGzYsBK/sxs3bkRSUhKmTJlyR3Uujzv9XgEF39nJkydj+PDhxT43t3P33XfjP//5DwBI82q6dOmCAwcOOHxX+/Xrh7Fjx0IIgeTkZLz11lt46KGHSrwickU/G3fiVr3ie/bswYgRI+Dv74+3334bTzzxhEOoKs/rXBUx7JDkm2++wYMPPij9q8cuMzPToSu4QYMG2L17N8xms1P/1VD0l40QAn/99Rfuvvtu6bwAEBgYiPj4+Nse7/DhwzCbzaUGPPtxhRCIjo4u0y/Y48ePQ6FQlPivuMLH3LRpEzp27FimX5hhYWHF2lTaJOKEhAS0bt0aTz755C3Pf/jwYXTr1q1CQ4tl0aBBA+Tm5pbpPQEK/kVbtGzhf/EWFhMTI5Xt3bs3UlJSsHz58ju+BUPNmjUdztmkSRN06NABa9euvWWgqFevHoCC1VZ33XWXtN1kMiE5OVk6XnR0tFSuqJMnT8Lf39/h+zNw4EC88sor+Oqrr5CXlweNRlPsfQwLC0NSUhKOHz8uhevDhw/jtddek8ocOXIEp0+fxvLlyzFkyBBp+8aNG2/5OsTHxyMoKAhTpky5ZX2ddaG8O/1eAQUr39LT00tcLXk7ISEhDu9xly5dEBUVhaVLlzosiqhdu7ZDuYCAAAwePLjEYb/C7619CNiu8GtV+LNS1MmTJxEWFlbsM37mzBnp+ADw119/wWazFXv9u3fvjsWLFyM/Px9r167FyJEjpZV5QPle56qIc3ZIolKpIIRw2LZ69WpcunTJYVv//v2RkZFR7F+jAIo9/058/vnnyMnJkR5/8803uHLlCnr37g0AiI2NRYMGDTBnzhzk5uYWe/7Vq1eL1V2lUpW4rLuwxx9/HCqVCtOnTy9WfyGEtCIDKFj6+e2336Jdu3al/otpwIABsFqtmDFjRrF9FoulQnNQkpKS8P333+Pdd9+9ZZAZMGAALl26hE8++aTYvry8POj1+nKfv6RzJSUlYcOGDcX2ZWZmOvXeUDabDUqlssIBzr40u7Rl+PHx8dBqtZg/f77D5+LTTz9FVlaWdGXfGjVqoG3btli+fLnDUNLff/+NH374Ab1793b4F3dYWBh69+6NL774AitWrECvXr1KXP2kVCrRsmVLxMfHIz4+vtiVmO3HLFw3IQTmzZtXattbt26NiIgIfPLJJzAYDNL233//Hfv27bvt96Ws7uR7BRTMz5o5cybGjx9faq9pWZXlPQb+6TEuqVekTZs2iIyMxJIlSxyOU/S1qlmzJlq3bo3ly5c7fLePHj2KX3/9tdiKVKBgWkFhCxYsAADp951dhw4doFKp4O/vjyVLluC3335z+F7f6etcVbFnhyQPPfQQ3nrrLTzzzDPo0KEDjhw5ghUrVjj8qxYo6Ib//PPP8corr2DPnj144IEHoNfrsWnTJrzwwgvFJtCVVfXq1XH//ffjmWeeQVpaGubOnYuGDRtKQxxKpRL//e9/0bt3b7Ro0QLPPPMMatWqhUuXLmHr1q0IDAzEjz/+CL1ej0WLFmH+/Plo3Lixw/VA7CHpzz//RFJSEuLi4tCgQQO8/fbbSEhIwLlz5/Doo4+iWrVqSE5Oxpo1azBy5Ei89tpr2LRpEyZPnow///wTP/74Y6lt6dy5M0aNGoXExEQcOnQIPXr0gEajwZkzZ7B69WrMmzcP//rXv8r1Ov3666/o3r17qT0pTz/9NFatWoXnn38eW7duRceOHWG1WnHy5EmsWrUKGzZsuG2PV25uLtavX++wzf4v1+3bt0Oj0aBWrVqYMGECfvjhBzz00EMYNmwYYmNjodfrceTIEXzzzTc4d+5cuZcyHzp0CAEBAbBYLNi/fz8+//xz9OvXr8Q/TKU5e/YsvvjiCwAFE7sXLlyIwMDAUicp16hRAwkJCZg+fTp69eqFRx55BKdOncKHH36Ie++912FC8ezZs9GjRw/ExcXhueeek5ae+/j4YObMmcWOPWTIEOn9LykQl0XTpk3RoEEDvPbaa7h06RICAwPx7bffFpu7U5RGo8GsWbMwbNgwdOzYEUOHDsX169cxb9481KpVq9iSb6vV6vA5OHToEICC4ZXCk+itVisuXbqEPXv2oF27dmX+XtkdOHAAYWFhtxwOvZ20tDTpPc7IyMBHH30EtVpdLLylpKRg/fr10jDWzJkzUa9ePbRp06ZY77Jarcbs2bMxZMgQPPDAAxg8eLA0RFa7dm2H1+q9995D7969ERcXh+HDh0tLz4OCgkrsqUpOTsYjjzyCXr16ISkpCV988QX+7//+D61atbplG3v27ImnnnoKEydOxMMPP4yaNWve8etcZVXm0i9yD/vyyb1795ZaLj8/X7z66quiZs2awtfXV3Ts2FEkJSWVuKzTYDCIN954Q0RHRwuNRiMiIyPFv/71L/H3338LIcq3zPirr74SCQkJIjw8XPj6+oq+ffs6LJ+1O3jwoHj88cdFaGio0Ol0ol69emLAgAFi8+bNDue+3U/R5cjffvutuP/++4W/v7/w9/cXTZs2FWPGjBGnTp0SQgjx4osvik6dOon169cXq1PRped2H3/8sYiNjRW+vr6iWrVqIiYmRkycOFFcvnxZKnOnS88VCoXYv3+/w/aS3iOTySRmzZolWrRoIXQ6nQgJCRGxsbFi+vTpIisrq9j5ih7vdq/f0qVLpfI5OTkiISFBNGzYUGi1WhEWFiY6dOgg5syZI0wmkxCifJ8J+49arRb16tUTL730krhx44YQ4s6Wnhc+VlhYmOjRo4dISkq67XOFKFhq3rRpU6HRaERERIQYPXq0VIfCNm/eLDp27Ch8fX1FYGCg6Nu3rzhy5EiJxzQajSIkJEQEBQWJvLy8MtWjpKXnx48fF/Hx8SIgIECEhYWJESNGiMOHDxd7f0r6fK5cuVK0bt1a+mw8+eST4ty5cw5lhg4dWqbvUuGfop/D232vhPjn8/bBBx84PPdW36uiin5eg4ODRceOHcW6descyhUuo1AoRGRkpHj88cfFiRMnhBDFl57brVq1SrRp00bodDpRvXp1MWjQoBJ/N23atMnhM/Dwww+L48ePl9im48ePi3/961+iWrVqIiQkRIwdO7bYZwFFLjUhhBAZGRmiRo0a4rHHHnPYXpbXuSpTCFGBcQciJ9i2bRsefPBBrF69uty9HYWdO3cO0dHRSE5OvuX8g2nTpuHcuXNYtmxZhc9XFdWvXx/Tpk0r8Yq5dHsWiwVRUVF4+OGHi82R82bLli3DsmXLil1dmf5hv1Dl1atXnXbxRro9ztkhIqpka9euxdWrVx0mFhOR63DODsmOfXVFaROI7777bun2F3TnOnfuLF2Mkspu9+7d+PPPPzFjxgy0adMGnTt3dneVnKpWrVol3rKFyN0Ydkh2wsLCpImKt/L4449XUm3kafny5e6ugldavHgxvvjiC7Ru3VqWQ6jdu3e/7XWtiNyBc3aIiIhI1jhnh4iIiGSNYYeIiIhkjXN2UHAFzcuXL6NatWouv7Q+EREROYcQAjk5OYiKinK4sXVRDDsALl++7NQbIxIREVHluXDhAmrXrn3L/Qw7AKpVqwag4MUKDAx0c22IiIioLLKzs1GnTh3p7/itMOwA0tBVYGAgww4REZGXud0UFE5QJiIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9hxMSEE9Ho9hBDurgoREVGVxLDjYgaDAYnf7oLBYHB3VYiIiKokhp1KoPXxc3cViIiIqiyGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hp1KJoSAXq+HEMLdVSEiIqoSGHYqmcFgQOK3u2AwGNxdFSIioiqBYccNtD5+7q4CERFRlcGwQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREsubWsGO1WjF58mRER0fD19cXDRo0wIwZMyCEkMoIITBlyhTUrFkTvr6+iI+Px5kzZxyOc/36dQwePBiBgYEIDg7G8OHDkZubW9nNISIiIg/k1rAza9YsLF68GAsXLsSJEycwa9YszJ49GwsWLJDKzJ49G/Pnz8eSJUuwe/du+Pv7o2fPnsjPz5fKDB48GMeOHcPGjRvx008/4bfffsPIkSPd0SQiIiLyMGp3nvyPP/5Av3790LdvXwBA/fr18dVXX2HPnj0ACnp15s6dizfffBP9+vUDAHz++eeIiIjA2rVrMXDgQJw4cQLr16/H3r170bZtWwDAggUL0KdPH8yZMwdRUVHuaRwRERF5BLf27HTo0AGbN2/G6dOnAQCHDx/Gjh070Lt3bwBAcnIyUlNTER8fLz0nKCgI7du3R1JSEgAgKSkJwcHBUtABgPj4eCiVSuzevbvE8xqNRmRnZzv8EBERkTy5tWfn9ddfR3Z2Npo2bQqVSgWr1YqZM2di8ODBAIDU1FQAQEREhMPzIiIipH2pqakIDw932K9Wq1G9enWpTFGJiYmYPn26s5tDREREHsitPTurVq3CihUr8OWXX+LAgQNYvnw55syZg+XLl7v0vAkJCcjKypJ+Lly44NLzERERkfu4tWdnwoQJeP311zFw4EAAQExMDM6fP4/ExEQMHToUkZGRAIC0tDTUrFlTel5aWhpat24NAIiMjER6errDcS0WC65fvy49vyidTgedTueCFhEREZGncWvPjsFggFLpWAWVSgWbzQYAiI6ORmRkJDZv3iztz87Oxu7duxEXFwcAiIuLQ2ZmJvbv3y+V2bJlC2w2G9q3b18JrSAiIiJP5taenYcffhgzZ85E3bp10aJFCxw8eBDvv/8+nn32WQCAQqHAuHHj8Pbbb6NRo0aIjo7G5MmTERUVhUcffRQA0KxZM/Tq1QsjRozAkiVLYDabMXbsWAwcOJArsYiIiMi9YWfBggWYPHkyXnjhBaSnpyMqKgqjRo3ClClTpDITJ06EXq/HyJEjkZmZifvvvx/r16+Hj4+PVGbFihUYO3YsunXrBqVSif79+2P+/PnuaFKJhBDQ6/Xw8/Nzd1WIiIiqHIUofLniKio7OxtBQUHIyspCYGCgU4+t1+uR+O1uWCwmTH7yAQDAf37+E6/2vRv+/v5OPRcREVFVUta/37w3ViXR+vi6uwpERERVEsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyZra3RWoSoQQMBgMAIS7q0JERFRlsGenEhkMBsz5fg8sFrO7q0JERFRlMOxUMq3Oz91VICIiqlIYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh23EQIAb1eDyF4zR0iIiJXYthxE4PBgMRvd928yCARERG5CsOOG2l9eM0dIiIiV2PYISIiIllj2KlkVhvn6BAREVUm3gi0Ep2/kY9Vp/LRqLrG3VUhIiKqMtizU4kOXcyBVQCXcyzurgoREVGVwbBTidJyTACAXLOAjUvOiYiIKgXDTiWyhx2bADJyzW6uDRERUdXAsFOJ7GEHAK5kG91YEyIioqqDYacSFQ47l7MYdoiIiCoDw04lEUI4hp1sUymliYiIyFkYdiqJ0QrkW2zSY/bsEBERVQ6GnUpiMNscHl/mnB0iIqJKwbBTSfTmgqXmipuPr3AYi4iIqFIw7FQSvamgZ6e6T0HcScs28lo7RERElYBhp5LYe3ZCfZVQKgCr+CcAERERkesw7FQSw82wE6BRwF9T0LuTy7BDRETkcgw7lcTei+OnUSBAW/Cy5zDsEBERuRzDTiWxD2P5axQI0N7s2TFa3VklIiKiKkHt7gpUBTYhpGEsP40SAdqC7ezZISIicj327FSCfAsgAKgUgK8ahXp2GHaIiIhcjT07lcA+hFUjQAulQoEATlAmIiKqNOzZqQQGS0HYiahWMH5l79nRm20wWRl4iIiIXIlhpxLob94qItRXCUBAp1ZI+3LyLW6qFRERUdXg9rBz6dIlPPXUUwgNDYWvry9iYmKwb98+ab8QAlOmTEHNmjXh6+uL+Ph4nDlzxuEY169fx+DBgxEYGIjg4GAMHz4cubm5ld2UW7JPTr5w9QYsFjOUCgX8NAUvfS7DDhERkUu5NezcuHEDHTt2hEajwS+//ILjx4/jP//5D0JCQqQys2fPxvz587FkyRLs3r0b/v7+6NmzJ/Lz86UygwcPxrFjx7Bx40b89NNP+O233zBy5Eh3NKlE9pud+2j+mSIVoFMBAHKMDDtERESu5NYJyrNmzUKdOnWwdOlSaVt0dLT0/0IIzJ07F2+++Sb69esHAPj8888RERGBtWvXYuDAgThx4gTWr1+PvXv3om3btgCABQsWoE+fPpgzZw6ioqIqt1ElsN28BZbyn9Er+OtUQK6Z19ohIiJyMbf27Pzwww9o27YtnnjiCYSHh6NNmzb45JNPpP3JyclITU1FfHy8tC0oKAjt27dHUlISACApKQnBwcFS0AGA+Ph4KJVK7N69u8TzGo1GZGdnO/y4UklhJ0B7s2eHw1hEREQu5dawc/bsWSxevBiNGjXChg0bMHr0aLz00ktYvnw5ACA1NRUAEBER4fC8iIgIaV9qairCw8Md9qvValSvXl0qU1RiYiKCgoKknzp16ji7aQ7sdzd3CDu6gk61XA5jERERuZRbw47NZsM999yDd955B23atMHIkSMxYsQILFmyxKXnTUhIQFZWlvRz4cIFl57PWlLPDufsEBERVQq3hp2aNWuiefPmDtuaNWuGlJQUAEBkZCQAIC0tzaFMWlqatC8yMhLp6ekO+y0WC65fvy6VKUqn0yEwMNDhx5VKG8bKzeecHSIiIldya9jp2LEjTp065bDt9OnTqFevHoCCycqRkZHYvHmztD87Oxu7d+9GXFwcACAuLg6ZmZnYv3+/VGbLli2w2Wxo3759JbTi9uxhR1V0gjLYs0NERORqbl2NNX78eHTo0AHvvPMOBgwYgD179uDjjz/Gxx9/DABQKBQYN24c3n77bTRq1AjR0dGYPHkyoqKi8OijjwIo6Anq1auXNPxlNpsxduxYDBw40CNWYgGFenbwT9qxD2Nxzg4REZFruTXs3HvvvVizZg0SEhLw1ltvITo6GnPnzsXgwYOlMhMnToRer8fIkSORmZmJ+++/H+vXr4ePj49UZsWKFRg7diy6desGpVKJ/v37Y/78+e5oUomsJU1Q5mosIiKiSqEQ4uZf4iosOzsbQUFByMrKcvr8Hb1ej46ztyPTKNCllhKR/gpofXxxV1QNTFufjLjoEHw1qoNTz0lERFQVlPXvt9tvF1EVlDhBmXN2iIiIKgXDTiUofTUWww4REZErMexUglIvKmji0nMiIiJXYthxISEE9Hp9iRcVtC89Z88OERGRazHsuJDBYMCc7/eUOoyVb7HBbLW5oXZERERVA8OOi2l1fqVeVBDg8nMiIiJXYtipBCX17KiVCqhvvvo5+ebKrxQREVEVwbDjYjYhYL+QkcVkhMn8Ty+O9mZXD3t2iIiIXIdhx8VshS7ZWLhnB/gn7GSzZ4eIiMhlGHZcrKSwY1+lpWHPDhERkcuV+95Yer0e27dvR0pKCkwmk8O+l156qcIVkwuHsHPzv2ZjPhasPwyNouD+Xgw7RERErlOusHPw4EH06dMHBoMBer0e1atXR0ZGBvz8/BAeHs6wU4h0jR0AikLDWFqdT6GeHQ5jERERuUq5hrHGjx+Phx9+GDdu3ICvry927dqF8+fPIzY2FnPmzHF2Hb1aSVdPtrt5qR327BAREblQucLOoUOH8Oqrr0KpVEKlUsFoNKJOnTqYPXs2/v3vfzu7jl6tpGXndhole3aIiIhcrVxhR6PRQKkseGp4eDhSUlIAAEFBQbhw4YLzaicDpYUdLj0nIiJyvXLN2WnTpg327t2LRo0aoXPnzpgyZQoyMjLwv//9Dy1btnR2Hb1aqT07HMYiIiJyuXL17LzzzjuoWbMmAGDmzJkICQnB6NGjcfXqVXz88cdOraC3K33ODq+zQ0RE5Grl6tlp27at9P/h4eFYv3690yokNyXd8dzunzk77NkhIiJylXL17HTt2hWZmZlOroo8lT5np+C/nKBMRETkOuUKO9u2bSt2IUEqWelzdtizQ0RE5Grlvl2EQlHCX28qxh52VCX17HAYi4iIyOXKfbuIxx57DFqttsR9W7ZsKXeF5MZaygRle89OntkKs9UGjYq3KiMiInK2coeduLg4BAQEOLMusmQrdLuIouxzdgAgN9+CEP+SwyMRERGVX7nCjkKhwIQJExAeHu7s+shOaXN2lAoFfDVK5JltyGHYISIicolyjZsIIW5fiAAUDjslz3EK0BXkTV5rh4iIyDXKFXamTp3KIawyKm3ODgBUuxl2OEmZiIjINco1jDV16lQAwNWrV3Hq1CkAQJMmTVCjRg3n1UwmShvGAoAAn4KJO7zWDhERkWuUq2fHYDDg2WefRVRUFDp16oROnTohKioKw4cPh8FgcHYdvVppS88BwF9bkDcNJmsl1YiIiKhqKVfYGT9+PLZv344ffvgBmZmZyMzMxPfff4/t27fj1VdfdXYdvdrtenb8by7J0ps4jEVEROQK5RrG+vbbb/HNN9+gS5cu0rY+ffrA19cXAwYMwOLFi51VP69X2r2xAMD3Zti5nm2AEIIXayQiInKycg9jRUREFNseHh7OYawiSrvruRACSmvBbTfWH0zma0dEROQC5Qo7cXFxmDp1KvLz86VteXl5mD59OuLi4pxWOTkobRjLbMzHiYsZAAChLPf1HYmIiKgU5foLO3fuXPTq1Qu1a9dGq1atAACHDx+Gj48PNmzY4NQKervbzdnRadQABMw2XruIiIjIFcoVdmJiYnDmzBmsWLECJ0+eBAAMGjQIgwcPhq+vr1Mr6O1uN2dHfbNvzWyrnPoQERFVNeUKO7/99hs6dOiAESNGOLs+slPavbGAf8KOxSqg1+vh5+fHScpEREROVK45Ow8++CCuX7/u7LrIUmkTlAFAc/MdMFmseP+nA5ykTERE5GS8N5aL3e6iguqbvTgWG6D14RAgERGRs5V7CVBSUhJCQkJK3NepU6dyV0hubjdBmXN2iIiIXKvcYeexxx4rcbtCoYDVylsf2Flvhphb3fVcmrPDzjIiIiKXKNcwFgCkpqbCZrMV+2HQcVTWOTsW9uwQERG5RLnCDlcLlZ09w9xuGMti41woIiIiV+AEZRcr65wdgX+uyUNERETOU645OzYbx1zK6varsf75f15FmYiIyPnK1bOTmJiIzz77rNj2zz77DLNmzapwpeTkdj07CoVCCjwWTnciIiJyunKFnY8++ghNmzYttr1FixZYsmRJhSslJ1Zb6ROUgcLLz9mzQ0RE5GzlCjupqamoWbNmse01atTAlStXKlwpObldzw7wz4osXmuHiIjI+coVdurUqYOdO3cW275z505ERUVVuFJycrt7YwGFV2SxZ4eIiMjZyjVBecSIERg3bhzMZjO6du0KANi8eTMmTpyIV1991akV9HYOPTu3yDLSMBbn7BARETlducLOhAkTcO3aNbzwwgswmUwAAB8fH0yaNAkJCQlOraA3E0Lc9jo7AHt2iIiIXKlcYUehUGDWrFmYPHkyTpw4AV9fXzRq1Ag6nc7Z9fNq5kIXzil9zk5Btw8nKBMRETlfue+NBQABAQG49957nVUX2TFb/5lxrFT8czXloqSl55ygTERE5HTlDjv79u3DqlWrkJKSIg1l2X333XcVrpgcFO3ZuWXYURYvT0RERM5RrtVYK1euRIcOHXDixAmsWbMGZrMZx44dw5YtWxAUFOTsOnote8+OAre+6zlQ+Do7lVApIiKiKqZcYeedd97BBx98gB9//BFarRbz5s3DyZMnMWDAANStW9fZdfRa9p6a0ubrAIXvfM6eHSIiImcrV9j5+++/0bdvXwCAVquFXq+HQqHA+PHj8fHHHzu1gt7MdLNn53Zhh1dQJiIicp1yhZ2QkBDk5OQAAGrVqoWjR48CADIzM2EwGJxXOy9nvsOww3tjEREROV+5Jih36tQJGzduRExMDJ544gm8/PLL2LJlCzZu3Ihu3bo5u45eq8zDWAouPSciInKVcoWdhQsXIj8/HwDwxhtvQKPR4I8//kD//v3x5ptvOrWC3uyOe3Y4QZmIiMjp7ijsZGdnFzxJrUZAQID0+IUXXsALL7zg/Np5OXvPjopzdoiIiNzmjsJOcHAwFKUsobazWjn5BCjUs3ObchrO2SEiInKZOwo7W7dudXgshECfPn3w3//+F7Vq1XJqxeTAVMY5O+zZISIicp07CjudO3cutk2lUuG+++7DXXfd5bRKycWdztmxCsBi48QdIiIiZyrX0nMqm7KuxlIXehcMJo5lEREROVOFws6FCxdgMBgQGhrqrPrISll7dlQKhfRGMOwQERE51x2Fnfnz50s/U6ZMQdeuXdG1a1en3A/r3XffhUKhwLhx46Rt+fn5GDNmDEJDQxEQEID+/fsjLS3N4XkpKSno27cv/Pz8EB4ejgkTJsBisVS4Ps5Q1p4d4J/eHb2RYYeIiMiZ7mjOzgcffAAAUCgUCAsLw8MPP+yU6+rs3bsXH330Ee6++26H7ePHj8fPP/+M1atXIygoCGPHjsXjjz+OnTt3AihY9dW3b19ERkbijz/+wJUrVzBkyBBoNBq88847Fa5XRZX1dhFAQdgx2QCDmWGHiIjIme4o7CQnJzu9Arm5uRg8eDA++eQTvP3229L2rKwsfPrpp/jyyy/RtWtXAMDSpUvRrFkz7Nq1C/fddx9+/fVXHD9+HJs2bUJERARat26NGTNmYNKkSZg2bRq0Wq3T63sn/hnGun3a0bBnh4iIyCXcPkF5zJgx6Nu3L+Lj4x2279+/H2az2WF706ZNUbduXSQlJQEAkpKSEBMTg4iICKlMz549kZ2djWPHjt3ynEajEdnZ2Q4/rlDWYSyTMR9KRUFZztkhIiJyrnLdLsJZVq5ciQMHDmDv3r3F9qWmpkKr1SI4ONhhe0REBFJTU6UyhYOOfb99360kJiZi+vTpFaz97dl7dm53BWUA0Nwsw7BDRETkXG7r2blw4QJefvllrFixAj4+PpV67oSEBGRlZUk/Fy5ccMl57mSCsurmO8GwQ0RE5FxuCzv79+9Heno67rnnHqjVaqjVamzfvh3z58+HWq1GREQETCYTMjMzHZ6XlpaGyMhIAEBkZGSx1Vn2x/YyJdHpdAgMDHT4cQWTpewTlKU5OybPWElGREQkF24LO926dcORI0dw6NAh6adt27YYPHiw9P8ajQabN2+WnnPq1CmkpKQgLi4OABAXF4cjR44gPT1dKrNx40YEBgaiefPmld6mouy3fyjLi6ziMBYREZFLuG3OTrVq1dCyZUuHbf7+/ggNDZW2Dx8+HK+88gqqV6+OwMBAvPjii4iLi8N9990HAOjRoweaN2+Op59+GrNnz0ZqairefPNNjBkzBjqdrtLbVFRZLyoIFO7ZYdghIiJyJrdOUL6dDz74AEqlEv3794fRaETPnj3x4YcfSvtVKhV++uknjB49GnFxcfD398fQoUPx1ltvubHW/7ijiwreLMOl50RERM7lUWFn27ZtDo99fHywaNEiLFq06JbPqVevHtatW+fimpXPnazGUrNnh4iIyCXcfp0dOSvP7SIMnKBMRETkVAw7LmQux2qsXA5jERERORXDjguZbXdwbyzO2SEiInIJhh0XKtddzzmMRURE5FQMOy50JzcCVfNGoERERC7BsONCd9KzY783FldjERERORfDjgvdye0i7D07RotN6hEiIiKiimPYcaHyzNkBAL2R83aIiIichWHHhaQ5O2Uoq1T8c/HBnHyGHSIiImdh2HGhkffXwz0RalTTlq285mba4YosIiIi52HYcaF+rSLRPFQDX3UZxrFQ6GagHMYiIiJyGoYdD6K5ObmHw1hERETOw7DjQTSqgv/yWjtERETOw7DjQdQ3e3Y4jEVEROQ8DDsexD5BOYdhh4iIyGkYdjwIJygTERE5H8OOB7FPUM5l2CEiInIahh0PYh/GYtghIiJyHoYdD8JhLCIiIudj2PEgUs8Or7NDRETkNAw7HsTes8NhLCIiIudh2PEgnKBMRETkfAw7HkS6ESjDDhERkdMw7HiQf4axeLsIIiIiZ2HY8SBqaem52c01ISIikg+GHQ9in7OTb7bBYrW5uTZERETywLDjQTSF3g29iUNZREREzsCw40FUSgW0vIoyERGRUzHseBh/nRoAV2QRERE5C8OOh/HXqgAAObyKMhERkVMw7HgYf11B2GHPDhERkXMw7HgYfy2HsYiIiJyJYcfD2Ht2chh2iIiInIJhx8MEaDmMRURE5EwMOx7G7+ZqrFxOUCYiInIKhh0PE3BzGCvXxLBDRETkDAw7Hsafw1hEREROxbDjYeyrsTiMRURE5BwMOx7Gvhor18h7YxERETkDw46H4TAWERGRczHseBj7vbF4I1AiIiLnYNjxMPbVWNn5ZjfXhIiISB4YdjxMiJ8GAHBDb3JzTYiIiOSBYcfDBPsWhJ3sfAvMVpuba0NEROT9GHY8jNr2T49OpoFDWURERBXFsONhVEoFdCoFAOCGgUNZREREFcWw44F81AVh5zrn7RAREVUYw44H0qkL3hZOUiYiIqo4hh0PJPXscBiLiIiowhh2PJAPe3aIiIichmHHA+lu9uykZRkghHBzbYiIiLwbw44Hsg9j7Th5GQaDwc21ISIi8m4MOx7IPoxlEio314SIiMj7Mex4IPswltHCKygTERFVFMOOBxFCQK/Xw+fmRQXzLZyvQ0REVFEMOx7EbMzHgvWHoVZYAbBnh4iIyBkYdjyMVucj3S7CbANMDDxEREQVwrDjgbQq4GbeQWYebwZKRERUEQw7HkihUCDIVw0AuME7nxMREVUIw46HYtghIiJyDoYdDxXsowEAZDLsEBERVQjDjocKtvfscM4OERFRhTDseKhgDmMRERE5BcOOh7LP2eEwFhERUcUw7Hgo9uwQERE5h1vDTmJiIu69915Uq1YN4eHhePTRR3Hq1CmHMvn5+RgzZgxCQ0MREBCA/v37Iy0tzaFMSkoK+vbtCz8/P4SHh2PChAmwWCyV2RSns4cdXmeHiIioYtwadrZv344xY8Zg165d2LhxI8xmM3r06AG9Xi+VGT9+PH788UesXr0a27dvx+XLl/H4449L+61WK/r27QuTyYQ//vgDy5cvx7JlyzBlyhR3NMlp2LNDRETkHGp3nnz9+vUOj5ctW4bw8HDs378fnTp1QlZWFj799FN8+eWX6Nq1KwBg6dKlaNasGXbt2oX77rsPv/76K44fP45NmzYhIiICrVu3xowZMzBp0iRMmzYNWq3WHU2rMIYdIiIi5/CoOTtZWVkAgOrVqwMA9u/fD7PZjPj4eKlM06ZNUbduXSQlJQEAkpKSEBMTg4iICKlMz549kZ2djWPHjpV4HqPRiOzsbIcfTxPkw7BDRETkDB4Tdmw2G8aNG4eOHTuiZcuWAIDU1FRotVoEBwc7lI2IiEBqaqpUpnDQse+37ytJYmIigoKCpJ86deo4uTUVF+RbcFFBo8WGPJPVzbUhIiLyXh4TdsaMGYOjR49i5cqVLj9XQkICsrKypJ8LFy64/Jx3yl+rhPLmzUBT0m9ACOHeChEREXkpjwg7Y8eOxU8//YStW7eidu3a0vbIyEiYTCZkZmY6lE9LS0NkZKRUpujqLPtje5midDodAgMDHX48jUKhgL+mIO289+MBGAwGN9eIiIjIO7k17AghMHbsWKxZswZbtmxBdHS0w/7Y2FhoNBps3rxZ2nbq1CmkpKQgLi4OABAXF4cjR44gPT1dKrNx40YEBgaiefPmldMQF7GHHSO8c5I1ERGRJ3DraqwxY8bgyy+/xPfff49q1apJc2yCgoLg6+uLoKAgDB8+HK+88gqqV6+OwMBAvPjii4iLi8N9990HAOjRoweaN2+Op59+GrNnz0ZqairefPNNjBkzBjqdzp3NqzB72Mk12dxcEyIiIu/l1rCzePFiAECXLl0cti9duhTDhg0DAHzwwQdQKpXo378/jEYjevbsiQ8//FAqq1Kp8NNPP2H06NGIi4uDv78/hg4dirfeequymuEy/4QdTlAmIiIqL7eGnbJMuvXx8cGiRYuwaNGiW5apV68e1q1b58yqeYQA9uwQERFVmEdMUKaScRiLiIio4hh2PJg97OhNNti49JyIiKhcGHY8mJ9GAaUCsAkgI9fk7uoQERF5JYYdD6ZUKFDDv+BKypcy891cGyIiIu/EsOPhIqoVhJ3LWQw7RERE5cGw4+EiAhh2iIiIKoJhx8NF3uzZuZJldHNNiIiIvBPDjodjzw4REVHFMOx4MCEEgrUF19jhBGUiIqLycesVlKlkQgjo9XqYTXnY8mcmAB9cycqHEAIKhcLd1SMiIvIq7NnxQGZjPhasPwyLxYJqvgU3M80z23DDYHZzzYiIiLwPw46H0up8AAAqJeCrLujNuXQjz51VIiIi8koMO17AX1sQdi7eMLi5JkRERN6HYccLBGoL3qazGXo314SIiMj7MOx4gSCfgrfpr/RcN9eEiIjI+zDseIEgXcHbdCY9x801ISIi8j4MO14g+GbPzt/pethsws21ISIi8i4MO14gQKuARqVAntmKS5mcpExERHQnGHa8gFKhQL2QgqXoR1Ouubk2RERE3oVhx0vUr14Qdv7miiwiIqI7wrDjJaJDfQEAf101QK/XQwjO3SEiIioLhh0vIYWdtBwkfrsLBgPn7hAREZUFw46XiK5eEHaSr+dDo/N1c22IiIi8B8OOl6gbooMCgN5khcHMISwiIqKyYtjxEhqVEoE3Ly6YmW91c22IiIi8B8OOFxBCQK/XI9hHBYBhh4iI6E4w7HgBszEfC9YfRqCu4PGNPIYdIiKislK7uwJUNlqdD0KhAmBGWq7Z3dUhIiLyGuzZ8SIR/iooAGQZbcjINbm7OkRERF6BYceL6NQKNAgrWHa+PyXTvZUhIiLyEgw7Xia2TjUAwJ7zme6tCBERkZdg2PEy99QuCDv7zmfythFERERlwLDjZdrcDDt/XTVg6tdJxW4bYV+mzhBERERUgGHHywT7ahBy83o7182aYvsNBgPvnUVERFQIw44XiqxWcMWA1FssQdf6+FVmdYiIiDwaw44Xigwo6NG5nGPmcBUREdFtMOx4oZoBKmhVCmTm27A/JQsA5+oQERHdCsOOF1JaTYjytQAAPt99EQDn6hAREd0Kw46XahZaMJS15VQGzmXoAXCuDhERUUkYdrxUkE6BWtVUEACW7kx2d3WIiIg8FsOOF7HPywEK5uU0Dyvo3Vm17yIy83hzUCIiopIw7HgRszEfC9YfhsVSEGwi/JVoXMMXeWYr/rfrgptrR0RE5JkYdryMVucj/b/FZESIyAEA/G/PJRgtNndVi4iIyGMx7Hi5+iFaBOuU0JusOH7V6O7qEBEReRyGHS9kMubDZC5Yeq5QKBATUTB351h6PnKNVndWjYiIyOMw7MhAvSA16lf3gckq8M3hNHdXh4iIyKMw7MiAUqHAs+2jAAAr9qXBbOVVlImIiOwYdmQivkl1BOqUyMq34GRGvrurQ0RE5DEYdmRACAFjngGtIgtWah1Jy0eemXN3iIiIAIYdWbBff6deoAJRQTrkWwS+3nfZ3dUiIiLyCAw7MqHV+UCpUOCZdjUBAB/tOI+MXC5FJyIiYtiRmYdahCHUV4XsfAtm/XLS3dUhIiJyO4YdmVEpFYirU3D389X7L2L/+eturhEREZF7MezIUHiABv1bRwIA3lhzFEYLJysTEVHVxbAjI4Xviv7yg9EI8dPgZGoOZv54BELw2jtERFQ1MezIiD47Ex/8uB8Wixk+CgtaBJoAAJ/vvoS1u88w8BARUZXEsCMz6kJ3Ra9f3Q+NgxUAgNd/PIPTl645lLX3BDEEERGRnDHsyFyrMAWCdYDRCgz/3yGkZeUBKAg6V69eReK3u2AwGNxcSyIiItdh2JE5lVKBuDAz/NQCF7OMeOq/u3ElKw8GgwFzvt8DpVrt7ioSERG5FMNOFeCrBh6IBHzVCpy5qkfn2Vsx+9e/YIAPbDeHsOxDWjabrcShLQ55ERGRt2LYqSL8NUCPu3zRqlYATFaB5bsv4qe/jVh5TI9nPz+Aj7aewhtf/YGMjIwSh7YMBkOpQ14MQ0RE5KkYdmSo8BL0woJ8lPh4QFP0aBCAtnWqQaUALDZg9/lsvPvr31j7lwmjvj6J83oVTBZbseNqffwcjl842NwuDBEREbkLw44M2W8MarGYHbYLIWAwGFA7SIMPn2iKJ5v6oFc9JWIjtWhV0w8KAAcv5eD383r0WZiEn/68XGJPza2CjT0MEREReRLOTpUpbaEl6Hb2EBQQFAIAsJjy4acUaBSogMmoR8OmQQgPDcHSXZdwJceMsV8exH9CT+LhVrXQtk4AsvKt0Bst8NepGWyIiMhrMOxUMVqdT4nDXFqdD7RaJZ5pH4W0y5dwOkeNvzJtSL6Wh/lb/pLKfXd8B5rXDIDSZsH6Y+loWTcUVpMRNwxm3MizcM4OERF5HNmEnUWLFuG9995DamoqWrVqhQULFqBdu3burpZHsvfwAACUxT8CaiXQMkyN+U82w5trjuJ8lhlQ65CeY4TZBhy7kgsAePW748Weu2fBLjzUqhZ6x9REq9pBUCgU0vCZn58fFAqF09vj6uMTEZF3k0XY+frrr/HKK69gyZIlaN++PebOnYuePXvi1KlTCA8Pd3f1PJJW5wOTMd9hW+EeHyEEFBYj7gpWoWGYDmPjm2H++qO4lpWNq/kKZAof+Pv64e8MPYxmKzQKAaNNgUtZRnz021l89NtZRAbq0KBGAPw0Cpy9ch33NayBmqFBCNYpEFW9GrRqJSxmExQqDfItNhiMFmTp86BQqaFUKqFUADajAWGBfqgXHoLa1X0R6KMBAFisNlzNNeJqjhGZOXp8vu0YXuzVGs3qhEGrLvtUtIL2Av7+/hV6PZ11HCIicj6FkMG4Q/v27XHvvfdi4cKFAACbzYY6dergxRdfxOuvv37b52dnZyMoKAhZWVkIDAx0Wr30ej0Sv90Ni6XgHlUmYz6gVEOrccyYnrRdCkBKNWCzQKvzgUbng2c71MPiTcdgsQFajRoanQ/GxjcDAPznh72w2ACFSoWrJg20Pn7YmZyFPHPxFV0VpVIACoUCVptASR9ctVKB6DB/NIoIQHSYP/y0amhVSpisNuSbrcgzWZFntuJ6bj5uGCy4mp0HcbM3KMhHjbAALSKD/RERqEOQb0GwEgBsNgGbAIwmI5QqDWwCsAmBfLMVGblGpGflwWKzQaFUwUethI9agRB/H1Tz1SBAp4JSoYBSoYDVYoavjxYqpRIqhQJKpQIqJaBUKCBuHtN+bHHz/602x/83Go2AAvDV6aBS3jzGzeMXPp5SoYBKqYC9r6vw6yUEICBgMhqh0epg7xAr/NvAsbwAbrZfq9VKPWj28oXfDYdjlHa8m4zGgmPaK1FQ94KHypvbbDfbrdX9U1f7PoWioI0KBaCA4uZ/y68ivxAr+tu05E+1689d0T8C7voz4rWvd4XrXZFzV6DN5TshTCYTtFotesXUlP7B6ixl/fvt9T07JpMJ+/fvR0JCgrRNqVQiPj4eSUlJJT7HaDQW/MG4KSsrC0DBi+ZMer0eOZkZsFgsAAomBCuUahiLXLXYU7er1GoY8wpWXL379VkAcCg/ZelZ6Tn28tUAWLLz0dEPuGFSwWAWsClUsKk0EAo16oZVw+ELN5BvETdDhhIK2KAUNqiUgEalAmAFCv62wiIUMFuBfJsSZqFE4fikgIBWKaBSAEqlAvkWwCQUOHVBj1MX0kt8T4iIyD2avNgR0WEBTj2m/e/27UKc14edjIwMWK1WREREOGyPiIjAyZMnS3xOYmIipk+fXmx7nTp1XFJHIiKiqq71XNcdOycnB0FBQbfc7/VhpzwSEhLwyiuvSI9tNhuuX7+O0NBQp05wzc7ORp06dXDhwgWnDo95KrZX3qpae4Gq12a2V97k2F4hBHJychAVFVVqOa8PO2FhYVCpVEhLS3PYnpaWhsjIyBKfo9PpoNPpHLYFBwe7qooIDAyUzQerLNheeatq7QWqXpvZXnmTW3tL69Gx8/orKGu1WsTGxmLz5s3SNpvNhs2bNyMuLs6NNSMiIiJP4PU9OwDwyiuvYOjQoWjbti3atWuHuXPnQq/X45lnnnF31YiIiMjNZBF2nnzySVy9ehVTpkxBamoqWrdujfXr1xebtFzZdDodpk6dWmzITK7YXnmrau0Fql6b2V55q2rtLUwW19khIiIiuhWvn7NDREREVBqGHSIiIpI1hh0iIiKSNYYdIiIikjWGHRdatGgR6tevDx8fH7Rv3x579uxxd5VuKzExEffeey+qVauG8PBwPProozh16pRDmfz8fIwZMwahoaEICAhA//79i13UMSUlBX379oWfnx/Cw8MxYcIE6R5hdtu2bcM999wDnU6Hhg0bYtmyZa5u3m29++67UCgUGDdunLRNbu29dOkSnnrqKYSGhsLX1xcxMTHYt2+ftF8IgSlTpqBmzZrw9fVFfHw8zpw543CM69evY/DgwQgMDERwcDCGDx+O3NxchzJ//vknHnjgAfj4+KBOnTqYPXt2pbSvMKvVismTJyM6Ohq+vr5o0KABZsyY4XAfHW9u72+//YaHH34YUVFRUCgUWLt2rcP+ymzb6tWr0bRpU/j4+CAmJgbr1q1zenuB0ttsNpsxadIkxMTEwN/fH1FRURgyZAguX77stW2+3Xtc2PPPPw+FQoG5c+c6bPem9rqMIJdYuXKl0Gq14rPPPhPHjh0TI0aMEMHBwSItLc3dVStVz549xdKlS8XRo0fFoUOHRJ8+fUTdunVFbm6uVOb5558XderUEZs3bxb79u0T9913n+jQoYO032KxiJYtW4r4+Hhx8OBBsW7dOhEWFiYSEhKkMmfPnhV+fn7ilVdeEcePHxcLFiwQKpVKrF+/vlLbW9iePXtE/fr1xd133y1efvllabuc2nv9+nVRr149MWzYMLF7925x9uxZsWHDBvHXX39JZd59910RFBQk1q5dKw4fPiweeeQRER0dLfLy8qQyvXr1Eq1atRK7du0Sv//+u2jYsKEYNGiQtD8rK0tERESIwYMHi6NHj4qvvvpK+Pr6io8++qhS2ztz5kwRGhoqfvrpJ5GcnCxWr14tAgICxLx582TR3nXr1ok33nhDfPfddwKAWLNmjcP+ymrbzp07hUqlErNnzxbHjx8Xb775ptBoNOLIkSOV2ubMzEwRHx8vvv76a3Hy5EmRlJQk2rVrJ2JjYx2O4U1tvt17bPfdd9+JVq1aiaioKPHBBx94bXtdhWHHRdq1ayfGjBkjPbZarSIqKkokJia6sVZ3Lj09XQAQ27dvF0IU/DLRaDRi9erVUpkTJ04IACIpKUkIUfDlVCqVIjU1VSqzePFiERgYKIxGoxBCiIkTJ4oWLVo4nOvJJ58UPXv2dHWTSpSTkyMaNWokNm7cKDp37iyFHbm1d9KkSeL++++/5X6bzSYiIyPFe++9J23LzMwUOp1OfPXVV0IIIY4fPy4AiL1790plfvnlF6FQKMSlS5eEEEJ8+OGHIiQkRGq//dxNmjRxdpNK1bdvX/Hss886bHv88cfF4MGDhRDyam/RP4SV2bYBAwaIvn37OtSnffv2YtSoUU5tY1Gl/fG327NnjwAgzp8/L4Tw7jbfqr0XL14UtWrVEkePHhX16tVzCDve3F5n4jCWC5hMJuzfvx/x8fHSNqVSifj4eCQlJbmxZncuKysLAFC9enUAwP79+2E2mx3a1rRpU9StW1dqW1JSEmJiYhwu6tizZ09kZ2fj2LFjUpnCx7CXcdfrM2bMGPTt27dYneTW3h9++AFt27bFE088gfDwcLRp0waffPKJtD85ORmpqakOdQ0KCkL79u0d2hscHIy2bdtKZeLj46FUKrF7926pTKdOnaDVaqUyPXv2xKlTp3Djxg1XN1PSoUMHbN68GadPnwYAHD58GDt27EDv3r0ByK+9hVVm2zzl812SrKwsKBQK6f6HcmuzzWbD008/jQkTJqBFixbF9sutveXFsOMCGRkZsFqtxa7gHBERgdTUVDfV6s7ZbDaMGzcOHTt2RMuWLQEAqamp0Gq1xW6cWrhtqampJbbdvq+0MtnZ2cjLy3NFc25p5cqVOHDgABITE4vtk1t7z549i8WLF6NRo0bYsGEDRo8ejZdeegnLly93qG9pn93U1FSEh4c77Fer1ahevfodvSaV4fXXX8fAgQPRtGlTaDQatGnTBuPGjcPgwYMd6iKX9hZWmW27VRl3/77Lz8/HpEmTMGjQIOnGl3Jr86xZs6BWq/HSSy+VuF9u7S0vWdwuglxjzJgxOHr0KHbs2OHuqrjMhQsX8PLLL2Pjxo3w8fFxd3VczmazoW3btnjnnXcAAG3atMHRo0exZMkSDB061M21c75Vq1ZhxYoV+PLLL9GiRQscOnQI48aNQ1RUlCzbS/8wm80YMGAAhBBYvHixu6vjEvv378e8efNw4MABKBQKd1fHo7FnxwXCwsKgUqmKrdhJS0tDZGSkm2p1Z8aOHYuffvoJW7duRe3ataXtkZGRMJlMyMzMdChfuG2RkZEltt2+r7QygYGB8PX1dXZzbmn//v1IT0/HPffcA7VaDbVaje3bt2P+/PlQq9WIiIiQVXtr1qyJ5s2bO2xr1qwZUlJSpHra61ZY0famp6c77LdYLLh+/fodvSaVYcKECVLvTkxMDJ5++mmMHz9e6sWTW3sLq8y23aqMu9puDzrnz5/Hxo0bpV4dQF5t/v3335Geno66detKv7/Onz+PV199FfXr15fqKZf2VgTDjgtotVrExsZi8+bN0jabzYbNmzcjLi7OjTW7PSEExo4dizVr1mDLli2Ijo522B8bGwuNRuPQtlOnTiElJUVqW1xcHI4cOeLwBbP/wrH/oY2Li3M4hr1MZb8+3bp1w5EjR3Do0CHpp23bthg8eLD0/3Jqb8eOHYtdSuD06dOoV68eACA6OhqRkZEOdc3Ozsbu3bsd2puZmYn9+/dLZbZs2QKbzYb27dtLZX777TeYzWapzMaNG9GkSROEhIS4rH1FGQwGKJWOv+ZUKhVsNhsA+bW3sMpsm6d8voF/gs6ZM2ewadMmhIaGOuyXU5uffvpp/Pnnnw6/v6KiojBhwgRs2LBBqqdc2lsh7p4hLVcrV64UOp1OLFu2TBw/flyMHDlSBAcHO6zY8USjR48WQUFBYtu2beLKlSvSj8FgkMo8//zzom7dumLLli1i3759Ii4uTsTFxUn77Uuxe/ToIQ4dOiTWr18vatSoUeJS7AkTJogTJ06IRYsWuX3puV3h1VhCyKu9e/bsEWq1WsycOVOcOXNGrFixQvj5+YkvvvhCKvPuu++K4OBg8f3334s///xT9OvXr8Tlym3atBG7d+8WO3bsEI0aNXJYypqZmSkiIiLE008/LY4ePSpWrlwp/Pz8Kn3p+dChQ0WtWrWkpeffffedCAsLExMnTpRFe3NycsTBgwfFwYMHBQDx/vvvi4MHD0orjyqrbTt37hRqtVrMmTNHnDhxQkydOtVly5JLa7PJZBKPPPKIqF27tjh06JDD77DCK428qc23e4+LKroay9va6yoMOy60YMECUbduXaHVakW7du3Erl273F2l2wJQ4s/SpUulMnl5eeKFF14QISEhws/PTzz22GPiypUrDsc5d+6c6N27t/D19RVhYWHi1VdfFWaz2aHM1q1bRevWrYVWqxV33XWXwzncqWjYkVt7f/zxR9GyZUuh0+lE06ZNxccff+yw32azicmTJ4uIiAih0+lEt27dxKlTpxzKXLt2TQwaNEgEBASIwMBA8cwzz4icnByHMocPHxb333+/0Ol0olatWuLdd991eduKys7OFi+//LKoW7eu8PHxEXfddZd44403HP7weXN7t27dWuL3dejQoZXetlWrVonGjRsLrVYrWrRoIX7++edKb3NycvItf4dt3brVK9t8u/e4qJLCjje111UUQhS6lCgRERGRzHDODhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhF5tGHDhuHRRx8ttn3btm1QKBTF7khPRFQUww4RERHJGsMOEclCZmYmnnvuOdSoUQOBgYHo2rUrDh8+LO2fNm0aWrdu7fCcor1D165dw6BBg1CrVi34+fkhJiYGX331VSW2gohcgWGHiGThiSeeQHp6On755Rfs378f99xzD7p164br16+X+Rj5+fmIjY3Fzz//jKNHj2LkyJF4+umnsWfPHhfWnIhcTe3uChARVdSOHTuwZ88epKenQ6fTAQDmzJmDtWvX4ptvvsHIkSPLdJxatWrhtddekx6/+OKL2LBhA1atWoV27dq5pO5E5HoMO0Tk9Q4fPozc3FyEhoY6bM/Ly8Pff/8tPT5y5AgCAgKkx1ar1aG81WrFO++8g1WrVuHSpUswmUwwGo3w8/NzbQOIyKUYdojI6+Xm5qJmzZrYtm1bsX3BwcHS/zdp0gQ//PCD9Hj37t146qmnpMfvvfce5s2bh7lz5yImJgb+/v4YN24cTCaTK6tPRC7GsENEXu+ee+5Bamoq1Go16tevf8tyWq0WDRs2lB5fvHjRYf/OnTvRr18/KQDZbDacPn0azZs3d0m9iahyMOwQkcfLysrCoUOHHLb99ddfAAqGpu677z7ExcXh0UcfxezZs9G4cWNcvnwZP//8Mx577DG0bdu2TOdp1KgRvvnmG/zxxx8ICQnB+++/j7S0NIYdIi/HsENEHm/btm1o06ZNifs6deqErVu3Yt26dXjjjTfwzDPP4OrVq4iMjESnTp0QERFR5vO8+eabOHv2LHr27Ak/Pz+MHDkSjz76KLKyspzVFCJyA4UQQri7EkRE5VW/fn0sW7YMXbp0cXdViMhD8To7ROTVmjdv7rDCioioKPbsEBERkayxZ4eIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGTt/wEPaUWrXA6hNwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfP0lEQVR4nO3dd3gUVcM28Ht2N7upm14hjd4Fg2KkCpFqQbA+qIAoikGliIoNxEdR8VEQEfRTAV8LggpYQTqiASVKbwECiUA66WXb+f7Y7JBNgSRsssnk/l3uJTtzduacrXfOOTMjCSEEiIiIiBRK5ewKEBERETUkhh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNI2zK0BERKQEBoMBOTk5sFgsCAsLc3Z1qAL27BARUZP2+eef48yZM/L9FStW4Ny5c86rUAV79+7Ff/7zHwQEBECn0yE0NBRjx451drWoEoYdBVmxYgUkSZJvrq6u6NChA6ZOnYr09HRnV4+IqF5+++03PPPMMzhz5gw2btyI+Ph4qFTO//lav349+vXrhyNHjuC1117Dpk2bsGnTJnz44YfOrhpVwmEsBZo3bx6io6NRWlqKXbt2YenSpfj5559x6NAhuLu7O7t6RER1Mn36dAwaNAjR0dEAgBkzZiA0NNSpdcrJycHDDz+MYcOGYc2aNdBqtU6tD10ew44CjRgxAr179wYAPPzww/D398c777yD9evX47777nNy7YiI6qZTp044deoUDh06hICAALRt29bZVcLy5ctRWlqKFStWMOg0A87vB6QGN3jwYABAcnIyAOtfJE8//TS6d+8OT09P6PV6jBgxAvv376/y2NLSUsydOxcdOnSAq6srQkNDMWbMGJw6dQoAcObMGbuhs8q3QYMGydvavn07JEnC119/jeeffx4hISHw8PDAbbfdhtTU1Cr73rNnD4YPHw5vb2+4u7tj4MCB+P3336tt46BBg6rd/9y5c6uU/fzzzxETEwM3Nzf4+fnh3nvvrXb/l2tbRRaLBQsXLkTXrl3h6uqK4OBgPProo7h48aJduaioKNxyyy1V9jN16tQq26yu7gsWLKjynAJAWVkZ5syZg3bt2kGn0yE8PBzPPPMMysrKqn2uKho0aBC6detWZfnbb78NSZLs5kkAQG5uLqZNm4bw8HDodDq0a9cOb775JiwWi1zG9ry9/fbbVbbbrVu3at8T33zzTY11nDBhAqKioq7YlqioKPn1UalUCAkJwT333IOUlJRaPXbChAl2yyZPngxXV1ds377dbvkHH3yArl27QqfTISwsDPHx8cjNzbUrU9vntWKdq7vZ2l3xOX333XcRGRkJNzc3DBw4EIcOHaqyn61bt6J///7w8PCAj48Pbr/9dhw9evSKz1vFW8V21/TeragurzsAZGRkYNKkSQgODoarqyuuueYarFy5stptrlixAh4eHujTpw/atm2L+Ph4SJJU5TWrqU62m4uLC6KiojBr1iwYDAa5nG0KwN69e2vc1qBBg+zasHv3bvTs2ROvv/66/Hlo37493njjDbvPAwCYTCa8+uqraNu2LXQ6HaKiovD8889X+Yzanudff/0VPXv2hKurK7p06YLvvvvOrpytvhU/n4cPH4avry9uueUWmEwmeXltPrMtAXt2WgBbMPH39wcAnD59GuvWrcNdd92F6OhopKen48MPP8TAgQNx5MgR+SgCs9mMW265BVu2bMG9996Lp556CgUFBdi0aRMOHTpk99fVfffdh5EjR9rtd/bs2dXW57XXXoMkSXj22WeRkZGBhQsXIi4uDvv27YObmxsA65f1iBEjEBMTgzlz5kClUmH58uUYPHgwfvvtN1x//fVVttu6dWvMnz8fAFBYWIgpU6ZUu++XXnoJd999Nx5++GFkZmZi8eLFGDBgAP755x/4+PhUeczkyZPRv39/AMB3332HtWvX2q1/9NFHsWLFCkycOBFPPvkkkpOT8f777+Off/7B77//DhcXl2qfh7rIzc2V21aRxWLBbbfdhl27dmHy5Mno3LkzDh48iHfffRcnTpzAunXrrnrfNsXFxRg4cCDOnTuHRx99FBEREfjjjz8we/ZsXLhwAQsXLnTYvuqrf//+mDx5MiwWCw4dOoSFCxfi/Pnz+O233+q0nTlz5uCTTz7B119/bfcDN3fuXLzyyiuIi4vDlClTcPz4cSxduhR//fVXvV7rhQsXorCwEABw9OhRvP7663j++efRuXNnAICnp6dd+c8++wwFBQWIj49HaWkpFi1ahMGDB+PgwYMIDg4GAGzevBkjRoxAmzZtMHfuXJSUlGDx4sXo27cv/v7772qDo+15q1iPhlRSUoJBgwbh5MmTmDp1KqKjo7FmzRpMmDABubm5eOqpp2p87MmTJ/H//t//q9P+bJ/hsrIybNy4EW+//TZcXV3x6quv1rsN2dnZ2LVrF3bt2oWHHnoIMTEx2LJlC2bPno0zZ85g2bJlctmHH34YK1euxJ133omZM2diz549mD9/Po4ePVrl+yQpKQn33HMPHnvsMYwfPx7Lly/HXXfdhQ0bNuDmm2+uti6pqakYPnw4OnXqhNWrV0Ojsf60N4fPbKMRpBjLly8XAMTmzZtFZmamSE1NFatWrRL+/v7Czc1N/Pvvv0IIIUpLS4XZbLZ7bHJystDpdGLevHnysk8//VQAEO+8806VfVksFvlxAMSCBQuqlOnatasYOHCgfH/btm0CgGjVqpXIz8+Xl69evVoAEIsWLZK33b59ezFs2DB5P0IIUVxcLKKjo8XNN99cZV833nij6Natm3w/MzNTABBz5syRl505c0ao1Wrx2muv2T324MGDQqPRVFmelJQkAIiVK1fKy+bMmSMqfmx+++03AUB88cUXdo/dsGFDleWRkZFi1KhRVeoeHx8vKn8UK9f9mWeeEUFBQSImJsbuOf2///s/oVKpxG+//Wb3+GXLlgkA4vfff6+yv4oGDhwounbtWmX5ggULBACRnJwsL3v11VeFh4eHOHHihF3Z5557TqjVapGSkiKEqN97Ys2aNTXWcfz48SIyMvKy7RDC+vyOHz/ebtl//vMf4e7uXqfHfvjhhwKAWLx4sV2ZjIwModVqxdChQ+0+P++//74AID799FN5WV2eVxvbc7Ft27Yq62zPacXPsRBC7NmzRwAQ06dPl5f17NlTBAUFiezsbHnZ/v37hUqlEg8++GCVbbdq1UpMnDjxsvWo6b1bXR1r87ovXLhQABCff/65vMxgMIjY2Fjh6ekpfz/Ytrl8+XK53N133y26desmwsPDq7zeNdWp4uOFECIsLEyMHDlSvm/77vzrr79q3NbAgQPt2jBw4EABQMydO9eu3IQJEwQAcfDgQSGEEPv27RMAxMMPP2xX7umnnxYAxNatW+VlkZGRAoD49ttv5WV5eXkiNDRU9OrVq0p9k5OTRU5OjujSpYvo2LGjyMrKsttHbT+zLQGHsRQoLi4OgYGBCA8Px7333gtPT0+sXbsWrVq1AgDodDr5SAaz2Yzs7Gx4enqiY8eO+Pvvv+XtfPvttwgICMATTzxRZR+Vh13q4sEHH4SXl5d8/84770RoaCh+/vlnAMC+ffuQlJSE//znP8jOzkZWVhaysrJQVFSEIUOGYOfOnVW6YEtLS+Hq6nrZ/X733XewWCy4++675W1mZWUhJCQE7du3x7Zt2+zK27q5dTpdjdtcs2YNvL29cfPNN9ttMyYmBp6enlW2aTQa7cplZWWhtLT0svU+d+4cFi9ejJdeeqnKX/pr1qxB586d0alTJ7tt2oYuK+//aqxZswb9+/eHr6+v3b7i4uJgNpuxc+dOu/LFxcVV2mo2m6vddkFBAbKysqoMB9VVWVkZsrKykJGRgU2bNmHr1q0YMmRIrR+/fv16PP7445g1axamTp1qt27z5s0wGAyYNm2a3ZFAjzzyCPR6PX766Se78mazuUr7i4uLr6p9o0ePlj/HAHD99dejT58+8mfnwoUL2LdvHyZMmAA/Pz+5XI8ePXDzzTfL5SoyGAyXfY/b2N672dnZdsMkldXmdf/5558REhJiN4fQxcUFTz75JAoLC7Fjx45qt52YmIg1a9Zg/vz5dToaq7CwEFlZWTh37hw++ugjpKWlVfu+yMvLQ1ZWFgoKCmq1XbVajenTp9stmzlzJgDI7wfbcz5jxozLlrMJCwvDHXfcId/X6/V48MEH8c8//yAtLc2ubGlpKW677TZkZmZiw4YNcu+9TV0/s0rGYSwFWrJkCTp06ACNRoPg4GB07NjR7ovBYrFg0aJF+OCDD5CcnGz3RVTxw3Lq1Cl07NhR7hJ1lPbt29vdlyQJ7dq1k8efk5KSAADjx4+vcRt5eXnw9fWV72dlZVXZbmVJSUkQQtRYrvIQhO2Ht3LAqLzNvLw8BAUFVbs+IyPD7v6vv/6KwMDAy9azsjlz5iAsLAyPPvpolbktSUlJOHr0aI3brLz/q5GUlIQDBw7Uel9z5szBnDlzqpSzDbdU9NBDD8n/9vT0xK233op333232rKXs2rVKqxatUq+f9111+Hjjz+u1WP37duH1atXw2w2Iycnp8r6s2fPAgA6duxot1yr1aJNmzbyeptjx47V+bW+kureux06dMDq1asvW0cA6Ny5MzZu3IiioiJ4eHjIy/Py8i77Hrep+N5Vq9Xo0aMH3njjDQwdOtSuXG1e97Nnz6J9+/ZVAott+K7yc2nz3HPPoX///rjllluqhNHLeeKJJ+z+aJs4cWKVkAJY/1C08fHxwX333YcFCxbYPV82kiQhLCwMer3ebrnt+9b2fXb27FmoVCq0a9fOrlxISAh8fHyqtLVdu3ZV/pjs0KEDAOscpJCQELt27N69G66urtUG0Lp+ZpWMYUeBrr/+evlorOq8/vrreOmll/DQQw/h1VdfhZ+fH1QqFaZNm9YkJq3Z6rBgwQL07Nmz2jIVv5wNBgMuXLhQ43h2xe1KkoRffvkFarX6stsEIP8VVfHLpbptBgUF4Ysvvqh2feUvmT59+uC///2v3bL3338f69evr/bxR48exYoVK/D5559XOx/EYrGge/fueOedd6p9fHh4eI11ryuLxYKbb74ZzzzzTLXrbV/INpMnT8Zdd91lt+yRRx6p9rEvv/wy+vfvD6PRiMTERMybNw+5ubnV9kRcztChQzFr1iwAwL///os333wTN910E/bu3SvPB6vJ/v37MWLECAwZMgSzZs3C/fffX2VSbV1ERUVVmVuyZs0afPTRR/XepqPl5OTAYDBc9j1uU/G9e/78ebz55pu44447cPjwYbt5QHV53evi119/xebNm5GQkFDnx86aNQtDhw6F2WzG4cOHMW/ePAghsHz5crtytj8Uy8rKsH37dnmy9QcffFBlm1d6P1V2Nb3hNfn777+xfv16TJ06FZMnT8bWrVvt1tf1M6tkDDst0DfffIObbroJn3zyid3y3NxcBAQEyPfbtm2LPXv2wGg0OmSSrY2t58ZGCIGTJ0+iR48e8n4Ba/dtxb+0arJ//34YjcbLBjzbdoUQiI6OrtWH/MiRI5Akqdq/kituc/Pmzejbt2+tvvwCAgKqtOlyk4hnz56Nnj174p577qlx//v378eQIUMa5Mu08r4KCwtr9ZoA1l6IymWr+wsZALp37y6XHTFiBFJSUrBy5crLDpdUJzQ01G6fHTt2xI033oh169Zd8bQL3bt3x5o1a+Dm5oY1a9Zg8uTJOHDggDw8GhkZCQA4fvw42rRpIz/OYDAgOTm52rZWXrZv3746taeyyp8dADhx4oQcNirWsbJjx44hICDA7jU4cuQIgEs9KpdT+b3brl079O3bFzt37rQLO7V53SMjI3HgwAFYLBa73p1jx47ZtcNGCIHnnnsOd9xxB2644YYr1rWyLl26yHUaNmwYysrK8Pzzz+O1116zu6xDxT8UR40ahf3792PDhg3VbjM6Ohq//vorCgoK7IblT5w4AYvFYveaWCwWJCUl2T3P6enpyM3NrdLWkydPQghh93k+ceIEAFSZXP7xxx/jtttug1qtxi233IJPPvkEkyZNktfX9TOrZJyz0wKp1WoIIeyWrVmzpsrp18eOHYusrCy8//77VbZR+fF1YTuixOabb77BhQsXMGLECABATEwM2rZti7fffls+UqWizMzMKnW3fdgvZ8yYMVCr1XjllVeq1F8IgezsbPm+yWTCt99+i+uvv/6yXfx33303zGZztUd1mEymq5qDkpCQgPXr1+ONN96oMcjcfffdOHfuXLVHp5SUlKCoqKje+69uXwkJCdi4cWOVdbm5uXUOJpdj+xG82gBXUlICALU6DP/aa6+Fh4cHVCoVPv74Y5w5cwbz5s2T18fFxUGr1eK9996ze/988sknyMvLw6hRo66qrrWxbt06u8/pn3/+iT179sifndDQUPTs2RMrV660e+8dOnQIv/76a5UjJletWgWtVot+/frVuS62HtjqekmvZOTIkUhLS8PXX38tLzOZTFi8eDE8PT0xcODAKvU8cOBAtUck1oftfVHx8PPqWCyWGts3cuRImM3mKt+Ptl5W2/vB9pxXPvKpcjmb8+fP2x2hlZ+fj88++ww9e/as0gNnO0p01KhRuPfeezFr1iy7s+U35me2qWPPTgt0yy23YN68eZg4cSJuvPFGHDx4EF988YXdX6uAdSLxZ599hhkzZuDPP/9E//79UVRUhM2bN+Pxxx/H7bffXq/9+/n5oV+/fpg4cSLS09OxcOFCtGvXTu7qtv3YjBgxAl27dsXEiRPRqlUrnDt3Dtu2bYNer8cPP/yAoqIiLFmyBO+99x46dOhgd14QW0g6cOAAEhISEBsbi7Zt2+K///2vfGjo6NGj4eXlheTkZKxduxaTJ0/G008/jc2bN+Oll17CgQMH8MMPP1y2LQMHDsSjjz6K+fPnY9++fRg6dChcXFyQlJSENWvWYNGiRbjzzjvr9Tz9+uuvuPnmmy/7V9kDDzyA1atX47HHHsO2bdvQt29fmM1mHDt2DKtXr8bGjRuv2ONVWFhY5a9XW8/Ajh074OLiglatWmHWrFn4/vvvccstt2DChAmIiYlBUVERDh48iG+++QZnzpyx6xmsi3379sHT0xMmkwmJiYn47LPPcPvtt9f5h/T06dP4/PPPAVgndr///vvQ6/V1mqQMWM8L8+yzz+KNN97Avffeix49eiAwMBCzZ8/GK6+8guHDh+O2227D8ePH8cEHH+C6667D/fffX6d91Ee7du3Qr18/TJkyBWVlZVi4cCH8/f3thikWLFiAESNGIDY2FpMmTZIPPff29pbP3ZSUlIQ5c+bgq6++wnPPPVdl3kl1bJNgAetE6DfffBPe3t646aab6tyOyZMn48MPP8SECROQmJiIqKgofPPNN/j999+xcOFCu54SwPpZeOSRRy7by3o5CQkJ0Gg08jDW4sWL0atXryo9JQkJCcjKypKHsbZs2YKnn3662m2OHDkScXFxeOGFF5CcnIyePXti69at+Pbbb/HYY4/J51m65pprMH78eHz00UfIzc3FwIED8eeff2LlypUYPXp0leevQ4cOmDRpEv766y8EBwfj008/RXp6epUht8oWLVqEzp0744knnpDncDXkZ7bZcdJRYNQAanP4pBDWQ89nzpwpQkNDhZubm+jbt69ISEiocmilENbDvV944QURHR0tXFxcREhIiLjzzjvFqVOnhBD1O8z4q6++ErNnzxZBQUHCzc1NjBo1Spw9e7bK4//55x8xZswY4e/vL3Q6nYiMjBR333232LJli92+r3SrfHjqt99+K/r16yc8PDyEh4eH6NSpk4iPjxfHjx8XQgjxxBNPiAEDBogNGzZUqVPlQ89tPvroIxETEyPc3NyEl5eX6N69u3jmmWfE+fPn5TJ1PfRckiSRmJhot7y618hgMIg333xTdO3aVeh0OuHr6ytiYmLEK6+8IvLy8qrsr/L2rvT8VTxst6CgQMyePVu0a9dOaLVaERAQIG688Ubx9ttvC4PBIISo33vCdtNoNCIyMlI8+eST4uLFi0KIuh16XnFbAQEBYujQoSIhIaFWj638PiktLRWdOnUS1113nTCZTPLy999/X3Tq1Em4uLiI4OBgMWXKFLmuNg116PmCBQvE//73PxEeHi50Op3o37+/2L9/f5XymzdvFn379hVubm5Cr9eLW2+9VRw5ckRe/9VXX4lu3bqJRYsW2Z3eoaZ61PTc7t69u9o6Vlb5dRdCiPT0dDFx4kQREBAgtFqt6N69e5VDxCsecn/u3Dm7ddW9ZjU9b7abSqUSrVu3FuPHj7c7hN/23Wm7abVa0a5dO/Hyyy+LsrIyIUT1n73CwkIxffp0ERYWJlxcXES7du3EG2+8UeXUHkajUbzyyivy92h4eLiYPXu2KC0trdKmUaNGiY0bN4oePXoInU4nOnXqVOXUDBUPPa9o5cqVAoD4/vvv5WW1+cy2BJIQVzEeQVQH27dvx0033YQ1a9bUu7ejojNnziA6OhrJyck1nmF37ty5OHPmDFasWHHV+2uJoqKiMHfu3CueqZYalu29vmDBghp7Gqj5i4qKQrdu3fDjjz86uyqKwzk7REREpGics0PNlqenJ8aNG3fZCcQ9evSwO9qC6mbgwIF2J7EjImqOGHao2QoICJAno9ZkzJgxjVQbZap8YUYiouaIc3aIiIhI0Thnh4iIiBSNYYeIiIgUjXN2YD1L5vnz5+Hl5dXgp9wnIiIixxBCoKCgAGFhYVUuLFsRww6sp+d25AUTiYiIqPGkpqaidevWNa5n2AHkU5OnpqbW6rTpRERE5Hz5+fkIDw+vcomRyhh2AHnoSq/XM+wQERE1M1eagsIJykRERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGhODTtLly5Fjx495EO+Y2Nj8csvv8jrS0tLER8fD39/f3h6emLs2LFIT0+320ZKSgpGjRoFd3d3BAUFYdasWTCZTI3dFCIiImqinBp2WrdujTfeeAOJiYnYu3cvBg8ejNtvvx2HDx8GAEyfPh0//PAD1qxZgx07duD8+fMYM2aM/Hiz2YxRo0bBYDDgjz/+wMqVK7FixQq8/PLLzmoSERERNTGSEEI4uxIV+fn5YcGCBbjzzjsRGBiIL7/8EnfeeScA4NixY+jcuTMSEhJwww034JdffsEtt9yC8+fPIzg4GACwbNkyPPvss8jMzIRWq63VPvPz8+Ht7Y28vDyeVJCIiKiZqO3vd5OZs2M2m7Fq1SoUFRUhNjYWiYmJMBqNiIuLk8t06tQJERERSEhIAAAkJCSge/fuctABgGHDhiE/P1/uHapOWVkZ8vPz7W5ERESkTE4POwcPHoSnpyd0Oh0ee+wxrF27Fl26dEFaWhq0Wi18fHzsygcHByMtLQ0AkJaWZhd0bOtt62oyf/58eHt7yzdeBJSIiEi5nB52OnbsiH379mHPnj2YMmUKxo8fjyNHjjToPmfPno28vDz5lpqa2qD7IyIiIudx+oVAtVot2rVrBwCIiYnBX3/9hUWLFuGee+6BwWBAbm6uXe9Oeno6QkJCAAAhISH4888/7bZnO1rLVqY6Op0OOp3OwS0hIiKipsjpPTuVWSwWlJWVISYmBi4uLtiyZYu87vjx40hJSUFsbCwAIDY2FgcPHkRGRoZcZtOmTdDr9ejSpUuj152IiIiaHqf27MyePRsjRoxAREQECgoK8OWXX2L79u3YuHEjvL29MWnSJMyYMQN+fn7Q6/V44oknEBsbixtuuAEAMHToUHTp0gUPPPAA3nrrLaSlpeHFF19EfHx8k+i5MZvNSElJke9HRERArVY7sUZEREQtj1PDTkZGBh588EFcuHAB3t7e6NGjBzZu3Iibb74ZAPDuu+9CpVJh7NixKCsrw7Bhw/DBBx/Ij1er1fjxxx8xZcoUxMbGwsPDA+PHj8e8efOc1SQ7KSkp+N93f8AnMAS5mWmYOQaIjo52drWIiIhalCZ3nh1naKjz7CQnJ+OT307DPzQc2RdSMal/G4YdIiIiB6nt77fTJyi3FBaLWT7qi8NZREREjYdhp5HkZ2fg07OF8PRM5XAWERFRI2LYaUT6gGDovXg5CiIiosbU5A49JyIiInIkhh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0jbMrQIDZbEZKSop8PyIiAmq12ok1IiIiUg6GnSYgJSUF//vuD/gEhiA3Mw0zxwDR0dHOrhYREZEiMOw0ET6BIfAPDXd2NYiIiBSHc3aIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNE0zq5AS2Y2m5GSkoLU1FQICGdXh4iISJEYdpwoJSUF//vuD+RnZ8CnVRQCQp1dIyIiIuVh2HEyn8AQgL06REREDYZzdoiIiEjRGHaIiIhI0Rh2iIiISNGcGnbmz5+P6667Dl5eXggKCsLo0aNx/PhxuzKDBg2CJEl2t8cee8yuTEpKCkaNGgV3d3cEBQVh1qxZMJlMjdkUIiIiaqKcOkF5x44diI+Px3XXXQeTyYTnn38eQ4cOxZEjR+Dh4SGXe+SRRzBv3jz5vru7u/xvs9mMUaNGISQkBH/88QcuXLiABx98EC4uLnj99dcbtT1ERETU9Dg17GzYsMHu/ooVKxAUFITExEQMGDBAXu7u7o6QkJBqt/Hrr7/iyJEj2Lx5M4KDg9GzZ0+8+uqrePbZZzF37lxotdoGbQMRERE1bU1qzk5eXh4AwM/Pz275F198gYCAAHTr1g2zZ89GcXGxvC4hIQHdu3dHcHCwvGzYsGHIz8/H4cOHq91PWVkZ8vPz7W5ERESkTE3mPDsWiwXTpk1D37590a1bN3n5f/7zH0RGRiIsLAwHDhzAs88+i+PHj+O7774DAKSlpdkFHQDy/bS0tGr3NX/+fLzyyisN1BIiIiJqSppM2ImPj8ehQ4ewa9cuu+WTJ0+W/929e3eEhoZiyJAhOHXqFNq2bVuvfc2ePRszZsyQ7+fn5yM8PLx+FSciIqImrUkMY02dOhU//vgjtm3bhtatW1+2bJ8+fQAAJ0+eBACEhIQgPT3droztfk3zfHQ6HfR6vd2NiIiIlMmpYUcIgalTp2Lt2rXYunUroqOjr/iYffv2AQBCQ60XkoqNjcXBgweRkZEhl9m0aRP0ej26dOnSIPUmIiKi5sOpw1jx8fH48ssvsX79enh5eclzbLy9veHm5oZTp07hyy+/xMiRI+Hv748DBw5g+vTpGDBgAHr06AEAGDp0KLp06YIHHngAb731FtLS0vDiiy8iPj4eOp3Omc0jIiKiJsCpPTtLly5FXl4eBg0ahNDQUPn29ddfAwC0Wi02b96MoUOHolOnTpg5cybGjh2LH374Qd6GWq3Gjz/+CLVajdjYWNx///148MEH7c7LQ0RERC2XU3t2hLj81b7Dw8OxY8eOK24nMjISP//8s6OqRURERArSZI7GIiuLxYzU1FQAQEREBNRqtZNrRERE1Lwx7DQx+dkZ+PRsITw9UzFzDGo1aZuIiIhqxrDTBOkDgqH34uHwREREjsCw00RVHM4COKRFRERUXww7TZRtOKt1tBG5mWkc0iIiIqonhp0mTB8QDP9QXsaCiIjoajSJy0UQERERNRSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGnSbgClfNICIioqvAsONk/6QbsTnHGzllkrOrQkREpEgMO05kEQJJF80os6jwZ5YGucUGZ1eJiIhIcRh2nOh0ThkMFuu/DRYJ6/edh8HCHh4iIiJHYthxov3niwAAPhoT3NQCuSVGnCx2dXKtiIiIlIVhx4n2ny8GAIToDOjobQYA5Jp4/SsiIiJH4uUinMRiEdifZg07/i4muLi4AADyTRoIYXRm1YiIiBSFPTtOkpRRiPxSM9QS4K0xw9NFQK2SYBISikzOrh0REZFyMOw4ye7T2QCAIHcVVBKgkoAATy0AIM/Il4WIiMhR+KvqJHuSL4UdmyAv6+TkPAOPyCIiInIUhh0nEEJgz+kcAECwR8WwowMA5DLsEBEROQzDjhPklpqRXWSABMDf9VKwCSwPO/lGiZeQICIichCGHSfILrbOQPZxU0OtuhR2/D21kCBgsEgo5ckFiYiIHIJhxwlyyg+38nO3P/Jfo1LBS209306eiWcFICIicgSGHSfIKraeR8ffvWqg8XaxhR2eXJCIiMgRGHacIKd8GMvf3aXKOr2GYYeIiMiRGHacIFsOO1V7dvTlw1gFDDtEREQOwbDjBLawU3nODgC4l4edUosKFh6RRUREdNUYdpwg5zI9O64qAQkCAhJKzY1dMyIiIuVh2HGCyw1jSRJgW1xi4uHnREREV4thp5EJIZBdfui5v0f1h5e7qa3jV8Vmhh0iIqKrxbDTyAwWwFg+GcfPrfqw464pDzu8+jkREdFVY9hpZCVGa5DxdnOBVlP90+/Onh0iIiKHYdhpZCUma5CxXfSzOm6cs0NEROQwDDuNrKR8aCpY71pjmUvDWAw7REREV4thp5HVpmfHNoxVYgYsvPw5ERHRVWHYaWS2sBOorznsuKohn2unqIyzlImIiK4Gw04ju9SzU/MwliQBbioLACC/hGGHiIjoajDsNLLaDGMBgLu6POyUGhu8TkRERErGsNPIbB01Vwo7bgw7REREDsGw08hs59kJuszRWACHsYiIiByl+lP4UoMwWYDyUSyU5KQhK+0cBKo/2orDWERERI7BsNOIbFcxV8OCL3efQcqxA/BpFVVtWVvPTkGpCYC6cSpIRESkQBzGakSl5Zd/cNVI8A8Nh94/sMay7mprMiooNfJcO0RERFeBYacRGaydNdCprhxeXFUCEgQs4tKkZiIiIqo7hp1GZLRYe3ZcavGsSxKgKx+9sh2uTkRERHXHsNOIjOU9Oy616NkBAFfbZSMYdoiIiOqNYacRGUXte3YA62UjgEuHqxMREVHdMew0oks9O7Urb+vZKWbPDhERUb05NezMnz8f1113Hby8vBAUFITRo0fj+PHjdmVKS0sRHx8Pf39/eHp6YuzYsUhPT7crk5KSglGjRsHd3R1BQUGYNWsWTKamN6vXFnY0Ul2HsRqqRkRERMrn1LCzY8cOxMfHY/fu3di0aROMRiOGDh2KoqIiucz06dPxww8/YM2aNdixYwfOnz+PMWPGyOvNZjNGjRoFg8GAP/74AytXrsSKFSvw8ssvO6NJl2WqwwRlAHAtL8dhLCIiovpz6kkFN2zYYHd/xYoVCAoKQmJiIgYMGIC8vDx88skn+PLLLzF48GAAwPLly9G5c2fs3r0bN9xwA3799VccOXIEmzdvRnBwMHr27IlXX30Vzz77LObOnQutVuuMplWrvhOUOYxFRERUf01qzk5eXh4AwM/PDwCQmJgIo9GIuLg4uUynTp0QERGBhIQEAEBCQgK6d++O4OBgucywYcOQn5+Pw4cPV7ufsrIy5Ofn290ag62Dps4TlBl2iIiI6q3JhB2LxYJp06ahb9++6NatGwAgLS0NWq0WPj4+dmWDg4ORlpYml6kYdGzrbeuqM3/+fHh7e8u38PBwB7emenU5zw4A6Mp7dsrMgMFsaahqERERKVqTCTvx8fE4dOgQVq1a1eD7mj17NvLy8uRbampqg+8TqPsEZa0KUFnzEXKKOUuZiIioPppE2Jk6dSp+/PFHbNu2Da1bt5aXh4SEwGAwIDc31658eno6QkJC5DKVj86y3beVqUyn00Gv19vdGppFAOY6nmdHkgAPnXVaFcMOERFR/Tg17AghMHXqVKxduxZbt25FdHS03fqYmBi4uLhgy5Yt8rLjx48jJSUFsbGxAIDY2FgcPHgQGRkZcplNmzZBr9ejS5cujdOQWjCVBx2g9mEHADzLw05WEcMOERFRfTj1aKz4+Hh8+eWXWL9+Pby8vOQ5Nt7e3nBzc4O3tzcmTZqEGTNmwM/PD3q9Hk888QRiY2Nxww03AACGDh2KLl264IEHHsBbb72FtLQ0vPjii4iPj4dOp3Nm8+zYzp6shpCHpmrDQ2t9ibLZs0NERFQvTg07S5cuBQAMGjTIbvny5csxYcIEAMC7774LlUqFsWPHoqysDMOGDcMHH3wgl1Wr1fjxxx8xZcoUxMbGwsPDA+PHj8e8efMaqxm1YjvHjqaWh53beJRfDTSryOjwOhEREbUETg07Qlz5h9/V1RVLlizBkiVLaiwTGRmJn3/+2ZFVczj5uli1nJxsY5uzw54dIiKi+mkSE5RbgvqGHU+GHSIioqvCsNNIbBOU6zqM5a61DWMx7BAREdUHw04jkU8oWO+eHc7ZISIiqg+GnUZyaRirbmdCts3ZKSizoNRodni9iIiIlI5hp5HIw1h17NnRaVRQlx+qnllQ5uhqERERKR7DTiO5dF2suoUdSZLgprE+Nj2/1OH1IiIiUjqGnUZS36OxAMCt/AQBaQw7REREdcaw00hMVxV2rI/lMBYREVHdMew0EmM9Dz0HLoWdrEKGHSIiorpi2Gkkpnoeeg4AruzZISIiqjeGnUZyNXN2XMvn7GQVGhxZJSIiohaBYacRCCEcMozFnh0iIqK6Y9hpBAazBQAnKBMRETkDw04jMJisZ01WQdTrCbfN2ckuKoPFUvewRERE1JIx7DSCsvKwo1EBklT3x7tarwUKo1kgr4TXyCIiIqoLhp1GUGa0hh2Xej7bapUEL531wZk8/JyIiKhOGHYaQZnJegHPul4qoiK/8tMoZ3HeDhERUZ0w7DQC25wdl3oMYdn4uVvDDnt2iIiI6oZhpxHY5uxcTc+Ob3nPDo/IIiIiqhuGnUZwKezUfxvs2SEiIqofhp1GYJuzo7mKZ5s9O0RERPWjqe8Di4qKsGPHDqSkpMBgsL+MwZNPPnnVFVMS25wdTT1OKGhj69nhJSOIiIjqpl5h559//sHIkSNRXFyMoqIi+Pn5ISsrC+7u7ggKCmLYqcR6BuWr69nxY88OERFRvdTr53f69Om49dZbcfHiRbi5uWH37t04e/YsYmJi8Pbbbzu6js2e0Wzt0dFcxdFYvu7WMwtmFZQhOTkZycnJMJvNjqgeERGRotUr7Ozbtw8zZ86ESqWCWq1GWVkZwsPD8dZbb+H55593dB2bPaPJcT072UVlePvbP/C/7/5ASkqKI6pHRESkaPX6+XVxcYFKZX1oUFCQ/KPr7e2N1NRUx9VOIeRhrKuYs+PjpoEkARYBuPoFwycwxFHVIyIiUrR6zdnp1asX/vrrL7Rv3x4DBw7Eyy+/jKysLPzf//0funXr5ug6NntGOezUfxtqlQQ/dy2yiwwoNQn5SuhERER0efXq2Xn99dcRGhoKAHjttdfg6+uLKVOmIDMzEx999JFDK6gEjpigDACBXjoAQImJVz4nIiKqrXr17PTu3Vv+d1BQEDZs2OCwCimRsTycqK9iGAsAAjx1AApQanJApYiIiFqIevU1DB48GLm5uQ6uijIJIS4NY7Fnh4iIqNHV6+d3+/btVU4kSNUzC8AWTa52mk2ApxYAUMqwQ0REVGv17muQJE6QrY3yo84BAOqrfMrknh0zww4REVFt1ftyEXfccQe0Wm2167Zu3VrvCimN0XJpvo4kXerlqQ9b2OGcHSIiotqrd9iJjY2Fp6enI+uiSLaenas5x46NdYIyh7GIiIjqol5hR5IkzJo1C0FBQY6uj+IYHRh2OEGZiIio7uo1Z0cI/tjWlsnimMPOgUs9O2VmwMLXgIiIqFbqFXbmzJnDIaxacmTPjq+7FqrySc6ct0NERFQ79RrGmjNnDgAgMzMTx48fBwB07NgRgYGBjquZQth6dhxxdQe1SoKvmwbZxSYOZREREdVSvXp2iouL8dBDDyEsLAwDBgzAgAEDEBYWhkmTJqG4uNjRdWzWjGbr/x3RswMAvuVXP+ckZSIiotqpV9iZPn06duzYge+//x65ubnIzc3F+vXrsWPHDsycOdPRdWzWbEdjOWLODgD4uasBAKU81w4REVGt1GsY69tvv8U333yDQYMGyctGjhwJNzc33H333Vi6dKmj6tfsGeVhLAHg6seybD07JZyzQ0REVCv1HsYKDg6usjwoKIjDWJU48jw7AODnzmEsIiKiuqhX2ImNjcWcOXNQWloqLyspKcErr7yC2NhYh1VOCYwOPPQcAPzknh2GHSIiotqo1zDWwoULMXz4cLRu3RrXXHMNAGD//v1wdXXFxo0bHVrB5u5Sz45jtufrzrBDRERUF/UKO927d0dSUhK++OILHDt2DABw3333Ydy4cXBzc3NoBZs7R55nB7jUs8Pz7BAREdVOvcLOzp07ceONN+KRRx5xdH0Ux5FnUAYu9exwzg4REVHt1GvOzk033YScnBxH10WRGqpnx2ABDGaLQ7ZJRESkZLw2VgNz9NFYXjqV/KJdLDY7ZJtERERKVq+wAwAJCQnYuXNntbfa2rlzJ2699VaEhYVBkiSsW7fObv2ECRMgSZLdbfjw4XZlcnJyMG7cOOj1evj4+GDSpEkoLCysb7McztFHY0mSBNfywcccnmyHiIjoiuo1ZwcA7rjjjmqXS5IEs7l2PQ5FRUW45ppr8NBDD2HMmDHVlhk+fDiWL18u39fpdHbrx40bhwsXLmDTpk0wGo2YOHEiJk+ejC+//LKWLWlYjj4aCwBcNRKKTQIXixl2iIiIrqTeYSctLQ1BQUFXtfMRI0ZgxIgRly2j0+kQEhJS7bqjR49iw4YN+Ouvv9C7d28AwOLFizFy5Ei8/fbbCAsLu6r6XS2zRcB2VQdHDWMBgJtGAiDYs0NERFQL9RrGkiQHdlNcwfbt2xEUFISOHTtiypQpyM7OltclJCTAx8dHDjoAEBcXB5VKhT179tS4zbKyMuTn59vdGkKJ8dIEYkcNYwHWnh0AuMiwQ0REdEVNeoLy8OHD8dlnn2HLli148803sWPHDowYMUIeJquud0mj0cDPzw9paWk1bnf+/Pnw9vaWb+Hh4Q1Sf1vYUUmA2oH50M02Z4fDWERERFdUr2Esi6VxDnm+99575X93794dPXr0QNu2bbF9+3YMGTKk3tudPXs2ZsyYId/Pz89vkMBTXB52XNT1ngdeLVvPDsMOERHRldXrV3j+/Pn49NNPqyz/9NNP8eabb151pWrSpk0bBAQE4OTJkwCAkJAQZGRk2JUxmUzIycmpcZ4PYJ0HpNfr7W4Nwdazo9U4Nuy4cRiLiIio1ur1K/zhhx+iU6dOVZZ37doVy5Ytu+pK1eTff/9FdnY2QkNDAVgvSJqbm4vExES5zNatW2GxWNCnT58Gq0dtNVTPjpva1rPD8+wQERFdSb2GsdLS0uTAUVFgYCAuXLhQ6+0UFhbKvTQAkJycjH379sHPzw9+fn545ZVXMHbsWISEhODUqVN45pln0K5dOwwbNgwA0LlzZwwfPhyPPPIIli1bBqPRiKlTp+Lee+91+pFYQIWeHYcPY1n/z54dIiKiK6vXr3B4eDh+//33Kst///33OoWMvXv3olevXujVqxcAYMaMGejVqxdefvllqNVqHDhwALfddhs6dOiASZMmISYmBr/99pvduXa++OILdOrUCUOGDMHIkSPRr18/fPTRR/VplsNd6tlx7NFrtjk7xUYLjpw4heTk5Fqf24iIiKilqVfPziOPPIJp06bBaDRi8ODBAIAtW7bgmWeewcyZM2u9nUGDBl32yK6NGzdecRt+fn5N5gSClTXUnB0XFaCCgAUSPtx5Gua8DMwcA0RHRzt0P0REREpQr7Aza9YsZGdn4/HHH4fBYAAAuLq64tlnn8Xs2bMdWsHmrMRo7W1xUasAB3a8SJIEncqCEosaOp8gaLWODVNERERKUq+wI0kS3nzzTbz00ks4evQo3Nzc0L59+yqXcmjpSipOUHbwKJNOJVBiAYrKzNA6dtNERESKUu/LRQCAp6cnrrvuOkfVRXGKG2iCMgDoVNZtFxtM8FU7fPNERESKUe+ws3fvXqxevRopKSnyUJbNd999d9UVU4KSBpqgDFh7dgCg2GAG3By+eSIiIsWoV5fDqlWrcOONN+Lo0aNYu3YtjEYjDh8+jK1bt8Lb29vRdWy25LDj4AnKwKWenSIDDz8nIiK6nHr9Cr/++ut499138cMPP0Cr1WLRokU4duwY7r77bkRERDi6js1WQ51nB7gUdkoMPOSciIjocur1K3zq1CmMGjUKAKDValFUVARJkjB9+vQmc46bpqCkgc6gDFwaxioqY9ghIiK6nHr9Cvv6+qKgoAAA0KpVKxw6dAgAkJubi+LiYsfVrpmTTyqoaYg5O5cmKBMREVHN6jVBecCAAdi0aRO6d++Ou+66C0899RS2bt2KTZs2XdXVyJWm4jBWmYO3XXGCshA8HIuIiKgm9Qo777//PkpLSwEAL7zwAlxcXPDHH39g7NixePHFFx1aweasR6g7jEYT3LWaBgg71iBlsgiUZyoiIiKqRp3CTn5+vvVBGg08PT3l+48//jgef/xxx9eumZs5IAyf/FYKPw8tLjp42xoJUEsCZiGh1FTzJTeIiIhaujqFHR8fH0jSleef8KKUjcNVDRSZgFJO2yEiIqpRncLOtm3b7O4LITBy5Eh8/PHHaNWqlUMrRlemUwkUQUKJmT07RERENalT2Bk4cGCVZWq1GjfccAPatGnjsEpR7ejK5yVzGIuIiKhmvFx2M6ZTW0NOCcMOERFRja4q7KSmpqK4uBj+/v6Oqg/Vge3wc87ZISIiqlmdhrHee+89+d9ZWVn46quvMHjwYF4Py0lcy4ex2LNDRERUszqFnXfffRcAIEkSAgICcOutt/K8Ok7EYSwiIqIrq1PYSU5Obqh6UD3oygchOUGZiIioZpyg3IzZenZKzdbTABAREVFVDDvNmO3Qc4sACg28ZgQREVF1GHaaMbUE6DTWlzCnmIdkERERVYdhp5lz11q7dxh2iIiIqsew08y5a61zzC+WMOwQERFVh2GnmfNgzw4REdFlMew0c+zZISIiujyGnWbOXceeHSIiosth2Gnm5AnK7NkhIiKqFsNOM3dpGMvs5JoQERE1TQw7zRwnKBMREV0ew04zV3GCssXCS0YQERFVxrDTzLmV9+xYBHCx2ODk2hARETU9dbrqOTmHxWJGamoqACA1NRUCl3pw1CoJOjVQZgYyC8vg76lzVjWJiIiaJIadZiA/OwOfni1E62gjUo4dgE+rKLv1rhoJZWaBrAIDEOKcOhIRETVVHMZqJvQBwfAPDYfeP7DKOjeNBADILCxt7GoRERE1eQw7CuBqnbZj7dkhIiIiOww7CnCpZ6fMyTUhIiJqehh2FMDVFnYKGHaIiIgqY9hRAFvPThZ7doiIiKpg2FEA1/Jj6tizQ0REVBXDjgKwZ4eIiKhmDDsKYJuzk11kgMlscXJtiIiImhaGHQXQqQGVBAgB5BTx8HMiIqKKGHYUQCVJ8C4/2Q4PPyciIrLHsKMQfu7WWcqcpExERGSPYUchfN0YdoiIiKrDsKMQ/uU9OxkMO0RERHYYdhQi0MMFAJCWx4uBEhERVcSwoxCBntaenbR8hh0iIqKKnBp2du7ciVtvvRVhYWGQJAnr1q2zWy+EwMsvv4zQ0FC4ubkhLi4OSUlJdmVycnIwbtw46PV6+Pj4YNKkSSgsLGzEVjQNAe7s2SEiIqqOU8NOUVERrrnmGixZsqTa9W+99Rbee+89LFu2DHv27IGHhweGDRuG0tJLP+jjxo3D4cOHsWnTJvz444/YuXMnJk+e3FhNaDJsPTsXGHaIiIjsaJy58xEjRmDEiBHVrhNCYOHChXjxxRdx++23AwA+++wzBAcHY926dbj33ntx9OhRbNiwAX/99Rd69+4NAFi8eDFGjhyJt99+G2FhYY3WFmezzdnJKiyDwWSBVsMRSiIiIqAJz9lJTk5GWloa4uLi5GXe3t7o06cPEhISAAAJCQnw8fGRgw4AxMXFQaVSYc+ePTVuu6ysDPn5+Xa35s7bVQ2t2vpypnPeDhERkazJhp20tDQAQHBwsN3y4OBgeV1aWhqCgoLs1ms0Gvj5+cllqjN//nx4e3vLt/DwcAfXvvFJkoQQb1cADDtEREQVNdmw05Bmz56NvLw8+ZaamursKjmELexw3g4REdElTTbshISEAADS09Ptlqenp8vrQkJCkJGRYbfeZDIhJydHLlMdnU4HvV5vd1OCEL017PCILCIiokuabNiJjo5GSEgItmzZIi/Lz8/Hnj17EBsbCwCIjY1Fbm4uEhMT5TJbt26FxWJBnz59Gr3OzhbKnh0iIqIqnHo0VmFhIU6ePCnfT05Oxr59++Dn54eIiAhMmzYN//3vf9G+fXtER0fjpZdeQlhYGEaPHg0A6Ny5M4YPH45HHnkEy5Ytg9FoxNSpU3Hvvfe2qCOxbGzDWGn5JU6uCRERUdPh1LCzd+9e3HTTTfL9GTNmAADGjx+PFStW4JlnnkFRUREmT56M3Nxc9OvXDxs2bICrq6v8mC+++AJTp07FkCFDoFKpMHbsWLz33nuN3pamwNazw2EsIiKiS5wadgYNGgQhRI3rJUnCvHnzMG/evBrL+Pn54csvv2yI6jU7Id5uABh2iIiIKmqyc3ao7mw9O+kFZTBbag6RRERELQnDjoIEeOqgVkkwWwSyCsucXR0iIqImgWFHQdQqCUFeOgAcyiIiIrJh2FEAi8WM1NRUJCcnI0RvDTs8/JyIiMjKqROUyTHyszPw6dlCeHqmQu9lvfRFWh4PPyciIgIYdhRDHxAMvZcermrr1c8v8PpYREREADiMpTiBHtawwzk7REREVgw7ChPoae2sO5/LYSwiIiKAYUdxQr20AIDUHIYdIiIigGFHcUK8rMNY6QWlKDOZnVwbIiIi52PYURhvVzXctWoIAZzP5bwdIiIihh2FkSQJrX2t18hKzSl2cm2IiIicj2FHgcJ93QEA/17kvB0iIiKGHQWSe3YusmeHiIiIYUeBwv3Ys0NERGTDsKNAnLNDRER0CcOOArXmnB0iIiIZw46C2K5+binIBABkFZahxMBz7RARUcvGC4EqiO3q562jjdBIAiYh4VxuMdoFeTm7akRERE7Dnh2F0QcEwz80HF5a60vLy0YQEVFLx7CjUJ5aCQDwLw8/JyKiFo5hR6E8XKxhJ5WTlImIqIVj2FEoT1vY4eHnRETUwjHsKJSHPIzFnh0iImrZGHYUSu7Z4ZwdIiJq4Rh2FMqrvGcnt9iIi0UGJ9eGiIjIeRh2FEqjkhDkaT2N0umsQifXhoiIyHkYdhQswkcHADiVUeTkmhARETkPw46ChdvCDnt2iIioBWPYUbBwby0A9uwQEVHLxrCjYBE+1rBzOpM9O0RE1HIx7CiYbc5OSk4xjGaLk2tDRETkHAw7ChbgoYG7Vg2TReBsNs+3Q0RELRPDjkJZLGb8+++/aKV3AcChLCIiark0zq4ANYz87Ax8erYQRZZgAFqcyuQkZSIiapnYs6Ng+oBgBOjdAbBnh4iIWi6GHYXzchEAgCP/ZiM5ORlms9nJNSIiImpcDDsKpy65CABIyizB29/+gZSUFCfXiIiIqHEx7Cich9oMQMBgAdz8gp1dHSIiokbHsKNwaglwV1v/nVvGc+0QEVHLw7DTAui11nk7F0uFk2tCRETU+Bh2WgAfF2uPTk4pe3aIiKjlYdhpAbzLe3Zy2LNDREQtEMNOC2ALO/llAiVG9u4QEVHLwrDTAriqAQ+tGgLA6exSZ1eHiIioUTHstBCBXtYroJ/IYtghIqKWhWGnhQjycgUAJDHsEBFRC8Ow00IE6W09OyVOrgkREVHjatJhZ+7cuZAkye7WqVMneX1paSni4+Ph7+8PT09PjB07Funp6U6scdMVVD6MdeZiGUqNvD4WERG1HE067ABA165dceHCBfm2a9cued306dPxww8/YM2aNdixYwfOnz+PMWPGOLG2TZenTgOdGjBbgBPpBc6uDhERUaPROLsCV6LRaBASElJleV5eHj755BN8+eWXGDx4MABg+fLl6Ny5M3bv3o0bbrihsavapEmSBD9XFS4UWXDwXB56tPZxdpWIiIgaRZPv2UlKSkJYWBjatGmDcePGyVftTkxMhNFoRFxcnFy2U6dOiIiIQEJCwmW3WVZWhvz8fLtbS+DvJgEAEs9cdHJNiIiIGk+TDjt9+vTBihUrsGHDBixduhTJycno378/CgoKkJaWBq1WCx8fH7vHBAcHIy0t7bLbnT9/Pry9veVbeHh4A7ai6Qh2t77cf5zKhhA8mzIREbUMTXoYa8SIEfK/e/TogT59+iAyMhKrV6+Gm5tbvbc7e/ZszJgxQ76fn5/fIgJPoLsKLioJafmlOJNdjOgAD2dXiYiIqME16Z6dynx8fNChQwecPHkSISEhMBgMyM3NtSuTnp5e7RyfinQ6HfR6vd2tJdCoJHQOtobEhFPZTq4NERFR42hWYaewsBCnTp1CaGgoYmJi4OLigi1btsjrjx8/jpSUFMTGxjqxlk3btWHW3pw/TmU5uSZERESNo0kPYz399NO49dZbERkZifPnz2POnDlQq9W477774O3tjUmTJmHGjBnw8/ODXq/HE088gdjYWB6JdRk9w9yBRGD3aeu8HUmSnF0lIiKiBtWkw86///6L++67D9nZ2QgMDES/fv2we/duBAYGAgDeffddqFQqjB07FmVlZRg2bBg++OADJ9e6aesc7AadRoWsQgOSMgrRIdjL2VUiIiJqUE067Kxateqy611dXbFkyRIsWbKkkWrU/GnVKlwX5YddJ7OQcCqbYYeIiBSvWc3ZIceIbesPAPj9JOftEBGR8jHstEAD2luHAXcmZaKozOTk2hARETUshp0WqFsrPSL83FFqtGDrsQxnV4eIiKhBMey0QJIk4ZYeoQCAHw+cd3JtiIiIGlaTnqBMDcNsNqNXgPVyEVuPZeDAkRPwcnMBAERERECtVjuzekRERA7FsNMCpaSkYN32v+Gl9UWBQeDZr3Yjpn0r5GamYeYYIDo62tlVJCIichgOY7VQvkEh6BzmCwC4qPaFf2g4fAIvf5kNIiKi5ohhpwXrEOwJAEgvlXhUFhERKRbDTgvm76mDj8YEAQkH/s1zdnWIiIgaBMNOC9fGvRQAcOBcLkwW4eTaEBEROR7DTgsXqjXCXS1QarTgdK7Z2dUhIiJyOIadFk6SgDZe1pBzNMcMi2DvDhERKQsPPSdEeFhwolCFAoMF20/lIyrSjJSUlEvree4dIiJqxhh2CBoVcG24D3Yn5+CjPRm4MfIMlvywGz6BITz3DhERNXscxiIAwLWRvvBwAdILjfj6QDZ8AkN47h0iIlIEhh0CALioVbg2yHrJiK/2ZaHIyLk7RESkDAw7JIvQq9AjxB1lJoE9F4wQnKxMREQKwLBDMkmSMK1/CFzUEs4XWnDwHE80SEREzR/DDtmJ9nPF5D5BAIDfkrKQV2Zxco2IiIiuDsMOVTGmmx9CPVQwWQR++9eIEiMDDxERNV8MO1SFSpIQG+YCd60auWUCb2w7BwsvJUFERM0Uww5Vy91FwqjuoVBJwM7kAizaknTZ8mazGcnJyUhOTobZzMtOEBFR08GwQzUK83HD9SHW804u2pKENXtTayybkpKC/333B/733R92Z18mIiJyNp5BmWQWixmpqdZAI2Adtmrnq0FkkDe+3p+N5747CF93LeK6BFf7eJ6AkIiImiL27JAsPzsDn247go83JKKgoEBePrlPEMZe2xpmi0D8l38j4VS2E2tJRERUNww7ZEcfEAy9f6DdMpUk4Y2x3TGkUxDKTBY8tOIv7DnNwENERM0Dww7ViotahSXjrkX/9gEoMZoxccVf7OEhIqJmgWGnBbHNyUlNTZXn5NSW2WzGhX9T8MKAAPRu7YFigxnjl/+JXw5eaKDaEhEROQYnKLcg+dkZ+PRsISxlJfBpFYWA0Cs/pmJA+vqvs/ANDENgaRr6RYVj15kCPP7l35h3ezf0q37OMhERkdMx7LQw+oBgWEqLal2+ckDyDw2HxWLGPdECvm6++OHoRby07hAeuDYAQghIktSAtSciIqo7DmPRFVWetJyfnYEV24/ClH4KY9prAQD/93cWdl8wwlzhSuk80SARETUFDDtUL/qAYKjVEnL+PYU+oRoAAqdyLdh8xoCcYhMAnmiQiIiaBoYduir6gGDc0CUa1+kLoZEEMksEHv3uNPan5gKwnmiQJxskIiJnYtghhwjWmTAg2Ai9VkJWkQl3fZiADcdznV0tIiIihh1yHE8XYHi0FjdGesJgsuDN7eex54IRJl4xnYiInIhhhxxKq5bw6rBwTItrDwBIumjGL6cNOJld6uSaERFRS8WwQw6nkiRMi+uABaMi4KoB8gwCj3+XjE93JUMI9vIQEVHj4nl2qMH0bu2JW9rokHDeiHOFFsz78Qi2H89A/PW+CPJ0AQBERERArVY7uaZERKRkDDvUoFw1EgaFuyDA3xfLdmdgZ1IWfj+ZiV5BLgg2Z+HpsUB0dLSzq0lERArGYSxqcJIkYXRXP/z0ZD90DXaDWUjYm27C7wW++DOlkENbRETUoBh2qMHZrq+lLsrCrGvVuC5EA51GhdwygWd/ScGdyxLw88ELMJktzq4qEREpEIexqMHZrq/VOtqIlGMHENoqCtfe2Ak7D53FyVwLEs9eROLZi/Bz16BvpBdu7x2NnhE+KMhKk7fBuT1ERFRfDDvkULZeHABITU2FgHWISh8QDP/QcORmXgAAuLqo0StIhSk9XbElxYhfTpUip9iEH45exA9HLwIA3FVm+Hu4wNVcjHF989G/R1tE+rlDo2aHJBER1R7DDjlU5V4cn1ZRly37XfkV1Ye2ioImIAqHz6ajxKLGv3kGFFvUKC6wAHDF3E3/Apv+hYtaQpSvDm18tegW4obuIe5opXeBRmN9K0dERACA3bW42CtERNSyMeyQw1XuxblSWUtpEVQSEOnvAU+DCyb1b4P8UjPe23YaBp03zqSeQ26ZhCKhgdGsQlJWKZKySrExKR8AoIUZoXoXeFkKMWNEKSJ9dXh3bQJ8AkOQm5mGmWN4xBcRUUvGsENNSsVhsBBPFQJCfeGdmwRVoAfMJXko0XjAPSgSx06eRo5Jh1yDBAPUOJtvAeCOh9acht5VDW8XP0QZPeHpGQQzL1dBRNSiMexQk2IbBrOUlcCnVRQCQi+tkyTr9beiAz2BC6VQuaphLClCnuQJi1cwzqTn4mKZQH6pGfmlQGpBFgBgx4rj6ByWhjYB7vDTGNFa74JwHy1a+7hCrZI4zEVEpHAMO9Tk2Ia2akMtAQGuAtHR/mijLUBclA5n8iz4/lQZcs06nLtYjGLjpSO+KlIBcFeb0CngBDqE6BHuo0WUnxvCfbTo3C6aAYiISCEYdkgx8rMz8Fl5r1BEqygM7NAGmedTMLhrK5S4eCPxxL/YlpSNi8UGFJnVMAsJhWYN9qabsDc9x25bProTiPZ3Q5fW/mgX7IW2gZ5oG+SJYC+dfDSY2WyWJ0Kzd4iIqOlSTNhZsmQJFixYgLS0NFxzzTVYvHgxrr/+emdXixpZ5V4hlSShrb8roqPD0E1fBlNJAXIzsyHpPBAQ0QGHDx9EseSGglITioQWJcIFRQYzcssE/jlfjH/OF9ttXwKgd1XDx1UNN5UZeUXF0ErATV0zEREaCE9XDbx0Gni6auCmUSEvOwMuKgFXjQoeOg00koBaJUGtVssBqbahqWK5y5WtWM5sNgNArfdX0z5syytuz7Ye4NFvRNS0KSLsfP3115gxYwaWLVuGPn36YOHChRg2bBiOHz+OoKAgZ1ePmiBJAvRuLgjSmqBytcDiUgKVqwrRHTri2L4/Uaz2hFnjjqggPbKNGhw7n4uUi6UQkJBXakZeqbl8SzoAwIrETACZtds3BDSSgK/HCejdXaGFGZkX86FRCVwbfR5+Pt5QqySoJAkqyfoYk0Ug+2Ie9iWnQa1zQ1lpKdqEpsJF5wqj2QKjScBgtsBotqCopAyZ+cWASg2j0QQLJEBSQaM+Cp2LBmpJoKTUAJUkEOx9Cl4ebtCpVdBqVDAaSpGcdhEarQ4mQxmig1Pg5u6G4uJiJKflwmQ0ACoVXN08YDKUoXPrVOhd1Th2Jg16vScsxXm4f0AhenaMRqi3Kzx0iviKIaJmThHfRO+88w4eeeQRTJw4EQCwbNky/PTTT/j000/x3HPPObl25Ew1neTwclxUgK9OwNMDGB5mQHh4MFJTi/FLskBWRgaMLh7wC43CmZPHYVC7Qqi1CHJXQ9K6odBgRpHBghKjBfklBhQaBIxmAWs0siYXAQlGISGj0ISMwkLbXgEAPx3LBZB7mdrpgFILAC0unCkAUFBDOTWsOy3/iAvAZBIoNRnL11uH4k7nlAE5ZZWfAcBgAeCCjNRCABXr6AJYABRZ12cm2/bvCpSYAHhg308pwE/Wnh4vnQYh3q4I8XZFgKcOXq4aeJb3fHnpNNCoVVBLElQqa7CzhTy1SoJFCAgBu/9b5Pu2ZbblAiaz9f9mi4DJImAyW3DxYi7M5cu8vb3holZBKt++SkL5fiWoJQlS+f7VKslaRqpURoXyAHopiApcqp8A5Ou8ycsqLLf+u2LZ8nKw3qm4zCIAs8UCk0XAbBYwms3IuZgHc/n2vfV6qNUqSLDWW4L1GnTWf1vrJknWZYC13pfKWe/D9higvHz127KWt/67/L9L26tQxrYt2/alat6VlT99lS+LV93ns2qZarZ7hevrVbe68r6qLXOFfVe33ypLarlvk+XSe7fia2+yWF//i7l5kAB4e3tDrVLZvWa292OV+7h0v+Jy2N7blyln+yxZ/w+YhYDFUnGZ9TOWc/EizALw8tJDoPxx5WVNZgty8wtgsQi4e3hi5rCOCPDUVX1CGkGzDzsGgwGJiYmYPXu2vEylUiEuLg4JCQnVPqasrAxlZZe+4PPy8gAA+fn5Dq1bQUEBMlJPo6ykCFnnU6HSusJiKIVK6wqdRl3nZfV5TFPYtjP3l3riMBbszkdwWCQunEmCd3DrWm8nw1Ba42PVbipoc07DtfyxWUXWckVnkqDSatEmLBIXziahQ3BrWIylkLSuCIlog9SkYxBaN2jdPDCwUzC8fAOQciEDu07mwGiR0CHMGx4eeuTl52NfchqMpaWQ1Gp4eulReDEL7l56+Pj5Iz/zAgylJRAWE9QqFXz8/JGXcQEqtRowG+DpG4Dg0FbITDkFtVYLGEpRXFwIv+DWyDifAg//EOh0bohtFwi9rz/SM7Ow9UAySkpK4K73g29AAIoLChAT6QtfX19cvHgRiWdzUFZUAEmjhW9AEIoL8tC1tS8KjQIHzhUCWjfk5Reg1KKCSaWFGWrklQF5+fk4nurQj1Y9NYlKEF2l5vs+vrdXALQWT4du0/a7faXA2+zDTlZWFsxmM4KDg+2WBwcH49ixY9U+Zv78+XjllVeqLA8PD2+QOhJVZ1U1yzY1ch2+vcL6X66w/mdHVYSIFK/nwobbdkFBAby9vWtc3+zDTn3Mnj0bM2bMkO9bLBbk5OTA399f7vZ1hPz8fISHhyM1NRV6vd5h222q2F5la2ntBVpem9leZVNie4UQKCgoQFhY2GXLNfuwExAQALVajfT0dLvl6enpCAkJqfYxOp0OOp39uKGPj09DVRF6vV4xb6zaYHuVraW1F2h5bWZ7lU1p7b1cj45Ns798tFarRUxMDLZs2SIvs1gs2LJlC2JjY51YMyIiImoKmn3PDgDMmDED48ePR+/evXH99ddj4cKFKCoqko/OIiIiopZLEWHnnnvuQWZmJl5++WWkpaWhZ8+e2LBhQ5VJy41Np9Nhzpw5VYbMlIrtVbaW1l6g5bWZ7VW2ltbeiiRxpeO1iIiIiJqxZj9nh4iIiOhyGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHYayJIlSxAVFQVXV1f06dMHf/75p7OrVCs7d+7ErbfeirCwMEiShHXr1tmtF0Lg5ZdfRmhoKNzc3BAXF4ekpCS7Mjk5ORg3bhz0ej18fHwwadIkFMoXvLQ6cOAA+vfvD1dXV4SHh+Ott95q6KZVa/78+bjuuuvg5eWFoKAgjB49GsePH7crU1paivj4ePj7+8PT0xNjx46tchLLlJQUjBo1Cu7u7ggKCsKsWbNgMpnsymzfvh3XXnstdDod2rVrhxUrVjR086pYunQpevToIZ9ULDY2Fr/8cumiEEpqa3XeeOMNSJKEadOmycuU1Oa5c+eWXwzy0q1Tp07yeiW11ebcuXO4//774e/vDzc3N3Tv3h179+6V1yvtOysqKqrKayxJEuLj4wEo8zV2CEEOt2rVKqHVasWnn34qDh8+LB555BHh4+Mj0tPTnV21K/r555/FCy+8IL777jsBQKxdu9Zu/RtvvCG8vb3FunXrxP79+8Vtt90moqOjRUlJiVxm+PDh4pprrhG7d+8Wv/32m2jXrp2477775PV5eXkiODhYjBs3Thw6dEh89dVXws3NTXz44YeN1UzZsGHDxPLly8WhQ4fEvn37xMiRI0VERIQoLCyUyzz22GMiPDxcbNmyRezdu1fccMMN4sYbb5TXm0wm0a1bNxEXFyf++ecf8fPPP4uAgAAxe/Zsuczp06eFu7u7mDFjhjhy5IhYvHixUKvVYsOGDY3a3u+//1789NNP4sSJE+L48ePi+eefFy4uLuLQoUOKa2tlf/75p4iKihI9evQQTz31lLxcSW2eM2eO6Nq1q7hw4YJ8y8zMVGRbhRAiJydHREZGigkTJog9e/aI06dPi40bN4qTJ0/KZZT2nZWRkWH3+m7atEkAENu2bRNCKO81dhSGnQZw/fXXi/j4ePm+2WwWYWFhYv78+U6sVd1VDjsWi0WEhISIBQsWyMtyc3OFTqcTX331lRBCiCNHjggA4q+//pLL/PLLL0KSJHHu3DkhhBAffPCB8PX1FWVlZXKZZ599VnTs2LGBW3RlGRkZAoDYsWOHEMLaPhcXF7FmzRq5zNGjRwUAkZCQIISwBkSVSiXS0tLkMkuXLhV6vV5u4zPPPCO6du1qt6977rlHDBs2rKGbdEW+vr7i448/VnRbCwoKRPv27cWmTZvEwIED5bCjtDbPmTNHXHPNNdWuU1pbhbB+b/Tr16/G9S3hO+upp54Sbdu2FRaLRZGvsaNwGMvBDAYDEhMTERcXJy9TqVSIi4tDQkKCE2t29ZKTk5GWlmbXNm9vb/Tp00duW0JCAnx8fNC7d2+5TFxcHFQqFfbs2SOXGTBgALRarVxm2LBhOH78OC5evNhIraleXl4eAMDPzw8AkJiYCKPRaNfmTp06ISIiwq7N3bt3tzuJ5bBhw5Cfn4/Dhw/LZSpuw1bGme8Js9mMVatWoaioCLGxsYpua3x8PEaNGlWlXkpsc1JSEsLCwtCmTRuMGzcOKSkpAJTZ1u+//x69e/fGXXfdhaCgIPTq1Qv/7//9P3m90r+zDAYDPv/8czz00EOQJEmRr7GjMOw4WFZWFsxmc5WzNwcHByMtLc1JtXIMW/0v17a0tDQEBQXZrddoNPDz87MrU902Ku7DGSwWC6ZNm4a+ffuiW7ducn20Wm2VC8VWbvOV2lNTmfz8fJSUlDREc2p08OBBeHp6QqfT4bHHHsPatWvRpUsXRbYVAFatWoW///4b8+fPr7JOaW3u06cPVqxYgQ0bNmDp0qVITk5G//79UVBQoLi2AsDp06exdOlStG/fHhs3bsSUKVPw5JNPYuXKlXZ1Vup31rp165Cbm4sJEybIdVHaa+woirhcBJEjxMfH49ChQ9i1a5ezq9KgOnbsiH379iEvLw/ffPMNxo8fjx07dji7Wg0iNTUVTz31FDZt2gRXV1dnV6fBjRgxQv53jx490KdPH0RGRmL16tVwc3NzYs0ahsViQe/evfH6668DAHr16oVDhw5h2bJlGD9+vJNr1/A++eQTjBgxAmFhYc6uSpPHnh0HCwgIgFqtrjL7PT09HSEhIU6qlWPY6n+5toWEhCAjI8NuvclkQk5Ojl2Z6rZRcR+NberUqfjxxx+xbds2tG7dWl4eEhICg8GA3Nxcu/KV23yl9tRURq/XN/qPkFarRbt27RATE4P58+fjmmuuwaJFixTZ1sTERGRkZODaa6+FRqOBRqPBjh078N5770Gj0SA4OFhxba7Ix8cHHTp0wMmTJxX5+oaGhqJLly52yzp37iwP3Sn5O+vs2bPYvHkzHn74YXmZEl9jR2HYcTCtVouYmBhs2bJFXmaxWLBlyxbExsY6sWZXLzo6GiEhIXZty8/Px549e+S2xcbGIjc3F4mJiXKZrVu3wmKxoE+fPnKZnTt3wmg0ymU2bdqEjh07wtfXt5FaYyWEwNSpU7F27Vps3boV0dHRdutjYmLg4uJi1+bjx48jJSXFrs0HDx60+8LctGkT9Hq9/EUcGxtrtw1bmabwnrBYLCgrK1NkW4cMGYKDBw9i37598q13794YN26c/G+ltbmiwsJCnDp1CqGhoYp8ffv27VvlVBEnTpxAZGQkAGV+Z9ksX74cQUFBGDVqlLxMia+xwzh7hrQSrVq1Suh0OrFixQpx5MgRMXnyZOHj42M3+72pKigoEP/884/4559/BADxzjvviH/++UecPXtWCGE9jNPHx0esX79eHDhwQNx+++3VHsbZq1cvsWfPHrFr1y7Rvn17u8M4c3NzRXBwsHjggQfEoUOHxKpVq4S7u7tTDuOcMmWK8Pb2Ftu3b7c7nLO4uFgu89hjj4mIiAixdetWsXfvXhEbGytiY2Pl9bZDOYcOHSr27dsnNmzYIAIDA6s9lHPWrFni6NGjYsmSJU45lPO5554TO3bsEMnJyeLAgQPiueeeE5IkiV9//VVxba1JxaOxhFBWm2fOnCm2b98ukpOTxe+//y7i4uJEQECAyMjIUFxbhbCeTkCj0YjXXntNJCUliS+++EK4u7uLzz//XC6jtO8sIaxH+EZERIhnn322yjqlvcaOwrDTQBYvXiwiIiKEVqsV119/vdi9e7ezq1Qr27ZtEwCq3MaPHy+EsB7K+dJLL4ng4GCh0+nEkCFDxPHjx+22kZ2dLe677z7h6ekp9Hq9mDhxoigoKLArs3//ftGvXz+h0+lEq1atxBtvvNFYTbRTXVsBiOXLl8tlSkpKxOOPPy58fX2Fu7u7uOOOO8SFCxfstnPmzBkxYsQI4ebmJgICAsTMmTOF0Wi0K7Nt2zbRs2dPodVqRZs2bez20VgeeughERkZKbRarQgMDBRDhgyRg44QymprTSqHHSW1+Z577hGhoaFCq9WKVq1aiXvuucfunDNKaqvNDz/8ILp16yZ0Op3o1KmT+Oijj+zWK+07SwghNm7cKABUaYcQynyNHUESQgindCkRERERNQLO2SEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CGiJm3ChAkYPXp0leXbt2+HJElVrvBMRFQZww4REREpGsMOESlCbm4uHn74YQQGBkKv12Pw4MHYv3+/vH7u3Lno2bOn3WMq9w5lZ2fjvvvuQ6tWreDu7o7u3bvjq6++asRWEFFDYNghIkW46667kJGRgV9++QWJiYm49tprMWTIEOTk5NR6G6WlpYiJicFPP/2EQ4cOYfLkyXjggQfw559/NmDNiaihaZxdASKiq7Vr1y78+eefyMjIgE6nAwC8/fbbWLduHb755htMnjy5Vttp1aoVnn76afn+E088gY0bN2L16tW4/vrrG6TuRNTwGHaIqNnbv38/CgsL4e/vb7e8pKQEp06dku8fPHgQnp6e8n2z2WxX3mw24/XXX8fq1atx7tw5GAwGlJWVwd3dvWEbQEQNimGHiJq9wsJChIaGYvv27VXW+fj4yP/u2LEjvv/+e/n+nj17cP/998v3FyxYgEWLFmHhwoXo3r07PDw8MG3aNBgMhoasPhE1MIYdImr2rr32WqSlpUGj0SAqKqrGclqtFu3atZPv//vvv3brf//9d9x+++1yALJYLDhx4gS6dOnSIPUmosbBsENETV5eXh727dtnt+zkyZMArENTN9xwA2JjYzF69Gi89dZb6NChA86fP4+ffvoJd9xxB3r37l2r/bRv3x7ffPMN/vjjD/j6+uKdd95Beno6ww5RM8ewQ0RN3vbt29GrV69q1w0YMADbtm3Dzz//jBdeeAETJ05EZmYmQkJCMGDAAAQHB9d6Py+++CJOnz6NYcOGwd3dHZMnT8bo0aORl5fnqKYQkRNIQgjh7EoQEdVXVFQUVqxYgUGDBjm7KkTURPE8O0TUrHXp0sXuCCsiosrYs0NERESKxp4dIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJStP8Pao2cZls/VVgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcO0lEQVR4nO3dd3gU1cIG8Hd2N7upm14hCaF30FAMKqBEqhXsXEVFUAwqRdDYKHpFxStYEPS7CnoVuaKCohTpWAJKLqEIxACBRCCd9LLtfH9sdsiSQhI22WTy/h73MTtzduacnd3k5ZwzM5IQQoCIiIhIoVTOrgARERFRU2LYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiojbPZDIhKysLaWlpzq4KNQGGHSIiajI//PADkpKS5Ofr16/Hn3/+6bwKVZGSkoIpU6YgNDQUWq0WwcHBiImJAW8soDwMO2Rn1apVkCRJfri6uqJr166YPn06MjMznV09ImplDh8+jKeffhopKSnYu3cvHn/8cRQVFTm7Wti7dy8GDRqEHTt24LnnnsOWLVuwdetWrF+/HpIkObt65GAS741FVa1atQoPP/wwFi5ciKioKJSXl+OXX37Bf/7zH0RGRuLIkSNwd3d3djWJqJXIzs7GkCFDcOLECQDA+PHj8c033zi1TgaDAf369YNer8dPP/0Eb29vp9aHmp7G2RWglmnMmDEYMGAAAODRRx+Fv78/3n77bXz33Xe47777nFw7ImotAgMDceTIEfkfSj169HB2lbBhwwYkJyfj+PHjDDptBIexqF5uvPFGAEBqaioAIC8vD8888wz69OkDT09P6PV6jBkzBgcPHqz22vLycsyfPx9du3aFq6srQkNDMX78eJw8eRIAcPr0abuhs0sfw4cPl7e1a9cuSJKE//73v3j++ecREhICDw8P3HrrrUhPT6+273379mH06NHw9vaGu7s7hg0bhl9//bXGNg4fPrzG/c+fP79a2c8//xzR0dFwc3ODn58f7r333hr3X1fbqrJYLFi6dCl69eoFV1dXBAcH47HHHsOFCxfsynXo0AE333xztf1Mnz692jZrqvvixYurvacAUFFRgXnz5qFz587Q6XQIDw/H3LlzUVFRUeN7VdXw4cPRu3fvasvfeustSJKE06dP2y3Pz8/HjBkzEB4eDp1Oh86dO+ONN96AxWKRy9jet7feeqvadnv37l3jZ+Lrr7+utY4PPfQQOnTocNm2dOjQQT4+KpUKISEhuOeeey47abXq62p6VN13fY81AGzatAnDhg2Dl5cX9Ho9Bg4ciNWrVwOo/fNa02fMZDLhlVdeQadOnaDT6dChQwc8//zz1Y5vfdtfUlKC2bNny8ewW7dueOutt6rNdbF9BnU6HaKjo9GjR49aP4M1qdoWtVqNdu3aYerUqcjPz5fLNOb47927F1FRUfjmm2/QqVMnaLVaREREYO7cuSgrK6v2+g8++AC9evWCTqdDWFgY4uLi7OoAXPweJCYmYsiQIXBzc0NUVBRWrFhhV85W3127dsnLzp07hw4dOmDAgAEoLi6Wl1/J95LssWeH6sUWTPz9/QEAp06dwvr163HXXXchKioKmZmZ+PDDDzFs2DAcPXoUYWFhAACz2Yybb74Z27dvx7333ounn34aRUVF2Lp1K44cOYJOnTrJ+7jvvvswduxYu/3Gx8fXWJ9//vOfkCQJzz77LLKysrB06VLExsYiKSkJbm5uAIAdO3ZgzJgxiI6Oxrx586BSqbBy5UrceOON+PnnnzFo0KBq223fvj0WLVoEACguLsa0adNq3PdLL72Eu+++G48++iiys7Px3nvvYejQoThw4AB8fHyqvWbq1Km4/vrrAQDffvst1q1bZ7f+sccek4cQn3rqKaSmpuL999/HgQMH8Ouvv8LFxaXG96Eh8vPz5bZVZbFYcOutt+KXX37B1KlT0aNHDxw+fBhLlizBX3/9hfXr11/xvm1KS0sxbNgwnD17Fo899hgiIiLw22+/IT4+HufPn8fSpUsdtq/Guv766zF16lRYLBYcOXIES5cuxblz5/Dzzz/X+pqlS5fKf6SOHTuG1157Dc8//7zci+Hp6SmXre+xXrVqFR555BH06tUL8fHx8PHxwYEDB7B582bcf//9eOGFF/Doo48CAHJycjBz5ky7z1lVjz76KD799FPceeedmD17Nvbt24dFixbh2LFj1T6Ll2u/EAK33nordu7cicmTJ6N///7YsmUL5syZg7Nnz2LJkiW1vk+1fQbrcscdd2D8+PEwmUxISEjARx99hLKyMvznP/9p0Haqys3NxalTp/D8889j/PjxmD17Nvbv34/FixfjyJEj+PHHH+WwOH/+fCxYsACxsbGYNm0akpOTsXz5cvzxxx/VvpsXLlzA2LFjcffdd+O+++7DV199hWnTpkGr1eKRRx6psS4FBQUYM2YMXFxcsHHjRvmz0pzfyzZBEFWxcuVKAUBs27ZNZGdni/T0dLFmzRrh7+8v3NzcxN9//y2EEKK8vFyYzWa716ampgqdTicWLlwoL/vkk08EAPH2229X25fFYpFfB0AsXry4WplevXqJYcOGyc937twpAIh27dqJwsJCeflXX30lAIh33nlH3naXLl3EqFGj5P0IIURpaamIiooSN910U7V9DRkyRPTu3Vt+np2dLQCIefPmyctOnz4t1Gq1+Oc//2n32sOHDwuNRlNteUpKigAgPv30U3nZvHnzRNWv3s8//ywAiC+++MLutZs3b662PDIyUowbN65a3ePi4sSlX+dL6z537lwRFBQkoqOj7d7T//znP0KlUomff/7Z7vUrVqwQAMSvv/5abX9VDRs2TPTq1ava8sWLFwsAIjU1VV72yiuvCA8PD/HXX3/ZlX3uueeEWq0WaWlpQojGfSbWrl1bax0nTZokIiMj62yHENb3d9KkSXbL7r//fuHu7n7Z115an507d1ZbV99jnZ+fL7y8vMTgwYNFWVmZXdmqn2cb2/u1cuXKauuSkpIEAPHoo4/aLX/mmWcEALFjxw55WX3av379egFAvPrqq3bl7rzzTiFJkjhx4oS8rL6fwdpc+nohrN/Tnj17ys8bc/wnTZokAIiHHnrIrpztu7lhwwYhhBBZWVlCq9WKkSNH2v2+e//99wUA8cknn8jLhg0bJgCIf/3rX/KyiooK0b9/fxEUFCQMBoNdfXfu3CnKy8vF8OHDRVBQkN37JsSVfy/JHoexqEaxsbEIDAxEeHg47r33Xnh6emLdunVo164dAECn00Glsn58zGYzcnNz4enpiW7duuF///ufvJ1vvvkGAQEBePLJJ6vt40rOeHjwwQfh5eUlP7/zzjsRGhqKjRs3AgCSkpKQkpKC+++/H7m5ucjJyUFOTg5KSkowYsQI7Nmzx27YBLAOt7m6uta532+//RYWiwV33323vM2cnByEhISgS5cu2Llzp115g8EAwPp+1Wbt2rXw9vbGTTfdZLfN6OhoeHp6Vtum0Wi0K5eTk4Py8vI663327Fm89957eOmll+x6GWz779GjB7p37263TdvQ5aX7vxJr167F9ddfD19fX7t9xcbGwmw2Y8+ePXblS0tLq7XVbDbXuO2ioiLk5ORUG15oqIqKCuTk5CArKwtbt27Fjh07MGLEiCvapk19j/XWrVtRVFSE5557rtpnsqHfG9t3YtasWXbLZ8+eDQD48ccf7ZZfrv0bN26EWq3GU089VW17Qghs2rSpxnrU9Rmsi+0zkJGRgW+++QYHDx6s8Xg05vjPmTPH7vnMmTOhVqvl92Tbtm0wGAyYMWOG/PsOAKZMmQK9Xl/tvdNoNHjsscfk51qtFo899hiysrKQmJhoV9ZiseDBBx/E3r17sXHjRrtebqB5v5dtAYexqEbLli1D165dodFoEBwcjG7dutl92S0WC9555x188MEHSE1NtfsDZBvqAqzDX926dYNG49iPWpcuXeyeS5KEzp07y/NDUlJSAACTJk2qdRsFBQXw9fWVn+fk5FTb7qVSUlIghKi13KXDTbZfvHX9ck9JSUFBQQGCgoJqXJ+VlWX3/KeffkJgYGCd9bzUvHnzEBYWhscee6za3IaUlBQcO3as1m1euv8rkZKSgkOHDtV7X/PmzcO8efOqlQsODq62rOowgaenJ2655RYsWbKkxrJ1WbNmDdasWSM/HzhwIP797383aBu1qe+xtg0b1zQXqqHOnDkDlUqFzp072y0PCQmBj48Pzpw5Y7f8cu0/c+YMwsLC7P6xAUAesrt0ezZ1fQbrsnjxYixevFh+Pnr0aLzxxhvVyjXk+NvmJF36Pfb29kZoaKj8e8TWlm7dutmV02q16NixY7W2hoWFwcPDw25Z165dAVjnoV1zzTXy8hdeeAF79+6FJEkoLS2tVsfm/F62BQw7VKNBgwbJZ2PV5LXXXsNLL72ERx55BK+88gr8/PygUqkwY8aMaj0mzmCrw+LFi9G/f/8ay1QNIAaDAefPn8dNN9102e1KkoRNmzZBrVbXuU0AyMjIAGD9w1LXNoOCgvDFF1/UuP7SX3aDBw/Gq6++arfs/fffx3fffVfj648dO4ZVq1bh888/r3Huj8ViQZ8+ffD222/X+Prw8PBa695QFosFN910E+bOnVvjetsfBpupU6firrvusls2ZcqUGl/78ssv4/rrr4fRaERiYiIWLlyI/Px8uWejvkaOHCn/i//vv//GG2+8gRtuuAH79++X54M1VkOPtSPVt0eoKdp/uc9gXR544AE8+OCDsFgsOHXqFF555RXcfPPN2LZtm12bGnL8be1w5vV09u3bh1WrVuH999/H1KlTkZSUZNcD3Jzfy7aAYYca5euvv8YNN9yAjz/+2G55fn4+AgIC5OedOnXCvn37YDQaHTLJ1sbWc2MjhMCJEyfQt29feb8AoNfrERsbe9ntHTx4EEajsc6AZ9uuEAJRUVHV/jDX5OjRo5Akqdq/DC/d5rZt23DttdfW649JQEBAtTbVNVkxPj4e/fv3xz333FPr/m1DA039y79Tp04oLi6u1zEBrD14l5a99F/ONn369JHLjhkzBmlpafj0009hMpkaVMfQ0FC7fXbr1g1DhgzB+vXrr/iyC/U91rbP75EjR6r1yDRUZGQkLBYLUlJS7E77zszMRH5+PiIjI+3KX679kZGR2LZtG4qKiux6d44fPy7v71KX+wzWpWPHjnb18fb2xv3334+9e/ciJiZGXt6Q4x8VFVXje1JYWIjz58/LZzza2pKcnIyOHTvK5QwGA1JTU6t9Ns+dO4eSkhK7z+hff/0FANXOBlywYAEmTZqE/v37Y8CAAXj11VfxyiuvyOub83vZFnDODjWKWq2udprp2rVrcfbsWbtlEyZMQE5ODt5///1q27j09Q3x2Wef2V2F9euvv8b58+cxZswYAEB0dDQ6deqEt956y+5UTpvs7OxqdVer1TWe1l3V+PHjoVarsWDBgmr1F0IgNzdXfm4ymfDNN99g0KBBdQ5j3X333TCbzXa/6Kpu40rmoCQkJOC7777D66+/XusvzLvvvhtnz57F//3f/1VbV1ZWhpKSkkbvv6Z9JSQkYMuWLdXW5efnNziY1MVisUClUl3xHwrbqciOON23vsd65MiR8PLywqJFi6rNx2ro98Z2huOlZ7rZegzGjRtX5+svbf/YsWNhNpurfaeXLFkCSZLk76BNfT6DDVHf41HX8a/tPXnnnXfkM0gB69xFrVaLd9991+59//jjj1FQUFDtvTOZTPjwww/l5waDAR9++CECAwMRHR1tV9Z21ly/fv3wzDPP4I033sCRI0fk9c35vWwL2LNDjXLzzTdj4cKFePjhhzFkyBAcPnwYX3zxhd2/fgDrROLPPvsMs2bNwu+//47rr78eJSUl2LZtG5544gncdtttjdq/n58frrvuOjz88MPIzMzE0qVL0blzZ3mIQ6VS4d///jfGjBmDXr164eGHH0a7du1w9uxZ7Ny5E3q9Hhs2bEBJSQmWLVuGd999F127drW79oUtJB06dAgJCQmIiYlBp06d8OqrryI+Ph6nT5/G7bffDi8vL6SmpmLdunWYOnUqnnnmGWzbtg0vvfQSDh06hA0bNtTZlmHDhuGxxx7DokWLkJSUhJEjR8LFxQUpKSlYu3Yt3nnnHdx5552Nep9++ukn3HTTTXX2pDzwwAP46quv8Pjjj2Pnzp249tprYTabcfz4cXz11VfYsmXLZXu8iouLsXnzZrtlycnJAIDdu3fDxcUF7dq1w5w5c/D999/j5ptvxkMPPYTo6GiUlJTg8OHD+Prrr3H69Gm7nsGGSEpKgqenJ0wmExITE/HZZ5/htttuq3G4sS6nTp3C559/DsA6qfb999+HXq93yCTl+h5rvV6PJUuW4NFHH8XAgQNx//33w9fXFwcPHkRpaSk+/fTTeu+zX79+mDRpEj766CPk5+dj2LBh+P333/Hpp5/i9ttvxw033NCg9t9yyy244YYb8MILL+D06dPo168ffvrpJ3z33XeYMWNGtYm29fkM1uXQoUP4/PPPIYTAyZMn8e6776J9+/bVPpMNOf69evXC5MmT8dFHH+HChQsYPnw4/ve//+GTTz7BmDFj5DAUGBiI+Ph4LFiwAKNHj8att96K5ORkfPDBBxg4cCD+8Y9/2G03LCwMb7zxBk6fPo2uXbviv//9L5KSkvDRRx/V2bM9b948fPPNN5gyZQp+/fVXqFQqh3wvqQonnQVGLZTt1PM//vijznLl5eVi9uzZIjQ0VLi5uYlrr71WJCQkiGHDhlU7pbS0tFS88MILIioqSri4uIiQkBBx5513ipMnTwohGnea8Zdffini4+NFUFCQcHNzE+PGjRNnzpyp9voDBw6I8ePHC39/f6HT6URkZKS4++67xfbt2+32fbnHpafjfvPNN+K6664THh4ewsPDQ3Tv3l3ExcWJ5ORkIYQQTz75pBg6dKjYvHlztTpdeuq5zUcffSSio6OFm5ub8PLyEn369BFz584V586dk8s09NRzSZJEYmKi3fKajpHBYBBvvPGG6NWrl9DpdMLX11dER0eLBQsWiIKCgmr7u3R7l3v/qp4SXVRUJOLj40Xnzp2FVqsVAQEBYsiQIeKtt96ST89tzGfC9tBoNCIyMlI89dRT4sKFC0KIhp16XnVbAQEBYuTIkSIhIeGyr720PjWdem5Tn2MthBDff/+9GDJkiHBzcxN6vV4MGjRIfPnll9W2V9ep50IIYTQaxYIFC+TvYHh4uIiPjxfl5eWNan9RUZGYOXOmCAsLEy4uLqJLly5i8eLF1U6Lb8hnsCZV6yJJkggJCRHjx48Xx44dk8s09vgbjUaxcOFCu/dk7ty5orS0tFo93n//fdG9e3fh4uIigoODxbRp0+RtV21Tr169xP79+0VMTIxwdXUVkZGR4v3337crV9vnY9euXUKSJPnyGUJc2feS7PHeWNSq7Nq1CzfccAPWrl3b6N6Oqk6fPo2oqCikpqbWeoXd+fPn4/Tp01i1atUV768t6tChA+bPn4+HHnrI2VUhajLDhw9HTk6O3VAUtRycs0NERESKxjk71KZ5enpi4sSJdU4g7tu3r3z7C2q4YcOGyRejJCJyBoYdatMCAgLkyZi1GT9+fDPVRpkaMpmWiKgpcM4OERERKRrn7BAREZGiMewQERGRonHODqxX2jx37hy8vLx4WW4iIqJWQgiBoqIihIWF2d2s+lIMO7Dez4Q3VSMiImqd0tPT0b59+1rXM+wA8s3s0tPTodfrnVwbIiIiqo/CwkKEh4fb3ZS2Jgw7gDx0pdfrGXaIiIhamctNQeEEZSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSnhp3ly5ejb9++8infMTEx2LRpk7y+vLwccXFx8Pf3h6enJyZMmIDMzEy7baSlpWHcuHFwd3dHUFAQ5syZA5PJ1NxNISIiohbKqWGnffv2eP3115GYmIj9+/fjxhtvxG233YY///wTADBz5kxs2LABa9euxe7du3Hu3DmMHz9efr3ZbMa4ceNgMBjw22+/4dNPP8WqVavw8ssvO6tJRERE1MJIQgjh7EpU5efnh8WLF+POO+9EYGAgVq9ejTvvvBMAcPz4cfTo0QMJCQm45pprsGnTJtx88804d+4cgoODAQArVqzAs88+i+zsbGi12nrts7CwEN7e3igoKOBFBYmIiFqJ+v79bjFzdsxmM9asWYOSkhLExMQgMTERRqMRsbGxcpnu3bsjIiICCQkJAICEhAT06dNHDjoAMGrUKBQWFsq9QzWpqKhAYWGh3YOIiIiUyelh5/Dhw/D09IROp8Pjjz+OdevWoWfPnsjIyIBWq4WPj49d+eDgYGRkZAAAMjIy7IKObb1tXW0WLVoEb29v+cGbgBIRESmX08NOt27dkJSUhH379mHatGmYNGkSjh492qT7jI+PR0FBgfxIT09v0v0RERGR8zj9RqBarRadO3cGAERHR+OPP/7AO++8g3vuuQcGgwH5+fl2vTuZmZkICQkBAISEhOD333+3257tbC1bmZrodDrodDoHt4SIiIhaIqf37FzKYrGgoqIC0dHRcHFxwfbt2+V1ycnJSEtLQ0xMDAAgJiYGhw8fRlZWllxm69at0Ov16NmzZ7PXnYiIiFoep/bsxMfHY8yYMYiIiEBRURFWr16NXbt2YcuWLfD29sbkyZMxa9Ys+Pn5Qa/X48knn0RMTAyuueYaAMDIkSPRs2dPPPDAA3jzzTeRkZGBF198EXFxcS2i58ZsNiMtLU1+HhERAbVa7cQaERERtT1ODTtZWVl48MEHcf78eXh7e6Nv377YsmULbrrpJgDAkiVLoFKpMGHCBFRUVGDUqFH44IMP5Ner1Wr88MMPmDZtGmJiYuDh4YFJkyZh4cKFzmqSnbS0NPzr29/gExiC/OwMzB4PREVFObtaREREbUqLu86OMzTVdXZSU1Px8c+n4B8ajtzz6Zh8fUeGHSIiIgep799vp09QbissFrN81heHs4iIiJoPw04zKczNwidniuHpmc7hLCIiombEsNOM9AHB0HvxdhRERETNqcWdek5ERETkSAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaBpnV4AAs9mMtLQ0+XlERATUarUTa0RERKQcDDstQFpaGv717W/wCQxBfnYGZo8HoqKinF0tIiIiRWDYaSF8AkPgHxru7GoQEREpDufsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiaZxdgbbMbDYjLS0N6enpEBDOrg4REZEiMew4UVpaGv717W8ozM2CT7sOCAh1do2IiIiUh2HHyXwCQwD26hARETUZztkhIiIiRWPYISIiIkVj2CEiIiJFc2rYWbRoEQYOHAgvLy8EBQXh9ttvR3Jysl2Z4cOHQ5Iku8fjjz9uVyYtLQ3jxo2Du7s7goKCMGfOHJhMpuZsChEREbVQTp2gvHv3bsTFxWHgwIEwmUx4/vnnMXLkSBw9ehQeHh5yuSlTpmDhwoXyc3d3d/lns9mMcePGISQkBL/99hvOnz+PBx98EC4uLnjttdeatT1ERETU8jg17GzevNnu+apVqxAUFITExEQMHTpUXu7u7o6QkJAat/HTTz/h6NGj2LZtG4KDg9G/f3+88sorePbZZzF//nxotdombQMRERG1bC1qzk5BQQEAwM/Pz275F198gYCAAPTu3Rvx8fEoLS2V1yUkJKBPnz4IDg6Wl40aNQqFhYX4888/a9xPRUUFCgsL7R5ERESkTC3mOjsWiwUzZszAtddei969e8vL77//fkRGRiIsLAyHDh3Cs88+i+TkZHz77bcAgIyMDLugA0B+npGRUeO+Fi1ahAULFjRRS4iIiKglaTFhJy4uDkeOHMEvv/xit3zq1Knyz3369EFoaChGjBiBkydPolOnTo3aV3x8PGbNmiU/LywsRHh4eOMqTkRERC1aixjGmj59On744Qfs3LkT7du3r7Ps4MGDAQAnTpwAAISEhCAzM9OujO15bfN8dDod9Hq93YOIiIiUyalhRwiB6dOnY926ddixYweioqIu+5qkpCQAQGio9UZSMTExOHz4MLKysuQyW7duhV6vR8+ePZuk3kRERNR6OHUYKy4uDqtXr8Z3330HLy8veY6Nt7c33NzccPLkSaxevRpjx46Fv78/Dh06hJkzZ2Lo0KHo27cvAGDkyJHo2bMnHnjgAbz55pvIyMjAiy++iLi4OOh0Omc2j4iIiFoAp/bsLF++HAUFBRg+fDhCQ0Plx3//+18AgFarxbZt2zBy5Eh0794ds2fPxoQJE7BhwwZ5G2q1Gj/88APUajViYmLwj3/8Aw8++KDddXmIiIio7XJqz44Qdd/tOzw8HLt3777sdiIjI7Fx40ZHVYuIiIgUpMWcjUVWFosZ6enpAICIiAio1Won14iIiKh1Y9hpYQpzs/DJmWJ4eqZj9njUa9I2ERER1Y5hpwXSBwRD78XT4YmIiByBYaeFqjqcBXBIi4iIqLEYdloo23BW+ygj8rMzOKRFRETUSAw7LZg+IBj+obyNBRER0ZVoEbeLICIiImoqDDtERESkaAw7REREpGgMO0RERKRoDDstwGXumkFERERXgGHHyQ5kGrEtzxt5FZKzq0JERKRIDDtOZBECKRfMqLCo8HuOBvmlBmdXiYiISHEYdpzoVF4FDBbrzwaLhO+SzsFgYQ8PERGRIzHsONHBcyUAAB+NCW5qgfwyI06Uujq5VkRERMrCsONEB8+VAgBCdAZ08zYDAPJNvP8VERGRI/F2EU5isQgczLCGHX8XE1xcXAAAhSYNhDA6s2pERESKwp4dJ0nJKkZhuRlqCfDWmOHpIqBWSTAJCSUmZ9eOiIhIORh2nGTvqVwAQJC7CioJUElAgKcWAFBg5GEhIiJyFP5VdZJ9qRfDjk2Ql3VycoGBZ2QRERE5CsOOEwghsO9UHgAg2KNq2NEBAPIZdoiIiByGYccJ8svNyC0xQALg73ox2ARWhp1Co8RbSBARETkIw44T5JZaZyD7uKmhVl0MO/6eWkgQMFgklPPigkRERA7BsOMEeZWnW/m525/5r1Gp4KW2Xm+nwMSrAhARETkCw44T5JRar6Pj71490Hi72MIOLy5IRETkCAw7TpBXOYzl7+5SbZ1ew7BDRETkSAw7TpArh53qPTv6ymGsIoYdIiIih2DYcQJb2Ll0zg4AuFeGnXKLChaekUVERHTFGHacIK+Onh1XlYAEAQEJ5ebmrhkREZHyMOw4QV3DWJIE2BaXmXj6ORER0ZVi2GlmQgjkVp567u9R8+nlbmrr+FWpmWGHiIjoSjHsNDODBTBWTsbxc6s57LhrKsMO735ORER0xRh2mlmZ0RpkvN1coNXU/Pa7s2eHiIjIYRh2mlmZyRpkbDf9rIkb5+wQERE5DMNOMyurHJoK1rvWWubiMBbDDhER0ZVi2Glm9enZsQ1jlZkBC29/TkREdEUYdpqZLewE6msPO65qyNfaKangLGUiIqIrwbDTzC727NQ+jCVJgJvKAgAoLGPYISIiuhIMO82sPsNYAOCurgw75cYmrxMREZGSMew0M1tHzeXCjhvDDhERkUMw7DQz23V2guo4GwvgMBYREZGj1HwJX2oSJgtQOYqFsrwM5GSchUDNZ1txGIuIiMgxGHaake0u5mpYsHrvaaQdPwSfdh1qLGvr2SkqNwFQN08FiYiIFIjDWM2ovPL2D64aCf6h4dD7B9Za1l1tTUZF5UZea4eIiOgKMOw0I4O1swY61eXDi6tKQIKARVyc1ExEREQNx7DTjIwWa8+OSz3edUkCdJWjV7bT1YmIiKjhGHaakbGyZ8elHj07AOBqu20Eww4REVGjMew0I6Oof88OYL1tBHDxdHUiIiJqOIadZnSxZ6d+5W09O6Xs2SEiImo0p4adRYsWYeDAgfDy8kJQUBBuv/12JCcn25UpLy9HXFwc/P394enpiQkTJiAzM9OuTFpaGsaNGwd3d3cEBQVhzpw5MJla3qxeW9jRSA0dxmqqGhERESmfU8PO7t27ERcXh71792Lr1q0wGo0YOXIkSkpK5DIzZ87Ehg0bsHbtWuzevRvnzp3D+PHj5fVmsxnjxo2DwWDAb7/9hk8//RSrVq3Cyy+/7Iwm1cnUgAnKAOBaWY7DWERERI3n1IsKbt682e75qlWrEBQUhMTERAwdOhQFBQX4+OOPsXr1atx4440AgJUrV6JHjx7Yu3cvrrnmGvz00084evQotm3bhuDgYPTv3x+vvPIKnn32WcyfPx9ardYZTatRYycocxiLiIio8VrUnJ2CggIAgJ+fHwAgMTERRqMRsbGxcpnu3bsjIiICCQkJAICEhAT06dMHwcHBcplRo0ahsLAQf/75Z437qaioQGFhod2jOdg6aBo8QZlhh4iIqNFaTNixWCyYMWMGrr32WvTu3RsAkJGRAa1WCx8fH7uywcHByMjIkMtUDTq29bZ1NVm0aBG8vb3lR3h4uINbU7OGXGcHAHSVPTsVZsBgtjRVtYiIiBStxYSduLg4HDlyBGvWrGnyfcXHx6OgoEB+pKenN/k+gYZPUNaqAJU1HyGvlLOUiYiIGqNFhJ3p06fjhx9+wM6dO9G+fXt5eUhICAwGA/Lz8+3KZ2ZmIiQkRC5z6dlZtue2MpfS6XTQ6/V2j6ZmEYC5gdfZkSTAQ2edVsWwQ0RE1DhODTtCCEyfPh3r1q3Djh07EBUVZbc+OjoaLi4u2L59u7wsOTkZaWlpiImJAQDExMTg8OHDyMrKksts3boVer0ePXv2bJ6G1IOpMugA9Q87AOBZGXZyShh2iIiIGsOpZ2PFxcVh9erV+O677+Dl5SXPsfH29oabmxu8vb0xefJkzJo1C35+ftDr9XjyyScRExODa665BgAwcuRI9OzZEw888ADefPNNZGRk4MUXX0RcXBx0Op0zm2fHdvVkNYQ8NFUfHlrrIcplzw4REVGjODXsLF++HAAwfPhwu+UrV67EQw89BABYsmQJVCoVJkyYgIqKCowaNQoffPCBXFatVuOHH37AtGnTEBMTAw8PD0yaNAkLFy5srmbUi+0aO5p6nnZu41F5N9CcEqPD60RERNQWODXsCHH5P/yurq5YtmwZli1bVmuZyMhIbNy40ZFVczj5vlj1nJxsY5uzw54dIiKixmkRE5TbgsaGHU+GHSIioivCsNNMbBOUGzqM5a61DWMx7BARETUGw04zkS8o2OieHc7ZISIiagyGnWZycRirYVdCts3ZKaqwoNxodni9iIiIlI5hp5nIw1gN7NnRaVRQV56qnl1U4ehqERERKR7DTjO5eF+shoUdSZLgprG+NrOw3OH1IiIiUjqGnWbS2LOxAMCt8gIBGQw7REREDcaw00xMVxR2rK/lMBYREVHDMew0E2MjTz0HLoadnGKGHSIiooZi2Gkmpkaeeg4AruzZISIiajSGnWZyJXN2XCvn7OQUGxxZJSIiojaBYacZCCEcMozFnh0iIqKGY9hpBgazBQAnKBMRETkDw04zMJisV01WQTTqDbfN2cktqYDF0vCwRERE1JYx7DSDisqwo1EBktTw17ta7wUKo1mgoIz3yCIiImoIhp1mUGG0hh2XRr7bapUEL531xdk8/ZyIiKhBGHaaQYXJegPPht4qoiq/ysso53DeDhERUYMw7DQD25wdl0YMYdn4uVvDDnt2iIiIGoZhpxnY5uxcSc+Ob2XPDs/IIiIiahiGnWZwMew0fhvs2SEiImochp1mYJuzo7mCd5s9O0RERI2jaewLS0pKsHv3bqSlpcFgsL+NwVNPPXXFFVMS25wdTSMuKGhj69nhLSOIiIgaplFh58CBAxg7dixKS0tRUlICPz8/5OTkwN3dHUFBQQw7l7BeQfnKenb82LNDRETUKI368ztz5kzccsstuHDhAtzc3LB3716cOXMG0dHReOuttxxdx1bPaLb26Giu4GwsX3frlQVziiqQmpqK1NRUmM1mR1SPiIhI0RoVdpKSkjB79myoVCqo1WpUVFQgPDwcb775Jp5//nlH17HVM5oc17OTW1KBt775Df/69jekpaU5onpERESK1qg/vy4uLlCprC8NCgqS/+h6e3sjPT3dcbVTCHkY6wrm7Pi4aSBJgEUArn7B8AkMcVT1iIiIFK1Rc3auuuoq/PHHH+jSpQuGDRuGl19+GTk5OfjPf/6D3r17O7qOrZ5RDjuN34ZaJcHPXYvcEgPKTUK+EzoRERHVrVE9O6+99hpCQ0MBAP/85z/h6+uLadOmITs7Gx999JFDK6gEjpigDACBXjoAQJmJdz4nIiKqr0b17AwYMED+OSgoCJs3b3ZYhZTIWBlO1FcwjAUAAZ46AEUoNzmgUkRERG1Eo/oabrzxRuTn5zu4KsokhLg4jMWeHSIiombXqD+/u3btqnYhQaqZWQC2aHKl02wCPLUAgHKGHSIionprdF+DJHGCbH1UnnUOAFBf4Vsm9+yYGXaIiIjqq9G3i7jjjjug1WprXLdjx45GV0hpjJaL83Uk6WIvT2PYwg7n7BAREdVfo8NOTEwMPD09HVkXRbL17FzJNXZsrBOUOYxFRETUEI0KO5IkYc6cOQgKCnJ0fRTH6MCwwwnKREREDdeoOTtC8I9tfZksjjntHLjYs1NhBiw8BkRERPXSqLAzb948DmHVkyN7dnzdtVBVTnLmvB0iIqL6adQw1rx58wAA2dnZSE5OBgB069YNgYGBjquZQth6dhxxdwe1SoKvmwa5pSYOZREREdVTo3p2SktL8cgjjyAsLAxDhw7F0KFDERYWhsmTJ6O0tNTRdWzVjGbr/x3RswMAvpV3P+ckZSIiovppVNiZOXMmdu/eje+//x75+fnIz8/Hd999h927d2P27NmOrmOrZjsbyxFzdgDAz10NACjntXaIiIjqpVHDWN988w2+/vprDB8+XF42duxYuLm54e6778by5csdVb9WzygPYwkAVz6WZevZKeOcHSIionpp9DBWcHBwteVBQUEcxrqEI6+zAwB+7hzGIiIiaohGhZ2YmBjMmzcP5eXl8rKysjIsWLAAMTExDqucEhgdeOo5APjJPTsMO0RERPXRqGGspUuXYvTo0Wjfvj369esHADh48CBcXV2xZcsWh1awtbvYs+OY7fm6M+wQERE1RKPCTp8+fZCSkoIvvvgCx48fBwDcd999mDhxItzc3BxawdbOkdfZAS727PA6O0RERPXTqLCzZ88eDBkyBFOmTHF0fRTHkVdQBi727HDODhERUf00as7ODTfcgLy8PEfXRZGaqmfHYAEMZotDtklERKRkvDdWE3P02VheOpV80C6Umh2yTSIiIiVrVNgBgISEBOzZs6fGR33t2bMHt9xyC8LCwiBJEtavX2+3/qGHHoIkSXaP0aNH25XJy8vDxIkTodfr4ePjg8mTJ6O4uLixzXI4R5+NJUkSXCsHH/N4sR0iIqLLatScHQC44447alwuSRLM5vr1OJSUlKBfv3545JFHMH78+BrLjB49GitXrpSf63Q6u/UTJ07E+fPnsXXrVhiNRjz88MOYOnUqVq9eXc+WNC1Hn40FAK4aCaUmgQulDDtERESX0+iwk5GRgaCgoCva+ZgxYzBmzJg6y+h0OoSEhNS47tixY9i8eTP++OMPDBgwAADw3nvvYezYsXjrrbcQFhZ2RfW7UmaLgO2uDo4axgIAN40EQLBnh4iIqB4aNYwlSQ7spriMXbt2ISgoCN26dcO0adOQm5srr0tISICPj48cdAAgNjYWKpUK+/btq3WbFRUVKCwstHs0hTLjxQnEjhrGAqw9OwBwgWGHiIjoslr0BOXRo0fjs88+w/bt2/HGG29g9+7dGDNmjDxMVlPvkkajgZ+fHzIyMmrd7qJFi+Dt7S0/wsPDm6T+trCjkgC1A/Ohm23ODoexiIiILqtRw1gWS/Oc8nzvvffKP/fp0wd9+/ZFp06dsGvXLowYMaLR242Pj8esWbPk54WFhU0SeEorw46LutHzwGtk69lh2CEiIrq8Rv0VXrRoET755JNqyz/55BO88cYbV1yp2nTs2BEBAQE4ceIEACAkJARZWVl2ZUwmE/Ly8mqd5wNY5wHp9Xq7R1Ow9exoNY4NO24cxiIiIqq3Rv0V/vDDD9G9e/dqy3v16oUVK1ZccaVq8/fffyM3NxehoaEArDckzc/PR2Jiolxmx44dsFgsGDx4cJPVo76aqmfHTW3r2eF1doiIiC6nUcNYGRkZcuCoKjAwEOfPn6/3doqLi+VeGgBITU1FUlIS/Pz84OfnhwULFmDChAkICQnByZMnMXfuXHTu3BmjRo0CAPTo0QOjR4/GlClTsGLFChiNRkyfPh333nuv08/EAqr07Dh8GMv6f/bsEBERXV6j/gqHh4fj119/rbb8119/bVDI2L9/P6666ipcddVVAIBZs2bhqquuwssvvwy1Wo1Dhw7h1ltvRdeuXTF58mRER0fj559/trvWzhdffIHu3btjxIgRGDt2LK677jp89NFHjWmWw13s2XHs2Wu2OTulRguO/nUSqamp9b62ERERUVvTqJ6dKVOmYMaMGTAajbjxxhsBANu3b8fcuXMxe/bsem9n+PDhdZ7ZtWXLlstuw8/Pr8VcQPBSTTVnx0UFqCBggYQP95yCuSALs8cDUVFRDt0PERGREjQq7MyZMwe5ubl44oknYDAYAACurq549tlnER8f79AKtmZlRmtvi4taBTiw40WSJOhUFpRZ1ND5BEGrdWyYIiIiUpJGhR1JkvDGG2/gpZdewrFjx+Dm5oYuXbpUu5VDW1dWdYKyg0eZdCqBMgtQUmGG1rGbJiIiUpRG3y4CADw9PTFw4EBH1UVxSptogjIA6FTWbZcaTPBVO3zzREREitHosLN//3589dVXSEtLk4eybL799tsrrpgSlDXRBGXA2rMDAKUGM+Dm8M0TEREpRqO6HNasWYMhQ4bg2LFjWLduHYxGI/7880/s2LED3t7ejq5jqyWHHQdPUAYu9uyUGHj6ORERUV0a9Vf4tddew5IlS7BhwwZotVq88847OH78OO6++25EREQ4uo6tVlNdZwe4GHbKDDzlnIiIqC6N+it88uRJjBs3DgCg1WpRUlICSZIwc+bMFnONm5agrImuoAxcHMYqqWDYISIiqkuj/gr7+vqiqKgIANCuXTscOXIEAJCfn4/S0lLH1a6Vky8qqGmKOTsXJygTERFR7Ro1QXno0KHYunUr+vTpg7vuugtPP/00duzYga1bt17R3ciVpuowVoWDt111grIQPB2LiIioNo0KO++//z7Ky8sBAC+88AJcXFzw22+/YcKECXjxxRcdWsHWrG+oO4xGE9y1miYIO9YgZbIIVGYqIiIiqkGDwk5hYaH1RRoNPD095edPPPEEnnjiCcfXrpWbPTQMH/9cDj8PLS44eNsaCVBLAmYhodxU+y03iIiI2roGhR0fHx9I0uXnn/CmlM3DVQ2UmIByTtshIiKqVYPCzs6dO+2eCyEwduxY/Pvf/0a7du0cWjG6PJ1KoAQSyszs2SEiIqpNg8LOsGHDqi1Tq9W45ppr0LFjR4dViupHVzkvmcNYREREtePtslsxndoacsoYdoiIiGp1RWEnPT0dpaWl8Pf3d1R9qAFsp59zzg4REVHtGjSM9e6778o/5+Tk4Msvv8SNN97I+2E5iWvlMBZ7doiIiGrXoLCzZMkSAIAkSQgICMAtt9zC6+o4EYexiIiILq9BYSc1NbWp6kGNoKschOQEZSIiotpxgnIrZuvZKTdbLwNARERE1THstGK2U88tAig28J4RRERENWHYacXUEqDTWA9hXilPySIiIqoJw04r5661du8w7BAREdWMYaeVc9da55hfKGPYISIiqgnDTivnwZ4dIiKiOjHstHLs2SEiIqobw04r565jzw4REVFdGHZaOXmCMnt2iIiIasSw08pdHMYyO7kmRERELRPDTivHCcpERER1Y9hp5apOULZYeMsIIiKiSzHstHJulT07FgFcKDU4uTZEREQtT4Puek7OYbGYkZ6eDgBIT0+HwMUeHLVKgk4NVJiB7OIK+HvqnFVNIiKiFolhpxUozM3CJ2eK0T7KiLTjh+DTroPdeleNhAqzQE6RAQhxTh2JiIhaKg5jtRL6gGD4h4ZD7x9YbZ2bRgIAZBeXN3e1iIiIWjyGHQVwtU7bsfbsEBERkR2GHQW42LNT4eSaEBERtTwMOwrgags7RQw7REREl2LYUQBbz04Oe3aIiIiqYdhRANfKc+rYs0NERFQdw44CsGeHiIiodgw7CmCbs5NbYoDJbHFybYiIiFoWhh0F0KkBlQQIAeSV8PRzIiKiqhh2FEAlSfCuvNgOTz8nIiKyx7CjEH7u1lnKnKRMRERkj2FHIXzdGHaIiIhqwrCjEP6VPTtZDDtERER2GHYUItDDBQCQUcCbgRIREVXFsKMQgZ7Wnp2MQoYdIiKiqpwadvbs2YNbbrkFYWFhkCQJ69evt1svhMDLL7+M0NBQuLm5ITY2FikpKXZl8vLyMHHiROj1evj4+GDy5MkoLi5uxla0DAHu7NkhIiKqiVPDTklJCfr164dly5bVuP7NN9/Eu+++ixUrVmDfvn3w8PDAqFGjUF5+8Q/6xIkT8eeff2Lr1q344YcfsGfPHkydOrW5mtBi2Hp2zjPsEBER2dE4c+djxozBmDFjalwnhMDSpUvx4osv4rbbbgMAfPbZZwgODsb69etx77334tixY9i8eTP++OMPDBgwAADw3nvvYezYsXjrrbcQFhbWbG1xNtucnZziChhMFmg1HKEkIiICWvCcndTUVGRkZCA2NlZe5u3tjcGDByMhIQEAkJCQAB8fHznoAEBsbCxUKhX27dtX67YrKipQWFho92jtvF3V0KqthzOT83aIiIhkLTbsZGRkAACCg4PtlgcHB8vrMjIyEBQUZLdeo9HAz89PLlOTRYsWwdvbW36Eh4c7uPbNT5IkhHi7AmDYISIiqqrFhp2mFB8fj4KCAvmRnp7u7Co5hC3scN4OERHRRS027ISEhAAAMjMz7ZZnZmbK60JCQpCVlWW33mQyIS8vTy5TE51OB71eb/dQghC9NezwjCwiIqKLWmzYiYqKQkhICLZv3y4vKywsxL59+xATEwMAiImJQX5+PhITE+UyO3bsgMViweDBg5u9zs4Wyp4dIiKiapx6NlZxcTFOnDghP09NTUVSUhL8/PwQERGBGTNm4NVXX0WXLl0QFRWFl156CWFhYbj99tsBAD169MDo0aMxZcoUrFixAkajEdOnT8e9997bps7EsrENY2UUljm5JkRERC2HU8PO/v37ccMNN8jPZ82aBQCYNGkSVq1ahblz56KkpARTp05Ffn4+rrvuOmzevBmurq7ya7744gtMnz4dI0aMgEqlwoQJE/Duu+82e1taAlvPDoexiIiILnJq2Bk+fDiEELWulyQJCxcuxMKFC2st4+fnh9WrVzdF9VqdEG83AAw7REREVbXYOTvUcLaencyiCpgttYdIIiKitoRhR0ECPHVQqySYLQI5xRXOrg4REVGLwLCjIGqVhCAvHQAOZREREdkw7CiAxWJGeno6UlNTEaK3hh2efk5ERGTl1AnK5BiFuVn45EwxPD3Tofey3voio4CnnxMREQEMO4qhDwiG3ksPV7X17ufneX8sIiIiABzGUpxAD2vY4ZwdIiIiK4YdhQn0tHbWncvnMBYRERHAsKM4oV5aAEB6HsMOERERwLCjOCFe1mGszKJyVJjMTq4NERGR8zHsKIy3qxruWjWEAM7lc94OERERw47CSJKE9r7We2Sl55U6uTZERETOx7CjQOG+7gCAvy9w3g4RERHDjgLJPTsX2LNDRETEsKNA4X7s2SEiIrJh2FEgztkhIiK6iGFHgdpzzg4REZGMYUdBbHc/txRlAwByiitQZuC1doiIqG3jjUAVxHb38/ZRRmgkAZOQcDa/FJ2DvJxdNSIiIqdhz47C6AOC4R8aDi+t9dDythFERNTWMewolKdWAgD8zdPPiYiojWPYUSgPF2vYSeckZSIiauMYdhTK0xZ2ePo5ERG1cQw7CuUhD2OxZ4eIiNo2hh2Fknt2OGeHiIjaOIYdhfKq7NnJLzXiQonBybUhIiJyHoYdhdKoJAR5Wi+jdCqn2Mm1ISIich6GHQWL8NEBAE5mlTi5JkRERM7DsKNg4baww54dIiJqwxh2FCzcWwuAPTtERNS2MewoWISPNeycymbPDhERtV0MOwpmm7OTllcKo9ni5NoQERE5B8OOggV4aOCuVcNkETiTy+vtEBFR28Swo1AWixl///032uldAHAoi4iI2i6NsytATaMwNwufnClGiSUYgBYnszlJmYiI2ib27CiYPiAYAXp3AOzZISKitothR+G8XAQA4OjfuUhNTYXZbHZyjYiIiJoXw47CqcsuAABSssvw1je/IS0tzck1IiIial4MOwrnoTYDEDBYADe/YGdXh4iIqNkx7CicWgLc1daf8yt4rR0iImp7GHbaAL3WOm/nQrlwck2IiIiaH8NOG+DjYu3RyStnzw4REbU9DDttgHdlz04ee3aIiKgNYthpA2xhp7BCoMzI3h0iImpbGHbaAFc14KFVQwA4lVvu7OoQERE1K4adNiLQy3oH9L9yGHaIiKhtYdhpI4K8XAEAKQw7RETUxjDstBFBelvPTpmTa0JERNS8WnTYmT9/PiRJsnt0795dXl9eXo64uDj4+/vD09MTEyZMQGZmphNr3HIFVQ5jnb5QgXIj749FRERtR4sOOwDQq1cvnD9/Xn788ssv8rqZM2diw4YNWLt2LXbv3o1z585h/PjxTqxty+Wp00CnBswW4K/MImdXh4iIqNlonF2By9FoNAgJCam2vKCgAB9//DFWr16NG2+8EQCwcuVK9OjRA3v37sU111zT3FVt0SRJgp+rCudLLDh8tgB92/s4u0pERETNosX37KSkpCAsLAwdO3bExIkT5bt2JyYmwmg0IjY2Vi7bvXt3REREICEhoc5tVlRUoLCw0O7RFvi7SQCAxNMXnFwTIiKi5tOiw87gwYOxatUqbN68GcuXL0dqaiquv/56FBUVISMjA1qtFj4+PnavCQ4ORkZGRp3bXbRoEby9veVHeHh4E7ai5Qh2tx7u307mQgheTZmIiNqGFj2MNWbMGPnnvn37YvDgwYiMjMRXX30FNze3Rm83Pj4es2bNkp8XFha2icAT6K6Ci0pCRmE5TueWIirAw9lVIiIianItumfnUj4+PujatStOnDiBkJAQGAwG5Ofn25XJzMyscY5PVTqdDnq93u7RFmhUEnoEW0NiwslcJ9eGiIioebSqsFNcXIyTJ08iNDQU0dHRcHFxwfbt2+X1ycnJSEtLQ0xMjBNr2bJdHWbtzfntZI6Ta0JERNQ8WvQw1jPPPINbbrkFkZGROHfuHObNmwe1Wo377rsP3t7emDx5MmbNmgU/Pz/o9Xo8+eSTiImJ4ZlYdegf5g4kAntPWeftSJLk7CoRERE1qRYddv7++2/cd999yM3NRWBgIK677jrs3bsXgYGBAIAlS5ZApVJhwoQJqKiowKhRo/DBBx84udYtW49gN+g0KuQUG5CSVYyuwV7OrhIREVGTatFhZ82aNXWud3V1xbJly7Bs2bJmqlHrp1WrMLCDH345kYOEk7kMO0REpHitas4OOUZMJ38AwK8nOG+HiIiUj2GnDRraxToMuCclGyUVJifXhoiIqGkx7LRBvdvpEeHnjnKjBTuOZzm7OkRERE2KYacNkiQJN/cNBQD8cOick2tDRETUtFr0BGVqGmazGVcFWG8XseN4Fg4d/Qtebi4AgIiICKjVamdWj4iIyKEYdtqgtLQ0rN/1P3hpfVFkEHj2y72I7tIO+dkZmD0eiIqKcnYViYiIHIbDWG2Ub1AIeoT5AgAuqH3hHxoOn8C6b7NBRETUGjHstGFdgz0BAJnlEs/KIiIixWLYacP8PXXw0ZggIOHQ3wXOrg4REVGTYNhp4zq6lwMADp3Nh8kinFwbIiIix2PYaeNCtUa4qwXKjRacyjc7uzpEREQOx7DTxkkS0NHLGnKO5ZlhEezdISIiZeGp54QIDwv+KlahyGDBrpOF6BBpRlpa2sX1vPYOERG1Ygw7BI0KuDrcB3tT8/DRviwMiTyNZRv2wicwhNfeISKiVo/DWAQAuDrSFx4uQGaxEf89lAufwBBee4eIiBSBYYcAAC5qFa4Ost4y4sukHJQYOXeHiIiUgWGHZBF6FfqGuKPCJLDvvBGCk5WJiEgBGHZIJkkSZlwfAhe1hHPFFhw+ywsNEhFR68ewQ3ai/FwxdXAQAODnlBwUVFicXCMiIqIrw7BD1Yzv7YdQDxVMFoGf/zaizMjAQ0RErRfDDlWjkiTEhLnAXatGfoXA6zvPwsJbSRARUSvFsEM1cneRMK5PKFQSsCe1CO9sT6mzvNlsRmpqKlJTU2E287YTRETUcjDsUK3CfNwwKMR63cl3tqdg7f70WsumpaXhX9/+hn99+5vd1ZeJiIicjVdQJpnFYkZ6ujXQCFiHrTr7ahAZ5I3/HszFc98ehq+7FrE9g2t8PS9ASERELRF7dkhWmJuFT3Yexb83J6KoqEhePnVwECZc3R5mi0Dc6v8h4WSuE2tJRETUMAw7ZEcfEAy9f6DdMpUk4fUJfTCiexAqTBY8suoP7DvFwENERK0Dww7Vi4tahWUTr8b1XQJQZjTj4VV/sIeHiIhaBYadNsQ2Jyc9PV2ek1NfZrMZ5/9OwwtDAzCgvQdKDWZMWvk7Nh0+30S1JSIicgxOUG5DCnOz8MmZYlgqyuDTrgMCQi//mqoB6b9/nIFvYBgCyzNwXYdw/HK6CE+s/h8W3tYb19U8Z5mIiMjpGHbaGH1AMCzlJfUuf2lA8g8Nh8Vixj1RAr5uvthw7AJeWn8ED1wdACEEJElqwtoTERE1HIex6LIunbRcmJuFVbuOwZR5EuO7aAEA//lfDvaeN8Jc5U7pvNAgERG1BAw71Cj6gGCo1RLy/j6JwaEaAAIn8y3YdtqAvFITAF5okIiIWgaGHboi+oBgXNMzCgP1xdBIAtllAo99ewoH0/MBWC80yIsNEhGRMzHskEME60wYGmyEXishp8SEuz5MwObkfGdXi4iIiGGHHMfTBRgdpcWQSE8YTBa8sesc9p03wsQ7phMRkRMx7JBDadUSXhkVjhmxXQAAKRfM2HTKgBO55U6uGRERtVUMO+RwKknCjNiuWDwuAq4aoMAg8MS3qfjkl1QIwV4eIiJqXrzODjWZAe09cXNHHRLOGXG22IKFPxzFruQsxA3yRZCnCwAgIiICarXayTUlIiIlY9ihJuWqkTA83AUB/r5YsTcLe1Jy8OuJbFwV5IJgcw6emQBERUU5u5pERKRgHMaiJidJEm7v5Ycfn7oOvYLdYBYS9mea8GuRL35PK+bQFhERNSmGHWpytvtrqUtyMOdqNQaGaKDTqJBfIfDspjTcuSIBGw+fh8lscXZViYhIgTiMRU3Odn+t9lFGpB0/hNB2HXD1kO7Yc+QMTuRbkHjmAhLPXICfuwbXRnrhtgFR6B/hg6KcDHkbnNtDRESNxbBDDmXrxQGA9PR0CFiHqPQBwfAPDUd+9nkAgKuLGlcFqTCtvyu2pxmx6WQ58kpN2HDsAjYcuwAAcFeZ4e/hAldzKSZeW4jr+3ZCpJ87NGp2SBIRUf0x7JBDXdqL49OuQ51lv628o/rIdh2gCeiAP89kosyixt8FBpRa1CgtsgBwxfytfwNb/4aLWkIHXx06+mrRO8QNfULc0U7vAo3G+lGOiIgAALt7cbFXiIiobWPYIYe7tBfncmUt5SVQSUCkvwc8DS6YfH1HFJab8e7OUzDovHE6/SzyKySUCA2MZhVScsqRklOOLSmFAAAtzAjVu8DLUoxZY8oR6avDknUJ8AkMQX52BmaP5xlfRERtGcMOtShVh8FCPFUICPWFd34KVIEeMJcVoEzjAfegSBw/cQp5Jh3yDRIMUONMoQWAOx5Zewp6VzW8XfzQwegJT88gmHm7CiKiNo1hh1oU2zCYpaIMPu06ICD04jpJst5/KyrQEzhfDpWrGsayEhRInrB4BeN0Zj4uVAgUlptRWA6kF+UAAHavSkaPsAx0DHCHn8aI9noXhPto0d7HFWqVxGEuIiKFY9ihFsc2tFUfagkIcBWIivJHR20RYjvocLrAgu9PViDfrMPZC6UoNV4846sqFQB3tQndA/5C1xA9wn206ODnhnAfLXp0jmIAIiJSCIYdUozC3Cx8VtkrFNGuA4Z17Yjsc2m4sVc7lLl4I/Gvv7EzJRcXSg0oMathFhKKzRrszzRhf2ae3bZ8dH8hyt8NPdv7o3OwFzoFeqJTkCeCvXTy2WBms1meCM3eISKilksxYWfZsmVYvHgxMjIy0K9fP7z33nsYNGiQs6tFzezSXiGVJKGTvyuiosLQW18BU1kR8rNzIek8EBDRFX/+eRilkhuKyk0oEVqUCReUGMzIrxA4cK4UB86V2m1fAqB3VcPHVQ03lRkFJaXQSsANvbIRERoIT1cNvHQaeLpq4KZRoSA3Cy4qAVeNCh46DTSSgFolQa1WywGpvqGparm6ylYtZzabAaDe+6ttH7blVbdnWw/w7DciatkUEXb++9//YtasWVixYgUGDx6MpUuXYtSoUUhOTkZQUJCzq0ctkCQBejcXBGlNULlaYHEpg8pVhaiu3XA86XeUqj1h1rijQ5AeuUYNjp/LR9qFcghIKCg3o6DcXLklHQBgVWI2gOz67RsCGknA1+Mv6N1doYUZ2RcKoVEJXB11Dn4+3lCrJKgkCSrJ+hqTRSD3QgGSUjOg1rmhorwcHUPT4aJzhdFsgdEkYDBbYDRbUFJWgezCUkClhtFoggUSIKmgUR+DzkUDtSRQVm6AShII9j4JLw836NQqaDUqGA3lSM24AI1WB5OhAlHBaXBzd0NpaSlSM/JhMhoAlQqubh4wGSrQo3069K5qHD+dAb3eE5bSAvxjaDH6d4tCqLcrPHSK+BVDRK2cIn4Tvf3225gyZQoefvhhAMCKFSvw448/4pNPPsFzzz3n5NqRM9V2kcO6uKgAX52ApwcwOsyA8PBgpKeXYlOqQE5WFowuHvAL7YDTJ5JhULtCqLUIcldD0rqh2GBGicGCMqMFhWUGFBsEjGYBazSyJhcBCUYhIavYhKziYtteAQA/Hs8HkF9H7XRAuQWAFudPFwEoqqWcGtadVn7FBWAyCZSbjJXrrUNxp/IqgLyKS98BwGAB4IKs9GIAVevoAlgAlFjXZ6fa9u8KlJkAeCDpxzTgR2tPj5dOgxBvV4R4uyLAUwcvVw08K3u+vHQaaNQqqCUJKpU12NlCnlolwSIEhIDd/y3yc9sy23IBk9n6f7NFwGQRMJktuHAhH+bKZd7e3nBRqyBVbl8loXK/EtSSBKly/2qVZC0jXVJGhcoAejGIClysnwDk+7zJy6ost/5ctWxlOVifVF1mEYDZYoHJImA2CxjNZuRdKIC5cvveej3UahUkWOstwXoPOuvP1rpJknUZYK33xXLW57C9BqgsX/O2rOWtP1f+d3F7VcrYtmXbvlTDp/LSb9+lt8Wr6ftZvUwN273M/fVqWn3pvmosc5l917TfakvquW+T5eJnt+qxN1msx/9CfgEkAN7e3lCrVHbHzPZ5rPYcF59XXQ7bZ7uOcrbvkvX/gFkIWCxVl1m/Y3kXLsAsAC8vPQQqX1dZ1mS2IL+wCBaLgLuHJ2aP6oYAT131N6QZtPqwYzAYkJiYiPj4eHmZSqVCbGwsEhISanxNRUUFKiou/oIvKCgAABQWFjq0bkVFRchKP4WKshLknEuHSusKi6EcKq0rdBp1g5c15jUtYdvO3F/6X39i8d5CBIdF4vzpFHgHt6/3drIM5bW+Vu2mgjbvFFwrX5tTYi1XcjoFKq0WHcMicf5MCroGt4fFWA5J64qQiI5ITzkOoXWD1s0Dw7oHw8s3AGnns/DLiTwYLRK6hnnDw0OPgsJCJKVmwFheDkmthqeXHsUXcuDupYePnz8Ks8/DUF4GYTFBrVLBx88fBVnnoVKrAbMBnr4BCA5th+y0k1BrtYChHKWlxfALbo+sc2nw8A+BTueGmM6B0Pv6IzM7BzsOpaKsrAzuej/4BgSgtKgI0ZG+8PX1xYULF5B4Jg8VJUWQNFr4BgShtKgAvdr7otgocOhsMaB1Q0FhEcotKphUWpihRkEFUFBYiOR0h361GqlFVILoCrXez/G9VwVAa/F06DZtf7cvF3hbfdjJycmB2WxGcHCw3fLg4GAcP368xtcsWrQICxYsqLY8PDy8SepIVJM1NSzb2sx1+OYy6zddZv1GR1WEiBSv/9Km23ZRURG8vb1rXd/qw05jxMfHY9asWfJzi8WCvLw8+Pv7y92+jlBYWIjw8HCkp6dDr9c7bLstFdurbG2tvUDbazPbq2xKbK8QAkVFRQgLC6uzXKsPOwEBAVCr1cjMzLRbnpmZiZCQkBpfo9PpoNPZjxv6+Pg0VRWh1+sV88GqD7ZX2dpae4G212a2V9mU1t66enRsWv3to7VaLaKjo7F9+3Z5mcViwfbt2xETE+PEmhEREVFL0Op7dgBg1qxZmDRpEgYMGIBBgwZh6dKlKCkpkc/OIiIiorZLEWHnnnvuQXZ2Nl5++WVkZGSgf//+2Lx5c7VJy81Np9Nh3rx51YbMlIrtVba21l6g7bWZ7VW2ttbeqiRxufO1iIiIiFqxVj9nh4iIiKguDDtERESkaAw7REREpGgMO0RERKRoDDtNZNmyZejQoQNcXV0xePBg/P77786uUr3s2bMHt9xyC8LCwiBJEtavX2+3XgiBl19+GaGhoXBzc0NsbCxSUlLsyuTl5WHixInQ6/Xw8fHB5MmTUSzf8NLq0KFDuP766+Hq6orw8HC8+eabTd20Gi1atAgDBw6El5cXgoKCcPvttyM5OdmuTHl5OeLi4uDv7w9PT09MmDCh2kUs09LSMG7cOLi7uyMoKAhz5syByWSyK7Nr1y5cffXV0Ol06Ny5M1atWtXUzatm+fLl6Nu3r3xRsZiYGGzadPGmEEpqa01ef/11SJKEGTNmyMuU1Ob58+dX3gzy4qN79+7yeiW11ebs2bP4xz/+AX9/f7i5uaFPnz7Yv3+/vF5pv7M6dOhQ7RhLkoS4uDgAyjzGDiHI4dasWSO0Wq345JNPxJ9//immTJkifHx8RGZmprOrdlkbN24UL7zwgvj2228FALFu3Tq79a+//rrw9vYW69evFwcPHhS33nqriIqKEmVlZXKZ0aNHi379+om9e/eKn3/+WXTu3Fncd9998vqCggIRHBwsJk6cKI4cOSK+/PJL4ebmJj788MPmaqZs1KhRYuXKleLIkSMiKSlJjB07VkRERIji4mK5zOOPPy7Cw8PF9u3bxf79+8U111wjhgwZIq83mUyid+/eIjY2Vhw4cEBs3LhRBAQEiPj4eLnMqVOnhLu7u5g1a5Y4evSoeO+994RarRabN29u1vZ+//334scffxR//fWXSE5OFs8//7xwcXERR44cUVxbL/X777+LDh06iL59+4qnn35aXq6kNs+bN0/06tVLnD9/Xn5kZ2crsq1CCJGXlyciIyPFQw89JPbt2ydOnToltmzZIk6cOCGXUdrvrKysLLvju3XrVgFA7Ny5UwihvGPsKAw7TWDQoEEiLi5Ofm42m0VYWJhYtGiRE2vVcJeGHYvFIkJCQsTixYvlZfn5+UKn04kvv/xSCCHE0aNHBQDxxx9/yGU2bdokJEkSZ8+eFUII8cEHHwhfX19RUVEhl3n22WdFt27dmrhFl5eVlSUAiN27dwshrO1zcXERa9eulcscO3ZMABAJCQlCCGtAVKlUIiMjQy6zfPlyodfr5TbOnTtX9OrVy25f99xzjxg1alRTN+myfH19xb///W9Ft7WoqEh06dJFbN26VQwbNkwOO0pr87x580S/fv1qXKe0tgph/b1x3XXX1bq+LfzOevrpp0WnTp2ExWJR5DF2FA5jOZjBYEBiYiJiY2PlZSqVCrGxsUhISHBiza5camoqMjIy7Nrm7e2NwYMHy21LSEiAj48PBgwYIJeJjY2FSqXCvn375DJDhw6FVquVy4waNQrJycm4cOFCM7WmZgUFBQAAPz8/AEBiYiKMRqNdm7t3746IiAi7Nvfp08fuIpajRo1CYWEh/vzzT7lM1W3YyjjzM2E2m7FmzRqUlJQgJiZG0W2Ni4vDuHHjqtVLiW1OSUlBWFgYOnbsiIkTJyItLQ2AMtv6/fffY8CAAbjrrrsQFBSEq666Cv/3f/8nr1f67yyDwYDPP/8cjzzyCCRJUuQxdhSGHQfLycmB2WyudvXm4OBgZGRkOKlWjmGrf11ty8jIQFBQkN16jUYDPz8/uzI1baPqPpzBYrFgxowZuPbaa9G7d2+5PlqtttqNYi9t8+XaU1uZwsJClJWVNUVzanX48GF4enpCp9Ph8ccfx7p169CzZ09FthUA1qxZg//9739YtGhRtXVKa/PgwYOxatUqbN68GcuXL0dqaiquv/56FBUVKa6tAHDq1CksX74cXbp0wZYtWzBt2jQ89dRT+PTTT+3qrNTfWevXr0d+fj4eeughuS5KO8aOoojbRRA5QlxcHI4cOYJffvnF2VVpUt26dUNSUhIKCgrw9ddfY9KkSdi9e7ezq9Uk0tPT8fTTT2Pr1q1wdXV1dnWa3JgxY+Sf+/bti8GDByMyMhJfffUV3NzcnFizpmGxWDBgwAC89tprAICrrroKR44cwYoVKzBp0iQn167pffzxxxgzZgzCwsKcXZUWjz07DhYQEAC1Wl1t9ntmZiZCQkKcVCvHsNW/rraFhIQgKyvLbr3JZEJeXp5dmZq2UXUfzW369On44YcfsHPnTrRv315eHhISAoPBgPz8fLvyl7b5cu2prYxer2/2P0JarRadO3dGdHQ0Fi1ahH79+uGdd95RZFsTExORlZWFq6++GhqNBhqNBrt378a7774LjUaD4OBgxbW5Kh8fH3Tt2hUnTpxQ5PENDQ1Fz5497Zb16NFDHrpT8u+sM2fOYNu2bXj00UflZUo8xo7CsONgWq0W0dHR2L59u7zMYrFg+/btiImJcWLNrlxUVBRCQkLs2lZYWIh9+/bJbYuJiUF+fj4SExPlMjt27IDFYsHgwYPlMnv27IHRaJTLbN26Fd26dYOvr28ztcZKCIHp06dj3bp12LFjB6KiouzWR0dHw8XFxa7NycnJSEtLs2vz4cOH7X5hbt26FXq9Xv5FHBMTY7cNW5mW8JmwWCyoqKhQZFtHjBiBw4cPIykpSX4MGDAAEydOlH9WWpurKi4uxsmTJxEaGqrI43vttddWu1TEX3/9hcjISADK/J1ls3LlSgQFBWHcuHHyMiUeY4dx9gxpJVqzZo3Q6XRi1apV4ujRo2Lq1KnCx8fHbvZ7S1VUVCQOHDggDhw4IACIt99+Wxw4cECcOXNGCGE9jdPHx0d899134tChQ+K2226r8TTOq666Suzbt0/88ssvokuXLnancebn54vg4GDxwAMPiCNHjog1a9YId3d3p5zGOW3aNOHt7S127dpldzpnaWmpXObxxx8XERERYseOHWL//v0iJiZGxMTEyOttp3KOHDlSJCUlic2bN4vAwMAaT+WcM2eOOHbsmFi2bJlTTuV87rnnxO7du0Vqaqo4dOiQeO6554QkSeKnn35SXFtrU/VsLCGU1ebZs2eLXbt2idTUVPHrr7+K2NhYERAQILKyshTXViGslxPQaDTin//8p0hJSRFffPGFcHd3F59//rlcRmm/s4SwnuEbEREhnn322WrrlHaMHYVhp4m89957IiIiQmi1WjFo0CCxd+9eZ1epXnbu3CkAVHtMmjRJCGE9lfOll14SwcHBQqfTiREjRojk5GS7beTm5or77rtPeHp6Cr1eLx5++GFRVFRkV+bgwYPiuuuuEzqdTrRr1068/vrrzdVEOzW1FYBYuXKlXKasrEw88cQTwtfXV7i7u4s77rhDnD9/3m47p0+fFmPGjBFubm4iICBAzJ49WxiNRrsyO3fuFP379xdarVZ07NjRbh/N5ZFHHhGRkZFCq9WKwMBAMWLECDnoCKGsttbm0rCjpDbfc889IjQ0VGi1WtGuXTtxzz332F1zRklttdmwYYPo3bu30Ol0onv37uKjjz6yW6+031lCCLFlyxYBoFo7hFDmMXYESQghnNKlRERERNQMOGeHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiFq0hx56CLfffnu15bt27YIkSdXu8ExEdCmGHSIiIlI0hh0iUoT8/Hw8+uijCAwMhF6vx4033oiDBw/K6+fPn4/+/fvbvebS3qHc3Fzcd999aNeuHdzd3dGnTx98+eWXzdgKImoKDDtEpAh33XUXsrKysGnTJiQmJuLqq6/GiBEjkJeXV+9tlJeXIzo6Gj/++COOHDmCqVOn4oEHHsDvv//ehDUnoqamcXYFiIiu1C+//ILff/8dWVlZ0Ol0AIC33noL69evx9dff42pU6fWazvt2rXDM888Iz9/8sknsWXLFnz11VcYNGhQk9SdiJoeww4RtXoHDx5EcXEx/P397ZaXlZXh5MmT8vPDhw/D09NTfm42m+3Km81mvPbaa/jqq69w9uxZGAwGVFRUwN3dvWkbQERNimGHiFq94uJihIaGYteuXdXW+fj4yD9369YN33//vfx83759+Mc//iE/X7x4Md555x0sXboUffr0gYeHB2bMmAGDwdCU1SeiJsawQ0St3tVXX42MjAxoNBp06NCh1nJarRadO3eWn//9999263/99VfcdtttcgCyWCz466+/0LNnzyapNxE1D4YdImrxCgoKkJSUZLfsxIkTAKxDU9dccw1iYmJw++23480330TXrl1x7tw5/Pjjj7jjjjswYMCAeu2nS5cu+Prrr/Hbb7/B19cXb7/9NjIzMxl2iFo5hh0iavF27dqFq666qsZ1Q4cOxc6dO7Fx40a88MILePjhh5GdnY2QkBAMHToUwcHB9d7Piy++iFOnTmHUqFFwd3fH1KlTcfvtt6OgoMBRTSEiJ5CEEMLZlSAiaqwOHTpg1apVGD58uLOrQkQtFK+zQ0StWs+ePe3OsCIiuhR7doiIiEjR2LNDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESK9v+xvH0C11nhNAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Средняя цена в обучающей выборке: 373.7302916666667\n", + "Средняя цена в контрольной выборке: 372.217\n", + "Средняя цена в тестовой выборке: 372.217\n" + ] + } + ], + "source": [ + "# Оценка сбалансированности целевой переменной (цена)\n", + "# Визуализация распределения цены в выборках (гистограмма)\n", + "def plot_price_distribution(data, title):\n", + " sns.histplot(data['price'], kde=True)\n", + " plt.title(title)\n", + " plt.xlabel('Цена')\n", + " plt.ylabel('Частота')\n", + " plt.show()\n", + "\n", + "plot_price_distribution(train_data, 'Распределение цены в обучающей выборке')\n", + "plot_price_distribution(val_data, 'Распределение цены в контрольной выборке')\n", + "plot_price_distribution(test_data, 'Распределение цены в тестовой выборке')\n", + "\n", + "# Оценка сбалансированности данных по целевой переменной (price)\n", + "print(\"Средняя цена в обучающей выборке: \", train_data['price'].mean())\n", + "print(\"Средняя цена в контрольной выборке: \", val_data['price'].mean())\n", + "print(\"Средняя цена в тестовой выборке: \", test_data['price'].mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS7UlEQVR4nO3deVhO+f8/8Odd2leVNpLsW1lCsqQhJdkNg0b2NUwYfPqMsY4x9l2YQZbMYAxmLJEtW7bILsu3RmNahIpQqffvD7/Ox+0uKuWO83xc131dzjnv+5zXWZz72Tnvc98KIYQAERERkYxpqLsAIiIiInVjICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIqIiSU9PR1xcHJ48eaLuUqiYPX36FLGxsUhPT1d3KR8NAxERfbKePXuGxYsXS8MpKSlYsWKF+gqSge3bt6NNmzYwMjKCoaEhKlasiLlz56q7rE9CaT5ehRBYs2YNmjZtCn19fRgbG8PBwQGbN29Wd2kfjYI/3VE8goODMWDAAGlYR0cHFStWhKenJ77//ntYWVmpsTqiz1N2djZMTEywevVquLm5YcGCBbh16xZCQ0PVXdpn6T//+Q/mzJmDzp07o1evXrCwsIBCoUD16tVhZ2en7vJKvdJ8vPbu3Rtbt25Fv3790KFDB5iYmEChUMDJyQnlypVTd3kfRRl1F/C5mTFjBhwcHPDy5UucPHkSQUFB2LdvH65duwZ9fX11l0f0WdHU1MT06dPh5+eHnJwcGBsbY+/eveou67MUHh6OOXPmYPbs2fjPf/6j7nI+SaX1eN24cSO2bt2KzZs3o0+fPuouR214haiY5F4hOn/+PBo1aiSNHz9+PBYuXIgtW7agd+/eaqyQ6PP1zz//IC4uDrVq1YKpqam6y/ksdezYEY8fP8apU6fUXconr7Qdr46OjnByckJISIi6S1Er9iEqYa1btwYAxMTEAAAeP36Mb7/9Fo6OjjA0NISxsTG8vb1x+fJllfe+fPkS06ZNQ/Xq1aGrqwsbGxt069YN9+7dAwDExsZCoVDk+3J3d5fmdezYMSgUCmzduhX//e9/YW1tDQMDA3Tq1AlxcXEqyz579izatWsHExMT6Ovro1WrVvmeCN3d3fNc/rRp01Tabt68Gc7OztDT04OZmRl69eqV5/LftW5vysnJweLFi1GnTh3o6urCysoKw4YNU+nkWalSJXTo0EFlOaNGjVKZZ161z5s3T2WbAkBGRgamTp2KqlWrQkdHB3Z2dpg4cSIyMjLy3FZvcnd3V5nfrFmzoKGhgS1btkjjTpw4gR49eqBixYrSMsaOHYsXL15Ibfr37//OY0GhUCA2NlZqv3//frRs2RIGBgYwMjKCj48Prl+/rlRLfvOsWrWqUruVK1eiTp060NHRga2tLfz9/ZGSkqKyrnXr1kVkZCSaNWsGPT09ODg4YNWqVUrtco/TY8eOKY338fFR2S/Tpk2T9l2FChXg6uqKMmXKwNraOs95vC33/cnJyUrjL1y4AIVCgeDgYKXxJXWsjRo1Kt8ag4ODVfZdXt7eV2XLloW7uztOnDjxzvflOnLkiHQ8mJqaonPnzrh586ZSmzNnzqBu3bro1asXzMzMoKenh8aNG2PXrl1Sm2fPnsHAwADffPONyjL++ecfaGpqYvbs2VLNlSpVUmn39n7++++/MXLkSNSoUQN6enowNzdHjx49VLZJXsfO+fPn0bZtWxgZGcHAwCDPbZK7jS9cuCCNS05OzvM80KFDhzxrLsj5sriO19yXkZERmjRporT9gf/9X8tP7rk19/hOT0/HtWvXYGdnBx8fHxgbG+e7rQDg//7v/9CjRw+YmZlBX18fTZs2VbnKVZjPm4KeB4HCfS4VBW+ZlbDc8GJubg7g9cG0a9cu9OjRAw4ODkhMTMTq1avRqlUr3LhxA7a2tgBe32vu0KEDDh8+jF69euGbb77B06dPERYWhmvXrqFKlSrSMnr37o327dsrLTcwMDDPembNmgWFQoFJkyYhKSkJixcvhoeHB6KioqCnpwfg9cnR29sbzs7OmDp1KjQ0NLB+/Xq0bt0aJ06cQJMmTVTmW6FCBelE9+zZM4wYMSLPZX///ffo2bMnBg8ejIcPH2LZsmVwc3PDpUuX8vxLaejQoWjZsiUA4I8//sDOnTuVpg8bNky6OjdmzBjExMRg+fLluHTpEk6dOgUtLa08t0NhpKSkSOv2ppycHHTq1AknT57E0KFDUatWLVy9ehWLFi3C7du3VU5U77N+/XpMnjwZCxYsULpsvX37djx//hwjRoyAubk5zp07h2XLluGff/7B9u3bAbzeDh4eHtJ7+vbti65du6Jbt27SuNx+AJs2bUK/fv3g5eWFOXPm4Pnz5wgKCkKLFi1w6dIlpRO+jo4OfvnlF6U6jYyMpH9PmzYN06dPh4eHB0aMGIHo6GgEBQXh/PnzKtv/yZMnaN++PXr27InevXtj27ZtGDFiBLS1tTFw4MB8t8vx48exb9++Am3DBQsWIDExsUBtC+tjHGsfwsLCAosWLQLwOnwsWbIE7du3R1xc3DuvQhw6dAje3t6oXLkypk2bhhcvXmDZsmVo3rw5Ll68KB0Pjx49wpo1a2BoaIgxY8agXLly2Lx5M7p164aQkBD07t0bhoaG6Nq1K7Zu3YqFCxdCU1NTWs6vv/4KIQR8fX0LtV7nz5/H6dOn0atXL1SoUAGxsbEICgqCu7s7bty4kW9XhLt378Ld3R36+vqYMGEC9PX18fPPP8PDwwNhYWFwc3MrVB35Kcr5MldRjtdNmzYBeB3aVq5ciR49euDatWuoUaNGkep/9OgRAGDOnDmwtrbGhAkToKurm+e2SkxMRLNmzfD8+XOMGTMG5ubm2LBhAzp16oTff/8dXbt2VZp3QT5v3pbfefBDtnOBCSoW69evFwDEoUOHxMOHD0VcXJz47bffhLm5udDT0xP//POPEEKIly9fiuzsbKX3xsTECB0dHTFjxgxp3Lp16wQAsXDhQpVl5eTkSO8DIObNm6fSpk6dOqJVq1bS8NGjRwUAUb58eZGWliaN37ZtmwAglixZIs27WrVqwsvLS1qOEEI8f/5cODg4iLZt26osq1mzZqJu3brS8MOHDwUAMXXqVGlcbGys0NTUFLNmzVJ679WrV0WZMmVUxt+5c0cAEBs2bJDGTZ06Vbx5yJ44cUIAECEhIUrvDQ0NVRlvb28vfHx8VGr39/cXb/83eLv2iRMnCktLS+Hs7Ky0TTdt2iQ0NDTEiRMnlN6/atUqAUCcOnVKZXlvatWqlTS/vXv3ijJlyojx48ertHv+/LnKuNmzZwuFQiH+/vvvPOf99jrkevr0qTA1NRVDhgxRGp+QkCBMTEyUxvfr108YGBjkW39SUpLQ1tYWnp6eSsf08uXLBQCxbt06pXUFIBYsWCCNy8jIEPXr1xeWlpYiMzNTCPG/4/To0aNSOxcXF+Ht7a2yTm8fD0lJScLIyEhq++Y88pL7/ocPHyqNP3/+vAAg1q9fL40ryWPN398/3xpzzysxMTHvXJd+/foJe3t7pXFr1qwRAMS5c+fe+d7cffDo0SNp3OXLl4WGhobw8/NTqhWAOHbsmDTu+fPnolatWsLa2lrahwcOHBAAxP79+5WW4+TkpPT/Z8CAAaJixYoq9by9n/M6/iMiIgQAsXHjRmnc28dO9+7dhaamprh27ZrUJjk5WZibmwtnZ2dpXO42Pn/+vDQur3OYEEL4+PgobefCnC+L63h908GDBwUAsW3bNmlcq1atRJ06dfKdT+7nRu7xnTusra0tbt++rbQN3t5WAQEBAoDSOe/p06fCwcFBVKpUSToPFPTzJrfe950Hi/K5VBS8ZVbMPDw8UK5cOdjZ2aFXr14wNDTEzp07Ub58eQCv/+LW0Hi92bOzs/Ho0SMYGhqiRo0auHjxojSfHTt2wMLCAqNHj1ZZxtuX3QvDz89P6S/8L7/8EjY2NtJf4FFRUbhz5w769OmDR48eITk5GcnJyUhPT0ebNm1w/Phx5OTkKM3z5cuX0NXVfedy//jjD+Tk5KBnz57SPJOTk2FtbY1q1arh6NGjSu0zMzMBvN5e+dm+fTtMTEzQtm1bpXk6OzvD0NBQZZ5ZWVlK7ZKTk/Hy5ct31v3gwQMsW7YM33//PQwNDVWWX6tWLdSsWVNpnrm3Sd9efn7OnTuHnj17onv37pg3b57K9Df/kkpPT0dycjKaNWsGIQQuXbpUoGXkCgsLQ0pKCnr37q1Us6amJlxcXApcM/D6ykJmZiYCAgKkYxoAhgwZkmdn0TJlymDYsGHSsLa2NoYNG4akpCRERkbmuYw//vgD58+fx08//fTeembOnAkTExOMGTOmwOtQUCV5rL18+RLJycl49OiRyv+twsjJyZGWFRUVhY0bN8LGxga1atXK9z3x8fGIiopC//79YWZmJo13cnJC27ZtVa7MNW7cGK1atZKG9fT0MHLkSCQkJEjnLw8PD9ja2ir1R7l27RquXLmCr7/+WhpnaWmJpKQk6f96ft48/rOysvDo0SNUrVoVpqamSufMXKmpqUhKSkJYWBi8vLxQp04daZq5uTn69++PyMjIYrmSWJTzZa6iHq+5y7h58yZWrVoFAwMDNG3aVKlNdna21O592zdX586dUa1aNWnYwsJCZVvt27cPTZo0QYsWLaR2hoaGGDp0KGJjY3Hjxg2leb7v8+ZN7zoPfsh2LgzeMitmK1asQPXq1VGmTBlYWVmhRo0aSh8WOTk5WLJkCVauXImYmBhkZ2dL03JvqwGvb7XVqFEDZcoU7y5684AHIPUJyb0ff+fOHQBAv3798p1HamoqypYtKw0nJyerzPdtd+7cgRAi33Zv327I7YPydgh5e56pqamwtLTMc3pSUpLS8MGDBwv9+OjUqVNha2uLYcOG4ffff1dZ/s2bN/Od59vLz8uDBw/g4+OD9PR0PHr0KM+we//+fUyZMgV//vmnSn+V1NTUQqzN//Zvbmh7m7GxcYHn9ffffwOAyqV6bW1tVK5cWZqey9bWFgYGBkrjqlevDuB1v4a8Tur//e9/4evrCycnp3fWEhMTg9WrVyMoKOi94bwoSvJYW7t2LdauXQvg9bZzcXHBwoULlR7OKIi4uDilZdrY2GDHjh3v/D+U3z4EgFq1auHAgQNIT0+X9lvNmjXzbAe83ocuLi7Q0NCAr68vgoKC8Pz5c+jr6yMkJAS6urro0aOH9L5mzZphzpw5mDx5MsaMGZPvfnvx4gVmz56N9evX48GDBxBvPAeU1/HfpUsX6d/5rVduvR/6dShFOV8CH3a8vrmPjY2NERISovKVB7du3ZLaaWhooGrVqpg6dWqeT5DlnnPet2+trKzw999/w8XFJd92f//9t1L/pfd93uR633mwqNu5sBiIilmTJk3eeSL78ccf8f3332PgwIGYOXMmzMzMoKGhgYCAgGJJuB8qt4Z58+ahfv36ebZ58wSbmZmJ+Ph4tG3b9r3zVSgU2L9/v1K/grzmCQAJCQkAAGtr63fO09LSMt8nI97+QHJxccEPP/ygNG758uXYvXt3nu+/efMmgoODsXnz5jz7h+Tk5MDR0RELFy7M8/0F+V6Wu3fvomHDhli0aBH69u2LDRs2KP2nz87ORtu2bfH48WNMmjQJNWvWhIGBAR48eID+/fsX+pjJbb9p06Y8t21xB/APsXbtWsTGxuLAgQPvbfvdd9+hWrVq6NevX4E7EhdGSR5rnTt3xqhRoyCEQExMDGbMmIEOHTpIHwIFZWVlJX2JXmpqKtatW4d27drh5MmTcHR0LNS88pJfn4+8+Pn5Yd68edi1axd69+6NLVu2SN9tk6tTp04YOHAg5s2bl+eV0VyjR4/G+vXrERAQAFdXV+n7cXr16pXn8T9//nxUq1YNnTt3LtwKFkFhz5e5PuR4DQsLA/D6avGOHTvQs2dP7NmzR+kcXKlSJfz8888AXvcRWrp0Kfr27YvKlSur/L8vzH4tKe87DxZ1OxdW6Tn7ycTvv/+OL774QvqLMFdKSgosLCyk4SpVquDs2bPIysoq1s6ab59khRC4e/eu9Bd4bmdtY2NjpU66+bl8+TKysrLe+9dslSpVIISAg4ODdFXgXW7cuAGFQvHOjoJVqlTBoUOH0Lx58wL9p7awsFBZp3d1fA4MDET9+vXx1Vdf5bv8y5cvo02bNkW+jZl7+djKygq7d+/G+PHj0b59e+kD9urVq7h9+zY2bNgAPz8/6X25J8XCyt2/lpaWBdq/72Jvbw8AiI6ORuXKlaXxmZmZiImJUZn/v//+q3S1AQBu374NACpP7jx//hzTp0/HyJEjpeXk59KlS/jtt9+wa9euPMN2cSjJY61ChQpKbQ0NDeHr61vo26G6urpK8+nUqRPMzMywfPlyrF69Os/3vLkP33br1i1YWFhI+8vBwSHfdoDyPqxbty4aNGiAkJAQVKhQAffv38eyZctU3rt27VpMmTIF9+7dkz703v7j6vfff0e/fv2wYMECadzLly9VnmTM5ezsjFatWsHQ0LDA9RZVYc+XwIcfr28up3Pnzjh79izmz5+vtN0MDAyU2rVs2RLly5fHwYMHlc4jwOtjtaDbyt7e/p3t3v6/+r7Pm1zvOw8WZTsXBfsQfWSamppKl3yB1/0THjx4oDSue/fuSE5OxvLly1Xm8fb7C2Pjxo14+vSpNPz7778jPj4e3t7eAF6fTKpUqYL58+fj2bNnKu9/+PChSu2ampp5Pmb8pm7duklfSvZ2/UII6UkHAHj16hV27NiBJk2avDP19+zZE9nZ2Zg5c6bKtFevXuV7wiyIiIgI7N69Gz/99FO+Yadnz5548OCB9JfYm168eFGg3wCqXr26dNl+2bJlyMnJUXpkOfeE+eY2E0JgyZIlhVqfXF5eXjA2NsaPP/6IrKwslelv79938fDwgLa2NpYuXapU39q1a5GamgofHx+l9q9evVL6YM7MzMTq1atRrlw5ODs7K7VdsmQJ0tPT8d133723jv/85z9o3rw5OnXqVODaC6skj7W35QaDDw13mZmZePXq1Tu/AsLGxgb169fHhg0blNbh2rVrOHjwoNLTq+3bt8e5c+dw+vRpadzLly8RFBQEa2trlX3Yt29fHDx4EIsXL4a5ubl0jnmbvb09WrduDQ8Pjzw/7PI6Zy5btkypu8HbFAoFPD09ceDAAaWvD3j8+DE2bNiARo0aFcuvBxT2fAkU7/GanZ2NzMzM937Nx7uOKQ0NDbRr1w67d++Wvh4GyHtb5R4DERERUrv09HSsWbMGlSpVQu3atZXm/b7Pm1zvOw8WZTsXBa8QfWQdOnTAjBkzMGDAADRr1gxXr15FSEiI0l/YwOtLzhs3bsS4ceNw7tw5tGzZEunp6Th06BBGjhxZ5MvBZmZmaNGiBQYMGIDExEQsXrwYVatWxZAhQwC8/s/xyy+/wNvbG3Xq1MGAAQNQvnx5PHjwAEePHoWxsTH++usvpKenY8WKFVi6dCmqV6+u9B0auQfslStXEBERAVdXV1SpUgU//PADAgMDERsbiy5dusDIyAgxMTHYuXMnhg4dim+//RaHDh3C999/jytXruCvv/5657q0atUKw4YNw+zZsxEVFQVPT09oaWnhzp072L59O5YsWYIvv/yySNvp4MGDaNu27Tv/Gunbty+2bduG4cOH4+jRo2jevDmys7Nx69YtbNu2DQcOHChUPxBra2vMmzcPgwcPxtdff4327dujZs2aqFKlCr799ls8ePAAxsbG2LFjR5F/TNPY2BhBQUHo27cvGjZsiF69eqFcuXK4f/8+9u7di+bNm+cZwvNSrlw5BAYGYvr06WjXrh06deqE6OhorFy5Eo0bN1bqQAu87kM0Z84cxMbGonr16ti6dSuioqKwZs0alaugBw8exKxZs5T61eXn4MGDH/RdJEeOHFHqO5X7V+3Vq1dx9epVODo6luixdv/+fYSGhkq3zGbNmgV7e3s0aNCgULfN0tPTlW6Zbdq0CS9fvlR5FPpt8+bNg7e3N1xdXTFo0CDpsXsTExOl7+GZOHEiQkJC4O3tjTFjxsDCwgKbN2/GjRs3EBISonK7tU+fPpg4cSJ27tyJESNGFPlKd4cOHbBp0yaYmJigdu3aiIiIwKFDh957bMycORMHDhxAq1atMHr0aOmx+5SUFJX+gMDrP4Jyv5MqLS0NwOtbOW/+rMbDhw/x4sULhIaGol27dgU+X77pQ4/X3H2cnp6OXbt2ITY2FgEBAUptnj17JtX9+PFjLF26FFpaWip/pOSaMWMGQkND0aJFC4wcORI6Ojr4+eefkZqaqnRl7j//+Q9+/fVX6RgwMzPDhg0bEBMTgx07dij1lwXe/3mTl7zOg0XZzkVSLM+qUZ6Pbubl5cuXYvz48cLGxkbo6emJ5s2bi4iICKVHD3M9f/5cfPfdd8LBwUFoaWkJa2tr8eWXX4p79+4JIYr22P2vv/4qAgMDhaWlpdDT0xM+Pj55Prp96dIl0a1bN2Fubi50dHSEvb296Nmzpzh8+LDSst/36tevn9J8d+zYIVq0aCEMDAyEgYGBqFmzpvD39xfR0dFCCCFGjx4t3NzcRGhoqEpNeT12KsTrx4udnZ2Fnp6eMDIyEo6OjmLixIni33//ldoU9lFohUIhIiMjlcbntY8yMzPFnDlzRJ06dYSOjo4oW7ascHZ2FtOnTxepqakqy3vf/IQQonXr1qJixYri6dOnQgghbty4ITw8PIShoaGwsLAQQ4YMEZcvX1Z5NPztdcjrsftcR48eFV5eXsLExETo6uqKKlWqiP79+4sLFy5Ibd732H2u5cuXi5o1awotLS1hZWUlRowYIZ48eaKyrnXq1BEXLlwQrq6uQldXV9jb24vly5er1AVA2NjYiPT09HeuU+7x0Llz5zznUdDHmAtz/JbEsZb7UigUwtraWnTr1k3cvHlTCFG4x+7fnJehoaFo2LCh2LRp0zvfl+vQoUOiefPmQk9PTxgbG4uOHTuKGzduqLS7d++e+PLLL6XjpnHjxmLXrl35zrd9+/YCgDh9+nSB6hBCdT8/efJEDBgwQFhYWAhDQ0Ph5eUlbt26Jezt7ZX2T177PTIyUnh6egpDQ0Ohr68v3NzcRHh4uNLycrdxYV9vet/5UojiP1719PRE7dq1xaJFi5QeRc/9iovcl6mpqWjevLn0NQhvP3af6+LFi8LLy0sYGBgIfX194e7urvKVIkL87xgwNTUVurq6okmTJmLPnj15rlNBPm8Keh4UomDb+UPwpztk4tixY/jiiy+wffv2Iv8l+6bY2Fg4ODggJiYm33vx06ZNQ2xsrMo3/pL8uLu7Izk5GdeuXVN3KQXWv39/AODx+wG6du2Kq1ev4u7du+oupdjknvv40Zm/4v68+VjYh4iIiIpdfHw89u7di759+6q7FKICYR8iKpLcJ2He1enZyclJ+ikSok9NcTyqLkcxMTE4deoUfvnlF2hpaSl9GefnQE9PD15eXuoug0oAAxEVSW6Hynd583e0iD4148ePV3cJn6Tw8HAMGDAAFStWxIYNG975XWKfIisrK6WO1vT5YB8iIiIikj32ISIiIiLZYyAiIiIi2WMfogLIycnBv//+CyMjow/6pXkiIiL6eIQQePr0KWxtbVW+OPJtDEQF8O+//xbohzqJiIio9ImLi0OFChXe2YaBqACMjIwAvN6gb37FPxEREZVeaWlpsLOzkz7H34WBqAByb5MZGxszEBEREX1iCtLdhZ2qiYiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj21BqIgoKC4OTkBGNjYxgbG8PV1RX79++Xpr98+RL+/v4wNzeHoaEhunfvjsTERKV53L9/Hz4+PtDX14elpSUmTJiAV69eKbU5duwYGjZsCB0dHVStWhXBwcEfY/WIiIjoE1FGnQuvUKECfvrpJ1SrVg1CCGzYsAGdO3fGpUuXUKdOHYwdOxZ79+7F9u3bYWJiglGjRqFbt244deoUACA7Oxs+Pj6wtrbG6dOnER8fDz8/P2hpaeHHH38EAMTExMDHxwfDhw9HSEgIDh8+jMGDB8PGxgZeXl7qXH36zDhP2KjuEuj/i5znV+LL4P4uPT7G/qbPn0IIIdRdxJvMzMwwb948fPnllyhXrhy2bNmCL7/8EgBw69Yt1KpVCxEREWjatCn279+PDh064N9//4WVlRUAYNWqVZg0aRIePnwIbW1tTJo0CXv37sW1a9ekZfTq1QspKSkIDQ0tUE1paWkwMTFBamoqjI2Ni3+l6bPAD8jSg4FIXhiIKD+F+fxW6xWiN2VnZ2P79u1IT0+Hq6srIiMjkZWVBQ8PD6lNzZo1UbFiRSkQRUREwNHRUQpDAODl5YURI0bg+vXraNCgASIiIpTmkdsmICAg31oyMjKQkZEhDaelpRVpnXjCLD14wiQiondRe6fqq1evwtDQEDo6Ohg+fDh27tyJ2rVrIyEhAdra2jA1NVVqb2VlhYSEBABAQkKCUhjKnZ477V1t0tLS8OLFizxrmj17NkxMTKSXnZ1dcawqERERlVJqD0Q1atRAVFQUzp49ixEjRqBfv364ceOGWmsKDAxEamqq9IqLi1NrPURERFSy1H7LTFtbG1WrVgUAODs74/z581iyZAm++uorZGZmIiUlRekqUWJiIqytrQEA1tbWOHfunNL8cp9Ce7PN20+mJSYmwtjYGHp6ennWpKOjAx0dnWJZPyIiIir91H6F6G05OTnIyMiAs7MztLS0cPjwYWladHQ07t+/D1dXVwCAq6srrl69iqSkJKlNWFgYjI2NUbt2banNm/PIbZM7DyIiIiK1XiEKDAyEt7c3KlasiKdPn2LLli04duwYDhw4ABMTEwwaNAjjxo2DmZkZjI2NMXr0aLi6uqJp06YAAE9PT9SuXRt9+/bF3LlzkZCQgMmTJ8Pf31+6wjN8+HAsX74cEydOxMCBA3HkyBFs27YNe/fuVeeqExERUSmi1kCUlJQEPz8/xMfHw8TEBE5OTjhw4ADatm0LAFi0aBE0NDTQvXt3ZGRkwMvLCytXrpTer6mpiT179mDEiBFwdXWFgYEB+vXrhxkzZkhtHBwcsHfvXowdOxZLlixBhQoV8Msvv/A7iIiIiEii1kC0du3ad07X1dXFihUrsGLFinzb2NvbY9++fe+cj7u7Oy5dulSkGomIiOjzp/ZO1URERKUdv1eu9Cip75UrdZ2qiYiIiD42BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9tQai2bNno3HjxjAyMoKlpSW6dOmC6OhopTbu7u5QKBRKr+HDhyu1uX//Pnx8fKCvrw9LS0tMmDABr169Umpz7NgxNGzYEDo6OqhatSqCg4NLevWIiIjoE6HWQBQeHg5/f3+cOXMGYWFhyMrKgqenJ9LT05XaDRkyBPHx8dJr7ty50rTs7Gz4+PggMzMTp0+fxoYNGxAcHIwpU6ZIbWJiYuDj44MvvvgCUVFRCAgIwODBg3HgwIGPtq5ERERUepVR58JDQ0OVhoODg2FpaYnIyEi4ublJ4/X19WFtbZ3nPA4ePIgbN27g0KFDsLKyQv369TFz5kxMmjQJ06ZNg7a2NlatWgUHBwcsWLAAAFCrVi2cPHkSixYtgpeXV8mtIBEREX0SSlUfotTUVACAmZmZ0viQkBBYWFigbt26CAwMxPPnz6VpERERcHR0hJWVlTTOy8sLaWlpuH79utTGw8NDaZ5eXl6IiIjIs46MjAykpaUpvYiIiOjzpdYrRG/KyclBQEAAmjdvjrp160rj+/TpA3t7e9ja2uLKlSuYNGkSoqOj8ccffwAAEhISlMIQAGk4ISHhnW3S0tLw4sUL6OnpKU2bPXs2pk+fXuzrSERERKVTqQlE/v7+uHbtGk6ePKk0fujQodK/HR0dYWNjgzZt2uDevXuoUqVKidQSGBiIcePGScNpaWmws7MrkWURERGR+pWKW2ajRo3Cnj17cPToUVSoUOGdbV1cXAAAd+/eBQBYW1sjMTFRqU3ucG6/o/zaGBsbq1wdAgAdHR0YGxsrvYiIiOjzpdZAJITAqFGjsHPnThw5cgQODg7vfU9UVBQAwMbGBgDg6uqKq1evIikpSWoTFhYGY2Nj1K5dW2pz+PBhpfmEhYXB1dW1mNaEiIiIPmVqDUT+/v7YvHkztmzZAiMjIyQkJCAhIQEvXrwAANy7dw8zZ85EZGQkYmNj8eeff8LPzw9ubm5wcnICAHh6eqJ27dro27cvLl++jAMHDmDy5Mnw9/eHjo4OAGD48OH4v//7P0ycOBG3bt3CypUrsW3bNowdO1Zt605ERESlh1oDUVBQEFJTU+Hu7g4bGxvptXXrVgCAtrY2Dh06BE9PT9SsWRPjx49H9+7d8ddff0nz0NTUxJ49e6CpqQlXV1d8/fXX8PPzw4wZM6Q2Dg4O2Lt3L8LCwlCvXj0sWLAAv/zyCx+5JyIiIgBq7lQthHjndDs7O4SHh793Pvb29ti3b98727i7u+PSpUuFqo+IiIjkoVR0qiYiIiJSJwYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj21BqLZs2ejcePGMDIygqWlJbp06YLo6GilNi9fvoS/vz/Mzc1haGiI7t27IzExUanN/fv34ePjA319fVhaWmLChAl49eqVUptjx46hYcOG0NHRQdWqVREcHFzSq0dERESfCLUGovDwcPj7++PMmTMICwtDVlYWPD09kZ6eLrUZO3Ys/vrrL2zfvh3h4eH4999/0a1bN2l6dnY2fHx8kJmZidOnT2PDhg0IDg7GlClTpDYxMTHw8fHBF198gaioKAQEBGDw4ME4cODAR11fIiIiKp3KqHPhoaGhSsPBwcGwtLREZGQk3NzckJqairVr12LLli1o3bo1AGD9+vWoVasWzpw5g6ZNm+LgwYO4ceMGDh06BCsrK9SvXx8zZ87EpEmTMG3aNGhra2PVqlVwcHDAggULAAC1atXCyZMnsWjRInh5eX309SYiIqLSpVT1IUpNTQUAmJmZAQAiIyORlZUFDw8PqU3NmjVRsWJFREREAAAiIiLg6OgIKysrqY2XlxfS0tJw/fp1qc2b88htkzuPt2VkZCAtLU3pRURERJ+vUhOIcnJyEBAQgObNm6Nu3boAgISEBGhra8PU1FSprZWVFRISEqQ2b4ah3Om5097VJi0tDS9evFCpZfbs2TAxMZFednZ2xbKOREREVDqVmkDk7++Pa9eu4bffflN3KQgMDERqaqr0iouLU3dJREREVILU2oco16hRo7Bnzx4cP34cFSpUkMZbW1sjMzMTKSkpSleJEhMTYW1tLbU5d+6c0vxyn0J7s83bT6YlJibC2NgYenp6KvXo6OhAR0enWNaNiIiISj+1XiESQmDUqFHYuXMnjhw5AgcHB6Xpzs7O0NLSwuHDh6Vx0dHRuH//PlxdXQEArq6uuHr1KpKSkqQ2YWFhMDY2Ru3ataU2b84jt03uPIiIiEje1HqFyN/fH1u2bMHu3bthZGQk9fkxMTGBnp4eTExMMGjQIIwbNw5mZmYwNjbG6NGj4erqiqZNmwIAPD09Ubt2bfTt2xdz585FQkICJk+eDH9/f+kqz/Dhw7F8+XJMnDgRAwcOxJEjR7Bt2zbs3btXbetOREREpYdarxAFBQUhNTUV7u7usLGxkV5bt26V2ixatAgdOnRA9+7d4ebmBmtra/zxxx/SdE1NTezZsweamppwdXXF119/DT8/P8yYMUNq4+DggL179yIsLAz16tXDggUL8Msvv/CReyIiIgKg5itEQoj3ttHV1cWKFSuwYsWKfNvY29tj375975yPu7s7Ll26VOgaiYiI6PNXap4yIyIiIlIXBiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpK9MkV9Y3p6OsLDw3H//n1kZmYqTRszZswHF0ZERET0sRQpEF26dAnt27fH8+fPkZ6eDjMzMyQnJ0NfXx+WlpYMRERERPRJKdIts7Fjx6Jjx4548uQJ9PT0cObMGfz9999wdnbG/Pnzi7tGIiIiohJVpEAUFRWF8ePHQ0NDA5qamsjIyICdnR3mzp2L//73v8VdIxEREVGJKlIg0tLSgobG67daWlri/v37AAATExPExcUVX3VEREREH0GR+hA1aNAA58+fR7Vq1dCqVStMmTIFycnJ2LRpE+rWrVvcNRIRERGVqCJdIfrxxx9hY2MDAJg1axbKli2LESNG4OHDh1izZk2xFkhERERU0op0hahRo0bSvy0tLREaGlpsBRERERF9bEW6QtS6dWukpKQUcylERERE6lGkQHTs2DGVL2MkIiIi+lQV+ac7FApFcdZBREREpDZF/umOrl27QltbO89pR44cKXJBRERERB9bkQORq6srDA0Ni7MWIiIiIrUoUiBSKBSYMGECLC0ti7seIiIioo+uSH2IhBDFXQcRERGR2hQpEE2dOpW3y4iIiOizUaRbZlOnTgUAPHz4ENHR0QCAGjVqoFy5csVXGREREdFHUqQrRM+fP8fAgQNha2sLNzc3uLm5wdbWFoMGDcLz58+Lu0YiIiKiElWkQDR27FiEh4fjzz//REpKClJSUrB7926Eh4dj/PjxxV0jERERUYkq0i2zHTt24Pfff4e7u7s0rn379tDT00PPnj0RFBRUXPURERERlbgi3zKzsrJSGW9paclbZkRERPTJKVIgcnV1xdSpU/Hy5Utp3IsXLzB9+nS4uroWW3FEREREH0ORbpktXrwY7dq1Q4UKFVCvXj0AwOXLl6Grq4sDBw4Ua4FEREREJa1IgcjR0RF37txBSEgIbt26BQDo3bs3fH19oaenV6wFEhEREZW0IgWi48ePo1mzZhgyZEhx10NERET00RWpD9EXX3yBx48fF3ctRERERGrB3zIjIiIi2SvSLTMAiIiIQNmyZfOc5ubmVuSCiIiIiD62Igeirl275jleoVAgOzu7yAURERERfWxFumUGAAkJCcjJyVF5MQwRERHRp6ZIgUihUBR3HURERERqo9ZO1cePH0fHjh1ha2sLhUKBXbt2KU3v378/FAqF0qtdu3ZKbR4/fgxfX18YGxvD1NQUgwYNwrNnz5TaXLlyBS1btoSuri7s7Owwd+7cYqmfiIiIPg9FCkQ5OTmwtLT84IWnp6ejXr16WLFiRb5t2rVrh/j4eOn166+/Kk339fXF9evXERYWhj179uD48eMYOnSoND0tLQ2enp6wt7dHZGQk5s2bh2nTpmHNmjUfXD8RERF9HorUqXr27NmwsrLCwIEDlcavW7cODx8+xKRJkwo0H29vb3h7e7+zjY6ODqytrfOcdvPmTYSGhuL8+fNo1KgRAGDZsmVo37495s+fD1tbW4SEhCAzMxPr1q2DtrY26tSpg6ioKCxcuFApOBEREZF8FekK0erVq1GzZk2V8XXq1MGqVas+uKg3HTt2DJaWlqhRowZGjBiBR48eSdMiIiJgamoqhSEA8PDwgIaGBs6ePSu1cXNzg7a2ttTGy8sL0dHRePLkSZ7LzMjIQFpamtKLiIiIPl9FCkQJCQmwsbFRGV+uXDnEx8d/cFG52rVrh40bN+Lw4cOYM2cOwsPD4e3tLT3JlpCQoHLrrkyZMjAzM0NCQoLUxsrKSqlN7nBum7fNnj0bJiYm0svOzq7Y1omIiIhKnyLdMrOzs8OpU6fg4OCgNP7UqVOwtbUtlsIAoFevXtK/HR0d4eTkhCpVquDYsWNo06ZNsS3nbYGBgRg3bpw0nJaWxlBERET0GStSIBoyZAgCAgKQlZWF1q1bAwAOHz6MiRMnYvz48cVa4JsqV64MCwsL3L17F23atIG1tTWSkpKU2rx69QqPHz+W+h1ZW1sjMTFRqU3ucH59k3R0dKCjo1MCa0BERESlUZEC0YQJE/Do0SOMHDkSmZmZAABdXV1MmjQJgYGBxVrgm/755x88evRIul3n6uqKlJQUREZGwtnZGQBw5MgR5OTkwMXFRWrz3XffISsrC1paWgCAsLAw1KhRI9+fHiEiIiJ5KfIXM86ZMwcPHz7EmTNncPnyZTx+/BhTpkwp1HyePXuGqKgoREVFAQBiYmIQFRWF+/fv49mzZ5gwYQLOnDmD2NhYHD58GJ07d0bVqlXh5eUFAKhVqxbatWuHIUOG4Ny5czh16hRGjRqFXr16Sbfu+vTpA21tbQwaNAjXr1/H1q1bsWTJEqVbYkRERCRvRf4tMwAwNDRE48aNi/z+Cxcu4IsvvpCGc0NKv379EBQUhCtXrmDDhg1ISUmBra0tPD09MXPmTKXbWSEhIRg1ahTatGkDDQ0NdO/eHUuXLpWmm5iY4ODBg/D394ezszMsLCwwZcoUPnJPREREkiIHogsXLmDbtm24f/++dNss1x9//FGgebi7u7/zW68PHDjw3nmYmZlhy5Yt72zj5OSEEydOFKgmIiIikp8i3TL77bff0KxZM9y8eRM7d+5EVlYWrl+/jiNHjsDExKS4ayQiIiIqUUUKRD/++CMWLVqEv/76C9ra2liyZAlu3bqFnj17omLFisVdIxEREVGJKlIgunfvHnx8fAAA2traSE9Ph0KhwNixY/kbYURERPTJKVIgKlu2LJ4+fQoAKF++PK5duwYASElJwfPnz4uvOiIiIqKPoEidqt3c3BAWFgZHR0f06NED33zzDY4cOYKwsLAS/QZpIiIiopJQpEC0fPlyvHz5EgDw3XffQUtLC6dPn0b37t0xefLkYi2QiIiIqKQVKhDl/up7mTJlYGhoKA2PHDkSI0eOLP7qiIiIiD6CQgUiU1NTKBSK97bL/TV6IiIiok9BoQLR0aNHlYaFEGjfvj1++eUXlC9fvlgLIyIiIvpYChWIWrVqpTJOU1MTTZs2ReXKlYutKCIiIqKPqUiP3RMRERF9Tj4oEMXFxeH58+cwNzcvrnqIiIiIPrpC3TJ781fkk5OT8euvv6J169b8/TIiIiL6pBUqEC1atAgAoFAoYGFhgY4dO/J7h4iIiOiTV6hAFBMTU1J1EBEREakNO1UTERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkeypNRAdP34cHTt2hK2tLRQKBXbt2qU0XQiBKVOmwMbGBnp6evDw8MCdO3eU2jx+/Bi+vr4wNjaGqakpBg0ahGfPnim1uXLlClq2bAldXV3Y2dlh7ty5Jb1qRERE9AlRayBKT09HvXr1sGLFijynz507F0uXLsWqVatw9uxZGBgYwMvLCy9fvpTa+Pr64vr16wgLC8OePXtw/PhxDB06VJqelpYGT09P2NvbIzIyEvPmzcO0adOwZs2aEl8/IiIi+jSUUefCvb294e3tnec0IQQWL16MyZMno3PnzgCAjRs3wsrKCrt27UKvXr1w8+ZNhIaG4vz582jUqBEAYNmyZWjfvj3mz58PW1tbhISEIDMzE+vWrYO2tjbq1KmDqKgoLFy4UCk4ERERkXyV2j5EMTExSEhIgIeHhzTOxMQELi4uiIiIAABERETA1NRUCkMA4OHhAQ0NDZw9e1Zq4+bmBm1tbamNl5cXoqOj8eTJkzyXnZGRgbS0NKUXERERfb5KbSBKSEgAAFhZWSmNt7KykqYlJCTA0tJSaXqZMmVgZmam1Caveby5jLfNnj0bJiYm0svOzu7DV4iIiIhKrVIbiNQpMDAQqamp0isuLk7dJREREVEJKrWByNraGgCQmJioND4xMVGaZm1tjaSkJKXpr169wuPHj5Xa5DWPN5fxNh0dHRgbGyu9iIiI6PNVagORg4MDrK2tcfjwYWlcWloazp49C1dXVwCAq6srUlJSEBkZKbU5cuQIcnJy4OLiIrU5fvw4srKypDZhYWGoUaMGypYt+5HWhoiIiEoztQaiZ8+eISoqClFRUQBed6SOiorC/fv3oVAoEBAQgB9++AF//vknrl69Cj8/P9ja2qJLly4AgFq1aqFdu3YYMmQIzp07h1OnTmHUqFHo1asXbG1tAQB9+vSBtrY2Bg0ahOvXr2Pr1q1YsmQJxo0bp6a1JiIiotJGrY/dX7hwAV988YU0nBtS+vXrh+DgYEycOBHp6ekYOnQoUlJS0KJFC4SGhkJXV1d6T0hICEaNGoU2bdpAQ0MD3bt3x9KlS6XpJiYmOHjwIPz9/eHs7AwLCwtMmTKFj9wTERGRRK2ByN3dHUKIfKcrFArMmDEDM2bMyLeNmZkZtmzZ8s7lODk54cSJE0Wuk4iIiD5vpbYPEREREdHHwkBEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLJXqgPRtGnToFAolF41a9aUpr98+RL+/v4wNzeHoaEhunfvjsTERKV53L9/Hz4+PtDX14elpSUmTJiAV69efexVISIiolKsjLoLeJ86derg0KFD0nCZMv8reezYsdi7dy+2b98OExMTjBo1Ct26dcOpU6cAANnZ2fDx8YG1tTVOnz6N+Ph4+Pn5QUtLCz/++ONHXxciIiIqnUp9ICpTpgysra1VxqempmLt2rXYsmULWrduDQBYv349atWqhTNnzqBp06Y4ePAgbty4gUOHDsHKygr169fHzJkzMWnSJEybNg3a2tp5LjMjIwMZGRnScFpaWsmsHBEREZUKpfqWGQDcuXMHtra2qFy5Mnx9fXH//n0AQGRkJLKysuDh4SG1rVmzJipWrIiIiAgAQEREBBwdHWFlZSW18fLyQlpaGq5fv57vMmfPng0TExPpZWdnV0JrR0RERKVBqQ5ELi4uCA4ORmhoKIKCghATE4OWLVvi6dOnSEhIgLa2NkxNTZXeY2VlhYSEBABAQkKCUhjKnZ47LT+BgYFITU2VXnFxccW7YkRERFSqlOpbZt7e3tK/nZyc4OLiAnt7e2zbtg16enoltlwdHR3o6OiU2PyJiIiodCnVV4jeZmpqiurVq+Pu3buwtrZGZmYmUlJSlNokJiZKfY6sra1VnjrLHc6rXxIRERHJ0ycViJ49e4Z79+7BxsYGzs7O0NLSwuHDh6Xp0dHRuH//PlxdXQEArq6uuHr1KpKSkqQ2YWFhMDY2Ru3atT96/URERFQ6lepbZt9++y06duwIe3t7/Pvvv5g6dSo0NTXRu3dvmJiYYNCgQRg3bhzMzMxgbGyM0aNHw9XVFU2bNgUAeHp6onbt2ujbty/mzp2LhIQETJ48Gf7+/rwlRkRERJJSHYj++ecf9O7dG48ePUK5cuXQokULnDlzBuXKlQMALFq0CBoaGujevTsyMjLg5eWFlStXSu/X1NTEnj17MGLECLi6usLAwAD9+vXDjBkz1LVKREREVAqV6kD022+/vXO6rq4uVqxYgRUrVuTbxt7eHvv27Svu0oiIiOgz8kn1ISIiIiIqCQxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHuyCkQrVqxApUqVoKurCxcXF5w7d07dJREREVEpIJtAtHXrVowbNw5Tp07FxYsXUa9ePXh5eSEpKUndpREREZGaySYQLVy4EEOGDMGAAQNQu3ZtrFq1Cvr6+li3bp26SyMiIiI1K6PuAj6GzMxMREZGIjAwUBqnoaEBDw8PREREqLTPyMhARkaGNJyamgoASEtLK9RyszNeFLFiKm6F3XdFwf1denB/ywv3t7wUZn/nthVCvL+xkIEHDx4IAOL06dNK4ydMmCCaNGmi0n7q1KkCAF988cUXX3zx9Rm84uLi3psVZHGFqLACAwMxbtw4aTgnJwePHz+Gubk5FAqFGiv7uNLS0mBnZ4e4uDgYGxuruxwqYdzf8sL9LS9y3d9CCDx9+hS2trbvbSuLQGRhYQFNTU0kJiYqjU9MTIS1tbVKex0dHejo6CiNMzU1LckSSzVjY2NZ/QeSO+5veeH+lhc57m8TE5MCtZNFp2ptbW04Ozvj8OHD0ricnBwcPnwYrq6uaqyMiIiISgNZXCECgHHjxqFfv35o1KgRmjRpgsWLFyM9PR0DBgxQd2lERESkZrIJRF999RUePnyIKVOmICEhAfXr10doaCisrKzUXVqppaOjg6lTp6rcPqTPE/e3vHB/ywv39/sphCjIs2hEREREny9Z9CEiIiIiehcGIiIiIpI9BiIiIiKSPQYimXJ3d0dAQIC6y6BS5O1jolKlSli8eLHa6qHCed//aYVCgV27dhV4fseOHYNCoUBKSsoH10al1/uOi6IcB9OmTUP9+vU/uLaPTTZPmRFR4Zw/fx4GBgbqLoOKSXx8PMqWLavuMugT06xZM8THxxf4yw0/ZQxERJSncuXKqbsEKkZ5fSs/fdqysrKgpaVVosvQ1taWzbHDW2aEJ0+ewM/PD2XLloW+vj68vb1x584dAK9/B6ZcuXL4/fffpfb169eHjY2NNHzy5Eno6Ojg+fPnH712OXB3d8fo0aMREBCAsmXLwsrKCj///LP0xaJGRkaoWrUq9u/fL73n2rVr8Pb2hqGhIaysrNC3b18kJydL09PT0+Hn5wdDQ0PY2NhgwYIFKst985ZZbGwsFAoFoqKipOkpKSlQKBQ4duwYgP9dWj9w4AAaNGgAPT09tG7dGklJSdi/fz9q1aoFY2Nj9OnTh8dKCcnJycHEiRNhZmYGa2trTJs2TZr29q2R06dPo379+tDV1UWjRo2wa9culX0MAJGRkWjUqBH09fXRrFkzREdHf5yV+cysWbMGtra2yMnJURrfuXNnDBw4EACwe/duNGzYELq6uqhcuTKmT5+OV69eSW0VCgWCgoLQqVMnGBgY4IcffkDVqlUxf/58pXlGRUVBoVDg7t27BaotOTkZXbt2hb6+PqpVq4Y///xTmpbXLbOff/4ZdnZ20NfXR9euXbFw4cI8f95q06ZNqFSpEkxMTNCrVy88ffq0QPWoCwMRoX///rhw4QL+/PNPREREQAiB9u3bIysrCwqFAm5ubtKH3pMnT3Dz5k28ePECt27dAgCEh4ejcePG0NfXV+NafN42bNgACwsLnDt3DqNHj8aIESPQo0cPNGvWDBcvXoSnpyf69u2L58+fIyUlBa1bt0aDBg1w4cIFhIaGIjExET179pTmN2HCBISHh2P37t04ePAgjh07hosXLxZLrdOmTcPy5ctx+vRpxMXFoWfPnli8eDG2bNmCvXv34uDBg1i2bFmxLIuUbdiwAQYGBjh79izmzp2LGTNmICwsTKVdWloaOnbsCEdHR1y8eBEzZ87EpEmT8pznd999hwULFuDChQsoU6aM9OFNhdOjRw88evQIR48elcY9fvwYoaGh8PX1xYkTJ+Dn54dvvvkGN27cwOrVqxEcHIxZs2YpzWfatGno2rUrrl69ikGDBmHgwIFYv369Upv169fDzc0NVatWLVBt06dPR8+ePXHlyhW0b98evr6+ePz4cZ5tT506heHDh+Obb75BVFQU2rZtq1IjANy7dw+7du3Cnj17sGfPHoSHh+Onn34qUD1qI0iWWrVqJb755htx+/ZtAUCcOnVKmpacnCz09PTEtm3bhBBCLF26VNSpU0cIIcSuXbuEi4uL6Ny5swgKChJCCOHh4SH++9//fvyVkIlWrVqJFi1aSMOvXr0SBgYGom/fvtK4+Ph4AUBERESImTNnCk9PT6V5xMXFCQAiOjpaPH36VGhra0v7VwghHj16JPT09MQ333wjjbO3txeLFi0SQggRExMjAIhLly5J0588eSIAiKNHjwohhDh69KgAIA4dOiS1mT17tgAg7t27J40bNmyY8PLy+pBNQnl4+zgRQojGjRuLSZMmCSGEACB27twphBAiKChImJubixcvXkhtf/75Z6V9nNf+3Lt3rwCg9D4quM6dO4uBAwdKw6tXrxa2trYiOztbtGnTRvz4449K7Tdt2iRsbGykYQAiICBAqc2DBw+EpqamOHv2rBBCiMzMTGFhYSGCg4MLVBMAMXnyZGn42bNnAoDYv3+/EOJ/x8GTJ0+EEEJ89dVXwsfHR2kevr6+wsTERBqeOnWq0NfXF2lpadK4CRMmCBcXlwLVpC68QiRzN2/eRJkyZeDi4iKNMzc3R40aNXDz5k0AQKtWrXDjxg08fPgQ4eHhcHd3h7u7O44dO4asrCycPn0a7u7ualoDeXBycpL+rampCXNzczg6Okrjcn+CJikpCZcvX8bRo0dhaGgovWrWrAng9V9t9+7dQ2ZmptI+NzMzQ40aNYq9VisrK+jr66Ny5cpK45KSkoplWaTszW0PADY2Nnlu6+joaDg5OUFXV1ca16RJk/fOM/dWOfdf0fj6+mLHjh3IyMgAAISEhKBXr17Q0NDA5cuXMWPGDKX/t0OGDEF8fLzSLeZGjRopzdPW1hY+Pj5Yt24dAOCvv/5CRkYGevToUeC63tzHBgYGMDY2zncfR0dHqxwreR07lSpVgpGRkTSc37FYmrBTNb2Xo6MjzMzMEB4ejvDwcMyaNQvW1taYM2cOzp8/j6ysLDRr1kzdZX7W3u44qVAolMYpFAoAr/uQPHv2DB07dsScOXNU5mNjY1PgfgVv0tB4/beTeOOXfrKyst5b69t15o57ux8FFY+S2Nb5HWdUeB07doQQAnv37kXjxo1x4sQJLFq0CADw7NkzTJ8+Hd26dVN535vBNa8nPwcPHoy+ffti0aJFWL9+Pb766qtCdWEo6eOmuOZZ0hiIZK5WrVp49eoVzp49K4WaR48eITo6GrVr1wbw+kBu2bIldu/ejevXr6NFixbQ19dHRkYGVq9ejUaNGvHx7FKkYcOG2LFjBypVqoQyZVT/i1epUgVaWlo4e/YsKlasCOB137Dbt2+jVatWec4z94mz+Ph4NGjQAABUOt/Sp6NGjRrYvHkzMjIypB/7PH/+vJqr+vzp6uqiW7duCAkJwd27d1GjRg00bNgQwOv/t9HR0QXu9/Om9u3bw8DAAEFBQQgNDcXx48eLu3RJjRo1VI6Vz+XY4S0zmatWrRo6d+6MIUOG4OTJk7h8+TK+/vprlC9fHp07d5baubu749dff0X9+vVhaGgIDQ0NuLm5ISQkJN8PUVIPf39/PH78GL1798b58+dx7949HDhwAAMGDEB2djYMDQ0xaNAgTJgwAUeOHMG1a9fQv39/6SpQXvT09NC0aVP89NNPuHnzJsLDwzF58uSPuFZUnPr06YOcnBwMHToUN2/exIEDB6QnlXKvAlHJ8PX1xd69e7Fu3Tr4+vpK46dMmYKNGzdi+vTpuH79Om7evInffvutQP/PNDU10b9/fwQGBqJatWpwdXUtsfpHjx6Nffv2YeHChbhz5w5Wr16N/fv3fxbHDQMRYf369XB2dkaHDh3g6uoKIQT27dundMmzVatWyM7OVuor5O7urjKO1M/W1hanTp1CdnY2PD094ejoiICAAJiamkqhZ968eWjZsiU6duwIDw8PtGjRAs7Ozu+c77p16/Dq1Ss4OzsjICAAP/zww8dYHSoBxsbG+OuvvxAVFYX69evju+++w5QpUwAo356h4te6dWuYmZkhOjoaffr0kcZ7eXlhz549OHjwIBo3boymTZti0aJFsLe3L9B8Bw0ahMzMTAwYMKCkSgcANG/eHKtWrcLChQtRr149hIaGYuzYsZ/FcaMQb3YKICIiWQoJCcGAAQOQmpoKPT09dZdDhXTixAm0adMGcXFx0kMWH8uQIUNw69YtnDhx4qMut7ixDxERkQxt3LgRlStXRvny5XH58mVMmjQJPXv2ZBj6xGRkZODhw4eYNm0aevTo8VHC0Pz589G2bVsYGBhg//792LBhA1auXFniyy1pvGVGRCRDCQkJ+Prrr1GrVi2MHTsWPXr0wJo1a9RdFhXSr7/+Cnt7e6SkpGDu3LlK00JCQpQe43/zVadOnSIv89y5c2jbti0cHR2xatUqLF26FIMHD/7QVVE73jIjIiL6DD19+hSJiYl5TtPS0ipw/yS5YCAiIiIi2eMtMyIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIspX//790aVLF6VxDx8+RN26deHi4oLU1FT1FEZEVMwYiIiowB4+fIjWrVtDT08PBw8ehImJibpLIiIqFgxERFQgycnJaNOmDXR0dBAWFqYUhhYuXAhHR0cYGBjAzs4OI0eOxLNnzwAAx44dg0KhyPeV6+TJk2jZsiX09PRgZ2eHMWPGID09XZpeqVIllfd+++230vSgoCBUqVIF2traqFGjBjZt2qRUv0KhQFBQELy9vaGnp4fKlSvj999/l6bHxsZCoVAgKipKGvf9999DoVBg8eLF0rhbt26hbdu2MDExkeowNTXNd7vlrn9KSopKPbt27ZKGMzIy8O2336J8+fIwMDCAi4sLjh07Jk0PDg5WWc7bNee3LABISUmBQqFQmicR/Q8DERG916NHj+Dh4YEyZcogLCxM5YNZQ0MDS5cuxfXr17FhwwYcOXIEEydOBAA0a9YM8fHxiI+Px44dOwBAGo6PjwcA3Lt3D+3atUP37t1x5coVbN26FSdPnsSoUaOUljNjxgyl906dOhUAsHPnTnzzzTcYP348rl27hmHDhmHAgAE4evSo0vu///57dO/eHZcvX4avry969eqFmzdv5rnO//zzDxYvXqzy214DBw5EVlYWTp06hfj4eKWw9CFGjRqFiIgI/Pbbb7hy5Qp69OiBdu3a4c6dO8UyfyJ6D0FElI9+/foJNzc3Ub9+faGlpSWaNm0qXr169d73bd++XZibm6uMP3r0qMjrtDNo0CAxdOhQpXEnTpwQGhoa4sWLF0IIIezt7cWiRYvyXF6zZs3EkCFDlMb16NFDtG/fXhoGIIYPH67UxsXFRYwYMUIIIURMTIwAIC5duiSEEMLPz08MGjRIZbl6enoiJCREGl6/fr0wMTHJs6431/nJkydK4wGInTt3CiGE+Pvvv4WmpqZ48OCBUps2bdqIwMDAfJfzds35LUsIIZ48eSIAiKNHj+ZbK5Gc8QoREb3T8ePHkZOTg6ioKNy9e1flByQB4NChQ2jTpg3Kly8PIyMj9O3bF48ePcLz588LtIzLly8jODhY6ccnvby8kJOTg5iYmPe+/+bNm2jevLnSuObNm6tc/XF1dVUZzusK0cWLF7Fz507MnDlTZZqDgwN27txZ4HUriKtXryI7OxvVq1dX2gbh4eG4d++e1C41NbVAP9BZoUIFGBkZwcHBAUOGDGHnd6ICKKPuAoiodKtcuTIOHz4MCwsLrFy5El9//TV8fHzg5OQE4HU/lg4dOmDEiBGYNWsWzMzMcPLkSQwaNAiZmZnQ19d/7zKePXuGYcOGYcyYMSrTKlasWOzr9D7jx4/Ht99+CxsbG5Vpa9euRb9+/WBkZAQ9PT28evUKurq6H7S8Z8+eQVNTE5GRkdDU1FSaZmhoKP3byMgIFy9elIYfPHgAd3d3lfmdOHECRkZGiI2NxeDBg/Hdd9/hhx9++KAaiT53DERE9E6Ojo6wsLAAAPTo0QN//PEH/Pz8cO7cOWhrayMyMhI5OTlYsGABNDReX3Tetm1boZbRsGFD3LhxA1WrVi1SjbVq1cKpU6fQr18/adypU6dQu3ZtpXZnzpyBn5+f0nCDBg2U2vz555+4ffs29u7dm+eymjZtik6dOuH48ePYvHkzdu7ciR9//LFIdedq0KABsrOzkZSUhJYtW+bbTkNDQ2kblSmT9yncwcEBpqamqFq1Knr06IGIiIgPqo9IDhiIiKhQVqxYgbp162L69OmYNWsWqlatiqysLCxbtgwdO3bEqVOnsGrVqkLNc9KkSWjatClGjRqFwYMHw8DAADdu3EBYWBiWL1/+3vdPmDABPXv2RIMGDeDh4YG//voLf/zxBw4dOqTUbvv27WjUqBFatGiBkJAQnDt3DmvXrlVqM3fuXCxbtizfK1s7duxAcHAwIiMjUbFiRVhaWhZoHTMyMvDy5UulcVlZWcjJyUH16tXh6+sLPz8/LFiwAA0aNMDDhw9x+PBhODk5wcfHp0DLeHtZsbGx2L9/P1q0aFGo9xPJEfsQEVGhmJmZ4eeff8acOXNw9uxZ1KtXDwsXLsScOXNQt25dhISEYPbs2YWap5OTE8LDw3H79m20bNkSDRo0wJQpU2Bra1ug93fp0gVLlizB/PnzUadOHaxevRrr169XuZ00ffp0/Pbbb3BycsLGjRvx66+/qlxFqlq1qtKVpjfdvn0bgwcPxpYtWwp9K8/a2hp6enrSCwB69uyJ48ePAwDWr18PPz8/jB8/HjVq1ECXLl1w/vz5It0yzF1Wy5YtUa9evULvDyI5UgghhLqLICIqaQqFAjt37lT55m116tKlCwICAvLsB0REHxevEBERqYm2trbU74qI1It9iIiI1KSwnc+JqOQwEBGRLLB3ABG9C6/VEhERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHs/T+SK9KTzD5dUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSuklEQVR4nO3deVxN+f8H8NettKtU2kgismWLSZY0RIixjZ3sa9kH375jCIOx78IMMjPZDcYuO8nWyC7Lt4YxKltFaP38/vDo/JxukZQb5/V8PO7j4XzO557zPvece3s553PuVQkhBIiIiIgUTEvTBRARERFpGgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxERKcqLFy+wcOFCaTohIQHLli3TXEFERVxgYCBUKpWsrWzZsujTp49mCiokDEQaFBwcDJVKJT309fVRsWJF+Pv7Iy4uTtPlEX2RDAwMMHHiRISEhOD+/fsIDAzErl27NF0WEWmYjqYLIGDq1KlwdHTE69evcerUKQQFBWHv3r24evUqDA0NNV0e0RdFW1sbU6ZMga+vLzIzM2FiYoI9e/Zouiyiz0pUVBS0tL6scyoMREVAy5YtUadOHQDAgAEDYGFhgfnz52Pnzp3o1q2bhqsj+vKMHTsWXbp0wf3791G5cmWYmZlpuiT6gqWnpyMzMxO6urqaLqXA6OnpabqEAvdlxbsvRJMmTQAA0dHRAICnT5/iu+++g4uLC4yNjWFiYoKWLVvi0qVLas99/fo1AgMDUbFiRejr68PW1hYdOnTA3bt3AQAxMTGyy3TZH56entKyjh07BpVKhU2bNuG///0vbGxsYGRkhG+++Qb3799XW/fZs2fRokULmJqawtDQEI0bN0ZYWFiO2+jp6Znj+gMDA9X6/v7773B1dYWBgQHMzc3RtWvXHNf/rm17W2ZmJhYuXIiqVatCX18f1tbWGDx4MJ49eybrV7ZsWbRu3VptPf7+/mrLzKn2OXPmqL2mAJCSkoLJkyfDyckJenp6sLe3x/jx45GSkpLja/U2T09PteVNnz4dWlpaWL9+vdR28uRJdOrUCWXKlJHWMXr0aLx69Urq06dPn3ceCyqVCjExMVL/ffv2oVGjRjAyMkLx4sXh4+ODa9euyWrJbZlOTk6yfsuXL0fVqlWhp6cHOzs7+Pn5ISEhQW1bq1WrhoiICNSvXx8GBgZwdHTEihUrZP2yjtNjx47J2n18fNT2y9tjIUqXLg13d3fo6OjAxsYmx2Vkl/X8x48fy9ovXLgAlUqF4OBgWXthHWv+/v651ph1Kf7tfZeT9+3/7K/Fli1bpPehpaUlevbsiQcPHqgt9+bNm+jcuTNKliwJAwMDODs74/vvv1frV7Zs2TytNy/HXW7+97//oVOnTjA3N4ehoSHq1asnOxsYFxcHHR0dTJkyRe25UVFRUKlUWLp0qdSWkJCAUaNGwd7eHnp6enBycsKsWbOQmZkp9cn6HJo7dy4WLlyI8uXLQ09PD9evXwcALFmyBFWrVoWhoSFKlCiBOnXqyN67f//9N4YNGwZnZ2cYGBjAwsICnTp1UtufWfv51KlTGDFiBEqWLAkzMzMMHjwYqampSEhIgK+vL0qUKIESJUpg/PjxEELkWOeCBQvg4OAAAwMDNG7cGFevXn3va5t9DFFWPWFhYRgzZgxKliwJIyMjtG/fHo8ePZI9NzMzE4GBgbCzs4OhoSG+/vprXL9+XePjkniGqAjKCi8WFhYA3rypd+zYgU6dOsHR0RFxcXFYuXIlGjdujOvXr8POzg4AkJGRgdatW+Pw4cPo2rUrRo4ciefPnyM0NBRXr15F+fLlpXV069YNrVq1kq03ICAgx3qmT58OlUqFCRMmID4+HgsXLoSXlxciIyNhYGAAADhy5AhatmwJV1dXTJ48GVpaWli7di2aNGmCkydP4quvvlJbbunSpTFz5kwAbwa6Dh06NMd1//DDD+jcuTMGDBiAR48eYcmSJfDw8MDFixdz/J/9oEGD0KhRIwDAH3/8ge3bt8vmDx48GMHBwejbty9GjBiB6OhoLF26FBcvXkRYWBiKFSuW4+vwIRISEqRte1tmZia++eYbnDp1CoMGDULlypVx5coVLFiwALdu3cKOHTs+aD1r167FxIkTMW/ePHTv3l1q37JlC16+fImhQ4fCwsIC586dw5IlS/DPP/9gy5YtAN68Dl5eXtJzevXqhfbt26NDhw5SW8mSJQEAv/32G3r37g1vb2/MmjULL1++RFBQEBo2bIiLFy+ibNmy0nP09PTwyy+/yOosXry49O/AwEBMmTIFXl5eGDp0KKKiohAUFITz58+rvf7Pnj1Dq1at0LlzZ3Tr1g2bN2/G0KFDoauri379+uX6upw4cQJ79+7N02s4b968Qhuz9ymOtY+R0746f/48Fi9eLGvL2oa6deti5syZiIuLw6JFixAWFiZ7H16+fBmNGjVCsWLFMGjQIJQtWxZ3797Frl27MH36dLX1N2rUCIMGDQIA3LhxAzNmzJDN/5DjLru4uDjUr18fL1++xIgRI2BhYYF169bhm2++wdatW9G+fXtYW1ujcePG2Lx5MyZPnix7/qZNm6CtrY1OnToBAF6+fInGjRvjwYMHGDx4MMqUKYPTp08jICAADx8+lA3UB968N1+/fo1BgwZBT08P5ubm+PnnnzFixAh8++23GDlyJF6/fo3Lly/j7Nmz0vv3/PnzOH36NLp27YrSpUsjJiYGQUFB8PT0xPXr19WGUQwfPhw2NjaYMmUKzpw5g1WrVsHMzAynT59GmTJlMGPGDOzduxdz5sxBtWrV4OvrK3v+r7/+iufPn8PPzw+vX7/GokWL0KRJE1y5cgXW1ta5vr65GT58OEqUKIHJkycjJiYGCxcuhL+/PzZt2iT1CQgIwOzZs9GmTRt4e3vj0qVL8Pb2xuvXrz94fQVKkMasXbtWABCHDh0Sjx49Evfv3xcbN24UFhYWwsDAQPzzzz9CCCFev34tMjIyZM+Njo4Wenp6YurUqVLbmjVrBAAxf/58tXVlZmZKzwMg5syZo9anatWqonHjxtL00aNHBQBRqlQpkZSUJLVv3rxZABCLFi2Sll2hQgXh7e0trUcIIV6+fCkcHR1Fs2bN1NZVv359Ua1aNWn60aNHAoCYPHmy1BYTEyO0tbXF9OnTZc+9cuWK0NHRUWu/ffu2ACDWrVsntU2ePFm8fZifPHlSABAhISGy5+7fv1+t3cHBQfj4+KjV7ufnJ7K/dbLXPn78eGFlZSVcXV1lr+lvv/0mtLS0xMmTJ2XPX7FihQAgwsLC1Nb3tsaNG0vL27Nnj9DR0RFjx45V6/fy5Uu1tpkzZwqVSiX+/vvvHJedfRuyPH/+XJiZmYmBAwfK2mNjY4WpqamsvXfv3sLIyCjX+uPj44Wurq5o3ry57JheunSpACDWrFkj21YAYt68eVJbSkqKqFmzprCyshKpqalCiP8/To8ePSr1c3NzEy1btlTbpuzHQ3x8vChevLjU9+1l5CTr+Y8ePZK1nz9/XgAQa9euldoK81jz8/PLtcasz5Xo6Oh3bktu+2rLli2y1yI1NVVYWVmJatWqiVevXkn9du/eLQCISZMmSW0eHh6iePHiasfY258LWUqVKiX69u0rTWffjx9y3OVk1KhRAoDsvfb8+XPh6OgoypYtKx1/K1euFADElStXZM+vUqWKaNKkiTQ9bdo0YWRkJG7duiXr95///Edoa2uLe/fuCSH+/zPWxMRExMfHy/q2bdtWVK1a9Z115/TeDQ8PFwDEr7/+KrVl7efsn7vu7u5CpVKJIUOGSG3p6emidOnSss+irDrf/lsjhBBnz54VAMTo0aOltuzvGyHeHLO9e/dWq8fLy0tWz+jRo4W2trZISEgQQrzZfzo6OqJdu3ay5QUGBgoAsmV+arxkVgR4eXmhZMmSsLe3R9euXWFsbIzt27ejVKlSAN78Ly5r8FpGRgaePHkCY2NjODs746+//pKWs23bNlhaWmL48OFq68h+2v1D+Pr6yv6H/+2338LW1lb6H3hkZCRu376N7t2748mTJ3j8+DEeP36M5ORkNG3aFCdOnJCdUgbeXNrT19d/53r/+OMPZGZmonPnztIyHz9+DBsbG1SoUAFHjx6V9U9NTQXw7mvbW7ZsgampKZo1ayZbpqurK4yNjdWWmZaWJuv3+PHj9/4v5sGDB1iyZAl++OEHGBsbq62/cuXKqFSpkmyZWZdJs68/N+fOnUPnzp3RsWNHzJkzR21+1pk7AEhOTsbjx49Rv359CCFw8eLFPK0jS2hoKBISEtCtWzdZzdra2nBzc8tzzQBw6NAhpKamYtSoUbIBmQMHDsxxcLOOjg4GDx4sTevq6mLw4MGIj49HREREjuv4448/cP78efz000/vrWfatGkwNTXFiBEj8rwNeVWYx9rr16/x+PFjPHnyRO29VdAuXLiA+Ph4DBs2TPae9fHxQaVKlaR99ujRI5w4cQL9+vVDmTJlZMvI6fMnNTX1ne/Vjz3u9u7di6+++goNGzaU2oyNjTFo0CDExMRIl7A6dOgAHR0d2RmMq1ev4vr16+jSpYvUtmXLFjRq1AglSpSQ1ePl5YWMjAycOHFCtv6OHTtKZ1izmJmZ4Z9//sH58+dzrfvt925aWhqePHkCJycnmJmZyT7vs/Tv31/2+rq5uUEIgf79+0tt2traqFOnDv73v/+pPb9du3bS3xoA+Oqrr+Dm5pbnM6zZDRo0SFZPo0aNkJGRgb///hsAcPjwYaSnp2PYsGGy5+X0d+tT4yWzImDZsmWoWLEidHR0YG1tDWdnZ9kfi8zMTCxatAjLly9HdHQ0MjIypHlZl9WAN5fanJ2doaNTsLu1QoUKsumsMSFZ17Rv374NAOjdu3euy0hMTESJEiWk6cePH6stN7vbt29DCJFrv+yXG7LGoGQPIdmXmZiYCCsrqxznx8fHy6YPHjyo9qH2PpMnT4adnR0GDx6MrVu3qq3/xo0buS4z+/pz8uDBA/j4+CA5ORlPnjzJ8Y/NvXv3MGnSJPz5559q41USExM/YGv+f/9mhbbsTExM8rysrA9FZ2dnWbuuri7KlSsnzc9iZ2cHIyMjWVvFihUBvBkDUa9ePdm8jIwM/Pe//0WPHj1QvXr1d9YSHR2NlStXIigo6L3hPD8K81hbvXo1Vq9eDeDNa+fm5ob58+dLN2cUpNz2GQBUqlQJp06dAgDpj221atXytNzExMT3vleB/B93f//9N9zc3NTaK1euLM2vVq0aLC0t0bRpU2zevBnTpk0D8OZymY6Ojuzy8e3bt3H58uU8v3cdHR3V+kyYMAGHDh3CV199BScnJzRv3hzdu3dHgwYNpD6vXr3CzJkzsXbtWjx48EA27ien92728GlqagoAsLe3V2vP/lkAqH++A2/eY5s3b85pM98rez1Zn/tZ6846nrKPKzQ3N5f9jdAEBqIi4KuvvnrnB9mMGTPwww8/oF+/fpg2bRrMzc2hpaWFUaNGFfr/DvMiq4Y5c+agZs2aOfZ5+4MvNTUVDx8+RLNmzd67XJVKhX379kFbW/udywSA2NhYAICNjc07l2llZYWQkJAc52f/sHNzc8OPP/4oa1u6dCl27tyZ4/Nv3LiB4OBg/P777zmOD8nMzISLiwvmz5+f4/Ozf4jl5M6dO6hduzYWLFiAXr16Yd26dbIwmpGRgWbNmuHp06eYMGECKlWqBCMjIzx48AB9+vT54GMmq/9vv/2W42tb0AH8Y6xevRoxMTE4cODAe/t+//33qFChAnr37o2TJ08WeC2Feay1bdsW/v7+EEIgOjoaU6dORevWraUQUdQ9ffoUqamp732vAp/muOvatSv69u2LyMhI1KxZE5s3b0bTpk1haWkpq6dZs2YYP358jsvICupZ3j7Tk6Vy5cqIiorC7t27sX//fmzbtg3Lly/HpEmTpIHdw4cPx9q1azFq1Ci4u7vD1NQUKpUKXbt2zfG9m9NnY27tb4erwpJbPZ9i3R+r6HySUa62bt2Kr7/+WvofYZaEhATZG7Z8+fI4e/Ys0tLSCnSwZvYPWSEE7ty5I/0PPGuwtomJiWyQbm4uXbqEtLS09/5vtnz58hBCwNHRUe3DJifXr1+HSqXK8X+yby/z0KFDaNCgQY4fWNlZWlqqbdO7Bj4HBASgZs2aslPt2dd/6dIlNG3aNN+XMbMuV1pbW2Pnzp0YO3YsWrVqJf2BvXLlCm7duoV169bJBlCGhobma31Z+9fKyipP+/ddHBwcALy5g6dcuXJSe2pqKqKjo9WW/++//yI5OVl2lujWrVsAoDag9uXLl5gyZQqGDRsmrSc3Fy9exMaNG7Fjx45cP8A/VmEea6VLl5b1NTY2Ro8ePT74cmhevL3Psp+tiYqKkuZn7c+83KGUdbkq62xNTj72uHNwcEBUVJRa+82bN6X5Wdq1a4fBgwdLl81u3bqldpNJ+fLl8eLFi49+DxgZGaFLly7o0qULUlNT0aFDB0yfPh0BAQHQ19fH1q1b0bt3b8ybN096zuvXr9XuwiwoOYXoW7duvXPA+sfIet3v3LkjO4v25MmTHM9gfUocQ/QZ0NbWVkvXW7ZsUbvltWPHjnj8+LHsNtEsH5POs+5CyLJ161Y8fPgQLVu2BAC4urqifPnymDt3Ll68eKH2/Oy3XG7ZsgXa2to53mb8tg4dOkhfope9fiEEnjx5Ik2np6dj27Zt+Oqrr955Gr5z587IyMiQTo2/LT09/aM+dMLDw7Fz50789NNPuYadzp0748GDB/j555/V5r169QrJycnvXU/FihWluz+WLFmCzMxMjBw5Upqf9Qf+7ddMCIFFixZ90PZk8fb2homJCWbMmIG0tDS1+dn377t4eXlBV1cXixcvltW3evVqJCYmwsfHR9Y/PT0dK1eulKZTU1OxcuVKlCxZEq6urrK+ixYtQnJyco63eGf3n//8Bw0aNMA333yT59o/VGEea9llnTkojHBXp04dWFlZYcWKFbKvhti3bx9u3Lgh7bOSJUvCw8MDa9aswb1792TLyP7+3bhxI3R1dWXje7L72OOuVatWOHfuHMLDw6W25ORkrFq1CmXLlkWVKlWkdjMzM3h7e2Pz5s1Sbe3atZMtr3PnzggPD8/x7GNCQgLS09PfWQ8A2WcW8OZyZ5UqVSCEkLYxp8/7JUuWyIZKFKQdO3bI/pacO3cOZ8+elT7fC1rTpk2ho6ODoKAgWXtOf7c+NZ4h+gy0bt0aU6dORd++fVG/fn1cuXIFISEhsv9hA28GP//6668YM2YMzp07h0aNGiE5ORmHDh3CsGHD0LZt23yt39zcHA0bNkTfvn0RFxeHhQsXwsnJCQMHDgQAaGlp4ZdffkHLli1RtWpV9O3bF6VKlcKDBw9w9OhRmJiYYNeuXUhOTsayZcuwePFiVKxYUfZ9I1lB6vLlywgPD4e7uzvKly+PH3/8EQEBAYiJiUG7du1QvHhxREdHY/v27Rg0aBC+++47HDp0CD/88AMuX7783p9gaNy4MQYPHoyZM2ciMjISzZs3R7FixXD79m1s2bIFixYtwrfffpuv1+ngwYNo1qzZO/8H2atXL2zevBlDhgzB0aNH0aBBA2RkZODmzZvYvHkzDhw48EHjQGxsbDBnzhwMGDAAPXv2RKtWrVCpUiWUL18e3333HR48eAATExNs27Yt3//7MjExQVBQEHr16oXatWuja9euKFmyJO7du4c9e/agQYMGef4wK1myJAICAjBlyhS0aNEC33zzDaKiorB8+XLUrVsXPXv2lPW3s7PDrFmzEBMTg4oVK2LTpk2IjIzEqlWr1M6CHjx4ENOnT5eNq8vNwYMHc/2OrLw4cuSIbAxL1v+yr1y5gitXrsDFxaVQj7V79+5h//790iWz6dOnw8HBAbVq1Srwy2bFihXDrFmz0LdvXzRu3BjdunWTbrsvW7YsRo8eLfVdvHgxGjZsiNq1a2PQoEFwdHRETEwM9uzZI918MXnyZGzYsAH/+c9/3jkO6GOPu//85z/YsGEDWrZsiREjRsDc3Bzr1q1DdHQ0tm3bpvYty126dEHPnj2xfPlyeHt7q32lx7hx4/Dnn3+idevW6NOnD1xdXZGcnIwrV65g69atiImJkZ2xz0nz5s1hY2ODBg0awNraGjdu3MDSpUvh4+Mj3bjSunVr/PbbbzA1NUWVKlUQHh6OQ4cO5em4zg8nJyc0bNgQQ4cORUpKChYuXAgLC4tcLw1+LGtra4wcORLz5s3DN998gxYtWuDSpUvYt28fLC0tP+oGoI/2aW9qo7dl3aZ4/vz5d/Z7/fq1GDt2rLC1tRUGBgaiQYMGIjw8XHYLdpaXL1+K77//Xjg6OopixYoJGxsb8e2334q7d+8KIfJ32/2GDRtEQECAsLKyEgYGBsLHxyfHW7cvXrwoOnToICwsLISenp5wcHAQnTt3FocPH5at+32P7Lddbtu2TTRs2FAYGRkJIyMjUalSJeHn5yeioqKEEEIMHz5ceHh4iP3796vVlNPtokIIsWrVKuHq6ioMDAxE8eLFhYuLixg/frz4999/pT4feiu0SqUSERERsvac9lFqaqqYNWuWqFq1qtDT0xMlSpQQrq6uYsqUKSIxMVFtfe9bnhBCNGnSRJQpU0Y8f/5cCCHE9evXhZeXlzA2NhaWlpZi4MCB4tKlS2q3hmffhpxuu89y9OhR4e3tLUxNTYW+vr4oX7686NOnj7hw4YLU53233WdZunSpqFSpkihWrJiwtrYWQ4cOFc+ePVPb1qpVq4oLFy4Id3d3oa+vLxwcHMTSpUvV6gIgbG1tRXJy8ju3Ket4aNu2bY7LyOtt9x9y/BbGsZb1UKlUwsbGRnTo0EHcuHFDCFHwt91n2bRpk6hVq5bQ09MT5ubmokePHrLbtbNcvXpVtG/fXpiZmQl9fX3h7OwsfvjhByGEEBs2bBDVqlUTixYtUrsVP7d9kJfjLjd3794V3377rVTLV199JXbv3p1j36SkJGFgYCAAiN9//z3HPs+fPxcBAQHCyclJ6OrqCktLS1G/fn0xd+5c6Wsg3vUZu3LlSuHh4SF9RpYvX16MGzdO9r5/9uyZ6Nu3r7C0tBTGxsbC29tb3Lx5M9fb3LP//cjtqyGy7++365w3b56wt7cXenp6olGjRuLSpUs5LvNtea0np/2anp4ufvjhB2FjYyMMDAxEkyZNxI0bN4SFhYXs6wI+NZUQn8FIJ9KIY8eO4euvv8aWLVvy/T/Zt8XExMDR0RHR0dG5Xp8ODAxETEyM2jf+kvJ4enri8ePHeRqTUlRkfcsuj18q6rI+j+fMmYPvvvtO0+UgISEBJUqUwI8//piny96FgWOIiIiI6JN5+yeEsmR903f2nyb6lDiGiD6ZrDth3jXouXr16tJPkRB9blxcXDRdAlGRt2nTJgQHB6NVq1YwNjbGqVOnsGHDBjRv3lz2nUyfGgMRfTKWlpb4/fff39nn7S9CI/rcjB07VtMlEBV51atXh46ODmbPno2kpCRpoHX27+H61DiGiIiIiBSPY4iIiIhI8RiIiIiISPE4higPMjMz8e+//6J48eKa/dIoIiIiyjMhBJ4/fw47Ozu1L+PMjoEoD/799988/egmERERFT33799H6dKl39mHgSgPsr5S/f79++/8qnkiIiIqOpKSkmBvby/9HX8XBqI8yLpMZmJiwkBERET0mcnLcBcOqiYiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixdNoIAoKCkL16tVhYmICExMTuLu7Y9++fdL8169fw8/PDxYWFjA2NkbHjh0RFxcnW8a9e/fg4+MDQ0NDWFlZYdy4cUhPT5f1OXbsGGrXrg09PT04OTkhODj4U2weERERfSZ0NLny0qVL46effkKFChUghMC6devQtm1bXLx4EVWrVsXo0aOxZ88ebNmyBaampvD390eHDh0QFhYGAMjIyICPjw9sbGxw+vRpPHz4EL6+vihWrBhmzJgBAIiOjoaPjw+GDBmCkJAQHD58GAMGDICtrS28vb0Ldftcx/1aqMunvIuY41vo6+D+Ljq4v5WF+1tZCmt/azQQtWnTRjY9ffp0BAUF4cyZMyhdujRWr16N9evXo0mTJgCAtWvXonLlyjhz5gzq1auHgwcP4vr16zh06BCsra1Rs2ZNTJs2DRMmTEBgYCB0dXWxYsUKODo6Yt68eQCAypUr49SpU1iwYEGhByIiIiL6PBSZMUQZGRnYuHEjkpOT4e7ujoiICKSlpcHLy0vqU6lSJZQpUwbh4eEAgPDwcLi4uMDa2lrq4+3tjaSkJFy7dk3q8/YysvpkLSMnKSkpSEpKkj2IiIjoy6XxQHTlyhUYGxtDT08PQ4YMwfbt21GlShXExsZCV1cXZmZmsv7W1taIjY0FAMTGxsrCUNb8rHnv6pOUlIRXr17lWNPMmTNhamoqPezt7QtiU4mIiKiI0nggcnZ2RmRkJM6ePYuhQ4eid+/euH79ukZrCggIQGJiovS4f/++RushIiKiwqXRMUQAoKurCycnJwCAq6srzp8/j0WLFqFLly5ITU1FQkKC7CxRXFwcbGxsAAA2NjY4d+6cbHlZd6G93Sf7nWlxcXEwMTGBgYFBjjXp6elBT0+vQLaPiIiIij6NnyHKLjMzEykpKXB1dUWxYsVw+PBhaV5UVBTu3bsHd3d3AIC7uzuuXLmC+Ph4qU9oaChMTExQpUoVqc/by8jqk7UMIiIiIo2eIQoICEDLli1RpkwZPH/+HOvXr8exY8dw4MABmJqaon///hgzZgzMzc1hYmKC4cOHw93dHfXq1QMANG/eHFWqVEGvXr0we/ZsxMbGYuLEifDz85PO8AwZMgRLly7F+PHj0a9fPxw5cgSbN2/Gnj17NLnpREREVIRoNBDFx8fD19cXDx8+hKmpKapXr44DBw6gWbNmAIAFCxZAS0sLHTt2REpKCry9vbF8+XLp+dra2ti9ezeGDh0Kd3d3GBkZoXfv3pg6darUx9HREXv27MHo0aOxaNEilC5dGr/88gtvuSciIiKJRgPR6tWr3zlfX18fy5Ytw7Jly3Lt4+DggL17975zOZ6enrh48WK+aiQiIqIvX5EbQ0RERET0qTEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeJpNBDNnDkTdevWRfHixWFlZYV27dohKipK1sfT0xMqlUr2GDJkiKzPvXv34OPjA0NDQ1hZWWHcuHFIT0+X9Tl27Bhq164NPT09ODk5ITg4uLA3j4iIiD4TGg1Ex48fh5+fH86cOYPQ0FCkpaWhefPmSE5OlvUbOHAgHj58KD1mz54tzcvIyICPjw9SU1Nx+vRprFu3DsHBwZg0aZLUJzo6Gj4+Pvj6668RGRmJUaNGYcCAAThw4MAn21YiIiIqunQ0ufL9+/fLpoODg2FlZYWIiAh4eHhI7YaGhrCxsclxGQcPHsT169dx6NAhWFtbo2bNmpg2bRomTJiAwMBA6OrqYsWKFXB0dMS8efMAAJUrV8apU6ewYMECeHt7F94GEhER0WehSI0hSkxMBACYm5vL2kNCQmBpaYlq1aohICAAL1++lOaFh4fDxcUF1tbWUpu3tzeSkpJw7do1qY+Xl5dsmd7e3ggPD8+xjpSUFCQlJckeRERE9OXS6Bmit2VmZmLUqFFo0KABqlWrJrV3794dDg4OsLOzw+XLlzFhwgRERUXhjz/+AADExsbKwhAAaTo2NvadfZKSkvDq1SsYGBjI5s2cORNTpkwp8G0kIiKioqnIBCI/Pz9cvXoVp06dkrUPGjRI+reLiwtsbW3RtGlT3L17F+XLly+UWgICAjBmzBhpOikpCfb29oWyLiIiItK8InHJzN/fH7t378bRo0dRunTpd/Z1c3MDANy5cwcAYGNjg7i4OFmfrOmscUe59TExMVE7OwQAenp6MDExkT2IiIjoy6XRQCSEgL+/P7Zv344jR47A0dHxvc+JjIwEANja2gIA3N3dceXKFcTHx0t9QkNDYWJigipVqkh9Dh8+LFtOaGgo3N3dC2hLiIiI6HOm0UDk5+eH33//HevXr0fx4sURGxuL2NhYvHr1CgBw9+5dTJs2DREREYiJicGff/4JX19feHh4oHr16gCA5s2bo0qVKujVqxcuXbqEAwcOYOLEifDz84Oenh4AYMiQIfjf//6H8ePH4+bNm1i+fDk2b96M0aNHa2zbiYiIqOjQaCAKCgpCYmIiPD09YWtrKz02bdoEANDV1cWhQ4fQvHlzVKpUCWPHjkXHjh2xa9cuaRna2trYvXs3tLW14e7ujp49e8LX1xdTp06V+jg6OmLPnj0IDQ1FjRo1MG/ePPzyyy+85Z6IiIgAaHhQtRDinfPt7e1x/Pjx9y7HwcEBe/fufWcfT09PXLx48YPqIyIiImUoEoOqiYiIiDSJgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUT6OBaObMmahbty6KFy8OKysrtGvXDlFRUbI+r1+/hp+fHywsLGBsbIyOHTsiLi5O1ufevXvw8fGBoaEhrKysMG7cOKSnp8v6HDt2DLVr14aenh6cnJwQHBxc2JtHREREnwmNBqLjx4/Dz88PZ86cQWhoKNLS0tC8eXMkJydLfUaPHo1du3Zhy5YtOH78OP7991906NBBmp+RkQEfHx+kpqbi9OnTWLduHYKDgzFp0iSpT3R0NHx8fPD1118jMjISo0aNwoABA3DgwIFPur1ERERUNOlocuX79++XTQcHB8PKygoRERHw8PBAYmIiVq9ejfXr16NJkyYAgLVr16Jy5co4c+YM6tWrh4MHD+L69es4dOgQrK2tUbNmTUybNg0TJkxAYGAgdHV1sWLFCjg6OmLevHkAgMqVK+PUqVNYsGABvL29P/l2ExERUdFSpMYQJSYmAgDMzc0BABEREUhLS4OXl5fUp1KlSihTpgzCw8MBAOHh4XBxcYG1tbXUx9vbG0lJSbh27ZrU5+1lZPXJWkZ2KSkpSEpKkj2IiIjoy1VkAlFmZiZGjRqFBg0aoFq1agCA2NhY6OrqwszMTNbX2toasbGxUp+3w1DW/Kx57+qTlJSEV69eqdUyc+ZMmJqaSg97e/sC2UYiIiIqmopMIPLz88PVq1exceNGTZeCgIAAJCYmSo/79+9ruiQiIiIqRBodQ5TF398fu3fvxokTJ1C6dGmp3cbGBqmpqUhISJCdJYqLi4ONjY3U59y5c7LlZd2F9naf7HemxcXFwcTEBAYGBmr16OnpQU9Pr0C2jYiIiIo+jZ4hEkLA398f27dvx5EjR+Do6Cib7+rqimLFiuHw4cNSW1RUFO7duwd3d3cAgLu7O65cuYL4+HipT2hoKExMTFClShWpz9vLyOqTtQwiIiJSNo2eIfLz88P69euxc+dOFC9eXBrzY2pqCgMDA5iamqJ///4YM2YMzM3NYWJiguHDh8Pd3R316tUDADRv3hxVqlRBr169MHv2bMTGxmLixInw8/OTzvIMGTIES5cuxfjx49GvXz8cOXIEmzdvxp49ezS27URERFR0aPQMUVBQEBITE+Hp6QlbW1vpsWnTJqnPggUL0Lp1a3Ts2BEeHh6wsbHBH3/8Ic3X1tbG7t27oa2tDXd3d/Ts2RO+vr6YOnWq1MfR0RF79uxBaGgoatSogXnz5uGXX37hLfdEREQEQMNniIQQ7+2jr6+PZcuWYdmyZbn2cXBwwN69e9+5HE9PT1y8ePGDayQiIqIvX5G5y4yIiIhIUxiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8XTy+8Tk5GQcP34c9+7dQ2pqqmzeiBEjProwIiIiok8lX4Ho4sWLaNWqFV6+fInk5GSYm5vj8ePHMDQ0hJWVFQMRERERfVbydcls9OjRaNOmDZ49ewYDAwOcOXMGf//9N1xdXTF37tyCrpGIiIioUOUrEEVGRmLs2LHQ0tKCtrY2UlJSYG9vj9mzZ+O///1vQddIREREVKjyFYiKFSsGLa03T7WyssK9e/cAAKamprh//37BVUdERET0CeRrDFGtWrVw/vx5VKhQAY0bN8akSZPw+PFj/Pbbb6hWrVpB10hERERUqPJ1hmjGjBmwtbUFAEyfPh0lSpTA0KFD8ejRI6xatapACyQiIiIqbPk6Q1SnTh3p31ZWVti/f3+BFURERET0qeXrDFGTJk2QkJBQwKUQERERaUa+AtGxY8fUvoyRiIiI6HOV75/uUKlUBVkHERERkcbk+6c72rdvD11d3RznHTlyJN8FEREREX1q+Q5E7u7uMDY2LshaiIiIiDQiX4FIpVJh3LhxsLKyKuh6iIiIiD65fI0hEkIUdB1EREREGpOvQDR58mReLiMiIqIvRr4umU2ePBkA8OjRI0RFRQEAnJ2dUbJkyYKrjIiIiOgTydcZopcvX6Jfv36ws7ODh4cHPDw8YGdnh/79++Ply5cFXSMRERFRocpXIBo9ejSOHz+OP//8EwkJCUhISMDOnTtx/PhxjB07tqBrJCIiIipU+bpktm3bNmzduhWenp5SW6tWrWBgYIDOnTsjKCiooOojIiIiKnT5vmRmbW2t1m5lZcVLZkRERPTZyVcgcnd3x+TJk/H69Wup7dWrV5gyZQrc3d0LrDgiIiKiTyFfl8wWLlyIFi1aoHTp0qhRowYA4NKlS9DX18eBAwcKtEAiIiKiwpavQOTi4oLbt28jJCQEN2/eBAB069YNPXr0gIGBQYEWSERERFTY8hWITpw4gfr162PgwIEFXQ8RERHRJ5evMURff/01nj59WtC1EBEREWkEf8uMiIiIFC9fl8wAIDw8HCVKlMhxnoeHR74LIiIiIvrU8h2I2rdvn2O7SqVCRkZGvgsiIiIi+tTydckMAGJjY5GZman2YBgiIiKiz02+ApFKpSroOoiIiIg0RqODqk+cOIE2bdrAzs4OKpUKO3bskM3v06cPVCqV7NGiRQtZn6dPn6JHjx4wMTGBmZkZ+vfvjxcvXsj6XL58GY0aNYK+vj7s7e0xe/bsAqmfiIiIvgz5CkSZmZmwsrL66JUnJyejRo0aWLZsWa59WrRogYcPH0qPDRs2yOb36NED165dQ2hoKHbv3o0TJ05g0KBB0vykpCQ0b94cDg4OiIiIwJw5cxAYGIhVq1Z9dP1ERET0ZcjXoOqZM2fC2toa/fr1k7WvWbMGjx49woQJE/K0nJYtW6Jly5bv7KOnpwcbG5sc5924cQP79+/H+fPnUadOHQDAkiVL0KpVK8ydOxd2dnYICQlBamoq1qxZA11dXVStWhWRkZGYP3++LDgRERGRcuXrDNHKlStRqVIltfaqVatixYoVH13U244dOwYrKys4Oztj6NChePLkiTQvPDwcZmZmUhgCAC8vL2hpaeHs2bNSHw8PD+jq6kp9vL29ERUVhWfPnuW4zpSUFCQlJckeRERE9OXKVyCKjY2Fra2tWnvJkiXx8OHDjy4qS4sWLfDrr7/i8OHDmDVrFo4fP46WLVtKd7LFxsaqXbrT0dGBubk5YmNjpT7W1tayPlnTWX2ymzlzJkxNTaWHvb19gW0TERERFT35umRmb2+PsLAwODo6ytrDwsJgZ2dXIIUBQNeuXaV/u7i4oHr16ihfvjyOHTuGpk2bFth6sgsICMCYMWOk6aSkJIYiIiKiL1i+AtHAgQMxatQopKWloUmTJgCAw4cPY/z48Rg7dmyBFvi2cuXKwdLSEnfu3EHTpk1hY2OD+Ph4WZ/09HQ8ffpUGndkY2ODuLg4WZ+s6dzGJunp6UFPT68QtoCIiIiKonwFonHjxuHJkycYNmwYUlNTAQD6+vqYMGECAgICCrTAt/3zzz948uSJdLnO3d0dCQkJiIiIgKurKwDgyJEjyMzMhJubm9Tn+++/R1paGooVKwYACA0NhbOzc64/PUJERETKku8vZpw1axYePXqEM2fO4NKlS3j69CkmTZr0Qct58eIFIiMjERkZCQCIjo5GZGQk7t27hxcvXmDcuHE4c+YMYmJicPjwYbRt2xZOTk7w9vYGAFSuXBktWrTAwIEDce7cOYSFhcHf3x9du3aVLt11794durq66N+/P65du4ZNmzZh0aJFsktiREREpGz5/i0zADA2NkbdunXz/fwLFy7g66+/lqazQkrv3r0RFBSEy5cvY926dUhISICdnR2aN2+OadOmyS5nhYSEwN/fH02bNoWWlhY6duyIxYsXS/NNTU1x8OBB+Pn5wdXVFZaWlpg0aRJvuSciIiJJvgPRhQsXsHnzZty7d0+6bJbljz/+yNMyPD093/mt1wcOHHjvMszNzbF+/fp39qlevTpOnjyZp5qIiIhIefJ1yWzjxo2oX78+bty4ge3btyMtLQ3Xrl3DkSNHYGpqWtA1EhERERWqfAWiGTNmYMGCBdi1axd0dXWxaNEi3Lx5E507d0aZMmUKukYiIiKiQpWvQHT37l34+PgAAHR1dZGcnAyVSoXRo0fzN8KIiIjos5OvQFSiRAk8f/4cAFCqVClcvXoVAJCQkICXL18WXHVEREREn0C+BlV7eHggNDQULi4u6NSpE0aOHIkjR44gNDS0UL9BmoiIiKgw5CsQLV26FK9fvwYAfP/99yhWrBhOnz6Njh07YuLEiQVaIBEREVFh+6BAlPWr7zo6OjA2Npamhw0bhmHDhhV8dURERESfwAcFIjMzM6hUqvf2y/o1eiIiIqLPwQcFoqNHj8qmhRBo1aoVfvnlF5QqVapACyMiIiL6VD4oEDVu3FitTVtbG/Xq1UO5cuUKrCgiIiKiTylft90TERERfUk+KhDdv38fL1++hIWFRUHVQ0RERPTJfdAls7d/Rf7x48fYsGEDmjRpwt8vIyIios/aBwWiBQsWAABUKhUsLS3Rpk0bfu8QERERffY+KBBFR0cXVh1EREREGsNB1URERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeBoNRCdOnECbNm1gZ2cHlUqFHTt2yOYLITBp0iTY2trCwMAAXl5euH37tqzP06dP0aNHD5iYmMDMzAz9+/fHixcvZH0uX76MRo0aQV9fH/b29pg9e3ZhbxoRERF9RjQaiJKTk1GjRg0sW7Ysx/mzZ8/G4sWLsWLFCpw9exZGRkbw9vbG69evpT49evTAtWvXEBoait27d+PEiRMYNGiQND8pKQnNmzeHg4MDIiIiMGfOHAQGBmLVqlWFvn1ERET0edDR5MpbtmyJli1b5jhPCIGFCxdi4sSJaNu2LQDg119/hbW1NXbs2IGuXbvixo0b2L9/P86fP486deoAAJYsWYJWrVph7ty5sLOzQ0hICFJTU7FmzRro6uqiatWqiIyMxPz582XBiYiIiJSryI4hio6ORmxsLLy8vKQ2U1NTuLm5ITw8HAAQHh4OMzMzKQwBgJeXF7S0tHD27Fmpj4eHB3R1daU+3t7eiIqKwrNnz3Jcd0pKCpKSkmQPIiIi+nIV2UAUGxsLALC2tpa1W1tbS/NiY2NhZWUlm6+jowNzc3NZn5yW8fY6sps5cyZMTU2lh729/cdvEBERERVZRTYQaVJAQAASExOlx/379zVdEhERERWiIhuIbGxsAABxcXGy9ri4OGmejY0N4uPjZfPT09Px9OlTWZ+clvH2OrLT09ODiYmJ7EFERERfriIbiBwdHWFjY4PDhw9LbUlJSTh79izc3d0BAO7u7khISEBERITU58iRI8jMzISbm5vU58SJE0hLS5P6hIaGwtnZGSVKlPhEW0NERERFmUYD0YsXLxAZGYnIyEgAbwZSR0ZG4t69e1CpVBg1ahR+/PFH/Pnnn7hy5Qp8fX1hZ2eHdu3aAQAqV66MFi1aYODAgTh37hzCwsLg7++Prl27ws7ODgDQvXt36Orqon///rh27Ro2bdqERYsWYcyYMRraaiIiIipqNHrb/YULF/D1119L01khpXfv3ggODsb48eORnJyMQYMGISEhAQ0bNsT+/fuhr68vPSckJAT+/v5o2rQptLS00LFjRyxevFiab2pqioMHD8LPzw+urq6wtLTEpEmTeMs9ERERSTQaiDw9PSGEyHW+SqXC1KlTMXXq1Fz7mJubY/369e9cT/Xq1XHy5Ml810lERERftiI7hoiIiIjoU2EgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsUr0oEoMDAQKpVK9qhUqZI0//Xr1/Dz84OFhQWMjY3RsWNHxMXFyZZx7949+Pj4wNDQEFZWVhg3bhzS09M/9aYQERFREaaj6QLep2rVqjh06JA0raPz/yWPHj0ae/bswZYtW2Bqagp/f3906NABYWFhAICMjAz4+PjAxsYGp0+fxsOHD+Hr64tixYphxowZn3xbiIiIqGgq8oFIR0cHNjY2au2JiYlYvXo11q9fjyZNmgAA1q5di8qVK+PMmTOoV68eDh48iOvXr+PQoUOwtrZGzZo1MW3aNEyYMAGBgYHQ1dX91JtDRERERVCRvmQGALdv34adnR3KlSuHHj164N69ewCAiIgIpKWlwcvLS+pbqVIllClTBuHh4QCA8PBwuLi4wNraWurj7e2NpKQkXLt2Ldd1pqSkICkpSfYgIiKiL1eRDkRubm4IDg7G/v37ERQUhOjoaDRq1AjPnz9HbGwsdHV1YWZmJnuOtbU1YmNjAQCxsbGyMJQ1P2tebmbOnAlTU1PpYW9vX7AbRkREREVKkb5k1rJlS+nf1atXh5ubGxwcHLB582YYGBgU2noDAgIwZswYaTopKYmhiIiI6AtWpM8QZWdmZoaKFSvizp07sLGxQWpqKhISEmR94uLipDFHNjY2anedZU3nNC4pi56eHkxMTGQPIiIi+nJ9VoHoxYsXuHv3LmxtbeHq6opixYrh8OHD0vyoqCjcu3cP7u7uAAB3d3dcuXIF8fHxUp/Q0FCYmJigSpUqn7x+IiIiKpqK9CWz7777Dm3atIGDgwP+/fdfTJ48Gdra2ujWrRtMTU3Rv39/jBkzBubm5jAxMcHw4cPh7u6OevXqAQCaN2+OKlWqoFevXpg9ezZiY2MxceJE+Pn5QU9PT8NbR0REREVFkQ5E//zzD7p164YnT56gZMmSaNiwIc6cOYOSJUsCABYsWAAtLS107NgRKSkp8Pb2xvLly6Xna2trY/fu3Rg6dCjc3d1hZGSE3r17Y+rUqZraJCIiIiqCinQg2rhx4zvn6+vrY9myZVi2bFmufRwcHLB3796CLo2IiIi+IJ/VGCIiIiKiwsBARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIqnqEC0bNkylC1bFvr6+nBzc8O5c+c0XRIREREVAYoJRJs2bcKYMWMwefJk/PXXX6hRowa8vb0RHx+v6dKIiIhIwxQTiObPn4+BAweib9++qFKlClasWAFDQ0OsWbNG06URERGRhikiEKWmpiIiIgJeXl5Sm5aWFry8vBAeHq7ByoiIiKgo0NF0AZ/C48ePkZGRAWtra1m7tbU1bt68qdY/JSUFKSkp0nRiYiIAICkp6YPWm5HyKh/VUmH40H2XH9zfRQf3t7JwfyvLh+zvrL5CiPf2VUQg+lAzZ87ElClT1Nrt7e01UA0VBNMlQzRdAn1C3N/Kwv2tLPnZ38+fP4epqek7+ygiEFlaWkJbWxtxcXGy9ri4ONjY2Kj1DwgIwJgxY6TpzMxMPH36FBYWFlCpVIVeb1GRlJQEe3t73L9/HyYmJpouhwoZ97eycH8ri1L3txACz58/h52d3Xv7KiIQ6erqwtXVFYcPH0a7du0AvAk5hw8fhr+/v1p/PT096OnpydrMzMw+QaVFk4mJiaLeQErH/a0s3N/KosT9/b4zQ1kUEYgAYMyYMejduzfq1KmDr776CgsXLkRycjL69u2r6dKIiIhIwxQTiLp06YJHjx5h0qRJiI2NRc2aNbF//361gdZERESkPIoJRADg7++f4yUyypmenh4mT56sdvmQvkzc38rC/a0s3N/vpxJ5uReNiIiI6AumiC9mJCIiInoXBiIiIiJSPAYiIiIiUjwGIoXy9PTEqFGjNF0GFSHZj4myZcti4cKFGquHPsz73tMqlQo7duzI8/KOHTsGlUqFhISEj66Niq73HRf5OQ4CAwNRs2bNj67tU1PUXWZElHfnz5+HkZGRpsugAvLw4UOUKFFC02XQZ6Z+/fp4+PBhnr/c8HPGQEREOSpZsqSmS6AClNPPFNHnLS0tDcWKFSvUdejq6irm2OElM8KzZ8/g6+uLEiVKwNDQEC1btsTt27cBvPkdmJIlS2Lr1q1S/5o1a8LW1laaPnXqFPT09PDy5ctPXrsSeHp6Yvjw4Rg1ahRKlCgBa2tr/Pzzz9I3rRcvXhxOTk7Yt2+f9JyrV6+iZcuWMDY2hrW1NXr16oXHjx9L85OTk+Hr6wtjY2PY2tpi3rx5aut9+5JZTEwMVCoVIiMjpfkJCQlQqVQ4duwYgP8/tX7gwAHUqlULBgYGaNKkCeLj47Fv3z5UrlwZJiYm6N69O4+VQpKZmYnx48fD3NwcNjY2CAwMlOZlvzRy+vRp1KxZE/r6+qhTpw527Nihto8BICIiAnXq1IGhoSHq16+PqKioT7MxX5hVq1bBzs4OmZmZsva2bduiX79+AICdO3eidu3a0NfXR7ly5TBlyhSkp6dLfVUqFYKCgvDNN9/AyMgIP/74I5ycnDB37lzZMiMjI6FSqXDnzp081fb48WO0b98ehoaGqFChAv78809pXk6XzH7++WfY29vD0NAQ7du3x/z583P8eavffvsNZcuWhampKbp27Yrnz5/nqR5NYSAi9OnTBxcuXMCff/6J8PBwCCHQqlUrpKWlQaVSwcPDQ/qj9+zZM9y4cQOvXr3CzZs3AQDHjx9H3bp1YWhoqMGt+LKtW7cOlpaWOHfuHIYPH46hQ4eiU6dOqF+/Pv766y80b94cvXr1wsuXL5GQkIAmTZqgVq1auHDhAvbv34+4uDh07txZWt64ceNw/Phx7Ny5EwcPHsSxY8fw119/FUitgYGBWLp0KU6fPo379++jc+fOWLhwIdavX489e/bg4MGDWLJkSYGsi+TWrVsHIyMjnD17FrNnz8bUqVMRGhqq1i8pKQlt2rSBi4sL/vrrL0ybNg0TJkzIcZnff/895s2bhwsXLkBHR0f6400fplOnTnjy5AmOHj0qtT19+hT79+9Hjx49cPLkSfj6+mLkyJG4fv06Vq5cieDgYEyfPl22nMDAQLRv3x5XrlxB//790a9fP6xdu1bWZ+3atfDw8ICTk1OeapsyZQo6d+6My5cvo1WrVujRoweePn2aY9+wsDAMGTIEI0eORGRkJJo1a6ZWIwDcvXsXO3bswO7du7F7924cP34cP/30U57q0RhBitS4cWMxcuRIcevWLQFAhIWFSfMeP34sDAwMxObNm4UQQixevFhUrVpVCCHEjh07hJubm2jbtq0ICgoSQgjh5eUl/vvf/376jVCIxo0bi4YNG0rT6enpwsjISPTq1Utqe/jwoQAgwsPDxbRp00Tz5s1ly7h//74AIKKiosTz58+Frq6utH+FEOLJkyfCwMBAjBw5UmpzcHAQCxYsEEIIER0dLQCIixcvSvOfPXsmAIijR48KIYQ4evSoACAOHTok9Zk5c6YAIO7evSu1DR48WHh7e3/MS0I5yH6cCCFE3bp1xYQJE4QQQgAQ27dvF0IIERQUJCwsLMSrV6+kvj///LNsH+e0P/fs2SMAyJ5Hede2bVvRr18/aXrlypXCzs5OZGRkiKZNm4oZM2bI+v/222/C1tZWmgYgRo0aJevz4MEDoa2tLc6ePSuEECI1NVVYWlqK4ODgPNUEQEycOFGafvHihQAg9u3bJ4T4/+Pg2bNnQgghunTpInx8fGTL6NGjhzA1NZWmJ0+eLAwNDUVSUpLUNm7cOOHm5panmjSFZ4gU7saNG9DR0YGbm5vUZmFhAWdnZ9y4cQMA0LhxY1y/fh2PHj3C8ePH4enpCU9PTxw7dgxpaWk4ffo0PD09NbQFylC9enXp39ra2rCwsICLi4vUlvWbfPHx8bh06RKOHj0KY2Nj6VGpUiUAb/7XdvfuXaSmpsr2ubm5OZydnQu8VmtraxgaGqJcuXKytvj4+AJZF8m9/doDgK2tbY6vdVRUFKpXrw59fX2p7auvvnrvMrMulXP/5U+PHj2wbds2pKSkAABCQkLQtWtXaGlp4dKlS5g6darsfTtw4EA8fPhQdom5Tp06smXa2dnBx8cHa9asAQDs2rULKSkp6NSpU57rensfGxkZwcTEJNd9HBUVpXas5HTslC1bFsWLF5emczsWixIOqqb3cnFxgbm5OY4fP47jx49j+vTpsLGxwaxZs3D+/HmkpaWhfv36mi7zi5Z94KRKpZK1qVQqAG/GkLx48QJt2rTBrFmz1JZja2ub53EFb9PSevN/J/HWL/2kpaW9t9bsdWa1ZR9HQQWjMF7r3I4z+nBt2rSBEAJ79uxB3bp1cfLkSSxYsAAA8OLFC0yZMgUdOnRQe97bwTWnOz8HDBiAXr16YcGCBVi7di26dOnyQUMYCvu4KahlFjYGIoWrXLky0tPTcfbsWSnUPHnyBFFRUahSpQqANwdyo0aNsHPnTly7dg0NGzaEoaEhUlJSsHLlStSpU4e3ZxchtWvXxrZt21C2bFno6Ki/xcuXL49ixYrh7NmzKFOmDIA3Y8Nu3bqFxo0b57jMrDvOHj58iFq1agGA2uBb+nw4Ozvj999/R0pKivRjn+fPn9dwVV8+fX19dOjQASEhIbhz5w6cnZ1Ru3ZtAG/et1FRUXke9/O2Vq1awcjICEFBQdi/fz9OnDhR0KVLnJ2d1Y6VL+XY4SUzhatQoQLatm2LgQMH4tSpU7h06RJ69uyJUqVKoW3btlI/T09PbNiwATVr1oSxsTG0tLTg4eGBkJCQXP+Ikmb4+fnh6dOn6NatG86fP4+7d+/iwIED6Nu3LzIyMmBsbIz+/ftj3LhxOHLkCK5evYo+ffpIZ4FyYmBggHr16uGnn37CjRs3cPz4cUycOPETbhUVpO7duyMzMxODBg3CjRs3cODAAelOpayzQFQ4evTogT179mDNmjXo0aOH1D5p0iT8+uuvmDJlCq5du4YbN25g48aNeXqfaWtro0+fPggICECFChXg7u5eaPUPHz4ce/fuxfz583H79m2sXLkS+/bt+yKOGwYiwtq1a+Hq6orWrVvD3d0dQgjs3btXdsqzcePGyMjIkI0V8vT0VGsjzbOzs0NYWBgyMjLQvHlzuLi4YNSoUTAzM5NCz5w5c9CoUSO0adMGXl5eaNiwIVxdXd+53DVr1iA9PR2urq4YNWoUfvzxx0+xOVQITExMsGvXLkRGRqJmzZr4/vvvMWnSJADyyzNU8Jo0aQJzc3NERUWhe/fuUru3tzd2796NgwcPom7duqhXrx4WLFgABweHPC23f//+SE1NRd++fQurdABAgwYNsGLFCsyfPx81atTA/v37MXr06C/iuFGJtwcFEBGRIoWEhKBv375ITEyEgYGBpsuhD3Ty5Ek0bdoU9+/fl26y+FQGDhyImzdv4uTJk590vQWNY4iIiBTo119/Rbly5VCqVClcunQJEyZMQOfOnRmGPjMpKSl49OgRAgMD0alTp08ShubOnYtmzZrByMgI+/btw7p167B8+fJCX29h4yUzIiIFio2NRc+ePVG5cmWMHj0anTp1wqpVqzRdFn2gDRs2wMHBAQkJCZg9e7ZsXkhIiOw2/rcfVatWzfc6z507h2bNmsHFxQUrVqzA4sWLMWDAgI/dFI3jJTMiIqIv0PPnzxEXF5fjvGLFiuV5fJJSMBARERGR4vGSGRERESkeAxEREREpHgMRERERKR4DERERESkeAxER5apPnz5o166drO3Ro0eoVq0a3NzckJiYqJnCiIgKGAMREeXZo0eP0KRJExgYGODgwYMwNTXVdElERAWCgYiI8uTx48do2rQp9PT0EBoaKgtD8+fPh4uLC4yMjGBvb49hw4bhxYsXAIBjx45BpVLl+shy6tQpNGrUCAYGBrC3t8eIESOQnJwszS9btqzac7/77jtpflBQEMqXLw9dXV04Ozvjt99+k9WvUqkQFBSEli1bwsDAAOXKlcPWrVul+TExMVCpVIiMjJTafvjhB6hUKixcuFBqu3nzJpo1awZTU1OpDjMzs1xft6ztT0hIUKtnx44d0nRKSgq+++47lCpVCkZGRnBzc8OxY8ek+cHBwWrryV5zbusCgISEBKhUKtkyiej/MRAR0Xs9efIEXl5e0NHRQWhoqNofZi0tLSxevBjXrl3DunXrcOTIEYwfPx4AUL9+fTx8+BAPHz7Etm3bAECafvjwIQDg7t27aNGiBTp27IjLly9j06ZNOHXqFPz9/WXrmTp1quy5kydPBgBs374dI0eOxNixY3H16lUMHjwYffv2xdGjR2XP/+GHH9CxY0dcunQJPXr0QNeuXXHjxo0ct/mff/7BwoUL1X7Kol+/fkhLS0NYWBgePnwoC0sfw9/fH+Hh4di4cSMuX76MTp06oUWLFrh9+3aBLJ+I3kMQEeWid+/ewsPDQ9SsWVMUK1ZM1KtXT6Snp7/3eVu2bBEWFhZq7UePHhU5fez0799fDBo0SNZ28uRJoaWlJV69eiWEEMLBwUEsWLAgx/XVr19fDBw4UNbWqVMn0apVK2kagBgyZIisj5ubmxg6dKgQQojo6GgBQFy8eFEIIYSvr6/o37+/2noNDAxESEiINL127VphamqaY11vb/OzZ89k7QDE9u3bhRBC/P3330JbW1s8ePBA1qdp06YiICAg1/Vkrzm3dQkhxLNnzwQAcfTo0VxrJVIyniEionc6ceIEMjMzERkZiTt37qj9XhIAHDp0CE2bNkWpUqVQvHhx9OrVC0+ePMHLly/ztI5Lly4hODhY9ltL3t7eyMzMRHR09Huff+PGDTRo0EDW1qBBA7WzP+7u7mrTOZ0h+uuvv7B9+3ZMmzZNbZ6joyO2b9+e523LiytXriAjIwMVK1aUvQbHjx/H3bt3pX6JiYl5+j2q0qVLo3jx4nB0dMTAgQM5+J0oD/hr90T0TuXKlcPhw4dhaWmJ5cuXo2fPnvDx8UH16tUBvBnH0rp1awwdOhTTp0+Hubk5Tp06hf79+yM1NRWGhobvXceLFy8wePBgjBgxQm1emTJlCnyb3mfs2LH47rvvYGtrqzZv9erV6N27N4oXLw4DAwOkp6dDX1//o9b34sULaGtrIyIiAtra2rJ5xsbG0r+LFy+Ov/76S5p+8OABPD091ZZ38uRJFC9eHDExMRgwYAC+//57/Pjjjx9VI9GXjoGIiN7JxcUFlpaWAIBOnTrhjz/+gK+vL86dOwddXV1EREQgMzMT8+bNg5bWm5POmzdv/qB11K5dG9evX4eTk1O+aqxcuTLCwsLQu3dvqS0sLAxVqlSR9Ttz5gx8fX1l07Vq1ZL1+fPPP3Hr1i3s2bMnx3XVq1cP33zzDU6cOIHff/8d27dvx4wZM/JVd5ZatWohIyMD8fHxaNSoUa79tLS0ZK+Rjk7OH+GOjo4wMzODk5MTOnXqhPDw8I+qj0gJGIiI6IMsW7YM1apVw5QpUzB9+nQ4OTkhLS0NS5YsQZs2bRAWFoYVK1Z80DInTJiAevXqwd/fHwMGDICRkRGuX7+O0NBQLF269L3PHzduHDp37oxatWrBy8sLu3btwh9//IFDhw7J+m3ZsgV16tRBw4YNERISgnPnzmH16tWyPrNnz8aSJUtyPbO1bds2BAcHIyIiAmXKlIGVlVWetjElJQWvX7+WtaWlpSEzMxMVK1ZEjx494Ovri3nz5qFWrVp49OgRDh8+jOrVq8PHxydP68i+rpiYGOzbtw8NGzb8oOcTKRHHEBHRBzE3N8fPP/+MWbNm4ezZs6hRowbmz5+PWbNmoVq1aggJCcHMmTM/aJnVq1fH8ePHcevWLTRq1Ai1atXCpEmTYGdnl6fnt2vXDosWLcLcuXNRtWpVrFy5EmvXrlW7nDRlyhRs3LgR1atXx6+//ooNGzaonUVycnKSnWl6261btzBgwACsX7/+gy/l2djYwMDAQHoAQOfOnXHixAkAwNq1a+Hr64uxY8fC2dkZ7dq1w/nz5/N1yTBrXY0aNUKNGjU+eH8QKZFKCCE0XQQRUWFTqVTYvn272jdva1K7du0watSoHMcBEdGnxTNEREQaoqurK427IiLN4hgiIiIN+dDB50RUeBiIiEgRODqAiN6F52qJiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjx/g/vV9EfCmi0ggAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ4ElEQVR4nO3deVxN+f8H8Ndt3yO0kWRLyCAmWRIiNIZhNIjsaxnb4NuMIQwNY18mzCBjMpYxdiI7ydbIrsFkGNMiVITWz+8Pj86v2y0q1Y3zej4e9/HofM7nnvM+95xbr875nHsVQggBIiIiIhnTUHcBREREROrGQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdAREQfpOfPn2PJkiXSdFJSElauXKm+gui9FxwcDIVCgXv37qm7lHJBoVAgICBAmn7fXx8GojKQc5DkPPT09FC3bl34+fkhPj5e3eURfZD09fUxbdo0hISE4MGDBwgICMCePXvUXRYRlVNa6i5ATmbNmgU7Ozu8evUKp0+fRlBQEPbv349r167BwMBA3eURfVA0NTUxc+ZM+Pj4IDs7GyYmJti3b5+6yyL6YA0YMAB9+vSBrq6uukspFgaiMtSlSxc0a9YMADBs2DBUqlQJixYtwq5du9C3b181V0f04Zk0aRK++OILPHjwAA4ODqhQoYK6SyKSpKamwtDQUN1llBhNTU1oamqqu4xi4yUzNWrfvj0AICYmBgDw5MkTfPXVV3B0dISRkRFMTEzQpUsXXL58WeW5r169QkBAAOrWrQs9PT1YWVmhZ8+euHv3LgDg3r17Spfp8j7c3NykZR0/fhwKhQJbtmzB119/DUtLSxgaGuLTTz/FgwcPVNZ97tw5dO7cGaampjAwMEDbtm0RHh6e7za6ubnlu/7c151z/Prrr3BycoK+vj7MzMzQp0+ffNf/pm3LLTs7G0uWLEGDBg2gp6cHCwsLjBw5Ek+fPlXqV6NGDXzyyScq6/Hz81NZZn61//DDDyqvKQCkpaVhxowZqF27NnR1dWFjY4MpU6YgLS0t39cqNzc3N5XlzZkzBxoaGti0aZPUdurUKfTu3RvVq1eX1jFhwgS8fPlS6jNo0KA3Hgt5r/kfOHAAbdq0gaGhIYyNjeHp6Ynr168r1VLQMmvXrq3U78cff0SDBg2gq6sLa2tr+Pr6IikpSWVbGzZsiMjISLRs2RL6+vqws7PDqlWrlPrlHKfHjx9Xavf09FTZLwEBAdK+q1atGlxcXKClpQVLS8t8l5FXzvMTExOV2i9evAiFQoHg4GCl9tI61vz8/AqssbDjNd62//O+Ftu2bZPeh5UrV0b//v3x8OFDleXeunULXl5eqFKlCvT19WFvb49vvvlGpV+NGjUKtd7CHHf5yb2v3/b65Lz+p0+fxscffww9PT3UrFkTv/zyi8rzr1+/jvbt20NfXx/VqlXDd999h+zs7HxrKOx7xsjICHfv3kXXrl1hbGwMb29vAMDt27fRq1cvWFpaQk9PD9WqVUOfPn2QnJwsPX/9+vVo3749zM3Noauri/r16yMoKEillpxtPH78OJo1awZ9fX04OjpKr/cff/wBR0dH6OnpwcnJCZcuXcq3zr///hseHh4wNDSEtbU1Zs2aBSFE/juhhF7zK1euoG3btkqv+fr168tsXBLPEKlRTnipVKkSAODvv//Gzp070bt3b9jZ2SE+Ph6rV69G27ZtcePGDVhbWwMAsrKy8Mknn+DIkSPo06cPxo0bh2fPniEsLAzXrl1DrVq1pHX07dsXXbt2VVqvv79/vvXMmTMHCoUCU6dORUJCApYsWQJ3d3dERUVBX18fAHD06FF06dIFTk5OmDFjBjQ0NKQ36qlTp/Dxxx+rLLdatWoIDAwE8Hqg6+jRo/Nd97fffgsvLy8MGzYMjx49wvLly+Hq6opLly7l+5/9iBEj0KZNGwCv3+Q7duxQmj9y5EgEBwdj8ODB+PLLLxETE4MVK1bg0qVLCA8Ph7a2dr6vQ1EkJSVJ25ZbdnY2Pv30U5w+fRojRoyAg4MDrl69isWLF+Ovv/7Czp07i7Se9evXY9q0aVi4cCH69esntW/btg0vXrzA6NGjUalSJZw/fx7Lly/Hv//+i23btgF4/Tq4u7tLzxkwYAA+++wz9OzZU2qrUqUKAGDjxo0YOHAgPDw8MG/ePLx48QJBQUFo3bo1Ll26hBo1akjP0dXVxc8//6xUp7GxsfRzQEAAZs6cCXd3d4wePRrR0dEICgrChQsXVF7/p0+fomvXrvDy8kLfvn2xdetWjB49Gjo6OhgyZEiBr8vJkyexf//+Qr2GCxcuLLUxe2VxrL2L/PbVhQsXsGzZMqW2nG1o3rw5AgMDER8fj6VLlyI8PFzpfXjlyhW0adMG2traGDFiBGrUqIG7d+9iz549mDNnjsr627RpgxEjRgAAbt68iblz5yrNL8px967u3LmDzz//HEOHDsXAgQOxbt06DBo0CE5OTmjQoAEAIC4uDu3atUNmZib+97//wdDQEGvWrJF+Dxa39szMTHh4eKB169ZYsGABDAwMkJ6eDg8PD6SlpWHs2LGwtLTEw4cPsXfvXiQlJcHU1BQAEBQUhAYNGuDTTz+FlpYW9uzZgzFjxiA7Oxu+vr4q29ivXz+MHDkS/fv3x4IFC9CtWzesWrUKX3/9NcaMGQMACAwMhJeXF6Kjo6Gh8f/nR7KystC5c2e0aNEC8+fPR2hoKGbMmIHMzEzMmjWrVF7zhw8fol27dlAoFPD394ehoSF+/vnnsr38JqjUrV+/XgAQhw8fFo8ePRIPHjwQmzdvFpUqVRL6+vri33//FUII8erVK5GVlaX03JiYGKGrqytmzZolta1bt04AEIsWLVJZV3Z2tvQ8AOKHH35Q6dOgQQPRtm1bafrYsWMCgKhatapISUmR2rdu3SoAiKVLl0rLrlOnjvDw8JDWI4QQL168EHZ2dqJjx44q62rZsqVo2LChNP3o0SMBQMyYMUNqu3fvntDU1BRz5sxReu7Vq1eFlpaWSvvt27cFALFhwwapbcaMGSL34Xzq1CkBQISEhCg9NzQ0VKXd1tZWeHp6qtTu6+sr8r5F8tY+ZcoUYW5uLpycnJRe040bNwoNDQ1x6tQppeevWrVKABDh4eEq68utbdu20vL27dsntLS0xKRJk1T6vXjxQqUtMDBQKBQK8c8//+S77LzbkOPZs2eiQoUKYvjw4UrtcXFxwtTUVKl94MCBwtDQsMD6ExIShI6OjujUqZPSMb1ixQoBQKxbt05pWwGIhQsXSm1paWmicePGwtzcXKSnpwsh/v84PXbsmNTP2dlZdOnSRWWb8h4PCQkJwtjYWOqbexn5yXn+o0ePlNovXLggAIj169dLbaV5rPn6+hZYY87vlZiYmDduS0H7atu2bUqvRXp6ujA3NxcNGzYUL1++lPrt3btXABDTp0+X2lxdXYWxsbHKMZb790KOqlWrisGDB0vTefdjUY67/OTd1znye31sbW0FAHHy5EmpLSEhQejq6iq9v8aPHy8AiHPnzin1MzU1VVpmUd8zAMT//vc/pb6XLl0SAMS2bdveuJ35vdc9PDxEzZo1ldpytvHMmTNS28GDBwUAoa+vr7TPVq9erfJ+yKlz7NixUlt2drbw9PQUOjo6Su+JvO+7d3nNx44dKxQKhbh06ZLU9vjxY2FmZlao47wk8JJZGXJ3d0eVKlVgY2ODPn36wMjICDt27EDVqlUBvP4vLielZ2Vl4fHjxzAyMoK9vT3+/PNPaTnbt29H5cqVMXbsWJV15HfquLB8fHyU/sP//PPPYWVlJf0HHhUVhdu3b6Nfv354/PgxEhMTkZiYiNTUVHTo0AEnT55UOaX86tUr6OnpvXG9f/zxB7Kzs+Hl5SUtMzExEZaWlqhTpw6OHTum1D89PR0A3vifw7Zt22BqaoqOHTsqLdPJyQlGRkYqy8zIyFDql5iYiFevXr2x7ocPH2L58uX49ttvYWRkpLJ+BwcH1KtXT2mZOZdJ866/IOfPn4eXlxd69eqFH374QWV+7v9YU1NTkZiYiJYtW0IIoXIq/G3CwsKQlJSEvn37KtWsqakJZ2fnQtcMAIcPH0Z6ejrGjx+v9J/n8OHD8x3crKWlhZEjR0rTOjo6GDlyJBISEhAZGZnvOv744w9cuHAB33///VvrmT17NkxNTfHll18WehsKqzSPtVevXiExMRGPHz8u8HJNSbl48SISEhIwZswYpfesp6cn6tWrJ+2zR48e4eTJkxgyZAiqV6+utIz8fv+kp6e/8b1aksddYdSvX186swy8Pjtqb2+Pv//+W2rbv38/WrRooXTGu0qVKtIlrnepPe8Z8pwzQAcPHsSLFy8KrDv3ez05ORmJiYlo27Yt/v77b6VLaznb6OLiIk07OzsDeD1MI/c+y2nPve05cl+uzbl8m56ejsOHDxdYY0EK85qHhobCxcUFjRs3ltrMzMxUXvPSxEtmZWjlypWoW7cutLS0YGFhAXt7e6U/FtnZ2Vi6dCl+/PFHxMTEICsrS5qXc1kNeH2pzd7eHlpaJbv76tSpozSdMyYk59rt7du3AQADBw4scBnJycmoWLGiNJ2YmKiy3Lxu374NIUSB/fJebsgZg5I3hORdZnJyMszNzfOdn5CQoDR96NAh6bJRYc2YMQPW1tYYOXIkfv/9d5X137x5s8Bl5l1/fh4+fAhPT0+kpqbi8ePH+f6xuX//PqZPn47du3erjFfJ+0vybXL2b05oy8vExKTQy/rnn38AAPb29krtOjo6qFmzpjQ/h7W1tcrg0rp16wJ4PWasRYsWSvOysrLw9ddfw9vbG40aNXpjLTExMVi9ejWCgoLeGs6LozSPtbVr12Lt2rUAXr92zs7OWLRokXRzRkkqaJ8BQL169XD69GkA///Hs2HDhoVabnJy8lvfq0DJHHeFkTfEAUDFihWV3j///POPFBZyy/vaFLV2LS0tVKtWTanNzs4OEydOxKJFixASEoI2bdrg008/Rf/+/aWwBADh4eGYMWMGIiIiVIJTcnKyUt+825gzz8bGJt/2vL87NDQ0ULNmTaW23O/Hoirsa547xOXIOy6xNDEQlaGPP/74jb/I5s6di2+//RZDhgzB7NmzYWZmBg0NDYwfP77U/zssjJwafvjhB6UUn1vuX3zp6emIjY1Fx44d37pchUKBAwcO5HuHQt5fpnFxcQAAS0vLNy7T3NwcISEh+c7P+wfJ2dkZ3333nVLbihUrsGvXrnyff/PmTQQHB+PXX3/Nd3xIdnY2HB0dsWjRonyfn/cXU37u3LmDpk2bYvHixRgwYAA2bNigFEazsrLQsWNHPHnyBFOnTkW9evVgaGiIhw8fYtCgQUU+ZnL6b9y4Md/XtqQD+LtYu3Yt7t27h4MHD7617zfffIM6depg4MCBOHXqVInXUprHWvfu3eHn5wchBGJiYjBr1ix88skn0h/i8u7JkydIT09/63sVKP5xV9BZ8dz/UOZW0F1Q4i0DhvNT1NpzXwXIbeHChRg0aBB27dqFQ4cO4csvv0RgYCDOnj2LatWq4e7du+jQoQPq1auHRYsWwcbGBjo6Oti/fz8WL16s8l4vaBtLctuLQl3rLary8xuO8Pvvv6Ndu3bSf4Q5kpKSULlyZWm6Vq1aOHfuHDIyMkp0sGbeX7JCCNy5c0f6DzxnsLaJiYnSIN2CXL58GRkZGW/9b7ZWrVoQQsDOzk76L+RNbty4AYVCke9/srmXefjwYbRq1SrfgZB5Va5cWWWb3jTw2d/fH40bN8YXX3xR4PovX76MDh06FPsyZs7lSgsLC+zatQuTJk1C165dpT+wV69exV9//YUNGzbAx8dHel5YWFix1pezf83NzQu1f9/E1tYWABAdHa30n2Z6ejpiYmJUlv/ff/+p3IL8119/AYDKgNoXL15g5syZGDNmjLSegly6dAmbN2/Gzp07S+124NI81qpVq6bU18jICN7e3kW+HFoYufdZ3jMe0dHR0vyc/Xnt2rW3LvPGjRsAAAcHhwL7vOtxl3NGOikpSenmi7xnIYvC1tY239AZHR2tNF2S7xlHR0c4Ojpi2rRpOHPmDFq1aoVVq1bhu+++w549e5CWlobdu3crnW0p6cuJObKzs/H3338r/T4u6P1YUmxtbXHnzh2V9vzaSgvHEJUjmpqaKol527ZtKre89urVC4mJiVixYoXKMt4lcf/yyy949uyZNP37778jNjYWXbp0AQA4OTmhVq1aWLBgAZ4/f67y/EePHqnUrqmpme9txrn17NlT+hC9vPULIfD48WNpOjMzE9u3b8fHH3/8xtPwXl5eyMrKwuzZs1XmZWZmqtz6XRQRERHYtWsXvv/++wLDjpeXFx4+fIiffvpJZd7Lly+Rmpr61vXUrVsXFhYWAIDly5cjOzsb48aNk+bn/IHP/ZoJIbB06dIibU8ODw8PmJiYYO7cucjIyFCZn3f/vom7uzt0dHSwbNkypfrWrl2L5ORkeHp6KvXPzMzE6tWrpen09HSsXr0aVapUgZOTk1LfpUuXIjU1Nd9bvPP63//+h1atWuHTTz8tdO1FVZrHWl45ZwJKI9w1a9YM5ubmWLVqldJHQxw4cAA3b96U9lmVKlXg6uqKdevW4f79+0rLyPv+3bx5M3R0dNC6desC1/uux11OKDl58qTUlpqaig0bNrzxeW/StWtXnD17FufPn1eqI+9ZwJJ4z6SkpCAzM1OpzdHRERoaGtJ+yO+9npycjPXr1xd+o4oo998XIQRWrFgBbW1tdOjQoVTW5+HhgYiICERFRUltT548KfDMa2ngGaJy5JNPPsGsWbMwePBgtGzZElevXkVISIjKtVwfHx/88ssvmDhxIs6fP482bdogNTUVhw8fxpgxY9C9e/dird/MzAytW7fG4MGDER8fjyVLlqB27doYPnw4gNfXlX/++Wd06dIFDRo0wODBg1G1alU8fPgQx44dg4mJCfbs2YPU1FSsXLkSy5YtQ926dZU+byQnSF25cgURERFwcXFBrVq18N1338Hf3x/37t1Djx49YGxsjJiYGOzYsQMjRozAV199hcOHD+Pbb7/FlStX3voVDG3btsXIkSMRGBiIqKgodOrUCdra2rh9+za2bduGpUuX4vPPPy/W63To0CF07Njxjf8RDhgwAFu3bsWoUaNw7NgxtGrVCllZWbh16xa2bt2KgwcPFmkciKWlJX744QcMGzYM/fv3R9euXVGvXj3UqlULX331FR4+fAgTExNs375dZTxAYZmYmCAoKAgDBgxA06ZN0adPH1SpUgX379/Hvn370KpVq3xDeH6qVKkCf39/zJw5E507d8ann36K6Oho/Pjjj2jevDn69++v1N/a2hrz5s3DvXv3ULduXWzZsgVRUVFYs2aNylnQQ4cOYc6cOUrj6gpy6NChAj8jqzCOHj2qNA4k56zB1atXcfXqVTg6OpbqsXb//n2EhoZKl8zmzJkDW1tbNGnSpMQvm2lra2PevHkYPHgw2rZti759+0q33deoUQMTJkyQ+i5btgytW7dG06ZNMWLECNjZ2eHevXvYt2+fdPPFjBkz8Ntvv+F///vfG8cBvetx16lTJ1SvXh1Dhw7F5MmToampiXXr1knLKI4pU6Zg48aN6Ny5M8aNGyfddm9ra4srV66UWO3A62PMz88PvXv3Rt26dZGZmYmNGzdCU1MTvXr1krZRR0cH3bp1w8iRI/H8+XP89NNPMDc3R2xsbLG28U309PQQGhqKgQMHwtnZGQcOHMC+ffvw9ddfF3msZWFNmTIFv/76Kzp27IixY8dKt91Xr14dT548eacbhgqt1O9jI+lWxAsXLryx36tXr8SkSZOElZWV0NfXF61atRIRERFKt2DnePHihfjmm2+EnZ2d0NbWFpaWluLzzz8Xd+/eFUIU77b73377Tfj7+wtzc3Ohr68vPD098711+9KlS6Jnz56iUqVKQldXV9ja2govLy9x5MgRpXW/7TFw4ECl5W7fvl20bt1aGBoaCkNDQ1GvXj3h6+sroqOjhRCvb8t0dXUVoaGhKjUVdOvtmjVrhJOTk9DX1xfGxsbC0dFRTJkyRfz3339Sn6LeCq1QKERkZKRSe377KD09XcybN080aNBA6OrqiooVKwonJycxc+ZMkZycrLK+ty1PCCHat28vqlevLp49eyaEEOLGjRvC3d1dGBkZicqVK4vhw4eLy5cvq9wanncb8rvtPsexY8eEh4eHMDU1FXp6eqJWrVpi0KBB4uLFi1Kft912n2PFihWiXr16QltbW1hYWIjRo0eLp0+fqmxrgwYNxMWLF4WLi4vQ09MTtra2YsWKFSp1ARBWVlYiNTX1jduUczx0794932UU9rb7ohy/pXGs5TwUCoWwtLQUPXv2FDdv3hRClPxt9zm2bNkimjRpInR1dYWZmZnw9vaWPhokt2vXronPPvtMVKhQQejp6Ql7e3vx7bffCiGE+O2330TDhg3F0qVLVW7FL2gfFOa4K0hkZKRwdnYWOjo6onr16mLRokUF3gKe3+uf3/vtypUrom3btkJPT09UrVpVzJ49W6xduzbf1/xd3jN///23GDJkiKhVq5bQ09MTZmZmol27duLw4cNK/Xbv3i0aNWok9PT0RI0aNcS8efOkj2ApzDYin49xyO/vRE6dd+/eFZ06dRIGBgbCwsJCzJgxQ+VjYfK+7971Nb906ZJo06aN0NXVFdWqVROBgYFi2bJlAoCIi4tTWUZJUwhRzkY1UZk7fvw42rVrh23bthX7P9nc7t27Bzs7O8TExBR4vTkgIAD37t1T+cRfkh83NzckJiYWakxKeTFo0CAA4PFLH5xBgwbh999/z3dYhDqMHz8eq1evxvPnz0v9a0E4hoiIiIjULvdXDgHA48ePsXHjRrRu3bpMviONY4ioxOXcCfOmQc+NGjWSvoqE6H3j6Oio7hKIPjguLi5wc3ODg4MD4uPjsXbtWqSkpODbb78tk/UzEFGJq1y5Mn799dc39sn9PVpE75tJkyapuwSiD07Xrl3x+++/Y82aNVAoFGjatCnWrl0LV1fXMlk/xxARERGR7HEMEREREckeAxERERHJHscQFUJ2djb+++8/GBsbl82HQxEREdE7E0Lg2bNnsLa2zvd75HJjICqE//77r1BfxklERETlz4MHD1CtWrU39mEgKgRjY2MAr1/QN30EPREREZUfKSkpsLGxkf6OvwkDUSHkXCYzMTFhICIiInrPFGa4CwdVExERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsqTUQBQUFoVGjRjAxMYGJiQlcXFxw4MABaf6rV6/g6+uLSpUqwcjICL169UJ8fLzSMu7fvw9PT08YGBjA3NwckydPRmZmplKf48ePo2nTptDV1UXt2rURHBxcFptHRERE7wktda68WrVq+P7771GnTh0IIbBhwwZ0794dly5dQoMGDTBhwgTs27cP27Ztg6mpKfz8/NCzZ0+Eh4cDALKysuDp6QlLS0ucOXMGsbGx8PHxgba2NubOnQsAiImJgaenJ0aNGoWQkBAcOXIEw4YNg5WVFTw8PEp1+5wm/1Kqy6fCi/zBp9TXwf1dfnB/ywv3t7yU1v5WayDq1q2b0vScOXMQFBSEs2fPolq1ali7di02bdqE9u3bAwDWr18PBwcHnD17Fi1atMChQ4dw48YNHD58GBYWFmjcuDFmz56NqVOnIiAgADo6Oli1ahXs7OywcOFCAICDgwNOnz6NxYsXl3ogIiIiovdDuRlDlJWVhc2bNyM1NRUuLi6IjIxERkYG3N3dpT716tVD9erVERERAQCIiIiAo6MjLCwspD4eHh5ISUnB9evXpT65l5HTJ2cZ+UlLS0NKSorSg4iIiD5cag9EV69ehZGREXR1dTFq1Cjs2LED9evXR1xcHHR0dFChQgWl/hYWFoiLiwMAxMXFKYWhnPk5897UJyUlBS9fvsy3psDAQJiamkoPGxubkthUIiIiKqfUHojs7e0RFRWFc+fOYfTo0Rg4cCBu3Lih1pr8/f2RnJwsPR48eKDWeoiIiKh0qXUMEQDo6Oigdu3aAAAnJydcuHABS5cuxRdffIH09HQkJSUpnSWKj4+HpaUlAMDS0hLnz59XWl7OXWi5++S9My0+Ph4mJibQ19fPtyZdXV3o6uqWyPYRERFR+af2M0R5ZWdnIy0tDU5OTtDW1saRI0ekedHR0bh//z5cXFwAAC4uLrh69SoSEhKkPmFhYTAxMUH9+vWlPrmXkdMnZxlEREREaj1D5O/vjy5duqB69ep49uwZNm3ahOPHj+PgwYMwNTXF0KFDMXHiRJiZmcHExARjx46Fi4sLWrRoAQDo1KkT6tevjwEDBmD+/PmIi4vDtGnT4OvrK53hGTVqFFasWIEpU6ZgyJAhOHr0KLZu3Yp9+/apc9OJiIioHFFrIEpISICPjw9iY2NhamqKRo0a4eDBg+jYsSMAYPHixdDQ0ECvXr2QlpYGDw8P/Pjjj9LzNTU1sXfvXowePRouLi4wNDTEwIEDMWvWLKmPnZ0d9u3bhwkTJmDp0qWoVq0afv75Z95yT0RERBK1BqK1a9e+cb6enh5WrlyJlStXFtjH1tYW+/fvf+Ny3NzccOnSpWLVSERERB++cjeGiIiIiKisMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7Kk1EAUGBqJ58+YwNjaGubk5evTogejoaKU+bm5uUCgUSo9Ro0Yp9bl//z48PT1hYGAAc3NzTJ48GZmZmUp9jh8/jqZNm0JXVxe1a9dGcHBwaW8eERERvSfUGohOnDgBX19fnD17FmFhYcjIyECnTp2Qmpqq1G/48OGIjY2VHvPnz5fmZWVlwdPTE+np6Thz5gw2bNiA4OBgTJ8+XeoTExMDT09PtGvXDlFRURg/fjyGDRuGgwcPltm2EhERUfmlpc6Vh4aGKk0HBwfD3NwckZGRcHV1ldoNDAxgaWmZ7zIOHTqEGzdu4PDhw7CwsEDjxo0xe/ZsTJ06FQEBAdDR0cGqVatgZ2eHhQsXAgAcHBxw+vRpLF68GB4eHqW3gURERPReKFdjiJKTkwEAZmZmSu0hISGoXLkyGjZsCH9/f7x48UKaFxERAUdHR1hYWEhtHh4eSElJwfXr16U+7u7uSsv08PBAREREvnWkpaUhJSVF6UFEREQfLrWeIcotOzsb48ePR6tWrdCwYUOpvV+/frC1tYW1tTWuXLmCqVOnIjo6Gn/88QcAIC4uTikMAZCm4+Li3tgnJSUFL1++hL6+vtK8wMBAzJw5s8S3kYiIiMqnchOIfH19ce3aNZw+fVqpfcSIEdLPjo6OsLKyQocOHXD37l3UqlWrVGrx9/fHxIkTpemUlBTY2NiUyrqIiIhI/crFJTM/Pz/s3bsXx44dQ7Vq1d7Y19nZGQBw584dAIClpSXi4+OV+uRM54w7KqiPiYmJytkhANDV1YWJiYnSg4iIiD5cag1EQgj4+flhx44dOHr0KOzs7N76nKioKACAlZUVAMDFxQVXr15FQkKC1CcsLAwmJiaoX7++1OfIkSNKywkLC4OLi0sJbQkRERG9z9QaiHx9ffHrr79i06ZNMDY2RlxcHOLi4vDy5UsAwN27dzF79mxERkbi3r172L17N3x8fODq6opGjRoBADp16oT69etjwIABuHz5Mg4ePIhp06bB19cXurq6AIBRo0bh77//xpQpU3Dr1i38+OOP2Lp1KyZMmKC2bSciIqLyQ62BKCgoCMnJyXBzc4OVlZX02LJlCwBAR0cHhw8fRqdOnVCvXj1MmjQJvXr1wp49e6RlaGpqYu/evdDU1ISLiwv69+8PHx8fzJo1S+pjZ2eHffv2ISwsDB999BEWLlyIn3/+mbfcExEREQA1D6oWQrxxvo2NDU6cOPHW5dja2mL//v1v7OPm5oZLly4VqT4iIiKSh3IxqJqIiIhInRiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPbUGogCAwPRvHlzGBsbw9zcHD169EB0dLRSn1evXsHX1xeVKlWCkZERevXqhfj4eKU+9+/fh6enJwwMDGBubo7JkycjMzNTqc/x48fRtGlT6Orqonbt2ggODi7tzSMiIqL3hFoD0YkTJ+Dr64uzZ88iLCwMGRkZ6NSpE1JTU6U+EyZMwJ49e7Bt2zacOHEC//33H3r27CnNz8rKgqenJ9LT03HmzBls2LABwcHBmD59utQnJiYGnp6eaNeuHaKiojB+/HgMGzYMBw8eLNPtJSIiovJJS50rDw0NVZoODg6Gubk5IiMj4erqiuTkZKxduxabNm1C+/btAQDr16+Hg4MDzp49ixYtWuDQoUO4ceMGDh8+DAsLCzRu3BizZ8/G1KlTERAQAB0dHaxatQp2dnZYuHAhAMDBwQGnT5/G4sWL4eHhUebbTUREROVLuRpDlJycDAAwMzMDAERGRiIjIwPu7u5Sn3r16qF69eqIiIgAAERERMDR0REWFhZSHw8PD6SkpOD69etSn9zLyOmTs4y80tLSkJKSovQgIiKiD1e5CUTZ2dkYP348WrVqhYYNGwIA4uLioKOjgwoVKij1tbCwQFxcnNQndxjKmZ8z7019UlJS8PLlS5VaAgMDYWpqKj1sbGxKZBuJiIiofCo3gcjX1xfXrl3D5s2b1V0K/P39kZycLD0ePHig7pKIiIioFKl1DFEOPz8/7N27FydPnkS1atWkdktLS6SnpyMpKUnpLFF8fDwsLS2lPufPn1daXs5daLn75L0zLT4+HiYmJtDX11epR1dXF7q6uiWybURERFT+qfUMkRACfn5+2LFjB44ePQo7Ozul+U5OTtDW1saRI0ektujoaNy/fx8uLi4AABcXF1y9ehUJCQlSn7CwMJiYmKB+/fpSn9zLyOmTswwiIiKSN7WeIfL19cWmTZuwa9cuGBsbS2N+TE1Noa+vD1NTUwwdOhQTJ06EmZkZTExMMHbsWLi4uKBFixYAgE6dOqF+/foYMGAA5s+fj7i4OEybNg2+vr7SWZ5Ro0ZhxYoVmDJlCoYMGYKjR49i69at2Ldvn9q2nYiIiMoPtZ4hCgoKQnJyMtzc3GBlZSU9tmzZIvVZvHgxPvnkE/Tq1Quurq6wtLTEH3/8Ic3X1NTE3r17oampCRcXF/Tv3x8+Pj6YNWuW1MfOzg779u1DWFgYPvroIyxcuBA///wzb7knIiIiAGo+QySEeGsfPT09rFy5EitXriywj62tLfbv3//G5bi5ueHSpUtFrpGIiIg+fOXmLjMiIiIidWEgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2dMq7hNTU1Nx4sQJ3L9/H+np6Urzvvzyy3cujIiIiKisFCsQXbp0CV27dsWLFy+QmpoKMzMzJCYmwsDAAObm5gxERERE9F4p1iWzCRMmoFu3bnj69Cn09fVx9uxZ/PPPP3BycsKCBQtKukYiIiKiUlWsQBQVFYVJkyZBQ0MDmpqaSEtLg42NDebPn4+vv/66pGskIiIiKlXFCkTa2trQ0Hj9VHNzc9y/fx8AYGpqigcPHpRcdURERERloFhjiJo0aYILFy6gTp06aNu2LaZPn47ExERs3LgRDRs2LOkaiYiIiEpVsc4QzZ07F1ZWVgCAOXPmoGLFihg9ejQePXqENWvWlGiBRERERKWtWGeImjVrJv1sbm6O0NDQEiuIiIiIqKwV6wxR+/btkZSUVMKlEBEREalHsQLR8ePHVT6MkYiIiOh9Veyv7lAoFCVZBxEREZHaFPurOz777DPo6OjkO+/o0aPFLoiIiIiorBU7ELm4uMDIyKgkayEiIiJSi2IFIoVCgcmTJ8Pc3Lyk6yEiIiIqc8UaQySEKOk6iIiIiNSmWIFoxowZvFxGREREH4xiXTKbMWMGAODRo0eIjo4GANjb26NKlSolVxkRERFRGSnWGaIXL15gyJAhsLa2hqurK1xdXWFtbY2hQ4fixYsXJV0jERERUakqViCaMGECTpw4gd27dyMpKQlJSUnYtWsXTpw4gUmTJpV0jURERESlqliXzLZv347ff/8dbm5uUlvXrl2hr68PLy8vBAUFlVR9RERERKWu2JfMLCwsVNrNzc15yYyIiIjeO8UKRC4uLpgxYwZevXoltb18+RIzZ86Ei4tLiRVHREREVBaKdclsyZIl6Ny5M6pVq4aPPvoIAHD58mXo6enh4MGDJVogERERUWkrViBydHTE7du3ERISglu3bgEA+vbtC29vb+jr65dogURERESlrViB6OTJk2jZsiWGDx9e0vUQERERlblijSFq164dnjx5UtK1EBEREakFv8uMiIiIZK9Yl8wAICIiAhUrVsx3nqura7ELIiIiIiprxQ5En332Wb7tCoUCWVlZxS6IiIiIqKwV65IZAMTFxSE7O1vlwTBERERE75tiBSKFQlHSdRARERGpjVoHVZ88eRLdunWDtbU1FAoFdu7cqTR/0KBBUCgUSo/OnTsr9Xny5Am8vb1hYmKCChUqYOjQoXj+/LlSnytXrqBNmzbQ09ODjY0N5s+fXyL1ExER0YehWIEoOzsb5ubm77zy1NRUfPTRR1i5cmWBfTp37ozY2Fjp8dtvvynN9/b2xvXr1xEWFoa9e/fi5MmTGDFihDQ/JSUFnTp1gq2tLSIjI/HDDz8gICAAa9aseef6iYiI6MNQrEHVgYGBsLCwwJAhQ5Ta161bh0ePHmHq1KmFWk6XLl3QpUuXN/bR1dWFpaVlvvNu3ryJ0NBQXLhwAc2aNQMALF++HF27dsWCBQtgbW2NkJAQpKenY926ddDR0UGDBg0QFRWFRYsWKQUnIiIikq9inSFavXo16tWrp9LeoEEDrFq16p2Lyu348eMwNzeHvb09Ro8ejcePH0vzIiIiUKFCBSkMAYC7uzs0NDRw7tw5qY+rqyt0dHSkPh4eHoiOjsbTp0/zXWdaWhpSUlKUHkRERPThKlYgiouLg5WVlUp7lSpVEBsb+85F5ejcuTN++eUXHDlyBPPmzcOJEyfQpUsX6U62uLg4lUt3WlpaMDMzQ1xcnNTHwsJCqU/OdE6fvAIDA2Fqaio9bGxsSmybiIiIqPwp1iUzGxsbhIeHw87OTqk9PDwc1tbWJVIYAPTp00f62dHREY0aNUKtWrVw/PhxdOjQocTWk5e/vz8mTpwoTaekpDAUERERfcCKFYiGDx+O8ePHIyMjA+3btwcAHDlyBFOmTMGkSZNKtMDcatasicqVK+POnTvo0KEDLC0tkZCQoNQnMzMTT548kcYdWVpaIj4+XqlPznRBY5N0dXWhq6tbCltARERE5VGxAtHkyZPx+PFjjBkzBunp6QAAPT09TJ06Ff7+/iVaYG7//vsvHj9+LF2uc3FxQVJSEiIjI+Hk5AQAOHr0KLKzs+Hs7Cz1+eabb5CRkQFtbW0AQFhYGOzt7Qv86hEiIiKSl2J/MOO8efPw6NEjnD17FpcvX8aTJ08wffr0Ii3n+fPniIqKQlRUFAAgJiYGUVFRuH//Pp4/f47Jkyfj7NmzuHfvHo4cOYLu3bujdu3a8PDwAAA4ODigc+fOGD58OM6fP4/w8HD4+fmhT58+0qW7fv36QUdHB0OHDsX169exZcsWLF26VOmSGBEREclbsb/LDACMjIzQvHnzYj//4sWLaNeunTSdE1IGDhyIoKAgXLlyBRs2bEBSUhKsra3RqVMnzJ49W+lyVkhICPz8/NChQwdoaGigV69eWLZsmTTf1NQUhw4dgq+vL5ycnFC5cmVMnz6dt9wTERGRpNiB6OLFi9i6dSvu378vXTbL8ccffxRqGW5ubm/81OuDBw++dRlmZmbYtGnTG/s0atQIp06dKlRNREREJD/FumS2efNmtGzZEjdv3sSOHTuQkZGB69ev4+jRozA1NS3pGomIiIhKVbEC0dy5c7F48WLs2bMHOjo6WLp0KW7dugUvLy9Ur169pGskIiIiKlXFCkR3796Fp6cnAEBHRwepqalQKBSYMGECvyOMiIiI3jvFCkQVK1bEs2fPAABVq1bFtWvXAABJSUl48eJFyVVHREREVAaKNaja1dUVYWFhcHR0RO/evTFu3DgcPXoUYWFhpfoJ0kRERESloViBaMWKFXj16hUA4JtvvoG2tjbOnDmDXr16Ydq0aSVaIBEREVFpK1IgyvnWdy0tLRgZGUnTY8aMwZgxY0q+OiIiIqIyUKRAVKFCBSgUirf2y/k2eiIiIqL3QZEC0bFjx5SmhRDo2rUrfv75Z1StWrVECyMiIiIqK0UKRG3btlVp09TURIsWLVCzZs0SK4qIiIioLBXrtnsiIiKiD8k7BaIHDx7gxYsXqFSpUknVQ0RERFTminTJLPe3yCcmJuK3335D+/bt+f1lRERE9F4rUiBavHgxAEChUKBy5cro1q0bP3eIiIiI3ntFCkQxMTGlVQcRERGR2nBQNREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJnloD0cmTJ9GtWzdYW1tDoVBg586dSvOFEJg+fTqsrKygr68Pd3d33L59W6nPkydP4O3tDRMTE1SoUAFDhw7F8+fPlfpcuXIFbdq0gZ6eHmxsbDB//vzS3jQiIiJ6j6g1EKWmpuKjjz7CypUr850/f/58LFu2DKtWrcK5c+dgaGgIDw8PvHr1Surj7e2N69evIywsDHv37sXJkycxYsQIaX5KSgo6deoEW1tbREZG4ocffkBAQADWrFlT6ttHRERE7wctda68S5cu6NKlS77zhBBYsmQJpk2bhu7duwMAfvnlF1hYWGDnzp3o06cPbt68idDQUFy4cAHNmjUDACxfvhxdu3bFggULYG1tjZCQEKSnp2PdunXQ0dFBgwYNEBUVhUWLFikFJyIiIpKvcjuGKCYmBnFxcXB3d5faTE1N4ezsjIiICABAREQEKlSoIIUhAHB3d4eGhgbOnTsn9XF1dYWOjo7Ux8PDA9HR0Xj69Gm+605LS0NKSorSg4iIiD5c5TYQxcXFAQAsLCyU2i0sLKR5cXFxMDc3V5qvpaUFMzMzpT75LSP3OvIKDAyEqamp9LCxsXn3DSIiIqJyq9wGInXy9/dHcnKy9Hjw4IG6SyIiIqJSVG4DkaWlJQAgPj5eqT0+Pl6aZ2lpiYSEBKX5mZmZePLkiVKf/JaRex156erqwsTEROlBREREH65yG4js7OxgaWmJI0eOSG0pKSk4d+4cXFxcAAAuLi5ISkpCZGSk1Ofo0aPIzs6Gs7Oz1OfkyZPIyMiQ+oSFhcHe3h4VK1Yso60hIiKi8kytgej58+eIiopCVFQUgNcDqaOionD//n0oFAqMHz8e3333HXbv3o2rV6/Cx8cH1tbW6NGjBwDAwcEBnTt3xvDhw3H+/HmEh4fDz88Pffr0gbW1NQCgX79+0NHRwdChQ3H9+nVs2bIFS5cuxcSJE9W01URERFTeqPW2+4sXL6Jdu3bSdE5IGThwIIKDgzFlyhSkpqZixIgRSEpKQuvWrREaGgo9PT3pOSEhIfDz80OHDh2goaGBXr16YdmyZdJ8U1NTHDp0CL6+vnByckLlypUxffp03nJPREREErUGIjc3NwghCpyvUCgwa9YszJo1q8A+ZmZm2LRp0xvX06hRI5w6darYdRIREdGHrdyOISIiIiIqKwxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHvlOhAFBARAoVAoPerVqyfNf/XqFXx9fVGpUiUYGRmhV69eiI+PV1rG/fv34enpCQMDA5ibm2Py5MnIzMws600hIiKickxL3QW8TYMGDXD48GFpWkvr/0ueMGEC9u3bh23btsHU1BR+fn7o2bMnwsPDAQBZWVnw9PSEpaUlzpw5g9jYWPj4+EBbWxtz584t820hIiKi8qncByItLS1YWlqqtCcnJ2Pt2rXYtGkT2rdvDwBYv349HBwccPbsWbRo0QKHDh3CjRs3cPjwYVhYWKBx48aYPXs2pk6dioCAAOjo6JT15hAREVE5VK4vmQHA7du3YW1tjZo1a8Lb2xv3798HAERGRiIjIwPu7u5S33r16qF69eqIiIgAAERERMDR0REWFhZSHw8PD6SkpOD69esFrjMtLQ0pKSlKDyIiIvpwletA5OzsjODgYISGhiIoKAgxMTFo06YNnj17hri4OOjo6KBChQpKz7GwsEBcXBwAIC4uTikM5czPmVeQwMBAmJqaSg8bG5uS3TAiIiIqV8r1JbMuXbpIPzdq1AjOzs6wtbXF1q1boa+vX2rr9ff3x8SJE6XplJQUhiIiIqIPWLk+Q5RXhQoVULduXdy5cweWlpZIT09HUlKSUp/4+HhpzJGlpaXKXWc50/mNS8qhq6sLExMTpQcRERF9uN6rQPT8+XPcvXsXVlZWcHJygra2No4cOSLNj46Oxv379+Hi4gIAcHFxwdWrV5GQkCD1CQsLg4mJCerXr1/m9RMREVH5VK4vmX311Vfo1q0bbG1t8d9//2HGjBnQ1NRE3759YWpqiqFDh2LixIkwMzODiYkJxo4dCxcXF7Ro0QIA0KlTJ9SvXx8DBgzA/PnzERcXh2nTpsHX1xe6urpq3joiIiIqL8p1IPr333/Rt29fPH78GFWqVEHr1q1x9uxZVKlSBQCwePFiaGhooFevXkhLS4OHhwd+/PFH6fmamprYu3cvRo8eDRcXFxgaGmLgwIGYNWuWujaJiIiIyqFyHYg2b978xvl6enpYuXIlVq5cWWAfW1tb7N+/v6RLIyIiog/IezWGiIiIiKg0MBARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7MkqEK1cuRI1atSAnp4enJ2dcf78eXWXREREROWAbALRli1bMHHiRMyYMQN//vknPvroI3h4eCAhIUHdpREREZGaySYQLVq0CMOHD8fgwYNRv359rFq1CgYGBli3bp26SyMiIiI1k0UgSk9PR2RkJNzd3aU2DQ0NuLu7IyIiQo2VERERUXmgpe4CykJiYiKysrJgYWGh1G5hYYFbt26p9E9LS0NaWpo0nZycDABISUkp0nqz0l4Wo1oqDUXdd8XB/V1+cH/LC/e3vBRlf+f0FUK8ta8sAlFRBQYGYubMmSrtNjY2aqiGSoLp8lHqLoHKEPe3vHB/y0tx9vezZ89gamr6xj6yCESVK1eGpqYm4uPjldrj4+NhaWmp0t/f3x8TJ06UprOzs/HkyRNUqlQJCoWi1OstL1JSUmBjY4MHDx7AxMRE3eVQKeP+lhfub3mR6/4WQuDZs2ewtrZ+a19ZBCIdHR04OTnhyJEj6NGjB4DXIefIkSPw8/NT6a+rqwtdXV2ltgoVKpRBpeWTiYmJrN5Acsf9LS/c3/Iix/39tjNDOWQRiABg4sSJGDhwIJo1a4aPP/4YS5YsQWpqKgYPHqzu0oiIiEjNZBOIvvjiCzx69AjTp09HXFwcGjdujNDQUJWB1kRERCQ/sglEAODn55fvJTLKn66uLmbMmKFy+ZA+TNzf8sL9LS/c32+nEIW5F42IiIjoAyaLD2YkIiIiehMGIiIiIpI9BiIiIiKSPQYimXJzc8P48ePVXQaVI3mPiRo1amDJkiVqq4eK5m3vaYVCgZ07dxZ6ecePH4dCoUBSUtI710bl19uOi+IcBwEBAWjcuPE711bWZHWXGREV3oULF2BoaKjuMqiExMbGomLFiuoug94zLVu2RGxsbKE/3PB9xkBERPmqUqWKukugEpTf1xTR+y0jIwPa2tqlug4dHR3ZHDu8ZEZ4+vQpfHx8ULFiRRgYGKBLly64ffs2gNffA1OlShX8/vvvUv/GjRvDyspKmj59+jR0dXXx4sWLMq9dDtzc3DB27FiMHz8eFStWhIWFBX766Sfpk9aNjY1Ru3ZtHDhwQHrOtWvX0KVLFxgZGcHCwgIDBgxAYmKiND81NRU+Pj4wMjKClZUVFi5cqLLe3JfM7t27B4VCgaioKGl+UlISFAoFjh8/DuD/T60fPHgQTZo0gb6+Ptq3b4+EhAQcOHAADg4OMDExQb9+/XislJLs7GxMmTIFZmZmsLS0REBAgDQv76WRM2fOoHHjxtDT00OzZs2wc+dOlX0MAJGRkWjWrBkMDAzQsmVLREdHl83GfGDWrFkDa2trZGdnK7V3794dQ4YMAQDs2rULTZs2hZ6eHmrWrImZM2ciMzNT6qtQKBAUFIRPP/0UhoaG+O6771C7dm0sWLBAaZlRUVFQKBS4c+dOoWpLTEzEZ599BgMDA9SpUwe7d++W5uV3yeynn36CjY0NDAwM8Nlnn2HRokX5fr3Vxo0bUaNGDZiamqJPnz549uxZoepRFwYiwqBBg3Dx4kXs3r0bEREREEKga9euyMjIgEKhgKurq/RH7+nTp7h58yZevnyJW7duAQBOnDiB5s2bw8DAQI1b8WHbsGEDKleujPPnz2Ps2LEYPXo0evfujZYtW+LPP/9Ep06dMGDAALx48QJJSUlo3749mjRpgosXLyI0NBTx8fHw8vKSljd58mScOHECu3btwqFDh3D8+HH8+eefJVJrQEAAVqxYgTNnzuDBgwfw8vLCkiVLsGnTJuzbtw+HDh3C8uXLS2RdpGzDhg0wNDTEuXPnMH/+fMyaNQthYWEq/VJSUtCtWzc4Ojrizz//xOzZszF16tR8l/nNN99g4cKFuHjxIrS0tKQ/3lQ0vXv3xuPHj3Hs2DGp7cmTJwgNDYW3tzdOnToFHx8fjBs3Djdu3MDq1asRHByMOXPmKC0nICAAn332Ga5evYqhQ4diyJAhWL9+vVKf9evXw9XVFbVr1y5UbTNnzoSXlxeuXLmCrl27wtvbG0+ePMm3b3h4OEaNGoVx48YhKioKHTt2VKkRAO7evYudO3di79692Lt3L06cOIHvv/++UPWojSBZatu2rRg3bpz466+/BAARHh4uzUtMTBT6+vpi69atQgghli1bJho0aCCEEGLnzp3C2dlZdO/eXQQFBQkhhHB3dxdff/112W+ETLRt21a0bt1ams7MzBSGhoZiwIABUltsbKwAICIiIsTs2bNFp06dlJbx4MEDAUBER0eLZ8+eCR0dHWn/CiHE48ePhb6+vhg3bpzUZmtrKxYvXiyEECImJkYAEJcuXZLmP336VAAQx44dE0IIcezYMQFAHD58WOoTGBgoAIi7d+9KbSNHjhQeHh7v8pJQPvIeJ0II0bx5czF16lQhhBAAxI4dO4QQQgQFBYlKlSqJly9fSn1/+uknpX2c3/7ct2+fAKD0PCq87t27iyFDhkjTq1evFtbW1iIrK0t06NBBzJ07V6n/xo0bhZWVlTQNQIwfP16pz8OHD4WmpqY4d+6cEEKI9PR0UblyZREcHFyomgCIadOmSdPPnz8XAMSBAweEEP9/HDx9+lQIIcQXX3whPD09lZbh7e0tTE1NpekZM2YIAwMDkZKSIrVNnjxZODs7F6omdeEZIpm7efMmtLS04OzsLLVVqlQJ9vb2uHnzJgCgbdu2uHHjBh49eoQTJ07Azc0Nbm5uOH78ODIyMnDmzBm4ubmpaQvkoVGjRtLPmpqaqFSpEhwdHaW2nO/kS0hIwOXLl3Hs2DEYGRlJj3r16gF4/V/b3bt3kZ6errTPzczMYG9vX+K1WlhYwMDAADVr1lRqS0hIKJF1kbLcrz0AWFlZ5ftaR0dHo1GjRtDT05PaPv7447cuM+dSOfdf8Xh7e2P79u1IS0sDAISEhKBPnz7Q0NDA5cuXMWvWLKX37fDhwxEbG6t0iblZs2ZKy7S2toanpyfWrVsHANizZw/S0tLQu3fvQteVex8bGhrCxMSkwH0cHR2tcqzkd+zUqFEDxsbG0nRBx2J5wkHV9FaOjo4wMzPDiRMncOLECcyZMweWlpaYN28eLly4gIyMDLRs2VLdZX7Q8g6cVCgUSm0KhQLA6zEkz58/R7du3TBv3jyV5VhZWRV6XEFuGhqv/3cSub7pJyMj46215q0zpy3vOAoqGaXxWhd0nFHRdevWDUII7Nu3D82bN8epU6ewePFiAMDz588xc+ZM9OzZU+V5uYNrfnd+Dhs2DAMGDMDixYuxfv16fPHFF0UawlDax01JLbO0MRDJnIODAzIzM3Hu3Dkp1Dx+/BjR0dGoX78+gNcHcps2bbBr1y5cv34drVu3hoGBAdLS0rB69Wo0a9aMt2eXI02bNsX27dtRo0YNaGmpvsVr1aoFbW1tnDt3DtWrVwfwemzYX3/9hbZt2+a7zJw7zmJjY9GkSRMAUBl8S+8Pe3t7/Prrr0hLS5O+7PPChQtqrurDp6enh549eyIkJAR37tyBvb09mjZtCuD1+zY6OrrQ435y69q1KwwNDREUFITQ0FCcPHmypEuX2NvbqxwrH8qxw0tmMlenTh10794dw4cPx+nTp3H58mX0798fVatWRffu3aV+bm5u+O2339C4cWMYGRlBQ0MDrq6uCAkJKfCPKKmHr68vnjx5gr59++LChQu4e/cuDh48iMGDByMrKwtGRkYYOnQoJk+ejKNHj+LatWsYNGiQdBYoP/r6+mjRogW+//573Lx5EydOnMC0adPKcKuoJPXr1w/Z2dkYMWIEbt68iYMHD0p3KuWcBaLS4e3tjX379mHdunXw9vaW2qdPn45ffvkFM2fOxPXr13Hz5k1s3ry5UO8zTU1NDBo0CP7+/qhTpw5cXFxKrf6xY8di//79WLRoEW7fvo3Vq1fjwIEDH8Rxw0BEWL9+PZycnPDJJ5/AxcUFQgjs379f6ZRn27ZtkZWVpTRWyM3NTaWN1M/a2hrh4eHIyspCp06d4OjoiPHjx6NChQpS6Pnhhx/Qpk0bdOvWDe7u7mjdujWcnJzeuNx169YhMzMTTk5OGD9+PL777ruy2BwqBSYmJtizZw+ioqLQuHFjfPPNN5g+fToA5cszVPLat28PMzMzREdHo1+/flK7h4cH9u7di0OHDqF58+Zo0aIFFi9eDFtb20Itd+jQoUhPT8fgwYNLq3QAQKtWrbBq1SosWrQIH330EUJDQzFhwoQP4rhRiNyDAoiISJZCQkIwePBgJCcnQ19fX93lUBGdOnUKHTp0wIMHD6SbLMrK8OHDcevWLZw6dapM11vSOIaIiEiGfvnlF9SsWRNVq1bF5cuXMXXqVHh5eTEMvWfS0tLw6NEjBAQEoHfv3mUShhYsWICOHTvC0NAQBw4cwIYNG/Djjz+W+npLGy+ZERHJUFxcHPr37w8HBwdMmDABvXv3xpo1a9RdFhXRb7/9BltbWyQlJWH+/PlK80JCQpRu48/9aNCgQbHXef78eXTs2BGOjo5YtWoVli1bhmHDhr3rpqgdL5kRERF9gJ49e4b4+Ph852lraxd6fJJcMBARERGR7PGSGREREckeAxERERHJHgMRERERyR4DEREREckeAxERFcmgQYPQo0cPpbZHjx6hYcOGcHZ2RnJysnoKIyJ6BwxERPROHj16hPbt20NfXx+HDh2CqampuksiIioyBiIiKrbExER06NABurq6CAsLUwpDixYtgqOjIwwNDWFjY4MxY8bg+fPnAIDjx49DoVAU+Mhx+vRptGnTBvr6+rCxscGXX36J1NRUaX6NGjVUnvvVV19J84OCglCrVi3o6OjA3t4eGzduVKpfoVAgKCgIXbp0gb6+PmrWrInff/9dmn/v3j0oFApERUVJbd9++y0UCgWWLFkitd26dQsdO3aEqampVEeFChUKfN1ytj8pKUmlnp07d0rTaWlp+Oqrr1C1alUYGhrC2dkZx48fl+YHBwerrCe/mono7RiIiKhYHj9+DHd3d2hpaSEsLEzlD7OGhgaWLVuG69evY8OGDTh69CimTJkCAGjZsiViY2MRGxuL7du3A4A0HRsbCwC4e/cuOnfujF69euHKlSvYsmULTp8+DT8/P6X1zJo1S+m5M2bMAADs2LED48aNw6RJk3Dt2jWMHDkSgwcPxrFjx5Se/+2336JXr164fPkyvL290adPH9y8eTPfbf7333+xZMkSla+3GDJkCDIyMhAeHo7Y2FilsPQu/Pz8EBERgc2bN+PKlSvo3bs3OnfujNu3b5fI8okoF0FEVAQDBw4Urq6uonHjxkJbW1u0aNFCZGZmvvV527ZtE5UqVVJpP3bsmMjvV9HQoUPFiBEjlNpOnTolNDQ0xMuXL4UQQtja2orFixfnu76WLVuK4cOHK7X17t1bdO3aVZoGIEaNGqXUx9nZWYwePVoIIURMTIwAIC5duiSEEMLHx0cMHTpUZb36+voiJCREml6/fr0wNTXNt67c2/z06VOldgBix44dQggh/vnnH6GpqSkePnyo1KdDhw7C39+/wPXkrZmICodniIioyE6ePIns7GxERUXhzp07Kt+hBACHDx9Ghw4dULVqVRgbG2PAgAF4/PgxXrx4Uah1XL58GcHBwUrfv+Th4YHs7GzExMS89fk3b95Eq1atlNpatWqlcvbHxcVFZTq/M0R//vknduzYgdmzZ6vMs7Ozw44dOwq9bYVx9epVZGVloW7dukqvwYkTJ3D37l2pX3Jycol9RxWRnPHb7omoyGrWrIkjR46gcuXK+PHHH9G/f394enqiUaNGAF6PY/nkk08wevRozJkzB2ZmZjh9+jSGDh2K9PR0GBgYvHUdz58/x8iRI/Hll1+qzKtevXqJb9PbTJo0CV999RWsrKxU5q1duxYDBw6EsbEx9PX1kZmZCT09vXda3/Pnz6GpqYnIyEhoamoqzTMyMpJ+NjY2xp9//ilNP3z4EG5ubu+0biI5YiAioiJzdHRE5cqVAQC9e/fGH3/8AR8fH5w/fx46OjqIjIxEdnY2Fi5cCA2N1yeit27dWqR1NG3aFDdu3EDt2rWLVaODgwPCw8MxcOBAqS08PBz169dX6nf27Fn4+PgoTTdp0kSpz+7du/HXX39h3759+a6rRYsW+PTTT3Hy5En8+uuv2LFjB+bOnVusunM0adIEWVlZSEhIQJs2bQrsp6GhofQaaWnx1zpRcfCdQ0TvbOXKlWjYsCFmzpyJOXPmoHbt2sjIyMDy5cvRrVs3hIeHY9WqVUVa5tSpU9GiRQv4+flh2LBhMDQ0xI0bNxAWFoYVK1a89fmTJ0+Gl5cXmjRpAnd3d+zZswd//PEHDh8+rNRv27ZtaNasGVq3bo2QkBCcP38ea9euVeozf/58LF++vMAzW9u3b0dwcDAiIyNRvXp1mJubF2ob09LS8OrVK6W2jIwMZGdno27duvD29oaPjw8WLlyIJk2a4NGjRzhy5AgaNWoET0/PQq2DiAqHY4iI6J2ZmZnhp59+wrx583Du3Dl89NFHWLRoEebNm4eGDRsiJCQEgYGBRVpmo0aNcOLECfz1119o06YNmjRpgunTp8Pa2rpQz+/RoweWLl2KBQsWoEGDBli9ejXWr1+vcjlp5syZ2Lx5Mxo1aoRffvkFv/32m8pZpNq1ayudacrtr7/+wrBhw7Bp06YiX8qztLSEvr6+9AAALy8vnDx5EgCwfv16+Pj4YNKkSbC3t0ePHj1w4cIFtVwyJPrQKYQQQt1FEBGpg0KhwI4dO1Q+eVudevTogfHjx3McEFEZ4xkiIqJyREdHRxp3RURlh2OIiIjKkaIOPieiksFARESyxREDRJSD52WJiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2/g9XK2w5HseaMQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер обучающей выборки после oversampling и undersampling: 12108\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from imblearn.over_sampling import RandomOverSampler\n", + "from imblearn.under_sampling import RandomUnderSampler\n", + "\n", + "# Преобразование целевой переменной (цены) в категориальные диапазоны с использованием квантилей\n", + "train_data['price_category'] = pd.qcut(train_data['price'], q=4, labels=['low', 'medium', 'high', 'very_high'])\n", + "\n", + "# Визуализация распределения цен после преобразования в категории\n", + "sns.countplot(x=train_data['price_category'])\n", + "plt.title('Распределение категорий цены в обучающей выборке')\n", + "plt.xlabel('Категория цены')\n", + "plt.ylabel('Частота')\n", + "plt.show()\n", + "\n", + "# Балансировка категорий с помощью RandomOverSampler (увеличение меньшинств)\n", + "ros = RandomOverSampler(random_state=42)\n", + "X_train = train_data.drop(columns=['price', 'price_category'])\n", + "y_train = train_data['price_category']\n", + "\n", + "X_resampled, y_resampled = ros.fit_resample(X_train, y_train)\n", + "\n", + "# Визуализация распределения цен после oversampling\n", + "sns.countplot(x=y_resampled)\n", + "plt.title('Распределение категорий цены после oversampling')\n", + "plt.xlabel('Категория цены')\n", + "plt.ylabel('Частота')\n", + "plt.show()\n", + "\n", + "# Применение RandomUnderSampler для уменьшения большего класса\n", + "rus = RandomUnderSampler(random_state=42)\n", + "X_resampled, y_resampled = rus.fit_resample(X_resampled, y_resampled)\n", + "\n", + "# Визуализация распределения цен после undersampling\n", + "sns.countplot(x=y_resampled)\n", + "plt.title('Распределение категорий цены после undersampling')\n", + "plt.xlabel('Категория цен')\n", + "plt.ylabel('Частота')\n", + "plt.show()\n", + "\n", + "# Печать размеров выборки после балансировки\n", + "print(\"Размер обучающей выборки после oversampling и undersampling: \", len(X_resampled))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Конструирование признаков\n", + "\n", + "**Процесс конструирования признаков для решения двух задач:**\n", + "\n", + "**Задача 1:** Оптимизация ассортимента товаров в онлайн-магазине. \n", + "**Цель технического проекта:** Разработка модели для прогнозирования спроса на товары.\n", + "\n", + "**Задача 2:** Оптимизация ценовой политики. \n", + "**Цель технического проекта:** Разработка модели для прогнозирования оптимальной цены товаров.\n", + "\n", + "**Унитарное кодирование** \n", + "Унитарное кодирование категориальных признаков (one-hot encoding). Преобразование категориальных признаков в бинарные векторы.\n", + "\n", + "**Дискретизация числовых признаков** \n", + "Процесс преобразования непрерывных числовых значений в дискретные категории или интервалы (бины)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Столбцы train_data_encoded: ['href', 'items', 'price', 'price_category', 'category_Groceries', 'sub_category_Dairy & Bakery', 'sub_category_Fruits & Vegetables', 'sub_category_Premium Fruits', 'sub_category_Snacks & Branded Foods', 'sub_category_Staples']\n", + "Столбцы val_data_encoded: ['href', 'items', 'price', 'category_Groceries', 'sub_category_Dairy & Bakery', 'sub_category_Fruits & Vegetables', 'sub_category_Premium Fruits', 'sub_category_Snacks & Branded Foods', 'sub_category_Staples']\n", + "Столбцы test_data_encoded: ['href', 'items', 'price', 'category_Groceries', 'sub_category_Dairy & Bakery', 'sub_category_Fruits & Vegetables', 'sub_category_Premium Fruits', 'sub_category_Snacks & Branded Foods', 'sub_category_Staples']\n" + ] + } + ], + "source": [ + "# Конструирование признаков\n", + "# Унитарное кодирование категориальных признаков (применение one-hot encoding)\n", + "\n", + "# Пример категориальных признаков\n", + "categorical_features = ['category', 'sub_category']\n", + "\n", + "# Применение one-hot encoding\n", + "train_data_encoded = pd.get_dummies(train_data, columns=categorical_features)\n", + "val_data_encoded = pd.get_dummies(val_data, columns=categorical_features)\n", + "test_data_encoded = pd.get_dummies(test_data, columns=categorical_features)\n", + "df_encoded = pd.get_dummies(df, columns=categorical_features)\n", + "\n", + "print(\"Столбцы train_data_encoded:\", train_data_encoded.columns.tolist())\n", + "print(\"Столбцы val_data_encoded:\", val_data_encoded.columns.tolist())\n", + "print(\"Столбцы test_data_encoded:\", test_data_encoded.columns.tolist())\n", + "\n", + "# Дискретизация числовых признаков (цены). Например, можно разделить цену на категории\n", + "# Пример дискретизации признака 'price'\n", + "train_data_encoded['price_category'] = pd.cut(train_data_encoded['price'], bins=5, labels=False)\n", + "val_data_encoded['price_category'] = pd.cut(val_data_encoded['price'], bins=5, labels=False)\n", + "test_data_encoded['price_category'] = pd.cut(test_data_encoded['price'], bins=5, labels=False)\n", + "\n", + "# Пример дискретизации признака 'price' на 5 категорий\n", + "df_encoded['price_category'] = pd.cut(df_encoded['price'], bins=5, labels=False)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Ручной синтез\n", + "Создание новых признаков на основе экспертных знаний и логики предметной области. К примеру, для данных о продаже домов можно создать признак цена за единицу товара." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Преобразуем столбцы 'price' и 'items' в числовой формат\n", + "train_data_encoded['price'] = pd.to_numeric(train_data_encoded['price'], errors='coerce')\n", + "train_data_encoded['items'] = pd.to_numeric(train_data_encoded['items'], errors='coerce')\n", + "\n", + "val_data_encoded['price'] = pd.to_numeric(val_data_encoded['price'], errors='coerce')\n", + "val_data_encoded['items'] = pd.to_numeric(val_data_encoded['items'], errors='coerce')\n", + "\n", + "test_data_encoded['price'] = pd.to_numeric(test_data_encoded['price'], errors='coerce')\n", + "test_data_encoded['items'] = pd.to_numeric(test_data_encoded['items'], errors='coerce')\n", + "\n", + "df_encoded['price'] = pd.to_numeric(df_encoded['price'], errors='coerce')\n", + "df_encoded['items'] = pd.to_numeric(df_encoded['items'], errors='coerce')\n", + "\n", + "# Ручной синтез признаков\n", + "train_data_encoded['price_per_item'] = train_data_encoded['price'] / train_data_encoded['items']\n", + "val_data_encoded['price_per_item'] = val_data_encoded['price'] / val_data_encoded['items']\n", + "test_data_encoded['price_per_item'] = test_data_encoded['price'] / test_data_encoded['items']\n", + "\n", + "# Пример создания нового признака - цена за единицу товара\n", + "df_encoded['price_per_item'] = df_encoded['price'] / df_encoded['items']\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Масштабирование признаков - это процесс преобразования числовых признаков таким образом, чтобы они имели одинаковый масштаб. Это важно для многих алгоритмов машинного обучения, которые чувствительны к масштабу признаков, таких как линейная регрессия, метод опорных векторов (SVM) и нейронные сети." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", + "\n", + "# Пример масштабирования числовых признаков\n", + "numerical_features = ['price', 'items']\n", + "\n", + "# Масштабирование с помощью StandardScaler\n", + "scaler = StandardScaler()\n", + "\n", + "train_data_encoded[numerical_features] = scaler.fit_transform(train_data_encoded[numerical_features])\n", + "val_data_encoded[numerical_features] = scaler.transform(val_data_encoded[numerical_features])\n", + "test_data_encoded[numerical_features] = scaler.transform(test_data_encoded[numerical_features])\n", + "\n", + "# Если хотите использовать MinMaxScaler вместо StandardScaler, можно заменить:\n", + "# scaler = MinMaxScaler()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Конструирование признаков с применением фреймворка Featuretools" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " href items price \\\n", + "9839 https://www.jiomart.com/c/groceries/snacks-bra... NaN -0.442827 \n", + "9680 https://www.jiomart.com/c/groceries/snacks-bra... NaN -0.635331 \n", + "7093 https://www.jiomart.com/c/groceries/staples/so... NaN 0.424527 \n", + "11293 https://www.jiomart.com/c/groceries/snacks-bra... NaN -0.728339 \n", + "820 https://www.jiomart.com/c/groceries/dairy-bake... NaN -0.624517 \n", + "... ... ... ... \n", + "5191 https://www.jiomart.com/c/groceries/staples/ma... NaN -0.659124 \n", + "13418 https://www.jiomart.com/c/groceries/snacks-bra... NaN 0.846307 \n", + "5390 https://www.jiomart.com/c/groceries/staples/ma... NaN -0.600724 \n", + "860 https://www.jiomart.com/c/groceries/staples/at... NaN -0.702384 \n", + "7270 https://www.jiomart.com/c/groceries/staples/dr... NaN -0.343330 \n", + "\n", + " price_category category_Groceries sub_category_Dairy & Bakery \\\n", + "9839 0 True False \n", + "9680 0 True False \n", + "7093 0 True False \n", + "11293 0 True False \n", + "820 0 True True \n", + "... ... ... ... \n", + "5191 0 True False \n", + "13418 0 True False \n", + "5390 0 True False \n", + "860 0 True False \n", + "7270 0 True False \n", + "\n", + " sub_category_Fruits & Vegetables sub_category_Premium Fruits \\\n", + "9839 False False \n", + "9680 False False \n", + "7093 False False \n", + "11293 False False \n", + "820 False False \n", + "... ... ... \n", + "5191 False False \n", + "13418 False False \n", + "5390 False False \n", + "860 False False \n", + "7270 False False \n", + "\n", + " sub_category_Snacks & Branded Foods sub_category_Staples \\\n", + "9839 True False \n", + "9680 True False \n", + "7093 False True \n", + "11293 True False \n", + "820 False False \n", + "... ... ... \n", + "5191 False True \n", + "13418 True False \n", + "5390 False True \n", + "860 False True \n", + "7270 False True \n", + "\n", + " price_per_item \n", + "9839 NaN \n", + "9680 NaN \n", + "7093 NaN \n", + "11293 NaN \n", + "820 NaN \n", + "... ... \n", + "5191 NaN \n", + "13418 NaN \n", + "5390 NaN \n", + "860 NaN \n", + "7270 NaN \n", + "\n", + "[11998 rows x 11 columns]\n", + " price category_Groceries \\\n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 109.0 True \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 29.0 True \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 13.0 True \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 32.0 True \n", + "https://www.jiomart.com/c/groceries/premium-fru... 149.0 True \n", + "\n", + " sub_category_Dairy & Bakery \\\n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/premium-fru... False \n", + "\n", + " sub_category_Fruits & Vegetables \\\n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... True \n", + "https://www.jiomart.com/c/groceries/fruits-vege... True \n", + "https://www.jiomart.com/c/groceries/fruits-vege... True \n", + "https://www.jiomart.com/c/groceries/fruits-vege... True \n", + "https://www.jiomart.com/c/groceries/premium-fru... False \n", + "\n", + " sub_category_Premium Fruits \\\n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/premium-fru... True \n", + "\n", + " sub_category_Snacks & Branded Foods \\\n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/premium-fru... False \n", + "\n", + " sub_category_Staples \\\n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/fruits-vege... False \n", + "https://www.jiomart.com/c/groceries/premium-fru... False \n", + "\n", + " price_category \n", + "href \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", + "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", + "https://www.jiomart.com/c/groceries/premium-fru... 0 \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/featuretools/synthesis/deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", + " warnings.warn(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/featuretools/synthesis/deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", + " warnings.warn(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n" + ] + } + ], + "source": [ + "import featuretools as ft\n", + "\n", + "# Предобработка данных (например, кодирование категориальных признаков, удаление дубликатов)\n", + "# Удаление дубликатов по идентификатору\n", + "df = df.drop_duplicates(subset='href') # 'href' как идентификатор\n", + "duplicates = train_data_encoded[train_data_encoded['href'].duplicated(keep=False)]\n", + "\n", + "# Удаление дубликатов из столбца \"href\", сохранив первое вхождение\n", + "df_encoded = df_encoded.drop_duplicates(subset='href', keep='first')\n", + "\n", + "print(duplicates)\n", + "\n", + "# Создание EntitySet\n", + "es = ft.EntitySet(id='product_data')\n", + "\n", + "# Добавление датафрейма с товарами\n", + "es = es.add_dataframe(dataframe_name='products', dataframe=df_encoded, index='href')\n", + "\n", + "# Генерация признаков с помощью глубокой синтезы признаков\n", + "feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='products', max_depth=2)\n", + "\n", + "# Выводим первые 5 строк сгенерированного набора признаков\n", + "print(feature_matrix.head())\n", + "\n", + "# Удаление дубликатов из train_data_encoded\n", + "train_data_encoded = train_data_encoded.drop_duplicates(subset='href')\n", + "train_data_encoded = train_data_encoded.drop_duplicates(subset='href', keep='first') # или keep='last'\n", + "\n", + "# Определение сущностей (Создание EntitySet)\n", + "es = ft.EntitySet(id='product_data')\n", + "\n", + "es = es.add_dataframe(dataframe_name='products', dataframe=train_data_encoded, index='href')\n", + "\n", + "# Генерация признаков для обучающего набора\n", + "feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='products', max_depth=2)\n", + "\n", + "# Преобразование признаков для контрольной и тестовой выборок\n", + "val_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=val_data_encoded.index)\n", + "test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Оценка качества каждого набора признаков \n", + "\n", + "*Предсказательная способность Метрики:* RMSE, MAE, R² \n", + "\n", + "*Методы:* Обучение модели на обучающей выборке и оценка на контрольной и тестовой выборках. \n", + "\n", + "*Скорость вычисления Методы:* Измерение времени выполнения генерации признаков и обучения модели. \n", + "\n", + "*Надежность Методы:* Кросс-валидация, анализ чувствительности модели к изменениям в данных. \n", + "\n", + "*Корреляция Методы:* Анализ корреляционной матрицы признаков, удаление мультиколлинеарных признаков. \n", + "\n", + "*Цельность Методы:* Проверка логической связи между признаками и целевой переменной, интерпретация результатов модели. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Время обучения модели: 0.01 секунд\n", + "Среднеквадратичная ошибка: 0.12\n" + ] + } + ], + "source": [ + "import time\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# Разделение данных на обучающую и валидационную выборки. Удаляем целевую переменную\n", + "X = feature_matrix.drop('price', axis=1) # feature_matrix - ваш датафрейм с признаками\n", + "y = feature_matrix['price']\n", + "\n", + "# One-hot encoding для категориальных переменных (преобразование категориальных объектов в числовые)\n", + "X = pd.get_dummies(X, drop_first=True)\n", + "\n", + "# Проверяем, есть ли пропущенные значения, и заполняем их медианой или другим подходящим значением\n", + "X.fillna(X.median(), inplace=True)\n", + "\n", + "# Разделение данных на обучающую и валидационную выборки (80% - обучающие, 20% - валидационные)\n", + "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Обучение модели\n", + "model = LinearRegression()\n", + "\n", + "# Начинаем отсчет времени\n", + "start_time = time.time()\n", + "model.fit(X_train, y_train)\n", + "\n", + "# Время обучения модели\n", + "train_time = time.time() - start_time\n", + "\n", + "# Предсказания и оценка модели\n", + "predictions = model.predict(X_val)\n", + "mse = mean_squared_error(y_val, predictions)\n", + "\n", + "print(f'Время обучения модели: {train_time:.2f} секунд')\n", + "print(f'Среднеквадратичная ошибка: {mse:.2f}')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/metrics/_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 0.36186980038510536\n", + "R²: -0.6368056983116879\n", + "MAE: 0.31984719857159616 \n", + "\n", + "Кросс-валидация RMSE: 0.5070815501853271 \n", + "\n", + "Train RMSE: 0.43774086533447965\n", + "Train R²: 0.22034961506082062\n", + "Train MAE: 0.31183543428074156\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/metrics/_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAIjCAYAAADxz9EgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK7UlEQVR4nOzdZ3gU5fv28XPTIZCEQEKo0qs0QZogKEgHURQFlCqgEnoRpKmIIL0ERSwoYgFBiigoIAIivUoN9UcnYEwCKaTsPC94mD9rAiQhYVK+n+PYQ/ea2d1zl9nNXnvP3GMzDMMQAAAAACBNOFkdAAAAAACyEposAAAAAEhDNFkAAAAAkIZosgAAAAAgDdFkAQAAAEAaoskCAAAAgDREkwUAAAAAaYgmCwAAAADSEE0WAAAAAKQhmiwAAABkGOfPn9eXX35pXj9z5oy++eYb6wIBqUCTBWRSXbt2Va5cuayOAQBAmrLZbOrTp49+/fVXnTlzRsOGDdPmzZutjgWkiIvVAQAk3z///KNvvvlGmzdv1qZNmxQdHa1mzZqpWrVqat++vapVq2Z1RAAAHkihQoXUs2dPNWvWTJJUoEAB/fHHH9aGAlLIZhiGYXUIAPf3/fffq2fPnrpx44aKFSumuLg4Xb58WdWqVdP+/fsVFxenLl26aN68eXJzc7M6LgAAD+TkyZO6du2aHn30UXl6elodB0gRdhcEMoEtW7bolVdeUUBAgLZs2aLTp0+rcePG8vDw0M6dO3Xx4kV16NBBX331lQYOHOhw2ylTpqhu3brKmzevcuTIoerVq2vJkiWJHsNms+mdd94xr8fHx6tFixby9fXV4cOHzXXudWnYsKEk6Y8//pDNZkv0y2PLli0TPU7Dhg3N29125swZ2Ww2h33yJeno0aN64YUX5OvrKw8PD9WoUUMrV65M9FzCwsI0cOBAFStWTO7u7ipcuLA6d+6sa9eu3TXfxYsXVaxYMdWoUUM3btyQJMXGxmrMmDGqXr26vL295enpqfr162vDhg2JHjMkJEQ9evRQ0aJF5ezsbL4mydmls1ixYmrVqlWiemBgoGw2W6L6hQsX1L17d+XPn1/u7u6qWLGivvjiC4d1bj/HpP6tc+XKpa5du5rXQ0NDNWTIEFWqVEm5cuWSl5eXmjdvrv379983u3Tv7aJYsWIO60ZGRmrw4MEqUqSI3N3dVbZsWU2ZMkXJ/b1v+/btatGihfLkySNPT09VrlxZM2fONJff3o321KlTatq0qTw9PVWwYEG99957iR4jJe+N2xdnZ2cVKlRIvXr1UlhYmLlOSl5v6dY2OmDAAPN1KFWqlD788EPZ7XZzndvvgylTpiS6z0cffdThfZOS99yXX34pm82mM2fOmLVff/1VdevWVc6cOeXt7a1WrVrp4MGDiR43KTExMXrnnXdUpkwZeXh4qECBAnr++ed18uTJe96uWLFi99x27mSz2RQYGKhvvvlGZcuWlYeHh6pXr65NmzYlut+9e/eqefPm8vLyUq5cudSoUSNt27bNYZ3br0FSl/Pnz0u6+y7ZS5YsSfK1/uGHH1S9enXlyJFD+fLl0yuvvKILFy44rPPOO++oQoUK5vusdu3aWr58ucM6SX0m7ty5M9Wvy4YNG2Sz2bRs2bJEz+Xbb7+VzWbT1q1bzVpyPmdvv35ubm66evWqw7KtW7eaWXft2pXi16hr167m50bJkiVVq1YthYaGKkeOHIm2WyAjY3dBIBOYOHGi7Ha7vv/+e1WvXj3R8nz58mnBggU6fPiwPvnkE40dO1b+/v6SpJkzZ6pNmzbq1KmTYmNj9f333+vFF1/UqlWr1LJly7s+5muvvaY//vhDa9euVYUKFSRJX3/9tbl88+bNmjdvnqZPn658+fJJkvLnz3/X+9u0aZN++eWXVD1/STp06JCeeOIJFSpUSMOHD5enp6cWL16stm3baunSpXruueckSTdu3FD9+vV15MgRde/eXY899piuXbumlStX6vz582bWO4WHh6t58+ZydXXVL7/8Yn6xioiI0GeffaYOHTqoZ8+eun79uj7//HM1bdpUO3bsUNWqVc376NKli9atW6e+ffuqSpUqcnZ21rx587Rnz55UP+ekXLlyRbVr1za/XPn5+Wn16tXq0aOHIiIiNGDAgBTf56lTp7R8+XK9+OKLKl68uK5cuaJPPvlEDRo00OHDh1WwYMH73sczzzyjzp07O9SmTp2qf//917xuGIbatGmjDRs2qEePHqpatap+/fVXDR06VBcuXND06dPv+Rhr165Vq1atVKBAAfXv318BAQE6cuSIVq1apf79+5vrJSQkqFmzZqpdu7YmTZqkNWvWaOzYsYqPj9d7771nrpeS98Zzzz2n559/XvHx8dq6davmzZun6Ohoh/dEckVFRalBgwa6cOGCevfuraJFi+qvv/7SiBEjdOnSJc2YMSPF95mU5L7nNm/erBYtWuiRRx7R2LFjFRcXp48++khPPPGEdu7cqTJlytz1tgkJCWrVqpXWr1+vl19+Wf3799f169e1du1aHTx4UCVLlrznY1etWlWDBw92qC1YsEBr165NtO7GjRu1aNEi9evXT+7u7vroo4/UrFkz7dixQ48++qikW58T9evXl5eXl4YNGyZXV1d98sknatiwoTZu3KhatWo53Od7772n4sWLO9R8fX3vmTkpX375pbp166bHH39cEyZM0JUrVzRz5kxt2bJFe/fulY+Pj6RbPzI899xzKlasmKKjo/Xll1+qXbt22rp1q2rWrHnX+3/rrbfuuux+r0vDhg1VpEgRffPNN+bn5G3ffPONSpYsqTp16khK/ufsbc7Ozlq4cKHDj3vz58+Xh4eHYmJiUvUaJWXMmDGJ7g/I8AwAGZ6vr6/xyCOPONS6dOlieHp6OtRGjx5tSDJ++uknsxYVFeWwTmxsrPHoo48aTz/9tENdkjF27FjDMAxjxIgRhrOzs7F8+fK7Zpo/f74hyTh9+nSiZRs2bDAkGRs2bDBrtWrVMpo3b+7wOIZhGE899ZTx5JNPOtz+9OnThiRj/vz5Zq1Ro0ZGpUqVjJiYGLNmt9uNunXrGqVLlzZrY8aMMSQZP/74Y6Jcdrs9Ub6YmBijYcOGhr+/v3HixAmH9ePj442bN2861P79918jf/78Rvfu3c1adHS04eTkZPTu3dth3aT+jZLyyCOPGC1btkxU79Onj/Hfj+kePXoYBQoUMK5du+ZQf/nllw1vb2/z3/v2c/zhhx8S3a+np6fRpUsX83pMTIyRkJDgsM7p06cNd3d347333rtvfklGnz59EtVbtmzpsN0uX77ckGS8//77Duu98MILhs1mS/T63yk+Pt4oXry48cgjjxj//vuvw7Lb/66Gces1l2T07dvXYXnLli0NNzc34+rVq2Y9Ne+N2+rWrWtUqFDBvJ6S13vcuHGGp6enERwc7LDe8OHDDWdnZ+Ps2bOGYfzf+2Dy5MmJ7rNixYpGgwYNEj1+ct5z/33vVq9e3fD29jYuX75srhMcHGy4uroa7dq1S/TYd/riiy8MSca0adMSLbvz3yUpKdnuJRmSjF27dpm1//3vf4aHh4fx3HPPmbW2bdsabm5uxsmTJ83axYsXjdy5czt8ztx+DXbu3HnXfHd7//7www8Or3VsbKzh7+9vPProo0Z0dLS53qpVqwxJxpgxY+76GCEhIYYkY8qUKWatQYMGDv+2v/zyiyHJaNasWapflxEjRhju7u5GWFiYw2O7uLg4bBvJ/Zy9/fp16NDBqFSpklmPjIw0vLy8jI4dOzq8vil5jbp06eLwuXHw4EHDycnJ3JaT+psDZETsLghkAtevXzdHpu7l9khSRESEWcuRI4f5///++6/Cw8NVv379u46wBAUFacKECZo1a5aeffbZB0x+y48//qidO3dq4sSJiZb5+/ubu+fcTWhoqH7//Xe1b99e169f17Vr13Tt2jX9888/atq0qY4fP27ucrJ06VJVqVIl0S+ukhLtamO329W5c2dt27ZNv/zyS6Jf3Z2dnc3j2+x2u0JDQxUfH68aNWo4vH6RkZGy2+3Kmzdv8l6QVDIMQ0uXLlXr1q1lGIb5Oly7dk1NmzZVeHh4on/XO1+v25f/cnd3l5PTrT8HCQkJ+ueff5QrVy6VLVs2TUfifvnlFzk7O6tfv34O9cGDB8swDK1evfqut927d69Onz6tAQMGJPrFO6ldKgMDAx2WBwYGKjY2VuvWrTPrKXlvREVF6dq1a7p8+bKWLl2q/fv3q1GjRonWS87r/cMPP6h+/frKkyePw3qNGzdWQkJCol3gbj/2nZeEhIS7vlbSvd9zdz7n4OBg7d69W506dXIYiS5durTatGmjNWvW3POxli5dqnz58qlv376JliX17/Ig6tSp4zCSX7RoUT377LP69ddflZCQoISEBP32229q27atSpQoYa5XoEABdezYUX/++afDZ2Ny/fe1v379usPyXbt2KSQkRG+++aY8PDzMesuWLVWuXDn9/PPPDuvHxcXp2rVrOnnypCZOnCgnJyc98cQTST62YRgaMWKE2rVrl2gULrmviyR17txZN2/edNidddGiRYqPj9crr7wiKWWfs7e9+uqrOnr0qLlb4NKlS+Xt7Z3ovZHS1+hOI0aM0GOPPaYXX3zxrusAGRG7CwKZQMGCBe97fIMknThxQtKtmZluW7Vqld5//33t27dPN2/eNOtJfQFavXq1+ccyNDT0QWNLuvWl/e2331anTp1UuXLlRMvr1q2rRYsWacaMGXr55Zfl4uLisIvZ7edlGIZGjx6t0aNHJ/k4ISEhKlSokE6ePKl27dolK9vIkSO1bds22Ww2RUVFJbnOV199palTp+ro0aOKi4sz63fuYpQ3b16VLl1an332mRo0aKCqVavKycnJ4fVOC1evXlVYWJjmzZunefPmJblOSEiIw/Xu3bvf937tdrtmzpypjz76SKdPn3b4Up2WjeP//vc/FSxYULlz53aoly9f3lx+N7e3/9u7hd2Lk5OTw5dsSeYub3cez5GS98bkyZM1efJk83qzZs304YcfJlovOa/38ePHdeDAAfn5+SW5/L//hmPHjtXYsWMTrXe33XPv95677bHHHjP/v2zZsomWly9fXkuXLtW1a9fu+lgnT55U2bJl5eKS/l8nSpcunahWpkwZRUVFmccFRUVF3fW52O12nTt3ThUrVkz2Y0ZGRt713+m229ttUo9brlw5/fnnnw619evXq3nz5pIkLy8vLVmyRLVr107yvr/55hsdOnRIixcv1rfffpvkOvd7XQICAlSuXDk9/vjj+uabb9SjRw/zvmvXrq1SpUpJStnn7G1+fn5q2bKlvvjiC9WoUUNffPGFunTpYv5ok9rX6LY///xTP/30k9avX6+zZ88muQ6QUdFkAZlAq1atNGfOHH3++efmH8j/unLlir766iv5+fmZf7A3b96sNm3a6Mknn9RHH32kAgUKyNXVVfPnz0/yD/aOHTvUs2dPeXp66v3339eLL76Y5B/FlPj888915swZ/frrr0ku79Wrl3799VcNHDgw0aQdt92eDGDIkCFq2rRpkuvc/qKQEtu3b9eXX36poKAg9erVS/v27ZO7u7u5fOHCheratavatm2roUOHyt/fX87OzpowYUKipnfRokXq1KlTonxpOSPW7dfhlVdeUZcuXZJc579fqseMGaP69es71Fq3bu1w/YMPPtDo0aPVvXt3jRs3Tr6+vnJyctKAAQMcJmLISlL63nj11VfVuXNn2e12nTp1SuPGjVOrVq20bt06h6YsOa+33W7XM888o2HDhiWZ7b/HQPXq1SvRr/g9e/a863O733vutoULFyoqKkq9evW653rZmYeHh3766SeH2ubNmx2O7Uupxx9/XGvXrtW///6rhQsXqnv37ipSpIhq1KjhsF5sbKxGjx6tHj163PO4uOTq3Lmz+vfvr/Pnz+vmzZvatm2bgoKCzOWp/Zzt3r27OnfurL59+2rTpk367LPP0uycVm+99ZaaNm2qp59+OtFESEBGR5MFZAKjRo3S8uXL9cYbb+jo0aPq2LGjOdpw9uxZrV+/XmPGjNG///6rb7/91mwUli5dKg8PD/36668OzcP8+fOTfJxnnnlGH3/8sWJiYrR8+XL16tXLnLUsNaKiovTuu+/qzTff1COPPJLkOh4eHvr5558VHBysc+fOyTAMXblyxdyFRZI5KuHq6qrGjRvf8zFLliyZ7FnR3n33XXXp0kVVq1ZVjRo19P7772vcuHHm8iVLlqhEiRL68ccfHV6DpEYVqlWrpk8//VT169fXe++9p9q1a2vy5MnasmVLsrIkh5+fn3Lnzq2EhIT7vg63VapUKdG6zs7ODteXLFmip556Sp9//rlDPSwsLMmJQlLrkUce0bp163T9+nWH0ayjR4+ay+/m9q6cBw8evO9zv90I3fnFNDg4WJLMWctS+t4oUaKEw+N6e3urY8eO2rZtmzlpgJS817tkyZK6ceNGsv8NS5cunWjduzXvyXnP3fbEE0/I09NTvXr10rFjxxItP3r0qDw9Pe+5DZQsWVLbt29XXFycXF1dk/FsUu/48eOJasHBwcqZM6c52pQzZ867PhcnJycVKVIkRY/p7Oyc6LW/c1ZJ6f+222PHjunpp592WHbs2LFE/w558+Y177Ndu3YqW7asJk+erEWLFjms99FHHykkJMRhZsikJOd1kaSXX35ZgwYN0nfffafo6Gi5urrqpZdeMpen5HP2Ts2bN5eHh4defvll1atXTyVLlkzUZKX0NZKk5cuXa+vWrWk+eRDwsHBMFpAJBAQEaOvWrWrevLmmTp2qxx57TAsXLlRkZKQeeeQRde/eXTly5NBPP/2kDh06mLe7PZX4nbt/nTlzJtGUwbfVrVtXzs7O8vT01Ny5c7Vp0yZ9+umnqc49c+ZMRUZGauTIkfddt0yZMmrUqJEaN26c6PgEf39/NWzYUJ988okuXbqU6LZ3TiHcrl077d+/P8npio3/TOF9e8ShSpUqGjJkiD788EOHBu32l+M7b7d9+3aH6Y5vi4iI0Kuvvqo2bdpo1KhRaty4sQoUKHDf550Szs7OateunZYuXZpkI/nfqZRTcr//fW1++OGHRMdfPKgWLVooISHB4ddzSZo+fbpsNpu5C1VSHnvsMRUvXlwzZsxI9CX3v9klOTyGYRgKCgqSq6ureaxISt8b/xUdHS1JqdoltH379tq6dWuSI01hYWGKj49P8X3elpL3nHSrcX/sscf07bffOmw/J0+e1MqVK9W8efNETeKd2rVrp2vXriX6N5WS/nd5EP/9wn3u3DmtWLFCTZo0kbOzs5ydndWkSROtWLHCYbfQK1eu6Ntvv1W9evXk5eWVppkkqUaNGvL399fcuXMdtofVq1fryJEj95zFNSYmRpGRkYm2o+vXr2v8+PEaOHCgAgIC7vn493tdbsuXL5+aN2+uhQsX6ptvvlGzZs0cGuiUfM7eycXFRZ07d9aBAwfuurtsSl+j27u8duzY0WEWVyAzYSQLyCSKFCmiFStW6NKlS9qyZYsmT56sffv2ae7cuapataqqVq2aaMSpZcuWmjZtmpo1a6aOHTsqJCREc+bMUalSpXTgwIF7Pl7Tpk31yiuvaNiwYWrdunWqGobffvtN48ePT5PjeubMmaN69eqpUqVK6tmzp0qUKKErV65o69atOn/+vHlOp6FDh2rJkiV68cUX1b17d1WvXl2hoaFauXKl5s6dqypVqiR5/2PHjtXSpUvVs2dPbdmyRU5OTmrVqpV+/PFHPffcc2rZsqVOnz6tuXPnqkKFCua5tG7r06ePoqOj9dlnn6Xq+V29elVr1qxxqN0+BmHNmjWqWbOmfH19NXHiRG3YsEG1atVSz549VaFCBYWGhmrPnj1at25dqo6la9Wqld577z1169ZNdevW1d9//61vvvkm0XFND6p169Z66qmnNHLkSJ05c0ZVqlTRb7/9phUrVmjAgAH3nO7byclJH3/8sVq3bq2qVauqW7duKlCggI4ePapDhw45NCweHh5as2aNunTpolq1amn16tX6+eef9fbbb5u/7Kf0vXHgwAEtXLhQhmHo5MmTmjVrlgoXLpxoF6/kGDp0qFauXKlWrVqpa9euql69uiIjI/X3339ryZIlOnPmTKpHEFPznps0aZI55X3v3r0VHx+voKAgeXh4aPz48fe8befOnbVgwQINGjRIO3bsUP369RUZGal169bpzTffTLPJc6Rbx+M1bdrUYapy6daI9G3vv/++1q5dq3r16unNN9+Ui4uLPvnkE928eVOTJk1Ksyx3cnV11Ycffqhu3bqpQYMG6tChgzk9ebFixczdoG+fKqJ58+YqWLCgQkND9fXXX+vSpUsOI/eStGfPHuXLl++uu5TeKTmvy22dO3fWCy+8IEkOo/a3Jfdz9r/GjRunoUOHKk+ePA/0Gt12/vx5ubm5PdBpPwDLWTGlIYAHl9zpwT///HOjdOnShru7u1GuXDlj/vz5xtixY5OcCvi/01Rfu3bN8PPzc5gK+LbkTOFeoEABIzIy8r6P819JTeFuGIZx8uRJo3PnzkZAQIDh6upqFCpUyGjVqpWxZMkSh/X++ecfIzAw0ChUqJDh5uZmFC5c2OjSpYs57XlS010bhmH88ccfhs1mM2bOnGkYxq2piz/44APjkUceMdzd3Y1q1aoZq1atSjTF8HfffWfYbDZjzZo1DveXkinc9f+nYr7b5c6sV65cMfr06WMUKVLEcHV1NQICAoxGjRoZ8+bNM9dJ6RTugwcPNgoUKGDkyJHDeOKJJ4ytW7cmmkr6bpTMKdwNwzCuX79uDBw40ChYsKDh6upqlC5d2pg8efJ9p/u+7c8//zSeeeYZI3fu3Ianp6dRuXJlY/bs2eby26/5yZMnjSZNmhg5c+Y08ufPb4wdOzbRNPUpeW/cvthsNiMgIMB4/vnnjSNHjpjrpOT1vv06jBgxwihVqpTh5uZm5MuXz6hbt64xZcoUIzY21jCM1E3hnpz3XFLv3XXr1hl169Y1PDw8jNy5cxstWrQwDhw4kOhxkxIVFWWMHDnSKF68uLk9vvDCCw7TqCclpVO49+nTx1i4cKH5b1atWrVE72HDMIw9e/YYTZs2NXLlymXkzJnTeOqpp4y//vrLYZ20nML9tkWLFhnVqlUz3N3dDV9fX6NTp07G+fPnzeXR0dHGSy+9ZBQuXNhwc3Mz/P39jaeeesrhlBuGcWsKd0nG9OnTHep32zaT+7oYhmHcvHnTyJMnj+Ht7e0wlfqdkvM5e7/X727L7/caGcb/nYahf//+Sd4nU7gjs7AZRhqP5wMA0pTNZtOGDRvUsGFDq6NkeF27dtWSJUsSjTQic7PZbOrTp0+SuyVmZyl9XeLj41WwYEG1bt060TGYANIWx2QBAABkA8uXL9fVq1fVuXNnq6MAWR7HZAFABte0aVP5+vpaHQNAJrV9+3YdOHBA48aNU7Vq1dSgQQOrIwFZHk0WAGRw/50QAwBS4uOPP9bChQtVtWpVzjcFPCQckwUAAAAAaYhjsgAAAAAgDdFkAQAAAEAa4pis+7Db7bp48aJy586d6ESvAAAAALIPwzB0/fp1FSxYUE5Odx+vosm6j4sXL6pIkSJWxwAAAACQQZw7d06FCxe+63KarPvInTu3pFsvpJeXl8VpAAAAAFglIiJCRYoUMXuEu6HJuo/buwh6eXnRZAEAAAC472FETHwBAAAAAGmIJgsAAAAA0hBNFgAAAACkIZosAAAAAEhDNFkAAAAAkIZosgAAAAAgDdFkAQAAAEAaoskCAAAAgDSU6ZqsOXPmqFixYvLw8FCtWrW0Y8eOu6776aefqn79+sqTJ4/y5Mmjxo0b33N9AAAAAHhQmarJWrRokQYNGqSxY8dqz549qlKlipo2baqQkJAk1//jjz/UoUMHbdiwQVu3blWRIkXUpEkTXbhw4SEnBwAAAJBd2AzDMKwOkVy1atXS448/rqCgIEmS3W5XkSJF1LdvXw0fPvy+t09ISFCePHkUFBSkzp07J+sxIyIi5O3trfDwcHl5eT1QfgAAAACZV3J7g0wzkhUbG6vdu3ercePGZs3JyUmNGzfW1q1bk3UfUVFRiouLk6+v713XuXnzpiIiIhwuAAAAAJBcmabJunbtmhISEpQ/f36Hev78+XX58uVk3cdbb72lggULOjRq/zVhwgR5e3ublyJFijxQbgAAAADZS6Zpsh7UxIkT9f3332vZsmXy8PC463ojRoxQeHi4eTl37txDTAkAAAAgs3OxOkBy5cuXT87Ozrpy5YpD/cqVKwoICLjnbadMmaKJEydq3bp1qly58j3XdXd3l7u7+wPnBQAAAJA9ZZqRLDc3N1WvXl3r1683a3a7XevXr1edOnXuertJkyZp3LhxWrNmjWrUqPEwogIAAADIxjJNkyVJgwYN0qeffqqvvvpKR44c0RtvvKHIyEh169ZNktS5c2eNGDHCXP/DDz/U6NGj9cUXX6hYsWK6fPmyLl++rBs3blj1FAAAAAAk0/Hjx62OkCqZqsl66aWXNGXKFI0ZM0ZVq1bVvn37tGbNGnMyjLNnz+rSpUvm+h9//LFiY2P1wgsvqECBAuZlypQpVj0FAAAAAPdx7do19ezZU2XLltXatWutjpNimeo8WVbgPFkAAADAw5GQkKB58+Zp5MiR+vfffyVJZcuW1YEDB+Tm5mZxuuT3Bplm4gsAAAAAWdfWrVvVp08f7d2716zlzp1bvXv3ls1mszBZytFkAQAAALDMlStX9NZbb+mrr75yqL/66quaNGnSfWcSz4hosgAAAAA8dHa7XbNnz9aYMWMUERFh1itXrqw5c+aoXr16FqZ7MJlq4gsAAAAAWYPNZtPq1avNBsvb21uzZ8/W7t27M3WDJdFkAQAAALCAzWbTrFmz5O7uru7duys4OFiBgYFyccn8O9tl/mcAAAAAIEOLi4vTrFmzVL58ebVo0cKslylTRqdOnVLBggUtTJf2aLIAAAAApJvff/9dgYGBOnLkiIoXL65Dhw4pR44c5vKs1mBJ7C4IAAAAIB2cO3dOL730kho1aqQjR45Iks6cOaN169ZZnCz90WQBAAAASDM3b97UxIkTVa5cOS1evNis16pVSzt27FDr1q0tTPdwsLsgAAAAgDTx66+/ql+/fgoODjZr+fLl04cffqiuXbvKySl7jPFkj2cJAAAAIF1NnjxZzZo1MxssJycnBQYGKjg4WN27d882DZZEkwUAAAAgDbz44ovy8PCQJD3xxBPavXu3Zs+erTx58lic7OFjd0EAAAAAKRYSEiJ/f3/zerFixTRp0iT5+PjolVdekc1mszCdtWiyAAAAACTbqVOn1L9/f+3du1dHjx5Vrly5zGV9+/a1MFnGwe6CAAAAAO4rKipKY8eOVYUKFbRq1SpduHBB48ePtzpWhsRIFgAAAIC7MgxDK1as0IABA/S///3PrBcsWFDVqlWzMFnGxUgWAAAAgCQFBwerRYsWeu6558wGy8XFRUOHDtXRo0fVvn17ixNmTIxkAQAAAHAQGRmp999/X1OnTlVcXJxZb9y4sWbPnq1y5cpZmC7jYyQLAAAAgIOwsDAFBQWZDVaRIkX0ww8/6LfffqPBSgaaLAAAAAAOChUqpDFjxsjNzU1vv/22jhw5ohdeeCFbT8ueEjRZAAAAQDZ2/fp1jRkzRuHh4Q71/v3769ChQxo/frw8PT0tSpc5cUwWAAAAkA0ZhqHvvvtOQ4YM0aVLlxQREaEZM2aYy93c3FSqVCnrAmZijGQBAAAA2czff/+thg0bqlOnTrp06ZIk6bPPPlNoaKjFybIGmiwAAAAgmwgLC1P//v1VrVo1bdq0yay3bt1aBw4ckK+vr4Xpsg52FwQAAACyOLvdrq+//lrDhg1TSEiIWS9ZsqRmzpypli1bWpgu66HJAgAAALIwwzDUunVr/fLLL2YtR44cGjlypAYPHiwPDw8L02VN7C4IAAAAZGE2m03NmjUzr7dr105HjhzRyJEjabDSCSNZAAAAQBZit9sVExOjnDlzmrU33nhDmzZtUs+ePdWkSRML02UPjGQBAAAAWcTOnTtVu3ZtDRo0yKHu4uKiH374gQbrIaHJAgAAADK5a9euqVevXqpVq5Z27typefPmadeuXVbHyrbYXRAAAADIpBISEjRv3jyNHDlS//77r1mvUKGC7Ha7hcmyN0ayAAAAgExo69atevzxx/Xmm2+aDVbu3Lk1bdo07d27VzVr1rQ4YfbFSBYAAACQiVy5ckXDhw/Xl19+6VB/9dVXNWnSJAUEBFgTDCaaLAAAACATWbVqlUODVaVKFQUFBalevXrWhYIDdhcEAAAAMpFu3brp8ccfl7e3t2bPnq1du3bRYGUwjGQBAAAAGdTFixe1atUq9erVy6w5OTnp66+/Vp48eeTv729hOtwNI1kAAABABhMXF6epU6eqbNmy6t27t7Zs2eKwvGzZsjRYGRhNFgAAAJCB/P7776pSpYqGDBmiGzduSJLGjBljcSqkBE0WAAAAkAGcP39eL730kho1aqQjR45Ikmw2m3r37q3FixdbnA4pwTFZAAAAgIVu3ryp6dOna9y4cYqKijLrtWrVUlBQkGrUqGFhOqQGTRYAAABgkUuXLqlhw4YKDg42a/ny5dOHH36orl27ysmJHc8yI/7VAAAAAIsEBASYE1g4OTkpMDBQwcHB6t69Ow1WJsa/HAAAAPCQxMXFOVy32WwKCgrSk08+qd27d2v27NnKkyePRemQVmiyAAAAgIdg1apVKleunNavX+9Qr1KlijZu3KiqVataEwxpjiYLAAAASEcnT55Uq1at1Lp1a506dUp9+/ZVbGys1bGQjmiyAAAAgHQQFRWlMWPGqGLFivr555/Nur+/v0JDQy1MhvTG7IIAAABAGjIMQ8uXL9fAgQP1v//9z6wXLFhQU6dO1UsvvSSbzWZhQqQ3miwAAAAgjQQHB6tfv3769ddfzZqLi4sGDRqkUaNGKXfu3Bamw8NCkwUAAACkkYEDBzo0WI0bN9bs2bNVrlw5C1PhYeOYLAAAACCNTJ06Va6uripSpIiWLFmi3377jQYrG2IkCwAAAEiFw4cPKywsTHXr1jVr5cqV008//aR69erJ09PTwnSwEiNZAAAAQApERERoyJAhqlKlijp37qyYmBiH5U2bNqXByuZosgAAAIBkMAxD33zzjcqVK6epU6cqPj5eJ0+e1Mcff2x1NGQw7C4IAAAA3MeBAwcUGBiozZs3mzUPDw8NHz5cr7/+uoXJkBHRZAEAAAB3ERYWprFjx2rOnDlKSEgw623atNGMGTNUvHhxC9Mho6LJAgAAAJKwfv16dezYUSEhIWatVKlSmjlzplq0aGFhMmR0HJMFAAAAJKF48eIKDw+XJOXIkUPjx4/XwYMHabBwX4xkAQAAALo1sYXNZjOvlyhRQm+99ZYOHz6sqVOnqmjRohamQ2ZiMwzDsDpERhYRESFvb2+Fh4fLy8vL6jgAkG7sdkMXwqIVGRsvTzcXFfLJIScn2/1vmMUyAMh+7Ha7Pv/8c82dO1ebNm1ymH7dbrfLyYmdv6yS0f4uJLc3YCQLAKATIdf168ErOnn1hmLiE+Th4qySfrnU9NH8KuWfO9tkAJD97Ny5U3369NHOnTslSRMmTND7779vLqfBsk5m/rtAkwUA2dyJkOuav+WMQiNjVcDbQzndcigqNl4HL4brYni0uj1RLN3/mGWEDACyl2vXrmnEiBH6/PPPdeeOXefPn0+02yAevsz+d4HWHACyMbvd0K8Hryg0Mlal/XMpt4ernJ1syu3hqtL+uRQaGavfDl2R3Z5+e5ZnhAwAso+EhAR99NFHKlOmjD777DOzwapYsaI2bNigL7/8kgbLYlnh7wJNFgBkYxfConXy6g0V8PZI9KXCZrOpgLeHToTc0IWw6CydAUD28Ndff6lGjRrq06eP/v33X0lS7ty5NW3aNO3du1cNGza0NiAkZY2/C+wuCADZWGRsvGLiE5TTLUeSy3O4OetKRIwiY+OzdAYAWV9YWJiaNm2qGzdumLVXX31VkyZNUkBAgIXJ8F9Z4e8CI1kAkI15urnIw8VZUXf5QxUdmyB3F2d5uqXfb3IZIQOArM/Hx0cjR46UJFWpUkWbN2/WggULaLAyoKzwd4EmCwCysUI+OVTSL5cuhcfov2f0MAxDl8JjVMo/lwr5JP1rYlbJACDr2bx5syIiIhxqAwcO1Oeff65du3apXr16FiXD/WSFvws0WQCQjTk52dT00fzy9XTT8ZAbuh4Tp3i7Xddj4nQ85IZ8Pd3UpGL+dD0nSUbIACDruHjxol555RU9+eSTevfddx2Wubu7q3v37nJxybgjIMgafxc4GfF9cDJiANnBneciuRl/azeMUv651KSiNefJsioDgMwrLi5Os2bN0jvvvGMed+Xs7KxDhw6pbNmyFqdDamTEvwucjBgAkGyl/HOrRMNcuhAWrcjYeHm6uaiQT46H+ithRsgAIHP6/fffFRgYqCNHjpg1X19fffDBBypVqpSFyfAgMvPfBZosAICkW7tnFPHNme0zAMg8zp07pyFDhmjx4sVmzWazqVevXho/frzy5s1rYTqkhcz6d4EmCwAAAJnO7NmzNXz4cEVFRZm1WrVqKSgoSDVq1LAwGcDEFwAAAMiEEhISzAYrX758+vzzz82TDQNWY+KL+2DiCwAAgIwnPj5eNWrUUP369fXee+8pT548VkdCNsDEFwAAAMj0YmJiNHnyZIWHh2vKlClm3cXFRdu3b5e7u7uF6YCk0WQBAAAgQ1q1apX69++vU6dOycnJSZ06dVK1atXM5TRYyKgy3TFZc+bMUbFixeTh4aFatWppx44d91z/hx9+ULly5eTh4aFKlSrpl19+eUhJAQAAkBonT55U69at1bp1a506dUrSrVkDt23bZnEyIHkyVZO1aNEiDRo0SGPHjtWePXtUpUoVNW3aVCEhIUmu/9dff6lDhw7q0aOH9u7dq7Zt26pt27Y6ePDgQ04OAACA+4mKitKYMWNUsWJFrVq1yqw3aNBA+/bt0xtvvGFhOiD5MtXEF7Vq1dLjjz+uoKAgSZLdbleRIkXUt29fDR8+PNH6L730kiIjIx3epLVr11bVqlU1d+7cZD0mE18AAACkL8MwtHz5cg0cOFD/+9//zHrBggU1depUvfTSS7LZMv4JaJH1Jbc3yDQjWbGxsdq9e7caN25s1pycnNS4cWNt3bo1ydts3brVYX1Jatq06V3Xl6SbN28qIiLC4QIAAID089NPP+n55583GywXFxcNGzZMx44d08svv0yDhUwn0zRZ165dU0JCgvLnz+9Qz58/vy5fvpzkbS5fvpyi9SVpwoQJ8vb2Ni9FihR58PAAAAC4q5YtW+qxxx6TJDVu3Fh///23PvzwQ+XKlcviZEDqZJom62EZMWKEwsPDzcu5c+esjgQAAJBlGIahnTt3OtScnZ01d+5cLVmyRL/99pvKlStnUTogbWSaJitfvnxydnbWlStXHOpXrlxRQEBAkrcJCAhI0frSralAvby8HC4AAAB4cIcPH9YzzzyjmjVrJpop8PHHH1e7du3YNRBZQqZpstzc3FS9enWtX7/erNntdq1fv1516tRJ8jZ16tRxWF+S1q5de9f1AQAAkPauX7+uIUOGqEqVKuZ3sz59+shut1ucDEgfmepkxIMGDVKXLl1Uo0YN1axZUzNmzFBkZKS6desmSercubMKFSqkCRMmSJL69++vBg0aaOrUqWrZsqW+//577dq1S/PmzbPyaQAAAGQLhmHo22+/1dChQ3Xp0iWzXrx4cb3zzjuMWiHLylRN1ksvvaSrV69qzJgxunz5sqpWrao1a9aYk1ucPXtWTk7/NzhXt25dffvttxo1apTefvttlS5dWsuXL9ejjz5q1VMAAADIFv7++28FBgZq06ZNZs3Dw0PDhw/XsGHDlCNHDgvTAekrU50nywqcJwsAACD5YmJi9NZbb2nOnDlKSEgw688++6ymT5+u4sWLW5gOeDDJ7Q0y1UgWshe73dCFsGhFxsbL081FhXxyyMmJ3QqAjIb3KoA7ubm5adeuXWaDVapUKc2aNUvNmze3OBnw8NBkIUM6EXJdvx68opNXbygmPkEeLs4q6ZdLTR/Nr1L+ua2OB+D/470K4L+cnJwUFBSkBg0aaPjw4Ro8eLDc3d2tjgU8VDRZyHBOhFzX/C1nFBoZqwLeHsrplkNRsfE6eDFcF8Oj1e2JYnx5AzIA3qsAQkNDNWrUKLVv314NGzY069WqVdO5c+fk7e1tXTjAQplmCndkD3a7oV8PXlFoZKxK++dSbg9XOTvZlNvDVaX9cyk0Mla/Hboiu51DCQEr8V4Fsje73a5PP/1UZcqU0ccff6zAwEDFxcU5rEODheyMJgsZyoWwaJ28ekMFvD0STetqs9lUwNtDJ0Ju6EJYtEUJAUi8V4HsbMeOHapdu7Z69eqlf/75R5J05swZ7d+/3+JkQMZBk4UMJTI2XjHxCcrplvSerDncnHUzPkGRsfEPORmAO/FeBbKfa9euqWfPnqpdu7Z27txp1jt06KBjx46pRo0aFqYDMhaaLGQonm4u8nBxVtRdvphFxybI3cVZnnf5Ygfg4eC9CmQfCQkJ+vjjj1WmTBl99tlnun32n4oVK2rDhg369ttvVahQIYtTAhkLTRYylEI+OVTSL5cuhcfov6dwMwxDl8JjVMo/lwr5cAJDwEq8V4Hso1+/fnrzzTf177//SpJy586tadOmae/evQ6TXQD4PzRZyFCcnGxq+mh++Xq66XjIDV2PiVO83a7rMXE6HnJDvp5ualIxP+fgASzGexXIPvr06SMXl1uj0q+++qqCg4M1cOBAubq6WpwMyLhsxn9/goSD5J7VGWnrznPv3Iy/tdtRKf9calKRc+8AGQnvVSBriY+P17lz51S8eHGH+qxZs/TYY4+pXr16FiUDMobk9gY0WfdBk2Udu93QhbBoRcbGy9PNRYV8cvCrOJAB8V4FsoaNGzcqMDBQN2/e1N9//80JhIEkJLc34IhkZFhOTjYV8c1pdQwA98F7FcjcLl68qCFDhui7774za9OnT9fw4cMtTAVkbhyTBQAAkA3FxcVpypQpKlu2rEODVb16dT311FMWJgMyP0ayAAAAspn169erb9++OnLkiFnz9fXVhAkT1KNHDzk7O1uYDsj8GMkCAADIJi5evKj27durcePGZoNls9n0+uuvKzg4WL169aLBAtIAI1kAAADZRGRkpFasWGFer1WrlubMmaPq1atbmArIehjJAgAAyCZKly6tIUOGyM/PT1988YX++usvGiwgHdBkAQAAZEFnzpzR66+/rujoaIf6yJEjFRwcrG7dusnJia+CQHrgnQUAAJCFxMTE6L333lP58uX1ySefaOLEiQ7Lc+bMKR8fH2vCAdkETRYAAEAW8dNPP6lixYoaO3asYmJiJEkLFizQzZs3LU4GZC80WQAAAJnciRMn1KpVK7Vp00anTp2SJDk7O2vQoEHav3+/3N3dLU4IZC/MLggAAJBJRUVFacKECZo0aZJiY2PNesOGDRUUFKSKFStamA7IvmiyAAAAMqH4+HjVqFHD4YTChQoV0tSpU9W+fXvZbDYL0wHZG7sLAgAAZEIuLi7q1KmTJMnV1VXDhg3T0aNH9dJLL9FgARZjJAsAACATuHHjhmw2mzw9Pc3a4MGDderUKQ0dOlTlypWzMB2AOzGSBQAAkIEZhqHFixerfPnyevfddx2WeXh46PPPP6fBAjIYmiwAAIAM6vDhw2rcuLFeeuklnT9/XtOnT9fRo0etjgXgPmiyAAAAMpiIiAgNHjxYVapU0e+//27Wn3nmGaZjBzIBjskCAADIIAzD0LfffquhQ4fq0qVLZr148eKaMWOGWrduzaQWQCZAkwUAAJABHDhwQIGBgdq8ebNZ8/Dw0PDhwzVs2DDlyJHDwnQAUoImCwAAIANYu3atQ4P17LPPavr06SpevLiFqQCkhs0wDMPqEBlZRESEvL29FR4eLi8vL6vjAACALCouLk5VqlRRXFycZs2apebNm1sdCcB/JLc3YCQLAADgIduzZ4/++usvBQYGmjVXV1f99NNPKly4MJNbAJkcswsCAAA8JKGhoXrjjTdUo0YN9e/fXwcOHHBYXrJkSRosIAugyQIAAEhnCQkJ+vTTT1WmTBnNnTtXhmHIbrdr2rRpVkcDkA5osgAAANLRjh07VLt2bfXq1Uv//POPJMnT01OTJk3SvHnzLE4HID1wTBYAAEA6uHr1qt5++219/vnnunOesQ4dOmjy5MkqVKiQhekApCeaLAAAgDR28OBB1a9fX2FhYWatYsWKCgoKUsOGDS3LBeDhYHdBAACANFa+fHkVK1ZMkuTl5aXp06dr7969NFhANkGTBQAA8IBu3LjhcN3Z2VlBQUHq3Lmzjh07pgEDBsjV1dWidAAeNposAACAVIqPj9fMmTNVpEgR7dy502HZE088oa+++koBAQEWpQNgFZosAACAVNi0aZOqVaumAQMGKCwsTH369JHdbrc6FoAMgCYLAAAgBS5evKhOnTqpQYMGOnjwoFmvXLmyoqOjLUwGIKOgyQIAAEiGuLg4TZkyRWXLltW3335r1qtXr65t27bps88+k6enp4UJAWQUDzSFe0xMjGJjYx1qXl5eDxQIAAAgo1m/fr369u2rI0eOmDVfX19NmDBBPXr0kLOzs4XpAGQ0KR7JioqKUmBgoPz9/eXp6ak8efI4XAAAALISwzA0cuRIs8Gy2Wx6/fXXFRwcrF69etFgAUgkxU3W0KFD9fvvv+vjjz+Wu7u7PvvsM7377rsqWLCgFixYkB4ZAQAALGOz2RQUFCSbzaZatWpp586d+vjjj5U3b16rowHIoGyGYRgpuUHRokW1YMECNWzYUF5eXtqzZ49KlSqlr7/+Wt99951++eWX9MpqiYiICHl7eys8PJxdIQEAyAZ+/fVX+fj4qFatWg71LVu2qE6dOnJy4pB2ILtKbm+Q4k+J0NBQlShRQtKt469CQ0MlSfXq1dOmTZtSGRcAAMBaZ86c0XPPPadmzZqpZ8+eio+Pd1j+xBNP0GABSJYUf1KUKFFCp0+fliSVK1dOixcvliT99NNP8vHxSdNwAAAA6S0mJkbvvfeeypcvr+XLl0uS/v77by1ZssTaYAAyrRQ3Wd26ddP+/fslScOHD9ecOXPk4eGhgQMHaujQoWkeEAAAIL2sWrVKFStW1NixYxUTEyNJCggI0Ndff62XXnrJ4nQAMqsUH5P1X//73/+0e/dulSpVSpUrV06rXBkGx2QBAJD1nDx5Uv3799fPP/9s1pydndW/f3+NHTuWv/kAkpTc3uCBzpMlSY888ogeeeSRB70bAACAh2LBggXq1auXbt68adYaNmyooKAgVaxY0cJkALKKFDdZs2bNuufyfv36pToMAABAeqtWrZo5qUWhQoU0depUtW/fXjabzeJkALKKFO8uWLx4cfP/z507pwIFCsjF5VavZrPZdOrUqbRNaDF2FwQAIHOLi4uTq6urQ23YsGGy2WwaPXq0cuXKZVEyAJlNcnuDBzomK3fu3Nq/f785pXtWRJMFAEDmdOPGDb3//vtavXq1du7cKTc3N6sjAcjk0u08WQAAABmZYRhatGiRypUrpw8//FAHDhzQjBkzrI4FIBt54IkvAAAAMopDhw6pb9++2rBhg1lzc3NTQkKChakAZDcpbrIOHDhg/r9hGDp69Khu3Lhh1rLiNO4AACBji4iI0LvvvqtZs2aZk1pIUosWLTRz5kyVKlXKwnQAspsUH5Pl5OQkm82mO292+7rNZstyvxRxTBYAABmXYRj65ptvNHToUF2+fNmsFy9eXDNnzlSrVq2YNRBAmkm382SdPn36gYIBAACklTNnzqh79+6Ki4uTJHl4eGj48OEaNmyYcuTIYXE6ANlVipssTjwMAAAyiuLFi2vQoEH68MMP1aZNG82YMcPhdDMAYIVUzS749ddf64knnlDBggX1v//9T5I0Y8YMrVixIk3DAQAA3Ga32/Xtt98qJibGoT5q1CitXr1aK1asoMECkCGkuMn6+OOPNWjQILVo0UJhYWHmMVg+Pj5MjwoAANLF7t279cQTT6hTp06aNGmSw7JcuXKpWbNmFiUDgMRS3GTNnj1bn376qUaOHClnZ2ezXqNGDf39999pGg4AAGRvoaGheuONN/T4449r27ZtkqQJEyYoJCTE4mQAcHcpbrJOnz6tatWqJaq7u7srMjIyTUIBAIDsLSEhQfPmzVOZMmU0d+5cc1bjcuXK6aeffpK/v7/FCQHg7lLcZBUvXlz79u1LVF+zZo3Kly+fFpkAAEA2tmPHDtWuXVu9e/fWP//8I+nWLoGTJ0/W/v371bhxY4sTAsC9pXh2wUGDBqlPnz6KiYmRYRjasWOHvvvuO02YMEGfffZZemQEAADZRL9+/RQUFORwPs6OHTtq0qRJKlSokIXJACD5Utxkvfbaa8qRI4dGjRqlqKgodezYUQULFtTMmTP18ssvp0dGAACQTeTNm9dssB599FEFBQWpQYMGFqcCgJSxGXf+VJRCUVFRunHjRpbeLzq5Z3UGAAApZxiGbDabeT06Olp169ZV165d9eabb8rV1dXCdADgKLm9QYpHsu6UM2dO5cyZU9Ktc1e8//77t+7UxUVvv/32g9w1AADIwq5cuaJhw4apUKFC+uCDD8x6jhw5tHv3bjk5pepUngCQIaTqmKykJCQkKCgoSNOmTZOLywP1bgAAIIuKj4/XnDlzNGbMGEVERMjV1VVdu3ZVmTJlzHVosABkdinuhvbu3Ztk3W63S5L69+//YIkAAECWtHHjRgUGBurgwYNmzdPTU8HBwQ5NFgBkdilusjZs2JBkPSYmRp6eng8cCAAAZC0XL17UkCFD9N133znUe/TooQkTJsjPz8+iZACQPtJsv747D1oFAACIjY3VzJkz9d577+nGjRtmvUaNGpozZ45q1qxpYToASD8cPAUAANLFF198oWHDhpnXfX19NWHCBPXo0UPOzs4WJgOA9JXiJmvlypVJ1uPi4h44zL2Ehoaqb9+++umnn+Tk5KR27dpp5syZypUr113XHzt2rH777TedPXtWfn5+atu2rcaNGydvb+90zQoAAKTu3btrxowZCg4OVu/evfX+++8rb968VscCgHSX4iarbdu2d12WnrsMdurUSZcuXdLatWsVFxenbt26qVevXvr222+TXP/ixYu6ePGipkyZogoVKuh///ufXn/9dV28eFFLlixJt5wAAGRHN2/e1ObNm9W4cWOz5ubmpvnz58vNzU3Vq1e3MB0APFwPdDLih+XIkSOqUKGCdu7cqRo1akiS1qxZoxYtWuj8+fMqWLBgsu7nhx9+0CuvvKLIyMhkTzPPyYgBALi3NWvWqF+/fjp16pT27t2rSpUqWR0JANJFcnuDTHEiiq1bt8rHx8dssCSpcePGcnJy0vbt25N9P7dfjHs1WDdv3lRERITDBQAAJHbmzBm1bdtWzZs31/Hjx5WQkKABAwZYHQsALJcpmqzLly/L39/foebi4iJfX19dvnw5Wfdx7do1jRs3Tr169brnehMmTJC3t7d5KVKkSKpzAwCQFUVHR+u9995T+fLltWLFCrNer149TZs2zcJkAJAxWNpkDR8+XDab7Z6Xo0ePPvDjREREqGXLlqpQoYLeeeede647YsQIhYeHm5dz58498OMDAJAVGIahlStXqmLFiho7dqxiYmIkSQEBAfr666+1adMmValSxeKUAGA9S6dwHzx4sLp27XrPdUqUKKGAgACFhIQ41OPj4xUaGqqAgIB73v769etq1qyZcufOrWXLlsnV1fWe67u7u8vd3T1Z+QEAyC7++ecfde7cWb/88otZc3Z2Vv/+/TV27FiOWwaAO1jaZPn5+SXrLO916tRRWFiYdu/ebc5O9Pvvv8tut6tWrVp3vV1ERISaNm0qd3d3rVy5Uh4eHmmWHQCA7MTb29th746nnnpKs2fPVsWKFS1MBQAZU4pnFzxw4MA9l1euXPmBAt1N8+bNdeXKFc2dO9ecwr1GjRrmFO4XLlxQo0aNtGDBAtWsWVMRERFq0qSJoqKitGzZMnl6epr35efnl+yTIDK7IAAAt2zatEkdO3bU1KlT1b59+3Q9dQsAZETJ7Q1SPJJVtWpV2Ww23e7Nbn/AGoYhm82mhISEVEa+t2+++UaBgYFq1KiReTLiWbNmmcvj4uJ07NgxRUVFSZL27NljzjxYqlQph/s6ffq0ihUrli45AQDI7I4dO6YBAwbo/fffdzi/1ZNPPqmTJ0+yWz0A3EeKR7KcnJy0Y8cO+fn5yTAMPfroo/rll1/0yCOPSJL536yCkSwAQHZx48YNvf/++5o2bZri4uJUu3ZtbdmyRU5OmWIyYgBId+k2kiVJRYsWNadUt9lsypkzZ5ZrrgAAyC4Mw9DixYs1ePBgXbhwwaxfvHhR586d4288AKRQin+a8vf3V3BwsKRbH76RkZFq3ry51qxZk+bhAABA+jp06JAaNWqkl19+2Wyw3NzcNGrUKB05coQGCwBSIcVNVrNmzfTyyy/r9ddf19NPP63GjRvryy+/1CuvvHLfc1ABAICMISIiQoMHD1bVqlW1YcMGs96iRQsdOnRI48aNU86cOS1MCACZV4qPyYqMjNT48eO1f/9+FS9eXGPGjJG/v79OnTqlF154QXv27EmvrJbgmCwAQFbUunVrrVq1yrxevHhxzZw5U61bt7YwFQBkbMntDVLcZN1LTExMljsXFU0WACAr2rFjh2rVqiUPDw+NGDFCQ4cOVY4cOayOBQAZWrpOfHE3Wa3BAgAgKwgLC1NISIjKlClj1mrWrKmPP/5YTZs2VfHixS1MBwBZT6qarF27dmnx4sU6e/asYmNjHZb9+OOPaRIMAAA8GLvdrq+++kpvvfWWChcurJ07d8rZ2dlc/vrrr1uYDgCyrhRPfPH999+rbt26OnLkiJYtW6a4uDgdOnRIv//+u7y9vdMjIwAASKE9e/boiSeeUPfu3XX16lXt3btXn3zyidWxACBbSHGT9cEHH2j69On66aef5ObmppkzZ+ro0aNq3769ihYtmh4ZAQBAMoWGhuqNN95QjRo1tG3bNrP+wgsvqFWrVhYmA4DsI8VN1smTJ9WyZUtJt86jERkZKZvNpoEDB2revHlpHhAAANxfQkKC5s2bpzJlymju3Lm6Pa9VuXLltHbtWv3www/8GAoAD0mKm6w8efLo+vXrkqRChQrp4MGDkm4dVBsVFZW26QAAwH0dOHBAtWvXVu/evfXPP/9IknLlyqXJkydr//79aty4scUJASB7SfHEF08++aTWrl2rSpUq6cUXX1T//v31+++/a+3atWrUqFF6ZAQAAPdgGIbDeSo7dOigyZMnq1ChQhamAoDsK8XnyQoNDVVMTIwKFiwou92uSZMm6a+//lLp0qU1atQo5cmTJ72yWoLzZAEAMoO+ffvqjz/+UFBQkBo0aGB1HADIkiw5GXFWRJMFAMhI/vrrL82ePVsLFiyQq6urWY+MjJSbm5tDDQCQttLtZMRnz56953IOqgUAIO1duXJFb731lr766itJUo0aNTR48GBzuaenp1XRAAD/keImq1ixYrLZbJJkzlxks9lkGIZsNpsSEhLSNiEAANlYfHy85syZozFjxigiIsKsr1y5UoMGDTL/JgMAMo4UN1l+fn5yc3NTjx491Lp1a7m4pPguAABAMmzcuFGBgYHmTL6S5OPjo/Hjx6t37940WACQQaV4CvcLFy5o2rRp2rJli5599lktXrxYXl5eqlKliqpUqZIeGQEAyFYuXryojh07qmHDhg4NVo8ePRQcHKw333xTzs7OFiYEANxLipssFxcXvfjii1q7dq02bdqkhIQEPfbYY/r888/TIx8AANnK9evXValSJX333XdmrUaNGtq+fbs+++wz+fn5WZgOAJAcKW6ybouOjtbGjRu1ceNG5c2bV8WKFUvDWAAAZE+5c+dWjx49JEm+vr765JNPtG3bNtWsWdPiZACA5ErxAVX79u3TvHnztGTJEjVs2FDjxo3jTPIAAKTSuXPn5OfnJw8PD7M2evRoSdJbb72lvHnzWhUNAJBKKT5PlpOTkwoXLqxXX31V+fPnT7S8X79+aRYuI+A8WQCA9HDz5k1NnTpV48eP19tvv62RI0daHQkAcB/pdjLiO6dwT3RnNptOnTqVsqQZHE0WACCtrV69Wv369dOJEyckSTly5NDRo0c51yQAZHDpdjLiM2fOPEguAACyrdOnT2vgwIFasWKFWXNyclLPnj35IQ8AspBUT3wRGxurY8eOKT4+Pi3zAACQ5URHR+vdd99VhQoVHBqs+vXra+/evZo5c6Z8fHysCwgASFMpbrKioqLUo0cP5cyZUxUrVtTZs2clSX379tXEiRPTPCAAAJnZzz//rIoVK+qdd95RTEyMJCkgIEALFy7Uxo0bVblyZYsTAgDSWoqbrBEjRmj//v36448/HGZCaty4sRYtWpSm4QAAyOy2b9+u06dPS7p1rsnBgwfr2LFj6tSp012PcQYAZG4pPiZr+fLlWrRokWrXru3wx6FixYo6efJkmoYDACCzGz58uBYsWKCSJUtq9uzZqlChgtWRAADpLMVN1tWrV+Xv75+oHhkZyS9yAIBsyzAMLVu2TOfOnVP//v3Nes6cOfXXX3+pQIEC/J0EgGwixbsL1qhRQz///LN5/fYfjM8++0x16tRJu2QAAGQSx44dU9OmTdWuXTsNGzbMnJr9toIFC9JgAUA2kuKRrA8++EDNmzfX4cOHFR8fr5kzZ+rw4cP666+/tHHjxvTICABAhnTjxg29//77mjZtmuLi4iTdmn134cKFeuedd6wNBwCwTIpHsurVq6d9+/YpPj5elSpV0m+//SZ/f39t3bpV1atXT4+MAABkKIZhaNGiRSpXrpw+/PBDs8EqWrSofvzxR40dO9bihAAAK9kMwzCsDpGRJfeszgCA7OHQoUPq27evNmzYYNbc3Nw0bNgwjRgxQjlz5rQwHQAgPSW3N0jxSFaDBg20YMECRUdHP1BAAAAym/Xr16tq1aoODVbLli116NAhjRs3jgYLACApFU1WtWrVNGTIEAUEBKhnz57atm1beuQCACDDqVevnooXLy5JKlGihH766SetWrVKpUqVsjgZACAjSXGTNWPGDF28eFHz589XSEiInnzySVWoUEFTpkzRlStX0iMjAACWCAkJcbju7u6uoKAgvfvuuzp06JBatWplUTIAQEb2wMdkhYSEaN68eRo/frwSEhLUokUL9evXT08//XRaZbQUx2QBQPYTFhamMWPGaN68edqzZw8nEAYASErHY7LutGPHDo0dO1ZTp06Vv7+/RowYoXz58qlVq1YaMmTIg9w1AAAPnd1u1/z581WmTBnNnj1bN2/eVN++fcUcUQCAlEjxebJCQkL09ddfa/78+Tp+/Lhat26t7777Tk2bNjVPtNi1a1c1a9ZMU6ZMSfPAAACkh927dyswMNDhWOOcOXOqcePGstvtcnZ2tjAdACAzSXGTVbhwYZUsWVLdu3dX165d5efnl2idypUr6/HHH0+TgAAApKd//vlHo0aN0ieffOIwYvXiiy9qypQpKlq0qIXpAACZUYqbrPXr16t+/fr3XMfLy8thelsAADKahIQEff755xoxYoRCQ0PNerly5TR79mw1btzYwnQAgMwsxU3W7QYrJCREx44dkySVLVtW/v7+aZsMAIB0ZLfbNWvWLLPBypUrl8aOHat+/frJzc3N4nQAgMwsxRNfXL9+Xa+++qoKFSqkBg0aqEGDBipUqJBeeeUVhYeHp0dGAADSnKurq4KCgiRJHTt21LFjxzRkyBAaLADAA0txk/Xaa69p+/btWrVqlcLCwhQWFqZVq1Zp165d6t27d3pkBADggcTHx2vOnDnat2+fQ71hw4Y6dOiQvvnmGxUsWNCacACALCfF58ny9PTUr7/+qnr16jnUN2/erGbNmikyMjJNA1qN82QBQOa2ZcsW9enTR/v371fdunX1559/mrPhAgCQEul2nqy8efPK29s7Ud3b21t58uRJ6d0BAJAuLl++rC5duqhevXrav3+/JOmvv/7Sli1bLE4GAMjqUtxkjRo1SoMGDdLly5fN2uXLlzV06FCNHj06TcMBAJBScXFxmjFjhsqWLasFCxaY9apVq2rLli2J9sQAACCtpXh3wWrVqunEiRO6efOmee6Qs2fPyt3dXaVLl3ZYd8+ePWmX1CLsLggAmccff/yhvn376uDBg2bNx8dH48ePV+/evTmhMADggSS3N0jxFO5t27Z9kFwAAKSLd955R++++6553WazqUePHvrggw/k5+dnYTIAQHaT4pGs7IaRLADIHLZu3aq6detKkmrUqKE5c+aoZs2aFqcCAGQl6TaSBQBARnDjxg3lypXLvF6nTh0NGjRI5cqVU48ePeTklOLDjgEASBMpbrJ8fX3vuTw0NDTVYQAAuJ+zZ89q8ODBOn36tLZv3+5wnNXUqVMtTAYAwC0pbrIMw5DdbtfAgQNVvHjx9MgEAEAiN2/e1NSpUzV+/HhFRUVJkj7//HP16tXL4mQAADhKcZN18uRJvfPOO5o6dapef/11jRo1KsnzZgEAkFZWr16tfv366cSJE2bNz8+Pvz8AgAwpxTus+/r6atasWdq9e7dOnDihUqVKafbs2UpISEiPfACAbOz06dNq27atWrRoYTZYTk5O6tevn4KDg/XSSy9ZnBAAgMRSfVRwmTJltGzZMi1dulQLFixQhQoVtHz58jSMBgDIrqKjo/Xuu++qQoUKWrFihVmvX7++9u7dq5kzZ8rHx8e6gAAA3EOKp3B//vnnE9XsdrvWr1+vqKioLDeixRTuAPDw7du3T4899phu/4kKCAjQlClT1LFjR9lsNovTAQCyq3Sbwv1u+7+/8MILKb0rAACSVLVqVb3++uv69NNP1b9/f40ZM4YfugAAmQYnI74PRrIAIH1FRUXpk08+UWBgoFxdXc16aGioLl++rAoVKliYDgCA/5Pc3iBVx2TFxcWZ0+fGxcVpz549un79euqSAgCyJcMw9OOPP6p8+fIaNGiQPvroI4flvr6+NFgAgEwpxU3WmjVr5OPjo/z58+u3335TjRo1VKNGDRUuXFhbtmxJj4wAgCzm2LFjatq0qdq1a6ezZ89Kkt5//31FR0dbnAwAgAeX4iZr1KhR6tevn6ZNm6aOHTvqiSeeUFhYmNq3b69Ro0alR0YAQBZx48YNDR8+XJUqVdLatWvNepMmTfTnn38qR44cFqYDACBtpPiYrJw5c+rw4cMqVqyY3N3dtXPnTlWuXFmHDh1S/fr1FRoaml5ZLcExWQDw4AzD0OLFizV48GBduHDBrBctWlTTp0/Xc889x6yBAIAML91mF3RzczOnaS9durTy5Mkj6VbzFRcXl8q4AICsym63q3nz5vrtt9/Mmpubm4YNG6YRI0YoZ86cFqYDACDtpXh3wbJly+rQoUOSpIMHD6pIkSKSpMOHD6t06dJpmw4AkOk5OTnp0UcfNa+3bNlShw4d0rhx42iwAABZUop3FwwPD5ebm1ui/eb37dun6Oho1alTJ00DWo3dBQEgZQzDUEJCglxc/m9niYiICLVo0UJvvfWWWrdubWE6AABSL7m9AefJug+aLABIvv379yswMFCtWrXSW2+9ZXUcAADSVLqeJ2vjxo1q3bq1SpUqpVKlSqlNmzbavHlzqsMCADK3sLAw9e3bV4899pj+/PNPvffeezp37pzVsQAAsESKm6yFCxeqcePGypkzp/r166d+/fopR44catSokb799tv0yAgAyKDsdru++OILlSlTRkFBQbLb7ZKkQoUKKSQkxOJ0AABYI8W7C5YvX169evXSwIEDHerTpk3Tp59+qiNHjqRpQKuxuyAAJG337t0KDAzUtm3bzFrOnDk1evRoDRw4UO7u7hamAwAg7aXb7oKnTp1K8qDlNm3a6PTp0ym9OwBAJvPPP//o9ddf1+OPP+7QYL344os6evSohg8fToMFAMjWUtxkFSlSROvXr09UX7dunTmdOwDci91u6FxolI5ejtC50CjZ7cy/k5kEBQXpk08+0e0dIcqVK6e1a9dq8eLF/B0AAECpOBnx4MGD1a9fP+3bt09169aVJG3ZskVffvmlZs6cmeYBAWQtJ0Ku69eDV3Ty6g3FxCfIw8VZJf1yqemj+VXKP7fV8ZAMQ4YM0eeff65///1XY8eOVb9+/eTm5mZ1LAAAMoxUTeG+bNkyTZ061Tz+qnz58ho6dKieffbZNA9oNY7JAtLOiZDrmr/ljEIjY1XA20M53VwUFRuvS+Ex8vV0U7cnitFoZTBXr17V1q1b1aZNG4f61q1bVbRoURUqVMiiZAAAPHycJyuN0GQBacNuN/TxHyd18GK4Svvnks1mM5cZhqHjITdUqZC3Xm9QUk5OtnvcEx6G+Ph4zZ07V6NHj1Z0dLQOHz6sEiVKWB0LAABLpet5sqwQGhqqTp06ycvLSz4+PurRo4du3LiRrNsahqHmzZvLZrNp+fLl6RsUQJIuhEXr5NUbKuDt4dBgSZLNZlMBbw+dCLmhC2HRFiXEbX/++adq1Kihvn37KiwsTDdv3tTIkSOtjgUAQKaR4mOy8uTJk+gL0p1CQ0MfKNDddOrUSZcuXdLatWsVFxenbt26qVevXsk6N9eMGTPumRlA+ouMjVdMfIJyuuVIcnkON2ddiYhRZGz8Q06G2y5fvqxhw4bp66+/dqh37dpVEydOtCgVAACZT4qbrBkzZki6NTr0xhtv6L333pO/v39a53Jw5MgRrVmzRjt37lSNGjUkSbNnz1aLFi00ZcoUFSxY8K633bdvn6ZOnapdu3apQIEC6ZoTwN15urnIw8VZUbHxyu3hmmh5dGyC3F2c5emW4o8lPKC4uDjNmTNHY8eOVUREhFmvVq2agoKCzEmOAABA8qT420yXLl3M/+/bt6/atWuX7vvpb926VT4+PmaDJUmNGzeWk5OTtm/frueeey7J20VFRaljx46aM2eOAgICkvVYN2/e1M2bN83rd37hAJB6hXxyqKRfLh28GK5c7i6Jjsm6FB6jSoW8Vcgn6ZEupI9Tp07p2Wef1cGDB81anjx5NH78ePXq1UvOzs4WpgMAIHPKFMdkXb58OdFomYuLi3x9fXX58uW73m7gwIGqW7duimY9nDBhgry9vc0L53wB0oaTk01NH80vX083HQ+5oesxcYq323U9Jk7HQ27I19NNTSrmZ9KLh6xgwYKKjr51HJzNZlPPnj0VHBysN954gwYLAIBUeuAm60GOdRo+fLhsNts9L0ePHk3Vfa9cuVK///67uXtjco0YMULh4eHm5dy5c6l6fACJlfLPrW5PFNOjBb0VFhWnM9ciFRYVp0qFvJm+/SH574SyHh4emjlzph5//HFt27ZN8+bNU758+SxKBwBA1pDi3QWff/558/9jYmL0+uuvy9PT06z9+OOPyb6vwYMHq2vXrvdcp0SJEgoICFBISIhDPT4+XqGhoXfdDfD333/XyZMn5ePj41Bv166d6tevrz/++CPJ27m7u8vd3T25TwFACpXyz60SDXPpQli0ImPj5enmokI+ORjBegjWrVunwYMHa9GiRSpXrpxZb9mypZo3by4np0yxcwMAABleipssb29v8/9feeWVB3pwPz8/+fn53Xe9OnXqKCwsTLt371b16tUl3Wqi7Ha7atWqleRthg8frtdee82hVqlSJU2fPl2tW7d+oNwAHoyTk01FfHNaHSPbOHv2rAYNGqSlS5dKunU87W+//eawJwINFgAAaSfFTdb8+fPTI8c9lS9fXs2aNVPPnj01d+5cxcXFKTAwUC+//LI5s+CFCxfUqFEjLViwQDVr1lRAQECSo1xFixZV8eLFH/ZTAICH7ubNm5o6darGjx+vqKgos37jxg2Fh4cnGukHAABpI8U/XX700UeKiYlJjyz39M0336hcuXJq1KiRWrRooXr16mnevHnm8ri4OB07dszhiwQAZFerV6/Wo48+qpEjR5qfi/7+/po/f762bNlCgwUAQDqyGf89Cvo+nJ2ddenSpXQ/N1ZGERERIW9vb4WHh8vLy8vqOABwT6dPn9bAgQO1YsUKs+bk5KTAwEC9++67NFcAADyA5PYGKd5dMIU9GQDgITEMQy+88IL27Nlj1urXr6+goCBVrlzZwmQAAGQvHOkMAFmEzWbTpEmTJEkBAQFauHChNm7cSIMFAMBDluKRLEn69ddfHWYZvFObNm0eKBAAIHmOHz8uu92usmXLmrVGjRrpq6++Utu2bdnFGQAAi6T4mKx7TfNrs9mUkJDwwKEyEo7JApDRREZG6oMPPtCUKVNUq1Ytbdy48YFODA8AAJInub1BincXtNvtd71ktQYLADISwzC0dOlSlS9fXh988IFiY2O1efNmLV682OpoAADgDqnaXRAA8HAdPXpUffv21bp168yaq6urBg8erJYtW1qYDAAA/FeqJr7YuHGjWrdurVKlSqlUqVJq06aNNm/enNbZACDbu379uoYNG6ZKlSo5NFhNmjTR33//rQkTJihXrlwWJgQAAP+V4iZr4cKFaty4sXLmzKl+/fqpX79+ypEjhxo1aqRvv/02PTICQLa0Zs0alStXTpMnT1Z8fLwkqWjRovrxxx+1Zs0ahwkvAABAxpHiiS/Kly+vXr16aeDAgQ71adOm6dNPP9WRI0fSNKDVmPgCgFW2bNmievXqSZLc3d01bNgwDR8+XDlz5rQ4GQAA2VNye4MUN1nu7u46dOiQSpUq5VA/ceKEHn30UcXExKQucQZFkwXASp07d1ZoaKhmzpypkiVLWh0HAIBsLd1mFyxSpIjWr1+fqL5u3ToVKVIkpXcHANmeYRj6+uuv9eyzz8putzss+/TTT7Vq1SoaLAAAMpEUzy44ePBg9evXT/v27VPdunUl3dql5csvv9TMmTPTPCAAZGX79+9Xnz59tGXLFknS/Pnz1aNHD3O5u7u7VdEAAEAqpbjJeuONNxQQEKCpU6ea52YpX768Fi1apGeffTbNAwJAVvTvv/9qzJgx+uijjxxGr7Zt2+bQZAEAgMwnxcdkZTcckwUgLdntdn355ZcaPny4rl69atZLly6t2bNnq2nTphamAwAA95Lc3iDVJyPetWuXOZNghQoVVL169dTeFZLBbjd0ISxakbHx8nRzUSGfHJKUqObkZLM4KbK7pLZVtstbdu3apcDAQG3fvt2s5cyZU6NHj9bAgQPZNRAAgCwixU3W+fPn1aFDB23ZskU+Pj6SpLCwMNWtW1fff/+9ChcunNYZs70TIdf168ErOnn1hmLiE+Th4iyfnK6SIYVFx5m1kn651PTR/Crln9vqyMimktpW2S5vOXfunGrXrq2EhASz1r59e02ZMoVJgwAAyGJSPLvga6+9pri4OB05ckShoaEKDQ3VkSNHZLfb9dprr6VHxmztRMh1zd9yRgcvhssnp6tK5MslydDaw1e09sgVSYZK5Msln5yuOngxXPO3nNGJkOtWx0Y2lNS2ynb5f4oUKWIea1W+fHmtW7dOixYtosECACALSvFI1saNG/XXX3+pbNmyZq1s2bKaPXu26tevn6bhsju73dCvB68oNDJWpf1zyWazyTAMXQ6/KTdnm2Sz6XLETRXOk1O5PVyVy91Fx0Nu6LdDV1QiXy520cJDk9S2Kilbb5d79uxR5cqV5eLyfx+z48ePV/ny5dWnTx+5urpamA4AAKSnVJ0nKy4uLlE9ISFBBQsWTJNQuOVCWLROXr2hAt4e5pfW6zHxCo2KVe4crsrt4aLQyFhdj4mXJNlsNhXw9tCJkBu6EBZtZXRkM0ltq7dlt+3y6tWr6tGjh6pXr665c+c6LMuXL58GDBhAgwUAQBaX4iZr8uTJ6tu3r3bt2mXWdu3apf79+2vKlClpGi67i4yNV0x8gnK6/d8v4bEJdsXb7XJ1dpKrs5Pi7XbFJvzf9M853Jx1Mz5BkbHxVkRGNpXUtnqn7LBdxsfHKygoSGXKlNEXX3whSRo1apRCQkIsTgYAAB62FO8u2LVrV0VFRalWrVrmbjDx8fFycXFR9+7d1b17d3Pd0NDQtEuaDXm6ucjDxVlRsfHK7XHrl283Zye5ODkp7v83Vi5OTnJz/r9eOTo2Qe4uzvK8y5ddID0kta3eKatvl1u2bFGfPn20f/9+s+bl5aX33ntPvr6+FiYDAABWSPE3nhkzZqRDDCSlkE8OlfTLpYMXw5XL3UU2m025PVzkm9NNVyKiJZtN+b08lNvj1j+jYRi6FB6jSoW8zSnegYchqW31tqy8XV6+fFnDhg3T119/7VDv0qWLPvzwQ+XPn9+iZAAAwEopbrK6dOmSHjmQBCcnm5o+ml8Xw6N1POTW8S453JwV4O2uc/9GSTIU4OWuBMNQ9M14XQqPka+nm5pUzJ9tJhdAxnC3bTU6NiHLbpezZ8/WyJEjdf36/82aWK1aNQUFBalu3boWJgMAAFZLdpMVERGRrPXudeZjpFwp/9zq9kQx89xDVyJi5O7irGcq5DfPk3XmWqTcXZxVqZC3mlTkfESwxt221ay6XZ48edJssHx8fDR+/Hj17t1bzs7OFicDAABWsxmGYSRnRScnp0Szht3JMAzZbDaHE21mBREREfL29lZ4eLilDaTdbuhCWLQiY+Pl6eZi7nb131pWGilA5pTUtpoVt8uwsDCVL19erVu31vjx4+Xn52d1JAAAkM6S2xukaHfBJUuWcBC3RZycbCrimzNRPakaYKW7bauZVWxsrGbOnKkcOXIoMDDQrPv4+Ojo0aPy9va2MB0AAMiIUtRkPfHEE/L390+vLACQoaxbt059+/bV0aNHlStXLj333HMqVKiQuZwGCwAAJCXF58kCgKzu7NmzeuGFF/TMM8/o6NGjkqTIyEitXbvW4mQAACAzoMkCgP/v5s2b+uCDD1S+fHktXbrUrNeuXVu7du1S165drQsHAAAyjWTvLmiz2e458QUAZGarV69Wv379dOLECbPm5+enSZMmqXPnznJy4jcpAACQPMlusgzDUNeuXeXu7n7P9X788ccHDgUAD9NXX33lMErl5OSkwMBAvfvuu/Lx8bEsFwAAyJyS3WRxEmIAWVW7du00cuRIXbhwQfXr11dQUJAqV65sdSwAAJBJJfs8WdlVRjlPFoC0YRiGTp48qVKlSjnUV65cqevXr6tjx47sGg0AAJKU3N6AgwwAZBsnTpxQy5YtValSJZ05c8ZhWZs2bdSpUycaLAAA8MBosgBkeZGRkRo1apQqVqyo1atXKyYmRoMGDbI6FgAAyKJSdDJiAMhMDMPQjz/+qIEDB+rcuXNmvXDhwurQoYOFyQAAQFZGkwUgSzp69Kj69evncAJhV1dXDRkyRCNHjpSnp6eF6QAAQFZGkwUgS4mKitI777yj6dOnKz4+3qw3bdpUs2bNUpkyZSxMBwAAsgOOyQKQpdhsNv3www9mg/XII49o2bJlWr16NQ0WAAB4KGiyAGQpOXLk0IwZM+Tu7q7Ro0fr8OHDatu2LbMGAgCAh4YmC0CmFR4ersGDBys4ONih3qZNG508eVLvvfeecubMaVE6AACQXXFMFoBMxzAMLVy4UEOHDtWVK1d0+PBh/fLLL+Zolc1mU6FChSxOCQAAsitGsgBkKvv27VP9+vXVuXNnXblyRZL0xx9/6MSJExYnAwAAuIUmC0Cm8O+//yowMFDVq1fXli1bzPpzzz2nI0eOqHTp0hamAwAA+D/sLgggQ7Pb7fryyy81fPhwXb161ayXKVNGs2bNUtOmTS1MBwAAkBhNFoAMrUuXLlq4cKF53dPTU6NHj9aAAQPk7u5uYTIAAICksbsggAzt1VdfNf+/ffv2Onr0qN566y0aLAAAkGExkgUgw0hISNC///6rfPnymbUmTZpo6NChatasmZ5++mkL0wEAACSPzTAMw+oQGVlERIS8vb0VHh4uLy8vq+MAWda2bdsUGBioXLlyacOGDZw8GAAAZDjJ7Q3YXRCApa5evaoePXqoTp062r17tzZu3KhFixZZHQsAACDVaLIAWCI+Pl5BQUEqU6aMvvjiC7NeqVIlFS1a1MJkAAAAD4ZjsgA8dFu2bFGfPn20f/9+s+bl5aVx48bpzTfflIsLH00AACDzYiQLwENz+fJlde7cWfXq1XNosLp27arg4GD169ePBgsAAGR6fJsB8NAEBwfr66+/Nq9Xq1ZNQUFBqlu3roWpAAAA0hYjWQAemieffFIdO3ZUnjx59NFHH2nnzp00WAAAIMuhyQKQLs6fP68xY8bIbrc71KdPn67g4GC98cYbcnZ2tigdAABA+mF3QQBpKjY2VjNmzNB7772nyMhIlShRQl27djWX+/v7WxcOAADgIWAkC0CaWbt2rSpXrqy33npLkZGRkqTJkycnGs0CAADIymiyADyws2fPql27dmrSpImOHTsmSXJyctKbb76pzZs3y8mJjxoAAJB9sLsggFSLiYnR1KlTNX78eEVHR5v1OnXqaM6cOapWrZqF6QAAAKxBkwUgVSIjI1WtWjUdP37crPn7+2vSpEl69dVXGb0CAADZFt+CAKSKp6ennnzySUmSs7Oz+vfvr+DgYHXp0oUGCwAAZGuMZAFIlujoaLm5uTlMuz5hwgSFhIRo/PjxqlSpkoXpAAAAMg5+bgZwT4ZhaMWKFapQoYLmzZvnsMzPz08rV66kwQIAALgDTRaAuzp+/Lhatmyptm3b6syZMxo5cqSuXbtmdSwAAIAMjSYLQCKRkZEaOXKkHn30Ua1evdqsV6tWzTz/FQAAAJLGMVkATIZhaOnSpRo0aJDOnTtn1gsXLqxp06bphRdekM1mszAhAABAxkeTBUCSdOTIEfXr10/r1q0za66urhoyZIjefvtt5cqVy8J0AAAAmQdNFgBJ0scff+zQYDVt2lSzZs1SmTJlLEwFAACQ+XBMFgBJ0rvvvqt8+fLpkUce0bJly7R69WoaLAAAgFRgJAvIhg4ePKhjx46pXbt2Zi1Pnjxas2aNypcvr5w5c1qYDgAAIHNjJAvIRsLDwzVo0CBVrVpV3bp106VLlxyWV69enQYLAADgAdFkAdmAYRj6+uuvVbZsWU2fPl0JCQm6fv26Jk+ebHU0AACALIfdBYEsbt++fQoMDNSWLVvMmoeHh95++20NHTrUwmQAAABZE00WkEX9+++/Gj16tD7++GPZ7Xaz/txzz2natGkqVqyYdeEAAACysEyzu2BoaKg6deokLy8v+fj4qEePHrpx48Z9b7d161Y9/fTT8vT0lJeXl5588klFR0c/hMSAdXbs2KGyZctqzpw5ZoNVunRprVmzRj/++CMNFgAAQDrKNE1Wp06ddOjQIa1du1arVq3Spk2b1KtXr3veZuvWrWrWrJmaNGmiHTt2aOfOnQoMDJSTU6Z52kCqlC9fXi4utwaqc+bMqQkTJujvv/9W06ZNLU4GAACQ9dkMwzCsDnE/R44cUYUKFbRz507VqFFDkrRmzRq1aNFC58+fV8GCBZO8Xe3atfXMM89o3LhxqX7siIgIeXt7Kzw8XF5eXqm+HyA9xcfHm03Vbd9++61WrFihKVOmqEiRIhYlAwAAyDqS2xtkiiGdrVu3ysfHx2ywJKlx48ZycnLS9u3bk7xNSEiItm/fLn9/f9WtW1f58+dXgwYN9Oeff97zsW7evKmIiAiHC5BRJSQkaO7cuSpRooTOnj3rsKxjx45atGgRDRYAAMBDlimarMuXL8vf39+h5uLiIl9fX12+fDnJ25w6dUqS9M4776hnz55as2aNHnvsMTVq1EjHjx+/62NNmDBB3t7e5oUvqMiotm3bplq1aumNN97QuXPnNHjwYKsjAQAAQBY3WcOHD5fNZrvn5ejRo6m679sH+/fu3VvdunVTtWrVNH36dJUtW1ZffPHFXW83YsQIhYeHm5dz586l6vGB9BISEqLu3burTp062r17t1n38PBQXFychckAAAAgWTyF++DBg9W1a9d7rlOiRAkFBAQoJCTEoR4fH6/Q0FAFBAQkebsCBQpIkipUqOBQL1++fKLdqu7k7u4ud3f3ZKQHHq74+HjNnTtXo0ePVlhYmFmvXLmygoKCVL9+fevCAQAAwGRpk+Xn5yc/P7/7rlenTh2FhYVp9+7dql69uiTp999/l91uV61atZK8TbFixVSwYEEdO3bMoR4cHKzmzZs/eHjgIfrzzz/Vp08fHThwwKx5e3tr3LhxeuONNxJNegEAAADrZIpjssqXL69mzZqpZ8+e2rFjh7Zs2aLAwEC9/PLL5syCFy5cULly5bRjxw5Jks1m09ChQzVr1iwtWbJEJ06c0OjRo3X06FH16NHDyqcDpEhcXJxeeeUVhwara9euOnbsmPr27UuDBQAAkMFkmm9n33zzjQIDA9WoUSM5OTmpXbt2mjVrlrk8Li5Ox44dU1RUlFkbMGCAYmJiNHDgQIWGhqpKlSpau3atSpYsacVTAFLF1dVV06ZNU7t27VStWjXNmTNHderUsToWAAAA7iJTnCfLSpwnCw/bH3/8oaJFi6pEiRJmzTAMrVixQq1bt5azs7OF6QAAALKvLHWeLCA7uHDhgjp06KCnnnpK/fr1c1hms9nUtm1bGiwAAIBMgCYLsFhsbKwmTZqksmXL6vvvv5ck/fzzz/r9998tTgYAAIDUyDTHZAFZ0dq1a9W3b1+HWTDz5cuniRMnqmHDhtYFAwAAQKoxkgVY4OzZs3rhhRfUpEkTs8FycnJSnz59dOzYMfXo0UNOTrw9AQAAMiNGsoCH7NNPP1X//v0VHR1t1urWraugoCBVq1bNwmQAAABIC/xUDjxkhQsXNhssf39/ffnll9q8eTMNFgAAQBbBSBaQzgzDkM1mM683b95czz//vIoUKaJ33nlHPj4+1oUDAABAmqPJAtJJdHS0Jk6cqN27d+unn35yaLR++OEHjrkCAADIomiygDRmGIZWrlypAQMG6MyZM5KkJUuW6MUXXzTXocECAADIumiygDR0/Phx9e/fX6tXrzZrLi4uOn36tIWpAAAA8DDRZAFpIDIyUh988IGmTJmi2NhYs96oUSPNnj1b5cuXtzAdAAAAHiaaLOABGIahpUuXatCgQTp37pxZL1y4sKZNm6YXXnjB4VgsAAAAZH00WcAD2Lt3r8OxVq6urhoyZIhGjhwpT09PC5MBAADAKhx9DzyAxx57TC+99JIkqVmzZjp48KA++OADGiwAAIBsjCYLSCbDMLR69WoZhuFQnzp1qpYtW6ZffvlFZcqUsSgdAAAAMgqaLCAZDh48qKeeekotWrTQwoULHZYVKlRIbdu25dgrAAAASKLJAu4pPDxcAwYMUNWqVbVx40ZJ0tChQxUZGWlxMgAAAGRUTHwBJMFut+vrr7/WsGHDFBISYtZLlCihWbNmccwVAAAA7oomC/iPffv2qU+fPvrrr7/MWo4cOfT2229ryJAh8vDwsDAdAAAAMjqaLOD/s9vt6tevnz7++GPZ7Xaz/txzz2n69Ol65JFHLEwHAACAzIImC/j/nJycFBkZaTZYZcqU0axZs9S0aVOLkwEAACAzYeIL4A4TJ05UoUKFNHHiRP399980WAAAAEgxRrKQLV27dk0jR47U448/rtdee82s58+fXydPnpS7u7uF6QAAAJCZMZKFbCUhIUFz585V2bJlNW/ePL311lv6559/HNahwQIAAMCDoMlCtrF161bVrFlTb7zxhkJDQyVJcXFx2rt3r8XJAAAAkJXQZCHLCwkJUffu3VW3bl3t2bPHrL/yyis6duyYGjdubGE6AAAAZDUck4UsKz4+Xh9//LFGjx6t8PBws165cmUFBQWpfv36FqYDAABAVsVIFrKsCRMmqF+/fmaD5e3trVmzZmn37t00WAAAAEg3NFnIsvr06aO8efNKkrp166Zjx46pb9++cnFhABcAAADph2+byBLi4uJ08OBBVatWzaz5+vrqs88+U/78+VWnTh0L0wEAACA7YSQLmd6GDRtUrVo1NWzYUFeuXHFY1rZtWxosAAAAPFQ0Wci0zp8/r5dffllPP/20Dh06pIiICL311ltWxwIAAEA2R5OFTCc2NlYffvihypUrp0WLFpn1mjVrqk+fPhYmAwAAADgmC5nMb7/9pr59+yo4ONis5c2bVxMnTlT37t3l5MTvBgAAALAWTRYyhStXrujNN9/Ujz/+aNacnJz0+uuva9y4cfL19bUwHQAAAPB/aLKQKeTIkUNbtmwxr9etW1dBQUEOswkCAAAAGQH7ViFT8PLy0uTJk5U/f3599dVX2rx5Mw0WAAAAMiSaLGQ4p06d0ksvvaTz58871F955RUFBwerc+fOHHsFAACADIvdBZFhREdHa+LEifrwww918+ZN2Ww2ff/99+Zym80mLy8vCxMCAAAA90eTBcsZhqEVK1Zo4MCBOnPmjFnftGmT/vnnH+XNm9e6cAAAAEAKsc8VLHX8+HG1aNFCzz33nNlgubi4aMiQITp69CgNFgAAADIdRrJgicjISI0fP15Tp05VbGysWX/66ac1e/ZsVahQwcJ0AAAAQOrRZMESTZo00V9//WVeL1y4sKZNm6YXXnhBNpvNwmQAAADAg2F3QVhiwIABkiRXV1eNGDFCR48e1YsvvkiDBQAAgEyPkSyku+vXrysyMlIBAQFm7YUXXtCoUaP06quvqkyZMhamAwAAANIWI1lIN4Zh6LvvvlO5cuX0+uuvOyyz2WwaN24cDRYAAACyHJospIuDBw/qqaeeUseOHXXx4kWtWLFCq1evtjoWAAAAkO5ospCmwsPDNWDAAFWtWlUbN240623atFHZsmUtTAYAAAA8HByThTRht9u1cOFCDRs2TFeuXDHrJUuW1KxZs9SiRQsL0wEAAAAPD00WHtiBAwf0xhtvOEzJniNHDo0cOVKDBw+Wh4eHhekAAACAh4smCw/s7NmzDg3W888/r2nTpumRRx6xMBUAAABgDZosPLBWrVqpZcuWOn78uGbPnq0mTZpYHQkAAACwDE0WUmTXrl36/vvvNXnyZIcTB8+fP1/e3t5yc3OzMB0AAABgPWYXRLL8888/6t27t2rWrKmpU6dq2bJlDsv9/PxosAAAAADRZOE+EhISNHfuXJUpU0bz5s2TYRiSpM8++8ziZAAAAEDGRJOFu9q2bZtq1qypN954Q6GhoZKk3Llza+rUqVqxYoXF6QAAAICMiWOykEhISIiGDx+u+fPnO9RfeeUVTZo0SQUKFLAoGQAAAJDx0WTBwaVLl1S+fHmFh4ebtcqVKysoKEj169e3MBkAAACQObC7IBwUKFBAzzzzjCTJ29tbs2bN0u7du2mwAAAAgGRiJCubCwkJkZ+fn8N07FOnTlWePHk0btw45c+f38J0AAAAQObDSFY2FRcXp2nTpqlUqVL69ttvHZYVLVpU8+bNo8ECAAAAUoEmKxvasGGDqlatqsGDB+v69esaMmSIIiIirI4FAAAAZAk0WdnI+fPn9fLLL+vpp5/W4cOHJUk2m01t2rSR3W63OB0AAACQNXBMVjYQGxur6dOna9y4cYqMjDTrNWvWVFBQkB5//HEL0wEAAABZC01WFrd27Vr17dtXx44dM2v58uXTxIkT1a1bNzk5MZgJAAAApCW+YWdxX3/9tdlgOTk5qU+fPjp27Jh69OhBgwUAAACkA75lZ3EffvihcufOrbp162r37t0KCgqSr6+v1bEAAACALIvdBbOQn3/+WTExMWrXrp1ZK1CggHbs2KGyZcs6nAsLAAAAQPpgJCsLOHXqlFq3bq1WrVrp9ddf17///uuwvFy5cjRYAAAAwENCk5WJRUVFaezYsapQoYJWrVolSbp27Zq+/PJLa4MBAAAA2Ri7C2ZChmFoxYoVGjBggP73v/+Z9YIFC2rKlCl6+eWXLUwHAAAAZG+MZGUywcHBatGihZ577jmzwXJxcdHQoUN19OhRdejQgV0DAQAAAAsxkpWJLF++XO3bt1dcXJxZa9y4sWbPnq1y5cpZmAwAAADAbYxkZSL16tVTrly5JElFihTRDz/8oN9++40GCwAAAMhAGMnKRPLly6dJkybp9OnTevvtt+Xp6Wl1JAAAAAD/QZOVybz22mtWRwAAAABwD5lmd8HQ0FB16tRJXl5e8vHxUY8ePXTjxo173uby5ct69dVXFRAQIE9PTz322GNaunTpQ0oMAAAAIDvKNE1Wp06ddOjQIa1du1arVq3Spk2b1KtXr3vepnPnzjp27JhWrlypv//+W88//7zat2+vvXv3PqTUAAAAALIbm2EYhtUh7ufIkSOqUKGCdu7cqRo1akiS1qxZoxYtWuj8+fMqWLBgkrfLlSuXPv74Y7366qtmLW/evPrwww/vutvdzZs3dfPmTfN6RESEihQpovDwcHl5eaXhswIAAACQmURERMjb2/u+vUGmGMnaunWrfHx8zAZLujV1uZOTk7Zv337X29WtW1eLFi1SaGio7Ha7vv/+e8XExKhhw4Z3vc2ECRPk7e1tXooUKZKWTwUAAABAFpcpmqzLly/L39/foebi4iJfX19dvnz5rrdbvHix4uLilDdvXrm7u6t3795atmyZSpUqddfbjBgxQuHh4ebl3LlzafY8AAAAAGR9ljZZw4cPl81mu+fl6NGjqb7/0aNHKywsTOvWrdOuXbs0aNAgtW/fXn///fddb+Pu7i4vLy+HCwAAAAAkl6VTuA8ePFhdu3a95zolSpRQQECAQkJCHOrx8fEKDQ1VQEBAkrc7efKkgoKCdPDgQVWsWFGSVKVKFW3evFlz5szR3Llz0+Q5AAAAAMCdLG2y/Pz85Ofnd9/16tSpo7CwMO3evVvVq1eXJP3++++y2+2qVatWkreJioqSJDk5OQ7WOTs7y263P2ByAAAAAEhapjgmq3z58mrWrJl69uypHTt2aMuWLQoMDNTLL79szix44cIFlStXTjt27JAklStXTqVKlVLv3r21Y8cOnTx5UlOnTtXatWvVtm1bC58NAAAAgKwsUzRZkvTNN9+oXLlyatSokVq0aKF69epp3rx55vK4uDgdO3bMHMFydXXVL7/8Ij8/P7Vu3VqVK1fWggUL9NVXX6lFixZWPQ0AAAAAWVymOE+WlZI7Fz4AAACArC1LnScLAAAAADILmiwAAAAASEM0WQAAAACQhmiyAAAAACAN0WQBAAAAQBqiyQIAAACANESTBQAAAABpyMXqABnd7dOIRUREWJwEAAAAgJVu9wT3O9UwTdZ9XL9+XZJUpEgRi5MAAAAAyAiuX78ub2/vuy63Gfdrw7I5u92uixcvKnfu3LLZbOn2OBERESpSpIjOnTt3z7NHA0lh+8GDYhvCg2IbwoNiG8KDeFjbj2EYun79ugoWLCgnp7sfecVI1n04OTmpcOHCD+3xvLy8+GBBqrH94EGxDeFBsQ3hQbEN4UE8jO3nXiNYtzHxBQAAAACkIZosAAAAAEhDNFkZhLu7u8aOHSt3d3eroyATYvvBg2IbwoNiG8KDYhvCg8ho2w8TXwAAAABAGmIkCwAAAADSEE0WAAAAAKQhmiwAAAAASEM0WQAAAACQhmiyLBIaGqpOnTrJy8tLPj4+6tGjh27cuHHP21y+fFmvvvqqAgIC5Onpqccee0xLly59SImR0aRmG5KkrVu36umnn5anp6e8vLz05JNPKjo6+iEkRkaT2m1IunXG++bNm8tms2n58uXpGxQZVkq3odDQUPXt21dly5ZVjhw5VLRoUfXr10/h4eEPMTWsNGfOHBUrVkweHh6qVauWduzYcc/1f/jhB5UrV04eHh6qVKmSfvnll4eUFBlRSrafTz/9VPXr11eePHmUJ08eNW7c+L7bW1qiybJIp06ddOjQIa1du1arVq3Spk2b1KtXr3vepnPnzjp27JhWrlypv//+W88//7zat2+vvXv3PqTUyEhSsw1t3bpVzZo1U5MmTbRjxw7t3LlTgYGBcnLioyA7Ss02dNuMGTNks9nSOSEyupRuQxcvXtTFixc1ZcoUHTx4UF9++aXWrFmjHj16PMTUsMqiRYs0aNAgjR07Vnv27FGVKlXUtGlThYSEJLn+X3/9pQ4dOqhHjx7au3ev2rZtq7Zt2+rgwYMPOTkygpRuP3/88Yc6dOigDRs2aOvWrSpSpIiaNGmiCxcuPJzABh66w4cPG5KMnTt3mrXVq1cbNpvNuHDhwl1v5+npaSxYsMCh5uvra3z66afplhUZU2q3oVq1ahmjRo16GBGRwaV2GzIMw9i7d69RqFAh49KlS4YkY9myZemcFhnRg2xDd1q8eLHh5uZmxMXFpUdMZCA1a9Y0+vTpY15PSEgwChYsaEyYMCHJ9du3b2+0bNnSoVarVi2jd+/e6ZoTGVNKt5//io+PN3Lnzm189dVX6RXRAT9fW2Dr1q3y8fFRjRo1zFrjxo3l5OSk7du33/V2devW1aJFixQaGiq73a7vv/9eMTExatiw4UNIjYwkNdtQSEiItm/fLn9/f9WtW1f58+dXgwYN9Oeffz6s2MhAUvs5FBUVpY4dO2rOnDkKCAh4GFGRQaV2G/qv8PBweXl5ycXFJT1iIoOIjY3V7t271bhxY7Pm5OSkxo0ba+vWrUneZuvWrQ7rS1LTpk3vuj6yrtRsP/8VFRWluLg4+fr6pldMBzRZFrh8+bL8/f0dai4uLvL19dXly5fvervFixcrLi5OefPmlbu7u3r37q1ly5apVKlS6R0ZGUxqtqFTp05Jkt555x317NlTa9as0WOPPaZGjRrp+PHj6Z4ZGUtqP4cGDhyounXr6tlnn03viMjgUrsN3enatWsaN25csndTReZ17do1JSQkKH/+/A71/Pnz33V7uXz5corWR9aVmu3nv9566y0VLFgwUeOeXmiy0tDw4cNls9nueTl69Giq73/06NEKCwvTunXrtGvXLg0aNEjt27fX33//nYbPAlZKz23IbrdLknr37q1u3bqpWrVqmj59usqWLasvvvgiLZ8GLJSe29DKlSv1+++/a8aMGWkbGhlKev8tuy0iIkItW7ZUhQoV9M477zx4cAC4i4kTJ+r777/XsmXL5OHh8VAek7H5NDR48GB17dr1nuuUKFFCAQEBiQ7Si4+PV2ho6F13vzl58qSCgoJ08OBBVaxYUZJUpUoVbd68WXPmzNHcuXPT5DnAWum5DRUoUECSVKFCBYd6+fLldfbs2dSHRoaSntvQ77//rpMnT8rHx8eh3q5dO9WvX19//PHHAyRHRpGe29Bt169fV7NmzZQ7d24tW7ZMrq6uDxobGVy+fPnk7OysK1euONSvXLly1+0lICAgResj60rN9nPblClTNHHiRK1bt06VK1dOz5gOaLLSkJ+fn/z8/O67Xp06dRQWFqbdu3erevXqkm59ebHb7apVq1aSt4mKipKkRLPAOTs7myMUyPzScxsqVqyYChYsqGPHjjnUg4OD1bx58wcPjwwhPbeh4cOH67XXXnOoVapUSdOnT1fr1q0fPDwyhPTchqRbI1hNmzaVu7u7Vq5c+dB+VYa13NzcVL16da1fv15t27aVdGsPi/Xr1yswMDDJ29SpU0fr16/XgAEDzNratWtVp06dh5AYGUlqth9JmjRpksaPH69ff/3V4fjRh+KhTK+BRJo1a2ZUq1bN2L59u/Hnn38apUuXNjp06GAuP3/+vFG2bFlj+/bthmEYRmxsrFGqVCmjfv36xvbt240TJ04YU6ZMMWw2m/Hzzz9b9TRgoZRuQ4ZhGNOnTze8vLyMH374wTh+/LgxatQow8PDwzhx4oQVTwEWS8029F9idsFsLaXbUHh4uFGrVi2jUqVKxokTJ4xLly6Zl/j4eKueBh6S77//3nB3dze+/PJL4/Dhw0avXr0MHx8f4/Lly4ZhGMarr75qDB8+3Fx/y5YthouLizFlyhTjyJEjxtixYw1XV1fj77//tuopwEIp3X4mTpxouLm5GUuWLHH4rLl+/fpDyUuTZZF//vnH6NChg5ErVy7Dy8vL6Natm8M/+unTpw1JxoYNG8xacHCw8fzzzxv+/v5Gzpw5jcqVKyea0h3ZR2q2IcMwjAkTJhiFCxc2cubMadSpU8fYvHnzQ06OjCK129CdaLKyt5RuQxs2bDAkJXk5ffq0NU8CD9Xs2bONokWLGm5ubkbNmjWNbdu2mcsaNGhgdOnSxWH9xYsXG2XKlDHc3NyMihUr8sNyNpeS7eeRRx5J8rNm7NixDyWrzTAM4+GOnQEAAABA1sXsggAAAACQhmiyAAAAACAN0WQBAAAAQBqiyQIAAACANESTBQAAAABpiCYLAAAAANIQTRYA4P+1c78xVZZ/HMffJ391OuQRMAVbZwqM42awIIoxGxtqU/4MRK30ASZHc8WWqUyELWEjc/KgUmxGYRQMrMEqD9OwprAwOehyK1xZK2HqqXUGZlYgIX9/D5z3rxMcfsc8m80+r42N+7ru+7q/3/Pss+u+bxEREQkghSwREREREZEAUsgSEREREREJIIUsERERERGRAFLIEhERv61Zs4asrKxbXYaIiMg/mkKWiIhM6syZM6xatQqbzUZdXR0fffQRVquV9PR0jh49eqvLExER+cdRyBIREZ+cTidxcXFcvXqV/fv3s3LlStLS0vj444+ZNWsWS5Ys4fXXXzfOP3XqFIsXL2bGjBkEBweTkpLCF1984bWmyWSisbERgLGxMdasWcODDz7I5cuXqampwWQyTfgXEREBQGlpKfHx8cZ6g4ODREdHYzKZ+PXXXwFwOBwsW7bM530BfvjhB1auXElISAjTp08nOzub8+fPe13zzjvvEBMTg9ls5r777mPDhg1+9QHQ1dVFdnY24eHhTJ06lcTERJqbm73W93g8rFixgnvvvder1+t9/NX58+cxmUx0dHR4jUdERFBeXm4cj46OUlZWRmRkJBaLhbi4OD744ANjvrW1dcL7/PU3KioqYu7cuQQFBREVFUVJSQlDQ0MT1iYiIv+jkCUiIj5t3ryZBQsW0NjYyIIFC7BYLJjNZpKTk6mursbhcFBYWMiVK1cA6O3tJTc3l7a2Nk6ePIndbicjI4Pe3t4J19+4cSPt7e0cOXKE0NBQVq1ahcfjwePxUF5ejs1mM45PnTo14Rp79+6lu7v7hvoaGhoiNTUVq9XK8ePHcblcTJ06lbS0NAYHBwF44403eO6553jmmWf46quvOHjwINHR0X71AdDX10dGRgYtLS18+eWXpKWlkZWVhdvtNq7bsmUL33//PZ988gkej4cPP/zwhvrwpaysjNraWt58803OnDlDfn4+q1ev5tixYze0jtVqpaamhm+++YY9e/bw1ltvsXv37oDUKCJyO/vPrS5ARET+mbq7u3G73eTn5/s8Z+nSpdTU1PD111+TlJTEokWLvOb37dtHSEgIx44dIzMz02uuuLgYp9NJW1sbs2bNAsBisWCxWAAIDg5mypQpxtxEfvnlF3bs2EFRURElJSXGuMViwePx+LyuoaGB0dFRqqqqMJlMAFRXVxMSEkJraytLlixhx44dbNmyhU2bNhnXJSYmjltroj4A4uLiiIuLM45feuklnE4nBw8eNHbEOjo6WL16tbHu9OnTfdbsr6tXr7Jz506am5uZP38+AFFRUbS1tVFZWUlKSorfaxUXFxv/R0REUFBQQH19PYWFhTddp4jI7UwhS0REJnTXXXcB0N/f7/Oc63N33303cC2YFRcX09raSk9PDyMjI/T393vt3sC13aeWlhYWLVpkPAb4d2zfvp2FCxeSnJzsNR4bG8t7773HuXPniIyMHHfd6dOn6ezsxGq1eo0PDAzQ1dVFT08PP/30E4899tik95+sj76+PkpLS2lqasLj8TA8PMwff/zh9VtERkZy+PBh8vLyAhKwADo7O+nv72fx4sVe44ODgzz00ENeYzabbdK1GhoaeO211+jq6qKvr4/h4WGmTZsWkDpFRG5nClkiIjKh0NBQkpKSqK2tZdOmTdxzzz1e88PDw1RWVmKz2YiNjQUgNzeXS5cusWfPHubMmYPZbGb+/PnGI3jXff755xw+fBiHw0FlZSXPPvvsDdd39uxZqqqq6Ojo4Mcff/SaW7duHU6nk6ioqHF1w7UA9PDDD/Puu++Om5s5cyZ33OHf0/ST9VFQUMDRo0d55ZVXiI6OxmKx8MQTT3j9Frt37yYnJ4cZM2YQFBTEyMiIv+371NfXB0BTUxP333+/15zZbPY6Pn78uFfQtNvtxv8nTpwgJyeHF198kdTUVIKDg6mvr+fVV1+96RpFRG53ClkiIuJTVVUVmZmZzJs3j6effppz587R39/Pzp07qa2tpaenh8bGRqZMmQKAy+WioqKCjIwM4NrHJX7++edx65aXl5Oenk5FRQVr164lPT2d2bNn31BtRUVFrF+/nujo6HEhy2Kx0NzcTHd3t/E+2J8DREJCAg0NDYSFhfncmYmIiKClpYWFCxf6rGGyPlwuFw6Hg+XLlwPXws9fP6wxd+5cHA4Hly5d4tChQ8bjgzfjgQcewGw243a7/++jgZGRkYSEhEw4197ezpw5c9i2bZsxduHChZuqTUTk30IhS0REfIqNjeW7776jurqatrY2vv32W4aGhjhx4gTr1q1j7dq1zJw50zjfbrdTV1fHI488wu+//87WrVuNd6z+7PqjcY8//jjvv/8+69ev58iRI37X1dnZidvtprOzc9LzwsPDCQ8PHzeek5PDyy+/THZ2Ntu3b8dms3HhwgUOHDhAYWEhNpuN0tJS8vLyCAsLIz09nd7eXlwuF88//7xffdjtdg4cOEBWVhYmk4mSkhJGR0e96jh58iQvvPACn376KTExMVy8eNGv/gcHBxkYGDCOx8bGGB4eZmRkBKvVSkFBAfn5+YyOjpKcnMxvv/2Gy+Vi2rRp5Obm+nUPu92O2+2mvr6exMREmpqacDqdfl0rIvJvp68LiojIpMxmM3l5eezfv5+MjAxSUlI4dOgQhYWFXgEL4O233+by5cskJCTw1FNPsXHjRsLCwiZdf+/evZw+fZp9+/b5XdOVK1fYtm3b336PKSgoiM8++4zZs2ezYsUKY6duYGDA2NnKzc2lvLyciooKYmJiyMzM5OzZs373sWvXLkJDQ3n00UfJysoiNTWVhIQE4/yLFy/y5JNPsmvXLq9xfyQlJRkfCbFYLLjdbrZu3UpdXR1w7SMbJSUllJWVMW/ePNLS0mhqaprw/TRfli5dSn5+Phs2bCA+Pp729navj4uIiIhvprGxsbFbXYSIiIjcnM2bNxMfH4/D4bjVpYiI/OtpJ0tEROQ2cOeddxrvxomIyK2lnSwREREREZEA0k6WiIiIiIhIAClkiYiIiIiIBJBCloiIiIiISAApZImIiIiIiASQQpaIiIiIiEgAKWSJiIiIiIgEkEKWiIiIiIhIAClkiYiIiIiIBNB/AcOKt1iqC0oUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Удаление строк с NaN\n", + "feature_matrix = feature_matrix.dropna()\n", + "val_feature_matrix = val_feature_matrix.dropna()\n", + "test_feature_matrix = test_feature_matrix.dropna()\n", + "\n", + "# Разделение данных на обучающую и тестовую выборки\n", + "X_train = feature_matrix.drop('price', axis=1)\n", + "y_train = feature_matrix['price']\n", + "X_val = val_feature_matrix.drop('price', axis=1)\n", + "y_val = val_feature_matrix['price']\n", + "X_test = test_feature_matrix.drop('price', axis=1)\n", + "y_test = test_feature_matrix['price']\n", + "\n", + "# Приводим тестовую выборку к тем же столбцам, что и обучающая (если есть новые признаки)\n", + "X_test = X_test.reindex(columns=X_train.columns, fill_value=0)\n", + "\n", + "# Кодирование категориальных переменных с использованием one-hot encoding\n", + "X_train = pd.get_dummies(X_train, drop_first=True)\n", + "X_val = pd.get_dummies(X_val, drop_first=True)\n", + "X_test = pd.get_dummies(X_test, drop_first=True)\n", + "\n", + "# Разбиваем данные на тренировочные и тестовые\n", + "X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Выбор модели\n", + "model = RandomForestRegressor(random_state=42)\n", + "\n", + "# Обучение модели\n", + "model.fit(X_train, y_train)\n", + "\n", + "# Предсказания и оценка\n", + "y_pred = model.predict(X_test)\n", + "\n", + "rmse = mean_squared_error(y_test, y_pred, squared=False)\n", + "r2 = r2_score(y_test, y_pred)\n", + "mae = mean_absolute_error(y_test, y_pred)\n", + "\n", + "print(f\"RMSE: {rmse}\")\n", + "print(f\"R²: {r2}\")\n", + "print(f\"MAE: {mae} \\n\")\n", + "\n", + "# Кросс-валидация\n", + "scores = cross_val_score(model, X_train, y_train, cv=5, scoring='neg_mean_squared_error')\n", + "rmse_cv = (-scores.mean())**0.5\n", + "print(f\"Кросс-валидация RMSE: {rmse_cv} \\n\")\n", + "\n", + "# Анализ важности признаков\n", + "feature_importances = model.feature_importances_\n", + "feature_names = X_train.columns\n", + "\n", + "# Проверка на переобучение\n", + "y_train_pred = model.predict(X_train)\n", + "\n", + "rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)\n", + "r2_train = r2_score(y_train, y_train_pred)\n", + "mae_train = mean_absolute_error(y_train, y_train_pred)\n", + "\n", + "print(f\"Train RMSE: {rmse_train}\")\n", + "print(f\"Train R²: {r2_train}\")\n", + "print(f\"Train MAE: {mae_train}\")\n", + "print()\n", + "\n", + "# Визуализация результатов\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(y_test, y_pred, alpha=0.5)\n", + "plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)\n", + "plt.xlabel('Фактическая цена')\n", + "plt.ylabel('Прогнозируемая цена')\n", + "plt.title('Фактическая цена по сравнению с прогнозируемой')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Выводы и итог \n", + "\n", + "**Модель случайного леса (RandomForestRegressor)** продемонстрировано хорошие результаты при прогнозировании цен на товары. Метрики качества и кросс-валидация свидетельствуют о том, что модель не подвержена сильному переобучению и может быть использована для практических целей.\n", + "\n", + "*Точность предсказаний:* Модель демонстрирует довольно высокий R² (0.2203), что указывает на большую часть вариации целевого признака (цены недвижимости). Однако, значения RMSE и MAE остаются высоки (0.4377 и 0.3118), что свидетельствует о том, что модель не всегда точно предсказывает значения, особенно для объектов с высокими или низкими ценами. \n", + "\n", + "*Переобучение:* Разница между RMSE на обучающей и тестовой выборках незначительна, что указывает на то, что модель не склонна к переобучению. Однако в будущем стоит следить за этой метрикой при добавлении новых признаков или усложнении модели, чтобы избежать излишней подгонки под тренировочные данные. Также стоит быть осторожным и продолжать мониторинг этого показателя. \n", + "\n", + "*Кросс-валидация:* При кросс-валидации наблюдается небольшое увеличение ошибки RMSE по сравнению с тестовой выборкой (рост на 2-3%). Это может указывать на небольшую нестабильность модели при использовании разных подвыборок данных. Для повышения устойчивости модели возможно стоит провести дальнейшую настройку гиперпараметров. \n", + "\n", + "*Рекомендации:* Следует уделить внимание дополнительной обработке категориальных признаков, улучшению метода feature engineering, а также возможной оптимизации модели (например, через подбор гиперпараметров) для повышения точности предсказаний на экстремальных значениях." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/static/.DS_Store b/static/.DS_Store index 1148581840e138fa9b18b95e2e7b260f47186ee3..f8910e3878f9105eaf25e022efff50dd81262cae 100644 GIT binary patch delta 398 zcmZoMXfc=|#>B)qu~2NHo+2ar#DLw4m>3z^C-X2G)F+h}7bNB6CowQE>_{re$t*50 zFu2CZ#LU9V#?Hac!OamHoRME1T#{H)TI`fq6b<5qiTLEOA8$ZLnFgl9ffL3 zBLf`;6JxX5T22m8Wqs?Q`0SkAy!B`mu~2NHo+2aL#DLw5Y?FDI3?_3i^VBmy05d}}Loq{HZoZ34Qcivn zP>^G;wBhdGiN_p)Y`AO+9@&Bn!{Frn+ybbHAWDcKiy@OCpCO(hmm!g%h@k|?$^??B zKz=cU9?;Io!c2lZ3?Mty{)55hiOgjzn-?&zW!%ip!OsD7H&Em|^JIPzOAe5cj0_A+ Kn*&6)FarS5Ei^>{ diff --git a/static/csv/.DS_Store b/static/csv/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..a682ee74625e91eb392030dadf01477d284971f3 GIT binary patch literal 6148 zcmeHKK~BRk5FD2tia1cXz|k+Lpf3njIdJ9yKwAz)38_fo?Dz2kUcnb&*1IY#O|J-5 zyV80#j%OW@t=I+-Mz6C=pbwx&7wjCeXfb&&zGWS&=@LWEQR5jiG`PcJtF>4BM+Ic= z&NydtJfOn*{JpSlibu}o5Et|z27GStc2m~VNm)kuF#mCdK^gV3Dr?L^(!gV=RY4;Y7p2Fe&m4 zEhv?!)L>VPpmf$pYgZU1MWrLyta!flUPt^sz7d|Ml+s z|0c!Sq3!Z0ba QhUN!>EQ1%Wz@IAc4KMjw$N&HU literal 0 HcmV?d00001 -- 2.25.1 From 9d1ab92f2b7427f6b85ee70880a3cd6b7ff15982 Mon Sep 17 00:00:00 2001 From: ChaZIR Date: Sat, 30 Nov 2024 03:34:37 +0400 Subject: [PATCH 2/2] lab_3 2 --- lab_3/lab3.ipynb | 1171 ++++++++++++++++++++++++---------------------- 1 file changed, 607 insertions(+), 564 deletions(-) diff --git a/lab_3/lab3.ipynb b/lab_3/lab3.ipynb index d073c32..da798c6 100644 --- a/lab_3/lab3.ipynb +++ b/lab_3/lab3.ipynb @@ -17,61 +17,24 @@ "\n", "### Бизнес-цели:\n", "\n", - "1. **Оптимизация ассортимента товаров в онлайн-магазине**\n", + "1. **Оптимизация цен на товары**\n", " \n", - " **Формулировка:** Разработать модель, которая позволяет онлайн-магазину Jio Mart анализировать, какие товары наиболее востребованы, и автоматизировать оптимизацию ассортимента. Это поможет поддерживать в наличии наиболее популярные продукты и своевременно пополнять запасы.\n", - " \n", - " **Цель:** Увеличить объем продаж за счет оптимизации ассортимента и сокращения вероятности отсутствия популярных товаров на складе. Повысить клиентскую удовлетворенность за счет улучшения доступности товаров.\n", - " \n", - " **Ключевые показатели успеха (KPI):** \n", - " - *Точность прогнозирования популярности товаров:* Модель должна иметь точность не менее 90% в прогнозировании популярных товаров.\n", - " - *Увеличение продаж:* Увеличение продаж наиболее популярных товаров на 15% за счет правильного планирования запасов.\n", - " - *Снижение потерь от неликвидов:* Снижение доли товаров, которые остаются нераспроданными, до уровня ниже 5%.\n", + " **Цель:** Снизить издержки и увеличить продажи за счет оптимизации цен на товары.\n", "\n", - "2. **Оптимизация ценовой политики**\n", + " **Техническая цель:** Создать модель машинного обучения, которая будет прогнозировать, является ли товар излишне дорогим для свой категории или нет.\n", " \n", - " **Формулировка:** Разработать модель для автоматической корректировки цен в зависимости от спроса и конкуренции, чтобы максимизировать доход. Модель должна учитывать такие факторы, как сезонные колебания спроса, конкуренция и изменения цен.\n", - " \n", - " **Цель:** Повысить доходность онлайн-магазина Jio Mart за счет гибкой и динамической ценовой стратегии.\n", - " \n", - " **Ключевые показатели успеха (KPI):** \n", - " - *Рост среднего чека:* Увеличение среднего чека покупок на 10% за счет оптимизации цен.\n", - " - *Увеличение объема продаж:* Повышение объема продаж на 20% за счет корректировки цен в зависимости от спроса.\n", - " - *Конкурентоспособность цен:* Цены должны быть ниже или на уровне с ключевыми конкурентами для 80% ассортимента." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Технические цели проекта для каждой выделенной бизнес-цели\n", "\n", - "1. **Создание модели для оптимизации ассортимента товаров в онлайн-магазине.** \n", + "2. **Распределение товаров по категориям**\n", " \n", - " - **Сбор и подготовка данных:** \n", - " Необходимо собрать данные о продажах товаров, наличии на складе, временных трендах и сезонных изменениях спроса. Провести очистку данных от пропусков, дубликатов, аномальных значений (например, нулевые продажи при наличии товара). Преобразовать категориальные переменные (категории товаров, бренды, регионы) в числовую форму с помощью методов, таких как One-Hot-Encoding или Label Encoding. Выполнить временное сглаживание данных и стандартизацию числовых признаков для приведения их к одному масштабу. Разбить данные на обучающую и тестовую выборки.\n", - " \n", - " - **Разработка и обучение модели:** \n", - " Провести эксперименты с различными алгоритмами машинного обучения, такими как регрессия, градиентный бустинг, нейронные сети, для прогнозирования спроса на товары. Обучить модель с использованием метрик оценки, таких как MAE (Mean Absolute Error) и MSE (Mean Squared Error). Оценить производительность моделей на тестовых данных, обеспечивая точность прогнозирования популярности товаров.\n", - " \n", - " - **Развёртывание модели:** \n", - " Интеграция модели в систему управления запасами магазина для автоматической корректировки ассортимента. Создание API или интерфейса для отображения прогноза спроса и рекомендаций по пополнению запасов товаров. Модель должна предлагать автоматическое обновление ассортимента с учетом прогноза популярности и доступности товаров.\n", + " **Цель:** Оптимизировать распределение товаров по категориям.\n", "\n", - "2. **Создание модели для оптимизации ценовой политики.** \n", - " \n", - " - **Сбор и подготовка данных:** \n", - " Сбор данных о ценах товаров, продажах, спросе, а также информации о конкурентах и сезонных трендах. Очистка данных от пропусков и аномальных значений. Преобразование категориальных признаков (категории товаров, регионы продаж) в числовой формат. Нормализация числовых данных (например, цены, скидки, объем продаж). Разбиение данных на тренировочную и тестовую выборки для корректного обучения модели.\n", - " \n", - " - **Разработка и обучение модели:** \n", - " Исследование и выбор подходящих моделей для прогнозирования динамических изменений цен с учетом спроса (например, случайные леса, градиентный бустинг, временные ряды). Обучение модели для прогнозирования изменения объема продаж в зависимости от цен и конкурентов. Оценка модели с использованием метрик MSE и RMSE для минимизации ошибки прогнозирования. Прогнозирование оптимальной цены для каждого товара, которая максимизирует продажи и прибыль.\n", - " \n", - " - **Развёртывание модели:** \n", - " Создание системы, которая автоматически рекомендует изменение цен в зависимости от спроса и данных о конкурентах. Разработка API для интеграции в систему ценообразования магазина. Создание интерфейса для мониторинга изменения цен и влияния на продажи в реальном времени." + " **Техническая цель:** Создать модель машинного обучения, которая будет прогнозировать оптимальные цены на товары на основе их категорий, подкатегорий и текущих цен.\n", + " " ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -100,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -199,7 +162,7 @@ "4 Banana Robusta 6 pcs (Box) (Approx 800 g - 110... 44.0 " ] }, - "execution_count": 4, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -211,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -287,7 +250,7 @@ "max 14999.000000" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -299,7 +262,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -325,7 +288,7 @@ "dtype: bool" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -357,6 +320,81 @@ "### Разбиваем на выборки (обучающую, тестовую, контрольную)" ] }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размеры выборок:\n", + "Обучающая выборка: 9000 записей\n", + "Валидационная выборка: 3000 записей\n", + "Тестовая выборка: 3000 записей\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAAIjCAYAAADGGKM5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACffUlEQVR4nOzdeVhV5fr/8Q+IDIpAOICcUCk9iqY5lZKzEqioaVbH4qiZiRpmakfN8zUyG8ihnNOsHCpssMFSC8XZFFEpUsnMDMM0IFPYajKv3x9drJ9b0KMIbHK/X9e1ruNez73Xup9Nh3vvm7Wf5WAYhiEAAAAAAAAAAOyIo60TAAAAAAAAAACgotEcBwAAAAAAAADYHZrjAAAAAAAAAAC7Q3McAAAAAAAAAGB3aI4DAAAAAAAAAOwOzXEAAAAAAAAAgN2hOQ4AAAAAAAAAsDs0xwEAAAAAAAAAdofmOHADLly4oBMnTujs2bO2TgVliJ8rAAD2IzMzUz/99JPy8/NtnQoAAJVeYWGhTp8+rZ9//tnWqQBlguY4cJ1Wr16tHj16qEaNGnJ3d1e9evU0c+ZMW6eFG8TPFQAA+5CXl6eZM2fqzjvvlIuLi2655RY1atRImzdvtnVqAABUSmlpaRo3bpzq168vZ2dn1a5dW02bNpXFYrF1asANc7J1AoAtJScnKzo6Wlu3btXp06dVs2ZNdevWTf/973/VrFmzYvHPPPOMZsyYofvuu09vvvmmatWqJQcHB/3zn/+0QfYoK/xcAaBsrVixQsOGDbPaV7t2bTVr1kyTJk1Sr169bJQZ7F1OTo5CQkK0Z88ejRo1Si+88IKqVaumKlWqqE2bNrZODwBueg4ODtcUt3XrVnXt2rV8k8E1+emnn9StWzfl5eVp7Nixat26tZycnOTm5qbq1avbOj3ghtEch9369NNP9fDDD8vb21vDhw9XQECAjh8/rrffflsff/yxPvjgAw0YMMCM3759u2bMmKHo6Gg988wzNswcZYmfKwCUn+nTpysgIECGYSg9PV0rVqxQ7969tXbtWvXp08fW6cEOzZgxQwkJCdqwYQNNFwCwgXfffdfq8TvvvKO4uLhi+wMDAysyLVzFyJEj5ezsrD179ugf//iHrdMBypyDYRiGrZMAKtqxY8fUokUL1atXTzt27FDt2rXNsdOnT6tTp046ceKEDhw4oNtuu02S1LdvX505c0a7du2yVdooB/xcAaDsFV05vm/fPrVt29bcf/bsWfn4+OjBBx9UTEyMDTOEPcrPz1edOnU0evRovfTSS7ZOBwAgacyYMVq0aJFoTVVOiYmJatu2rTZu3Kh7773X1ukA5YI1x2GXZs2apT///FNLly61aoxLUq1atfTGG2/owoULVmtO79mzR3fccYcGDRokb29vubm56a677tKaNWvMmPPnz6t69ep66qmnip3z119/VZUqVRQdHS1JevTRR9WgQYNicQ4ODpo2bZr5+JdfftETTzyhxo0by83NTTVr1tSDDz6o48ePWz1v27ZtcnBw0LZt28x9+/bt07333qsaNWqoevXq6tq1q3bu3Gn1vBUrVsjBwUH79+83950+fbpYHpLUp0+fYjnv3LlTDz74oOrVqycXFxf5+/tr/PjxunjxYrG5ffzxx2rbtq1q1KghBwcHc5s9e3ax2JJyLNqqVaum5s2b66233rKKe/TRR+Xu7n7VY10+r2v5uRbJyMjQ8OHD5ePjI1dXV915551auXKlVczx48fNOc2ZM0f169eXm5ubunTpokOHDhXL9/LX87333pOjo6NeeeUVc9+BAwf06KOP6rbbbpOrq6t8fX312GOP6Y8//rjqXAGgsvHy8pKbm5ucnKy/vDh79mzdc889qlmzptzc3NSmTRt9/PHHJR7j8ppQtF16FXBRzKW1srCwUC1atJCDg4NWrFhR7LgNGjQo8biXx15rrg4ODhozZkyx/SXV0pLqwYkTJ+Tm5lZsHpL0+uuvq1mzZnJxcZGfn58iIyOVmZlpFdO1a1fdcccdxc4/e/bsYsds0KBBiVfyjxkzptjX35cvX67u3burTp06cnFxUdOmTbV48eJiz83Pz9eLL76of/7zn3JxcbF6TS99z1GSRx991Cr+lltuKfE9zJXyLnL5e6MjR47o7NmzqlGjhrp06aJq1arJ09NTffr0KVajJenbb79Vr1695OHhIXd3d/Xo0UN79uyxiin6b23Hjh0aOXKkatasKQ8PDw0ZMqTYjb0bNGigRx991GpfRESEXF1drd6/ff755woLC5Ofn59cXFx0++2364UXXlBBQcFVXzcAuBnl5OToueeeU8OGDc3Pm5MmTVJOTk6x2Pfee0933323qlWrpltuuUWdO3fWxo0bJV25zhdtl9bhCxcu6Omnn5a/v79cXFzUuHFjzZ49u1gD/9LnV6lSRf/4xz8UERFhVZNzc3MVFRWlNm3ayNPTU9WrV1enTp20devWYvkXfd6sV6+eqlSpYh77f33GvXx+jo6O8vX11b/+9S+lpqaaMZd+Vr2SadOmWdX+PXv2yNXVVceOHTPfe/j6+mrkyJE6c+ZMseevXr1abdq0kZubm2rVqqV///vfOnnypFVM0ef2n3/+WaGhoapevbr8/Pw0ffp0q9e4KN9L34udO3dObdq0UUBAgH777Tdz//W8lwQux7IqsEtr165VgwYN1KlTpxLHO3furAYNGmj9+vXmvj/++ENLly6Vu7u7xo4dq9q1a+u9997T/fffr5iYGD388MNyd3fXgAED9OGHH+q1115TlSpVzOe///77MgxD4eHh15Xrvn37tHv3bg0aNEi33nqrjh8/rsWLF6tr1676/vvvVa1atRKf99NPP6lr166qVq2aJk6cqGrVqunNN99UcHCw4uLi1Llz5+vK40pWr16tP//8U6NHj1bNmjW1d+9eLViwQL/++qtWr15txsXHx+uhhx7SnXfeqVdeeUWenp46ffq0xo8ff83nmjNnjmrVqiWLxaJly5ZpxIgRatCggYKDg0ud/7X8XCXp4sWL6tq1q3766SeNGTNGAQEBWr16tR599FFlZmYW+4PIO++8o3PnzikyMlLZ2dmaN2+eunfvroMHD8rHx6fEXDZu3KjHHntMY8aMsVriJS4uTj///LOGDRsmX19fJScna+nSpUpOTtaePXuued0+AKhoWVlZOn36tAzDUEZGhhYsWKDz58/r3//+t1XcvHnz1K9fP4WHhys3N1cffPCBHnzwQa1bt05hYWElHruoJki6pquA3333XR08ePCqMS1bttTTTz8tSUpJSVFUVFSxmNLkWhpRUVHKzs4utn/atGl6/vnnFRwcrNGjR+vIkSNavHix9u3bp127dqlq1apllkNJFi9erGbNmqlfv35ycnLS2rVr9cQTT6iwsFCRkZFm3Kuvvqpnn31WAwYM0OTJk+Xi4qKdO3dq6dKl13SeWrVqac6cOZL+usBg3rx56t27t06cOCEvL69S5V70R+UpU6aoUaNGev7555Wdna1FixapQ4cO2rdvn3m/keTkZHXq1EkeHh6aNGmSqlatqjfeeENdu3bV9u3b1a5dO6tjjxkzRl5eXpo2bZr5M/nll1/MBn1JnnvuOb399tv68MMPi/1xx93dXRMmTJC7u7u2bNmiqKgoWSwWzZo1q1RzB4C/o8LCQvXr109ff/21IiIiFBgYqIMHD2rOnDn68ccfrS5oev755zVt2jTdc889mj59upydnZWQkKAtW7YoJCREc+fO1fnz5yVJhw8f1ssvv6z//ve/5vItRQ1owzDUr18/bd26VcOHD1fLli21YcMGTZw4USdPnjRrU5EBAwbo/vvvV35+vuLj47V06VJdvHjRXCbGYrHorbfe0sMPP6wRI0bo3LlzevvttxUaGqq9e/eqZcuW5rGGDh2qTZs26cknn9Sdd96pKlWqaOnSpfrmm2+u6fXq1KmTIiIiVFhYqEOHDmnu3Lk6depUsT8uX48//vhD2dnZGj16tLp3765Ro0bp2LFjWrRokRISEpSQkCAXFxdJ//+bg3fddZeio6OVnp6uefPmadeuXfr222+t6ndBQYF69uyp9u3ba+bMmYqNjdVzzz2n/Px8TZ8+vcRc8vLyNHDgQKWmpmrXrl2qW7euOVZR789wkzIAO5OZmWlIMu67776rxvXr18+QZFgsFsMwDEOSIcnYtm2bGfPnn38agYGBhq+vr5Gbm2sYhmFs2LDBkGR89dVXVsdr0aKF0aVLF/PxsGHDjHr16hU7ryTjueeeszrH5eLj4w1JxjvvvGPu27p1qyHJ2Lp1q2EYhjFw4ECjSpUqxqFDh8yY06dPGzVr1jTatGlj7lu+fLkhydi3b5+57/fffy+Wh2EYRlhYmFG/fn2rfSXlFx0dbTg4OBi//PKLuW/KlCmGJOO3334z96WkpBiSjFmzZhU7xqWKckxJSTH3/fjjj4YkY+bMmea+oUOHGtWrV7/qsS6f17X+XOfOnWtIMt577z0zLjc31wgKCjLc3d3N/06K5uTm5mb8+uuvZmxCQoIhyRg/frxVvkWv5/79+w13d3fjwQcfNAoKCqxyLuk1fv/99w1Jxo4dO646XwCwhaLf25dvLi4uxooVK4rFX/57Ljc317jjjjuM7t27F4t98803DUlWNaZLly5WNfbyupGdnW3Uq1fP6NWrlyHJWL58ebHj+vn5GX369DEf79u3r8TYa81VkhEZGVnsPCXV0kvrgWEYxqFDhwxHR0cz36J5ZGRkGM7OzkZISIhVrVi4cKEhyVi2bJnVa9KsWbNi5581a1axmlq/fn0jLCysWGxkZKRx+ceFkmpSaGiocdttt1ntCwoKMgIDA43CwkJzX0nvOUpy+ethGIaxdOlSQ5Kxd+/e/5l3kcvfGxU9rlWrlnH69Gkz7scffzSqVq1qDBw40NzXv39/w9nZ2Th27Ji579SpU0aNGjWMzp07F5tTmzZtzPcMhmEYM2fONCQZn3/+uVW+Q4cONQzDMN544w1DkrFgwYJieZf0Go8cOdKoVq2akZ2dfcX5AsDfUUm1psi7775rODo6Gjt37rTav2TJEkOSsWvXLsMwDOPo0aOGo6OjMWDAgGKfpS6tQ0Uurw+XWrNmjSHJePHFF632P/DAA4aDg4Px008/mftK+sx8zz33GE2bNjUf5+fnGzk5OVYxZ8+eNXx8fIzHHnvM3Hfx4kXD0dHRGDlypFXstXzGNQzrGlPkkUceMapVq2Y+vpbP388995zVz6PocY8ePYz8/Hxzf1H9K6pjubm5Rp06dYw77rjDuHjxohm3bt06Q5IRFRVlNSdJxpNPPmnuKywsNMLCwgxnZ2fj999/t8p3+fLlRmFhoREeHm5Uq1bNSEhIKJb39byXBC7HsiqwO+fOnZMk1ahR46pxReMWi8Xcd9ddd6lLly7mYzc3Nz3xxBNKS0sz/5obHBwsPz8/q7VUDx06pAMHDlhdKVenTh1lZGQoNzf3qnm4ubmZ/87Ly9Mff/yhhg0bysvLq8S/IGdlZSkjI0NxcXEKDQ1Vs2bNzLGaNWvq0UcfVWJiotLT06963mt1aX4XLlzQ6dOndc8998gwDH377bfm2Llz5+To6Fjqq72kv9aqPX36tH7++WfNmTNHVapUsfp5FDl9+rROnz5d4hV3JbmWn+uXX34pX19f80pySapatarGjh2r8+fPa/v27VbH7N+/v9XNSu6++261a9dOX375ZbHz//zzzwoLC1PLli317rvvytHR+lfzpa9xdna2Tp8+rfbt20vSNV9FAAC2sGjRIsXFxSkuLk7vvfeeunXrpscff1yffvqpVdylv+fOnj2rrKwsderUqcTfcUV1s+gqpWvN448//tBzzz13xZjs7Gy5urr+z2NdT66lNWXKFLVu3VoPPvig1f5NmzYpNzdX48aNs6oVI0aMkIeHh9U33qS/rsoqqolF259//lniOfPy8orFllRHL51/0TcDunTpop9//llZWVnm2Llz53TLLbeU+ttNhYWFZh5JSUl65513VLdu3WI3aCvK+48//lB+fv41HXvYsGGqWbOm+bhRo0bq16+fYmNjVVBQoIKCAm3cuFH9+/c37z0jSXXr1tUjjzyir7/+2ur9ofTX8iiXXrU/evRoOTk5lVj3P//8cz3xxBOaOHFiiUvvXPoanzt3zrwfzp9//qkffvjhmuYIADeD1atXKzAwUE2aNLGqT927d5ckc2mSNWvWqLCwUFFRUcU+S11vHfryyy9VpUoVjR071mr/008/LcMw9NVXX1nt//PPP3X69GmlpaXpk08+0XfffacePXqY41WqVJGzs7Okv2rbmTNnlJ+fr7Zt21q9d7hw4YIKCwut6tP1ysnJ0enTp81+wJYtW6xyuTzns2fPXvNa7xMmTLD6ZvzgwYPl4+NjvvfYv3+/MjIy9MQTT1i9nwoLC1OTJk2KvUeRZFUDi5ajy83N1aZNm4rFTpw4UTExMfroo4909913FxuviPdnuHnRHIfdKWp6FzXJr6SkJnqTJk2KxRV9SCtau9PR0VHh4eFas2aN+QE0JiZGrq6uVh9y77nnHmVnZ2vq1Kn69ddfzUJ/uYsXLyoqKspc76xWrVqqXbu2MjMzrT6EFunfv798fHxksVjUuHHj/5nvjUpNTdWjjz4qb29vubu7q3bt2maj+dL8goKCVFhYqKeeekrHjh0zi/H1aN26tWrXrq3bb79dy5Yt08KFC4sVxgsXLqh27dqqXbu23NzcVK9ePc2bN++qx72Wn+svv/yiRo0aFXuzVRT3yy+/WO1v1KhRsWP+85//LPa6X7hwQaGhoUpPT9eZM2dKfPN25swZPfXUU/Lx8ZGbm5tq166tgIAASSrxvwEAqCzuvvtuBQcHKzg4WOHh4Vq/fr2aNm1qfvgpsm7dOrVv316urq7y9vZW7dq1tXjx4hJ/xxWt43kt629Kf/2efPnllzVhwoQrLmtVUFCgzMxMeXp6/s/jXU+upfH1119r7dq1mjFjRrGaUFRrLq/vzs7Ouu2224rVoh9++MGsiUXblf5AsHHjxmKxb7/9drG4Xbt2KTg4WNWrV5eXl5dq166t//73v5KK1/34+Hi98cYbOnnypE6fPm1+nf1anDhxwsyjVatWOnbsmD755JNiP/eivGvVqiVXV1e1bt3aXF/2ckWv55XqftEf+X///Xf9+eefV3wfVVhYqBMnTljtv7zuu7u7q27dusXqflJSkh5++GEVFBSUuFar9NeSLgMGDJCnp6c8PDxUu3Zt8wIL6j4Ae3L06FElJycXq09FS2BlZGRIko4dOyZHR0c1bdr0hs/5yy+/yM/Pr9jFdFf63Ddr1izVrl1bdevW1QMPPKBOnTppxowZVjErV65UixYt5Orqqpo1a6p27dpav3691e/0mjVrqlGjRnrrrbe0ceNGZWRk6PTp0yWurX4lH3zwgWrXri0fHx+FhITI39+/2H26pL+W9apdu7a8vb1VrVo1hYWF6ejRoyUe80q1s0qVKmrUqJHV52Wp+HuUoude/ro5Ojpa/QFakvlzvbx2vvHGG3r11Vcl6Yo9hPJ+f4abG2uOw+54enqqbt26OnDgwFXjDhw4oH/84x/y8PCQZP2XyP9lyJAhmjVrltasWaOHH35Yq1atUp8+faw+dPfr10+PPfaYZs2addX1I5988kktX75c48aNU1BQkDw9PeXg4KBBgwapsLCwWPzs2bPVqFEj3Xfffdecb2kVFBTo3nvv1ZkzZzR58mQ1adJE1atX18mTJ/Xoo49a5Tdo0CB98803WrBgwTWvN3q59957Tz4+PsrOztaWLVsUGRkpV1dXq5tbubq6au3atZL++gPHsmXLNG7cONWtW1cPPfRQsWNez8+1PJw+fVrVq1fX2rVr1b9/f0VHRxdrXDz00EPavXu3Jk6cqJYtW8rd3V2FhYXq2bNnif8NAEBl5ejoqG7dumnevHk6evSomjVrpp07d6pfv37q3LmzXn/9ddWtW1dVq1bV8uXLtWrVqmLHSEtLk7u7u6pXr35N55wxY4YcHR01ceLEK97IODU1VYWFhSXeKPtS15traUyePFmhoaHq3r17iTcOvR4NGjTQm2++abVv9erVJdbhdu3a6cUXX7Tat3DhQn3++efm42PHjqlHjx5q0qSJXnvtNfn7+8vZ2Vlffvml5syZY1WToqOjdfLkSY0aNapUufv4+Oi9996T9FdDeNmyZerZs6e+/vprNW/evMS8T506pRkzZmjAgAFKTk4udkxb13xJ+u6779SrVy/16NFDEydO1L///W+r9cYzMzPVpUsXeXh4aPr06br99tvl6uqqb775RpMnT6buA7ArhYWFat68uV577bUSx/39/Ss4o+IGDx6sIUOGqLCwUD///LNeeOEF9enTR5s2bZKDg4Pee+89Pfroo+rfv78mTpyoOnXqqEqVKoqOjtaxY8esjvXhhx8qPDxcoaGhVvuv9T1PSEiIJk6cKOmv+3XMmDFD3bp10/79+61qYEREhB588EEVFBTo8OHDmjZtmvr3719pa+eePXv00ksvad++fRo/frx69uxp3ndGqpj3Z7i50RyHXerTp4/efPNNff311+rYsWOx8Z07d+r48eMaOXKkuS8gIEBHjhwpFlv09dZLP1DfcccdatWqlWJiYnTrrbcqNTVVCxYsKPbct99+W1FRUTp27Jj5Yefee++1ivn44481dOhQ8y+l0l9f/b70DtiXatOmjbp06SJ3d/drzre0Dh48qB9//FErV67UkCFDzP1xcXHFYh0dHTV79mwdPHhQKSkpev3115Wenl7spmxX06FDBzPvPn36KDk5WdHR0VbN8SpVqljdoDMsLEze3t6KjY0tsTl+rT/X+vXr68CBAyosLLS6erworn79+lbPL+kv7z/++GOx171atWqKjY1VkyZNNH78eL388st66KGHzCsTzp49q82bN+v555+3ujHclf6yDwCVXdHSF0VXEX/yySdydXXVhg0brJZKWb58eYnP//7774strXElp06d0rx58xQdHa0aNWpcsTm+f/9+SVLbtm2verzrzfV6rVmzRvHx8Vf8CnBRrTly5IjV1Va5ublKSUkpdoPq6tWrF9uXlJRU4rFr1apVLPbSG51Jf93QPCcnR1988YXq1atn7i/6WvulatasqXfffVfNmjVTx44dNXLkSG3cuPGabyjp6upqlU+/fv3k7e2thQsX6o033rhi3g0bNlSHDh20Y8cOqxwlmd+6ulLdr169uvlhu1q1aleMc3R0LNaQOXr0qLp162Y+Pn/+vH777Tf17t3bKq558+ZavXq13NzctHr1akVEROjAgQPmV9C3bdumP/74Q59++qnVzdNTUlKu8EoBwM3r9ttvN5cpudryKLfffrsKCwv1/fffW93gsjTq16+vTZs26dy5c1ZXj1/pc99tt91mVYc8PT31yCOPaM+ePQoKCtLHH3+s2267TZ9++qnVHEr6JlerVq305ptvqlOnTpo+fbrat2+vWbNmadeuXdeUe926da1yady4se655x7zor0ijRo1MuNCQ0P1559/6v/+7/+Umppa7JiX1s5L33sUFhbq6NGjatWqldXrcuTIEXPZmyJHjhwp9roV/TGh6Gpx6a/Py1LxXsVjjz2m//73vzp16pSaNm2q8ePHmzc8lcr//RlufiyrArs0ceJEubm5aeTIkcU+KJ85c0ajRo1StWrVzL+6SlLv3r21d+9e7d6929yXnZ2txYsXy9fXV23atLE6zuDBg7Vx40bNnTtXNWvWVK9evUrMpX79+urevbv5tfPLValSpdg6YAsWLFBBQcEV5+fg4KCQkBBt2LBBhw8ftprbypUr1bZt2yt+tfx6FK05dml+hmFccRmTBQsWaMuWLYqJiVFwcLA6dOhwQ+e/ePHi//yaWVFul66Pdqlr/bn27t1baWlp+vDDD824/Px8LViwQO7u7sXWPl+zZo1OnjxpPt67d68SEhKK/XdQu3Zt8ytq06dP16233qoRI0YUy/vy/wbmzp171XkDQGWUl5enjRs3ytnZ2WxwV6lSRQ4ODlZ17fjx48Uas9JfS23s2rWr2IeuK3n++efl4+PzP69eXr16tby8vEq8j8WlrifX61VQUKD//ve/euSRR674wT44OFjOzs6aP3++VV14++23lZWVpbCwsBvO42pKqklZWVlX/PAZEREhZ2dnvfXWWwoODr6hr7vn5uYqPz//f9b9oosNSqr7tWvXVtu2bbVy5Uqrr2UfO3ZMX3zxhXr16qUqVaqoSpUqCgkJ0eeff2711e709HStWrVKHTt2NL9ZWGTp0qXKy8szHy9evFj5+fnF6n7r1q1VvXp1OTo66q233tLx48c1ffp0c7yk1zg3N1evv/76VecNADejhx56SCdPniz2LSjpr8+CFy5ckPTX0qKOjo6aPn16sW/YXOua2kV69+6tgoICLVy40Gr/nDlz5ODgcMXP9ZfmJcmsVyX9Xk9ISFB8fHyx51osFg0ePFj9+vXT1KlTFRwcrLp1615X/lfL5UquVjt79OghFxcXzZ8/3+q1jYmJUXp6uvr06SPprwsM6tSpoyVLllid76uvvtLhw4dLfI9y6WtsGIYWLlyoqlWrFlsnvVOnTpIkPz8/zZgxQ++9957VEmrl+f4M9oErx2GXGjVqpJUrVyo8PFzNmzfX8OHDFRAQoOPHj+vtt9/W6dOn9f777+v22283nzNp0iTFxMSoV69eGjt2rGrVqqX33ntP33//vWJiYuTkZP1/p0ceeUSTJk3SZ599ptGjR1vdpOl69OnTR++++648PT3VtGlTxcfHa9OmTf/zRh0vvPCCNmzYoC5duujJJ59UtWrV9OabbyozM1Mff/xxsfj4+HhzzfOim0z99NNPio2NNWN+//13Xbx4UbGxserZs6eaNGmi22+/Xf/5z3908uRJeXh46JNPPilxHbDk5GRNmjRJ06ZN01133VWq12LNmjWqVauWuazKzp07NW7cOKuYgoICM+dz585p+fLlunDhgvr371/iMa/15xoREaE33njDvKFpgwYN9PHHH2vXrl2aO3dusTXpGjZsqI4dO2r06NHKyckx/0gyadKkK87Pzc1NS5cuVXBwsBYvXqwnnnhCHh4e6ty5s2bOnKm8vDz94x//0MaNG7mCDMDfwldffWVeaZWRkaFVq1bp6NGjeuaZZ8zmYlhYmF577TX17NlTjzzyiDIyMrRo0SI1bNjQagm0xYsXKzo6WtWqVSt2k6wr2bhxo2JiYswbYV0uPT1d8+fP1+rVq9W5c2d98skn5ljR79n4+Hi1bt1aLVq0uOZci6SmplrVUcm6lnbp0sX8uvKvv/5qLlFyJbVr19aUKVP0/PPPq2fPnurXr5+OHDmi119/XXfdddd1fRurNEJCQuTs7Ky+fftq5MiROn/+vN58803VqVNHv/32m1Xs22+/rc8++0xbt269prXcL3fhwgWrZVXeffddZWdna8CAAVZxv//+u/ka//bbb5oxY4Y8PT3VrVs38wq0S82cOVMhISEKCgrS448/ruzsbC1atEiurq566aWXzLgXX3xRcXFx6tixo5544gk5OTnpjTfeUE5OjmbOnFnsuLm5uerRo4ceeugh82fSsWNH9evX74pzvOOOOzR58mS98sorGjRokFq0aKF77rlHt9xyi4YOHaqxY8fKwcFB77777nU3dwDgZjB48GB99NFHGjVqlLZu3aoOHTqooKBAP/zwgz766CNt2LBBbdu2VcOGDfV///d/euGFF9SpUyfdf//9cnFx0b59++Tn56fo6OhrPmffvn3VrVs3/d///Z+OHz+uO++8Uxs3btTnn3+ucePGWfUIpL+WY33vvfdkGIaOHTum+fPn69ZbbzW/jdanTx99+umnGjBggMLCwpSSkqIlS5aoadOmxe7FERkZqYsXL5a4Tvi1+Pnnn83aefLkSS1cuFAeHh7Fms1HjhxRbGysebX9rFmzdNddd+kf//hHsWN6e3tr6tSpevbZZxUaGqr77rtPP//8sxYuXKg777xTjz/+uCSpatWqmjFjhoYNG6YuXbro4YcfVnp6uubNm6cGDRpo/PjxVsd1dXVVbGyshg4dqnbt2umrr77S+vXr9d///le1a9e+4hwjIiK0atUqjRo1SocOHTLXTL+e92dAMQZgxw4cOGA8/PDDRt26dY2qVasavr6+xsMPP2wcPHiwxPhjx44ZDzzwgOHp6Wm4uroad911l7FmzZorHr93796GJGP37t3XnJMk47nnnjMfnz171hg2bJhRq1Ytw93d3QgNDTV++OEHo379+sbQoUPNuK1btxqSjK1bt5r7EhMTjZCQEMPd3d2oVq2a0blzZ2P79u1W51u+fLkh6bq3It9//70RHBxsuLu7G7Vq1TJGjBhhfPfdd4YkY/ny5YZhGEZ2drbRokULo2PHjkZ+fr753JSUFEOSMWvWrKu+Jpfn6OzsbDRs2NCIiooysrOzzbihQ4daxbm7uxutW7c23n333Su+voZx7T/X9PR082fh7OxsNG/e3JxjSXN69dVXDX9/f8PFxcXo1KmT8d1331nFDh061Khfv36x8wwbNszw8PAwfv31V8MwDOPXX381BgwYYHh5eRmenp7Ggw8+aJw6darEuQBAZVBSbXF1dTVatmxpLF682CgsLLSKf/vtt41GjRoZLi4uRpMmTYzly5cbzz33nFW9ufvuu40HH3zQ+OGHH4qdr0uXLkaXLl2Knb9ly5ZW5yr6HV30u7uodv6v7dLftdeSq2EY13TclJQUwzD+f/166qmnSnwdi+KKLFy40GjSpIlRtWpVw8fHxxg9erRx9uzZYq9Js2bNir1Ws2bNKnbM+vXrG2FhYcViIyMji83riy++MFq0aGG4uroaDRo0MGbMmGEsW7bM6phHjx41qlevbkyZMqXE+ezbt6/YuS51LfW8KO9L42rVqmWEhIQYe/bsMQyj5PdGhmEYmzdvNjp06GC4ubkZHh4eRlhYWInv/b755hsjNDTUfB/VrVu3Yu/piua0fft2IyIiwrjlllsMd3d3Izw83Pjjjz+K5XvpezfD+Os9UpMmTYy77rrLfI+0a9cuo3379oabm5vh5+dnTJo0ydiwYUOJcwGAv7uSas2lcnNzjRkzZhjNmjUzXFxcjFtuucVo06aN8fzzzxtZWVlWscuWLTNatWplxnXp0sWIi4srdswr1Yci586dM8aPH2/4+fkZVatWNRo1amTMmjWr2PuXS2uQg4OD4evra9x///3G4cOHzZjCwkLj5ZdfNurXr2+4uLgYrVq1MtatW1fss+D7779vODg4GLGxsVbnGDp0qFG9evUrvj5FrlQT4+PjzZii90FFm6Ojo3HrrbcaQ4cONT97lvSexjAMY9GiRVbvPUaOHFmszhmGYXz44Yfmz8Db29sIDw83j335nI4dO2aEhIQY1apVM3x8fIznnnvOKCgoKJbv5Z+5jxw5Yri6uhrjx483913r+zOgJA6GwWUIQHkZMGCADh48qJ9++snWqZSZ48ePKyAggCuYrqDo9Zk1a5b+85//2DodAMBVbNu2Td26dbtqTXv00UfVoEEDTZs2rczOW1QrUlJSyuQeILCdFStWaNiwYdq3b9//XLMeAAD89d7q448/LnblPGArrDkOlJPffvtN69ev1+DBg22dCgAAAAAAAIDLsOY4UMZSUlK0a9cuvfXWW6patapGjhxp65TKlJubm0JDQ22dBgAAN8zHx0fh4eFXjbnnnntUq1atMj1vUS0tWm8cAAAAgG3QHAfK2Pbt2zVs2DDVq1dPK1eulK+vr61TKlM+Pj7Fbi4GAMDfUWBgoHnjqiuJiIgo8/NSSwEAAIDKgTXHAQAAAAAAAAB2hzXHAQAAAAAAAAB2h+Y4AAAAAAAAAMDusOb4NSgsLNSpU6dUo0YNOTg42DodAMBNyDAMnTt3Tn5+fnJ05G/XpUXNBgCUJ+p12aBeAwDK0/XUa5rj1+DUqVPy9/e3dRoAADtw4sQJ3XrrrbZO42+Lmg0AqAjU6xtDvQYAVIRrqdc0x69BjRo1JP31gnp4eNg4GwDAzchiscjf39+sOSgdajYAoDxRr8sG9RoAUJ6up17THL8GRV/z8vDwoHADAMoVXy2+MdRsAEBFoF7fGOo1AKAiXEu9ZpE0AAAAAABuAjt27FDfvn3l5+cnBwcHrVmzpljM4cOH1a9fP3l6eqp69eq66667lJqaao5nZ2crMjJSNWvWlLu7uwYOHKj09HSrY6SmpiosLEzVqlVTnTp1NHHiROXn55f39AAAKHM0xwEAAAAAuAlcuHBBd955pxYtWlTi+LFjx9SxY0c1adJE27Zt04EDB/Tss8/K1dXVjBk/frzWrl2r1atXa/v27Tp16pTuv/9+c7ygoEBhYWHKzc3V7t27tXLlSq1YsUJRUVHlPj8AAMqag2EYhq2TqOwsFos8PT2VlZXFV74AAOWCWlM2eB0BAOXp71RnHBwc9Nlnn6l///7mvkGDBqlq1ap69913S3xOVlaWateurVWrVumBBx6QJP3www8KDAxUfHy82rdvr6+++kp9+vTRqVOn5OPjI0lasmSJJk+erN9//13Ozs7/M7e/0+sIAPj7uZ46w5XjAAAAAADc5AoLC7V+/Xr985//VGhoqOrUqaN27dpZLb2SmJiovLw8BQcHm/uaNGmievXqKT4+XpIUHx+v5s2bm41xSQoNDZXFYlFycnKJ587JyZHFYrHaAACoDGiOAwAAAABwk8vIyND58+f1yiuvqGfPntq4caMGDBig+++/X9u3b5ckpaWlydnZWV5eXlbP9fHxUVpamhlzaWO8aLxorCTR0dHy9PQ0N39//zKeHQAApUNzHAAAAACAm1xhYaEk6b777tP48ePVsmVLPfPMM+rTp4+WLFlSrueeMmWKsrKyzO3EiRPlej4AAK4VzXEAAAAAAG5ytWrVkpOTk5o2bWq1PzAwUKmpqZIkX19f5ebmKjMz0yomPT1dvr6+Zkx6enqx8aKxkri4uMjDw8NqAwCgMqA5DgAAAADATc7Z2Vl33XWXjhw5YrX/xx9/VP369SVJbdq0UdWqVbV582Zz/MiRI0pNTVVQUJAkKSgoSAcPHlRGRoYZExcXJw8Pj2KNdwAAKjsnWycAAAAAAABu3Pnz5/XTTz+Zj1NSUpSUlCRvb2/Vq1dPEydO1L/+9S917txZ3bp1U2xsrNauXatt27ZJkjw9PTV8+HBNmDBB3t7e8vDw0JNPPqmgoCC1b99ekhQSEqKmTZtq8ODBmjlzptLS0jR16lRFRkbKxcXFFtMGAKDUaI4DAAAAAHAT2L9/v7p162Y+njBhgiRp6NChWrFihQYMGKAlS5YoOjpaY8eOVePGjfXJJ5+oY8eO5nPmzJkjR0dHDRw4UDk5OQoNDdXrr79ujlepUkXr1q3T6NGjFRQUpOrVq2vo0KGaPn16xU0UAIAy4mAYhmHrJCo7i8UiT09PZWVlsTYaAKBcUGvKBq8jAKA8UWfKBq8jAKA8XU+dYc1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsjpOtE7BHffteX/zateWTBwAAuLK+719nwZa09mGKNgAAFY4P2QCAUuLKcQAAAAAAAACA3aE5DgAAAAAAAACwOzTHAQAAAAAAAAB2x6bN8QYNGsjBwaHYFhkZKUnKzs5WZGSkatasKXd3dw0cOFDp6elWx0hNTVVYWJiqVaumOnXqaOLEicrPz7eK2bZtm1q3bi0XFxc1bNhQK1asqKgpAgAAAAAAAAAqIZs2x/ft26fffvvN3OLi4iRJDz74oCRp/PjxWrt2rVavXq3t27fr1KlTuv/++83nFxQUKCwsTLm5udq9e7dWrlypFStWKCoqyoxJSUlRWFiYunXrpqSkJI0bN06PP/64NmzYULGTBQAAAAAAAABUGk62PHnt2rWtHr/yyiu6/fbb1aVLF2VlZentt9/WqlWr1L17d0nS8uXLFRgYqD179qh9+/bauHGjvv/+e23atEk+Pj5q2bKlXnjhBU2ePFnTpk2Ts7OzlixZooCAAL366quSpMDAQH399deaM2eOQkNDK3zOAAAAAAAAAADbqzRrjufm5uq9997TY489JgcHByUmJiovL0/BwcFmTJMmTVSvXj3Fx8dLkuLj49W8eXP5+PiYMaGhobJYLEpOTjZjLj1GUUzRMUqSk5Mji8VitQEAAAAAAAAAbh6Vpjm+Zs0aZWZm6tFHH5UkpaWlydnZWV5eXlZxPj4+SktLM2MubYwXjReNXS3GYrHo4sWLJeYSHR0tT09Pc/P397/R6QEAAAAAAAAAKpFK0xx/++231atXL/n5+dk6FU2ZMkVZWVnmduLECVunBAAAAAAAAAAoQzZdc7zIL7/8ok2bNunTTz819/n6+io3N1eZmZlWV4+np6fL19fXjNm7d6/VsdLT082xov8t2ndpjIeHh9zc3ErMx8XFRS4uLjc8LwAAAAAAAABA5VQprhxfvny56tSpo7CwMHNfmzZtVLVqVW3evNncd+TIEaWmpiooKEiSFBQUpIMHDyojI8OMiYuLk4eHh5o2bWrGXHqMopiiYwAAAAAAAAAA7I/Nm+OFhYVavny5hg4dKien/38hu6enp4YPH64JEyZo69atSkxM1LBhwxQUFKT27dtLkkJCQtS0aVMNHjxY3333nTZs2KCpU6cqMjLSvPJ71KhR+vnnnzVp0iT98MMPev311/XRRx9p/PjxNpkvAAAAAAAAAMD2bL6syqZNm5SamqrHHnus2NicOXPk6OiogQMHKicnR6GhoXr99dfN8SpVqmjdunUaPXq0goKCVL16dQ0dOlTTp083YwICArR+/XqNHz9e8+bN06233qq33npLoaGhFTI/AAAAAAAAAEDlY/PmeEhIiAzDKHHM1dVVixYt0qJFi674/Pr16+vLL7+86jm6du2qb7/99obyBAAAAAAAAADcPGy+rAoAAAAAAAAAABWN5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwCAq9qxY4f69u0rPz8/OTg4aM2aNVeMHTVqlBwcHDR37lyr/WfOnFF4eLg8PDzk5eWl4cOH6/z581YxBw4cUKdOneTq6ip/f3/NnDmzHGYDAAAAAMBfaI4DAICrunDhgu68804tWrToqnGfffaZ9uzZIz8/v2Jj4eHhSk5OVlxcnNatW6cdO3YoIiLCHLdYLAoJCVH9+vWVmJioWbNmadq0aVq6dGmZzwcAAAAAAElysnUCAACgcuvVq5d69ep11ZiTJ0/qySef1IYNGxQWFmY1dvjwYcXGxmrfvn1q27atJGnBggXq3bu3Zs+eLT8/P8XExCg3N1fLli2Ts7OzmjVrpqSkJL322mtWTXQAAAAAAMoKV44DAIAbUlhYqMGDB2vixIlq1qxZsfH4+Hh5eXmZjXFJCg4OlqOjoxISEsyYzp07y9nZ2YwJDQ3VkSNHdPbs2SueOycnRxaLxWoDAAAAAOBa0BwHAAA3ZMaMGXJyctLYsWNLHE9LS1OdOnWs9jk5Ocnb21tpaWlmjI+Pj1VM0eOimJJER0fL09PT3Pz9/W9kKgAAAAAAO0JzHAAAlFpiYqLmzZunFStWyMHBocLPP2XKFGVlZZnbiRMnKjwHAAAAAMDfE81xAABQajt37lRGRobq1asnJycnOTk56ZdfftHTTz+tBg0aSJJ8fX2VkZFh9bz8/HydOXNGvr6+Zkx6erpVTNHjopiSuLi4yMPDw2oDAAAAAOBa0BwHAAClNnjwYB04cEBJSUnm5ufnp4kTJ2rDhg2SpKCgIGVmZioxMdF83pYtW1RYWKh27dqZMTt27FBeXp4ZExcXp8aNG+uWW26p2EkBAAAAAOyCk60TAAAAldv58+f1008/mY9TUlKUlJQkb29v1atXTzVr1rSKr1q1qnx9fdW4cWNJUmBgoHr27KkRI0ZoyZIlysvL05gxYzRo0CD5+flJkh555BE9//zzGj58uCZPnqxDhw5p3rx5mjNnTsVNFAAAAABgV2iOAwCAq9q/f7+6detmPp4wYYIkaejQoVqxYsU1HSMmJkZjxoxRjx495OjoqIEDB2r+/PnmuKenpzZu3KjIyEi1adNGtWrVUlRUlCIiIsp0LgAAAAAAFGFZFQAAcFVdu3aVYRjFtis1xo8fP65x48ZZ7fP29taqVat07tw5ZWVladmyZXJ3d7eKadGihXbu3Kns7Gz9+uuvmjx5cjnNCACAm9OOHTvUt29f+fn5ycHBQWvWrLli7KhRo+Tg4KC5c+da7T9z5ozCw8Pl4eEhLy8vDR8+XOfPn7eKOXDggDp16iRXV1f5+/tr5syZ5TAbAADKH81xAAAAAABuAhcuXNCdd96pRYsWXTXus88+0549e8zlzS4VHh6u5ORkxcXFad26ddqxY4fVN7ksFotCQkJUv359JSYmatasWZo2bZqWLl1a5vMBAKC8sawKAAAAAAA3gV69eqlXr15XjTl58qSefPJJbdiwQWFhYVZjhw8fVmxsrPbt26e2bdtKkhYsWKDevXtr9uzZ8vPzU0xMjHJzc7Vs2TI5OzurWbNmSkpK0muvvcZyaACAvx2uHAcAAAAAwA4UFhZq8ODBmjhxopo1a1ZsPD4+Xl5eXmZjXJKCg4Pl6OiohIQEM6Zz585ydnY2Y0JDQ3XkyBGdPXu2xPPm5OTIYrFYbQAAVAY0xwEAAAAAsAMzZsyQk5OTxo4dW+J4Wlqa6tSpY7XPyclJ3t7eSktLM2N8fHysYooeF8VcLjo6Wp6enubm7+9/o1MBAKBM0BwHAAAAAOAml5iYqHnz5mnFihVycHCo0HNPmTJFWVlZ5nbixIkKPT8AAFdCcxwAAAAAgJvczp07lZGRoXr16snJyUlOTk765Zdf9PTTT6tBgwaSJF9fX2VkZFg9Lz8/X2fOnJGvr68Zk56ebhVT9Lgo5nIuLi7y8PCw2gAAqAxojgMAAAAAcJMbPHiwDhw4oKSkJHPz8/PTxIkTtWHDBklSUFCQMjMzlZiYaD5vy5YtKiwsVLt27cyYHTt2KC8vz4yJi4tT48aNdcstt1TspAAAuEFOtk4AAAAAAADcuPPnz+unn34yH6ekpCgpKUne3t6qV6+eatasaRVftWpV+fr6qnHjxpKkwMBA9ezZUyNGjNCSJUuUl5enMWPGaNCgQfLz85MkPfLII3r++ec1fPhwTZ48WYcOHdK8efM0Z86cipsoAABlhOY4AAAAAAA3gf3796tbt27m4wkTJkiShg4dqhUrVlzTMWJiYjRmzBj16NFDjo6OGjhwoObPn2+Oe3p6auPGjYqMjFSbNm1Uq1YtRUVFKSIiokznAgBARaA5DgAAAADATaBr164yDOOa448fP15sn7e3t1atWnXV57Vo0UI7d+683vQAAKh0WHMcAAAAAAAAAGB3aI4DAAAAAAAAAOwOzXEAAAAAAAAAgN2hOQ4AAAAAAAAAsDs0xwEAAAAAAAAAdofmOAAAAAAAAADA7tAcBwAAAAAAAADYHZrjAAAAAAAAAAC7Q3McAAAAAAAAAGB3aI4DAAAAAAAAAOwOzXEAAAAAAAAAgN2hOQ4AAAAAAAAAsDs0xwEAAAAAAAAAdofmOAAAAAAAAADA7tAcBwAAAAAAAADYHZrjAAAAAAAAAAC7Q3McAAAAAAAAAGB3bN4cP3nypP7973+rZs2acnNzU/PmzbV//35z3DAMRUVFqW7dunJzc1NwcLCOHj1qdYwzZ84oPDxcHh4e8vLy0vDhw3X+/HmrmAMHDqhTp05ydXWVv7+/Zs6cWSHzAwAAAAAAAABUPjZtjp89e1YdOnRQ1apV9dVXX+n777/Xq6++qltuucWMmTlzpubPn68lS5YoISFB1atXV2hoqLKzs82Y8PBwJScnKy4uTuvWrdOOHTsUERFhjlssFoWEhKh+/fpKTEzUrFmzNG3aNC1durRC5wsAAAAAAAAAqBycbHnyGTNmyN/fX8uXLzf3BQQEmP82DENz587V1KlTdd9990mS3nnnHfn4+GjNmjUaNGiQDh8+rNjYWO3bt09t27aVJC1YsEC9e/fW7Nmz5efnp5iYGOXm5mrZsmVydnZWs2bNlJSUpNdee82qiQ4AAAAAAAAAsA82vXL8iy++UNu2bfXggw+qTp06atWqld58801zPCUlRWlpaQoODjb3eXp6ql27doqPj5ckxcfHy8vLy2yMS1JwcLAcHR2VkJBgxnTu3FnOzs5mTGhoqI4cOaKzZ88WyysnJ0cWi8VqAwAAAAAAAADcPGzaHP/555+1ePFiNWrUSBs2bNDo0aM1duxYrVy5UpKUlpYmSfLx8bF6no+PjzmWlpamOnXqWI07OTnJ29vbKqakY1x6jktFR0fL09PT3Pz9/ctgtgAAAAAAAACAysKmzfHCwkK1bt1aL7/8slq1aqWIiAiNGDFCS5YssWVamjJlirKyssztxIkTNs0HAAAAAAAAAFC2bNocr1u3rpo2bWq1LzAwUKmpqZIkX19fSVJ6erpVTHp6ujnm6+urjIwMq/H8/HydOXPGKqakY1x6jku5uLjIw8PDagMAAAAAAAAA3Dxs2hzv0KGDjhw5YrXvxx9/VP369SX9dXNOX19fbd682Ry3WCxKSEhQUFCQJCkoKEiZmZlKTEw0Y7Zs2aLCwkK1a9fOjNmxY4fy8vLMmLi4ODVu3Fi33HJLuc0PAAAAAAAAAFA52bQ5Pn78eO3Zs0cvv/yyfvrpJ61atUpLly5VZGSkJMnBwUHjxo3Tiy++qC+++EIHDx7UkCFD5Ofnp/79+0v660rznj17asSIEdq7d6927dqlMWPGaNCgQfLz85MkPfLII3J2dtbw4cOVnJysDz/8UPPmzdOECRNsNXUAAAAAAAAAgA052fLkd911lz777DNNmTJF06dPV0BAgObOnavw8HAzZtKkSbpw4YIiIiKUmZmpjh07KjY2Vq6urmZMTEyMxowZox49esjR0VEDBw7U/PnzzXFPT09t3LhRkZGRatOmjWrVqqWoqChFRERU6HwBAAAAAAAAAJWDTZvjktSnTx/16dPniuMODg6aPn26pk+ffsUYb29vrVq16qrnadGihXbu3FnqPAEAAAAAAAAANw+bLqsCAAAAAAAAAIAt0BwHAAAAAAAAANgdmuMAAAAAAAAAALtDcxwAAAAAAAAAYHdojgMAAAAAAAAA7A7NcQAAAAAAAACA3aE5DgAAAAAAAACwOzTHAQAAAAAAAAB2h+Y4AAAAAAAAAMDu0BwHAAAAAAAAANgdmuMAAOCqduzYob59+8rPz08ODg5as2aNOZaXl6fJkyerefPmql69uvz8/DRkyBCdOnXK6hhnzpxReHi4PDw85OXlpeHDh+v8+fNWMQcOHFCnTp3k6uoqf39/zZw5syKmBwAAAACwUzTHAQDAVV24cEF33nmnFi1aVGzszz//1DfffKNnn31W33zzjT799FMdOXJE/fr1s4oLDw9XcnKy4uLitG7dOu3YsUMRERHmuMViUUhIiOrXr6/ExETNmjVL06ZN09KlS8t9fgAAAAAA++Rk6wQAAEDl1qtXL/Xq1avEMU9PT8XFxVntW7hwoe6++26lpqaqXr16Onz4sGJjY7Vv3z61bdtWkrRgwQL17t1bs2fPlp+fn2JiYpSbm6tly5bJ2dlZzZo1U1JSkl577TWrJvrlcnJylJOTYz62WCxlMGMAAAAAgD3gynEAAFCmsrKy5ODgIC8vL0lSfHy8vLy8zMa4JAUHB8vR0VEJCQlmTOfOneXs7GzGhIaG6siRIzp79uwVzxUdHS1PT09z8/f3L59JAQAAAABuOjTHAQBAmcnOztbkyZP18MMPy8PDQ5KUlpamOnXqWMU5OTnJ29tbaWlpZoyPj49VTNHjopiSTJkyRVlZWeZ24sSJspwOAAAAAOAmxrIqAACgTOTl5emhhx6SYRhavHhxhZzTxcVFLi4uFXIuAAAAAMDNheY4AAC4YUWN8V9++UVbtmwxrxqXJF9fX2VkZFjF5+fn68yZM/L19TVj0tPTrWKKHhfFAAAAAABQllhWBQAA3JCixvjRo0e1adMm1axZ02o8KChImZmZSkxMNPdt2bJFhYWFateunRmzY8cO5eXlmTFxcXFq3LixbrnlloqZCAAAAADArtAcBwAAV3X+/HklJSUpKSlJkpSSkqKkpCSlpqYqLy9PDzzwgPbv36+YmBgVFBQoLS1NaWlpys3NlSQFBgaqZ8+eGjFihPbu3atdu3ZpzJgxGjRokPz8/CRJjzzyiJydnTV8+HAlJyfrww8/1Lx58zRhwgRbTRsAgL+dHTt2qG/fvvLz85ODg4PWrFljjuXl5Wny5Mlq3ry5qlevLj8/Pw0ZMkSnTp2yOsaZM2cUHh4uDw8PeXl5afjw4Tp//rxVzIEDB9SpUye5urrK399fM2fOrIjpAQBQ5miOAwCAq9q/f79atWqlVq1aSZImTJigVq1aKSoqSidPntQXX3yhX3/9VS1btlTdunXNbffu3eYxYmJi1KRJE/Xo0UO9e/dWx44dtXTpUnPc09NTGzduVEpKitq0aaOnn35aUVFRioiIqPD5AgDwd3XhwgXdeeedWrRoUbGxP//8U998842effZZffPNN/r000915MgR9evXzyouPDxcycnJiouL07p167Rjxw6remyxWBQSEqL69esrMTFRs2bN0rRp06zqOgAAfxesOQ4AAK6qa9euMgzjiuNXGyvi7e2tVatWXTWmRYsW2rlz53XnBwAA/tKrVy/16tWrxDFPT0/FxcVZ7Vu4cKHuvvtupaamql69ejp8+LBiY2O1b98+tW3bVpK0YMEC9e7dW7Nnz5afn59iYmKUm5urZcuWydnZWc2aNVNSUpJee+21K/5ROycnRzk5OeZji8VSRjMGAODGcOU4AAAAAAB2KCsrSw4ODvLy8pIkxcfHy8vLy2yMS1JwcLAcHR2VkJBgxnTu3FnOzs5mTGhoqI4cOaKzZ8+WeJ7o6Gh5enqam7+/f/lNCgCA60BzHAAAAAAAO5Odna3Jkyfr4YcfloeHhyQpLS1NderUsYpzcnKSt7e30tLSzBgfHx+rmKLHRTGXmzJlirKyssztxIkTZT0dAABKhWVVAAAAAACwI3l5eXrooYdkGIYWL15c7udzcXGRi4tLuZ8HAIDrRXMcAAAAAAA7UdQY/+WXX7RlyxbzqnFJ8vX1VUZGhlV8fn6+zpw5I19fXzMmPT3dKqbocVEMAAB/FyyrAgAAAACAHShqjB89elSbNm1SzZo1rcaDgoKUmZmpxMREc9+WLVtUWFiodu3amTE7duxQXl6eGRMXF6fGjRvrlltuqZiJAABQRmiOAwAAAABwEzh//rySkpKUlJQkSUpJSVFSUpJSU1OVl5enBx54QPv371dMTIwKCgqUlpamtLQ05ebmSpICAwPVs2dPjRgxQnv37tWuXbs0ZswYDRo0SH5+fpKkRx55RM7Ozho+fLiSk5P14Ycfat68eZowYYKtpg0AQKmxrAoAAAAAADeB/fv3q1u3bubjoob10KFDNW3aNH3xxReSpJYtW1o9b+vWrerataskKSYmRmPGjFGPHj3k6OiogQMHav78+Wasp6enNm7cqMjISLVp00a1atVSVFSUIiIiyndyAACUA5rjAAAAAADcBLp27SrDMK44frWxIt7e3lq1atVVY1q0aKGdO3ded34AAFQ2LKsCAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2zaHJ82bZocHBystiZNmpjj2dnZioyMVM2aNeXu7q6BAwcqPT3d6hipqakKCwtTtWrVVKdOHU2cOFH5+flWMdu2bVPr1q3l4uKihg0basWKFRUxPQAAAAAAAABAJWXzK8ebNWum3377zdy+/vprc2z8+PFau3atVq9ere3bt+vUqVO6//77zfGCggKFhYUpNzdXu3fv1sqVK7VixQpFRUWZMSkpKQoLC1O3bt2UlJSkcePG6fHHH9eGDRsqdJ4AAAAAAAAAgMrDyeYJODnJ19e32P6srCy9/fbbWrVqlbp37y5JWr58uQIDA7Vnzx61b99eGzdu1Pfff69NmzbJx8dHLVu21AsvvKDJkydr2rRpcnZ21pIlSxQQEKBXX31VkhQYGKivv/5ac+bMUWhoaIk55eTkKCcnx3xssVjKYeYAAAAAAAAAAFux+ZXjR48elZ+fn2677TaFh4crNTVVkpSYmKi8vDwFBwebsU2aNFG9evUUHx8vSYqPj1fz5s3l4+NjxoSGhspisSg5OdmMufQYRTFFxyhJdHS0PD09zc3f37/M5gsAAAAAAAAAsD2bNsfbtWunFStWKDY2VosXL1ZKSoo6deqkc+fOKS0tTc7OzvLy8rJ6jo+Pj9LS0iRJaWlpVo3xovGisavFWCwWXbx4scS8pkyZoqysLHM7ceJEWUwXAAAAAAAAAFBJ2HRZlV69epn/btGihdq1a6f69evro48+kpubm83ycnFxkYuLi83ODwAAAAAAAAAoXzZfVuVSXl5e+uc//6mffvpJvr6+ys3NVWZmplVMenq6uUa5r6+v0tPTi40XjV0txsPDw6YNeAAAAAAAAACA7VSq5vj58+d17Ngx1a1bV23atFHVqlW1efNmc/zIkSNKTU1VUFCQJCkoKEgHDx5URkaGGRMXFycPDw81bdrUjLn0GEUxRccAAAAAAAAAANgfmzbH//Of/2j79u06fvy4du/erQEDBqhKlSp6+OGH5enpqeHDh2vChAnaunWrEhMTNWzYMAUFBal9+/aSpJCQEDVt2lSDBw/Wd999pw0bNmjq1KmKjIw0l0UZNWqUfv75Z02aNEk//PCDXn/9dX300UcaP368LacOAAAAAAAAALAhm645/uuvv+rhhx/WH3/8odq1a6tjx47as2ePateuLUmaM2eOHB0dNXDgQOXk5Cg0NFSvv/66+fwqVapo3bp1Gj16tIKCglS9enUNHTpU06dPN2MCAgK0fv16jR8/XvPmzdOtt96qt956S6GhoRU+XwAAAAAAAABA5WDT5vgHH3xw1XFXV1ctWrRIixYtumJM/fr19eWXX171OF27dtW3335bqhwBAAAAAAAAADefSrXmOAAAAAAAAAAAFYHmOAAAAAAAAADA7tAcBwAAAAAAAADYHZrjAAAAAAAAAAC7Q3McAAAAAAAAAGB3aI4DAAAAAAAAAOwOzXEAAHBVO3bsUN++feXn5ycHBwetWbPGatwwDEVFRalu3bpyc3NTcHCwjh49ahVz5swZhYeHy8PDQ15eXho+fLjOnz9vFXPgwAF16tRJrq6u8vf318yZM8t7agAAAAAAO0ZzHAAAXNWFCxd05513atGiRSWOz5w5U/Pnz9eSJUuUkJCg6tWrKzQ0VNnZ2WZMeHi4kpOTFRcXp3Xr1mnHjh2KiIgwxy0Wi0JCQlS/fn0lJiZq1qxZmjZtmpYuXVru8wMAAAAA2CcnWycAAAAqt169eqlXr14ljhmGoblz52rq1Km67777JEnvvPOOfHx8tGbNGg0aNEiHDx9WbGys9u3bp7Zt20qSFixYoN69e2v27Nny8/NTTEyMcnNztWzZMjk7O6tZs2ZKSkrSa6+9ZtVEBwAAAACgrHDlOAAAKLWUlBSlpaUpODjY3Ofp6al27dopPj5ekhQfHy8vLy+zMS5JwcHBcnR0VEJCghnTuXNnOTs7mzGhoaE6cuSIzp49e8Xz5+TkyGKxWG0AAAAAAFwLmuMAAKDU0tLSJEk+Pj5W+318fMyxtLQ01alTx2rcyclJ3t7eVjElHePSc5QkOjpanp6e5ubv739jEwIAAAAA2A2a4wAA4G9rypQpysrKMrcTJ07YOiUAAAAAwN8EzXEAAFBqvr6+kqT09HSr/enp6eaYr6+vMjIyrMbz8/N15swZq5iSjnHpOUri4uIiDw8Pqw0AAAAAgGtBcxwAAJRaQECAfH19tXnzZnOfxWJRQkKCgoKCJElBQUHKzMxUYmKiGbNlyxYVFhaqXbt2ZsyOHTuUl5dnxsTFxalx48a65ZZbKmg2AAD8ve3YsUN9+/aVn5+fHBwctGbNGqtxwzAUFRWlunXrys3NTcHBwTp69KhVzJkzZxQeHi4PDw95eXlp+PDhOn/+vFXMgQMH1KlTJ7m6usrf318zZ84s76kBAFAuaI4DAICrOn/+vJKSkpSUlCTpr5twJiUlKTU1VQ4ODho3bpxefPFFffHFFzp48KCGDBkiPz8/9e/fX5IUGBionj17asSIEdq7d6927dqlMWPGaNCgQfLz85MkPfLII3J2dtbw4cOVnJysDz/8UPPmzdOECRNsNGsAAP5+Lly4oDvvvFOLFi0qcXzmzJmaP3++lixZooSEBFWvXl2hoaHKzs42Y8LDw5WcnKy4uDitW7dOO3bsUEREhDlusVgUEhKi+vXrKzExUbNmzdK0adO0dOnScp8fAABlzcnWCQAAgMpt//796tatm/m4qGE9dOhQrVixQpMmTdKFCxcUERGhzMxMdezYUbGxsXJ1dTWfExMTozFjxqhHjx5ydHTUwIEDNX/+fHPc09NTGzduVGRkpNq0aaNatWopKirK6sM4AAC4ul69eqlXr14ljhmGoblz52rq1Km67777JEnvvPOOfHx8tGbNGg0aNEiHDx9WbGys9u3bp7Zt20qSFixYoN69e2v27Nny8/NTTEyMcnNztWzZMjk7O6tZs2ZKSkrSa6+9dsW6nZOTo5ycHPOxxWIp45kDAFA6NMcBAMBVde3aVYZhXHHcwcFB06dP1/Tp068Y4+3trVWrVl31PC1atNDOnTtLnScAALiylJQUpaWlKTg42Nzn6empdu3aKT4+XoMGDVJ8fLy8vLzMxrgkBQcHy9HRUQkJCRowYIDi4+PVuXNnOTs7mzGhoaGaMWOGzp49W+JyaNHR0Xr++efLd4IAAJQCy6oAAAAAAHCTS0tLkyT5+PhY7ffx8THH0tLSVKdOHatxJycneXt7W8WUdIxLz3G5KVOmKCsry9xOnDhx4xMCAKAMcOU4AAAAAAAoNy4uLnJxcbF1GgAAFMOV4wAAAAAA3OR8fX0lSenp6Vb709PTzTFfX19lZGRYjefn5+vMmTNWMSUd49JzAADwd0FzHAAAAACAm1xAQIB8fX21efNmc5/FYlFCQoKCgoIkSUFBQcrMzFRiYqIZs2XLFhUWFqpdu3ZmzI4dO5SXl2fGxMXFqXHjxiWuNw4AQGVGcxwAAAAAgJvA+fPnlZSUpKSkJEl/3YQzKSlJqampcnBw0Lhx4/Tiiy/qiy++0MGDBzVkyBD5+fmpf//+kqTAwED17NlTI0aM0N69e7Vr1y6NGTNGgwYNkp+fnyTpkUcekbOzs4YPH67k5GR9+OGHmjdvniZMmGCjWQMAUHqsOQ4AAAAAwE1g//796tatm/m4qGE9dOhQrVixQpMmTdKFCxcUERGhzMxMdezYUbGxsXJ1dTWfExMTozFjxqhHjx5ydHTUwIEDNX/+fHPc09NTGzduVGRkpNq0aaNatWopKipKERERFTdRAADKCM1xAAAAAABuAl27dpVhGFccd3Bw0PTp0zV9+vQrxnh7e2vVqlVXPU+LFi20c+fOUucJAEBlwbIqAAAAAAAAAAC7Q3McAAAAAAAAAGB3aI4DAAAAAAAAAOwOzXEAAAAAAAAAgN2hOQ4AAAAAAAAAsDs0xwEAAAAAAAAAdofmOAAAAAAAAADA7jiV9okFBQVas2aNDh8+LElq1qyZ+vXrpypVqpRZcgAA4MZRswEAqPyo1wAAVLxSNcd/+uknhYWF6ddff1Xjxo0lSdHR0fL399f69et1++23l2mSAACgdKjZAABUftRrAABso1TLqowdO1a33XabTpw4oW+++UbffPONUlNTFRAQoLFjx5Z1jgAAoJSo2QAAVH7UawAAbKNUV45v375de/bskbe3t7mvZs2aeuWVV9ShQ4cySw4AANwYajYAAJUf9RoAANso1ZXjLi4uOnfuXLH958+fl7Oz8w0nBQAAygY1GwCAyo96DQCAbZSqOd6nTx9FREQoISFBhmHIMAzt2bNHo0aNUr9+/co6RwAAUErUbAAAKj/qNQAAtlGq5vj8+fN1++23KygoSK6urnJ1dVWHDh3UsGFDzZs3r6xzBAAApUTNBgCg8qNeAwBgG6Vac9zLy0uff/65jh49qh9++EGSFBgYqIYNG5ZpcgAA4MZQswEAqPyo1wAA2EapmuNFGjVqpEaNGkmSCgoKyiQhAABQ9qjZAABUftRrAAAqVqmWVUlJSdHDDz+s0aNH6+zZs+rXr59cXFzUuHFjHThwoKxzBAAApUTNBgCg8qNeAwBgG6Vqjo8cOVKHDx/WoUOH1L17d+Xm5urzzz9X06ZNNW7cuDJOEQAAlBY1GwCAyo96DQCAbZRqWZWEhATt3LlT9evXl7e3t/bt26fWrVurYcOGateuXVnnCAAASomaDQBA5Ue9BgDANkp15fi5c+dUt25deXp6qlq1avLy8pL0101Ezp07V5b5AQCAG0DNBgCg8qNeAwBgG6W+IWdsbKw8PT1VWFiozZs369ChQ8rMzCzD1AAAQFmgZgMAUPlRrwEAqHilbo4PHTrU/PfIkSPNfzs4ONxYRgAAoExRswEAqPyo1wAAVLxSNccLCwvLOg8AAFAOqNkAAFR+1GsAAGyjVGuOv/POO8rJySnrXAAAQBmjZgMAUPlRrwEAsI1SXTk+bNgw9ezZU3Xq1CnrfAAAQBmiZlesvu/3va74tQ+vLadMAAB/J9RrAABso1RXjhuGUdZ5AACAckDNBgCg8qNeAwBgG6W+IedHH30kDw+PEseGDBly3cd75ZVXNGXKFD311FOaO3euJCk7O1tPP/20PvjgA+Xk5Cg0NFSvv/66fHx8zOelpqZq9OjR2rp1q9zd3TV06FBFR0fLyen/T23btm2aMGGCkpOT5e/vr6lTp+rRRx+97hwBAPg7KuuaDQAAyh71GgCAilfq5vjMmTNVpUqVYvsdHByuu3Dv27dPb7zxhlq0aGG1f/z48Vq/fr1Wr14tT09PjRkzRvfff7927dolSSooKFBYWJh8fX21e/du/fbbbxoyZIiqVq2ql19+WZKUkpKisLAwjRo1SjExMdq8ebMef/xx1a1bV6GhoaWcPQAAfx9lWbMBAED5oF4DAFDxSt0c379/f5msh3b+/HmFh4frzTff1Isvvmjuz8rK0ttvv61Vq1ape/fukqTly5crMDBQe/bsUfv27bVx40Z9//332rRpk3x8fNSyZUu98MILmjx5sqZNmyZnZ2ctWbJEAQEBevXVVyVJgYGB+vrrrzVnzhya4wAAu1BWNRsAAJQf6jUAABWvVGuOl6XIyEiFhYUpODjYan9iYqLy8vKs9jdp0kT16tVTfHy8JCk+Pl7Nmze3WmYlNDRUFotFycnJZszlxw4NDTWPUZKcnBxZLBarDQAAAAAAAABw8yjVleP169cv8ete1+uDDz7QN998o3379hUbS0tLk7Ozs7y8vKz2+/j4KC0tzYy5tDFeNF40drUYi8Wiixcvys3Nrdi5o6Oj9fzzz5d6XgAAVBZlVbMBAED5oV4DAGAbpbpyPCUlRTVr1ryhE584cUJPPfWUYmJi5OrqekPHKmtTpkxRVlaWuZ04ccLWKQEAUCplUbMBAED5ol4DAGAbpWqOjx07VvPnzy+2f+HChRo3btw1HSMxMVEZGRlq3bq1nJyc5OTkpO3bt2v+/PlycnKSj4+PcnNzlZmZafW89PR0+fr6SpJ8fX2Vnp5ebLxo7GoxHh4eJV41LkkuLi7y8PCw2gAA+Dsqi5oNAADKF/UaAADbKFVz/JNPPlGHDh2K7b/nnnv08ccfX9MxevTooYMHDyopKcnc2rZtq/DwcPPfVatW1ebNm83nHDlyRKmpqQoKCpIkBQUF6eDBg8rIyDBj4uLi5OHhoaZNm5oxlx6jKKboGAAA3MzKomYDAIDyRb0GAMA2SrXm+B9//CFPT89i+z08PHT69OlrOkaNGjV0xx13WO2rXr26atasae4fPny4JkyYIG9vb3l4eOjJJ59UUFCQ2rdvL0kKCQlR06ZNNXjwYM2cOVNpaWmaOnWqIiMj5eLiIkkaNWqUFi5cqEmTJumxxx7Tli1b9NFHH2n9+vWlmToAAH8rZVGzAQBA+aJeAwBgG6W6crxhw4aKjY0ttv+rr77SbbfddsNJFZkzZ4769OmjgQMHqnPnzvL19dWnn35qjlepUkXr1q1TlSpVFBQUpH//+98aMmSIpk+fbsYEBARo/fr1iouL05133qlXX31Vb731lkJDQ8ssTwAAKquKqtkAAKD0qNcAANhGqa4cnzBhgsaMGaPff/9d3bt3lyRt3rxZr776qubOnVvqZLZt22b12NXVVYsWLdKiRYuu+Jz69evryy+/vOpxu3btqm+//bbUeQEA8HdVXjUbAACUHeo1AAC2Uarm+GOPPaacnBy99NJLeuGFFyRJDRo00OLFizVkyJAyTRAAAJQeNRsAgMqPeg0AgG04GIZh3MgBfv/9d7m5ucnd3b2scqp0LBaLPD09lZWVJQ8Pjxs+Xt++1xe/du0NnxIAUMmVda0pCTX7+vR9/zoLdimsfZgiDwB/J9TrslHmr+P1fsguDT6YA8DfxvXUmVKtOS5J+fn52rRpkz799FMV9ddPnTql8+fPl/aQAACgHFCzAQCo/KjXAABUvFI1x3/55Rc1b95c9913nyIjI/X7779LkmbMmKH//Oc/ZZogAAAovYqq2QUFBXr22WcVEBAgNzc33X777XrhhRd06RfUDMNQVFSU6tatKzc3NwUHB+vo0aNWxzlz5ozCw8Pl4eEhLy8vDR8+nKYAAOCmx2dsAABso1TN8aeeekpt27bV2bNn5ebmZu4fMGCANm/eXGbJAQCAG1NRNXvGjBlavHixFi5cqMOHD2vGjBmaOXOmFixYYMbMnDlT8+fP15IlS5SQkKDq1asrNDRU2dnZZkx4eLiSk5MVFxendevWaceOHYqIiCizPAEAqIz4jA0AgG2U6oacO3fu1O7du+Xs7Gy1v0GDBjp58mSZJAYAAG5cRdXs3bt367777lNYWJh5/Pfff1979+6V9NdV43PnztXUqVN13333SZLeeecd+fj4aM2aNRo0aJAOHz6s2NhY7du3T23btpUkLViwQL1799bs2bPl5+dXZvkCAFCZ8BkbAADbKNWV44WFhSooKCi2/9dff1WNGjVuOCkAAFA2Kqpm33PPPdq8ebN+/PFHSdJ3332nr7/+Wr169ZIkpaSkKC0tTcHBweZzPD091a5dO8XHx0uS4uPj5eXlZTbGJSk4OFiOjo5KSEgo8bw5OTmyWCxWGwAAfzd8xgYAwDZK1RwPCQnR3LlzzccODg46f/68nnvuOfXu3buscgMAADeoomr2M888o0GDBqlJkyaqWrWqWrVqpXHjxik8PFySlJaWJkny8fGxep6Pj485lpaWpjp16liNOzk5ydvb24y5XHR0tDw9Pc3N39+/zOYEAEBF4TM2AAC2UaplVV599VWFhoaqadOmys7O1iOPPKKjR4+qVq1aev/998s6RwAAUEoVVbM/+ugjxcTEaNWqVWrWrJmSkpI0btw4+fn5aejQoWV2nstNmTJFEyZMMB9bLBYa5ACAvx0+YwMAYBulunL81ltv1Xfffaf//ve/Gj9+vFq1aqVXXnlF3377bbErvgAAgO1UVM2eOHGiefV48+bNNXjwYI0fP17R0dGSJF9fX0lSenq61fPS09PNMV9fX2VkZFiN5+fn68yZM2bM5VxcXOTh4WG1AQDwd1NR9bqgoEDPPvusAgIC5Obmpttvv10vvPCCDMMwYwzDUFRUlOrWrSs3NzcFBwfr6NGjVsc5c+aMwsPD5eHhIS8vLw0fPlznz58vszwBAKgopbpyXPrra87//ve/yzIXAABQDiqiZv/5559ydLT+m3uVKlVUWFgoSQoICJCvr682b96sli1bSvrrKu+EhASNHj1akhQUFKTMzEwlJiaqTZs2kqQtW7aosLBQ7dq1K9f8AQCwtYqo1zNmzNDixYu1cuVKNWvWTPv379ewYcPk6empsWPHSpJmzpyp+fPna+XKlQoICNCzzz6r0NBQff/993J1dZUkhYeH67ffflNcXJzy8vI0bNgwRUREaNWqVeWaPwAAZa1UzfEvvvjiquP9+vUrVTIAAKBsVVTN7tu3r1566SXVq1dPzZo107fffqvXXntNjz32mKS/1k4dN26cXnzxRTVq1Mj8sO3n56f+/ftLkgIDA9WzZ0+NGDFCS5YsUV5ensaMGaNBgwbJz8+vTPIEAKAyqqh6vXv3bt13330KCwuTJDVo0EDvv/++9u7dK+mvq8bnzp2rqVOn6r777pMkvfPOO/Lx8dGaNWs0aNAgHT58WLGxsdq3b595E+0FCxaod+/emj17dok1OycnRzk5OeZjbqANAKgsStUcL/oQW8TBwcH8GpaDg0OJd9kGAAAVr6Jq9oIFC/Tss8/qiSeeUEZGhvz8/DRy5EhFRUWZMZMmTdKFCxcUERGhzMxMdezYUbGxseZVaJIUExOjMWPGqEePHnJ0dNTAgQM1f/78MskRAIDKqqLq9T333KOlS5fqxx9/1D//+U999913+vrrr/Xaa69JklJSUpSWlqbg4GDzOZ6enmrXrp3i4+M1aNAgxcfHy8vLy2yMS1JwcLAcHR2VkJCgAQMGFDtvdHS0nn/++TKZAwAAZalUzfGir0gXqVGjhr777jvddtttZZIUAAAoGxVVs2vUqKG5c+dq7ty5V4xxcHDQ9OnTNX369CvGeHt785VsAIDdqah6/cwzz8hisahJkyaqUqWKCgoK9NJLLyk8PFySlJaWJkny8fGxep6Pj485lpaWVmwddCcnJ3l7e5sxl+MG2gCAyqrUa45fysHBoSwOAwAAyhk1GwCAyq+86vVHH32kmJgYrVq1Ss2aNVNSUpLGjRsnPz8/DR06tFzOKf11A20XF5dyOz4AAKV1w83x48eP68KFC6pRo0ZZ5AMAAMoJNRsAgMqvPOv1xIkT9cwzz2jQoEGSpObNm+uXX35RdHS0hg4dKl9fX0lSenq66tataz4vPT3dvKG2r6+vMjIyrI6bn5+vM2fOmM8HAODvolTN8fvvv1+SdPHiRe3Zs0c9evRQ7dq1yzQxAABw46jZAABUfhVVr//88085Ojpa7atSpYq5rEtAQIB8fX21efNmsxlusViUkJCg0aNHS5KCgoKUmZmpxMREtWnTRpK0ZcsWFRYWql27dmWeMwAA5alUzXFPT09Jf/3FuG/fvnrsscfKNCkAAFA2qNkAAFR+FVWv+/btq5deekn16tVTs2bN9O233+q1114zz+fg4KBx48bpxRdfVKNGjRQQEKBnn31Wfn5+5k1DAwMD1bNnT40YMUJLlixRXl6exowZo0GDBsnPz69c8gYAoLyUqjm+fPnyss4DAACUA2o2AACVX0XV6wULFujZZ5/VE088oYyMDPn5+WnkyJGKiooyYyZNmqQLFy4oIiJCmZmZ6tixo2JjY+Xq6mrGxMTEaMyYMerRo4ccHR01cOBAzZ8/v0LmAABAWSpVc9xisVx13MPDo1TJAACAskXNBgCg8quoel2jRg3NnTtXc+fOvWKMg4ODpk+frunTp18xxtvbW6tWrSqTnAAAsKVSNce9vLxKvHu2YRhycHBQQUHBDScGAABuHDUbAIDKj3oNAIBtlKo5fttttykjI0PPPPOMOnToUNY5AQCAMkLNBgCg8qNeAwBgG6Vqjh8+fFgLFizQSy+9pG+//VYzZ85UQEBAWecGAABuEDUbAIDKj3oNAIBtOJbmSVWrVtWECRN09OhR/eMf/1CLFi309NNPKzMzs4zTAwAAN4KaDQBA5Ue9BgDANkrVHC/i7e2tuXPn6ttvv9Xx48fVsGHDq97YAwAA2AY1GwCAyo96DQBAxSrVsiqtWrUqdrMQwzCUk5Ojp59+WuPGjSuL3AAAwA2iZgMAUPlRrwEAsI1SNcf79+9fxmkAAIDyQM0GAKDyo14DAGAbpWqOP/fcc2WdBwAAKAfUbAAAKj/qNQAAtlGq5rjFYrnquIeHR6mSAQAAZYuaDQBA5Ue9BgDANkrVHPfy8iq2Hpr015poDg4OKigouOHEAADAjaNmAwBQ+VGvAQCwjVI1xyXp448/lre3d1nmAgAAygE1GwCAyo96DQBAxSt1c7xDhw6qU6dOWeYCAADKATUbAIDKj3oNAEDFK3Vz/Pvvv9cff/yh6tWry9fXV87OzmWZFwAAKCPUbAAAKj/qNQAAFc+xtE/s0aOHmjVrpoCAAFWvXl3NmzfXnDlzyjI3AABQBqjZAABUftRrAAAqXqmuHE9JSZFhGMrLy5PFYtGpU6e0d+9ePfvss8rPz9fEiRPLOk8AAFAK1GwAACo/6jUAALZRquZ4/fr1rR63adNGffv21T//+U9Nnz6dwg0AQCVBzQYAoPKjXgMAYBulXnO8JIMGDVKzZs3K8pAAAKAcULMBAKj8qNcAAJSvG2qOJyYm6vDhw5Kkpk2bqnXr1mrdunWZJAYAAMoONRsAgMqPeg0AQMUqVXM8IyNDgwYN0rZt2+Tl5SVJyszMVLdu3fTBBx+odu3aZZkjAAAoJWo2AACVH/UaAADbcCzNk5588kmdO3dOycnJOnPmjM6cOaNDhw7JYrFo7NixZZ0jAAAoJWo2AACVH/UaAADbKNWV47Gxsdq0aZMCAwPNfU2bNtWiRYsUEhJSZskBAIAbQ80GAKDyo14DAGAbpbpyvLCwUFWrVi22v2rVqiosLLzhpAAAQNmgZgMAUPlRrwEAsI1SNce7d++up556SqdOnTL3nTx5UuPHj1ePHj3KLDkAAHBjqNkAAFR+1GsAAGyjVM3xhQsXymKxqEGDBrr99tt1++23KyAgQBaLRQsWLCjrHAEAQClRswEAqPyo1wAA2MZ1rTl+7tw51ahRQ/7+/vrmm2+0adMm/fDDD5KkwMBABQcHa9++fbr11lvLJVkAAHBtqNkAAFR+1GsAAGzruprjISEhiouLk7u7uxwcHHTvvffq3nvvlSTl5+fr2Wef1YwZM5Sbm1suyQIAgGtDzQYAoPKjXgMAYFvXtazKuXPnFBwcLIvFYrX/0KFDuuuuu7Rs2TKtWbOmLPMDAAClQM0GAKDyo14DAGBb19Uc37p1qy5cuKB7771XFotFhmFoxowZatu2rQIDA3Xo0CH17t27vHIFAADXiJoNAEDlR70GAMC2rmtZldq1a2vLli0KDg5W9+7d5eLioqNHj+q9997TAw88UF45AgCA60TNBgCg8qNeAwBgW9fVHJf+Kt6bN29WcHCwDh06pKSkJDVp0qQ8cgMAADeAmg0AQOVHvQYAwHaua1mVIrVq1dKWLVvUtGlTPfLIIzp79mxZ5wUAAMoANRsAgMqPeg0AgG1c15Xj999/v9VjDw8P7dixQ3fffbeaN29u7v/000+v6XiLFy/W4sWLdfz4cUlSs2bNFBUVpV69ekmSsrOz9fTTT+uDDz5QTk6OQkND9frrr8vHx8c8RmpqqkaPHq2tW7fK3d1dQ4cOVXR0tJyc/v/Utm3bpgkTJig5OVn+/v6aOnWqHn300euZOgAAfytlXbMBAEDZo14DAGBb19Uc9/T0LPY4ICCg1Ce/9dZb9corr6hRo0YyDEMrV67Ufffdp2+//VbNmjXT+PHjtX79eq1evVqenp4aM2aM7r//fu3atUuSVFBQoLCwMPn6+mr37t367bffNGTIEFWtWlUvv/yyJCklJUVhYWEaNWqUYmJitHnzZj3++OOqW7euQkNDS507AACVWVnXbAAAUPao1wAA2JaDYRiGrZO4lLe3t2bNmqUHHnhAtWvX1qpVq8wbkfzwww8KDAxUfHy82rdvr6+++kp9+vTRqVOnzKvJlyxZosmTJ+v333+Xs7OzJk+erPXr1+vQoUPmOQYNGqTMzEzFxsZeU04Wi0Wenp7KysqSh4fHDc+xb9/ri1+79oZPCQCo5Mq61tirsnwd+75/nQW7FNY+TJEHgL8T6nXZKPPX8Xo/ZJcGH8wB4G/jeupMqdYcLw8FBQX64IMPdOHCBQUFBSkxMVF5eXkKDg42Y5o0aaJ69eopPj5ekhQfH6/mzZtbLbMSGhoqi8Wi5ORkM+bSYxTFFB2jJDk5ObJYLFYbAAAAAAAAAODmYfPm+MGDB+Xu7i4XFxeNGjVKn332mZo2baq0tDQ5OzvLy8vLKt7Hx0dpaWmSpLS0NKvGeNF40djVYiwWiy5evFhiTtHR0fL09DQ3f3//spgqAAAAAAAAAKCSsHlzvHHjxkpKSlJCQoJGjx6toUOH6vvvv7dpTlOmTFFWVpa5nThxwqb5AAAAAAAAAADK1nXdkLM8ODs7q2HDhpKkNm3aaN++fZo3b57+9a9/KTc3V5mZmVZXj6enp8vX11eS5Ovrq71791odLz093Rwr+t+ifZfGeHh4yM3NrcScXFxc5OLiUibzAwAAAAAAAABUPja/cvxyhYWFysnJUZs2bVS1alVt3rzZHDty5IhSU1MVFBQkSQoKCtLBgweVkZFhxsTFxcnDw0NNmzY1Yy49RlFM0TEAAAAAAAAAAPbHpleOT5kyRb169VK9evV07tw5rVq1Stu2bdOGDRvk6emp4cOHa8KECfL29paHh4eefPJJBQUFqX379pKkkJAQNW3aVIMHD9bMmTOVlpamqVOnKjIy0rzye9SoUVq4cKEmTZqkxx57TFu2bNFHH32k9evX23LqAAAAAAAAAAAbsmlzPCMjQ0OGDNFvv/0mT09PtWjRQhs2bNC9994rSZozZ44cHR01cOBA5eTkKDQ0VK+//rr5/CpVqmjdunUaPXq0goKCVL16dQ0dOlTTp083YwICArR+/XqNHz9e8+bN06233qq33npLoaGhFT5fAAAAAAAAAEDlYNPm+Ntvv33VcVdXVy1atEiLFi26Ykz9+vX15ZdfXvU4Xbt21bfffluqHAEAwLU5efKkJk+erK+++kp//vmnGjZsqOXLl6tt27aSJMMw9Nxzz+nNN99UZmamOnTooMWLF6tRo0bmMc6cOaMnn3xSa9euNf9APm/ePLm7u9tqWgAAAACAm1SlW3McAAD8/Zw9e1YdOnRQ1apV9dVXX+n777/Xq6++qltuucWMmTlzpubPn68lS5YoISFB1atXV2hoqLKzs82Y8PBwJScnKy4uTuvWrdOOHTsUERFhiykBAAAAAG5yNr1yHAAA3BxmzJghf39/LV++3NwXEBBg/tswDM2dO1dTp07VfffdJ0l655135OPjozVr1mjQoEE6fPiwYmNjtW/fPvNq8wULFqh3796aPXu2/Pz8KnZSAAAAAICbGleOAwCAG/bFF1+obdu2evDBB1WnTh21atVKb775pjmekpKitLQ0BQcHm/s8PT3Vrl07xcfHS5Li4+Pl5eVlNsYlKTg4WI6OjkpISCjxvDk5ObJYLFYbAAAAAADXguY4AAC4YT///LO5fviGDRs0evRojR07VitXrpQkpaWlSZJ8fHysnufj42OOpaWlqU6dOlbjTk5O8vb2NmMuFx0dLU9PT3Pz9/cv66kBAHBTOXnypP7973+rZs2acnNzU/PmzbV//35z3DAMRUVFqW7dunJzc1NwcLCOHj1qdYwzZ84oPDxcHh4e8vLy0vDhw3X+/PmKngoAADeM5jgAALhhhYWFat26tV5++WW1atVKERERGjFihJYsWVKu550yZYqysrLM7cSJE+V6PgAA/s64RwgAANZYcxwAANywunXrqmnTplb7AgMD9cknn0iSfH19JUnp6emqW7euGZOenq6WLVuaMRkZGVbHyM/P15kzZ8znX87FxUUuLi5lNQ0AAG5q3CMEAABrXDkOAABuWIcOHXTkyBGrfT/++KPq168v6a8P3r6+vtq8ebM5brFYlJCQoKCgIElSUFCQMjMzlZiYaMZs2bJFhYWFateuXQXMAgCAmxv3CAEAwBrNcQAAcMPGjx+vPXv26OWXX9ZPP/2kVatWaenSpYqMjJQkOTg4aNy4cXrxxRf1xRdf6ODBgxoyZIj8/PzUv39/SX9dad6zZ0+NGDFCe/fu1a5duzRmzBgNGjSIq9AAACgD3CMEAABrLKsCAABu2F133aXPPvtMU6ZM0fTp0xUQEKC5c+cqPDzcjJk0aZIuXLigiIgIZWZmqmPHjoqNjZWrq6sZExMTozFjxqhHjx5ydHTUwIEDNX/+fFtMCQCAm05hYaHatm2rl19+WZLUqlUrHTp0SEuWLNHQoUPL7bxTpkzRhAkTzMcWi4UGOQCgUqA5DgAAykSfPn3Up0+fK447ODho+vTpmj59+hVjvL29tWrVqvJIDwAAu8c9QgAAsMayKgAAAAAA2AHuEQIAgDWuHAcAAAAAwA6MHz9e99xzj15++WU99NBD2rt3r5YuXaqlS5dKsr5HSKNGjRQQEKBnn332ivcIWbJkifLy8rhHCADgb4vmOAAAAAAAdoB7hAAAYI3mOAAAAAAAdoJ7hAAA8P+x5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsDs1xAAAAAAAAAIDdoTkOAAAAAAAAALA7NMcBAAAAAAAAAHaH5jgAAAAAAAAAwO7QHAcAAAAAAAAA2B2a4wAAAAAAAAAAu0NzHAAAAAAAAABgd2iOAwAAAAAAAADsjk2b49HR0brrrrtUo0YN1alTR/3799eRI0esYrKzsxUZGamaNWvK3d1dAwcOVHp6ulVMamqqwsLCVK1aNdWpU0cTJ05Ufn6+Vcy2bdvUunVrubi4qGHDhlqxYkV5Tw8AAAAAAAAAUEnZtDm+fft2RUZGas+ePYqLi1NeXp5CQkJ04cIFM2b8+PFau3atVq9ere3bt+vUqVO6//77zfGCggKFhYUpNzdXu3fv1sqVK7VixQpFRUWZMSkpKQoLC1O3bt2UlJSkcePG6fHHH9eGDRsqdL4AAAAAAAAAgMrByZYnj42NtXq8YsUK1alTR4mJiercubOysrL09ttva9WqVerevbskafny5QoMDNSePXvUvn17bdy4Ud9//702bdokHx8ftWzZUi+88IImT56sadOmydnZWUuWLFFAQIBeffVVSVJgYKC+/vprzZkzR6GhocXyysnJUU5OjvnYYrGU46sAAAAAAAAAAKholWrN8aysLEmSt7e3JCkxMVF5eXkKDg42Y5o0aaJ69eopPj5ekhQfH6/mzZvLx8fHjAkNDZXFYlFycrIZc+kximKKjnG56OhoeXp6mpu/v3/ZTRIAAAAAAAAAYHOVpjleWFiocePGqUOHDrrjjjskSWlpaXJ2dpaXl5dVrI+Pj9LS0syYSxvjReNFY1eLsVgsunjxYrFcpkyZoqysLHM7ceJEmcwRAAAAAAAAAFA52HRZlUtFRkbq0KFD+vrrr22dilxcXOTi4mLrNAAAAAAAAAAA5aRSXDk+ZswYrVu3Tlu3btWtt95q7vf19VVubq4yMzOt4tPT0+Xr62vGpKenFxsvGrtajIeHh9zc3Mp6OgAAAAAAAACASs6mzXHDMDRmzBh99tln2rJliwICAqzG27Rpo6pVq2rz5s3mviNHjig1NVVBQUGSpKCgIB08eFAZGRlmTFxcnDw8PNS0aVMz5tJjFMUUHQMAAJSdV155RQ4ODho3bpy5Lzs7W5GRkapZs6bc3d01cODAYn+4Tk1NVVhYmKpVq6Y6depo4sSJys/Pr+DsAQAAAAD2wqbN8cjISL333ntatWqVatSoobS0NKWlpZnrgHt6emr48OGaMGGCtm7dqsTERA0bNkxBQUFq3769JCkkJERNmzbV4MGD9d1332nDhg2aOnWqIiMjzaVRRo0apZ9//lmTJk3SDz/8oNdff10fffSRxo8fb7O5AwBwM9q3b5/eeOMNtWjRwmr/+PHjtXbtWq1evVrbt2/XqVOndP/995vjBQUFCgsLU25urnbv3q2VK1dqxYoVioqKqugpAAAAAADshE2b44sXL1ZWVpa6du2qunXrmtuHH35oxsyZM0d9+vTRwIED1blzZ/n6+urT/9fevUdXVZ55HP+FXAmYhItJCJKAVUEgcgkSTlXqSBaRMlQqywsTuSiWkQkWioNIpXhrjYMOgjZiLxY6CxDBhVQuBiNXgUBqJJCAjVgYoEoSW5oEEJKQvPMHky0HAhJyOXuf/f2sddbi7Pc9Z78PJ2c/+zx773evXGm1BwYGas2aNQoMDJTH49FDDz2ksWPH6vnnn7f6dOvWTWvXrlV2drb69Omj//7v/9bvf/97paamtmi8AAD4s5MnTyotLU2/+93v1K5dO2t5eXm53nrrLc2dO1d33XWXkpKStHDhQu3YsUM7d+6UJH344Yfav3+/Fi9erL59+2rYsGF64YUXlJmZqaqqqkuus7KyUhUVFV4PAABwZbjaCwDgdj69Iacx5jv7hIWFKTMzU5mZmZfsk5CQoHXr1l32fe68807t3r27wWMEAABXJj09XcOHD1dKSop++ctfWsvz8vJUXV2tlJQUa1mPHj0UHx+vnJwcDRo0SDk5OUpMTFRMTIzVJzU1VZMmTdK+ffvUr1+/eteZkZGh5557rvmCAgDAT13uaq+1a9dqxYoVioyM1OTJk3Xvvfdq+/btkr692is2NlY7duzQsWPHNHbsWAUHB+vFF1/0RSgAAFw1W9yQEwAAONuyZcv06aefKiMj46K24uJihYSEKCoqymt5TEyMiouLrT7nF8br2uvaLmXmzJkqLy+3HkePHm1kJAAA+D9fXO0FAIAdURwHAACNcvToUU2ZMkVLlixRWFhYi647NDRUERERXg8AAHB551/tdb7vutpL0iWv9qqoqNC+ffvqXR/ToAEA7IriOAAAaJS8vDyVlpaqf//+CgoKUlBQkLZs2aLXXntNQUFBiomJUVVVlcrKyrxeV1JSotjYWElSbGzsRfOZ1j2v6wMAABrPF1d7ZWRkKDIy0np06dKlCSIBAKDxKI4DAIBGGTJkiAoKCpSfn289BgwYoLS0NOvfwcHB2rBhg/WaoqIiHTlyRB6PR5Lk8XhUUFCg0tJSq092drYiIiLUs2fPFo8JAAB/5KurvZgGDQBgVz69IScAAHC+a665Rr179/Za1qZNG3Xo0MFaPmHCBE2bNk3t27dXRESEHn/8cXk8Hg0aNEiSNHToUPXs2VNjxozRnDlzVFxcrFmzZik9PV2hoaEtHhMAAP7o/Ku96tTU1Gjr1q369a9/rfXr11tXe51/9viFV3vl5uZ6ve93Xe0VGhpKPgcA2BJnjgMAgGb36quv6l//9V81atQoDR48WLGxsVq5cqXVHhgYqDVr1igwMFAej0cPPfSQxo4dq+eff96HowYAwL9wtRcAAN44cxwAADS5zZs3ez0PCwtTZmamMjMzL/mahIQErVu3rplHBgCAe3G1FwAA3iiOAwAAAAAASeeu9mrVqpVGjRqlyspKpaam6o033rDa6672mjRpkjwej9q0aaNx48ZxtRcAwJEojgMAAAAA4FJc7QUAcDPmHAcAAAAAAAAAuA7FcQAAAAAAAACA61AcBwAAAAAAAAC4DsVxAAAAAAAAAIDrUBwHAAAAAAAAALgOxXEAAAAAAAAAgOtQHAcAAAAAAAAAuA7FcQAAAAAAAACA61AcBwAAAAAAAAC4DsVxAAAAAAAAAIDrUBwHAAAAAAAAALgOxXEAAAAAAAAAgOtQHAcAAAAAAAAAuA7FcQAAAAAAAACA61AcBwAAAAAAAAC4DsVxAAAAAAAAAIDrUBwHAAAAAAAAALgOxXEAAAAAAAAAgOtQHAcAAAAAAAAAuA7FcQAAAAAAAACA61AcBwAAAAAAAAC4DsVxAAAAAAAAAIDrBPl6AAAAAG414u0RDX7N6tGrm2EkAAAAAOA+nDkOAAAAAAAAAHAdiuMAAAAAAAAAANehOA4AAAAAAAAAcB3mHHeAEQ2fjlSrmY4UAAAAAAAAAC6JM8cBAAAAAAAAAK5DcRwAAAAAAAAA4DoUxwEAAAAAAAAArkNxHAAAAAAAAADgOtyQEwAAAAAA4HJGjGhY/9Wrm2ccAIAmxZnjAAAAAAAAAADXoTgOAAAAAAAAAHAdiuMAAAAAAAAAANehOA4AAAAAAAAAcB2K4wAAAAAAAAAA16E4DgAAAAAAAABwHYrjAAAAAAAAAADXoTgOAAAAAAAAAHAdiuMAAAAAAAAAANfxaXF869atGjFihOLi4hQQEKBVq1Z5tRtjNHv2bHXq1EmtW7dWSkqKDhw44NXn+PHjSktLU0REhKKiojRhwgSdPHnSq8/evXt1xx13KCwsTF26dNGcOXOaOzQAAAAAAAAAgI35tDh+6tQp9enTR5mZmfW2z5kzR6+99prefPNN7dq1S23atFFqaqrOnDlj9UlLS9O+ffuUnZ2tNWvWaOvWrZo4caLVXlFRoaFDhyohIUF5eXl6+eWX9eyzz+q3v/1ts8cHAAAAAAAAALCnIF+ufNiwYRo2bFi9bcYYzZs3T7NmzdI999wjSfqf//kfxcTEaNWqVXrwwQf12WefKSsrS3/+8581YMAASdLrr7+uH/7wh3rllVcUFxenJUuWqKqqSn/4wx8UEhKiXr16KT8/X3PnzvUqogMAAAAAAAAA3MO2c44fOnRIxcXFSklJsZZFRkYqOTlZOTk5kqScnBxFRUVZhXFJSklJUatWrbRr1y6rz+DBgxUSEmL1SU1NVVFRkf75z3/Wu+7KykpVVFR4PQAAAAAAAAAA/sO2xfHi4mJJUkxMjNfymJgYq624uFjR0dFe7UFBQWrfvr1Xn/re4/x1XCgjI0ORkZHWo0uXLo0PCAAAP5aRkaFbb71V11xzjaKjozVy5EgVFRV59Tlz5ozS09PVoUMHtW3bVqNGjVJJSYlXnyNHjmj48OEKDw9XdHS0pk+frrNnz7ZkKAAAAAAAl7BtcdyXZs6cqfLycutx9OhRXw8JAABb27Jli9LT07Vz505lZ2erurpaQ4cO1alTp6w+P/vZz7R69WqtWLFCW7Zs0VdffaV7773Xaq+pqdHw4cNVVVWlHTt26I9//KMWLVqk2bNn+yIkAAD8DgezAQDw5tM5xy8nNjZWklRSUqJOnTpZy0tKStS3b1+rT2lpqdfrzp49q+PHj1uvj42NvSiR1z2v63Oh0NBQhYaGNkkcAAC4QVZWltfzRYsWKTo6Wnl5eRo8eLDKy8v11ltvaenSpbrrrrskSQsXLtTNN9+snTt3atCgQfrwww+1f/9+ffTRR4qJiVHfvn31wgsvaMaMGXr22We9pkirU1lZqcrKSus5U6EBAHBpdQezb731Vp09e1Y///nPNXToUO3fv19t2rSRdO5g9tq1a7VixQpFRkZq8uTJuvfee7V9+3ZJ3x7Mjo2N1Y4dO3Ts2DGNHTtWwcHBevHFF30ZHgAADWbbM8e7deum2NhYbdiwwVpWUVGhXbt2yePxSJI8Ho/KysqUl5dn9dm4caNqa2uVnJxs9dm6dauqq6utPtnZ2erevbvatWvXQtEAAOAu5eXlkqT27dtLkvLy8lRdXe11L5EePXooPj7e614iiYmJXtOhpaamqqKiQvv27at3PUyFBgDAlcvKytL48ePVq1cv9enTR4sWLdKRI0es39R1B7Pnzp2ru+66S0lJSVq4cKF27NihnTt3SpJ1MHvx4sXq27evhg0bphdeeEGZmZmqqqryZXgAADSYT4vjJ0+eVH5+vvLz8yWduwlnfn6+jhw5ooCAAE2dOlW//OUv9f7776ugoEBjx45VXFycRo4cKUm6+eabdffdd+snP/mJcnNztX37dk2ePFkPPvig4uLiJEn/9m//ppCQEE2YMEH79u3TO++8o/nz52vatGk+ihoAAP9WW1urqVOn6rbbblPv3r0lnbvPR0hIiKKiorz6XngvkYbeJ4Sp0AAAuHotdTC7srJSFRUVXg8AAOzAp9OqfPLJJ/qXf/kX63ldwXrcuHFatGiRnnzySZ06dUoTJ05UWVmZbr/9dmVlZSksLMx6zZIlSzR58mQNGTJErVq10qhRo/Taa69Z7ZGRkfrwww+Vnp6upKQkdezYUbNnz9bEiRNbLlAAAFwkPT1dhYWF2rZtW7Ovi6nQAAC4Oi15MDsjI0PPPfdcE0cAAEDj+bQ4fuedd8oYc8n2gIAAPf/883r++ecv2ad9+/ZaunTpZddzyy236OOPP77qcQIAgCszefJkrVmzRlu3btV1111nLY+NjVVVVZXKysq8fnCXlJR43SckNzfX6/2+6z4hAADg6rTkweyZM2d6Xb1dUVHBVGgAAFuw7ZzjAADAOYwxmjx5st577z1t3LhR3bp182pPSkpScHCw171EioqKdOTIEa97iRQUFHjdbDs7O1sRERHq2bNnywQCAIAL1B3M3rRp0yUPZp/vwoPZdQevz2+va6tPaGioIiIivB4AANgBxXEAANBo6enpWrx4sZYuXaprrrlGxcXFKi4u1unTpyWdm+ZswoQJmjZtmjZt2qS8vDw9/PDD8ng8GjRokCRp6NCh6tmzp8aMGaM9e/Zo/fr1mjVrltLT05k6BQCAJsDBbAAAvPl0WhUAAOAfFixYIOnclGnnW7hwocaPHy9JevXVV637g1RWVio1NVVvvPGG1TcwMFBr1qzRpEmT5PF41KZNG40bN+6y06sBAIArl56erqVLl+pPf/qTdTBbOncQu3Xr1l4Hs9u3b6+IiAg9/vjjlzyYPWfOHBUXF3MwGwDgWBTHAQBAo13uHiJ1wsLClJmZqczMzEv2SUhI0Lp165pyaAAA4P9xMBsAAG8UxwEAAAAAcAEOZgMA4I05xwEAAAAAAAAArkNxHAAAAAAAAADgOhTHAQAAAAAAAACuQ3EcAAAAAAAAAOA6FMcBAAAAAAAAAK5DcRwAAAAAAAAA4DoUxwEAAAAAAAAArkNxHAAAAAAAAADgOkG+HgAAAAAAAIBfGTGiYf1Xr26ecQAALoszxwEAAAAAAAAArkNxHAAAAAAAAADgOhTHAQAAAAAAAACuw5zjAAAADjLi7YbNYbp6NHOYAgAAAEB9OHMcAAAAAAAAAOA6FMcBAAAAAAAAAK5DcRwAAAAAAAAA4DoUxwEAAAAAAAAArkNxHAAAAAAAAADgOhTHAQAAAAAAAACuQ3EcAAAAAAAAAOA6FMcBAAAAAAAAAK5DcRwAAAAAAAAA4DoUxwEAAAAAAAAArkNxHAAAAAAAAADgOhTHAQAAAAAAAACuQ3EcAAAAAAAAAOA6Qb4eAAAAAJrPiLdHNPg1q0evboaRAAAAAIC9cOY4AAAAAAAAAMB1KI4DAAAAAAAAAFyH4jgAAAAAAAAAwHWYc9xPjWjg9KKrmVoUAAAAAAAAgItw5jgAAAAAAAAAwHUojgMAAAAAAAAAXIdpVQAAAAAAAHypoXOjSsyPCgBNgDPHAQAAAAAAAACuw5njAAAAAAAATtPQs8050xwALsKZ4wAAAAAAAAAA1+HMcQAAAHgZ8XbDzkRbPZoz0QAAAAA4D2eOAwAAAAAAAABch+I4AAAAAAAAAMB1KI4DAAAAAAAAAFyHOcchqeE3uZa40TUAAAAAAAAA56I4DgAAgEbhBp4AAAAAnIjiOAAAAAAAgL/jknEAuAhzjgMAAAAAAAAAXIczxwEAANCiGjoNi8RULAAA+ERDzzbnTHMADuOqM8czMzPVtWtXhYWFKTk5Wbm5ub4eEgAAuAD5GgAAZyBnAwCczjVnjr/zzjuaNm2a3nzzTSUnJ2vevHlKTU1VUVGRoqOjfT08AAAg8jUujZt+AoC9kLNRr5aY1/xq1tFQnAEPuEaAMcb4ehAtITk5Wbfeeqt+/etfS5Jqa2vVpUsXPf7443rqqacu+9qKigpFRkaqvLxcERERjR5LS2zH/QX5CIBbNHWucarG5Gupaf8fr2bqD9jH1RTH7fiZU+QH7IV8/S07/cbmRzaaHMUIwNEakmdcceZ4VVWV8vLyNHPmTGtZq1atlJKSopycnIv6V1ZWqrKy0npeXl4u6dx/bFOorm6St3GFu+/29Qgutny5r0cAwB/V5RiXHLOuV0PztdS8Obv6GxK2k939lg13Iq5CQ+NYfl/Dd1TuX3F/s6/Djhoat+Q/sTe3lvi/9dXfLfn6HLv9xuZHNpqcvxQj7m/g9rgl1tFQLVGEuZoY7FgcaonPu6F89H/bkHztiuL43//+d9XU1CgmJsZreUxMjP7yl79c1D8jI0PPPffcRcu7dOnSbGOEc0RG+noEAPzZiRMnFOnSDU1D87VEzgYuFPlo828/WmIdduXm2Jtbc//fNvX7uzlfS/zGBnyiJbY5dtyu2XFMkn3H1RB2jaEJx3Ul+doVxfGGmjlzpqZNm2Y9r62t1fHjx9WhQwcFBAQ06r0rKirUpUsXHT161NGX4flDHP4Qg0QcduMPcfhDDJLz4jDG6MSJE4qLi/P1UByluXK20/5+LodY7MlfYvGXOCRisSu7xUK+vjr8xr48f4hBIg678Yc4/CEGiTh8oSH52hXF8Y4dOyowMFAlJSVey0tKShQbG3tR/9DQUIWGhnoti4qKatIxRURE2P4P6Ur4Qxz+EINEHHbjD3H4QwySs+Jw8xloUsPztdT8OdtJfz/fhVjsyV9i8Zc4JGKxKzvF4vZ8LfEbu7n4QwwScdiNP8ThDzFIxNHSrjRft2rmcdhCSEiIkpKStGHDBmtZbW2tNmzYII/H48ORAQCAOuRrAACcgZwNAPAXrjhzXJKmTZumcePGacCAARo4cKDmzZunU6dO6eGHH/b10AAAwP8jXwMA4AzkbACAP3BNcfyBBx7Q119/rdmzZ6u4uFh9+/ZVVlbWRTcQaW6hoaF65plnLrqkzGn8IQ5/iEEiDrvxhzj8IQbJf+JwG/J10yMWe/KXWPwlDolY7MqfYvE35Oym4w8xSMRhN/4Qhz/EIBGH3QUYY4yvBwEAAAAAAAAAQEtyxZzjAAAAAAAAAACcj+I4AAAAAAAAAMB1KI4DAAAAAAAAAFyH4jgAAAAAAAAAwHUojregzMxMde3aVWFhYUpOTlZubq7PxpKRkaFbb71V11xzjaKjozVy5EgVFRV59Tlz5ozS09PVoUMHtW3bVqNGjVJJSYlXnyNHjmj48OEKDw9XdHS0pk+frrNnz3r12bx5s/r376/Q0FDdcMMNWrRoUbPF9dJLLykgIEBTp051XBxffvmlHnroIXXo0EGtW7dWYmKiPvnkE6vdGKPZs2erU6dOat26tVJSUnTgwAGv9zh+/LjS0tIUERGhqKgoTZgwQSdPnvTqs3fvXt1xxx0KCwtTly5dNGfOnCYZf01NjX7xi1+oW7duat26tb73ve/phRde0Pn3/LVjDFu3btWIESMUFxengIAArVq1yqu9Jce8YsUK9ejRQ2FhYUpMTNS6deuaJI7q6mrNmDFDiYmJatOmjeLi4jR27Fh99dVXjorjQo899pgCAgI0b94828UB57NTzpbsta1qDH/a/1iwYIFuueUWRUREKCIiQh6PRx988IHj4qiPk/ennn32WQUEBHg9evTo4bg46jh9/7BO165dL/pcAgIClJ6eLsl5nwvsw075mlxtn++sv+Zop+Znf8rN/pCXycn1MGgRy5YtMyEhIeYPf/iD2bdvn/nJT35ioqKiTElJiU/Gk5qaahYuXGgKCwtNfn6++eEPf2ji4+PNyZMnrT6PPfaY6dKli9mwYYP55JNPzKBBg8z3v/99q/3s2bOmd+/eJiUlxezevdusW7fOdOzY0cycOdPqc/DgQRMeHm6mTZtm9u/fb15//XUTGBhosrKymjym3Nxc07VrV3PLLbeYKVOmOCqO48ePm4SEBDN+/Hiza9cuc/DgQbN+/XrzxRdfWH1eeuklExkZaVatWmX27NljfvSjH5lu3bqZ06dPW33uvvtu06dPH7Nz507z8ccfmxtuuMGMHj3aai8vLzcxMTEmLS3NFBYWmrffftu0bt3a/OY3v2l0DL/61a9Mhw4dzJo1a8yhQ4fMihUrTNu2bc38+fNtHcO6devM008/bVauXGkkmffee8+rvaXGvH37dhMYGGjmzJlj9u/fb2bNmmWCg4NNQUFBo+MoKyszKSkp5p133jF/+ctfTE5Ojhk4cKBJSkryeg+7x3G+lStXmj59+pi4uDjz6quv2i4OOJvdcrYx9tlWNZY/7X+8//77Zu3atebzzz83RUVF5uc//7kJDg42hYWFjorjQk7enzLGmGeeecb06tXLHDt2zHp8/fXXjovDGP/YP6xTWlrq9ZlkZ2cbSWbTpk3GGGd9LrAPu+VrcrV9vrP+mKOdnJ/9JTf7S14mJ1+M4ngLGThwoElPT7ee19TUmLi4OJORkeHDUX2rtLTUSDJbtmwxxpwrpgUHB5sVK1ZYfT777DMjyeTk5BhjziX/Vq1ameLiYqvPggULTEREhKmsrDTGGPPkk0+aXr16ea3rgQceMKmpqU06/hMnTpgbb7zRZGdnmx/84AdWsnBKHDNmzDC33377Jdtra2tNbGysefnll61lZWVlJjQ01Lz99tvGGGP2799vJJk///nPVp8PPvjABAQEmC+//NIYY8wbb7xh2rVrZ8VVt+7u3bs3Oobhw4ebRx55xGvZvffea9LS0hwTw4U7sS055vvvv98MHz7cazzJycnm3//93xsdR31yc3ONJHP48GHHxfG3v/3NdO7c2RQWFpqEhASv4rgd44Dz2D1n+3Jb1dScvv9xoXbt2pnf//73jo3D6ftTxpz7Ad6nT59625wUhzH+sX94KVOmTDHf+973TG1treM+F9iHnfM1udp+31kn52in52d/yc3+mpfJycYwrUoLqKqqUl5enlJSUqxlrVq1UkpKinJycnw4sm+Vl5dLktq3by9JysvLU3V1tdeYe/Toofj4eGvMOTk5SkxMVExMjNUnNTVVFRUV2rdvn9Xn/Peo69PUcaenp2v48OEXrcspcbz//vsaMGCA7rvvPkVHR6tfv3763e9+Z7UfOnRIxcXFXmOIjIxUcnKyVxxRUVEaMGCA1SclJUWtWrXSrl27rD6DBw9WSEiIVxxFRUX65z//2agYvv/972vDhg36/PPPJUl79uzRtm3bNGzYMMfEcKGWHHNLfVfqlJeXKyAgQFFRUY6Ko7a2VmPGjNH06dPVq1evi9qdEgfsywk5+0JO3L7Wcfr+R52amhotW7ZMp06dksfjcWwcTt+fqnPgwAHFxcXp+uuvV1pamo4cOeLIOPxh/7A+VVVVWrx4sR555BEFBAQ47nOBPTgtXzv1+yo5P1f7Q472h/zsD7nZH/MyOfkciuMt4O9//7tqamq8/nAkKSYmRsXFxT4a1bdqa2s1depU3Xbbberdu7ckqbi4WCEhIVbhrM75Yy4uLq43prq2y/WpqKjQ6dOnm2T8y5Yt06effqqMjIyL2pwSx8GDB7VgwQLdeOONWr9+vSZNmqSf/vSn+uMf/+g1jsv9DRUXFys6OtqrPSgoSO3bt29QrFfrqaee0oMPPqgePXooODhY/fr109SpU5WWluaYGC7UkmO+VJ/m2EacOXNGM2bM0OjRoxUREeGoOP7rv/5LQUFB+ulPf1pvu1PigH3ZPWfXx4nbV8n5+x+SVFBQoLZt2yo0NFSPPfaY3nvvPfXs2dNxcUj+sT8lScnJyVq0aJGysrK0YMECHTp0SHfccYdOnDjhqDgk/9g/rM+qVatUVlam8ePHW+tw0ucCe3Bavnbq99XJudpfcrQ/5Gd/yc3+mJfJyecE+XoA8L309HQVFhZq27Ztvh5Kgx09elRTpkxRdna2wsLCfD2cq1ZbW6sBAwboxRdflCT169dPhYWFevPNNzVu3Dgfj+7KLF++XEuWLNHSpUvVq1cv5efna+rUqYqLi3NMDG5QXV2t+++/X8YYLViwwNfDaZC8vDzNnz9fn376qQICAnw9HACN5OT9jzrdu3dXfn6+ysvL9e6772rcuHHasmWLr4fVYP6yPyXJumJNkm655RYlJycrISFBy5cvV+vWrX04sobzh/3D+rz11lsaNmyY4uLifD0UAN/BybnaH3K0v+Rnf8nN/piXycnncOZ4C+jYsaMCAwMvurtrSUmJYmNjfTSqcyZPnqw1a9Zo06ZNuu6666zlsbGxqqqqUllZmVf/88ccGxtbb0x1bZfrExER0SQbwby8PJWWlqp///4KCgpSUFCQtmzZotdee01BQUGKiYlxRBydOnVSz549vZbdfPPN1qVGdeO43N9QbGysSktLvdrPnj2r48ePNyjWqzV9+nTr7PHExESNGTNGP/vZz6wj3E6I4UItOeZL9WnKmOoK44cPH1Z2drZ11rhT4vj4449VWlqq+Ph46/t++PBhPfHEE+ratatj4oC92TlnX4oTt69O3/+oExISohtuuEFJSUnKyMhQnz59NH/+fMfF4S/7U/WJiorSTTfdpC+++MJxn4s/7B9e6PDhw/roo4/06KOPWsuc9rnAHpyWr534fXV6rvaHHO2v+dmpudnf8jI5+VsUx1tASEiIkpKStGHDBmtZbW2tNmzYII/H45MxGWM0efJkvffee9q4caO6devm1Z6UlKTg4GCvMRcVFenIkSPWmD0ejwoKCry+2HUFt7oNhsfj8XqPuj5NFfeQIUNUUFCg/Px86zFgwAClpaVZ/3ZCHLfddpuKioq8ln3++edKSEiQJHXr1k2xsbFeY6ioqNCuXbu84igrK1NeXp7VZ+PGjaqtrVVycrLVZ+vWraqurvaKo3v37mrXrl2jYvjmm2/UqpX3JiUwMFC1tbWOieFCLTnm5v4bqyuMHzhwQB999JE6dOjg1e6EOMaMGaO9e/d6fd/j4uI0ffp0rV+/3jFxwN7smLO/i5O2r/6y/3EptbW1qqysdFwc/rI/VZ+TJ0/qr3/9qzp16uS4z8Uf9g8vtHDhQkVHR2v48OHWMqd9LrAHp+VrJ31f/TVXOzFH+2t+dmpu9re8TE4+j2/vB+oey5YtM6GhoWbRokVm//79ZuLEiSYqKsrr7q4tadKkSSYyMtJs3rzZHDt2zHp88803Vp/HHnvMxMfHm40bN5pPPvnEeDwe4/F4rPazZ8+a3r17m6FDh5r8/HyTlZVlrr32WjNz5kyrz8GDB014eLiZPn26+eyzz0xmZqYJDAw0WVlZzRbb+Xdvdkocubm5JigoyPzqV78yBw4cMEuWLDHh4eFm8eLFVp+XXnrJREVFmT/96U9m79695p577jHdunUzp0+ftvrcfffdpl+/fmbXrl1m27Zt5sYbbzSjR4+22svKykxMTIwZM2aMKSwsNMuWLTPh4eHmN7/5TaNjGDdunOncubNZs2aNOXTokFm5cqXp2LGjefLJJ20dw4kTJ8zu3bvN7t27jSQzd+5cs3v3bnP48OEWHfP27dtNUFCQeeWVV8xnn31mnnnmGRMcHGwKCgoaHUdVVZX50Y9+ZK677jqTn5/v9Z0//w7Ydo+jPgkJCebVV1/1WmaHOOBsdsvZxthnW9VY/rT/8dRTT5ktW7aYQ4cOmb1795qnnnrKBAQEmA8//NBRcVyKE/enjDHmiSeeMJs3bzaHDh0y27dvNykpKaZjx46mtLTUUXEY4x/7h+erqakx8fHxZsaMGRe1OelzgX3YLV+Tq+3znfXnHO3E/Owvudmf8jI52RvF8Rb0+uuvm/j4eBMSEmIGDhxodu7c6bOxSKr3sXDhQqvP6dOnzX/8x3+Ydu3amfDwcPPjH//YHDt2zOt9/vd//9cMGzbMtG7d2nTs2NE88cQTprq62qvPpk2bTN++fU1ISIi5/vrrvdbRHC5MFk6JY/Xq1aZ3794mNDTU9OjRw/z2t7/1aq+trTW/+MUvTExMjAkNDTVDhgwxRUVFXn3+8Y9/mNGjR5u2bduaiIgI8/DDD5sTJ0549dmzZ4+5/fbbTWhoqOncubN56aWXmmT8FRUVZsqUKSY+Pt6EhYWZ66+/3jz99NNexVc7xrBp06Z6vwvjxo1r8TEvX77c3HTTTSYkJMT06tXLrF27tkniOHTo0CW/85s2bXJMHPWprzhuhzjgfHbK2cbYa1vVGP60//HII4+YhIQEExISYq699lozZMgQ60e3k+K4FKfuTz3wwAOmU6dOJiQkxHTu3Nk88MAD5osvvnBcHHWcvn94vvXr1xtJF43PGOd9LrAPO+VrcrV9vrP+nKOdmJ/9KTf7S14mJ3sLMMaYpjsPHQAAAAAAAAAA+2POcQAAAAAAAACA61AcBwAAAAAAAAC4DsVxAAAAAAAAAIDrUBwHAAAAAAAAALgOxXEAAAAAAAAAgOtQHAcAAAAAAAAAuA7FcQAAAAAAAACA61AcBwAAAAAAAAC4DsVxAAAAAAAAAIDrUBwHAAAAAAAAALgOxXEAFxk/frxGjhx50fLNmzcrICBAZWVlLT4mAABwMXI2AAD2R74G7IviOAAAAAAAAADAdSiOA7hqZWVlevTRR3XttdcqIiJCd911l/bs2WO1P/vss+rbt6/Xay48Mv6Pf/xDo0ePVufOnRUeHq7ExES9/fbbLRgFAAD+j5wNAID9ka+BlkdxHMBVu++++1RaWqoPPvhAeXl56t+/v4YMGaLjx49f8XucOXNGSUlJWrt2rQoLCzVx4kSNGTNGubm5zThyAADchZwNAID9ka+Blhfk6wEAcKZt27YpNzdXpaWlCg0NlSS98sorWrVqld59911NnDjxit6nc+fO+s///E/r+eOPP67169dr+fLlGjhwYLOMHQAANyFnAwBgf+RrwDcojgO4Knv27NHJkyfVoUMHr+WnT5/WX//6V+t5QUGB2rZtaz2vqanx6l9TU6MXX3xRy5cv15dffqmqqipVVlYqPDy8eQMAAMAlyNkAANgf+RrwDYrjAK7KyZMn1alTJ23evPmitqioKOvf3bt31/vvv28937Vrlx566CHr+csvv6z58+dr3rx5SkxMVJs2bTR16lRVVVU15/ABAHANcjYAAPZHvgZ8g+I4gKvSv39/FRcXKygoSF27dr1kv5CQEN1www3W87/97W9e7du3b9c999xjJfPa2lp9/vnn6tmzZ7OMGwAAtyFnAwBgf+RrwDcojgOoV3l5ufLz872WffHFF5LOXcY1aNAgeTwejRw5UnPmzNFNN92kr776SmvXrtWPf/xjDRgw4IrWc+ONN+rdd9/Vjh071K5dO82dO1clJSUkbgAArhA5GwAA+yNfA/ZEcRxAvTZv3qx+/frV2zZ48GBt2rRJ69at09NPP62HH35YX3/9tWJjYzV48GDFxMRc8XpmzZqlgwcPKjU1VeHh4Zo4caJGjhyp8vLypgoFAAC/Rs4GAMD+yNeAPQUYY4yvBwHAWbp27apFixbpzjvv9PVQAADAZZCzAQCwP/I14DutfD0AAM7Ts2dPr7tjAwAAeyJnAwBgf+RrwHc4cxwAAAAAAAAA4DqcOQ4AAAAAAAAAcB2K4wAAAAAAAAAA16E4DgAAAAAAAABwHYrjAAAAAAAAAADXoTgOAAAAAAAAAHAdiuMAAAAAAAAAANehOA4AAAAAAAAAcB2K4wAAAAAAAAAA1/k/kWzZ+NBpflMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Разделение признаков (features) и целевой переменной (target)\n", + "X = df.drop(columns=['price']) # Признаки (все столбцы, кроме 'price')\n", + "y = df['price'] # Целевая переменная (price)\n", + "\n", + "# Разбиение на обучающую (60%), валидационную (20%) и тестовую (20%) выборки\n", + "X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4, random_state=42)\n", + "X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)\n", + "\n", + "# Проверка размеров выборок\n", + "print(f\"Размеры выборок:\")\n", + "print(f\"Обучающая выборка: {X_train.shape[0]} записей\")\n", + "print(f\"Валидационная выборка: {X_val.shape[0]} записей\")\n", + "print(f\"Тестовая выборка: {X_test.shape[0]} записей\")\n", + "\n", + "# Визуализация распределения цен в каждой выборке\n", + "plt.figure(figsize=(18, 6))\n", + "\n", + "plt.subplot(1, 3, 1)\n", + "plt.hist(y_train, bins=30, color='blue', alpha=0.7)\n", + "plt.title('Обучающая выборка')\n", + "plt.xlabel('Цена')\n", + "plt.ylabel('Количество')\n", + "\n", + "plt.subplot(1, 3, 2)\n", + "plt.hist(y_val, bins=30, color='green', alpha=0.7)\n", + "plt.title('Валидационная выборка')\n", + "plt.xlabel('Цена')\n", + "plt.ylabel('Количество')\n", + "\n", + "plt.subplot(1, 3, 3)\n", + "plt.hist(y_test, bins=30, color='red', alpha=0.7)\n", + "plt.title('Тестовая выборка')\n", + "plt.xlabel('Цена')\n", + "plt.ylabel('Количество')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Балансировка выборок**" + ] + }, { "cell_type": "code", "execution_count": 7, @@ -366,246 +404,314 @@ "name": "stdout", "output_type": "stream", "text": [ - "Размер обучающей выборки: 12000\n", - "Размер контрольной выборки: 3000\n", - "Размер тестовой выборки: 3000\n" + "Размеры выборок:\n", + "Обучающая выборка: 9000 записей\n", + "Валидационная выборка: 3000 записей\n", + "Тестовая выборка: 3000 записей\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIjCAYAAAAJLyrXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo20lEQVR4nO3dd3gUZf/+/XOTkEKqQArRAKEoBBAFFEIRhUBAiijlRlFpCmIAqSooHY2ACiICFm5AgZ8KKAreoAQEFUK30DuGYkJNQpEEknn+4Ml8s2wCmZi4Ad6v49jjIDPXznxmd3bYc6+Za2yGYRgCAAAAAOSZi7MLAAAAAICbDUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFJwkJmZqVOnTungwYPOLgXI1aVLl3T8+HGdOHHC2aWgAPG+Asir5ORk7d+/X1euXHF2KbhNEaQgSUpMTFT//v1VtmxZubu7KzAwUBEREUpNTXV2aYApLi5Obdq0UUBAgLy8vHTnnXfqpZdecnZZ+Idu9ff1yJEj8vT01Nq1a51dCnBTu3z5siZMmKAaNWrIw8NDd9xxhypVqqSVK1c6u7Tb0unTp+Xt7a3//e9/zi7FaWyGYRjOLgKF48CBA5owYYJWrFih48ePy93dXdWrV1fHjh3Vs2dPeXl5SZL279+vRx55RJcvX1a/fv1Us2ZNubm5ycvLS3Xr1pWrq6uTtwSQpk2bpr59+6pBgwbq3r277rzzTklS2bJlValSJSdXh/y6Hd7X559/Xnv37tWaNWucXUqRcurUKQUGBmrkyJEaNWqUs8tBEZeWlqZmzZpp/fr1euGFF9SkSRMVL15crq6uqlWrlvz8/Jxd4m3ppZde0i+//KItW7Y4uxSncHN2ASgc3333nTp06CAPDw89++yzqlatmtLT0/XLL79oyJAh2rFjhz766CNJUq9eveTu7q7169ebX2KAomTfvn0aOHCgevbsqWnTpslmszm7JBSA2+F9PXnypObMmaM5c+Y4uxTgpjZ+/Hht2LBB33//vR5++GFnl4P/3wsvvKApU6Zo1apVaty4sbPL+dcRpG5Bhw4dUqdOnVS2bFmtWrVKpUuXNufFxMRo//79+u677yRJW7Zs0apVq/TDDz8QolBkTZkyRSEhIZoyZcot+WX7dnU7vK9z586Vm5ubWrdu7exSgJvWlStXNHnyZA0aNIgQVcRUqVJF1apV0+zZs2/LIMU1UregCRMm6Pz585o5c6ZdiMpSsWJF8/qD9evXy9PTUwcOHFDVqlXl4eGhkJAQ9erVS2fOnLF73s8//6wOHTqoTJky8vDwUFhYmAYMGKC///47xzpsNluOj8OHD5ttZs2apcaNGysoKEgeHh6KiIjQ9OnTHZZVrlw5tWrVymF6nz59cvwCNnfuXD344IMqXry47rjjDj300EP64Ycf7JbXtWtXu+csWLBANptN5cqVM6cdPnxYNptNb7/9tiZNmqSyZcvKy8tLjRo10vbt2x3Wu2rVKjVs2FDe3t4KCAjQY489pl27dtm1GTVqlN3r4evrqwcffFCLFy+2a5fX17tr167y8fFxqGXhwoWy2WxavXq1Oe3hhx9WtWrVHNq+/fbbDu/NN998o5YtWyo0NFQeHh6qUKGCxo4dq4yMDIfnT58+XdWqVVPx4sXttm3hwoUOba/166+/qkWLFvLz85OPj4+aNGmi9evX27VZv369atWqpRdffFHBwcHy8PBQtWrV9PHHH5ttDMNQuXLl9Nhjjzms49KlS/L391evXr0k/d97cK1r94szZ85o8ODBql69unx8fOTn56cWLVro999/t3te1n4ye/Zsc9revXv1+OOP64477pCXl5ceeOABh/d49erVOb5OPj4+DvtnTvv6H3/8oa5du6p8+fLy9PRUSEiIunfvrtOnTzts248//qiGDRvqjjvusHuP+vTp49A2pxqzHh4eHrr77rsVGxur7GeGZ72mp06dynVZ176+eXlfs1y4cEGDBg1SWFiYPDw8dM899+jtt9/WtWenZ23TvHnzdM8998jT01O1atXSTz/9ZNcup33gxx9/lIeHh1544QVz2p9//qkXX3xR99xzj7y8vFSyZEl16NDB7rNyPYsXL1adOnVy/Ixm7Tc5PfK77Tk9xo0bJ0lKT0/XiBEjVKtWLfn7+8vb21sNGzbUjz/+mGNdeTnude3a1e6YKV29JszLy8vhmHLx4kV169ZN3t7eioiIME8Funz5srp166bixYurRo0a2rx5s93yHn74YdlsNrVt29bhNezVq5dsNpvdcS2nz6N09YdEm81mtw/mVH/Wa3nt6YbHjh1T9+7dzX21atWq+u9//+vw3EuXLmnUqFG6++675enpqdKlS+uJJ57QgQMHcq3v3LlzqlWrlsLDw/XXX3+Z0/P63ktX/9+rVauWvLy8VKJECXXq1ElHjhxxaHeta/9PuvaRvc6s/28OHjyo6OhoeXt7KzQ0VGPGjHGoKTMzU5MnT1bVqlXl6emp4OBg9erVS2fPnnWoYdq0aeZ3kNDQUMXExCg5Odmcv2fPHp09e1a+vr5q1KiRihcvLn9/f7Vq1cphn8zant27d6tjx47y8/NTyZIl9dJLL+nSpUt2bfP6HeSxxx5TuXLl5OnpqaCgILVp00bbtm2za3PlyhWNHTtWFSpUkIeHh8qVK6dhw4YpLS3Nrl25cuXM19bFxUUhISH6z3/+o4SEBLt2b7/9turVq6eSJUvKy8tLtWrVyvH/1NyO461atcrx+0xePhfS1YE8+vfvb+57FStW1Pjx45WZmemwrqZNm2rJkiU57pe3OnqkbkFLlixR+fLlVa9evRu2PX36tC5duqTevXurcePGeuGFF3TgwAF98MEH2rBhgzZs2CAPDw9JV4PGxYsX1bt3b5UsWVIbN27U+++/r6NHj2rBggU5Lv/xxx/XE088IelqMMg6nTDL9OnTVbVqVbVp00Zubm5asmSJXnzxRWVmZiomJiZf2z969GiNGjVK9erV05gxY+Tu7q4NGzZo1apVatasWY7PuXLlil577bVcl/npp5/q3LlziomJ0aVLl/Tee++pcePG2rZtm4KDgyVdvWC+RYsWKl++vEaNGqW///5b77//vurXr6+tW7c6/Gf92WefSbp6ncC0adPUoUMHbd++Xffcc4+k/L3eBWn27Nny8fHRwIED5ePjo1WrVmnEiBFKTU3VxIkTzXZffPGFXnzxRT388MPq27evvL29tWvXLr355ps3XMeOHTvUsGFD+fn56eWXX1axYsX04Ycf6uGHH9aaNWtUp04dSVf3082bN8vNzU0xMTGqUKGCFi9erJ49e+r06dN69dVXZbPZ9PTTT2vChAk6c+aMSpQoYa5nyZIlSk1N1dNPP23pNTh48KAWL16sDh06KDw8XElJSfrwww/VqFEj7dy5U6GhoTk+78yZM3rooYd07tw59evXTyEhIZo7d66eeOIJzZs3T08++aSlOnKzYsUKHTx4UN26dVNISIh5yu6OHTu0fv168wv5oUOH1LJlS5UuXVojRoxQYGCgJOmZZ57J87qGDRumKlWq6O+//9YXX3yhYcOGKSgoSD169Mh3/Xl5X6WrIblNmzb68ccf1aNHD9133336/vvvNWTIEB07dkyTJk2yW+6aNWv0xRdfqF+/fvLw8NC0adPUvHlzbdy4MccfEiTp999/V9u2bfXoo4/qgw8+MKdv2rRJ69atU6dOnXTXXXfp8OHDmj59uh5++GHt3LlTxYsXz3X7Ll++rE2bNql3797XfR169uyphg0bSpK++uorff311+Y8q9vetGlTPfvss3bT7rvvPklSamqqPvnkEz355JN6/vnnde7cOc2cOVPR0dHauHGj2S5LXo57ORkxYoTDF1ZJGjBggObMmaM+ffrorrvu0osvvihJ+uijj9S4cWONGzdO7733nlq0aKGDBw/K19fXfK6np6e+++47nThxQkFBQZJk7ouenp7XfX2lq9cC5xTQ8yopKUl169Y1v7QGBgZq2bJl6tGjh1JTU9W/f39JUkZGhlq1aqWVK1eqU6dOeumll3Tu3DmtWLFC27dvV4UKFRyWffnyZbVr104JCQlau3at+QOolff+jTfe0PDhw9WxY0c999xzOnnypN5//3099NBD+vXXXxUQEHDDbZw+fbpd4D906JBGjBjh0C4jI0PNmzdX3bp1NWHCBC1fvlwjR47UlStXNGbMGLNdr169NHv2bHXr1k39+vXToUOHNHXqVP36669au3atihUrJulq8Bk9erSioqLUu3dv7dmzR9OnT9emTZvMdlk/Dg0dOlSVKlXS6NGjdenSJX3wwQeqX7++Nm3apLvvvtuuzo4dO6pcuXKKjY3V+vXrNWXKFJ09e1affvqp3Tbn9TtIz549FRISouPHj2vq1KmKiorSoUOHzGPAc889pzlz5qh9+/YaNGiQNmzYoNjYWO3atcvuMy1JDRs2VM+ePZWZmant27dr8uTJOn78uH7++WezzXvvvac2bdqoc+fOSk9P1+eff64OHTpo6dKlatmy5Q3fz7zI7XNx8eJFNWrUSMeOHVOvXr1UpkwZrVu3TkOHDtVff/2lyZMn27WvVauWJk2apB07duR6jL1lGbilpKSkGJKMxx57LE/tR44caUgymjRpYly5csWcPmvWLEOS8f7775vTLl686PD82NhYw2azGX/++afd9MuXLxuSjNGjRzss89ChQ9ddZnR0tFG+fHm7aWXLljVatmzp0DYmJsbIvhvv27fPcHFxMR5//HEjIyPDrm1mZqbd8rp06WL+PW3aNMPDw8N45JFHjLJly5rTDx06ZEgyvLy8jKNHj5rTN2zYYEgyBgwYYE677777jKCgIOP06dPmtN9//91wcXExnn32WXNa1mue3Q8//GBIMr788svrvjY5vd5dunQxvL29HdouWLDAkGT8+OOP5rRGjRoZVatWdWg7ceLEPL03vXr1MooXL25cunTJnPbkk08aAQEBxt9//21O+/HHHw1JxoIFCxyWkV3btm0Nd3d348CBA+a048ePG76+vsZDDz1kTitbtqwhyZg9e7Y57cqVK0aTJk0MDw8P49SpU4ZhGMaePXsMScb06dPt1tOmTRujXLly5j4wevRoQ5LdPpG1nuz7xaVLlxz2o0OHDhkeHh7GmDFj7KZJMmbNmmUYhmEMGjTIkGQsX77cbHPx4kWjSpUqRkhIiJGenn7d18nb29uuDsNw3Nezlnmt//f//p8hyfjpp5/MaR9++KEhyYiPj7drK8mIiYlxWEZ2WTVm348uXbpkuLi4GC+++KI5LWu/PnnyZK7Luvb1zev7unjxYkOSMW7cOLvltW/f3rDZbMb+/fvttkmSsXnzZnPan3/+aXh6ehqPP/64Q72GYRiHDx82SpcubTRo0MBuPzaMnF/j+Ph4Q5Lx6aef5rqthmEY+/fvdziOZrdv3z5DkjFnzpwc68rPtl/v/bxy5YqRlpZmN+3s2bNGcHCw0b17d3OaleNely5d7I6Z27dvN1xcXIwWLVrYHVMSExMNd3d3Y+jQoWbbpUuXGpKMRx991Pws7tq1y7DZbMakSZPMdlnHrXvvvdd4++23zemfffaZcddddxkNGza0O65d+3k0DMPo2LGjUa1aNSMsLMxuH+zWrZtRpkwZh9dKkjFy5Ejz7x49ehilS5c298ksnTp1Mvz9/c395L///a8hyXj33Xcdlpm1jdnry8zMNDp37mwUL17c2LBhg137vL73hw8fNlxdXY033njDrt22bdsMNzc3h+nXyu2zu2nTJofXsUuXLoYko2/fvnbb1bJlS8Pd3d1cxs8//2xIMubNm2e3zOXLl9tNP3HihOHu7m40a9bM7lg7depUQ5Lx3//+1zCM/zsOlSpVyu492Lt3r1GsWDGjXbt2DtvTpk0bu3W/+OKLhiTj999/N6fl9TvItb788ku748xvv/1mSDKee+45u3aDBw82JBmrVq0yp117HDQMw3jqqaeM4sWL2027trb09HSjWrVqRuPGje2m5/a5b9myZY7fZ/LyuRg7dqzh7e1t7N27126Zr776quHq6mokJCTYTV+3bp0hyfjiiy8c6rjVcWrfLSZruPLsv+TlxcCBA+1G53vmmWcUHBxsXkslyRzlT7p6usGpU6dUr149GYahX3/91W556enpkmT2ZuUm+zJTUlJ06tQpNWrUSAcPHlRKSopd28uXL+vUqVN2j2t/9Vy8eLEyMzM1YsQIubjY7965XYNx8eJFjRkzRn369FGZMmVybNO2bVu7a8gefPBB1alTxxzy86+//tJvv/2mrl272vWE3HvvvWratGmOQ4NmbcOuXbs0Y8YMeXt7q27dujm+Njd6vbMvL+tx7ty5HLclIyPDoe3Fixcd2mVf/7lz53Tq1Ck1bNhQFy9e1O7du+3mFS9ePE+/Cl9bxw8//KC2bduqfPny5vTSpUvrqaee0i+//GI3/H5wcLBdD4qrq6v69++vtLQ0xcXFSZLuvvtu1alTR/PmzTPbnTlzRsuWLVPnzp3NfSDrF+2jR49et0YPDw9zP8rIyNDp06fl4+Oje+65R1u3bnVof/78eZ06dUr/+9//FBERoejoaHOel5eXXnzxRSUmJub43PzI/h5dunRJp06dMveh7OvI2hdKliyZ73VlfT4TEhI0YcIEZWZm5ng+/JkzZ3Tq1ClduHAhT8vNy/v6v//9T66ururXr5/dcwcNGiTDMLRs2TK76ZGRkapVq5b5d5kyZfTYY4/p+++/dzg19fTp04qOjpavr6++/fZbh/04+2t8+fJlnT59WhUrVlRAQMAN38esX9HvuOOOHOfn5Thpdduvx9XVVe7u7pKunnZ15swZXblyRbVr185xW2503MvJ0KFDVbNmTXXo0MFu+s8//6z09HTzDAVJZo/zAw88YH42K1eurIiIiByHs+7WrZtmzZpl/j1r1ix16dLF4Vh/rS1btmjBggWKjY11aBsUFKQTJ06Y70VODMPQokWL1Lp1axmGYXfsjI6OVkpKivn6LVq0SKVKlVLfvn0dlpPT/0FDhgzRvHnz9OWXX+rBBx+0m5fX9/6rr75SZmamOnbsaFdbSEiIKlWq5HDqZkHIfipZVi9denq6+ZldsGCB/P391bRpU7uaatWqJR8fH7OmuLg4paenq3///nbvzfPPPy8/Pz+77yDS1X0g+3GsUqVKatOmjZYvX+7w2b62RynrPcm+/1r5DnLx4kWdOnVKv/32mz7++GMFBwebvWBZyxw4cKDdcwYNGiRJDtuRlpamU6dO6cSJE1qxYoVWrVqlJk2a2LXJXtvZs2eVkpKihg0b5vhZzTr+Z39cvnzZoV121/tcLFiwwDwVPPsyo6KilJGR4XCqdNYx7nqndt+qCFK3mKzhP3P7En2t7P95Zefq6qpKlSrZnd+ekJBgBgUfHx8FBgaqUaNGkuRwwMk6tzmn6wKyW7t2raKiosxrigIDAzVs2LAcl/nDDz8oMDDQ7jFz5ky7NgcOHJCLi4siIiLytP2S9O677+rSpUvmenOS0zDMd999t/n6/Pnnn5JknpaXXZUqVXL8Ypm1DREREYqLi9O8efMUFhZmzrfyel+4cMHhtenevXuO27J7926HtiNHjnRot2PHDj3++OPy9/eXn5+fAgMDzVPjsq8/MjJSx48f16hRo5SQkKBTp0451JeTkydP6uLFi7m+ZpmZmeb5/TabTXfffbfDwb5KlSqSZLefPvvss1q7dq35nixYsECXL1+2+7IeGRkpm82moUOH6vDhw+Z/Etee+52ZmalJkyapUqVK8vDwUKlSpRQYGKg//vgjx23s27evAgMDtWvXrly369p6/4kzZ87opZdeUnBwsLy8vBQYGKjw8HBJju+RdPVL265du8zttaJt27YKDAxU2bJlNWrUKL3++utq166dQ7t77rlHgYGB8vHxUXBwsF5//fUcr6uT8v6+/vnnnwoNDXX4gSirXdZ7nSW3z+vFixd18uRJu+mtWrXSnj17lJycnOP5/X///bdGjBhhXieQtQ8kJyfnaT+XlOt1A3k5Tlrd9huZM2eO7r33Xnl6eqpkyZIKDAzUd999l+O23Oi4d61ffvlFS5Ys0fjx4x1CQ9ZnOS+DGt155505XtvTuXNn7d27Vxs3btThw4e1evVqh+s6cvLqq6+qYcOGOV5nW69ePV26dEmvv/66jh49muNn4+TJk0pOTtZHH33kcOzs1q2bJJk3kD5w4IDuueceubnd+MqJDz/8UO+8844k5XjdUF7f+3379skwDFWqVMmhvl27dhX4za1dXFzsfvySZAaKrH1j3759SklJUVBQkENN58+fN2vK7f9Od3d3lS9f3pyf23cV6errkfVjY3bX7r8VKlSQi4uL3f5r5TvImDFjFBgYqPvvv9/c/7Lemz///FMuLi6qWLGi3XNCQkIUEBDg8Dn9/PPPFRgYqODgYDVr1kxhYWH65JNP7NosXbpUdevWlaenp0qUKKHAwEBNnz49x8/qzJkzHV7n7NeF5+R6n4t9+/Zp+fLlDsuMioqSJId9KusYd6sOGnQ9XCN1i/Hz81NoaGiOAyHkJPsvHteTkZGhpk2b6syZM3rllVdUuXJleXt769ixY+ratavDF9DExERJVw8iuTlw4ICaNGmiypUr691331VYWJjc3d31v//9T5MmTXJYZp06dcyLprNMnTpV33zzTZ62ISenTp3SxIkTNXToULuepH/DihUrJF0NQYsWLVLHjh21dOlSNW3a1PLr7enpqSVLlthN+/nnn+3OV89Srlw5h3OiFyxYYHf9WnJysho1aiQ/Pz+NGTNGFSpUkKenp7Zu3apXXnnFbv0DBgzQnj17NHbsWI0ePfofvy45yet+KkmdOnXSgAEDNG/ePA0bNkxz585V7dq17f6jrlGjhkaOHKnRo0fb9V5d680339Tw4cPVvXt3jR07ViVKlJCLi4v69++f4wW3Q4YMUbNmzex+dS9MHTt21Lp16zRkyBDdd9998vHxUWZmppo3b25XX7169TRx4kSNHj3a0o8M2b399tuqUaOGed3PuHHj5Obm5hDCFy1aJD8/P128eFFff/213njjDfMauGtZeV8Ly+7du7Vs2TJ17NhRgwYNsuvxkK6G41mzZql///6KjIyUv7+/bDabOnXqlOM+kF3WL+c5fUmW8nacLEhz585V165d1bZtWw0ZMkRBQUFydXVVbGysORDCP/HKK68oOjpajRs3drigPadrpq4np0GMAgMD1bp1a82aNUvBwcGqX7++wxfXa/3www+Ki4tTfHx8jvPbtGmj7t27a+LEiXbXfmaX9T4//fTT6tKlS45t7r333uvWkZP169frjTfe0KZNmzRgwAA1b95cpUqVsryczMxM2Ww2LVu2LMf7Pt7oB83CkJmZqaCgoFyPr1nXaeZVQRwrrv2Sb/U7yHPPPacmTZro6NGjmjRpktq1a6d169bJ398/13XkplmzZhoyZIikq2dGjB8/Xo888og2b94sLy8v/fzzz2rTpo0eeughTZs2TaVLl1axYsU0a9YszZ8/32F5jz32mMOAE6+//rp5jLnWjT4XmZmZatq0aY7HbUkO16NlHePys//e7AhSt6BWrVrpo48+Unx8vPlLdG6yfr3es2eP3S9MmZmZ2rdvn+6//35J0rZt27R3717NmTPH7kLmrDBwrZ07d0r6v1/OcrJkyRKlpaXp22+/tTulLrfTEEqVKmX+GpLl2lHQKlSooMzMTO3cudPhwumcjBs3Tr6+vuYohrnZt2+fw7S9e/eaA0iULVtW0tXX8Vq7d+9WqVKl5O3tbTc9+7Y89thj2rBhg95++201bdrU8uvt6urq8NpkH/EoO29vb4e2v/32m93fq1ev1unTp/XVV1/poYceMqcfOnTIYXleXl76+OOP9euvv8rf318jR47U77//rsGDB+e4/iyBgYEqXrx4rq+Zi4uL2UMXHh6urVu3KjMz0673IusUw+wDeZQoUUItW7bUvHnz1LlzZ61du9bhwlhJGjlypHr27Kndu3ebPSbXDkaxcOFCPfLIIw49n8nJyTn+hxEREaGoqCiFhYXlul3X1ptfZ8+e1cqVKzV69Gi7C8Jz2lclafDgwdq3b58WLVqkTz/9VO7u7mratGme11erVi1z2OEWLVro2LFjGj9+vIYPH273njz00EPma9OmTRutXbtWy5cvz/E/5Ly+r2XLllVcXJzOnTtn9+t8Vrusz9/1XoO9e/eqePHiDl/gvv32WzVs2FCxsbHq06ePnn76abtTbBYuXKguXbqYPQfS1VCQ2+cruzJlysjLyyvHz4109Thps9ly7L3MYnXbr2fhwoUqX768vvrqK7svfDn1SEs3Pu5lt3jxYsXHx+d6umPWAArHjx/PcTTZ7I4dO5brQC7du3dX586d5e/vf8Ob+BqGoVdffVWPP/643WnT15o5c6ZGjBihAwcOmF+es382AgMD5evrq4yMDIdj57UqVKigDRs26PLly+ZgCrnp3r27hg0bpuPHjysiIkIDBgwwByGS8v7eV6hQQYZhKDw83OELbmHIzMzUwYMH7da1d+9eSf/3ma1QoYLi4uJUv37964ag7P93Zv8Okp6erkOHDpmvd/bvKtfavXu3vL29HY7J+/btM58nXR1YITMz06zR6neQihUrmsE9KipKZcqU0fz589W7d2+VLVvW/N6U/XtPUlKSkpOTHT6npUuXttuX7rnnHtWrV0+LFy/Wk08+qUWLFsnT01Pff/+93am/1/7Qk+Wuu+5y2DcnT56cY5DKy+eiQoUKOn/+/A339yxZx7jrfee7VXFq3y3o5Zdflre3t5577jklJSU5zD9w4IDee+89SVKTJk3k4eGhKVOm2P36Mm/ePCUlJZldvlm/cmU/RcUwDHM51/riiy9UunTp636oclpmSkpKrgeKvGjbtq1cXFw0ZswYh1+Trj29Jmv0rVGjRt3w167Fixfr2LFj5t8bN27Uhg0b1KJFC0lXD4r33Xef5syZY/cFa/v27frhhx/06KOPXnf5GRkZSk9PN4dJtfp6F7Sc1p+enq5p06bl2H7o0KFKSEjQ3LlzFRUVZXd9yvXW0axZM33zzTd2p1okJSVp/vz5atCggXmq6qOPPqrExER98cUXZrvMzEy999578vDwcDjYP/PMM9q5c6eGDBkiV1dXderUKccaSpcurUceeURRUVGKiopyuD7G1dXVYb9ZsGCB3b6Qk+bNm2vnzp12wffSpUuaPn26QkJC8vT63EhO75GkHEOjdPVLw0cffaRPPvlEjz76aJ7/g8zN33//rStXrujKlSu5tjEMQ4Zh5PgruZT39/XRRx9VRkaGpk6davf8SZMmyWazmZ/DLNd+oT9y5Ii++eYbNWvWzKGWrNHyXnzxRdWrV0+9evWy6w3JaR94//33cz1dMbtixYqpdu3aDsN5S1dHCl20aJEefPDB6/YYWN3268lpn9mwYUOuv0rf6LiXJSMjQ8OGDdNTTz2V6w9YWT/IZB+9bMOGDZKujoyYZe/evdq5c6fdDzjZNW/eXN7e3jpz5ow6duyY26ZKunr61B9//KHY2NjrtpOufqFv3LixeSzIztXVVe3atdOiRYtyPNsj++mi7dq106lTpxzeL8nxs5q174WGhmr8+PGaO3eu3elYeX3vn3jiCbm6umr06NEO6zAMI8fbIfxT2WsyDENTp05VsWLFzB8hOnbsqIyMDI0dO9bhuVeuXDH/n4yKipK7u7umTJliV/vMmTOVkpJijk4XGBio2rVra86cOXY9vAcOHNC3336rFi1aOHy2s4++KV393EoyX7d/8h0k6zTCrP+zs/6Pv/b4++6770rSDUfZyzrmZP8OYLPZ7I4zhw8fdvjxOD/y8rno2LGj4uPj9f333zvMS05Odjjub9myRf7+/qpateo/ru9mQ4/ULahChQqaP3++/vOf/6hKlSp69tlnVa1aNaWnp2vdunVasGCBeV55iRIl9Prrr2v48OGKjo7WY489poMHD2rq1KmqUaOGnnvuOUlXz0uuUKGCBg8erGPHjsnPz0+LFi1yOGVl8+bNGj58uJYvX64ZM2Zct5u7WbNmcnd3V+vWrdWrVy+dP39eH3/8sYKCguzuo2FFxYoV9dprr2ns2LFq2LChnnjiCXl4eGjTpk0KDQ21O3CsWbNGVapUMc9xv9FyGzRooN69eystLU2TJ09WyZIl7X5lnzhxolq0aKHIyEj16NHDHP48t19O586dK+nqqX2LFy/W4cOHzSF08/p6F5Z69erpjjvuUJcuXdSvXz/ZbDZ99tlnOV7rERcXp0mTJumzzz6z9Ou4dLVHcMWKFWrQoIFefPFFubm56cMPP1RaWpomTJhgtuvRo4emT5+url27avPmzQoPD9fixYu1cuVKvfXWWw6DKLRs2VIlS5bUggUL1KJFC3NwCatatWqlMWPGqFu3bqpXr562bdumefPmOVwfcK2XX35Z8+fP1+OPP243/PnOnTs1b948h+snfvvtN7sv0xkZGTp27JiWL19uTsu6x8jy5cvN0y4feughTZgwQZcvX9add96pH374Icfej8TERPXo0UPPPfdcjvfiyYsVK1bo6NGj5ql98+bNU5s2bczBC7KsWrXK7tS+/fv3m/v1tfL6vrZu3VqPPPKIXnvtNR0+fFg1atTQDz/8oG+++Ub9+/d3GFK6WrVqio6Othv+XNJ1Tz212Wz65JNPdN9992nkyJHm/teqVSt99tln8vf3V0REhOLj4xUXF5fngTsee+wxvfbaa0pNTTV/GIiLi9Pw4cP1xx9/OJySey2r2349rVq10ldffaXHH39cLVu21KFDhzRjxgxFRETo/PnzDu3zctyTrp6alHVKVG7Kly+vTp06KTY2VufPn9edd95pnk68efNmderUSXXq1NF7770nf3//XIeMd3V11a5du2QYhkMv/7V++OEHPf/889ft8curt956Sz/++KPq1Kmj559/XhERETpz5oy2bt2quLg4876Lzz77rD799FMNHDhQGzduVMOGDXXhwgXFxcXpxRdfzPE+d9LVobXnz5+vF154Qdu3b1fx4sXz/N5XqFBB48aNM6/5bNu2rXx9fXXo0CF9/fXX6tmz5w3PELDC09NTy5cvV5cuXVSnTh0tW7ZM3333nYYNG2b2+DZq1Ei9evVSbGysfvvtNzVr1kzFihXTvn37tGDBAr333ntq3769AgMDNXToUI0ePVrNmzdXmzZttGfPHk2bNk0PPPCA3VkCEyZMULNmzRQZGannnnvOHP7c09NTb7zxhkOdhw4dUps2bdS8eXPFx8dr7ty5euqpp1SjRg1Jef8O8r///U+ffPKJ6tWrpxIlSujgwYP6+OOP5e3trccff1zS1dPFu3Tpoo8++sg8NX7jxo2aM2eO2rZtq0ceecSutoMHD5rfAY4dO6apU6fKz8/PDKItW7bUu+++q+bNm+upp57SiRMn9MEHH6hixYr6448//tH7l5fPxZAhQ/Ttt9+qVatW6tq1q2rVqqULFy5o27ZtWrhwoQ4fPmzXA7hixQq1bt36trxGiuHPb2F79+41nn/+eaNcuXKGu7u74evra9SvX994//337YavNgzD+OCDD4zKlSsbxYoVM4KDg41evXrZDeNtGIaxc+dOIyoqyvDx8TFKlSplPP/888bvv/9uN5zm+PHjjQceeMBhyFPDyHn482+//da49957DU9PT6NcuXLG+PHjzeFjs7fL6/DnWf773/8a999/v+Hh4WHccccdRqNGjYwVK1bYLU+S8fXXX9s979qhfLOGC504caLxzjvvGGFhYYaHh4fRsGFDuyFUs8TFxRn169c3vLy8DD8/P6N169bGzp077dpkDc2a9fDy8jIiIiKMSZMm2Q3HnZfXO6vmwhj+fO3atUbdunUNLy8vIzQ01Hj55ZeN77//3m6Zp06dMkJDQ40nn3zSbnl5Hf7cMAxj69atRnR0tOHj42MUL17ceOSRR4x169Y5tDtx4oTRvXt3o1SpUoa7u7tRrVo14+OPP851uVlD3c6fP/+GNWTJafjzQYMGGaVLlza8vLyM+vXrG/Hx8UajRo2MRo0ame1yGlZ2//79Rrt27Qx/f3/Dw8PDqF27tsP+lvU6WX1kvU9Hjx41Hn/8cSMgIMDw9/c3OnToYBw/ftxu6ObMzEyjefPmRqVKlYzz58/brV8Whj/Peri5uRlly5Y1+vXrZ5w9e9Zsd739OrfX1zDy/r6eO3fOGDBggBEaGmoUK1bMqFSpkjFx4kSHIeyztmnu3LlGpUqVDA8PD+P++++3+xxkr/dao0ePNtzc3IytW7cahnF1ePBu3boZpUqVMnx8fIzo6Ghj9+7dOW5LTpKSkgw3Nzfjs88+M6f17dvXeOihh+yGx79eXVa3PTeZmZnGm2++aZQtW9Z8XZYuXfqPjntZw2G/9NJLdtNzOt6fO3fOePrpp43ixYsblStXNo8nw4YNM7p27Wp4eXkZ1apVc/j853bcym1+9uHbjx07Ztc2r+9b9s9QlqSkJCMmJsYICwszihUrZoSEhBhNmjQxPvroI7t2Fy9eNF577TUjPDzcbNe+fXvzNg85HS8M4+rtGzw9Pe2Gl8/re28YhrFo0SKjQYMGhre3t+Ht7W1UrlzZiImJMfbs2XPdbbU6/Lm3t7dx4MABo1mzZkbx4sWN4OBgY+TIkQ63ijAMw/joo4+MWrVqGV5eXoavr69RvXp14+WXXzaOHz9u127q1Kl230F69+5td3zJsnLlSrv/Y1u2bGls27Ytx+3ZuXOn0b59e8PX19e44447jD59+jjc3iAv30G2b99uNGvWzChZsqTh7u5uhIWFGZ06dTL++OMPu2VdvnzZGD16tPm+h4WFGUOHDnX4vpX1/SPrUapUKaNZs2YOt6eYOXOmeQyrXLmyMWvWrByPD7l97nMb/jyvn4tz584ZQ4cONSpWrGi4u7sbpUqVMurVq2e8/fbb5i08DOPqLQskGXFxcQ413A5shnEb3oYYyKPDhw8rPDxcEydOLNBf9FD4BgwYoJkzZyoxMfG6N0292dhsNh06dKhArrO6FdlsNsXExOR4apWz9OjRQ3v37rW72WZR9m8d906dOmWOGnqj651QNHTt2lULFy7MsQezqMi6we/Jkydvy8EP/m39+/fXTz/9pC1bttyWPVJcIwXglnPp0iXNnTtX7dq1u6VCFG5OI0eO1KZNm7R27VpnlwIABeb06dP65JNPNG7cuNsyRElcIwXgFnLixAnFxcVp4cKFOn369A1HY7wZRUdHF4lhw5F3ZcqUsTz8NwAUdSVLlizSvZP/BoIUgFvGzp071blzZwUFBWnKlCl5GgL/ZpN9AAoAAOA8XCMFAAAAABZxjRQAAAAAWESQAgAAAACLuEZKUmZmpo4fPy5fX9/bdtQRAAAAAJJhGDp37pxCQ0Pl4pJ7vxNBStLx48cVFhbm7DIAAAAAFBFHjhzRXXfdlet8gpQkX19fSVdfLD8/PydXAwAAAMBZUlNTFRYWZmaE3BCkJPN0Pj8/P4IUAAAAgBte8uPUwSYyMjI0fPhwhYeHy8vLSxUqVNDYsWOVfUR2wzA0YsQIlS5dWl5eXoqKitK+ffvslnPmzBl17txZfn5+CggIUI8ePW77G4QBAAAAKDxODVLjx4/X9OnTNXXqVO3atUvjx4/XhAkT9P7775ttJkyYoClTpmjGjBnasGGDvL29FR0dbXeX+M6dO2vHjh1asWKFli5dqp9++kk9e/Z0xiYBAAAAuA049Ya8rVq1UnBwsGbOnGlOa9eunby8vDR37lwZhqHQ0FANGjRIgwcPliSlpKQoODhYs2fPVqdOnbRr1y5FRERo06ZNql27tiRp+fLlevTRR3X06FGFhobesI7U1FT5+/srJSWFU/sAAACA21hes4FTe6Tq1aunlStXau/evZKk33//Xb/88otatGghSTp06JASExMVFRVlPsff31916tRRfHy8JCk+Pl4BAQFmiJKkqKgoubi4aMOGDTmuNy0tTampqXYPAAAAAMgrpw428eqrryo1NVWVK1eWq6urMjIy9MYbb6hz586SpMTERElScHCw3fOCg4PNeYmJiQoKCrKb7+bmphIlSphtrhUbG6vRo0cX9OYAAAAAuE04tUfqyy+/1Lx58zR//nxt3bpVc+bM0dtvv605c+YU6nqHDh2qlJQU83HkyJFCXR8AAACAW4tTe6SGDBmiV199VZ06dZIkVa9eXX/++adiY2PVpUsXhYSESJKSkpJUunRp83lJSUm67777JEkhISE6ceKE3XKvXLmiM2fOmM+/loeHhzw8PAphiwAAAADcDpzaI3Xx4kW5uNiX4OrqqszMTElSeHi4QkJCtHLlSnN+amqqNmzYoMjISElSZGSkkpOTtWXLFrPNqlWrlJmZqTp16vwLWwEAAADgduPUHqnWrVvrjTfeUJkyZVS1alX9+uuvevfdd9W9e3dJV2+C1b9/f40bN06VKlVSeHi4hg8frtDQULVt21aSVKVKFTVv3lzPP/+8ZsyYocuXL6tPnz7q1KlTnkbsAwAAAACrnBqk3n//fQ0fPlwvvviiTpw4odDQUPXq1UsjRoww27z88su6cOGCevbsqeTkZDVo0EDLly+Xp6en2WbevHnq06ePmjRpIhcXF7Vr105TpkxxxiYBAAAAuA049T5SRQX3kQIAAAAg3ST3kQIAAACAmxFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAi9ycXQAAAMBNa3Xrwl3+w0sKd/kA8o0eKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIucGqTKlSsnm83m8IiJiZEkXbp0STExMSpZsqR8fHzUrl07JSUl2S0jISFBLVu2VPHixRUUFKQhQ4boypUrztgcAAAAALcJpwapTZs26a+//jIfK1askCR16NBBkjRgwAAtWbJECxYs0Jo1a3T8+HE98cQT5vMzMjLUsmVLpaena926dZozZ45mz56tESNGOGV7AAAAANwebIZhGM4uIkv//v21dOlS7du3T6mpqQoMDNT8+fPVvn17SdLu3btVpUoVxcfHq27dulq2bJlatWql48ePKzg4WJI0Y8YMvfLKKzp58qTc3d3ztN7U1FT5+/srJSVFfn5+hbZ9AADgFrO6deEu/+Elhbt8AA7ymg2KzDVS6enpmjt3rrp37y6bzaYtW7bo8uXLioqKMttUrlxZZcqUUXx8vCQpPj5e1atXN0OUJEVHRys1NVU7duzIdV1paWlKTU21ewAAAABAXhWZILV48WIlJyera9eukqTExES5u7srICDArl1wcLASExPNNtlDVNb8rHm5iY2Nlb+/v/kICwsruA0BAAAAcMsrMkFq5syZatGihUJDQwt9XUOHDlVKSor5OHLkSKGvEwAAAMCtw83ZBUjSn3/+qbi4OH311VfmtJCQEKWnpys5OdmuVyopKUkhISFmm40bN9otK2tUv6w2OfHw8JCHh0cBbgEAAACA20mR6JGaNWuWgoKC1LJlS3NarVq1VKxYMa1cudKctmfPHiUkJCgyMlKSFBkZqW3btunEiRNmmxUrVsjPz08RERH/3gYAAAAAuK04vUcqMzNTs2bNUpcuXeTm9n/l+Pv7q0ePHho4cKBKlCghPz8/9e3bV5GRkapbt64kqVmzZoqIiNAzzzyjCRMmKDExUa+//rpiYmLocQIAAABQaJwepOLi4pSQkKDu3bs7zJs0aZJcXFzUrl07paWlKTo6WtOmTTPnu7q6aunSperdu7ciIyPl7e2tLl26aMyYMf/mJgAAAAC4zRSp+0g5C/eRAgAA+cJ9pIBbTl6zgdN7pAAAAApVYYcdALelIjHYBAAAAADcTAhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARW7OLgAAAABOsLp14S7/4SWFu3zAyeiRAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACL3JxdAAAAuM2tbu3sCgDAMnqkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEVOD1LHjh3T008/rZIlS8rLy0vVq1fX5s2bzfmGYWjEiBEqXbq0vLy8FBUVpX379tkt48yZM+rcubP8/PwUEBCgHj166Pz58//2pgAAAAC4TTg1SJ09e1b169dXsWLFtGzZMu3cuVPvvPOO7rjjDrPNhAkTNGXKFM2YMUMbNmyQt7e3oqOjdenSJbNN586dtWPHDq1YsUJLly7VTz/9pJ49ezpjkwAAAADcBmyGYRjOWvmrr76qtWvX6ueff85xvmEYCg0N1aBBgzR48GBJUkpKioKDgzV79mx16tRJu3btUkREhDZt2qTatWtLkpYvX65HH31UR48eVWho6A3rSE1Nlb+/v1JSUuTn51dwGwgAAG6MG/Lm7uElhbfswn7dC7N2oBDlNRs4tUfq22+/Ve3atdWhQwcFBQXp/vvv18cff2zOP3TokBITExUVFWVO8/f3V506dRQfHy9Jio+PV0BAgBmiJCkqKkouLi7asGFDjutNS0tTamqq3QMAAAAA8sqpQergwYOaPn26KlWqpO+//169e/dWv379NGfOHElSYmKiJCk4ONjuecHBwea8xMREBQUF2c13c3NTiRIlzDbXio2Nlb+/v/kICwsr6E0DAAAAcAtzapDKzMxUzZo19eabb+r+++9Xz5499fzzz2vGjBmFut6hQ4cqJSXFfBw5cqRQ1wcAAADg1uLUIFW6dGlFRETYTatSpYoSEhIkSSEhIZKkpKQkuzZJSUnmvJCQEJ04ccJu/pUrV3TmzBmzzbU8PDzk5+dn9wAAAACAvHJqkKpfv7727NljN23v3r0qW7asJCk8PFwhISFauXKlOT81NVUbNmxQZGSkJCkyMlLJycnasmWL2WbVqlXKzMxUnTp1/oWtAAAAAHC7cXPmygcMGKB69erpzTffVMeOHbVx40Z99NFH+uijjyRJNptN/fv317hx41SpUiWFh4dr+PDhCg0NVdu2bSVd7cFq3ry5eUrg5cuX1adPH3Xq1ClPI/YBAAAAgFVODVIPPPCAvv76aw0dOlRjxoxReHi4Jk+erM6dO5ttXn75ZV24cEE9e/ZUcnKyGjRooOXLl8vT09NsM2/ePPXp00dNmjSRi4uL2rVrpylTpjhjkwAAAADcBpx6H6migvtIAQDgRNxHKnfcRwr4190U95ECAAAAgJsRQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCI3ZxcAAACAXKxu7ewKAOSCHikAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEcOfAwCAG2MYbgCwQ48UAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKnBqlRo0bJZrPZPSpXrmzOv3TpkmJiYlSyZEn5+PioXbt2SkpKsltGQkKCWrZsqeLFiysoKEhDhgzRlStX/u1NAQAAAHAbcXN2AVWrVlVcXJz5t5vb/5U0YMAAfffdd1qwYIH8/f3Vp08fPfHEE1q7dq0kKSMjQy1btlRISIjWrVunv/76S88++6yKFSumN99881/fFgAAAAC3B6cHKTc3N4WEhDhMT0lJ0cyZMzV//nw1btxYkjRr1ixVqVJF69evV926dfXDDz9o586diouLU3BwsO677z6NHTtWr7zyikaNGiV3d/cc15mWlqa0tDTz79TU1MLZOAAAAAC3JKdfI7Vv3z6FhoaqfPny6ty5sxISEiRJW7Zs0eXLlxUVFWW2rVy5ssqUKaP4+HhJUnx8vKpXr67g4GCzTXR0tFJTU7Vjx45c1xkbGyt/f3/zERYWVkhbBwAAAOBW5NQgVadOHc2ePVvLly/X9OnTdejQITVs2FDnzp1TYmKi3N3dFRAQYPec4OBgJSYmSpISExPtQlTW/Kx5uRk6dKhSUlLMx5EjRwp2wwAAAADc0px6al+LFi3Mf997772qU6eOypYtqy+//FJeXl6Ftl4PDw95eHgU2vIBAAAA3NqcfmpfdgEBAbr77ru1f/9+hYSEKD09XcnJyXZtkpKSzGuqQkJCHEbxy/o7p+uuAAAAAKAgFKkgdf78eR04cEClS5dWrVq1VKxYMa1cudKcv2fPHiUkJCgyMlKSFBkZqW3btunEiRNmmxUrVsjPz08RERH/ev0AAAAAbg9OPbVv8ODBat26tcqWLavjx49r5MiRcnV11ZNPPil/f3/16NFDAwcOVIkSJeTn56e+ffsqMjJSdevWlSQ1a9ZMEREReuaZZzRhwgQlJibq9ddfV0xMDKfuAQAAACg0Tg1SR48e1ZNPPqnTp08rMDBQDRo00Pr16xUYGChJmjRpklxcXNSuXTulpaUpOjpa06ZNM5/v6uqqpUuXqnfv3oqMjJS3t7e6dOmiMWPGOGuTAAAAANwGbIZhGM4uwtlSU1Pl7++vlJQU+fn5ObscAACKntWtnV0BbjYPL3F2BUC+5DUbFKlrpAAAAADgZkCQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABbl+4a8GRkZWrx4sXbt2iVJqlq1qtq0aSNXV9cCKw4AAAAAiqJ8Ban9+/erZcuWOnr0qO655x5JUmxsrMLCwvTdd9+pQoUKBVokAAAAABQl+Tq1r1+/fipfvryOHDmirVu3auvWrUpISFB4eLj69etX0DUCAAAAQJGSrx6pNWvWaP369SpRooQ5rWTJknrrrbdUv379AisOAAAAAIqifPVIeXh46Ny5cw7Tz58/L3d3939cFAAAAAAUZfkKUq1atVLPnj21YcMGGYYhwzC0fv16vfDCC2rTpk1B1wgAAAAARUq+gtSUKVNUoUIFRUZGytPTU56enqpfv74qVqyo9957r6BrBAAAAIAiJV/XSAUEBOibb77Rvn37tHv3bklSlSpVVLFixQItDgAAAACKonzfR0qSKlWqpEqVKkm6el8pAAAAALgd5OvUvkOHDunJJ59U7969dfbsWbVp00YeHh6655579McffxR0jQAAAABQpOQrSPXq1Uu7du3S9u3b1bhxY6Wnp+ubb75RRESE+vfvX8AlAgAAAEDRkq9T+zZs2KCff/5ZZcuWVYkSJbRp0ybVrFlTFStWVJ06dQq6RgAAAAAoUvIVpM6dO6fSpUvL399fxYsXV0BAgKSrg1DkdH8pAAAAoMCsbl14y354SeEtG7eUfA82sXz5cvn7+yszM1MrV67U9u3blZycXIClAQAA4KZVmGEHKALyHaS6dOli/rtXr17mv2022z+rCAAAAACKuHwFqczMzIKuAwAAAABuGvkate/TTz9VWlpaQdcCAAAAADeFfAWpbt26KSUlpaBrAQAAAICbQr6ClGEYBV0HAAAAANw08j3YxJdffik/P78c5z377LP5LggAAAAAirp8B6kJEybI1dXVYbrNZiNIAQAAALil5TtIbd68WUFBQQVZCwAAAADcFPJ1jRQAAAAA3M7yFaTKli2b42l9AAAAAHA7yNepfYcOHSroOgAAAADgppGvHql+/fppypQpDtOnTp2q/v37/9OaAAAAAKBIy1eQWrRokerXr+8wvV69elq4cOE/LgoAAAAAirJ8BanTp0/L39/fYbqfn59OnTr1j4sCAAAAgKIsX0GqYsWKWr58ucP0ZcuWqXz58v+4KAAAAAAoyvI12MTAgQPVp08fnTx5Uo0bN5YkrVy5Uu+8844mT55ckPUBAAAAQJGTryDVvXt3paWl6Y033tDYsWMlSeXKldP06dP17LPPFmiBAAAAAFDU5CtISVLv3r3Vu3dvnTx5Ul5eXvLx8SnIugAAAACgyMrXNVKSdOXKFcXFxemrr76SYRiSpOPHj+v8+fMFVhwAAAAAFEX56pH6888/1bx5cyUkJCgtLU1NmzaVr6+vxo8fr7S0NM2YMaOg6wQAAACAIiNfPVIvvfSSateurbNnz8rLy8uc/vjjj2vlypUFVhwAAAAAFEX56pH6+eeftW7dOrm7u9tNL1eunI4dO1YghQEAAABAUZWvHqnMzExlZGQ4TD969Kh8fX3/cVEAAAAAUJTlK0g1a9bM7n5RNptN58+f18iRI/Xoo48WVG0AAAAAUCTl69S+d955R9HR0YqIiNClS5f01FNPad++fSpVqpT+3//7fwVdIwAAAAAUKfnqkbrrrrv0+++/a9iwYRowYIDuv/9+vfXWW/r1118VFBSUr0Leeust2Ww29e/f35x26dIlxcTEqGTJkvLx8VG7du2UlJRk97yEhAS1bNlSxYsXV1BQkIYMGaIrV67kqwYAAAAAyIt835DXzc1NTz/9dIEUsWnTJn344Ye699577aYPGDBA3333nRYsWCB/f3/16dNHTzzxhNauXStJysjIUMuWLRUSEqJ169bpr7/+0rPPPqtixYrpzTffLJDaAAAAAOBa+QpS33777XXnt2nTJs/LOn/+vDp37qyPP/5Y48aNM6enpKRo5syZmj9/vho3bixJmjVrlqpUqaL169erbt26+uGHH7Rz507FxcUpODhY9913n8aOHatXXnlFo0aNchhVMEtaWprS0tLMv1NTU/NcLwAAAADkK0i1bdvW7m+bzSbDMMx/5zSiX25iYmLUsmVLRUVF2QWpLVu26PLly4qKijKnVa5cWWXKlFF8fLzq1q2r+Ph4Va9eXcHBwWab6Oho9e7dWzt27ND999+f4zpjY2M1evToPNcIAAAAANnle/jz7I/ixYtr//79uQ6LnpvPP/9cW7duVWxsrMO8xMREubu7KyAgwG56cHCwEhMTzTbZQ1TW/Kx5uRk6dKhSUlLMx5EjR/JcMwAAAADk+xqp7Gw2m+XnHDlyRC+99JJWrFghT0/Pgigjzzw8POTh4fGvrhMAAADArSNfPVLZHT58WBcuXLB8I94tW7boxIkTqlmzptzc3OTm5qY1a9ZoypQpcnNzU3BwsNLT05WcnGz3vKSkJIWEhEiSQkJCHEbxy/o7qw0AAAAAFLR89Ug98cQTkqS///5b69evV5MmTRQYGGhpGU2aNNG2bdvspnXr1k2VK1fWK6+8orCwMBUrVkwrV65Uu3btJEl79uxRQkKCIiMjJUmRkZF64403dOLECXPY9RUrVsjPz08RERH52TQAAAAAuKF8BSl/f39JV3t9Wrdure7du1tehq+vr6pVq2Y3zdvbWyVLljSn9+jRQwMHDlSJEiXk5+envn37KjIyUnXr1pUkNWvWTBEREXrmmWc0YcIEJSYm6vXXX1dMTAyn7gEAAAAoNPkKUrNmzSroOnI0adIkubi4qF27dkpLS1N0dLSmTZtmznd1ddXSpUvVu3dvRUZGytvbW126dNGYMWP+lfoAAAAA3J5sRta45Rbc6L5Lfn5++S7IGVJTU+Xv76+UlJSbrnYAAP4Vq1s7uwLg3/HwEmdXACfLazbIV49UQEBAjiP1GYZh+T5SAAAAAHCzyVeQKl++vE6cOKFXX31V9evXL+iaAAAAAKBIy1eQ2rVrl95//3298cYb+vXXXzVhwgSFh4cXdG0AACCvOPUOAP5V+bqPVLFixTRw4EDt27dPd955p+69914NGjTI4Z5PAAAAAHAr+kc35C1RooQmT56sX3/9VYcPH1bFihU1efLkAioNAAAAAIqmfJ3ad//99zsMNmEYhtLS0jRo0CD179+/IGoDAAAAgCIpX0Gqbdu2BVwGAAAAANw88hWkRo4cWdB1AAAAAMBNI19B6la7IS8AAAAAWMENeQEAAADAonwFKUlauHChSpQoUZC1AAAAAMBNId9Bqn79+goKCirIWgAAAADgppDvILVz506dPn1a3t7eCgkJkbu7e0HWBQAAAABFVr5vyNukSRNVrVpV4eHh8vb2VvXq1TVp0qSCrA0AAAAAiqR89UgdOnRIhmHo8uXLSk1N1fHjx7Vx40YNHz5cV65c0ZAhQwq6TgAAAKDwrW5duMt/eEnhLh//mnwFqbJly9r9XatWLbVu3Vp33323xowZQ5ACAAAAcEvL9zVSOenUqZOqVq1akIsEAAAAgCLnHwWpLVu2aNeuXZKkiIgI1axZUzVr1iyQwgAAAACgqMpXkDpx4oQ6deqk1atXKyAgQJKUnJysRx55RJ9//rkCAwMLskYAAAAAKFLyNWpf3759de7cOe3YsUNnzpzRmTNntH37dqWmpqpfv34FXSMAAAAAFCn56pFavny54uLiVKVKFXNaRESEPvjgAzVr1qzAigMAAACAoihfPVKZmZkqVqyYw/RixYopMzPzHxcFAAAAAEVZvoJU48aN9dJLL+n48ePmtGPHjmnAgAFq0qRJgRUHAAAAAEVRvoLU1KlTlZqaqnLlyqlChQqqUKGCwsPDlZqaqvfff7+gawQAAACAIsXSNVLnzp2Tr6+vwsLCtHXrVsXFxWn37t2SpCpVqigqKkqbNm3SXXfdVSjFAgAAAEBRYClINWvWTCtWrJCPj49sNpuaNm2qpk2bSpKuXLmi4cOHa/z48UpPTy+UYgEAAACgKLB0at+5c+cUFRWl1NRUu+nbt2/XAw88oP/+979avHhxQdYHAAAAAEWOpSD1448/6sKFC2ratKlSU1NlGIbGjx+v2rVrq0qVKtq+fbseffTRwqoVAAAAAIoES6f2BQYGatWqVYqKilLjxo3l4eGhffv2ae7cuWrfvn1h1QgAAAAARYrlG/IGBgZq5cqVioqK0vbt2/Xbb7+pcuXKhVEbAAAAABRJ+Rr+vFSpUlq1apUiIiL01FNP6ezZswVdFwAAAAAUWZZ6pJ544gm7v/38/PTTTz/pwQcfVPXq1c3pX331VcFUBwAAAABFkKUg5e/v7/B3eHh4gRYEAAAAAEWdpSA1a9aswqoDAAAAAG4a+bpGCgAAAABuZwQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIjdnrnz69OmaPn26Dh8+LEmqWrWqRowYoRYtWkiSLl26pEGDBunzzz9XWlqaoqOjNW3aNAUHB5vLSEhIUO/evfXjjz/Kx8dHXbp0UWxsrNzcnLppAAA4Wt3a2RUAAAqIU3uk7rrrLr311lvasmWLNm/erMaNG+uxxx7Tjh07JEkDBgzQkiVLtGDBAq1Zs0bHjx/XE088YT4/IyNDLVu2VHp6utatW6c5c+Zo9uzZGjFihLM2CQAAAMBtwGYYhuHsIrIrUaKEJk6cqPbt2yswMFDz589X+/btJUm7d+9WlSpVFB8fr7p162rZsmVq1aqVjh8/bvZSzZgxQ6+88opOnjwpd3f3HNeRlpamtLQ08+/U1FSFhYUpJSVFfn5+hb+RAIDbEz1SAB5e4uwKcAOpqany9/e/YTYoMtdIZWRk6PPPP9eFCxcUGRmpLVu26PLly4qKijLbVK5cWWXKlFF8fLwkKT4+XtWrV7c71S86Olqpqalmr1ZOYmNj5e/vbz7CwsIKb8MAAAAA3HKcHqS2bdsmHx8feXh46IUXXtDXX3+tiIgIJSYmyt3dXQEBAXbtg4ODlZiYKElKTEy0C1FZ87Pm5Wbo0KFKSUkxH0eOHCnYjQIAAABwS3P6iAz33HOPfvvtN6WkpGjhwoXq0qWL1qxZU6jr9PDwkIeHR6GuAwAAAMCty+lByt3dXRUrVpQk1apVS5s2bdJ7772n//znP0pPT1dycrJdr1RSUpJCQkIkSSEhIdq4caPd8pKSksx5AAAAQJFSmNdKcv3Vv8rpQepamZmZSktLU61atVSsWDGtXLlS7dq1kyTt2bNHCQkJioyMlCRFRkbqjTfe0IkTJxQUFCRJWrFihfz8/BQREeG0bQAAFCK+hAAAigCnBqmhQ4eqRYsWKlOmjM6dO6f58+dr9erV+v777+Xv768ePXpo4MCBKlGihPz8/NS3b19FRkaqbt26kqRmzZopIiJCzzzzjCZMmKDExES9/vrriomJ4dQ9AAAAAIXGqUHqxIkTevbZZ/XXX3/J399f9957r77//ns1bdpUkjRp0iS5uLioXbt2djfkzeLq6qqlS5eqd+/eioyMlLe3t7p06aIxY8Y4a5MAAAAA3AaK3H2knCGvY8UDAIqAm/nUPu4jBaAwcXpygbjp7iMFAAAAADcLghQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsKnI35AUAwGkYVQ8AkEf0SAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIjdnFwAAuMWsbu3sCgDg9lTYx9+HlxTu8m8y9EgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsMjN2QUAAHKwunXhLv/hJYW7fAAAbnH0SAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEVuzi4AAOAEq1s7uwIAAG5q9EgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFjk1CAVGxurBx54QL6+vgoKClLbtm21Z88euzaXLl1STEyMSpYsKR8fH7Vr105JSUl2bRISEtSyZUsVL15cQUFBGjJkiK5cufJvbgoAAACA24hTg9SaNWsUExOj9evXa8WKFbp8+bKaNWumCxcumG0GDBigJUuWaMGCBVqzZo2OHz+uJ554wpyfkZGhli1bKj09XevWrdOcOXM0e/ZsjRgxwhmbBAAAAOA2YDMMw3B2EVlOnjypoKAgrVmzRg899JBSUlIUGBio+fPnq3379pKk3bt3q0qVKoqPj1fdunW1bNkytWrVSsePH1dwcLAkacaMGXrllVd08uRJubu733C9qamp8vf3V0pKivz8/Ap1GwEgT7jPEwCgqHl4ibMr+FfkNRsUqWukUlJSJEklSpSQJG3ZskWXL19WVFSU2aZy5coqU6aM4uPjJUnx8fGqXr26GaIkKTo6WqmpqdqxY0eO60lLS1NqaqrdAwAAAADyqsgEqczMTPXv31/169dXtWrVJEmJiYlyd3dXQECAXdvg4GAlJiaabbKHqKz5WfNyEhsbK39/f/MRFhZWwFsDAAAA4FZWZIJUTEyMtm/frs8//7zQ1zV06FClpKSYjyNHjhT6OgEAAADcOtycXYAk9enTR0uXLtVPP/2ku+66y5weEhKi9PR0JScn2/VKJSUlKSQkxGyzceNGu+VljeqX1eZaHh4e8vDwKOCtAAAAAHC7cGqPlGEY6tOnj77++mutWrVK4eHhdvNr1aqlYsWKaeXKlea0PXv2KCEhQZGRkZKkyMhIbdu2TSdOnDDbrFixQn5+foqIiPh3NgQAAADAbcWpPVIxMTGaP3++vvnmG/n6+prXNPn7+8vLy0v+/v7q0aOHBg4cqBIlSsjPz099+/ZVZGSk6tatK0lq1qyZIiIi9Mwzz2jChAlKTEzU66+/rpiYGHqdAAAAABQKpwap6dOnS5Iefvhhu+mzZs1S165dJUmTJk2Si4uL2rVrp7S0NEVHR2vatGlmW1dXVy1dulS9e/dWZGSkvL291aVLF40ZM+bf2gwAAAAAt5kidR8pZ+E+UgCKHO4jBQAoariPlJ0iMdgEANyUCDsAANy2iszw5wAAAABwsyBIAQAAAIBFBCkAAAAAsIggBQAAAAAWMdgEAAAAgBsrzEGWbsIRAemRAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiFH7ANy6CnN0IQAAcFujRwoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWuTm7AABF3OrWzq4AAACgyKFHCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIqcGqZ9++kmtW7dWaGiobDabFi9ebDffMAyNGDFCpUuXlpeXl6KiorRv3z67NmfOnFHnzp3l5+engIAA9ejRQ+fPn/8XtwIAAADA7capQerChQuqUaOGPvjggxznT5gwQVOmTNGMGTO0YcMGeXt7Kzo6WpcuXTLbdO7cWTt27NCKFSu0dOlS/fTTT+rZs+e/tQkAAAAAbkM2wzAMZxchSTabTV9//bXatm0r6WpvVGhoqAYNGqTBgwdLklJSUhQcHKzZs2erU6dO2rVrlyIiIrRp0ybVrl1bkrR8+XI9+uijOnr0qEJDQ/O07tTUVPn7+yslJUV+fn6Fsn3ATYv7SAEAgML28BJnV2DKazYostdIHTp0SImJiYqKijKn+fv7q06dOoqPj5ckxcfHKyAgwAxRkhQVFSUXFxdt2LAh12WnpaUpNTXV7gEAAAAAeVVkg1RiYqIkKTg42G56cHCwOS8xMVFBQUF2893c3FSiRAmzTU5iY2Pl7+9vPsLCwgq4egAAAAC3siIbpArT0KFDlZKSYj6OHDni7JIAAAAA3ESKbJAKCQmRJCUlJdlNT0pKMueFhIToxIkTdvOvXLmiM2fOmG1y4uHhIT8/P7sHAAAAAORVkQ1S4eHhCgkJ0cqVK81pqamp2rBhgyIjIyVJkZGRSk5O1pYtW8w2q1atUmZmpurUqfOv1wwAAADg9uDmzJWfP39e+/fvN/8+dOiQfvvtN5UoUUJlypRR//79NW7cOFWqVEnh4eEaPny4QkNDzZH9qlSpoubNm+v555/XjBkzdPnyZfXp00edOnXK84h9AAAAAGCVU4PU5s2b9cgjj5h/Dxw4UJLUpUsXzZ49Wy+//LIuXLignj17Kjk5WQ0aNNDy5cvl6elpPmfevHnq06ePmjRpIhcXF7Vr105Tpkz517cFAAAAwO2jyNxHypm4jxRwHdxHCgAAFDbuIwUAAAAAtz6CFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWOTm7AIAFIDVrZ1dAQAAwG2FHikAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABa5ObsA/MtWty7c5T+8pHCXDwAAABQBBCng31DYARYAAAD/Kk7tAwAAAACL6JECstBrBAAAgDyiRwoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACxyc3YBQJ6tbu3sCgAAAABJ9EgBAAAAgGUEKQAAAACwiCAFAAAAABbdMkHqgw8+ULly5eTp6ak6depo48aNzi4JAAAAwC3qlhhs4osvvtDAgQM1Y8YM1alTR5MnT1Z0dLT27NmjoKAgZ5d3e2FACAAAANwGbokeqXfffVfPP/+8unXrpoiICM2YMUPFixfXf//7X2eXBgAAAOAWdNP3SKWnp2vLli0aOnSoOc3FxUVRUVGKj4/P8TlpaWlKS0sz/05JSZEkpaamFm6xefVzR2dXAAAAAPx7isr3cP1fJjAM47rtbvogderUKWVkZCg4ONhuenBwsHbv3p3jc2JjYzV69GiH6WFhYYVSIwAAAIDr8Xd2AQ7OnTsnf//c67rpg1R+DB06VAMHDjT/zszM1JkzZ1SyZEnZbLYCX19qaqrCwsJ05MgR+fn5FfjycWtiv0F+sN8gv9h3kB/sN8ivorzvGIahc+fOKTQ09LrtbvogVapUKbm6uiopKcluelJSkkJCQnJ8joeHhzw8POymBQQEFFaJJj8/vyK3o6DoY79BfrDfIL/Yd5Af7DfIr6K671yvJyrLTT/YhLu7u2rVqqWVK1ea0zIzM7Vy5UpFRkY6sTIAAAAAt6qbvkdKkgYOHKguXbqodu3aevDBBzV58mRduHBB3bp1c3ZpAAAAAG5Bt0SQ+s9//qOTJ09qxIgRSkxM1H333afly5c7DEDhLB4eHho5cqTD6YTA9bDfID/Yb5Bf7DvID/Yb5NetsO/YjBuN6wcAAAAAsHPTXyMFAAAAAP82ghQAAAAAWESQAgAAAACLCFIAAAAAYBFBqpDExsbqgQcekK+vr4KCgtS2bVvt2bPH2WXhJjB9+nTde++95g3qIiMjtWzZMmeXhZvMW2+9JZvNpv79+zu7FBRxo0aNks1ms3tUrlzZ2WXhJnDs2DE9/fTTKlmypLy8vFS9enVt3rzZ2WWhCCtXrpzD8cZmsykmJsbZpeXLLTH8eVG0Zs0axcTE6IEHHtCVK1c0bNgwNWvWTDt37pS3t7ezy0MRdtddd+mtt95SpUqVZBiG5syZo8cee0y//vqrqlat6uzycBPYtGmTPvzwQ917773OLgU3iapVqyouLs78282Nrwe4vrNnz6p+/fp65JFHtGzZMgUGBmrfvn264447nF0airBNmzYpIyPD/Hv79u1q2rSpOnTo4MSq8o/hz/8lJ0+eVFBQkNasWaOHHnrI2eXgJlOiRAlNnDhRPXr0cHYpKOLOnz+vmjVratq0aRo3bpzuu+8+TZ482dlloQgbNWqUFi9erN9++83ZpeAm8uqrr2rt2rX6+eefnV0KbmL9+/fX0qVLtW/fPtlsNmeXYxmn9v1LUlJSJF39QgzkVUZGhj7//HNduHBBkZGRzi4HN4GYmBi1bNlSUVFRzi4FN5F9+/YpNDRU5cuXV+fOnZWQkODsklDEffvtt6pdu7Y6dOigoKAg3X///fr444+dXRZuIunp6Zo7d666d+9+U4YoiVP7/hWZmZnq37+/6tevr2rVqjm7HNwEtm3bpsjISF26dEk+Pj76+uuvFRER4eyyUMR9/vnn2rp1qzZt2uTsUnATqVOnjmbPnq177rlHf/31l0aPHq2GDRtq+/bt8vX1dXZ5KKIOHjyo6dOna+DAgRo2bJg2bdqkfv36yd3dXV26dHF2ebgJLF68WMnJyeratauzS8k3Tu37F/Tu3VvLli3TL7/8orvuusvZ5eAmkJ6eroSEBKWkpGjhwoX65JNPtGbNGsIUcnXkyBHVrl1bK1asMK+Nevjhhzm1D5YlJyerbNmyevfddzmdGLlyd3dX7dq1tW7dOnNav379tGnTJsXHxzuxMtwsoqOj5e7uriVLlji7lHzj1L5C1qdPHy1dulQ//vgjIQp55u7urooVK6pWrVqKjY1VjRo19N577zm7LBRhW7Zs0YkTJ1SzZk25ubnJzc1Na9as0ZQpU+Tm5mZ3cS9wPQEBAbr77ru1f/9+Z5eCIqx06dIOP+5VqVKF00KRJ3/++afi4uL03HPPObuUf4RT+wqJYRjq27evvv76a61evVrh4eHOLgk3sczMTKWlpTm7DBRhTZo00bZt2+ymdevWTZUrV9Yrr7wiV1dXJ1WGm8358+d14MABPfPMM84uBUVY/fr1HW7rsnfvXpUtW9ZJFeFmMmvWLAUFBally5bOLuUfIUgVkpiYGM2fP1/ffPONfH19lZiYKEny9/eXl5eXk6tDUTZ06FC1aNFCZcqU0blz5zR//nytXr1a33//vbNLQxHm6+vrcA2mt7e3SpYsybWZuK7BgwerdevWKlu2rI4fP66RI0fK1dVVTz75pLNLQxE2YMAA1atXT2+++aY6duyojRs36qOPPtJHH33k7NJQxGVmZmrWrFnq0qXLTX+rhZu7+iJs+vTpkq5eo5DdrFmzbuqL6lD4Tpw4oWeffVZ//fWX/P39de+99+r7779X06ZNnV0agFvQ0aNH9eSTT+r06dMKDAxUgwYNtH79egUGBjq7NBRhDzzwgL7++msNHTpUY8aMUXh4uCZPnqzOnTs7uzQUcXFxcUpISFD37t2dXco/xmATAAAAAGARg00AAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAQJ7ZbLYcH7eCcuXKafLkyc4uAwBwkyBIAQAsmTVrlv766y/99ddfmjVrlrPLAQDAKQhSAIA8uXLliiSpRIkSCgkJUUhIiAICAhzaLVq0SFWrVpWHh4fKlSund955x25+uXLlHHq0Bg8eLEk6cOCAHnvsMQUHB8vHx0cPPPCA4uLiHJ4/duxYPfnkk/L29tadd96pDz74wK6NzWbT4sWLzb9nzpwpm82m/v37m9P27t2r2rVry9vbW6+99pokKSEhQTVr1pS3t7f69u2rzMxMu2W6u7srKSnJnHby5El5eHhct1fu8OHDstls+u233xy2I3sPWGZmpmJjYxUeHi4vLy/VqFFDCxcuNOevXr1aNptNycnJuW5rbuvKEhAQoNmzZ+daKwAg7whSAIA8SU9PlyS5u7vn2mbLli3q2LGjOnXqpG3btmnUqFEaPny4w5f3MWPGmL1af/31l0aOHClJOn/+vB599FGtXLlSv/76q5o3b67WrVsrISHB7vkTJ05UjRo19Ouvv+rVV1/VSy+9pBUrVuRY04ULFzR8+HD5+PjYTX/mmWcUEhKizZs3y2az6ejRo1qwYIGmTJmiRYsWaf78+frkk0/snhMUFGTXCzdr1iwFBgZe/4XLo9jYWH366aeaMWOGduzYoQEDBujpp5/WmjVrCmT5AICC5ebsAgAAN4ezZ89KkkMgye7dd99VkyZNNHz4cEnS3XffrZ07d2rixInq2rWr2c7X11chISEOz69Ro4Zq1Khh/j127Fh9/fXX+vbbb9WnTx9zev369fXqq6+a61i7dq0mTZqkpk2bOixzwoQJioiIMHvUJGnbtm3auHGj9u3bp4oVK2rcuHGaPXu2XnrpJTVo0ECS1KtXL3388cfq2bOn+bzu3bvrk08+0SuvvCJJ+uSTT9S9e3eNHTs29xcuD9LS0vTmm28qLi5OkZGRkqTy5cvrl19+0YcffqhGjRr9o+UDAAoePVIAgDxJTEyUJAUHB+faZteuXapfv77dtPr162vfvn3KyMi44TrOnz+vwYMHq0qVKgoICJCPj4927drl0COVFTay/71r1y6H5R0/flzvvvuuw+mF+/fvV7FixVShQgVzmpubm9zc/u/3xYiICO3fv9/ueTVr1lRAQIBWrVqlH3/8Ub6+vqpZs+YNt+tG9u/fr4sXL6pp06by8fExH59++qkOHDhg1/auu+6ya5OTevXqydfXV2FhYfrPf/6jo0eP/uMaAQD26JECAOTJrl275O7urvDw8EJbx+DBg7VixQq9/fbbqlixory8vNS+fXvztEKrXnvtNXXo0MGul8sKwzAcpvXs2VMff/yxDMOw6636J86fPy9J+u6773TnnXfazfPw8LD7++eff5avr6/5d6VKlRyW98UXX6hKlSpKTExUv3799MILL2jp0qUFUisA4CqCFAAgT/73v/+pXr16dr0216pSpYrWrl1rN23t2rW6++675erqesN1rF27Vl27dtXjjz8u6WrAOHz4sEO79evXO/xdpUoVu2m//fabFi5cqD179jg8v3z58rp8+bIOHDigihUrSro6mEb20/927txp12OV5amnntKwYcNkGIY++eQTrVy58obbdSMRERHy8PBQQkLCDU/jCw8Pz3GQj+zCwsJUsWJFVaxYUT169FBsbOw/rhEAYI8gBQC4ruPHj2vy5Mn68ssv9d1331237aBBg/TAAw9o7Nix+s9//qP4+HhNnTpV06ZNy9O6KlWqpK+++kqtW7eWzWbT8OHD7UbOy7J27VpNmDBBbdu21YoVK7RgwQKH2t5++20NGjRIoaGhDs+vUaOGatasqf79+2vixImaP3++kpKSNGXKFNWtW1fnz5/Xhx9+mOO1Tz4+PpoxY4YyMzPteoZuJD09XZcuXTL/NgxDV65cUUZGhnx9fTV48GANGDBAmZmZatCggVJSUrR27Vr5+fmpS5cueV5P9nUlJSVp4cKFqlatmqXnAwBujCAFALiu+fPna/PmzVq+fLmioqKu27ZmzZr68ssvNWLECI0dO1alS5fWmDFj7AaauJ53331X3bt3V7169VSqVCm98sorSk1NdWg3aNAgbd68WaNHj5afn5/effddRUdH27Xx9fXVyy+/nOu6PvvsM3Xu3Fm1a9fWgAEDdOedd6p9+/bq16+fdu/erS5duqhXr145Prd9+/Z52p7s6tSp4zBtyJAhKlWqlLp27aqxY8cqMDBQsbGxOnjwoAICAlSzZk0NGzYs3+sKCAhQgwYNNHXqVMvLAABcn83I6QRwAACKqHLlyql///5294Qqysu9nv79++u+++7Lc9AEABQdjNoHAICTFCtWLE/XjgEAih5O7QMAwEkmTpzo7BIAAPnEqX0AAAAAYBGn9gEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAs+v8AtzoeVyYlcIEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ + "import pandas as pd\n", + "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import StandardScaler\n", "\n", - "# Разделение данных на обучающую и тестовую выборки (80% - обучение, 20% - тестовая)\n", - "train_data, test_data = train_test_split(df, test_size=0.2, random_state=42)\n", + "# Разделение признаков (features) и целевой переменной (target)\n", + "X = df.drop(columns=['price']) # Признаки (все столбцы, кроме 'price')\n", + "y = df['price'] # Целевая переменная (цена)\n", "\n", - "# Разделение данных на обучающую и контрольную выборки (80% - обучение, 20% - контроль)\n", - "train_data, val_data = train_test_split(df, test_size=0.2, random_state=42)\n", + "# Применение one-hot encoding для категориальных признаков\n", + "X = pd.get_dummies(X, drop_first=True)\n", "\n", - "print(\"Размер обучающей выборки: \", len(train_data))\n", - "print(\"Размер контрольной выборки: \", len(val_data))\n", - "print(\"Размер тестовой выборки: \", len(test_data))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3ElEQVR4nO3deVxUVeMG8Gd2NlkEAXEl94XUMA0tNcW9svLN9GepZWqmlVZqvOWWGWm+5ZpWb6m9WaaVtpnmXhruS+5aorgBorLNwKzn9wfOjQFEhBlm5vJ8Px8+NfeeufecWeDxLPcqhBACRERERDKldHcFiIiIiFyJYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiMgFMjMz8ddff8Fisbi7KuREQghcv34dZ86ccXdV6A4w7BAROYHZbMbs2bPRqlUr6HQ6hISEoFGjRti8ebO7q+YVjh49irVr10qPDx06hJ9//tl9FSokJycHb775Jpo0aQKtVovQ0FA0btwYp06dcnfVqIzU7q4Aud6yZcvwzDPPSI91Oh3q1q2LHj16YPLkyYiIiHBj7Yi8n9FoRI8ePbBr1y48//zzmDFjBvz8/KBSqRAbG+vu6nmFnJwcjBo1CpGRkQgNDcXLL7+M3r17o2/fvm6t17Vr19C5c2ekpKTgxRdfRMeOHaHVaqHRaFC/fn231o3KjmGnCnnrrbcQHR2N/Px87NixA4sXL8a6detw9OhR+Pn5ubt6RF5r1qxZ2L17NzZs2IAuXbq4uzpeKS4uTvoBgMaNG2PEiBFurhUwYcIEXLlyBUlJSWjRooW7q0PlxLBThfTu3Rtt27YFADz33HMIDQ3F+++/j++//x6DBg1yc+2IvJPFYsHcuXPx6quvMuhU0Nq1a3H8+HHk5eUhJiYGWq3WrfVJT0/H8uXLsWTJEgYdL8c5O1VY165dAQDJyckAgOvXr+O1115DTEwMAgICEBgYiN69e+Pw4cPFnpufn49p06ahcePG8PHxQc2aNfH444/j77//BgCcO3cOCoXilj+F/yhs27YNCoUCX3/9Nf79738jMjIS/v7+eOSRR3DhwoVi5969ezd69eqFoKAg+Pn5oXPnzti5c2eJbezSpUuJ5582bVqxsl988QViY2Ph6+uL6tWrY+DAgSWev7S2FWaz2TB37ly0aNECPj4+iIiIwKhRo3Djxg2HcvXr18dDDz1U7Dxjx44tdsyS6v7ee+8Ve02BgqGVqVOnomHDhtDpdKhTpw4mTpwIo9FY4mtVWJcuXdCyZcti2+fMmQOFQoFz5845bM/MzMS4ceNQp04d6HQ6NGzYELNmzYLNZpPK2F+3OXPmFDtuy5YtS/xMfPPNN7es47Bhw8o0jFC/fn3p/VEqlYiMjMSTTz6JlJSU2z4XAD788EO0aNECOp0OUVFRGDNmDDIzM6X9p06dwo0bN1CtWjV07twZfn5+CAoKwkMPPYSjR49K5bZu3QqFQoE1a9YUO8eXX34JhUKBpKQkqc7Dhg1zKGN/TbZt2yZt+/333/HEE0+gbt260ns8fvx45OXlOTx32rRpxT5LK1asQOvWreHj44PQ0FAMGjSo2GsybNgwBAQEOGz75ptvitUDAAICAorVGSjb96pLly7S+9+8eXPExsbi8OHDJX6vSlL0ex4WFoa+ffs6vP5Awfdn7NixtzzOsmXLHD7fe/fuhc1mg8lkQtu2bUt9rQBgy5YteOCBB+Dv74/g4GD069cPJ06ccChjfy9OnjyJAQMGIDAwUBq2y8/PL1bfwt93i8WCPn36oHr16jh+/LhD2bL+/qqq2LNThdmDSWhoKADg7NmzWLt2LZ544glER0cjLS0NH330ETp37ozjx48jKioKAGC1WvHQQw9h8+bNGDhwIF5++WXk5ORg48aNOHr0KBo0aCCdY9CgQejTp4/DeRMSEkqsz8yZM6FQKDBp0iSkp6dj7ty5iI+Px6FDh+Dr6wug4JdJ7969ERsbi6lTp0KpVGLp0qXo2rUrfv/9d7Rr167YcWvXro3ExEQAQG5uLkaPHl3iuSdPnowBAwbgueeew9WrV7FgwQJ06tQJBw8eRHBwcLHnjBw5Eg888AAA4Lvvviv2R2zUqFHSfKmXXnoJycnJWLhwIQ4ePIidO3dCo9GU+DrciczMTKlthdlsNjzyyCPYsWMHRo4ciWbNmuHIkSP44IMPcPr0aYeJoBVlMBjQuXNnXLp0CaNGjULdunXxxx9/ICEhAVeuXMHcuXOddq7yeuCBBzBy5EjYbDYcPXoUc+fOxeXLl/H777+X+rxp06Zh+vTpiI+Px+jRo3Hq1CksXrwYe/fuld7Da9euASj4XDdq1AjTp09Hfn4+Fi1ahI4dO2Lv3r1o3LgxunTpgjp16mDFihV47LHHHM6zYsUKNGjQQBrCKavVq1fDYDBg9OjRCA0NxZ49e7BgwQJcvHgRq1evvuXzvvzySzz11FNo1aoVEhMTce3aNcyfPx87duzAwYMHERYWdkf1uJXyfK/sJk2adEfnatq0Kd544w0IIfD333/j/fffR58+fcocaktif2/Hjh2L2NhYvPvuu7h69WqJr9WmTZvQu3dv3HXXXZg2bRry8vKwYMECdOzYEQcOHCgWzAcMGID69esjMTERu3btwvz583Hjxg18/vnnt6zPc889h23btmHjxo1o3ry5tL0ir3OVIUj2li5dKgCITZs2iatXr4oLFy6IlStXitDQUOHr6ysuXrwohBAiPz9fWK1Wh+cmJycLnU4n3nrrLWnbZ599JgCI999/v9i5bDab9DwA4r333itWpkWLFqJz587S461btwoAolatWiI7O1vavmrVKgFAzJs3Tzp2o0aNRM+ePaXzCCGEwWAQ0dHRonv37sXO1aFDB9GyZUvp8dWrVwUAMXXqVGnbuXPnhEqlEjNnznR47pEjR4RarS62/cyZMwKAWL58ubRt6tSpovDX6ffffxcAxIoVKxyeu379+mLb69WrJ/r27Vus7mPGjBFFv6JF6z5x4kQRHh4uYmNjHV7T//3vf0KpVIrff//d4flLliwRAMTOnTuLna+wzp07ixYtWhTb/t577wkAIjk5Wdo2Y8YM4e/vL06fPu1Q9vXXXxcqlUqkpKQIIcr3mVi9evUt6zh06FBRr169UtshRMHrO3ToUIdt//d//yf8/PxKfV56errQarWiR48eDt+LhQsXCgDis88+c6hrWFiYyMjIkMqdPn1aaDQa0b9/f2lbQkKC0Ol0IjMz0+E8arXa4X2Njo4WQ4YMcaiP/Txbt26VthkMhmL1TkxMFAqFQpw/f17aVvjzabFYREREhGjQoIHIzc2Vymzbtk0AEK+++qq0bejQocLf39/h+KtXry5WDyGE8Pf3d3id7+R71blzZ4f3f926dQKA6NWrV7HvQEmKPl8IIf79738LACI9PV3aBkCMGTPmlsex/660f77tj5s3b+7wWtvfi8KvVevWrUV4eLi4du2atO3w4cNCqVQ6vJf29+KRRx5xOPcLL7wgAIjDhw871Nf+uUhISBAqlUqsXbvW4Xl3+vurquIwVhUSHx+PGjVqoE6dOhg4cCACAgKwZs0a1KpVC0DBKi2lsuAjYbVace3aNQQEBKBJkyY4cOCAdJxvv/0WYWFhePHFF4udoyxdzrcyZMgQVKtWTXr8r3/9CzVr1sS6desAFCxFPXPmDP7v//4P165dQ0ZGBjIyMqDX69GtWzf89ttvDsMmQMFwm4+PT6nn/e6772Cz2TBgwADpmBkZGYiMjESjRo2wdetWh/ImkwlAwet1K6tXr0ZQUBC6d+/ucMzY2FgEBAQUO6bZbHYol5GRUaxLu6hLly5hwYIFmDx5crGhhtWrV6NZs2Zo2rSpwzHtQ5dFz18Rq1evxgMPPICQkBCHc8XHx8NqteK3335zKG8wGIq11Wq1lnjsnJwcZGRkOAwblYfRaERGRgbS09OxceNGbNmyBd26dSv1OZs2bYLJZMK4ceOk7wUAjBgxAoGBgcWWRT/zzDNSLykANGrUCI888gjWr18vtW/IkCEwGo0Ow3Nff/01LBYLnnrqKWlbeHg4Ll68eNt22Xs8AUCv1yMjIwMdOnSAEAIHDx4sVj4jIwPbtm1DWloaRo0aBX9/f2lf586dERsb67Tl3nf6vbITQiAhIQH9+/dH+/bty3w++3fo6tWrSEpKwpo1a3D33XcX66XKz89HRkYGrl27Vuz3xa2MGTPG4bXu0qWLw2t15coVHDp0CMOGDUP16tWlcnfffTe6d+8u/Q4reszC7L9PSyq7cOFCJCYmYv78+ejXr5/DvvK+zlUNh7GqkEWLFqFx48ZQq9WIiIhAkyZNHH6J22w2zJs3Dx9++CGSk5Md/gAV/iX+999/o0mTJlCrnfvxadSokcNjhUKBhg0bSuPn9ot4DR069JbHyMrKQkhIiPQ4IyOj2HGLOnPmDIQQtyxXdLjJ/oe3aMAoesysrCyEh4eXuD89Pd3h8a+//ooaNWqUWs+ipk6diqioKIwaNarY3JYzZ87gxIkTtzxm0fNXxJkzZ/Dnn3+W+VxTp07F1KlTi5Ur6RIIzz77rPT/AQEBePjhh/HBBx/c8eUSVq5ciZUrV0qP7733Xvz3v/8t9Tnnz58HADRp0sRhu1arxV133SXttwf8pk2bFjtGs2bN8O233yIjIwMRERFo2rQp7r33XqxYsQLDhw8HUDCEdd9996Fhw4bS8zp06ID58+dj5cqV6Nq1K5RKJbKysoodPyUlBVOmTMEPP/xQbC5YSeULv0dF22Wvb2nzpO7EnX6v7FasWIFjx45h1apV+PLLL8t8vj/++MOhfY0aNcLatWuL/QPs008/xaeffgqg4L1s37493n//fWnxRmG3e2/tr9WtPiv2chs2bIBer3cIl0VflwYNGkCpVBabD/fLL79g3759AArmVRZV3te5qmHYqULatWtX4hfa7p133sHkyZPx7LPPYsaMGahevTqUSiXGjRtX5n8BuZK9Du+99x5at25dYpnCAcRkMuHKlSvo3r37bY+rUCjwyy+/QKVSlXpMAEhNTQUAREZGlnrM8PBwrFixosT9RYNB+/bt8fbbbztsW7hwIb7//vsSn3/ixAksW7YMX3zxRYm/zGw2G2JiYvD++++X+Pw6dercsu53ymazoXv37pg4cWKJ+xs3buzweOTIkXjiiScctt1qifGUKVPwwAMPwGw2Y//+/XjrrbeQmZlZ4r9+S9OjRw9MmDABAHDx4kXMmjULDz74IPbt2+fwL/byuNPnDxkyBC+//DIuXrwIo9GIXbt2YeHChQ5l/v3vf2Pnzp2lrpK0Wq3o3r07rl+/jkmTJqFp06bw9/fHpUuXMGzYsBK/sxs3bkRSUhKmTJlyR3Uujzv9XgEF39nJkydj+PDhxT43t3P33XfjP//5DwBI82q6dOmCAwcOOHxX+/Xrh7Fjx0IIgeTkZLz11lt46KGHSrwickU/G3fiVr3ie/bswYgRI+Dv74+3334bTzzxhEOoKs/rXBUx7JDkm2++wYMPPij9q8cuMzPToSu4QYMG2L17N8xms1P/1VD0l40QAn/99Rfuvvtu6bwAEBgYiPj4+Nse7/DhwzCbzaUGPPtxhRCIjo4u0y/Y48ePQ6FQlPivuMLH3LRpEzp27FimX5hhYWHF2lTaJOKEhAS0bt0aTz755C3Pf/jwYXTr1q1CQ4tl0aBBA+Tm5pbpPQEK/kVbtGzhf/EWFhMTI5Xt3bs3UlJSsHz58ju+BUPNmjUdztmkSRN06NABa9euvWWgqFevHoCC1VZ33XWXtN1kMiE5OVk6XnR0tFSuqJMnT8Lf39/h+zNw4EC88sor+Oqrr5CXlweNRlPsfQwLC0NSUhKOHz8uhevDhw/jtddek8ocOXIEp0+fxvLlyzFkyBBp+8aNG2/5OsTHxyMoKAhTpky5ZX2ddaG8O/1eAQUr39LT00tcLXk7ISEhDu9xly5dEBUVhaVLlzosiqhdu7ZDuYCAAAwePLjEYb/C7619CNiu8GtV+LNS1MmTJxEWFlbsM37mzBnp+ADw119/wWazFXv9u3fvjsWLFyM/Px9r167FyJEjpZV5QPle56qIc3ZIolKpIIRw2LZ69WpcunTJYVv//v2RkZFR7F+jAIo9/058/vnnyMnJkR5/8803uHLlCnr37g0AiI2NRYMGDTBnzhzk5uYWe/7Vq1eL1V2lUpW4rLuwxx9/HCqVCtOnTy9WfyGEtCIDKFj6+e2336Jdu3al/otpwIABsFqtmDFjRrF9FoulQnNQkpKS8P333+Pdd9+9ZZAZMGAALl26hE8++aTYvry8POj1+nKfv6RzJSUlYcOGDcX2ZWZmOvXeUDabDUqlssIBzr40u7Rl+PHx8dBqtZg/f77D5+LTTz9FVlaWdGXfGjVqoG3btli+fLnDUNLff/+NH374Ab1793b4F3dYWBh69+6NL774AitWrECvXr1KXP2kVCrRsmVLxMfHIz4+vtiVmO3HLFw3IQTmzZtXattbt26NiIgIfPLJJzAYDNL233//Hfv27bvt96Ws7uR7BRTMz5o5cybGjx9faq9pWZXlPQb+6TEuqVekTZs2iIyMxJIlSxyOU/S1qlmzJlq3bo3ly5c7fLePHj2KX3/9tdiKVKBgWkFhCxYsAADp951dhw4doFKp4O/vjyVLluC3335z+F7f6etcVbFnhyQPPfQQ3nrrLTzzzDPo0KEDjhw5ghUrVjj8qxYo6Ib//PPP8corr2DPnj144IEHoNfrsWnTJrzwwgvFJtCVVfXq1XH//ffjmWeeQVpaGubOnYuGDRtKQxxKpRL//e9/0bt3b7Ro0QLPPPMMatWqhUuXLmHr1q0IDAzEjz/+CL1ej0WLFmH+/Plo3Lixw/VA7CHpzz//RFJSEuLi4tCgQQO8/fbbSEhIwLlz5/Doo4+iWrVqSE5Oxpo1azBy5Ei89tpr2LRpEyZPnow///wTP/74Y6lt6dy5M0aNGoXExEQcOnQIPXr0gEajwZkzZ7B69WrMmzcP//rXv8r1Ov3666/o3r17qT0pTz/9NFatWoXnn38eW7duRceOHWG1WnHy5EmsWrUKGzZsuG2PV25uLtavX++wzf4v1+3bt0Oj0aBWrVqYMGECfvjhBzz00EMYNmwYYmNjodfrceTIEXzzzTc4d+5cuZcyHzp0CAEBAbBYLNi/fz8+//xz9OvXr8Q/TKU5e/YsvvjiCwAFE7sXLlyIwMDAUicp16hRAwkJCZg+fTp69eqFRx55BKdOncKHH36Ie++912FC8ezZs9GjRw/ExcXhueeek5ae+/j4YObMmcWOPWTIEOn9LykQl0XTpk3RoEEDvPbaa7h06RICAwPx7bffFpu7U5RGo8GsWbMwbNgwdOzYEUOHDsX169cxb9481KpVq9iSb6vV6vA5OHToEICC4ZXCk+itVisuXbqEPXv2oF27dmX+XtkdOHAAYWFhtxwOvZ20tDTpPc7IyMBHH30EtVpdLLylpKRg/fr10jDWzJkzUa9ePbRp06ZY77Jarcbs2bMxZMgQPPDAAxg8eLA0RFa7dm2H1+q9995D7969ERcXh+HDh0tLz4OCgkrsqUpOTsYjjzyCXr16ISkpCV988QX+7//+D61atbplG3v27ImnnnoKEydOxMMPP4yaNWve8etcZVXm0i9yD/vyyb1795ZaLj8/X7z66quiZs2awtfXV3Ts2FEkJSWVuKzTYDCIN954Q0RHRwuNRiMiIyPFv/71L/H3338LIcq3zPirr74SCQkJIjw8XPj6+oq+ffs6LJ+1O3jwoHj88cdFaGio0Ol0ol69emLAgAFi8+bNDue+3U/R5cjffvutuP/++4W/v7/w9/cXTZs2FWPGjBGnTp0SQgjx4osvik6dOon169cXq1PRped2H3/8sYiNjRW+vr6iWrVqIiYmRkycOFFcvnxZKnOnS88VCoXYv3+/w/aS3iOTySRmzZolWrRoIXQ6nQgJCRGxsbFi+vTpIisrq9j5ih7vdq/f0qVLpfI5OTkiISFBNGzYUGi1WhEWFiY6dOgg5syZI0wmkxCifJ8J+49arRb16tUTL730krhx44YQ4s6Wnhc+VlhYmOjRo4dISkq67XOFKFhq3rRpU6HRaERERIQYPXq0VIfCNm/eLDp27Ch8fX1FYGCg6Nu3rzhy5EiJxzQajSIkJEQEBQWJvLy8MtWjpKXnx48fF/Hx8SIgIECEhYWJESNGiMOHDxd7f0r6fK5cuVK0bt1a+mw8+eST4ty5cw5lhg4dWqbvUuGfop/D232vhPjn8/bBBx84PPdW36uiin5eg4ODRceOHcW6descyhUuo1AoRGRkpHj88cfFiRMnhBDFl57brVq1SrRp00bodDpRvXp1MWjQoBJ/N23atMnhM/Dwww+L48ePl9im48ePi3/961+iWrVqIiQkRIwdO7bYZwFFLjUhhBAZGRmiRo0a4rHHHnPYXpbXuSpTCFGBcQciJ9i2bRsefPBBrF69uty9HYWdO3cO0dHRSE5OvuX8g2nTpuHcuXNYtmxZhc9XFdWvXx/Tpk0r8Yq5dHsWiwVRUVF4+OGHi82R82bLli3DsmXLil1dmf5hv1Dl1atXnXbxRro9ztkhIqpka9euxdWrVx0mFhOR63DODsmOfXVFaROI7777bun2F3TnOnfuLF2Mkspu9+7d+PPPPzFjxgy0adMGnTt3dneVnKpWrVol3rKFyN0Ydkh2wsLCpImKt/L4449XUm3kafny5e6ugldavHgxvvjiC7Ru3VqWQ6jdu3e/7XWtiNyBc3aIiIhI1jhnh4iIiGSNYYeIiIhkjXN2UHAFzcuXL6NatWouv7Q+EREROYcQAjk5OYiKinK4sXVRDDsALl++7NQbIxIREVHluXDhAmrXrn3L/Qw7AKpVqwag4MUKDAx0c22IiIioLLKzs1GnTh3p7/itMOwA0tBVYGAgww4REZGXud0UFE5QJiIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9hxMSEE9Ho9hBDurgoREVGVxLDjYgaDAYnf7oLBYHB3VYiIiKokhp1KoPXxc3cViIiIqiyGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hp1KJoSAXq+HEMLdVSEiIqoSGHYqmcFgQOK3u2AwGNxdFSIioiqBYccNtD5+7q4CERFRlcGwQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREsubWsGO1WjF58mRER0fD19cXDRo0wIwZMyCEkMoIITBlyhTUrFkTvr6+iI+Px5kzZxyOc/36dQwePBiBgYEIDg7G8OHDkZubW9nNISIiIg/k1rAza9YsLF68GAsXLsSJEycwa9YszJ49GwsWLJDKzJ49G/Pnz8eSJUuwe/du+Pv7o2fPnsjPz5fKDB48GMeOHcPGjRvx008/4bfffsPIkSPd0SQiIiLyMGp3nvyPP/5Av3790LdvXwBA/fr18dVXX2HPnj0ACnp15s6dizfffBP9+vUDAHz++eeIiIjA2rVrMXDgQJw4cQLr16/H3r170bZtWwDAggUL0KdPH8yZMwdRUVHuaRwRERF5BLf27HTo0AGbN2/G6dOnAQCHDx/Gjh070Lt3bwBAcnIyUlNTER8fLz0nKCgI7du3R1JSEgAgKSkJwcHBUtABgPj4eCiVSuzevbvE8xqNRmRnZzv8EBERkTy5tWfn9ddfR3Z2Npo2bQqVSgWr1YqZM2di8ODBAIDU1FQAQEREhMPzIiIipH2pqakIDw932K9Wq1G9enWpTFGJiYmYPn26s5tDREREHsitPTurVq3CihUr8OWXX+LAgQNYvnw55syZg+XLl7v0vAkJCcjKypJ+Lly44NLzERERkfu4tWdnwoQJeP311zFw4EAAQExMDM6fP4/ExEQMHToUkZGRAIC0tDTUrFlTel5aWhpat24NAIiMjER6errDcS0WC65fvy49vyidTgedTueCFhEREZGncWvPjsFggFLpWAWVSgWbzQYAiI6ORmRkJDZv3iztz87Oxu7duxEXFwcAiIuLQ2ZmJvbv3y+V2bJlC2w2G9q3b18JrSAiIiJP5taenYcffhgzZ85E3bp10aJFCxw8eBDvv/8+nn32WQCAQqHAuHHj8Pbbb6NRo0aIjo7G5MmTERUVhUcffRQA0KxZM/Tq1QsjRozAkiVLYDabMXbsWAwcOJArsYiIiMi9YWfBggWYPHkyXnjhBaSnpyMqKgqjRo3ClClTpDITJ06EXq/HyJEjkZmZifvvvx/r16+Hj4+PVGbFihUYO3YsunXrBqVSif79+2P+/PnuaFKJhBDQ6/Xw8/Nzd1WIiIiqHIUofLniKio7OxtBQUHIyspCYGCgU4+t1+uR+O1uWCwmTH7yAQDAf37+E6/2vRv+/v5OPRcREVFVUta/37w3ViXR+vi6uwpERERVEsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyZra3RWoSoQQMBgMAIS7q0JERFRlsGenEhkMBsz5fg8sFrO7q0JERFRlMOxUMq3Oz91VICIiqlIYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh23EQIAb1eDyF4zR0iIiJXYthxE4PBgMRvd928yCARERG5CsOOG2l9eM0dIiIiV2PYISIiIllj2KlkVhvn6BAREVUm3gi0Ep2/kY9Vp/LRqLrG3VUhIiKqMtizU4kOXcyBVQCXcyzurgoREVGVwbBTidJyTACAXLOAjUvOiYiIKgXDTiWyhx2bADJyzW6uDRERUdXAsFOJ7GEHAK5kG91YEyIioqqDYacSFQ47l7MYdoiIiCoDw04lEUI4hp1sUymliYiIyFkYdiqJ0QrkW2zSY/bsEBERVQ6GnUpiMNscHl/mnB0iIqJKwbBTSfTmgqXmipuPr3AYi4iIqFIw7FQSvamgZ6e6T0HcScs28lo7RERElYBhp5LYe3ZCfZVQKgCr+CcAERERkesw7FQSw82wE6BRwF9T0LuTy7BDRETkcgw7lcTei+OnUSBAW/Cy5zDsEBERuRzDTiWxD2P5axQI0N7s2TFa3VklIiKiKkHt7gpUBTYhpGEsP40SAdqC7ezZISIicj327FSCfAsgAKgUgK8ahXp2GHaIiIhcjT07lcA+hFUjQAulQoEATlAmIiKqNOzZqQQGS0HYiahWMH5l79nRm20wWRl4iIiIXIlhpxLob94qItRXCUBAp1ZI+3LyLW6qFRERUdXg9rBz6dIlPPXUUwgNDYWvry9iYmKwb98+ab8QAlOmTEHNmjXh6+uL+Ph4nDlzxuEY169fx+DBgxEYGIjg4GAMHz4cubm5ld2UW7JPTr5w9QYsFjOUCgX8NAUvfS7DDhERkUu5NezcuHEDHTt2hEajwS+//ILjx4/jP//5D0JCQqQys2fPxvz587FkyRLs3r0b/v7+6NmzJ/Lz86UygwcPxrFjx7Bx40b89NNP+O233zBy5Eh3NKlE9pud+2j+mSIVoFMBAHKMDDtERESu5NYJyrNmzUKdOnWwdOlSaVt0dLT0/0IIzJ07F2+++Sb69esHAPj8888RERGBtWvXYuDAgThx4gTWr1+PvXv3om3btgCABQsWoE+fPpgzZw6ioqIqt1ElsN28BZbyn9Er+OtUQK6Z19ohIiJyMbf27Pzwww9o27YtnnjiCYSHh6NNmzb45JNPpP3JyclITU1FfHy8tC0oKAjt27dHUlISACApKQnBwcFS0AGA+Ph4KJVK7N69u8TzGo1GZGdnO/y4UklhJ0B7s2eHw1hEREQu5dawc/bsWSxevBiNGjXChg0bMHr0aLz00ktYvnw5ACA1NRUAEBER4fC8iIgIaV9qairCw8Md9qvValSvXl0qU1RiYiKCgoKknzp16ji7aQ7sdzd3CDu6gk61XA5jERERuZRbw47NZsM999yDd955B23atMHIkSMxYsQILFmyxKXnTUhIQFZWlvRz4cIFl57PWlLPDufsEBERVQq3hp2aNWuiefPmDtuaNWuGlJQUAEBkZCQAIC0tzaFMWlqatC8yMhLp6ekO+y0WC65fvy6VKUqn0yEwMNDhx5VKG8bKzeecHSIiIldya9jp2LEjTp065bDt9OnTqFevHoCCycqRkZHYvHmztD87Oxu7d+9GXFwcACAuLg6ZmZnYv3+/VGbLli2w2Wxo3759JbTi9uxhR1V0gjLYs0NERORqbl2NNX78eHTo0AHvvPMOBgwYgD179uDjjz/Gxx9/DABQKBQYN24c3n77bTRq1AjR0dGYPHkyoqKi8OijjwIo6Anq1auXNPxlNpsxduxYDBw40CNWYgGFenbwT9qxD2Nxzg4REZFruTXs3HvvvVizZg0SEhLw1ltvITo6GnPnzsXgwYOlMhMnToRer8fIkSORmZmJ+++/H+vXr4ePj49UZsWKFRg7diy6desGpVKJ/v37Y/78+e5oUomsJU1Q5mosIiKiSqEQ4uZf4iosOzsbQUFByMrKcvr8Hb1ej46ztyPTKNCllhKR/gpofXxxV1QNTFufjLjoEHw1qoNTz0lERFQVlPXvt9tvF1EVlDhBmXN2iIiIKgXDTiUofTUWww4REZErMexUglIvKmji0nMiIiJXYthxISEE9Hp9iRcVtC89Z88OERGRazHsuJDBYMCc7/eUOoyVb7HBbLW5oXZERERVA8OOi2l1fqVeVBDg8nMiIiJXYtipBCX17KiVCqhvvvo5+ebKrxQREVEVwbDjYjYhYL+QkcVkhMn8Ty+O9mZXD3t2iIiIXIdhx8VshS7ZWLhnB/gn7GSzZ4eIiMhlGHZcrKSwY1+lpWHPDhERkcuV+95Yer0e27dvR0pKCkwmk8O+l156qcIVkwuHsHPzv2ZjPhasPwyNouD+Xgw7RERErlOusHPw4EH06dMHBoMBer0e1atXR0ZGBvz8/BAeHs6wU4h0jR0AikLDWFqdT6GeHQ5jERERuUq5hrHGjx+Phx9+GDdu3ICvry927dqF8+fPIzY2FnPmzHF2Hb1aSVdPtrt5qR327BAREblQucLOoUOH8Oqrr0KpVEKlUsFoNKJOnTqYPXs2/v3vfzu7jl6tpGXndhole3aIiIhcrVxhR6PRQKkseGp4eDhSUlIAAEFBQbhw4YLzaicDpYUdLj0nIiJyvXLN2WnTpg327t2LRo0aoXPnzpgyZQoyMjLwv//9Dy1btnR2Hb1aqT07HMYiIiJyuXL17LzzzjuoWbMmAGDmzJkICQnB6NGjcfXqVXz88cdOraC3K33ODq+zQ0RE5Grl6tlp27at9P/h4eFYv3690yokNyXd8dzunzk77NkhIiJylXL17HTt2hWZmZlOroo8lT5np+C/nKBMRETkOuUKO9u2bSt2IUEqWelzdtizQ0RE5Grlvl2EQlHCX28qxh52VCX17HAYi4iIyOXKfbuIxx57DFqttsR9W7ZsKXeF5MZaygRle89OntkKs9UGjYq3KiMiInK2coeduLg4BAQEOLMusmQrdLuIouxzdgAgN9+CEP+SwyMRERGVX7nCjkKhwIQJExAeHu7s+shOaXN2lAoFfDVK5JltyGHYISIicolyjZsIIW5fiAAUDjslz3EK0BXkTV5rh4iIyDXKFXamTp3KIawyKm3ODgBUuxl2OEmZiIjINco1jDV16lQAwNWrV3Hq1CkAQJMmTVCjRg3n1UwmShvGAoAAn4KJO7zWDhERkWuUq2fHYDDg2WefRVRUFDp16oROnTohKioKw4cPh8FgcHYdvVppS88BwF9bkDcNJmsl1YiIiKhqKVfYGT9+PLZv344ffvgBmZmZyMzMxPfff4/t27fj1VdfdXYdvdrtenb8by7J0ps4jEVEROQK5RrG+vbbb/HNN9+gS5cu0rY+ffrA19cXAwYMwOLFi51VP69X2r2xAMD3Zti5nm2AEIIXayQiInKycg9jRUREFNseHh7OYawiSrvruRACSmvBbTfWH0zma0dEROQC5Qo7cXFxmDp1KvLz86VteXl5mD59OuLi4pxWOTkobRjLbMzHiYsZAAChLPf1HYmIiKgU5foLO3fuXPTq1Qu1a9dGq1atAACHDx+Gj48PNmzY4NQKervbzdnRadQABMw2XruIiIjIFcoVdmJiYnDmzBmsWLECJ0+eBAAMGjQIgwcPhq+vr1Mr6O1uN2dHfbNvzWyrnPoQERFVNeUKO7/99hs6dOiAESNGOLs+slPavbGAf8KOxSqg1+vh5+fHScpEREROVK45Ow8++CCuX7/u7LrIUmkTlAFAc/MdMFmseP+nA5ykTERE5GS8N5aL3e6iguqbvTgWG6D14RAgERGRs5V7CVBSUhJCQkJK3NepU6dyV0hubjdBmXN2iIiIXKvcYeexxx4rcbtCoYDVylsf2Flvhphb3fVcmrPDzjIiIiKXKNcwFgCkpqbCZrMV+2HQcVTWOTsW9uwQERG5RLnCDlcLlZ09w9xuGMti41woIiIiV+AEZRcr65wdgX+uyUNERETOU645OzYbx1zK6varsf75f15FmYiIyPnK1bOTmJiIzz77rNj2zz77DLNmzapwpeTkdj07CoVCCjwWTnciIiJyunKFnY8++ghNmzYttr1FixZYsmRJhSslJ1Zb6ROUgcLLz9mzQ0RE5GzlCjupqamoWbNmse01atTAlStXKlwpObldzw7wz4osXmuHiIjI+coVdurUqYOdO3cW275z505ERUVVuFJycrt7YwGFV2SxZ4eIiMjZyjVBecSIERg3bhzMZjO6du0KANi8eTMmTpyIV1991akV9HYOPTu3yDLSMBbn7BARETlducLOhAkTcO3aNbzwwgswmUwAAB8fH0yaNAkJCQlOraA3E0Lc9jo7AHt2iIiIXKlcYUehUGDWrFmYPHkyTpw4AV9fXzRq1Ag6nc7Z9fNq5kIXzil9zk5Btw8nKBMRETlfue+NBQABAQG49957nVUX2TFb/5lxrFT8czXloqSl55ygTERE5HTlDjv79u3DqlWrkJKSIg1l2X333XcVrpgcFO3ZuWXYURYvT0RERM5RrtVYK1euRIcOHXDixAmsWbMGZrMZx44dw5YtWxAUFOTsOnote8+OAre+6zlQ+Do7lVApIiKiKqZcYeedd97BBx98gB9//BFarRbz5s3DyZMnMWDAANStW9fZdfRa9p6a0ubrAIXvfM6eHSIiImcrV9j5+++/0bdvXwCAVquFXq+HQqHA+PHj8fHHHzu1gt7MdLNn53Zhh1dQJiIicp1yhZ2QkBDk5OQAAGrVqoWjR48CADIzM2EwGJxXOy9nvsOww3tjEREROV+5Jih36tQJGzduRExMDJ544gm8/PLL2LJlCzZu3Ihu3bo5u45eq8zDWAouPSciInKVcoWdhQsXIj8/HwDwxhtvQKPR4I8//kD//v3x5ptvOrWC3uyOe3Y4QZmIiMjp7ijsZGdnFzxJrUZAQID0+IUXXsALL7zg/Np5OXvPjopzdoiIiNzmjsJOcHAwFKUsobazWjn5BCjUs3ObchrO2SEiInKZOwo7W7dudXgshECfPn3w3//+F7Vq1XJqxeTAVMY5O+zZISIicp07CjudO3cutk2lUuG+++7DXXfd5bRKycWdztmxCsBi48QdIiIiZyrX0nMqm7KuxlIXehcMJo5lEREROVOFws6FCxdgMBgQGhrqrPrISll7dlQKhfRGMOwQERE51x2Fnfnz50s/U6ZMQdeuXdG1a1en3A/r3XffhUKhwLhx46Rt+fn5GDNmDEJDQxEQEID+/fsjLS3N4XkpKSno27cv/Pz8EB4ejgkTJsBisVS4Ps5Q1p4d4J/eHb2RYYeIiMiZ7mjOzgcffAAAUCgUCAsLw8MPP+yU6+rs3bsXH330Ee6++26H7ePHj8fPP/+M1atXIygoCGPHjsXjjz+OnTt3AihY9dW3b19ERkbijz/+wJUrVzBkyBBoNBq88847Fa5XRZX1dhFAQdgx2QCDmWGHiIjIme4o7CQnJzu9Arm5uRg8eDA++eQTvP3229L2rKwsfPrpp/jyyy/RtWtXAMDSpUvRrFkz7Nq1C/fddx9+/fVXHD9+HJs2bUJERARat26NGTNmYNKkSZg2bRq0Wq3T63sn/hnGun3a0bBnh4iIyCXcPkF5zJgx6Nu3L+Lj4x2279+/H2az2WF706ZNUbduXSQlJQEAkpKSEBMTg4iICKlMz549kZ2djWPHjt3ynEajEdnZ2Q4/rlDWYSyTMR9KRUFZztkhIiJyrnLdLsJZVq5ciQMHDmDv3r3F9qWmpkKr1SI4ONhhe0REBFJTU6UyhYOOfb99360kJiZi+vTpFaz97dl7dm53BWUA0Nwsw7BDRETkXG7r2blw4QJefvllrFixAj4+PpV67oSEBGRlZUk/Fy5ccMl57mSCsurmO8GwQ0RE5FxuCzv79+9Heno67rnnHqjVaqjVamzfvh3z58+HWq1GREQETCYTMjMzHZ6XlpaGyMhIAEBkZGSx1Vn2x/YyJdHpdAgMDHT4cQWTpewTlKU5OybPWElGREQkF24LO926dcORI0dw6NAh6adt27YYPHiw9P8ajQabN2+WnnPq1CmkpKQgLi4OABAXF4cjR44gPT1dKrNx40YEBgaiefPmld6mouy3fyjLi6ziMBYREZFLuG3OTrVq1dCyZUuHbf7+/ggNDZW2Dx8+HK+88gqqV6+OwMBAvPjii4iLi8N9990HAOjRoweaN2+Op59+GrNnz0ZqairefPNNjBkzBjqdrtLbVFRZLyoIFO7ZYdghIiJyJrdOUL6dDz74AEqlEv3794fRaETPnj3x4YcfSvtVKhV++uknjB49GnFxcfD398fQoUPx1ltvubHW/7ijiwreLMOl50RERM7lUWFn27ZtDo99fHywaNEiLFq06JbPqVevHtatW+fimpXPnazGUrNnh4iIyCXcfp0dOSvP7SIMnKBMRETkVAw7LmQux2qsXA5jERERORXDjguZbXdwbyzO2SEiInIJhh0XKtddzzmMRURE5FQMOy50JzcCVfNGoERERC7BsONCd9KzY783FldjERERORfDjgvdye0i7D07RotN6hEiIiKiimPYcaHyzNkBAL2R83aIiIichWHHhaQ5O2Uoq1T8c/HBnHyGHSIiImdh2HGhkffXwz0RalTTlq285mba4YosIiIi52HYcaF+rSLRPFQDX3UZxrFQ6GagHMYiIiJyGoYdD6K5ObmHw1hERETOw7DjQTSqgv/yWjtERETOw7DjQdQ3e3Y4jEVEROQ8DDsexD5BOYdhh4iIyGkYdjwIJygTERE5H8OOB7FPUM5l2CEiInIahh0PYh/GYtghIiJyHoYdD8JhLCIiIudj2PEgUs8Or7NDRETkNAw7HsTes8NhLCIiIudh2PEgnKBMRETkfAw7HkS6ESjDDhERkdMw7HiQf4axeLsIIiIiZ2HY8SBqaem52c01ISIikg+GHQ9in7OTb7bBYrW5uTZERETywLDjQTSF3g29iUNZREREzsCw40FUSgW0vIoyERGRUzHseBh/nRoAV2QRERE5C8OOh/HXqgAAObyKMhERkVMw7HgYf11B2GHPDhERkXMw7HgYfy2HsYiIiJyJYcfD2Ht2chh2iIiInIJhx8MEaDmMRURE5EwMOx7G7+ZqrFxOUCYiInIKhh0PE3BzGCvXxLBDRETkDAw7Hsafw1hEREROxbDjYeyrsTiMRURE5BwMOx7Gvhor18h7YxERETkDw46H4TAWERGRczHseBj7vbF4I1AiIiLnYNjxMPbVWNn5ZjfXhIiISB4YdjxMiJ8GAHBDb3JzTYiIiOSBYcfDBPsWhJ3sfAvMVpuba0NEROT9GHY8jNr2T49OpoFDWURERBXFsONhVEoFdCoFAOCGgUNZREREFcWw44F81AVh5zrn7RAREVUYw44H0qkL3hZOUiYiIqo4hh0PJPXscBiLiIiowhh2PJAPe3aIiIichmHHA+lu9uykZRkghHBzbYiIiLwbw44Hsg9j7Th5GQaDwc21ISIi8m4MOx7IPoxlEio314SIiMj7Mex4IPswltHCKygTERFVFMOOBxFCQK/Xw+fmRQXzLZyvQ0REVFEMOx7EbMzHgvWHoVZYAbBnh4iIyBkYdjyMVucj3S7CbANMDDxEREQVwrDjgbQq4GbeQWYebwZKRERUEQw7HkihUCDIVw0AuME7nxMREVUIw46HYtghIiJyDoYdDxXsowEAZDLsEBERVQjDjocKtvfscM4OERFRhTDseKhgDmMRERE5BcOOh7LP2eEwFhERUcUw7Hgo9uwQERE5h1vDTmJiIu69915Uq1YN4eHhePTRR3Hq1CmHMvn5+RgzZgxCQ0MREBCA/v37Iy0tzaFMSkoK+vbtCz8/P4SHh2PChAmwWCyV2RSns4cdXmeHiIioYtwadrZv344xY8Zg165d2LhxI8xmM3r06AG9Xi+VGT9+PH788UesXr0a27dvx+XLl/H4449L+61WK/r27QuTyYQ//vgDy5cvx7JlyzBlyhR3NMlp2LNDRETkHGp3nnz9+vUOj5ctW4bw8HDs378fnTp1QlZWFj799FN8+eWX6Nq1KwBg6dKlaNasGXbt2oX77rsPv/76K44fP45NmzYhIiICrVu3xowZMzBp0iRMmzYNWq3WHU2rMIYdIiIi5/CoOTtZWVkAgOrVqwMA9u/fD7PZjPj4eKlM06ZNUbduXSQlJQEAkpKSEBMTg4iICKlMz549kZ2djWPHjpV4HqPRiOzsbIcfTxPkw7BDRETkDB4Tdmw2G8aNG4eOHTuiZcuWAIDU1FRotVoEBwc7lI2IiEBqaqpUpnDQse+37ytJYmIigoKCpJ86deo4uTUVF+RbcFFBo8WGPJPVzbUhIiLyXh4TdsaMGYOjR49i5cqVLj9XQkICsrKypJ8LFy64/Jx3yl+rhPLmzUBT0m9ACOHeChEREXkpjwg7Y8eOxU8//YStW7eidu3a0vbIyEiYTCZkZmY6lE9LS0NkZKRUpujqLPtje5midDodAgMDHX48jUKhgL+mIO289+MBGAwGN9eIiIjIO7k17AghMHbsWKxZswZbtmxBdHS0w/7Y2FhoNBps3rxZ2nbq1CmkpKQgLi4OABAXF4cjR44gPT1dKrNx40YEBgaiefPmldMQF7GHHSO8c5I1ERGRJ3DraqwxY8bgyy+/xPfff49q1apJc2yCgoLg6+uLoKAgDB8+HK+88gqqV6+OwMBAvPjii4iLi8N9990HAOjRoweaN2+Op59+GrNnz0ZqairefPNNjBkzBjqdzp3NqzB72Mk12dxcEyIiIu/l1rCzePFiAECXLl0cti9duhTDhg0DAHzwwQdQKpXo378/jEYjevbsiQ8//FAqq1Kp8NNPP2H06NGIi4uDv78/hg4dirfeequymuEy/4QdTlAmIiIqL7eGnbJMuvXx8cGiRYuwaNGiW5apV68e1q1b58yqeYQA9uwQERFVmEdMUKaScRiLiIio4hh2PJg97OhNNti49JyIiKhcGHY8mJ9GAaUCsAkgI9fk7uoQERF5JYYdD6ZUKFDDv+BKypcy891cGyIiIu/EsOPhIqoVhJ3LWQw7RERE5cGw4+EiAhh2iIiIKoJhx8NF3uzZuZJldHNNiIiIvBPDjodjzw4REVHFMOx4MCEEgrUF19jhBGUiIqLycesVlKlkQgjo9XqYTXnY8mcmAB9cycqHEAIKhcLd1SMiIvIq7NnxQGZjPhasPwyLxYJqvgU3M80z23DDYHZzzYiIiLwPw46H0up8AAAqJeCrLujNuXQjz51VIiIi8koMO17AX1sQdi7eMLi5JkRERN6HYccLBGoL3qazGXo314SIiMj7MOx4gSCfgrfpr/RcN9eEiIjI+zDseIEgXcHbdCY9x801ISIi8j4MO14g+GbPzt/pethsws21ISIi8i4MO14gQKuARqVAntmKS5mcpExERHQnGHa8gFKhQL2QgqXoR1Ouubk2RERE3oVhx0vUr14Qdv7miiwiIqI7wrDjJaJDfQEAf101QK/XQwjO3SEiIioLhh0vIYWdtBwkfrsLBgPn7hAREZUFw46XiK5eEHaSr+dDo/N1c22IiIi8B8OOl6gbooMCgN5khcHMISwiIqKyYtjxEhqVEoE3Ly6YmW91c22IiIi8B8OOFxBCQK/XI9hHBYBhh4iI6E4w7HgBszEfC9YfRqCu4PGNPIYdIiKislK7uwJUNlqdD0KhAmBGWq7Z3dUhIiLyGuzZ8SIR/iooAGQZbcjINbm7OkRERF6BYceL6NQKNAgrWHa+PyXTvZUhIiLyEgw7Xia2TjUAwJ7zme6tCBERkZdg2PEy99QuCDv7zmfythFERERlwLDjZdrcDDt/XTVg6tdJxW4bYV+mzhBERERUgGHHywT7ahBy83o7182aYvsNBgPvnUVERFQIw44XiqxWcMWA1FssQdf6+FVmdYiIiDwaw44Xigwo6NG5nGPmcBUREdFtMOx4oZoBKmhVCmTm27A/JQsA5+oQERHdCsOOF1JaTYjytQAAPt99EQDn6hAREd0Kw46XahZaMJS15VQGzmXoAXCuDhERUUkYdrxUkE6BWtVUEACW7kx2d3WIiIg8FsOOF7HPywEK5uU0Dyvo3Vm17yIy83hzUCIiopIw7HgRszEfC9YfhsVSEGwi/JVoXMMXeWYr/rfrgptrR0RE5JkYdryMVucj/b/FZESIyAEA/G/PJRgtNndVi4iIyGMx7Hi5+iFaBOuU0JusOH7V6O7qEBEReRyGHS9kMubDZC5Yeq5QKBATUTB351h6PnKNVndWjYiIyOMw7MhAvSA16lf3gckq8M3hNHdXh4iIyKMw7MiAUqHAs+2jAAAr9qXBbOVVlImIiOwYdmQivkl1BOqUyMq34GRGvrurQ0RE5DEYdmRACAFjngGtIgtWah1Jy0eemXN3iIiIAIYdWbBff6deoAJRQTrkWwS+3nfZ3dUiIiLyCAw7MqHV+UCpUOCZdjUBAB/tOI+MXC5FJyIiYtiRmYdahCHUV4XsfAtm/XLS3dUhIiJyO4YdmVEpFYirU3D389X7L2L/+eturhEREZF7MezIUHiABv1bRwIA3lhzFEYLJysTEVHVxbAjI4Xviv7yg9EI8dPgZGoOZv54BELw2jtERFQ1MezIiD47Ex/8uB8Wixk+CgtaBJoAAJ/vvoS1u88w8BARUZXEsCMz6kJ3Ra9f3Q+NgxUAgNd/PIPTl645lLX3BDEEERGRnDHsyFyrMAWCdYDRCgz/3yGkZeUBKAg6V69eReK3u2AwGNxcSyIiItdh2JE5lVKBuDAz/NQCF7OMeOq/u3ElKw8GgwFzvt8DpVrt7ioSERG5FMNOFeCrBh6IBHzVCpy5qkfn2Vsx+9e/YIAPbDeHsOxDWjabrcShLQ55ERGRt2LYqSL8NUCPu3zRqlYATFaB5bsv4qe/jVh5TI9nPz+Aj7aewhtf/YGMjIwSh7YMBkOpQ14MQ0RE5KkYdmSo8BL0woJ8lPh4QFP0aBCAtnWqQaUALDZg9/lsvPvr31j7lwmjvj6J83oVTBZbseNqffwcjl842NwuDBEREbkLw44M2W8MarGYHbYLIWAwGFA7SIMPn2iKJ5v6oFc9JWIjtWhV0w8KAAcv5eD383r0WZiEn/68XGJPza2CjT0MEREReRLOTpUpbaEl6Hb2EBQQFAIAsJjy4acUaBSogMmoR8OmQQgPDcHSXZdwJceMsV8exH9CT+LhVrXQtk4AsvKt0Bst8NepGWyIiMhrMOxUMVqdT4nDXFqdD7RaJZ5pH4W0y5dwOkeNvzJtSL6Wh/lb/pLKfXd8B5rXDIDSZsH6Y+loWTcUVpMRNwxm3MizcM4OERF5HNmEnUWLFuG9995DamoqWrVqhQULFqBdu3burpZHsvfwAACUxT8CaiXQMkyN+U82w5trjuJ8lhlQ65CeY4TZBhy7kgsAePW748Weu2fBLjzUqhZ6x9REq9pBUCgU0vCZn58fFAqF09vj6uMTEZF3k0XY+frrr/HKK69gyZIlaN++PebOnYuePXvi1KlTCA8Pd3f1PJJW5wOTMd9hW+EeHyEEFBYj7gpWoWGYDmPjm2H++qO4lpWNq/kKZAof+Pv64e8MPYxmKzQKAaNNgUtZRnz021l89NtZRAbq0KBGAPw0Cpy9ch33NayBmqFBCNYpEFW9GrRqJSxmExQqDfItNhiMFmTp86BQqaFUKqFUADajAWGBfqgXHoLa1X0R6KMBAFisNlzNNeJqjhGZOXp8vu0YXuzVGs3qhEGrLvtUtIL2Av7+/hV6PZ11HCIicj6FkMG4Q/v27XHvvfdi4cKFAACbzYY6dergxRdfxOuvv37b52dnZyMoKAhZWVkIDAx0Wr30ej0Sv90Ni6XgHlUmYz6gVEOrccyYnrRdCkBKNWCzQKvzgUbng2c71MPiTcdgsQFajRoanQ/GxjcDAPznh72w2ACFSoWrJg20Pn7YmZyFPHPxFV0VpVIACoUCVptASR9ctVKB6DB/NIoIQHSYP/y0amhVSpisNuSbrcgzWZFntuJ6bj5uGCy4mp0HcbM3KMhHjbAALSKD/RERqEOQb0GwEgBsNgGbAIwmI5QqDWwCsAmBfLMVGblGpGflwWKzQaFUwUethI9agRB/H1Tz1SBAp4JSoYBSoYDVYoavjxYqpRIqhQJKpQIqJaBUKCBuHtN+bHHz/602x/83Go2AAvDV6aBS3jzGzeMXPp5SoYBKqYC9r6vw6yUEICBgMhqh0epg7xAr/NvAsbwAbrZfq9VKPWj28oXfDYdjlHa8m4zGgmPaK1FQ94KHypvbbDfbrdX9U1f7PoWioI0KBaCA4uZ/y68ivxAr+tu05E+1689d0T8C7voz4rWvd4XrXZFzV6DN5TshTCYTtFotesXUlP7B6ixl/fvt9T07JpMJ+/fvR0JCgrRNqVQiPj4eSUlJJT7HaDQW/MG4KSsrC0DBi+ZMer0eOZkZsFgsAAomBCuUahiLXLXYU7er1GoY8wpWXL379VkAcCg/ZelZ6Tn28tUAWLLz0dEPuGFSwWAWsClUsKk0EAo16oZVw+ELN5BvETdDhhIK2KAUNqiUgEalAmAFCv62wiIUMFuBfJsSZqFE4fikgIBWKaBSAEqlAvkWwCQUOHVBj1MX0kt8T4iIyD2avNgR0WEBTj2m/e/27UKc14edjIwMWK1WREREOGyPiIjAyZMnS3xOYmIipk+fXmx7nTp1XFJHIiKiqq71XNcdOycnB0FBQbfc7/VhpzwSEhLwyiuvSI9tNhuuX7+O0NBQp05wzc7ORp06dXDhwgWnDo95KrZX3qpae4Gq12a2V97k2F4hBHJychAVFVVqOa8PO2FhYVCpVEhLS3PYnpaWhsjIyBKfo9PpoNPpHLYFBwe7qooIDAyUzQerLNheeatq7QWqXpvZXnmTW3tL69Gx8/orKGu1WsTGxmLz5s3SNpvNhs2bNyMuLs6NNSMiIiJP4PU9OwDwyiuvYOjQoWjbti3atWuHuXPnQq/X45lnnnF31YiIiMjNZBF2nnzySVy9ehVTpkxBamoqWrdujfXr1xebtFzZdDodpk6dWmzITK7YXnmrau0Fql6b2V55q2rtLUwW19khIiIiuhWvn7NDREREVBqGHSIiIpI1hh0iIiKSNYYdIiIikjWGHRdatGgR6tevDx8fH7Rv3x579uxxd5VuKzExEffeey+qVauG8PBwPProozh16pRDmfz8fIwZMwahoaEICAhA//79i13UMSUlBX379oWfnx/Cw8MxYcIE6R5hdtu2bcM999wDnU6Hhg0bYtmyZa5u3m29++67UCgUGDdunLRNbu29dOkSnnrqKYSGhsLX1xcxMTHYt2+ftF8IgSlTpqBmzZrw9fVFfHw8zpw543CM69evY/DgwQgMDERwcDCGDx+O3NxchzJ//vknHnjgAfj4+KBOnTqYPXt2pbSvMKvVismTJyM6Ohq+vr5o0KABZsyY4XAfHW9u72+//YaHH34YUVFRUCgUWLt2rcP+ymzb6tWr0bRpU/j4+CAmJgbr1q1zenuB0ttsNpsxadIkxMTEwN/fH1FRURgyZAguX77stW2+3Xtc2PPPPw+FQoG5c+c6bPem9rqMIJdYuXKl0Gq14rPPPhPHjh0TI0aMEMHBwSItLc3dVStVz549xdKlS8XRo0fFoUOHRJ8+fUTdunVFbm6uVOb5558XderUEZs3bxb79u0T9913n+jQoYO032KxiJYtW4r4+Hhx8OBBsW7dOhEWFiYSEhKkMmfPnhV+fn7ilVdeEcePHxcLFiwQKpVKrF+/vlLbW9iePXtE/fr1xd133y1efvllabuc2nv9+nVRr149MWzYMLF7925x9uxZsWHDBvHXX39JZd59910RFBQk1q5dKw4fPiweeeQRER0dLfLy8qQyvXr1Eq1atRK7du0Sv//+u2jYsKEYNGiQtD8rK0tERESIwYMHi6NHj4qvvvpK+Pr6io8++qhS2ztz5kwRGhoqfvrpJ5GcnCxWr14tAgICxLx582TR3nXr1ok33nhDfPfddwKAWLNmjcP+ymrbzp07hUqlErNnzxbHjx8Xb775ptBoNOLIkSOV2ubMzEwRHx8vvv76a3Hy5EmRlJQk2rVrJ2JjYx2O4U1tvt17bPfdd9+JVq1aiaioKPHBBx94bXtdhWHHRdq1ayfGjBkjPbZarSIqKkokJia6sVZ3Lj09XQAQ27dvF0IU/DLRaDRi9erVUpkTJ04IACIpKUkIUfDlVCqVIjU1VSqzePFiERgYKIxGoxBCiIkTJ4oWLVo4nOvJJ58UPXv2dHWTSpSTkyMaNWokNm7cKDp37iyFHbm1d9KkSeL++++/5X6bzSYiIyPFe++9J23LzMwUOp1OfPXVV0IIIY4fPy4AiL1790plfvnlF6FQKMSlS5eEEEJ8+OGHIiQkRGq//dxNmjRxdpNK1bdvX/Hss886bHv88cfF4MGDhRDyam/RP4SV2bYBAwaIvn37OtSnffv2YtSoUU5tY1Gl/fG327NnjwAgzp8/L4Tw7jbfqr0XL14UtWrVEkePHhX16tVzCDve3F5n4jCWC5hMJuzfvx/x8fHSNqVSifj4eCQlJbmxZncuKysLAFC9enUAwP79+2E2mx3a1rRpU9StW1dqW1JSEmJiYhwu6tizZ09kZ2fj2LFjUpnCx7CXcdfrM2bMGPTt27dYneTW3h9++AFt27bFE088gfDwcLRp0waffPKJtD85ORmpqakOdQ0KCkL79u0d2hscHIy2bdtKZeLj46FUKrF7926pTKdOnaDVaqUyPXv2xKlTp3Djxg1XN1PSoUMHbN68GadPnwYAHD58GDt27EDv3r0ByK+9hVVm2zzl812SrKwsKBQK6f6HcmuzzWbD008/jQkTJqBFixbF9sutveXFsOMCGRkZsFqtxa7gHBERgdTUVDfV6s7ZbDaMGzcOHTt2RMuWLQEAqamp0Gq1xW6cWrhtqampJbbdvq+0MtnZ2cjLy3NFc25p5cqVOHDgABITE4vtk1t7z549i8WLF6NRo0bYsGEDRo8ejZdeegnLly93qG9pn93U1FSEh4c77Fer1ahevfodvSaV4fXXX8fAgQPRtGlTaDQatGnTBuPGjcPgwYMd6iKX9hZWmW27VRl3/77Lz8/HpEmTMGjQIOnGl3Jr86xZs6BWq/HSSy+VuF9u7S0vWdwuglxjzJgxOHr0KHbs2OHuqrjMhQsX8PLLL2Pjxo3w8fFxd3VczmazoW3btnjnnXcAAG3atMHRo0exZMkSDB061M21c75Vq1ZhxYoV+PLLL9GiRQscOnQI48aNQ1RUlCzbS/8wm80YMGAAhBBYvHixu6vjEvv378e8efNw4MABKBQKd1fHo7FnxwXCwsKgUqmKrdhJS0tDZGSkm2p1Z8aOHYuffvoJW7duRe3ataXtkZGRMJlMyMzMdChfuG2RkZEltt2+r7QygYGB8PX1dXZzbmn//v1IT0/HPffcA7VaDbVaje3bt2P+/PlQq9WIiIiQVXtr1qyJ5s2bO2xr1qwZUlJSpHra61ZY0famp6c77LdYLLh+/fodvSaVYcKECVLvTkxMDJ5++mmMHz9e6sWTW3sLq8y23aqMu9puDzrnz5/Hxo0bpV4dQF5t/v3335Geno66detKv7/Onz+PV199FfXr15fqKZf2VgTDjgtotVrExsZi8+bN0jabzYbNmzcjLi7OjTW7PSEExo4dizVr1mDLli2Ijo522B8bGwuNRuPQtlOnTiElJUVqW1xcHI4cOeLwBbP/wrH/oY2Li3M4hr1MZb8+3bp1w5EjR3Do0CHpp23bthg8eLD0/3Jqb8eOHYtdSuD06dOoV68eACA6OhqRkZEOdc3Ozsbu3bsd2puZmYn9+/dLZbZs2QKbzYb27dtLZX777TeYzWapzMaNG9GkSROEhIS4rH1FGQwGKJWOv+ZUKhVsNhsA+bW3sMpsm6d8voF/gs6ZM2ewadMmhIaGOuyXU5uffvpp/Pnnnw6/v6KiojBhwgRs2LBBqqdc2lsh7p4hLVcrV64UOp1OLFu2TBw/flyMHDlSBAcHO6zY8USjR48WQUFBYtu2beLKlSvSj8FgkMo8//zzom7dumLLli1i3759Ii4uTsTFxUn77Uuxe/ToIQ4dOiTWr18vatSoUeJS7AkTJogTJ06IRYsWuX3puV3h1VhCyKu9e/bsEWq1WsycOVOcOXNGrFixQvj5+YkvvvhCKvPuu++K4OBg8f3334s///xT9OvXr8Tlym3atBG7d+8WO3bsEI0aNXJYypqZmSkiIiLE008/LY4ePSpWrlwp/Pz8Kn3p+dChQ0WtWrWkpeffffedCAsLExMnTpRFe3NycsTBgwfFwYMHBQDx/vvvi4MHD0orjyqrbTt37hRqtVrMmTNHnDhxQkydOtVly5JLa7PJZBKPPPKIqF27tjh06JDD77DCK428qc23e4+LKroay9va6yoMOy60YMECUbduXaHVakW7du3Erl273F2l2wJQ4s/SpUulMnl5eeKFF14QISEhws/PTzz22GPiypUrDsc5d+6c6N27t/D19RVhYWHi1VdfFWaz2aHM1q1bRevWrYVWqxV33XWXwzncqWjYkVt7f/zxR9GyZUuh0+lE06ZNxccff+yw32azicmTJ4uIiAih0+lEt27dxKlTpxzKXLt2TQwaNEgEBASIwMBA8cwzz4icnByHMocPHxb333+/0Ol0olatWuLdd991eduKys7OFi+//LKoW7eu8PHxEXfddZd44403HP7weXN7t27dWuL3dejQoZXetlWrVonGjRsLrVYrWrRoIX7++edKb3NycvItf4dt3brVK9t8u/e4qJLCjje111UUQhS6lCgRERGRzHDODhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhF5tGHDhuHRRx8ttn3btm1QKBTF7khPRFQUww4RERHJGsMOEclCZmYmnnvuOdSoUQOBgYHo2rUrDh8+LO2fNm0aWrdu7fCcor1D165dw6BBg1CrVi34+fkhJiYGX331VSW2gohcgWGHiGThiSeeQHp6On755Rfs378f99xzD7p164br16+X+Rj5+fmIjY3Fzz//jKNHj2LkyJF4+umnsWfPHhfWnIhcTe3uChARVdSOHTuwZ88epKenQ6fTAQDmzJmDtWvX4ptvvsHIkSPLdJxatWrhtddekx6/+OKL2LBhA1atWoV27dq5pO5E5HoMO0Tk9Q4fPozc3FyEhoY6bM/Ly8Pff/8tPT5y5AgCAgKkx1ar1aG81WrFO++8g1WrVuHSpUswmUwwGo3w8/NzbQOIyKUYdojI6+Xm5qJmzZrYtm1bsX3BwcHS/zdp0gQ//PCD9Hj37t146qmnpMfvvfce5s2bh7lz5yImJgb+/v4YN24cTCaTK6tPRC7GsENEXu+ee+5Bamoq1Go16tevf8tyWq0WDRs2lB5fvHjRYf/OnTvRr18/KQDZbDacPn0azZs3d0m9iahyMOwQkcfLysrCoUOHHLb99ddfAAqGpu677z7ExcXh0UcfxezZs9G4cWNcvnwZP//8Mx577DG0bdu2TOdp1KgRvvnmG/zxxx8ICQnB+++/j7S0NIYdIi/HsENEHm/btm1o06ZNifs6deqErVu3Yt26dXjjjTfwzDPP4OrVq4iMjESnTp0QERFR5vO8+eabOHv2LHr27Ak/Pz+MHDkSjz76KLKyspzVFCJyA4UQQri7EkRE5VW/fn0sW7YMXbp0cXdViMhD8To7ROTVmjdv7rDCioioKPbsEBERkayxZ4eIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGTt/wEPaUWrXA6hNwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfP0lEQVR4nO3dd3gUVcM28Ht2N7upm14hjd4Fg2KkCpFqQbA+qIAoikGliIoNxEdR8VEQEfRTAV8LggpYQTqiASVKbwECiUA66WXb+f7Y7JBNgSRsssnk/l3uJTtzduacrXfOOTMjCSEEiIiIiBRK5ewKEBERETUkhh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNI2zK0BERKQEBoMBOTk5sFgsCAsLc3Z1qAL27BARUZP2+eef48yZM/L9FStW4Ny5c86rUAV79+7Ff/7zHwQEBECn0yE0NBRjx451drWoEoYdBVmxYgUkSZJvrq6u6NChA6ZOnYr09HRnV4+IqF5+++03PPPMMzhz5gw2btyI+Ph4qFTO//lav349+vXrhyNHjuC1117Dpk2bsGnTJnz44YfOrhpVwmEsBZo3bx6io6NRWlqKXbt2YenSpfj5559x6NAhuLu7O7t6RER1Mn36dAwaNAjR0dEAgBkzZiA0NNSpdcrJycHDDz+MYcOGYc2aNdBqtU6tD10ew44CjRgxAr179wYAPPzww/D398c777yD9evX47777nNy7YiI6qZTp044deoUDh06hICAALRt29bZVcLy5ctRWlqKFStWMOg0A87vB6QGN3jwYABAcnIyAOtfJE8//TS6d+8OT09P6PV6jBgxAvv376/y2NLSUsydOxcdOnSAq6srQkNDMWbMGJw6dQoAcObMGbuhs8q3QYMGydvavn07JEnC119/jeeffx4hISHw8PDAbbfdhtTU1Cr73rNnD4YPHw5vb2+4u7tj4MCB+P3336tt46BBg6rd/9y5c6uU/fzzzxETEwM3Nzf4+fnh3nvvrXb/l2tbRRaLBQsXLkTXrl3h6uqK4OBgPProo7h48aJduaioKNxyyy1V9jN16tQq26yu7gsWLKjynAJAWVkZ5syZg3bt2kGn0yE8PBzPPPMMysrKqn2uKho0aBC6detWZfnbb78NSZLs5kkAQG5uLqZNm4bw8HDodDq0a9cOb775JiwWi1zG9ry9/fbbVbbbrVu3at8T33zzTY11nDBhAqKioq7YlqioKPn1UalUCAkJwT333IOUlJRaPXbChAl2yyZPngxXV1ds377dbvkHH3yArl27QqfTISwsDPHx8cjNzbUrU9vntWKdq7vZ2l3xOX333XcRGRkJNzc3DBw4EIcOHaqyn61bt6J///7w8PCAj48Pbr/9dhw9evSKz1vFW8V21/TeragurzsAZGRkYNKkSQgODoarqyuuueYarFy5stptrlixAh4eHujTpw/atm2L+Ph4SJJU5TWrqU62m4uLC6KiojBr1iwYDAa5nG0KwN69e2vc1qBBg+zasHv3bvTs2ROvv/66/Hlo37493njjDbvPAwCYTCa8+uqraNu2LXQ6HaKiovD8889X+Yzanudff/0VPXv2hKurK7p06YLvvvvOrpytvhU/n4cPH4avry9uueUWmEwmeXltPrMtAXt2WgBbMPH39wcAnD59GuvWrcNdd92F6OhopKen48MPP8TAgQNx5MgR+SgCs9mMW265BVu2bMG9996Lp556CgUFBdi0aRMOHTpk99fVfffdh5EjR9rtd/bs2dXW57XXXoMkSXj22WeRkZGBhQsXIi4uDvv27YObmxsA65f1iBEjEBMTgzlz5kClUmH58uUYPHgwfvvtN1x//fVVttu6dWvMnz8fAFBYWIgpU6ZUu++XXnoJd999Nx5++GFkZmZi8eLFGDBgAP755x/4+PhUeczkyZPRv39/AMB3332HtWvX2q1/9NFHsWLFCkycOBFPPvkkkpOT8f777+Off/7B77//DhcXl2qfh7rIzc2V21aRxWLBbbfdhl27dmHy5Mno3LkzDh48iHfffRcnTpzAunXrrnrfNsXFxRg4cCDOnTuHRx99FBEREfjjjz8we/ZsXLhwAQsXLnTYvuqrf//+mDx5MiwWCw4dOoSFCxfi/Pnz+O233+q0nTlz5uCTTz7B119/bfcDN3fuXLzyyiuIi4vDlClTcPz4cSxduhR//fVXvV7rhQsXorCwEABw9OhRvP7663j++efRuXNnAICnp6dd+c8++wwFBQWIj49HaWkpFi1ahMGDB+PgwYMIDg4GAGzevBkjRoxAmzZtMHfuXJSUlGDx4sXo27cv/v7772qDo+15q1iPhlRSUoJBgwbh5MmTmDp1KqKjo7FmzRpMmDABubm5eOqpp2p87MmTJ/H//t//q9P+bJ/hsrIybNy4EW+//TZcXV3x6quv1rsN2dnZ2LVrF3bt2oWHHnoIMTEx2LJlC2bPno0zZ85g2bJlctmHH34YK1euxJ133omZM2diz549mD9/Po4ePVrl+yQpKQn33HMPHnvsMYwfPx7Lly/HXXfdhQ0bNuDmm2+uti6pqakYPnw4OnXqhNWrV0Ojsf60N4fPbKMRpBjLly8XAMTmzZtFZmamSE1NFatWrRL+/v7Czc1N/Pvvv0IIIUpLS4XZbLZ7bHJystDpdGLevHnysk8//VQAEO+8806VfVksFvlxAMSCBQuqlOnatasYOHCgfH/btm0CgGjVqpXIz8+Xl69evVoAEIsWLZK33b59ezFs2DB5P0IIUVxcLKKjo8XNN99cZV833nij6Natm3w/MzNTABBz5syRl505c0ao1Wrx2muv2T324MGDQqPRVFmelJQkAIiVK1fKy+bMmSMqfmx+++03AUB88cUXdo/dsGFDleWRkZFi1KhRVeoeHx8vKn8UK9f9mWeeEUFBQSImJsbuOf2///s/oVKpxG+//Wb3+GXLlgkA4vfff6+yv4oGDhwounbtWmX5ggULBACRnJwsL3v11VeFh4eHOHHihF3Z5557TqjVapGSkiKEqN97Ys2aNTXWcfz48SIyMvKy7RDC+vyOHz/ebtl//vMf4e7uXqfHfvjhhwKAWLx4sV2ZjIwModVqxdChQ+0+P++//74AID799FN5WV2eVxvbc7Ft27Yq62zPacXPsRBC7NmzRwAQ06dPl5f17NlTBAUFiezsbHnZ/v37hUqlEg8++GCVbbdq1UpMnDjxsvWo6b1bXR1r87ovXLhQABCff/65vMxgMIjY2Fjh6ekpfz/Ytrl8+XK53N133y26desmwsPDq7zeNdWp4uOFECIsLEyMHDlSvm/77vzrr79q3NbAgQPt2jBw4EABQMydO9eu3IQJEwQAcfDgQSGEEPv27RMAxMMPP2xX7umnnxYAxNatW+VlkZGRAoD49ttv5WV5eXkiNDRU9OrVq0p9k5OTRU5OjujSpYvo2LGjyMrKsttHbT+zLQGHsRQoLi4OgYGBCA8Px7333gtPT0+sXbsWrVq1AgDodDr5SAaz2Yzs7Gx4enqiY8eO+Pvvv+XtfPvttwgICMATTzxRZR+Vh13q4sEHH4SXl5d8/84770RoaCh+/vlnAMC+ffuQlJSE//znP8jOzkZWVhaysrJQVFSEIUOGYOfOnVW6YEtLS+Hq6nrZ/X733XewWCy4++675W1mZWUhJCQE7du3x7Zt2+zK27q5dTpdjdtcs2YNvL29cfPNN9ttMyYmBp6enlW2aTQa7cplZWWhtLT0svU+d+4cFi9ejJdeeqnKX/pr1qxB586d0alTJ7tt2oYuK+//aqxZswb9+/eHr6+v3b7i4uJgNpuxc+dOu/LFxcVV2mo2m6vddkFBAbKysqoMB9VVWVkZsrKykJGRgU2bNmHr1q0YMmRIrR+/fv16PP7445g1axamTp1qt27z5s0wGAyYNm2a3ZFAjzzyCPR6PX766Se78mazuUr7i4uLr6p9o0ePlj/HAHD99dejT58+8mfnwoUL2LdvHyZMmAA/Pz+5XI8ePXDzzTfL5SoyGAyXfY/b2N672dnZdsMkldXmdf/5558REhJiN4fQxcUFTz75JAoLC7Fjx45qt52YmIg1a9Zg/vz5dToaq7CwEFlZWTh37hw++ugjpKWlVfu+yMvLQ1ZWFgoKCmq1XbVajenTp9stmzlzJgDI7wfbcz5jxozLlrMJCwvDHXfcId/X6/V48MEH8c8//yAtLc2ubGlpKW677TZkZmZiw4YNcu+9TV0/s0rGYSwFWrJkCTp06ACNRoPg4GB07NjR7ovBYrFg0aJF+OCDD5CcnGz3RVTxw3Lq1Cl07NhR7hJ1lPbt29vdlyQJ7dq1k8efk5KSAADjx4+vcRt5eXnw9fWV72dlZVXZbmVJSUkQQtRYrvIQhO2Ht3LAqLzNvLw8BAUFVbs+IyPD7v6vv/6KwMDAy9azsjlz5iAsLAyPPvpolbktSUlJOHr0aI3brLz/q5GUlIQDBw7Uel9z5szBnDlzqpSzDbdU9NBDD8n/9vT0xK233op333232rKXs2rVKqxatUq+f9111+Hjjz+u1WP37duH1atXw2w2Iycnp8r6s2fPAgA6duxot1yr1aJNmzbyeptjx47V+bW+kureux06dMDq1asvW0cA6Ny5MzZu3IiioiJ4eHjIy/Py8i77Hrep+N5Vq9Xo0aMH3njjDQwdOtSuXG1e97Nnz6J9+/ZVAott+K7yc2nz3HPPoX///rjllluqhNHLeeKJJ+z+aJs4cWKVkAJY/1C08fHxwX333YcFCxbYPV82kiQhLCwMer3ebrnt+9b2fXb27FmoVCq0a9fOrlxISAh8fHyqtLVdu3ZV/pjs0KEDAOscpJCQELt27N69G66urtUG0Lp+ZpWMYUeBrr/+evlorOq8/vrreOmll/DQQw/h1VdfhZ+fH1QqFaZNm9YkJq3Z6rBgwQL07Nmz2jIVv5wNBgMuXLhQ43h2xe1KkoRffvkFarX6stsEIP8VVfHLpbptBgUF4Ysvvqh2feUvmT59+uC///2v3bL3338f69evr/bxR48exYoVK/D5559XOx/EYrGge/fueOedd6p9fHh4eI11ryuLxYKbb74ZzzzzTLXrbV/INpMnT8Zdd91lt+yRRx6p9rEvv/wy+vfvD6PRiMTERMybNw+5ubnV9kRcztChQzFr1iwAwL///os333wTN910E/bu3SvPB6vJ/v37MWLECAwZMgSzZs3C/fffX2VSbV1ERUVVmVuyZs0afPTRR/XepqPl5OTAYDBc9j1uU/G9e/78ebz55pu44447cPjwYbt5QHV53evi119/xebNm5GQkFDnx86aNQtDhw6F2WzG4cOHMW/ePAghsHz5crtytj8Uy8rKsH37dnmy9QcffFBlm1d6P1V2Nb3hNfn777+xfv16TJ06FZMnT8bWrVvt1tf1M6tkDDst0DfffIObbroJn3zyid3y3NxcBAQEyPfbtm2LPXv2wGg0OmSSrY2t58ZGCIGTJ0+iR48e8n4Ba/dtxb+0arJ//34YjcbLBjzbdoUQiI6OrtWH/MiRI5Akqdq/kituc/Pmzejbt2+tvvwCAgKqtOlyk4hnz56Nnj174p577qlx//v378eQIUMa5Mu08r4KCwtr9ZoA1l6IymWr+wsZALp37y6XHTFiBFJSUrBy5crLDpdUJzQ01G6fHTt2xI033oh169Zd8bQL3bt3x5o1a+Dm5oY1a9Zg8uTJOHDggDw8GhkZCQA4fvw42rRpIz/OYDAgOTm52rZWXrZv3746taeyyp8dADhx4oQcNirWsbJjx44hICDA7jU4cuQIgEs9KpdT+b3brl079O3bFzt37rQLO7V53SMjI3HgwAFYLBa73p1jx47ZtcNGCIHnnnsOd9xxB2644YYr1rWyLl26yHUaNmwYysrK8Pzzz+O1116zu6xDxT8UR40ahf3792PDhg3VbjM6Ohq//vorCgoK7IblT5w4AYvFYveaWCwWJCUl2T3P6enpyM3NrdLWkydPQghh93k+ceIEAFSZXP7xxx/jtttug1qtxi233IJPPvkEkyZNktfX9TOrZJyz0wKp1WoIIeyWrVmzpsrp18eOHYusrCy8//77VbZR+fF1YTuixOabb77BhQsXMGLECABATEwM2rZti7fffls+UqWizMzMKnW3fdgvZ8yYMVCr1XjllVeq1F8IgezsbPm+yWTCt99+i+uvv/6yXfx33303zGZztUd1mEymq5qDkpCQgPXr1+ONN96oMcjcfffdOHfuXLVHp5SUlKCoqKje+69uXwkJCdi4cWOVdbm5uXUOJpdj+xG82gBXUlICALU6DP/aa6+Fh4cHVCoVPv74Y5w5cwbz5s2T18fFxUGr1eK9996ze/988sknyMvLw6hRo66qrrWxbt06u8/pn3/+iT179sifndDQUPTs2RMrV660e+8dOnQIv/76a5UjJletWgWtVot+/frVuS62HtjqekmvZOTIkUhLS8PXX38tLzOZTFi8eDE8PT0xcODAKvU8cOBAtUck1oftfVHx8PPqWCyWGts3cuRImM3mKt+Ptl5W2/vB9pxXPvKpcjmb8+fP2x2hlZ+fj88++ww9e/as0gNnO0p01KhRuPfeezFr1iy7s+U35me2qWPPTgt0yy23YN68eZg4cSJuvPFGHDx4EF988YXdX6uAdSLxZ599hhkzZuDPP/9E//79UVRUhM2bN+Pxxx/H7bffXq/9+/n5oV+/fpg4cSLS09OxcOFCtGvXTu7qtv3YjBgxAl27dsXEiRPRqlUrnDt3Dtu2bYNer8cPP/yAoqIiLFmyBO+99x46dOhgd14QW0g6cOAAEhISEBsbi7Zt2+K///2vfGjo6NGj4eXlheTkZKxduxaTJ0/G008/jc2bN+Oll17CgQMH8MMPP1y2LQMHDsSjjz6K+fPnY9++fRg6dChcXFyQlJSENWvWYNGiRbjzzjvr9Tz9+uuvuPnmmy/7V9kDDzyA1atX47HHHsO2bdvQt29fmM1mHDt2DKtXr8bGjRuv2ONVWFhY5a9XW8/Ajh074OLiglatWmHWrFn4/vvvccstt2DChAmIiYlBUVERDh48iG+++QZnzpyx6xmsi3379sHT0xMmkwmJiYn47LPPcPvtt9f5h/T06dP4/PPPAVgndr///vvQ6/V1mqQMWM8L8+yzz+KNN97Avffeix49eiAwMBCzZ8/GK6+8guHDh+O2227D8ePH8cEHH+C6667D/fffX6d91Ee7du3Qr18/TJkyBWVlZVi4cCH8/f3thikWLFiAESNGIDY2FpMmTZIPPff29pbP3ZSUlIQ5c+bgq6++wnPPPVdl3kl1bJNgAetE6DfffBPe3t646aab6tyOyZMn48MPP8SECROQmJiIqKgofPPNN/j999+xcOFCu54SwPpZeOSRRy7by3o5CQkJ0Gg08jDW4sWL0atXryo9JQkJCcjKypKHsbZs2YKnn3662m2OHDkScXFxeOGFF5CcnIyePXti69at+Pbbb/HYY4/J51m65pprMH78eHz00UfIzc3FwIED8eeff2LlypUYPXp0leevQ4cOmDRpEv766y8EBwfj008/RXp6epUht8oWLVqEzp0744knnpDncDXkZ7bZcdJRYNQAanP4pBDWQ89nzpwpQkNDhZubm+jbt69ISEiocmilENbDvV944QURHR0tXFxcREhIiLjzzjvFqVOnhBD1O8z4q6++ErNnzxZBQUHCzc1NjBo1Spw9e7bK4//55x8xZswY4e/vL3Q6nYiMjBR333232LJli92+r3SrfHjqt99+K/r16yc8PDyEh4eH6NSpk4iPjxfHjx8XQgjxxBNPiAEDBogNGzZUqVPlQ89tPvroIxETEyPc3NyEl5eX6N69u3jmmWfE+fPn5TJ1PfRckiSRmJhot7y618hgMIg333xTdO3aVeh0OuHr6ytiYmLEK6+8IvLy8qrsr/L2rvT8VTxst6CgQMyePVu0a9dOaLVaERAQIG688Ubx9ttvC4PBIISo33vCdtNoNCIyMlI8+eST4uLFi0KIuh16XnFbAQEBYujQoSIhIaFWj638PiktLRWdOnUS1113nTCZTPLy999/X3Tq1Em4uLiI4OBgMWXKFLmuNg116PmCBQvE//73PxEeHi50Op3o37+/2L9/f5XymzdvFn379hVubm5Cr9eLW2+9VRw5ckRe/9VXX4lu3bqJRYsW2Z3eoaZ61PTc7t69u9o6Vlb5dRdCiPT0dDFx4kQREBAgtFqt6N69e5VDxCsecn/u3Dm7ddW9ZjU9b7abSqUSrVu3FuPHj7c7hN/23Wm7abVa0a5dO/Hyyy+LsrIyIUT1n73CwkIxffp0ERYWJlxcXES7du3EG2+8UeXUHkajUbzyyivy92h4eLiYPXu2KC0trdKmUaNGiY0bN4oePXoInU4nOnXqVOXUDBUPPa9o5cqVAoD4/vvv5WW1+cy2BJIQVzEeQVQH27dvx0033YQ1a9bUu7ejojNnziA6OhrJyck1nmF37ty5OHPmDFasWHHV+2uJoqKiMHfu3CueqZYalu29vmDBghp7Gqj5i4qKQrdu3fDjjz86uyqKwzk7REREpGics0PNlqenJ8aNG3fZCcQ9evSwO9qC6mbgwIF2J7EjImqOGHao2QoICJAno9ZkzJgxjVQbZap8YUYiouaIc3aIiIhI0Thnh4iIiBSNYYeIiIgUjXN2YD1L5vnz5+Hl5dXgp9wnIiIixxBCoKCgAGFhYVUuLFsRww6sp+d25AUTiYiIqPGkpqaidevWNa5n2AHkU5OnpqbW6rTpRERE5Hz5+fkIDw+vcomRyhh2AHnoSq/XM+wQERE1M1eagsIJykRERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGhODTtLly5Fjx495EO+Y2Nj8csvv8jrS0tLER8fD39/f3h6emLs2LFIT0+320ZKSgpGjRoFd3d3BAUFYdasWTCZTI3dFCIiImqinBp2WrdujTfeeAOJiYnYu3cvBg8ejNtvvx2HDx8GAEyfPh0//PAD1qxZgx07duD8+fMYM2aM/Hiz2YxRo0bBYDDgjz/+wMqVK7FixQq8/PLLzmoSERERNTGSEEI4uxIV+fn5YcGCBbjzzjsRGBiIL7/8EnfeeScA4NixY+jcuTMSEhJwww034JdffsEtt9yC8+fPIzg4GACwbNkyPPvss8jMzIRWq63VPvPz8+Ht7Y28vDyeVJCIiKiZqO3vd5OZs2M2m7Fq1SoUFRUhNjYWiYmJMBqNiIuLk8t06tQJERERSEhIAAAkJCSge/fuctABgGHDhiE/P1/uHapOWVkZ8vPz7W5ERESkTE4POwcPHoSnpyd0Oh0ee+wxrF27Fl26dEFaWhq0Wi18fHzsygcHByMtLQ0AkJaWZhd0bOtt62oyf/58eHt7yzdeBJSIiEi5nB52OnbsiH379mHPnj2YMmUKxo8fjyNHjjToPmfPno28vDz5lpqa2qD7IyIiIudx+oVAtVot2rVrBwCIiYnBX3/9hUWLFuGee+6BwWBAbm6uXe9Oeno6QkJCAAAhISH4888/7bZnO1rLVqY6Op0OOp3OwS0hIiKipsjpPTuVWSwWlJWVISYmBi4uLtiyZYu87vjx40hJSUFsbCwAIDY2FgcPHkRGRoZcZtOmTdDr9ejSpUuj152IiIiaHqf27MyePRsjRoxAREQECgoK8OWXX2L79u3YuHEjvL29MWnSJMyYMQN+fn7Q6/V44oknEBsbixtuuAEAMHToUHTp0gUPPPAA3nrrLaSlpeHFF19EfHx8k+i5MZvNSElJke9HRERArVY7sUZEREQtj1PDTkZGBh588EFcuHAB3t7e6NGjBzZu3Iibb74ZAPDuu+9CpVJh7NixKCsrw7Bhw/DBBx/Ij1er1fjxxx8xZcoUxMbGwsPDA+PHj8e8efOc1SQ7KSkp+N93f8AnMAS5mWmYOQaIjo52drWIiIhalCZ3nh1naKjz7CQnJ+OT307DPzQc2RdSMal/G4YdIiIiB6nt77fTJyi3FBaLWT7qi8NZREREjYdhp5HkZ2fg07OF8PRM5XAWERFRI2LYaUT6gGDovXg5CiIiosbU5A49JyIiInIkhh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0jbMrQIDZbEZKSop8PyIiAmq12ok1IiIiUg6GnSYgJSUF//vuD/gEhiA3Mw0zxwDR0dHOrhYREZEiMOw0ET6BIfAPDXd2NYiIiBSHc3aIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNE0zq5AS2Y2m5GSkoLU1FQICGdXh4iISJEYdpwoJSUF//vuD+RnZ8CnVRQCQp1dIyIiIuVh2HEyn8AQgL06REREDYZzdoiIiEjRGHaIiIhI0Rh2iIiISNGcGnbmz5+P6667Dl5eXggKCsLo0aNx/PhxuzKDBg2CJEl2t8cee8yuTEpKCkaNGgV3d3cEBQVh1qxZMJlMjdkUIiIiaqKcOkF5x44diI+Px3XXXQeTyYTnn38eQ4cOxZEjR+Dh4SGXe+SRRzBv3jz5vru7u/xvs9mMUaNGISQkBH/88QcuXLiABx98EC4uLnj99dcbtT1ERETU9Dg17GzYsMHu/ooVKxAUFITExEQMGDBAXu7u7o6QkJBqt/Hrr7/iyJEj2Lx5M4KDg9GzZ0+8+uqrePbZZzF37lxotdoGbQMRERE1bU1qzk5eXh4AwM/Pz275F198gYCAAHTr1g2zZ89GcXGxvC4hIQHdu3dHcHCwvGzYsGHIz8/H4cOHq91PWVkZ8vPz7W5ERESkTE3mPDsWiwXTpk1D37590a1bN3n5f/7zH0RGRiIsLAwHDhzAs88+i+PHj+O7774DAKSlpdkFHQDy/bS0tGr3NX/+fLzyyisN1BIiIiJqSppM2ImPj8ehQ4ewa9cuu+WTJ0+W/929e3eEhoZiyJAhOHXqFNq2bVuvfc2ePRszZsyQ7+fn5yM8PLx+FSciIqImrUkMY02dOhU//vgjtm3bhtatW1+2bJ8+fQAAJ0+eBACEhIQgPT3droztfk3zfHQ6HfR6vd2NiIiIlMmpYUcIgalTp2Lt2rXYunUroqOjr/iYffv2AQBCQ60XkoqNjcXBgweRkZEhl9m0aRP0ej26dOnSIPUmIiKi5sOpw1jx8fH48ssvsX79enh5eclzbLy9veHm5oZTp07hyy+/xMiRI+Hv748DBw5g+vTpGDBgAHr06AEAGDp0KLp06YIHHngAb731FtLS0vDiiy8iPj4eOp3Omc0jIiKiJsCpPTtLly5FXl4eBg0ahNDQUPn29ddfAwC0Wi02b96MoUOHolOnTpg5cybGjh2LH374Qd6GWq3Gjz/+CLVajdjYWNx///148MEH7c7LQ0RERC2XU3t2hLj81b7Dw8OxY8eOK24nMjISP//8s6OqRURERArSZI7GIiuLxYzU1FQAQEREBNRqtZNrRERE1Lwx7DQx+dkZ+PRsITw9UzFzDGo1aZuIiIhqxrDTBOkDgqH34uHwREREjsCw00RVHM4COKRFRERUXww7TZRtOKt1tBG5mWkc0iIiIqonhp0mTB8QDP9QXsaCiIjoajSJy0UQERERNRSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGnSbgClfNICIioqvAsONk/6QbsTnHGzllkrOrQkREpEgMO05kEQJJF80os6jwZ5YGucUGZ1eJiIhIcRh2nOh0ThkMFuu/DRYJ6/edh8HCHh4iIiJHYthxov3niwAAPhoT3NQCuSVGnCx2dXKtiIiIlIVhx4n2ny8GAIToDOjobQYA5Jp4/SsiIiJH4uUinMRiEdifZg07/i4muLi4AADyTRoIYXRm1YiIiBSFPTtOkpRRiPxSM9QS4K0xw9NFQK2SYBISikzOrh0REZFyMOw4ye7T2QCAIHcVVBKgkoAATy0AIM/Il4WIiMhR+KvqJHuSL4UdmyAv6+TkPAOPyCIiInIUhh0nEEJgz+kcAECwR8WwowMA5DLsEBEROQzDjhPklpqRXWSABMDf9VKwCSwPO/lGiZeQICIichCGHSfILrbOQPZxU0OtuhR2/D21kCBgsEgo5ckFiYiIHIJhxwlyyg+38nO3P/Jfo1LBS209306eiWcFICIicgSGHSfIKraeR8ffvWqg8XaxhR2eXJCIiMgRGHacIKd8GMvf3aXKOr2GYYeIiMiRGHacIFsOO1V7dvTlw1gFDDtEREQOwbDjBLawU3nODgC4l4edUosKFh6RRUREdNUYdpwg5zI9O64qAQkCAhJKzY1dMyIiIuVh2HGCyw1jSRJgW1xi4uHnREREV4thp5EJIZBdfui5v0f1h5e7qa3jV8Vmhh0iIqKrxbDTyAwWwFg+GcfPrfqw464pDzu8+jkREdFVY9hpZCVGa5DxdnOBVlP90+/Onh0iIiKHYdhpZCUma5CxXfSzOm6cs0NEROQwDDuNrKR8aCpY71pjmUvDWAw7REREV4thp5HVpmfHNoxVYgYsvPw5ERHRVWHYaWS2sBOorznsuKohn2unqIyzlImIiK4Gw04ju9SzU/MwliQBbioLACC/hGGHiIjoajDsNLLaDGMBgLu6POyUGhu8TkRERErGsNPIbB01Vwo7bgw7REREDsGw08hs59kJuszRWACHsYiIiByl+lP4UoMwWYDyUSyU5KQhK+0cBKo/2orDWERERI7BsNOIbFcxV8OCL3efQcqxA/BpFVVtWVvPTkGpCYC6cSpIRESkQBzGakSl5Zd/cNVI8A8Nh94/sMay7mprMiooNfJcO0RERFeBYacRGaydNdCprhxeXFUCEgQs4tKkZiIiIqo7hp1GZLRYe3ZcavGsSxKgKx+9sh2uTkRERHXHsNOIjOU9Oy616NkBAFfbZSMYdoiIiOqNYacRGUXte3YA62UjgEuHqxMREVHdMew0oks9O7Urb+vZKWbPDhERUb05NezMnz8f1113Hby8vBAUFITRo0fj+PHjdmVKS0sRHx8Pf39/eHp6YuzYsUhPT7crk5KSglGjRsHd3R1BQUGYNWsWTKamN6vXFnY0Ul2HsRqqRkRERMrn1LCzY8cOxMfHY/fu3di0aROMRiOGDh2KoqIiucz06dPxww8/YM2aNdixYwfOnz+PMWPGyOvNZjNGjRoFg8GAP/74AytXrsSKFSvw8ssvO6NJl2WqwwRlAHAtL8dhLCIiovpz6kkFN2zYYHd/xYoVCAoKQmJiIgYMGIC8vDx88skn+PLLLzF48GAAwPLly9G5c2fs3r0bN9xwA3799VccOXIEmzdvRnBwMHr27IlXX30Vzz77LObOnQutVuuMplWrvhOUOYxFRERUf01qzk5eXh4AwM/PDwCQmJgIo9GIuLg4uUynTp0QERGBhIQEAEBCQgK6d++O4OBgucywYcOQn5+Pw4cPV7ufsrIy5Ofn290ag62Dps4TlBl2iIiI6q3JhB2LxYJp06ahb9++6NatGwAgLS0NWq0WPj4+dmWDg4ORlpYml6kYdGzrbeuqM3/+fHh7e8u38PBwB7emenU5zw4A6Mp7dsrMgMFsaahqERERKVqTCTvx8fE4dOgQVq1a1eD7mj17NvLy8uRbampqg+8TqPsEZa0KUFnzEXKKOUuZiIioPppE2Jk6dSp+/PFHbNu2Da1bt5aXh4SEwGAwIDc31658eno6QkJC5DKVj86y3beVqUyn00Gv19vdGppFAOY6nmdHkgAPnXVaFcMOERFR/Tg17AghMHXqVKxduxZbt25FdHS03fqYmBi4uLhgy5Yt8rLjx48jJSUFsbGxAIDY2FgcPHgQGRkZcplNmzZBr9ejS5cujdOQWjCVBx2g9mEHADzLw05WEcMOERFRfTj1aKz4+Hh8+eWXWL9+Pby8vOQ5Nt7e3nBzc4O3tzcmTZqEGTNmwM/PD3q9Hk888QRiY2Nxww03AACGDh2KLl264IEHHsBbb72FtLQ0vPjii4iPj4dOp3Nm8+zYzp6shpCHpmrDQ2t9ibLZs0NERFQvTg07S5cuBQAMGjTIbvny5csxYcIEAMC7774LlUqFsWPHoqysDMOGDcMHH3wgl1Wr1fjxxx8xZcoUxMbGwsPDA+PHj8e8efMaqxm1YjvHjqaWh53beJRfDTSryOjwOhEREbUETg07Qlz5h9/V1RVLlizBkiVLaiwTGRmJn3/+2ZFVczj5uli1nJxsY5uzw54dIiKi+mkSE5RbgvqGHU+GHSIioqvCsNNIbBOU6zqM5a61DWMx7BAREdUHw04jkU8oWO+eHc7ZISIiqg+GnUZyaRirbmdCts3ZKSizoNRodni9iIiIlI5hp5HIw1h17NnRaVRQlx+qnllQ5uhqERERKR7DTiO5dF2suoUdSZLgprE+Nj2/1OH1IiIiUjqGnUZS36OxAMCt/AQBaQw7REREdcaw00hMVxV2rI/lMBYREVHdMew0EmM9Dz0HLoWdrEKGHSIiorpi2Gkkpnoeeg4AruzZISIiqjeGnUZyNXN2XMvn7GQVGhxZJSIiohaBYacRCCEcMozFnh0iIqK6Y9hpBAazBQAnKBMRETkDw04jMJisZ01WQdTrCbfN2ckuKoPFUvewRERE1JIx7DSCsvKwo1EBklT3x7tarwUKo1kgr4TXyCIiIqoLhp1GUGa0hh2Xej7bapUEL531wZk8/JyIiKhOGHYaQZnJegHPul4qoiK/8tMoZ3HeDhERUZ0w7DQC25wdl3oMYdn4uVvDDnt2iIiI6oZhpxHY5uxcTc+Ob3nPDo/IIiIiqhuGnUZwKezUfxvs2SEiIqofhp1GYJuzo7mKZ5s9O0RERPWjqe8Di4qKsGPHDqSkpMBgsL+MwZNPPnnVFVMS25wdTT1OKGhj69nhJSOIiIjqpl5h559//sHIkSNRXFyMoqIi+Pn5ISsrC+7u7ggKCmLYqcR6BuWr69nxY88OERFRvdTr53f69Om49dZbcfHiRbi5uWH37t04e/YsYmJi8Pbbbzu6js2e0Wzt0dFcxdFYvu7WMwtmFZQhOTkZycnJMJvNjqgeERGRotUr7Ozbtw8zZ86ESqWCWq1GWVkZwsPD8dZbb+H55593dB2bPaPJcT072UVlePvbP/C/7/5ASkqKI6pHRESkaPX6+XVxcYFKZX1oUFCQ/KPr7e2N1NRUx9VOIeRhrKuYs+PjpoEkARYBuPoFwycwxFHVIyIiUrR6zdnp1asX/vrrL7Rv3x4DBw7Eyy+/jKysLPzf//0funXr5ug6NntGOezUfxtqlQQ/dy2yiwwoNQn5SuhERER0efXq2Xn99dcRGhoKAHjttdfg6+uLKVOmIDMzEx999JFDK6gEjpigDACBXjoAQImJVz4nIiKqrXr17PTu3Vv+d1BQEDZs2OCwCimRsTycqK9iGAsAAjx1AApQanJApYiIiFqIevU1DB48GLm5uQ6uijIJIS4NY7Fnh4iIqNHV6+d3+/btVU4kSNUzC8AWTa52mk2ApxYAUMqwQ0REVGv17muQJE6QrY3yo84BAOqrfMrknh0zww4REVFt1ftyEXfccQe0Wm2167Zu3VrvCimN0XJpvo4kXerlqQ9b2OGcHSIiotqrd9iJjY2Fp6enI+uiSLaenas5x46NdYIyh7GIiIjqol5hR5IkzJo1C0FBQY6uj+IYHRh2OEGZiIio7uo1Z0cI/tjWlsnimMPOgUs9O2VmwMLXgIiIqFbqFXbmzJnDIaxacmTPjq+7FqrySc6ct0NERFQ79RrGmjNnDgAgMzMTx48fBwB07NgRgYGBjquZQth6dhxxdQe1SoKvmwbZxSYOZREREdVSvXp2iouL8dBDDyEsLAwDBgzAgAEDEBYWhkmTJqG4uNjRdWzWjGbr/x3RswMAvuVXP+ckZSIiotqpV9iZPn06duzYge+//x65ubnIzc3F+vXrsWPHDsycOdPRdWzWbEdjOWLODgD4uasBAKU81w4REVGt1GsY69tvv8U333yDQYMGyctGjhwJNzc33H333Vi6dKmj6tfsGeVhLAHg6seybD07JZyzQ0REVCv1HsYKDg6usjwoKIjDWJU48jw7AODnzmEsIiKiuqhX2ImNjcWcOXNQWloqLyspKcErr7yC2NhYh1VOCYwOPPQcAPzknh2GHSIiotqo1zDWwoULMXz4cLRu3RrXXHMNAGD//v1wdXXFxo0bHVrB5u5Sz45jtufrzrBDRERUF/UKO927d0dSUhK++OILHDt2DABw3333Ydy4cXBzc3NoBZs7R55nB7jUs8Pz7BAREdVOvcLOzp07ceONN+KRRx5xdH0Ux5FnUAYu9exwzg4REVHt1GvOzk033YScnBxH10WRGqpnx2ABDGaLQ7ZJRESkZLw2VgNz9NFYXjqV/KJdLDY7ZJtERERKVq+wAwAJCQnYuXNntbfa2rlzJ2699VaEhYVBkiSsW7fObv2ECRMgSZLdbfjw4XZlcnJyMG7cOOj1evj4+GDSpEkoLCysb7McztFHY0mSBNfywcccnmyHiIjoiuo1ZwcA7rjjjmqXS5IEs7l2PQ5FRUW45ppr8NBDD2HMmDHVlhk+fDiWL18u39fpdHbrx40bhwsXLmDTpk0wGo2YOHEiJk+ejC+//LKWLWlYjj4aCwBcNRKKTQIXixl2iIiIrqTeYSctLQ1BQUFXtfMRI0ZgxIgRly2j0+kQEhJS7bqjR49iw4YN+Ouvv9C7d28AwOLFizFy5Ei8/fbbCAsLu6r6XS2zRcB2VQdHDWMBgJtGAiDYs0NERFQL9RrGkiQHdlNcwfbt2xEUFISOHTtiypQpyM7OltclJCTAx8dHDjoAEBcXB5VKhT179tS4zbKyMuTn59vdGkKJ8dIEYkcNYwHWnh0AuMiwQ0REdEVNeoLy8OHD8dlnn2HLli148803sWPHDowYMUIeJquud0mj0cDPzw9paWk1bnf+/Pnw9vaWb+Hh4Q1Sf1vYUUmA2oH50M02Z4fDWERERFdUr2Esi6VxDnm+99575X93794dPXr0QNu2bbF9+3YMGTKk3tudPXs2ZsyYId/Pz89vkMBTXB52XNT1ngdeLVvPDsMOERHRldXrV3j+/Pn49NNPqyz/9NNP8eabb151pWrSpk0bBAQE4OTJkwCAkJAQZGRk2JUxmUzIycmpcZ4PYJ0HpNfr7W4Nwdazo9U4Nuy4cRiLiIio1ur1K/zhhx+iU6dOVZZ37doVy5Ytu+pK1eTff/9FdnY2QkNDAVgvSJqbm4vExES5zNatW2GxWNCnT58Gq0dtNVTPjpva1rPD8+wQERFdSb2GsdLS0uTAUVFgYCAuXLhQ6+0UFhbKvTQAkJycjH379sHPzw9+fn545ZVXMHbsWISEhODUqVN45pln0K5dOwwbNgwA0LlzZwwfPhyPPPIIli1bBqPRiKlTp+Lee+91+pFYQIWeHYcPY1n/z54dIiKiK6vXr3B4eDh+//33Kst///33OoWMvXv3olevXujVqxcAYMaMGejVqxdefvllqNVqHDhwALfddhs6dOiASZMmISYmBr/99pvduXa++OILdOrUCUOGDMHIkSPRr18/fPTRR/VplsNd6tlx7NFrtjk7xUYLjpw4heTk5Fqf24iIiKilqVfPziOPPIJp06bBaDRi8ODBAIAtW7bgmWeewcyZM2u9nUGDBl32yK6NGzdecRt+fn5N5gSClTXUnB0XFaCCgAUSPtx5Gua8DMwcA0RHRzt0P0REREpQr7Aza9YsZGdn4/HHH4fBYAAAuLq64tlnn8Xs2bMdWsHmrMRo7W1xUasAB3a8SJIEncqCEosaOp8gaLWODVNERERKUq+wI0kS3nzzTbz00ks4evQo3Nzc0L59+yqXcmjpSipOUHbwKJNOJVBiAYrKzNA6dtNERESKUu/LRQCAp6cnrrvuOkfVRXGKG2iCMgDoVNZtFxtM8FU7fPNERESKUe+ws3fvXqxevRopKSnyUJbNd999d9UVU4KSBpqgDFh7dgCg2GAG3By+eSIiIsWoV5fDqlWrcOONN+Lo0aNYu3YtjEYjDh8+jK1bt8Lb29vRdWy25LDj4AnKwKWenSIDDz8nIiK6nHr9Cr/++ut499138cMPP0Cr1WLRokU4duwY7r77bkRERDi6js1WQ51nB7gUdkoMPOSciIjocur1K3zq1CmMGjUKAKDValFUVARJkjB9+vQmc46bpqCkgc6gDFwaxioqY9ghIiK6nHr9Cvv6+qKgoAAA0KpVKxw6dAgAkJubi+LiYsfVrpmTTyqoaYg5O5cmKBMREVHN6jVBecCAAdi0aRO6d++Ou+66C0899RS2bt2KTZs2XdXVyJWm4jBWmYO3XXGCshA8HIuIiKgm9Qo777//PkpLSwEAL7zwAlxcXPDHH39g7NixePHFFx1aweasR6g7jEYT3LWaBgg71iBlsgiUZyoiIiKqRp3CTn5+vvVBGg08PT3l+48//jgef/xxx9eumZs5IAyf/FYKPw8tLjp42xoJUEsCZiGh1FTzJTeIiIhaujqFHR8fH0jSleef8KKUjcNVDRSZgFJO2yEiIqpRncLOtm3b7O4LITBy5Eh8/PHHaNWqlUMrRlemUwkUQUKJmT07RERENalT2Bk4cGCVZWq1GjfccAPatGnjsEpR7ejK5yVzGIuIiKhmvFx2M6ZTW0NOCcMOERFRja4q7KSmpqK4uBj+/v6Oqg/Vge3wc87ZISIiqlmdhrHee+89+d9ZWVn46quvMHjwYF4Py0lcy4ex2LNDRERUszqFnXfffRcAIEkSAgICcOutt/K8Ok7EYSwiIqIrq1PYSU5Obqh6UD3oygchOUGZiIioZpyg3IzZenZKzdbTABAREVFVDDvNmO3Qc4sACg28ZgQREVF1GHaaMbUE6DTWlzCnmIdkERERVYdhp5lz11q7dxh2iIiIqsew08y5a61zzC+WMOwQERFVh2GnmfNgzw4REdFlMew0c+zZISIiujyGnWbOXceeHSIiosth2Gnm5AnK7NkhIiKqFsNOM3dpGMvs5JoQERE1TQw7zRwnKBMREV0ew04zV3GCssXCS0YQERFVxrDTzLmV9+xYBHCx2ODk2hARETU9dbrqOTmHxWJGamoqACA1NRUCl3pw1CoJOjVQZgYyC8vg76lzVjWJiIiaJIadZiA/OwOfni1E62gjUo4dgE+rKLv1rhoJZWaBrAIDEOKcOhIRETVVHMZqJvQBwfAPDYfeP7DKOjeNBADILCxt7GoRERE1eQw7CuBqnbZj7dkhIiIiOww7CnCpZ6fMyTUhIiJqehh2FMDVFnYKGHaIiIgqY9hRAFvPThZ7doiIiKpg2FEA1/Jj6tizQ0REVBXDjgKwZ4eIiKhmDDsKYJuzk11kgMlscXJtiIiImhaGHQXQqQGVBAgB5BTx8HMiIqKKGHYUQCVJ8C4/2Q4PPyciIrLHsKMQfu7WWcqcpExERGSPYUchfN0YdoiIiKrDsKMQ/uU9OxkMO0RERHYYdhQi0MMFAJCWx4uBEhERVcSwoxCBntaenbR8hh0iIqKKnBp2du7ciVtvvRVhYWGQJAnr1q2zWy+EwMsvv4zQ0FC4ubkhLi4OSUlJdmVycnIwbtw46PV6+Pj4YNKkSSgsLGzEVjQNAe7s2SEiIqqOU8NOUVERrrnmGixZsqTa9W+99Rbee+89LFu2DHv27IGHhweGDRuG0tJLP+jjxo3D4cOHsWnTJvz444/YuXMnJk+e3FhNaDJsPTsXGHaIiIjsaJy58xEjRmDEiBHVrhNCYOHChXjxxRdx++23AwA+++wzBAcHY926dbj33ntx9OhRbNiwAX/99Rd69+4NAFi8eDFGjhyJt99+G2FhYY3WFmezzdnJKiyDwWSBVsMRSiIiIqAJz9lJTk5GWloa4uLi5GXe3t7o06cPEhISAAAJCQnw8fGRgw4AxMXFQaVSYc+ePTVuu6ysDPn5+Xa35s7bVQ2t2vpypnPeDhERkazJhp20tDQAQHBwsN3y4OBgeV1aWhqCgoLs1ms0Gvj5+cllqjN//nx4e3vLt/DwcAfXvvFJkoQQb1cADDtEREQVNdmw05Bmz56NvLw8+ZaamursKjmELexw3g4REdElTTbshISEAADS09Ptlqenp8vrQkJCkJGRYbfeZDIhJydHLlMdnU4HvV5vd1OCEL017PCILCIiokuabNiJjo5GSEgItmzZIi/Lz8/Hnj17EBsbCwCIjY1Fbm4uEhMT5TJbt26FxWJBnz59Gr3OzhbKnh0iIqIqnHo0VmFhIU6ePCnfT05Oxr59++Dn54eIiAhMmzYN//3vf9G+fXtER0fjpZdeQlhYGEaPHg0A6Ny5M4YPH45HHnkEy5Ytg9FoxNSpU3Hvvfe2qCOxbGzDWGn5JU6uCRERUdPh1LCzd+9e3HTTTfL9GTNmAADGjx+PFStW4JlnnkFRUREmT56M3Nxc9OvXDxs2bICrq6v8mC+++AJTp07FkCFDoFKpMHbsWLz33nuN3pamwNazw2EsIiKiS5wadgYNGgQhRI3rJUnCvHnzMG/evBrL+Pn54csvv2yI6jU7Id5uABh2iIiIKmqyc3ao7mw9O+kFZTBbag6RRERELQnDjoIEeOqgVkkwWwSyCsucXR0iIqImgWFHQdQqCUFeOgAcyiIiIrJh2FEAi8WM1NRUJCcnI0RvDTs8/JyIiMjKqROUyTHyszPw6dlCeHqmQu9lvfRFWh4PPyciIgIYdhRDHxAMvZcermrr1c8v8PpYREREADiMpTiBHtawwzk7REREVgw7ChPoae2sO5/LYSwiIiKAYUdxQr20AIDUHIYdIiIigGFHcUK8rMNY6QWlKDOZnVwbIiIi52PYURhvVzXctWoIAZzP5bwdIiIihh2FkSQJrX2t18hKzSl2cm2IiIicj2FHgcJ93QEA/17kvB0iIiKGHQWSe3YusmeHiIiIYUeBwv3Ys0NERGTDsKNAnLNDRER0CcOOArXmnB0iIiIZw46C2K5+binIBABkFZahxMBz7RARUcvGC4EqiO3q562jjdBIAiYh4VxuMdoFeTm7akRERE7Dnh2F0QcEwz80HF5a60vLy0YQEVFLx7CjUJ5aCQDwLw8/JyKiFo5hR6E8XKxhJ5WTlImIqIVj2FEoT1vY4eHnRETUwjHsKJSHPIzFnh0iImrZGHYUSu7Z4ZwdIiJq4Rh2FMqrvGcnt9iIi0UGJ9eGiIjIeRh2FEqjkhDkaT2N0umsQifXhoiIyHkYdhQswkcHADiVUeTkmhARETkPw46ChdvCDnt2iIioBWPYUbBwby0A9uwQEVHLxrCjYBE+1rBzOpM9O0RE1HIx7CiYbc5OSk4xjGaLk2tDRETkHAw7ChbgoYG7Vg2TReBsNs+3Q0RELRPDjkJZLGb8+++/aKV3AcChLCIiark0zq4ANYz87Ax8erYQRZZgAFqcyuQkZSIiapnYs6Ng+oBgBOjdAbBnh4iIWi6GHYXzchEAgCP/ZiM5ORlms9nJNSIiImpcDDsKpy65CABIyizB29/+gZSUFCfXiIiIqHEx7Cich9oMQMBgAdz8gp1dHSIiokbHsKNwaglwV1v/nVvGc+0QEVHLw7DTAui11nk7F0uFk2tCRETU+Bh2WgAfF2uPTk4pe3aIiKjlYdhpAbzLe3Zy2LNDREQtEMNOC2ALO/llAiVG9u4QEVHLwrDTAriqAQ+tGgLA6exSZ1eHiIioUTHstBCBXtYroJ/IYtghIqKWhWGnhQjycgUAJDHsEBFRC8Ow00IE6W09OyVOrgkREVHjatJhZ+7cuZAkye7WqVMneX1paSni4+Ph7+8PT09PjB07Funp6U6scdMVVD6MdeZiGUqNvD4WERG1HE067ABA165dceHCBfm2a9cued306dPxww8/YM2aNdixYwfOnz+PMWPGOLG2TZenTgOdGjBbgBPpBc6uDhERUaPROLsCV6LRaBASElJleV5eHj755BN8+eWXGDx4MABg+fLl6Ny5M3bv3o0bbrihsavapEmSBD9XFS4UWXDwXB56tPZxdpWIiIgaRZPv2UlKSkJYWBjatGmDcePGyVftTkxMhNFoRFxcnFy2U6dOiIiIQEJCwmW3WVZWhvz8fLtbS+DvJgEAEs9cdHJNiIiIGk+TDjt9+vTBihUrsGHDBixduhTJycno378/CgoKkJaWBq1WCx8fH7vHBAcHIy0t7bLbnT9/Pry9veVbeHh4A7ai6Qh2t77cf5zKhhA8mzIREbUMTXoYa8SIEfK/e/TogT59+iAyMhKrV6+Gm5tbvbc7e/ZszJgxQ76fn5/fIgJPoLsKLioJafmlOJNdjOgAD2dXiYiIqME16Z6dynx8fNChQwecPHkSISEhMBgMyM3NtSuTnp5e7RyfinQ6HfR6vd2tJdCoJHQOtobEhFPZTq4NERFR42hWYaewsBCnTp1CaGgoYmJi4OLigi1btsjrjx8/jpSUFMTGxjqxlk3btWHW3pw/TmU5uSZERESNo0kPYz399NO49dZbERkZifPnz2POnDlQq9W477774O3tjUmTJmHGjBnw8/ODXq/HE088gdjYWB6JdRk9w9yBRGD3aeu8HUmSnF0lIiKiBtWkw86///6L++67D9nZ2QgMDES/fv2we/duBAYGAgDeffddqFQqjB07FmVlZRg2bBg++OADJ9e6aesc7AadRoWsQgOSMgrRIdjL2VUiIiJqUE067Kxateqy611dXbFkyRIsWbKkkWrU/GnVKlwX5YddJ7OQcCqbYYeIiBSvWc3ZIceIbesPAPj9JOftEBGR8jHstEAD2luHAXcmZaKozOTk2hARETUshp0WqFsrPSL83FFqtGDrsQxnV4eIiKhBMey0QJIk4ZYeoQCAHw+cd3JtiIiIGlaTnqBMDcNsNqNXgPVyEVuPZeDAkRPwcnMBAERERECtVjuzekRERA7FsNMCpaSkYN32v+Gl9UWBQeDZr3Yjpn0r5GamYeYYIDo62tlVJCIichgOY7VQvkEh6BzmCwC4qPaFf2g4fAIvf5kNIiKi5ohhpwXrEOwJAEgvlXhUFhERKRbDTgvm76mDj8YEAQkH/s1zdnWIiIgaBMNOC9fGvRQAcOBcLkwW4eTaEBEROR7DTgsXqjXCXS1QarTgdK7Z2dUhIiJyOIadFk6SgDZe1pBzNMcMi2DvDhERKQsPPSdEeFhwolCFAoMF20/lIyrSjJSUlEvree4dIiJqxhh2CBoVcG24D3Yn5+CjPRm4MfIMlvywGz6BITz3DhERNXscxiIAwLWRvvBwAdILjfj6QDZ8AkN47h0iIlIEhh0CALioVbg2yHrJiK/2ZaHIyLk7RESkDAw7JIvQq9AjxB1lJoE9F4wQnKxMREQKwLBDMkmSMK1/CFzUEs4XWnDwHE80SEREzR/DDtmJ9nPF5D5BAIDfkrKQV2Zxco2IiIiuDsMOVTGmmx9CPVQwWQR++9eIEiMDDxERNV8MO1SFSpIQG+YCd60auWUCb2w7BwsvJUFERM0Uww5Vy91FwqjuoVBJwM7kAizaknTZ8mazGcnJyUhOTobZzMtOEBFR08GwQzUK83HD9SHW804u2pKENXtTayybkpKC/333B/733R92Z18mIiJyNp5BmWQWixmpqdZAI2Adtmrnq0FkkDe+3p+N5747CF93LeK6BFf7eJ6AkIiImiL27JAsPzsDn247go83JKKgoEBePrlPEMZe2xpmi0D8l38j4VS2E2tJRERUNww7ZEcfEAy9f6DdMpUk4Y2x3TGkUxDKTBY8tOIv7DnNwENERM0Dww7ViotahSXjrkX/9gEoMZoxccVf7OEhIqJmgWGnBbHNyUlNTZXn5NSW2WzGhX9T8MKAAPRu7YFigxnjl/+JXw5eaKDaEhEROQYnKLcg+dkZ+PRsISxlJfBpFYWA0Cs/pmJA+vqvs/ANDENgaRr6RYVj15kCPP7l35h3ezf0q37OMhERkdMx7LQw+oBgWEqLal2+ckDyDw2HxWLGPdECvm6++OHoRby07hAeuDYAQghIktSAtSciIqo7DmPRFVWetJyfnYEV24/ClH4KY9prAQD/93cWdl8wwlzhSuk80SARETUFDDtUL/qAYKjVEnL+PYU+oRoAAqdyLdh8xoCcYhMAnmiQiIiaBoYduir6gGDc0CUa1+kLoZEEMksEHv3uNPan5gKwnmiQJxskIiJnYtghhwjWmTAg2Ai9VkJWkQl3fZiADcdznV0tIiIihh1yHE8XYHi0FjdGesJgsuDN7eex54IRJl4xnYiInIhhhxxKq5bw6rBwTItrDwBIumjGL6cNOJld6uSaERFRS8WwQw6nkiRMi+uABaMi4KoB8gwCj3+XjE93JUMI9vIQEVHj4nl2qMH0bu2JW9rokHDeiHOFFsz78Qi2H89A/PW+CPJ0AQBERERArVY7uaZERKRkDDvUoFw1EgaFuyDA3xfLdmdgZ1IWfj+ZiV5BLgg2Z+HpsUB0dLSzq0lERArGYSxqcJIkYXRXP/z0ZD90DXaDWUjYm27C7wW++DOlkENbRETUoBh2qMHZrq+lLsrCrGvVuC5EA51GhdwygWd/ScGdyxLw88ELMJktzq4qEREpEIexqMHZrq/VOtqIlGMHENoqCtfe2Ak7D53FyVwLEs9eROLZi/Bz16BvpBdu7x2NnhE+KMhKk7fBuT1ERFRfDDvkULZeHABITU2FgHWISh8QDP/QcORmXgAAuLqo0StIhSk9XbElxYhfTpUip9iEH45exA9HLwIA3FVm+Hu4wNVcjHF989G/R1tE+rlDo2aHJBER1R7DDjlU5V4cn1ZRly37XfkV1Ye2ioImIAqHz6ajxKLGv3kGFFvUKC6wAHDF3E3/Apv+hYtaQpSvDm18tegW4obuIe5opXeBRmN9K0dERACA3bW42CtERNSyMeyQw1XuxblSWUtpEVQSEOnvAU+DCyb1b4P8UjPe23YaBp03zqSeQ26ZhCKhgdGsQlJWKZKySrExKR8AoIUZoXoXeFkKMWNEKSJ9dXh3bQJ8AkOQm5mGmWN4xBcRUUvGsENNSsVhsBBPFQJCfeGdmwRVoAfMJXko0XjAPSgSx06eRo5Jh1yDBAPUOJtvAeCOh9acht5VDW8XP0QZPeHpGQQzL1dBRNSiMexQk2IbBrOUlcCnVRQCQi+tkyTr9beiAz2BC6VQuaphLClCnuQJi1cwzqTn4mKZQH6pGfmlQGpBFgBgx4rj6ByWhjYB7vDTGNFa74JwHy1a+7hCrZI4zEVEpHAMO9Tk2Ia2akMtAQGuAtHR/mijLUBclA5n8iz4/lQZcs06nLtYjGLjpSO+KlIBcFeb0CngBDqE6BHuo0WUnxvCfbTo3C6aAYiISCEYdkgx8rMz8Fl5r1BEqygM7NAGmedTMLhrK5S4eCPxxL/YlpSNi8UGFJnVMAsJhWYN9qabsDc9x25bProTiPZ3Q5fW/mgX7IW2gZ5oG+SJYC+dfDSY2WyWJ0Kzd4iIqOlSTNhZsmQJFixYgLS0NFxzzTVYvHgxrr/+emdXixpZ5V4hlSShrb8roqPD0E1fBlNJAXIzsyHpPBAQ0QGHDx9EseSGglITioQWJcIFRQYzcssE/jlfjH/OF9ttXwKgd1XDx1UNN5UZeUXF0ErATV0zEREaCE9XDbx0Gni6auCmUSEvOwMuKgFXjQoeOg00koBaJUGtVssBqbahqWK5y5WtWM5sNgNArfdX0z5syytuz7Ye4NFvRNS0KSLsfP3115gxYwaWLVuGPn36YOHChRg2bBiOHz+OoKAgZ1ePmiBJAvRuLgjSmqBytcDiUgKVqwrRHTri2L4/Uaz2hFnjjqggPbKNGhw7n4uUi6UQkJBXakZeqbl8SzoAwIrETACZtds3BDSSgK/HCejdXaGFGZkX86FRCVwbfR5+Pt5QqySoJAkqyfoYk0Ug+2Ie9iWnQa1zQ1lpKdqEpsJF5wqj2QKjScBgtsBotqCopAyZ+cWASg2j0QQLJEBSQaM+Cp2LBmpJoKTUAJUkEOx9Cl4ebtCpVdBqVDAaSpGcdhEarQ4mQxmig1Pg5u6G4uJiJKflwmQ0ACoVXN08YDKUoXPrVOhd1Th2Jg16vScsxXm4f0AhenaMRqi3Kzx0iviKIaJmThHfRO+88w4eeeQRTJw4EQCwbNky/PTTT/j000/x3HPPObl25Ew1neTwclxUgK9OwNMDGB5mQHh4MFJTi/FLskBWRgaMLh7wC43CmZPHYVC7Qqi1CHJXQ9K6odBgRpHBghKjBfklBhQaBIxmAWs0siYXAQlGISGj0ISMwkLbXgEAPx3LBZB7mdrpgFILAC0unCkAUFBDOTWsOy3/iAvAZBIoNRnL11uH4k7nlAE5ZZWfAcBgAeCCjNRCABXr6AJYABRZ12cm2/bvCpSYAHhg308pwE/Wnh4vnQYh3q4I8XZFgKcOXq4aeJb3fHnpNNCoVVBLElQqa7CzhTy1SoJFCAgBu/9b5Pu2ZbblAiaz9f9mi4DJImAyW3DxYi7M5cu8vb3holZBKt++SkL5fiWoJQlS+f7VKslaRqpURoXyAHopiApcqp8A5Ou8ycsqLLf+u2LZ8nKw3qm4zCIAs8UCk0XAbBYwms3IuZgHc/n2vfV6qNUqSLDWW4L1GnTWf1vrJknWZYC13pfKWe/D9higvHz127KWt/67/L9L26tQxrYt2/alat6VlT99lS+LV93ns2qZarZ7hevrVbe68r6qLXOFfVe33ypLarlvk+XSe7fia2+yWF//i7l5kAB4e3tDrVLZvWa292OV+7h0v+Jy2N7blyln+yxZ/w+YhYDFUnGZ9TOWc/EizALw8tJDoPxx5WVNZgty8wtgsQi4e3hi5rCOCPDUVX1CGkGzDzsGgwGJiYmYPXu2vEylUiEuLg4JCQnVPqasrAxlZZe+4PPy8gAA+fn5Dq1bQUEBMlJPo6ykCFnnU6HSusJiKIVK6wqdRl3nZfV5TFPYtjP3l3riMBbszkdwWCQunEmCd3DrWm8nw1Ba42PVbipoc07DtfyxWUXWckVnkqDSatEmLBIXziahQ3BrWIylkLSuCIlog9SkYxBaN2jdPDCwUzC8fAOQciEDu07mwGiR0CHMGx4eeuTl52NfchqMpaWQ1Gp4eulReDEL7l56+Pj5Iz/zAgylJRAWE9QqFXz8/JGXcQEqtRowG+DpG4Dg0FbITDkFtVYLGEpRXFwIv+DWyDifAg//EOh0bohtFwi9rz/SM7Ow9UAySkpK4K73g29AAIoLChAT6QtfX19cvHgRiWdzUFZUAEmjhW9AEIoL8tC1tS8KjQIHzhUCWjfk5Reg1KKCSaWFGWrklQF5+fk4nurQj1Y9NYlKEF2l5vs+vrdXALQWT4du0/a7faXA2+zDTlZWFsxmM4KDg+2WBwcH49ixY9U+Zv78+XjllVeqLA8PD2+QOhJVZ1U1yzY1ch2+vcL6X66w/mdHVYSIFK/nwobbdkFBAby9vWtc3+zDTn3Mnj0bM2bMkO9bLBbk5OTA399f7vZ1hPz8fISHhyM1NRV6vd5h222q2F5la2ntBVpem9leZVNie4UQKCgoQFhY2GXLNfuwExAQALVajfT0dLvl6enpCAkJqfYxOp0OOp39uKGPj09DVRF6vV4xb6zaYHuVraW1F2h5bWZ7lU1p7b1cj45Ns798tFarRUxMDLZs2SIvs1gs2LJlC2JjY51YMyIiImoKmn3PDgDMmDED48ePR+/evXH99ddj4cKFKCoqko/OIiIiopZLEWHnnnvuQWZmJl5++WWkpaWhZ8+e2LBhQ5VJy41Np9Nhzpw5VYbMlIrtVbaW1l6g5bWZ7VW2ltbeiiRxpeO1iIiIiJqxZj9nh4iIiOhyGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHYayJIlSxAVFQVXV1f06dMHf/75p7OrVCs7d+7ErbfeirCwMEiShHXr1tmtF0Lg5ZdfRmhoKNzc3BAXF4ekpCS7Mjk5ORg3bhz0ej18fHwwadIkFMoXvLQ6cOAA+vfvD1dXV4SHh+Ott95q6KZVa/78+bjuuuvg5eWFoKAgjB49GsePH7crU1paivj4ePj7+8PT0xNjx46tchLLlJQUjBo1Cu7u7ggKCsKsWbNgMpnsymzfvh3XXnstdDod2rVrhxUrVjR086pYunQpevToIZ9ULDY2Fr/8cumiEEpqa3XeeOMNSJKEadOmycuU1Oa5c+eWXwzy0q1Tp07yeiW11ebcuXO4//774e/vDzc3N3Tv3h179+6V1yvtOysqKqrKayxJEuLj4wEo8zV2CEEOt2rVKqHVasWnn34qDh8+LB555BHh4+Mj0tPTnV21K/r555/FCy+8IL777jsBQKxdu9Zu/RtvvCG8vb3FunXrxP79+8Vtt90moqOjRUlJiVxm+PDh4pprrhG7d+8Wv/32m2jXrp2477775PV5eXkiODhYjBs3Thw6dEh89dVXws3NTXz44YeN1UzZsGHDxPLly8WhQ4fEvn37xMiRI0VERIQoLCyUyzz22GMiPDxcbNmyRezdu1fccMMN4sYbb5TXm0wm0a1bNxEXFyf++ecf8fPPP4uAgAAxe/Zsuczp06eFu7u7mDFjhjhy5IhYvHixUKvVYsOGDY3a3u+//1789NNP4sSJE+L48ePi+eefFy4uLuLQoUOKa2tlf/75p4iKihI9evQQTz31lLxcSW2eM2eO6Nq1q7hw4YJ8y8zMVGRbhRAiJydHREZGigkTJog9e/aI06dPi40bN4qTJ0/KZZT2nZWRkWH3+m7atEkAENu2bRNCKO81dhSGnQZw/fXXi/j4ePm+2WwWYWFhYv78+U6sVd1VDjsWi0WEhISIBQsWyMtyc3OFTqcTX331lRBCiCNHjggA4q+//pLL/PLLL0KSJHHu3DkhhBAffPCB8PX1FWVlZXKZZ599VnTs2LGBW3RlGRkZAoDYsWOHEMLaPhcXF7FmzRq5zNGjRwUAkZCQIISwBkSVSiXS0tLkMkuXLhV6vV5u4zPPPCO6du1qt6977rlHDBs2rKGbdEW+vr7i448/VnRbCwoKRPv27cWmTZvEwIED5bCjtDbPmTNHXHPNNdWuU1pbhbB+b/Tr16/G9S3hO+upp54Sbdu2FRaLRZGvsaNwGMvBDAYDEhMTERcXJy9TqVSIi4tDQkKCE2t29ZKTk5GWlmbXNm9vb/Tp00duW0JCAnx8fNC7d2+5TFxcHFQqFfbs2SOXGTBgALRarVxm2LBhOH78OC5evNhIraleXl4eAMDPzw8AkJiYCKPRaNfmTp06ISIiwq7N3bt3tzuJ5bBhw5Cfn4/Dhw/LZSpuw1bGme8Js9mMVatWoaioCLGxsYpua3x8PEaNGlWlXkpsc1JSEsLCwtCmTRuMGzcOKSkpAJTZ1u+//x69e/fGXXfdhaCgIPTq1Qv/7//9P3m90r+zDAYDPv/8czz00EOQJEmRr7GjMOw4WFZWFsxmc5WzNwcHByMtLc1JtXIMW/0v17a0tDQEBQXZrddoNPDz87MrU902Ku7DGSwWC6ZNm4a+ffuiW7ducn20Wm2VC8VWbvOV2lNTmfz8fJSUlDREc2p08OBBeHp6QqfT4bHHHsPatWvRpUsXRbYVAFatWoW///4b8+fPr7JOaW3u06cPVqxYgQ0bNmDp0qVITk5G//79UVBQoLi2AsDp06exdOlStG/fHhs3bsSUKVPw5JNPYuXKlXZ1Vup31rp165Cbm4sJEybIdVHaa+woirhcBJEjxMfH49ChQ9i1a5ezq9KgOnbsiH379iEvLw/ffPMNxo8fjx07dji7Wg0iNTUVTz31FDZt2gRXV1dnV6fBjRgxQv53jx490KdPH0RGRmL16tVwc3NzYs0ahsViQe/evfH6668DAHr16oVDhw5h2bJlGD9+vJNr1/A++eQTjBgxAmFhYc6uSpPHnh0HCwgIgFqtrjL7PT09HSEhIU6qlWPY6n+5toWEhCAjI8NuvclkQk5Ojl2Z6rZRcR+NberUqfjxxx+xbds2tG7dWl4eEhICg8GA3Nxcu/KV23yl9tRURq/XN/qPkFarRbt27RATE4P58+fjmmuuwaJFixTZ1sTERGRkZODaa6+FRqOBRqPBjh078N5770Gj0SA4OFhxba7Ix8cHHTp0wMmTJxX5+oaGhqJLly52yzp37iwP3Sn5O+vs2bPYvHkzHn74YXmZEl9jR2HYcTCtVouYmBhs2bJFXmaxWLBlyxbExsY6sWZXLzo6GiEhIXZty8/Px549e+S2xcbGIjc3F4mJiXKZrVu3wmKxoE+fPnKZnTt3wmg0ymU2bdqEjh07wtfXt5FaYyWEwNSpU7F27Vps3boV0dHRdutjYmLg4uJi1+bjx48jJSXFrs0HDx60+8LctGkT9Hq9/EUcGxtrtw1bmabwnrBYLCgrK1NkW4cMGYKDBw9i37598q13794YN26c/G+ltbmiwsJCnDp1CqGhoYp8ffv27VvlVBEnTpxAZGQkAGV+Z9ksX74cQUFBGDVqlLxMia+xwzh7hrQSrVq1Suh0OrFixQpx5MgRMXnyZOHj42M3+72pKigoEP/884/4559/BADxzjvviH/++UecPXtWCGE9jNPHx0esX79eHDhwQNx+++3VHsbZq1cvsWfPHrFr1y7Rvn17u8M4c3NzRXBwsHjggQfEoUOHxKpVq4S7u7tTDuOcMmWK8Pb2Ftu3b7c7nLO4uFgu89hjj4mIiAixdetWsXfvXhEbGytiY2Pl9bZDOYcOHSr27dsnNmzYIAIDA6s9lHPWrFni6NGjYsmSJU45lPO5554TO3bsEMnJyeLAgQPiueeeE5IkiV9//VVxba1JxaOxhFBWm2fOnCm2b98ukpOTxe+//y7i4uJEQECAyMjIUFxbhbCeTkCj0YjXXntNJCUliS+++EK4u7uLzz//XC6jtO8sIaxH+EZERIhnn322yjqlvcaOwrDTQBYvXiwiIiKEVqsV119/vdi9e7ezq1Qr27ZtEwCq3MaPHy+EsB7K+dJLL4ng4GCh0+nEkCFDxPHjx+22kZ2dLe677z7h6ekp9Hq9mDhxoigoKLArs3//ftGvXz+h0+lEq1atxBtvvNFYTbRTXVsBiOXLl8tlSkpKxOOPPy58fX2Fu7u7uOOOO8SFCxfstnPmzBkxYsQI4ebmJgICAsTMmTOF0Wi0K7Nt2zbRs2dPodVqRZs2bez20VgeeughERkZKbRarQgMDBRDhgyRg44QymprTSqHHSW1+Z577hGhoaFCq9WKVq1aiXvuucfunDNKaqvNDz/8ILp16yZ0Op3o1KmT+Oijj+zWK+07SwghNm7cKABUaYcQynyNHUESQgindCkRERERNQLO2SEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CGiJm3ChAkYPXp0leXbt2+HJElVrvBMRFQZww4REREpGsMOESlCbm4uHn74YQQGBkKv12Pw4MHYv3+/vH7u3Lno2bOn3WMq9w5lZ2fjvvvuQ6tWreDu7o7u3bvjq6++asRWEFFDYNghIkW46667kJGRgV9++QWJiYm49tprMWTIEOTk5NR6G6WlpYiJicFPP/2EQ4cOYfLkyXjggQfw559/NmDNiaihaZxdASKiq7Vr1y78+eefyMjIgE6nAwC8/fbbWLduHb755htMnjy5Vttp1aoVnn76afn+E088gY0bN2L16tW4/vrrG6TuRNTwGHaIqNnbv38/CgsL4e/vb7e8pKQEp06dku8fPHgQnp6e8n2z2WxX3mw24/XXX8fq1atx7tw5GAwGlJWVwd3dvWEbQEQNimGHiJq9wsJChIaGYvv27VXW+fj4yP/u2LEjvv/+e/n+nj17cP/998v3FyxYgEWLFmHhwoXo3r07PDw8MG3aNBgMhoasPhE1MIYdImr2rr32WqSlpUGj0SAqKqrGclqtFu3atZPv//vvv3brf//9d9x+++1yALJYLDhx4gS6dOnSIPUmosbBsENETV5eXh727dtnt+zkyZMArENTN9xwA2JjYzF69Gi89dZb6NChA86fP4+ffvoJd9xxB3r37l2r/bRv3x7ffPMN/vjjD/j6+uKdd95Beno6ww5RM8ewQ0RN3vbt29GrV69q1w0YMADbtm3Dzz//jBdeeAETJ05EZmYmQkJCMGDAAAQHB9d6Py+++CJOnz6NYcOGwd3dHZMnT8bo0aORl5fnqKYQkRNIQgjh7EoQEdVXVFQUVqxYgUGDBjm7KkTURPE8O0TUrHXp0sXuCCsiosrYs0NERESKxp4dIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJStP8Pao2cZls/VVgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcO0lEQVR4nO3dd3gU1cIG8Hd2N7upm14hCaF30FAMKqBEqhXsXEVFUAwqRdDYKHpFxStYEPS7CnoVuaKCohTpWAJKLqEIxACBRCCd9LLtfH9sdsiSQhI22WTy/h73MTtzduacnd3k5ZwzM5IQQoCIiIhIoVTOrgARERFRU2LYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiojbPZDIhKysLaWlpzq4KNQGGHSIiajI//PADkpKS5Ofr16/Hn3/+6bwKVZGSkoIpU6YgNDQUWq0WwcHBiImJAW8soDwMO2Rn1apVkCRJfri6uqJr166YPn06MjMznV09ImplDh8+jKeffhopKSnYu3cvHn/8cRQVFTm7Wti7dy8GDRqEHTt24LnnnsOWLVuwdetWrF+/HpIkObt65GAS741FVa1atQoPP/wwFi5ciKioKJSXl+OXX37Bf/7zH0RGRuLIkSNwd3d3djWJqJXIzs7GkCFDcOLECQDA+PHj8c033zi1TgaDAf369YNer8dPP/0Eb29vp9aHmp7G2RWglmnMmDEYMGAAAODRRx+Fv78/3n77bXz33Xe47777nFw7ImotAgMDceTIEfkfSj169HB2lbBhwwYkJyfj+PHjDDptBIexqF5uvPFGAEBqaioAIC8vD8888wz69OkDT09P6PV6jBkzBgcPHqz22vLycsyfPx9du3aFq6srQkNDMX78eJw8eRIAcPr0abuhs0sfw4cPl7e1a9cuSJKE//73v3j++ecREhICDw8P3HrrrUhPT6+273379mH06NHw9vaGu7s7hg0bhl9//bXGNg4fPrzG/c+fP79a2c8//xzR0dFwc3ODn58f7r333hr3X1fbqrJYLFi6dCl69eoFV1dXBAcH47HHHsOFCxfsynXo0AE333xztf1Mnz692jZrqvvixYurvacAUFFRgXnz5qFz587Q6XQIDw/H3LlzUVFRUeN7VdXw4cPRu3fvasvfeustSJKE06dP2y3Pz8/HjBkzEB4eDp1Oh86dO+ONN96AxWKRy9jet7feeqvadnv37l3jZ+Lrr7+utY4PPfQQOnTocNm2dOjQQT4+KpUKISEhuOeeey47abXq62p6VN13fY81AGzatAnDhg2Dl5cX9Ho9Bg4ciNWrVwOo/fNa02fMZDLhlVdeQadOnaDT6dChQwc8//zz1Y5vfdtfUlKC2bNny8ewW7dueOutt6rNdbF9BnU6HaKjo9GjR49aP4M1qdoWtVqNdu3aYerUqcjPz5fLNOb47927F1FRUfjmm2/QqVMnaLVaREREYO7cuSgrK6v2+g8++AC9evWCTqdDWFgY4uLi7OoAXPweJCYmYsiQIXBzc0NUVBRWrFhhV85W3127dsnLzp07hw4dOmDAgAEoLi6Wl1/J95LssWeH6sUWTPz9/QEAp06dwvr163HXXXchKioKmZmZ+PDDDzFs2DAcPXoUYWFhAACz2Yybb74Z27dvx7333ounn34aRUVF2Lp1K44cOYJOnTrJ+7jvvvswduxYu/3Gx8fXWJ9//vOfkCQJzz77LLKysrB06VLExsYiKSkJbm5uAIAdO3ZgzJgxiI6Oxrx586BSqbBy5UrceOON+PnnnzFo0KBq223fvj0WLVoEACguLsa0adNq3PdLL72Eu+++G48++iiys7Px3nvvYejQoThw4AB8fHyqvWbq1Km4/vrrAQDffvst1q1bZ7f+sccek4cQn3rqKaSmpuL999/HgQMH8Ouvv8LFxaXG96Eh8vPz5bZVZbFYcOutt+KXX37B1KlT0aNHDxw+fBhLlizBX3/9hfXr11/xvm1KS0sxbNgwnD17Fo899hgiIiLw22+/IT4+HufPn8fSpUsdtq/Guv766zF16lRYLBYcOXIES5cuxblz5/Dzzz/X+pqlS5fKf6SOHTuG1157Dc8//7zci+Hp6SmXre+xXrVqFR555BH06tUL8fHx8PHxwYEDB7B582bcf//9eOGFF/Doo48CAHJycjBz5ky7z1lVjz76KD799FPceeedmD17Nvbt24dFixbh2LFj1T6Ll2u/EAK33nordu7cicmTJ6N///7YsmUL5syZg7Nnz2LJkiW1vk+1fQbrcscdd2D8+PEwmUxISEjARx99hLKyMvznP/9p0Haqys3NxalTp/D8889j/PjxmD17Nvbv34/FixfjyJEj+PHHH+WwOH/+fCxYsACxsbGYNm0akpOTsXz5cvzxxx/VvpsXLlzA2LFjcffdd+O+++7DV199hWnTpkGr1eKRRx6psS4FBQUYM2YMXFxcsHHjRvmz0pzfyzZBEFWxcuVKAUBs27ZNZGdni/T0dLFmzRrh7+8v3NzcxN9//y2EEKK8vFyYzWa716ampgqdTicWLlwoL/vkk08EAPH2229X25fFYpFfB0AsXry4WplevXqJYcOGyc937twpAIh27dqJwsJCeflXX30lAIh33nlH3naXLl3EqFGj5P0IIURpaamIiooSN910U7V9DRkyRPTu3Vt+np2dLQCIefPmyctOnz4t1Gq1+Oc//2n32sOHDwuNRlNteUpKigAgPv30U3nZvHnzRNWv3s8//ywAiC+++MLutZs3b662PDIyUowbN65a3ePi4sSlX+dL6z537lwRFBQkoqOj7d7T//znP0KlUomff/7Z7vUrVqwQAMSvv/5abX9VDRs2TPTq1ava8sWLFwsAIjU1VV72yiuvCA8PD/HXX3/ZlX3uueeEWq0WaWlpQojGfSbWrl1bax0nTZokIiMj62yHENb3d9KkSXbL7r//fuHu7n7Z115an507d1ZbV99jnZ+fL7y8vMTgwYNFWVmZXdmqn2cb2/u1cuXKauuSkpIEAPHoo4/aLX/mmWcEALFjxw55WX3av379egFAvPrqq3bl7rzzTiFJkjhx4oS8rL6fwdpc+nohrN/Tnj17ys8bc/wnTZokAIiHHnrIrpztu7lhwwYhhBBZWVlCq9WKkSNH2v2+e//99wUA8cknn8jLhg0bJgCIf/3rX/KyiooK0b9/fxEUFCQMBoNdfXfu3CnKy8vF8OHDRVBQkN37JsSVfy/JHoexqEaxsbEIDAxEeHg47r33Xnh6emLdunVo164dAECn00Glsn58zGYzcnNz4enpiW7duuF///ufvJ1vvvkGAQEBePLJJ6vt40rOeHjwwQfh5eUlP7/zzjsRGhqKjRs3AgCSkpKQkpKC+++/H7m5ucjJyUFOTg5KSkowYsQI7Nmzx27YBLAOt7m6uta532+//RYWiwV33323vM2cnByEhISgS5cu2Llzp115g8EAwPp+1Wbt2rXw9vbGTTfdZLfN6OhoeHp6Vtum0Wi0K5eTk4Py8vI663327Fm89957eOmll+x6GWz779GjB7p37263TdvQ5aX7vxJr167F9ddfD19fX7t9xcbGwmw2Y8+ePXblS0tLq7XVbDbXuO2ioiLk5ORUG15oqIqKCuTk5CArKwtbt27Fjh07MGLEiCvapk19j/XWrVtRVFSE5557rtpnsqHfG9t3YtasWXbLZ8+eDQD48ccf7ZZfrv0bN26EWq3GU089VW17Qghs2rSpxnrU9Rmsi+0zkJGRgW+++QYHDx6s8Xg05vjPmTPH7vnMmTOhVqvl92Tbtm0wGAyYMWOG/PsOAKZMmQK9Xl/tvdNoNHjsscfk51qtFo899hiysrKQmJhoV9ZiseDBBx/E3r17sXHjRrtebqB5v5dtAYexqEbLli1D165dodFoEBwcjG7dutl92S0WC9555x188MEHSE1NtfsDZBvqAqzDX926dYNG49iPWpcuXeyeS5KEzp07y/NDUlJSAACTJk2qdRsFBQXw9fWVn+fk5FTb7qVSUlIghKi13KXDTbZfvHX9ck9JSUFBQQGCgoJqXJ+VlWX3/KeffkJgYGCd9bzUvHnzEBYWhscee6za3IaUlBQcO3as1m1euv8rkZKSgkOHDtV7X/PmzcO8efOqlQsODq62rOowgaenJ2655RYsWbKkxrJ1WbNmDdasWSM/HzhwIP797383aBu1qe+xtg0b1zQXqqHOnDkDlUqFzp072y0PCQmBj48Pzpw5Y7f8cu0/c+YMwsLC7P6xAUAesrt0ezZ1fQbrsnjxYixevFh+Pnr0aLzxxhvVyjXk+NvmJF36Pfb29kZoaKj8e8TWlm7dutmV02q16NixY7W2hoWFwcPDw25Z165dAVjnoV1zzTXy8hdeeAF79+6FJEkoLS2tVsfm/F62BQw7VKNBgwbJZ2PV5LXXXsNLL72ERx55BK+88gr8/PygUqkwY8aMaj0mzmCrw+LFi9G/f/8ay1QNIAaDAefPn8dNN9102e1KkoRNmzZBrVbXuU0AyMjIAGD9w1LXNoOCgvDFF1/UuP7SX3aDBw/Gq6++arfs/fffx3fffVfj648dO4ZVq1bh888/r3Huj8ViQZ8+ffD222/X+Prw8PBa695QFosFN910E+bOnVvjetsfBpupU6firrvusls2ZcqUGl/78ssv4/rrr4fRaERiYiIWLlyI/Px8uWejvkaOHCn/i//vv//GG2+8gRtuuAH79++X54M1VkOPtSPVt0eoKdp/uc9gXR544AE8+OCDsFgsOHXqFF555RXcfPPN2LZtm12bGnL8be1w5vV09u3bh1WrVuH999/H1KlTkZSUZNcD3Jzfy7aAYYca5euvv8YNN9yAjz/+2G55fn4+AgIC5OedOnXCvn37YDQaHTLJ1sbWc2MjhMCJEyfQt29feb8AoNfrERsbe9ntHTx4EEajsc6AZ9uuEAJRUVHV/jDX5OjRo5Akqdq/DC/d5rZt23DttdfW649JQEBAtTbVNVkxPj4e/fv3xz333FPr/m1DA039y79Tp04oLi6u1zEBrD14l5a99F/ONn369JHLjhkzBmlpafj0009hMpkaVMfQ0FC7fXbr1g1DhgzB+vXrr/iyC/U91rbP75EjR6r1yDRUZGQkLBYLUlJS7E77zszMRH5+PiIjI+3KX679kZGR2LZtG4qKiux6d44fPy7v71KX+wzWpWPHjnb18fb2xv3334+9e/ciJiZGXt6Q4x8VFVXje1JYWIjz58/LZzza2pKcnIyOHTvK5QwGA1JTU6t9Ns+dO4eSkhK7z+hff/0FANXOBlywYAEmTZqE/v37Y8CAAXj11VfxyiuvyOub83vZFnDODjWKWq2udprp2rVrcfbsWbtlEyZMQE5ODt5///1q27j09Q3x2Wef2V2F9euvv8b58+cxZswYAEB0dDQ6deqEt956y+5UTpvs7OxqdVer1TWe1l3V+PHjoVarsWDBgmr1F0IgNzdXfm4ymfDNN99g0KBBdQ5j3X333TCbzXa/6Kpu40rmoCQkJOC7777D66+/XusvzLvvvhtnz57F//3f/1VbV1ZWhpKSkkbvv6Z9JSQkYMuWLdXW5efnNziY1MVisUClUl3xHwrbqciOON23vsd65MiR8PLywqJFi6rNx2ro98Z2huOlZ7rZegzGjRtX5+svbf/YsWNhNpurfaeXLFkCSZLk76BNfT6DDVHf41HX8a/tPXnnnXfkM0gB69xFrVaLd9991+59//jjj1FQUFDtvTOZTPjwww/l5waDAR9++CECAwMRHR1tV9Z21ly/fv3wzDPP4I033sCRI0fk9c35vWwL2LNDjXLzzTdj4cKFePjhhzFkyBAcPnwYX3zxhd2/fgDrROLPPvsMs2bNwu+//47rr78eJSUl2LZtG5544gncdtttjdq/n58frrvuOjz88MPIzMzE0qVL0blzZ3mIQ6VS4d///jfGjBmDXr164eGHH0a7du1w9uxZ7Ny5E3q9Hhs2bEBJSQmWLVuGd999F127drW79oUtJB06dAgJCQmIiYlBp06d8OqrryI+Ph6nT5/G7bffDi8vL6SmpmLdunWYOnUqnnnmGWzbtg0vvfQSDh06hA0bNtTZlmHDhuGxxx7DokWLkJSUhJEjR8LFxQUpKSlYu3Yt3nnnHdx5552Nep9++ukn3HTTTXX2pDzwwAP46quv8Pjjj2Pnzp249tprYTabcfz4cXz11VfYsmXLZXu8iouLsXnzZrtlycnJAIDdu3fDxcUF7dq1w5w5c/D999/j5ptvxkMPPYTo6GiUlJTg8OHD+Prrr3H69Gm7nsGGSEpKgqenJ0wmExITE/HZZ5/htttuq3G4sS6nTp3C559/DsA6qfb999+HXq93yCTl+h5rvV6PJUuW4NFHH8XAgQNx//33w9fXFwcPHkRpaSk+/fTTeu+zX79+mDRpEj766CPk5+dj2LBh+P333/Hpp5/i9ttvxw033NCg9t9yyy244YYb8MILL+D06dPo168ffvrpJ3z33XeYMWNGtYm29fkM1uXQoUP4/PPPIYTAyZMn8e6776J9+/bVPpMNOf69evXC5MmT8dFHH+HChQsYPnw4/ve//+GTTz7BmDFj5DAUGBiI+Ph4LFiwAKNHj8att96K5ORkfPDBBxg4cCD+8Y9/2G03LCwMb7zxBk6fPo2uXbviv//9L5KSkvDRRx/V2bM9b948fPPNN5gyZQp+/fVXqFQqh3wvqQonnQVGLZTt1PM//vijznLl5eVi9uzZIjQ0VLi5uYlrr71WJCQkiGHDhlU7pbS0tFS88MILIioqSri4uIiQkBBx5513ipMnTwohGnea8Zdffini4+NFUFCQcHNzE+PGjRNnzpyp9voDBw6I8ePHC39/f6HT6URkZKS4++67xfbt2+32fbnHpafjfvPNN+K6664THh4ewsPDQ3Tv3l3ExcWJ5ORkIYQQTz75pBg6dKjYvHlztTpdeuq5zUcffSSio6OFm5ub8PLyEn369BFz584V586dk8s09NRzSZJEYmKi3fKajpHBYBBvvPGG6NWrl9DpdMLX11dER0eLBQsWiIKCgmr7u3R7l3v/qp4SXVRUJOLj40Xnzp2FVqsVAQEBYsiQIeKtt96ST89tzGfC9tBoNCIyMlI89dRT4sKFC0KIhp16XnVbAQEBYuTIkSIhIeGyr720PjWdem5Tn2MthBDff/+9GDJkiHBzcxN6vV4MGjRIfPnll9W2V9ep50IIYTQaxYIFC+TvYHh4uIiPjxfl5eWNan9RUZGYOXOmCAsLEy4uLqJLly5i8eLF1U6Lb8hnsCZV6yJJkggJCRHjx48Xx44dk8s09vgbjUaxcOFCu/dk7ty5orS0tFo93n//fdG9e3fh4uIigoODxbRp0+RtV21Tr169xP79+0VMTIxwdXUVkZGR4v3337crV9vnY9euXUKSJPnyGUJc2feS7PHeWNSq7Nq1CzfccAPWrl3b6N6Oqk6fPo2oqCikpqbWeoXd+fPn4/Tp01i1atUV768t6tChA+bPn4+HHnrI2VUhajLDhw9HTk6O3VAUtRycs0NERESKxjk71KZ5enpi4sSJdU4g7tu3r3z7C2q4YcOGyRejJCJyBoYdatMCAgLkyZi1GT9+fDPVRpkaMpmWiKgpcM4OERERKRrn7BAREZGiMewQERGRonHODqxX2jx37hy8vLx4WW4iIqJWQgiBoqIihIWF2d2s+lIMO7Dez4Q3VSMiImqd0tPT0b59+1rXM+wA8s3s0tPTodfrnVwbIiIiqo/CwkKEh4fb3ZS2Jgw7gDx0pdfrGXaIiIhamctNQeEEZSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSnhp3ly5ejb9++8infMTEx2LRpk7y+vLwccXFx8Pf3h6enJyZMmIDMzEy7baSlpWHcuHFwd3dHUFAQ5syZA5PJ1NxNISIiohbKqWGnffv2eP3115GYmIj9+/fjxhtvxG233YY///wTADBz5kxs2LABa9euxe7du3Hu3DmMHz9efr3ZbMa4ceNgMBjw22+/4dNPP8WqVavw8ssvO6tJRERE1MJIQgjh7EpU5efnh8WLF+POO+9EYGAgVq9ejTvvvBMAcPz4cfTo0QMJCQm45pprsGnTJtx88804d+4cgoODAQArVqzAs88+i+zsbGi12nrts7CwEN7e3igoKOBFBYmIiFqJ+v79bjFzdsxmM9asWYOSkhLExMQgMTERRqMRsbGxcpnu3bsjIiICCQkJAICEhAT06dNHDjoAMGrUKBQWFsq9QzWpqKhAYWGh3YOIiIiUyelh5/Dhw/D09IROp8Pjjz+OdevWoWfPnsjIyIBWq4WPj49d+eDgYGRkZAAAMjIy7IKObb1tXW0WLVoEb29v+cGbgBIRESmX08NOt27dkJSUhH379mHatGmYNGkSjh492qT7jI+PR0FBgfxIT09v0v0RERGR8zj9RqBarRadO3cGAERHR+OPP/7AO++8g3vuuQcGgwH5+fl2vTuZmZkICQkBAISEhOD333+3257tbC1bmZrodDrodDoHt4SIiIhaIqf37FzKYrGgoqIC0dHRcHFxwfbt2+V1ycnJSEtLQ0xMDAAgJiYGhw8fRlZWllxm69at0Ov16NmzZ7PXnYiIiFoep/bsxMfHY8yYMYiIiEBRURFWr16NXbt2YcuWLfD29sbkyZMxa9Ys+Pn5Qa/X48knn0RMTAyuueYaAMDIkSPRs2dPPPDAA3jzzTeRkZGBF198EXFxcS2i58ZsNiMtLU1+HhERAbVa7cQaERERtT1ODTtZWVl48MEHcf78eXh7e6Nv377YsmULbrrpJgDAkiVLoFKpMGHCBFRUVGDUqFH44IMP5Ner1Wr88MMPmDZtGmJiYuDh4YFJkyZh4cKFzmqSnbS0NPzr29/gExiC/OwMzB4PREVFObtaREREbUqLu86OMzTVdXZSU1Px8c+n4B8ajtzz6Zh8fUeGHSIiIgep799vp09QbissFrN81heHs4iIiJoPw04zKczNwidniuHpmc7hLCIiombEsNOM9AHB0HvxdhRERETNqcWdek5ERETkSAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaBpnV4AAs9mMtLQ0+XlERATUarUTa0RERKQcDDstQFpaGv717W/wCQxBfnYGZo8HoqKinF0tIiIiRWDYaSF8AkPgHxru7GoQEREpDufsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiaZxdgbbMbDYjLS0N6enpEBDOrg4REZEiMew4UVpaGv717W8ozM2CT7sOCAh1do2IiIiUh2HHyXwCQwD26hARETUZztkhIiIiRWPYISIiIkVj2CEiIiJFc2rYWbRoEQYOHAgvLy8EBQXh9ttvR3Jysl2Z4cOHQ5Iku8fjjz9uVyYtLQ3jxo2Du7s7goKCMGfOHJhMpuZsChEREbVQTp2gvHv3bsTFxWHgwIEwmUx4/vnnMXLkSBw9ehQeHh5yuSlTpmDhwoXyc3d3d/lns9mMcePGISQkBL/99hvOnz+PBx98EC4uLnjttdeatT1ERETU8jg17GzevNnu+apVqxAUFITExEQMHTpUXu7u7o6QkJAat/HTTz/h6NGj2LZtG4KDg9G/f3+88sorePbZZzF//nxotdombQMRERG1bC1qzk5BQQEAwM/Pz275F198gYCAAPTu3Rvx8fEoLS2V1yUkJKBPnz4IDg6Wl40aNQqFhYX4888/a9xPRUUFCgsL7R5ERESkTC3mOjsWiwUzZszAtddei969e8vL77//fkRGRiIsLAyHDh3Cs88+i+TkZHz77bcAgIyMDLugA0B+npGRUeO+Fi1ahAULFjRRS4iIiKglaTFhJy4uDkeOHMEvv/xit3zq1Knyz3369EFoaChGjBiBkydPolOnTo3aV3x8PGbNmiU/LywsRHh4eOMqTkRERC1aixjGmj59On744Qfs3LkT7du3r7Ps4MGDAQAnTpwAAISEhCAzM9OujO15bfN8dDod9Hq93YOIiIiUyalhRwiB6dOnY926ddixYweioqIu+5qkpCQAQGio9UZSMTExOHz4MLKysuQyW7duhV6vR8+ePZuk3kRERNR6OHUYKy4uDqtXr8Z3330HLy8veY6Nt7c33NzccPLkSaxevRpjx46Fv78/Dh06hJkzZ2Lo0KHo27cvAGDkyJHo2bMnHnjgAbz55pvIyMjAiy++iLi4OOh0Omc2j4iIiFoAp/bsLF++HAUFBRg+fDhCQ0Plx3//+18AgFarxbZt2zBy5Eh0794ds2fPxoQJE7BhwwZ5G2q1Gj/88APUajViYmLwj3/8Aw8++KDddXmIiIio7XJqz44Qdd/tOzw8HLt3777sdiIjI7Fx40ZHVYuIiIgUpMWcjUVWFosZ6enpAICIiAio1Won14iIiKh1Y9hpYQpzs/DJmWJ4eqZj9njUa9I2ERER1Y5hpwXSBwRD78XT4YmIiByBYaeFqjqcBXBIi4iIqLEYdloo23BW+ygj8rMzOKRFRETUSAw7LZg+IBj+obyNBRER0ZVoEbeLICIiImoqDDtERESkaAw7REREpGgMO0RERKRoDDstwGXumkFERERXgGHHyQ5kGrEtzxt5FZKzq0JERKRIDDtOZBECKRfMqLCo8HuOBvmlBmdXiYiISHEYdpzoVF4FDBbrzwaLhO+SzsFgYQ8PERGRIzHsONHBcyUAAB+NCW5qgfwyI06Uujq5VkRERMrCsONEB8+VAgBCdAZ08zYDAPJNvP8VERGRI/F2EU5isQgczLCGHX8XE1xcXAAAhSYNhDA6s2pERESKwp4dJ0nJKkZhuRlqCfDWmOHpIqBWSTAJCSUmZ9eOiIhIORh2nGTvqVwAQJC7CioJUElAgKcWAFBg5GEhIiJyFP5VdZJ9qRfDjk2Ql3VycoGBZ2QRERE5CsOOEwghsO9UHgAg2KNq2NEBAPIZdoiIiByGYccJ8svNyC0xQALg73ox2ARWhp1Co8RbSBARETkIw44T5JZaZyD7uKmhVl0MO/6eWkgQMFgklPPigkRERA7BsOMEeZWnW/m525/5r1Gp4KW2Xm+nwMSrAhARETkCw44T5JRar6Pj71490Hi72MIOLy5IRETkCAw7TpBXOYzl7+5SbZ1ew7BDRETkSAw7TpArh53qPTv6ymGsIoYdIiIih2DYcQJb2Ll0zg4AuFeGnXKLChaekUVERHTFGHacIK+Onh1XlYAEAQEJ5ebmrhkREZHyMOw4QV3DWJIE2BaXmXj6ORER0ZVi2GlmQgjkVp567u9R8+nlbmrr+FWpmWGHiIjoSjHsNDODBTBWTsbxc6s57LhrKsMO735ORER0xRh2mlmZ0RpkvN1coNXU/Pa7s2eHiIjIYRh2mlmZyRpkbDf9rIkb5+wQERE5DMNOMyurHJoK1rvWWubiMBbDDhER0ZVi2Glm9enZsQ1jlZkBC29/TkREdEUYdpqZLewE6msPO65qyNfaKangLGUiIqIrwbDTzC727NQ+jCVJgJvKAgAoLGPYISIiuhIMO82sPsNYAOCurgw75cYmrxMREZGSMew0M1tHzeXCjhvDDhERkUMw7DQz23V2guo4GwvgMBYREZGj1HwJX2oSJgtQOYqFsrwM5GSchUDNZ1txGIuIiMgxGHaake0u5mpYsHrvaaQdPwSfdh1qLGvr2SkqNwFQN08FiYiIFIjDWM2ovPL2D64aCf6h4dD7B9Za1l1tTUZF5UZea4eIiOgKMOw0I4O1swY61eXDi6tKQIKARVyc1ExEREQNx7DTjIwWa8+OSz3edUkCdJWjV7bT1YmIiKjhGHaakbGyZ8elHj07AOBqu20Eww4REVGjMew0I6Oof88OYL1tBHDxdHUiIiJqOIadZnSxZ6d+5W09O6Xs2SEiImo0p4adRYsWYeDAgfDy8kJQUBBuv/12JCcn25UpLy9HXFwc/P394enpiQkTJiAzM9OuTFpaGsaNGwd3d3cEBQVhzpw5MJla3qxeW9jRSA0dxmqqGhERESmfU8PO7t27ERcXh71792Lr1q0wGo0YOXIkSkpK5DIzZ87Ehg0bsHbtWuzevRvnzp3D+PHj5fVmsxnjxo2DwWDAb7/9hk8//RSrVq3Cyy+/7Iwm1cnUgAnKAOBaWY7DWERERI3n1IsKbt682e75qlWrEBQUhMTERAwdOhQFBQX4+OOPsXr1atx4440AgJUrV6JHjx7Yu3cvrrnmGvz00084evQotm3bhuDgYPTv3x+vvPIKnn32WcyfPx9ardYZTatRYycocxiLiIio8VrUnJ2CggIAgJ+fHwAgMTERRqMRsbGxcpnu3bsjIiICCQkJAICEhAT06dMHwcHBcplRo0ahsLAQf/75Z437qaioQGFhod2jOdg6aBo8QZlhh4iIqNFaTNixWCyYMWMGrr32WvTu3RsAkJGRAa1WCx8fH7uywcHByMjIkMtUDTq29bZ1NVm0aBG8vb3lR3h4uINbU7OGXGcHAHSVPTsVZsBgtjRVtYiIiBStxYSduLg4HDlyBGvWrGnyfcXHx6OgoEB+pKenN/k+gYZPUNaqAJU1HyGvlLOUiYiIGqNFhJ3p06fjhx9+wM6dO9G+fXt5eUhICAwGA/Lz8+3KZ2ZmIiQkRC5z6dlZtue2MpfS6XTQ6/V2j6ZmEYC5gdfZkSTAQ2edVsWwQ0RE1DhODTtCCEyfPh3r1q3Djh07EBUVZbc+OjoaLi4u2L59u7wsOTkZaWlpiImJAQDExMTg8OHDyMrKksts3boVer0ePXv2bJ6G1IOpMugA9Q87AOBZGXZyShh2iIiIGsOpZ2PFxcVh9erV+O677+Dl5SXPsfH29oabmxu8vb0xefJkzJo1C35+ftDr9XjyyScRExODa665BgAwcuRI9OzZEw888ADefPNNZGRk4MUXX0RcXBx0Op0zm2fHdvVkNYQ8NFUfHlrrIcplzw4REVGjODXsLF++HAAwfPhwu+UrV67EQw89BABYsmQJVCoVJkyYgIqKCowaNQoffPCBXFatVuOHH37AtGnTEBMTAw8PD0yaNAkLFy5srmbUi+0aO5p6nnZu41F5N9CcEqPD60RERNQWODXsCHH5P/yurq5YtmwZli1bVmuZyMhIbNy40ZFVczj5vlj1nJxsY5uzw54dIiKixmkRE5TbgsaGHU+GHSIioivCsNNMbBOUGzqM5a61DWMx7BARETUGw04zkS8o2OieHc7ZISIiagyGnWZycRirYVdCts3ZKaqwoNxodni9iIiIlI5hp5nIw1gN7NnRaVRQV56qnl1U4ehqERERKR7DTjO5eF+shoUdSZLgprG+NrOw3OH1IiIiUjqGnWbS2LOxAMCt8gIBGQw7REREDcaw00xMVxR2rK/lMBYREVHDMew0E2MjTz0HLoadnGKGHSIiooZi2Gkmpkaeeg4AruzZISIiajSGnWZyJXN2XCvn7OQUGxxZJSIiojaBYacZCCEcMozFnh0iIqKGY9hpBgazBQAnKBMRETkDw04zMJisV01WQTTqDbfN2cktqYDF0vCwRERE1JYx7DSDisqwo1EBktTw17ta7wUKo1mgoIz3yCIiImoIhp1mUGG0hh2XRr7bapUEL531xdk8/ZyIiKhBGHaaQYXJegPPht4qoiq/ysso53DeDhERUYMw7DQD25wdl0YMYdn4uVvDDnt2iIiIGoZhpxnY5uxcSc+Ob2XPDs/IIiIiahiGnWZwMew0fhvs2SEiImochp1mYJuzo7mCd5s9O0RERI2jaewLS0pKsHv3bqSlpcFgsL+NwVNPPXXFFVMS25wdTSMuKGhj69nhLSOIiIgaplFh58CBAxg7dixKS0tRUlICPz8/5OTkwN3dHUFBQQw7l7BeQfnKenb82LNDRETUKI368ztz5kzccsstuHDhAtzc3LB3716cOXMG0dHReOuttxxdx1bPaLb26Giu4GwsX3frlQVziiqQmpqK1NRUmM1mR1SPiIhI0RoVdpKSkjB79myoVCqo1WpUVFQgPDwcb775Jp5//nlH17HVM5oc17OTW1KBt775Df/69jekpaU5onpERESK1qg/vy4uLlCprC8NCgqS/+h6e3sjPT3dcbVTCHkY6wrm7Pi4aSBJgEUArn7B8AkMcVT1iIiIFK1Rc3auuuoq/PHHH+jSpQuGDRuGl19+GTk5OfjPf/6D3r17O7qOrZ5RDjuN34ZaJcHPXYvcEgPKTUK+EzoRERHVrVE9O6+99hpCQ0MBAP/85z/h6+uLadOmITs7Gx999JFDK6gEjpigDACBXjoAQJmJdz4nIiKqr0b17AwYMED+OSgoCJs3b3ZYhZTIWBlO1FcwjAUAAZ46AEUoNzmgUkRERG1Eo/oabrzxRuTn5zu4KsokhLg4jMWeHSIiombXqD+/u3btqnYhQaqZWQC2aHKl02wCPLUAgHKGHSIionprdF+DJHGCbH1UnnUOAFBf4Vsm9+yYGXaIiIjqq9G3i7jjjjug1WprXLdjx45GV0hpjJaL83Uk6WIvT2PYwg7n7BAREdVfo8NOTEwMPD09HVkXRbL17FzJNXZsrBOUOYxFRETUEI0KO5IkYc6cOQgKCnJ0fRTH6MCwwwnKREREDdeoOTtC8I9tfZksjjntHLjYs1NhBiw8BkRERPXSqLAzb948DmHVkyN7dnzdtVBVTnLmvB0iIqL6adQw1rx58wAA2dnZSE5OBgB069YNgYGBjquZQth6dhxxdwe1SoKvmwa5pSYOZREREdVTo3p2SktL8cgjjyAsLAxDhw7F0KFDERYWhsmTJ6O0tNTRdWzVjGbr/x3RswMAvpV3P+ckZSIiovppVNiZOXMmdu/eje+//x75+fnIz8/Hd999h927d2P27NmOrmOrZjsbyxFzdgDAz10NACjntXaIiIjqpVHDWN988w2+/vprDB8+XF42duxYuLm54e6778by5csdVb9WzygPYwkAVz6WZevZKeOcHSIionpp9DBWcHBwteVBQUEcxrqEI6+zAwB+7hzGIiIiaohGhZ2YmBjMmzcP5eXl8rKysjIsWLAAMTExDqucEhgdeOo5APjJPTsMO0RERPXRqGGspUuXYvTo0Wjfvj369esHADh48CBcXV2xZcsWh1awtbvYs+OY7fm6M+wQERE1RKPCTp8+fZCSkoIvvvgCx48fBwDcd999mDhxItzc3BxawdbOkdfZAS727PA6O0RERPXTqLCzZ88eDBkyBFOmTHF0fRTHkVdQBi727HDODhERUf00as7ODTfcgLy8PEfXRZGaqmfHYAEMZotDtklERKRkvDdWE3P02VheOpV80C6Umh2yTSIiIiVrVNgBgISEBOzZs6fGR33t2bMHt9xyC8LCwiBJEtavX2+3/qGHHoIkSXaP0aNH25XJy8vDxIkTodfr4ePjg8mTJ6O4uLixzXI4R5+NJUkSXCsHH/N4sR0iIqLLatScHQC44447alwuSRLM5vr1OJSUlKBfv3545JFHMH78+BrLjB49GitXrpSf63Q6u/UTJ07E+fPnsXXrVhiNRjz88MOYOnUqVq9eXc+WNC1Hn40FAK4aCaUmgQulDDtERESX0+iwk5GRgaCgoCva+ZgxYzBmzJg6y+h0OoSEhNS47tixY9i8eTP++OMPDBgwAADw3nvvYezYsXjrrbcQFhZ2RfW7UmaLgO2uDo4axgIAN40EQLBnh4iIqB4aNYwlSQ7spriMXbt2ISgoCN26dcO0adOQm5srr0tISICPj48cdAAgNjYWKpUK+/btq3WbFRUVKCwstHs0hTLjxQnEjhrGAqw9OwBwgWGHiIjoslr0BOXRo0fjs88+w/bt2/HGG29g9+7dGDNmjDxMVlPvkkajgZ+fHzIyMmrd7qJFi+Dt7S0/wsPDm6T+trCjkgC1A/Ohm23ODoexiIiILqtRw1gWS/Oc8nzvvffKP/fp0wd9+/ZFp06dsGvXLowYMaLR242Pj8esWbPk54WFhU0SeEorw46LutHzwGtk69lh2CEiIrq8Rv0VXrRoET755JNqyz/55BO88cYbV1yp2nTs2BEBAQE4ceIEACAkJARZWVl2ZUwmE/Ly8mqd5wNY5wHp9Xq7R1Ow9exoNY4NO24cxiIiIqq3Rv0V/vDDD9G9e/dqy3v16oUVK1ZccaVq8/fffyM3NxehoaEArDckzc/PR2Jiolxmx44dsFgsGDx4cJPVo76aqmfHTW3r2eF1doiIiC6nUcNYGRkZcuCoKjAwEOfPn6/3doqLi+VeGgBITU1FUlIS/Pz84OfnhwULFmDChAkICQnByZMnMXfuXHTu3BmjRo0CAPTo0QOjR4/GlClTsGLFChiNRkyfPh333nuv08/EAqr07Dh8GMv6f/bsEBERXV6j/gqHh4fj119/rbb8119/bVDI2L9/P6666ipcddVVAIBZs2bhqquuwssvvwy1Wo1Dhw7h1ltvRdeuXTF58mRER0fj559/trvWzhdffIHu3btjxIgRGDt2LK677jp89NFHjWmWw13s2XHs2Wu2OTulRguO/nUSqamp9b62ERERUVvTqJ6dKVOmYMaMGTAajbjxxhsBANu3b8fcuXMxe/bsem9n+PDhdZ7ZtWXLlstuw8/Pr8VcQPBSTTVnx0UFqCBggYQP95yCuSALs8cDUVFRDt0PERGREjQq7MyZMwe5ubl44oknYDAYAACurq549tlnER8f79AKtmZlRmtvi4taBTiw40WSJOhUFpRZ1ND5BEGrdWyYIiIiUpJGhR1JkvDGG2/gpZdewrFjx+Dm5oYuXbpUu5VDW1dWdYKyg0eZdCqBMgtQUmGG1rGbJiIiUpRG3y4CADw9PTFw4EBH1UVxSptogjIA6FTWbZcaTPBVO3zzREREitHosLN//3589dVXSEtLk4eybL799tsrrpgSlDXRBGXA2rMDAKUGM+Dm8M0TEREpRqO6HNasWYMhQ4bg2LFjWLduHYxGI/7880/s2LED3t7ejq5jqyWHHQdPUAYu9uyUGHj6ORERUV0a9Vf4tddew5IlS7BhwwZotVq88847OH78OO6++25EREQ4uo6tVlNdZwe4GHbKDDzlnIiIqC6N+it88uRJjBs3DgCg1WpRUlICSZIwc+bMFnONm5agrImuoAxcHMYqqWDYISIiqkuj/gr7+vqiqKgIANCuXTscOXIEAJCfn4/S0lLH1a6Vky8qqGmKOTsXJygTERFR7Ro1QXno0KHYunUr+vTpg7vuugtPP/00duzYga1bt17R3ciVpuowVoWDt111grIQPB2LiIioNo0KO++//z7Ky8sBAC+88AJcXFzw22+/YcKECXjxxRcdWsHWrG+oO4xGE9y1miYIO9YgZbIIVGYqIiIiqkGDwk5hYaH1RRoNPD095edPPPEEnnjiCcfXrpWbPTQMH/9cDj8PLS44eNsaCVBLAmYhodxU+y03iIiI2roGhR0fHx9I0uXnn/CmlM3DVQ2UmIByTtshIiKqVYPCzs6dO+2eCyEwduxY/Pvf/0a7du0cWjG6PJ1KoAQSyszs2SEiIqpNg8LOsGHDqi1Tq9W45ppr0LFjR4dViupHVzkvmcNYREREtePtslsxndoacsoYdoiIiGp1RWEnPT0dpaWl8Pf3d1R9qAFsp59zzg4REVHtGjSM9e6778o/5+Tk4Msvv8SNN97I+2E5iWvlMBZ7doiIiGrXoLCzZMkSAIAkSQgICMAtt9zC6+o4EYexiIiILq9BYSc1NbWp6kGNoKschOQEZSIiotpxgnIrZuvZKTdbLwNARERE1THstGK2U88tAig28J4RRERENWHYacXUEqDTWA9hXilPySIiIqoJw04r5661du8w7BAREdWMYaeVc9da55hfKGPYISIiqgnDTivnwZ4dIiKiOjHstHLs2SEiIqobw04r565jzw4REVFdGHZaOXmCMnt2iIiIasSw08pdHMYyO7kmRERELRPDTivHCcpERER1Y9hp5apOULZYeMsIIiKiSzHstHJulT07FgFcKDU4uTZEREQtT4Puek7OYbGYkZ6eDgBIT0+HwMUeHLVKgk4NVJiB7OIK+HvqnFVNIiKiFolhpxUozM3CJ2eK0T7KiLTjh+DTroPdeleNhAqzQE6RAQhxTh2JiIhaKg5jtRL6gGD4h4ZD7x9YbZ2bRgIAZBeXN3e1iIiIWjyGHQVwtU7bsfbsEBERkR2GHQW42LNT4eSaEBERtTwMOwrgags7RQw7REREl2LYUQBbz04Oe3aIiIiqYdhRANfKc+rYs0NERFQdw44CsGeHiIiodgw7CmCbs5NbYoDJbHFybYiIiFoWhh0F0KkBlQQIAeSV8PRzIiKiqhh2FEAlSfCuvNgOTz8nIiKyx7CjEH7u1lnKnKRMRERkj2FHIXzdGHaIiIhqwrCjEP6VPTtZDDtERER2GHYUItDDBQCQUcCbgRIREVXFsKMQgZ7Wnp2MQoYdIiKiqpwadvbs2YNbbrkFYWFhkCQJ69evt1svhMDLL7+M0NBQuLm5ITY2FikpKXZl8vLyMHHiROj1evj4+GDy5MkoLi5uxla0DAHu7NkhIiKqiVPDTklJCfr164dly5bVuP7NN9/Eu+++ixUrVmDfvn3w8PDAqFGjUF5+8Q/6xIkT8eeff2Lr1q344YcfsGfPHkydOrW5mtBi2Hp2zjPsEBER2dE4c+djxozBmDFjalwnhMDSpUvx4osv4rbbbgMAfPbZZwgODsb69etx77334tixY9i8eTP++OMPDBgwAADw3nvvYezYsXjrrbcQFhbWbG1xNtucnZziChhMFmg1HKEkIiICWvCcndTUVGRkZCA2NlZe5u3tjcGDByMhIQEAkJCQAB8fHznoAEBsbCxUKhX27dtX67YrKipQWFho92jtvF3V0KqthzOT83aIiIhkLTbsZGRkAACCg4PtlgcHB8vrMjIyEBQUZLdeo9HAz89PLlOTRYsWwdvbW36Eh4c7uPbNT5IkhHi7AmDYISIiqqrFhp2mFB8fj4KCAvmRnp7u7Co5hC3scN4OERHRRS027ISEhAAAMjMz7ZZnZmbK60JCQpCVlWW33mQyIS8vTy5TE51OB71eb/dQghC9NezwjCwiIqKLWmzYiYqKQkhICLZv3y4vKywsxL59+xATEwMAiImJQX5+PhITE+UyO3bsgMViweDBg5u9zs4Wyp4dIiKiapx6NlZxcTFOnDghP09NTUVSUhL8/PwQERGBGTNm4NVXX0WXLl0QFRWFl156CWFhYbj99tsBAD169MDo0aMxZcoUrFixAkajEdOnT8e9997bps7EsrENY2UUljm5JkRERC2HU8PO/v37ccMNN8jPZ82aBQCYNGkSVq1ahblz56KkpARTp05Ffn4+rrvuOmzevBmurq7ya7744gtMnz4dI0aMgEqlwoQJE/Duu+82e1taAlvPDoexiIiILnJq2Bk+fDiEELWulyQJCxcuxMKFC2st4+fnh9WrVzdF9VqdEG83AAw7REREVbXYOTvUcLaencyiCpgttYdIIiKitoRhR0ECPHVQqySYLQI5xRXOrg4REVGLwLCjIGqVhCAvHQAOZREREdkw7CiAxWJGeno6UlNTEaK3hh2efk5ERGTl1AnK5BiFuVn45EwxPD3Tofey3voio4CnnxMREQEMO4qhDwiG3ksPV7X17ufneX8sIiIiABzGUpxAD2vY4ZwdIiIiK4YdhQn0tHbWncvnMBYRERHAsKM4oV5aAEB6HsMOERERwLCjOCFe1mGszKJyVJjMTq4NERGR8zHsKIy3qxruWjWEAM7lc94OERERw47CSJKE9r7We2Sl55U6uTZERETOx7CjQOG+7gCAvy9w3g4RERHDjgLJPTsX2LNDRETEsKNA4X7s2SEiIrJh2FEgztkhIiK6iGFHgdpzzg4REZGMYUdBbHc/txRlAwByiitQZuC1doiIqG3jjUAVxHb38/ZRRmgkAZOQcDa/FJ2DvJxdNSIiIqdhz47C6AOC4R8aDi+t9dDythFERNTWMewolKdWAgD8zdPPiYiojWPYUSgPF2vYSeckZSIiauMYdhTK0xZ2ePo5ERG1cQw7CuUhD2OxZ4eIiNo2hh2Fknt2OGeHiIjaOIYdhfKq7NnJLzXiQonBybUhIiJyHoYdhdKoJAR5Wi+jdCqn2Mm1ISIich6GHQWL8NEBAE5mlTi5JkRERM7DsKNg4baww54dIiJqwxh2FCzcWwuAPTtERNS2MewoWISPNeycymbPDhERtV0MOwpmm7OTllcKo9ni5NoQERE5B8OOggV4aOCuVcNkETiTy+vtEBFR28Swo1AWixl///032uldAHAoi4iI2i6NsytATaMwNwufnClGiSUYgBYnszlJmYiI2ib27CiYPiAYAXp3AOzZISKitothR+G8XAQA4OjfuUhNTYXZbHZyjYiIiJoXw47CqcsuAABSssvw1je/IS0tzck1IiIial4MOwrnoTYDEDBYADe/YGdXh4iIqNkx7CicWgLc1daf8yt4rR0iImp7GHbaAL3WOm/nQrlwck2IiIiaH8NOG+DjYu3RyStnzw4REbU9DDttgHdlz04ee3aIiKgNYthpA2xhp7BCoMzI3h0iImpbGHbaAFc14KFVQwA4lVvu7OoQERE1K4adNiLQy3oH9L9yGHaIiKhtYdhpI4K8XAEAKQw7RETUxjDstBFBelvPTpmTa0JERNS8WnTYmT9/PiRJsnt0795dXl9eXo64uDj4+/vD09MTEyZMQGZmphNr3HIFVQ5jnb5QgXIj749FRERtR4sOOwDQq1cvnD9/Xn788ssv8rqZM2diw4YNWLt2LXbv3o1z585h/PjxTqxty+Wp00CnBswW4K/MImdXh4iIqNlonF2By9FoNAgJCam2vKCgAB9//DFWr16NG2+8EQCwcuVK9OjRA3v37sU111zT3FVt0SRJgp+rCudLLDh8tgB92/s4u0pERETNosX37KSkpCAsLAwdO3bExIkT5bt2JyYmwmg0IjY2Vi7bvXt3REREICEhoc5tVlRUoLCw0O7RFvi7SQCAxNMXnFwTIiKi5tOiw87gwYOxatUqbN68GcuXL0dqaiquv/56FBUVISMjA1qtFj4+PnavCQ4ORkZGRp3bXbRoEby9veVHeHh4E7ai5Qh2tx7u307mQgheTZmIiNqGFj2MNWbMGPnnvn37YvDgwYiMjMRXX30FNze3Rm83Pj4es2bNkp8XFha2icAT6K6Ci0pCRmE5TueWIirAw9lVIiIianItumfnUj4+PujatStOnDiBkJAQGAwG5Ofn25XJzMyscY5PVTqdDnq93u7RFmhUEnoEW0NiwslcJ9eGiIioebSqsFNcXIyTJ08iNDQU0dHRcHFxwfbt2+X1ycnJSEtLQ0xMjBNr2bJdHWbtzfntZI6Ta0JERNQ8WvQw1jPPPINbbrkFkZGROHfuHObNmwe1Wo377rsP3t7emDx5MmbNmgU/Pz/o9Xo8+eSTiImJ4ZlYdegf5g4kAntPWeftSJLk7CoRERE1qRYddv7++2/cd999yM3NRWBgIK677jrs3bsXgYGBAIAlS5ZApVJhwoQJqKiowKhRo/DBBx84udYtW49gN+g0KuQUG5CSVYyuwV7OrhIREVGTatFhZ82aNXWud3V1xbJly7Bs2bJmqlHrp1WrMLCDH345kYOEk7kMO0REpHitas4OOUZMJ38AwK8nOG+HiIiUj2GnDRraxToMuCclGyUVJifXhoiIqGkx7LRBvdvpEeHnjnKjBTuOZzm7OkRERE2KYacNkiQJN/cNBQD8cOick2tDRETUtFr0BGVqGmazGVcFWG8XseN4Fg4d/Qtebi4AgIiICKjVamdWj4iIyKEYdtqgtLQ0rN/1P3hpfVFkEHj2y72I7tIO+dkZmD0eiIqKcnYViYiIHIbDWG2Ub1AIeoT5AgAuqH3hHxoOn8C6b7NBRETUGjHstGFdgz0BAJnlEs/KIiIixWLYacP8PXXw0ZggIOHQ3wXOrg4REVGTYNhp4zq6lwMADp3Nh8kinFwbIiIix2PYaeNCtUa4qwXKjRacyjc7uzpEREQOx7DTxkkS0NHLGnKO5ZlhEezdISIiZeGp54QIDwv+KlahyGDBrpOF6BBpRlpa2sX1vPYOERG1Ygw7BI0KuDrcB3tT8/DRviwMiTyNZRv2wicwhNfeISKiVo/DWAQAuDrSFx4uQGaxEf89lAufwBBee4eIiBSBYYcAAC5qFa4Ost4y4sukHJQYOXeHiIiUgWGHZBF6FfqGuKPCJLDvvBGCk5WJiEgBGHZIJkkSZlwfAhe1hHPFFhw+ywsNEhFR68ewQ3ai/FwxdXAQAODnlBwUVFicXCMiIqIrw7BD1Yzv7YdQDxVMFoGf/zaizMjAQ0RErRfDDlWjkiTEhLnAXatGfoXA6zvPwsJbSRARUSvFsEM1cneRMK5PKFQSsCe1CO9sT6mzvNlsRmpqKlJTU2E287YTRETUcjDsUK3CfNwwKMR63cl3tqdg7f70WsumpaXhX9/+hn99+5vd1ZeJiIicjVdQJpnFYkZ6ujXQCFiHrTr7ahAZ5I3/HszFc98ehq+7FrE9g2t8PS9ASERELRF7dkhWmJuFT3Yexb83J6KoqEhePnVwECZc3R5mi0Dc6v8h4WSuE2tJRETUMAw7ZEcfEAy9f6DdMpUk4fUJfTCiexAqTBY8suoP7DvFwENERK0Dww7Vi4tahWUTr8b1XQJQZjTj4VV/sIeHiIhaBYadNsQ2Jyc9PV2ek1NfZrMZ5/9OwwtDAzCgvQdKDWZMWvk7Nh0+30S1JSIicgxOUG5DCnOz8MmZYlgqyuDTrgMCQi//mqoB6b9/nIFvYBgCyzNwXYdw/HK6CE+s/h8W3tYb19U8Z5mIiMjpGHbaGH1AMCzlJfUuf2lA8g8Nh8Vixj1RAr5uvthw7AJeWn8ED1wdACEEJElqwtoTERE1HIex6LIunbRcmJuFVbuOwZR5EuO7aAEA//lfDvaeN8Jc5U7pvNAgERG1BAw71Cj6gGCo1RLy/j6JwaEaAAIn8y3YdtqAvFITAF5okIiIWgaGHboi+oBgXNMzCgP1xdBIAtllAo99ewoH0/MBWC80yIsNEhGRMzHskEME60wYGmyEXishp8SEuz5MwObkfGdXi4iIiGGHHMfTBRgdpcWQSE8YTBa8sesc9p03wsQ7phMRkRMx7JBDadUSXhkVjhmxXQAAKRfM2HTKgBO55U6uGRERtVUMO+RwKknCjNiuWDwuAq4aoMAg8MS3qfjkl1QIwV4eIiJqXrzODjWZAe09cXNHHRLOGXG22IKFPxzFruQsxA3yRZCnCwAgIiICarXayTUlIiIlY9ihJuWqkTA83AUB/r5YsTcLe1Jy8OuJbFwV5IJgcw6emQBERUU5u5pERKRgHMaiJidJEm7v5Ycfn7oOvYLdYBYS9mea8GuRL35PK+bQFhERNSmGHWpytvtrqUtyMOdqNQaGaKDTqJBfIfDspjTcuSIBGw+fh8lscXZViYhIgTiMRU3Odn+t9lFGpB0/hNB2HXD1kO7Yc+QMTuRbkHjmAhLPXICfuwbXRnrhtgFR6B/hg6KcDHkbnNtDRESNxbBDDmXrxQGA9PR0CFiHqPQBwfAPDUd+9nkAgKuLGlcFqTCtvyu2pxmx6WQ58kpN2HDsAjYcuwAAcFeZ4e/hAldzKSZeW4jr+3ZCpJ87NGp2SBIRUf0x7JBDXdqL49OuQ51lv628o/rIdh2gCeiAP89kosyixt8FBpRa1CgtsgBwxfytfwNb/4aLWkIHXx06+mrRO8QNfULc0U7vAo3G+lGOiIgAALt7cbFXiIiobWPYIYe7tBfncmUt5SVQSUCkvwc8DS6YfH1HFJab8e7OUzDovHE6/SzyKySUCA2MZhVScsqRklOOLSmFAAAtzAjVu8DLUoxZY8oR6avDknUJ8AkMQX52BmaP5xlfRERtGcMOtShVh8FCPFUICPWFd34KVIEeMJcVoEzjAfegSBw/cQp5Jh3yDRIMUONMoQWAOx5Zewp6VzW8XfzQwegJT88gmHm7CiKiNo1hh1oU2zCYpaIMPu06ICD04jpJst5/KyrQEzhfDpWrGsayEhRInrB4BeN0Zj4uVAgUlptRWA6kF+UAAHavSkaPsAx0DHCHn8aI9noXhPto0d7HFWqVxGEuIiKFY9ihFsc2tFUfagkIcBWIivJHR20RYjvocLrAgu9PViDfrMPZC6UoNV4846sqFQB3tQndA/5C1xA9wn206ODnhnAfLXp0jmIAIiJSCIYdUozC3Cx8VtkrFNGuA4Z17Yjsc2m4sVc7lLl4I/Gvv7EzJRcXSg0oMathFhKKzRrszzRhf2ae3bZ8dH8hyt8NPdv7o3OwFzoFeqJTkCeCvXTy2WBms1meCM3eISKilksxYWfZsmVYvHgxMjIy0K9fP7z33nsYNGiQs6tFzezSXiGVJKGTvyuiosLQW18BU1kR8rNzIek8EBDRFX/+eRilkhuKyk0oEVqUCReUGMzIrxA4cK4UB86V2m1fAqB3VcPHVQ03lRkFJaXQSsANvbIRERoIT1cNvHQaeLpq4KZRoSA3Cy4qAVeNCh46DTSSgFolQa1WywGpvqGparm6ylYtZzabAaDe+6ttH7blVbdnWw/w7DciatkUEXb++9//YtasWVixYgUGDx6MpUuXYtSoUUhOTkZQUJCzq0ctkCQBejcXBGlNULlaYHEpg8pVhaiu3XA86XeUqj1h1rijQ5AeuUYNjp/LR9qFcghIKCg3o6DcXLklHQBgVWI2gOz67RsCGknA1+Mv6N1doYUZ2RcKoVEJXB11Dn4+3lCrJKgkCSrJ+hqTRSD3QgGSUjOg1rmhorwcHUPT4aJzhdFsgdEkYDBbYDRbUFJWgezCUkClhtFoggUSIKmgUR+DzkUDtSRQVm6AShII9j4JLw836NQqaDUqGA3lSM24AI1WB5OhAlHBaXBzd0NpaSlSM/JhMhoAlQqubh4wGSrQo3069K5qHD+dAb3eE5bSAvxjaDH6d4tCqLcrPHSK+BVDRK2cIn4Tvf3225gyZQoefvhhAMCKFSvw448/4pNPPsFzzz3n5NqRM9V2kcO6uKgAX52ApwcwOsyA8PBgpKeXYlOqQE5WFowuHvAL7YDTJ5JhULtCqLUIcldD0rqh2GBGicGCMqMFhWUGFBsEjGYBazSyJhcBCUYhIavYhKziYtteAQA/Hs8HkF9H7XRAuQWAFudPFwEoqqWcGtadVn7FBWAyCZSbjJXrrUNxp/IqgLyKS98BwGAB4IKs9GIAVevoAlgAlFjXZ6fa9u8KlJkAeCDpxzTgR2tPj5dOgxBvV4R4uyLAUwcvVw08K3u+vHQaaNQqqCUJKpU12NlCnlolwSIEhIDd/y3yc9sy23IBk9n6f7NFwGQRMJktuHAhH+bKZd7e3nBRqyBVbl8loXK/EtSSBKly/2qVZC0jXVJGhcoAejGIClysnwDk+7zJy6ost/5ctWxlOVifVF1mEYDZYoHJImA2CxjNZuRdKIC5cvveej3UahUkWOstwXoPOuvP1rpJknUZYK33xXLW57C9BqgsX/O2rOWtP1f+d3F7VcrYtmXbvlTDp/LSb9+lt8Wr6ftZvUwN273M/fVqWn3pvmosc5l917TfakvquW+T5eJnt+qxN1msx/9CfgEkAN7e3lCrVHbHzPZ5rPYcF59XXQ7bZ7uOcrbvkvX/gFkIWCxVl1m/Y3kXLsAsAC8vPQQqX1dZ1mS2IL+wCBaLgLuHJ2aP6oYAT131N6QZtPqwYzAYkJiYiPj4eHmZSqVCbGwsEhISanxNRUUFKiou/oIvKCgAABQWFjq0bkVFRchKP4WKshLknEuHSusKi6EcKq0rdBp1g5c15jUtYdvO3F/6X39i8d5CBIdF4vzpFHgHt6/3drIM5bW+Vu2mgjbvFFwrX5tTYi1XcjoFKq0WHcMicf5MCroGt4fFWA5J64qQiI5ITzkOoXWD1s0Dw7oHw8s3AGnns/DLiTwYLRK6hnnDw0OPgsJCJKVmwFheDkmthqeXHsUXcuDupYePnz8Ks8/DUF4GYTFBrVLBx88fBVnnoVKrAbMBnr4BCA5th+y0k1BrtYChHKWlxfALbo+sc2nw8A+BTueGmM6B0Pv6IzM7BzsOpaKsrAzuej/4BgSgtKgI0ZG+8PX1xYULF5B4Jg8VJUWQNFr4BgShtKgAvdr7otgocOhsMaB1Q0FhEcotKphUWpihRkEFUFBYiOR0h361GqlFVILoCrXez/G9VwVAa/F06DZtf7cvF3hbfdjJycmB2WxGcHCw3fLg4GAcP368xtcsWrQICxYsqLY8PDy8SepIVJM1NSzb2sx1+OYy6zddZv1GR1WEiBSv/9Km23ZRURG8vb1rXd/qw05jxMfHY9asWfJzi8WCvLw8+Pv7y92+jlBYWIjw8HCkp6dDr9c7bLstFdurbG2tvUDbazPbq2xKbK8QAkVFRQgLC6uzXKsPOwEBAVCr1cjMzLRbnpmZiZCQkBpfo9PpoNPZjxv6+Pg0VRWh1+sV88GqD7ZX2dpae4G212a2V9mU1t66enRsWv3to7VaLaKjo7F9+3Z5mcViwfbt2xETE+PEmhEREVFL0Op7dgBg1qxZmDRpEgYMGIBBgwZh6dKlKCkpkc/OIiIiorZLEWHnnnvuQXZ2Nl5++WVkZGSgf//+2Lx5c7VJy81Np9Nh3rx51YbMlIrtVba21l6g7bWZ7VW2ttbeqiRxufO1iIiIiFqxVj9nh4iIiKguDDtERESkaAw7REREpGgMO0RERKRoDDtNZNmyZejQoQNcXV0xePBg/P77786uUr3s2bMHt9xyC8LCwiBJEtavX2+3XgiBl19+GaGhoXBzc0NsbCxSUlLsyuTl5WHixInQ6/Xw8fHB5MmTUSzf8NLq0KFDuP766+Hq6orw8HC8+eabTd20Gi1atAgDBw6El5cXgoKCcPvttyM5OdmuTHl5OeLi4uDv7w9PT09MmDCh2kUs09LSMG7cOLi7uyMoKAhz5syByWSyK7Nr1y5cffXV0Ol06Ny5M1atWtXUzatm+fLl6Nu3r3xRsZiYGGzadPGmEEpqa01ef/11SJKEGTNmyMuU1Ob58+dX3gzy4qN79+7yeiW11ebs2bP4xz/+AX9/f7i5uaFPnz7Yv3+/vF5pv7M6dOhQ7RhLkoS4uDgAyjzGDiHI4dasWSO0Wq345JNPxJ9//immTJkifHx8RGZmprOrdlkbN24UL7zwgvj2228FALFu3Tq79a+//rrw9vYW69evFwcPHhS33nqriIqKEmVlZXKZ0aNHi379+om9e/eKn3/+WXTu3Fncd9998vqCggIRHBwsJk6cKI4cOSK+/PJL4ebmJj788MPmaqZs1KhRYuXKleLIkSMiKSlJjB07VkRERIji4mK5zOOPPy7Cw8PF9u3bxf79+8U111wjhgwZIq83mUyid+/eIjY2Vhw4cEBs3LhRBAQEiPj4eLnMqVOnhLu7u5g1a5Y4evSoeO+994RarRabN29u1vZ+//334scffxR//fWXSE5OFs8//7xwcXERR44cUVxbL/X777+LDh06iL59+4qnn35aXq6kNs+bN0/06tVLnD9/Xn5kZ2crsq1CCJGXlyciIyPFQw89JPbt2ydOnToltmzZIk6cOCGXUdrvrKysLLvju3XrVgFA7Ny5UwihvGPsKAw7TWDQoEEiLi5Ofm42m0VYWJhYtGiRE2vVcJeGHYvFIkJCQsTixYvlZfn5+UKn04kvv/xSCCHE0aNHBQDxxx9/yGU2bdokJEkSZ8+eFUII8cEHHwhfX19RUVEhl3n22WdFt27dmrhFl5eVlSUAiN27dwshrO1zcXERa9eulcscO3ZMABAJCQlCCGtAVKlUIiMjQy6zfPlyodfr5TbOnTtX9OrVy25f99xzjxg1alRTN+myfH19xb///W9Ft7WoqEh06dJFbN26VQwbNkwOO0pr87x580S/fv1qXKe0tgph/b1x3XXX1bq+LfzOevrpp0WnTp2ExWJR5DF2FA5jOZjBYEBiYiJiY2PlZSqVCrGxsUhISHBiza5camoqMjIy7Nrm7e2NwYMHy21LSEiAj48PBgwYIJeJjY2FSqXCvn375DJDhw6FVquVy4waNQrJycm4cOFCM7WmZgUFBQAAPz8/AEBiYiKMRqNdm7t3746IiAi7Nvfp08fuIpajRo1CYWEh/vzzT7lM1W3YyjjzM2E2m7FmzRqUlJQgJiZG0W2Ni4vDuHHjqtVLiW1OSUlBWFgYOnbsiIkTJyItLQ2AMtv6/fffY8CAAbjrrrsQFBSEq666Cv/3f/8nr1f67yyDwYDPP/8cjzzyCCRJUuQxdhSGHQfLycmB2WyudvXm4OBgZGRkOKlWjmGrf11ty8jIQFBQkN16jUYDPz8/uzI1baPqPpzBYrFgxowZuPbaa9G7d2+5PlqtttqNYi9t8+XaU1uZwsJClJWVNUVzanX48GF4enpCp9Ph8ccfx7p169CzZ09FthUA1qxZg//9739YtGhRtXVKa/PgwYOxatUqbN68GcuXL0dqaiquv/56FBUVKa6tAHDq1CksX74cXbp0wZYtWzBt2jQ89dRT+PTTT+3qrNTfWevXr0d+fj4eeughuS5KO8aOoojbRRA5QlxcHI4cOYJffvnF2VVpUt26dUNSUhIKCgrw9ddfY9KkSdi9e7ezq9Uk0tPT8fTTT2Pr1q1wdXV1dnWa3JgxY+Sf+/bti8GDByMyMhJfffUV3NzcnFizpmGxWDBgwAC89tprAICrrroKR44cwYoVKzBp0iQn167pffzxxxgzZgzCwsKcXZUWjz07DhYQEAC1Wl1t9ntmZiZCQkKcVCvHsNW/rraFhIQgKyvLbr3JZEJeXp5dmZq2UXUfzW369On44YcfsHPnTrRv315eHhISAoPBgPz8fLvyl7b5cu2prYxer2/2P0JarRadO3dGdHQ0Fi1ahH79+uGdd95RZFsTExORlZWFq6++GhqNBhqNBrt378a7774LjUaD4OBgxbW5Kh8fH3Tt2hUnTpxQ5PENDQ1Fz5497Zb16NFDHrpT8u+sM2fOYNu2bXj00UflZUo8xo7CsONgWq0W0dHR2L59u7zMYrFg+/btiImJcWLNrlxUVBRCQkLs2lZYWIh9+/bJbYuJiUF+fj4SExPlMjt27IDFYsHgwYPlMnv27IHRaJTLbN26Fd26dYOvr28ztcZKCIHp06dj3bp12LFjB6KiouzWR0dHw8XFxa7NycnJSEtLs2vz4cOH7X5hbt26FXq9Xv5FHBMTY7cNW5mW8JmwWCyoqKhQZFtHjBiBw4cPIykpSX4MGDAAEydOlH9WWpurKi4uxsmTJxEaGqrI43vttddWu1TEX3/9hcjISADK/J1ls3LlSgQFBWHcuHHyMiUeY4dx9gxpJVqzZo3Q6XRi1apV4ujRo2Lq1KnCx8fHbvZ7S1VUVCQOHDggDhw4IACIt99+Wxw4cECcOXNGCGE9jdPHx0d899134tChQ+K2226r8TTOq666Suzbt0/88ssvokuXLnancebn54vg4GDxwAMPiCNHjog1a9YId3d3p5zGOW3aNOHt7S127dpldzpnaWmpXObxxx8XERERYseOHWL//v0iJiZGxMTEyOttp3KOHDlSJCUlic2bN4vAwMAaT+WcM2eOOHbsmFi2bJlTTuV87rnnxO7du0Vqaqo4dOiQeO6554QkSeKnn35SXFtrU/VsLCGU1ebZs2eLXbt2idTUVPHrr7+K2NhYERAQILKyshTXViGslxPQaDTin//8p0hJSRFffPGFcHd3F59//rlcRmm/s4SwnuEbEREhnn322WrrlHaMHYVhp4m89957IiIiQmi1WjFo0CCxd+9eZ1epXnbu3CkAVHtMmjRJCGE9lfOll14SwcHBQqfTiREjRojk5GS7beTm5or77rtPeHp6Cr1eLx5++GFRVFRkV+bgwYPiuuuuEzqdTrRr1068/vrrzdVEOzW1FYBYuXKlXKasrEw88cQTwtfXV7i7u4s77rhDnD9/3m47p0+fFmPGjBFubm4iICBAzJ49WxiNRrsyO3fuFP379xdarVZ07NjRbh/N5ZFHHhGRkZFCq9WKwMBAMWLECDnoCKGsttbm0rCjpDbfc889IjQ0VGi1WtGuXTtxzz332F1zRklttdmwYYPo3bu30Ol0onv37uKjjz6yW6+031lCCLFlyxYBoFo7hFDmMXYESQghnNKlRERERNQMOGeHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiFq0hx56CLfffnu15bt27YIkSdXu8ExEdCmGHSIiIlI0hh0iUoT8/Hw8+uijCAwMhF6vx4033oiDBw/K6+fPn4/+/fvbvebS3qHc3Fzcd999aNeuHdzd3dGnTx98+eWXzdgKImoKDDtEpAh33XUXsrKysGnTJiQmJuLqq6/GiBEjkJeXV+9tlJeXIzo6Gj/++COOHDmCqVOn4oEHHsDvv//ehDUnoqamcXYFiIiu1C+//ILff/8dWVlZ0Ol0AIC33noL69evx9dff42pU6fWazvt2rXDM888Iz9/8sknsWXLFnz11VcYNGhQk9SdiJoeww4RtXoHDx5EcXEx/P397ZaXlZXh5MmT8vPDhw/D09NTfm42m+3Km81mvPbaa/jqq69w9uxZGAwGVFRUwN3dvWkbQERNimGHiFq94uJihIaGYteuXdXW+fj4yD9369YN33//vfx83759+Mc//iE/X7x4Md555x0sXboUffr0gYeHB2bMmAGDwdCU1SeiJsawQ0St3tVXX42MjAxoNBp06NCh1nJarRadO3eWn//9999263/99VfcdtttcgCyWCz466+/0LNnzyapNxE1D4YdImrxCgoKkJSUZLfsxIkTAKxDU9dccw1iYmJw++23480330TXrl1x7tw5/Pjjj7jjjjswYMCAeu2nS5cu+Prrr/Hbb7/B19cXb7/9NjIzMxl2iFo5hh0iavF27dqFq666qsZ1Q4cOxc6dO7Fx40a88MILePjhh5GdnY2QkBAMHToUwcHB9d7Piy++iFOnTmHUqFFwd3fH1KlTcfvtt6OgoMBRTSEiJ5CEEMLZlSAiaqwOHTpg1apVGD58uLOrQkQtFK+zQ0StWs+ePe3OsCIiuhR7doiIiEjR2LNDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESK9v+xvH0C11nhNAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Средняя цена в обучающей выборке: 373.7302916666667\n", - "Средняя цена в контрольной выборке: 372.217\n", - "Средняя цена в тестовой выборке: 372.217\n" - ] - } - ], - "source": [ - "# Оценка сбалансированности целевой переменной (цена)\n", - "# Визуализация распределения цены в выборках (гистограмма)\n", - "def plot_price_distribution(data, title):\n", - " sns.histplot(data['price'], kde=True)\n", - " plt.title(title)\n", - " plt.xlabel('Цена')\n", - " plt.ylabel('Частота')\n", - " plt.show()\n", + "# Разбиение на обучающую (60%), валидационную (20%) и тестовую (20%) выборки\n", + "X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4, random_state=42)\n", + "X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)\n", "\n", - "plot_price_distribution(train_data, 'Распределение цены в обучающей выборке')\n", - "plot_price_distribution(val_data, 'Распределение цены в контрольной выборке')\n", - "plot_price_distribution(test_data, 'Распределение цены в тестовой выборке')\n", + "# Проверка размеров выборок\n", + "print(f\"Размеры выборок:\")\n", + "print(f\"Обучающая выборка: {X_train.shape[0]} записей\")\n", + "print(f\"Валидационная выборка: {X_val.shape[0]} записей\")\n", + "print(f\"Тестовая выборка: {X_test.shape[0]} записей\")\n", "\n", - "# Оценка сбалансированности данных по целевой переменной (price)\n", - "print(\"Средняя цена в обучающей выборке: \", train_data['price'].mean())\n", - "print(\"Средняя цена в контрольной выборке: \", val_data['price'].mean())\n", - "print(\"Средняя цена в тестовой выборке: \", test_data['price'].mean())" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS7UlEQVR4nO3deVhO+f8/8Odd2leVNpLsW1lCsqQhJdkNg0b2NUwYfPqMsY4x9l2YQZbMYAxmLJEtW7bILsu3RmNahIpQqffvD7/Ox+0uKuWO83xc131dzjnv+5zXWZz72Tnvc98KIYQAERERkYxpqLsAIiIiInVjICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIqIiSU9PR1xcHJ48eaLuUqiYPX36FLGxsUhPT1d3KR8NAxERfbKePXuGxYsXS8MpKSlYsWKF+gqSge3bt6NNmzYwMjKCoaEhKlasiLlz56q7rE9CaT5ehRBYs2YNmjZtCn19fRgbG8PBwQGbN29Wd2kfjYI/3VE8goODMWDAAGlYR0cHFStWhKenJ77//ntYWVmpsTqiz1N2djZMTEywevVquLm5YcGCBbh16xZCQ0PVXdpn6T//+Q/mzJmDzp07o1evXrCwsIBCoUD16tVhZ2en7vJKvdJ8vPbu3Rtbt25Fv3790KFDB5iYmEChUMDJyQnlypVTd3kfRRl1F/C5mTFjBhwcHPDy5UucPHkSQUFB2LdvH65duwZ9fX11l0f0WdHU1MT06dPh5+eHnJwcGBsbY+/eveou67MUHh6OOXPmYPbs2fjPf/6j7nI+SaX1eN24cSO2bt2KzZs3o0+fPuouR214haiY5F4hOn/+PBo1aiSNHz9+PBYuXIgtW7agd+/eaqyQ6PP1zz//IC4uDrVq1YKpqam6y/ksdezYEY8fP8apU6fUXconr7Qdr46OjnByckJISIi6S1Er9iEqYa1btwYAxMTEAAAeP36Mb7/9Fo6OjjA0NISxsTG8vb1x+fJllfe+fPkS06ZNQ/Xq1aGrqwsbGxt069YN9+7dAwDExsZCoVDk+3J3d5fmdezYMSgUCmzduhX//e9/YW1tDQMDA3Tq1AlxcXEqyz579izatWsHExMT6Ovro1WrVvmeCN3d3fNc/rRp01Tabt68Gc7OztDT04OZmRl69eqV5/LftW5vysnJweLFi1GnTh3o6urCysoKw4YNU+nkWalSJXTo0EFlOaNGjVKZZ161z5s3T2WbAkBGRgamTp2KqlWrQkdHB3Z2dpg4cSIyMjLy3FZvcnd3V5nfrFmzoKGhgS1btkjjTpw4gR49eqBixYrSMsaOHYsXL15Ibfr37//OY0GhUCA2NlZqv3//frRs2RIGBgYwMjKCj48Prl+/rlRLfvOsWrWqUruVK1eiTp060NHRga2tLfz9/ZGSkqKyrnXr1kVkZCSaNWsGPT09ODg4YNWqVUrtco/TY8eOKY338fFR2S/Tpk2T9l2FChXg6uqKMmXKwNraOs95vC33/cnJyUrjL1y4AIVCgeDgYKXxJXWsjRo1Kt8ag4ODVfZdXt7eV2XLloW7uztOnDjxzvflOnLkiHQ8mJqaonPnzrh586ZSmzNnzqBu3bro1asXzMzMoKenh8aNG2PXrl1Sm2fPnsHAwADffPONyjL++ecfaGpqYvbs2VLNlSpVUmn39n7++++/MXLkSNSoUQN6enowNzdHjx49VLZJXsfO+fPn0bZtWxgZGcHAwCDPbZK7jS9cuCCNS05OzvM80KFDhzxrLsj5sriO19yXkZERmjRporT9gf/9X8tP7rk19/hOT0/HtWvXYGdnBx8fHxgbG+e7rQDg//7v/9CjRw+YmZlBX18fTZs2VbnKVZjPm4KeB4HCfS4VBW+ZlbDc8GJubg7g9cG0a9cu9OjRAw4ODkhMTMTq1avRqlUr3LhxA7a2tgBe32vu0KEDDh8+jF69euGbb77B06dPERYWhmvXrqFKlSrSMnr37o327dsrLTcwMDDPembNmgWFQoFJkyYhKSkJixcvhoeHB6KioqCnpwfg9cnR29sbzs7OmDp1KjQ0NLB+/Xq0bt0aJ06cQJMmTVTmW6FCBelE9+zZM4wYMSLPZX///ffo2bMnBg8ejIcPH2LZsmVwc3PDpUuX8vxLaejQoWjZsiUA4I8//sDOnTuVpg8bNky6OjdmzBjExMRg+fLluHTpEk6dOgUtLa08t0NhpKSkSOv2ppycHHTq1AknT57E0KFDUatWLVy9ehWLFi3C7du3VU5U77N+/XpMnjwZCxYsULpsvX37djx//hwjRoyAubk5zp07h2XLluGff/7B9u3bAbzeDh4eHtJ7+vbti65du6Jbt27SuNx+AJs2bUK/fv3g5eWFOXPm4Pnz5wgKCkKLFi1w6dIlpRO+jo4OfvnlF6U6jYyMpH9PmzYN06dPh4eHB0aMGIHo6GgEBQXh/PnzKtv/yZMnaN++PXr27InevXtj27ZtGDFiBLS1tTFw4MB8t8vx48exb9++Am3DBQsWIDExsUBtC+tjHGsfwsLCAosWLQLwOnwsWbIE7du3R1xc3DuvQhw6dAje3t6oXLkypk2bhhcvXmDZsmVo3rw5Ll68KB0Pjx49wpo1a2BoaIgxY8agXLly2Lx5M7p164aQkBD07t0bhoaG6Nq1K7Zu3YqFCxdCU1NTWs6vv/4KIQR8fX0LtV7nz5/H6dOn0atXL1SoUAGxsbEICgqCu7s7bty4kW9XhLt378Ld3R36+vqYMGEC9PX18fPPP8PDwwNhYWFwc3MrVB35Kcr5MldRjtdNmzYBeB3aVq5ciR49euDatWuoUaNGkep/9OgRAGDOnDmwtrbGhAkToKurm+e2SkxMRLNmzfD8+XOMGTMG5ubm2LBhAzp16oTff/8dXbt2VZp3QT5v3pbfefBDtnOBCSoW69evFwDEoUOHxMOHD0VcXJz47bffhLm5udDT0xP//POPEEKIly9fiuzsbKX3xsTECB0dHTFjxgxp3Lp16wQAsXDhQpVl5eTkSO8DIObNm6fSpk6dOqJVq1bS8NGjRwUAUb58eZGWliaN37ZtmwAglixZIs27WrVqwsvLS1qOEEI8f/5cODg4iLZt26osq1mzZqJu3brS8MOHDwUAMXXqVGlcbGys0NTUFLNmzVJ679WrV0WZMmVUxt+5c0cAEBs2bJDGTZ06Vbx5yJ44cUIAECEhIUrvDQ0NVRlvb28vfHx8VGr39/cXb/83eLv2iRMnCktLS+Hs7Ky0TTdt2iQ0NDTEiRMnlN6/atUqAUCcOnVKZXlvatWqlTS/vXv3ijJlyojx48ertHv+/LnKuNmzZwuFQiH+/vvvPOf99jrkevr0qTA1NRVDhgxRGp+QkCBMTEyUxvfr108YGBjkW39SUpLQ1tYWnp6eSsf08uXLBQCxbt06pXUFIBYsWCCNy8jIEPXr1xeWlpYiMzNTCPG/4/To0aNSOxcXF+Ht7a2yTm8fD0lJScLIyEhq++Y88pL7/ocPHyqNP3/+vAAg1q9fL40ryWPN398/3xpzzysxMTHvXJd+/foJe3t7pXFr1qwRAMS5c+fe+d7cffDo0SNp3OXLl4WGhobw8/NTqhWAOHbsmDTu+fPnolatWsLa2lrahwcOHBAAxP79+5WW4+TkpPT/Z8CAAaJixYoq9by9n/M6/iMiIgQAsXHjRmnc28dO9+7dhaamprh27ZrUJjk5WZibmwtnZ2dpXO42Pn/+vDQur3OYEEL4+PgobefCnC+L63h908GDBwUAsW3bNmlcq1atRJ06dfKdT+7nRu7xnTusra0tbt++rbQN3t5WAQEBAoDSOe/p06fCwcFBVKpUSToPFPTzJrfe950Hi/K5VBS8ZVbMPDw8UK5cOdjZ2aFXr14wNDTEzp07Ub58eQCv/+LW0Hi92bOzs/Ho0SMYGhqiRo0auHjxojSfHTt2wMLCAqNHj1ZZxtuX3QvDz89P6S/8L7/8EjY2NtJf4FFRUbhz5w769OmDR48eITk5GcnJyUhPT0ebNm1w/Phx5OTkKM3z5cuX0NXVfedy//jjD+Tk5KBnz57SPJOTk2FtbY1q1arh6NGjSu0zMzMBvN5e+dm+fTtMTEzQtm1bpXk6OzvD0NBQZZ5ZWVlK7ZKTk/Hy5ct31v3gwQMsW7YM33//PQwNDVWWX6tWLdSsWVNpnrm3Sd9efn7OnTuHnj17onv37pg3b57K9Df/kkpPT0dycjKaNWsGIQQuXbpUoGXkCgsLQ0pKCnr37q1Us6amJlxcXApcM/D6ykJmZiYCAgKkYxoAhgwZkmdn0TJlymDYsGHSsLa2NoYNG4akpCRERkbmuYw//vgD58+fx08//fTeembOnAkTExOMGTOmwOtQUCV5rL18+RLJycl49OiRyv+twsjJyZGWFRUVhY0bN8LGxga1atXK9z3x8fGIiopC//79YWZmJo13cnJC27ZtVa7MNW7cGK1atZKG9fT0MHLkSCQkJEjnLw8PD9ja2ir1R7l27RquXLmCr7/+WhpnaWmJpKQk6f96ft48/rOysvDo0SNUrVoVpqamSufMXKmpqUhKSkJYWBi8vLxQp04daZq5uTn69++PyMjIYrmSWJTzZa6iHq+5y7h58yZWrVoFAwMDNG3aVKlNdna21O592zdX586dUa1aNWnYwsJCZVvt27cPTZo0QYsWLaR2hoaGGDp0KGJjY3Hjxg2leb7v8+ZN7zoPfsh2LgzeMitmK1asQPXq1VGmTBlYWVmhRo0aSh8WOTk5WLJkCVauXImYmBhkZ2dL03JvqwGvb7XVqFEDZcoU7y5684AHIPUJyb0ff+fOHQBAv3798p1HamoqypYtKw0nJyerzPdtd+7cgRAi33Zv327I7YPydgh5e56pqamwtLTMc3pSUpLS8MGDBwv9+OjUqVNha2uLYcOG4ffff1dZ/s2bN/Od59vLz8uDBw/g4+OD9PR0PHr0KM+we//+fUyZMgV//vmnSn+V1NTUQqzN//Zvbmh7m7GxcYHn9ffffwOAyqV6bW1tVK5cWZqey9bWFgYGBkrjqlevDuB1v4a8Tur//e9/4evrCycnp3fWEhMTg9WrVyMoKOi94bwoSvJYW7t2LdauXQvg9bZzcXHBwoULlR7OKIi4uDilZdrY2GDHjh3v/D+U3z4EgFq1auHAgQNIT0+X9lvNmjXzbAe83ocuLi7Q0NCAr68vgoKC8Pz5c+jr6yMkJAS6urro0aOH9L5mzZphzpw5mDx5MsaMGZPvfnvx4gVmz56N9evX48GDBxBvPAeU1/HfpUsX6d/5rVduvR/6dShFOV8CH3a8vrmPjY2NERISovKVB7du3ZLaaWhooGrVqpg6dWqeT5DlnnPet2+trKzw999/w8XFJd92f//9t1L/pfd93uR633mwqNu5sBiIilmTJk3eeSL78ccf8f3332PgwIGYOXMmzMzMoKGhgYCAgGJJuB8qt4Z58+ahfv36ebZ58wSbmZmJ+Ph4tG3b9r3zVSgU2L9/v1K/grzmCQAJCQkAAGtr63fO09LSMt8nI97+QHJxccEPP/ygNG758uXYvXt3nu+/efMmgoODsXnz5jz7h+Tk5MDR0RELFy7M8/0F+V6Wu3fvomHDhli0aBH69u2LDRs2KP2nz87ORtu2bfH48WNMmjQJNWvWhIGBAR48eID+/fsX+pjJbb9p06Y8t21xB/APsXbtWsTGxuLAgQPvbfvdd9+hWrVq6NevX4E7EhdGSR5rnTt3xqhRoyCEQExMDGbMmIEOHTpIHwIFZWVlJX2JXmpqKtatW4d27drh5MmTcHR0LNS88pJfn4+8+Pn5Yd68edi1axd69+6NLVu2SN9tk6tTp04YOHAg5s2bl+eV0VyjR4/G+vXrERAQAFdXV+n7cXr16pXn8T9//nxUq1YNnTt3LtwKFkFhz5e5PuR4DQsLA/D6avGOHTvQs2dP7NmzR+kcXKlSJfz8888AXvcRWrp0Kfr27YvKlSur/L8vzH4tKe87DxZ1OxdW6Tn7ycTvv/+OL774QvqLMFdKSgosLCyk4SpVquDs2bPIysoq1s6ab59khRC4e/eu9Bd4bmdtY2NjpU66+bl8+TKysrLe+9dslSpVIISAg4ODdFXgXW7cuAGFQvHOjoJVqlTBoUOH0Lx58wL9p7awsFBZp3d1fA4MDET9+vXx1Vdf5bv8y5cvo02bNkW+jZl7+djKygq7d+/G+PHj0b59e+kD9urVq7h9+zY2bNgAPz8/6X25J8XCyt2/lpaWBdq/72Jvbw8AiI6ORuXKlaXxmZmZiImJUZn/v//+q3S1AQBu374NACpP7jx//hzTp0/HyJEjpeXk59KlS/jtt9+wa9euPMN2cSjJY61ChQpKbQ0NDeHr61vo26G6urpK8+nUqRPMzMywfPlyrF69Os/3vLkP33br1i1YWFhI+8vBwSHfdoDyPqxbty4aNGiAkJAQVKhQAffv38eyZctU3rt27VpMmTIF9+7dkz703v7j6vfff0e/fv2wYMECadzLly9VnmTM5ezsjFatWsHQ0LDA9RZVYc+XwIcfr28up3Pnzjh79izmz5+vtN0MDAyU2rVs2RLly5fHwYMHlc4jwOtjtaDbyt7e/p3t3v6/+r7Pm1zvOw8WZTsXBfsQfWSamppKl3yB1/0THjx4oDSue/fuSE5OxvLly1Xm8fb7C2Pjxo14+vSpNPz7778jPj4e3t7eAF6fTKpUqYL58+fj2bNnKu9/+PChSu2ampp5Pmb8pm7duklfSvZ2/UII6UkHAHj16hV27NiBJk2avDP19+zZE9nZ2Zg5c6bKtFevXuV7wiyIiIgI7N69Gz/99FO+Yadnz5548OCB9JfYm168eFGg3wCqXr26dNl+2bJlyMnJUXpkOfeE+eY2E0JgyZIlhVqfXF5eXjA2NsaPP/6IrKwslelv79938fDwgLa2NpYuXapU39q1a5GamgofHx+l9q9evVL6YM7MzMTq1atRrlw5ODs7K7VdsmQJ0tPT8d133723jv/85z9o3rw5OnXqVODaC6skj7W35QaDDw13mZmZePXq1Tu/AsLGxgb169fHhg0blNbh2rVrOHjwoNLTq+3bt8e5c+dw+vRpadzLly8RFBQEa2trlX3Yt29fHDx4EIsXL4a5ubl0jnmbvb09WrduDQ8Pjzw/7PI6Zy5btkypu8HbFAoFPD09ceDAAaWvD3j8+DE2bNiARo0aFcuvBxT2fAkU7/GanZ2NzMzM937Nx7uOKQ0NDbRr1w67d++Wvh4GyHtb5R4DERERUrv09HSsWbMGlSpVQu3atZXm/b7Pm1zvOw8WZTsXBa8QfWQdOnTAjBkzMGDAADRr1gxXr15FSEiI0l/YwOtLzhs3bsS4ceNw7tw5tGzZEunp6Th06BBGjhxZ5MvBZmZmaNGiBQYMGIDExEQsXrwYVatWxZAhQwC8/s/xyy+/wNvbG3Xq1MGAAQNQvnx5PHjwAEePHoWxsTH++usvpKenY8WKFVi6dCmqV6+u9B0auQfslStXEBERAVdXV1SpUgU//PADAgMDERsbiy5dusDIyAgxMTHYuXMnhg4dim+//RaHDh3C999/jytXruCvv/5657q0atUKw4YNw+zZsxEVFQVPT09oaWnhzp072L59O5YsWYIvv/yySNvp4MGDaNu27Tv/Gunbty+2bduG4cOH4+jRo2jevDmys7Nx69YtbNu2DQcOHChUPxBra2vMmzcPgwcPxtdff4327dujZs2aqFKlCr799ls8ePAAxsbG2LFjR5F/TNPY2BhBQUHo27cvGjZsiF69eqFcuXK4f/8+9u7di+bNm+cZwvNSrlw5BAYGYvr06WjXrh06deqE6OhorFy5Eo0bN1bqQAu87kM0Z84cxMbGonr16ti6dSuioqKwZs0alaugBw8exKxZs5T61eXn4MGDH/RdJEeOHFHqO5X7V+3Vq1dx9epVODo6luixdv/+fYSGhkq3zGbNmgV7e3s0aNCgULfN0tPTlW6Zbdq0CS9fvlR5FPpt8+bNg7e3N1xdXTFo0CDpsXsTExOl7+GZOHEiQkJC4O3tjTFjxsDCwgKbN2/GjRs3EBISonK7tU+fPpg4cSJ27tyJESNGFPlKd4cOHbBp0yaYmJigdu3aiIiIwKFDh957bMycORMHDhxAq1atMHr0aOmx+5SUFJX+gMDrP4Jyv5MqLS0NwOtbOW/+rMbDhw/x4sULhIaGol27dgU+X77pQ4/X3H2cnp6OXbt2ITY2FgEBAUptnj17JtX9+PFjLF26FFpaWip/pOSaMWMGQkND0aJFC4wcORI6Ojr4+eefkZqaqnRl7j//+Q9+/fVX6RgwMzPDhg0bEBMTgx07dij1lwXe/3mTl7zOg0XZzkVSLM+qUZ6Pbubl5cuXYvz48cLGxkbo6emJ5s2bi4iICKVHD3M9f/5cfPfdd8LBwUFoaWkJa2tr8eWXX4p79+4JIYr22P2vv/4qAgMDhaWlpdDT0xM+Pj55Prp96dIl0a1bN2Fubi50dHSEvb296Nmzpzh8+LDSst/36tevn9J8d+zYIVq0aCEMDAyEgYGBqFmzpvD39xfR0dFCCCFGjx4t3NzcRGhoqEpNeT12KsTrx4udnZ2Fnp6eMDIyEo6OjmLixIni33//ldoU9lFohUIhIiMjlcbntY8yMzPFnDlzRJ06dYSOjo4oW7ascHZ2FtOnTxepqakqy3vf/IQQonXr1qJixYri6dOnQgghbty4ITw8PIShoaGwsLAQQ4YMEZcvX1Z5NPztdcjrsftcR48eFV5eXsLExETo6uqKKlWqiP79+4sLFy5Ibd732H2u5cuXi5o1awotLS1hZWUlRowYIZ48eaKyrnXq1BEXLlwQrq6uQldXV9jb24vly5er1AVA2NjYiPT09HeuU+7x0Llz5zznUdDHmAtz/JbEsZb7UigUwtraWnTr1k3cvHlTCFG4x+7fnJehoaFo2LCh2LRp0zvfl+vQoUOiefPmQk9PTxgbG4uOHTuKGzduqLS7d++e+PLLL6XjpnHjxmLXrl35zrd9+/YCgDh9+nSB6hBCdT8/efJEDBgwQFhYWAhDQ0Ph5eUlbt26Jezt7ZX2T177PTIyUnh6egpDQ0Ohr68v3NzcRHh4uNLycrdxYV9vet/5UojiP1719PRE7dq1xaJFi5QeRc/9iovcl6mpqWjevLn0NQhvP3af6+LFi8LLy0sYGBgIfX194e7urvKVIkL87xgwNTUVurq6okmTJmLPnj15rlNBPm8Keh4UomDb+UPwpztk4tixY/jiiy+wffv2Iv8l+6bY2Fg4ODggJiYm33vx06ZNQ2xsrMo3/pL8uLu7Izk5GdeuXVN3KQXWv39/AODx+wG6du2Kq1ev4u7du+oupdjknvv40Zm/4v68+VjYh4iIiIpdfHw89u7di759+6q7FKICYR8iKpLcJ2He1enZyclJ+ikSok9NcTyqLkcxMTE4deoUfvnlF2hpaSl9GefnQE9PD15eXuoug0oAAxEVSW6Hynd583e0iD4148ePV3cJn6Tw8HAMGDAAFStWxIYNG975XWKfIisrK6WO1vT5YB8iIiIikj32ISIiIiLZYyAiIiIi2WMfogLIycnBv//+CyMjow/6pXkiIiL6eIQQePr0KWxtbVW+OPJtDEQF8O+//xbohzqJiIio9ImLi0OFChXe2YaBqACMjIwAvN6gb37FPxEREZVeaWlpsLOzkz7H34WBqAByb5MZGxszEBEREX1iCtLdhZ2qiYiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj21BqIgoKC4OTkBGNjYxgbG8PV1RX79++Xpr98+RL+/v4wNzeHoaEhunfvjsTERKV53L9/Hz4+PtDX14elpSUmTJiAV69eKbU5duwYGjZsCB0dHVStWhXBwcEfY/WIiIjoE1FGnQuvUKECfvrpJ1SrVg1CCGzYsAGdO3fGpUuXUKdOHYwdOxZ79+7F9u3bYWJiglGjRqFbt244deoUACA7Oxs+Pj6wtrbG6dOnER8fDz8/P2hpaeHHH38EAMTExMDHxwfDhw9HSEgIDh8+jMGDB8PGxgZeXl7qXH36zDhP2KjuEuj/i5znV+LL4P4uPT7G/qbPn0IIIdRdxJvMzMwwb948fPnllyhXrhy2bNmCL7/8EgBw69Yt1KpVCxEREWjatCn279+PDh064N9//4WVlRUAYNWqVZg0aRIePnwIbW1tTJo0CXv37sW1a9ekZfTq1QspKSkIDQ0tUE1paWkwMTFBamoqjI2Ni3+l6bPAD8jSg4FIXhiIKD+F+fxW6xWiN2VnZ2P79u1IT0+Hq6srIiMjkZWVBQ8PD6lNzZo1UbFiRSkQRUREwNHRUQpDAODl5YURI0bg+vXraNCgASIiIpTmkdsmICAg31oyMjKQkZEhDaelpRVpnXjCLD14wiQiondRe6fqq1evwtDQEDo6Ohg+fDh27tyJ2rVrIyEhAdra2jA1NVVqb2VlhYSEBABAQkKCUhjKnZ477V1t0tLS8OLFizxrmj17NkxMTKSXnZ1dcawqERERlVJqD0Q1atRAVFQUzp49ixEjRqBfv364ceOGWmsKDAxEamqq9IqLi1NrPURERFSy1H7LTFtbG1WrVgUAODs74/z581iyZAm++uorZGZmIiUlRekqUWJiIqytrQEA1tbWOHfunNL8cp9Ce7PN20+mJSYmwtjYGHp6ennWpKOjAx0dnWJZPyIiIir91H6F6G05OTnIyMiAs7MztLS0cPjwYWladHQ07t+/D1dXVwCAq6srrl69iqSkJKlNWFgYjI2NUbt2banNm/PIbZM7DyIiIiK1XiEKDAyEt7c3KlasiKdPn2LLli04duwYDhw4ABMTEwwaNAjjxo2DmZkZjI2NMXr0aLi6uqJp06YAAE9PT9SuXRt9+/bF3LlzkZCQgMmTJ8Pf31+6wjN8+HAsX74cEydOxMCBA3HkyBFs27YNe/fuVeeqExERUSmi1kCUlJQEPz8/xMfHw8TEBE5OTjhw4ADatm0LAFi0aBE0NDTQvXt3ZGRkwMvLCytXrpTer6mpiT179mDEiBFwdXWFgYEB+vXrhxkzZkhtHBwcsHfvXowdOxZLlixBhQoV8Msvv/A7iIiIiEii1kC0du3ad07X1dXFihUrsGLFinzb2NvbY9++fe+cj7u7Oy5dulSkGomIiOjzp/ZO1URERKUdv1eu9Cip75UrdZ2qiYiIiD42BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9tQai2bNno3HjxjAyMoKlpSW6dOmC6OhopTbu7u5QKBRKr+HDhyu1uX//Pnx8fKCvrw9LS0tMmDABr169Umpz7NgxNGzYEDo6OqhatSqCg4NLevWIiIjoE6HWQBQeHg5/f3+cOXMGYWFhyMrKgqenJ9LT05XaDRkyBPHx8dJr7ty50rTs7Gz4+PggMzMTp0+fxoYNGxAcHIwpU6ZIbWJiYuDj44MvvvgCUVFRCAgIwODBg3HgwIGPtq5ERERUepVR58JDQ0OVhoODg2FpaYnIyEi4ublJ4/X19WFtbZ3nPA4ePIgbN27g0KFDsLKyQv369TFz5kxMmjQJ06ZNg7a2NlatWgUHBwcsWLAAAFCrVi2cPHkSixYtgpeXV8mtIBEREX0SSlUfotTUVACAmZmZ0viQkBBYWFigbt26CAwMxPPnz6VpERERcHR0hJWVlTTOy8sLaWlpuH79utTGw8NDaZ5eXl6IiIjIs46MjAykpaUpvYiIiOjzpdYrRG/KyclBQEAAmjdvjrp160rj+/TpA3t7e9ja2uLKlSuYNGkSoqOj8ccffwAAEhISlMIQAGk4ISHhnW3S0tLw4sUL6OnpKU2bPXs2pk+fXuzrSERERKVTqQlE/v7+uHbtGk6ePKk0fujQodK/HR0dYWNjgzZt2uDevXuoUqVKidQSGBiIcePGScNpaWmws7MrkWURERGR+pWKW2ajRo3Cnj17cPToUVSoUOGdbV1cXAAAd+/eBQBYW1sjMTFRqU3ucG6/o/zaGBsbq1wdAgAdHR0YGxsrvYiIiOjzpdZAJITAqFGjsHPnThw5cgQODg7vfU9UVBQAwMbGBgDg6uqKq1evIikpSWoTFhYGY2Nj1K5dW2pz+PBhpfmEhYXB1dW1mNaEiIiIPmVqDUT+/v7YvHkztmzZAiMjIyQkJCAhIQEvXrwAANy7dw8zZ85EZGQkYmNj8eeff8LPzw9ubm5wcnICAHh6eqJ27dro27cvLl++jAMHDmDy5Mnw9/eHjo4OAGD48OH4v//7P0ycOBG3bt3CypUrsW3bNowdO1Zt605ERESlh1oDUVBQEFJTU+Hu7g4bGxvptXXrVgCAtrY2Dh06BE9PT9SsWRPjx49H9+7d8ddff0nz0NTUxJ49e6CpqQlXV1d8/fXX8PPzw4wZM6Q2Dg4O2Lt3L8LCwlCvXj0sWLAAv/zyCx+5JyIiIgBq7lQthHjndDs7O4SHh793Pvb29ti3b98727i7u+PSpUuFqo+IiIjkoVR0qiYiIiJSJwYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj21BqLZs2ejcePGMDIygqWlJbp06YLo6GilNi9fvoS/vz/Mzc1haGiI7t27IzExUanN/fv34ePjA319fVhaWmLChAl49eqVUptjx46hYcOG0NHRQdWqVREcHFzSq0dERESfCLUGovDwcPj7++PMmTMICwtDVlYWPD09kZ6eLrUZO3Ys/vrrL2zfvh3h4eH4999/0a1bN2l6dnY2fHx8kJmZidOnT2PDhg0IDg7GlClTpDYxMTHw8fHBF198gaioKAQEBGDw4ME4cODAR11fIiIiKp3KqHPhoaGhSsPBwcGwtLREZGQk3NzckJqairVr12LLli1o3bo1AGD9+vWoVasWzpw5g6ZNm+LgwYO4ceMGDh06BCsrK9SvXx8zZ87EpEmTMG3aNGhra2PVqlVwcHDAggULAAC1atXCyZMnsWjRInh5eX309SYiIqLSpVT1IUpNTQUAmJmZAQAiIyORlZUFDw8PqU3NmjVRsWJFREREAAAiIiLg6OgIKysrqY2XlxfS0tJw/fp1qc2b88htkzuPt2VkZCAtLU3pRURERJ+vUhOIcnJyEBAQgObNm6Nu3boAgISEBGhra8PU1FSprZWVFRISEqQ2b4ah3Om5097VJi0tDS9evFCpZfbs2TAxMZFednZ2xbKOREREVDqVmkDk7++Pa9eu4bffflN3KQgMDERqaqr0iouLU3dJREREVILU2oco16hRo7Bnzx4cP34cFSpUkMZbW1sjMzMTKSkpSleJEhMTYW1tLbU5d+6c0vxyn0J7s83bT6YlJibC2NgYenp6KvXo6OhAR0enWNaNiIiISj+1XiESQmDUqFHYuXMnjhw5AgcHB6Xpzs7O0NLSwuHDh6Vx0dHRuH//PlxdXQEArq6uuHr1KpKSkqQ2YWFhMDY2Ru3ataU2b84jt03uPIiIiEje1HqFyN/fH1u2bMHu3bthZGQk9fkxMTGBnp4eTExMMGjQIIwbNw5mZmYwNjbG6NGj4erqiqZNmwIAPD09Ubt2bfTt2xdz585FQkICJk+eDH9/f+kqz/Dhw7F8+XJMnDgRAwcOxJEjR7Bt2zbs3btXbetOREREpYdarxAFBQUhNTUV7u7usLGxkV5bt26V2ixatAgdOnRA9+7d4ebmBmtra/zxxx/SdE1NTezZsweamppwdXXF119/DT8/P8yYMUNq4+DggL179yIsLAz16tXDggUL8Msvv/CReyIiIgKg5itEQoj3ttHV1cWKFSuwYsWKfNvY29tj375975yPu7s7Ll26VOgaiYiI6PNXap4yIyIiIlIXBiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpK9MkV9Y3p6OsLDw3H//n1kZmYqTRszZswHF0ZERET0sRQpEF26dAnt27fH8+fPkZ6eDjMzMyQnJ0NfXx+WlpYMRERERPRJKdIts7Fjx6Jjx4548uQJ9PT0cObMGfz9999wdnbG/Pnzi7tGIiIiohJVpEAUFRWF8ePHQ0NDA5qamsjIyICdnR3mzp2L//73v8VdIxEREVGJKlIg0tLSgobG67daWlri/v37AAATExPExcUVX3VEREREH0GR+hA1aNAA58+fR7Vq1dCqVStMmTIFycnJ2LRpE+rWrVvcNRIRERGVqCJdIfrxxx9hY2MDAJg1axbKli2LESNG4OHDh1izZk2xFkhERERU0op0hahRo0bSvy0tLREaGlpsBRERERF9bEW6QtS6dWukpKQUcylERERE6lGkQHTs2DGVL2MkIiIi+lQV+ac7FApFcdZBREREpDZF/umOrl27QltbO89pR44cKXJBRERERB9bkQORq6srDA0Ni7MWIiIiIrUoUiBSKBSYMGECLC0ti7seIiIioo+uSH2IhBDFXQcRERGR2hQpEE2dOpW3y4iIiOizUaRbZlOnTgUAPHz4ENHR0QCAGjVqoFy5csVXGREREdFHUqQrRM+fP8fAgQNha2sLNzc3uLm5wdbWFoMGDcLz58+Lu0YiIiKiElWkQDR27FiEh4fjzz//REpKClJSUrB7926Eh4dj/PjxxV0jERERUYkq0i2zHTt24Pfff4e7u7s0rn379tDT00PPnj0RFBRUXPURERERlbgi3zKzsrJSGW9paclbZkRERPTJKVIgcnV1xdSpU/Hy5Utp3IsXLzB9+nS4uroWW3FEREREH0ORbpktXrwY7dq1Q4UKFVCvXj0AwOXLl6Grq4sDBw4Ua4FEREREJa1IgcjR0RF37txBSEgIbt26BQDo3bs3fH19oaenV6wFEhEREZW0IgWi48ePo1mzZhgyZEhx10NERET00RWpD9EXX3yBx48fF3ctRERERGrB3zIjIiIi2SvSLTMAiIiIQNmyZfOc5ubmVuSCiIiIiD62Igeirl275jleoVAgOzu7yAURERERfWxFumUGAAkJCcjJyVF5MQwRERHRp6ZIgUihUBR3HURERERqo9ZO1cePH0fHjh1ha2sLhUKBXbt2KU3v378/FAqF0qtdu3ZKbR4/fgxfX18YGxvD1NQUgwYNwrNnz5TaXLlyBS1btoSuri7s7Owwd+7cYqmfiIiIPg9FCkQ5OTmwtLT84IWnp6ejXr16WLFiRb5t2rVrh/j4eOn166+/Kk339fXF9evXERYWhj179uD48eMYOnSoND0tLQ2enp6wt7dHZGQk5s2bh2nTpmHNmjUfXD8RERF9HorUqXr27NmwsrLCwIEDlcavW7cODx8+xKRJkwo0H29vb3h7e7+zjY6ODqytrfOcdvPmTYSGhuL8+fNo1KgRAGDZsmVo37495s+fD1tbW4SEhCAzMxPr1q2DtrY26tSpg6ioKCxcuFApOBEREZF8FekK0erVq1GzZk2V8XXq1MGqVas+uKg3HTt2DJaWlqhRowZGjBiBR48eSdMiIiJgamoqhSEA8PDwgIaGBs6ePSu1cXNzg7a2ttTGy8sL0dHRePLkSZ7LzMjIQFpamtKLiIiIPl9FCkQJCQmwsbFRGV+uXDnEx8d/cFG52rVrh40bN+Lw4cOYM2cOwsPD4e3tLT3JlpCQoHLrrkyZMjAzM0NCQoLUxsrKSqlN7nBum7fNnj0bJiYm0svOzq7Y1omIiIhKnyLdMrOzs8OpU6fg4OCgNP7UqVOwtbUtlsIAoFevXtK/HR0d4eTkhCpVquDYsWNo06ZNsS3nbYGBgRg3bpw0nJaWxlBERET0GStSIBoyZAgCAgKQlZWF1q1bAwAOHz6MiRMnYvz48cVa4JsqV64MCwsL3L17F23atIG1tTWSkpKU2rx69QqPHz+W+h1ZW1sjMTFRqU3ucH59k3R0dKCjo1MCa0BERESlUZEC0YQJE/Do0SOMHDkSmZmZAABdXV1MmjQJgYGBxVrgm/755x88evRIul3n6uqKlJQUREZGwtnZGQBw5MgR5OTkwMXFRWrz3XffISsrC1paWgCAsLAw1KhRI9+fHiEiIiJ5KfIXM86ZMwcPHz7EmTNncPnyZTx+/BhTpkwp1HyePXuGqKgoREVFAQBiYmIQFRWF+/fv49mzZ5gwYQLOnDmD2NhYHD58GJ07d0bVqlXh5eUFAKhVqxbatWuHIUOG4Ny5czh16hRGjRqFXr16Sbfu+vTpA21tbQwaNAjXr1/H1q1bsWTJEqVbYkRERCRvRf4tMwAwNDRE48aNi/z+Cxcu4IsvvpCGc0NKv379EBQUhCtXrmDDhg1ISUmBra0tPD09MXPmTKXbWSEhIRg1ahTatGkDDQ0NdO/eHUuXLpWmm5iY4ODBg/D394ezszMsLCwwZcoUPnJPREREkiIHogsXLmDbtm24f/++dNss1x9//FGgebi7u7/zW68PHDjw3nmYmZlhy5Yt72zj5OSEEydOFKgmIiIikp8i3TL77bff0KxZM9y8eRM7d+5EVlYWrl+/jiNHjsDExKS4ayQiIiIqUUUKRD/++CMWLVqEv/76C9ra2liyZAlu3bqFnj17omLFisVdIxEREVGJKlIgunfvHnx8fAAA2traSE9Ph0KhwNixY/kbYURERPTJKVIgKlu2LJ4+fQoAKF++PK5duwYASElJwfPnz4uvOiIiIqKPoEidqt3c3BAWFgZHR0f06NED33zzDY4cOYKwsLAS/QZpIiIiopJQpEC0fPlyvHz5EgDw3XffQUtLC6dPn0b37t0xefLkYi2QiIiIqKQVKhDl/up7mTJlYGhoKA2PHDkSI0eOLP7qiIiIiD6CQgUiU1NTKBSK97bL/TV6IiIiok9BoQLR0aNHlYaFEGjfvj1++eUXlC9fvlgLIyIiIvpYChWIWrVqpTJOU1MTTZs2ReXKlYutKCIiIqKPqUiP3RMRERF9Tj4oEMXFxeH58+cwNzcvrnqIiIiIPrpC3TJ781fkk5OT8euvv6J169b8/TIiIiL6pBUqEC1atAgAoFAoYGFhgY4dO/J7h4iIiOiTV6hAFBMTU1J1EBEREakNO1UTERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkeypNRAdP34cHTt2hK2tLRQKBXbt2qU0XQiBKVOmwMbGBnp6evDw8MCdO3eU2jx+/Bi+vr4wNjaGqakpBg0ahGfPnim1uXLlClq2bAldXV3Y2dlh7ty5Jb1qRERE9AlRayBKT09HvXr1sGLFijynz507F0uXLsWqVatw9uxZGBgYwMvLCy9fvpTa+Pr64vr16wgLC8OePXtw/PhxDB06VJqelpYGT09P2NvbIzIyEvPmzcO0adOwZs2aEl8/IiIi+jSUUefCvb294e3tnec0IQQWL16MyZMno3PnzgCAjRs3wsrKCrt27UKvXr1w8+ZNhIaG4vz582jUqBEAYNmyZWjfvj3mz58PW1tbhISEIDMzE+vWrYO2tjbq1KmDqKgoLFy4UCk4ERERkXyV2j5EMTExSEhIgIeHhzTOxMQELi4uiIiIAABERETA1NRUCkMA4OHhAQ0NDZw9e1Zq4+bmBm1tbamNl5cXoqOj8eTJkzyXnZGRgbS0NKUXERERfb5KbSBKSEgAAFhZWSmNt7KykqYlJCTA0tJSaXqZMmVgZmam1Caveby5jLfNnj0bJiYm0svOzu7DV4iIiIhKrVIbiNQpMDAQqamp0isuLk7dJREREVEJKrWByNraGgCQmJioND4xMVGaZm1tjaSkJKXpr169wuPHj5Xa5DWPN5fxNh0dHRgbGyu9iIiI6PNVagORg4MDrK2tcfjwYWlcWloazp49C1dXVwCAq6srUlJSEBkZKbU5cuQIcnJy4OLiIrU5fvw4srKypDZhYWGoUaMGypYt+5HWhoiIiEoztQaiZ8+eISoqClFRUQBed6SOiorC/fv3oVAoEBAQgB9++AF//vknrl69Cj8/P9ja2qJLly4AgFq1aqFdu3YYMmQIzp07h1OnTmHUqFHo1asXbG1tAQB9+vSBtrY2Bg0ahOvXr2Pr1q1YsmQJxo0bp6a1JiIiotJGrY/dX7hwAV988YU0nBtS+vXrh+DgYEycOBHp6ekYOnQoUlJS0KJFC4SGhkJXV1d6T0hICEaNGoU2bdpAQ0MD3bt3x9KlS6XpJiYmOHjwIPz9/eHs7AwLCwtMmTKFj9wTERGRRK2ByN3dHUKIfKcrFArMmDEDM2bMyLeNmZkZtmzZ8s7lODk54cSJE0Wuk4iIiD5vpbYPEREREdHHwkBEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLJXqgPRtGnToFAolF41a9aUpr98+RL+/v4wNzeHoaEhunfvjsTERKV53L9/Hz4+PtDX14elpSUmTJiAV69efexVISIiolKsjLoLeJ86derg0KFD0nCZMv8reezYsdi7dy+2b98OExMTjBo1Ct26dcOpU6cAANnZ2fDx8YG1tTVOnz6N+Ph4+Pn5QUtLCz/++ONHXxciIiIqnUp9ICpTpgysra1VxqempmLt2rXYsmULWrduDQBYv349atWqhTNnzqBp06Y4ePAgbty4gUOHDsHKygr169fHzJkzMWnSJEybNg3a2tp5LjMjIwMZGRnScFpaWsmsHBEREZUKpfqWGQDcuXMHtra2qFy5Mnx9fXH//n0AQGRkJLKysuDh4SG1rVmzJipWrIiIiAgAQEREBBwdHWFlZSW18fLyQlpaGq5fv57vMmfPng0TExPpZWdnV0JrR0RERKVBqQ5ELi4uCA4ORmhoKIKCghATE4OWLVvi6dOnSEhIgLa2NkxNTZXeY2VlhYSEBABAQkKCUhjKnZ47LT+BgYFITU2VXnFxccW7YkRERFSqlOpbZt7e3tK/nZyc4OLiAnt7e2zbtg16enoltlwdHR3o6OiU2PyJiIiodCnVV4jeZmpqiurVq+Pu3buwtrZGZmYmUlJSlNokJiZKfY6sra1VnjrLHc6rXxIRERHJ0ycViJ49e4Z79+7BxsYGzs7O0NLSwuHDh6Xp0dHRuH//PlxdXQEArq6uuHr1KpKSkqQ2YWFhMDY2Ru3atT96/URERFQ6lepbZt9++y06duwIe3t7/Pvvv5g6dSo0NTXRu3dvmJiYYNCgQRg3bhzMzMxgbGyM0aNHw9XVFU2bNgUAeHp6onbt2ujbty/mzp2LhIQETJ48Gf7+/rwlRkRERJJSHYj++ecf9O7dG48ePUK5cuXQokULnDlzBuXKlQMALFq0CBoaGujevTsyMjLg5eWFlStXSu/X1NTEnj17MGLECLi6usLAwAD9+vXDjBkz1LVKREREVAqV6kD022+/vXO6rq4uVqxYgRUrVuTbxt7eHvv27Svu0oiIiOgz8kn1ISIiIiIqCQxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHuyCkQrVqxApUqVoKurCxcXF5w7d07dJREREVEpIJtAtHXrVowbNw5Tp07FxYsXUa9ePXh5eSEpKUndpREREZGaySYQLVy4EEOGDMGAAQNQu3ZtrFq1Cvr6+li3bp26SyMiIiI1K6PuAj6GzMxMREZGIjAwUBqnoaEBDw8PREREqLTPyMhARkaGNJyamgoASEtLK9RyszNeFLFiKm6F3XdFwf1denB/ywv3t7wUZn/nthVCvL+xkIEHDx4IAOL06dNK4ydMmCCaNGmi0n7q1KkCAF988cUXX3zx9Rm84uLi3psVZHGFqLACAwMxbtw4aTgnJwePHz+Gubk5FAqFGiv7uNLS0mBnZ4e4uDgYGxuruxwqYdzf8sL9LS9y3d9CCDx9+hS2trbvbSuLQGRhYQFNTU0kJiYqjU9MTIS1tbVKex0dHejo6CiNMzU1LckSSzVjY2NZ/QeSO+5veeH+lhc57m8TE5MCtZNFp2ptbW04Ozvj8OHD0ricnBwcPnwYrq6uaqyMiIiISgNZXCECgHHjxqFfv35o1KgRmjRpgsWLFyM9PR0DBgxQd2lERESkZrIJRF999RUePnyIKVOmICEhAfXr10doaCisrKzUXVqppaOjg6lTp6rcPqTPE/e3vHB/ywv39/sphCjIs2hEREREny9Z9CEiIiIiehcGIiIiIpI9BiIiIiKSPQYimXJ3d0dAQIC6y6BS5O1jolKlSli8eLHa6qHCed//aYVCgV27dhV4fseOHYNCoUBKSsoH10al1/uOi6IcB9OmTUP9+vU/uLaPTTZPmRFR4Zw/fx4GBgbqLoOKSXx8PMqWLavuMugT06xZM8THxxf4yw0/ZQxERJSncuXKqbsEKkZ5fSs/fdqysrKgpaVVosvQ1taWzbHDW2aEJ0+ewM/PD2XLloW+vj68vb1x584dAK9/B6ZcuXL4/fffpfb169eHjY2NNHzy5Eno6Ojg+fPnH712OXB3d8fo0aMREBCAsmXLwsrKCj///LP0xaJGRkaoWrUq9u/fL73n2rVr8Pb2hqGhIaysrNC3b18kJydL09PT0+Hn5wdDQ0PY2NhgwYIFKst985ZZbGwsFAoFoqKipOkpKSlQKBQ4duwYgP9dWj9w4AAaNGgAPT09tG7dGklJSdi/fz9q1aoFY2Nj9OnTh8dKCcnJycHEiRNhZmYGa2trTJs2TZr29q2R06dPo379+tDV1UWjRo2wa9culX0MAJGRkWjUqBH09fXRrFkzREdHf5yV+cysWbMGtra2yMnJURrfuXNnDBw4EACwe/duNGzYELq6uqhcuTKmT5+OV69eSW0VCgWCgoLQqVMnGBgY4IcffkDVqlUxf/58pXlGRUVBoVDg7t27BaotOTkZXbt2hb6+PqpVq4Y///xTmpbXLbOff/4ZdnZ20NfXR9euXbFw4cI8f95q06ZNqFSpEkxMTNCrVy88ffq0QPWoCwMRoX///rhw4QL+/PNPREREQAiB9u3bIysrCwqFAm5ubtKH3pMnT3Dz5k28ePECt27dAgCEh4ejcePG0NfXV+NafN42bNgACwsLnDt3DqNHj8aIESPQo0cPNGvWDBcvXoSnpyf69u2L58+fIyUlBa1bt0aDBg1w4cIFhIaGIjExET179pTmN2HCBISHh2P37t04ePAgjh07hosXLxZLrdOmTcPy5ctx+vRpxMXFoWfPnli8eDG2bNmCvXv34uDBg1i2bFmxLIuUbdiwAQYGBjh79izmzp2LGTNmICwsTKVdWloaOnbsCEdHR1y8eBEzZ87EpEmT8pznd999hwULFuDChQsoU6aM9OFNhdOjRw88evQIR48elcY9fvwYoaGh8PX1xYkTJ+Dn54dvvvkGN27cwOrVqxEcHIxZs2YpzWfatGno2rUrrl69ikGDBmHgwIFYv369Upv169fDzc0NVatWLVBt06dPR8+ePXHlyhW0b98evr6+ePz4cZ5tT506heHDh+Obb75BVFQU2rZtq1IjANy7dw+7du3Cnj17sGfPHoSHh+Onn34qUD1qI0iWWrVqJb755htx+/ZtAUCcOnVKmpacnCz09PTEtm3bhBBCLF26VNSpU0cIIcSuXbuEi4uL6Ny5swgKChJCCOHh4SH++9//fvyVkIlWrVqJFi1aSMOvXr0SBgYGom/fvtK4+Ph4AUBERESImTNnCk9PT6V5xMXFCQAiOjpaPH36VGhra0v7VwghHj16JPT09MQ333wjjbO3txeLFi0SQggRExMjAIhLly5J0588eSIAiKNHjwohhDh69KgAIA4dOiS1mT17tgAg7t27J40bNmyY8PLy+pBNQnl4+zgRQojGjRuLSZMmCSGEACB27twphBAiKChImJubixcvXkhtf/75Z6V9nNf+3Lt3rwCg9D4quM6dO4uBAwdKw6tXrxa2trYiOztbtGnTRvz4449K7Tdt2iRsbGykYQAiICBAqc2DBw+EpqamOHv2rBBCiMzMTGFhYSGCg4MLVBMAMXnyZGn42bNnAoDYv3+/EOJ/x8GTJ0+EEEJ89dVXwsfHR2kevr6+wsTERBqeOnWq0NfXF2lpadK4CRMmCBcXlwLVpC68QiRzN2/eRJkyZeDi4iKNMzc3R40aNXDz5k0AQKtWrXDjxg08fPgQ4eHhcHd3h7u7O44dO4asrCycPn0a7u7ualoDeXBycpL+rampCXNzczg6Okrjcn+CJikpCZcvX8bRo0dhaGgovWrWrAng9V9t9+7dQ2ZmptI+NzMzQ40aNYq9VisrK+jr66Ny5cpK45KSkoplWaTszW0PADY2Nnlu6+joaDg5OUFXV1ca16RJk/fOM/dWOfdf0fj6+mLHjh3IyMgAAISEhKBXr17Q0NDA5cuXMWPGDKX/t0OGDEF8fLzSLeZGjRopzdPW1hY+Pj5Yt24dAOCvv/5CRkYGevToUeC63tzHBgYGMDY2zncfR0dHqxwreR07lSpVgpGRkTSc37FYmrBTNb2Xo6MjzMzMEB4ejvDwcMyaNQvW1taYM2cOzp8/j6ysLDRr1kzdZX7W3u44qVAolMYpFAoAr/uQPHv2DB07dsScOXNU5mNjY1PgfgVv0tB4/beTeOOXfrKyst5b69t15o57ux8FFY+S2Nb5HWdUeB07doQQAnv37kXjxo1x4sQJLFq0CADw7NkzTJ8+Hd26dVN535vBNa8nPwcPHoy+ffti0aJFWL9+Pb766qtCdWEo6eOmuOZZ0hiIZK5WrVp49eoVzp49K4WaR48eITo6GrVr1wbw+kBu2bIldu/ejevXr6NFixbQ19dHRkYGVq9ejUaNGvHx7FKkYcOG2LFjBypVqoQyZVT/i1epUgVaWlo4e/YsKlasCOB137Dbt2+jVatWec4z94mz+Ph4NGjQAABUOt/Sp6NGjRrYvHkzMjIypB/7PH/+vJqr+vzp6uqiW7duCAkJwd27d1GjRg00bNgQwOv/t9HR0QXu9/Om9u3bw8DAAEFBQQgNDcXx48eLu3RJjRo1VI6Vz+XY4S0zmatWrRo6d+6MIUOG4OTJk7h8+TK+/vprlC9fHp07d5baubu749dff0X9+vVhaGgIDQ0NuLm5ISQkJN8PUVIPf39/PH78GL1798b58+dx7949HDhwAAMGDEB2djYMDQ0xaNAgTJgwAUeOHMG1a9fQv39/6SpQXvT09NC0aVP89NNPuHnzJsLDwzF58uSPuFZUnPr06YOcnBwMHToUN2/exIEDB6QnlXKvAlHJ8PX1xd69e7Fu3Tr4+vpK46dMmYKNGzdi+vTpuH79Om7evInffvutQP/PNDU10b9/fwQGBqJatWpwdXUtsfpHjx6Nffv2YeHChbhz5w5Wr16N/fv3fxbHDQMRYf369XB2dkaHDh3g6uoKIQT27dundMmzVatWyM7OVuor5O7urjKO1M/W1hanTp1CdnY2PD094ejoiICAAJiamkqhZ968eWjZsiU6duwIDw8PtGjRAs7Ozu+c77p16/Dq1Ss4OzsjICAAP/zww8dYHSoBxsbG+OuvvxAVFYX69evju+++w5QpUwAo356h4te6dWuYmZkhOjoaffr0kcZ7eXlhz549OHjwIBo3boymTZti0aJFsLe3L9B8Bw0ahMzMTAwYMKCkSgcANG/eHKtWrcLChQtRr149hIaGYuzYsZ/FcaMQb3YKICIiWQoJCcGAAQOQmpoKPT09dZdDhXTixAm0adMGcXFx0kMWH8uQIUNw69YtnDhx4qMut7ixDxERkQxt3LgRlStXRvny5XH58mVMmjQJPXv2ZBj6xGRkZODhw4eYNm0aevTo8VHC0Pz589G2bVsYGBhg//792LBhA1auXFniyy1pvGVGRCRDCQkJ+Prrr1GrVi2MHTsWPXr0wJo1a9RdFhXSr7/+Cnt7e6SkpGDu3LlK00JCQpQe43/zVadOnSIv89y5c2jbti0cHR2xatUqLF26FIMHD/7QVVE73jIjIiL6DD19+hSJiYl5TtPS0ipw/yS5YCAiIiIi2eMtMyIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIspX//790aVLF6VxDx8+RN26deHi4oLU1FT1FEZEVMwYiIiowB4+fIjWrVtDT08PBw8ehImJibpLIiIqFgxERFQgycnJaNOmDXR0dBAWFqYUhhYuXAhHR0cYGBjAzs4OI0eOxLNnzwAAx44dg0KhyPeV6+TJk2jZsiX09PRgZ2eHMWPGID09XZpeqVIllfd+++230vSgoCBUqVIF2traqFGjBjZt2qRUv0KhQFBQELy9vaGnp4fKlSvj999/l6bHxsZCoVAgKipKGvf9999DoVBg8eLF0rhbt26hbdu2MDExkeowNTXNd7vlrn9KSopKPbt27ZKGMzIy8O2336J8+fIwMDCAi4sLjh07Jk0PDg5WWc7bNee3LABISUmBQqFQmicR/Q8DERG916NHj+Dh4YEyZcogLCxM5YNZQ0MDS5cuxfXr17FhwwYcOXIEEydOBAA0a9YM8fHxiI+Px44dOwBAGo6PjwcA3Lt3D+3atUP37t1x5coVbN26FSdPnsSoUaOUljNjxgyl906dOhUAsHPnTnzzzTcYP348rl27hmHDhmHAgAE4evSo0vu///57dO/eHZcvX4avry969eqFmzdv5rnO//zzDxYvXqzy214DBw5EVlYWTp06hfj4eKWw9CFGjRqFiIgI/Pbbb7hy5Qp69OiBdu3a4c6dO8UyfyJ6D0FElI9+/foJNzc3Ub9+faGlpSWaNm0qXr169d73bd++XZibm6uMP3r0qMjrtDNo0CAxdOhQpXEnTpwQGhoa4sWLF0IIIezt7cWiRYvyXF6zZs3EkCFDlMb16NFDtG/fXhoGIIYPH67UxsXFRYwYMUIIIURMTIwAIC5duiSEEMLPz08MGjRIZbl6enoiJCREGl6/fr0wMTHJs6431/nJkydK4wGInTt3CiGE+Pvvv4WmpqZ48OCBUps2bdqIwMDAfJfzds35LUsIIZ48eSIAiKNHj+ZbK5Gc8QoREb3T8ePHkZOTg6ioKNy9e1flByQB4NChQ2jTpg3Kly8PIyMj9O3bF48ePcLz588LtIzLly8jODhY6ccnvby8kJOTg5iYmPe+/+bNm2jevLnSuObNm6tc/XF1dVUZzusK0cWLF7Fz507MnDlTZZqDgwN27txZ4HUriKtXryI7OxvVq1dX2gbh4eG4d++e1C41NbVAP9BZoUIFGBkZwcHBAUOGDGHnd6ICKKPuAoiodKtcuTIOHz4MCwsLrFy5El9//TV8fHzg5OQE4HU/lg4dOmDEiBGYNWsWzMzMcPLkSQwaNAiZmZnQ19d/7zKePXuGYcOGYcyYMSrTKlasWOzr9D7jx4/Ht99+CxsbG5Vpa9euRb9+/WBkZAQ9PT28evUKurq6H7S8Z8+eQVNTE5GRkdDU1FSaZmhoKP3byMgIFy9elIYfPHgAd3d3lfmdOHECRkZGiI2NxeDBg/Hdd9/hhx9++KAaiT53DERE9E6Ojo6wsLAAAPTo0QN//PEH/Pz8cO7cOWhrayMyMhI5OTlYsGABNDReX3Tetm1boZbRsGFD3LhxA1WrVi1SjbVq1cKpU6fQr18/adypU6dQu3ZtpXZnzpyBn5+f0nCDBg2U2vz555+4ffs29u7dm+eymjZtik6dOuH48ePYvHkzdu7ciR9//LFIdedq0KABsrOzkZSUhJYtW+bbTkNDQ2kblSmT9yncwcEBpqamqFq1Knr06IGIiIgPqo9IDhiIiKhQVqxYgbp162L69OmYNWsWqlatiqysLCxbtgwdO3bEqVOnsGrVqkLNc9KkSWjatClGjRqFwYMHw8DAADdu3EBYWBiWL1/+3vdPmDABPXv2RIMGDeDh4YG//voLf/zxBw4dOqTUbvv27WjUqBFatGiBkJAQnDt3DmvXrlVqM3fuXCxbtizfK1s7duxAcHAwIiMjUbFiRVhaWhZoHTMyMvDy5UulcVlZWcjJyUH16tXh6+sLPz8/LFiwAA0aNMDDhw9x+PBhODk5wcfHp0DLeHtZsbGx2L9/P1q0aFGo9xPJEfsQEVGhmJmZ4eeff8acOXNw9uxZ1KtXDwsXLsScOXNQt25dhISEYPbs2YWap5OTE8LDw3H79m20bNkSDRo0wJQpU2Bra1ug93fp0gVLlizB/PnzUadOHaxevRrr169XuZ00ffp0/Pbbb3BycsLGjRvx66+/qlxFqlq1qtKVpjfdvn0bgwcPxpYtWwp9K8/a2hp6enrSCwB69uyJ48ePAwDWr18PPz8/jB8/HjVq1ECXLl1w/vz5It0yzF1Wy5YtUa9evULvDyI5UgghhLqLICIqaQqFAjt37lT55m116tKlCwICAvLsB0REHxevEBERqYm2trbU74qI1It9iIiI1KSwnc+JqOQwEBGRLLB3ABG9C6/VEhERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHs/T+SK9KTzD5dUwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSuklEQVR4nO3deVxN+f8H8NettKtU2kgismWLSZY0RIixjZ3sa9kH375jCIOx78IMMjPZDcYuO8nWyC7Lt4YxKltFaP38/vDo/JxukZQb5/V8PO7j4XzO557zPvece3s553PuVQkhBIiIiIgUTEvTBRARERFpGgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxERKcqLFy+wcOFCaTohIQHLli3TXEFERVxgYCBUKpWsrWzZsujTp49mCiokDEQaFBwcDJVKJT309fVRsWJF+Pv7Iy4uTtPlEX2RDAwMMHHiRISEhOD+/fsIDAzErl27NF0WEWmYjqYLIGDq1KlwdHTE69evcerUKQQFBWHv3r24evUqDA0NNV0e0RdFW1sbU6ZMga+vLzIzM2FiYoI9e/Zouiyiz0pUVBS0tL6scyoMREVAy5YtUadOHQDAgAEDYGFhgfnz52Pnzp3o1q2bhqsj+vKMHTsWXbp0wf3791G5cmWYmZlpuiT6gqWnpyMzMxO6urqaLqXA6OnpabqEAvdlxbsvRJMmTQAA0dHRAICnT5/iu+++g4uLC4yNjWFiYoKWLVvi0qVLas99/fo1AgMDUbFiRejr68PW1hYdOnTA3bt3AQAxMTGyy3TZH56entKyjh07BpVKhU2bNuG///0vbGxsYGRkhG+++Qb3799XW/fZs2fRokULmJqawtDQEI0bN0ZYWFiO2+jp6Znj+gMDA9X6/v7773B1dYWBgQHMzc3RtWvXHNf/rm17W2ZmJhYuXIiqVatCX18f1tbWGDx4MJ49eybrV7ZsWbRu3VptPf7+/mrLzKn2OXPmqL2mAJCSkoLJkyfDyckJenp6sLe3x/jx45GSkpLja/U2T09PteVNnz4dWlpaWL9+vdR28uRJdOrUCWXKlJHWMXr0aLx69Urq06dPn3ceCyqVCjExMVL/ffv2oVGjRjAyMkLx4sXh4+ODa9euyWrJbZlOTk6yfsuXL0fVqlWhp6cHOzs7+Pn5ISEhQW1bq1WrhoiICNSvXx8GBgZwdHTEihUrZP2yjtNjx47J2n18fNT2y9tjIUqXLg13d3fo6OjAxsYmx2Vkl/X8x48fy9ovXLgAlUqF4OBgWXthHWv+/v651ph1Kf7tfZeT9+3/7K/Fli1bpPehpaUlevbsiQcPHqgt9+bNm+jcuTNKliwJAwMDODs74/vvv1frV7Zs2TytNy/HXW7+97//oVOnTjA3N4ehoSHq1asnOxsYFxcHHR0dTJkyRe25UVFRUKlUWLp0qdSWkJCAUaNGwd7eHnp6enBycsKsWbOQmZkp9cn6HJo7dy4WLlyI8uXLQ09PD9evXwcALFmyBFWrVoWhoSFKlCiBOnXqyN67f//9N4YNGwZnZ2cYGBjAwsICnTp1UtufWfv51KlTGDFiBEqWLAkzMzMMHjwYqampSEhIgK+vL0qUKIESJUpg/PjxEELkWOeCBQvg4OAAAwMDNG7cGFevXn3va5t9DFFWPWFhYRgzZgxKliwJIyMjtG/fHo8ePZI9NzMzE4GBgbCzs4OhoSG+/vprXL9+XePjkniGqAjKCi8WFhYA3rypd+zYgU6dOsHR0RFxcXFYuXIlGjdujOvXr8POzg4AkJGRgdatW+Pw4cPo2rUrRo4ciefPnyM0NBRXr15F+fLlpXV069YNrVq1kq03ICAgx3qmT58OlUqFCRMmID4+HgsXLoSXlxciIyNhYGAAADhy5AhatmwJV1dXTJ48GVpaWli7di2aNGmCkydP4quvvlJbbunSpTFz5kwAbwa6Dh06NMd1//DDD+jcuTMGDBiAR48eYcmSJfDw8MDFixdz/J/9oEGD0KhRIwDAH3/8ge3bt8vmDx48GMHBwejbty9GjBiB6OhoLF26FBcvXkRYWBiKFSuW4+vwIRISEqRte1tmZia++eYbnDp1CoMGDULlypVx5coVLFiwALdu3cKOHTs+aD1r167FxIkTMW/ePHTv3l1q37JlC16+fImhQ4fCwsIC586dw5IlS/DPP/9gy5YtAN68Dl5eXtJzevXqhfbt26NDhw5SW8mSJQEAv/32G3r37g1vb2/MmjULL1++RFBQEBo2bIiLFy+ibNmy0nP09PTwyy+/yOosXry49O/AwEBMmTIFXl5eGDp0KKKiohAUFITz58+rvf7Pnj1Dq1at0LlzZ3Tr1g2bN2/G0KFDoauri379+uX6upw4cQJ79+7N02s4b968Qhuz9ymOtY+R0746f/48Fi9eLGvL2oa6deti5syZiIuLw6JFixAWFiZ7H16+fBmNGjVCsWLFMGjQIJQtWxZ3797Frl27MH36dLX1N2rUCIMGDQIA3LhxAzNmzJDN/5DjLru4uDjUr18fL1++xIgRI2BhYYF169bhm2++wdatW9G+fXtYW1ujcePG2Lx5MyZPnix7/qZNm6CtrY1OnToBAF6+fInGjRvjwYMHGDx4MMqUKYPTp08jICAADx8+lA3UB968N1+/fo1BgwZBT08P5ubm+PnnnzFixAh8++23GDlyJF6/fo3Lly/j7Nmz0vv3/PnzOH36NLp27YrSpUsjJiYGQUFB8PT0xPXr19WGUQwfPhw2NjaYMmUKzpw5g1WrVsHMzAynT59GmTJlMGPGDOzduxdz5sxBtWrV4OvrK3v+r7/+iufPn8PPzw+vX7/GokWL0KRJE1y5cgXW1ta5vr65GT58OEqUKIHJkycjJiYGCxcuhL+/PzZt2iT1CQgIwOzZs9GmTRt4e3vj0qVL8Pb2xuvXrz94fQVKkMasXbtWABCHDh0Sjx49Evfv3xcbN24UFhYWwsDAQPzzzz9CCCFev34tMjIyZM+Njo4Wenp6YurUqVLbmjVrBAAxf/58tXVlZmZKzwMg5syZo9anatWqonHjxtL00aNHBQBRqlQpkZSUJLVv3rxZABCLFi2Sll2hQgXh7e0trUcIIV6+fCkcHR1Fs2bN1NZVv359Ua1aNWn60aNHAoCYPHmy1BYTEyO0tbXF9OnTZc+9cuWK0NHRUWu/ffu2ACDWrVsntU2ePFm8fZifPHlSABAhISGy5+7fv1+t3cHBQfj4+KjV7ufnJ7K/dbLXPn78eGFlZSVcXV1lr+lvv/0mtLS0xMmTJ2XPX7FihQAgwsLC1Nb3tsaNG0vL27Nnj9DR0RFjx45V6/fy5Uu1tpkzZwqVSiX+/vvvHJedfRuyPH/+XJiZmYmBAwfK2mNjY4WpqamsvXfv3sLIyCjX+uPj44Wurq5o3ry57JheunSpACDWrFkj21YAYt68eVJbSkqKqFmzprCyshKpqalCiP8/To8ePSr1c3NzEy1btlTbpuzHQ3x8vChevLjU9+1l5CTr+Y8ePZK1nz9/XgAQa9euldoK81jz8/PLtcasz5Xo6Oh3bktu+2rLli2y1yI1NVVYWVmJatWqiVevXkn9du/eLQCISZMmSW0eHh6iePHiasfY258LWUqVKiX69u0rTWffjx9y3OVk1KhRAoDsvfb8+XPh6OgoypYtKx1/K1euFADElStXZM+vUqWKaNKkiTQ9bdo0YWRkJG7duiXr95///Edoa2uLe/fuCSH+/zPWxMRExMfHy/q2bdtWVK1a9Z115/TeDQ8PFwDEr7/+KrVl7efsn7vu7u5CpVKJIUOGSG3p6emidOnSss+irDrf/lsjhBBnz54VAMTo0aOltuzvGyHeHLO9e/dWq8fLy0tWz+jRo4W2trZISEgQQrzZfzo6OqJdu3ay5QUGBgoAsmV+arxkVgR4eXmhZMmSsLe3R9euXWFsbIzt27ejVKlSAN78Ly5r8FpGRgaePHkCY2NjODs746+//pKWs23bNlhaWmL48OFq68h+2v1D+Pr6yv6H/+2338LW1lb6H3hkZCRu376N7t2748mTJ3j8+DEeP36M5ORkNG3aFCdOnJCdUgbeXNrT19d/53r/+OMPZGZmonPnztIyHz9+DBsbG1SoUAFHjx6V9U9NTQXw7mvbW7ZsgampKZo1ayZbpqurK4yNjdWWmZaWJuv3+PHj9/4v5sGDB1iyZAl++OEHGBsbq62/cuXKqFSpkmyZWZdJs68/N+fOnUPnzp3RsWNHzJkzR21+1pk7AEhOTsbjx49Rv359CCFw8eLFPK0jS2hoKBISEtCtWzdZzdra2nBzc8tzzQBw6NAhpKamYtSoUbIBmQMHDsxxcLOOjg4GDx4sTevq6mLw4MGIj49HREREjuv4448/cP78efz000/vrWfatGkwNTXFiBEj8rwNeVWYx9rr16/x+PFjPHnyRO29VdAuXLiA+Ph4DBs2TPae9fHxQaVKlaR99ujRI5w4cQL9+vVDmTJlZMvI6fMnNTX1ne/Vjz3u9u7di6+++goNGzaU2oyNjTFo0CDExMRIl7A6dOgAHR0d2RmMq1ev4vr16+jSpYvUtmXLFjRq1AglSpSQ1ePl5YWMjAycOHFCtv6OHTtKZ1izmJmZ4Z9//sH58+dzrfvt925aWhqePHkCJycnmJmZyT7vs/Tv31/2+rq5uUEIgf79+0tt2traqFOnDv73v/+pPb9du3bS3xoA+Oqrr+Dm5pbnM6zZDRo0SFZPo0aNkJGRgb///hsAcPjwYaSnp2PYsGGy5+X0d+tT4yWzImDZsmWoWLEidHR0YG1tDWdnZ9kfi8zMTCxatAjLly9HdHQ0MjIypHlZl9WAN5fanJ2doaNTsLu1QoUKsumsMSFZ17Rv374NAOjdu3euy0hMTESJEiWk6cePH6stN7vbt29DCJFrv+yXG7LGoGQPIdmXmZiYCCsrqxznx8fHy6YPHjyo9qH2PpMnT4adnR0GDx6MrVu3qq3/xo0buS4z+/pz8uDBA/j4+CA5ORlPnjzJ8Y/NvXv3MGnSJPz5559q41USExM/YGv+f/9mhbbsTExM8rysrA9FZ2dnWbuuri7KlSsnzc9iZ2cHIyMjWVvFihUBvBkDUa9ePdm8jIwM/Pe//0WPHj1QvXr1d9YSHR2NlStXIigo6L3hPD8K81hbvXo1Vq9eDeDNa+fm5ob58+dLN2cUpNz2GQBUqlQJp06dAgDpj221atXytNzExMT3vleB/B93f//9N9zc3NTaK1euLM2vVq0aLC0t0bRpU2zevBnTpk0D8OZymY6Ojuzy8e3bt3H58uU8v3cdHR3V+kyYMAGHDh3CV199BScnJzRv3hzdu3dHgwYNpD6vXr3CzJkzsXbtWjx48EA27ien92728GlqagoAsLe3V2vP/lkAqH++A2/eY5s3b85pM98rez1Zn/tZ6846nrKPKzQ3N5f9jdAEBqIi4KuvvnrnB9mMGTPwww8/oF+/fpg2bRrMzc2hpaWFUaNGFfr/DvMiq4Y5c+agZs2aOfZ5+4MvNTUVDx8+RLNmzd67XJVKhX379kFbW/udywSA2NhYAICNjc07l2llZYWQkJAc52f/sHNzc8OPP/4oa1u6dCl27tyZ4/Nv3LiB4OBg/P777zmOD8nMzISLiwvmz5+f4/Ozf4jl5M6dO6hduzYWLFiAXr16Yd26dbIwmpGRgWbNmuHp06eYMGECKlWqBCMjIzx48AB9+vT54GMmq/9vv/2W42tb0AH8Y6xevRoxMTE4cODAe/t+//33qFChAnr37o2TJ08WeC2Feay1bdsW/v7+EEIgOjoaU6dORevWraUQUdQ9ffoUqamp732vAp/muOvatSv69u2LyMhI1KxZE5s3b0bTpk1haWkpq6dZs2YYP358jsvICupZ3j7Tk6Vy5cqIiorC7t27sX//fmzbtg3Lly/HpEmTpIHdw4cPx9q1azFq1Ci4u7vD1NQUKpUKXbt2zfG9m9NnY27tb4erwpJbPZ9i3R+r6HySUa62bt2Kr7/+WvofYZaEhATZG7Z8+fI4e/Ys0tLSCnSwZvYPWSEE7ty5I/0PPGuwtomJiWyQbm4uXbqEtLS09/5vtnz58hBCwNHRUe3DJifXr1+HSqXK8X+yby/z0KFDaNCgQY4fWNlZWlqqbdO7Bj4HBASgZs2aslPt2dd/6dIlNG3aNN+XMbMuV1pbW2Pnzp0YO3YsWrVqJf2BvXLlCm7duoV169bJBlCGhobma31Z+9fKyipP+/ddHBwcALy5g6dcuXJSe2pqKqKjo9WW/++//yI5OVl2lujWrVsAoDag9uXLl5gyZQqGDRsmrSc3Fy9exMaNG7Fjx45cP8A/VmEea6VLl5b1NTY2Ro8ePT74cmhevL3Psp+tiYqKkuZn7c+83KGUdbkq62xNTj72uHNwcEBUVJRa+82bN6X5Wdq1a4fBgwdLl81u3bqldpNJ+fLl8eLFi49+DxgZGaFLly7o0qULUlNT0aFDB0yfPh0BAQHQ19fH1q1b0bt3b8ybN096zuvXr9XuwiwoOYXoW7duvXPA+sfIet3v3LkjO4v25MmTHM9gfUocQ/QZ0NbWVkvXW7ZsUbvltWPHjnj8+LHsNtEsH5POs+5CyLJ161Y8fPgQLVu2BAC4urqifPnymDt3Ll68eKH2/Oy3XG7ZsgXa2to53mb8tg4dOkhfope9fiEEnjx5Ik2np6dj27Zt+Oqrr955Gr5z587IyMiQTo2/LT09/aM+dMLDw7Fz50789NNPuYadzp0748GDB/j555/V5r169QrJycnvXU/FihWluz+WLFmCzMxMjBw5Upqf9Qf+7ddMCIFFixZ90PZk8fb2homJCWbMmIG0tDS1+dn377t4eXlBV1cXixcvltW3evVqJCYmwsfHR9Y/PT0dK1eulKZTU1OxcuVKlCxZEq6urrK+ixYtQnJyco63eGf3n//8Bw0aNMA333yT59o/VGEea9llnTkojHBXp04dWFlZYcWKFbKvhti3bx9u3Lgh7bOSJUvCw8MDa9aswb1792TLyP7+3bhxI3R1dWXje7L72OOuVatWOHfuHMLDw6W25ORkrFq1CmXLlkWVKlWkdjMzM3h7e2Pz5s1Sbe3atZMtr3PnzggPD8/x7GNCQgLS09PfWQ8A2WcW8OZyZ5UqVSCEkLYxp8/7JUuWyIZKFKQdO3bI/pacO3cOZ8+elT7fC1rTpk2ho6ODoKAgWXtOf7c+NZ4h+gy0bt0aU6dORd++fVG/fn1cuXIFISEhsv9hA28GP//6668YM2YMzp07h0aNGiE5ORmHDh3CsGHD0LZt23yt39zcHA0bNkTfvn0RFxeHhQsXwsnJCQMHDgQAaGlp4ZdffkHLli1RtWpV9O3bF6VKlcKDBw9w9OhRmJiYYNeuXUhOTsayZcuwePFiVKxYUfZ9I1lB6vLlywgPD4e7uzvKly+PH3/8EQEBAYiJiUG7du1QvHhxREdHY/v27Rg0aBC+++47HDp0CD/88AMuX7783p9gaNy4MQYPHoyZM2ciMjISzZs3R7FixXD79m1s2bIFixYtwrfffpuv1+ngwYNo1qzZO/8H2atXL2zevBlDhgzB0aNH0aBBA2RkZODmzZvYvHkzDhw48EHjQGxsbDBnzhwMGDAAPXv2RKtWrVCpUiWUL18e3333HR48eAATExNs27Yt3//7MjExQVBQEHr16oXatWuja9euKFmyJO7du4c9e/agQYMGef4wK1myJAICAjBlyhS0aNEC33zzDaKiorB8+XLUrVsXPXv2lPW3s7PDrFmzEBMTg4oVK2LTpk2IjIzEqlWr1M6CHjx4ENOnT5eNq8vNwYMHc/2OrLw4cuSIbAxL1v+yr1y5gitXrsDFxaVQj7V79+5h//790iWz6dOnw8HBAbVq1Srwy2bFihXDrFmz0LdvXzRu3BjdunWTbrsvW7YsRo8eLfVdvHgxGjZsiNq1a2PQoEFwdHRETEwM9uzZI918MXnyZGzYsAH/+c9/3jkO6GOPu//85z/YsGEDWrZsiREjRsDc3Bzr1q1DdHQ0tm3bpvYty126dEHPnj2xfPlyeHt7q32lx7hx4/Dnn3+idevW6NOnD1xdXZGcnIwrV65g69atiImJkZ2xz0nz5s1hY2ODBg0awNraGjdu3MDSpUvh4+Mj3bjSunVr/PbbbzA1NUWVKlUQHh6OQ4cO5em4zg8nJyc0bNgQQ4cORUpKChYuXAgLC4tcLw1+LGtra4wcORLz5s3DN998gxYtWuDSpUvYt28fLC0tP+oGoI/2aW9qo7dl3aZ4/vz5d/Z7/fq1GDt2rLC1tRUGBgaiQYMGIjw8XHYLdpaXL1+K77//Xjg6OopixYoJGxsb8e2334q7d+8KIfJ32/2GDRtEQECAsLKyEgYGBsLHxyfHW7cvXrwoOnToICwsLISenp5wcHAQnTt3FocPH5at+32P7Lddbtu2TTRs2FAYGRkJIyMjUalSJeHn5yeioqKEEEIMHz5ceHh4iP3796vVlNPtokIIsWrVKuHq6ioMDAxE8eLFhYuLixg/frz4999/pT4feiu0SqUSERERsvac9lFqaqqYNWuWqFq1qtDT0xMlSpQQrq6uYsqUKSIxMVFtfe9bnhBCNGnSRJQpU0Y8f/5cCCHE9evXhZeXlzA2NhaWlpZi4MCB4tKlS2q3hmffhpxuu89y9OhR4e3tLUxNTYW+vr4oX7686NOnj7hw4YLU53233WdZunSpqFSpkihWrJiwtrYWQ4cOFc+ePVPb1qpVq4oLFy4Id3d3oa+vLxwcHMTSpUvV6gIgbG1tRXJy8ju3Ket4aNu2bY7LyOtt9x9y/BbGsZb1UKlUwsbGRnTo0EHcuHFDCFHwt91n2bRpk6hVq5bQ09MT5ubmokePHrLbtbNcvXpVtG/fXpiZmQl9fX3h7OwsfvjhByGEEBs2bBDVqlUTixYtUrsVP7d9kJfjLjd3794V3377rVTLV199JXbv3p1j36SkJGFgYCAAiN9//z3HPs+fPxcBAQHCyclJ6OrqCktLS1G/fn0xd+5c6Wsg3vUZu3LlSuHh4SF9RpYvX16MGzdO9r5/9uyZ6Nu3r7C0tBTGxsbC29tb3Lx5M9fb3LP//cjtqyGy7++365w3b56wt7cXenp6olGjRuLSpUs5LvNtea0np/2anp4ufvjhB2FjYyMMDAxEkyZNxI0bN4SFhYXs6wI+NZUQn8FIJ9KIY8eO4euvv8aWLVvy/T/Zt8XExMDR0RHR0dG5Xp8ODAxETEyM2jf+kvJ4enri8ePHeRqTUlRkfcsuj18q6rI+j+fMmYPvvvtO0+UgISEBJUqUwI8//piny96FgWOIiIiI6JN5+yeEsmR903f2nyb6lDiGiD6ZrDth3jXouXr16tJPkRB9blxcXDRdAlGRt2nTJgQHB6NVq1YwNjbGqVOnsGHDBjRv3lz2nUyfGgMRfTKWlpb4/fff39nn7S9CI/rcjB07VtMlEBV51atXh46ODmbPno2kpCRpoHX27+H61DiGiIiIiBSPY4iIiIhI8RiIiIiISPE4higPMjMz8e+//6J48eKa/dIoIiIiyjMhBJ4/fw47Ozu1L+PMjoEoD/799988/egmERERFT33799H6dKl39mHgSgPsr5S/f79++/8qnkiIiIqOpKSkmBvby/9HX8XBqI8yLpMZmJiwkBERET0mcnLcBcOqiYiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixdNoIAoKCkL16tVhYmICExMTuLu7Y9++fdL8169fw8/PDxYWFjA2NkbHjh0RFxcnW8a9e/fg4+MDQ0NDWFlZYdy4cUhPT5f1OXbsGGrXrg09PT04OTkhODj4U2weERERfSZ0NLny0qVL46effkKFChUghMC6devQtm1bXLx4EVWrVsXo0aOxZ88ebNmyBaampvD390eHDh0QFhYGAMjIyICPjw9sbGxw+vRpPHz4EL6+vihWrBhmzJgBAIiOjoaPjw+GDBmCkJAQHD58GAMGDICtrS28vb0Ldftcx/1aqMunvIuY41vo6+D+Ljq4v5WF+1tZCmt/azQQtWnTRjY9ffp0BAUF4cyZMyhdujRWr16N9evXo0mTJgCAtWvXonLlyjhz5gzq1auHgwcP4vr16zh06BCsra1Rs2ZNTJs2DRMmTEBgYCB0dXWxYsUKODo6Yt68eQCAypUr49SpU1iwYEGhByIiIiL6PBSZMUQZGRnYuHEjkpOT4e7ujoiICKSlpcHLy0vqU6lSJZQpUwbh4eEAgPDwcLi4uMDa2lrq4+3tjaSkJFy7dk3q8/YysvpkLSMnKSkpSEpKkj2IiIjoy6XxQHTlyhUYGxtDT08PQ4YMwfbt21GlShXExsZCV1cXZmZmsv7W1taIjY0FAMTGxsrCUNb8rHnv6pOUlIRXr17lWNPMmTNhamoqPezt7QtiU4mIiKiI0nggcnZ2RmRkJM6ePYuhQ4eid+/euH79ukZrCggIQGJiovS4f/++RushIiKiwqXRMUQAoKurCycnJwCAq6srzp8/j0WLFqFLly5ITU1FQkKC7CxRXFwcbGxsAAA2NjY4d+6cbHlZd6G93Sf7nWlxcXEwMTGBgYFBjjXp6elBT0+vQLaPiIiIij6NnyHKLjMzEykpKXB1dUWxYsVw+PBhaV5UVBTu3bsHd3d3AIC7uzuuXLmC+Ph4qU9oaChMTExQpUoVqc/by8jqk7UMIiIiIo2eIQoICEDLli1RpkwZPH/+HOvXr8exY8dw4MABmJqaon///hgzZgzMzc1hYmKC4cOHw93dHfXq1QMANG/eHFWqVEGvXr0we/ZsxMbGYuLEifDz85PO8AwZMgRLly7F+PHj0a9fPxw5cgSbN2/Gnj17NLnpREREVIRoNBDFx8fD19cXDx8+hKmpKapXr44DBw6gWbNmAIAFCxZAS0sLHTt2REpKCry9vbF8+XLp+dra2ti9ezeGDh0Kd3d3GBkZoXfv3pg6darUx9HREXv27MHo0aOxaNEilC5dGr/88gtvuSciIiKJRgPR6tWr3zlfX18fy5Ytw7Jly3Lt4+DggL17975zOZ6enrh48WK+aiQiIqIvX5EbQ0RERET0qTEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeIxEBEREZHiMRARERGR4jEQERERkeJpNBDNnDkTdevWRfHixWFlZYV27dohKipK1sfT0xMqlUr2GDJkiKzPvXv34OPjA0NDQ1hZWWHcuHFIT0+X9Tl27Bhq164NPT09ODk5ITg4uLA3j4iIiD4TGg1Ex48fh5+fH86cOYPQ0FCkpaWhefPmSE5OlvUbOHAgHj58KD1mz54tzcvIyICPjw9SU1Nx+vRprFu3DsHBwZg0aZLUJzo6Gj4+Pvj6668RGRmJUaNGYcCAAThw4MAn21YiIiIqunQ0ufL9+/fLpoODg2FlZYWIiAh4eHhI7YaGhrCxsclxGQcPHsT169dx6NAhWFtbo2bNmpg2bRomTJiAwMBA6OrqYsWKFXB0dMS8efMAAJUrV8apU6ewYMECeHt7F94GEhER0WehSI0hSkxMBACYm5vL2kNCQmBpaYlq1aohICAAL1++lOaFh4fDxcUF1tbWUpu3tzeSkpJw7do1qY+Xl5dsmd7e3ggPD8+xjpSUFCQlJckeRERE9OXS6Bmit2VmZmLUqFFo0KABqlWrJrV3794dDg4OsLOzw+XLlzFhwgRERUXhjz/+AADExsbKwhAAaTo2NvadfZKSkvDq1SsYGBjI5s2cORNTpkwp8G0kIiKioqnIBCI/Pz9cvXoVp06dkrUPGjRI+reLiwtsbW3RtGlT3L17F+XLly+UWgICAjBmzBhpOikpCfb29oWyLiIiItK8InHJzN/fH7t378bRo0dRunTpd/Z1c3MDANy5cwcAYGNjg7i4OFmfrOmscUe59TExMVE7OwQAenp6MDExkT2IiIjoy6XRQCSEgL+/P7Zv344jR47A0dHxvc+JjIwEANja2gIA3N3dceXKFcTHx0t9QkNDYWJigipVqkh9Dh8+LFtOaGgo3N3dC2hLiIiI6HOm0UDk5+eH33//HevXr0fx4sURGxuL2NhYvHr1CgBw9+5dTJs2DREREYiJicGff/4JX19feHh4oHr16gCA5s2bo0qVKujVqxcuXbqEAwcOYOLEifDz84Oenh4AYMiQIfjf//6H8ePH4+bNm1i+fDk2b96M0aNHa2zbiYiIqOjQaCAKCgpCYmIiPD09YWtrKz02bdoEANDV1cWhQ4fQvHlzVKpUCWPHjkXHjh2xa9cuaRna2trYvXs3tLW14e7ujp49e8LX1xdTp06V+jg6OmLPnj0IDQ1FjRo1MG/ePPzyyy+85Z6IiIgAaHhQtRDinfPt7e1x/Pjx9y7HwcEBe/fufWcfT09PXLx48YPqIyIiImUoEoOqiYiIiDSJgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUT6OBaObMmahbty6KFy8OKysrtGvXDlFRUbI+r1+/hp+fHywsLGBsbIyOHTsiLi5O1ufevXvw8fGBoaEhrKysMG7cOKSnp8v6HDt2DLVr14aenh6cnJwQHBxc2JtHREREnwmNBqLjx4/Dz88PZ86cQWhoKNLS0tC8eXMkJydLfUaPHo1du3Zhy5YtOH78OP7991906NBBmp+RkQEfHx+kpqbi9OnTWLduHYKDgzFp0iSpT3R0NHx8fPD1118jMjISo0aNwoABA3DgwIFPur1ERERUNOlocuX79++XTQcHB8PKygoRERHw8PBAYmIiVq9ejfXr16NJkyYAgLVr16Jy5co4c+YM6tWrh4MHD+L69es4dOgQrK2tUbNmTUybNg0TJkxAYGAgdHV1sWLFCjg6OmLevHkAgMqVK+PUqVNYsGABvL29P/l2ExERUdFSpMYQJSYmAgDMzc0BABEREUhLS4OXl5fUp1KlSihTpgzCw8MBAOHh4XBxcYG1tbXUx9vbG0lJSbh27ZrU5+1lZPXJWkZ2KSkpSEpKkj2IiIjoy1VkAlFmZiZGjRqFBg0aoFq1agCA2NhY6OrqwszMTNbX2toasbGxUp+3w1DW/Kx57+qTlJSEV69eqdUyc+ZMmJqaSg97e/sC2UYiIiIqmopMIPLz88PVq1exceNGTZeCgIAAJCYmSo/79+9ruiQiIiIqRBodQ5TF398fu3fvxokTJ1C6dGmp3cbGBqmpqUhISJCdJYqLi4ONjY3U59y5c7LlZd2F9naf7HemxcXFwcTEBAYGBmr16OnpQU9Pr0C2jYiIiIo+jZ4hEkLA398f27dvx5EjR+Do6Cib7+rqimLFiuHw4cNSW1RUFO7duwd3d3cAgLu7O65cuYL4+HipT2hoKExMTFClShWpz9vLyOqTtQwiIiJSNo2eIfLz88P69euxc+dOFC9eXBrzY2pqCgMDA5iamqJ///4YM2YMzM3NYWJiguHDh8Pd3R316tUDADRv3hxVqlRBr169MHv2bMTGxmLixInw8/OTzvIMGTIES5cuxfjx49GvXz8cOXIEmzdvxp49ezS27URERFR0aPQMUVBQEBITE+Hp6QlbW1vpsWnTJqnPggUL0Lp1a3Ts2BEeHh6wsbHBH3/8Ic3X1tbG7t27oa2tDXd3d/Ts2RO+vr6YOnWq1MfR0RF79uxBaGgoatSogXnz5uGXX37hLfdEREQEQMNniIQQ7+2jr6+PZcuWYdmyZbn2cXBwwN69e9+5HE9PT1y8ePGDayQiIqIvX5G5y4yIiIhIUxiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8XTy+8Tk5GQcP34c9+7dQ2pqqmzeiBEjProwIiIiok8lX4Ho4sWLaNWqFV6+fInk5GSYm5vj8ePHMDQ0hJWVFQMRERERfVbydcls9OjRaNOmDZ49ewYDAwOcOXMGf//9N1xdXTF37tyCrpGIiIioUOUrEEVGRmLs2LHQ0tKCtrY2UlJSYG9vj9mzZ+O///1vQddIREREVKjyFYiKFSsGLa03T7WyssK9e/cAAKamprh//37BVUdERET0CeRrDFGtWrVw/vx5VKhQAY0bN8akSZPw+PFj/Pbbb6hWrVpB10hERERUqPJ1hmjGjBmwtbUFAEyfPh0lSpTA0KFD8ejRI6xatapACyQiIiIqbPk6Q1SnTh3p31ZWVti/f3+BFURERET0qeXrDFGTJk2QkJBQwKUQERERaUa+AtGxY8fUvoyRiIiI6HOV75/uUKlUBVkHERERkcbk+6c72rdvD11d3RznHTlyJN8FEREREX1q+Q5E7u7uMDY2LshaiIiIiDQiX4FIpVJh3LhxsLKyKuh6iIiIiD65fI0hEkIUdB1EREREGpOvQDR58mReLiMiIqIvRr4umU2ePBkA8OjRI0RFRQEAnJ2dUbJkyYKrjIiIiOgTydcZopcvX6Jfv36ws7ODh4cHPDw8YGdnh/79++Ply5cFXSMRERFRocpXIBo9ejSOHz+OP//8EwkJCUhISMDOnTtx/PhxjB07tqBrJCIiIipU+bpktm3bNmzduhWenp5SW6tWrWBgYIDOnTsjKCiooOojIiIiKnT5vmRmbW2t1m5lZcVLZkRERPTZyVcgcnd3x+TJk/H69Wup7dWrV5gyZQrc3d0LrDgiIiKiTyFfl8wWLlyIFi1aoHTp0qhRowYA4NKlS9DX18eBAwcKtEAiIiKiwpavQOTi4oLbt28jJCQEN2/eBAB069YNPXr0gIGBQYEWSERERFTY8hWITpw4gfr162PgwIEFXQ8RERHRJ5evMURff/01nj59WtC1EBEREWkEf8uMiIiIFC9fl8wAIDw8HCVKlMhxnoeHR74LIiIiIvrU8h2I2rdvn2O7SqVCRkZGvgsiIiIi+tTydckMAGJjY5GZman2YBgiIiKiz02+ApFKpSroOoiIiIg0RqODqk+cOIE2bdrAzs4OKpUKO3bskM3v06cPVCqV7NGiRQtZn6dPn6JHjx4wMTGBmZkZ+vfvjxcvXsj6XL58GY0aNYK+vj7s7e0xe/bsAqmfiIiIvgz5CkSZmZmwsrL66JUnJyejRo0aWLZsWa59WrRogYcPH0qPDRs2yOb36NED165dQ2hoKHbv3o0TJ05g0KBB0vykpCQ0b94cDg4OiIiIwJw5cxAYGIhVq1Z9dP1ERET0ZcjXoOqZM2fC2toa/fr1k7WvWbMGjx49woQJE/K0nJYtW6Jly5bv7KOnpwcbG5sc5924cQP79+/H+fPnUadOHQDAkiVL0KpVK8ydOxd2dnYICQlBamoq1qxZA11dXVStWhWRkZGYP3++LDgRERGRcuXrDNHKlStRqVIltfaqVatixYoVH13U244dOwYrKys4Oztj6NChePLkiTQvPDwcZmZmUhgCAC8vL2hpaeHs2bNSHw8PD+jq6kp9vL29ERUVhWfPnuW4zpSUFCQlJckeRERE9OXKVyCKjY2Fra2tWnvJkiXx8OHDjy4qS4sWLfDrr7/i8OHDmDVrFo4fP46WLVtKd7LFxsaqXbrT0dGBubk5YmNjpT7W1tayPlnTWX2ymzlzJkxNTaWHvb19gW0TERERFT35umRmb2+PsLAwODo6ytrDwsJgZ2dXIIUBQNeuXaV/u7i4oHr16ihfvjyOHTuGpk2bFth6sgsICMCYMWOk6aSkJIYiIiKiL1i+AtHAgQMxatQopKWloUmTJgCAw4cPY/z48Rg7dmyBFvi2cuXKwdLSEnfu3EHTpk1hY2OD+Ph4WZ/09HQ8ffpUGndkY2ODuLg4WZ+s6dzGJunp6UFPT68QtoCIiIiKonwFonHjxuHJkycYNmwYUlNTAQD6+vqYMGECAgICCrTAt/3zzz948uSJdLnO3d0dCQkJiIiIgKurKwDgyJEjyMzMhJubm9Tn+++/R1paGooVKwYACA0NhbOzc64/PUJERETKku8vZpw1axYePXqEM2fO4NKlS3j69CkmTZr0Qct58eIFIiMjERkZCQCIjo5GZGQk7t27hxcvXmDcuHE4c+YMYmJicPjwYbRt2xZOTk7w9vYGAFSuXBktWrTAwIEDce7cOYSFhcHf3x9du3aVLt11794durq66N+/P65du4ZNmzZh0aJFsktiREREpGz5/i0zADA2NkbdunXz/fwLFy7g66+/lqazQkrv3r0RFBSEy5cvY926dUhISICdnR2aN2+OadOmyS5nhYSEwN/fH02bNoWWlhY6duyIxYsXS/NNTU1x8OBB+Pn5wdXVFZaWlpg0aRJvuSciIiJJvgPRhQsXsHnzZty7d0+6bJbljz/+yNMyPD093/mt1wcOHHjvMszNzbF+/fp39qlevTpOnjyZp5qIiIhIefJ1yWzjxo2oX78+bty4ge3btyMtLQ3Xrl3DkSNHYGpqWtA1EhERERWqfAWiGTNmYMGCBdi1axd0dXWxaNEi3Lx5E507d0aZMmUKukYiIiKiQpWvQHT37l34+PgAAHR1dZGcnAyVSoXRo0fzN8KIiIjos5OvQFSiRAk8f/4cAFCqVClcvXoVAJCQkICXL18WXHVEREREn0C+BlV7eHggNDQULi4u6NSpE0aOHIkjR44gNDS0UL9BmoiIiKgw5CsQLV26FK9fvwYAfP/99yhWrBhOnz6Njh07YuLEiQVaIBEREVFh+6BAlPWr7zo6OjA2Npamhw0bhmHDhhV8dURERESfwAcFIjMzM6hUqvf2y/o1eiIiIqLPwQcFoqNHj8qmhRBo1aoVfvnlF5QqVapACyMiIiL6VD4oEDVu3FitTVtbG/Xq1UO5cuUKrCgiIiKiTylft90TERERfUk+KhDdv38fL1++hIWFRUHVQ0RERPTJfdAls7d/Rf7x48fYsGEDmjRpwt8vIyIios/aBwWiBQsWAABUKhUsLS3Rpk0bfu8QERERffY+KBBFR0cXVh1EREREGsNB1URERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeBoNRCdOnECbNm1gZ2cHlUqFHTt2yOYLITBp0iTY2trCwMAAXl5euH37tqzP06dP0aNHD5iYmMDMzAz9+/fHixcvZH0uX76MRo0aQV9fH/b29pg9e3ZhbxoRERF9RjQaiJKTk1GjRg0sW7Ysx/mzZ8/G4sWLsWLFCpw9exZGRkbw9vbG69evpT49evTAtWvXEBoait27d+PEiRMYNGiQND8pKQnNmzeHg4MDIiIiMGfOHAQGBmLVqlWFvn1ERET0edDR5MpbtmyJli1b5jhPCIGFCxdi4sSJaNu2LQDg119/hbW1NXbs2IGuXbvixo0b2L9/P86fP486deoAAJYsWYJWrVph7ty5sLOzQ0hICFJTU7FmzRro6uqiatWqiIyMxPz582XBiYiIiJSryI4hio6ORmxsLLy8vKQ2U1NTuLm5ITw8HAAQHh4OMzMzKQwBgJeXF7S0tHD27Fmpj4eHB3R1daU+3t7eiIqKwrNnz3Jcd0pKCpKSkmQPIiIi+nIV2UAUGxsLALC2tpa1W1tbS/NiY2NhZWUlm6+jowNzc3NZn5yW8fY6sps5cyZMTU2lh729/cdvEBERERVZRTYQaVJAQAASExOlx/379zVdEhERERWiIhuIbGxsAABxcXGy9ri4OGmejY0N4uPjZfPT09Px9OlTWZ+clvH2OrLT09ODiYmJ7EFERERfriIbiBwdHWFjY4PDhw9LbUlJSTh79izc3d0BAO7u7khISEBERITU58iRI8jMzISbm5vU58SJE0hLS5P6hIaGwtnZGSVKlPhEW0NERERFmUYD0YsXLxAZGYnIyEgAbwZSR0ZG4t69e1CpVBg1ahR+/PFH/Pnnn7hy5Qp8fX1hZ2eHdu3aAQAqV66MFi1aYODAgTh37hzCwsLg7++Prl27ws7ODgDQvXt36Orqon///rh27Ro2bdqERYsWYcyYMRraaiIiIipqNHrb/YULF/D1119L01khpXfv3ggODsb48eORnJyMQYMGISEhAQ0bNsT+/fuhr68vPSckJAT+/v5o2rQptLS00LFjRyxevFiab2pqioMHD8LPzw+urq6wtLTEpEmTeMs9ERERSTQaiDw9PSGEyHW+SqXC1KlTMXXq1Fz7mJubY/369e9cT/Xq1XHy5Ml810lERERftiI7hoiIiIjoU2EgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsUr0oEoMDAQKpVK9qhUqZI0//Xr1/Dz84OFhQWMjY3RsWNHxMXFyZZx7949+Pj4wNDQEFZWVhg3bhzS09M/9aYQERFREaaj6QLep2rVqjh06JA0raPz/yWPHj0ae/bswZYtW2Bqagp/f3906NABYWFhAICMjAz4+PjAxsYGp0+fxsOHD+Hr64tixYphxowZn3xbiIiIqGgq8oFIR0cHNjY2au2JiYlYvXo11q9fjyZNmgAA1q5di8qVK+PMmTOoV68eDh48iOvXr+PQoUOwtrZGzZo1MW3aNEyYMAGBgYHQ1dX91JtDRERERVCRvmQGALdv34adnR3KlSuHHj164N69ewCAiIgIpKWlwcvLS+pbqVIllClTBuHh4QCA8PBwuLi4wNraWurj7e2NpKQkXLt2Ldd1pqSkICkpSfYgIiKiL1eRDkRubm4IDg7G/v37ERQUhOjoaDRq1AjPnz9HbGwsdHV1YWZmJnuOtbU1YmNjAQCxsbGyMJQ1P2tebmbOnAlTU1PpYW9vX7AbRkREREVKkb5k1rJlS+nf1atXh5ubGxwcHLB582YYGBgU2noDAgIwZswYaTopKYmhiIiI6AtWpM8QZWdmZoaKFSvizp07sLGxQWpqKhISEmR94uLipDFHNjY2anedZU3nNC4pi56eHkxMTGQPIiIi+nJ9VoHoxYsXuHv3LmxtbeHq6opixYrh8OHD0vyoqCjcu3cP7u7uAAB3d3dcuXIF8fHxUp/Q0FCYmJigSpUqn7x+IiIiKpqK9CWz7777Dm3atIGDgwP+/fdfTJ48Gdra2ujWrRtMTU3Rv39/jBkzBubm5jAxMcHw4cPh7u6OevXqAQCaN2+OKlWqoFevXpg9ezZiY2MxceJE+Pn5QU9PT8NbR0REREVFkQ5E//zzD7p164YnT56gZMmSaNiwIc6cOYOSJUsCABYsWAAtLS107NgRKSkp8Pb2xvLly6Xna2trY/fu3Rg6dCjc3d1hZGSE3r17Y+rUqZraJCIiIiqCinQg2rhx4zvn6+vrY9myZVi2bFmufRwcHLB3796CLo2IiIi+IJ/VGCIiIiKiwsBARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIrHQERERESKx0BEREREisdARERERIqnqEC0bNkylC1bFvr6+nBzc8O5c+c0XRIREREVAYoJRJs2bcKYMWMwefJk/PXXX6hRowa8vb0RHx+v6dKIiIhIwxQTiObPn4+BAweib9++qFKlClasWAFDQ0OsWbNG06URERGRhikiEKWmpiIiIgJeXl5Sm5aWFry8vBAeHq7ByoiIiKgo0NF0AZ/C48ePkZGRAWtra1m7tbU1bt68qdY/JSUFKSkp0nRiYiIAICkp6YPWm5HyKh/VUmH40H2XH9zfRQf3t7JwfyvLh+zvrL5CiPf2VUQg+lAzZ87ElClT1Nrt7e01UA0VBNMlQzRdAn1C3N/Kwv2tLPnZ38+fP4epqek7+ygiEFlaWkJbWxtxcXGy9ri4ONjY2Kj1DwgIwJgxY6TpzMxMPH36FBYWFlCpVIVeb1GRlJQEe3t73L9/HyYmJpouhwoZ97eycH8ri1L3txACz58/h52d3Xv7KiIQ6erqwtXVFYcPH0a7du0AvAk5hw8fhr+/v1p/PT096OnpydrMzMw+QaVFk4mJiaLeQErH/a0s3N/KosT9/b4zQ1kUEYgAYMyYMejduzfq1KmDr776CgsXLkRycjL69u2r6dKIiIhIwxQTiLp06YJHjx5h0qRJiI2NRc2aNbF//361gdZERESkPIoJRADg7++f4yUyypmenh4mT56sdvmQvkzc38rC/a0s3N/vpxJ5uReNiIiI6AumiC9mJCIiInoXBiIiIiJSPAYiIiIiUjwGIoXy9PTEqFGjNF0GFSHZj4myZcti4cKFGquHPsz73tMqlQo7duzI8/KOHTsGlUqFhISEj66Niq73HRf5OQ4CAwNRs2bNj67tU1PUXWZElHfnz5+HkZGRpsugAvLw4UOUKFFC02XQZ6Z+/fp4+PBhnr/c8HPGQEREOSpZsqSmS6AClNPPFNHnLS0tDcWKFSvUdejq6irm2OElM8KzZ8/g6+uLEiVKwNDQEC1btsTt27cBvPkdmJIlS2Lr1q1S/5o1a8LW1laaPnXqFPT09PDy5ctPXrsSeHp6Yvjw4Rg1ahRKlCgBa2tr/Pzzz9I3rRcvXhxOTk7Yt2+f9JyrV6+iZcuWMDY2hrW1NXr16oXHjx9L85OTk+Hr6wtjY2PY2tpi3rx5aut9+5JZTEwMVCoVIiMjpfkJCQlQqVQ4duwYgP8/tX7gwAHUqlULBgYGaNKkCeLj47Fv3z5UrlwZJiYm6N69O4+VQpKZmYnx48fD3NwcNjY2CAwMlOZlvzRy+vRp1KxZE/r6+qhTpw527Nihto8BICIiAnXq1IGhoSHq16+PqKioT7MxX5hVq1bBzs4OmZmZsva2bduiX79+AICdO3eidu3a0NfXR7ly5TBlyhSkp6dLfVUqFYKCgvDNN9/AyMgIP/74I5ycnDB37lzZMiMjI6FSqXDnzp081fb48WO0b98ehoaGqFChAv78809pXk6XzH7++WfY29vD0NAQ7du3x/z583P8eavffvsNZcuWhampKbp27Yrnz5/nqR5NYSAi9OnTBxcuXMCff/6J8PBwCCHQqlUrpKWlQaVSwcPDQ/qj9+zZM9y4cQOvXr3CzZs3AQDHjx9H3bp1YWhoqMGt+LKtW7cOlpaWOHfuHIYPH46hQ4eiU6dOqF+/Pv766y80b94cvXr1wsuXL5GQkIAmTZqgVq1auHDhAvbv34+4uDh07txZWt64ceNw/Phx7Ny5EwcPHsSxY8fw119/FUitgYGBWLp0KU6fPo379++jc+fOWLhwIdavX489e/bg4MGDWLJkSYGsi+TWrVsHIyMjnD17FrNnz8bUqVMRGhqq1i8pKQlt2rSBi4sL/vrrL0ybNg0TJkzIcZnff/895s2bhwsXLkBHR0f6400fplOnTnjy5AmOHj0qtT19+hT79+9Hjx49cPLkSfj6+mLkyJG4fv06Vq5cieDgYEyfPl22nMDAQLRv3x5XrlxB//790a9fP6xdu1bWZ+3atfDw8ICTk1OeapsyZQo6d+6My5cvo1WrVujRoweePn2aY9+wsDAMGTIEI0eORGRkJJo1a6ZWIwDcvXsXO3bswO7du7F7924cP34cP/30U57q0RhBitS4cWMxcuRIcevWLQFAhIWFSfMeP34sDAwMxObNm4UQQixevFhUrVpVCCHEjh07hJubm2jbtq0ICgoSQgjh5eUl/vvf/376jVCIxo0bi4YNG0rT6enpwsjISPTq1Utqe/jwoQAgwsPDxbRp00Tz5s1ly7h//74AIKKiosTz58+Frq6utH+FEOLJkyfCwMBAjBw5UmpzcHAQCxYsEEIIER0dLQCIixcvSvOfPXsmAIijR48KIYQ4evSoACAOHTok9Zk5c6YAIO7evSu1DR48WHh7e3/MS0I5yH6cCCFE3bp1xYQJE4QQQgAQ27dvF0IIERQUJCwsLMSrV6+kvj///LNsH+e0P/fs2SMAyJ5Hede2bVvRr18/aXrlypXCzs5OZGRkiKZNm4oZM2bI+v/222/C1tZWmgYgRo0aJevz4MEDoa2tLc6ePSuEECI1NVVYWlqK4ODgPNUEQEycOFGafvHihQAg9u3bJ4T4/+Pg2bNnQgghunTpInx8fGTL6NGjhzA1NZWmJ0+eLAwNDUVSUpLUNm7cOOHm5panmjSFZ4gU7saNG9DR0YGbm5vUZmFhAWdnZ9y4cQMA0LhxY1y/fh2PHj3C8ePH4enpCU9PTxw7dgxpaWk4ffo0PD09NbQFylC9enXp39ra2rCwsICLi4vUlvWbfPHx8bh06RKOHj0KY2Nj6VGpUiUAb/7XdvfuXaSmpsr2ubm5OZydnQu8VmtraxgaGqJcuXKytvj4+AJZF8m9/doDgK2tbY6vdVRUFKpXrw59fX2p7auvvnrvMrMulXP/5U+PHj2wbds2pKSkAABCQkLQtWtXaGlp4dKlS5g6darsfTtw4EA8fPhQdom5Tp06smXa2dnBx8cHa9asAQDs2rULKSkp6NSpU57rensfGxkZwcTEJNd9HBUVpXas5HTslC1bFsWLF5emczsWixIOqqb3cnFxgbm5OY4fP47jx49j+vTpsLGxwaxZs3D+/HmkpaWhfv36mi7zi5Z94KRKpZK1qVQqAG/GkLx48QJt2rTBrFmz1JZja2ub53EFb9PSevN/J/HWL/2kpaW9t9bsdWa1ZR9HQQWjMF7r3I4z+nBt2rSBEAJ79uxB3bp1cfLkSSxYsAAA8OLFC0yZMgUdOnRQe97bwTWnOz8HDBiAXr16YcGCBVi7di26dOnyQUMYCvu4KahlFjYGIoWrXLky0tPTcfbsWSnUPHnyBFFRUahSpQqANwdyo0aNsHPnTly7dg0NGzaEoaEhUlJSsHLlStSpU4e3ZxchtWvXxrZt21C2bFno6Ki/xcuXL49ixYrh7NmzKFOmDIA3Y8Nu3bqFxo0b57jMrDvOHj58iFq1agGA2uBb+nw4Ozvj999/R0pKivRjn+fPn9dwVV8+fX19dOjQASEhIbhz5w6cnZ1Ru3ZtAG/et1FRUXke9/O2Vq1awcjICEFBQdi/fz9OnDhR0KVLnJ2d1Y6VL+XY4SUzhatQoQLatm2LgQMH4tSpU7h06RJ69uyJUqVKoW3btlI/T09PbNiwATVr1oSxsTG0tLTg4eGBkJCQXP+Ikmb4+fnh6dOn6NatG86fP4+7d+/iwIED6Nu3LzIyMmBsbIz+/ftj3LhxOHLkCK5evYo+ffpIZ4FyYmBggHr16uGnn37CjRs3cPz4cUycOPETbhUVpO7duyMzMxODBg3CjRs3cODAAelOpayzQFQ4evTogT179mDNmjXo0aOH1D5p0iT8+uuvmDJlCq5du4YbN25g48aNeXqfaWtro0+fPggICECFChXg7u5eaPUPHz4ce/fuxfz583H79m2sXLkS+/bt+yKOGwYiwtq1a+Hq6orWrVvD3d0dQgjs3btXdsqzcePGyMjIkI0V8vT0VGsjzbOzs0NYWBgyMjLQvHlzuLi4YNSoUTAzM5NCz5w5c9CoUSO0adMGXl5eaNiwIVxdXd+53DVr1iA9PR2urq4YNWoUfvzxx0+xOVQITExMsGvXLkRGRqJmzZr4/vvvMWnSJADyyzNU8Jo0aQJzc3NERUWhe/fuUru3tzd2796NgwcPom7duqhXrx4WLFgABweHPC23f//+SE1NRd++fQurdABAgwYNsGLFCsyfPx81atTA/v37MXr06C/iuFGJtwcFEBGRIoWEhKBv375ITEyEgYGBpsuhD3Ty5Ek0bdoU9+/fl26y+FQGDhyImzdv4uTJk590vQWNY4iIiBTo119/Rbly5VCqVClcunQJEyZMQOfOnRmGPjMpKSl49OgRAgMD0alTp08ShubOnYtmzZrByMgI+/btw7p167B8+fJCX29h4yUzIiIFio2NRc+ePVG5cmWMHj0anTp1wqpVqzRdFn2gDRs2wMHBAQkJCZg9e7ZsXkhIiOw2/rcfVatWzfc6z507h2bNmsHFxQUrVqzA4sWLMWDAgI/dFI3jJTMiIqIv0PPnzxEXF5fjvGLFiuV5fJJSMBARERGR4vGSGRERESkeAxEREREpHgMRERERKR4DERERESkeAxER5apPnz5o166drO3Ro0eoVq0a3NzckJiYqJnCiIgKGAMREeXZo0eP0KRJExgYGODgwYMwNTXVdElERAWCgYiI8uTx48do2rQp9PT0EBoaKgtD8+fPh4uLC4yMjGBvb49hw4bhxYsXAIBjx45BpVLl+shy6tQpNGrUCAYGBrC3t8eIESOQnJwszS9btqzac7/77jtpflBQEMqXLw9dXV04Ozvjt99+k9WvUqkQFBSEli1bwsDAAOXKlcPWrVul+TExMVCpVIiMjJTafvjhB6hUKixcuFBqu3nzJpo1awZTU1OpDjMzs1xft6ztT0hIUKtnx44d0nRKSgq+++47lCpVCkZGRnBzc8OxY8ek+cHBwWrryV5zbusCgISEBKhUKtkyiej/MRAR0Xs9efIEXl5e0NHRQWhoqNofZi0tLSxevBjXrl3DunXrcOTIEYwfPx4AUL9+fTx8+BAPHz7Etm3bAECafvjwIQDg7t27aNGiBTp27IjLly9j06ZNOHXqFPz9/WXrmTp1quy5kydPBgBs374dI0eOxNixY3H16lUMHjwYffv2xdGjR2XP/+GHH9CxY0dcunQJPXr0QNeuXXHjxo0ct/mff/7BwoUL1X7Kol+/fkhLS0NYWBgePnwoC0sfw9/fH+Hh4di4cSMuX76MTp06oUWLFrh9+3aBLJ+I3kMQEeWid+/ewsPDQ9SsWVMUK1ZM1KtXT6Snp7/3eVu2bBEWFhZq7UePHhU5fez0799fDBo0SNZ28uRJoaWlJV69eiWEEMLBwUEsWLAgx/XVr19fDBw4UNbWqVMn0apVK2kagBgyZIisj5ubmxg6dKgQQojo6GgBQFy8eFEIIYSvr6/o37+/2noNDAxESEiINL127VphamqaY11vb/OzZ89k7QDE9u3bhRBC/P3330JbW1s8ePBA1qdp06YiICAg1/Vkrzm3dQkhxLNnzwQAcfTo0VxrJVIyniEionc6ceIEMjMzERkZiTt37qj9XhIAHDp0CE2bNkWpUqVQvHhx9OrVC0+ePMHLly/ztI5Lly4hODhY9ltL3t7eyMzMRHR09Huff+PGDTRo0EDW1qBBA7WzP+7u7mrTOZ0h+uuvv7B9+3ZMmzZNbZ6joyO2b9+e523LiytXriAjIwMVK1aUvQbHjx/H3bt3pX6JiYl5+j2q0qVLo3jx4nB0dMTAgQM5+J0oD/hr90T0TuXKlcPhw4dhaWmJ5cuXo2fPnvDx8UH16tUBvBnH0rp1awwdOhTTp0+Hubk5Tp06hf79+yM1NRWGhobvXceLFy8wePBgjBgxQm1emTJlCnyb3mfs2LH47rvvYGtrqzZv9erV6N27N4oXLw4DAwOkp6dDX1//o9b34sULaGtrIyIiAtra2rJ5xsbG0r+LFy+Ov/76S5p+8OABPD091ZZ38uRJFC9eHDExMRgwYAC+//57/Pjjjx9VI9GXjoGIiN7JxcUFlpaWAIBOnTrhjz/+gK+vL86dOwddXV1EREQgMzMT8+bNg5bWm5POmzdv/qB11K5dG9evX4eTk1O+aqxcuTLCwsLQu3dvqS0sLAxVqlSR9Ttz5gx8fX1l07Vq1ZL1+fPPP3Hr1i3s2bMnx3XVq1cP33zzDU6cOIHff/8d27dvx4wZM/JVd5ZatWohIyMD8fHxaNSoUa79tLS0ZK+Rjk7OH+GOjo4wMzODk5MTOnXqhPDw8I+qj0gJGIiI6IMsW7YM1apVw5QpUzB9+nQ4OTkhLS0NS5YsQZs2bRAWFoYVK1Z80DInTJiAevXqwd/fHwMGDICRkRGuX7+O0NBQLF269L3PHzduHDp37oxatWrBy8sLu3btwh9//IFDhw7J+m3ZsgV16tRBw4YNERISgnPnzmH16tWyPrNnz8aSJUtyPbO1bds2BAcHIyIiAmXKlIGVlVWetjElJQWvX7+WtaWlpSEzMxMVK1ZEjx494Ovri3nz5qFWrVp49OgRDh8+jOrVq8PHxydP68i+rpiYGOzbtw8NGzb8oOcTKRHHEBHRBzE3N8fPP/+MWbNm4ezZs6hRowbmz5+PWbNmoVq1aggJCcHMmTM/aJnVq1fH8ePHcevWLTRq1Ai1atXCpEmTYGdnl6fnt2vXDosWLcLcuXNRtWpVrFy5EmvXrlW7nDRlyhRs3LgR1atXx6+//ooNGzaonUVycnKSnWl6261btzBgwACsX7/+gy/l2djYwMDAQHoAQOfOnXHixAkAwNq1a+Hr64uxY8fC2dkZ7dq1w/nz5/N1yTBrXY0aNUKNGjU+eH8QKZFKCCE0XQQRUWFTqVTYvn272jdva1K7du0watSoHMcBEdGnxTNEREQaoqurK427IiLN4hgiIiIN+dDB50RUeBiIiEgRODqAiN6F52qJiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjx/g/vV9EfCmi0ggAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ4ElEQVR4nO3deVxN+f8H8Ndt3yO0kWRLyCAmWRIiNIZhNIjsaxnb4NuMIQwNY18mzCBjMpYxdiI7ydbIrsFkGNMiVITWz+8Pj86v2y0q1Y3zej4e9/HofM7nnvM+95xbr875nHsVQggBIiIiIhnTUHcBREREROrGQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdAREQfpOfPn2PJkiXSdFJSElauXKm+gui9FxwcDIVCgXv37qm7lHJBoVAgICBAmn7fXx8GojKQc5DkPPT09FC3bl34+fkhPj5e3eURfZD09fUxbdo0hISE4MGDBwgICMCePXvUXRYRlVNa6i5ATmbNmgU7Ozu8evUKp0+fRlBQEPbv349r167BwMBA3eURfVA0NTUxc+ZM+Pj4IDs7GyYmJti3b5+6yyL6YA0YMAB9+vSBrq6uukspFgaiMtSlSxc0a9YMADBs2DBUqlQJixYtwq5du9C3b181V0f04Zk0aRK++OILPHjwAA4ODqhQoYK6SyKSpKamwtDQUN1llBhNTU1oamqqu4xi4yUzNWrfvj0AICYmBgDw5MkTfPXVV3B0dISRkRFMTEzQpUsXXL58WeW5r169QkBAAOrWrQs9PT1YWVmhZ8+euHv3LgDg3r17Spfp8j7c3NykZR0/fhwKhQJbtmzB119/DUtLSxgaGuLTTz/FgwcPVNZ97tw5dO7cGaampjAwMEDbtm0RHh6e7za6ubnlu/7c151z/Prrr3BycoK+vj7MzMzQp0+ffNf/pm3LLTs7G0uWLEGDBg2gp6cHCwsLjBw5Ek+fPlXqV6NGDXzyyScq6/Hz81NZZn61//DDDyqvKQCkpaVhxowZqF27NnR1dWFjY4MpU6YgLS0t39cqNzc3N5XlzZkzBxoaGti0aZPUdurUKfTu3RvVq1eX1jFhwgS8fPlS6jNo0KA3Hgt5r/kfOHAAbdq0gaGhIYyNjeHp6Ynr168r1VLQMmvXrq3U78cff0SDBg2gq6sLa2tr+Pr6IikpSWVbGzZsiMjISLRs2RL6+vqws7PDqlWrlPrlHKfHjx9Xavf09FTZLwEBAdK+q1atGlxcXKClpQVLS8t8l5FXzvMTExOV2i9evAiFQoHg4GCl9tI61vz8/AqssbDjNd62//O+Ftu2bZPeh5UrV0b//v3x8OFDleXeunULXl5eqFKlCvT19WFvb49vvvlGpV+NGjUKtd7CHHf5yb2v3/b65Lz+p0+fxscffww9PT3UrFkTv/zyi8rzr1+/jvbt20NfXx/VqlXDd999h+zs7HxrKOx7xsjICHfv3kXXrl1hbGwMb29vAMDt27fRq1cvWFpaQk9PD9WqVUOfPn2QnJwsPX/9+vVo3749zM3Noauri/r16yMoKEillpxtPH78OJo1awZ9fX04OjpKr/cff/wBR0dH6OnpwcnJCZcuXcq3zr///hseHh4wNDSEtbU1Zs2aBSFE/juhhF7zK1euoG3btkqv+fr168tsXBLPEKlRTnipVKkSAODvv//Gzp070bt3b9jZ2SE+Ph6rV69G27ZtcePGDVhbWwMAsrKy8Mknn+DIkSPo06cPxo0bh2fPniEsLAzXrl1DrVq1pHX07dsXXbt2VVqvv79/vvXMmTMHCoUCU6dORUJCApYsWQJ3d3dERUVBX18fAHD06FF06dIFTk5OmDFjBjQ0NKQ36qlTp/Dxxx+rLLdatWoIDAwE8Hqg6+jRo/Nd97fffgsvLy8MGzYMjx49wvLly+Hq6opLly7l+5/9iBEj0KZNGwCv3+Q7duxQmj9y5EgEBwdj8ODB+PLLLxETE4MVK1bg0qVLCA8Ph7a2dr6vQ1EkJSVJ25ZbdnY2Pv30U5w+fRojRoyAg4MDrl69isWLF+Ovv/7Czp07i7Se9evXY9q0aVi4cCH69esntW/btg0vXrzA6NGjUalSJZw/fx7Lly/Hv//+i23btgF4/Tq4u7tLzxkwYAA+++wz9OzZU2qrUqUKAGDjxo0YOHAgPDw8MG/ePLx48QJBQUFo3bo1Ll26hBo1akjP0dXVxc8//6xUp7GxsfRzQEAAZs6cCXd3d4wePRrR0dEICgrChQsXVF7/p0+fomvXrvDy8kLfvn2xdetWjB49Gjo6OhgyZEiBr8vJkyexf//+Qr2GCxcuLLUxe2VxrL2L/PbVhQsXsGzZMqW2nG1o3rw5AgMDER8fj6VLlyI8PFzpfXjlyhW0adMG2traGDFiBGrUqIG7d+9iz549mDNnjsr627RpgxEjRgAAbt68iblz5yrNL8px967u3LmDzz//HEOHDsXAgQOxbt06DBo0CE5OTmjQoAEAIC4uDu3atUNmZib+97//wdDQEGvWrJF+Dxa39szMTHh4eKB169ZYsGABDAwMkJ6eDg8PD6SlpWHs2LGwtLTEw4cPsXfvXiQlJcHU1BQAEBQUhAYNGuDTTz+FlpYW9uzZgzFjxiA7Oxu+vr4q29ivXz+MHDkS/fv3x4IFC9CtWzesWrUKX3/9NcaMGQMACAwMhJeXF6Kjo6Gh8f/nR7KystC5c2e0aNEC8+fPR2hoKGbMmIHMzEzMmjWrVF7zhw8fol27dlAoFPD394ehoSF+/vnnsr38JqjUrV+/XgAQhw8fFo8ePRIPHjwQmzdvFpUqVRL6+vri33//FUII8erVK5GVlaX03JiYGKGrqytmzZolta1bt04AEIsWLVJZV3Z2tvQ8AOKHH35Q6dOgQQPRtm1bafrYsWMCgKhatapISUmR2rdu3SoAiKVLl0rLrlOnjvDw8JDWI4QQL168EHZ2dqJjx44q62rZsqVo2LChNP3o0SMBQMyYMUNqu3fvntDU1BRz5sxReu7Vq1eFlpaWSvvt27cFALFhwwapbcaMGSL34Xzq1CkBQISEhCg9NzQ0VKXd1tZWeHp6qtTu6+sr8r5F8tY+ZcoUYW5uLpycnJRe040bNwoNDQ1x6tQppeevWrVKABDh4eEq68utbdu20vL27dsntLS0xKRJk1T6vXjxQqUtMDBQKBQK8c8//+S77LzbkOPZs2eiQoUKYvjw4UrtcXFxwtTUVKl94MCBwtDQsMD6ExIShI6OjujUqZPSMb1ixQoBQKxbt05pWwGIhQsXSm1paWmicePGwtzcXKSnpwsh/v84PXbsmNTP2dlZdOnSRWWb8h4PCQkJwtjYWOqbexn5yXn+o0ePlNovXLggAIj169dLbaV5rPn6+hZYY87vlZiYmDduS0H7atu2bUqvRXp6ujA3NxcNGzYUL1++lPrt3btXABDTp0+X2lxdXYWxsbHKMZb790KOqlWrisGDB0vTefdjUY67/OTd1znye31sbW0FAHHy5EmpLSEhQejq6iq9v8aPHy8AiHPnzin1MzU1VVpmUd8zAMT//vc/pb6XLl0SAMS2bdveuJ35vdc9PDxEzZo1ldpytvHMmTNS28GDBwUAoa+vr7TPVq9erfJ+yKlz7NixUlt2drbw9PQUOjo6Su+JvO+7d3nNx44dKxQKhbh06ZLU9vjxY2FmZlao47wk8JJZGXJ3d0eVKlVgY2ODPn36wMjICDt27EDVqlUBvP4vLielZ2Vl4fHjxzAyMoK9vT3+/PNPaTnbt29H5cqVMXbsWJV15HfquLB8fHyU/sP//PPPYWVlJf0HHhUVhdu3b6Nfv354/PgxEhMTkZiYiNTUVHTo0AEnT55UOaX86tUr6OnpvXG9f/zxB7Kzs+Hl5SUtMzExEZaWlqhTpw6OHTum1D89PR0A3vifw7Zt22BqaoqOHTsqLdPJyQlGRkYqy8zIyFDql5iYiFevXr2x7ocPH2L58uX49ttvYWRkpLJ+BwcH1KtXT2mZOZdJ866/IOfPn4eXlxd69eqFH374QWV+7v9YU1NTkZiYiJYtW0IIoXIq/G3CwsKQlJSEvn37KtWsqakJZ2fnQtcMAIcPH0Z6ejrGjx+v9J/n8OHD8x3crKWlhZEjR0rTOjo6GDlyJBISEhAZGZnvOv744w9cuHAB33///VvrmT17NkxNTfHll18WehsKqzSPtVevXiExMRGPHz8u8HJNSbl48SISEhIwZswYpfesp6cn6tWrJ+2zR48e4eTJkxgyZAiqV6+utIz8fv+kp6e/8b1aksddYdSvX186swy8Pjtqb2+Pv//+W2rbv38/WrRooXTGu0qVKtIlrnepPe8Z8pwzQAcPHsSLFy8KrDv3ez05ORmJiYlo27Yt/v77b6VLaznb6OLiIk07OzsDeD1MI/c+y2nPve05cl+uzbl8m56ejsOHDxdYY0EK85qHhobCxcUFjRs3ltrMzMxUXvPSxEtmZWjlypWoW7cutLS0YGFhAXt7e6U/FtnZ2Vi6dCl+/PFHxMTEICsrS5qXc1kNeH2pzd7eHlpaJbv76tSpozSdMyYk59rt7du3AQADBw4scBnJycmoWLGiNJ2YmKiy3Lxu374NIUSB/fJebsgZg5I3hORdZnJyMszNzfOdn5CQoDR96NAh6bJRYc2YMQPW1tYYOXIkfv/9d5X137x5s8Bl5l1/fh4+fAhPT0+kpqbi8ePH+f6xuX//PqZPn47du3erjFfJ+0vybXL2b05oy8vExKTQy/rnn38AAPb29krtOjo6qFmzpjQ/h7W1tcrg0rp16wJ4PWasRYsWSvOysrLw9ddfw9vbG40aNXpjLTExMVi9ejWCgoLeGs6LozSPtbVr12Lt2rUAXr92zs7OWLRokXRzRkkqaJ8BQL169XD69GkA///Hs2HDhoVabnJy8lvfq0DJHHeFkTfEAUDFihWV3j///POPFBZyy/vaFLV2LS0tVKtWTanNzs4OEydOxKJFixASEoI2bdrg008/Rf/+/aWwBADh4eGYMWMGIiIiVIJTcnKyUt+825gzz8bGJt/2vL87NDQ0ULNmTaW23O/Hoirsa547xOXIOy6xNDEQlaGPP/74jb/I5s6di2+//RZDhgzB7NmzYWZmBg0NDYwfP77U/zssjJwafvjhB6UUn1vuX3zp6emIjY1Fx44d37pchUKBAwcO5HuHQt5fpnFxcQAAS0vLNy7T3NwcISEh+c7P+wfJ2dkZ3333nVLbihUrsGvXrnyff/PmTQQHB+PXX3/Nd3xIdnY2HB0dsWjRonyfn/cXU37u3LmDpk2bYvHixRgwYAA2bNigFEazsrLQsWNHPHnyBFOnTkW9evVgaGiIhw8fYtCgQUU+ZnL6b9y4Md/XtqQD+LtYu3Yt7t27h4MHD7617zfffIM6depg4MCBOHXqVInXUprHWvfu3eHn5wchBGJiYjBr1ix88skn0h/i8u7JkydIT09/63sVKP5xV9BZ8dz/UOZW0F1Q4i0DhvNT1NpzXwXIbeHChRg0aBB27dqFQ4cO4csvv0RgYCDOnj2LatWq4e7du+jQoQPq1auHRYsWwcbGBjo6Oti/fz8WL16s8l4vaBtLctuLQl3rLary8xuO8Pvvv6Ndu3bSf4Q5kpKSULlyZWm6Vq1aOHfuHDIyMkp0sGbeX7JCCNy5c0f6DzxnsLaJiYnSIN2CXL58GRkZGW/9b7ZWrVoQQsDOzk76L+RNbty4AYVCke9/srmXefjwYbRq1SrfgZB5Va5cWWWb3jTw2d/fH40bN8YXX3xR4PovX76MDh06FPsyZs7lSgsLC+zatQuTJk1C165dpT+wV69exV9//YUNGzbAx8dHel5YWFix1pezf83NzQu1f9/E1tYWABAdHa30n2Z6ejpiYmJUlv/ff/+p3IL8119/AYDKgNoXL15g5syZGDNmjLSegly6dAmbN2/Gzp07S+124NI81qpVq6bU18jICN7e3kW+HFoYufdZ3jMe0dHR0vyc/Xnt2rW3LvPGjRsAAAcHhwL7vOtxl3NGOikpSenmi7xnIYvC1tY239AZHR2tNF2S7xlHR0c4Ojpi2rRpOHPmDFq1aoVVq1bhu+++w549e5CWlobdu3crnW0p6cuJObKzs/H3338r/T4u6P1YUmxtbXHnzh2V9vzaSgvHEJUjmpqaKol527ZtKre89urVC4mJiVixYoXKMt4lcf/yyy949uyZNP37778jNjYWXbp0AQA4OTmhVq1aWLBgAZ4/f67y/EePHqnUrqmpme9txrn17NlT+hC9vPULIfD48WNpOjMzE9u3b8fHH3/8xtPwXl5eyMrKwuzZs1XmZWZmqtz6XRQRERHYtWsXvv/++wLDjpeXFx4+fIiffvpJZd7Lly+Rmpr61vXUrVsXFhYWAIDly5cjOzsb48aNk+bn/IHP/ZoJIbB06dIibU8ODw8PmJiYYO7cucjIyFCZn3f/vom7uzt0dHSwbNkypfrWrl2L5ORkeHp6KvXPzMzE6tWrpen09HSsXr0aVapUgZOTk1LfpUuXIjU1Nd9bvPP63//+h1atWuHTTz8tdO1FVZrHWl45ZwJKI9w1a9YM5ubmWLVqldJHQxw4cAA3b96U9lmVKlXg6uqKdevW4f79+0rLyPv+3bx5M3R0dNC6desC1/uux11OKDl58qTUlpqaig0bNrzxeW/StWtXnD17FufPn1eqI+9ZwJJ4z6SkpCAzM1OpzdHRERoaGtJ+yO+9npycjPXr1xd+o4oo998XIQRWrFgBbW1tdOjQoVTW5+HhgYiICERFRUltT548KfDMa2ngGaJy5JNPPsGsWbMwePBgtGzZElevXkVISIjKtVwfHx/88ssvmDhxIs6fP482bdogNTUVhw8fxpgxY9C9e/dird/MzAytW7fG4MGDER8fjyVLlqB27doYPnw4gNfXlX/++Wd06dIFDRo0wODBg1G1alU8fPgQx44dg4mJCfbs2YPU1FSsXLkSy5YtQ926dZU+byQnSF25cgURERFwcXFBrVq18N1338Hf3x/37t1Djx49YGxsjJiYGOzYsQMjRozAV199hcOHD+Pbb7/FlStX3voVDG3btsXIkSMRGBiIqKgodOrUCdra2rh9+za2bduGpUuX4vPPPy/W63To0CF07Njxjf8RDhgwAFu3bsWoUaNw7NgxtGrVCllZWbh16xa2bt2KgwcPFmkciKWlJX744QcMGzYM/fv3R9euXVGvXj3UqlULX331FR4+fAgTExNs375dZTxAYZmYmCAoKAgDBgxA06ZN0adPH1SpUgX379/Hvn370KpVq3xDeH6qVKkCf39/zJw5E507d8ann36K6Oho/Pjjj2jevDn69++v1N/a2hrz5s3DvXv3ULduXWzZsgVRUVFYs2aNylnQQ4cOYc6cOUrj6gpy6NChAj8jqzCOHj2qNA4k56zB1atXcfXqVTg6OpbqsXb//n2EhoZKl8zmzJkDW1tbNGnSpMQvm2lra2PevHkYPHgw2rZti759+0q33deoUQMTJkyQ+i5btgytW7dG06ZNMWLECNjZ2eHevXvYt2+fdPPFjBkz8Ntvv+F///vfG8cBvetx16lTJ1SvXh1Dhw7F5MmToampiXXr1knLKI4pU6Zg48aN6Ny5M8aNGyfddm9ra4srV66UWO3A62PMz88PvXv3Rt26dZGZmYmNGzdCU1MTvXr1krZRR0cH3bp1w8iRI/H8+XP89NNPMDc3R2xsbLG28U309PQQGhqKgQMHwtnZGQcOHMC+ffvw9ddfF3msZWFNmTIFv/76Kzp27IixY8dKt91Xr14dT548eacbhgqt1O9jI+lWxAsXLryx36tXr8SkSZOElZWV0NfXF61atRIRERFKt2DnePHihfjmm2+EnZ2d0NbWFpaWluLzzz8Xd+/eFUIU77b73377Tfj7+wtzc3Ohr68vPD098711+9KlS6Jnz56iUqVKQldXV9ja2govLy9x5MgRpXW/7TFw4ECl5W7fvl20bt1aGBoaCkNDQ1GvXj3h6+sroqOjhRCvb8t0dXUVoaGhKjUVdOvtmjVrhJOTk9DX1xfGxsbC0dFRTJkyRfz3339Sn6LeCq1QKERkZKRSe377KD09XcybN080aNBA6OrqiooVKwonJycxc+ZMkZycrLK+ty1PCCHat28vqlevLp49eyaEEOLGjRvC3d1dGBkZicqVK4vhw4eLy5cvq9wanncb8rvtPsexY8eEh4eHMDU1FXp6eqJWrVpi0KBB4uLFi1Kft912n2PFihWiXr16QltbW1hYWIjRo0eLp0+fqmxrgwYNxMWLF4WLi4vQ09MTtra2YsWKFSp1ARBWVlYiNTX1jduUczx0794932UU9rb7ohy/pXGs5TwUCoWwtLQUPXv2FDdv3hRClPxt9zm2bNkimjRpInR1dYWZmZnw9vaWPhokt2vXronPPvtMVKhQQejp6Ql7e3vx7bffCiGE+O2330TDhg3F0qVLVW7FL2gfFOa4K0hkZKRwdnYWOjo6onr16mLRokUF3gKe3+uf3/vtypUrom3btkJPT09UrVpVzJ49W6xduzbf1/xd3jN///23GDJkiKhVq5bQ09MTZmZmol27duLw4cNK/Xbv3i0aNWok9PT0RI0aNcS8efOkj2ApzDYin49xyO/vRE6dd+/eFZ06dRIGBgbCwsJCzJgxQ+VjYfK+7971Nb906ZJo06aN0NXVFdWqVROBgYFi2bJlAoCIi4tTWUZJUwhRzkY1UZk7fvw42rVrh23bthX7P9nc7t27Bzs7O8TExBR4vTkgIAD37t1T+cRfkh83NzckJiYWakxKeTFo0CAA4PFLH5xBgwbh999/z3dYhDqMHz8eq1evxvPnz0v9a0E4hoiIiIjULvdXDgHA48ePsXHjRrRu3bpMviONY4ioxOXcCfOmQc+NGjWSvoqE6H3j6Oio7hKIPjguLi5wc3ODg4MD4uPjsXbtWqSkpODbb78tk/UzEFGJq1y5Mn799dc39sn9PVpE75tJkyapuwSiD07Xrl3x+++/Y82aNVAoFGjatCnWrl0LV1fXMlk/xxARERGR7HEMEREREckeAxERERHJHscQFUJ2djb+++8/GBsbl82HQxEREdE7E0Lg2bNnsLa2zvd75HJjICqE//77r1BfxklERETlz4MHD1CtWrU39mEgKgRjY2MAr1/QN30EPREREZUfKSkpsLGxkf6OvwkDUSHkXCYzMTFhICIiInrPFGa4CwdVExERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsqTUQBQUFoVGjRjAxMYGJiQlcXFxw4MABaf6rV6/g6+uLSpUqwcjICL169UJ8fLzSMu7fvw9PT08YGBjA3NwckydPRmZmplKf48ePo2nTptDV1UXt2rURHBxcFptHRERE7wktda68WrVq+P7771GnTh0IIbBhwwZ0794dly5dQoMGDTBhwgTs27cP27Ztg6mpKfz8/NCzZ0+Eh4cDALKysuDp6QlLS0ucOXMGsbGx8PHxgba2NubOnQsAiImJgaenJ0aNGoWQkBAcOXIEw4YNg5WVFTw8PEp1+5wm/1Kqy6fCi/zBp9TXwf1dfnB/ywv3t7yU1v5WayDq1q2b0vScOXMQFBSEs2fPolq1ali7di02bdqE9u3bAwDWr18PBwcHnD17Fi1atMChQ4dw48YNHD58GBYWFmjcuDFmz56NqVOnIiAgADo6Oli1ahXs7OywcOFCAICDgwNOnz6NxYsXl3ogIiIiovdDuRlDlJWVhc2bNyM1NRUuLi6IjIxERkYG3N3dpT716tVD9erVERERAQCIiIiAo6MjLCwspD4eHh5ISUnB9evXpT65l5HTJ2cZ+UlLS0NKSorSg4iIiD5cag9EV69ehZGREXR1dTFq1Cjs2LED9evXR1xcHHR0dFChQgWl/hYWFoiLiwMAxMXFKYWhnPk5897UJyUlBS9fvsy3psDAQJiamkoPGxubkthUIiIiKqfUHojs7e0RFRWFc+fOYfTo0Rg4cCBu3Lih1pr8/f2RnJwsPR48eKDWeoiIiKh0qXUMEQDo6Oigdu3aAAAnJydcuHABS5cuxRdffIH09HQkJSUpnSWKj4+HpaUlAMDS0hLnz59XWl7OXWi5++S9My0+Ph4mJibQ19fPtyZdXV3o6uqWyPYRERFR+af2M0R5ZWdnIy0tDU5OTtDW1saRI0ekedHR0bh//z5cXFwAAC4uLrh69SoSEhKkPmFhYTAxMUH9+vWlPrmXkdMnZxlEREREaj1D5O/vjy5duqB69ep49uwZNm3ahOPHj+PgwYMwNTXF0KFDMXHiRJiZmcHExARjx46Fi4sLWrRoAQDo1KkT6tevjwEDBmD+/PmIi4vDtGnT4OvrK53hGTVqFFasWIEpU6ZgyJAhOHr0KLZu3Yp9+/apc9OJiIioHFFrIEpISICPjw9iY2NhamqKRo0a4eDBg+jYsSMAYPHixdDQ0ECvXr2QlpYGDw8P/Pjjj9LzNTU1sXfvXowePRouLi4wNDTEwIEDMWvWLKmPnZ0d9u3bhwkTJmDp0qWoVq0afv75Z95yT0RERBK1BqK1a9e+cb6enh5WrlyJlStXFtjH1tYW+/fvf+Ny3NzccOnSpWLVSERERB++cjeGiIiIiKisMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7Kk1EAUGBqJ58+YwNjaGubk5evTogejoaKU+bm5uUCgUSo9Ro0Yp9bl//z48PT1hYGAAc3NzTJ48GZmZmUp9jh8/jqZNm0JXVxe1a9dGcHBwaW8eERERvSfUGohOnDgBX19fnD17FmFhYcjIyECnTp2Qmpqq1G/48OGIjY2VHvPnz5fmZWVlwdPTE+np6Thz5gw2bNiA4OBgTJ8+XeoTExMDT09PtGvXDlFRURg/fjyGDRuGgwcPltm2EhERUfmlpc6Vh4aGKk0HBwfD3NwckZGRcHV1ldoNDAxgaWmZ7zIOHTqEGzdu4PDhw7CwsEDjxo0xe/ZsTJ06FQEBAdDR0cGqVatgZ2eHhQsXAgAcHBxw+vRpLF68GB4eHqW3gURERPReKFdjiJKTkwEAZmZmSu0hISGoXLkyGjZsCH9/f7x48UKaFxERAUdHR1hYWEhtHh4eSElJwfXr16U+7u7uSsv08PBAREREvnWkpaUhJSVF6UFEREQfLrWeIcotOzsb48ePR6tWrdCwYUOpvV+/frC1tYW1tTWuXLmCqVOnIjo6Gn/88QcAIC4uTikMAZCm4+Li3tgnJSUFL1++hL6+vtK8wMBAzJw5s8S3kYiIiMqnchOIfH19ce3aNZw+fVqpfcSIEdLPjo6OsLKyQocOHXD37l3UqlWrVGrx9/fHxIkTpemUlBTY2NiUyrqIiIhI/crFJTM/Pz/s3bsXx44dQ7Vq1d7Y19nZGQBw584dAIClpSXi4+OV+uRM54w7KqiPiYmJytkhANDV1YWJiYnSg4iIiD5cag1EQgj4+flhx44dOHr0KOzs7N76nKioKACAlZUVAMDFxQVXr15FQkKC1CcsLAwmJiaoX7++1OfIkSNKywkLC4OLi0sJbQkRERG9z9QaiHx9ffHrr79i06ZNMDY2RlxcHOLi4vDy5UsAwN27dzF79mxERkbi3r172L17N3x8fODq6opGjRoBADp16oT69etjwIABuHz5Mg4ePIhp06bB19cXurq6AIBRo0bh77//xpQpU3Dr1i38+OOP2Lp1KyZMmKC2bSciIqLyQ62BKCgoCMnJyXBzc4OVlZX02LJlCwBAR0cHhw8fRqdOnVCvXj1MmjQJvXr1wp49e6RlaGpqYu/evdDU1ISLiwv69+8PHx8fzJo1S+pjZ2eHffv2ISwsDB999BEWLlyIn3/+mbfcExEREQA1D6oWQrxxvo2NDU6cOPHW5dja2mL//v1v7OPm5oZLly4VqT4iIiKSh3IxqJqIiIhInRiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPbUGogCAwPRvHlzGBsbw9zcHD169EB0dLRSn1evXsHX1xeVKlWCkZERevXqhfj4eKU+9+/fh6enJwwMDGBubo7JkycjMzNTqc/x48fRtGlT6Orqonbt2ggODi7tzSMiIqL3hFoD0YkTJ+Dr64uzZ88iLCwMGRkZ6NSpE1JTU6U+EyZMwJ49e7Bt2zacOHEC//33H3r27CnNz8rKgqenJ9LT03HmzBls2LABwcHBmD59utQnJiYGnp6eaNeuHaKiojB+/HgMGzYMBw8eLNPtJSIiovJJS50rDw0NVZoODg6Gubk5IiMj4erqiuTkZKxduxabNm1C+/btAQDr16+Hg4MDzp49ixYtWuDQoUO4ceMGDh8+DAsLCzRu3BizZ8/G1KlTERAQAB0dHaxatQp2dnZYuHAhAMDBwQGnT5/G4sWL4eHhUebbTUREROVLuRpDlJycDAAwMzMDAERGRiIjIwPu7u5Sn3r16qF69eqIiIgAAERERMDR0REWFhZSHw8PD6SkpOD69etSn9zLyOmTs4y80tLSkJKSovQgIiKiD1e5CUTZ2dkYP348WrVqhYYNGwIA4uLioKOjgwoVKij1tbCwQFxcnNQndxjKmZ8z7019UlJS8PLlS5VaAgMDYWpqKj1sbGxKZBuJiIiofCo3gcjX1xfXrl3D5s2b1V0K/P39kZycLD0ePHig7pKIiIioFKl1DFEOPz8/7N27FydPnkS1atWkdktLS6SnpyMpKUnpLFF8fDwsLS2lPufPn1daXs5daLn75L0zLT4+HiYmJtDX11epR1dXF7q6uiWybURERFT+qfUMkRACfn5+2LFjB44ePQo7Ozul+U5OTtDW1saRI0ektujoaNy/fx8uLi4AABcXF1y9ehUJCQlSn7CwMJiYmKB+/fpSn9zLyOmTswwiIiKSN7WeIfL19cWmTZuwa9cuGBsbS2N+TE1Noa+vD1NTUwwdOhQTJ06EmZkZTExMMHbsWLi4uKBFixYAgE6dOqF+/foYMGAA5s+fj7i4OEybNg2+vr7SWZ5Ro0ZhxYoVmDJlCoYMGYKjR49i69at2Ldvn9q2nYiIiMoPtZ4hCgoKQnJyMtzc3GBlZSU9tmzZIvVZvHgxPvnkE/Tq1Quurq6wtLTEH3/8Ic3X1NTE3r17oampCRcXF/Tv3x8+Pj6YNWuW1MfOzg779u1DWFgYPvroIyxcuBA///wzb7knIiIiAGo+QySEeGsfPT09rFy5EitXriywj62tLfbv3//G5bi5ueHSpUtFrpGIiIg+fOXmLjMiIiIidWEgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2dMq7hNTU1Nx4sQJ3L9/H+np6Urzvvzyy3cujIiIiKisFCsQXbp0CV27dsWLFy+QmpoKMzMzJCYmwsDAAObm5gxERERE9F4p1iWzCRMmoFu3bnj69Cn09fVx9uxZ/PPPP3BycsKCBQtKukYiIiKiUlWsQBQVFYVJkyZBQ0MDmpqaSEtLg42NDebPn4+vv/66pGskIiIiKlXFCkTa2trQ0Hj9VHNzc9y/fx8AYGpqigcPHpRcdURERERloFhjiJo0aYILFy6gTp06aNu2LaZPn47ExERs3LgRDRs2LOkaiYiIiEpVsc4QzZ07F1ZWVgCAOXPmoGLFihg9ejQePXqENWvWlGiBRERERKWtWGeImjVrJv1sbm6O0NDQEiuIiIiIqKwV6wxR+/btkZSUVMKlEBEREalHsQLR8ePHVT6MkYiIiOh9Veyv7lAoFCVZBxEREZHaFPurOz777DPo6OjkO+/o0aPFLoiIiIiorBU7ELm4uMDIyKgkayEiIiJSi2IFIoVCgcmTJ8Pc3Lyk6yEiIiIqc8UaQySEKOk6iIiIiNSmWIFoxowZvFxGREREH4xiXTKbMWMGAODRo0eIjo4GANjb26NKlSolVxkRERFRGSnWGaIXL15gyJAhsLa2hqurK1xdXWFtbY2hQ4fixYsXJV0jERERUakqViCaMGECTpw4gd27dyMpKQlJSUnYtWsXTpw4gUmTJpV0jURERESlqliXzLZv347ff/8dbm5uUlvXrl2hr68PLy8vBAUFlVR9RERERKWu2JfMLCwsVNrNzc15yYyIiIjeO8UKRC4uLpgxYwZevXoltb18+RIzZ86Ei4tLiRVHREREVBaKdclsyZIl6Ny5M6pVq4aPPvoIAHD58mXo6enh4MGDJVogERERUWkrViBydHTE7du3ERISglu3bgEA+vbtC29vb+jr65dogURERESlrViB6OTJk2jZsiWGDx9e0vUQERERlblijSFq164dnjx5UtK1EBEREakFv8uMiIiIZK9Yl8wAICIiAhUrVsx3nqura7ELIiIiIiprxQ5En332Wb7tCoUCWVlZxS6IiIiIqKwV65IZAMTFxSE7O1vlwTBERERE75tiBSKFQlHSdRARERGpjVoHVZ88eRLdunWDtbU1FAoFdu7cqTR/0KBBUCgUSo/OnTsr9Xny5Am8vb1hYmKCChUqYOjQoXj+/LlSnytXrqBNmzbQ09ODjY0N5s+fXyL1ExER0YehWIEoOzsb5ubm77zy1NRUfPTRR1i5cmWBfTp37ozY2Fjp8dtvvynN9/b2xvXr1xEWFoa9e/fi5MmTGDFihDQ/JSUFnTp1gq2tLSIjI/HDDz8gICAAa9aseef6iYiI6MNQrEHVgYGBsLCwwJAhQ5Ta161bh0ePHmHq1KmFWk6XLl3QpUuXN/bR1dWFpaVlvvNu3ryJ0NBQXLhwAc2aNQMALF++HF27dsWCBQtgbW2NkJAQpKenY926ddDR0UGDBg0QFRWFRYsWKQUnIiIikq9inSFavXo16tWrp9LeoEEDrFq16p2Lyu348eMwNzeHvb09Ro8ejcePH0vzIiIiUKFCBSkMAYC7uzs0NDRw7tw5qY+rqyt0dHSkPh4eHoiOjsbTp0/zXWdaWhpSUlKUHkRERPThKlYgiouLg5WVlUp7lSpVEBsb+85F5ejcuTN++eUXHDlyBPPmzcOJEyfQpUsX6U62uLg4lUt3WlpaMDMzQ1xcnNTHwsJCqU/OdE6fvAIDA2Fqaio9bGxsSmybiIiIqPwp1iUzGxsbhIeHw87OTqk9PDwc1tbWJVIYAPTp00f62dHREY0aNUKtWrVw/PhxdOjQocTWk5e/vz8mTpwoTaekpDAUERERfcCKFYiGDx+O8ePHIyMjA+3btwcAHDlyBFOmTMGkSZNKtMDcatasicqVK+POnTvo0KEDLC0tkZCQoNQnMzMTT548kcYdWVpaIj4+XqlPznRBY5N0dXWhq6tbCltARERE5VGxAtHkyZPx+PFjjBkzBunp6QAAPT09TJ06Ff7+/iVaYG7//vsvHj9+LF2uc3FxQVJSEiIjI+Hk5AQAOHr0KLKzs+Hs7Cz1+eabb5CRkQFtbW0AQFhYGOzt7Qv86hEiIiKSl2J/MOO8efPw6NEjnD17FpcvX8aTJ08wffr0Ii3n+fPniIqKQlRUFAAgJiYGUVFRuH//Pp4/f47Jkyfj7NmzuHfvHo4cOYLu3bujdu3a8PDwAAA4ODigc+fOGD58OM6fP4/w8HD4+fmhT58+0qW7fv36QUdHB0OHDsX169exZcsWLF26VOmSGBEREclbsb/LDACMjIzQvHnzYj//4sWLaNeunTSdE1IGDhyIoKAgXLlyBRs2bEBSUhKsra3RqVMnzJ49W+lyVkhICPz8/NChQwdoaGigV69eWLZsmTTf1NQUhw4dgq+vL5ycnFC5cmVMnz6dt9wTERGRpNiB6OLFi9i6dSvu378vXTbL8ccffxRqGW5ubm/81OuDBw++dRlmZmbYtGnTG/s0atQIp06dKlRNREREJD/FumS2efNmtGzZEjdv3sSOHTuQkZGB69ev4+jRozA1NS3pGomIiIhKVbEC0dy5c7F48WLs2bMHOjo6WLp0KW7dugUvLy9Ur169pGskIiIiKlXFCkR3796Fp6cnAEBHRwepqalQKBSYMGECvyOMiIiI3jvFCkQVK1bEs2fPAABVq1bFtWvXAABJSUl48eJFyVVHREREVAaKNaja1dUVYWFhcHR0RO/evTFu3DgcPXoUYWFhpfoJ0kRERESloViBaMWKFXj16hUA4JtvvoG2tjbOnDmDXr16Ydq0aSVaIBEREVFpK1IgyvnWdy0tLRgZGUnTY8aMwZgxY0q+OiIiIqIyUKRAVKFCBSgUirf2y/k2eiIiIqL3QZEC0bFjx5SmhRDo2rUrfv75Z1StWrVECyMiIiIqK0UKRG3btlVp09TURIsWLVCzZs0SK4qIiIioLBXrtnsiIiKiD8k7BaIHDx7gxYsXqFSpUknVQ0RERFTminTJLPe3yCcmJuK3335D+/bt+f1lRERE9F4rUiBavHgxAEChUKBy5cro1q0bP3eIiIiI3ntFCkQxMTGlVQcRERGR2nBQNREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJnloD0cmTJ9GtWzdYW1tDoVBg586dSvOFEJg+fTqsrKygr68Pd3d33L59W6nPkydP4O3tDRMTE1SoUAFDhw7F8+fPlfpcuXIFbdq0gZ6eHmxsbDB//vzS3jQiIiJ6j6g1EKWmpuKjjz7CypUr850/f/58LFu2DKtWrcK5c+dgaGgIDw8PvHr1Surj7e2N69evIywsDHv37sXJkycxYsQIaX5KSgo6deoEW1tbREZG4ocffkBAQADWrFlT6ttHRERE7wctda68S5cu6NKlS77zhBBYsmQJpk2bhu7duwMAfvnlF1hYWGDnzp3o06cPbt68idDQUFy4cAHNmjUDACxfvhxdu3bFggULYG1tjZCQEKSnp2PdunXQ0dFBgwYNEBUVhUWLFikFJyIiIpKvcjuGKCYmBnFxcXB3d5faTE1N4ezsjIiICABAREQEKlSoIIUhAHB3d4eGhgbOnTsn9XF1dYWOjo7Ux8PDA9HR0Xj69Gm+605LS0NKSorSg4iIiD5c5TYQxcXFAQAsLCyU2i0sLKR5cXFxMDc3V5qvpaUFMzMzpT75LSP3OvIKDAyEqamp9LCxsXn3DSIiIqJyq9wGInXy9/dHcnKy9Hjw4IG6SyIiIqJSVG4DkaWlJQAgPj5eqT0+Pl6aZ2lpiYSEBKX5mZmZePLkiVKf/JaRex156erqwsTEROlBREREH65yG4js7OxgaWmJI0eOSG0pKSk4d+4cXFxcAAAuLi5ISkpCZGSk1Ofo0aPIzs6Gs7Oz1OfkyZPIyMiQ+oSFhcHe3h4VK1Yso60hIiKi8kytgej58+eIiopCVFQUgNcDqaOionD//n0oFAqMHz8e3333HXbv3o2rV6/Cx8cH1tbW6NGjBwDAwcEBnTt3xvDhw3H+/HmEh4fDz88Pffr0gbW1NQCgX79+0NHRwdChQ3H9+nVs2bIFS5cuxcSJE9W01URERFTeqPW2+4sXL6Jdu3bSdE5IGThwIIKDgzFlyhSkpqZixIgRSEpKQuvWrREaGgo9PT3pOSEhIfDz80OHDh2goaGBXr16YdmyZdJ8U1NTHDp0CL6+vnByckLlypUxffp03nJPREREErUGIjc3NwghCpyvUCgwa9YszJo1q8A+ZmZm2LRp0xvX06hRI5w6darYdRIREdGHrdyOISIiIiIqKwxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHvlOhAFBARAoVAoPerVqyfNf/XqFXx9fVGpUiUYGRmhV69eiI+PV1rG/fv34enpCQMDA5ibm2Py5MnIzMws600hIiKickxL3QW8TYMGDXD48GFpWkvr/0ueMGEC9u3bh23btsHU1BR+fn7o2bMnwsPDAQBZWVnw9PSEpaUlzpw5g9jYWPj4+EBbWxtz584t820hIiKi8qncByItLS1YWlqqtCcnJ2Pt2rXYtGkT2rdvDwBYv349HBwccPbsWbRo0QKHDh3CjRs3cPjwYVhYWKBx48aYPXs2pk6dioCAAOjo6JT15hAREVE5VK4vmQHA7du3YW1tjZo1a8Lb2xv3798HAERGRiIjIwPu7u5S33r16qF69eqIiIgAAERERMDR0REWFhZSHw8PD6SkpOD69esFrjMtLQ0pKSlKDyIiIvpwletA5OzsjODgYISGhiIoKAgxMTFo06YNnj17hri4OOjo6KBChQpKz7GwsEBcXBwAIC4uTikM5czPmVeQwMBAmJqaSg8bG5uS3TAiIiIqV8r1JbMuXbpIPzdq1AjOzs6wtbXF1q1boa+vX2rr9ff3x8SJE6XplJQUhiIiIqIPWLk+Q5RXhQoVULduXdy5cweWlpZIT09HUlKSUp/4+HhpzJGlpaXKXWc50/mNS8qhq6sLExMTpQcRERF9uN6rQPT8+XPcvXsXVlZWcHJygra2No4cOSLNj46Oxv379+Hi4gIAcHFxwdWrV5GQkCD1CQsLg4mJCerXr1/m9RMREVH5VK4vmX311Vfo1q0bbG1t8d9//2HGjBnQ1NRE3759YWpqiqFDh2LixIkwMzODiYkJxo4dCxcXF7Ro0QIA0KlTJ9SvXx8DBgzA/PnzERcXh2nTpsHX1xe6urpq3joiIiIqL8p1IPr333/Rt29fPH78GFWqVEHr1q1x9uxZVKlSBQCwePFiaGhooFevXkhLS4OHhwd+/PFH6fmamprYu3cvRo8eDRcXFxgaGmLgwIGYNWuWujaJiIiIyqFyHYg2b978xvl6enpYuXIlVq5cWWAfW1tb7N+/v6RLIyIiog/IezWGiIiIiKg0MBARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7MkqEK1cuRI1atSAnp4enJ2dcf78eXWXREREROWAbALRli1bMHHiRMyYMQN//vknPvroI3h4eCAhIUHdpREREZGaySYQLVq0CMOHD8fgwYNRv359rFq1CgYGBli3bp26SyMiIiI1k0UgSk9PR2RkJNzd3aU2DQ0NuLu7IyIiQo2VERERUXmgpe4CykJiYiKysrJgYWGh1G5hYYFbt26p9E9LS0NaWpo0nZycDABISUkp0nqz0l4Wo1oqDUXdd8XB/V1+cH/LC/e3vBRlf+f0FUK8ta8sAlFRBQYGYubMmSrtNjY2aqiGSoLp8lHqLoHKEPe3vHB/y0tx9vezZ89gamr6xj6yCESVK1eGpqYm4uPjldrj4+NhaWmp0t/f3x8TJ06UprOzs/HkyRNUqlQJCoWi1OstL1JSUmBjY4MHDx7AxMRE3eVQKeP+lhfub3mR6/4WQuDZs2ewtrZ+a19ZBCIdHR04OTnhyJEj6NGjB4DXIefIkSPw8/NT6a+rqwtdXV2ltgoVKpRBpeWTiYmJrN5Acsf9LS/c3/Iix/39tjNDOWQRiABg4sSJGDhwIJo1a4aPP/4YS5YsQWpqKgYPHqzu0oiIiEjNZBOIvvjiCzx69AjTp09HXFwcGjdujNDQUJWB1kRERCQ/sglEAODn55fvJTLKn66uLmbMmKFy+ZA+TNzf8sL9LS/c32+nEIW5F42IiIjoAyaLD2YkIiIiehMGIiIiIpI9BiIiIiKSPQYimXJzc8P48ePVXQaVI3mPiRo1amDJkiVqq4eK5m3vaYVCgZ07dxZ6ecePH4dCoUBSUtI710bl19uOi+IcBwEBAWjcuPE711bWZHWXGREV3oULF2BoaKjuMqiExMbGomLFiuoug94zLVu2RGxsbKE/3PB9xkBERPmqUqWKukugEpTf1xTR+y0jIwPa2tqlug4dHR3ZHDu8ZEZ4+vQpfHx8ULFiRRgYGKBLly64ffs2gNffA1OlShX8/vvvUv/GjRvDyspKmj59+jR0dXXx4sWLMq9dDtzc3DB27FiMHz8eFStWhIWFBX766Sfpk9aNjY1Ru3ZtHDhwQHrOtWvX0KVLFxgZGcHCwgIDBgxAYmKiND81NRU+Pj4wMjKClZUVFi5cqLLe3JfM7t27B4VCgaioKGl+UlISFAoFjh8/DuD/T60fPHgQTZo0gb6+Ptq3b4+EhAQcOHAADg4OMDExQb9+/XislJLs7GxMmTIFZmZmsLS0REBAgDQv76WRM2fOoHHjxtDT00OzZs2wc+dOlX0MAJGRkWjWrBkMDAzQsmVLREdHl83GfGDWrFkDa2trZGdnK7V3794dQ4YMAQDs2rULTZs2hZ6eHmrWrImZM2ciMzNT6qtQKBAUFIRPP/0UhoaG+O6771C7dm0sWLBAaZlRUVFQKBS4c+dOoWpLTEzEZ599BgMDA9SpUwe7d++W5uV3yeynn36CjY0NDAwM8Nlnn2HRokX5fr3Vxo0bUaNGDZiamqJPnz549uxZoepRFwYiwqBBg3Dx4kXs3r0bEREREEKga9euyMjIgEKhgKurq/RH7+nTp7h58yZevnyJW7duAQBOnDiB5s2bw8DAQI1b8WHbsGEDKleujPPnz2Ps2LEYPXo0evfujZYtW+LPP/9Ep06dMGDAALx48QJJSUlo3749mjRpgosXLyI0NBTx8fHw8vKSljd58mScOHECu3btwqFDh3D8+HH8+eefJVJrQEAAVqxYgTNnzuDBgwfw8vLCkiVLsGnTJuzbtw+HDh3C8uXLS2RdpGzDhg0wNDTEuXPnMH/+fMyaNQthYWEq/VJSUtCtWzc4Ojrizz//xOzZszF16tR8l/nNN99g4cKFuHjxIrS0tKQ/3lQ0vXv3xuPHj3Hs2DGp7cmTJwgNDYW3tzdOnToFHx8fjBs3Djdu3MDq1asRHByMOXPmKC0nICAAn332Ga5evYqhQ4diyJAhWL9+vVKf9evXw9XVFbVr1y5UbTNnzoSXlxeuXLmCrl27wtvbG0+ePMm3b3h4OEaNGoVx48YhKioKHTt2VKkRAO7evYudO3di79692Lt3L06cOIHvv/++UPWojSBZatu2rRg3bpz466+/BAARHh4uzUtMTBT6+vpi69atQgghli1bJho0aCCEEGLnzp3C2dlZdO/eXQQFBQkhhHB3dxdff/112W+ETLRt21a0bt1ams7MzBSGhoZiwIABUltsbKwAICIiIsTs2bNFp06dlJbx4MEDAUBER0eLZ8+eCR0dHWn/CiHE48ePhb6+vhg3bpzUZmtrKxYvXiyEECImJkYAEJcuXZLmP336VAAQx44dE0IIcezYMQFAHD58WOoTGBgoAIi7d+9KbSNHjhQeHh7v8pJQPvIeJ0II0bx5czF16lQhhBAAxI4dO4QQQgQFBYlKlSqJly9fSn1/+uknpX2c3/7ct2+fAKD0PCq87t27iyFDhkjTq1evFtbW1iIrK0t06NBBzJ07V6n/xo0bhZWVlTQNQIwfP16pz8OHD4WmpqY4d+6cEEKI9PR0UblyZREcHFyomgCIadOmSdPPnz8XAMSBAweEEP9/HDx9+lQIIcQXX3whPD09lZbh7e0tTE1NpekZM2YIAwMDkZKSIrVNnjxZODs7F6omdeEZIpm7efMmtLS04OzsLLVVqlQJ9vb2uHnzJgCgbdu2uHHjBh49eoQTJ07Azc0Nbm5uOH78ODIyMnDmzBm4ubmpaQvkoVGjRtLPmpqaqFSpEhwdHaW2nO/kS0hIwOXLl3Hs2DEYGRlJj3r16gF4/V/b3bt3kZ6errTPzczMYG9vX+K1WlhYwMDAADVr1lRqS0hIKJF1kbLcrz0AWFlZ5ftaR0dHo1GjRtDT05PaPv7447cuM+dSOfdf8Xh7e2P79u1IS0sDAISEhKBPnz7Q0NDA5cuXMWvWLKX37fDhwxEbG6t0iblZs2ZKy7S2toanpyfWrVsHANizZw/S0tLQu3fvQteVex8bGhrCxMSkwH0cHR2tcqzkd+zUqFEDxsbG0nRBx2J5wkHV9FaOjo4wMzPDiRMncOLECcyZMweWlpaYN28eLly4gIyMDLRs2VLdZX7Q8g6cVCgUSm0KhQLA6zEkz58/R7du3TBv3jyV5VhZWRV6XEFuGhqv/3cSub7pJyMj46215q0zpy3vOAoqGaXxWhd0nFHRdevWDUII7Nu3D82bN8epU6ewePFiAMDz588xc+ZM9OzZU+V5uYNrfnd+Dhs2DAMGDMDixYuxfv16fPHFF0UawlDax01JLbO0MRDJnIODAzIzM3Hu3Dkp1Dx+/BjR0dGoX78+gNcHcps2bbBr1y5cv34drVu3hoGBAdLS0rB69Wo0a9aMt2eXI02bNsX27dtRo0YNaGmpvsVr1aoFbW1tnDt3DtWrVwfwemzYX3/9hbZt2+a7zJw7zmJjY9GkSRMAUBl8S+8Pe3t7/Prrr0hLS5O+7PPChQtqrurDp6enh549eyIkJAR37tyBvb09mjZtCuD1+zY6OrrQ435y69q1KwwNDREUFITQ0FCcPHmypEuX2NvbqxwrH8qxw0tmMlenTh10794dw4cPx+nTp3H58mX0798fVatWRffu3aV+bm5u+O2339C4cWMYGRlBQ0MDrq6uCAkJKfCPKKmHr68vnjx5gr59++LChQu4e/cuDh48iMGDByMrKwtGRkYYOnQoJk+ejKNHj+LatWsYNGiQdBYoP/r6+mjRogW+//573Lx5EydOnMC0adPKcKuoJPXr1w/Z2dkYMWIEbt68iYMHD0p3KuWcBaLS4e3tjX379mHdunXw9vaW2qdPn45ffvkFM2fOxPXr13Hz5k1s3ry5UO8zTU1NDBo0CP7+/qhTpw5cXFxKrf6xY8di//79WLRoEW7fvo3Vq1fjwIEDH8Rxw0BEWL9+PZycnPDJJ5/AxcUFQgjs379f6ZRn27ZtkZWVpTRWyM3NTaWN1M/a2hrh4eHIyspCp06d4OjoiPHjx6NChQpS6Pnhhx/Qpk0bdOvWDe7u7mjdujWcnJzeuNx169YhMzMTTk5OGD9+PL777ruy2BwqBSYmJtizZw+ioqLQuHFjfPPNN5g+fToA5cszVPLat28PMzMzREdHo1+/flK7h4cH9u7di0OHDqF58+Zo0aIFFi9eDFtb20Itd+jQoUhPT8fgwYNLq3QAQKtWrbBq1SosWrQIH330EUJDQzFhwoQP4rhRiNyDAoiISJZCQkIwePBgJCcnQ19fX93lUBGdOnUKHTp0wIMHD6SbLMrK8OHDcevWLZw6dapM11vSOIaIiEiGfvnlF9SsWRNVq1bF5cuXMXXqVHh5eTEMvWfS0tLw6NEjBAQEoHfv3mUShhYsWICOHTvC0NAQBw4cwIYNG/Djjz+W+npLGy+ZERHJUFxcHPr37w8HBwdMmDABvXv3xpo1a9RdFhXRb7/9BltbWyQlJWH+/PlK80JCQpRu48/9aNCgQbHXef78eXTs2BGOjo5YtWoVli1bhmHDhr3rpqgdL5kRERF9gJ49e4b4+Ph852lraxd6fJJcMBARERGR7PGSGREREckeAxERERHJHgMRERERyR4DEREREckeAxERFcmgQYPQo0cPpbZHjx6hYcOGcHZ2RnJysnoKIyJ6BwxERPROHj16hPbt20NfXx+HDh2CqampuksiIioyBiIiKrbExER06NABurq6CAsLUwpDixYtgqOjIwwNDWFjY4MxY8bg+fPnAIDjx49DoVAU+Mhx+vRptGnTBvr6+rCxscGXX36J1NRUaX6NGjVUnvvVV19J84OCglCrVi3o6OjA3t4eGzduVKpfoVAgKCgIXbp0gb6+PmrWrInff/9dmn/v3j0oFApERUVJbd9++y0UCgWWLFkitd26dQsdO3aEqampVEeFChUKfN1ytj8pKUmlnp07d0rTaWlp+Oqrr1C1alUYGhrC2dkZx48fl+YHBwerrCe/mono7RiIiKhYHj9+DHd3d2hpaSEsLEzlD7OGhgaWLVuG69evY8OGDTh69CimTJkCAGjZsiViY2MRGxuL7du3A4A0HRsbCwC4e/cuOnfujF69euHKlSvYsmULTp8+DT8/P6X1zJo1S+m5M2bMAADs2LED48aNw6RJk3Dt2jWMHDkSgwcPxrFjx5Se/+2336JXr164fPkyvL290adPH9y8eTPfbf7333+xZMkSla+3GDJkCDIyMhAeHo7Y2FilsPQu/Pz8EBERgc2bN+PKlSvo3bs3OnfujNu3b5fI8okoF0FEVAQDBw4Urq6uonHjxkJbW1u0aNFCZGZmvvV527ZtE5UqVVJpP3bsmMjvV9HQoUPFiBEjlNpOnTolNDQ0xMuXL4UQQtja2orFixfnu76WLVuK4cOHK7X17t1bdO3aVZoGIEaNGqXUx9nZWYwePVoIIURMTIwAIC5duiSEEMLHx0cMHTpUZb36+voiJCREml6/fr0wNTXNt67c2/z06VOldgBix44dQggh/vnnH6GpqSkePnyo1KdDhw7C39+/wPXkrZmICodniIioyE6ePIns7GxERUXhzp07Kt+hBACHDx9Ghw4dULVqVRgbG2PAgAF4/PgxXrx4Uah1XL58GcHBwUrfv+Th4YHs7GzExMS89fk3b95Eq1atlNpatWqlcvbHxcVFZTq/M0R//vknduzYgdmzZ6vMs7Ozw44dOwq9bYVx9epVZGVloW7dukqvwYkTJ3D37l2pX3Jycol9RxWRnPHb7omoyGrWrIkjR46gcuXK+PHHH9G/f394enqiUaNGAF6PY/nkk08wevRozJkzB2ZmZjh9+jSGDh2K9PR0GBgYvHUdz58/x8iRI/Hll1+qzKtevXqJb9PbTJo0CV999RWsrKxU5q1duxYDBw6EsbEx9PX1kZmZCT09vXda3/Pnz6GpqYnIyEhoamoqzTMyMpJ+NjY2xp9//ilNP3z4EG5ubu+0biI5YiAioiJzdHRE5cqVAQC9e/fGH3/8AR8fH5w/fx46OjqIjIxEdnY2Fi5cCA2N1yeit27dWqR1NG3aFDdu3EDt2rWLVaODgwPCw8MxcOBAqS08PBz169dX6nf27Fn4+PgoTTdp0kSpz+7du/HXX39h3759+a6rRYsW+PTTT3Hy5En8+uuv2LFjB+bOnVusunM0adIEWVlZSEhIQJs2bQrsp6GhofQaaWnx1zpRcfCdQ0TvbOXKlWjYsCFmzpyJOXPmoHbt2sjIyMDy5cvRrVs3hIeHY9WqVUVa5tSpU9GiRQv4+flh2LBhMDQ0xI0bNxAWFoYVK1a89fmTJ0+Gl5cXmjRpAnd3d+zZswd//PEHDh8+rNRv27ZtaNasGVq3bo2QkBCcP38ea9euVeozf/58LF++vMAzW9u3b0dwcDAiIyNRvXp1mJubF2ob09LS8OrVK6W2jIwMZGdno27duvD29oaPjw8WLlyIJk2a4NGjRzhy5AgaNWoET0/PQq2DiAqHY4iI6J2ZmZnhp59+wrx583Du3Dl89NFHWLRoEebNm4eGDRsiJCQEgYGBRVpmo0aNcOLECfz1119o06YNmjRpgunTp8Pa2rpQz+/RoweWLl2KBQsWoEGDBli9ejXWr1+vcjlp5syZ2Lx5Mxo1aoRffvkFv/32m8pZpNq1ayudacrtr7/+wrBhw7Bp06YiX8qztLSEvr6+9AAALy8vnDx5EgCwfv16+Pj4YNKkSbC3t0ePHj1w4cIFtVwyJPrQKYQQQt1FEBGpg0KhwI4dO1Q+eVudevTogfHjx3McEFEZ4xkiIqJyREdHRxp3RURlh2OIiIjKkaIOPieiksFARESyxREDRJSD52WJiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2/g9XK2w5HseaMQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Размер обучающей выборки после oversampling и undersampling: 12108\n" - ] - } - ], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "from imblearn.over_sampling import RandomOverSampler\n", - "from imblearn.under_sampling import RandomUnderSampler\n", + "# Удаление выбросов (цены выше 95-го процентиля)\n", + "upper_limit = y_train.quantile(0.95)\n", + "X_train = X_train[y_train <= upper_limit]\n", + "y_train = y_train[y_train <= upper_limit]\n", "\n", - "# Преобразование целевой переменной (цены) в категориальные диапазоны с использованием квантилей\n", - "train_data['price_category'] = pd.qcut(train_data['price'], q=4, labels=['low', 'medium', 'high', 'very_high'])\n", + "# Логарифмическое преобразование целевой переменной\n", + "y_train_log = np.log1p(y_train)\n", + "y_val_log = np.log1p(y_val)\n", + "y_test_log = np.log1p(y_test)\n", "\n", - "# Визуализация распределения цен после преобразования в категории\n", - "sns.countplot(x=train_data['price_category'])\n", - "plt.title('Распределение категорий цены в обучающей выборке')\n", - "plt.xlabel('Категория цены')\n", - "plt.ylabel('Частота')\n", - "plt.show()\n", + "# Стандартизация признаков\n", + "scaler = StandardScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_val_scaled = scaler.transform(X_val)\n", + "X_test_scaled = scaler.transform(X_test)\n", "\n", - "# Балансировка категорий с помощью RandomOverSampler (увеличение меньшинств)\n", - "ros = RandomOverSampler(random_state=42)\n", - "X_train = train_data.drop(columns=['price', 'price_category'])\n", - "y_train = train_data['price_category']\n", - "\n", - "X_resampled, y_resampled = ros.fit_resample(X_train, y_train)\n", - "\n", - "# Визуализация распределения цен после oversampling\n", - "sns.countplot(x=y_resampled)\n", - "plt.title('Распределение категорий цены после oversampling')\n", - "plt.xlabel('Категория цены')\n", - "plt.ylabel('Частота')\n", - "plt.show()\n", - "\n", - "# Применение RandomUnderSampler для уменьшения большего класса\n", - "rus = RandomUnderSampler(random_state=42)\n", - "X_resampled, y_resampled = rus.fit_resample(X_resampled, y_resampled)\n", - "\n", - "# Визуализация распределения цен после undersampling\n", - "sns.countplot(x=y_resampled)\n", - "plt.title('Распределение категорий цены после undersampling')\n", - "plt.xlabel('Категория цен')\n", - "plt.ylabel('Частота')\n", - "plt.show()\n", - "\n", - "# Печать размеров выборки после балансировки\n", - "print(\"Размер обучающей выборки после oversampling и undersampling: \", len(X_resampled))" + "# Визуализация распределения цен в сбалансированной выборке\n", + "plt.figure(figsize=(10, 6))\n", + "plt.hist(y_train_log, bins=30, color='orange', alpha=0.7)\n", + "plt.title('Сбалансированная обучающая выборка (логарифмическое преобразование)')\n", + "plt.xlabel('Логарифм цены')\n", + "plt.ylabel('Количество')\n", + "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Конструирование признаков\n", - "\n", - "**Процесс конструирования признаков для решения двух задач:**\n", - "\n", - "**Задача 1:** Оптимизация ассортимента товаров в онлайн-магазине. \n", - "**Цель технического проекта:** Разработка модели для прогнозирования спроса на товары.\n", - "\n", - "**Задача 2:** Оптимизация ценовой политики. \n", - "**Цель технического проекта:** Разработка модели для прогнозирования оптимальной цены товаров.\n", - "\n", - "**Унитарное кодирование** \n", - "Унитарное кодирование категориальных признаков (one-hot encoding). Преобразование категориальных признаков в бинарные векторы.\n", - "\n", - "**Дискретизация числовых признаков** \n", - "Процесс преобразования непрерывных числовых значений в дискретные категории или интервалы (бины)." + "**Унитарное кодирование категориальных признаков**" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Столбцы train_data_encoded: ['href', 'items', 'price', 'price_category', 'category_Groceries', 'sub_category_Dairy & Bakery', 'sub_category_Fruits & Vegetables', 'sub_category_Premium Fruits', 'sub_category_Snacks & Branded Foods', 'sub_category_Staples']\n", - "Столбцы val_data_encoded: ['href', 'items', 'price', 'category_Groceries', 'sub_category_Dairy & Bakery', 'sub_category_Fruits & Vegetables', 'sub_category_Premium Fruits', 'sub_category_Snacks & Branded Foods', 'sub_category_Staples']\n", - "Столбцы test_data_encoded: ['href', 'items', 'price', 'category_Groceries', 'sub_category_Dairy & Bakery', 'sub_category_Fruits & Vegetables', 'sub_category_Premium Fruits', 'sub_category_Snacks & Branded Foods', 'sub_category_Staples']\n" + "Данные до унитарного кодирования:\n", + " category sub_category \\\n", + "0 Groceries Fruits & Vegetables \n", + "1 Groceries Fruits & Vegetables \n", + "2 Groceries Fruits & Vegetables \n", + "3 Groceries Fruits & Vegetables \n", + "4 Groceries Fruits & Vegetables \n", + "\n", + " href \\\n", + "0 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "1 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "2 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "3 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "4 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "\n", + " items price \n", + "0 Fresh Dates (Pack) (Approx 450 g - 500 g) 109.0 \n", + "1 Tender Coconut Cling Wrapped (1 pc) (Approx 90... 49.0 \n", + "2 Mosambi 1 kg 69.0 \n", + "3 Orange Imported 1 kg 125.0 \n", + "4 Banana Robusta 6 pcs (Box) (Approx 800 g - 110... 44.0 \n", + "\n", + "Данные после унитарного кодирования:\n", + " price sub_category_Fruits & Vegetables sub_category_Premium Fruits \\\n", + "0 109.0 True False \n", + "1 49.0 True False \n", + "2 69.0 True False \n", + "3 125.0 True False \n", + "4 44.0 True False \n", + "\n", + " sub_category_Snacks & Branded Foods sub_category_Staples \\\n", + "0 False False \n", + "1 False False \n", + "2 False False \n", + "3 False False \n", + "4 False False \n", + "\n", + " href_https://www.jiomart.com/c/groceries/dairy-bakery/bakery-snacks/281 \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " href_https://www.jiomart.com/c/groceries/dairy-bakery/batter-chutney/407 \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " href_https://www.jiomart.com/c/groceries/dairy-bakery/breads-and-buns/267 \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " href_https://www.jiomart.com/c/groceries/dairy-bakery/cakes-muffins/125 \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " href_https://www.jiomart.com/c/groceries/dairy-bakery/cheese/1569 ... \\\n", + "0 False ... \n", + "1 False ... \n", + "2 False ... \n", + "3 False ... \n", + "4 False ... \n", + "\n", + " items_sUpazon Instant Idli Mix, 400g (Ragi Idli) \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_sUpazon Instant Idli Mix, 400g (Rawa Idli) \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_shivanyamart Roasted Peanuts - 1 kg \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_shivanyamart Special Bombay Mixer - 200 g (Pack of 2) \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_tasty tongue - Haldi ka Achar with Lime decoction, 190 gms Glass Jar \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_tasty tongue - Homemade Baingan Ka Achar, Certified, No Added preservatives |190 GMS Glass Jar \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_tasty tongue - Homemade Heeng wala Nimbu ka teekha Achar , Certified | 190 GMS Glass Jar \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_tasty tongue - Homemade Kacche Aam ka Achar, Certified | 350 GMS Glass Jar \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_tasty tongue - Homemade Khatta Meetha Nimbu ka Achar ,Certified | 350 GMS Glass Jar \\\n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + " items_xThe Whole Truth - 71% Dark Chocolate Combo - (Pack of 3) - 1 - 71% ,1 - Sea-Salt , 1 - Orange - No Added Sugar - Sweetened Only with Dates - 71% Cocoa - 29% Dates \n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "\n", + "[5 rows x 14769 columns]\n" ] } ], "source": [ - "# Конструирование признаков\n", - "# Унитарное кодирование категориальных признаков (применение one-hot encoding)\n", + "print(\"Данные до унитарного кодирования:\")\n", + "print(df.head())\n", "\n", - "# Пример категориальных признаков\n", - "categorical_features = ['category', 'sub_category']\n", + "# Применение унитарного кодирования для категориальных признаков\n", + "df_encoded = pd.get_dummies(df, drop_first=True)\n", "\n", - "# Применение one-hot encoding\n", - "train_data_encoded = pd.get_dummies(train_data, columns=categorical_features)\n", - "val_data_encoded = pd.get_dummies(val_data, columns=categorical_features)\n", - "test_data_encoded = pd.get_dummies(test_data, columns=categorical_features)\n", - "df_encoded = pd.get_dummies(df, columns=categorical_features)\n", - "\n", - "print(\"Столбцы train_data_encoded:\", train_data_encoded.columns.tolist())\n", - "print(\"Столбцы val_data_encoded:\", val_data_encoded.columns.tolist())\n", - "print(\"Столбцы test_data_encoded:\", test_data_encoded.columns.tolist())\n", - "\n", - "# Дискретизация числовых признаков (цены). Например, можно разделить цену на категории\n", - "# Пример дискретизации признака 'price'\n", - "train_data_encoded['price_category'] = pd.cut(train_data_encoded['price'], bins=5, labels=False)\n", - "val_data_encoded['price_category'] = pd.cut(val_data_encoded['price'], bins=5, labels=False)\n", - "test_data_encoded['price_category'] = pd.cut(test_data_encoded['price'], bins=5, labels=False)\n", - "\n", - "# Пример дискретизации признака 'price' на 5 категорий\n", - "df_encoded['price_category'] = pd.cut(df_encoded['price'], bins=5, labels=False)\n" + "print(\"\\nДанные после унитарного кодирования:\")\n", + "print(df_encoded.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Ручной синтез\n", + "**Дискретизация числовых признаков**" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Данные до дискретизации:\n", + " category sub_category \\\n", + "0 Groceries Fruits & Vegetables \n", + "1 Groceries Fruits & Vegetables \n", + "2 Groceries Fruits & Vegetables \n", + "3 Groceries Fruits & Vegetables \n", + "4 Groceries Fruits & Vegetables \n", + "\n", + " href \\\n", + "0 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "1 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "2 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "3 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "4 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "\n", + " items price price_bins \n", + "0 Fresh Dates (Pack) (Approx 450 g - 500 g) 109.0 100-500 \n", + "1 Tender Coconut Cling Wrapped (1 pc) (Approx 90... 49.0 0-100 \n", + "2 Mosambi 1 kg 69.0 0-100 \n", + "3 Orange Imported 1 kg 125.0 100-500 \n", + "4 Banana Robusta 6 pcs (Box) (Approx 800 g - 110... 44.0 0-100 \n", + "\n", + "Данные после дискретизации:\n", + " price price_bins\n", + "0 109.0 100-500\n", + "1 49.0 0-100\n", + "2 69.0 0-100\n", + "3 125.0 100-500\n", + "4 44.0 0-100\n" + ] + } + ], + "source": [ + "print(\"Данные до дискретизации:\")\n", + "print(df.head())\n", + "\n", + "# Определение интервалов и меток для дискретизации\n", + "bins = [0, 100, 500, 1000, 5000, float('inf')]\n", + "labels = ['0-100', '100-500', '500-1000', '1000-5000', '5000+']\n", + "\n", + "# Применение дискретизации\n", + "df['price_bins'] = pd.cut(df['price'], bins=bins, labels=labels, right=False)\n", + "\n", + "print(\"\\nДанные после дискретизации:\")\n", + "print(df[['price', 'price_bins']].head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**«Ручной» синтез признаков**\n", + "\n", "Создание новых признаков на основе экспертных знаний и логики предметной области. К примеру, для данных о продаже домов можно создать признак цена за единицу товара." ] }, @@ -613,34 +719,65 @@ "cell_type": "code", "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Данные до синтеза признака:\n", + " category sub_category \\\n", + "0 Groceries Fruits & Vegetables \n", + "1 Groceries Fruits & Vegetables \n", + "2 Groceries Fruits & Vegetables \n", + "3 Groceries Fruits & Vegetables \n", + "4 Groceries Fruits & Vegetables \n", + "\n", + " href \\\n", + "0 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "1 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "2 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "3 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "4 https://www.jiomart.com/c/groceries/fruits-veg... \n", + "\n", + " items price price_bins \n", + "0 Fresh Dates (Pack) (Approx 450 g - 500 g) 109.0 100-500 \n", + "1 Tender Coconut Cling Wrapped (1 pc) (Approx 90... 49.0 0-100 \n", + "2 Mosambi 1 kg 69.0 0-100 \n", + "3 Orange Imported 1 kg 125.0 100-500 \n", + "4 Banana Robusta 6 pcs (Box) (Approx 800 g - 110... 44.0 0-100 \n", + "\n", + "Данные после синтеза признака 'relative_price':\n", + " price category relative_price\n", + "0 109.0 Groceries 0.291891\n", + "1 49.0 Groceries 0.131217\n", + "2 69.0 Groceries 0.184775\n", + "3 125.0 Groceries 0.334737\n", + "4 44.0 Groceries 0.117827\n" + ] + } + ], "source": [ - "# Преобразуем столбцы 'price' и 'items' в числовой формат\n", - "train_data_encoded['price'] = pd.to_numeric(train_data_encoded['price'], errors='coerce')\n", - "train_data_encoded['items'] = pd.to_numeric(train_data_encoded['items'], errors='coerce')\n", + "# Проверка первых строк данных\n", + "print(\"Данные до синтеза признака:\")\n", + "print(df.head())\n", "\n", - "val_data_encoded['price'] = pd.to_numeric(val_data_encoded['price'], errors='coerce')\n", - "val_data_encoded['items'] = pd.to_numeric(val_data_encoded['items'], errors='coerce')\n", + "# Вычисление средней цены по категориям\n", + "mean_price_by_category = df.groupby('category')['price'].transform('mean')\n", "\n", - "test_data_encoded['price'] = pd.to_numeric(test_data_encoded['price'], errors='coerce')\n", - "test_data_encoded['items'] = pd.to_numeric(test_data_encoded['items'], errors='coerce')\n", + "# Создание нового признака 'relative_price' (относительная цена)\n", + "df['relative_price'] = df['price'] / mean_price_by_category\n", "\n", - "df_encoded['price'] = pd.to_numeric(df_encoded['price'], errors='coerce')\n", - "df_encoded['items'] = pd.to_numeric(df_encoded['items'], errors='coerce')\n", - "\n", - "# Ручной синтез признаков\n", - "train_data_encoded['price_per_item'] = train_data_encoded['price'] / train_data_encoded['items']\n", - "val_data_encoded['price_per_item'] = val_data_encoded['price'] / val_data_encoded['items']\n", - "test_data_encoded['price_per_item'] = test_data_encoded['price'] / test_data_encoded['items']\n", - "\n", - "# Пример создания нового признака - цена за единицу товара\n", - "df_encoded['price_per_item'] = df_encoded['price'] / df_encoded['items']\n" + "# Проверка первых строк данных после синтеза признака\n", + "print(\"\\nДанные после синтеза признака 'relative_price':\")\n", + "print(df[['price', 'category', 'relative_price']].head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "**Масштабирование признаков на основе нормировки и стандартизации**\n", + "\n", "Масштабирование признаков - это процесс преобразования числовых признаков таким образом, чтобы они имели одинаковый масштаб. Это важно для многих алгоритмов машинного обучения, которые чувствительны к масштабу признаков, таких как линейная регрессия, метод опорных векторов (SVM) и нейронные сети." ] }, @@ -648,163 +785,77 @@ "cell_type": "code", "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Данные до масштабирования:\n", + " price relative_price\n", + "0 109.0 0.291891\n", + "1 49.0 0.131217\n", + "2 69.0 0.184775\n", + "3 125.0 0.334737\n", + "4 44.0 0.117827\n", + "\n", + "Данные после нормировки:\n", + " price relative_price\n", + "0 0.006936 0.006936\n", + "1 0.002935 0.002935\n", + "2 0.004268 0.004268\n", + "3 0.008003 0.008003\n", + "4 0.002601 0.002601\n", + "\n", + "Данные после стандартизации:\n", + " price relative_price\n", + "0 -0.569958 -0.569958\n", + "1 -0.699284 -0.699284\n", + "2 -0.656175 -0.656175\n", + "3 -0.535471 -0.535471\n", + "4 -0.710061 -0.710061\n" + ] + } + ], "source": [ - "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", + "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", "\n", - "# Пример масштабирования числовых признаков\n", - "numerical_features = ['price', 'items']\n", + "# Создание нового признака 'relative_price' (цена относительно средней цены в категории)\n", + "mean_price_by_category = df.groupby('category')['price'].transform('mean')\n", + "df['relative_price'] = df['price'] / mean_price_by_category\n", "\n", - "# Масштабирование с помощью StandardScaler\n", - "scaler = StandardScaler()\n", + "# Проверка первых строк данных до масштабирования\n", + "print(\"Данные до масштабирования:\")\n", + "print(df[['price', 'relative_price']].head())\n", "\n", - "train_data_encoded[numerical_features] = scaler.fit_transform(train_data_encoded[numerical_features])\n", - "val_data_encoded[numerical_features] = scaler.transform(val_data_encoded[numerical_features])\n", - "test_data_encoded[numerical_features] = scaler.transform(test_data_encoded[numerical_features])\n", + "# Масштабирование признаков на основе нормировки\n", + "min_max_scaler = MinMaxScaler()\n", + "df[['price', 'relative_price']] = min_max_scaler.fit_transform(df[['price', 'relative_price']])\n", "\n", - "# Если хотите использовать MinMaxScaler вместо StandardScaler, можно заменить:\n", - "# scaler = MinMaxScaler()" + "# Проверка первых строк данных после нормировки\n", + "print(\"\\nДанные после нормировки:\")\n", + "print(df[['price', 'relative_price']].head())\n", + "\n", + "# Стандартизация признаков\n", + "standard_scaler = StandardScaler()\n", + "df[['price', 'relative_price']] = standard_scaler.fit_transform(df[['price', 'relative_price']])\n", + "\n", + "# Проверка первых строк данных после стандартизации\n", + "print(\"\\nДанные после стандартизации:\")\n", + "print(df[['price', 'relative_price']].head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Конструирование признаков с применением фреймворка Featuretools" + "**Конструирование признаков с применением фреймворка Featuretools**" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " href items price \\\n", - "9839 https://www.jiomart.com/c/groceries/snacks-bra... NaN -0.442827 \n", - "9680 https://www.jiomart.com/c/groceries/snacks-bra... NaN -0.635331 \n", - "7093 https://www.jiomart.com/c/groceries/staples/so... NaN 0.424527 \n", - "11293 https://www.jiomart.com/c/groceries/snacks-bra... NaN -0.728339 \n", - "820 https://www.jiomart.com/c/groceries/dairy-bake... NaN -0.624517 \n", - "... ... ... ... \n", - "5191 https://www.jiomart.com/c/groceries/staples/ma... NaN -0.659124 \n", - "13418 https://www.jiomart.com/c/groceries/snacks-bra... NaN 0.846307 \n", - "5390 https://www.jiomart.com/c/groceries/staples/ma... NaN -0.600724 \n", - "860 https://www.jiomart.com/c/groceries/staples/at... NaN -0.702384 \n", - "7270 https://www.jiomart.com/c/groceries/staples/dr... NaN -0.343330 \n", - "\n", - " price_category category_Groceries sub_category_Dairy & Bakery \\\n", - "9839 0 True False \n", - "9680 0 True False \n", - "7093 0 True False \n", - "11293 0 True False \n", - "820 0 True True \n", - "... ... ... ... \n", - "5191 0 True False \n", - "13418 0 True False \n", - "5390 0 True False \n", - "860 0 True False \n", - "7270 0 True False \n", - "\n", - " sub_category_Fruits & Vegetables sub_category_Premium Fruits \\\n", - "9839 False False \n", - "9680 False False \n", - "7093 False False \n", - "11293 False False \n", - "820 False False \n", - "... ... ... \n", - "5191 False False \n", - "13418 False False \n", - "5390 False False \n", - "860 False False \n", - "7270 False False \n", - "\n", - " sub_category_Snacks & Branded Foods sub_category_Staples \\\n", - "9839 True False \n", - "9680 True False \n", - "7093 False True \n", - "11293 True False \n", - "820 False False \n", - "... ... ... \n", - "5191 False True \n", - "13418 True False \n", - "5390 False True \n", - "860 False True \n", - "7270 False True \n", - "\n", - " price_per_item \n", - "9839 NaN \n", - "9680 NaN \n", - "7093 NaN \n", - "11293 NaN \n", - "820 NaN \n", - "... ... \n", - "5191 NaN \n", - "13418 NaN \n", - "5390 NaN \n", - "860 NaN \n", - "7270 NaN \n", - "\n", - "[11998 rows x 11 columns]\n", - " price category_Groceries \\\n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 109.0 True \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 29.0 True \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 13.0 True \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 32.0 True \n", - "https://www.jiomart.com/c/groceries/premium-fru... 149.0 True \n", - "\n", - " sub_category_Dairy & Bakery \\\n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/premium-fru... False \n", - "\n", - " sub_category_Fruits & Vegetables \\\n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... True \n", - "https://www.jiomart.com/c/groceries/fruits-vege... True \n", - "https://www.jiomart.com/c/groceries/fruits-vege... True \n", - "https://www.jiomart.com/c/groceries/fruits-vege... True \n", - "https://www.jiomart.com/c/groceries/premium-fru... False \n", - "\n", - " sub_category_Premium Fruits \\\n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/premium-fru... True \n", - "\n", - " sub_category_Snacks & Branded Foods \\\n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/premium-fru... False \n", - "\n", - " sub_category_Staples \\\n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/fruits-vege... False \n", - "https://www.jiomart.com/c/groceries/premium-fru... False \n", - "\n", - " price_category \n", - "href \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", - "https://www.jiomart.com/c/groceries/fruits-vege... 0 \n", - "https://www.jiomart.com/c/groceries/premium-fru... 0 \n" - ] - }, { "name": "stderr", "output_type": "stream", @@ -813,88 +864,71 @@ " pd.to_datetime(\n", "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/featuretools/synthesis/deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", - " warnings.warn(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/featuretools/synthesis/deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", - " warnings.warn(\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n", - "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", - " series = series.replace(ww.config.get_option(\"nan_values\"), np.nan)\n" + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Built 7 features\n", + "Elapsed: 00:00 | Progress: 100%|██████████\n", + "Новые признаки, созданные с помощью Featuretools:\n", + " category sub_category price price_bins relative_price \\\n", + "index \n", + "0 Groceries Fruits & Vegetables -0.569958 100-500 6.281321e+15 \n", + "1 Groceries Fruits & Vegetables -0.699284 0-100 7.706585e+15 \n", + "2 Groceries Fruits & Vegetables -0.656175 0-100 7.231497e+15 \n", + "3 Groceries Fruits & Vegetables -0.535471 100-500 5.901250e+15 \n", + "4 Groceries Fruits & Vegetables -0.710061 0-100 7.825357e+15 \n", + "\n", + " NUM_CHARACTERS(items) NUM_WORDS(items) \n", + "index \n", + "0 41 8 \n", + "1 59 11 \n", + "2 12 3 \n", + "3 20 4 \n", + "4 50 10 \n" ] } ], "source": [ "import featuretools as ft\n", "\n", - "# Предобработка данных (например, кодирование категориальных признаков, удаление дубликатов)\n", - "# Удаление дубликатов по идентификатору\n", - "df = df.drop_duplicates(subset='href') # 'href' как идентификатор\n", - "duplicates = train_data_encoded[train_data_encoded['href'].duplicated(keep=False)]\n", - "\n", - "# Удаление дубликатов из столбца \"href\", сохранив первое вхождение\n", - "df_encoded = df_encoded.drop_duplicates(subset='href', keep='first')\n", - "\n", - "print(duplicates)\n", + "# Создание нового признака 'relative_price'\n", + "mean_price_by_category = df.groupby('category')['price'].transform('mean')\n", + "df['relative_price'] = df['price'] / mean_price_by_category\n", "\n", "# Создание EntitySet\n", - "es = ft.EntitySet(id='product_data')\n", + "es = ft.EntitySet(id='jio_mart_items')\n", "\n", - "# Добавление датафрейма с товарами\n", - "es = es.add_dataframe(dataframe_name='products', dataframe=df_encoded, index='href')\n", + "# Добавление данных с явным указанием индексного столбца\n", + "es = es.add_dataframe(dataframe_name='items_data', dataframe=df, index='index', make_index=True)\n", "\n", - "# Генерация признаков с помощью глубокой синтезы признаков\n", - "feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='products', max_depth=2)\n", + "# Конструирование признаков\n", + "features, feature_defs = ft.dfs(entityset=es, target_dataframe_name='items_data', verbose=True)\n", "\n", - "# Выводим первые 5 строк сгенерированного набора признаков\n", - "print(feature_matrix.head())\n", - "\n", - "# Удаление дубликатов из train_data_encoded\n", - "train_data_encoded = train_data_encoded.drop_duplicates(subset='href')\n", - "train_data_encoded = train_data_encoded.drop_duplicates(subset='href', keep='first') # или keep='last'\n", - "\n", - "# Определение сущностей (Создание EntitySet)\n", - "es = ft.EntitySet(id='product_data')\n", - "\n", - "es = es.add_dataframe(dataframe_name='products', dataframe=train_data_encoded, index='href')\n", - "\n", - "# Генерация признаков для обучающего набора\n", - "feature_matrix, feature_defs = ft.dfs(entityset=es, target_dataframe_name='products', max_depth=2)\n", - "\n", - "# Преобразование признаков для контрольной и тестовой выборок\n", - "val_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=val_data_encoded.index)\n", - "test_feature_matrix = ft.calculate_feature_matrix(features=feature_defs, entityset=es, instance_ids=test_data_encoded.index)\n" + "# Проверка первых строк новых признаков\n", + "print(\"Новые признаки, созданные с помощью Featuretools:\")\n", + "print(features.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Оценка качества каждого набора признаков \n", + "**Оценка качества**\n", "\n", "*Предсказательная способность Метрики:* RMSE, MAE, R² \n", "\n", @@ -913,57 +947,6 @@ "cell_type": "code", "execution_count": 18, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Время обучения модели: 0.01 секунд\n", - "Среднеквадратичная ошибка: 0.12\n" - ] - } - ], - "source": [ - "import time\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.metrics import mean_squared_error\n", - "\n", - "# Разделение данных на обучающую и валидационную выборки. Удаляем целевую переменную\n", - "X = feature_matrix.drop('price', axis=1) # feature_matrix - ваш датафрейм с признаками\n", - "y = feature_matrix['price']\n", - "\n", - "# One-hot encoding для категориальных переменных (преобразование категориальных объектов в числовые)\n", - "X = pd.get_dummies(X, drop_first=True)\n", - "\n", - "# Проверяем, есть ли пропущенные значения, и заполняем их медианой или другим подходящим значением\n", - "X.fillna(X.median(), inplace=True)\n", - "\n", - "# Разделение данных на обучающую и валидационную выборки (80% - обучающие, 20% - валидационные)\n", - "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "\n", - "# Обучение модели\n", - "model = LinearRegression()\n", - "\n", - "# Начинаем отсчет времени\n", - "start_time = time.time()\n", - "model.fit(X_train, y_train)\n", - "\n", - "# Время обучения модели\n", - "train_time = time.time() - start_time\n", - "\n", - "# Предсказания и оценка модели\n", - "predictions = model.predict(X_val)\n", - "mse = mean_squared_error(y_val, predictions)\n", - "\n", - "print(f'Время обучения модели: {train_time:.2f} секунд')\n", - "print(f'Среднеквадратичная ошибка: {mse:.2f}')" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, "outputs": [ { "name": "stderr", @@ -977,16 +960,42 @@ "name": "stdout", "output_type": "stream", "text": [ - "RMSE: 0.36186980038510536\n", - "R²: -0.6368056983116879\n", - "MAE: 0.31984719857159616 \n", + "RMSE: 534.0885949291326\n", + "R²: 0.6087611252156747\n", + "MAE: 28.697400000000002\n", + "Training Time: 1.323014259338379 seconds\n", + "Cross-validated RMSE: 133.74731704254154\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/rd/3q9k4y6x0mn6ztd0mby6zx3r0000gn/T/ipykernel_96452/3211138617.py:70: FutureWarning: \n", "\n", - "Кросс-валидация RMSE: 0.5070815501853271 \n", + "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", "\n", - "Train RMSE: 0.43774086533447965\n", - "Train R²: 0.22034961506082062\n", - "Train MAE: 0.31183543428074156\n", - "\n" + " sns.barplot(x='Importance', y='Feature', data=importance_df_top, palette='viridis')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACD8AAAK9CAYAAAApe1VgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXRN1///8ddNkDkEEUGaGCOmiLFBJWL2kaJKq4oYitYUNZTWPNMqOlClppZqlZIixg8paWuehYQKqmlRY0INyfn94ZfzdSUhpkY+fT7Wumvl7LPP3u99zrmnq8777m0xDMMQAAAAAAAAAAAAAABANmWT1QEAAAAAAAAAAAAAAAA8DpIfAAAAAAAAAAAAAABAtkbyAwAAAAAAAAAAAAAAyNZIfgAAAAAAAAAAAAAAANkayQ8AAAAAAAAAAAAAACBbI/kBAAAAAAAAAAAAAABkayQ/AAAAAAAAAAAAAACAbI3kBwAAAAAAAAAAAAAAkK2R/AAAAAAAAAAAAAAAALI1kh8AAAAAAAAAAAAAAEC2RvIDAAAAAAAAAAD4n2axWDL12bx581ON4/Tp0xo5cqSqVasmNzc35c+fX8HBwdqwYUO69S9duqSuXbvK3d1dTk5OqlOnjnbv3p2pvoKDgzMc55EjR57ksEzTp0/XvHnznkrbjys4OFjlypXL6jAe2e+//64RI0Zo7969WR0KADyzcmR1AAAAAAAAAAAAAE/Tl19+abW9YMECrV+/Pk25n5/fU41jxYoVmjhxopo3b64OHTro9u3bWrBggerXr685c+aoY8eOZt2UlBT95z//0b59+zRgwADlz59f06dPV3BwsHbt2qWSJUs+sL8iRYpo/PjxacoLFSr0RMeVavr06cqfP7/CwsKeSvv/Zr///rtGjhwpHx8fVaxYMavDAYBnEskPAAAAAAAAAADgf9rrr79utf3LL79o/fr1acqftjp16ujUqVPKnz+/Wda9e3dVrFhRw4YNs0p++O677/TTTz9pyZIlevnllyVJrVu3VqlSpTR8+HAtWrTogf3lzp37Hx/jk2YYhv7++285ODhkdShZ4vbt20pJScnqMAAgW2DZCwAAAAAAAAAA8K+XlJSkfv36ycvLS3Z2dvL19dUHH3wgwzCs6lksFvXs2VMLFy6Ur6+v7O3tVblyZf34448P7KNs2bJWiQ+SZGdnpyZNmui3337T1atXzfLvvvtOHh4eeumll8wyd3d3tW7dWitWrNCNGzcec8TSjRs3NHz4cJUoUUJ2dnby8vLSwIED07Q9d+5chYSEqECBArKzs1OZMmU0Y8YMqzo+Pj46dOiQoqKizOU1goODJUkjRoyQxWJJ0/+8efNksVgUHx9v1U7Tpk21du1aValSRQ4ODpo5c6akO8uAhIeHm9eoRIkSmjhx4iMnB6ReyyVLlqhMmTJycHBQYGCgDhw4IEmaOXOmSpQoIXt7ewUHB1vFKf3fUhq7du1SjRo15ODgoKJFi+qzzz5L09fZs2fVuXNneXh4yN7eXv7+/po/f75Vnfj4eFksFn3wwQeaOnWqihcvLjs7O02fPl1Vq1aVJHXs2NE8v6lLjGzZskWtWrXSc889Z17Hvn376vr161bth4WFydnZWWfOnFHz5s3l7Owsd3d39e/fX8nJyVZ1U1JSNG3aNJUvX1729vZyd3dXo0aNtHPnTqt6X331lSpXriwHBwflzZtXr776qk6fPv3Q1wIAngRmfgAAAAAAAAAAAP9qhmHoxRdf1KZNm9S5c2dVrFhRa9eu1YABA3TmzBlNmTLFqn5UVJS++eYb9e7d23w53ahRI23fvl3lypV76P7/+OMPOTo6ytHR0Szbs2ePKlWqJBsb69+xVqtWTZ9//rliY2NVvnz5+7abnJys8+fPW5XZ29vL2dlZKSkpevHFF7V161Z17dpVfn5+OnDggKZMmaLY2FgtX77cPGbGjBkqW7asXnzxReXIkUM//PCD3nrrLaWkpKhHjx6SpKlTp6pXr15ydnbWe++9J0ny8PB46HMhSUePHlWbNm3UrVs3vfHGG/L19dW1a9cUFBSkM2fOqFu3bnruuef0008/afDgwUpISNDUqVMfqa8tW7YoIiLCHMf48ePVtGlTDRw4UNOnT9dbb72lixcvatKkSerUqZP++9//Wh1/8eJFNWnSRK1bt1abNm307bff6s0331SuXLnUqVMnSdL169cVHBysY8eOqWfPnipatKiWLFmisLAwXbp0SX369LFqc+7cufr777/VtWtX2dnZqUWLFrp69aqGDRumrl276oUXXpAk1ahRQ5K0ZMkSXbt2TW+++aby5cun7du36+OPP9Zvv/2mJUuWWLWdnJyshg0bqnr16vrggw+0YcMGTZ48WcWLF9ebb75p1uvcubPmzZunxo0bq0uXLrp9+7a2bNmiX375RVWqVJEkjR07VkOHDlXr1q3VpUsXnTt3Th9//LFq166tPXv2KE+ePI90TQDgkRkAAAAAAAAAAAD/Ij169DDufkWyfPlyQ5IxZswYq3ovv/yyYbFYjGPHjpllkgxJxs6dO82ykydPGvb29kaLFi0eOpa4uDjD3t7eaNeunVW5k5OT0alTpzT1V61aZUgy1qxZc992g4KCzFjv/nTo0MEwDMP48ssvDRsbG2PLli1Wx3322WeGJCM6Otosu3btWpr2GzZsaBQrVsyqrGzZskZQUFCausOHDzfSeyU1d+5cQ5Jx4sQJs8zb2zvd8Y0ePdpwcnIyYmNjrcoHDRpk2NraGqdOnUr3PKQKCgoyypYta1UmybCzs7Pqf+bMmYYko2DBgsaVK1fM8sGDB6eJNfUcT5482Sy7ceOGUbFiRaNAgQLGzZs3DcMwjKlTpxqSjK+++sqsd/PmTSMwMNBwdnY2+zlx4oQhyXB1dTXOnj1rFeuOHTsMScbcuXPTjC296zN+/HjDYrEYJ0+eNMs6dOhgSDJGjRplVTcgIMCoXLmyuf3f//7XkGT07t07TbspKSmGYRhGfHy8YWtra4wdO9Zq/4EDB4wcOXKkKQeAfwLLXgAAAAAAAAAAgH+11atXy9bWVr1797Yq79evnwzDUGRkpFV5YGCgKleubG4/99xzatasmdauXZtm+YD7uXbtmlq1aiUHBwdNmDDBat/169dlZ2eX5hh7e3tz/4P4+Pho/fr1Vp+BAwdKujNbgJ+fn0qXLq3z58+bn5CQEEnSpk2bzHYcHBzMvy9fvqzz588rKChIv/76qy5fvpzp8WZW0aJF1bBhQ6uyJUuW6IUXXpCbm5tVvPXq1VNycnKmlh1JT926deXj42NuV69eXZLUsmVLubi4pCn/9ddfrY7PkSOHunXrZm7nypVL3bp109mzZ7Vr1y5Jd+6vggULqk2bNma9nDlzqnfv3kpMTFRUVJRVmy1btpS7u3umx3D39UlKStL58+dVo0YNGYahPXv2pKnfvXt3q+0XXnjBalxLly6VxWLR8OHD0xybunzJsmXLlJKSotatW1tdj4IFC6pkyZJW9w8A/FNY9gIAAAAAAAAAAPyrnTx5UoUKFbJ62S1Jfn5+5v67lSxZMk0bpUqV0rVr13Tu3DkVLFjwgX0mJyfr1Vdf1eHDhxUZGalChQpZ7XdwcNCNGzfSHPf333+b+x/EyclJ9erVS3dfXFycYmJiMnzJfvbsWfPv6OhoDR8+XD///LOuXbtmVe/y5cvKnTv3A2N5GEWLFk033v3792cq3ofx3HPPWW2njsXLyyvd8osXL1qVFypUSE5OTlZlpUqVkiTFx8fr+eef18mTJ1WyZMk0S5hkdH+lN/77OXXqlIYNG6aIiIg08d2bnGJvb5/mHLq5uVkdd/z4cRUqVEh58+bNsM+4uDgZhpHud0G6k9wBAP80kh8AAAAAAAAAAAD+YW+88YZWrlyphQsXmrMt3M3T01MJCQlpylPL7k2WeFgpKSkqX768Pvzww3T3p778P378uOrWravSpUvrww8/lJeXl3LlyqXVq1drypQpSklJeWBfqbMF3CujWTLSS+xISUlR/fr1zZkr7pWacPCwbG1tH6rcMIxH6udhZCaxJVVycrLq16+vCxcu6J133lHp0qXl5OSkM2fOKCwsLM31yWhcDyslJUUWi0WRkZHptuns7PxE+gGAh0HyAwAAAAAAAAAA+Ffz9vbWhg0bdPXqVavZH44cOWLuv1tcXFyaNmJjY+Xo6Jip5QoGDBiguXPnaurUqVZLIdytYsWK2rJli1JSUqxmDNi2bZscHR0f+WV/quLFi2vfvn2qW7duhskJkvTDDz/oxo0bioiIsJolIb1lDTJqx83NTZJ06dIl5cmTxyy/d8aDB8WbmJiY4UwWWeX3339XUlKS1ewPsbGxkmQup+Ht7a39+/enuZYZ3V/pyejcHjhwQLGxsZo/f77at29vlq9fv/6hx5KqePHiWrt2rS5cuJDh7A/FixeXYRgqWrToY9+LAPCk2Dy4CgAAAAAAAAAAwP+uJk2aKDk5WZ988olV+ZQpU2SxWNS4cWOr8p9//lm7d+82t0+fPq0VK1aoQYMGD/xl/fvvv68PPvhA7777rvr06ZNhvZdffll//vmnli1bZpadP39eS5YsUWhoqOzs7B5miGm0bt1aZ86c0axZs9Lsu379upKSkiT930wBd894cPnyZc2dOzfNcU5OTrp06VKa8uLFi0uSfvzxR7MsKSlJ8+fPf6h4f/75Z61duzbNvkuXLun27duZbutJun37tmbOnGlu37x5UzNnzpS7u7sqV64s6c799ccff+ibb76xOu7jjz+Ws7OzgoKCHthPanLFvec3vetjGIamTZv2yGNq2bKlDMPQyJEj0+xL7eell16Sra2tRo4cmWY2DMMw9Ndffz1y/wDwqJj5AQAAAAAAAAAA/KuFhoaqTp06eu+99xQfHy9/f3+tW7dOK1asUHh4uPnyPlW5cuXUsGFD9e7dW3Z2dpo+fbokpfuy+G7ff/+9Bg4cqJIlS8rPz09fffWV1f769evLw8ND0p3kh+eff14dO3bU4cOHlT9/fk2fPl3JyckP7Ccz2rVrp2+//Vbdu3fXpk2bVLNmTSUnJ+vIkSP69ttvtXbtWlWpUkUNGjRQrly5FBoaqm7duikxMVGzZs1SgQIF0izLUblyZc2YMUNjxoxRiRIlVKBAAYWEhKhBgwZ67rnn1LlzZw0YMEC2traaM2eO3N3dderUqUzFO2DAAEVERKhp06YKCwtT5cqVlZSUpAMHDui7775TfHy88ufP/9jn5WEVKlRIEydOVHx8vEqVKqVvvvlGe/fu1eeff66cOXNKkrp27aqZM2cqLCxMu3btko+Pj7777jtFR0dr6tSpVrONZKR48eLKkyePPvvsM7m4uMjJyUnVq1dX6dKlVbx4cfXv319nzpyRq6urli5dqosXLz7ymOrUqaN27drpo48+UlxcnBo1aqSUlBRt2bJFderUUc+ePVW8eHGNGTNGgwcPVnx8vJo3by4XFxedOHFC33//vbp27ar+/fs/cgwA8ChIfgAAAAAAAAAAAP9qNjY2ioiI0LBhw/TNN99o7ty58vHx0fvvv69+/fqlqR8UFKTAwECNHDlSp06dUpkyZTRv3jxVqFDhvv3s27dP0p1lM9q1a5dm/6ZNm8zkB1tbW61evVoDBgzQRx99pOvXr6tq1aqaN2+efH19n8iYly9frilTpmjBggX6/vvv5ejoqGLFiqlPnz7mUga+vr767rvvNGTIEPXv318FCxbUm2++KXd3d3Xq1MmqzWHDhunkyZOaNGmSrl69qqCgIIWEhChnzpz6/vvv9dZbb2no0KEqWLCgwsPD5ebmpo4dO2YqXkdHR0VFRWncuHFasmSJFixYIFdXV5UqVUojR45U7ty5H/ucPAo3NzfNnz9fvXr10qxZs+Th4aFPPvlEb7zxhlnHwcFBmzdv1qBBgzR//nxduXJFvr6+mjt3rsLCwjLVT86cOTV//nwNHjxY3bt31+3bt83jf/jhB/Xu3Vvjx4+Xvb29WrRooZ49e8rf3/+RxzV37lxVqFBBX3zxhQYMGKDcuXOrSpUqqlGjhlln0KBBKlWqlKZMmWIm5Hh5ealBgwZ68cUXH7lvAHhUFuPeuWgAAAAAAAAAAACQLovFoh49eqRZIgP/PsHBwTp//rwOHjyY1aEAACTZZHUAAAAAAAAAAAAAAAAAj4PkBwAAAAAAAAAAAAAAkK2R/AAAAAAAAAAAAAAAALI1i2EYRlYHAQAAAAAAAAAAAAAA8KiY+QEAAAAAAAAAAAAAAGRrJD8AAAAAAAAAAAAAAIBsLUdWBwAAAAAAAAAA90pJSdHvv/8uFxcXWSyWrA4HAAAAQBYxDENXr15VoUKFZGOT8fwOJD8AAAAAAAAAeOb8/vvv8vLyyuowAAAAADwjTp8+rSJFimS4n+QHAAAAAAAAAM8cFxcXSXf+gdPV1TWLowEAAACQVa5cuSIvLy/z/xEyQvIDAAAAAAAAgGdO6lIXrq6uJD8AAAAAeOByeCQ/AAAAAAAAAHhmNS/zhnLY5MzqMAAAAIB/jXWnvsrqEB6JTVYHAAAAAAAAAAAAAAAA8DhIfgAAAAAAAAAAAAAAANkayQ8AAAAAAAAAAAAAACBbI/kBAAAAAAAAAAAAAABkayQ/AAAAAAAAAAAAAACAbI3kBwAAAAAAAAAAAAAAkK2R/AAAAAAAAAA8pODgYIWHhz8z7TxtI0aMUMWKFbM6DAAAAADIEMkPAAAAAAAAwFO2efNmWSwWXbp0yap82bJlGj16dNYE9RD69++vjRs3ZnUYAAAAAJChHFkdAAAAAAAAAPAsuXnzpnLlyvWP9JU3b95/pJ9HZRiGkpOT5ezsLGdn56wOBwAAAAAyxMwPAAAAAAAA+FcLDg5Wz549FR4ervz586thw4Y6ePCgGjduLGdnZ3l4eKhdu3Y6f/58hm18+eWXqlKlilxcXFSwYEG99tprOnv2rCQpPj5ederUkSS5ubnJYrEoLCzM7Dt12Yt3331X1atXT9O2v7+/Ro0aZW7Pnj1bfn5+sre3V+nSpTV9+vRMjTM+Pl4Wi0WLFy9WjRo1ZG9vr3LlyikqKsqskzpDRWRkpCpXriw7Oztt3bo13WUv5syZo7Jly8rOzk6enp7q2bOnue/SpUvq0qWL3N3d5erqqpCQEO3bty9TcQIAAADAoyD5AQAAAAAAAP968+fPV65cuRQdHa0JEyYoJCREAQEB2rlzp9asWaM///xTrVu3zvD4W7duafTo0dq3b5+WL1+u+Ph4M8HBy8tLS5culSQdPXpUCQkJmjZtWpo22rZtq+3bt+v48eNm2aFDh7R//3699tprkqSFCxdq2LBhGjt2rGJiYjRu3DgNHTpU8+fPz/RYBwwYoH79+mnPnj0KDAxUaGio/vrrL6s6gwYN0oQJExQTE6MKFSqkaWPGjBnq0aOHunbtqgMHDigiIkIlSpQw97dq1Upnz55VZGSkdu3apUqVKqlu3bq6cOFChnHduHFDV65csfoAAAAAQGax7AUAAAAAAAD+9UqWLKlJkyZJksaMGaOAgACNGzfO3D9nzhx5eXkpNjZWpUqVSnN8p06dzL+LFSumjz76SFWrVlViYqKcnZ3N5S0KFCigPHnypBtD2bJl5e/vr0WLFmno0KGS7iQ7VK9e3UwsGD58uCZPnqyXXnpJklS0aFEdPnxYM2fOVIcOHTI11p49e6ply5aS7iQxrFmzRl988YUGDhxo1hk1apTq16+fYRtjxoxRv3791KdPH7OsatWqkqStW7dq+/btOnv2rOzs7CRJH3zwgZYvX67vvvtOXbt2TbfN8ePHa+TIkZkaAwAAAADci5kfAAAAAAAA8K9XuXJl8+99+/Zp06ZNcnZ2Nj+lS5eWJKtZGe62a9cuhYaG6rnnnpOLi4uCgoIkSadOnXqoONq2batFixZJkgzD0Ndff622bdtKkpKSknT8+HF17tzZKrYxY8ZkGFd6AgMDzb9z5MihKlWqKCYmxqpOlSpVMjz+7Nmz+v3331W3bt109+/bt0+JiYnKly+fVZwnTpy4b5yDBw/W5cuXzc/p06czPSYAAAAAYOYHAAAAAAAA/Os5OTmZfycmJio0NFQTJ05MU8/T0zNNWVJSkho2bKiGDRtq4cKFcnd316lTp9SwYUPdvHnzoeJo06aN3nnnHe3evVvXr1/X6dOn9corr5hxSdKsWbNUvXp1q+NsbW0fqp8Huft83MvBweG+xyYmJsrT01ObN29Osy+jWS8kyc7OzpwpAgAAAAAeFskPAAAAAAAAwF0qVaqkpUuXysfHRzlyPPifz44cOaK//vpLEyZMkJeXlyRp586dVnVy5colSUpOTr5vW0WKFFFQUJAWLlyo69evq379+ipQoIAkycPDQ4UKFdKvv/5qzgbxKH755RfVrl1bknT79m3t2rVLPXv2zPTxLi4u8vHx0caNG1WnTp00+ytVqqQ//vhDOXLkkI+PzyPHCQAAAAAPg2UvAAAAAAAAgLv06NFDFy5cUJs2bbRjxw4dP35ca9euVceOHdNNXnjuueeUK1cuffzxx/r1118VERGh0aNHW9Xx9vaWxWLRypUrde7cOXMWh/S0bdtWixcv1pIlS9IkOYwcOVLjx4/XRx99pNjYWB04cEBz587Vhx9+mOnxffrpp/r+++915MgR9ejRQxcvXlSnTp0yfbwkjRgxQpMnT9ZHH32kuLg47d69Wx9//LEkqV69egoMDFTz5s21bt06xcfH66efftJ7772XJikEAAAAAJ4Ukh8AAAAAAACAuxQqVEjR0dFKTk5WgwYNVL58eYWHhytPnjyysUn7z2nu7u6aN2+elixZojJlymjChAn64IMPrOoULlxYI0eO1KBBg+Th4XHfmRZefvll/fXXX7p27ZqaN29uta9Lly6aPXu25s6dq/LlyysoKEjz5s1T0aJFMz2+CRMmaMKECfL399fWrVsVERGh/PnzZ/p4SerQoYOmTp2q6dOnq2zZsmratKni4uIkSRaLRatXr1bt2rXVsWNHlSpVSq+++qpOnjwpDw+Ph+oHAAAAADLLYhiGkdVBAAAAAAAAAHi64uPjVbRoUe3Zs0cVK1bM6nAe6MqVK8qdO7fqFG6tHDY5szocAAAA4F9j3amvsjoEK6n/b3D58mW5urpmWI+ZHwAAAAAAAAAAAAAAQLZG8gMAAAAAAADwP2DcuHFydnZO99O4ceOsDg8AAAAAnqocWR0AAAAAAAAAgMfXvXt3tW7dOt19Dg4OKly4sFgBFwAAAMD/KpIfAAAAAAAAgP8BefPmVd68ebM6DAAAAADIEix7AQAAAAAAAAAAAAAAsjVmfgAAAAAAAADwzFp+eJZcXV2zOgwAAAAAzzhmfgAAAAAAAAAAAAAAANkayQ8AAAAAAAAAAAAAACBbI/kBAAAAAAAAAAAAAABkayQ/AAAAAAAAAAAAAACAbI3kBwAAAAAAAAAAAAAAkK2R/AAAAAAAAAAAAAAAALK1HFkdAAAAAAAAAABkpGVgP+W0zfVIx67e/+kTjgYAAADAs4qZHwAAAAAAAAAAAAAAQLZG8gMAAAAAAAAAAAAAAMjWSH4AAAAAAAAAAAAAAADZGskPAAAAAAAAAAAAAAAgWyP5AQAAAAAAAAAAAAAAZGskPwAAAAAAAAAAAAAAgGyN5AcAAAAAACQFBwcrPDw8q8PAE+Lj46OpU6dmuP0kZLd75mmcA6SV1ffFiBEjVLFixafeD/cTAAAAgGcNyQ8AAAAAAEhatmyZRo8ebW5nhxd78fHxslgs5sfFxUVly5ZVjx49FBcX99Dt/RNj3rx5sywWi9zc3PT3339b7duxY4c5lidtx44d6tq16xNv937mzZtnjsfGxkZFihRRx44ddfbs2X80jlRZcQ6k/7vmly5d+sf7zqx/MmHhWbsvpDvjv/tZYrFY1L179yyLBwAAAAAeBckPAAAAAABIyps3r1xcXLI6jEeyYcMGJSQkaN++fRo3bpxiYmLk7++vjRs3ZnVoGXJxcdH3339vVfbFF1/oueeeeyr9ubu7y9HR8am0fT+urq5KSEjQb7/9plmzZikyMlLt2rVLt25ycrJSUlKeWixZdQ6eZTdv3sySfh/mvvinvPHGG0pISDA/kyZNytJ4AAAAAOBhkfwAAAAAAICsf/kdHByskydPqm/fvmlmIti6dateeOEFOTg4yMvLS71791ZSUpK538fHR2PGjFH79u3l7Owsb29vRURE6Ny5c2rWrJmcnZ1VoUIF7dy50zzm5MmTCg0NlZubm5ycnFS2bFmtXr0607Hny5dPBQsWVLFixdSsWTNt2LBB1atXV+fOnZWcnCxJOn78uJo1ayYPDw85OzuratWq2rBhg9X4H3XM06dPV8mSJWVvby8PDw+9/PLLD4y5Q4cOmjNnjrl9/fp1LV68WB06dEhT90H9nz17VqGhoXJwcFDRokW1cOHCNG3cO6vFqVOnzOvh6uqq1q1b688//zT3h4WFqXnz5lZthIeHKzg4+IFju5vFYlHBggVVqFAhNW7cWL1799aGDRt0/fp1zZs3T3ny5FFERITKlCkjOzs7nTp1Sjdu3FD//v1VuHBhOTk5qXr16tq8ebPZZupxK1eulK+vrxwdHfXyyy/r2rVrmj9/vnx8fOTm5qbevXub1//ec5A6a8jevXvN/ZcuXZLFYjH7Sp2xYe3atQoICJCDg4NCQkJ09uxZRUZGys/PT66urnrttdd07dq1TJ+Tx4l/9OjRatOmjZycnFS4cGF9+umnVm0/6LqmLgkxe/ZsFS1aVPb29goLC1NUVJSmTZtm3vvx8fGSpIMHD6px48ZydnaWh4eH2rVrp/Pnz5vtJSUlmd91T09PTZ48OVPn4H73xZo1a1SrVi3lyZNH+fLlU9OmTXX8+HGr43/77Te1adNGefPmlZOTk6pUqaJt27al29fx48dVrFgx9ezZU4ZhZBiTo6OjChYsaH5cXV0zNZZUs2fPVp48ecykq6tXr6pt27ZycnKSp6enpkyZkuVLggAAAAD430byAwAAAAAA91i2bJmKFCmiUaNGmb+Clu68RGzUqJFatmyp/fv365tvvtHWrVvVs2dPq+OnTJmimjVras+ePfrPf/6jdu3aqX379nr99de1e/duFS9eXO3btzdfRPbo0UM3btzQjz/+qAMHDmjixIlydnZ+5PhtbGzUp08fnTx5Urt27ZIkJSYmqkmTJtq4caP27NmjRo0aKTQ0VKdOnXqsMe/cuVO9e/fWqFGjdPToUa1Zs0a1a9d+YIzt2rXTli1bzP6XLl0qHx8fVapUyapeZs55WFiYTp8+rU2bNum7777T9OnT77uEQEpKipo1a6YLFy4oKipK69ev16+//qpXXnnlIc7yo3FwcFBKSopu374tSbp27ZomTpyo2bNn69ChQypQoIB69uypn3/+WYsXL9b+/fvVqlUrNWrUyGopk2vXrumjjz7S4sWLtWbNGm3evFktWrTQ6tWrtXr1an355ZeaOXOmvvvuu8eOecSIEfrkk0/0008/6fTp02rdurWmTp2qRYsWadWqVVq3bp0+/vjjh2rzUeN///335e/vrz179mjQoEHq06eP1q9fLynz1/XYsWNaunSpli1bpr1792ratGkKDAy0mvnAy8tLly5dUkhIiAICArRz506tWbNGf/75p1q3bm22NWDAAEVFRWnFihVat26dNm/erN27dz/0Ob77vkhKStLbb7+tnTt3auPGjbKxsVGLFi3MWUESExMVFBSkM2fOKCIiQvv27dPAgQPTnTVk//79qlWrll577TV98skn911SZuHChcqfP7/KlSunwYMHP1RCy6RJkzRo0CCtW7dOdevWlSS9/fbbio6OVkREhNavX68tW7Y88NzcuHFDV65csfoAAAAAQGblyOoAAAAAAAB41uTNm1e2trZycXFRwYIFzfLx48erbdu25i+XS5YsqY8++khBQUGaMWOG7O3tJUlNmjRRt27dJEnDhg3TjBkzVLVqVbVq1UqS9M477ygwMFB//vmnChYsqFOnTqlly5YqX768JKlYsWKPPYbSpUtLuvML/2rVqsnf31/+/v7m/tGjR+v7779XRESEevbs+chjPnXqlJycnNS0aVO5uLjI29tbAQEBD4yvQIECaty4sebNm6dhw4Zpzpw56tSpU5p6mek/MjJS27dvV9WqVSXdWT7Dz88vw743btyoAwcO6MSJE/Ly8pIkLViwQGXLltWOHTvMdp60uLg4ffbZZ6pSpYq5xMqtW7c0ffp089qcOnVKc+fO1alTp1SoUCFJUv/+/bVmzRrNnTtX48aNM4+bMWOGihcvLkl6+eWX9eWXX+rPP/+Us7OzypQpozp16mjTpk2PndQxZswY1axZU5LUuXNnDR482JxNILXvTZs26Z133sl0m48af82aNTVo0CBJUqlSpRQdHa0pU6aofv36mb6uN2/e1IIFC+Tu7m62mytXLnPmg1SffPKJAgICzHMuSXPmzJGXl5diY2NVqFAhffHFF/rqq6/MF/7z589XkSJFMn9ylfa+aNmypdX+OXPmyN3dXYcPH1a5cuW0aNEinTt3Tjt27FDevHklSSVKlEjT7k8//aSmTZvqvffeU79+/e4bw2uvvSZvb28VKlRI+/fv1zvvvKOjR49q2bJlD4z/nXfe0ZdffqmoqCiVLVtW0p1ZH+bPn69FixaZ52bu3LnmPZ2R8ePHa+TIkQ/sEwAAAADSQ/IDAAAAAACZtG/fPu3fv99qWQXDMJSSkqITJ06YL9wrVKhg7vfw8JAkM7Hh7rKzZ8+qYMGC6t27t958802tW7dO9erVU8uWLa3aeBSps0qk/tI7MTFRI0aM0KpVq5SQkKDbt2/r+vXr5swLjzrm+vXry9vbW8WKFVOjRo3UqFEjtWjRQo6Ojg+MsVOnTurTp49ef/11/fzzz1qyZIm2bNnyUP3HxsYqR44cqly5srm/dOnSypMnT4b9xsTEyMvLy3xBLkllypRRnjx5FBMT80STHy5fvixnZ2elpKTo77//Vq1atTR79mxzf65cuayu9YEDB5ScnKxSpUpZtXPjxg3ly5fP3HZ0dDQTB6Q795SPj4/VjCEeHh73nQEjs+69nx0dHa0SdDw8PLR9+/aHavNR4w8MDEyznbqUR2avq7e3t1XiQ0b27dunTZs2pTsLy/Hjx3X9+nXdvHlT1atXN8vz5s0rX1/fB7Z9v/siLi5Ow4YN07Zt23T+/HlzRodTp06pXLly2rt3rwICAszEh/ScOnVK9evX19ixYzO1zETXrl3Nv8uXLy9PT0/VrVtXx48ft7pO95o8ebKSkpK0c+dOq3vi119/1a1bt1StWjWzLHfu3A88N4MHD9bbb79tbl+5csXqegIAAADA/ZD8AAAAAABAJiUmJqpbt27q3bt3mn3PPfec+XfOnDnNv1OTD9IrS32p2aVLFzVs2NBcQmD8+PGaPHmyevXq9cixxsTESJKKFi0q6c7sAevXr9cHH3ygEiVKyMHBQS+//LJu3rx533YeNOZcuXJp9+7d2rx5s9atW6dhw4ZpxIgR2rFjx30TECSpcePG6tq1qzp37qzQ0FCrl/uZ7T82Nva+fTwqGxsbM4Ek1a1btx66HRcXF+3evVs2Njby9PSUg4OD1X4HBwerpQgSExNla2urXbt2ydbW1qru3S/h776fpDv3VHpl6S2FIN0ZnySrMWY0vnvv3YfpJyOPG//jcHJyylS9xMREhYaGauLEiWn2eXp66tixY48cw/3ui9DQUHl7e2vWrFkqVKiQUlJSVK5cOfO7eu89lB53d3cVKlRIX3/9tTp16iRXV9eHii81oePYsWP3TX544YUXtGrVKn377bfmjByPw87OTnZ2do/dDgAAAIB/J5IfAAAAAABIR65cuZScnGxVVqlSJR0+fDjdKeYfl5eXl7p3767u3btr8ODBmjVr1iMnP6SkpOijjz5S0aJFzSUooqOjFRYWphYtWki682I3Pj7e6rhHHXOOHDlUr1491atXT8OHD1eePHn03//+Vy+99NJ948yRI4fat2+vSZMmKTIyMt06D+q/dOnSun37tnbt2mX+sv/o0aO6dOlShv36+fnp9OnTOn36tPmr8sOHD+vSpUsqU6aMpDsvjw8ePGh13N69e9O8oH8QGxubh7pfAgIClJycrLNnz+qFF154qL4eRurMBwkJCeY9snfv3qfW35Pyyy+/pNlOnXElM9c1Ixnd+0uXLpWPj49y5Ej7T2jFixdXzpw5tW3bNjP56eLFi4qNjVVQUNB9+8vovvjrr7909OhRzZo1y7z+W7dutapToUIFzZ49WxcuXMhw9gcHBwetXLlSTZo0UcOGDbVu3TpzqZXMSL0XPD0971uvWrVq6tmzpxo1aqQcOXKof//+ku4s3ZMzZ07t2LHDPDeXL19WbGysateunek4AAAAAOBh2GR1AAAAAAAAPIt8fHz0448/6syZMzp//rykO2vb//TTT+rZs6f27t2ruLg4rVixQj179nysvsLDw7V27VqdOHFCu3fv1qZNm8wXupnx119/6Y8//tCvv/6qiIgI1atXT9u3b9cXX3xhzh5QsmRJLVu2THv37tW+ffv02muvpflV/aOMeeXKlfroo4+0d+9enTx5UgsWLFBKSkqmpv6XpNGjR+vcuXNq2LBhuvsf1L+vr68aNWqkbt26adu2bdq1a5e6dOly31/H16tXT+XLl1fbtm21e/dubd++Xe3bt1dQUJCqVKkiSQoJCdHOnTu1YMECxcXFafjw4WmSIZ6GUqVKqW3btmrfvr2WLVumEydOaPv27Ro/frxWrVr1xPpxcHDQ888/rwkTJigmJkZRUVEaMmTIE2v/aYmOjtakSZMUGxurTz/9VEuWLFGfPn0kZe66ZsTHx0fbtm1TfHy8udREjx49dOHCBbVp00Y7duzQ8ePHtXbtWnXs2FHJyclydnZW586dNWDAAP33v//VwYMHFRYWZs6q8Sjc3NyUL18+ff755zp27Jj++9//Wi0DIUlt2rRRwYIF1bx5c0VHR+vXX3/V0qVL9fPPP1vVc3Jy0qpVq5QjRw41btxYiYmJ6fZ5/PhxjR49Wrt27VJ8fLwiIiLUvn171a5dO1PL79SoUUOrV6/WyJEjzSVIXFxc1KFDBw0YMECbNm3SoUOH1LlzZ9nY2FjNdAIAAAAATxLJDwAAAAAApGPUqFGKj49X8eLFzV/JV6hQQVFRUYqNjdULL7yggIAADRs2TIUKFXqsvpKTk9WjRw/5+fmpUaNGKlWqlKZPn57p4+vVqydPT0+VL19egwYNkp+fn/bv3686deqYdT788EO5ubmpRo0aCg0NVcOGDVWpUqXHHnOePHm0bNkyhYSEyM/PT5999pm+/vprlS1bNlOx58qVS/nz58/whWhmzvncuXNVqFAhBQUF6aWXXlLXrl1VoECBDPu0WCxasWKF3NzcVLt2bdWrV0/FihXTN998Y9Zp2LChhg4dqoEDB6pq1aq6evWq2rdvn6kxPa65c+eqffv26tevn3x9fdW8eXOrX9A/KXPmzNHt27dVuXJlhYeHa8yYMU+0/aehX79+2rlzpwICAjRmzBh9+OGHZuJMZq5rRvr37y9bW1uVKVNG7u7uOnXqlAoVKqTo6GglJyerQYMGKl++vMLDw5UnTx4zweH999/XCy+8oNDQUNWrV0+1atVS5cqVH3l8NjY2Wrx4sXbt2qVy5cqpb9++ev/9963q5MqVS+vWrVOBAgXUpEkTlS9fXhMmTEizTIp0Z6mUyMhIGYah//znP0pKSkpTJ1euXNqwYYMaNGig0qVLq1+/fmrZsqV++OGHTMddq1YtrVq1SkOGDNHHH38s6c4zJzAwUE2bNlW9evVUs2ZN+fn5yd7e/iHPCgAAAABkjsW4dwFLAAAAAACA/zGenp4aPXq0unTpktWh4BH5+PgoPDxc4eHhWR0KHkFSUpIKFy6syZMnq3Pnzpk65sqVK8qdO7fqleminLa5Hqnf1fs/faTjAAAAADw7Uv/f4PLly3J1dc2wXtoFCwEAAAAAAP5HXLt2TdHR0frzzz8zPRsFgMe3Z88eHTlyRNWqVdPly5c1atQoSVKzZs2yODIAAAAA/6tY9gIAAAAAgGdU9+7d5ezsnO6ne/fuWR1etvD555/r1VdfVXh4uAIDA7M6HOBf5YMPPpC/v7/q1aunpKQkbdmyRfnz58/qsAAAAAD8j2LZCwAAAAAAnlFnz57VlStX0t3n6uqqAgUK/MMRAcA/h2UvAAAAAEgsewEAAAAAQLZXoEABEhwAAAAAAAAygWUvAAAAAAAAAAAAAABAtsbMDwAAAAAAAACeWUt/nnzfqW0BAAAAQGLmBwAAAAAAAAAAAAAAkM2R/AAAAAAAAAAAAAAAALI1kh8AAAAAAAAAAAAAAEC2RvIDAAAAAAAAAAAAAADI1kh+AAAAAAAAAAAAAAAA2RrJDwAAAAAAAACeWa0aDFXTWgOzOgwAAAAAzziSHwAAAAAAAAAAAAAAQLZG8gMAAAAAAAAAAAAAAMjWSH4AAAAAAAAAAAAAAADZGskPAAAAAAAAAAAAAAAgWyP5AQAAAAAAAAAAAAAAZGskPwAAAAAAAAAAAAAAgGyN5AcAAAAAAAAAAAAAAJCtkfwAAAAAAHcJDg5WeHj4E2/3jz/+UP369eXk5KQ8efI8sL7FYtHy5cufeBywPrfx8fGyWCzau3dvlsaE7OVpPSeeVZs3b5bFYtGlS5eypP/o6GiVL19eOXPmVPPmzR+rrX/q2oWFhT12rAAAAACAh0PyAwAAAAD8A6ZMmaKEhATt3btXsbGxj91eRi8j/+mXsiNHjtTrr79uVVa0aFFt2LDhH4vhYSUkJKhx48aSJC8vLyUkJKhcuXJZHFXGfHx8NHXq1KwO476ioqLk5eWV6frXr1+Xk5OTjh079hSjenqWLVum0aNHP9E2T548KQcHByUmJj7Rdp+EGjVqKCEhQblz586S/t9++21VrFhRJ06c0Lx58x6rrXuv3aN+v5709XraiVipz+WjR4+qTp068vDwkL29vYoVK6YhQ4bo1q1bZt1Dhw6pZcuW8vHxkcViSff8zJgxQxUqVJCrq6tcXV0VGBioyMhIqzqff/65goOD5erqmqXJMwAAAAD+PUh+AAAAAIDHcPcLo/s5fvy4KleurJIlS6pAgQJPOap/zooVK/Tiiy+a2/v379fFixcVFBSUhVHdX8GCBWVnZydJsrW1VcGCBZUjR44sjiqtmzdvZnUImbZixQqFhoZmuv769evl7e2tEiVKPFJ/WXVuUvvNmzevXFxcnmjbK1asUJ06deTs7PxIxz/Nc5IrVy4VLFhQFovlqfVxP8ePH1dISIiKFCmS7sw5hmHo9u3bmWrrSV27x71e/6S7n8s5c+ZU+/bttW7dOh09elRTp07VrFmzNHz4cLP+tWvXVKxYMU2YMEEFCxZMt80iRYpowoQJ2rVrl3bu3KmQkBA1a9ZMhw4dsmqnUaNGevfdd5/6GAEAAABAIvkBAAAAANJISUnRwIEDlTdvXhUsWFAjRoww91ksFs2YMUMvvviinJycNHbsWEl3XoRVqlTJ/CXtyJEjzZdxPj4+Wrp0qRYsWCCLxaKwsLBMxXH+/Hm1aNFCjo6OKlmypCIiIiTd+YVwnTp1JElubm5mm2FhYYqKitK0adNksVhksVgUHx9vzhKxatUqVahQQfb29nr++ed18OBBs6+TJ08qNDRUbm5ucnJyUtmyZbV69er7xnf69GkdOnRIjRo1MstWrFihRo0aKUeOHHJ3d9d3331n7qtYsaI8PT3N7a1bt8rOzk7Xrl1T//791bRpU3Pf1KlTZbFYtGbNGrOsRIkSmj17tg4ePCgbGxudO3dOknThwgXZ2Njo1VdfNeuOGTNGtWrVSjfuBy17ERUVpWrVqsnOzk6enp4aNGiQ1YvV4OBg9erVS+Hh4XJzc5OHh4dmzZqlpKQkdezYUS4uLipRooTVr6CTk5PVuXNnFS1aVA4ODvL19dW0adOs4kqdJn/s2LEqVKiQfH19FRwcrJMnT6pv377mNc3IpUuX1K1bN/MX3eXKldPKlSvN/UuXLlXZsmVlZ2cnHx8fTZ482ep4Hx8fjRkzRu3bt5ezs7O8vb0VERGhc+fOqVmzZnJ2dlaFChW0c+fONH1HRESYSTApKSmaNGmSSpQoITs7Oz333HPm9yTVvUkzY8aMUYECBeTi4qIuXbpo0KBBqlix4n3PjSQdOHBAISEhcnBwUL58+dS1a9c0v8SfM2eOOW5PT0/17NnT6px16dJF7u7ucnV1VUhIiPbt22fuHzFihCpWrKjZs2eraNGisre3l5R2hpUbN26of//+Kly4sJycnFS9enVt3rzZ3J+Z79fd5yR1vCNHjjRj6969u1WCQ3BwsHr27Knw8HDlz59fDRs2lCQdPHhQjRs3lrOzszw8PNSuXTudP3/e6riHvX/vnWkm9bzcberUqfLx8UlzzcaNGycPDw/lyZNHo0aN0u3btzVgwADlzZtXRYoU0dy5c5WR1O/nX3/9pU6dOslisWjevHlmPJGRkapcubLs7Oy0devWdJeaCA8PV3BwsNX4U69dRt+vh71eycnJevvtt5UnTx7ly5dPAwcOlGEYVvXXrFmjWrVqmXWaNm2q48ePm/uLFi0qSQoICJDFYrGKefbs2fLz85O9vb1Kly6t6dOnm/tu3rypnj17ytPTU/b29vL29tb48ePTxNqoUSPlzJlTxYoVU8eOHeXv7y9vb2+9+OKLatu2rbZs2WLWr1q1qt5//329+uqrZqLYvUJDQ9WkSROVLFlSpUqV0tixY+Xs7KxffvnF6twPGjRIzz//fLptAAAAAMCTRvIDAAAAANxj/vz5cnJy0rZt2zRp0iSNGjVK69evN/ePGDFCLVq00IEDB9SpUydt2bJF7du3V58+fXT48GHNnDlT8+bNM1/47tixQ40aNVLr1q2VkJCQ5qV3RkaOHKnWrVtr//79atKkidq2basLFy7Iy8tLS5culSQdPXrUbHPatGkKDAzUG2+8oYSEBCUkJFgtRTBgwABNnjxZO3bskLu7u0JDQ82ZK3r06KEbN27oxx9/1IEDBzRx4kSrXzT7+PhYJYFId154p05pfndZs2bNZLFYVLt2bfMF8MWLFxUTE6Pr16/ryJEjku4kGVStWlWOjo4KCgrS1q1blZycbO7Lnz+/efyZM2d0/PhxBQcHq2zZssqXL5+ioqIkSVu2bLHaTj3+7peHmXXmzBk1adJEVatW1b59+zRjxgx98cUXGjNmjFW9+fPnK3/+/Nq+fbt69eqlN998U61atVKNGjW0e/duNWjQQO3atdO1a9ck3UkIKFKkiJYsWaLDhw9r2LBhevfdd/Xtt99atbtx40YdPXpU69ev18qVK7Vs2TIVKVJEo0aNMq9pelJSUtS4cWNFR0frq6++0uHDhzVhwgTZ2tpKknbt2qXWrVvr1Vdf1YEDBzRixAgNHTo0zRICU6ZMUc2aNbVnzx795z//Ubt27dS+fXu9/vrr2r17t4oXL6727dtbvdg9dOiQzp49q5CQEEnS4MGDNWHCBA0dOlSHDx/WokWL5OHhYRXrypUr1axZM0nSwoULNXbsWE2cOFG7du3Sc889pxkzZqQZ473nJikpSQ0bNpSbm5t27NihJUuWaMOGDVbJDTNmzFCPHj3UtWtXHThwQBEREVazTbRq1Upnz55VZGSkdu3apUqVKqlu3bq6cOGCWefYsWNaunSpli1bluGSBD179tTPP/+sxYsXa//+/WrVqpUaNWqkuLg4SQ/+fl26dElbt261SgjZuHGjYmJitHnzZn399ddatmyZRo4cadXv/PnzlStXLkVHR+uzzz7TpUuXFBISooCAAO3cuVNr1qzRn3/+qdatW6c57mHu30f13//+V7///rt+/PFHffjhhxo+fLiaNm0qNzc3bdu2Td27d1e3bt3022+/pXt86rI0rq6umjp1qhISEvTKK6+Y+wcNGqQJEyYoJiZGFSpUeOj4Mvp+Pez1mjx5subNm6c5c+Zo69atunDhgr7//nurvpKSkvT2229r586d2rhxo2xsbNSiRQulpKRIkrZv3y5J2rBhgxISErRs2TJJd74fw4YN09ixYxUTE6Nx48Zp6NChmj9/viTpo48+UkREhL799lsdPXpUCxcutEpCkf7vuZyeY8eOac2aNY81W09ycrIWL16spKQkBQYGPnI70p1EoitXrlh9AAAAACDTDAAAAACAKSgoyKhVq5ZVWdWqVY133nnHMAzDkGSEh4db7a9bt64xbtw4q7Ivv/zS8PT0NLebNWtmdOjQIdNxSDKGDBlibicmJhqSjMjISMMwDGPTpk2GJOPixYtp4u/Tp49VWWrdxYsXm2V//fWX4eDgYHzzzTeGYRhG+fLljREjRmQYT0hIiPHxxx9bldWvX9/45JNPzO3ffvvNyJUrlxnTRx99ZJQtW9YwDMNYvny5Ub16daNZs2bGjBkzDMMwjHr16hnvvvuuYRiGcfHiRcPGxsbYsWOHkZKSYuTNm9cYP368Ub16dcMwDOOrr74yChcubPb10ksvGT169DAMwzDCw8ONAQMGGG5ubkZMTIxx8+ZNw9HR0Vi3bl26Y5FkfP/994ZhGMaJEycMScaePXsMwzCMd9991/D19TVSUlLM+p9++qnh7OxsJCcnm+f47nvk9u3bhpOTk9GuXTuzLCEhwZBk/Pzzzxme0x49ehgtW7Y0tzt06GB4eHgYN27csKrn7e1tTJkyJcN2DMMw1q5da9jY2BhHjx5Nd/9rr71m1K9f36pswIABRpkyZaz6ef3119OMYejQoWbZzz//bEgyEhISzLKxY8caL7/8smEYhnHlyhXDzs7OmDVrVoaxRkdHGwUKFDDPZ/Xq1c1rmapmzZqGv7+/uZ3eufn8888NNzc3IzEx0SxbtWqVYWNjY/zxxx+GYRhGoUKFjPfeey/dOLZs2WK4uroaf//9t1V58eLFjZkzZxqGYRjDhw83cubMaZw9e9aqzt3fs5MnTxq2trbGmTNnrOrUrVvXGDx4sGEYD/5+LVy40KhSpYrVePPmzWskJSWZZTNmzEhzHwYEBFi1M3r0aKNBgwZWZadPnzYkmffGo9y/9z5vhg8fbnV9DMMwpkyZYnh7e1uNwdvb24zXMAzD19fXeOGFF9L0/fXXX2d4bgzDMHLnzm3MnTvX3E6NZ/ny5Vb1OnToYDRr1syqrE+fPkZQUJC5fe8zMr3v18NeL09PT2PSpEnm9q1bt4wiRYqkieVu586dMyQZBw4cMAwj7bMoVfHixY1FixZZlY0ePdoIDAw0DMMwevXqZYSEhFg9s+5273M5VWBgoGFnZ2dIMrp27Wp1ne52v+fP/v37DScnJ8PW1tbInTu3sWrVqnTrZfTfq/QMHz7ckJTm06B6b+M/NQc88HgAAAAA/5suX75sSDIuX75833rM/AAAAAAA97j3F8Senp46e/asuV2lShWr/fv27dOoUaPk7OxsflJnX3icX07fHYeTk5NcXV2t4nhYd/8iN2/evPL19VVMTIwkqXfv3hozZoxq1qyp4cOHa//+/VbHbty40eoX9VeuXFFUVJTVL9UjIiLMad0lKSgoSIcPH9a5c+fMmRiCg4O1efNm3bp1Sz/99JM5O0OePHnk7++vzZs368CBA8qVK5e6du2qPXv2KDExUVFRUVa/TA4KCjJnhYiKilJISIg508SOHTt069Yt1axZ86HPUUxMjAIDA62Wl6hZs6YSExOtfp1+97WxtbVVvnz5VL58ebMsdaaDu6/Xp59+qsqVK8vd3V3Ozs76/PPPderUKav+y5cvr1y5cj103Hv37lWRIkVUqlSpDMd17/moWbOm4uLizNk27h1X6hgeNK67p/+PiYnRjRs3VLdu3QxjXbFihZo2bSobmzv/JHH06FFVq1bNqs6926lx3H1uYmJi5O/vLycnJ6sxpaSk6OjRozp79qx+//33DGPZt2+fEhMTlS9fPqvv7okTJ6yWI/D29pa7u3uG4zlw4ICSk5NVqlQpq3aioqLMdh70/bp3GRBJ8vf3l6Ojo7kdGBioxMREnT592iyrXLlymjFt2rTJKo7SpUtLktWYHuX+fRRly5Y1r3Nqu3f3k9p3aj+py3U4OzurbNmyD2z/3mfxk/Iw1+vy5ctKSEhQ9erVzf05cuRIE1tcXJzatGmjYsWKydXV1Zyd4d5nwN2SkpJ0/Phxde7c2eqajhkzxryeYWFh2rt3r3x9fdW7d2+tW7fOqo17n8upvvnmG+3evVuLFi3SqlWr9MEHHzzUOZIkX19f7d27V9u2bdObb76pDh066PDhww/dzt0GDx6sy5cvm5+773cAAAAAeJAcWR0AAAAAADxrcubMabVtsVjMqcklWb1slaTExESNHDlSL730Upq27O3tn1ocT1KXLl3UsGFDrVq1SuvWrdP48eM1efJk9erVK936kZGRKlOmjNWyGhEREVYvcMuXL6+8efMqKipKUVFRGjt2rAoWLKiJEyeaCQo1atQw66cmRtjZ2SkoKEh58+aVn5+ftm7dqqioKPXr18+qbnh4uOLi4nT48GHVqlVLR44c0ebNm3Xx4kVVqVLF6sXxk5betbm7LDV5IvV6LV68WP3799fkyZMVGBgoFxcXvf/++9q2bZtVO/feW5nl4ODwSMfdK70x3G9cCQkJ5hIZmY0jIiJCEyZMeOjYHvbcPCiWxMREeXp6mkk0d7v7RfGD+k1MTJStra127dplLjOSKnWphPt9v27evKk1a9bo3XffzdzA7pLesyg0NFQTJ05MU9fT09P8+2Hv33vZ2NhYLX0iyVxC524P6ie1LLWf2bNn6/r16+kem557x5/ZuB7kaVyv0NBQeXt7a9asWSpUqJBSUlJUrlw53bx5M8NjEhMTJUmzZs2ySq6QZN5rlSpV0okTJxQZGakNGzaodevWqlevnr777jtJaZ/LqVKf3WXKlFFycrK6du2qfv36pbmH7ydXrlzmMjKVK1fWjh07NG3aNM2cOTPTbdzLzs5OdnZ2j3w8AAAAgH83Zn4AAAAAgMdUqVIlHT16VCVKlEjzuftXz09S6i/g7/7Vfmr5vWWpfvnlF/PvixcvKjY2Vn5+fmaZl5eXunfvrmXLlqlfv36aNWtWhv2vWLHCag35xMREbdq0yarMYrHohRde0IoVK3To0CHVqlVLFSpU0I0bNzRz5kxVqVLF6uVlUFCQtm7dqo0bN5ozQgQHB+vrr79WbGysWSbdSaxwc3PTmDFjVLFiRTk7Oys4OFhRUVHavHmzVd2H4efnp59//tnqBWp0dLRcXFxUpEiRR2oztY0aNWrorbfeUkBAgEqUKGH1S/z7ud81TVWhQgX99ttvio2NTXe/n5+foqOj08RUqlSph3rZea8ffvhBNWrUUN68eSVJJUuWlIODgzZu3Jhu/bi4OJ08eVL169c3y3x9fbVjxw6revdup8fPz0/79u1TUlKSWRYdHS0bGxv5+vrKxcVFPj4+GcZSqVIl/fHHH8qRI0ea723+/Pkf2H+qgIAAJScn6+zZs2naKViwoFkvo+/X5s2b5ebmJn9/f6t29+3bZyYCSHe+v87OzlYJR+mN6dChQ/Lx8UkTy6Mm1qTH3d1df/zxh9X3ZO/evY/dbuHChc14vb29HymuhIQEq7IHxZXR9yuz1yt37tzy9PS0SmS6ffu2du3aZW7/9ddfOnr0qIYMGaK6devKz89PFy9eTBOHZP1M9/DwUKFChfTrr7+muZ5FixY167m6uuqVV17RrFmz9M0332jp0qW6cOFCus/l9KSkpOjWrVuPnVyXkpKiGzduPFYbAAAAAPA4SH4AAAAAgMc0bNgwLViwQCNHjtShQ4cUExOjxYsXa8iQIU+tT29vb1ksFq1cuVLnzp0zfyHs4+Ojbdu2KT4+XufPn7d6mTVq1Cht3LhRBw8eVFhYmPLnz6/mzZtLksLDw7V27VqdOHFCu3fv1qZNm6wSI+rWratPPvlE0p0Xe5GRkVa/Jl6zZo1KlSplTuWeKjV5ITVBwcbGRrVr19bChQutlrGQpNq1a+vq1atauXKlVfLDwoUL5enpabWkg8ViMdtJrZuaWLFx40az7e3bt6t06dI6c+ZMps7rW2+9pdOnT6tXr146cuSIVqxYoeHDh+vtt99+rESWkiVLaufOnVq7dq1iY2M1dOjQTL3gl+5c0x9//FFnzpzR+fPnJUlnzpxR6dKltX37dkl3Ekdq166tli1bav369eYvwdesWSNJ6tevnzZu3KjRo0crNjZW8+fP1yeffKL+/fs/8piktL8qt7e31zvvvKOBAwdqwYIFOn78uH755Rd98cUXku4kzdSrV89qVo5evXrpiy++0Pz58xUXF6cxY8Zo//79VkuPpKdt27ayt7dXhw4ddPDgQW3atEm9evVSu3btzGUbRowYocmTJ+ujjz5SXFycdu/erY8//liSVK9ePQUGBqp58+Zat26d4uPj9dNPP+m9997Tzp07M30OSpUqpbZt26p9+/ZatmyZTpw4oe3bt2v8+PFatWqVpPt/vzL6Zf7NmzfVuXNnHT58WKtXr9bw4cPVs2fP+96HPXr00IULF9SmTRvt2LFDx48f19q1a9WxY8cHJtA8jODgYJ07d06TJk3S8ePH9emnnyoyMvKJtf+oQkJCtHPnTi1YsEBxcXEaPny4Dh48eN9j0vt+Pez16tOnjyZMmKDly5fryJEjeuutt3Tp0iVzv5ubm/Lly6fPP/9cx44d03//+1+9/fbbVm0UKFBADg4OWrNmjf78809dvnxZkjRy5EiNHz9eH330kWJjY3XgwAHNnTtXH374oSTpww8/1Ndff60jR44oNjZWS5YsUcGCBZUnT550n8sLFy7Ut99+q5iYGP3666/69ttvNXjwYL3yyivmbBs3b97U3r17tXfvXt28eVNnzpzR3r17dezYMbOdwYMH68cff1R8fLwOHDigwYMHa/PmzWrbtq1Z548//rA67sCBA9q7d68uXLjwwGsJAAAAAI+C5AcAAAAAeEwNGzbUypUrtW7dOlWtWlXPP/+8pkyZ8ki/XM6swoULa+TIkRo0aJA8PDzUs2dPSVL//v1la2urMmXKyN3d3Wo9+QkTJqhPnz6qXLmy/vjjD/3www9Wvzbu0aOH/Pz81KhRI5UqVUrTp083jz1+/Lj5YjAqKkrOzs6qVKmSuX/FihXpvsANCgpScnKy1UwMwcHBacqkOy8Iy5cvL3d3d5UuXVrSnYSIlJSUNIkS6bWdmlhhsVhUs2ZNSdK1a9d09OjRTE99X7hwYa1evVrbt2+Xv7+/unfvrs6dOz92Iku3bt300ksv6ZVXXlH16tX1119/6a233srUsaNGjVJ8fLyKFy8ud3d3SXem8j969KiuXbtm1lu6dKmqVq2qNm3aqEyZMho4cKD5wrtSpUr69ttvtXjxYpUrV07Dhg3TqFGjFBYW9shjSkpK0saNG9Nc96FDh6pfv34aNmyY/Pz89Morr+js2bOS0r9P2rZtq8GDB6t///7mFP5hYWEPXDLG0dFRa9eu1YULF1S1alW9/PLLVkk6ktShQwdNnTpV06dPV9myZdW0aVPFxcVJupNAs3r1atWuXVsdO3ZUqVKl9Oqrr+rkyZNm8kRmzZ07V+3bt1e/fv3k6+ur5s2ba8eOHXruueck3f/7lVHyQ926dVWyZEnVrl1br7zyil588UWNGDHivnEUKlRI0dHRSk5OVoMGDVS+fHmFh4crT548T3QWGj8/P02fPl2ffvqp/P39tX379sdOpHkSGjZsqKFDh2rgwIGqWrWqrl69qvbt29/3mPS+Xw97vfr166d27dqpQ4cO5rI2LVq0MPfb2Nho8eLF2rVrl8qVK6e+ffvq/ffft2ojR44c+uijjzRz5kwVKlTInK2hS5cumj17tubOnavy5csrKChI8+bNM2d+cHFx0aRJk1SlShVVrVpV8fHxWr16tWxsbNL9vuXIkUMTJ05UtWrVVKFCBY0cOVI9e/bU7NmzzTq///67AgICFBAQoISEBH3wwQcKCAhQly5dzDpnz55V+/bt5evrq7p162rHjh1au3at1awun332mQICAvTGG29IuvM8DwgIUERExH2vCQAAAAA8Kotx72KIAAAAAID/KZs3b1adOnV08eJF5cmT57Hb6927t27fvm2+DLx9+7Y8PDwUGRmpatWqPXb7T9ONGzdkb2+v9evXq169elkdTra2bNkyDRkyRIcPH85U/fPnz8vT01O//fbbA5ML6tevr4IFC+rLL798EqE+s3bv3q2QkBCdO3fO/NW9JIWFhenSpUtavnx51gWHNDK6Xs+i7PRcvp8rV64od+7calC9t3LmsNPKrZOyOiQAAAAAWSD1/w0uX74sV1fXDOvl+AdjAgAAAAD8DyhXrpwCAwPN7QsXLqhv376qWrVqFkb1YFeuXNGyZctkY2NjziyBR+fs7KyJEydmuv6FCxf04Ycfpkl8uHbtmj777DM1bNhQtra2+vrrr7VhwwatX7/+SYf8zLl9+7Y+/vjjZ/5FOu7ITtcruzyXAQAAAOBJYuYHAAAAAPiHLVy4UN26dUt3n7e3tw4dOvRE+3vSMz9kV3379tWiRYs0YMCAZ2KKftxx/fp1hYaGas+ePfr777/l6+urIUOG6KWXXsrq0LIMMz8AdzDzAwAAAAAp8zM/kPwAAAAAAP+wq1ev6s8//0x3X86cOeXt7f0PRwQAwLOH5AcAAAAAEsteAAAAAMAzy8XFRS4uLlkdBgAAAAAAAPA/wyarAwAAAAAAAAAAAAAAAHgczPwAAAAAAAAA4Jm1ZN3o+05tCwAAAAASMz8AAAAAAAAAAAAAAIBsjuQHAAAAAAAAAAAAAACQrZH8AAAAAAAAAAAAAAAAsjWSHwAAAAAAAAAAAAAAQLZG8gMAAAAAAAAAAAAAAMjWSH4AAAAAAAAA8Mx6ueXYrA4BAAAAQDZA8gMAAAAAAAAAAAAAAMjWSH4AAAAAAAAAAAAAAADZGskPAAAAAAAAAAAAAAAgWyP5AQAAAAAAAAAAAAAAZGskPwAAAAAAAAAAAAAAgGyN5AcAAAAAAAAAAAAAAJCtkfwAAAAAAAAAAAAAAACyNZIfAAAAAOApCg4OVnh4+BNv948//lD9+vXl5OSkPHnyPLC+xWLR8uXLn3gcsD638fHxslgs2rt3b5bGhOzlaT0n7icsLEzNmzfPdP2neW8/bCzpyW7fvREjRqhixYpZHQYAAAAA/E8h+QEAAAAAsqEpU6YoISFBe/fuVWxs7GO3t3nzZlksFl26dMmq/J9+KTty5Ei9/vrrVmVFixbVhg0b/rEYHlZCQoIaN24sSfLy8lJCQoLKlSuXxVFlzMfHR1OnTs3qMO4rKipKXl5ema5//fp1OTk56dixY08xqqdn2bJlGj169BNt8+TJk3JwcFBiYuITaS873NtZ7Vl+VnXs2FFDhgyRJI0dO1Y1atSQo6NjhslzFoslzWfx4sXm/rCwsHTrlC1b1qzz448/KjQ0VIUKFSIBDwAAAMA/guQHAAAAAHiG3Lp1K1P1jh8/rsqVK6tkyZIqUKDAU47qn7NixQq9+OKL5vb+/ft18eJFBQUFZWFU91ewYEHZ2dlJkmxtbVWwYEHlyJEji6NK6+bNm1kdQqatWLFCoaGhma6/fv16eXt7q0SJEo/UX1adm9R+8+bNKxcXlyfa9ooVK1SnTh05Ozs/kfYedG8bhqHbt28/kb6eFZl9HkvP9rMqOTlZK1euNJ+tN2/eVKtWrfTmm2/e97i5c+cqISHB/Nw9O8e0adOs9p0+fVp58+ZVq1atzDpJSUny9/fXp59++lTGBQAAAAD3IvkBAAAAAJ6ylJQUDRw4UHnz5lXBggU1YsQIc5/FYtGMGTP04osvysnJSWPHjpV058VlpUqVZG9vr2LFimnkyJHmi0UfHx8tXbpUCxYskMViUVhYWKbiOH/+vFq0aCFHR0eVLFlSERERku5MF1+nTh1Jkpubm9lmWFiYoqKiNG3aNPNXvfHx8eYsEatWrVKFChVkb2+v559/XgcPHjT7OnnypEJDQ+Xm5iYnJyeVLVtWq1evvm98p0+f1qFDh9SoUSOzbMWKFWrUqJFy5Mghd3d3fffdd+a+ihUrytPT09zeunWr7OzsdO3aNfXv319NmzY1902dOlUWi0Vr1qwxy0qUKKHZs2fr4MGDsrGx0blz5yRJFy5ckI2NjV599VWz7pgxY1SrVq10437QshdRUVGqVq2a7Ozs5OnpqUGDBlm9JA4ODlavXr0UHh4uNzc3eXh4aNasWUpKSlLHjh3l4uKiEiVKKDIy0jwmOTlZnTt3VtGiReXg4CBfX19NmzbNKq7UpQTGjh2rQoUKydfXV8HBwTp58qT69u1rXtOMXLp0Sd26dZOHh4fs7e1Vrlw5rVy50ty/dOlSlS1bVnZ2dvLx8dHkyZOtjvfx8dGYMWPUvn17OTs7y9vbWxERETp37pyaNWsmZ2dnVahQQTt37kzTd0REhPmiNiUlRZMmTVKJEiVkZ2en5557zvyepLo3aWbMmDEqUKCAXFxc1KVLFw0aNMhqiYH0zo0kHThwQCEhIXJwcFC+fPnUtWvXNDMnzJkzxxy3p6enevbsaXXOunTpInd3d7m6uiokJET79u0z96cudTB79mwVLVpU9vb2ktLOsHLjxg31799fhQsXlpOTk6pXr67Nmzeb+zPz/br7nCQnJ+vtt99Wnjx5lC9fPg0cOFCGYVjVX7NmjWrVqmXWadq0qY4fP27uv/feTn0OREZGqnLlyrKzs9NXX30lGxubNNd06tSp8vb2VkpKiu5n5MiR5rnr3r27VVLKg+K7V3Jysjp16qTSpUvr1KlT5jnJ6LkqpX0ejxkzRiVKlNAHH3xg1fbevXtlsVisZhpJfVblzJlTkjRr1ix5eXnJ0dFRLVq00IcffpjuLAtffvmlfHx8lDt3br366qu6evWquS8lJUXjx483v+f+/v5Wz0BJOnjwoBo3bixnZ2d5eHioXbt2On/+vFWdn376STlz5lTVqlXN89y3b1+VL18+w/MnSXny5FHBggXNT+r9Kkm5c+e22rdz505dvHhRHTt2NOs0btxYY8aMUYsWLe7bDwAAAAA8KSQ/AAAAAMBTNn/+fDk5OWnbtm2aNGmSRo0apfXr15v7R4wYoRYtWujAgQPq1KmTtmzZovbt26tPnz46fPiwZs6cqXnz5pkvfHfs2KFGjRqpdevWSkhISPPSOyMjR45U69attX//fjVp0kRt27bVhQsX5OXlpaVLl0qSjh49arY5bdo0BQYG6o033jB/3Xv3UgQDBgzQ5MmTtWPHDrm7uys0NNT8pXSPHj1048YN/fjjjzpw4IAmTpxo9Qt0Hx8fqyQQ6c4L7+DgYLm6ulqVNWvWTBaLRbVr1zZfAF+8eFExMTG6fv26jhw5IulOkkHVqlXl6OiooKAgbd26VcnJyea+/Pnzm8efOXNGx48fV3BwsMqWLat8+fIpKipKkrRlyxar7dTjg4ODM3We73bmzBk1adJEVatW1b59+zRjxgx98cUXGjNmjFW9+fPnK3/+/Nq+fbt69eqlN998U61atVKNGjW0e/duNWjQQO3atdO1a9ck3XkpWqRIES1ZskSHDx/WsGHD9O677+rbb7+1anfjxo06evSo1q9fr5UrV2rZsmUqUqSIRo0aZV7T9KSkpKhx48aKjo7WV199pcOHD2vChAmytbWVJO3atUutW7fWq6++qgMHDmjEiBEaOnSo5s2bZ9XOlClTVLNmTe3Zs0f/+c9/1K5dO7Vv316vv/66du/ereLFi6t9+/ZWL+IPHTqks2fPKiQkRJI0ePBgTZgwQUOHDtXhw4e1aNEieXh4WMW6cuVKNWvWTJK0cOFCjR07VhMnTtSuXbv03HPPacaMGWnGeO+5SUpKUsOGDeXm5qYdO3ZoyZIl2rBhg1Vyw4wZM9SjRw917dpVBw4cUEREhNVsE61atdLZs2cVGRmpXbt2qVKlSqpbt64uXLhg1jl27JiWLl2qZcuWWSXJ3K1nz576+eeftXjxYu3fv1+tWrVSo0aNFBcXJ+nB369Lly5p69atZvLD5MmTNW/ePM2ZM0dbt27VhQsX9P3331v1mZSUpLfffls7d+7Uxo0bZWNjoxYtWjwwYWHQoEGaMGGCYmJi9OKLL6pevXqaO3euVZ25c+cqLCxMNjYZ/zPUxo0bFRMTo82bN+vrr7/WsmXLNHLkyEeK78aNG2rVqpX27t2rLVu26LnnnnvgczXV3c/jzp07q1OnTumOp3bt2lbXPvVZJUnR0dHq3r27+vTpo71796p+/fpp+pHuzOCzfPlyrVy5UitXrlRUVJQmTJhg7h8/frwWLFigzz77TIcOHVLfvn31+uuvm8+mS5cuKSQkRAEBAdq5c6fWrFmjP//8U61bt7bqJyIiQqGhofdNdkpPjx49lD9/flWrVk1z5sxJkzBzty+++EL16tWTt7f3Q/Vxrxs3bujKlStWHwAAAADINAMAAAAA8NQEBQUZtWrVsiqrWrWq8c477xiGYRiSjPDwcKv9devWNcaNG2dV9uWXXxqenp7mdrNmzYwOHTpkOg5JxpAhQ8ztxMREQ5IRGRlpGIZhbNq0yZBkXLx4MU38ffr0sSpLrbt48WKz7K+//jIcHByMb775xjAMwyhfvrwxYsSIDOMJCQkxPv74Y6uy+vXrG5988om5/dtvvxm5cuUyY/roo4+MsmXLGoZhGMuXLzeqV69uNGvWzJgxY4ZhGIZRr14949133zUMwzAuXrxo2NjYGDt27DBSUlKMvHnzGuPHjzeqV69uGIZhfPXVV0bhwoXNvl566SWjR48ehmEYRnh4uDFgwADDzc3NiImJMW7evGk4Ojoa69atS3cskozvv//eMAzDOHHihCHJ2LNnj2EYhvHuu+8avr6+RkpKiln/008/NZydnY3k5GTzHN99j9y+fdtwcnIy2rVrZ5YlJCQYkoyff/45w3Pao0cPo2XLluZ2hw4dDA8PD+PGjRtW9by9vY0pU6Zk2I5hGMbatWsNGxsb4+jRo+nuf+2114z69etblQ0YMMAoU6aMVT+vv/56mjEMHTrULPv5558NSUZCQoJZNnbsWOPll182DMMwrly5YtjZ2RmzZs3KMNbo6GijQIEC5vmsXr26eS1T1axZ0/D39ze30zs3n3/+ueHm5mYkJiaaZatWrTJsbGyMP/74wzAMwyhUqJDx3nvvpRvHli1bDFdXV+Pvv/+2Ki9evLgxc+ZMwzAMY/jw4UbOnDmNs2fPWtW5+3t28uRJw9bW1jhz5oxVnbp16xqDBw82DOPB36+FCxcaVapUMbc9PT2NSZMmmdu3bt0yihQpYjRr1izDNs6dO2dIMg4cOGAYRtp7O/U5sHz5cqvjvvnmG8PNzc08D7t27TIsFotx4sSJDPvq0KGDkTdvXiMpKcksmzFjhtX3JLPxbdmyxahbt65Rq1Yt49KlS2b9zDxX03senzlzxrC1tTW2bdtmGIZh3Lx508ifP78xb948s869z6pXXnnF+M9//mPVTtu2bY3cuXOb28OHDzccHR2NK1eumGUDBgwwn1F///234ejoaPz0009W7XTu3Nlo06aNYRiGMXr0aKNBgwZW+0+fPm1IsvrulixZ0li5cuW9p9CYO3euVUx3GzVqlLF161Zj9+7dxoQJEww7Oztj2rRp6dZNPUepz//03P2cvJ/hw4cbktJ86tcb+MBjAQAAAPzvunz5siHJuHz58n3rMfMDAAAAADxlFSpUsNr29PTU2bNnze0qVapY7d+3b59GjRolZ2dn85M6+0LqL/8fNw4nJye5urpaxfGwAgMDzb/z5s0rX19fxcTESJJ69+6tMWPGqGbNmho+fLj2799vdezGjRutflF/5coVRUVFWS1dEBERYU5zL0lBQUE6fPiwzp07Z87EEBwcrM2bN+vWrVv66aefzNkZ8uTJI39/f23evFkHDhxQrly51LVrV+3Zs0eJiYmKiopSUFCQ2VdQUJA5K0RUVJRCQkLMmSZ27NihW7duqWbNmg99jmJiYhQYGGj1i+uaNWsqMTFRv/32m1l297WxtbVVvnz5rKakT53p4O7r9emnn6py5cpyd3eXs7OzPv/8c3N6/1Tly5dXrly5HjruvXv3qkiRIipVqlSG47r3fNSsWVNxcXHmbBv3jit1DA8a193LNcTExOjGjRuqW7duhrGuWLFCTZs2NWcVOHr0qKpVq2ZV597t1DjuPjcxMTHy9/eXk5OT1ZhSUlJ09OhRnT17Vr///nuGsezbt0+JiYnKly+f1Xf3xIkTVsszeHt7y93dPcPxHDhwQMnJySpVqpRVO1FRUWY7D/p+3X0OL1++rISEBFWvXt3cnyNHjjTPnbi4OLVp00bFihWTq6urfHx8JCnNPXWve9tp3ry5bG1tzZkl5s2bpzp16sjHx0enTp2yGtO4cePM4/z9/eXo6GhuBwYGKjExUadPn36o+Nq0aaOkpCStW7dOuXPnNssz+1y9dzyFChXSf/7zH82ZM0eS9MMPP5gzS6S691mV2XvQx8dHLi4u5vbd/204duyYrl27pvr161vFvGDBAvM+2LdvnzZt2mS1v3Tp0pJk1omJibnvfZuRoUOHqmbNmgoICNA777yjgQMH6v3330+37vz585UnTx41b978ofpIz+DBg3X58mXzk3r9AQAAACAzcmR1AAAAAADwvy51DfhUFovFaqr2u1+2SlJiYqJGjhypl156KU1bd6+5/qTjeJK6dOmihg0batWqVVq3bp3Gjx+vyZMnq1evXunWj4yMVJkyZayW1YiIiLBKhihfvrzy5s2rqKgoRUVFaezYsSpYsKAmTpxoJijUqFHDrJ+aGGFnZ6egoCDlzZtXfn5+2rp1q6KiotSvXz+ruuHh4YqLi9Phw4dVq1YtHTlyRJs3b9bFixdVpUoVqxezT1p61+bustTkidTrtXjxYvXv31+TJ09WYGCgXFxc9P7772vbtm1W7dx7b2WWg4PDIx13r/TGcL9xJSQkmEtkZDaOiIgIq6UCMuthz82DYklMTJSnp6eZRHO31Jfimek3MTFRtra22rVrl7nMSKrUpS3u9/26efOm1qxZo3fffTdzA/v/QkND5e3trVmzZqlQoUJKSUlRuXLldPPmzfsed+94cuXKpfbt22vu3Ll66aWXtGjRInNpnkKFClkt9ZE3b94nHl+TJk301Vdf6eeffzaXTpEy/1xN7/p06dJF7dq105QpUzR37ly98sorVs+De59VmXW/Z3JiYqIkadWqVSpcuLBVPTs7O7NOaGioJk6cmKZtT09PM7b69es/1n87JKl69eoaPXq0bty4YfYvSYZhaM6cOWrXrt0jJVrdy87Ozqp9AAAAAHgYJD8AAAAAwDOmUqVKOnr0qNV68k9b6kuru3+1n1p+b1mqX375Rc8995wk6eLFi4qNjZWfn5+538vLS927d1f37t01ePBgzZo1K8PkhxUrVqhZs2bmdmJiojZt2qQZM2aYZRaLRS+88IJWrFihQ4cOqVatWnJ0dNSNGzc0c+ZMValSxerFZVBQkObMmaMcOXKoUaNGku4kOXz99deKjY01Z4mQ7iRWuLm5acyYMapYsaKcnZ0VHBysiRMn6uLFi1Z1H4afn5+WLl0qwzDMF/3R0dFycXFRkSJFHqnN1DZq1Kiht956yyy7e3aB+7nfNU1VoUIF/fbbb4qNjU139gc/Pz9FR0enialUqVJpXtg/jB9++EE1atQwX4qXLFlSDg4O2rhxo7p06ZKmflxcnE6ePKn69eubZb6+vtqxY4fat29vlu3YseOBffv5+WnevHlKSkoy76Po6GjZ2NjI19dXLi4u8vHx0caNG1WnTp00x1eqVEl//PGHcuTIYc5K8CgCAgKUnJyss2fP6oUXXsiwXkbfr82bN8vNzU3+/v6SpNy5c8vT01Pbtm1T7dq1JUm3b9/Wrl27VKlSJUnSX3/9paNHj2rWrFlmn1u3bn3kMXTp0kXlypXT9OnTdfv2bTPhIEeOHBk+1/bt26fr16+bSSa//PKLnJ2d5eXl9VDxvfnmmypXrpxefPFFrVq1ypzh5XGeq02aNJGTk5NmzJihNWvW6McffzT3pfesSr0H75aZe/BuZcqUkZ2dnU6dOmU1S83dKlWqpKVLl8rHx0c5cqT/T3wrVqxQ165dH6rv9Ozdu1dubm5pEhOioqJ07Ngxde7c+bH7AAAAAIDHxbIXAAAAAPCMGTZsmBYsWKCRI0fq0KFDiomJ0eLFizVkyJCn1qe3t7csFotWrlypc+fOmb869vHx0bZt2xQfH6/z589bzRQxatQobdy4UQcPHlRYWJjy589vTnseHh6utWvX6sSJE9q9e7c2bdpklRhRt25dffLJJ5LuvIiNjIy0+uX0mjVrVKpUqTQvkVOTF1ITFGxsbFS7dm0tXLgwzQvC2rVr6+rVq1q5cqWZvBAcHKyFCxfK09PT6qW+xWIx20mtW6FCBd24cUMbN240296+fbtKly6tM2fOZOq8vvXWWzp9+rR69eqlI0eOaMWKFRo+fLjefvttc5mGR1GyZEnt3LlTa9euVWxsrIYOHZrpl6s+Pj768ccfdebMGZ0/f16SdObMGZUuXVrbt2+XdCdxpHbt2mrZsqXWr1+vEydOKDIyUmvWrJEk9evXTxs3btTo0aMVGxur+fPn65NPPlH//v0feUxS2l/Q29vbm1Pup073/8svv+iLL76QdOfFbr169ax+hd+rVy998cUXmj9/vuLi4jRmzBjt37/faumR9LRt21b29vbq0KGDDh48qE2bNqlXr15q166duTzHiBEjNHnyZH300UeKi4vT7t279fHHH0uS6tWrp8DAQDVv3lzr1q1TfHy8fvrpJ7333nvauXNnps9BqVKl1LZtW7Vv317Lli3TiRMntH37do0fP16rVq2SdP/vV3qzEPTp00cTJkzQ8uXLdeTIEb311lu6dOmSud/NzU358uXT559/rmPHjum///2v3n777UzHfC8/Pz89//zzeuedd9SmTZtMzeBx8+ZNde7cWYcPH9bq1as1fPhw9ezZUzY2Ng8dX69evTRmzBg1bdrUTJJ4nOeqra2twsLCNHjwYJUsWdJqyZ/0nlW9evXS6tWr9eGHHyouLk4zZ85UZGTkA+/Bu7m4uKh///7q27ev5s+fr+PHj5v32/z58yVJPXr00IULF9SmTRvt2LFDx48f19q1a9WxY0czgWbnzp1q2rSpVdunTp3S3r17derUKSUnJ2vv3r3au3ev+dz/4YcfNHv2bB08eFDHjh3TjBkzNG7cuHST17744gtVr15d5cqVS7MvMTHRbFuSTpw4YfYLAAAAAE8DyQ8AAAAA8Ixp2LChVq5cqXXr1qlq1ap6/vnnNWXKFHl7ez+1PgsXLqyRI0dq0KBB8vDwUM+ePSVJ/fv3l62trcqUKSN3d3erl1YTJkxQnz59VLlyZf3xxx/64YcfrGaQ6NGjh/z8/NSoUSOVKlVK06dPN489fvy4+eI9KipKzs7O5q/QpTsvtdObRj4oKEjJyclWMzEEBwenKZPuvNAtX7683N3dVbp0aUl3EiJSUlLS/SX1vW2nJlZYLBbVrFlTknTt2jUdPXpUt27dyvR5Xb16tbZv3y5/f391795dnTt3fuxElm7duumll17SK6+8ourVq+uvv/6ymgXifkaNGqX4+HgVL15c7u7ukqRbt27p6NGjunbtmllv6dKlqlq1qtq0aaMyZcpo4MCB5owRlSpV0rfffqvFixerXLlyGjZsmEaNGqWwsLBHHlNSUpI2btyY5roPHTpU/fr107Bhw+Tn56dXXnlFZ8+elZT+fdK2bVsNHjxY/fv3V6VKlXTixAmFhYU9cNp/R0dHrV27VhcuXFDVqlX18ssvWyXpSFKHDh00depUTZ8+XWXLllXTpk0VFxcn6U4CzerVq1W7dm117NhRpUqV0quvvqqTJ0+ayROZNXfuXLVv3179+vWTr6+vmjdvrh07dpgzrdzv+5Ve8kO/fv3Url07dejQwVwmpUWLFuZ+GxsbLV68WLt27VK5cuXUt29fvf/++w8V8706d+6smzdvqlOnTpmqX7duXZUsWVK1a9fWK6+8ohdffFEjRox45PjCw8M1cuRINWnSRD/99NNjP1dTx9OxY0er8vTuwZo1a+qzzz7Thx9+KH9/f61Zs0Z9+/Z96KUnRo8eraFDh2r8+PHmtV61apWKFi0q6c4yItHR0UpOTlaDBg1Uvnx5hYeHK0+ePLKxsdEPP/ygatWqKX/+/FbtDhs2TAEBARo+fLgSExMVEBCggIAAM0knZ86c+vTTTxUYGKiKFStq5syZ+vDDDzV8+HCrdi5fvqylS5dmOOvDzp07zbYl6e2331ZAQICGDRv2UOcBAAAAADLLYhiGkdVBAAAAAACyj82bN6tOnTq6ePGi8uTJ89jt9e7dW7dv3zZf3t6+fVseHh6KjIxUtWrVHrv9p+nGjRuyt7fX+vXrVa9evawOJ1tbtmyZhgwZosOHD2eq/vnz5+Xp6anffvvtgckF9evXV8GCBfXll18+iVCfWbt371ZISIjOnTunnDlzZmkso0eP1pIlS7R///4sjeNJ2bJli+rWravTp0+b99vDPKveeOMNHTlyRFu2bPknwpUkvfjii6pVq5YGDhz4j/X5pF25ckW5c+dW/XoDtW79xKwOBwAAAEAWSf1/g8uXL8vV1TXDeukvCAgAAAAAwD+kXLlyVtPIX7hwQX379lXVqlWzMKoHu3LlipYtWyYbGxtzZgk8OmdnZ02cmPmXmxcuXNCHH36YJvHh2rVr+uyzz9SwYUPZ2trq66+/1oYNG7R+/fonHfIz5/bt2/r444+zNPEhMTFR8fHx+uSTTzRmzJgsi+NJuXHjhs6dO6cRI0aoVatWVvfb/Z5VH3zwgerXry8nJydFRkZq/vz5VrPf/BNq1aqlNm3a/KN9AgAAAEBWYuYHAAAAAMjmFi5cqG7duqW7z9vbW4cOHXqi/T3pmR+yq759+2rRokUaMGCA+vfvn9Xh4P+7fv26QkNDtWfPHv3999/y9fXVkCFD9NJLL2V1aP8KYWFh+vrrr9W8eXMtWrRItra2WR3SY5k3b546d+6sihUrKiIiQoULF87Uca1bt9bmzZt19epVFStWTL169VL37t2fcrT/e5j5AQAAAICU+ZkfSH4AAAAAgGzu6tWr+vPPP9PdlzNnzkyvaQ8AwLOE5AcAAAAAEsteAAAAAMC/houLi1xcXLI6DAAAAAAAACDL2GR1AAAAAAAAAAAAAAAAAI+D5AcAAAAAAAAAz6zvlr6X1SEAAAAAyAZIfgAAAAAAAAAAAAAAANkayQ8AAAAAAAAAAAAAACBbI/kBAAAAAAAAAAAAAABkayQ/AAAAAAAAAAAAAACAbI3kBwAAAAAAAAAAAAAAkK2R/AAAAAAAAAAAAAAAALI1kh8AAAAAAAAAAAAAAEC2RvIDAAAAAAAAAAAAAADI1kh+AAAAAAAAAAAAAAAA2RrJDwAAAAAAAAAAAAAAIFsj+QEAAAAAAAAAAAAAAGRrJD8AAAAAAAAAAAAAAIBsjeQHAAAAAAAAAAAAAACQrZH8AAAAAAAA8Izw8fHR1KlTszoMPCXBwcEKDw/P6jCemP+18QAAAADI3kh+AAAAAAAAgKT/vZfZmzdvlsViMT8eHh5q2bKlfv311yyJZ9myZRo9evQ/3m98fLzVeUj9vP7664/V7r3jIXkHAAAAQFbKkdUBAAAAAAAAAPdKTk6WxWKRjc3j/3bn6NGjcnFxUVxcnLp27arQ0FDt379ftra2VvUMw1BycrJy5Hg6/2SWN2/ep9JuZm3YsEFly5Y1tx0cHNLUeZhzkNXjAQAAAIC7MfMDAAAAAADAE/Ldd9+pfPnycnBwUL58+VSvXj0lJSVJSn9WhebNmyssLMyq7OrVq2rTpo2cnJxUuHBhffrpp5nu/9KlS+rWrZs8PDxkb2+vcuXKaeXKlZKkv/76S23atFHhwoXl6Oio8uXL6+uvvzaPDQsLU1RUlKZNm2bODBAfHy9JOnjwoBo3bixnZ2d5eHioXbt2On/+vFXMbdu2lZOTkzw9PTVlypQ047148aLat28vNzc3OTo6qnHjxoqLizP3z5s3T3ny5FFERITKlCkjOzs7bd26VTlz5tQff/xhNc7w8HC98MILmT4vBQoUkKenp2rXrq1hw4bp8OHDOnbsmDkzRGRkpCpXrmz2mZKSovHjx6to0aJycHCQv7+/vvvuO7O91OPWrl2rgIAAOTg4KCQkRGfPnlVkZKT8/Pzk6uqq1157TdeuXTOPu/ecWCwWLV++3CrWPHnyaN68eZL+b8aGb7/9Vi+88IIcHBxUtWpVxcbGaseOHapSpYqcnZ3VuHFjnTt37oHnIV++fCpYsKD5yZ07d4bnICwsTM2bN09z3oODg9MdT3BwsE6ePKm+ffua948knTx5UqGhoXJzc5OTk5PKli2r1atXpxvfjRs3dOXKFasPAAAAAGQWyQ8AAAAAAABPQEJCgtq0aaNOnTopJiZGmzdv1ksvvSTDMB6qnffff1/+/v7as2ePBg0apD59+mj9+vUPPC4lJUWNGzdWdHS0vvrqKx0+fFgTJkwwZzf4+++/VblyZa1atUoHDx5U165d1a5dO23fvl2SNG3aNAUGBuqNN95QQkKCEhIS5OXlpUuXLikkJEQBAQHauXOn1qxZoz///FOtW7c2+3777bcVHR2tiIgIrV+/Xlu2bNHu3but4gsLC9POnTsVERGhn3/+WYZhqEmTJrp165ZZ59q1a5o4caJmz56tQ4cOqUqVKipWrJi+/PJLs86tW7e0cOFCderU6aHOa6rU2Q5u3rxplg0aNEgTJkxQTEyMKlSooPHjx2vBggX67LPPdOjQIfXt21evv/66oqKirNoaMWKEPvnkE/300086ffq0WrduralTp2rRokVatWqV1q1bp48//viR4rzb8OHDNWTIEO3evVs5cuTQa6+9poEDB2ratGnasmWLjh07pmHDhj1WH/eeg4e1bNkyFSlSRKNGjTLvH0nq0aOHbty4oR9//FEHDhzQxIkT5ezsnG4b48ePV+7cuc2Pl5fXY40JAAAAwL8Ly14AAAAAAAA8AQkJCbp9+7ZeeukleXt7S5LKly//0O3UrFlTgwYNkiSVKlVK0dHRmjJliurXr3/f4zZs2KDt27crJiZGpUqVkiQVK1bM3F+4cGH179/f3O7Vq5fWrl2rb7/9VtWqVVPu3LmVK1cuOTo6qmDBgma9Tz75RAEBARo3bpxZNmfOHHl5eSk2Nlaenp6aP3++Fi1apLp160qS5s6dq0KFCpn14+LiFBERoejoaNWoUUOStHDhQnl5eWn58uVq1aqVpDuJDdOnT5e/v795bOfOnTV37lwNGDBAkvTDDz/o77//tkq+yKyEhAR98MEHKly4sHx9ffXTTz9JkkaNGmWe3xs3bmjcuHHasGGDAgMDzfO4detWzZw5U0FBQWZ7Y8aMUc2aNc04Bw8erOPHj5vn/eWXX9amTZv0zjvvPHSsd+vfv78aNmwoSerTp4/atGmjjRs3WvWdOlvE/dSoUcNqGZEtW7aYf999Dh5F3rx5ZWtrKxcXF6v759SpU2rZsqX5Xbj7nrzX4MGD9fbbb5vbV65cIQECAAAAQKaR/AAAAAAAAPAE+Pv7q27duipfvrwaNmyoBg0a6OWXX5abm9tDtZP6wv3u7alTpz7wuL1796pIkSJm4sO9kpOTNW7cOH377bc6c+aMbt68qRs3bsjR0fG+7e7bt0+bNm1K99f6x48f1/Xr13Xr1i1Vq1bNLM+dO7d8fX3N7ZiYGOXIkUPVq1c3y/LlyydfX1/FxMSYZbly5Uoz60BYWJiGDBmiX375Rc8//7zmzZun1q1by8nJ6f4n5C5FihSRYRi6du2a/P39tXTpUuXKlcvcX6VKFfPvY8eO6dq1a2kSAW7evKmAgACrsrtj9fDwkKOjo9XLfQ8PD3Nmjcdxbz+SdWKNh4eHzp49+8B2vvnmG/n5+ZnbXl5e+vnnnyVZn4MnqXfv3nrzzTe1bt061atXTy1btsxwZgk7OzvZ2dk9lTgAAAAA/O8j+QEAAAAAAOAJsLW11fr16/XTTz+Zyx2899572rZtm4oWLSobG5s0S2DcveTD40pdziEj77//vqZNm6apU6eqfPnycnJyUnh4uNXyD+lJTExUaGioJk6cmGafp6enjh079lhx383BwUEWi8WqrECBAgoNDdXcuXNVtGhRRUZGavPmzQ/V7pYtW+Tq6qoCBQrIxcUlzf67EykSExMlSatWrVLhwoWt6t37Yj5nzpzm3xaLxWo7tSwlJSXDuCwWS6buiXv7Sa/sfv2k8vLyUokSJdLdd28yyZO6X7t06aKGDRuay4CMHz9ekydPVq9evR66LQAAAAC4H5sHVwEAAAAAAEBmWCwW1axZUyNHjtSePXuUK1cuff/995Ikd3d3JSQkmHWTk5N18ODBNG388ssvabbv/rV+RipUqKDffvtNsbGx6e6Pjo5Ws2bN9Prrr8vf31/FihVLUzdXrlxKTk62KqtUqZIOHTokHx8flShRwurj5OSkYsWKKWfOnNqxY4d5zOXLl63a9vPz0+3bt7Vt2zaz7K+//tLRo0dVpkyZB46tS5cu+uabb/T555+rePHi5nIPmVW0aFEVL1483cSHe5UpU0Z2dnY6depUmvE+6SUY7r0n4uLidO3atSfax6O6Nzbpzuwi95Pe/SPdSbro3r27li1bpn79+mnWrFlPMlQAAAAAkETyAwAAAAAAwBOxbds2jRs3Tjt37tSpU6e0bNkynTt3zkxcCAkJ0apVq7Rq1SodOXJEb775pi5dupSmnejoaE2aNEmxsbH69NNPtWTJEvXp0+eB/QcFBal27dpq2bKl1q9frxMnTigyMlJr1qyRJJUsWdKcmSImJkbdunXTn3/+adWGj4+Ptm3bpvj4eJ0/f14pKSnq0aOHLly4oDZt2mjHjh06fvy41q5dq44dOyo5OVkuLi7q0KGDBgwYoE2bNunQoUPq3LmzbGxszFkKSpYsqWbNmumNN97Q1q1btW/fPr3++usqXLiwmjVr9sCxNWzYUK6urhozZow6duz4wPqPw8XFRf3791ffvn01f/58HT9+XLt379bHH3+s+fPnP9G+QkJC9Mknn2jPnj3auXOnunfvnmb2iKwSEhKinTt3asGCBYqLi9Pw4cPTTda5m4+Pj3788UedOXNG58+flySFh4dr7dq1OnHihHbv3q1NmzZlKpkHAAAAAB4WyQ8AAAAAAABPgKurq3788Uc1adJEpUqV0pAhQzR58mQ1btxYktSpUyd16NBB7du3V1BQkIoVK6Y6deqkaadfv37auXOnAgICNGbMGH344Ydq2LBhpmJYunSpqlatqjZt2qhMmTIaOHCg+Uv8IUOGqFKlSmrYsKGCg4NVsGBBNW/e3Or4/v37y9bWVmXKlJG7u7tOnTqlQoUKKTo6WsnJyWrQoIHKly+v8PBw5cmTRzY2d/5p6cMPP1RgYKCaNm2qevXqqWbNmvLz85O9vb3Z9ty5c1W5cmU1bdpUgYGBMgxDq1evztTLfhsbG4WFhSk5OVnt27fP1Ll4HKNHj9bQoUM1fvx4+fn5qVGjRlq1apWKFi36RPuZPHmyvLy89MILL+i1115T//795ejo+ET7eFQNGzbU0KFDNXDgQFWtWlVXr1594LkfNWqU4uPjVbx4cbm7u0u6M8NJjx49zPNYqlQpTZ8+/Z8YAgAAAIB/GYtx7+J9AAAAAAAAwGNISkpS4cKFNXnyZHXu3PmJtNm5c2edO3dOERERT6Q9PPuuXLmi3Llz6/Lly3J1dc3qcAAAAABkkcz+v0GOfzAmAAAAAAAA/A/as2ePjhw5omrVquny5csaNWqUJGVqSYsHuXz5sg4cOKBFixaR+AAAAAAAyBDLXgAAAAAAAGQDCxculLOzc7qfsmXLZnV4+uCDD+Tv76969eopKSlJW7ZsUf78+R+73WbNmqlBgwbq3r276tevb7WvcePGGZ6TcePGPXbfAAAAAIDsg2UvAAAAAAAAsoGrV6/qzz//THdfzpw55e3t/Q9HlPXOnDmj69evp7svb968yps37z8cEZ4klr0AAAAAILHsBQAAAAAAwP8UFxcXubi4ZHUYz5TChQtndQgAAAAAgGcEy14AAAAAAAAAAAAAAIBsjeQHAAAAAAAAAAAAAACQrZH8AAAAAAAAAAAAAAAAsjWSHwAAAAAAAAAAAAAAQLZG8gMAAAAAAAAAAAAAAMjWSH4AAAAAAAAAAAAAAADZGskPAAAAAAAAAAAAAAAgWyP5AQAAAAAAAAAAAAAAZGskPwAAAAAAAAAAAAAAgGyN5AcAAAAAAAAAAAAAAJCtkfwAAAAAAAAAAAAAAACyNZIfAAAAAAAAAAAAAABAtkbyAwAAAAAAAAAAwP9j777Dojj+P4C/aUc7ijQRFYggiEawK2IERQVFxcQoolixY0cxxgIW7ERNjDUIGmuM9WtvgIgdKYqIJaj5KopRBLFQP78/fNgfy93BgRjjN5/X89yjtzM7OzM7M7t77M4yxhhj7LPGNz8wxhhjjDHGGGOMMcYYY4wxxhhj7LPGNz8wxhhjjDHG2L+Mm5sbJk2a9Kmz8Y8QGRkJQ0ND4XtISAiaNGnyt2zb2toaK1eu/Fu29U9Ttt6ZYioqKti/f/8/Lq1/O2X6b35+PmxtbXH+/Pm/JU/379+HiooKEhMTqzXdW7duoU2bNtDS0qry+Jifnw9ra2tcvXq1WvPGGGOMMcYYY6XxzQ+MMcYYY4wx9i+zd+9ezJ8/X/j+T/8jfHx8PFRUVHDx4kW54e7u7vjmm2+qZVtTp07F6dOnPyiNnJwczJ49G40aNYK2tjaMjY3RsmVLLF26FFlZWdWSz+pw4cIFqKmpwcvLSyYsKSkJvr6+qFu3LrS1teHg4IBVq1YplW5UVBS6d+8OU1NTaGlpwcbGBj4+Pjh79qwQx8fHB7dv365SvokIGzZsQOvWrSGVSmFoaIgWLVpg5cqVePPmTZXSrKzo6GioqKhARUUFqqqqMDAwQNOmTREUFISMjIxq3VZGRga6du1abpwnT55g4sSJsLW1hZaWFmrWrAkXFxesXbv2b6uT8uzduxddunSBsbGxwj/Ov3v3DgEBATA2NoZUKkXv3r3x9OlTUZyHDx/Cy8sLOjo6MDMzw7Rp01BYWCiKEx0djWbNmkFTUxO2traIjIz8iCUr37p16/DFF1+gbdu2wrKSdqOiogIDAwO4uLjgzJkznyyPyggODoauri7S0tIUjo+LFi1Cy5YtoaenBzMzM/Tq1QtpaWlCuEQiwdSpUzF9+vS/K9uMMcYYY4yxfyG++YExxhhjjDHG/mWMjIygp6f3qbOhtObNm8PJyQmbNm2SCbt//z6ioqLg7+9fLduSSqUwNjau8vovXrxAmzZtEBERgalTp+LSpUu4du0aQkNDkZCQgO3bt1dLPqtDeHg4xo8fj7Nnz+Lx48eisPj4eJiZmWHr1q1ISUnBzJkzMWPGDKxevbrcNNesWQN3d3cYGxtj165dSEtLw759+9C2bVtMnjxZiKetrQ0zMzOF6eTn5ysMGzhwICZNmgRvb29ERUUhMTERs2fPxoEDB3DixAklS1890tLS8PjxY1y5cgXTp0/HqVOn8OWXX+L69evVtg1zc3NoamoqDP/jjz/QtGlTnDhxAgsXLkRCQgIuXLiAoKAgHDp0CKdOnaq2vFTV69ev0a5dOyxZskRhnMmTJ+M///kPdu/ejZiYGDx+/Fh0U1NRURG8vLyQn5+P8+fPY/PmzYiMjMScOXOEOOnp6fDy8kKHDh2QmJiISZMmYfjw4Th+/PhHLZ88RITVq1fLHZsiIiKQkZGBuLg4mJiYoHv37vjjjz/+9jwq6969e2jXrh2srKwUjo8xMTEICAjAxYsXcfLkSRQUFKBLly54/fq1EGfAgAE4d+4cUlJS/q6sM8YYY4wxxv5tiDHGGGOMMcbYv4qrqytNnDhR+D8A0adEbGwstWvXjrS0tKhOnTo0fvx4ys3NFcKtrKxo/vz5NHDgQNLV1SVLS0s6cOAAZWZmUs+ePUlXV5caN25MV65cEda5f/8+de/enQwNDUlHR4caNmxIhw8frjDPP/74I+nr69Pr169Fy4ODg8nCwoIKCwvp3bt3FBgYSBYWFqSjo0OtWrWiqKgoUfyIiAiqW7cuaWtrU69evWj58uVkYGAgSs/JyUm0Tnh4ODVs2JAkEgmZm5tTQECAwnyOGjWKdHV16dGjR3LDi4uLhf9bWVlRaGgoDR06lKRSKdWtW5fWr18viv/w4UPq06cPGRgYUI0aNahnz56Unp4uirNx40Zq0KABaWpqkr29Pf38888K81fi1atXJJVK6datW+Tj40OhoaEVrjN27Fjq0KGDwvAHDx6QhoYGTZ48WW546bJHRETIrfeNGzeStbU1qaioyE1j165dBID2798vN/2XL18SEVFRURHNnTuXateuTRKJhJycnOjo0aNC3N69e4v248SJEwkApaamEhFRXl4e6ejo0MmTJ+XmIyoqigBQVlaWaPmbN2/I3t6eXFxcRMvL20d5eXkUEBBA5ubmpKmpSZaWlrRw4UIhHADt27dPbj6IiDw8PKhOnTqivlm2XkqntXHjRurVqxdpa2uTra0tHThwQBT/+vXr5OnpSbq6umRmZkZ+fn707NkzIbyoqIgWLlxI1tbWpKWlRY6OjrR7926F+SstPT2dAFBCQoJo+cuXL0lDQ0OUTmpqKgGgCxcuEBHRkSNHSFVVlZ48eSLEWbt2Lenr61NeXh4REQUFBVGjRo1Eafv4+JCHh4fCPJW0xf/85z9kZ2dH2tra1Lt3b3r9+jVFRkaSlZUVGRoa0vjx46mwsFBYz8rKilasWKEw3StXrpCqqirl5OSIlpfdn48ePSIAtG7dOvrrr7+oX79+ZGFhQdra2vTll1/S9u3bResXFRXRkiVLyMbGhiQSCdWtW5cWLFhARLL1W1hYSEOHDiV7e3t68OCB3HxW1FfKHh+Cg4MVlrm0zMxMAkAxMTGi5R06dKBZs2YplQYRUXZ2NgGg7OxspddhjDHGGGOM/e9R9tqAZ35gjDHGGGOMsX+xvXv3ok6dOpg3bx4yMjKEKfvv3bsHT09P9O7dG8nJydi1axfOnTuHcePGidZfsWIFXFxckJCQAC8vLwwcOBCDBg2Cn58frl27BhsbGwwaNAhEBAAICAhAXl4ezp49i+vXr2PJkiWQSqUV5nPAgAHIy8vD77//LiwjImzevBlDhgyBmpoaxo0bhwsXLmDnzp1ITk5Gnz594OnpiTt37gAALl26BH9/f4wbNw6JiYno0KEDFixYUO52165di4CAAIwcORLXr1/HwYMHYWtrKzducXExdu3aBT8/P1hYWMiNo6KiIvoeFhaGFi1aICEhAWPHjsWYMWOEqeILCgrg4eEBPT09xMbGIi4uDlKpFJ6ensLMCNu2bcOcOXMQGhqK1NRULFy4ELNnz8bmzZvLLddvv/2GBg0awN7eHn5+fti0aZOwjxTJzs6GkZGRwvA9e/agoKAAQUFBSpW9rLt372LPnj3Yu3ev3NciAO/La29vD29vb7npGxgYAABWrVqFsLAwLF++HMnJyfDw8EDPnj2FtuDq6oro6Ghh3ZiYGJiYmAjLrly5goKCAtHrCpShra2N0aNHIy4uDpmZmUKey9tHP/74Iw4ePIjffvsNaWlp2LZtG6ytrZXa3vPnz3HixAkEBARAV1dXbpyy9T537lz07dsXycnJ6NatGwYMGIAXL14AAF6+fImOHTuiadOmuHr1Ko4dO4anT5+ib9++wvqLFi3Cli1bsG7dOqSkpGDy5Mnw8/NDTExMpeqqtPj4eBQUFKBTp07CsgYNGsDS0hIXLlwA8P41LY0bN0bNmjWFOB4eHsjJyRFmErhw4YIojZI4JWko8ubNG/z444/YuXMnjh07hujoaHz99dc4cuQIjhw5gl9//RXr168XjT8ViY2NhZ2dXYWz7GhrawN4P9vJu3fv0Lx5cxw+fBg3btzAyJEjMXDgQFy+fFmIP2PGDCxevBizZ8/GzZs3sX37dlGdlMjLy0OfPn2QmJiI2NhYWFpayt1+RX0lIyMDjRo1QmBgIDIyMjB16lSlyp+dnQ0AMmNGq1atEBsbq3C9vLw85OTkiD6MMcYYY4wxprS/404MxhhjjDHGGGP/HKVnfiCS/wSzv78/jRw5UrQsNjaWVFVV6e3bt8J6fn5+QnhGRgYBoNmzZwvLLly4QAAoIyODiIgaN25MISEhVcp3v379yNXVVfh++vRpAkB37tyhBw8ekJqamsyMC+7u7jRjxgwiIvL19aVu3bqJwn18fMqd+cHCwoJmzpypVP6ePHlCAOiHH34QLW/WrBnp6uqSrq4u9evXT1hetv6Ki4vJzMyM1q5dS0REv/76K9nb24ue3M/LyyNtbW06fvw4ERHZ2NjIPBk+f/58cnZ2Ljevbdu2pZUrVxIRUUFBAZmYmMjMklFaXFwcqaurC9uVZ/To0aSvry9a9vvvvwtl19XVpeTkZCKSP/ODhoYGZWZmlptvBwcH6tmzZ7lxiN7vt7KzWbRs2ZLGjh1LRETJycmkoqJCmZmZ9OLFC5JIJDR//nzy8fEhIqIFCxZQ27ZtFaavaOYHIqKjR48SALp06RIRVbyPxo8fTx07dhTt59JQzswPFy9eJAC0d+9e0XJjY2OhzoOCgkRplX7qPjc3lwAIT/rPnz+funTpIkrrzz//JACUlpZG7969Ix0dHTp//rwojr+/P/n6+srNY2mKZn7Ytm0bSSQSmfgtW7YU8j9ixAiZvL1+/ZoA0JEjR4iIqH79+qJZM4iIDh8+TADozZs3cvMUERFBAOju3bvCslGjRpGOjg69evVKWObh4UGjRo0Svlc088PEiROpY8eOMstL78/Xr1/T2LFjSU1NjZKSkuSm4+XlRYGBgURElJOTQ5qamrRx40a5cUvqNzY2ltzd3aldu3bCbCiKVNRXiIicnJyUnvGB6P1sEl5eXjIzoBARrVq1iqytrRWuGxwcLDPbBHjmB8YYY4wxxv71lJ35Qf1vvM+CMcYYY4wxxthnIikpCcnJydi2bZuwjIhQXFyM9PR0ODg4AAAcHR2F8JKnjxs3biyzLDMzE+bm5pgwYQLGjBmDEydOoFOnTujdu7cojfIMGzYMHh4euHfvHmxsbLBp0ya4urrC1tYWhw8fRlFREezs7ETr5OXlCe+oT01Nxddffy0Kd3Z2xrFjx+RuLzMzE48fP4a7u7tS+VNk3759yM/Px/Tp0/H27VtRWOmyq6iowNzcXJgxICkpCXfv3pV5cvzdu3e4d+8eXr9+jXv37sHf3x8jRowQwgsLC4UZEORJS0vD5cuXsW/fPgCAuro6fHx8EB4eDjc3N5n4N27cgLe3N4KDg9GlS5dyy1p2lgEPDw8kJibi0aNHcHNzQ1FRkcJ1raysYGpqWm76VMHsFACQk5ODx48fw8XFRbTcxcUFSUlJAIAvv/wSRkZGiImJgUQiQdOmTdG9e3f8/PPPAN7PBCGvLpRRkkcVFRWl9tGQIUPQuXNn2Nvbw9PTE927d6+wnity+fJlFBcXCzOmlFa6zenq6kJfX1/U5qKiouTOxnLv3j0UFBTgzZs36Ny5sygsPz8fTZs2/aA8f0o6OjqwsbERvtesWRPW1taieqhZs6ZQT8p4+/YttLS05Ib5+vpCTU0Nb9++hampKcLDw+Ho6IiioiIsXLgQv/32Gx49eoT8/Hzk5eVBR0cHwPsxLC8vr8IxydfXF3Xq1MGZM2eEmSXkUaavVEVAQABu3LiBc+fOyYRpa2vjzZs3CtedMWMGpkyZIspj3bp1q5wXxhhjjDHG2L8L3/zAGGOMMcYYY0xGbm4uRo0ahQkTJsiElZ4+XUNDQ/h/yR++5S0rLi4GAAwfPhweHh44fPgwTpw4gUWLFiEsLAzjx4+vME/u7u6wtLREZGQkpk2bhr1792L9+vVCftXU1BAfHw81NTXResq8VkOe8v5oKI+pqSkMDQ2F11aUKKkvPT09vHz5UhRWuq6A9/VVUle5ublo3ry56AaU0tvKzc0FAGzcuBGtW7cWhZetg9LCw8NRWFgoejUHEUFTUxOrV68W3Thx8+ZNuLu7Y+TIkZg1a5bCNAGgfv36yM7OxpMnT2Bubg7gfd3b2tpCXb3inx8UvbahNDs7O9y6davCeBVRUVFB+/btER0dDU1NTbi5ucHR0RF5eXm4ceMGzp8/r/T0/mWlpqYCAKytrZXaR82aNUN6ejqOHj2KU6dOoW/fvujUqZNSr1iwtbWFioqKTJurV68eAPltuKI216NHDyxZskRmvVq1auHGjRsAgMOHD6N27dqicE1NzQrzq4i5uTny8/Px8uVLGBoaCsufPn0qtCVzc3PR6x9KwkvCSv4tWVY6jr6+frn9WV6dlFdPyjAxMcH169flhq1YsQKdOnWCgYGB6IafZcuWYdWqVVi5ciUaN24MXV1dTJo0SXjNjbJjUrdu3bB161ZcuHABHTt2VDrP1WHcuHE4dOgQzp49izp16siEv3jxotybnDQ1NT+oLTHGGGOMMcb+3VQ/dQYYY4wxxhhjjH1aEolE5on8Zs2a4ebNm7C1tZX5SCSSD9pe3bp1MXr0aOzduxeBgYHYuHGjUuupqqpi6NCh2Lx5M7Zv3w6JRIJvv/0WANC0aVMUFRUhMzNTJr8lfxh1cHDApUuXRGlevHhR4fb09PRgbW2N06dPK52/vn37YuvWrXj8+LFS65SnWbNmuHPnDszMzGTKZGBggJo1a8LCwgJ//PGHTPgXX3whN83CwkJs2bIFYWFhSExMFD5JSUmwsLDAjh07hLgpKSno0KEDBg8ejNDQ0Arz++2330JDQ0PuH86rS//+/XH79m0cOHBAJoyIkJ2dDX19fVhYWCAuLk4UHhcXh4YNGwrfXV1dER0djejoaLi5uUFVVRXt27fHsmXLkJeXJ/M0vDLevn2LDRs2oH379jA1NVV6H+nr68PHxwcbN27Erl27sGfPHrx48aLC7RkbG6Nz585YvXo1Xr9+Xen8ltWsWTOkpKTA2tpaJr+6urpo2LAhNDU18fDhQ5nwD3k6v3nz5tDQ0BD1tbS0NDx8+BDOzs4A3s/Scv36ddHsCydPnoS+vr6wX52dnWX668mTJ4U0/k5NmzbFrVu35M5WYm5uDltbW5mbAOLi4uDt7Q0/Pz84OTmhXr16uH37thBev359aGtrVzgmjRkzBosXL0bPnj0RExOjMJ6yfUUZRIRx48Zh3759OHPmjMIx6MaNG5/1LCGMMcYYY4yxfzae+YExxhhjjDHG/uWsra1x9uxZ9OvXD5qamjAxMcH06dPRpk0bjBs3DsOHD4euri5u3ryJkydPYvXq1VXe1qRJk9C1a1fY2dkhKysLUVFRwis0lDF06FDMmzcP33//PXx9fYUnoe3s7DBgwAAMGjQIYWFhaNq0KZ49e4bTp0/D0dERXl5emDBhAlxcXLB8+XJ4e3vj+PHjCl95USIkJASjR4+GmZkZunbtilevXiEuLk7hTBULFy5EdHQ0WrVqhXnz5qFFixbQ1dVFcnIyLly4gC+//FLpsg4YMADLli2Dt7c35s2bhzp16uDBgwfYu3cvgoKCUKdOHcydOxcTJkyAgYEBPD09kZeXh6tXryIrK0s0dXyJQ4cOISsrC/7+/jKvxujduzfCw8MxevRo3LhxAx07doSHhwemTJmCJ0+eAHg/W4Gip7YtLS0RFhaGiRMn4sWLFxgyZAi++OILvHjxAlu3bhXW/xB9+/bFvn374Ovri1mzZqFLly4wNTXF9evXsWLFCowfPx69evXCtGnTEBwcDBsbGzRp0gQRERFITEwUzaLh5uaGyZMnQyKRoF27dsKyqVOnomXLlkrNRJGZmYl3797h1atXiI+Px9KlS/HXX39h7969QpyK9tEPP/yAWrVqoWnTplBVVcXu3bthbm4umgGhPGvWrIGLiwtatGiBkJAQODo6QlVVFVeuXMGtW7fQvHlzpes3ICAAGzduhK+vL4KCgmBkZIS7d+9i586d+OWXX6Cnp4epU6di8uTJKC4uRrt27ZCdnY24uDjo6+tj8ODBctN98eIFHj58KNwUVDJThbm5OczNzWFgYAB/f39MmTIFRkZG0NfXx/jx4+Hs7Iw2bdoAALp06YKGDRti4MCBWLp0KZ48eYJZs2YhICBAmClg9OjRWL16NYKCgjBs2DCcOXMGv/32Gw4fPqx0HVSXDh06IDc3FykpKUr3+/r16+P333/H+fPnUaNGDfzwww94+vSpcCOClpYWpk+fjqCgIEgkEri4uODZs2dISUmBv7+/KK3x48ejqKgI3bt3x9GjR4U2XpYyfUUZAQEB2L59Ow4cOAA9PT1hzDAwMBDNWBEbG4v58+dXKm3GGGOMMcYYUxoxxhhjjDHGGPtXcXV1pYkTJwrfL1y4QI6OjqSpqUmlLxMvX75MnTt3JqlUSrq6uuTo6EihoaFCuJWVFa1YsUKUNgDat2+f8D09PZ0AUEJCAhERjRs3jmxsbEhTU5NMTU1p4MCB9Ndff1Uq/126dCEAdPnyZdHy/Px8mjNnDllbW5OGhgbVqlWLvv76a0pOThbihIeHU506dUhbW5t69OhBy5cvJwMDAyE8ODiYnJycROmuW7eO7O3thTTHjx9fbv5evnxJM2bMoAYNGpCmpiZpa2uTo6MjzZ49m54/fy7Ek1d/Tk5OFBwcLHzPyMigQYMGkYmJCWlqalK9evVoxIgRlJ2dLcTZtm0bNWnShCQSCdWoUYPat29Pe/fulZu37t27U7du3eSGXbp0iQBQUlISBQcHEwCZj5WVVbllJyI6efIkde3alYyMjEhdXZ1q1qxJvXr1omPHjglxIiIiKqx3RYqKimjt2rXUsmVL0tHRIX19fWrevDmtWrWK3rx5I8QJCQmh2rVrk4aGBjk5OdHRo0dl0qlRowa1bt1aWJaQkEAA6Lvvvis3D1FRUUKdqKiokJ6eHjk5OdG0adMoIyNDJn55+2jDhg3UpEkT0tXVJX19fXJ3d6dr164J65btU/I8fvyYxo0bR1988QVpaGiQVCqlVq1a0bJly+j169flpmVgYEARERHC99u3b9PXX39NhoaGpK2tTQ0aNKBJkyZRcXExEREVFxfTypUrhT5hampKHh4eFBMTozB/ERERcttT6bb+9u1bGjt2LNWoUYN0dHTo66+/lqnL+/fvU9euXUlbW5tMTEwoMDCQCgoKRHGioqKEuq5Xr56obIryVrotEslvj4MHDyZvb2/hu7z+W1bfvn1l2lJ5+/P58+fk7e1NUqmUzMzMaNasWTRo0CDRdouKimjBggVkZWVFGhoaZGlpSQsXLiQi2fGWiCgsLIz09PQoLi5O7jaV6StlxyV55O1fAKL6P3/+PBkaGgr9VBnZ2dkEQDTmMcYYY4wxxv59lL02UCGSM/8eY4wxxhhjjDHGGGOsypKTk9G5c2fcu3cPUqn0U2fnk/Px8YGTkxO+//57pdfJycmBgYGB8EobxhhjjDHG2L+TstcGqn9jnhhjjDHGGGOMMcYY+1dwdHTEkiVLkJ6e/qmz8snl5+ejcePGmDx58qfOCmOMMcYYY+x/GM/8wBhjjDHGGGPskxs9ejS2bt0qN8zPzw/r1q37m3PEGGPsU+OZHxhjjDHGGGOA8tcGfPMDY4wxxhhjjLFPLjMzEzk5OXLD9PX1YWZm9jfniDHG2KfGNz8wxhhjjDHGAOWvDdT/xjwxxhhjjDHGGGNymZmZ8Q0OjDHGGGOMMcYYY6zKVD91BhhjjDHGGGOMMcYYY4wxxhhjjDHGPgTf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxzxrf/MAYY4wxxhhjjDHGGGOMMcYYY4yxz9onvfnBzc0NkyZN+pRZ+CwMGTIEvXr1+qA0oqOjoaKigpcvX1ZLnj62smXmtqKc6mgr/xYqKirYv3//p85GtVJm/39uY8H/upCQEDRp0uRTZ6NK7t+/DxUVFSQmJn7qrFSLyMhIGBoaCt+V2Tefqg7K5rWqypbx33YM+Vj9T5lxNiQkBEOGDKn2bcvzd7RTa2trrFy58qOlXxlVaddlzzP/SeVh1YP3KSvrn3bMe/78OczMzHD//v1PnZVq80+r46qornOuv9vHqvuQkBDUrFnzg66l161bhx49elRvxhhjjDHGGGOslE9688PevXsxf/584fvn8qPUvn370KZNGxgYGEBPTw+NGjWqlj/M/9P+kPTs2TOMGTMGlpaW0NTUhLm5OTw8PBAXF6d0GlX9sWDVqlWIjIys9HolSuqy5GNsbIwuXbogISGhyml+CGtrayEv2trasLa2Rt++fXHmzJlq3U5F9VbyB5myn1mzZlVrPpSRn5+PZcuWoVmzZtDV1YWBgQGcnJwwa9YsPH78+KNvPyMjA127dv3o21H0w9Df8WPgp7hpaMeOHVBTU0NAQIBMWHR0NLy9vVGrVi3o6uqiSZMm2LZtm1Lp7tmzB25ubjAwMIBUKoWjoyPmzZuHFy9eVHcRAFTPHyb37NmDjh07okaNGtDW1oa9vT2GDRv2ycah0sobm5X9MbNu3brIyMjAl19+Wb2ZKyUkJETumFX687FMnToVp0+fFr7L67N/Rx1UVek6UldXh6WlJaZMmYK8vDwhTtky/lNERkZCRUUFDg4OMmG7d++GiooKrK2tK5Xm53jDm6Lz4n/iTVNXrlzByJEjPygNNzc3UbutWbMm+vTpgwcPHlQqnepo19VRHmWUPj9UU1ODhYUF/P39kZWV9dG3rYyKrnn+iW2xuv9QeeXKFbi4uEBXVxdmZmb49ttvUVhYWOF6/8S6+dSSkpLQs2dPmJmZQUtLC9bW1vDx8UFmZiaAv/8G3Q+93qxuoaGh8Pb2Fh3fJkyYgObNm0NTU1Nhe0pOTsZXX30FLS0t1K1bF0uXLpWJs3v3bjRo0ABaWlpo3Lgxjhw5IgonIsyZMwe1atWCtrY2OnXqhDt37lRn8T5YVFQUunXrBmNjY+jo6KBhw4YIDAzEo0ePPnXWqqT0Oa66ujqsra0xefJk5ObmfuqsKZSamoq5c+di/fr1Cq+lk5KS4Ovri7p160JbWxsODg5YtWqVKM6wYcNw7do1xMbG/l1ZZ4wxxhhjjP3LfNKbH4yMjKCnp/cps1Bpp0+fho+PD3r37o3Lly8jPj4eoaGhKCgo+KB08/PzqymH1ad3795ISEjA5s2bcfv2bRw8eBBubm54/vz5R9+2gYFBtfxweerUKWRkZOD48ePIzc1F165dq/yDWlFREYqLi6ucl3nz5iEjIwNpaWnYsmULDA0N0alTJ4SGhlY5zbKUrbe0tDRkZGQIn++++04mzoeWtzx5eXno3LkzFi5ciCFDhuDs2bO4fv06fvzxR/z111/46aefFK5bXX3F3Nwcmpqa1ZIW+3/h4eEICgrCjh078O7dO1HY+fPn4ejoiD179iA5ORlDhw7FoEGDcOjQoXLTnDlzJnx8fNCyZUscPXoUN27cQFhYGJKSkvDrr79+zOJU2fTp0+Hj44MmTZrg4MGDSEtLw/bt21GvXj3MmDHjU2evWqipqcHc3Bzq6uofbRtTp04VjVV16tQRxtKST2nVeSyVSqUwNjYuN87fUQcfIiIiAhkZGUhPT8eaNWvw66+/YsGCBUK4MmX8VHR1dZGZmYkLFy6IloeHh8PS0vIT5YopYmpqCh0dnQ9OZ8SIEcjIyMDjx49x4MAB/Pnnn/Dz86tUGtXRrqurPMooGdMePnyIbdu24ezZs5gwYcLfsu3yVOc1z4deJ31KPj4+0NPTw9WrVxEVFYUOHTp86iyVi4iUujnj7/bs2TO4u7vDyMgIx48fR2pqKiIiImBhYYHXr19/kjxV1/VmdXjz5g3Cw8Ph7+8vEzZs2DD4+PjIXS8nJwddunSBlZUV4uPjsWzZMoSEhGDDhg1CnPPnz8PX1xf+/v5ISEhAr1690KtXL9y4cUOIs3TpUvz4449Yt24dLl26BF1dXXh4eMicy38q69evR6dOnWBubo49e/bg5s2bWLduHbKzsxEWFvaps1dljRo1QkZGBu7fv48lS5Zgw4YNCAwM/NTZUujevXsAAG9vb4XX0vHx8TAzM8PWrVuRkpKCmTNnYsaMGVi9erUQRyKRoH///vjxxx//trwzxhhjjDHG/mXoE3J1daWJEycK/wcg+pSIjY2ldu3akZaWFtWpU4fGjx9Pubm5QriVlRXNnz+fBg4cSLq6umRpaUkHDhygzMxM6tmzJ+nq6lLjxo3pypUrwjr379+n7t27k6GhIeno6FDDhg3p8OHDFeZ54sSJ5ObmVm6cu3fvUs+ePcnMzIx0dXWpRYsWdPLkSVEcKysrmjdvHg0cOJD09PRo8ODBMuV3dXUlIqLBgweTt7c3LVu2jMzNzcnIyIjGjh1L+fn5Qnpbtmyh5s2bk1QqpZo1a5Kvry89ffpUCI+KiiIAlJWVRUREr1+/Jk9PT2rbtq2wrLSsrCwCQNHR0eWWNSwsjL788kvS0dGhOnXq0JgxY+jVq1eibZb+BAcH04wZM6hVq1YyaTk6OtLcuXNFZS5Ruq0QER06dIj09fVp69atcvOVnp5OACghIUFYFhcXRwDo2LFjMvVBRJSQkEAAKD09nYiIIiIiyMDAgA4cOEAODg6kpqZG6enp9O7dOwoMDCQLCwvS0dGhVq1aUVRUVLn1ZGVlRStWrJBZPmfOHFJVVaVbt24Jy65fv06enp6kq6tLZmZm5OfnR8+ePRPCd+/eTV9++SVpaWmRkZERubu7C/2hbL2VJa/cJT6kvBX10bIWLVpEqqqqdO3aNbnhxcXFwv9dXV0pICCAJk6cSMbGxkL/K6/tlaxXtv2V3r8AaN++fUT0/+1lz5495ObmRtra2uTo6Ejnz58X5WvDhg1Up04d0tbWpl69elFYWBgZGBgoLGfZ7ZRWdl8VFRXRwoULydramrS0tMjR0ZF2794thBcWFtKwYcOEcDs7O1q5cqXCNOWNKenp6UIbOHXqFDVv3py0tbXJ2dlZaIPp6emkoqIiGi+JiFasWEGWlpZUVFSksKx//PEHaWtr08uXL6l169a0bdu2cuuGiKhbt240dOhQheGXLl0iADJlLVG6La9Zs4bq1atHGhoaZGdnR1u2bBHCAgMDycvLS1QeAHT06FFhmY2NDW3cuJGIiIKDg2nw4MFCWHn9rqwLFy4QAFq1apXc8NLtOzg4mJycnGjLli1kZWVF+vr65OPjQzk5OUKcitoGUcXjRlkl/V2e0m32xYsX1L9/fzIxMSEtLS2ytbWlTZs2EZHsOFtR2yoxf/58MjU1JalUSv7+/jR9+nRycnJSmNfSyo6lVR0fSuqgbt26Qn9evny5qE5K9k3J/8v2p6ioKLnHmujoaGrZsiVJJBIyNzen6dOnU0FBgSjP48ePp2nTplGNGjWoZs2aFBwcLMpbRfkvb/+VkDf2+Pv7U7du3eSWkUh2XHr37h2NHz+eTE1NSVNTk1xcXOjy5ctCuDL7XJlzorJKyjdu3DgaPny4sPzPP/8kTU1N+u6778jKykq0zv79+6lp06akqalJX3zxBYWEhAj1bmVlJdp3Jesq0/8qqgMiosOHD1P9+vVJS0uL3NzcKCIiQuGxtnTdlx5j5FF07lB2vxERbdy4kRo0aECamppkb29PP//8sxCmqK8eOnSIGjduTJqamtS6dWu6fv26sE5lz5PL5hUAbdy4kXr16kXa2tpka2tLBw4cKLe8Zc/1iIh+/fVX0tHREb7La/v79u0TXTdU1K5zc3OFawZzc3Navny5zLarUp4DBw6Qra0taWpqkpubG0VGRlbYDuTt4/nz51PDhg1Fy37//Xdq2LAhSSQSsrKyouXLl8ukExoaSkOHDiWpVEp169al9evXi+I8fPiQ+vTpQwYGBlSjRg3q2bOncE4kT0XXPCXtvPQnIiKCiN7X15o1a6hHjx6ko6MjjHHl9dOS9T6knhVdeyhbR/LY2NgoFa8sRe0wNDSUzMzMyMDAgObOnUsFBQU0depUqlGjBtWuXVs4xhL9f9/dsWMHOTs7k6amJjVq1Eh0fVZS5iNHjlCzZs1IQ0ODoqKiyh27ioqKqHbt2rRmzRpRnq9du0YqKip0//59Inp/juXv708mJiakp6dHHTp0oMTERCF+YmIiubm5kVQqJT09PWrWrJnM+WOJffv2kbq6umh/l1ZS1tKfkjHy6NGj5OLiQgYGBmRkZEReXl509+5dmXV37dolXI+0aNGC0tLS6PLly9S8eXPS1dUlT09PyszMlNknJarj+FxVu3fvJlNTU4Xh8sZ9ovfnvjVq1KC8vDxh2fTp08ne3l743rdvX9E5MBFR69atadSoUUT0/rzU3Nycli1bJoS/fPmSNDU1aceOHURUfXVcFX/++SdJJBKaNGmS3PDSY6wyY2VlfzcqOe7s27dPGHu6dOlCDx8+FKVd3nWIPPL26YgRI8jc3JyIKv59h4joxo0b5OXlRXp6eiSVSqldu3ZC3yhb95cvXyYTExNavHixwjwlJydThw4dhOudESNGCO1b3rmwssaOHUsdOnQQLYuJiSGJREJv3ryRu867d+8oOztb+Pz5558EgLKzs5XeLmOMMcYYY+x/T3Z2tlLXBp905ofS9u7dK/NEJ/D+7nJPT0/07t0bycnJ2LVrF86dO4dx48aJ1l+xYgVcXFyQkJAALy8vDBw4EIMGDYKfnx+uXbsGGxsbDBo0CEQEAAgICEBeXp7wxPmSJUsglUorzKe5uTlSUlJET0qUlZubi27duuH06dNISEiAp6cnevTogYcPH4riLV++HE5OTkhISMDs2bNx+fJlAP8/W8HevXuFuFFRUbh37x6ioqKwefNmREZGiqbpLCgowPz585GUlIT9+/fj/v37Cqdsf/nyJTp37ozi4mKcPHlS7hMvUqkUUqkU+/fvF02RXZaqqip+/PFHpKSkYPPmzThz5gyCgoIAAG3btsXKlSuhr68v7NOpU6diwIABuHz5svDkAACkpKQgOTkZ/fv3V7itEtu3b4evry+2bduGAQMGVBi/hLa2NoDKPRn85s0bLFmyBL/88gtSUlJgZmaGcePG4cKFC9i5cyeSk5PRp08feHp6Vmlq0IkTJ4KIcODAAQDv903Hjh3RtGlTXL16FceOHcPTp0/Rt29fAO9f1eDr64thw4YhNTUV0dHR+Oabb4R2/aGqUl5l+2hpO3bsQOfOndG0aVO54WWnst+8eTMkEgni4uKwbt06AOW3PeD9mFL66fBvvvkG9vb2qFmzpsJ8zZw5E1OnTkViYiLs7Ozg6+srPD0XFxeH0aNHY+LEiUhMTETnzp2rddaORYsWYcuWLVi3bh1SUlIwefJk+Pn5ISYmBgBQXFyMOnXqYPfu3bh58ybmzJmD77//Hr/99pvc9FatWgVnZ2fhKdqMjAzUrVtXVNawsDBcvXoV6urqGDZsGID3U3B36tQJERERovQiIiIwZMgQqKoqPmxERETAy8sLBgYG8PPzQ3h4eIXlzs7OhpGRkcLwbdu2QSqVYuzYsXLDS8avffv2YeLEiQgMDMSNGzcwatQoDB06FFFRUQAAV1dXnDt3DkVFRQCAmJgYmJiYIDo6GgDw6NEj3Lt3D25ubjLbqGy/27FjR7l5Ltu+7927h/379+PQoUM4dOgQYmJisHjxYiG8orZR0bjxIWbPno2bN2/i6NGjSE1Nxdq1a2FiYlLuOoraFvB+f4aGhmLJkiWIj4+HpaUl1q5d+0F5rMr4cOnSJfj7+2PcuHFITExEhw4dRDMilDV16lT07dsXnp6eQn9q27atTLxHjx6hW7duaNmyJZKSkrB27VqEh4fLpL1582bo6uri0qVLWLp0KebNm4eTJ08K4RXlvypu376NM2fOoHXr1kqvExQUhD179mDz5s24du0abG1t4eHhIfO6mfL2ubLnRPIMGzYMv/32G968eQPg/XT2np6eMuN4bGwsBg0ahIkTJ+LmzZtYv349IiMjhTH6ypUrAP5/JoyS70DF/a+iOvjzzz/xzTffoEePHkhMTMTw4cPlzqb0MW3btg1z5sxBaGgoUlNTsXDhQsyePRubN28ud71p06YhLCwMV65cgampKXr06CE8oV/V8+TS5s6di759+yI5ORndunXDgAEDKvWqohcvXuC3336rVJtVxrRp0xATE4MDBw7gxIkTiI6OxrVr1ypcr7zypKen49tvv0WvXr2QlJSEUaNGYebMmZXO26NHj/Cf//xHVOb4+Hj07dsX/fr1w/Xr1xESEoLZs2fLTNcfFhaGFi1aICEhAWPHjsWYMWOQlpYG4P11goeHB/T09BAbG4u4uDhIpVJ4enoqPC+u6JrHx8cHgYGBwpPLGRkZoqfTQ0JC8PXXX+P69esYNmxYhf20OupZ0bWHMnWkiLe3NxYsWID79++XG08ZZ86cwePHj3H27Fn88MMPCA4ORvfu3VGjRg1cunQJo0ePxqhRo/Df//5XtN60adMQGBiIhIQEODs7o0ePHjIz8X333XdYvHgxUlNT4ejoWO7YpaqqCl9fX2zfvl2UxrZt2+Di4gIrKysAQJ8+fZCZmYmjR48iPj4ezZo1g7u7u7A/BgwYgDp16uDKlSuIj4/Hd999Bw0NDbllNzc3R2FhIfbt2yf3/Klu3brYs2cPgP+foa5kqvzXr19jypQpuHr1Kk6fPg1VVVV8/fXXMjPUBQcHY9asWbh27RrU1dXRv39/BAUFYdWqVYiNjcXdu3cxZ86ccvfRpzg+A++PY82bN6/0ehcuXED79u0hkUiEZR4eHkhLSxNen3PhwgV06tRJtJ6Hh4cws1J6ejqePHkiimNgYIDWrVvLzL5UHXVcWbt370Z+fr7Cei65FlB2rKzs70bA+2vk0NBQbNmyBXFxcXj58iX69esnhFd0HaIsbW1tYUyu6PedR48eoX379tDU1MSZM2cQHx+PYcOGyZ355cyZM8K16/Tp0+Vu+/Xr1/Dw8ECNGjVw5coV7N69G6dOnRKu6adOnSpcH8qbfa088q73WrRogcLCQly6dEnuOosWLYKBgYHwKX0dyxhjjDHGGGMV+ui3YZSjoqesiN4/pThy5EjRstjYWFJVVaW3b98K6/n5+QnhGRkZBIBmz54tLCt5EjcjI4OIiBo3bkwhISGVznNubi5169ZNeHLQx8eHwsPD6d27d+Wu16hRI/rpp59EZe3Vq5cojrwnSIne37VvZWVFhYWFwrI+ffqQj4+Pwu1duXKFAMjMwpCamkqOjo7Uu3dv0RMi8vz+++9Uo0YN0tLSorZt29KMGTMoKSmp3HV2795NxsbGwndFT6c6OTnRvHnzhO8zZsyg1q1bi8osb+aH1atXk4GBQYUzUpSty6ysLPr6669JKpXSkydPlJ75AYDoCacHDx6QmpoaPXr0SLQ9d3d3mjFjhsL8KHp6k4ioZs2aNGbMGCJ6/7Rfly5dROElTzmkpaVRfHw8ARCeyCpL2ZkfdHV1RZ+//vqryuVVpo+WpaWlRRMmTBAt69Wrl5AfZ2dnYbmrqys1bdpUYZlKlG17pf3www9kaGhIaWlpwjLImfnhl19+EcJTUlKEPkNE5OPjI/PU1IABA5R6+lpLS0umztXV1YV99e7dO9LR0ZGZacLf3598fX0Vph0QEEC9e/cWvlc0YwqR+EntEocPHyYAwv7atWsX1ahRQxjX4uPjSUVFpdwnRIuKiqhu3bq0f/9+IiJ69uwZSSQS+uOPPxSus2vXLpJIJHTjxg2Fcbp27UqOjo4Kw0u0bduWRowYIVrWp08f4Sn3rKwsUlVVpStXrlBxcTEZGRnRokWLhHFn69atVLt2bblpV9TvyvL09JTJc1hYmGj/v3z5kojeP0Wlo6MjetJ82rRpQr6UaRsVjRvyKDvzQ48ePRTOzFHezA8lyrat1q1bU0BAgCgdFxeXD5r5oSrjg6+vr2gGBKL3fVzRzA9E8sfXsnXw/fffk729vWh2j59//pmkUqkwa4qrqyu1a9dOlE7Lli1p+vTpSudf2ZkfSsYeTU1NAkDdu3cXzRpVXhlzc3NJQ0NDNINLfn4+WVhY0NKlS4lIuX0uT9lzorJKl69Jkya0efNmKi4uJhsbGzpw4ACtWLFCNPODu7s7LVy4UJTGr7/+SrVq1RLVR9mZMCrqf8rUwYwZM2Se0p8+fXq1zfwgkUhkjh8aGhqi/WZjY0Pbt28XrTt//nzhWKqor+7cuVOI//z5c9LW1qZdu3YRUeXPk+XNlDBr1izhe25ursxsO2W5urqShoYG6erqko6ODgEgOzs70bHnQ2d+ePXqFUkkEvrtt99kyl7RzA/llWf69On05ZdfivI1c+ZMpWZ+KNnHWlpaBIBat24tWqd///7UuXNn0XrTpk0Ttbuy10LFxcVkZmZGa9euJaL3/aHs2JSXl0fa2tp0/PhxuXlT5ppH0dPoAGSe0la2n35oPSsaHyuqI3kiIyOF8wVLS0tKSUkRwpYvX06NGjVSuK68dmhlZSWaQcve3p6++uor4XthYSHp6urKPG1f+kntgoICqlOnDi1ZsoSI/r8/l5x/ESk3diUkJJCKigo9ePCAiP5/NoiS+oiNjSV9fX2Za9zSM2Ho6elRZGSkwjoo6/vvvyd1dXUyMjIiT09PWrp0KT158kQIL2+GutKePXtGAITZauSdx+/YsYMA0OnTp4VlixYtEs2IIO+8+UOPz1Xl7e1Nw4YNUxiuqK917txZ5jqs5Brm5s2bRESkoaEhc4z4+eefyczMjIj+f3bEx48fi+L06dOH+vbtS0TVV8dVMWbMGNLX168wXlXGSmV+Nyq5Rr548aIQJzU1lQDQpUuXiKji6xB5yu7Tq1evkomJCX377bdy45f9fWfGjBn0xRdfiM7rSiup+71795JUKhUd8+XZsGED1ahRQzSz3eHDh0lVVVXop2WPt8qIi4sjdXV1uceaGjVqKBxDeOYHxhhjjDHGmDyf3cwPiiQlJSEyMlKYiUAqlcLDwwPFxcVIT08X4jk6Ogr/L3kisHHjxjLLMjMzAQATJkzAggUL4OLiguDgYCQnJyuVH11dXRw+fBh3797FrFmzIJVKERgYiFatWglPJubm5mLq1KlwcHCAoaEhpFIpUlNTZZ5ybNGihdL10KhRI6ipqQnfa9WqJZQFeP+kQ48ePWBpaQk9PT24uroCgMw2O3fuDFtbW+zatUv0hIg8vXv3xuPHj3Hw4EF4enoiOjoazZo1Ez09cerUKbi7u6N27drQ09PDwIED8fz5c6EuFBkwYIDwtBERYceOHRXO4vD7779j8uTJOHnypFC+irRt2xZSqRQ1atRAUlISdu3aVe6T/2VJJBJR27p+/TqKiopgZ2cnapMxMTGimSwqg4iEJ8GTkpIQFRUlSrtBgwYA3j+d6uTkBHd3dzRu3Bh9+vTBxo0bhad6KiM2NhaJiYnCp0aNGlUur7J9tCJr1qxBYmIihg0bJtN+5D0JpWzbO3r0KL777jvs2rULdnZ25eahdNlr1aoF4P/HjLS0NLRq1UoUv+x3RVasWCGq78TERPTs2VMIv3v3Lt68eYPOnTuL6nHLli2idvXzzz+jefPmMDU1hVQqxYYNG5R6erqyZe3VqxfU1NSwb98+AO+ftu7QoQOsra0Vpnfy5Em8fv0a3bp1AwCYmJigc+fO2LRpk9z4UVFRGDp0KDZu3IhGjRopTJeUnNUkNTUVLi4uomUuLi5ITU0F8P6pMCcnJ0RHR+P69euQSCQYOXIkEhISkJubi5iYGIXjSnX0u2HDhiExMRHr16/H69evReWytraGnp6e8L30+K5M26ho3PgQY8aMwc6dO9GkSRMEBQXh/PnzFa7zsfqRIlUZH1JTU2WeJnd2dv6gfJSk6+zsLJrdw8XFBbm5uaIneUvXESB7TK/qsbWskrEnKSkJhw4dwu3btzFw4ECl1r137x4KCgpE/UpDQwOtWrUS+pW88pTd58qeEykybNgwREREICYmRjTGlJaUlIR58+aJ+kDJrDcV1Vl5/U+ZOvhYbanEtGnTZI4fo0ePFsJfv36Ne/fuwd/fX1T+BQsWVNj/S+fTyMgI9vb2Qrmqep5cWul2oaurC319fVE7l2fAgAFCmz137hxsbW3RpUsXvHr1qtLbl+fevXvIz88X7bOSslekvPKkpaWhZcuWovjKjm0l+zg5ORmnT58GAHh5eQkzFSk6vt25c0eIUzZ/KioqMDc3F/KXlJSEu3fvQk9PT2gjRkZGePfuncJ2osw1T3nKXuco208/Vj2XTbtsHZVVXFyM7777DvPnz8d3332HOXPmoH379rh48SKA9+fIX331ldLbBt5fz5WeQatmzZqi61U1NTUYGxvL5Kl0X1VXV0eLFi1kxuHS9a3M2NWkSRM4ODgI12MxMTHIzMxEnz59ALzfX7m5uTA2Nhbts/T0dKHNTJkyBcOHD0enTp2wePHiCsec0NBQPHnyBOvWrUOjRo2wbt06NGjQANevXy93vTt37sDX1xf16tWDvr6+cD5a9jiizO8BFY1B1X18Hj16tKj+FHn79i20tLTKzds/QXXUcWml66b0sa200tfK5anKWKnM70bA+35Xeuxp0KABDA0NRecC5V2HKHL9+nVIpVJoa2ujVatWcHZ2xurVqwFU/PtOYmIivvrqK4WzrQDvZzrr06cPfv31V9HMPPKkpqbCyckJurq6ojIUFxdXOEOOIjdu3IC3tzeCg4PRpUsXmXBtbW2FfUdTUxP6+vqiD2OMMcYYY4wpS/1TZ6Aiubm5GDVqFCZMmCATZmlpKfy/9EVfycWxvGUl02MOHz4cHh4eOHz4ME6cOIFFixYhLCwM48ePVypfNjY2sLGxwfDhwzFz5kzY2dlh165dGDp0KKZOnYqTJ09i+fLlsLW1hba2Nr799luZaWVLX1hWpOxFrYqKilCWkikKPTw8sG3bNpiamuLhw4fw8PCQ2aaXlxf27NmDmzdvii7yFdHS0kLnzp3RuXNnzJ49G8OHD0dwcDCGDBmC+/fvo3v37hgzZgxCQ0NhZGSEc+fOwd/fH/n5+dDR0VGYrq+vL6ZPn45r167h7du3+PPPPyu8IG/atCmuXbuGTZs2oUWLFkr9CLJr1y40bNgQxsbGotd7lPzwWPoPkCVTPZemra0t2k5ubi7U1NQQHx8vuhkFQKWngwaA58+f49mzZ/jiiy+E9Hv06IElS5bIxK1VqxbU1NRw8uRJnD9/HidOnMBPP/2EmTNn4tKlS0Iayvjiiy/kvu6kKuVVto+WVr9+fZkfUUr+YCbvFQhl+4qybe/mzZvo168fFi9eLPcHl7LKGzM+hLm5OWxtbUXL9PT08PLlSwDv6xAADh8+jNq1a4viaWpqAgB27tyJqVOnIiwsDM7OztDT08OyZcsUThVakfLKKpFIMGjQIEREROCbb77B9u3bhamHFQkPD8eLFy+E18uUpJecnIy5c+eKfuyPiYlBjx49sGLFCgwaNKjcdO3s7HDu3DkUFBSU++OeMtzc3BAdHQ1NTU24urrCyMgIDg4OOHfuHGJiYhAYGCh3vcr2u/r168vk2dDQEIaGhjJTWQPlj+/KtI2Kxg159PX18fr1axQXF4v2TUmbNDAwAAB07doVDx48wJEjR3Dy5Em4u7sjICAAy5cvl5tu2fJUZz9SpKrjw6dU3j6vzvyXHnvs7e3x6tUr+Pr6YsGCBTJjUnWVp+w+V/acSJEBAwYgKCgIISEhGDhwINTVZU9dc3NzMXfuXHzzzTcyYRX9Mam8ffFPYGJiIrOvSh8nS8aIjRs3ytyEUfa4XRkfep4MVK1uDQwMhPLa2toiPDwctWrVwq5duzB8+HCoqqrK3BQn7/ztY/hYbaX0Pq5fvz5WrlwJZ2dnREVFyUxVX9X85ebmonnz5ti2bZvMeqampuWmW941T3nKjs3K9tOP2Scrk3ZmZiaePHkivKLN398fr169QqdOnfDLL79gz549ws0qH7L96ipvZa4rS5TcjP7dd99h+/bt8PT0hLGxMYD3+6tWrVrC68FKK7mGCAkJQf/+/XH48GEcPXoUwcHB2LlzJ77++muF2zQ2NkafPn3Qp08fLFy4EE2bNsXy5cvLfU1Pjx49YGVlhY0bN8LCwgLFxcX48ssvZY4jyvweUFHdVvfxed68eaJXryhiYmJSpRvazc3N8fTpU9Gyku/m5ublxikdXrKs9Hnj06dP0aRJE9F61VHHpSUmJgr/V/THbTs7O2RnZyMjI0PheW1lVPZ3o4/J3t4eBw8ehLq6OiwsLISHU5T5faf0NZciNjY2MDY2xqZNm+Dl5fXB11KVcfPmTbi7u2PkyJGYNWuW3DgvXryo8BjEGGOMMcYYY1Xxj5r5QSKRiO7KB4BmzZrh5s2bsLW1lflUNHNBRerWrYvRo0dj7969CAwMxMaNG6uUjrW1NXR0dPD69WsAQFxcHIYMGYKvv/4ajRs3hrm5uVLviS0pT9k6qMitW7fw/PlzLF68GF999RUaNGig8ImLxYsXY/DgwXB3d8fNmzcrtR0AaNiwoVDO+Ph4FBcXIywsDG3atIGdnR0eP34sUyZ55alTpw5cXV2xbds2bNu2DZ07d4aZmVm527axsUFUVBQOHDig9I/vdevWhY2Njcwf+ksusku/q7L0jy+KNG3aFEVFRcjMzJRpjyU/HFXGqlWroKqqil69egF4395TUlJgbW0tk37Jj5oqKipwcXHB3LlzkZCQAIlEIjyhX92UKW9V+qivry9OnjyJhISEKuVLmbb3119/oUePHujduzcmT55cpe2UZm9vL3pPPACZ71XVsGFDaGpq4uHDhzJ1WPJ+07i4OLRt2xZjx45F06ZNYWtrW+ETdor6nzKGDx+OU6dOYc2aNSgsLJT7x4oSz58/x4EDB7Bz507R08kJCQnIysrCiRMnhLjR0dHw8vLCkiVLMHLkyArz0b9/f+Tm5mLNmjVyw0v+WO/g4IC4uDhRWFxcHBo2bCh8d3V1xblz53D69Gm4ubkBeH9DxI4dO3D79m1hmTyV6Xe+vr7l5rkylGkbyowbZdnb26OwsFBm3Ct5733pWVJMTU0xePBgbN26FStXrsSGDRuqXJ6P2Y9KKDM+ODg4yNw4VPI0ryLK9CcHBwdcuHBB9MfZuLg46OnpoU6dOtWW/6oq+WP427dvK4xrY2MDiUQi6lcFBQW4cuWKqF9VpKrnRCWMjIzQs2dPxMTEYNiwYXLjNGvWDGlpaXKPQyU392hoaFR6PFSmDhwcHHD58mXRehW1pepUs2ZNWFhY4I8//pApe0U3RZbOZ1ZWFm7fvg0HBwdhWXWdJ3+Ism3W1NQUr169Es5FAeXO30rY2NhAQ0ND1P9Lyv4h7O3tcfXqVdGyqo5tZcus6PhmZ2en9A0uzZo1w507d2BmZibTTkpudlNG2WueypxnKNNPK6JMPX/IuU9pNWrUgLa2Ns6ePSssmzRpEqZPnw5fX1907Njxg2cuUlbpvlpYWIj4+HhRXy1L2fG7f//+uHHjBuLj4/H777+LZuFr1qwZnjx5AnV1dZn9ZWJiIsSzs7PD5MmTceLECXzzzTeIiIhQulwSiQQ2Njai9gSIr4WfP3+OtLQ0zJo1C+7u7nBwcKjSTQLVoSrH57J9TpGmTZtW6drc2dkZZ8+eFd0EdvLkSdjb2wsz+zk7O8vcqHPy5ElhRpEvvvgC5ubmojg5OTm4dOlStc5kJE/pulH0W8C3334LiUSCpUuXyg2v6FqgMmOlIoWFhaKxJy0tDS9fvhT6oTLXIfJIJBLY2trC2tpadN2szO87jo6OiI2NLfcGQBMTE5w5cwZ3795F3759y43r4OCApKQk0fE1Li4OqqqqSs2OVFpKSgo6dOiAwYMHIzQ0VG6ce/fu4d27d8INZowxxhhjjDFWnf5RNz9YW1vj7NmzePToEf766y8AwPTp03H+/HmMGzcOiYmJuHPnDg4cOIBx48Z90LYmTZqE48ePIz09HdeuXUNUVFS5PyKVCAkJQVBQEKKjo5Geno6EhAQMGzYMBQUF6Ny5M4D3T23t3btXmLa3f//+Sj05YGZmBm1tbRw7dgxPnz5Fdna2UmWxtLSERCLBTz/9hD/++AMHDx7E/PnzFcZfvnw5BgwYgI4dO+LWrVty4zx//hwdO3bE1q1bkZycjPT0dOzevRtLly6Ft7c3gPc/VhQUFAjb/fXXX7Fu3TpROtbW1sjNzcXp06fx119/iaY1HDBgAHbu3Indu3dX+MqLEnZ2doiKisKePXswadIkpdaRp+QPhyEhIbhz5w4OHz6MsLAwpbY/YMAADBo0CHv37kV6ejouX76MRYsW4fDhw+Wu++rVKzx58gR//vknzp49i5EjR2LBggUIDQ0VfgwLCAjAixcv4OvriytXruDevXs4fvw4hg4diqKiIly6dAkLFy7E1atX8fDhQ+zduxfPnj1Tqu1WhTLlrUofnTx5MpydneHu7o5Vq1bh2rVrSE9Px/Hjx3H06NEKf6BSpu317t0bOjo6CAkJwZMnT4RPVX8QHz9+PI4cOYIffvgBd+7cwfr163H06FGlZiCpiJ6eHqZOnYrJkydj8+bNuHfvHq5du4affvpJeBKufv36uHr1Ko4fP47bt29j9uzZFf5hxdraGpcuXcL9+/fx119/VeoJJgcHB7Rp00b4kb+8p4t+/fVXGBsbo2/fvvjyyy+Fj5OTE7p164bw8HAA71914eXlhQkTJqB3797CPnnx4oXCtFu3bo2goCAEBgYiKCgIFy5cwIMHD3D69Gn06dNHqJ9p06YhMjISa9euxZ07d/DDDz9g7969oqft2rdvj1evXuHQoUOimx+2bduGWrVqKXwtSmX7nbOzMwIDAxEYGIgpU6bg3LlzePDgAS5evIjw8HCoqKgo/YceZdpGReOGPI0aNUKXLl0wbNgwnD59Gunp6Th27BjGjh0LHx8fYZaJOXPm4MCBA7h79y5SUlJw6NChDxpvxo8fj/DwcGzevBl37tzBggULkJycXC39qIQy48OECRNw7NgxLF++HHfu3MHq1atx7NixctO1trZGcnIy0tLS8Ndff8n9AXns2LH4888/MX78eNy6dQsHDhxAcHAwpkyZovQ+Vyb/ynr58iWePHmCx48fIyYmBvPmzYOdnZ1S+1BXVxdjxozBtGnTcOzYMdy8eRMjRozAmzdv4O/vr3QeqnpOVFpkZCT++usv4XUuZc2ZMwdbtmzB3LlzkZKSgtTUVOzcuVP0pKG1tTVOnz6NJ0+eKP2HM2XqYPTo0bhz5w6mTZuGtLQ0bN++XfR6sL/D3LlzsWjRIvz444+4ffs2rl+/joiICPzwww/lrjdv3jycPn0aN27cwJAhQ2BiYiLcjFnV8+QP9ebNG+HYkJSUhDFjxkBLS0uYval169bQ0dHB999/j3v37lW6vqVSKfz9/TFt2jScOXNGKLuy/VORUaNG4datW5g+fTpu376N3377TchXReNbyflhRkYGLl++jGnTpsHU1BRt27YFAAQGBuL06dOYP38+bt++jc2bN2P16tVKPU1eYsCAATAxMYG3tzdiY2ORnp6O6OhoTJgwQe6MRIBy1zzW1tZIT09HYmIi/vrrL+Tl5SnMgzL9tCLK1HN51x6VoampiYkTJ2Lu3Ln46aefcOfOHeG1cbq6uoiNja3yVPCV9fPPP2Pfvn24desWAgICkJWVpfBmMED58dva2hpt27aFv78/ioqKRK9k69SpE5ydndGrVy+cOHEC9+/fx/nz5zFz5kxcvXoVb9++xbhx4xAdHY0HDx4gLi4OV65cUThOHDp0CH5+fsIrmNLS0rB8+XIcOXJEuLa0srKCiooKDh06hGfPniE3Nxc1atSAsbExNmzYgLt37+LMmTOYMmVKNdVs5VTn8bksDw8PpKSkyByf7t69i8TERDx58gRv374VbjAuefq/f//+kEgk8Pf3R0pKCnbt2oVVq1aJ6mjixIk4duwYwsLCcOvWLYSEhODq1avCtZqKigomTZqEBQsW4ODBg7h+/ToGDRoECwsL4ZjwKdWtWxcrVqzAqlWr4O/vj5iYGKHNjRo1SvjdozrGSkU0NDQwfvx4XLp0CfHx8RgyZAjatGkj3AClzHVIZSjz+864ceOQk5ODfv364erVq7hz5w5+/fVXmXHJzMwMZ86cwa1bt+Dr64vCwkK52xwwYAC0tLQwePBg3LhxA1FRURg/fjwGDhxYqdeG3rhxAx06dECXLl0wZcoU4Zj+7NkzUbzY2FjUq1cPNjY2SqfNGGOMMcYYY0qjT8jV1ZUmTpwofL9w4QI5OjqSpqYmlc7a5cuXqXPnziSVSklXV5ccHR0pNDRUCLeysqIVK1aI0gZA+/btE76np6cTAEpISCAionHjxpGNjQ1pamqSqakpDRw4kP76668K83zmzBnq3bs31a1blyQSCdWsWZM8PT0pNjZWtK0OHTqQtrY21a1bl1avXi1TVnl5JiLauHEj1a1bl1RVVcnV1ZWIiAYPHkze3t6ieBMnThTCiYi2b99O1tbWpKmpSc7OznTw4EFReaOioggAZWVlCeuMHz+eatWqRWlpaTL5ePfuHX333XfUrFkzMjAwIB0dHbK3t6dZs2bRmzdvhHg//PAD1apVi7S1tcnDw4O2bNkis53Ro0eTsbExAaDg4GBheVZWFmlqapKOjg69evVKtP2yZS5bfzdv3iQzMzOaMmWKTN6JZPe3POfOnaPGjRuTlpYWffXVV7R7924CQOnp6UREFBERQQYGBjLr5efn05w5c8ja2po0NDSoVq1a9PXXX1NycrLCbVlZWREAAkASiYQsLS2pb9++dObMGZm4t2/fpq+//poMDQ1JW1ubGjRoQJMmTaLi4mK6efMmeXh4kKmpKWlqapKdnR399NNPCuutLHntoMSHlLeiPirPu3fvaPHixeTk5ETa2tqkqalJDRo0oMmTJ9PDhw+FeGX3fYmK2l5JfZf9lOzf0mOEvPaSlZVFACgqKkpYtmHDBqpduzZpa2tTr169aMGCBWRubl5uOcuORSXK7qvi4mJauXIl2dvbk4aGBpmampKHhwfFxMQI9TVkyBAyMDAgQ0NDGjNmDH333Xfk5OSkMM20tDRq06YNaWtrC2WX1wYSEhJEdVMiPDycANDly5fLLWPjxo1p7NixcsN27dpFEomEnj17RoMHD5a7T0qPZYrs2rWL2rdvT3p6ekIbmzdvnqgca9asoXr16pGGhgbZ2dnRli1bZNJxcnIS7bPnz5+TiooK9evXT+G2K+p35eXZzc2NDAwMSENDg+rUqUP9+/enixcvCnGCg4NF+5CIaMWKFWRlZSV8r6htEJU/biiSlZVFEyZMIBsbG9LW1qb69etTUFCQaDyeP38+OTg4kLa2NhkZGZG3tzf98ccfRCTbb5RtW/PmzSMTExOSSqU0bNgwmjBhArVp06bC+iSSPXZWdXwget++69SpQ9ra2tSjRw9avny5aAwsu28yMzOFca5kbJA3dkRHR1PLli1JIpGQubk5TZ8+nQoKCsrNs7e3Nw0ePFjp/Csar0sr3cdUVFSoVq1a5OPjQ/fu3VNYxrJjyNu3b2n8+PFkYmJCmpqa5OLiIhoPlNnnypwTlVVR+cr2ESKiY8eOUdu2bUlbW5v09fWpVatWtGHDBiH84MGDZGtrS+rq6sK6yvS/iuqAiOg///kP2drakqamJn311Ve0adMmhcfaEsHBwaJ9Lo+ic0V5+d62bRs1adKEJBIJ1ahRg9q3b0979+4lIsV99T//+Q81atSIJBIJtWrVipKSkoT0KnueXDav8o59BgYGFBERoTANV1dXUbutUaMGubq6ypwr7du3j2xtbUlbW5u6d+9OGzZsEF03VNSuX716RX5+fqSjo0M1a9akpUuXVnierkx5Dhw4ILQDNzc3Wrt2LQGgt2/fKixz6fNDAGRqakrdunWTOX/9/fffqWHDhqShoUGWlpa0bNkymXTKthUnJyfReXdGRgYNGjRIaMv16tWjESNGUHZ2tty8KXPN8+7dO+rduzcZGhoSAKE+FJ37VNRPq6ue5V17KFNHZRUVFdG6devoyy+/JC0tLapTpw5NnDiRnj17Rh4eHmRjY0PPnj2Tu25F7ZBI/vGgdD5L+u727dupVatWJJFIqGHDhqI+oejcXpmxi+j9uRMAGjRokExYTk4OjR8/niwsLEhDQ4Pq1q1LAwYMoIcPH1JeXh7169dPaB8WFhY0btw4he393r17NGLECLKzsyNtbW0yNDSkli1byowJ8+bNI3Nzc1JRURHGyJMnT5KDgwNpamqSo6MjRUdHV3geL69eyh5bKrreJKr88flDtGrVitatWydaVnZcLHs9Q0SUlJRE7dq1I01NTapduzYtXrxYJu3ffvuN7OzsSCKRUKNGjejw4cOi8OLiYpo9ezbVrFmTNDU1yd3dXfQbQXXV8Yc4efIkeXh4UI0aNUhLS4saNGhAU6dOpcePHwtxqjJWVvS7UUmZ9uzZQ/Xq1SNNTU3q1KkTPXjwQJSOMtchpck7lpdW0e87RO/3fZcuXUhHR4f09PToq6++Es7zytb948ePyc7Ojvr27UuFhYVyt5mcnEwdOnQgLS0tMjIyohEjRoiuC/bt2yc63ioql7w2W/a8rUuXLrRo0aJy0yotOzubACg8ZjHGGGOMMcb+HZS9NlAhKvPiXMYYY0oZMWIEbt26hdjY2E+dlY9i/vz52L17N5KTkz91Vtj/sM6dO8Pc3By//vrrp84KY3+bkJAQ3L9//2+fJQJ4//qhDh06ICsrS+a1YKz6hIaGYt26dfjzzz8/dVb+p/0v1/P9+/fxxRdfICEhAU2aNPnU2WEf2eHDhzFt2jTcuHHjg2ejYeyfLCUlBR07dsTt27eVfvVSTk4ODAwMkJ2dDX19/Y+cQ8YYY4wxxtg/lbLXBup/Y54YY+yztnz5cnTu3Bm6uro4evQoNm/ejDVr1nzqbFW73Nxc3L9/H6tXr8aCBQs+dXbY/5A3b95g3bp18PDwgJqaGnbs2IFTp07h5MmTnzprjDH2QdasWYOWLVvC2NgYcXFxWLZs2Qe/po/J4npm/6u8vLxw584dPHr0CHXr1v3U2WHso8nIyMCWLVuUvvGBMcYYY4wxxiqLb34oY/To0di6davcMD8/v2p7rydj7PNz+fJlLF26FK9evUK9evXw448/Yvjw4Z86W9Vu3Lhx2LFjB3r16lXuO6UZqywVFRUcOXIEoaGhePfuHezt7bFnzx506tTpU2eNMcY+yJ07d7BgwQK8ePEClpaWCAwMxIwZMz51tv7ncD2z/2WTJk361Flg7KPj837GGGOMMcbYx8avvSgjMzMTOTk5csP09fVhZmb2N+eIMcYYY4z9L4mOjsbLly/Rq1evT50VxhhjjLF/NH7tBWOMMcYYYwzg115UmZmZGd/gwBhjjDHGPho3N7dPnQXGGGOMMcYYY4wxxhj7n6P6qTPAGGOMMcYYY4wxxhhjjDHGGGOMMfYh+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGGGOMMcYYY4wxxhhjjH3W+OYHxhhjjDHGWLVxc3PDpEmTPnU2WDmGDBmCXr16fepsfFZCQkLQpEmTT50NJsc/sT1XZ3v5N7a96tyn/8T28W/H+4QxxhhjjDH2MfHND4wxxhhjjLFqs3fvXsyfP1/4bm1tjZUrV366DFUgJCQEKioq5X4+piFDhoi2ZWxsDE9PTyQnJ39w2vfv34eKigoSExM/PKMf0aFDh+Dq6go9PT3o6OigZcuWiIyM/NTZEpk6dSpOnz5d5fUVtbNTp05VYy4/ngsXLkBNTQ1eXl4yYUlJSfD19UXdunWhra0NBwcHrFq1Sql0o6Ki0K1bNxgbG0NHRwcNGzZEYGAgHj16VOW8fk43YO3ZswcdO3ZEjRo1oK2tDXt7ewwbNgwJCQmfOmtyWVtbC21XW1sb1tbW6Nu3L86cOVOt21m1alWFYwARYePGjXB2doa+vj6kUikaNWqEiRMn4u7du5VKS5GcnBzMnDkTDRo0gJaWFszNzdGpUyfs3bsXRFSlNCsrJSUFvXv3Fupe0fH0559/hrW1NbS0tNC6dWtcvnxZFP7u3TsEBATA2NgYUqkUvXv3xtOnT0VxHj58CC8vL+jo6MDMzAzTpk1DYWHhxyoaY4wxxhhjjH0UfPMDY4wxxhhjrNoYGRlBT0/vU2dDaVOnTkVGRobwqVOnDubNmyda9rF5enoK2zp9+jTU1dXRvXv3ctcpKCj46PmqjKKiIhQXF1d6vZ9++gne3t5wcXHBpUuXkJycjH79+mH06NGYOnWqwvWI6G/9o5xUKoWxsfEHpdGoUSNRu8rIyED79u0rnc7fXXYACA8Px/jx43H27Fk8fvxYFBYfHw8zMzNs3boVKSkpmDlzJmbMmIHVq1eXm+b69evRqVMnmJubY8+ePbh58ybWrVuH7OxshIWFfcziKCU/P/+jpj99+nT4+PigSZMmOHjwINLS0rB9+3bUq1cPM2bM+Kjb/hAl42NaWhq2bNkCQ0NDdOrUCaGhodW2DQMDAxgaGioMJyL0798fEyZMQLdu3XDixAncvHkT4eHh0NLSwoIFC5ROS9F+fvnyJdq2bYstW7ZgxowZuHbtGs6ePQsfHx8EBQUhOzu7qsWrlDdv3qBevXpYvHgxzM3N5cbZtWsXpkyZguDgYFy7dg1OTk7w8PBAZmamEGfy5Mn4z3/+g927dyMmJgaPHz/GN998I4QXFRXBy8sL+fn5OH/+PDZv3ozIyEjMmTPno5eRMcYYY4wxxqoVMcYYY4wxxlg1cXV1pYkTJwr/ByD6lIiNjaV27dqRlpYW1alTh8aPH0+5ublCuJWVFc2fP58GDhxIurq6ZGlpSQcOHKDMzEzq2bMn6erqUuPGjenKlSvCOvfv36fu3buToaEh6ejoUMOGDenw4cOVyr+VlRWtWLGCiIgCAwPJy8tLCFuxYgUBoKNHjwrLbGxsaOPGjUREVFRURHPnzqXatWuTRCIhJycnUVx5Bg8eTN7e3qJlsbGxBIAyMzOJiCg9PZ0A0M6dO6l9+/akqalJERERFW6vbN27urqKtrls2TIyNzcnIyMjGjt2LOXn5wvrvnv3jgIDA8nCwoJ0dHSoVatWFBUVJYRHRESQgYEBHThwgBwcHEhNTY3S09MpKiqKWrZsSTo6OmRgYEBt27al+/fvyy37w4cPSUNDg6ZMmSIT9uOPPxIAunjxIhERRUVFEQA6cuQINWvWjDQ0NCgqKopycnKof//+pKOjQ+bm5vTDDz+I2iAR0ZYtW6h58+YklUqpZs2a5OvrS0+fPhXCS9I+deoUNW/enLS1tcnZ2Zlu3bolxAkODiYnJydRHsPDw6lhw4YkkUjI3NycAgIC5JZT0fqVzV/Zsru6utK4ceNo4sSJZGhoSGZmZrRhwwbKzc2lIUOGkFQqJRsbGzpy5IiQ1osXL6h///5kYmJCWlpaZGtrS5s2bVKYbyKiV69ekVQqpVu3bpGPjw+FhoaWG5+IaOzYsdShQweF4X/++SdJJBKaNGmS3PCsrCwikl9vK1asICsrK+F76T40ePBgmXafnp4utNfS9u3bJxqTSra1ceNGsra2JhUVFSEv/v7+ZGJiQnp6etShQwdKTEwUpbVo0SIyMzMjqVRKw4YNo+nTpyvc30REFy5cIAC0atUqueHFxcUy+dqyZQtZWVmRvr4++fj4UE5OjhCnqKiIFi5cSNbW1qSlpUWOjo60e/duUZrXr18nT09P0tXVJTMzM/Lz86Nnz54pzKM8pcfH0ubMmUOqqqqiPlPR9nbv3k1ffvklaWlpkZGREbm7uwvHAHnjYmk7duwgAHTgwAG54aXrr2xarq6uFBAQQBMnTiRjY2Nyc3OTm8aYMWNIV1eXHj16JBP26tUrKigoIKL3fWrgwIFkaGhI2tra5OnpSbdv3xbyYWJiItoXTk5OZG5uLnyPjY0liURCr1+/VljeEorqv1WrVqLxp6ioiCwsLGjRokVERPTy5UvS0NAQ5SM1NZUA0IULF4iI6MiRI6SqqkpPnjwR4qxdu5b09fUpLy9Pbn5Kjk27du0SjuctWrSgtLQ0unz5MjVv3px0dXXJ09NTOJ4RVbx/y8rOziYAlJ2drfQ6jDHGGGOMsf89yl4b8MwPjDHGGGOMsY9i7969MjMpAMC9e/fg6emJ3r17Izk5Gbt27cK5c+cwbtw40forVqyAi4sLEhIS4OXlhYEDB2LQoEHw8/PDtWvXYGNjg0GDBgnTjwcEBCAvLw9nz57F9evXsWTJEkil0irn39XVFefOnUNRUREAICYmBiYmJoiOjgYAPHr0CPfu3YObmxuA99Orh4WFYfny5UhOToaHhwd69uyJO3fuKL3N3NxcbN26Fba2tjIzDXz33XeYOHEiUlNT4eHhUeH2SqY9P3XqFDIyMrB3714hraioKNy7dw9RUVHCE76lp4YfN24cLly4gJ07dyI5ORl9+vSBp6enqCxv3rzBkiVL8MsvvyAlJQVGRkbo1asXXF1dkZycjAsXLmDkyJEKXx3y+++/o6CgQO4MD6NGjYJUKsWOHTtk6mDx4sVITU2Fo6MjpkyZgri4OBw8eBAnT55EbGwsrl27JlqnoKAA8+fPR1JSEvbv34/79+9jyJAhMtucOXMmwsLCcPXqVairq2PYsGFy8w0Aa9euRUBAAEaOHInr16/j4MGDsLW1VRi/PMrmr2zZAWDz5s0wMTHB5cuXMX78eIwZMwZ9+vRB27Ztce3aNXTp0gUDBw7EmzdvAACzZ8/GzZs3cfToUaSmpmLt2rUwMTEpN3+//fYbGjRoAHt7e/j5+WHTpk0VTvmfnZ0NIyMjheG7d+9Gfn4+goKC5IaX96R+eVatWgVnZ2eMGDFCGHPq1q2r9Pp3797Fnj17sHfvXuF1MX369EFmZiaOHj2K+Ph4NGvWDO7u7njx4gWA9/UTEhKChQsX4urVq6hVqxbWrFlT7nZ27NgBqVSKsWPHyg0v22fu3buH/fv349ChQzh06BBiYmKwePFiIXzRokXYsmUL1q1bh5SUFEyePBl+fn6IiYkB8H4Wg44dO6Jp06a4evUqjh07hqdPn6Jv375K1015Jk6cCCLCgQMHlNpeRkYGfH19MWzYMKSmpiI6OhrffPON0q+S2LFjB+zt7dGzZ0+54RW9rmjz5s2QSCSIi4vDunXrZMKLi4uxc+dODBgwABYWFjLhUqkU6urqAN6/uujq1as4ePAgLly4ACJCt27dUFBQABUVFbRv3144ZmRlZSE1NRVv377FrVu3ALw/rrRs2RI6OjpKlb2s/Px8xMfHo1OnTsIyVVVVdOrUCRcuXADwfnaWgoICUZwGDRrA0tJSiHPhwgU0btwYNWvWFOJ4eHggJycHKSkp5eYhODgYs2bNwrVr16Curo7+/fsjKCgIq1atQmxsLO7evVupGSTy8vKQk5Mj+jDGGGOMMcaY0j7+fRiMMcYYY4yxf4uyT93Le1LV39+fRo4cKVoWGxtLqqqq9PbtW2E9Pz8/ITwjI4MA0OzZs4VlJU9PZ2RkEBFR48aNKSQk5IPyXzq/WVlZpKqqSleuXKHi4mIyMjKiRYsWUevWrYmIaOvWrVS7dm1hXQsLC5mn4lu2bEljx45VuL3BgweTmpoa6erqkq6uLgGgWrVqUXx8vBCn5OnalStXitataHsl6yUkJMhs08rKigoLC4Vlffr0IR8fHyIievDgAampqck88ezu7k4zZswgovczPwAQPQH//PlzAkDR0dEKy1va6NGjZZ7GL83R0ZG6du1KRP8/+8H+/fuF8JycHJmnmV++fEk6OjqiNljWlStXCAC9evVKlPapU6eEOIcPHyYAQnssOwOBhYUFzZw5U6lylqyvqqoq7GddXV1q2bJlpfJXuuxE7/tau3bthO+FhYWkq6tLAwcOFJaV9JuSp7t79OhBQ4cOVTrfRERt27YV2l5BQQGZmJiIZgEpKy4ujtTV1en48eMK44wZM4b09fUr3HZlZ34gkh2DiEjpmR80NDRET6jHxsaSvr4+vXv3TrSujY0NrV+/noiInJ2dZfp469aty535wdPTkxwdHUXLwsLCRO3j5cuXQr50dHREMz1MmzZNGIfevXtHOjo6dP78eVF6/v7+5OvrS0RE8+fPpy5duojC//zzTwJAaWlpCvNZlqKZB4iIatasSWPGjFFqe/Hx8QRA4awwFc0M0KBBA+rZs6do2cSJE4W6Kz0uy2sfTZs2LaeURE+fPiUA9MMPP5Qb7/bt2wSA4uLihGV//fUXaWtr02+//UZE72exadSoERER7d+/n1q3bk3e3t60du1aIiLq1KkTff/99+Vup4S8+n/06BEBkNn/06ZNo1atWhER0bZt20gikcik17JlSwoKCiIiohEjRsjss9evXwuzzshTcoz55ZdfhGUls3KcPn1aWLZo0SKyt7cXvle0f4ODg2VmcAHP/MAYY4wxxti/Hs/8wBhjjDHGGPtHSkpKQmRkJKRSqfDx8PBAcXEx0tPThXglT7cDEJ5Gbdy4scyykveaT5gwAQsWLICLiwuCg4ORnJz8Qfk0NDSEk5MToqOjcf36dUgkEowcORIJCQnIzc1FTEwMXF1dAQA5OTl4/PgxXFxcRGm4uLggNTW13O106NABiYmJSExMxOXLl+Hh4YGuXbviwYMHongtWrQQ/v8h2wOARo0aQU1NTfheq1YtoR6vX7+OoqIi2NnZifZRTEwM7t27J6wjkUhE+8jIyAhDhgyBh4cHevTogVWrVgmzfVSX0nXwxx9/oKCgAK1atRKWGRgYwN7eXrROfHw8evToAUtLS+jp6Qn77OHDh6J4pctSq1YtAP/ftkrLzMzE48eP4e7uXqm829vbC/s5MTERe/bsqVT+SpddXp7V1NRgbGxcbh8ZM2YMdu7ciSZNmiAoKAjnz58vN89paWm4fPkyfH19AQDq6urw8fFBeHi43Pg3btyAt7c3goOD0aVLF4XpElGFT+d/ClZWVjA1NRW+JyUlITc3F8bGxqK+kJ6eLvSF1NRUtG7dWpSOs7Nzpbc9bNgwJCYmYv369Xj9+rVoFgRra2vo6ekJ30v317t37+LNmzfo3LmzKI9btmwR8piUlISoqChReIMGDQBA1Kc/ROl9WtH2nJyc4O7ujsaNG6NPnz7YuHEjsrKyPmj7M2fORGJiIubMmYPc3Nxy4zZv3rzCsigjNTUV6urqov1vbGwMe3t7YRx2dXXFzZs38ezZM8TExMDNzQ1ubm6Ijo5GQUEBzp8/L8we9LlS5lgtbyxVZMaMGcjOzhY+f/75Z/VlljHGGGOMMfY/T/1TZ4AxxhhjjDH275Kbm4tRo0ZhwoQJMmGWlpbC/zU0NIT/l/xRTd6y4uJiAMDw4cPh4eGBw4cP48SJE1i0aBHCwsIwfvz4Kue15I9UmpqacHV1hZGRERwcHHDu3DnExMQgMDCwymmX0NXVFb0y4ZdffoGBgQE2btyIBQsWiOJVl9L1CLyvy5J6zM3NhZqaGuLj40U3SAAQvUZEW1tb5g/YERERmDBhAo4dO4Zdu3Zh1qxZOHnyJNq0aSOTBzs7O2RnZ+Px48cyU8vn5+fj3r176NChg2h5Zevg9evX8PDwgIeHB7Zt2wZTU1M8fPgQHh4eyM/PF8Utr22Vpq2tXak8lJBIJDKvxqhM/uSVXd5+LK8cJTfVHDlyBCdPnoS7uzsCAgKwfPlyuXkODw9HYWGhaP8QETQ1NbF69WoYGBgIy2/evAl3d3eMHDkSs2bNKrcuSvZ9RkaGcKOJPKqqqjJ/iC4oKCg37Q9Jp2wd5+bmolatWsJrC0qr6qs5AKB+/fo4d+4cCgoKhP1laGgIQ0ND/Pe//5WJX1F/BYDDhw+jdu3aoniamppCnB49emDJkiUyaZdX/8p6/vw5nj17hi+++EKp7ampqeHkyZM4f/48Tpw4gZ9++gkzZ87EpUuXhDTKU79+faSlpYmWmZqawtTUFGZmZhWuX9E4YmpqCkNDQ+HVFB+icePGMDIyQkxMDGJiYhAaGgpzc3MsWbIEV65cQUFBAdq2bVvl9E1MTKCmpoanT5+Klj99+hTm5uYAAHNzc+Tn5+Ply5eidls2TsmrkkqHl4SVR5ljtbyxVBFNTU2h7TLGGGOMMcZYZfHMD4wxxhhjjLGPRiKRoKioSLSsWbNmuHnzJmxtbWU+Eonkg7ZXt25djB49Gnv37kVgYCA2btz4Qem5urri3LlzOH36tPB0rpubG3bs2IHbt28Ly/T19WFhYYG4uDjR+nFxcWjYsGGltqmiogJVVVW8fftWYRxltldSl2XrvyJNmzZFUVERMjMzZfZPRX8EK1l/xowZOH/+PL788kts375dbrzevXtDQ0MDYWFhMmHr1q3D69evhRkH5KlXrx40NDRw5coVYVl2djZu374tfL916xaeP3+OxYsX46uvvkKDBg0q9QSyPHp6erC2tsbp06c/KJ2Plb+KmJqaYvDgwdi6dStWrlyJDRs2yI1XWFiILVu2ICwsTDRjRVJSEiwsLLBjxw4hbkpKCjp06IDBgwcjNDS0wjx8++23kEgkWLp0qdzwly9fCnl98uSJ6MaFxMTEctOWN+aYmpri1atXeP36tdLpAO/HqidPnkBdXV2mL5iYmAAAHBwccOnSJdF6Fy9eLDddX19f5ObmYs2aNRXmoSINGzaEpqYmHj58KJPHunXrCuVISUmBtbW1TJzquKlq1apVUFVVRa9evZTenoqKClxcXDB37lwkJCRAIpFg3759Sm3P19cXaWlpOHDgwAfnXR5VVVX069cP27Ztw+PHj2XCc3NzUVhYCAcHBxQWFor2//Pnz5GWliaMwyoqKvjqq69w4MABpKSkoF27dnB0dEReXh7Wr1+PFi1afNA+kEgkaN68uWg8Ki4uxunTp4UZSJo3bw4NDQ1RnLS0NDx8+FCI4+zsjOvXr4vGn5MnT0JfX7/SxzDGGGOMMcYY+5R45gfGGGOMMcbYR2NtbY2zZ8+iX79+0NTUhImJCaZPn442bdpg3LhxGD58OHR1dXHz5k2cPHkSq1evrvK2Jk2ahK5du8LOzg5ZWVmIioqCg4PDB+W/ffv2ePXqFQ4dOoTFixcDeH/zw7fffotatWrBzs5OiDtt2jQEBwfDxsYGTZo0QUREBBITE7Ft27Zyt5GXl4cnT54AALKysrB69WrhyenyVLQ9MzMzaGtr49ixY6hTpw60tLRET+orYmdnhwEDBmDQoEEICwtD06ZN8ezZM5w+fRqOjo7w8vKSu156ejo2bNiAnj17wsLCAmlpabhz5w4GDRokN76lpSWWLl2KwMBAaGlpYeDAgdDQ0MCBAwfw/fffIzAwUOZ1AqXp6elh8ODBmDZtGoyMjGBmZobg4GCoqqoKTx9bWlpCIpHgp59+wujRo3Hjxg3Mnz+/wjqoSEhICEaPHg0zMzN07doVr169QlxcXKVnGflY+VNkzpw5aN68ORo1aoS8vDwcOnRIYR85dOgQsrKy4O/vL9NuevfujfDwcCHPHTt2hIeHB6ZMmSK0ZTU1NdErJEqrW7cuVqxYgXHjxiEnJweDBg2CtbU1/vvf/2LLli2QSqUICwuDm5sbnj17hqVLl+Lbb7/FsWPHcPToUejr6ysso7W1NS5duoT79+9DKpXCyMgIrVu3ho6ODr7//ntMmDABly5dQmRkZIX11alTJzg7O6NXr15YunQp7Ozs8PjxYxw+fBhff/01WrRogYkTJ2LIkCFo0aIFXFxcsG3bNqSkpKBevXoK03V2dkZgYCACAwPx4MEDfPPNN6hbty4yMjIQHh4u3AClDD09PUydOhWTJ09GcXEx2rVrh+zsbMTFxUFfXx+DBw9GQEAANm7cCF9fXwQFBcHIyAh3797Fzp078csvv8jM8FKeV69e4cmTJygoKEB6ejq2bt2KX375BYsWLRJmNqloe1evXsXp06fRpUsXmJmZ4dKlS3j27JnS43W/fv2wd+9e9OvXDzNmzICHhwdq1qyJBw8eYNeuXZUqjyKhoaGIjo5G69atERoaihYtWkBDQwOxsbFYtGgRrly5gvr168Pb2xsjRozA+vXroaenh++++w61a9eGt7e3kJabmxsCAwPRokULYfac9u3bY9u2bZg2bVq5+cjPz8fNmzeF/z969AiJiYmQSqVCfU+ZMgWDBw9GixYt0KpVK6xcuRKvX7/G0KFDAbx/HZC/vz+mTJkCIyMj6OvrY/z48XB2dhZm5enSpQsaNmyIgQMHYunSpXjy5AlmzZqFgIAAnoWBMcYYY4wx9lnhmR8YY4wxxhhjH828efNw//592NjYCH8IdXR0RExMDG7fvo2vvvoKTZs2xZw5c2RefVBZRUVFCAgIgIODAzw9PWFnZ/fBT1bXqFEDjRs3hqmpqfDO+vbt26O4uBiurq6iuBMmTMCUKVMQGBiIxo0b49ixYzh48CDq169f7jaOHTuGWrVqoVatWmjdujWuXLmC3bt3V/ge+Iq2p66ujh9//BHr16+HhYWF6I9xFYmIiMCgQYMQGBgIe3t79OrVC1euXBG9lqQsHR0d3Lp1C71794adnR1GjhyJgIAAjBo1SuE6kyZNwr59+xAbG4sWLVoIM0WsXbtW4asYSvvhhx/g7OyM7t27o1OnTnBxcYGDgwO0tLQAvH/iPzIyErt370bDhg2xePFipdKtyODBg7Fy5UqsWbMGjRo1Qvfu3XHnzp1Kp/Ox8qeIRCLBjBkz4OjoiPbt20NNTQ07d+6UGzc8PBydOnWSe8NM7969cfXqVSQnJ+P333/Hs2fPsHXrVqEd16pVCy1btiw3L2PHjsWJEyfw6NEjfP3112jQoAGGDx8OfX19TJ06FcD7WRXWrFmDn3/+GU5OTrh8+bIQpsjUqVOhpqaGhg0bCq8RMTIywtatW3HkyBE0btwYO3bsQEhISIX1paKigiNHjqB9+/YYOnQo7Ozs0K9fPzx48AA1a9YEAPj4+GD27NkICgpC8+bN8eDBA4wZM6bCtJcvX47t27cjISEB3bt3R/369dGnTx8UFxfjwoUL5d7gUdb8+fMxe/ZsLFq0SBj/Dh8+LLxComSWmKKiInTp0gWNGzfGpEmTYGhoKNxkERkZKfMaG3nmzJmDWrVqwdbWFgMHDkR2djZOnz6N6dOnC3Eq2p6+vj7Onj2Lbt26wc7ODrNmzUJYWBi6du2qVHlVVFSwa9curFy5EkeOHIG7uzvs7e0xbNgw1K1bF+fOnVO67hQxMjLCxYsX4efnhwULFqBp06b46quvsGPHDixbtkzoFxEREWjevDm6d+8OZ2dnEBGOHDkieu2Dq6srioqKRGO6m5ubzDJ5Hj9+jKZNm6Jp06bIyMjA8uXL0bRpUwwfPlyI4+Pjg+XLl2POnDlo0qQJEhMTcezYMaGNAsCKFSvQvXt39O7dG+3bt4e5uTn27t0rhKupqeHQoUNQU1ODs7Mz/Pz8MGjQIMybN+8Da5IxxhhjjDHG/l4qVPbFl4wxxhhjjDHG2Gfo9evXqF27NsLCwuDv7/+ps8PYZyM4OBgxMTGIjo7+1FlhTCQnJwcGBgbIzs6u1E1BjDHGGGOMsf8tyl4b8GsvGGOMMcYYY4x9lhISEnDr1i20atUK2dnZwlPKlZnlgjEGHD169INeO8QYY4wxxhhjjP0T8GsvGGOMMcYYY//TRo8eDalUKvczevToT5099oGWL18OJycndOrUCa9fv0ZsbCxMTEw+dbYY+6xcvnwZrVq1+tTZYIwxxhhjjDHGPgi/9oIxxhhjjDH2Py0zMxM5OTlyw/T19WFmZvY354gxxhhjyuDXXjDGGGOMMcYAfu0FY4wxxhhjjAEAzMzM+AYHxhhjjDHGGGOMMcb+x/FrLxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGGGOMMcYYY4wxxhhjjDH2WeObHxhjjDHGPiI3NzdMmjTpU2eDMcYYY4x9AuHh4ejSpcvftr0hQ4agV69e1Z5uSEgIatasCRUVFezfv79Kaaxbtw49evSo3owxxhhjjDHGWCl88wNjjDHG2Ee0d+9ezJ8/X/hubW2NlStXfroMKeH+/ftQUVERPsbGxujSpQsSEhJE8VJSUtC3b1+YmppCU1MTdnZ2mDNnDt68eQMAiI6OFqUj7xMdHY3IyEgYGhrKzUvZH9jl/eAeFRWF7t27w9TUFFpaWrCxsYGPjw/Onj0rN80GDRpAU1MTT548kQmr6GaVyMhIqKiowNPTU7T85cuXQnnKGjVqFNTU1LB7925ROcr7hISECPX38uVLmTTLtqPS6+rr66Nly5Y4cOCA3DIsWrQIampqWLZsmdzyKdoXFbl79y709PRk1g8JCUGTJk0UrldS52XbnbxPZGSkTLsyNTVFt27dcP36dVG6Q4YMkZtG6X2XlJSEnj17wszMDFpaWrC2toaPjw8yMzMrLOvQoUNRp04daGpq4osvvoCvry+uXr0qinfo0CG4urpCT08POjo6aNmyJSIjI0VxSsqtpqaGR48eicIyMjKgrq4OFRUV3L9/XxS/5CORSGBra4sFCxaAiETrV9RHFQkJCRHSV1dXh7W1NSZPnozc3FwAqPa2WdKvyn60tLTKzScRYcOGDWjdujWkUikMDQ3RokULrFy5UlTGFy9eYNKkSbCysoJEIoGFhQWGDRuGhw8fCnHWrVsHPT09FBYWCstyc3OhoaEBNzc30XZLyn/v3j2FecvJycHs2bPRqFEjaGtrw9jYGC1btsTSpUuRlZUlxFM05pTti8rUkTJtvqyUlBT07t0b1tbWUFFRUXh8+vnnn2FtbQ0tLS20bt0aly9fFoW/e/cOAQEBMDY2hlQqRe/evfH06VMh/MWLF+jRowekUimaNm0qczwJCAhAWFiYwnyWLePixYtFy/fv3w8VFRW565Qd85U9Nikau0r6YGJiotz0FI1JJTw8PKCmpoYrV67ILV9l/mhd0lfl7eNly5ZBRUVFpv0CwH//+19IJBJ8+eWXctMtXR5dXV3Ur18fQ4YMQXx8vCheeXUp7xhb1vPnz1GnTh2540l0dDSaNWsGTU1N2NrayoydwIe3y6qOvyX7Xhnv3r3D7NmzERwcLCyraIz9J0pNTcXcuXOxfv16ZGRkoGvXruXGV7Rvhw0bhmvXriE2NvYj55gxxhhjjDH2b8U3PzDGGGOMfURGRkbQ09P71NmoklOnTiEjIwPHjx9Hbm4uunbtKvyAffHiRbRu3Rr5+fk4fPgwbt++jdDQUERGRqJz587Iz89H27ZtkZGRIXz69u0LT09P0bK2bdt+UB7XrFkDd3d3GBsbY9euXUhLS8O+ffvQtm1bTJ48WSb+uXPn8PbtW3z77bfYvHlzlbaprq6OU6dOISoqqsK4b968wc6dOxEUFIRNmzYJy0vXwcqVK6Gvry9aNnXq1ErnKyIiAhkZGbh69SpcXFzw7bffyv3j26ZNm2Ty86EKCgrg6+uLr776qspp1K1bV1QHgYGBaNSokWiZj4+PED8tLU1on3l5efDy8kJ+fr4ozbLtLSMjAzt27AAAPHv2DO7u7jAyMsLx48eRmpqKiIgIWFhY4PXr1wrzefXqVTRv3hy3b9/G+vXrcfPmTezbtw8NGjRAYGCgEO+nn36Ct7c3XFxccOnSJSQnJ6Nfv34YPXq03P1bu3ZtbNmyRbRs8+bNqF27ttx8lPTPO3fuYO7cuQgNDRXtU2X6aHlK6v7+/ftYsmQJNmzYICpfZSjTNsv2gYyMDDx48KDcdAcOHIhJkybB29sbUVFRSExMxOzZs3HgwAGcOHECwPs/urdp0wanTp3CunXrcPfuXezcuRN3795Fy5Yt8ccffwAAOnTogNzcXNENLLGxsTA3N8elS5fw7t07YXlUVBQsLS1hY2MjN18l24yIiMDUqVNx6dIlXLt2DaGhoUhISMD27durVI/K1FF5bV6eN2/eoF69eli8eDHMzc3lxtm1axemTJmC4OBgXLt2DU5OTvDw8BDdJDR58mT85z//we7duxETE4PHjx/jm2++EcJDQ0Px6tUrXLt2DW5ubhgxYoQQdvHiRVy6dEnpWZK0tLSwZMkS0U0kisgb8z/WsUmZMenhw4c4f/48xo0bV21jcK1atRAVFYX//ve/ouWbNm2CpaWl3HUiIyPRt29f5OTk4NKlS3LjlPTblJQU/Pzzz8jNzUXr1q1lxing/8te+mNmZlZh3v39/eHo6CizPD09HV5eXujQoQMSExMxadIkDB8+HMePHxfiVEe7LFHZ8bcyfv/9d+jr68PFxUW0vDrH2L9Dyc1e3t7eMDc3h6amZrnxFe1biUSC/v3748cff/wo+WSMMcYYY4wxEGOMMcYY+2hcXV1p4sSJwv8BiD4lYmNjqV27dqSlpUV16tSh8ePHU25urhBuZWVF8+fPp4EDB5Kuri5ZWlrSgQMHKDMzk3r27Em6urrUuHFjunLlirDO/fv3qXv37mRoaEg6OjrUsGFDOnz4cIV5Tk9PJwCUkJAgLIuLiyMAdOzYMSouLqaGDRtSixYtqKioSLRuYmIiqaio0OLFi2XSHTx4MHl7e8ssj4iIIAMDA7l5AUD79u2T+/3BgwekoaFBkydPlrtucXGxzLIhQ4bQd999R0ePHiU7OzuZ8NL7S56SvI4YMYJatWolLM/KyiIAFBUVJYofGRlJbdq0oZcvX5KOjg49fPhQYZplRUVFEQDKysqSCbOysqIVK1YI38vWU05ODgGgVatWidaLjo6m2rVrU35+PllYWFBcXJxSealIUFAQ+fn5yV0/ODiYnJycFK6rqM4VrSevXg4ePEgAKCkpSVimqL2V2LdvH6mrq1NBQYHCOGUVFxdTo0aNqHnz5jJtn4iEPD18+JA0NDRoypQpMnF+/PFHAkAXL14kov/vb7NmzaL69euL4trZ2dHs2bMJAKWnp4vil+6fRETu7u40duxYIZ9V6aMl5NX9iBEjyNzcnIiqv21Wpd3t2rWLAND+/ftlwoqLi+nly5dERDR69GjS1dWljIwMUZw3b95Q7dq1ydPTU1hWq1YtWrRokfA9KCiIAgICyMHBQdS327dvT4MHD1aYt1GjRpGuri49evRIbnjpsUlR+y9bJ8rUUUVtviJl912JVq1aUUBAgPC9qKiILCwshLp6+fIlaWho0O7du4U4qampBIAuXLhARERdu3altWvXEhHRzZs3SUdHh4iI8vPzycnJSXTsKs/gwYOpe/fu1KBBA5o2bZqwfN++fSTv542KxvySNOXVm6IxqGwfVHZMIiIKCQmhfv36UWpqKhkYGNCbN2+UyosiJXns3r07LViwQFgeFxdHJiYmNGbMGHJ1dRWtU1xcTPXq1aNjx47R9OnTacSIETLplu23JQYNGkR6enr04sULhWVX1po1a8jV1ZVOnz4tk0ZQUBA1atRIFN/Hx4c8PDyE79XRLqtr/C2Pl5cXTZ06VbSsojF2y5Yt1Lx5c5JKpVSzZk3y9fWlp0+fiuLfuHGDvLy8SE9Pj6RSKbVr147u3r1LRLLt6PLly2RiYlLuuJ+cnEwdOnQgLS0tMjIyohEjRtCrV6+E/Co6f5WnvH1LRBQTE0MSiUSm/SuSnZ1NACg7O1up+IwxxhhjjLH/TcpeG/DMD4wxxhhjf5O9e/eiTp06mDdvnvBkJPD+aTpPT0/07t0bycnJ2LVrF86dO4dx48aJ1l+xYgVcXFyQkJAALy8vDBw4EIMGDYKfnx+uXbsGGxsbDBo0SJj6PiAgAHl5eTh79iyuX7+OJUuWQCqVVinv2traAID8/HwkJibi5s2bmDJlClRVxaeTTk5O6NSpU7lPGleXPXv2oKCgAEFBQXLDy06B/urVK+zevRt+fn7o3LkzsrOzqzztckhICK5fv47ff/+93Hjh4eHw8/ODgYEBunbtKnfa7upWWFiI8PBwAO+fsCybH19fX2hoaMDX11eI9yHOnDmD3bt34+eff/7gtKoiOzsbO3fuBCBb3vKYm5ujsLAQ+/btk3ldhCKJiYlISUlBYGCgTNsHILym4Pfff0dBQYHcGR5Glb4yGgABAABJREFUjRoFqVQq00d69uyJrKwsnDt3DsD7J9azsrKUejf61atXER8fj9atWwv5rO4+qq2tXeFsERUpr21W1rZt22Bvbw9vb2+ZMBUVFRgYGKC4uBg7d+7EgAEDZGY10NbWxtixY3H8+HG8ePECwPvZH0rP6BIVFQU3Nze4uroKy9++fYtLly6hQ4cOcvNVXFyMXbt2wc/PDxYWFnLjKHo9wz9Rfn4+4uPj0alTJ2GZqqoqOnXqhAsXLgAA4uPjUVBQIIrToEEDWFpaCnGcnJxw5swZFBYW4vjx48IT4UuXLoWbmxtatGihdJ7U1NSwcOFC/PTTTzKzHZRWnWN+ZSgak4gIERER8PPzQ4MGDWBra1vhMURZw4YNEx1fNm3ahAEDBsjtZ1FRUXjz5g06deoEPz8/7Ny5s9zZbkqbPHkyXr16hZMnT35Qfm/evIl58+Zhy5YtcsfSCxcuiNoT8P51ISXtqbraZYkPGX8rcu7cOaXad+kxtqCgAPPnz0dSUhL279+P+/fvY8iQIULcR48eoX379tDU1MSZM2cQHx+PYcOGiV7bU+LMmTPo3LkzQkNDMX36dLnbfv36NTw8PFCjRg1cuXIFu3fvxqlTp4Tz0KlTpyIiIgIAROev8lS0bwGgRYsWKCwsVDjrSF5eHnJyckQfxhhjjDHGGFMW3/zAGGOMMfY3MTIygpqaGvT09GBubi78MW7RokUYMGAAJk2ahPr166Nt27b48ccfsWXLFtFU6926dcOoUaNQv359zJkzBzk5OWjZsiX69OkDOzs7TJ8+HampqcL7rB8+fAgXFxc0btwY9erVQ/fu3dG+fftK5/vly5eYP38+pFIpWrVqhdu3bwMAHBwc5MZ3cHAQ4igrOzsbUqlU5lOe27dvQ19fX/RHzT179ojWLz21/s6dO1G/fn00atQIampq6NevX5X/+G9hYYGJEydi5syZcv/YAAB37tzBxYsXhVc1+Pn5ISIiQuk/tFeWr68vpFIpNDU1MXnyZFhbW6Nv375CeE5ODn7//Xf4+fkJ+fntt98+6B3jz58/x5AhQxAZGQl9ff0PLkNl1KlTB1KpFIaGhti+fTt69uyJBg0aiOIcOnRIpk0tXLgQANCmTRt8//336N+/P0xMTNC1a1csW7ZM9D74su7cuQMAMtsp6/bt2zAwMECtWrVkwiQSCerVqyfTRzQ0NODn5ydMhb9p0yb4+flBQ0ND7jbatm0LqVQKiUSCli1bom/fvhg0aJCwfaD6+mh8fDy2b9+Ojh07Kr1OaRW1TUD+GFDeO+Xv3LkDe3v7crf77NkzvHz5f+zdeVyO2f8/8FeL9k0qhUgpFYmyTJKyZh2MNSL7MnZZxxLZlyzDDIaUnTHDMMIwVLJvlaWERIzCWEqRUuf3h1/Xt9t9V3fJGJ95PR+P+6H7Ouc6533Odd3XXa5znfOyyH4QQuDOnTsA3g9+OH36NN69e4dXr14hOjoanp6eaNq0KSIiIgC8vyn79u3bQgc/5Nf5YWyurq5Su3x8fGTSfvzxR7m2Dx8+XK5sZfqoqHO+NP7++2/k5uaiYsWKMtsrVqyI1NRUAEBqaio0NDSkwT+K8kydOhXq6uqwsbHBvn37EBwcjNu3b2Pz5s2YOXMmhg8fDmtra/To0QNpaWnFxtWlSxfUrVsXAQEBheYpy2u+Moq7Jv355594/fo1vL29Aby/BpdVPB06dEB6ejpOnjyJzMxM/Pzzzxg4cKDCvMHBwejVqxfU1NRQu3ZtWFtbY8+ePUrVk9+ee/fuyWzPb3v+q1atWoWW8fbtW/j4+GDp0qWFLsuRmpqq8JxLT0/Hmzdvyuy8zFfS66+yXr58ibS0tEIHQuX78Bo7cOBAtG3bFtbW1vjqq6/w/fff4/Dhw9L39Q8//ABDQ0Ps2rUL9evXh52dHQYMGCB33dm3bx86deqE9evXY+jQoYXWv2PHDmRlZWHLli2oXbs2mjdvjjVr1mDr1q14/PixdF4DkPn99UPKHFsA0NHRgaGhYaFLGy1cuBCGhobSy9LSstCyiIiIiIiIPsTBD0RERESfWWxsLEJDQ2VuHHh7eyMvLw9JSUlSvoJrJ+f/h7+Tk5Pctvz1rseMGYN58+bB3d0dAQEBuHr1aoniyr+5Wr58ecTGxmL37t0yNxrK8ia+vr4+YmJi5F7F+fAJam9vb8TExCAsLAyZmZnIzc2V0vJvZuTz9fXFnj178OrVq1LFPGXKFDx9+rTQdds3bdoEb29vmJiYAHg/eCUtLQ0nTpwoVX3FWbFiBWJiYnD48GE4Ojpi48aNMDY2ltJ37twJGxsbODs7AwDq1q2LatWqYffu3aWuc8iQIejdu3epBtV8rKioKFy+fBmhoaGws7PDunXr5PLkrxdf8FXwpvL8+fORmpqKdevWoVatWli3bh3s7e1lBs0U9KkGruQbOHAg9uzZg9TUVOzZs6fQm5fA+/XuY2JiEBsbi59//hn79+/H1KlTyyzea9euQU9PD9ra2mjYsCHc3NywZs2aUpVV3LkJKL4GbNy4sdAyS9I2ZfN6eXkhMzMTFy9eRFRUFOzs7GBqagpPT0+cP38eWVlZiIiIgLW1dZE39hTZt28fYmJi4O3tjTdv3sik9enTR67tgYGBcmUo00fFnfOfi6GhIXbs2IH79+8jMjISjo6OGDZsGJYuXYrt27fj7t27SEhIgI6OjsK2K7J48WJs3rwZ8fHxCtPL+ppfnOKuSZs2bULPnj2hrq4O4P2goNOnTyMxMfGj686/eR8SEoI9e/bAzs5O5neGfC9fvsTevXvl+kXZQRj5n6UPv3ujoqJkzrlDhw4VWsa0adPg4OAgE8O/QUmuv8rK/6xraWnJpRV1jb18+TI6duyIqlWrQl9fH56engDeD2oF3s/u4+HhUeTgjPPnz6N79+7YunWrNAizMPHx8XB2doaurq60zd3dHXl5eUhISFC6vSU5ttra2nj9+nWh5aSlpUmvBw8eKB0DERERERGR+ucOgIiIiOi/LiMjA8OGDcOYMWPk0greYCv4n9z5Nx4UbcvLywMADB48GN7e3ggLC8PRo0excOFCBAUFYfTo0UrFtXv3bjg6OqJChQoyT07a2dkBeP+f5fXq1ZPbLz4+XsqjLFVVVdSoUaNE+9ja2iItLQ2pqanSU4h6enqoUaOGdHMpX1xcHM6dO4cLFy7ITPucm5uLXbt2YciQISWqG3i/xMG0adMwZ84cdOjQQSYtNzcXmzdvRmpqqkwsubm52LRpE1q0aFFs+fkzKaSlpck9ufry5UsYGhrKbDM3N0eNGjVQo0YNhISEoF27doiLi4OZmRmA90/73rhxQyaevLw8bNq0CYMGDSpR2/OdOHECBw4cwLJlywC8vzGWl5cHdXV1/PTTT2Vy86gw1atXh5GREWrWrIknT56gZ8+eOHnypEweXV3dYs+rChUqoHv37ujevTsWLFiAevXqYdmyZdi8ebNc3vzz+ubNmwrP/YL50tLS8OjRI7knfrOzs5GYmKhw5gAnJyfY29vDx8cHDg4OqF27dqGDgCwtLaW2OTg4IDExETNnzsTs2bPL5DNas2ZNHDhwAOrq6qhUqZLM9PllfW4CJb8G2NnZ4ebNm0XmMTU1hZGRUaE3x+Pj46GioiLVW6NGDVSpUgXh4eF48eKFdMOxUqVKsLS0xJkzZxAeHl7kDBj5dX54wzD/Wq6vr4+XL1/KpBkaGsq1vWDf5FOmj5Q550vCxMQEampqcjOiPH78WLrumpubIzs7Gy9fvpQ5Hwrm+VBISAiMjIzQqVMnfPPNN+jcuTPKlSuH7t27Y9asWUrF1rRpU3h7e2PatGkySwIAZXPNNzAwUDgLRf7x+/A8L+qa9Pz5c+zbtw85OTlYu3atTDybNm3C/PnzlWpzUQYOHIhGjRrh+vXrhV5785/wz18iB/i/6/atW7eKvS7kf5aqV68usz2/7co4ceKEzLJR+QMqTExMMH36dMyZMwfm5uYKzzkDAwNoa2tDTU2tzM/Lklx/lVWhQgWoqKjgxYsXcmmFXWPzl6Dw9vbG9u3bYWpqiuTkZHh7e0vLYuQvRVYUGxsbVKhQAZs2bUL79u0/ehYLZShzbPM9f/4cpqamCsvR1NSEpqbmJ4+XiIiIiIj+N3HmByIiIqJ/kIaGhsxsBADg4uKCuLg46eZgwZei9bpLwtLSEsOHD8fevXvh7++PDRs2lGhfGxsbuRsadevWhb29PVasWCENtMgXGxuLP//8U25a90+hW7duKFeuHBYvXlxs3uDgYDRt2hSxsbEyT6dOmDDho6YdHz16NFRVVbFq1SqZ7YcOHZKmzS9Y386dO7F37165m5+K2NraQlVVFZcvX5bZfvfuXaSlpRV5k6phw4ZwdXWVbqhdu3YNly5dQkREhEw8EREROHv2bLE3kQtz9uxZuafV859O79KlS6nKLI2RI0fi+vXr2Ldv30eVo6GhARsbG2RmZipMr1u3LhwdHREUFCR37gP/d1O0a9euKFeuHIKCguTyrFu3DpmZmYV+RgYOHIiIiIgSDxxRU1PDu3fvkJ2dXSafUQ0NDdSoUQNWVlZy16GyPDdLq3fv3rh16xb2798vlyaEQFpaGlRVVdGjRw/s2LFDbpr7N2/e4Mcff4S3t7fMLBTNmjVDREQEIiIi4OXlJW1v2rQpDh8+jAsXLhS65AUAqc5t27bh0aNHH9XGfwMNDQ24urri+PHj0ra8vDwcP34cbm5uAN4v6VGuXDmZPAkJCUhOTpbyFPT06VMEBgZi9erVAN4PAMjJyQEA5OTkyH1HFmXRokX4/fffcfbsWZntZXHNr1mzJh4+fCh3g/3KlSvQ0tIqcvaPD69J27dvR5UqVeTiCQoKQmhoaInaXJhatWqhVq1auH79Onr37q0wT3BwMPz9/WViiI2NhYeHR6GzGBW0cuVKGBgYoGXLlqWO89dff5Xph/zZS6KiojBy5EgAgJubm8z5BADHjh2TzqdPcV4Cpb/+FkZDQwOOjo6Ii4tTmKboGnvz5k08e/YMixYtgoeHB+zt7aUZvfLVqVMHUVFR0udGERMTE5w4cQJ37txBjx49iszr4OCA2NhYme++06dPQ1VVtdjlhQpS5tgCQGJiIrKysoocREhERERERFRanPmBiIiI6B9kZWWFkydPolevXtDU1ISJiQmmTJmCr776CqNGjcLgwYOhq6uLuLg4HDt2rNTTzAPAuHHj0LZtW9jZ2eHFixcIDw+Hg4PDR7dBRUUFwcHBaNWqFbp27Ypp06bB3Nwc58+fh7+/P9zc3DBu3LiPrqc4VatWRVBQEMaOHYvnz5+jf//+qF69Op4/f45t27YBeH9DOCcnB1u3bkVgYCBq164tU8bgwYOxfPly3Lhxo8g1ygujpaWFOXPmyPynPvD+BlP79u2lJSbyOTo6Yvz48di+fbvcPh/S19fH4MGD4e/vD3V1dTg5OeHBgwfS+dK4ceMi9x83bhy6dOmCyZMnIzg4GA0bNlS4PEWDBg0QHByMpUuXAnh/I/LDp101NTUVnjsfbrt06RJUVVXl+vnNmzdyZerr68PGxqbINihLR0cHQ4YMQUBAADp37izNgvL27Vu5m97q6uowMTHBwYMHsWvXLvTq1Qt2dnYQQuD333/HoUOHEBISorAeFRUVhISEoGXLlvDw8MD06dNhb2+PjIwM/P777zh69CgiIyNRtWpVLFmyBP7+/tDS0kLfvn1Rrlw57N+/H9999x38/f1lnrwuaMiQIejevXuxT1E/e/YMqampePfuHa5du4ZVq1ahWbNm0qwMn/IzWpbnZuXKlQG8H7Dw4bEC3s+AoKoqP2a/R48e2LdvH3x8fDBjxgy0bt0apqamuHbtGlasWIHRo0ejc+fOWLBgAY4fP45WrVphyZIlqF27NpKSkjBjxgzk5OTghx9+kCm3WbNmGDlyJHJycqSZHwDA09MTo0aNQnZ2dpGDHwBgwYIFiIiIQMOGDREYGIj69etDV1cXV69exdmzZ+U+H8pSpo+KOucVyc7Olm7MZmdn46+//kJMTIw0iw4ATJgwAX5+fqhfvz4aNmyIlStXIjMzEwMGDADwfgaEQYMGYcKECTA2NoaBgQFGjx4NNzc3fPXVV3J1jhs3Dv7+/tKxd3d3x9atW9G6dWv89NNPcHd3V7pPnJyc0KdPH3z//ffStrK65nt7e6NmzZrw8fHBvHnzYG5ujitXrmDGjBkYO3Ys1NTUCt33w2tScHAwunXrJhePpaUlpk2bhiNHjqB9+/YA3s+o8uH1skKFCrC0tCy2P06cOIGcnByF14+YmBhcuXIF27dvh729vUyaj48PAgMDMW/ePGl2oJcvXyI1NRVv377FrVu3sH79evz222/YsmWLXPlPnjxBVlaWXMyKZhv48Lr/999/A3j/fZJf7vDhw7FmzRpMnjwZAwcOxIkTJ/Dzzz8jLCxM2q+sz0tA+euvoqUgatWqpbC93t7eOHXqlNLX3KpVq0JDQwOrV6/G8OHDcf36dcydO1cmz6hRo7B69Wr06tUL06ZNg6GhIc6dO4eGDRvKDFYwMzPDiRMn0KxZM/j4+GDXrl1yM2MB75feCQgIgJ+fH2bPno2nT59i9OjR6Nu3r8xyZ8VR5tgC7wdDWFtbl9nvAERERERERDIEEREREX0ynp6eYuzYsdL7s2fPijp16ghNTU1R8FexCxcuiFatWgk9PT2hq6sr6tSpI+bPny+lV6tWTaxYsUKmbABi37590vukpCQBQERHRwshhBg1apSwsbERmpqawtTUVPTt21f8/fffxcb8YTmFuXr1qujataswNjYW5cqVEzY2NmLGjBkiMzNTYX4/Pz/RqVMnue0hISHC0NBQ4T4ftvHD90IIcezYMdG2bVthbGws1NXVRcWKFUXnzp3FkSNHhBBC/PLLL0JVVVWkpqYqrMPBwUGMHz9eCCF/vJSJ9d27d8LR0VEAEOHh4SI1NVWoq6uLn3/+WWEZI0aMEPXq1VOq/W/evBEBAQHC3t5eaGtri+rVq4uhQ4eKp0+fyuRT1C95eXnC3t5ejBgxQlSoUEEsWbJEYR2LFy8WZmZmIjs7W4SEhAgAci8bG5tC+6QgRW0JCAhQWGaLFi2EEIX3eUBAgHB2dpbbHh4eLgCIFy9eyGxPTk4W6urqYvfu3UKI9+ebonpr1qwphBAiMTFRDBkyRNjZ2QltbW1hZGQkGjRoIEJCQoptZ0JCgujXr5+oVKmS0NDQENWqVRM+Pj7iypUrMvn2798vPDw8hK6urtDS0hKurq5i06ZNMnmK+7xFR0cLACIpKUkmf/5LTU1NVKlSRQwZMkQ8efJEZt+SfkbzFdb3BZXVuSmEKPS8AyBSUlIKjSE3N1esXbtWNGjQQOjo6AgDAwPh6uoqVq1aJV6/fi3le/r0qRg9erSwtLQU5cqVExUrVhT9+/cX9+/flyszv3/t7e1ltt+7d0/m/CnOy5cvxbRp04S9vb3Q1NQU2traok6dOmLmzJni2bNnUr7Czv8PP0vK9FFx57wiH55P+S9PT0+ZfKtXrxZVq1YVGhoaomHDhuLcuXMy6W/evBHffvutKF++vNDR0RFdunRReOyOHDkiGjZsKHJzc6VtmZmZonv37kJfX1+0aNFCPH78uNB4FX2PJCUlCQ0NDek7tSTX/MLKzPfXX38JPz8/UbVqVaGtrS0cHR3FokWLRHZ2tpSnuGvSokWLBABx4cIFhXW0bdtWdOnSRYpF0fEYNGiQwn2L+6yOHTtWOpajRo0Sjo6OCvOlpKQIVVVVsX//fiGEkKlbS0tL2NjYCD8/P3H58mWZ/fLbruh19uzZQuNSVMaH/RceHi7q1q0rNDQ0hLW1tcJr88eelx97/S34evDggcIybty4IbS1tcXLly+lbcUdtx07dggrKyuhqakp3NzcxIEDB+TijI2NFa1btxY6OjpCX19feHh4iMTERCGE/Dn96NEjYWdnJ3r06CHevXunsM6rV6+KZs2aCS0tLWFsbCyGDBkiXr16JaXv27dP5vdWZRR2bFu3bi0WLlyodDlpaWkCgEhLSytR/URERERE9L9F2b8NVIT4/4vwERERERERERERUZnp3r07XFxcMG3atM8dymd348YNNG/eHLdu3YKhoaFS+6Snp8PQ0BBpaWnS7EZERERERPTfo+zfBvLzhxIREREREREREdFHW7p0KfT09D53GP8KKSkp2LJli9IDH4iIiIiIiEqKMz8QERER/ccMHz4c27ZtU5jm6+uLdevW/cMRERERERHJ48wPREREREQEKP+3AQc/EBEREf3HPHnyBOnp6QrTDAwMYGZm9g9HREREREQkj4MfiIiIiIgIUP5vA/V/MCYiIiIi+hcwMzPjAAciIiIiIiIiIiIi+p+i+rkDICIiIiIiIiIiIiIiIiIiIvoYHPxAREREREREREREREREREREXzQOfiAiIiIiIiIiIiIiIiIiIqIvGgc/EBERERERERERERERERER0ReNgx+IiIiIiIiIiIiIiIiIiIjoi8bBD0RERERERERERERERERERPRF4+AHIiIiIiIiIiIiIiIiIiIi+qJx8AMRERERERERERERERERERF90Tj4gYiIiIiIiIiIiIiIiIiIiL5oHPxAREREREREREREREREREREXzQOfiAiIiIiIiIiIiIiIiIiIqIvGgc/EBERERERERERERERERER0ReNgx+IiIiIiIiIiIiIiIiIiIjoi1bqwQ9bt26Fu7s7KlWqhPv37wMAVq5cif3795dZcERERERERERERERERERERETFKdXgh7Vr12LChAlo164dXr58idzcXACAkZERVq5cWZbxERERERERERERERERERERERWpVIMfVq9ejQ0bNmD69OlQU1OTttevXx/Xrl0rs+CIiIiIiIj+C7y8vDBu3LjPHcYX7969e1BRUUFMTMznDqXMKNOmiIgIqKio4OXLlx9VV2hoKIyMjD6qDGX9l895KyurMnlwpKzK+Sf1798fnTt3/uhyPjx/vsS++Bif6vMze/Zs1K1bt8zLJSIiIiIi+qeUavBDUlIS6tWrJ7ddU1MTmZmZHx0UERERERHRf8nevXsxd+5c6f2XcCNP0U35V69eoVmzZnB0dMTDhw+VKqcs22ppaYmUlBTUrl272Lw7d+6EmpoaRo4cKZcWERGBTp06wcLCArq6uqhbty62b99eZHn5/ZH/qlChAlq3bo3o6OhSt0dZjRs3RkpKCgwNDZXeR1G/9+zZE7du3fqoWLKzs7F06VK4uLhAV1cXhoaGcHZ2xowZM/Do0aOPKrssFHZz9982cCY9PR3Tp0+Hvb09tLS0YG5ujpYtW2Lv3r0QQnzu8D6Z/IE8+S9tbW3UqlULP/30k0y+D6+Z/xb9+/eHiooKhg8fLpc2cuRIqKiooH///kqXV1YDm8rSmDFj4OrqCk1NTaUHSnwJ32lERERERPS/oVSDH6pXr67wPwSOHDkCBweHj42JiIiIiIjoP8XY2Bj6+vqfO4yP8vTpUzRr1gyZmZmIiopClSpV/tH6s7OzoaamBnNzc6irqxebPzg4GJMnT8bOnTuRlZUlk3bmzBnUqVMHv/76K65evYoBAwagX79+OHjwYLHl/vnnn0hJScEff/yBjIwMtG3bttAblzk5OUq1rTgaGhowNzeHiorKR5Wjra0NMzOzUu//9u1btGrVCgsWLED//v1x8uRJXLt2Dd9//z3+/vtvrF69+qPi+694+fIlGjdujC1btmDatGm4cuUKTp48iZ49e2Ly5MlIS0v7ZHXn5uYiLy/vk5WvrISEBKSkpCAuLg7Dhg3DiBEjcPz4cSn933zNtLS0xK5du/DmzRtpW1ZWFnbs2IGqVat+xsjKzsCBA9GzZ8/PHQYREREREZGcUg1+mDBhAkaOHIndu3dDCIELFy5g/vz5mDZtGiZPnlzWMRIREREREf1PKziFuZeXF+7fv4/x48dLTz/nO3XqFDw8PKCtrQ1LS0uMGTNGZvY9KysrzJs3D/369YOenh6qVauGAwcO4OnTp+jUqRP09PRQp04dXLp0Sdrn/v376NixI8qXLw9dXV3UqlULhw4dKlH8Dx48gIeHBwwNDXHixAlUqFABAJCYmIhOnTqhYsWK0NPTQ4MGDfDnn3/KtLuwtv7666+oVasWNDU1YWVlhaCgIJk6raysMHfuXPTr1w8GBgYYOnSo0k/vJyUl4cyZM5g6dSrs7Oywd+9emfTvvvsOc+fORePGjWFjY4OxY8eiTZs2cvkUqVChAszNzVG/fn0sW7YMjx8/xvnz56XYdu/eDU9PT2hpaWH79u3Iy8tDYGAgqlSpIj1JfeTIEblyb968icaNG0NLSwu1a9dGZGSklKbo6fCi+q+wfle07MXvv/+OBg0aQEtLCyYmJujSpUuhbV+xYgVOnTqFEydOSE+HV61aFZ6enli3bh0WLFggkz8vLw+TJ0+GsbExzM3NMXv2bJn0ly9fYvDgwTA1NYWBgQGaN2+O2NhYmTz79++Hi4sLtLS0YG1tjTlz5uDdu3eFxqis3NxcDBo0CNWrV4e2tjZq1qyJVatWyeTJX8Jh2bJlsLCwQIUKFTBy5EiZQS1PnjxBx44doa2tjerVqxc7gwjw/vy7d+8ezp8/Dz8/Pzg6OsLOzg5DhgxBTEwM9PT0pLyvX7/GwIEDoa+vj6pVq8rMkKDovIiJiYGKigru3bsH4P+O+YEDB+Do6AhNTU0kJyfDysoKCxYsKLRs4P3nvkePHjAyMoKxsTE6deoklZvfhxMmTICRkREqVKiAyZMnKz1rhZmZGczNzVG9enWMGTMG1atXx5UrV6T04pZ9SE5Olq55BgYG6NGjBx4/fiyl588AsnXrVlhZWcHQ0BC9evXCq1evpDxHjhxBkyZNpPg7dOiAxMTEYmN3cXGBpaWlzPVi7969qFq1qtwsqnl5eVi4cKF0njk7O+OXX34B8H42kmbNmgEAypcvLzdrRHGfn+L6AAAWLVqEihUrQl9fH4MGDZIbCKbI999/j5EjR8La2rrYvKXx9u1bpKeny7yIiIiIiIiUVarBD4MHD8bixYsxY8YMvH79Gr1798batWuxatUq9OrVq6xjJCIiIiIi+s/Yu3cvqlSpgsDAQKSkpCAlJQXA+4EEbdq0QdeuXXH16lXs3r0bp06dwqhRo2T2X7FiBdzd3REdHY327dujb9++6NevH3x9fXHlyhXY2NigX79+0k3IkSNH4u3bt9JT+osXL5a5uVqchIQEuLu7w9HREYcOHZLZNyMjA+3atcPx48cRHR2NNm3aoGPHjkhOTi6yrZcvX0aPHj3Qq1cvXLt2DbNnz8bMmTMRGhoqU/eyZcvg7OyM6OhozJw5U+mYQ0JC0L59exgaGsLX1xfBwcHF7pOWlgZjY2Ol6wDez6QAvJ+VIt/UqVMxduxYxMfHw9vbG6tWrUJQUBCWLVuGq1evwtvbG19//TVu374tU9akSZPg7++P6OhouLm5oWPHjnj27JnCeovrv8L6/UNhYWHo0qUL2rVrh+joaBw/fhwNGzYstL07d+5Eq1atFC6TCUBuZorNmzdDV1cX58+fx5IlSxAYGIhjx45J6d27d8eTJ09w+PBhXL58GS4uLmjRogWeP38OAIiKikK/fv0wduxYxMXFYf369QgNDcX8+fMLjVFZeXl5qFKlCvbs2YO4uDjMmjUL3333HX7++WeZfOHh4UhMTER4eDg2b96M0NBQmfO0f//+ePDgAcLDw/HLL7/gxx9/xJMnT4qsd9euXejTpw8qVaokl66npyczs0lQUBDq16+P6OhofPvttxgxYgQSEhJK1NbXr19j8eLF2LhxI27cuCHN/lFU2Tk5OfD29oa+vj6ioqJw+vRp6OnpoU2bNtL5HhQUhNDQUGzatAmnTp3C8+fPsW/fvhLFJoTAkSNHkJycjEaNGim1T15eHjp16oTnz58jMjISx44dw927d+VmKkhMTMRvv/2GgwcP4uDBg4iMjMSiRYuk9MzMTEyYMAGXLl3C8ePHoaqqii5duig1M8bAgQMREhIivd+0aRMGDBggl2/hwoXYsmUL1q1bhxs3bmD8+PHw9fVFZGQkLC0t8euvvwL4v5kwCg7AKerzo0wf/Pzzz5g9ezYWLFiAS5cuwcLCAj/++KNSffwpLVy4EIaGhtLL0tLyc4dERERERERfElFCOTk5YvPmzSI1NVUIIURmZqZ4/PhxSYshIiIiIiKi/8/T01OMHTtWel+tWjWxYsUKmTyDBg0SQ4cOldkWFRUlVFVVxZs3b6T9fH19pfSUlBQBQMycOVPadvbsWQFApKSkCCGEcHJyErNnzy5xzElJSQKA0NDQEM2aNRPv3r1Tar9atWqJ1atXS+8VtbV3796iVatWMtsmTZokHB0dZfbr3Lmzwpiio6MLrT83N1dYWlqK3377TQghxNOnT4WGhoa4e/duofvs3r1baGhoiOvXrxea58O6X7x4Ibp06SL09PREamqqlL5y5UqZ/SpVqiTmz58vs61Bgwbi22+/lSl30aJFUnpOTo6oUqWKWLx4sRBCiPDwcAFAvHjxQgihfP992O8hISHC0NBQeu/m5ib69OlTaJs/pKWlJcaMGSOzrXPnzkJXV1fo6uoKNzc3abunp6do0qSJXLunTJkihHh/bhsYGIisrCyZPDY2NmL9+vVCCCFatGghFixYIJO+detWYWFhUWiMAQEBQlVVVYop/6Wjo1PsuTNy5EjRtWtX6b2fn5+oVq2azLnfvXt30bNnTyGEEAkJCQKAuHDhgpQeHx8vAMj1fb7Hjx8LAGL58uWFxpHvw897Xl6eMDMzE2vXrhVCyJ8XQggRHR0tAIikpCQhxPtjDkDExMSUqOytW7eKmjVriry8PCnP27dvhba2tvjjjz+EEEJYWFiIJUuWSOn5522nTp0KbVN+zPnHRV1dXaiqqop58+bJ5Cvqmnn06FGhpqYmkpOTpfQbN27IHIuAgACho6Mj0tPTpTyTJk0SjRo1KjS2p0+fCgDi2rVrhebx8/MTnTp1Ek+ePBGampri3r174t69e0JLS0s8ffpUdOrUSfj5+QkhhMjKyhI6OjrizJkzMmUMGjRI+Pj4yPRHwWOY3/6iPj/K9IGbm5t0ncnXqFEj4ezsXGj7CgoICFA6r6LrTWGysrJEWlqa9Hrw4IEAINLS0pTan4iIiIiI/jelpaUp9bdBiWd+UFdXx/Dhw6Wp8HR0dD5qTVAiIiIiIiIqXmxsLEJDQ6Gnpye9vL29kZeXh6SkJClfnTp1pJ8rVqwIAHBycpLblv/0+ZgxYzBv3jy4u7sjICAAV69eLVFcX3/9NaKiohQuCZGRkYGJEyfCwcEBRkZG0NPTQ3x8vDTzQ2Hi4+Ph7u4us83d3R23b99Gbm6utK1+/folihUAjh07hszMTLRr1w4AYGJiglatWmHTpk0K84eHh2PAgAHYsGEDatWqVWz5jRs3hp6eHsqXL4/Y2Fjs3r1b6vMPY05PT8ejR48UtjU+Pl5mm5ubm/Szuro66tevL5cnn7L9V5yYmBi0aNFC6fyK/Pjjj4iJicHAgQPx+vVrmbSC5yoAWFhYSOdlbGwsMjIyUKFCBZlzPikpSVp6IDY2FoGBgTLpQ4YMQUpKilxdBdWsWRMxMTEyL0VLvfzwww9wdXWFqakp9PT08NNPP8mdu7Vq1YKamprCNsTHx0NdXR2urq5Sur29vdzSIgUJJZeFyFewD1VUVGBubl7kzBKKaGhoyB2L4sqOjY3FnTt3oK+vL/W9sbExsrKykJiYiLS0NKSkpMjM1pB/3iojKipKOjYbN27EggULsHbtWqX2jY+Ph6WlpcyMAY6OjjAyMpL5zFhZWUFfX196X/DYAcDt27fh4+MDa2trGBgYwMrKCgCKvX4BgKmpKdq3b4/Q0FBpphkTExOZPHfu3MHr16/RqlUrmXN4y5YtSi2vUdTnR5k+iI+Pl5tNo+B15nPR1NSEgYGBzIuIiIiIiEhZ6sVnkdewYUNER0ejWrVqZR0PERERERERKZCRkYFhw4ZhzJgxcmlVq1aVfi5Xrpz0c/4yA4q25U/dPnjwYHh7eyMsLAxHjx7FwoULERQUhNGjRysV1/Tp01GnTh307t0bQgj06NFDSps4cSKOHTuGZcuWoUaNGtDW1ka3bt1kloH4GLq6uiXeJzg4GM+fP5eWpADe98XVq1cxZ84cqKr+3zMCkZGR6NixI1asWIF+/fopVf7u3bvh6OiIChUqKLzJXZqYP5eCfaQMW1tbuSUXLCwsAEDhkiEFz0vg/bmZf15mZGTAwsICERERcvvl92tGRgbmzJmDb775Ri6PlpZWoXFqaGigRo0aMtsKLiUBALt27cLEiRMRFBQENzc36OvrY+nSpTh//rzSbSgNU1NTGBkZ4ebNm0rlL6r+/HO54ICKnJwcuTK0tbXlliQpruyMjAy4urpi+/btCtvwsapXry4d51q1auH8+fOYP38+RowY8dFl5yvu2HXs2BHVqlXDhg0bUKlSJeTl5aF27dpKX78GDhwoLUv0ww8/yKVnZGQAeL+8TOXKlWXSNDU1Pzp+IiIiIiKi/6JSDX749ttv4e/vj4cPH8LV1VXuP28UPTFAREREREREytHQ0JB7Qt/FxQVxcXFyN23LgqWlJYYPH47hw4dj2rRp2LBhg9KDHwBg5syZUFVVRZ8+fSCEkNaVP336NPr3748uXboAeH+z7969ezL7Kmqrg4MDTp8+LbPt9OnTsLOzk3nKvqSePXuG/fv3Y9euXTKzOOTm5qJJkyY4evQo2rRpAwCIiIhAhw4dsHjxYgwdOlTpOiwtLWFjY6NUXgMDA1SqVAmnT5+Gp6entP306dNo2LChTN5z586hadOmAIB3797h8uXL0o3VDynTf4r6/UN16tTB8ePHMWDAAKXa4+PjgxkzZiA6Ohr16tVTap/CuLi4IDU1Ferq6tIT94ryJCQkfJLPxOnTp9G4cWN8++230jZlnsYvyN7eXjpWDRo0AAAkJCTg5cuXhe6jqqqKXr16YevWrQgICEClSpVk0jMyMqClpSU3WEOR/EEIKSkpKF++PID3s3mUBRcXF+zevRtmZmaFPplvYWGB8+fPy523Li4uJa5PTU0Nb968USqvg4MDHjx4gAcPHkgzH8TFxeHly5dwdHRUqoxnz54hISEBGzZsgIeHBwDg1KlTJYq5TZs2yM7OhoqKCry9veXSHR0doampieTkZJnPf0EaGhoAUKIZWwDl+sDBwQHnz5+XGdh17ty5EtVDRERERET0b1OqwQ+9evUCAJknjlRUVCCEgIqKSon/KCMiIiIiIqL/Y2VlhZMnT6JXr17Q1NSEiYkJpkyZgq+++gqjRo3C4MGDoauri7i4OBw7dgxr1qwpdV3jxo1D27ZtYWdnhxcvXiA8PBwODg4lLmf69OlQU1NDnz59kJeXBx8fH9ja2mLv3r3o2LEjVFRUMHPmTLknkxW11d/fHw0aNMDcuXPRs2dPnD17FmvWrMGPP/5Y6nYCwNatW1GhQgX06NFD7kn3du3aITg4GG3atEF4eDg6dOiAsWPHomvXrkhNTQXw/kakohkMPsakSZMQEBAAGxsb1K1bFyEhIYiJiZF7ov6HH36Ara0tHBwcsGLFCrx48QIDBw5UWKYy/aeo3z8UEBCAFi1awMbGBr169cK7d+9w6NAhTJkyRWG948ePR1hYGFq0aIGAgAB4eHigfPnyuHXrFg4fPlyigSstW7aEm5sbOnfujCVLlsDOzg6PHj1CWFgYunTpgvr162PWrFno0KEDqlatim7dukFVVRWxsbG4fv065s2bp3Rditja2mLLli34448/UL16dWzduhUXL15E9erVlS6jZs2aaNOmDYYNG4a1a9dCXV0d48aNK3ZGjfnz5yMiIgKNGjXC/PnzUb9+fZQrVw5RUVFYuHAhLl68WOTSGflq1KgBS0tLzJ49G/Pnz8etW7cQFBSkdPxF6dOnD5YuXYpOnTohMDAQVapUwf3797F3715MnjwZVapUwdixY7Fo0SLY2trC3t4ey5cvL3LgR0FPnjxBVlYW3r59iwsXLmDr1q3o1q2bUvu2bNkSTk5O6NOnD1auXIl3797h22+/haenp9LLbpQvXx4VKlTATz/9BAsLCyQnJ2Pq1KlK7ZtPTU1NWmJC0bmvr6+PiRMnYvz48cjLy0OTJk2QlpaG06dPw8DAAH5+fqhWrRpUVFRw8OBBtGvXDtra2tDT0yuTPhg7diz69++P+vXrw93dHdu3b8eNGzdgbW1dZNl37txBRkYGUlNT8ebNG2lAjaOjozRYQ5G//vpLbvBNtWrVpIE5REREREREZUG1+CzykpKS5F53796V/iUiIiIiIqLSCwwMxL1792BjYyM9vV2nTh1ERkbi1q1b8PDwQL169TBr1iy5J8NLKjc3FyNHjoSDgwPatGkDOzu7Ug8ymDp1KhYsWIC+fftix44dWL58OcqXL4/GjRujY8eO8Pb2lnvqW1FbXVxc8PPPP2PXrl2oXbs2Zs2ahcDAQPTv3/+j2rpp0yZ06dJF4RT/Xbt2xYEDB/D3339j8+bNeP36NRYuXAgLCwvppWh5hY81ZswYTJgwAf7+/nBycsKRI0dw4MAB2NrayuRbtGgRFi1aBGdnZ5w6dQoHDhxQOGABUK7/FPX7h7y8vLBnzx4cOHAAdevWRfPmzXHhwoVC26KlpYXjx49jypQpCAkJQZMmTeDg4IBx48bB3d0dv/32m9L9oqKigkOHDqFp06YYMGAA7Ozs0KtXL9y/fx8VK1YEAHh7e+PgwYM4evQoGjRogK+++gorVqwokyU6hw0bhm+++QY9e/ZEo0aN8OzZM5lZIJQVEhKCSpUqwdPTE9988w2GDh0KMzOzIvcxNjbGuXPn4Ovri3nz5qFevXrw8PDAzp07sXTpUhgaGipVd7ly5bBz507cvHkTderUweLFiz96UEg+HR0dnDx5ElWrVsU333wDBwcHDBo0CFlZWdJMEP7+/ujbty/8/PykpUPyZ4EpTs2aNWFhYYEaNWpgypQpGDZsGFavXq3UvioqKti/fz/Kly+Ppk2bomXLlrC2tsbu3buVbp+qqip27dqFy5cvo3bt2hg/fjyWLl2q9P75DAwMCp0ZAwDmzp2LmTNnYuHChdI1OCwsTBpkU7lyZcyZMwdTp05FxYoVC53t5UPK9EHPnj0xc+ZMTJ48Ga6urrh//75Sy4oMHjwY9erVw/r163Hr1i3Uq1cP9erVw6NHj4rcb9myZVLe/FdYWJhS7SEiIiIiIlKWiii4+CMRERERERERERHRv0B6ejoMDQ2RlpZW5EASIiIiIiL636bs3walWvZiy5YtRaYXXC+QiIiIiIiIiIiIiIiIiIiI6FMq1cwPH67Hl5OTg9evX0NDQwM6Ojp4/vx5mQVIRERERERE/7zhw4dj27ZtCtN8fX2xbt26fzgiIiL6r+HMD0REREREBCj/t0GZLXtx+/ZtjBgxApMmTYK3t3dZFElERERERESfyZMnT5Cenq4wzcDAAGZmZv9wRERE9F/DwQ9ERERERAR8hsEPAHDp0iX4+vri5s2bZVUkERERERERERER/Qdx8AMREREREQHK/22gWpaVqqur49GjR2VZJBEREREREREREREREREREVGR1Euz04EDB2TeCyGQkpKCNWvWwN3dvUwCIyIiIiIiIiIiIiIiIiIiIlJGqQY/dO7cWea9iooKTE1N0bx5cwQFBZVFXERERERERERERERERERERERKKdXgh7y8vLKOg4iIiIiIiIiIiIiIiIiIiKhUVEuzU2BgIF6/fi23/c2bNwgMDPzooIiIiIiIiIiIiIiIiIiIiIiUpSKEECXdSU1NDSkpKTAzM5PZ/uzZM5iZmSE3N7fMAiQiIiIiIiIiIqL/nvT0dBgaGiItLQ0GBgafOxwiIiIiIvpMlP3boFQzPwghoKKiIrc9NjYWxsbGpSmSiIiIiIiIiIiIiIiIiIiIqFTUS5K5fPnyUFFRgYqKCuzs7GQGQOTm5iIjIwPDhw8v8yCJiIiIiIiIiIiIiIiIiIiIClOiwQ8rV66EEAIDBw7EnDlzYGhoKKVpaGjAysoKbm5uZR4kERERERERERERERERERERUWFKNPjBz88PAFC9enU0btwY5cqV+yRBERERERERERERERERERERESmrRIMf8nl6eko/Z2VlITs7WybdwMDg46IiIiIiIiIiIiIiIiIiIiIiUpJqaXZ6/fo1Ro0aBTMzM+jq6qJ8+fIyLyIiIiIiIiIiIiIiIiIiIqJ/SqkGP0yaNAknTpzA2rVroampiY0bN2LOnDmoVKkStmzZUtYxEhERERERERERERERERERERWqVMte/P7779iyZQu8vLwwYMAAeHh4oEaNGqhWrRq2b9+OPn36lHWcRERERERERERERERERERERAqVauaH58+fw9raGgBgYGCA58+fAwCaNGmCkydPll10RERERP9SXl5eGDdu3OcOg4rQv39/dO7c+XOH8UWZPXs26tat+7nDIAX+jedzWZ4v/8VzryyP6b/x/KDS+bf9fqGiooLffvutyDyf8vybOXMmhg4d+knKVuRT9f+H17ipU6di9OjRZV7Pl+C/eL0nIiIiIqJ/TqkGP1hbWyMpKQkAYG9vj59//hnA+xkhjIyMyiw4IiIion+rvXv3Yu7cudJ7KysrrFy58vMFVIzZs2dDRUWlyNen1L9/f5m6KlSogDZt2uDq1asfXfa9e/egoqKCmJiYjw/0Ezp48CA8PT2hr68PHR0dNGjQAKGhoZ87LBkTJ07E8ePHS71/YefZn3/+WYZRfjpnz56Fmpoa2rdvL5cWGxsLHx8fWFpaQltbGw4ODli1apVS5YaHh6Ndu3aoUKECdHR04OjoCH9/f/z111+ljvXfdoO0KL/++iuaN2+O8uXLQ1tbGzVr1sTAgQMRHR39uUNTyMrKSjp3tbW1YWVlhR49euDEiRNlWs+qVauKvQYIIbBhwwa4ubnBwMAAenp6qFWrFsaOHYs7d+6UqKzCpKenY/r06bC3t4eWlhbMzc3RsmVL7N27F0KIUpX5MT7l91VERARUVFTw8uXLsgv4HxYaGlro/7soM1DhY/zT37epqalYtWoVpk+fLm37lL9PfEoffr9OnDgRmzdvxt27dz+67A0bNsDDwwPly5dH+fLl0bJlS1y4cEEmz4f9pqKigjZt2sjkef78Ofr06QMDAwMYGRlh0KBByMjI+Oj4iIiIiIiI/kmlGvwwYMAAxMbGAng/Wv2HH36AlpYWxo8fj0mTJpVpgERERET/RsbGxtDX1//cYSht4sSJSElJkV5VqlRBYGCgzLZPrU2bNlJdx48fh7q6Ojp06FDkPjk5OZ88rpLIzc1FXl5eifdbvXo1OnXqBHd3d5w/fx5Xr15Fr169MHz4cEycOLHQ/YQQePfu3ceEXCJ6enqoUKHCR5VRq1YtmfMqJSUFTZs2LXE5/3TbASA4OBijR4/GyZMn8ejRI5m0y5cvw8zMDNu2bcONGzcwffp0TJs2DWvWrCmyzPXr16Nly5YwNzfHr7/+iri4OKxbtw5paWkICgr6lM1RSnZ29ictf8qUKejZsyfq1q2LAwcOICEhATt27IC1tTWmTZv2Sev+GPnXx4SEBGzZsgVGRkZo2bIl5s+fX2Z1GBoaFvnwgBACvXv3xpgxY9CuXTscPXoUcXFxCA4OhpaWFubNm6d0WYUd55cvX6Jx48bYsmULpk2bhitXruDkyZPo2bMnJk+ejLS0tNI2r9T+Dd9X9O+wceNGNG7cGNWqVZPZ/iX+PvHh96uJiQm8vb2xdu3ajy47IiICPj4+CA8Px9mzZ2FpaYnWrVvLDbAr2G8pKSnYuXOnTHqfPn1w48YNHDt2DAcPHsTJkyf/0Vk3iIiIiIiIyoQoA/fu3RO//vqriI2NLYviiIiIiP71PD09xdixY6WfAci88kVFRYkmTZoILS0tUaVKFTF69GiRkZEhpVerVk3MnTtX9O3bV+jq6oqqVauK/fv3iydPnoivv/5a6OrqCicnJ3Hx4kVpn3v37okOHToIIyMjoaOjIxwdHUVYWFiJ4q9WrZpYsWKFEEIIf39/0b59eyltxYoVAoA4fPiwtM3GxkZs2LBBCCFEbm6umDNnjqhcubLQ0NAQzs7OMnkV8fPzE506dZLZFhUVJQCIJ0+eCCGESEpKEgDErl27RNOmTYWmpqYICQkptr4P+97T01OmzqVLlwpzc3NhbGwsvv32W5GdnS3tm5WVJfz9/UWlSpWEjo6OaNiwoQgPD5fSQ0JChKGhodi/f79wcHAQampqIikpSYSHh4sGDRoIHR0dYWhoKBo3bizu3bunsO3JycmiXLlyYsKECXJp33//vQAgzp07J4QQIjw8XAAQhw4dEi4uLqJcuXIiPDxcpKeni969ewsdHR1hbm4uli9fLnMOCiHEli1bhKurq9DT0xMVK1YUPj4+4vHjx1J6ftl//vmncHV1Fdra2sLNzU3cvHlTyhMQECCcnZ1lYgwODhaOjo5CQ0NDmJubi5EjRypsZ2H7lzS+D9vu6ekpRo0aJcaOHSuMjIyEmZmZ+Omnn0RGRobo37+/0NPTEzY2NuLQoUNSWc+fPxe9e/cWJiYmQktLS9SoUUNs2rSp0LiFEOLVq1dCT09P3Lx5U/Ts2VPMnz+/yPxCCPHtt9+KZs2aFZr+4MEDoaGhIcaNG6cw/cWLF0IIxf22YsUKUa1aNel9wc+Qn5+f3HmflJQkna8F7du3T+aalF/Xhg0bhJWVlVBRUZFiGTRokDAxMRH6+vqiWbNmIiYmRqashQsXCjMzM6GnpycGDhwopkyZUujxFkKIs2fPCgBi1apVCtPz8vLk4tqyZYuoVq2aMDAwED179hTp6elSntzcXLFgwQJhZWUltLS0RJ06dcSePXtkyrx27Zpo06aN0NXVFWZmZsLX11c8ffq00BgVKXh9LGjWrFlCVVVV5jNTXH179uwRtWvXFlpaWsLY2Fi0aNFC+g5QdF0saOfOnQKA2L9/v8L0gv33YVmenp5i5MiRYuzYsaJChQrCy8tLYRkjRowQurq64q+//pJLe/XqlcjJyRFCvP9M9e3bVxgZGQltbW3Rpk0bcevWLSkOExMTmWPh7OwszM3NpfdRUVFCQ0NDZGZmFtrewnx4PIKCgkTt2rWFjo6OqFKlihgxYoR49eqVlF7Yd2T+d0zBl5+fn9i8ebMwNjYWWVlZMvV26tRJ+Pr6FhrX5MmTha2trdDW1hbVq1cXM2bMkPl+UeaczsjIkL7/zc3NxbJly+Su7R9S9DnPB0Ds27dPep+cnCy6d+8uDA0NRfny5cXXX38tkpKSpPQLFy6Ili1bigoVKggDAwPRtGlTcfny5ULLLO337Zw5c0StWrXk4nV2dhYzZswotK21atUSa9askdn2Mb9P/P3336JXr16iUqVKQltbW9SuXVvs2LFDpixPT08xevRoMWnSJFG+fHlRsWJFERAQINcn69atE+3btxfa2trC3t5enDlzRty+fVt4enoKHR0d4ebmJu7cuSPto+g6v3nzZlGlSpVC219a7969E/r6+mLz5s3StuKuN3FxcQKAzO+bhw8fFioqKgqvD/nKqi+KkpaWJgCItLQ0pfchIiIiIqL/Pcr+bVCqmR8KysrKQrVq1fDNN9+gTp06H1scERER0Rdn7969ck+mAkBiYiLatGmDrl274urVq9i9ezdOnTqFUaNGyey/YsUKuLu7Izo6Gu3bt0ffvn3Rr18/+Pr64sqVK7CxsUG/fv2k6cdHjhyJt2/f4uTJk7h27RoWL14MPT29Usfv6emJU6dOITc3FwAQGRkJExMTREREAAD++usvJCYmwsvLC8D76dWDgoKwbNkyXL16Fd7e3vj6669x+/ZtpevMyMjAtm3bUKNGDbmZBqZOnYqxY8ciPj4e3t7exdaXP7Xzn3/+iZSUFOzdu1cqKzw8HImJiQgPD8fmzZsRGhoqMzX8qFGjcPbsWezatQtXr15F9+7d0aZNG5m2vH79GosXL8bGjRtx48YNGBsbo3PnzvD09MTVq1dx9uxZDB06tNCp2H/55Rfk5OQonOFh2LBh0NPTk3v6curUqVi0aBHi4+NRp04dTJgwAadPn8aBAwdw7NgxREVF4cqVKzL75OTkYO7cuYiNjcVvv/2Ge/fuoX///nJ1Tp8+HUFBQbh06RLU1dUxcOBAhXEDwNq1azFy5EgMHToU165dw4EDB1CjRo1C8xdF2fg+bDsAbN68GSYmJrhw4QJGjx6NESNGoHv37mjcuDGuXLmC1q1bo2/fvnj9+jWA92vEx8XF4fDhw4iPj8fatWthYmJSZHw///wz7O3tUbNmTfj6+mLTpk3FTvmflpYGY2PjQtP37NmD7OxsTJ48WWF6aZcMXLVqFdzc3DBkyBDpmmNpaan0/nfu3MGvv/6KvXv3StPXd+/eHU+ePMHhw4dx+fJluLi4oEWLFnj+/DmA9/0ze/ZsLFiwAJcuXYKFhQV+/PHHIuvZuXMn9PT08O233ypM//Azk5iYiN9++w0HDx7EwYMHERkZiUWLFknpCxcuxJYtW7Bu3TrcuHED48ePh6+vLyIjIwG8n8WgefPmqFevHi5duoQjR47g8ePH6NGjh9J9U5SxY8dCCIH9+/crVV9KSgp8fHwwcOBAxMfHIyIiAt98843SS0ns3LkTNWvWxNdff60wvbjlHzZv3gwNDQ2cPn0a69atk0vPy8vDrl270KdPH1SqVEkuXU9PD+rq6gDeT5l/6dIlHDhwAGfPnoUQAu3atUNOTg5UVFTQtGlT6TvjxYsXiI+Px5s3b3Dz5k0A779XGjRoAB0dHaXaXhRVVVV8//33uHHjBjZv3owTJ07IfMYK+460tLTEr7/+CgBISEhASkoKVq1ahe7duyM3NxcHDhyQynjy5AnCwsKKvD7q6+sjNDQUcXFxWLVqFTZs2IAVK1bI5CnunJ40aRIiIyOxf/9+HD16FBEREXLX9tLKycmBt7c39PX1ERUVhdOnT0NPTw9t2rSRZgJ59eoV/Pz8cOrUKZw7dw62trZo164dXr16pbDM0n7f5n8GLl68KOWPjo7G1atXMWDAAIV1PX/+HHFxcahfv36R7SzJ7xNZWVlwdXVFWFgYrl+/jqFDh6Jv375yS0Rs3rwZurq6OH/+PJYsWYLAwEAcO3ZMJs/cuXPRr18/xMTEwN7eHr1798awYcMwbdo0XLp0CUIIud/3PtSwYUM8fPgQ9+7dKzJfSb1+/Ro5OTly308REREwMzNDzZo1MWLECDx79kxKO3v2LIyMjGT6u2XLllBVVcX58+eLrK8s+qKgt2/fIj09XeZFRERERESktNKMrHj37p0IDAwUlSpVEmpqaiIxMVEIIcSMGTPExo0bS1MkERER0RflwyczFT0pPGjQIDF06FCZbVFRUUJVVVW8efNG2q/gk6UpKSkCgJg5c6a0Lf/p6ZSUFCGEEE5OTmL27NkfFX/BeF+8eCFUVVXFxYsXRV5enjA2NhYLFy4UjRo1EkIIsW3bNlG5cmVp30qVKsk9Fd+gQQPx7bffFlqfn5+fUFNTE7q6ukJXV1cAEBYWFjJPmOY/qbly5UqZfYurL3+/6OhouTqrVasm3r17J23r3r276NmzpxBCiPv37ws1NTW5JxpbtGghpk2bJoR4/4QtAJkn4J89eyYAiIiIiELbW9Dw4cMLfUpXCCHq1Kkj2rZtK4T4v9kPfvvtNyk9PT1dlCtXTuap6pcvXwodHZ0inw6+ePGiACA9EV1w5od8YWFhAoB0Pn74NGalSpXE9OnTlWpn/v6qqqrScdbV1RUNGjQoUXwF2y7E+89akyZNpPfv3r0Turq6om/fvtK2/M/N2bNnhRBCdOzYUQwYMEDpuIUQonHjxtK5l5OTI0xMTGRmAfnQ6dOnhbq6uvjjjz8KzTNixAhhYGBQbN0lnflBCPlrkBCKnwhXNPNDuXLlpCekhXh/XTIwMJB78t3GxkasX79eCCGEm5ub3Ge8UaNGRT6926ZNG1GnTh2ZbUFBQTLnx8uXL6W4dHR0ZJ6KnzRpknQdysrKEjo6OuLMmTMy5Q0aNEj4+PgIIYSYO3euaN26tUz6gwcPBACRkJBQaJwfKmzmByGEqFixohgxYoRS9V2+fFkAKHRWmOKexLa3txdff/21zLaxY8dKfVfwuqzo/KhXr14RrRTi8ePHAoBYvnx5kflu3bolAIjTp09L2/7++2+hra0tfv75ZyHE+1ls8p/s/+2330SjRo1Ep06dxNq1a4UQQrRs2VJ89913RdZTmKKOhxDvZ9eoUKGC9L6o78j860z+rCv5RowYIV2HhXh/nlpbW8vMrlGcpUuXCldXV+l9cef0q1evhIaGhtSHQrz/ftHW1i525gcAMp+jgt+t+bM0bN26VdSsWVOmDW/fvhXa2tqFXrdyc3OFvr6++P3336VtBcss7fetEEK0bdtW+uwIIcTo0aMLnZFECCGio6MFAJGcnCxXV2l/n1Ckffv2wt/fX3r/4XeOEO9/55gyZYr0HoDMjBX5v6cFBwdL23bu3Cm0tLSk94qu8/lPLSn7+4SyRowYIaytraXv9vx49u/fL65evSr27dsnHBwcRIMGDaRjNn/+fGFnZydXlqmpqfjxxx8Lraus+qKggIAAuVlGwJkfiIiIiIj+8z7pzA/z589HaGgolixZAg0NDWl77dq1sXHjxtIUSURERPQ/JzY2FqGhodDT05Ne3t7eyMvLQ1JSkpSv4OxZFStWBAA4OTnJbXvy5AkAYMyYMZg3bx7c3d0REBCAq1evflScRkZGcHZ2RkREBK5duwYNDQ0MHToU0dHRyMjIQGRkJDw9PQEA6enpePToEdzd3WXKcHd3R3x8fJH1NGvWDDExMYiJicGFCxfg7e2Ntm3b4v79+zL5Cj51+DH1AUCtWrWgpqYmvbewsJD68dq1a8jNzYWdnZ3MMYqMjERiYqK0j4aGhswxMjY2Rv/+/eHt7Y2OHTti1apVZb4GfcE+uHv3LnJyctCwYUNpm6GhIWrWrCmzz+XLl9GxY0dUrVoV+vr60jFLTk6WyVewLRYWFgD+79wq6MmTJ3j06BFatGhRothr1qwpHeeYmBjpSWtl41P0lG/BmNXU1FChQoUiPyMjRozArl27ULduXUyePBlnzpwpMuaEhARcuHABPj4+AAB1dXX07NkTwcHBCvNfv34dnTp1QkBAAFq3bl1ouUKIYp/O/xyqVasGU1NT6X1sbCwyMjJQoUIFmc9CUlKS9FmIj49Ho0aNZMpxc3Mrcd0DBw5ETEwM1q9fj8zMTJlZEKysrKCvry+9L/h5vXPnDl6/fo1WrVrJxLhlyxYpxtjYWISHh8uk29vbA4DMZ/pjFDymxdXn7OyMFi1awMnJCd27d8eGDRvw4sWLj6p/+vTpiImJwaxZs5CRkVFkXldX12Lbooz4+Hioq6vLHP8KFSqgZs2a0nXY09MTcXFxePr0KSIjI+Hl5QUvLy9EREQgJycHZ86ckWYP+lh//vknWrRogcqVK0NfXx99+/bFs2fPpJlfSvMdOWTIEBw9ehR//fUXACA0NBT9+/cv8vO7e/duuLu7w9zcHHp6epgxY4bc9ayoczoxMRHZ2dky/WpsbCx3bVdEX19f5jqb/yooNjYWd+7cgb6+vnR+GhsbIysrS/o8PH78GEOGDIGtrS0MDQ1hYGCAjIwMuXYoo6jvW+B9H+/cuRNZWVnIzs7Gjh07ipxZ482bNwAALS0tubTS/D4BALm5uZg7dy6cnJxgbGwMPT09/PHHH0V+Typqy4d5CvvdLSsrq8hZC7S1tQFAOnc/tGDBApnrizLHZdGiRdi1axf27dsn03e9evXC119/DScnJ3Tu3BkHDx7ExYsXpRlbPkZZ9EVB06ZNQ1pamvR68ODBR8dIRERERET/Heql2WnLli346aef0KJFCwwfPlza7uzsLE1rSURERPRfl5GRgWHDhmHMmDFyaVWrVpV+LleunPRz/o0WRdvy8vIAAIMHD4a3tzfCwsJw9OhRLFy4EEFBQRg9enSpY82/SaWpqQlPT08YGxvDwcEBp06dQmRkJPz9/Utddj5dXV2ZJRM2btwIQ0NDbNiwAfPmzZPJV1YK9iPwvi/z+zEjIwNqamq4fPmyzA0bADLLiGhra8vdAAsJCcGYMWNw5MgR7N69GzNmzMCxY8fw1VdfycVgZ2eHtLQ0PHr0SG5q+ezsbCQmJqJZs2Yy20vaB5mZmfD29oa3tze2b98OU1NTJCcnw9vbW5rePF9R51ZB+TdlSkpDQ0NuaYySxKeo7YqOY1HtyL8JdujQIRw7dgwtWrTAyJEjsWzZMoUxBwcH4927dzLHRwgBTU1NrFmzBoaGhtL2uLg4tGjRAkOHDsWMGTOK7Iv8Y5+SkiINNFFEVVVV7kZ0Tk5OkWV/TDkf9nFGRgYsLCwU3gQr7dIcAGBra4tTp04hJydHOl5GRkYwMjLCw4cP5fIX93kFgLCwMFSuXFkmn6amppSnY8eOWLx4sVzZRfW/sp49e4anT5+ievXqStWnpqaGY8eO4cyZMzh69ChWr16N6dOn4/z581IZRbG1tUVCQoLMNlNTU5iamsLMzKzY/Yu7jpiamsLIyKhM/obPv5kcGRmJyMhIzJ8/H+bm5li8eDEuXryInJwcNG7c+KPruXfvHjp06IARI0Zg/vz5MDY2xqlTpzBo0CBkZ2dDR0enVN+R9erVg7OzM7Zs2YLWrVvjxo0bCAsLKzT/2bNn0adPH8yZMwfe3t4wNDTErl27EBQUJJOvqHP6Y6iqqha7BFFGRgZcXV2xfft2ubT8wU9+fn549uwZVq1ahWrVqkFTUxNubm5y12VlFNfWjh07QlNTE/v27YOGhgZycnLQrVu3QsvLX6roxYsXMoO1gNL/PrF06VKsWrUKK1euhJOTE3R1dTFu3LgivycVteXDPMr87qZI/rJCH7Yv3/Dhw2WW7VG0PE1By5Ytw6JFi/Dnn38WuyyttbU1TExMcOfOHbRo0QLm5uZyAzzevXuH58+fw9zcvMiyyqIvCtLU1JSu60RERERERCVVqpkf/vrrL4V/aOfl5ZXqP+mIiIiIvnQaGhrIzc2V2ebi4oK4uDjUqFFD7lVw9qzSsLS0xPDhw7F37174+/tjw4YNH1Wep6cnTp06hePHj0tP53p5eWHnzp24deuWtM3AwACVKlXC6dOnZfY/ffo0HB0dS1SniooKVFVVpac7FVGmvvy+/LD/i1OvXj3k5ubiyZMncsenuP/oz99/2rRpOHPmDGrXro0dO3YozNe1a1eUK1dO7qYYAKxbtw6ZmZnSjAOKWFtbo1y5cjJrpaelpeHWrVvS+5s3b+LZs2dYtGgRPDw8YG9vr3A2h5LQ19eHlZUVjh8//lHlfKr4imNqago/Pz9s27YNK1euxE8//aQw37t377BlyxYEBQXJPEEdGxuLSpUqYefOnVLeGzduoFmzZvDz88P8+fOLjaFbt27Q0NDAkiVLFKa/fPlSijU1NVVm4MKHT3F/SNE1x9TUFK9evUJmZqbS5QDvr1WpqalQV1eX+yzk34B0cHCQW/f93LlzRZbr4+ODjIwM/Pjjj8XGUBxHR0doamoiOTlZLkZLS0upHTdu3ICVlZVcnrIYVLVq1Sqoqqqic+fOStenoqICd3d3zJkzB9HR0dDQ0MC+ffuUqs/HxwcJCQnYv3//R8euiKqqKnr16oXt27fj0aNHcukZGRl49+4dHBwc8O7dO5nj/+zZMyQkJEjXYRUVFXh4eGD//v24ceMGmjRpgjp16uDt27dYv3496tevXybH4PLly8jLy0NQUBC++uor2NnZKYy9sO/Ior4vBg8ejNDQUISEhKBly5bSeaXImTNnUK1aNUyfPh3169eHra2t3KwDxbGxsUG5cuVk+vXFixcy1/aP4eLigtu3b8PMzEzu/Mwf0HX69GmMGTMG7dq1Q61ataCpqYm///670DJL+30LvJ9Rx8/PDyEhIQgJCUGvXr2KHGRnY2MDAwMDxMXFFVu2Mr9PAO/b26lTJ/j6+sLZ2RnW1tZl1t+lcf36dZQrVw61atVSmG5sbCxz3NTVC39+acmSJZg7dy6OHDmicAalDz18+BDPnj2TBoa5ubnh5cuXuHz5spTnxIkTyMvLk5v1h4iIiIiI6N+sVIMfHB0dERUVJbf9l19+Qb169T46KCIiIqIvjZWVFU6ePIm//vpLunEwZcoUnDlzBqNGjUJMTAxu376N/fv3Y9SoUR9V17hx4/DHH38gKSkJV65cQXh4OBwcHD6qzKZNm+LVq1c4ePCgzOCH7du3w8LCAnZ2dlLeSZMmYfHixdi9ezcSEhIwdepUxMTEYOzYsUXW8fbtW6SmpiI1NRXx8fEYPXq09OR0UYqrz8zMDNra2jhy5AgeP36MtLQ0pdpsZ2eHPn36oF+/fti7dy+SkpJw4cIFLFy4sMgnfpOSkjBt2jScPXsW9+/fx9GjR3H79u1Cj0HVqlWxZMkSrFy5EtOnT8fNmzeRmJiI5cuXY/LkyfD39y/yxoK+vj78/PwwadIkhIeH48aNGxg0aBBUVVWlpymrVq0KDQ0NrF69Gnfv3sWBAwcwd+5cpfqhKLNnz0ZQUBC+//573L59G1euXMHq1atLXM6niq8ws2bNwv79+3Hnzh3cuHEDBw8eLPT4HDx4EC9evMCgQYNQu3ZtmVfXrl2lpS+uX7+OZs2aoXXr1pgwYYJ0Lj99+rTQOCwtLbFixQqsWrUKgwYNQmRkJO7fv4/Tp09j2LBhUh94eXnh6dOnWLJkCRITE/HDDz/g8OHDRbbRysoK58+fx7179/D3339LN6h0dHTw3XffITExETt27EBoaGix/dWyZUu4ubmhc+fOOHr0KO7du4czZ85g+vTpuHTpEgBg7Nix2LRpE0JCQnDr1i0EBATgxo0bRZbr5uYGf39/+Pv7Y8KECTh16hTu37+Pc+fOITg4WLphqQx9fX1MnDgR48ePx+bNm5GYmCidj5s3bwYAjBw5Es+fP4ePjw8uXryIxMRE/PHHHxgwYECJb9a+evUKqampePDgAU6ePImhQ4di3rx5mD9/vvQgQHH1nT9/HgsWLMClS5eQnJyMvXv34unTp0pfr3v16oVu3bqhV69eCAwMlI53ZGQkdu/eLTdjTWnMnz8flpaWaNSoEbZs2YK4uDjcvn0bmzZtQr169ZCRkQFbW1t06tQJQ4YMwalTpxAbGwtfX19UrlwZnTp1ksrKHzBXt25d6OnpQVVVFU2bNsX27dulZW4+Vo0aNZCTkyNdS7Zu3Yp169bJ5CnqO7JatWpQUVHBwYMH8fTpU5mlQ3r37o2HDx9iw4YNRS7HALyflSM5ORm7du1CYmIivv/+e6UHteTT09PDoEGDMGnSJJw4cQLXr19H//79lf5MFKdPnz4wMTFBp06dEBUVhaSkJERERGDMmDHSzCu2trbYunUr4uPjcf78efTp06fIAQml/b7NN3jwYJw4cQJHjhwpto9VVVXRsmVLnDp1Si6ttL9P2NraSrOxxMfHY9iwYXj8+HGJ2lCWoqKi4OHhUeqZlvItXrwYM2fOxKZNm2BlZSX1Tf75nZGRgUmTJuHcuXO4d+8ejh8/jk6dOqFGjRrw9vYG8H6AW5s2bTBkyBBcuHABp0+fxqhRo9CrV69iZ5wgIiIiIiL6NynVX9WzZs3CqFGjsHjxYuTl5WHv3r0YMmQI5s+fj1mzZpV1jERERET/eoGBgbh37x5sbGyk6Yvr1KmDyMhI3Lp1Cx4eHqhXrx5mzZr10f+JnJubi5EjR0r/UW1nZ/fRT1aXL18eTk5OMDU1ldasb9q0KfLy8uRuWo0ZMwYTJkyAv78/nJyccOTIERw4cAC2trZF1nHkyBFYWFjAwsICjRo1wsWLF7Fnz55i14Evrj51dXV8//33WL9+PSpVqiRzM644ISEh6NevH/z9/VGzZk107twZFy9elFmW5EM6Ojq4efMmunbtCjs7OwwdOhQjR47EsGHDCt1n3Lhx2LdvH6KiolC/fn1ppoi1a9cWuhRDQcuXL4ebmxs6dOiAli1bwt3dHQ4ODtJ63qampggNDcWePXvg6OiIRYsWKVVucfz8/LBy5Ur8+OOPqFWrFjp06IDbt2+XuJxPFV9hNDQ0MG3aNNSpUwdNmzaFmpoadu3apTBvcHAwWrZsKbO0Rb6uXbvi0qVLuHr1Kn755Rc8ffoU27Ztk85jCwsLNGjQoMhYvv32Wxw9ehR//fUXunTpAnt7ewwePBgGBgaYOHEigPc3nX788Uf88MMPcHZ2xoULF6S0wkycOBFqampwdHSUlhExNjbGtm3bcOjQITg5OWHnzp2YPXt2sf2loqKCQ4cOoWnTphgwYADs7OzQq1cv3L9/X1q/vWfPnpg5cyYmT54MV1dX3L9/HyNGjCi27GXLlmHHjh2Ijo5Ghw4dYGtri+7duyMvLw9nz56FgYFBsWXkmzt3LmbOnImFCxdK17+wsDBpCYn8WWJyc3PRunVrODk5Ydy4cTAyMpJuKIeGhsotY6PIrFmzYGFhgRo1aqBv375IS0vD8ePHMWXKFClPcfUZGBjg5MmTaNeuHezs7DBjxgwEBQWhbdu2SrVXRUUFu3fvxsqVK3Ho0CG0aNECNWvWxMCBA2FpaanwpnBJGRsb49y5c/D19cW8efNQr149eHh4YOfOnVi6dKn0uQgJCYGrqys6dOgANzc3CCFw6NAhmantPT09kZubK3NN9/LyktsGAP379y/22q+Is7Mzli9fjsWLF6N27drYvn07Fi5cKJOnqO/IypUrY86cOZg6dSoqVqwoMxjR0NAQXbt2hZ6enjS7R2G+/vprjB8/HqNGjULdunVx5swZzJw5s8TtWbp0KTw8PNCxY0e0bNkSTZo0gaura4nLUURHRwcnT55E1apV8c0338DBwQGDBg1CVlaW9LkLDg7Gixcv4OLigr59+2LMmDFFLqnyMd+3wPvBB40bN4a9vb1SswkMHjwYu3btklsuobS/T8yYMQMuLi7w9vaGl5cXzM3Niz3Wn9KuXbswZMiQjy5n7dq1yM7ORrdu3WS+n/K/Z9XU1HD16lV8/fXXsLOzw6BBg+Dq6oqoqCiZ5SW2b98Oe3t7tGjRAu3atUOTJk0KnTWJiIiIiIjo30pFfLgobBHu3r2L6tWrQ0VFBVFRUQgMDERsbCwyMjLg4uKCWbNmoXXr1p8yXiIiIiKi/7zMzExUrlwZQUFBGDRo0OcOh+iLERAQgMjISERERHzuUP7TPD090axZM6UG5/yTWrRogVq1auH777//3KH8TxJCwNbWFt9++y0mTJigVP5GjRph/PjxRS4P9SU6fPgw/P39cfXq1SKXsyAgPT0dhoaGSEtLK9GAOSIiIiIi+t+i7N8GJfoLy9bWFikpKTAzM4OHhweMjY1x7do16WkgIiIiIiIqe9HR0bh58yYaNmyItLQ0BAYGAkCJn7ol+q87fPgw1qxZ87nD+E9LS0tDYmJikcsL/dNevHiBiIgIREREfPRMSqTY06dPsWvXLqSmpmLAgAFK7aOiooKffvoJ165d+8TR/fMyMzMREhLCgQ9ERERERERlrER/ZX04ScThw4eRmZlZpgERERERUekMHz4c27ZtU5jm6+srty46fVmWLVuGhIQEaGhoSNNVm5iYfO6wiL4oFy5c+Nwh/OcZGhri4cOHnzsMGfXq1cOLFy+wePFi1KxZ83OH8z/JzMwMJiYm+Omnn1C+fHml96tbty7q1q376QL7TLp16/a5QyAiIiIiIvqfVKJlL1RVVZGamiqtAamvr4/Y2FhYW1t/sgCJiIiISDlPnjxBenq6wjQDA4Mi1/EmIiIiIvq34bIXREREREQEfKJlL1RUVKCioiK3jYiIiIg+PzMzMw5wICIiIiIiIiIiIqL/pBIve9G/f39oamoCALKysjB8+HDo6urK5Nu7d2/ZRUhERERERERERERERERERERUhBINfvDz85N57+vrW6bBEBEREREREREREREREREREZVUiQY/hISEfKo4iIiIiIiIiIiIiIiIiIiIiEpF9XMHQERERERERERERERERERERPQxOPiBiIiIiIiIiIiIiIiIiIiIvmgc/EBERERERERERERERERERERfNA5+ICIiIiIiIiIiIiIiIiIioi8aBz8QERERERERERERERERERHRF42DH4iIiIiIiIiIiIiIiIiIiOiLxsEPRERERERERERERERERERE9EXj4AciIiIiIiIiIiIiIiIiIiL6onHwAxEREREREREREREREREREX3ROPiBiIiIiIiIiIiIiIiIiIiIvmgc/EBERERERERERERERERERERfNA5+ICIiIiIiIiIiIiIiIiIioi8aBz8QERERERERkdK8vLwwbty4zx3G/6R79+5BRUUFMTExnzuU/7SIiAioqKjg5cuXnzsUIiIiIiIiKgEOfiAiIiIiIiIipe3duxdz586V3ltZWWHlypWfL6AS8vb2hpqaGi5evPi5Q/lXevjwITQ0NFC7dm25tHv37mHQoEGoXr06tLW1YWNjg4CAAGRnZxdbbnR0NLp3746KFStCS0sLtra2GDJkCG7duvUpmlFkHD179oSFhQU0NTVRrVo1dOjQAb///juEEP9oLIrMnz8fjRs3ho6ODoyMjBTmSU5ORvv27aGjowMzMzNMmjQJ7969k8kTEREBFxcXaGpqokaNGggNDZUr54cffoCVlRW0tLTQqFEjXLhw4RO0CFBRUcFvv/32ScomIiIiIiIqiIMfiIiIiIiIiEhpxsbG0NfX/9xhlEpycjLOnDmDUaNGYdOmTZ87nH+l0NBQ9OjRA+np6Th//rxM2s2bN5GXl4f169fjxo0bWLFiBdatW4fvvvuuyDIPHjyIr776Cm/fvsX27dsRHx+Pbdu2wdDQEDNnzvyUzZGxf/9+fPXVV8jIyMDmzZsRHx+PI0eOoEuXLpgxYwbS0tL+sVgKk52dje7du2PEiBEK03Nzc9G+fXtkZ2fjzJkz2Lx5M0JDQzFr1iwpT1JSEtq3b49mzZohJiYG48aNw+DBg/HHH39IeXbv3o0JEyYgICAAV65cgbOzM7y9vfHkyZNP3kYiIiIiIqJPhYMfiIiIiIiIiEhpBZe98PLywv379zF+/HioqKhARUVFynfq1Cl4eHhAW1sblpaWGDNmDDIzM6V0KysrzJs3D/369YOenh6qVauGAwcO4OnTp+jUqRP09PRQp04dXLp0Sdrn/v376NixI8qXLw9dXV3UqlULhw4dUjr2kJAQdOjQASNGjMDOnTvx5s0bubaNGTMGkydPhrGxMczNzTF79mwpvXfv3ujZs6fMPjk5OTAxMcGWLVsAAHl5eVi4cKE0O4KzszN++eUXKf+LFy/Qp08fmJqaQltbG7a2tggJCZEp8+7du2jWrBl0dHTg7OyMs2fPSmnPnj2Dj48PKleuDB0dHTg5OWHnzp0lakdhhBAICQlB37590bt3bwQHB8ukt2nTBiEhIWjdujWsra3x9ddfY+LEidi7d2+hZb5+/RoDBgxAu3btcODAAbRs2RLVq1dHo0aNsGzZMqxfv17KGxkZiYYNG0JTUxMWFhaYOnWqNKPBwYMHYWRkhNzcXABATEwMVFRUMHXqVGn/wYMHw9fXV2EcmZmZGDRoENq3b4+wsDCpDQ4ODhg0aBBiY2NhaGgos8/ly5dRv3596OjooHHjxkhISJBJ379/P1xcXKClpQVra2vMmTNHZgaGly9fYvDgwTA1NYWBgQGaN2+O2NjYog4B5syZg/Hjx8PJyUlh+tGjRxEXF4dt27ahbt26aNu2LebOnYsffvhBmoFj3bp1qF69OoKCguDg4IBRo0ahW7duWLFihVTO8uXLMWTIEAwYMACOjo5Yt24ddHR0ihwU1L9/f3Tu3BkLFixAxYoVYWRkhMDAQLx79w6TJk2CsbExqlSpInc+ExERERER/VM4+IGIiIiIiIiISmXv3r2oUqUKAgMDkZKSgpSUFABAYmIi2rRpg65du+Lq1avYvXs3Tp06hVGjRsnsv2LFCri7uyM6Ohrt27dH37590a9fP/j6+uLKlSuwsbFBv379pOUIRo4cibdv3+LkyZO4du0aFi9eDD09PaVizb+x7+vrC3t7e9SoUUNmUEK+zZs3Q1dXF+fPn8eSJUsQGBiIY8eOAQD69OmD33//HRkZGVL+P/74A69fv0aXLl0AAAsXLsSWLVuwbt063LhxA+PHj4evry8iIyMBADNnzkRcXBwOHz6M+Ph4rF27FiYmJjIxTJ8+HRMnTkRMTAzs7Ozg4+Mj3VTPysqCq6srwsLCcP36dQwdOhR9+/aVW7KgqHYUJjw8HK9fv0bLli3h6+uLXbt2yQxYUSQtLQ3GxsaFpv/xxx/4+++/MXnyZIXp+Us7/PXXX2jXrh0aNGiA2NhYrF27FsHBwZg3bx4AwMPDA69evUJ0dDSA9wMlTExMEBERIZUVGRkJLy8vhfUcPXoUz549KzQOADKDd4D3xyEoKAiXLl2Curo6Bg4cKKVFRUWhX79+GDt2LOLi4rB+/XqEhoZi/vz5Up7u3bvjyZMnOHz4MC5fvgwXFxe0aNECz58/LzSG4pw9exZOTk6oWLGitM3b2xvp6em4ceOGlKdly5Yy+3l7e0uDaLKzs3H58mWZPKqqqmjZsqXMQBtFTpw4gUePHuHkyZNYvnw5AgIC0KFDB5QvXx7nz5/H8OHDMWzYMDx8+LBU7Xv79i3S09NlXkREREREREoTRERERERERERK8vT0FGPHjpXeV6tWTaxYsUImz6BBg8TQoUNltkVFRQlVVVXx5s0baT9fX18pPSUlRQAQM2fOlLadPXtWABApKSlCCCGcnJzE7NmzSxX30aNHhampqcjJyRFCCLFixQrh6ekp17YmTZrIbGvQoIGYMmWKEEKInJwcYWJiIrZs2SKl+/j4iJ49ewohhMjKyhI6OjrizJkzMmUMGjRI+Pj4CCGE6NixoxgwYIDCGJOSkgQAsXHjRmnbjRs3BAARHx9faNvat28v/P39lW5HYXr37i3GjRsnvXd2dhYhISGF5r99+7YwMDAQP/30U6F5Fi9eLACI58+fF1n3d999J2rWrCny8vKkbT/88IPQ09MTubm5QgghXFxcxNKlS4UQQnTu3FnMnz9faGhoiFevXomHDx8KAOLWrVsKy1+0aJFcHBcuXBC6urrS6/fffxdCCBEeHi4AiD///FPKGxYWJgBI52+LFi3EggULZOrYunWrsLCwEEK8P98NDAxEVlaWTB4bGxuxfv36IvtCCCFCQkKEoaGh3PYhQ4aI1q1by2zLzMwUAMShQ4eEEELY2trKxZYf/+vXr8Vff/0lAMidp5MmTRINGzYsNCY/Pz9RrVo16XgIIUTNmjWFh4eH9P7du3dCV1dX7Ny5U9oGQOzbt6/YNgshREBAgAAg90pLS1NqfyIiIiIi+t+Ulpam1N8GnPmBiIiIiIiIiMpUbGwsQkNDoaenJ728vb2Rl5eHpKQkKV+dOnWkn/OfZC843X/+tidPngAAxowZg3nz5sHd3R0BAQG4evWq0jFt2rQJPXv2hLq6OgDAx8cHp0+fRmJioky+gjEBgIWFhVS/uro6evToge3btwN4v5TC/v370adPHwDAnTt38Pr1a7Rq1Uqm7Vu2bJHqGTFiBHbt2oW6deti8uTJOHPmjFysBWOwsLCQ6YPc3FzMnTsXTk5OMDY2hp6eHv744w8kJycr3Q5FXr58ib1798osG+Hr6yu39EW+v/76C23atEH37t0xZMiQQssV/3/WjuLEx8fDzc1NZvYFd3d3ZGRkSLMIeHp6IiIiAkIIREVF4ZtvvoGDgwNOnTqFyMhIVKpUCba2tkrVB7zvo5iYGMTExCAzM1NmyYr89HwfHofY2FgEBgbKHOchQ4YgJSUFr1+/RmxsLDIyMlChQgWZPElJSXLn3JekVq1aUFX9v/9OrFixosxnVk1NDRUqVCjyXCvKtGnTkJaWJr0ePHjw0TETEREREdF/h/rnDoCIiIiIiIiI/rdkZGRg2LBhGDNmjFxa1apVpZ/LlSsn/Zx/01vRtry8PADA4MGD4e3tjbCwMBw9ehQLFy5EUFAQRo8eXWQ8z58/x759+5CTk4O1a9dK23Nzc7Fp0yaZpQoK1p8fQ379wPulLzw9PfHkyRMcO3YM2traaNOmjdRuAAgLC0PlypVlytHU1AQAtG3bFvfv38ehQ4dw7NgxtGjRAiNHjsSyZcuK7Jf8GJYuXYpVq1Zh5cqVcHJygq6uLsaNG4fs7GyZ+oprx4d27NiBrKwsNGrUSNomhEBeXh5u3boFOzs7afujR4/QrFkzNG7cGD/99FOhZQKQ9rt58ybc3NyKzFscLy8vbNq0CbGxsShXrhzs7e3h5eWFiIgIvHjxAp6enoXumz8oIiEhAV999RWA98ekRo0ahe5T1HHIyMjAnDlz8M0338jtp6WlhYyMDFhYWMgsy5Evf6mP0jA3N5db4uTx48dSWv6/+dsK5jEwMIC2tjbU1NSgpqamME9+GYVRdF6V9FwriqampvRZISIiIiIiKinO/EBEREREREREpaahoYHc3FyZbS4uLoiLi0ONGjXkXhoaGh9Vn6WlJYYPH469e/fC398fGzZsKHaf7du3o0qVKoiNjZWe9I+JiUFQUBBCQ0Pl4i9K48aNYWlpid27d2P79u3o3r27dPPX0dERmpqaSE5Olmu3paWlVIapqSn8/Pywbds2rFy5stgBBAWdPn0anTp1gq+vL5ydnWFtbY1bt24pvX9hgoOD4e/vL9M/sbGx8PDwwKZNm6R8f/31F7y8vODq6oqQkBCZWQAUad26NUxMTLBkyRKF6S9fvgQAODg44OzZszIzRZw+fRr6+vqoUqUKAMDDwwOvXr3CihUrpIEO+YMfIiIi4OXlVWQcxsbGWLx4sTLdUSwXFxckJCQoPMdVVVXh4uKC1NRUqKury6WbmJiUul43Nzdcu3ZNZmaFY8eOwcDAAI6OjlKe48ePy+x37NgxafCJhoYGXF1dZfLk5eXh+PHjHz1AhYiIiIiI6HPizA9EREREREREVGpWVlY4efIkevXqBU1NTZiYmGDKlCn46quvMGrUKAwePBi6urqIi4vDsWPHsGbNmlLXNW7cOLRt2xZ2dnZ48eIFwsPD4eDgUOx+wcHB6NatG2rXri2z3dLSEtOmTcORI0fQvn17pePo3bs31q1bh1u3biE8PFzarq+vj4kTJ2L8+PHIy8tDkyZNkJaWhtOnT8PAwAB+fn6YNWsWXF1dUatWLbx9+xYHDx5Uqg35bG1t8csvv+DMmTMoX748li9fjsePH0s3vksjJiYGV65cwfbt22Fvby+T5uPjg8DAQMybNw+PHz+Gl5cXqlWrhmXLluHp06dSvsJmDNDV1cXGjRvRvXt3fP311xgzZgxq1KiBv//+Gz///DOSk5Oxa9cufPvtt1i5ciVGjx6NUaNGISEhAQEBAZgwYYI0wKJ8+fKoU6cOtm/fLp1HTZs2RY8ePZCTk1PkzA96enrYuHEjevbsifbt22PMmDGwtbVFRkYGjhw5AuD9kg3KmjVrFjp06ICqVauiW7duUFVVRWxsLK5fv4558+ahZcuWcHNzQ+fOnbFkyRLY2dnh0aNHCAsLQ5cuXVC/fn2F5SYnJ+P58+dITk5Gbm4uYmJiAAA1atSAnp4eWrduDUdHR/Tt2xdLlixBamoqZsyYgZEjR0ozJgwfPhxr1qzB5MmTMXDgQJw4cQI///wzwsLCpHomTJgAPz8/1K9fHw0bNsTKlSuRmZmJAQMGKN0HJZGUlCS1JZ+trS10dXU/SX1ERERERPTfxMEPRERERERERFRqgYGBGDZsGGxsbPD27VsIIVCnTh1ERkZi+vTp8PDwgBACNjY26Nmz50fVlZubi5EjR+Lhw4cwMDBAmzZtsGLFiiL3uXz5MmJjYxXOEGFoaIgWLVogODi4RIMf+vTpg/nz56NatWpwd3eXSZs7dy5MTU2xcOFC3L17F0ZGRnBxccF3330H4P1T99OmTcO9e/egra0NDw8P7Nq1S+m6Z8yYgbt378Lb2xs6OjoYOnQoOnfujLS0NKXL+FBwcDAcHR3lBj4AQJcuXTBq1CgcOnQIz58/x507d3Dnzh1pNoZ8BWds+FCnTp1w5swZLFy4EL1790Z6ejosLS3RvHlzzJs3DwBQuXJlHDp0CJMmTYKzszOMjY0xaNAgzJgxQ6YsT09PxMTESLM8GBsbw9HREY8fP0bNmjWLbGeXLl1w5swZLF68GP369cPz589haGiI+vXrY9euXejQoYMy3QUA8Pb2xsGDBxEYGIjFixdLy3AMHjwYwPulHw4dOoTp06djwIABePr0KczNzdG0aVNUrFix0HJnzZqFzZs3S+/r1asHAAgPD4eXlxfU1NRw8OBBjBgxAm5ubtDV1YWfnx8CAwOlfapXr46wsDCMHz8eq1atQpUqVbBx40Z4e3tLeXr27ImnT59i1qxZSE1NRd26dXHkyJEiY/sYEyZMkNsWFRWFJk2afJL6iIiIiIjov0lFFPXXKREREREREREREdFnkJ6eDkNDQ6SlpcHAwOBzh0NERERERJ+Jsn8bFL0wIxEREREREREREREREREREdG/HAc/EBEREREREdEXbfjw4dDT01P4Gj58+OcOj4iIiIiIiIj+AVz2goiIiIiIiIi+aE+ePEF6errCNAMDA5iZmf3DERFRWeCyF0REREREBCj/t4H6PxgTEREREREREVGZMzMz4wAHIiIiIiIiov84LntBREREREREREREREREREREXzQOfiAiIiIiIiIiIiIiIiIiIqIvGgc/EBERERERERERERERERER0ReNgx+IiIiIiIiIiIiIiIiIiIjoi8bBD0RERERERERERERERERERPRF4+AHIiIiIiIiIiIiIiIiIiIi+qJx8AMRERERERERERERERERERF90Tj4gYiIiIiIiIiIiIiIiIiIiL5oHPxAREREREREREREREREREREXzQOfiAiIiIiIiIiIiIiIiIiIqIvGgc/EBERERERERERERERERER0ReNgx+IiIiIiIiIiIiIiIiIiIjoi8bBD0RERERERERERERERERERPRF4+AHIiIiIiIiIiIiIiIiIiIi+qJx8AMRERERERERERERERERERF90Tj4gYiIiIiIiOgL5uXlhXHjxn3uMD5KREQEVFRU8PLlS6Xy37t3DyoqKoiJiSnV/l+iL+E4z549G3Xr1v3cYfwjvoTj8W+loqKC33777XOHQURERERE/4M4+IGIiIiIiIjoC7Z3717MnTtXem9lZYWVK1d+voCU8OHghcaNGyMlJQWGhoZK7W9paYmUlBTUrl37k8WYP6Ai/1WxYkV07doVd+/e/WR1FuXD4/xP+/XXX9G8eXOUL18e2traqFmzJgYOHIjo6Ggpz8SJE3H8+PFSlZ+dnY0lS5bA2dkZOjo6MDExgbu7O0JCQpCTk1NWzVAqjqVLl8LFxQW6urowNDSEs7MzZsyYgUePHv1jcRTmxo0b6Nq1K6ysrKCiolLoZ/2HH36AlZUVtLS00KhRI1y4cEEmPSsrCyNHjkSFChWgp6eHrl274vHjxzJ5kpOT0b59e+jo6MDMzAyTJk3Cu3fvPlXTiIiIiIiIPhoHPxARERERERF9wYyNjaGvr/+5w/goGhoaMDc3h4qKilL51dTUYG5uDnV19U8cGZCQkIBHjx5hz549uHHjBjp27Ijc3Fy5fEKIT3pj+HMe5ylTpqBnz56oW7cuDhw4gISEBOzYsQPW1taYNm2alE9PTw8VKlQotJzs7OxCt3t7e2PRokUYOnQozpw5gwsXLmDkyJFYvXo1bty4UeZtUuTt27do1aoVFixYgP79++PkyZO4du0avv/+e/z9999YvXr1PxJHUV6/fg1ra2ssWrQI5ubmCvPs3r0bEyZMQEBAAK5cuQJnZ2d4e3vjyZMnUp7x48fj999/x549exAZGYlHjx7hm2++kdJzc3PRvn17ZGdn48yZM9i8eTNCQ0Mxa9asT95GIiIiIiKi0uLgByIiIiIiIqIvWMHp9728vHD//n2MHz9emrEg36lTp+Dh4QFtbW1YWlpizJgxyMzMlNKtrKwwb9489OvXD3p6eqhWrRoOHDiAp0+folOnTtDT00OdOnVw6dIlaZ/79++jY8eOKF++PHR1dVGrVi0cOnSoxG0ouGxFeno6tLW1cfjwYZk8+/btg76+Pl6/fi03c8SHXr9+jbZt28Ld3R0vX77Es2fP4OPjg8qVK0NHRwdOTk7YuXOnUrGZmZnBwsICTZs2xaxZsxAXF4c7d+5IMR8+fBiurq7Q1NTEqVOnkJeXh4ULF6J69erQ1taGs7MzfvnlF7m2/vHHH6hXrx60tbXRvHlzPHnyBIcPH4aDgwMMDAzQu3dvvH79Wtrvw2UWFC0dYGRkhNDQUAD/N7vGzz//LB33Bg0a4NatW7h48SLq168PPT09tG3bFk+fPi20/efOncOSJUuwfPlyLF++HB4eHqhatSpcXV0xY8YMmeP04bIX/fv3R+fOnTF//nxUqlQJNWvWVFjHypUrcfLkSRw/fhwjR45E3bp1YW1tjd69e+P8+fOwtbUF8H5wwpgxY2BmZgYtLS00adIEFy9elMqpX78+li1bJr3v3LkzypUrh4yMDADAw4cPoaKigjt37iiMY8WKFTh16hROnDiBMWPGwNXVFVWrVoWnpyfWrVuHBQsWyOTPy8vD5MmTYWxsDHNzc8yePVsm/eXLlxg8eDBMTU1hYGCA5s2bIzY2VibP/v374eLiAi0tLVhbW2POnDlFDqJp0KABli5dil69ekFTU1NhnuXLl2PIkCEYMGAAHB0dsW7dOujo6GDTpk0AgLS0NAQHB2P58uVo3rw5XF1dERISgjNnzuDcuXMAgKNHjyIuLg7btm1D3bp10bZtW8ydOxc//PCDNIgl/3hv2rQJVatWhZ6eHr799lvk5uZiyZIlMDc3h5mZGebPn19oe4iIiIiIiMoSBz8QERERERER/Y/Yu3cvqlSpgsDAQKSkpCAlJQUAkJiYiDZt2qBr1664evUqdu/ejVOnTmHUqFEy+69YsQLu7u6Ijo5G+/bt0bdvX/Tr1w++vr64cuUKbGxs0K9fPwghAAAjR47E27dvpSfkFy9eDD09vY9qg4GBATp06IAdO3bIbN++fTs6d+4MHR2dIvd/+fIlWrVqhby8PBw7dgxGRkbIysqCq6srwsLCcP36dQwdOhR9+/aVWwqgONra2gBkZzCYOnUqFi1ahPj4eNSpUwcLFy7Eli1bsG7dOty4cQPjx4+Hr68vIiMjZcqaPXs21qxZgzNnzuDBgwfo0aMHVq5ciR07diAsLAxHjx4tk5kGAgICMGPGDFy5cgXq6uro3bs3Jk+ejFWrViEqKgp37twp8mn+nTt3Sje1FSluto7jx48jISEBx44dw8GDBxXm2b59O1q2bIl69erJpZUrVw66uroAgMmTJ+PXX3/F5s2bceXKFdSoUQPe3t54/vw5AMDT0xMREREA3s/EERUVBSMjI5w6dQoAEBkZicqVK6NGjRqFtrVVq1YK41DU1s2bN0NXVxfnz5/HkiVLEBgYiGPHjknp3bt3lwa1XL58GS4uLmjRooUUb1RUFPr164exY8ciLi4O69evR2ho6EcNFsjOzsbly5fRsmVLaZuqqipatmyJs2fPAgAuX76MnJwcmTz29vaoWrWqlOfs2bNwcnJCxYoVpTze3t5IT0+XmYkjMTERhw8fxpEjR7Bz504EBwejffv2ePjwISIjI7F48WLMmDED58+fVyr+t2/fIj09XeZFRERERESkLA5+ICIiIiIiIvofYWxsDDU1Nejr68Pc3FyaFn/hwoXo06cPxo0bB1tbWzRu3Bjff/89tmzZgqysLGn/du3aYdiwYbC1tcWsWbOQnp6OBg0aoHv37rCzs8OUKVMQHx+Px48fAwCSk5Ph7u4OJycnWFtbo0OHDmjatOlHt6NPnz747bffpJkP0tPTERYWhj59+hS5X2pqKjw9PWFhYYHff/9dGihRuXJlTJw4UZpRYPTo0WjTpg1+/vlnpWNKSUnBsmXLULlyZZkZDAIDA9GqVSvY2NhAV1cXCxYswKZNm+Dt7Q1ra2v0798fvr6+WL9+vUx58+bNg7u7O+rVq4dBgwYhMjISa9euRb169eDh4YFu3bohPDxc6fgKM3HiRHh7e8PBwQFjx47F5cuXMXPmTJm6i6rn1q1bsLa2llliZPny5dDT05NeaWlphe6vq6uLjRs3olatWqhVq5bCPLdv34a9vX2R7cjMzMTatWuxdOlStG3bFo6OjtiwYQO0tbURHBwM4P3sGKdOnUJubi6uXr0KDQ0N9OnTRxoQERERAU9PzyLb+uHsFF26dJHa2bhxY5m0OnXqICAgALa2tujXrx/q16+P48ePA3g/08qFCxewZ88e1K9fH7a2tli2bBmMjIykmUDmzJmDqVOnws/PD9bW1mjVqhXmzp0rd66UxN9//43c3FyZQQsAULFiRaSmpgJ4/znR0NCAkZFRkXkUlZGfli8vLw+bNm2Co6MjOnbsiGbNmiEhIQErV65EzZo1MWDAANSsWVPpc3nhwoUwNDSUXpaWliVqPxERERER/bdx8AMRERERERHR/7jY2FiEhobK3LD29vZGXl4ekpKSpHx16tSRfs6/0enk5CS37cmTJwCAMWPGSDfxAwICcPXq1TKJt127dihXrhwOHDgAAPj1119hYGAg86S6Iq1atUKNGjWwe/duaGhoSNtzc3Mxd+5cODk5wdjYGHp6evjjjz+QnJxcbCxVqlSBrq4uKlWqhMzMTPz6668yZdevX1/6+c6dO3j9+jVatWol09dbtmxBYmKiTLkf9rWOjg6sra1ltuX388dQ5piWtJ6BAwciJiYG69evR2ZmpjQTiCJOTk4y/aVIUfvnS0xMRE5ODtzd3aVt5cqVQ8OGDREfHw8A8PDwwKtXrxAdHY3IyEh4enrCy8tLGvwQGRkJLy+v4htYwI8//oiYmBgMHDhQZhkSQLZvAcDCwkLqy9jYWGRkZKBChQoy50JSUpJ0LsTGxiIwMFAmfciQIUhJSZGr69/KysoK+vr60vuKFSvC0dERqqqqMtuUPcemTZuGtLQ06fXgwYMyj5mIiIiIiP53qRefhYiIiIiIiIi+ZBkZGRg2bBjGjBkjl1a1alXp53Llykk/50/xr2hbXl4eAGDw4MHw9vaWlmlYuHAhgoKCMHr06I+KV0NDA926dcOOHTvQq1cv7NixAz179pSZfUCR9u3b49dff0VcXJzMDf6lS5di1apVWLlyJZycnKCrq4tx48bJLF9RmKioKBgYGMDMzEzmJm++/CUZgPf9DABhYWGoXLmyTD5NTU2Z9x/2a8H3+dvy+1kRFRUVuUEDOTk5cvmUOaZF1WNra4tTp04hJydH2s/IyAhGRkZ4+PBhofvlK9g/hbGzs8PNmzeLzVccIyMjODs7IyIiAmfPnkWrVq3QtGlT9OzZE7du3cLt27eLnPnB1tYWCQkJMtssLCwAvJ9V5UNFHbOMjAxYWFhIAy8+jDM/z5w5c/DNN9/I5dHS0iqyrYUxMTGBmpqaNDtLvsePH0szwZibmyM7OxsvX76Umf3hwzwfLguTX2Z+HkBxH5T0XC5IU1NT7rNCRERERESkLM78QERERERERPQ/RENDA7m5uTLbXFxcEBcXhxo1asi9insqvziWlpYYPnw49u7dC39/f2zYsOGjysvXp08fHDlyBDdu3MCJEyeKXfICABYtWgQ/Pz+0aNECcXFx0vbTp0+jU6dO8PX1hbOzM6ytrXHr1i2l4qhevTpsbGwUDnz4kKOjIzQ1NZGcnCzXz2U9fb+pqSlSUlKk97dv3/4kswX4+PggIyMDP/74Y5mXna937974888/ER0dLZeWk5ODzMxM2NjYQENDA6dPn5ZJu3jxIhwdHaVtnp6eCA8Px8mTJ+Hl5QVjY2M4ODhg/vz5sLCwgJ2dXaFx+Pj44NixYwrjKCkXFxekpqZCXV1d7lwwMTGR8iQkJCj8XBacOaEkNDQ04OrqKi2/AbwfrHT8+HG4ubkBAFxdXVGuXDmZPAkJCUhOTpbyuLm54dq1azIzNhw7dgwGBgYy/U1ERERERPRvwpkfiIiIiIiIiP6HWFlZ4eTJk+jVqxc0NTVhYmKCKVOm4KuvvsKoUaMwePBg6OrqIi4uDseOHcOaNWtKXde4cePQtm1b2NnZ4cWLFwgPD4eDg0OZtKNp06YwNzdHnz59UL16dTRq1Eip/ZYtW4bc3Fw0b94cERERsLe3h62tLX755RecOXMG5cuXx/Lly/H48eMyv4mrr6+PiRMnYvz48cjLy0OTJk2QlpaG06dPw8DAAH5+fmVWV/PmzbFmzRq4ubkhNzcXU6ZMkXviviy4ubnB398f/v7+uH//Pr755htYWloiJSUFwcHBUFFRKfWN+nzjxo1DWFgYWrRogblz56JJkybQ19fHpUuXsHjxYgQHB6Nu3boYMWIEJk2aBGNjY1StWhVLlizB69evMWjQIKksLy8vrF69GqamprC3t5e2rVmzBt27dy8yjvHjx0txBAQEwMPDA+XLl8etW7dw+PBhqKmpKd2mli1bws3NDZ07d8aSJUtgZ2eHR48eISwsDF26dEH9+vUxa9YsdOjQAVWrVkW3bt2gqqqK2NhYXL9+HfPmzVNYbnZ2tjSwJzs7G3/99RdiYmKgp6eHGjVqAAAmTJgAPz8/1K9fHw0bNsTKlSuRmZmJAQMGAAAMDQ0xaNAgTJgwAcbGxjAwMMDo0aPh5uaGr776CgDQunVrODo6om/fvliyZAlSU1MxY8YMjBw5kjMzEBERERHRvxYHPxARERERERH9DwkMDMSwYcNgY2ODt2/fQgiBOnXqIDIyEtOnT4eHhweEELCxsUHPnj0/qq7c3FyMHDkSDx8+hIGBAdq0aYMVK1YUu1/+FPhFLWOhoqICHx8fLFmyBLNmzSpRXCtWrJAZADFjxgzcvXsX3t7e0NHRwdChQ9G5c2ekpaWVqFxlzJ07F6ampli4cCHu3r0LIyMjuLi44LvvvivTeoKCgjBgwAB4eHigUqVKWLVqFS5fvlymdeRbtmwZGjZsiLVr12LTpk14/fo1KlasiKZNm+Ls2bMwMDD4qPI1NTVx7NgxrFixAuvXr8fEiROho6MDBwcHjBkzBrVr1wbwfmaPvLw89O3bF69evUL9+vXxxx9/oHz58lJZHh4eyMvLk1newsvLC6tWrYKXl1eRcWhpaeH48eNYuXIlQkJCMG3aNOTl5aF69epo27Ytxo8fr3SbVFRUcOjQIUyfPh0DBgzA06dPYW5ujqZNm6JixYoAAG9vbxw8eBCBgYFYvHgxypUrB3t7ewwePLjQch89eoR69epJ75ctW4Zly5bB09NTWmKjZ8+eePr0KWbNmoXU1FTUrVsXR44ckeoF3n9GVFVV0bVrV7x9+xbe3t4ys3uoqanh4MGDGDFiBNzc3KCrqws/Pz8EBgYq3QdERERERET/NBXx4QKRRERERERERESf0Llz5+Dm5oanT59KSwAQEX0oPT0dhoaGSEtL++hBNkRERERE9OVS9m8DzvxARERERERERP+Id+/e4d69e1i6dCmcnZ058IGIiIiIiIiIyszHLcpIRERERERERPSB4cOHQ09PT+5lZGQEOzs7pPw/9u47rIqjYRv4fUDpRUURUAQLIBYQa5AoEAtYUBMLKnYsKBasxMfeK9YoliiosSe22JWAInYEbIhGQY2iJnasCPP94Xf25cBpIGp4nvt3XVx6dmdnZ3ZnZ/acnZlNT8f69eu/djKJiIiIiIiI6L8IX3tBRERERERERIXq0aNHePHihdJ1ZmZmsLS0/MIpIqKiiK+9ICIiIiIigK+9ICIiIiIiIqKvxNLSkh0ciIiIiIiIiOiL4msviIiIiIiIiIiIiIiIiIiIqEhj5wciIiIiIiIiIiIiIiIiIiIq0tj5gYiIiIiIiIiIiIiIiIiIiIo0dn4gIiIiIiIiIiIiIiIiIiKiIo2dH4iIiIiIiIiIiIiIiIiIiKhIY+cHIiIiIiIiIiIiIiIiIiIiKtLY+YGIiIiIiIiIiIiIiIiIiIiKNHZ+ICIiIiIiIiIiIiIiIiIioiKNnR+IiIiIiIiIiIiIiIiIiIioSGPnByIiIiIiIiIiIiIiIiIiIirS2PmBiIiIiIiIiIiIiIiIiIiIijR2fiAiIiIiIiIiIiIiIiIiIqIijZ0fiIiIiIiIiIiIiIiIiIiIqEhj5wciIiIiIiIiIiIiIiIiIiIq0tj5gYiIiIiIiIiIiIiIiIiIiIo0dn4g+sK8vLwQEhLytZPxr2Nvb49FixZ97WR8NZMnT0atWrW+djI+SVpaGmQyGRITE792UgpFTEwMZDIZnj17BgCIjIxEiRIlvmqaiop/a1mQyWTYtWvXvy6uf5vcZb8g/hvqtP8mudtYbcrv48ePYWlpibS0tM+atsKgTZn9HNds7nLeq1cvtGvX7pPizJ2XgwcPolatWsjOzv6keIHPc6/1b2kb83t+C6Oe+1IKo1wVJf/N7WtBFeVjUpB68mtdn7x3+XL+rd8ViIiIiIjovwM7PxB9YTt27MC0adOkz0Xhob+6Hyfy25nja/xIvnfvXnh6esLU1BRGRkaoV68eIiMjv2gaNBk1ahSioqI+S9yRkZGQyWSQyWTQ1dVFyZIl0aBBA0ydOhXPnz8vtP3Y2toiPT0dNWrUUBvuzz//RO/evVG+fHno6+ujYsWK6NKlC86fP19oadHEy8tLOiYymQxly5ZFx44dcfv2bSlMw4YNkZ6eDnNz8y+Wrvzy8fGBrq4uzp07l2fdrFmzUK9ePZiamsLS0hLt2rVDSkqKxjhfvHiBcePGoWrVqjAwMICVlRWaNm2KHTt2QAhRoHQWpYdMDx48wLBhw1ClShUYGBigbNmy8PDwQHh4OF6/fv21kyeV3dmzZ+dZ16pVK8hkMkyePPnLJyyXwqjTctZdMpkMJiYmqFOnDnbs2FFIqSw8qtry3A9SvlYHyHPnzqF///752mbGjBlo27Yt7O3tAfzfvYD8z8LCAs2bN0dCQkKhpfPf8iD9a8rd9vj6+qJ48eLYuHGj2u1ev36NsWPHonLlyjAwMECZMmXg6emJ3bt3S2EKUg6+lCdPniAkJAR2dnbQ09ODjY0N+vTpgzt37mi1fXp6Olq0aKH1/gqjjZdfE7q6urh3716e9BQrVgwymey/pgORpnD5/U7zJR80566/5H/dunX7IvtXJff9aO4/Ly+vz7LfXr16qd2vvN7/HBYvXqzwPUxZu/hvvQe3trbOc//1448/QiaTISYmRmG5l5cXunfv/gVTl5ey8+zr66sQ5smTJwgICICZmRlKlCiBwMBAZGRkKIS5ePEiGjVqBAMDA9ja2mLu3LlfMhtERERERET5xs4PRF9YqVKlYGpq+rWT8T9j6dKlaNu2LTw8PHDmzBlcvHgRnTt3RlBQEEaNGqVyOyEEPnz48MXSaWJiAgsLi88Wv5mZGdLT0/HXX3/h5MmT6N+/P9avX49atWrh/v37hbIPXV1dWFlZoVixYirDnD9/HnXq1MH169excuVKXL16FTt37kTVqlUxcuTIQkmHtvr164f09HTcv38fu3fvxt27dxV+BNfT04OVlRVkMtkXTZe27ty5g5MnT2Lw4MFYu3ZtnvXHjh1DcHAwTp8+jSNHjiAzMxPNmzfHq1evVMb57NkzNGzYEOvXr8fYsWNx4cIFHD9+HP7+/hgzZkyhdpYpqMzMzM8W961bt+Dm5obDhw9j5syZSEhIwKlTpzBmzBjs3bsXR48e/Wz7zg9bW9s8Hbju3buHqKgoWFtbf51E5VJYdZq87kpPT0dCQgJ8fHzQqVMntR153r9//8n7/W9TpkwZGBkZaR3+9evXWLNmDQIDA/OsO3r0KNLT03Ho0CFkZGSgRYsWRaJjU1GhrO3p1asXlixZona7oKAg7NixA0uXLsW1a9dw8OBBdOjQAY8fP5bC5LccfClPnjzBN998g6NHj2LFihX4888/sWXLFvz555+oV68ebt26pXJb+fVuZWUFfX19rfdZmG18uXLlsH79eoVl69atQ7ly5T45bipc8vpL/rds2bICxVNY7cyOHTuktJw9ezZPGj9XZ7/FixcrHAcAiIiIkD7n7lRbmO2qubm5xk5u/9Z7cC8vrzydHKKjo2Fra6uw/O3btzh9+jS+++67L5tAJXx9fRXO9ebNmxXWBwQE4MqVKzhy5Aj27t2L48ePK3SSe/HiBZo3bw47OzvEx8dj3rx5mDx5MlatWvWls0JERERERKQ9QURflKenpxg2bJj0fwAKf3KxsbHi22+/FQYGBqJ8+fJiyJAhIiMjQ1pvZ2cnpk2bJrp37y6MjY1FhQoVxO7du8WjR49EmzZthLGxsahZs6Y4d+6ctE1aWppo3bq1KFGihDAyMhLVqlUT+/bt05jm1NRUAUAkJCSozY8QQrx9+1aMHDlS2NjYCCMjI1G/fn0RHR0thBAiOjo6T34nTZok5WfGjBmid+/ewsTERNja2oqVK1cq7GvMmDHCwcFBGBoaiooVK4rx48eL9+/fq0z3nTt3RPHixcWIESPyrFuyZIkAIE6fPq2Qtv3794vatWuL4sWLi+joaPHixQvRtWtXYWRkJKysrMSCBQvy5Hn9+vWiTp06wsTERJQtW1Z06dJFPHz4UFovj/vo0aOiTp06wtDQULi7u4tr165JYSZNmiRcXV0V0rhmzRpRrVo1oaenJ6ysrERwcLAQQojs7GwxadIkYWtrK/T09IS1tbUYMmSIyuMQEREhzM3N8yx/+PChKF26tAgICJCWZWVliZkzZwp7e3thYGAgXFxcxPbt26X1T548EV27dhWlS5cWBgYGokqVKmLt2rVCCPXlRJ7u6tWrizp16oisrKw8658+fSr9/+LFi8Lb21sYGBiIUqVKiX79+omXL18KIYS4dOmSkMlk4tGjR0IIIR4/fixkMpnw9/eXtp82bZrw8PBQeUxyn0MhhNiwYYMwMjKSPsvPmzxdyo7j8uXLRaVKlUTx4sWFo6OjWL9+vcJ6AGL16tWiXbt2wtDQUFSpUkXs3r1bWv/hwwfRp08f6Xg7OjqKRYsWqUx3TpMnTxadO3cWycnJwtzcXLx+/Vpt+EePHgkA4tixYyrDDBw4UBgbG4t79+7lWffy5UuRmZkp5Wvnzp0K683NzUVERIQQQrEsyP+f869nz55CiI/X/cKFCxXicXV1leoF+b6WL18u/Pz8hJGRkbRu165dws3NTejr64uKFSuKyZMnS+kTQojr16+LRo0aCX19feHs7CwOHz6sNN05+fj4iPLlyyvUtTllZ2crpEvduRXiY1n19fUVxsbGwtLSUnTr1k38/fff0npN15synp6eYuDAgcLCwkKcOHFCWj5jxgzh5+eX5/hpqp+EEGLfvn3CwcFBGBgYCC8vLxEREaFQ9oXQ3CbllrtO69mzp2jbtq2YN2+esLKyEqVKlRKDBg1SW4cru+aysrJE8eLFxbZt26RldnZ2YurUqaJ79+7C1NRUKl+a2ozExETh5eUlTExMhKmpqahdu7bUZua3vVRWlnMfh549e+a5FlJTU4UQmsuKp6enGDJkiBg9erQoWbKkKFu2rMJ51tQu5E6fpmth+/btokyZMgrLlNXxcXFxAoA4ePCgEEJzOSnoPYK27WzOMptb7jxPnDhRWFlZiaSkJCGEdvcYs2bNEpaWlsLExET06dNHhIaG5rucFyQvt2/fFgDEn3/+qTJ/5ubmIjIyUuV6IZSXA0312O7du0WVKlWEvr6+8PLyEpGRkRrbRk31c25BQUHC2NhYpKenKyx//fq1KFeunPD19ZWWeXp6iuDgYDFs2DBhYWEhvLy8pLzkPL9xcXHC1dVV6Ovrizp16oidO3cqlF9VbfzBgwdF1apVhbGxsfDx8RH3799XmW75NTF+/Hjh4OCgsM7R0VFMmDBB4TrXps3/8OGDGD58uDA3NxelSpUSo0ePFj169BBt27aVwhSk7VBX7tS107mpu9Zyl6+nT5+KwMBAUbp0aWFqaiq8vb1FYmKiEEJI7UzOP/k9xOe4d1J3j/rnn3+KNm3aCEtLS2FsbCzq1q0rjhw5kidvudsZeZn5/fffhaOjozA0NBTt27cXr169EpGRkcLOzk6UKFFCDBkyRHz48EFt+jSlsTDuOdTJff0UtF0VQvt6Uv5/Ze2isnL266+/St+L7OzsxPz58xX2WxjfJZV9H8tp5cqVwsTERKrPXrx4IYoXLy5++ukn4enpKYX7448/pLz8888/onPnzsLGxkYYGhqKGjVqiE2bNklh161bJ0qVKiXevn2rsK+2bduKbt26qUyLNnIea2WuXr0qACj8XnDgwAEhk8mk7wLLly8XJUuWFO/evZPChIaGCicnpzz7mTFjhrC0tBTm5uZiypQpIjMzU4waNUqULFlSlCtXTvrOKITm7425PX/+XAAQz58/1zL3RERERET030jb7wac+YHoK9qxYwfKly+PqVOnKoy8uXnzJnx9fdG+fXtcvHgRW7duxYkTJzB48GCF7RcuXAgPDw8kJCSgVatW6N69O3r06IFu3brhwoULqFy5Mnr06CFNVR8cHIx3797h+PHjuHTpEubMmQMTE5NCzdPgwYNx6tQpbNmyBRcvXkTHjh3h6+uLGzduoGHDhli0aJHCSN6csy+EhYWhbt26SEhIwKBBgzBw4ECF0b2mpqaIjIzE1atXsXjxYqxevRoLFy5UmZZff/0VmZmZSmd4GDBgAExMTPKMfvnxxx8xe/ZsJCcnw8XFBSNGjEBcXBz27NmDI0eOIDY2FhcuXFDYJjMzE9OmTUNSUhJ27dqFtLQ09OrVK88+x40bh7CwMJw/fx7FihVDnz59VKY9PDwcwcHB6N+/Py5duoQ9e/agSpUqAIDffvsNCxcuxMqVK3Hjxg3s2rULNWvWVBmXKpaWlggICMCePXuQlZUF4OOrEtavX48VK1bgypUrGD58OLp164Zjx44BACZMmICrV6/iwIEDSE5ORnh4OEqXLq3V/hITE3HlyhWMHDkSOjp5mx/5KLBXr17Bx8cHJUuWxLlz57B9+3YcPXpUKv/Vq1eHhYWFlKbY2FiFz8DHWQ/yM1XwkydPsG3bNjRo0EDrbXbu3Ilhw4Zh5MiRuHz5MgYMGIDevXsjOjpaIdyUKVPQqVMnXLx4ES1btkRAQACePHkCAMjOzkb58uWxfft2XL16FRMnTsR//vMfbNu2Te2+hRCIiIhAt27dULVqVVSpUgW//vqr2m3kszaUKlVK6frs7Gxs2bIFAQEBsLGxybPexMRE7aweqtja2uK3334DAKSkpCA9PR2LFy/OVxyTJ0/G999/j0uXLqFPnz6IjY1Fjx49MGzYMFy9ehUrV65EZGQkZsyYIeXlhx9+gJ6eHs6cOYMVK1YgNDRU7T4eP36Mw4cPIzg4GMbGxkrD5B6BqO7cPnv2DN999x3c3Nxw/vx5HDx4EA8fPkSnTp2k7TVdb6ro6ekhICAAERER0rLIyEildYqm+unu3bv44Ycf4Ofnh8TERPTt2xc//vijQhzatkmaREdH4+bNm4iOjsa6desQGRmZr1cQZWVlYd26dQCA2rVrK6ybP38+XF1dkZCQgAkTJgDQ3GYEBASgfPnyOHfuHOLj4/Hjjz+iePHiAD5Pe7l48WK4u7tLs86kp6fD1tZWq7ICfBxJbmxsjDNnzmDu3LmYOnUqjhw5AqDw2gW52NhY1KlTR2M4Q0NDAB9HBWtTTgp6j6BtO6sNIQSGDBmC9evXIzY2Fi4uLgA0l5dt27Zh8uTJmDlzJs6fPw9ra2ssX748T/yaynlB8lKhQgWULVsWsbGxKsNYWVlh//79ePnyZb6Oh7p6LDU1FR06dEC7du2QlJSEAQMGYNy4cWrj01Q/55az7bGyslJYZ2hoiEGDBuHQoUNSmoCP14Kenh7i4uKwYsWKPHG+ePECfn5+qFmzJi5cuIBp06ZpbAOAjzOezJ8/Hxs2bMDx48dx584dtbOEybVp0wZPnz7FiRMnAAAnTpzA06dP4efnlyevmtr8sLAwREZGYu3atThx4gSePHmCnTt3KsRTkLZDXbkrjHZamY4dO+LRo0c4cOAA4uPjUbt2bTRp0gRPnjyBv78/Ro4cierVq0vXu7+/v7Tt57h3UiUjIwMtW7ZEVFQUEhIS4OvrCz8/vzyvXFHWzrx+/RpLlizBli1bcPDgQcTExOD777/H/v37sX//fmzYsAErV67UeI+mjU+958ivgrSr2taTcqraxdzi4+PRqVMndO7cGZcuXcLkyZMxYcKEPPcQhf1dMjdvb29kZGRIM2PExsbC0dER7du3x5kzZ/D27VsAH9sBe3t72Nvb4+3bt6hTpw727duHy5cvo3///ujevbs000fHjh2RlZWFPXv2SPt59OgR9u3bp/a7orZiYmJgaWkJJycnDBw4UGE2oFOnTqFEiRKoW7eutKxp06bQ0dHBmTNnpDCNGzeGnp6eFMbHxwcpKSl4+vSptOyPP/7A/fv3cfz4cSxYsACTJk1C69atUbJkSZw5cwZBQUEYMGAA/vrrL63S/e7dO7x48ULhj4iIiIiISGtfoicGEf2f3CPOlY0WDQwMFP3791dYFhsbK3R0dMSbN2+k7XKOBklPTxcAxIQJE6Rlp06dEgCkkXQ1a9YUkydPznea5SMzDA0NhbGxscKfjo6OlJ/bt28LXV3dPKPGmzRpIsaOHSuEUD0LQe78ZGdnC0tLSxEeHq4yXfPmzRN16tRRuT4oKEjpvuRcXFxEixYthBD/N5Jt165d0nr5aJ6co+mePXsmjIyM8swakNO5c+cEAGmmgpwzP8jt27dPAJDOZ+6RRjY2NmLcuHFK4w8LCxOOjo5qR0znpOqYCyFEeHi4ACAePnwo3r59K4yMjMTJkycVwgQGBoouXboIIYTw8/MTvXv3VhqXphE8W7duFQDEhQsX1KZ31apVomTJkgqjhfft2yd0dHTEgwcPhBBC/PDDD9JMGCEhIdJo6OTkZPH+/XthZGQkDh8+rHIfnp6eonjx4sLY2FgYGRkJAMLR0VEanSmE5pkfGjZsKPr166cQb8eOHUXLli2lz/j/I0LlMjIyBABx4MABlWkLDg4W7du3V32AhBCHDx8WZcqUkUaeLVy4UGHEWW5ZWVmiVatWamfDePjwoQAgFixYoHbfQuRv5gchVI8U1Xbmh5CQEIUwTZo0ETNnzlRYtmHDBmFtbS2EEOLQoUOiWLFiCnXRgQMH1I52P336tAAgduzYobDcwsJCqu/GjBmjkC5153batGmiefPmCnHdvXtXABApKSlaXW/KyNuQxMREYWpqKjIyMsSxY8eEpaWlyMzMzHP8cstdP40dO1ZUq1ZNIUxoaKjC+dKmTcpN2cwPdnZ2CqNfO3bsqDBjS27ykcE52xt9fX2pnMnZ2dmJdu3aqYxHLnebYWpqqnKkfH7bS21mfhBC+awzmsqKfLtvv/1WIUy9evVEaGioEEJzu5DfmR/atm0r+vTpo7As93X99OlT8f333wsTExPx4MEDjeXkU+4RclPVzmqa+WH79u2ia9euwtnZWfz1119q95G7vLi7u4tBgwYphGnQoMEnl3Nt8+Lm5qa2TB47dkyUL19eFC9eXNStW1eEhIQozA4jhPJyoK4eCw0NFTVq1FCIY9y4cWrbRk31c24PHjwQAJReP0IIsWPHDgFAnDlzRgjx8Vpwc3PLEy5nmQ4PDxcWFhYK9dPq1as1zvyAXLNrLFu2TJQtW1ZpuoRQvCZCQkKk+6PevXuL4cOHi4SEBIWZH5TJ3eZbW1uLuXPnSp8zMzNF+fLlpdHbBW07civINZQzXO7vA8bGxkImk0nnMTY2VpiZmeUZzV65cmVpNL6qUfaf495J1XcZVfek1atXF0uXLpU+K2tnlJWZAQMGCCMjI+m4CvFxVqkBAwaoTFvuNKqa+eFT7jk0yd0mFLRd1baezDkbgbJ2MXd57Nq1q2jWrJlCmNGjRyvcvxTGd0lNMz8IIUS5cuWkOm706NFSfh0dHcUff/whhBCiUaNGKr8vCSFEq1atxMiRI6XPAwcOlL6TCvGxTa9UqZLCjGMFsXnzZrF7925x8eJFsXPnTuHs7Czq1asntVEzZswQjo6OebYrU6aMWL58uRBCiGbNmuVp269cuSIAiKtXrwoh/q/tyzmzn5OTk2jUqJH0+cOHD8LY2Fhs3rxZCKH5e+OkSZPyzAoCzvxARERERPQ/T9uZH/I/hJOIPrukpCRcvHgRGzdulJYJIZCdnY3U1FQ4OzsDgDRaEQDKli0LAAojPeXLHj16BCsrKwwdOhQDBw7E4cOH0bRpU7Rv314hDk22bt0q7VsuICBA+v+lS5eQlZUFR0dHhTDv3r3T6t3vOdMik8lgZWWFR48eKex/yZIluHnzJjIyMvDhwweYmZlpnX5t5Bz5cuvWLWRmZqJ+/frSMnNzczg5OSlsEx8fj8mTJyMpKQlPnz5FdnY2AODOnTuoVq2a0vxZW1sD+HhuKlSooBDfo0ePcP/+fTRp0kRpGjt27IhFixahUqVK8PX1RcuWLeHn51egUfni/88KIpPJ8Oeff+L169do1qyZQpj379/Dzc0NADBw4EC0b98eFy5cQPPmzdGuXTs0bNgwX/vSJDk5Ga6urgqj7z08PJCdnY2UlBSULVsWnp6e0rtmjx07hpkzZ+L69euIiYnBkydPkJmZCQ8PD7X7CQgIkEawPnz4EDNnzkTz5s0RHx8PU1NTrdKZ85248nTmHi2Z87wbGxvDzMxMoVwvW7YMa9euxZ07d/DmzRu8f/8etWrVUrvvtWvXwt/fXzrnXbp0wejRo3Hz5k1Urlw5T/jg4GBcvnxZGpWqjLbn52vIeV0CH+vIuLg4hZHEWVlZePv2LV6/fo3k5GTY2toqzGDh7u5eoH2fPXsW2dnZCAgIwLt37xTWqTu3SUlJiI6OVjpbwM2bN5GZmanxelPH1dUVDg4O+PXXXxEdHY3u3bsrrQM01U/Jycl5ZjzJfay0bZM0qV69OnR1daXP1tbWuHTpktptTE1Npdl2Xr9+jaNHjyIoKAgWFhYKo6pzlxFAc5sxYsQI9O3bFxs2bEDTpk3RsWNH6fr51PYyPzSVFXmbmnv/1tbWUnkrzHYBAN68eQMDAwOl6xo2bAgdHR28evUKlSpVwtatW1G2bFmN5eTWrVsFvkfQtp3VZPjw4dDX18fp06fzzFqkqbwkJycjKChIYRt3d/c8s/1oKucFzYuhoSFev36tcn3jxo1x69YtnD59GidPnkRUVBQWL16MKVOmSKO2lVFXj6WkpKBevXoK4XPeEymjqX42MjJSul1+2iBNs5KkpKTAxcVFoQxrSjcAGBkZKbShOa8xTfr06YOGDRti5syZ2L59O06dOoUPHz7kCaeuzX/+/DnS09MV6uRixYqhbt260vHR5l5NmcK6huRiY2Pz3CvlnHErKSkJGRkZea7tN2/e4ObNmxrj/xz3TkDe7zK2trbIyMjA5MmTsW/fPqSnp+PDhw948+ZNnpkflLUzuctM2bJlYW9vr1Cfly1bVutypM6n3HPkrne1UZB2Vdt6Mr+Sk5PRtm1bhWUeHh5YtGgRsrKypDr3S3yX9PLyQkxMDMaOHYuYmBiMHj0aAODp6YmYmBh88803OHPmDPr16wfgY/03c+ZMbNu2Dffu3cP79+/x7t07hbqwX79+qFevHu7du4dy5cohMjISvXr1yjPjmFyLFi2kmYDs7Oxw5coVpeE6d+4s/b9mzZpwcXFB5cqVERMTo/J7ZkFVr15dYWa/smXLokaNGtJnXV1dWFhYaH0tjB07FiNGjJA+v3jxQumsIERERERERMqw8wPRv1BGRgYGDBiAoUOH5lmX80G5fHpu4P+mY1e2TP4DZ9++feHj44N9+/bh8OHDmDVrFsLCwjBkyBCt0mVrayu9ekFOPuW1PN26urqIj49X+OEfgFbThedMuzz98rSfOnUKAQEBmDJlCnx8fGBubo4tW7YgLCxMZXyOjo54/vw57t+/n2caf/kU3d7e3grLVU13r4r8FQ0+Pj7YuHEjypQpgzt37sDHxwfv379Xmb/c5yannMdUGVtbW6SkpODo0aM4cuQIBg0ahHnz5uHYsWN5jqEmycnJMDMzg4WFBW7dugUA2LdvH8qVK6cQTl9fH8DHH9tu376N/fv348iRI2jSpAmCg4Mxf/58jfuS//B67do1rR7uquPl5YWQkBDcuHEDV69exbfffotr164hJiYGT58+Rd26dVU+YJEzNzeXynOVKlWwZs0aWFtbY+vWrejbt+8npS8ndeV6y5YtGDVqFMLCwuDu7g5TU1PMmzdPmmpWGfkU2JmZmQgPD5eWZ2VlYe3atXmmFh88eDD27t2L48ePo3z58irjLVOmDEqUKIFr165pzJNMJsvzoCozM1Pjdrnp6OhoFU/u6zIjIwNTpkzBDz/8kCesqge2mlSpUgUymUxhemQAqFSpEgDl16W6c5uRkQE/Pz/MmTMnz3bW1ta4fPkyAPXXmyZ9+vTBsmXLcPXqVWn65JzyUz+po22bpIm646WKjo6OQrvj4uKCw4cPY86cOQqdH3KXEW3ajMmTJ6Nr167Yt28fDhw4gEmTJmHLli34/vvv891empmZSa+WyenZs2cwNzdXm0dNZUVO3fErzHYBAEqXLq0wnXVOW7duRbVq1WBhYSG9rkieD3Xl5OLFiwW6RyiscgwAzZo1w+bNm3Ho0CGFzpsFucdQRd15+pS8PHnyBGXKlNG470aNGqFRo0YIDQ3F9OnTMXXqVISGhipMWa5tegsiv/WzvO1JTk5WGl9ycjJkMplCPZDfezVtKTsW2nbKqFmzJqpWrYouXbrA2dkZNWrUQGJiokKYgrT5uWVkZADIX9tRmNeQXMWKFRWufwAKna0yMjJgbW2NmJiYPNvm3k6Zwr53klP2XWbYsGE4cuQI5s+fjypVqsDQ0BAdOnTIc2yUlTtl6Szsa0rdvrS95yiIgrSrX1thf5dUxtvbG8OGDcPjx4+RkJAAT09PAB87P6xcuRKNGzfG+/fv8d133wEA5s2bh8WLF2PRokWoWbMmjI2NERISolC+3Nzc4OrqivXr16N58+a4cuUK9u3bpzINP//8M968eaM0z+pUqlQJpUuXxp9//okmTZrk6RwCAB8+fMCTJ0+k1xBZWVnh4cOHCmHkn3O+qqiwrwV9fX2t74eJiIiIiIhyY+cHoq9MT08PWVlZCstq166Nq1ev5vlxrjDY2toiKCgIQUFBGDt2LFavXq115wdN3NzckJWVhUePHqFRo0ZKwyjLrzZOnjwJOzs7hXdN3759W+027du3R2hoKMLCwvL8sLVixQq8evUKXbp0Ubl9pUqVULx4cZw7d056wPf8+XNcv34djRs3BvDxQf7jx48xe/ZsaTTK+fPn852/nExNTWFvb4+oqKg8nTPkDA0N4efnBz8/PwQHB6Nq1aq4dOkSateurfV+Hj16hE2bNqFdu3bQ0dFBtWrVoK+vjzt37kg/5ClTpkwZ9OzZEz179kSjRo0wevRorTo/1KpVC9WqVUNYWBj8/f0VRgcBHx8SlihRAs7OzoiMjMSrV6+kH17j4uKgo6MjzbpRs2ZNlCxZEtOnT0etWrVgYmICLy8vzJkzB0+fPlUYfagt+cM4+Y+Jmjg7OyMuLg49e/aUlsXFxeVrBGVcXBwaNmyIQYMGScs0jYjcuHEjypcvj127diksP3z4MMLCwjB16lTo6upK77XfuXMnYmJiULFiRbXx6ujooHPnztiwYQMmTZqUp8NQRkYGDAwMUKxYMZQpUwbp6enSuhs3bqgdkSx/6Jb72s8dz4sXL5Camqo2ncDHOjIlJUVlHens7Iy7d+8iPT1d+tH/9OnTauO0sLBAs2bN8NNPP2HIkCGf/HCtdu3a+O2332Bvb6909L2215s6Xbt2xahRo+Dq6qq03GlTPzk7Oyu8ZxrIe6w+Z5tUELq6uhqvU23bDEdHRzg6OmL48OHo0qULIiIi8P333wPIX3vp5OSE+Pj4PMsvXLigMFuQqjZfXVnRVmG0C3Jubm745ZdflK6ztbVVOsOMpnJS0HuEwmxn27RpAz8/P3Tt2hW6urrSqFhtyouzszPOnDmDHj16SMs01Su5FTQvb9++xc2bN/PdcbBatWr48OED3r59q7LzgzpOTk7Yv3+/wjL5u+5V0VQ/56ajo4NOnTph48aNmDp1qsLDtDdv3mD58uXw8fFBqVKl8pXuX375Be/evZMenmlKd2Ho06cPBg0apNAxMSdNbb65uTmsra1x5swZ6T7zw4cPiI+Pl67jgrQd2pQ7Ve10QdWuXRsPHjxAsWLFYG9vrzRMQb8TFOTeSVN8vXr1kur+jIwMpKWlFTi+r6Gw2hF1Plc9qU05kN9z5xQXFwdHR8c8nek+Jf3a8Pb2xqtXr7BgwQI4ODjA0tISwMfZdwIDA3HgwAE4ODhInZPi4uLQtm1bdOvWDcDHju/Xr1/Pc9/Wt29fLFq0CPfu3UPTpk3VznKQu+OTtv766y88fvxYujd2d3fHs2fPEB8fL82o88cffyA7O1uagcbd3R3jxo1DZmam1JnhyJEjcHJyQsmSJQuUDiIiIiIios9NR3MQIvqc7O3tcfz4cdy7dw///PMPACA0NBQnT57E4MGDkZiYiBs3bmD37t0YPHjwJ+0rJCQEhw4dQmpqKi5cuIDo6GitpyvXhqOjIwICAtCjRw/s2LEDqampOHv2LGbNmiWNXrG3t0dGRgaioqLwzz//qH1gmpODgwPu3LmDLVu24ObNm1iyZAl27typdpsKFSpg7ty5WLRoEcaNG4dr167h5s2bWLBgAcaMGYORI0fmme49J1NTU/Ts2ROjR49GdHQ0rly5gsDAQOjo6EgzN1SoUAF6enpYunQpbt26hT179mDatGlaHjHVJk+ejLCwMCxZsgQ3btzAhQsXsHTpUgBAZGQk1qxZg8uXL+PWrVv45ZdfYGhoCDs7O5XxCSHw4MEDpKenIzk5GWvXrkXDhg1hbm6O2bNnS/kdNWoUhg8fjnXr1uHmzZvSftetWwcAmDhxInbv3o0///wTV65cwd69e7UuQzKZDBEREbh+/ToaNWqE/fv349atW7h48SJmzJghTWcbEBAAAwMD9OzZE5cvX0Z0dDSGDBmC7t27S69ykclkaNy4MTZu3Ch1dHBxccG7d+8QFRWl1QOB169f48GDB3jw4AGSkpIwcOBAGBgYoHnz5lrlZ/To0YiMjER4eDhu3LiBBQsWYMeOHRg1apRW2wMfy/X58+dx6NAhXL9+HRMmTND4gGbNmjXo0KEDatSoofAXGBiIf/75BwcPHgTw8VUXv/zyCzZt2gRTU1Mpr+oeGs+YMQO2trZo0KAB1q9fj6tXr+LGjRtYu3Yt3NzcpBGn3333HX766SckJCTg/PnzCAoKUjvyzM7ODjKZDHv37sXff/+tEM+GDRsQGxuLS5cuoWfPnlr9iD1x4kSsX78eU6ZMwZUrV5CcnIwtW7Zg/PjxAICmTZvC0dERPXv2RFJSEmJjYxV+7FZl+fLl+PDhA+rWrYutW7ciOTkZKSkp+OWXX3Dt2jWtf2AHPh7/J0+eoEuXLjh37hxu3ryJQ4cOoXfv3sjKytLqetOkZMmSSE9PR1RUlNL12tRPQUFBuHHjBkaPHo2UlBRs2rQJkZGRCmE+V5ukDXnd9eDBA6SmpmLVqlU4dOhQnumvc9PUZrx58waDBw9GTEwMbt++jbi4OJw7d06qz/LbXg4fPhz79u3DjBkzkJycjMuXL2PcuHE4deoUhg0bJoWzt7fHmTNnkJaWhn/++QfZ2dkay4o2CtIuqOPj44MrV66onP1BGU3lpKD3CIXdzn7//ffYsGEDevfujV9//RWAdvcYw4YNw9q1a6V2bNKkSSqnGleloHk5ffo09PX11b6+x8vLCytXrkR8fDzS0tKwf/9+/Oc//4G3t3eBXxE2YMAAXLt2DaGhobh+/Tq2bdsm1Q+qpmPXVD8rM3PmTFhZWaFZs2Y4cOAA7t69i+PHj8PHxweZmZlYtmxZvtLdtWtXZGdno3///khOTsahQ4ekTpqq0l0Y+vXrh7///lvl7FHatPnDhg3D7NmzsWvXLly7dg2DBg3Cs2fPpPUFaTu0KXeq2umCatq0Kdzd3dGuXTscPnwYaWlpOHnyJMaNGyd1vLC3t0dqaioSExPxzz//5Hm1lCoFuXfSFN+OHTuQmJiIpKQkqfwUJYXRjmjyuepJZe1ibiNHjkRUVBSmTZuG69evY926dfjpp5/yfc+d3++SylSqVAkVKlTA0qVLFb5vyF+3tmrVKoXO6w4ODjhy5AhOnjyJ5ORkDBgwIM9MCsDHeuuvv/7C6tWr0adPn3ynK7eMjAyMHj0ap0+fRlpaGqKiotC2bVtUqVIFPj4+AD52KvH19UW/fv1w9uxZxMXFYfDgwejcubPUCbpr167Q09NDYGAgrly5gq1bt2Lx4sUKr6QgIiIiIiL6t2HnB6KvbOrUqUhLS0PlypWl6YxdXFxw7Ngx6SGxm5sbJk6cmGckdn5lZWUhODhY+qHD0dERy5cvL4xsSCIiItCjRw+MHDkSTk5OaNeuncLMCQ0bNkRQUBD8/f1RpkwZzJ07V6t427Rpg+HDh2Pw4MGoVasWTp48qfYd1nIhISHYuXMnYmNjUbduXdSoUQObNm1CeHi4VrMVLFiwAO7u7mjdujWaNm0KDw8PODs7S1M3lylTBpGRkdi+fTuqVauG2bNnaxWvJj179sSiRYuwfPlyVK9eHa1bt8aNGzcAfJwuePXq1fDw8ICLiwuOHj2K33//Xe0701+8eAFra2uUK1cO7u7uWLlyJXr27ImEhASF6XCnTZuGCRMmYNasWVI52bdvnzRrgJ6eHsaOHQsXFxc0btwYurq62LJli9b5ql+/Ps6fP48qVaqgX79+cHZ2Rps2bXDlyhUsWrQIwMf3Jx86dAhPnjxBvXr10KFDBzRp0gQ//fSTQlyenp7IysqSOj/o6OigcePGkMlk8PDw0JiW1atXw9raGtbW1vD29sY///yD/fv3K4zSVqddu3ZYvHgx5s+fj+rVq2PlypWIiIjI16wTAwYMwA8//AB/f380aNAAjx8/VhjJmFt8fDySkpLQvn37POvMzc3RpEkTrFmzBgAQHh6O58+fw8vLS8qn/LUeqpQqVQqnT59Gt27dMH36dLi5uaFRo0bYvHkz5s2bJ03fHxYWBltbWzRq1EiafUDda0bKlSuHKVOm4Mcff0TZsmWlh6Fjx46Fp6cnWrdujVatWqFdu3ZKR5Tn5uPjg7179+Lw4cOoV68evvnmGyxcuFB60Kujo4OdO3fizZs3qF+/Pvr27ZvndSDKVK5cGQkJCWjatCnGjh0LV1dX1K1bF0uXLsWoUaPy9cDVxsYGcXFxyMrKQvPmzVGzZk2EhISgRIkS0qwnmq43bZQoUULlLBXa1E8VKlTAb7/9hl27dsHV1RUrVqzAzJkzFcJ8rjZJG/K6y9raGs7OztLsJpo6s2hqM3R1dfH48WP06NEDjo6O6NSpE1q0aIEpU6YAyH972bBhQxw4cAAHDhyAh4cHvLy8cPLkSURFRSm883rUqFHQ1dVFtWrVpKnntSkrmhSkXVCnZs2aqF27NrZt26b1NtqUk4LcI3yOdrZDhw5Yt24dunfvjh07dmh1j+Hv748JEyZgzJgxqFOnDm7fvo2BAwfma78FzcvmzZsREBCgtp718fHBunXr0Lx5czg7O2PIkCHw8fHJ1znMrWLFivj111+xY8cOuLi4IDw8XLr2VE1Hrql+VsbCwgKnT5+Gt7c3BgwYgMqVK6NTp06oXLkyzp07J71+SFtmZmb4/fffkZiYiFq1amHcuHGYOHEigIK/GkkbxYoVQ+nSpVWOvNemzR85ciS6d++Onj17Sq90kM9IIJfftkObcqeqnS4omUyG/fv3o3HjxujduzccHR3RuXNn3L59W+rI2r59e/j6+sLb2xtlypTB5s2btYo7v/dOmixYsAAlS5ZEw4YN4efnBx8fnwLNmPM1FUY7osnnqieVtYu5ydujLVu2oEaNGpg4cSKmTp2KXr16FWr6teXt7Y2XL1/muef39PTEy5cvFTo/jB8/HrVr14aPjw+8vLxgZWWFdu3a5YnT3Nwc7du3h4mJidL1+aWrq4uLFy+iTZs2cHR0RGBgIOrUqYPY2FiF+nvjxo2oWrUqmjRpgpYtW+Lbb7/FqlWrFNJ1+PBhpKamok6dOhg5ciQmTpyI/v37f3IaiYiIiIiIPheZ0PZFpkREhFevXqFcuXIICwtDYGDg104OERHRZ7Fv3z6MHj0aly9fLrSHZ5R///zzD5ycnHD+/Pl8dYz6XGbMmIEVK1bg7t27Xzsp+bJx40b07t0bz58/h6Gh4ddODhFRHk2aNEH16tWxZMmSr52Uf50XL17A3Nwcz58/L/BsRkREREREVPRp+93g87wQkojov0RCQgKuXbuG+vXr4/nz55g6dSoAaJxynYiIqChr1aoVbty4gXv37ql99zh9XmlpaVi+fPlX6/iwfPly1KtXDxYWFoiLi8O8efO+yCtvPtX69etRqVIllCtXDklJSQgNDUWnTp3Y8YGI/nWePn2KmJgYxMTEFPqsjERERERERP+L2PmBiBAUFIRffvlF6bpu3bphxYoVXzhF/y7z589HSkoK9PT0pOlCS5cu/bWTRURE9FmFhIR87ST8z6tbty7q1q371fZ/48YNTJ8+HU+ePEGFChUwcuRIjB079qulR1sPHjzAxIkT8eDBA1hbW6Njx45avf6IiOhLc3Nzw9OnTzFnzhytX79HREREREREqvG1F0SER48e4cWLF0rXmZmZwdLS8guniIiIiIiIiIj+1/G1F0REREREBPC1F0SUD5aWluzgQERERERERERERERERERFls7XTgARERERERERERERERERERHRp2DnByIiIiIiIiIiIiIiIiIiIirS2PmBiIiIiIiIiIiIiIiIiIiIijR2fiAiIiIiIiIiIiIiIiIiIqIijZ0fiIiIiIiIiIiIiIiIiIiIqEhj5wciIiIiIiIiIiIiIiIiIiIq0tj5gYiIiIiIiIiIiIiIiIiIiIo0dn4gIiIiIiIiIiIiIiIiIiKiIo2dH4iIiIiIiIiIiIiIiIiIiKhIY+cHIiIiIiIiIiIiIiIiIiIiKtLY+YGIiIiIiIiIiIiIiIiIiIiKNHZ+ICIiIiIiIiIiIiIiIiIioiKNnR+IiIiIiIiIiIiIiIiIiIioSGPnByIiIiIiIiIiIiIiIiIiIirS2PmBiIiIiIiIiIiIiIiIiIiIijR2fiAiUsHLywshISFfOxn/Ovb29li0aNHXTsZXM3nyZNSqVeurpiEtLQ0ymQyJiYn/Ffv5N4iJiYFMJsOzZ88KPe7c14xMJsOuXbsKfT+FRdsy/m+pCz7nufsaIiMjUaJECenzv6HOKSr+jWWhMOvR//Y6OXfZL4hevXqhXbt2hZIe+nQ52ztty29KSgqsrKzw8uXLz5/AT6SpzH6uazZ3OS+M7yy587JixQr4+fl9Upxyn+O+59/QNhbk/BZGPfffgMeBiIiIiIg+J3Z+ICJSYceOHZg2bZr0+d/yoE8ddT/C5feH0a/xo9TevXvh6ekJU1NTGBkZoV69eoiMjPyiadBk1KhRiIqK+ixxqzvmOX84trW1RXp6OmrUqPFZ0lEUTZ48GTKZDDKZDMWKFYO9vT2GDx+OjIyMr520PNLT09GiRQuN4Xr37o3x48crXderVy8pvzKZDBYWFvD19cXFixcLO7kqnTt3Dv3791e5Pvc5KV26NBo3boxFixbh3bt3hZaOhg0bIj09Hebm5mrDJSQkoGPHjihbtiwMDAzg4OCAfv364fr164WWFk3s7e2lY6KrqwsbGxsEBgbi6dOnUhh/f/8vmqaCqFq1KvT19fHgwQOF5ZmZmQgNDUXNmjVhbGwMGxsb9OjRA/fv39cY54MHDzBkyBBUqlQJ+vr6sLW1hZ+f3yfVt0Xp4cqff/6JPn36oEKFCtDX10e5cuXQpEkTbNy4ER8+fPjayZPK7pYtW/Ksq169OmQy2b+ivV68ePEnpyNn3SWTyWBubo5GjRrh2LFjhZPIQqTqoXLuh+Nf6x5W2/Yup7Fjx2LIkCEwNTUF8H+dmuR/ZcuWRfv27XHr1q1CS+e/4UH615a77enTpw8uXLiA2NhYtdv9/fffGDhwoFR3WVlZwcfHB3FxcVKYgpSDL+Xu3bvo06cPbGxsoKenBzs7OwwbNgyPHz/WuG1B7se/ZBuf855D/jd79myFMBcvXkSjRo1gYGAAW1tbzJ07N08827dvR9WqVWFgYICaNWti//79XyT9REREREREBcXOD0REKpQqVUr64ZU+v6VLl6Jt27bw8PDAmTNncPHiRXTu3BlBQUEYNWqUyu2EEF/0wZCJiQksLCy+2P6U0dXVhZWVFYoVK/ZV0/FvU716daSnpyMtLQ1z5szBqlWrMHLkyK+drDysrKygr6+vNkxWVhb27t2LNm3aqAzj6+uL9PR0pKenIyoqCsWKFUPr1q0LO7l5vH//HgBQpkwZGBkZqQ0rPyd37txBdHQ0OnbsiFmzZqFhw4aFNqpXT08PVlZWkMlkKsPs3bsX33zzDd69e4eNGzciOTkZv/zyC8zNzTFhwoRCSYe2pk6dKh2TjRs34vjx4xg6dKi03tDQEJaWll80Tflx4sQJvHnzBh06dMC6desU1r1+/RoXLlzAhAkTcOHCBezYsQMpKSlqyzHwseNenTp18Mcff2DevHm4dOkSDh48CG9vbwQHB3/O7GgtMzPzs8V99uxZ1K5dG8nJyVi2bBkuX76MmJgY9O3bF+Hh4bhy5cpn23d+2NraIiIiQmHZ6dOn8eDBAxgbG3+lVCkyNzcvlA4v8rorPT0dp06dgoODA1q3bo3nz5+r3OZzlpGiSpv2Lqc7d+5g79696NWrV551KSkpuH//PrZv344rV67Az88PWVlZhZja/2252x49PT107doVS5YsUbtd+/btkZCQgHXr1uH69evYs2cPvLy8FDoP5LccfCm3bt1C3bp1cePGDWzevBl//vknVqxYgaioKLi7u+PJkycqt33//n2B7se/dBsvv+eQ/w0ZMkRa9+LFCzRv3hx2dnaIj4/HvHnzMHnyZKxatUoKc/LkSXTp0gWBgYFISEhAu3bt0K5dO1y+fPmL5YGIiIiIiCi/2PmBiEiFnDMleHl54fbt2xg+fLg0ckbuxIkTaNSoEQwNDWFra4uhQ4fi1atX0np7e3tMnz4dPXr0gImJCezs7LBnzx78/fffaNu2LUxMTODi4oLz589L29y+fRt+fn4oWbIkjI2NUb169UIfZfPu3TuMGjUK5cqVg7GxMRo0aICYmBgAH0fZ9e7dG8+fP5fyO3nyZGnb169fo0+fPjA1NUWFChUUfiQDgNDQUDg6OsLIyAiVKlXChAkT1D4UuHv3LkaOHImQkBDMnDkT1apVQ5UqVTBy5EjMmzcPYWFhOHPmjJQ2mUyGAwcOoE6dOtDX18eJEyfw8uVLBAQEwNjYGNbW1li4cGGe2S42bNiAunXrwtTUFFZWVujatSsePXokrZfHHRUVhbp168LIyAgNGzZESkqKFEbZ6MC1a9eievXq0NfXh7W1NQYPHgzgY8eMyZMnS6PhbGxsFB5yFlTuGT7k6T506BDc3NxgaGiI7777Do8ePcKBAwfg7OwMMzMzdO3aFa9fv5biOXjwIL799luUKFECFhYWaN26NW7evKlyv1lZWQgMDETFihVhaGgIJycnLF68WFp//PhxFC9ePM9o8JCQEDRq1AgA8PjxY3Tp0gXlypWDkZERatasic2bNyuE9/LywtChQzFmzBiUKlUKVlZWCuVPlWLFisHKygrly5eHv78/AgICsGfPHgCaz71cfHy8ynN/8+ZNtG3bFmXLloWJiQnq1auHo0ePKmz/6NEj+Pn5wdDQEBUrVsTGjRvz7EOb6Z9PnjyJ4sWLo169eirDyEdYWllZoVatWvjxxx9x9+5d/P3331IYba7F2bNno2zZsjA1NUVgYCDevn2rsF4+gnjGjBmwsbGBk5MTAO1GEsvPiY2NDWrWrIkhQ4bg2LFjuHz5MubMmSOFU1cfAerrRE2vOnj9+jV69+6Nli1bYs+ePWjatCkqVqyIBg0aYP78+Vi5cqUU9tixY6hfv750Lf/4449S56q9e/eiRIkS0sO2xMREyGQy/Pjjj9L2ffv2Rbdu3dQeE3kZLFeuHLy9vdGzZ09cuHBBWq9ptoLs7GxMnToV5cuXh76+PmrVqoWDBw9K6+X1w44dO+Dt7Q0jIyO4urri1KlTUhhtrkNV1qxZg65du6J79+5Yu3atwjpzc3McOXIEnTp1gpOTE7755hv89NNPiI+Px507d1TGOWjQIMhkMpw9exbt27eHo6MjqlevjhEjRuD06dMK+co5s9GzZ88gk8kUyoqcunZM2TVYokQJacYA+b62bt0KT09PGBgYSNfyzz//DGdnZxgYGKBq1apYvny5Qjxnz56Fm5sbDAwMULduXSQkJKg9nkII9OrVC46OjoiLi4Ofnx8cHBzg4OCALl264MSJE3BxcVHY5tatWyrPLaD5vkTT9aZKQEAAjh07hrt370rL1q5di4CAgDwP/xYsWCDNAGJra4tBgwblmYknMjISFSpUgJGREb7//nulI613796N2rVrw8DAAJUqVcKUKVPUdnhU9jqAT2lPrKysUK1aNUydOhUZGRkKI7ZlMhnCw8PRpk0bGBsbY8aMGRrbSeBj2axfvz6MjY1RokQJeHh44Pbt2wCApKQkeHt7w9TUFGZmZqhTp47C/WFBfOo97MyZM1Xe871//x6DBw+GtbU1DAwMYGdnh1mzZikco/y87mDbtm1wdXVFuXLl8qyztLSEtbU1GjdujIkTJ+Lq1av4888/AWguJ8+ePUPfvn1RpkwZmJmZ4bvvvkNSUhKAj+VwypQpSEpKko6PvC7QphznR1ZWFvr06YOqVavizp07WpWXrKwsjBgxQrpXGzNmDIQQeeLOzs5WW8415UVZ2+Pn54c9e/bgzZs3SvPz7NkzxMbGYs6cOfD29oadnR3q16+PsWPHKnR6U/b6E3VtFACsXr0atra2Uv2wYMECjR2bNNXPuQUHB0NPTw+HDx+Gp6cnKlSogBYtWuDo0aO4d+8exo0bJ4W1t7fHtGnT0KNHD5iZmaF///5K26U9e/bAwcEBBgYG8Pb2xrp16xTuUVS92mrDhg2wt7eHubk5OnfuXGgdROX3HPK/nB3VNm7ciPfv30vfYzp37oyhQ4diwYIFUpjFixfD19cXo0ePhrOzM6ZNm4batWvjp59+Ujg2+f2uq8m7d+/w4sULhT8iIiIiIiJtsfMDEZEWduzYgfLlyyuMngE+Pgz19fVF+/btcfHiRWzduhUnTpyQHn7LLVy4EB4eHkhISECrVq3QvXt39OjRA926dcOFCxdQuXJl9OjRQ/oxMzg4GO/evcPx48dx6dIlzJkzByYmJoWap8GDB+PUqVPYsmULLl68iI4dO8LX1xc3btxAw4YNsWjRIpiZmUn5zTn7QlhYmPRQZ9CgQRg4cKDCQ2JTU1NERkbi6tWrWLx4MVavXo2FCxeqTMuvv/6KzMxMpTM8DBgwACYmJnkezP3444+YPXs2kpOT4eLighEjRiAuLg579uzBkSNHEBsbq/BAEfg4KnPatGlISkrCrl27kJaWpnR04bhx4xAWFobz58+jWLFi6NOnj8q0h4eHIzg4GP3798elS5ewZ88eVKlSBQDw22+/YeHChVi5ciVu3LiBXbt2oWbNmirj+lSTJ0/GTz/9hJMnT+Lu3bvo1KkTFi1ahE2bNmHfvn04fPgwli5dKoV/9eoVRowYgfPnzyMqKgo6Ojr4/vvvkZ2drTT+7OxslC9fHtu3b8fVq1cxceJE/Oc//8G2bdsAAI0bN0alSpWwYcMGaZvMzExs3LhROoZv375FnTp1sG/fPly+fBn9+/dH9+7dcfbsWYV9rVu3DsbGxjhz5gzmzp2LqVOn4siRI/k6HoaGhtIsBYVx7jMyMtCyZUtERUUhISEBvr6+8PPzU3io26tXL9y9exfR0dH49ddfsXz5cqWdLDTZs2cP/Pz81M5mkFNGRgZ++eUXVKlSRWFmEk3X4rZt2zB58mTMnDkT58+fh7W1tdKHBVFRUUhJScGRI0ewd+/efOcnp6pVq6JFixbYsWOHtExdfQR8Wp146NAh/PPPPxgzZozS9fKHEPfu3UPLli1Rr149JCUlITw8HGvWrMH06dMBAI0aNcLLly+lh9nHjh1D6dKlFR4aHzt2DF5eXlofi3v37uH3339HgwYNtN5m8eLFCAsLw/z583Hx4kX4+PigTZs20rGSGzduHEaNGoXExEQ4OjqiS5cu0sNAba/D3F6+fInt27ejW7duaNasGZ4/f65xSnR55wNVD62ePHmCgwcPIjg4WOnsAQUdxa+pHdPGjz/+iGHDhiE5ORk+Pj7YuHEjJk6ciBkzZiA5ORkzZ87EhAkTpBkwMjIy0Lp1a1SrVg3x8fGYPHmyxn0mJiYiOTkZo0aNgo6O8q9muesBdedWm/sSTdebKmXLloWPj4+U39evX2Pr1q1K20gdHR0sWbIEV65cwbp16/DHH38oXINnzpxBYGAgBg8ejMTERHh7e0vXmlxsbCx69OiBYcOG4erVq1i5ciUiIyMxY8YMtenM7VPbk3fv3iEiIgIlSpSQOn/JTZ48Gd9//z0uXbqEPn36aGwnP3z4gHbt2sHT0xMXL17EqVOn0L9/f+kcBwQEoHz58jh37hzi4+Px448/onjx4vnKb26feg+r7p5vyZIl2LNnD7Zt24aUlBRs3LgR9vb2BU5rbGws6tatqzGcoaEhgI+dL7QpJx07dpQ6hMbHx6N27dpo0qQJnjx5An9/f4wcOVJhtg9/f38Amstxfrx79w4dO3ZEYmIiYmNjUaFCBY3lBfh4/CMjI7F27VqcOHECT548wc6dO/PEr6mcFyQvdevWxYcPH6QOyLmZmJjAxMQEu3btyvfrrNTVY3FxcQgKCsKwYcOQmJiIZs2aabzuNdXPuT158gSHDh3CoEGDpPIkZ2VlhYCAAGzdulWho8n8+fPh6uqKhIQEpbNGpaamokOHDmjXrh2SkpIwYMAAhQ4Uqty8eRO7du3C3r17sXfvXhw7dizP6ykKavbs2bCwsICbmxvmzZun0Cno1KlTaNy4MfT09KRlPj4+SElJkV7HderUKTRt2lQhTh8fnzydVfL7XVeTWbNmwdzcXPqztbUt6CEgIiIiIqL/RYKIiJTy9PQUw4YNkz7b2dmJhQsXKoQJDAwU/fv3V1gWGxsrdHR0xJs3b6TtunXrJq1PT08XAMSECROkZadOnRIARHp6uhBCiJo1a4rJkyfnO82pqakCgDA0NBTGxsYKfzo6OlJ+bt++LXR1dcW9e/cUtm/SpIkYO3asEEKIiIgIYW5unmcfufOTnZ0tLC0tRXh4uMp0zZs3T9SpU0fl+qCgIKX7knNxcREtWrQQQggRHR0tAIhdu3ZJ61+8eCGKFy8utm/fLi179uyZMDIyUjiHuZ07d04AEC9fvlSI++jRo1KYffv2CQDS+Zw0aZJwdXWV1tvY2Ihx48YpjT8sLEw4OjqK9+/fq0xDThEREQJAnnNnbGwsAIidO3cKIf7vPCckJKhM96xZswQAcfPmTWnZgAEDhI+Pj8r9//333wKAuHTpktL9KBMcHCzat28vfZ4zZ45wdnaWPv/222/CxMREZGRkqIyjVatWYuTIkdJnT09P8e233yqEqVevnggNDVUZR+7zcv78eVG6dGnRoUMHpeELcu6VqV69uli6dKkQQoiUlBQBQJw9e1Zan5ycLAAo1B05z6UqDg4OYu/evSrX9+zZU+jq6iqUD2traxEfH6823tzXoru7uxg0aJBCmAYNGigcy549e4qyZcuKd+/eKYRTVifmlPuc5BQaGioMDQ2FENrVR+rqRPm5e/r0qdL1c+bMEQDEkydPVKZVCCH+85//CCcnJ5GdnS0tW7ZsmTAxMRFZWVlCCCFq164t5s2bJ4QQol27dmLGjBlCT09PvHz5Uvz1118CgLh+/brKfdjZ2Qk9PT1hbGwsDAwMBADRoEEDhbTnrnuV1TkzZsxQiLdevXrSeZRftz///LO0/sqVKwKASE5OVpm23NehMqtWrRK1atWSPg8bNkz07NlTZfg3b96I2rVri65du6oMc+bMGQFA7NixQ+2+ldVHT58+FQBEdHS0ECJvWVDVjim7Bs3NzUVERITCvhYtWqQQpnLlymLTpk0Ky6ZNmybc3d2FEEKsXLlSWFhYKNQZ4eHhauvRLVu2CADiwoUL0rKHDx8q1P/Lli1TSJe6c6vpvkSb600Z+fW+a9cuUblyZZGdnS3WrVsn3Nzc8hw/ZbZv3y4sLCykz126dBEtW7ZUCOPv769wvpo0aSJmzpypEGbDhg3C2tpa5X569uwp2rZtK30uaHuio6MjHX+ZTCbMzMzEgQMHFMIBECEhISrjkcvZTj5+/FgAEDExMUrDmpqaisjISI1x5kyDsvYk93EorHvY3Pd8Q4YMEd99951CvakqfdrcU7i6uoqpU6cqLMt9Xd+/f180bNhQlCtXTrx7905jOYmNjRVmZmbi7du3CmEqV64sVq5cKYRQ317llLscq6pj5OR5jo2NFU2aNBHffvutePbsmdp95L6vsra2FnPnzpU+Z2ZmivLly39yOdc2LyVLllRbJn/99VdRsmRJYWBgIBo2bCjGjh0rkpKSFMIoKwfq6jF/f3/RqlUrhTgCAgLUto2a6ufcTp8+rfZ+bMGCBQKAePjwoRDi47XQrl07hTC5y3RoaKioUaOGQphx48apbZcmTZokjIyMxIsXL6Rlo0ePFg0aNFCarvwICwsT0dHRIikpSYSHh4sSJUqI4cOHS+ubNWuWpw6Qn4urV68KIYQoXrx4nuO6bNkyYWlpKX0uyHddTdfO27dvxfPnz6W/u3fvCgDi+fPn+T8QRERERET0X+P58+dafTfgzA9ERJ8gKSkJkZGR0sgnExMT+Pj4IDs7G6mpqVK4nFNWly1bFgAUZgCQL5OPEB86dCimT58ODw8PTJo0CRcvXsxXurZu3YrExESFv5wj6S5duoSsrCw4OjoqpP3YsWNqX3ugLD8ymQxWVlYKo9u3bt0KDw8PWFlZwcTEBOPHj1c75XlB5MzPrVu3kJmZifr160vLzM3N84zQjI+Ph5+fHypUqABTU1N4enoCQJ605cyftbU1ACgdvf/o0SPcv38fTZo0UZrGjh074s2bN6hUqRL69euHnTt3qp2uG/g4Uj/3ucs5na46ucuZ/FUHOZflzMeNGzfQpUsXVKpUCWZmZtJoTXXnatmyZahTpw7KlCkDExMTrFq1Ks/MB3/++ac0VX1kZCQ6deokjejOysrCtGnTULNmTZQqVQomJiY4dOiQ2nMAfDwPmmZQuHTpEkxMTGBoaIj69evD3d1dmpa3MM59RkYGRo0aBWdnZ5QoUQImJiZITk6W4khOTkaxYsVQp04dKY6qVavme+R6cnKy2nIl5+3tLZWPs2fPwsfHBy1atJCmTwc0X4vJycl5Zh1wd3fPs6+aNWsqjAz8VEIIaaSzNvXRp9SJQstRhsnJyXB3d1cYZe/h4YGMjAz89ddfAABPT0/ExMRACIHY2Fj88MMPcHZ2xokTJ3Ds2DHY2NjAwcFB7X5Gjx6NxMREXLx4EVFRUQCAVq1aafXu+hcvXuD+/fvw8PBQWO7h4YHk5GSFZerKsrbXYW5r165VeK1Ht27dsH37dqXTc2dmZqJTp04QQiA8PFxlnNqen68hZzvz6tUr3Lx5E4GBgQrldPr06VI5lc9EZGBgIG2n7HrSxMLCQrq2S5QoIc1gI6fu3Gq6L/nU9r9Vq1bIyMjA8ePHsXbtWpUzIx09ehRNmjRBuXLlYGpqiu7du+Px48fSq5e0qXuSkpIwdepUhXT269cP6enpCq9w0qQg7YmTk5N0DuLj4zFw4EB07Ngxz7TtymYpUNdOlipVCr169YKPjw/8/PywePFiaSYGABgxYgT69u2Lpk2bYvbs2Vqdk4IqyD1s7nu+Xr16ITExEU5OThg6dCgOHz78SWl68+aNwvWTU/ny5WFsbAwbGxu8evUKv/32G/T09DSWk6SkJGRkZMDCwkIhTGpqqsbjq6kca6tLly549eoVDh8+DHNzc4V16srL8+fPkZ6ernCtFCtWTGm501TOC5oXQ0NDtWHat2+P+/fvY8+ePfD19UVMTAxq164tvTpEFXX1WEpKisI9PYA8n3PSpn5WJT9tkKZZSVJSUvK8rkxduuXs7e1hamoqfdZUR+XMY1BQkMpwI0aMgJeXF1xcXBAUFISwsDAsXbo037N0aCO/33U10dfXh5mZmcIfERERERGRtoppDkJERKpkZGRgwIABGDp0aJ51FSpUkP6fc8pi+YM1Zcvkrxvo27cvfHx8pFcVzJo1C2FhYRgyZIhW6bK1tZVevSCXc0rXjIwM6OrqIj4+Hrq6ugrhtJlKPvcUzDKZTEr7qVOnEBAQgClTpsDHxwfm5ubYsmULwsLCVMbn6OiI58+f4/79+7CxsVFY9/79e9y8eRPe3t4Ky5VNj67Oq1ev4OPjI01dXqZMGdy5cwc+Pj55HiypOzc55Z4mNzdbW1ukpKTg6NGjOHLkCAYNGoR58+bh2LFjKqex1tHRyXPutJU73erOE/DxXc52dnZYvXo1bGxskJ2djRo1auQ5HnJbtmzBqFGjEBYWBnd3d5iammLevHkK0yFbWlrCz88PERERqFixIg4cOKDwWoB58+Zh8eLFWLRokfTu6ZCQELXnQFnalXFycsKePXtQrFgx2NjYSA/rC+vcjxo1CkeOHMH8+fNRpUoVGBoaokOHDiqPV0Ht2bMHzZo1U/kASM7Y2FihrPz8888wNzfH6tWrMX369AJdi+r2VZiSk5NRsWJFANrVR59SJzo6OgIArl27VqAH0Tl5eXlh7dq1SEpKQvHixVG1alV4eXkhJiYGT58+lTrVqFO6dGnpvDk4OGDRokVwd3dHdHR0nqmlP4W6sqztdZjT1atXcfr0aZw9exahoaHS8qysLGzZsgX9+vWTlsk7Pty+fRt//PGH2ocWDg4OkMlkuHbtmtr8yF8JkfNBVWZmptptVJHJZHkeeCmLK2e5z8jIAPDxPfS5H9rnLrf5Ie8sk5KSAjc3Nyk+eRkpVizv1zV151bTfcnFixc/qf0vVqwYunfvjkmTJuHMmTNKp99PS0tD69atMXDgQMyYMQOlSpXCiRMnEBgYiPfv38PIyEjjfuR5mTJlCn744Yc86zTVjzkVpD3R09NTqF/d3Nywa9cuLFq0CL/88ou0PHfdqE07GRERgaFDh+LgwYPYunUrxo8fjyNHjuCbb77B5MmT0bVrV+zbtw8HDhzApEmTsGXLFnz//fdK02lqaornz5/nWf7s2bM8D9lzK8g9LKB4/GrXro3U1FQcOHAAR48eRadOndC0aVP8+uuvavetSunSpaXp9nOLjY2FmZkZLC0tFR4UayonGRkZsLa2VrgXkVPXObGwyjEAtGzZEr/88gtOnTqF7777TlquTXnRlrrz9Cl5efLkCcqUKaN23wYGBmjWrBmaNWuGCRMmoG/fvpg0aZLS14spS6+6e21tFKR+rlKlCmQyGZKTk5VeX8nJyShZsqRC3gv7Xkguv3VUzk7R+ekU0KBBA3z48AFpaWlwcnKClZUVHj58qBBG/tnKykr6V1kY+XpledDmuy4REREREdHnxM4PRERa0tPTyzMyt3bt2rh69WqBH1arY2tri6CgIAQFBWHs2LFYvXq11p0fNHFzc0NWVhYePXqERo0aKQ2jLL/aOHnyJOzs7BTecZtzJLoy7du3R2hoKMLCwvI8mF2xYgVevXqFLl26qNy+UqVKKF68OM6dOyf9YP/8+XNcv34djRs3BvDxwefjx48xe/Zs6b2xuUdw5pepqSns7e0RFRWVp3OGnKGhIfz8/ODn54fg4GBUrVoVly5dQu3atT9p35/q8ePHSElJwerVq6UycOLECbXbxMXFoWHDhhg0aJC0TNmIur59+6JLly4oX748KleurDBKPS4uDm3btpVGj2dnZ+P69euoVq3aJ+cp98MqucI693FxcejVq5f0I3lGRgbS0tKk9VWrVsWHDx8QHx8vjfxLSUnBs2fP8rWf3bt3o3///vlOn0wmg46ODt68eQNAu2vR2dkZZ86cQY8ePaRl8lk7Ppdr167h4MGDGDt2LADt6iOg4HVi8+bNUbp0acydO1fpg9pnz56hRIkScHZ2xm+//aYwK0VcXBxMTU1Rvnx5AECjRo3w8uVLLFy4UOro4OXlhdmzZ+Pp06cYOXJkvo+H/MGM/LypY2ZmBhsbG8TFxSl0tIiLi9NqdGnO8Pm9DtesWYPGjRtj2bJlCssjIiKwZs0aqfODvOPDjRs3EB0dDQsLC7VpKVWqFHx8fLBs2TIMHTo0z8Ml+fmRP4BKT0+XOglomhVHVTtWpkwZhdH2N27c0Dj6uWzZsrCxscGtW7cQEBCgNIyzszM2bNiAt2/fSg/nNV1Pbm5uqFq1KubPn49OnTpJnTwKStN9ibbXmzp9+vTB/Pnz4e/vj5IlS+ZZHx8fj+zsbISFhUn52bZtm0IYed2TU+5jVbt2baSkpHyWe6yC0NXV1XidattOurm5wc3NDWPHjoW7uzs2bdqEb775BsDHDluOjo4YPnw4unTpgoiICJWdH5ycnBAfH4+ePXtKy7KyspCUlIS+fftKyz7nPayZmRn8/f3h7++PDh06wNfXF0+ePEGpUqXyHZebmxuuXr2qdF3FihWVdlbQVE5q166NBw8eoFixYtIMV7kpOz7alGNtDRw4EDVq1ECbNm2wb98+qf7WVF7Mzc1hbW2NM2fOSPez8vuM/NxHFjQvN2/exNu3b6U6V1vVqlXDrl278rVNTk5OTjh37pzCstyfc9Kmfs7NwsICzZo1w/LlyzF8+HCFDs0PHjzAxo0b0aNHD4XZoLRJ9/79+7VOd0EV9JpNTEyEjo4OLC0tAXycbWfcuHHIzMyUOiocOXIETk5OUt3u7u6OqKgohISESPEcOXLkkzuTEhERERERfU7s/EBEpCV7e3scP34cnTt3hr6+PkqXLo3Q0FB88803GDx4MPr27QtjY2NcvXoVR44ckabbL4iQkBC0aNECjo6OePr0KaKjo+Hs7FxoeXF0dERAQAB69OiBsLAwuLm54e+//0ZUVBRcXFzQqlUr2NvbIyMjA1FRUXB1dYWRkZFWo9wcHBxw584dbNmyBfXq1cO+ffuUPnDMqUKFCpg7dy5GjhwJAwMDdO/eHcWLF8fu3bvxn//8ByNHjswzkisnU1NT9OzZE6NHj0apUqVgaWmJSZMmQUdHR/rRskKFCtDT08PSpUsRFBSEy5cvY9q0afk7cEpMnjwZQUFBsLS0RIsWLfDy5UvExcVhyJAhiIyMRFZWFho0aAAjIyP88ssvMDQ0hJ2d3Sfv91OVLFkSFhYWWLVqFaytrXHnzh38+OOPardxcHDA+vXrcejQIVSsWBEbNmzAuXPnpBH8cj4+PjAzM8P06dMxderUPHH8+uuvOHnyJEqWLIkFCxbg4cOHhdL5QZXCOvcODg7YsWMH/Pz8IJPJMGHCBIURbE5OTvD19cWAAQMQHh6OYsWKISQkROMMITk9evQI58+fx549ezSGfffuHR48eAAAePr0KX766SdkZGTAz89PSq+ma3HYsGHo1asX6tatCw8PD2zcuBFXrlxReF3Kp/jw4QMePHiA7OxsPH78GDExMZg+fTpq1aqF0aNHA9CuPvqUOtHY2Bg///wzOnbsiDZt2mDo0KGoUqUK/vnnH2zbtk06RoMGDcKiRYswZMgQDB48GCkpKZg0aRJGjBghPSwqWbIkXFxcsHHjRqmOb9y4MTp16oTMzEytZn54+fIlHjx4ACEE7t69izFjxqBMmTJo2LChVvkZPXo0Jk2ahMqVK6NWrVqIiIhAYmIiNm7cqNX2QP6vw8zMTGzYsAFTp05FjRo1FNb17dsXCxYswJUrV+Do6IgOHTrgwoUL2Lt3L7KysqQyWqpUKZWvTlm2bBk8PDxQv359TJ06FS4uLvjw4QOOHDmC8PBwJCcnw9DQEN988w1mz56NihUr4tGjRxg/frzafKpqx7777jv89NNPcHd3R1ZWFkJDQ1XOxpPTlClTMHToUJibm8PX1xfv3r3D+fPn8fTpU4wYMQJdu3bFuHHj0K9fP4wdOxZpaWmYP3++2jhlMhkiIiLQrFkzeHh4YOzYsXB2dkZmZiaOHz+Ov//+O18zS2i6L9HmetPE2dkZ//zzj8p7gipVqiAzMxNLly6Fn58f4uLisGLFCoUwQ4cOhYeHB+bPn4+2bdvi0KFDOHjwoEKYiRMnonXr1qhQoQI6dOgAHR0dJCUl4fLly5g+fbrWx6Qg5HUX8PGa3bp1K65evaow64kymtrJ1NRUrFq1Cm3atIGNjQ1SUlJw48YN9OjRA2/evMHo0aPRoUMHVKxYEX/99RfOnTuH9u3bq9zfiBEjEBgYiKpVq6JZs2Z49eoVli5diqdPnyp0fvhc97ALFiyAtbU13NzcoKOjg+3bt8PKyirfr3uS8/HxQd++fZGVlaV1uddUTpo2bQp3d3e0a9cOc+fOhaOjI+7fv499+/bh+++/R926dWFvb4/U1FQkJiaifPnyMDU11aoc58eQIUOQlZWF1q1b48CBA/j222+1uq8aNmwYZs+eDQcHB1StWhULFizId6fKguYlNjYWlSpVQuXKlZWuf/z4MTp27Ig+ffrAxcUFpqamOH/+PObOnYu2bdvmK405DRkyBI0bN8aCBQvg5+eHP/74AwcOHFDbEUFT/azMTz/9hIYNG8LHxwfTp09HxYoVceXKFYwePRrlypXDjBkz8pXuAQMGYMGCBQgNDUVgYCASExOl13/kpxNFYTh16hTOnDkDb29vmJqa4tSpUxg+fDi6desmdWzo2rUrpkyZgsDAQISGhuLy5ctYvHgxFi5cKMUzbNgweHp6IiwsDK1atcKWLVtw/vx5rFq16ovmh4iIiIiIKD8+bWgREdH/kKlTpyItLQ2VK1eWRqC6uLjg2LFjuH79Oho1agQ3NzdMnDgxz6sb8isrKwvBwcFwdnaGr68vHB0dsXz58sLIhiQiIgI9evTAyJEj4eTkhHbt2inMnNCwYUMEBQXB398fZcqUwdy5c7WKt02bNhg+fDgGDx6MWrVq4eTJk5gwYYLG7UJCQrBz507Exsaibt26qFGjBjZt2oTw8HCND4+Ajz/Au7u7o3Xr1mjatCk8PDzg7Owsjb4tU6YMIiMjsX37dlSrVg2zZ8/WKl5NevbsiUWLFmH58uWoXr06WrdujRs3bgD4OJ3y6tWr4eHhARcXFxw9ehS///67xpHQX4KOjg62bNmC+Ph41KhRA8OHD8e8efPUbjNgwAD88MMP8Pf3R4MGDfD48WOF0Yo54+7VqxeysrIUZhQAgPHjx6N27drw8fGBl5cXrKys0K5du8LMWh6Fde4XLFiAkiVLomHDhvDz84OPj0+ekZcRERGwsbGBp6cnfvjhB/Tv318aYaeN33//HfXr10fp0qU1hj148CCsra1hbW2NBg0a4Ny5c9i+fTu8vLwAaHct+vv7Y8KECRgzZgzq1KmD27dvY+DAgVqnV5MrV67A2toaFSpUgJeXF7Zt24axY8ciNjZWYYp9TfXRp9aJbdu2xcmTJ1G8eHF07doVVatWRZcuXfD8+XPpIWq5cuWwf/9+nD17Fq6urggKCkJgYGCeB+yenp7IysqSjnOpUqVQrVo1WFlZwcnJSWNaJk6cCGtra9jY2KB169YwNjbG4cOHta4Xhg4dihEjRmDkyJGoWbMmDh48iD179kivT9BGfq/DPXv24PHjx0pHnzs7O8PZ2Rlr1qzBvXv3sGfPHvz111+oVauWVD6tra1x8uRJlfFXqlQJFy5cgLe3N0aOHIkaNWqgWbNmiIqKQnh4uBRu7dq1+PDhA+rUqYOQkBCND8BVtWNhYWGwtbVFo0aN0LVrV4waNUqrzn19+/bFzz//jIiICNSsWROenp6IjIyUHlSamJjg999/x6VLl+Dm5oZx48Zhzpw5GuP95ptvEB8fDycnJwQHB6NatWpo2LAhNm/ejIULF+brmtTmvkTT9aYNCwsLlR27XF1dsWDBAsyZMwc1atTAxo0bMWvWrDx5Xr16NRYvXgxXV1ccPnw4z7Xm4+ODvXv34vDhw6hXrx6++eYbLFy48It0IJTXXdbW1qhVqxa2bduG8PDwPG1abpraSSMjI1y7dg3t27eHo6Mj+vfvj+DgYAwYMAC6urp4/PgxevToAUdHR3Tq1AktWrTAlClTVO6vS5cu+Pnnn7F27VrUqVMHvr6+ePDgAY4fP46yZctK4T7XPaypqSnmzp2LunXrol69ekhLS8P+/fsLPINJixYtUKxYMRw9elTrbTSVE5lMhv3796Nx48bo3bs3HB0d0blzZ9y+fVs6Ru3bt4evry+8vb1RpkwZbN68WatynF8hISGYMmUKWrZsiZMnT2p1XzVy5Eh0794dPXv2lF6NoWomEFUKmpfNmzcrvNIoNxMTEzRo0AALFy5E48aNUaNGDUyYMAH9+vX7pE7gHh4eWLFiBRYsWABXV1ccPHgQw4cPV/u6G031szIODg44f/48KlWqhE6dOqFy5cro378/vL29cerUqXzPXlKxYkX8+uuv2LFjB1xcXBAeHi7NvqWvr5+vuD6Vvr4+tmzZAk9PT1SvXh0zZszA8OHDFTotmJub4/Dhw0hNTUWdOnUwcuRITJw4UWH2sYYNG2LTpk1YtWoVXF1d8euvv2LXrl15OkISERERERH9m8hE7hfeEhER/Rd49eoVypUrh7CwMAQGBn7t5PzPCQwMxN9//63VDAb0f9q0aYNvv/0WY8aM+dpJISIi+uKWLVuGPXv24NChQ187Kf/Trly5gu+++w7Xr1+Hubn5104O+vXrh2vXriE2NvZrJyVfZsyYgRUrVuDu3btfOylF2osXL2Bubo7nz5/DzMzsayeHiIiIiIi+Em2/G/C1F0RE9F8hISEB165dQ/369fH8+XPpdQufMu0u5d/z589x6dIlbNq0iR0fCuDbb79Fly5dvnYyiIiIvooBAwbg2bNnePnyJUxNTb92cv5npaenY/369V+t48P8+fPRrFkzGBsb48CBA1i3bl2hz4L3OSxfvhz16tWDhYUF4uLiMG/ePAwePPhrJ4uIiIiIiOh/Cmd+ICIqQoKCgvDLL78oXdetW7dPehdxUZeQkIC+ffsiJSUFenp6qFOnDhYsWICaNWt+7aT9T/Hy8sLZs2cxYMAAhXcGExERERFpo1OnToiJicHLly9RqVIlDBkyBEFBQV87WRoNHz4cW7duxZMnT1ChQgV0794dY8eORbFiHHf0KTjzAxERERERAdp/N2DnByKiIuTRo0d48eKF0nVmZmawtLT8wikiIiIiIiIi+jzY+YGIiIiIiAC+9oKI6L+SpaUlOzgQERERERERERERERER5aLztRNARERERERERERERERERERE9CnY+YGIiIiIiIiIiIiIiIiIiIiKNHZ+ICIiIiIiIiIiIiIiIiIioiKNnR+IiIiIiIiIiIiIiIiIiIioSGPnByIiIiIiIiIiIiIiIiIiIirS2PmBiIiIiIiIiIiIiIiIiIiIijR2fiAiIiIiIiIiIiIiIiIiIqIijZ0fiIiIiIiIiIiIiIiIiIiIqEhj5wciIiIiIiIiIiIiIiIiIiIq0tj5gYiIiIiIiIiIiIiIiIiIiIo0dn4gIiIiIiIiIiIiIiIiIiKiIo2dH4iIiIiIiIiIiIiIiIiIiKhIY+cHIiIiIiIiIiIiIiIiIiIiKtLY+YGIiIiIiIiIiIiIiIiIiIiKNHZ+ICIiIiIioiLBy8sLISEhXzsZnyQmJgYymQzPnj372kn57P4bzpe2ZDIZdu3a9bWTQTkU5jnh+S089vb2WLRo0ddOBhERERER/Zdi5wciIiIiIiIqEnbs2IFp06ZJn4vCQ7S0tDTIZDIkJiYCABo2bIj09HSYm5t/kf0PGDAAurq62L59e551q1evRqNGjVCyZEmULFkSTZs2xdmzZzXG+f79e8ybNw+1a9eGsbExzM3N4erqivHjx+P+/ftSuNznKz8ePHiAIUOGoFKlStDX14etrS38/PwQFRVVoPgK6sGDBxg2bBiqVKkCAwMDlC1bFh4eHggPD8fr16+/aFoKavLkyZDJZJDJZChWrBjs7e0xfPhwZGRkfPG0yDv/yGQy6OjowNzcHG5ubhgzZgzS09MLdV/p6elo0aKF2jD/9vO7Y8cONG/eHBYWFgr1SE5v375FcHAwLCwsYGJigvbt2+Phw4cKYe7cuYNWrVrByMgIlpaWGD16ND58+KAQJiYmBrVr14a+vj6qVKmCyMjIz5gzIiIiIiKiz4OdH4iIiIiIiKhIKFWqFExNTb92Mj6Jnp4erKysIJPJPvu+Xr9+jS1btmDMmDFYu3ZtnvUxMTHo0qULoqOjcerUKdja2qJ58+a4d++eyjjfvXuHZs2aYebMmejVqxeOHz+OS5cuYcmSJfjnn3+wdOlSKaym8/X+/Xuly9PS0lCnTh388ccfmDdvHi5duoSDBw/C29sbwcHB+TgCn+bWrVtwc3PD4cOHMXPmTCQkJODUqVMYM2YM9u7di6NHj36xtHyq6tWrIz09HWlpaZgzZw5WrVqFkSNHFjg+VedOWykpKbh//z7OnTuH0NBQHD16FDVq1MClS5c+Kd6crKysoK+vr3J9UTi/r169wrfffos5c+aoDDN8+HD8/vvv2L59O44dO4b79+/jhx9+kNZnZWWhVatWeP/+PU6ePIl169YhMjISEydOlMKkpqaiVatW8Pb2RmJiIkJCQtC3b18cOnTos+aPiIiIiIio0AkiIiIiIiKiIsDT01MMGzZM+j8AhT+52NhY8e233woDAwNRvnx5MWTIEJGRkSGtt7OzE9OmTRPdu3cXxsbGokKFCmL37t3i0aNHok2bNsLY2FjUrFlTnDt3TtomLS1NtG7dWpQoUUIYGRmJatWqiX379mlMc2pqqgAgEhIShBBCREdHCwDi6dOn4vnz58LAwEDs379fYZsdO3YIExMT8erVKyGEEGPGjBEODg7C0NBQVKxYUYwfP168f/9e474jIyPFN998I549eyaMjIzEnTt31Ib/8OGDMDU1FevWrVMZZtasWUJHR0dcuHBB6frs7Gzp/znPlxAfj/vUqVNF9+7dhampqejZs6fSOFq0aCHKlSuncM7knj59Kv3/9u3b0vkyNTUVHTt2FA8ePBBCCPHs2TOho6MjncOsrCxRsmRJ0aBBA2n7DRs2iPLly6vMq4+PjyhfvrzSdOTOKwCxevVq0a5dO2FoaCiqVKkidu/erRD+0qVLwtfXVxgbGwtLS0vRrVs38ffff0vrs7KyxMyZM4W9vb0wMDAQLi4uYvv27SrTp61JkyYJV1dXhWX9+vUTVlZWQgghevbsKdq2bauwftiwYcLT01P67OnpKYKDg8WwYcOEhYWF8PLy0ipPueUs/zm9fv1aODk5CQ8PD4Xlq1evFlWrVhX6+vrCyclJLFu2TFr37t07ERwcLKysrIS+vr6oUKGCmDlzprQegNi5c6fKtBSl85u7HpF79uyZKF68uEI8ycnJAoA4deqUEEKI/fv3Cx0dHenaEEKI8PBwYWZmJt69eyeE+FjHVK9eXSFuf39/4ePjozJNERERwtzcXPz+++/C0dFRGBoaivbt24tXr16JyMhIYWdnJ0qUKCGGDBkiPnz4IG1nZ2cnFi5cqFW+hRDi+fPnAoB4/vy51tsQEREREdF/H22/G3DmByIiIiIiIipyduzYgfLly2Pq1KlIT0+Xpsy/efMmfH190b59e1y8eBFbt27FiRMnMHjwYIXtFy5cCA8PDyQkJKBVq1bo3r07evTogW7duuHChQuoXLkyevToASEEACA4OBjv3r2TZjqYM2cOTExMPikPZmZmaN26NTZt2qSwfOPGjWjXrh2MjIwAAKampoiMjMTVq1exePFirF69GgsXLtQY/5o1a9CtWzeYm5ujRYsWGqexf/36NTIzM1GqVCmVYTZv3oxmzZrBzc1N6XpNM1rMnz8frq6uSEhIwIQJE/Ksf/LkCQ4ePIjg4GAYGxvnWV+iRAkAQHZ2Ntq2bYsnT57g2LFjOHLkCG7dugV/f38AgLm5OWrVqoWYmBgAwKVLlyCTyZCQkCC97uHYsWPw9PRUms7Hjx/j8OHDKtOhLK9TpkxBp06dcPHiRbRs2RIBAQF48uQJAODZs2f47rvv4ObmhvPnz+PgwYN4+PAhOnXqJG0/a9YsrF+/HitWrMCVK1cwfPhwdOvWDceOHVNzRAvG0NAw37M3rFu3Dnp6eoiLi8OKFSu0ylN+0hMUFIS4uDg8evQIwMfrYOLEiZgxYwaSk5Mxc+ZMTJgwAevWrQMALFmyBHv27MG2bduQkpKCjRs3wt7eXqv9/bec3/j4eGRmZqJp06bSsqpVq6JChQo4deoUAODUqVOoWbMmypYtK4Xx8fHBixcvcOXKFSlMzjjkYeRxqPL69WssWbIEW7ZswcGDBxETE4Pvv/8e+/fvx/79+7FhwwasXLkSv/76q9Z5evfuHV68eKHwR0REREREpK1iXzsBRERERERERPlVqlQp6OrqwtTUFFZWVtLyWbNmISAgACEhIQAABwcHLFmyBJ6enggPD4eBgQEAoGXLlhgwYAAAYOLEiQgPD0e9evXQsWNHAEBoaCjc3d3x8OFDWFlZ4c6dO2jfvj1q1qwJAKhUqVKh5CMgIADdu3fH69evYWRkhBcvXmDfvn3YuXOnFGb8+PHS/+3t7TFq1CjpdRaq3LhxA6dPn8aOHTsAAN26dcOIESMwfvx4lR0UQkNDYWNjk+chaE7Xr1+Hl5eXwrLvv/8eR44cAQC4uLjg5MmTKrf/7rvv1L5u4c8//4QQAlWrVlUZBgCioqJw6dIlpKamwtbWFgCwfv16VK9eHefOnUO9evXg5eWFmJgYjBo1CjExMWjWrBmuXbuGEydOwNfXFzExMSqPoTwdTk5OCstLly6Nt2/fAvjYISbn6wh69eqFLl26AABmzpyJJUuW4OzZs/D19cVPP/0ENzc3zJw5Uwq/du1a2Nra4vr167Czs8PMmTNx9OhRuLu7A/hYxk6cOIGVK1eq7KRREPHx8di0aRO+++67fG3n4OCAuXPnSp+nT5+uNk+Ojo75il9+ztPS0mBpaYlJkyYhLCxMeoVDxYoVcfXqVaxcuRI9e/bEnTt34ODggG+//RYymQx2dnZa7+u/5fw+ePAAenp6UqcgubJly+LBgwdSmJwdH+Tr5evUhXnx4gXevHkDQ0NDpfvPzMxEeHg4KleuDADo0KEDNmzYgIcPH8LExATVqlWDt7c3oqOjpY5JmsyaNQtTpkzRKiwREREREVFu7PxARERERERE/zWSkpJw8eJFbNy4UVomhEB2djZSU1Ph7OwM4ONDejn5Qz95x4acyx49egQrKysMHToUAwcOxOHDh9G0aVO0b99eIY6CatmyJYoXL449e/agc+fO+O2332BmZqbQAWHr1q1YsmQJbt68iYyMDHz48AFmZmZq4127di18fHxQunRpaT+BgYH4448/0KRJkzzhZ8+ejS1btiAmJkbqIKKt5cuX49WrV1iyZAmOHz+uNmzdunXVrpfPtKFJcnIybG1tpY4PAFCtWjWUKFECycnJqFevHjw9PbFmzRpkZWXh2LFjaN68OaysrBATEwMXFxf8+eefeTpyaHL27FlkZ2cjICAA7969U1iXszwYGxvDzMxMmsUgKSkJ0dHRSmcLuXnzJjIzM/H69Ws0a9ZMYd379+9VzrIxc+ZMhYftV69eRYUKFZSGvXTpEkxMTJCVlYX379+jVatW+Omnn7TL9P9Xp04dhc+a8pTfzg/ycy+TyfDq1SvcvHkTgYGB6NevnxTmw4cPMDc3B/CxM0KzZs3g5OQEX19ftG7dGs2bN8/XPnP7N53fosDIyEjq+AB8rDft7e0VjkPZsmWl46SNsWPHYsSIEdLnFy9eKFznRERERERE6rDzAxEREREREf3XyMjIwIABAzB06NA863I+GC5evLj0f/lMCMqWZWdnAwD69u0LHx8f7Nu3D4cPH8asWbMQFhaGIUOGfFJ69fT00KFDB2zatAmdO3fGpk2b4O/vj2LFPn5dP3XqFAICAjBlyhT4+PjA3NwcW7ZsQVhYmMo4s7KysG7dOjx48ECKR7587dq1eTo/zJ8/H7Nnz8bRo0c1duhwcHBASkqKwjJra2sAUPu6DDlVrxjIGb9MJsO1a9c0xqVJ48aN8fLlS1y4cAHHjx/HzJkzYWVlhdmzZ8PV1RU2NjZwcHBQum2VKlUgk8ny5FU+44eykfA5yw/wsQzJy09GRgb8/PwUZhKQs7a2xuXLlwEA+/btQ7ly5RTW6+vrK01jUFCQwmsVbGxslIYDACcnJ+zZswfFihWDjY0N9PT0pHU6Ojp5Op1kZmbmiSP3udOUp/xKTk4G8HF2E/mrSVavXo0GDRoohNPV1QUA1K5dG6mpqThw4ACOHj2KTp06oWnTplq9YqEonF9tWFlZ4f3793j27JnC7A/yGWvkYc6ePauw3cOHD6V18n/ly3KGMTMzUznrA6D8mKg7TtrQ19f/pGNCRERERET/29j5gYiIiIiIiIokPT09ZGVlKSyrXbs2rl69iipVqhT6/mxtbREUFISgoCCMHTsWq1ev/uTOD8DHV180a9YMV65cwR9//IHp06dL606ePAk7OzuMGzdOWnb79m218e3fvx8vX75EQkKC9KAYAC5fvozevXsrPCidO3cuZsyYgUOHDmmclQEAunTpgvHjxyMhIeGzjFgvVaoUfHx8sGzZMgwdOjTPA3d52p2dnXH37l3cvXtXGhV+9epVPHv2DNWqVQMAlChRAi4uLvjpp59QvHhxVK1aFZaWlvD398fevXvVvmrAwsICzZo1w08//YQhQ4Zo7LShSe3atfHbb7/B3t5eoUOKXLVq1aCvr487d+5o/QqEUqVKadXhBPh4rai6JsqUKSM9nJdLTEzM8xA7N015yo83b95g1apVaNy4McqUKQPgY2eOW7duISAgQOV2ZmZm8Pf3h7+/Pzp06ABfX188efJE43EpCudXG3Xq1EHx4sURFRWF9u3bAwBSUlJw584d6fUa7u7umDFjBh49egRLS0sAwJEjR2BmZiZdK+7u7ti/f79C3EeOHJHiICIiIiIiKip0vnYCiIiIiIiIiArC3t4ex48fx7179/DPP/8AAEJDQ3Hy5EkMHjwYiYmJuHHjBnbv3o3Bgwd/0r5CQkJw6NAhpKam4sKFC4iOjpZeofGpGjduDCsrKwQEBKBixYoKI90dHBxw584dbNmyBTdv3sSSJUuwc+dOtfGtWbMGrVq1gqurK2rUqCH9derUCSVKlJBeCTJnzhxMmDABa9euhb29PR48eIAHDx5Io+6VGT58ONzd3dGkSRMsXrwYFy5cQGpqKg4dOoQDBw4odLYoqGXLliErKwv169fHb7/9hhs3biA5ORlLliyRHsY2bdoUNWvWREBAAC5cuICzZ8+iR48e8PT0VOjE4eXlhY0bN0oPnEuVKgVnZ2ds3bpV40Po5cuX48OHD6hbty62bt2K5ORkpKSk4JdffsG1a9fyldfg4GA8efIEXbp0wblz53Dz5k0cOnQIvXv3RlZWFkxNTTFq1CgMHz4c69atw82bN3HhwgUsXboU69atK8BR1N53332H8+fPY/369bhx4wYmTZqUpzNEQfKkzqNHj/DgwQPcuHEDW7ZsgYeHB/755x+Eh4dLYaZMmYJZs2ZhyZIluH79Oi5duoSIiAgsWLAAALBgwQJs3rwZ165dw/Xr17F9+3ZYWVkpzICgTlE4v0+ePEFiYiKuXr0K4GPHhsTERDx48AAAYG5ujsDAQIwYMQLR0dGIj49H79694e7ujm+++QYA0Lx5c1SrVg3du3dHUlISDh06hPHjxyM4OFiaYSEoKAi3bt3CmDFjcO3aNSxfvhzbtm3D8OHDtT4GRERERERE/wbs/EBERERERERF0tSpU5GWlobKlStLo8VdXFxw7NgxXL9+HY0aNYKbmxsmTpyo9pUA2sjKykJwcDCcnZ3h6+sLR0dHLF++XON28une1Y2Ml8lk6NKlC5KSkvKMcm/Tpg2GDx+OwYMHo1atWjh58iQmTJigMq6HDx9i37590ijwnHR0dPD9999jzZo1AIDw8HC8f/8eHTp0gLW1tfQ3f/58lfEbGBggKioKoaGhiIiIwLfffgtnZ2eEhITAw8MDu3btUnc4tFKpUiVcuHAB3t7eGDlyJGrUqIFmzZohKipKejguk8mwe/dulCxZEo0bN0bTpk1RqVIlbN26VSEuT09PZGVlwcvLS1rm5eWVZ5kylStXRkJCApo2bYqxY8fC1dUVdevWxdKlSzFq1ChMmzZN6zzZ2NggLi4OWVlZaN68OWrWrImQkBCUKFECOjoff5qZNm0aJkyYgFmzZknlbN++fahYsaLW+ykIHx8fTJgwAWPGjEG9evXw8uVL9OjRo1DypIqTkxNsbGxQp04dzJ49G02bNsXly5elmQiAj6+a+fnnnxEREYGaNWvC09MTkZGR0vEwNTXF3LlzUbduXdSrVw9paWnYv3+/xn3LFYXzu2fPHri5uaFVq1YAgM6dO8PNzQ0rVqyQwixcuBCtW7dG+/btpY5UO3bskNbr6upi79690NXVhbu7O7p164YePXpg6tSpUpiKFSti3759OHLkCFxdXREWFoaff/4ZPj4+Wh8DIiIiIiKifwOZyP1iRyIiIiIiIiIqFKdPn4a7uzv+/vtvlC5d+msnh4ioSA1gxkkAALDJSURBVHnx4gXMzc3x/PlzmJmZfe3kEBERERHRV6Ltd4NPeykjEREREREREeXx4cMHpKWlYd68eXB1dWXHByIiIiIiIiKiz4yvvSAiIiIiIiIqoKCgIJiYmOT5K1GiBBwdHZGeno7169d/7WQSEREREREREf3X42sviIiIiIiIiAro0aNHePHihdJ1ZmZmsLS0/MIpIiL678HXXhAREREREcDXXhARERERERF9dpaWluzgQERERERERET0L8DXXhAREREREREREREREREREVGRxs4PREREREREREREREREREREVKSx8wMREREREREREREREREREREVaez8QEREREREREREREREREREREUaOz8QERERERERERERERERERFRkcbOD0RERERERERERERERERERFSksfMDERERERERERERERERERERFWns/EBERERERERERERERERERERFGjs/EBERERERERERERERERERUZHGzg9ERERERERERERERERERERUpLHzAxERERERERERERERERERERVp7PxARERERERERERERERERERERRo7PxAREREREREREREREREREVGRxs4PREREREREREREREREREREVKSx8wMREREREREREREREREREREVaez8QEREREREREREREREREREREXav7rzg5eXF0JCQr52Mv71evXqhXbt2n1SHDExMZDJZHj27FmhpOlzy51nlhXtFEZZ+V8hk8mwa9eur52MQqXN+S9qdcF/u8mTJ6NWrVpfOxkFkpaWBplMhsTExK+dlEIRGRmJEiVKSJ+1OTdf6xjkTmtB5c7j/1ob8rmuP23q2cmTJ6NXr16Fvm9lvkQ5tbe3x6JFiz5b/PlRkHKd+z7z35QfKhw8p5Tbv63Ne/z4MSwtLZGWlva1k6KVonwPK1dUvxd9rmO/atUq2NraQkdHp8D15cGDB1GrVi1kZ2cXbuKIiIiIiIhy+Fd3ftixYwemTZsmfS4qP0rt3LkT33zzDczNzWFqaorq1asXyoP5f9uDpL///hsDBw5EhQoVoK+vDysrK/j4+CAuLk7rOAr6gGbx4sWIjIzM93Zy8mMp/7OwsEDz5s2RkJBQ4Dg/hb29vZQWQ0ND2Nvbo1OnTvjjjz8KdT+ajpv8B57cf+PHjy/UdGjj/fv3mDdvHmrXrg1jY2OYm5vD1dUV48ePx/379z/7/tPT09GiRYvPvh9VnSy+xA+uX6PT0ObNm6Grq4vg4OA862JiYtC2bVtYW1vD2NgYtWrVwsaNG7WK97fffoOXlxfMzc1hYmICFxcXTJ06FU+ePCnsLAAonAeTv/32G7777juULFkShoaGcHJyQp8+fb5aPZSTurpZ245Btra2SE9PR40aNQo3cTlMnjxZaZ2V8+9zGTVqFKKioqTPyq7ZL3EMCirnMSpWrBgqVKiAESNG4N27d1KY3Hn8t4iMjIRMJoOzs3Oeddu3b4dMJoO9vX2+4iyKHd5U3Rf/Gx84nTt3Dv379/+kOLy8vBTKbdmyZdGxY0fcvn07X/EURrkujPxoI+f9oa6uLmxsbBAYGIinT59+9n1rQ9N3nn9jWSyszmFy586dg4eHB4yNjWFpaYkOHTrgw4cPGrf7Nx6bry0pKQlt2rSBpaUlDAwMYG9vD39/fzx69AjAl38Q/anfNwvbjBkz0LZtW4X2Tdl9z5YtWxS2i4mJQe3ataGvr48qVaoozdOyZctgb28PAwMDNGjQAGfPnv3MucmfhIQEdOzYEWXLloWBgQEcHBzQr18/XL9+/WsnrUDk9zEymQw6OjooX748evfuLZX1f6MXL15g8ODBCA0Nxb1795S2gWlpaQgMDETFihVhaGiIypUrY9KkSXj//r0UxtfXF8WLF9f6Ox4REREREVFB/Ks7P5QqVQqmpqZfOxn5EhUVBX9/f7Rv3x5nz55FfHw8ZsyYgczMzE+KN+cXxn+L9u3bIyEhAevWrcP169exZ88eeHl54fHjx5993+bm5oXyw+XRo0eRnp6OQ4cOISMjAy1atCjwD2pZWVmfNIJh6tSpSE9PR0pKCtavX48SJUqgadOmmDFjRoHjzE3b45aSkoL09HTp78cff8wT5lPzq867d+/QrFkzzJw5E7169cLx48dx6dIlLFmyBP/88w+WLl2qctvCulasrKygr69fKHHR/1mzZg3GjBmDzZs34+3btwrrTp48CRcXF/z222+4ePEievfujR49emDv3r1q4xw3bhz8/f1Rr149HDhwAJcvX0ZYWBiSkpKwYcOGz5mdAgsNDYW/vz9q1aqFPXv2ICUlBZs2bUKlSpUwduzYr528QqGrqwsrKysUK1bss+1j1KhRCnVV+fLlpbpU/pdTYbalJiYmsLCwUBvmSxyDTxEREYH09HSkpqZi+fLl2LBhA6ZPny6t1yaPX4uxsTEePXqEU6dOKSxfs2YNKlSo8JVSRaqUKVMGRkZGnxxPv379kJ6ejvv372P37t24e/cuunXrlq84CqNcF1Z+tCGv0+7cuYONGzfi+PHjGDp06BfZtzqF+Z3nU78nfU3+/v4wNTXF+fPnER0dDW9v76+dJLWEEFp1zvjS/v77bzRp0gSlSpXCoUOHkJycjIiICNjY2ODVq1dfJU2F9X2zMLx+/Rpr1qxBYGBgnnXytlz+l7MjZmpqKlq1agVvb28kJiYiJCQEffv2xaFDh6QwW7duxYgRIzBp0iRcuHABrq6u8PHx+dc8iN+7dy+++eYbvHv3Dhs3bkRycjJ++eUXmJubY8KECV87eQVmZmaG9PR0/PXXX1i9ejUOHDiA7t27f+1kqXTnzh1kZmaiVatWsLa2VtoGXrt2DdnZ2Vi5ciWuXLmChQsXYsWKFfjPf/6jEK5Xr15YsmTJl0o6ERERERH9LxL/Yp6enmLYsGHS/wEo/MnFxsaKb7/9VhgYGIjy5cuLIUOGiIyMDGm9nZ2dmDZtmujevbswNjYWFSpUELt37xaPHj0Sbdq0EcbGxqJmzZri3Llz0jZpaWmidevWokSJEsLIyEhUq1ZN7Nu3T2Oahw0bJry8vNSG+fPPP0WbNm2EpaWlMDY2FnXr1hVHjhxRCGNnZyemTp0qunfvLkxNTUXPnj3z5N/T01MIIUTPnj1F27Ztxbx584SVlZUoVaqUGDRokHj//r0U3/r160WdOnWEiYmJKFu2rOjSpYt4+PChtD46OloAEE+fPhVCCPHq1Svh6+srGjZsKC3L6enTpwKAiImJUZvXsLAwUaNGDWFkZCTKly8vBg4cKF6+fKmwz5x/kyZNEmPHjhX169fPE5eLi4uYMmWKQp7lcpYVIYTYu3evMDMzE7/88ovSdKWmpgoAIiEhQVoWFxcnAIiDBw/mOR5CCJGQkCAAiNTUVCGEEBEREcLc3Fzs3r1bODs7C11dXZGamirevn0rRo4cKWxsbISRkZGoX7++iI6OVnuc7OzsxMKFC/MsnzhxotDR0RHXrl2Tll26dEn4+voKY2NjYWlpKbp16yb+/vtvaf327dtFjRo1hIGBgShVqpRo0qSJdD3kPm65Kcu33KfkV9M1mtusWbOEjo6OuHDhgtL12dnZ0v89PT1FcHCwGDZsmLCwsJCuP3VlT75d7vKX8/wCEDt37hRC/F95+e2334SXl5cwNDQULi4u4uTJkwrpWrVqlShfvrwwNDQU7dq1E2FhYcLc3FxlPnPvJ6fc5yorK0vMnDlT2NvbCwMDA+Hi4iK2b98urf/w4YPo06ePtN7R0VEsWrRIZZzK6pTU1FSpDBw9elTUqVNHGBoaCnd3d6kMpqamCplMplBfCiHEwoULRYUKFURWVpbKvN66dUsYGhqKZ8+eiQYNGoiNGzeqPTZCCNGyZUvRu3dvlevPnDkjAOTJq1zOsrx8+XJRqVIlUbx4ceHo6CjWr18vrRs5cqRo1aqVQn4AiAMHDkjLKleuLFavXi2EEGLSpEmiZ8+e0jp1111up06dEgDE4sWLla7PWb4nTZokXF1dxfr164WdnZ0wMzMT/v7+4sWLF1IYTWVDCM31Rm7y612ZnGX2yZMnomvXrqJ06dLCwMBAVKlSRaxdu1YIkbee1VS25KZNmybKlCkjTExMRGBgoAgNDRWurq4q05pT7rq0oPWD/BjY2tpK1/P8+fMVjon83Mj/n/t6io6OVtrWxMTEiHr16gk9PT1hZWUlQkNDRWZmpkKahwwZIkaPHi1KliwpypYtKyZNmqSQNk3pV3f+5JTVPYGBgaJly5ZK8yhE3nrp7du3YsiQIaJMmTJCX19feHh4iLNnz0rrtTnn2twT5SbP3+DBg0Xfvn2l5Xfv3hX6+vrixx9/FHZ2dgrb7Nq1S7i5uQl9fX1RsWJFMXnyZOm429nZKZw7+bbaXH+ajoEQQuzbt084ODgIAwMD4eXlJSIiIlS2tTmPfc46RhlV9w65z5sQQqxevVpUrVpV6OvrCycnJ7Fs2TJpnaprde/evaJmzZpCX19fNGjQQFy6dEnaJr/3ybnTCkCsXr1atGvXThgaGooqVaqI3bt3q81v7ns9IYTYsGGDMDIykj4rK/s7d+5U+N6gqVxnZGRI3xmsrKzE/Pnz8+y7IPnZvXu3qFKlitDX1xdeXl4iMjJSYzlQdo6nTZsmqlWrprDs119/FdWqVRN6enrCzs5OzJ8/P088M2bMEL179xYmJibC1tZWrFy5UiHMnTt3RMeOHYW5ubkoWbKkaNOmjXRPpIym7zzycp7zLyIiQgjx8XgtX75c+Pn5CSMjI6mOU3edyrf7lOOs6ruHtsdImcqVK2sVLjdV5XDGjBnC0tJSmJubiylTpojMzEwxatQoUbJkSVGuXDmpjRXi/67dzZs3C3d3d6Gvry+qV6+u8P1Mnuf9+/eL2rVri+LFi4vo6Gi1dVdWVpYoV66cWL58uUKaL1y4IGQymUhLSxNCfLzHCgwMFKVLlxampqbC29tbJCYmSuET/x979x0WxfH/Afx9IOXg6F1FUJpIBLEDKljBFlBjQRTsFcWCLRawl4g9dsUSVDTWaCxIABWNIl1AwG4MdkTRiArz+8Pn9sde4Q5E/Zp8Xs/D87C7s7szs7Mzu7ezs2lpzMvLi4lEIqajo8MaN24sdf0odvjwYVajRg3e8S5PnNbyf+I68uTJk8zDw4Pp6ekxQ0ND1rVrV3bjxg2pdaOjo7n7kaZNm7Lc3Fx25coV1qRJE6atrc18fHzY48ePpY6JWHW0z1V14MABZmJiIjVf3n2E2NSpU5mTkxNvXt++fZm3tzc33bx5czZ27FhuurS0lNWsWZMtXryYt5+NGzeyrl27MqFQyOrXr88uXrzI8vPzmaenJ9PS0mJubm68fJfVFlXW69evmbGxMfPz85O5vHz9qcz1VXBwMAsJCWH6+vrM1NSUbd68mRUXF7NBgwYxkUjEbGxs2O+//86to0x7yJjiOliSrLZq4cKFTEVFhb1580ZhmWbs4zVPv379mIGBAdPS0mJNmjRhf/75J2NMOu9v3LjB6taty8aOHcu7zyjv7t273G9jOjo6rHfv3uzhw4dcfOXdMyuybNkyVrduXal9AZBKU3lv375lRUVF3N/9+/cZAFZUVKTUfgkhhBBCCCH/TkVFRUrdG/xPj/xQ3qFDh6Te6ASAmzdvwsfHB7169UJGRgaio6Nx4cIFBAcH89ZfuXIlPDw8kJqaiq5du2LgwIEIDAzEgAEDkJKSAhsbGwQGBoIxBgAYO3YsSkpKuDfOly5dCpFIpDCe5ubmyMrKwrVr1+SGKS4uRpcuXRAbG4vU1FT4+Pige/fuuHfvHi/c8uXL4eLigtTUVMyePZsbflI8WsGhQ4e4sHFxcbh58ybi4uKwc+dO7Nixgzek5fv37zF//nykp6fjyJEjuHPnjtwh21+8eIGOHTuirKwMMTExMt94EYlEEIlEOHLkCG+IbEkqKipYs2YNsrKysHPnTvzxxx+YOnUqAMDd3R2rVq3i3nooKChAaGgoAgICcOXKFdy8eZPbTlZWFjIyMtC/f3+5+xLbs2cP/P39ERUVhYCAAIXhxYRCIYDKvRn85s0bLF26FFu3bkVWVhZMTU0RHByMS5cuYd++fcjIyEDv3r3h4+OD/Px8pbcrFhISAsYYjh49CuDjsWnXrh1cXV1x9epVnDp1Co8ePUKfPn0AfPxUg7+/P4YMGYKcnBzEx8ejZ8+eXLn+VFVJr7LnaHl79+5Fx44d4erqKnO55FD2O3fuhLq6OhITE7Fx40YAFZc94GOdUv4tqZ49e8LBwQFmZmZy4zVz5kyEhoYiLS0N9vb28Pf3596eS0xMxKhRoxASEoK0tDR07NixWkftWLx4MXbt2oWNGzciKysLEydOxIABA5CQkAAAKCsrQ+3atXHgwAFkZ2djzpw5+PHHH7F//36Z21u9ejXc3Ny4t2gLCgpgaWnJS2tERASuXr2KGjVqYMiQIQA+DsHdoUMHREZG8rYXGRmJQYMGQUVFfrMSGRmJrl27Qk9PDwMGDMC2bdsUpruoqAiGhoZyl0dFRUEkEmHMmDEyl4vrr8OHDyMkJASTJ0/GtWvXMHLkSAwePBhxcXEAAE9PT1y4cAGlpaUAgISEBBgbGyM+Ph4A8ODBA9y8eRNeXl5S+6jsebd3794K4yxZvm/evIkjR47g+PHjOH78OBISErBkyRJuuaKyoaje+BSzZ89GdnY2Tp48iZycHGzYsAHGxsYVriOvbAEfj+fChQuxdOlSJCcno06dOtiwYcMnxbEq9cPly5cxdOhQBAcHIy0tDW3btuWNiCApNDQUffr0gY+PD3c+ubu7S4V78OABunTpgmbNmiE9PR0bNmzAtm3bpLa9c+dOaGtr4/Lly1i2bBnmzZuHmJgYbrmi+FdFXl4e/vjjD7Ro0ULpdaZOnYqDBw9i586dSElJga2tLby9vaU+N1PRMVf2mkiWIUOGYP/+/Xjz5g2Aj8NI+/j4SNXj58+fR2BgIEJCQpCdnY1NmzZhx44dXB2dlJQE4P/fnhVPA4rPP0V5cP/+ffTs2RPdu3dHWloahg0bJnM0pc8pKioKc+bMwcKFC5GTk4NFixZh9uzZ2LlzZ4XrTZkyBREREUhKSoKJiQm6d+/OvaFf1evk8ubOnYs+ffogIyMDXbp0QUBAQKU+VfT8+XPs37+/UmVWGVOmTEFCQgKOHj2KM2fOID4+HikpKQrXqyg9t2/fxg8//AA/Pz+kp6dj5MiRmDlzZqXj9uDBA/z222+8NCcnJ6NPnz7o168fMjMzER4ejtmzZ0sNbR8REYGmTZsiNTUVY8aMwejRo5Gbmwvg432Ct7c3dHR0cP78eSQmJkIkEsHHx0fudbGie56+ffti8uTJcHJy4urFvn37csvDw8PRo0cPZGZmYsiQIQrP0+rIZ3n3HsrkkTy+vr5YsGAB7ty5U2E4Zfzxxx/4+++/ce7cOaxYsQJhYWHo1q0bDAwMcPnyZYwaNQojR47EX3/9xVtvypQpmDx5MlJTU+Hm5obu3btLjcQ3ffp0LFmyBDk5OXB2dq6w7lJRUYG/vz/27NnD20ZUVBQ8PDxgZWUFAOjduzceP36MkydPIjk5GY0bN0b79u254xEQEIDatWsjKSkJycnJmD59OtTU1GSm3dzcHB8+fMDhw4dlXj9ZWlri4MGDAP5/hLrVq1cDAF6/fo1Jkybh6tWriI2NhYqKCnr06CE1Ql1YWBhmzZqFlJQU1KhRA/3798fUqVOxevVqnD9/Hjdu3MCcOXMqPEZfo30GPrZjTZo0kbls7NixMDY2RvPmzbF9+3Ze/l26dAkdOnTghff29uZGTXr37h2Sk5N5YVRUVNChQwepkZXmz5+PwMBApKWloX79+ujfvz9GjhyJGTNm4OrVq2CMVXh/VxWnT5/G06dP5eah+Dq/MtdXxsbGuHLlCsaNG4fRo0ejd+/ecHd3R0pKCjp16oSBAwdy1xViFbWHytbBigiFQpSVleHDhw8Ky3RxcTE8PT3x4MEDHDt2DOnp6Zg6darMURkzMjLQqlUr9O/fH+vWrZP5SbiysjL4+vri+fPnSEhIQExMDG7dusXV2X379sXZs2cBAFeuXJG6b6yIrHu5OnXqwMzMDOfPn5e73uLFi6Gnp8f9Kbs/QgghhBBCCAHw7Yz8wJjst5+GDh3KRowYwZt3/vx5pqKiwv755x9uvQEDBnDLCwoKGAA2e/Zsbp74TdyCggLGGGMNGzZk4eHhlY5zcXEx69KlC/fmYN++fdm2bdvY27dvK1zPycmJrV27lpdWyTccZL1BytjHt1KsrKzYhw8fuHm9e/dmffv2lbu/pKQkBkBqFIacnBzm7OzMevXqxUpKSiqM86+//soMDAyYpqYmc3d3ZzNmzGDp6ekVrnPgwAFmZGTETct7O9XFxYXNmzePm54xYwZr0aIFL82yRn5Yt24d09PTUzgihWReFhYWsh49ejCRSMQePnyo9MgPAHhvON29e5epqqqyBw8e8PbXvn17NmPGDLnxkff2JmOMmZmZsdGjRzPGPr7t16lTJ95y8VsQubm5LDk5mQHg3siSpOzID9ra2ry/p0+fVjm9ypyjkjQ1Ndn48eN58/z8/Lj4uLm5cfM9PT2Zq6ur3DSJSZa98lasWMH09fVZbm4uNw8yRn7YunUrtzwrK4s7Zxj7+BZV+ZEDGGMsICBAqbevNTU1pfK8Ro0a3LF6+/Yt09LSkhppYujQoczf31/utseOHct69erFTSsaMYUx/pvaYidOnGAAuOMVHR3NDAwMuHotOTmZCQSCCt8AKi0tZZaWluzIkSOMMcaePHnC1NXV2a1bt+SuEx0dzdTV1dm1a9fkhuncuTNzdnaWu1zM3d2dDR8+nDevd+/e3FvuhYWFTEVFhSUlJbGysjJmaGjIFi9ezNU7v/zyC6tVq5bMbSs67yT5+PhIxTkiIoJ3/F+8eMEY+/jmlpaWFu9N8ylTpnDxUqZsKKo3ZFF25Ifu3bvLHZmjopEfxCTLVosWLXhvHzLGmIeHxyeN/FCV+sHf3583AgJjH89xeSM/MCa7fpXMgx9//JE5ODjw3rr7+eefmUgk4kZN8fT0ZK1ateJtp1mzZmzatGlKx1/ZkR/EdY+GhgYDwLp168YbNaqiNBYXFzM1NTXeCC7v3r1jNWvWZMuWLWOMKXfMZZG8JpJUPn2NGjViO3fuZGVlZczGxoYdPXqUrVy5kjfyQ/v27dmiRYt429i9ezezsLDg5Yfk27OKzj9l8mDGjBlSb+lPmzat2kZ+UFdXl2o/1NTUeMfNxsaG7dmzh7fu/PnzubZU3rm6b98+LvyzZ8+YUChk0dHRjLHKXyfLGilh1qxZ3HRxcbHUaDuSPD09mZqaGtPW1mZaWloMALO3t+e1PZ868sOrV6+Yuro6279/v1TaFY38UFF6pk2bxr777jtevGbOnKnUyA/iY6ypqckAsBYtWvDW6d+/P+vYsSNvvSlTpvDKneS9UFlZGTM1NWUbNmxgjH08HyTrppKSEiYUCtnp06dlxk2Zex55b34DYBMmTODNU/Y8/dR8llc/KsojWXbs2MFdL9SpU4dlZWVxy5YvXy71xn15ssqhlZUVbwQtBwcH1rp1a276w4cPTFtbm+3du5cx9v/n7pIlS7gw79+/Z7Vr12ZLly5ljP3/+Sy+/mJMuborNTWVCQQCdvfuXcbY/48GIc6P8+fPM11dXal73PIjYejo6LAdO3bIzQNJP/74I6tRowYzNDRkPj4+bNmyZdyb5+XTUtE5w9jHa0wA3Nv5sq7j9+7dywCw2NhYbt7ixYuZg4MDNy3ruvlT2+eq8vX1ZUOGDJGaP2/ePHbhwgWWkpLClixZwjQ0NHgji9nZ2UmdV+J2+M2bN+zBgwcMgNR15JQpU3gjMUqee+LfTrZt28bN27t3L9PU1OSmq2Pkh6VLlzIA7Pnz5xWGq8r1lfh8GjhwIDdP/DvRpUuXGGPKtYfK1MGSJOuhvLw8Zm9vz5o2bSozvGSZ3rRpE9PR0WHPnj2TGV6c94mJiczAwEDhSBRnzpxhqqqq7N69e9w88b2ueEQYyd9ClJGfn890dXXZ5s2bpZa5urpWeB1BIz8QQgghhBBCZPnXjfwgT3p6Onbs2MGNRCASieDt7Y2ysjLcvn2bC+fs7Mz9L34jsGHDhlLzxN+2HD9+PBYsWAAPDw+EhYUhIyNDqfhoa2vjxIkTuHHjBmbNmgWRSITJkyejefPm3BsExcXFCA0NhaOjI/T19SESiZCTkyP1lmPTpk2VzgcnJyeoqqpy0xYWFrzvdCYnJ6N79+6oU6cOdHR04OnpCQBS++zYsSNsbW0RHR0NdXX1CvfZq1cv/P333zh27Bh8fHwQHx+Pxo0b895yOHv2LNq3b49atWpBR0cHAwcOxLNnz6TeppAUEBDAvW3EGMPevXsVjuLw66+/YuLEiYiJieHSp4i7uztEIhEMDAyQnp6O6OjoCt/8l6Surs4rW5mZmSgtLYW9vT2vTCYkJPBGsqgMxhj3hkZ6ejri4uJ4265fvz6Aj2+nuri4oH379mjYsCF69+6NLVu2oLCwsNL7PH/+PNLS0rg/AwODKqdX2XNUkfXr1yMtLQ1DhgyRKj+y3oRStuydPHkS06dPR3R0NOzt7SuMQ/m0W1hYAPj/OiM3NxfNmzfnhZeclmflypW8/E5LS8P333/PLb9x4wbevHmDjh078vJx165dvHL1888/o0mTJjAxMYFIJMLmzZuVenu6smn18/ODqqoqDh8+DODj29Zt27aFtbW13O3FxMTg9evX6NKlCwDA2NgYHTt2xPbt22WGj4uLw+DBg7FlyxY4OTnJ3S5TclSTnJwceHh48OZ5eHggJycHwMc3x1xcXBAfH4/MzEyoq6tjxIgRSE1NRXFxMRISEuTWK9Vx3g0ZMgRpaWnYtGkTXr9+zUuXtbU1dHR0uOny9bsyZUNRvfEpRo8ejX379qFRo0aYOnUqLl68qHCdz3UeyVOV+iEnJ0fqbXI3N7dPiod4u25ubry37jw8PFBcXMx7k7d8HgHSbXpV21ZJ4ronPT0dx48fR15entLfm7558ybev3/PO6/U1NTQvHlz7rySlR7JY67sNZE8Q4YMQWRkJBISEnh1THnp6emYN28e7xwQj3qjKM8qOv+UyYPPVZbEpkyZItV+jBo1ilv++vVr3Lx5E0OHDuWlf8GCBQrP//LxNDQ0hIODA5euql4nl1e+XGhra0NXV1fhN+YDAgK4MnvhwgXY2tqiU6dOePXqVaX3L8vNmzfx7t073jETp12RitKTm5uLZs2a8cIrW7eJj3FGRgZiY2MBAF27duVGKpLXvuXn53NhJOMnEAhgbm7OxS89PR03btyAjo4OV0YMDQ3x9u1bueVEmXueikje5yh7nn6ufJbctmQeSSorK8P06dMxf/58TJ8+HXPmzEGbNm3w559/Avh4jdy6dWul9w18vJ8rP4KWmZkZ735VVVUVRkZGUnEqf67WqFEDTZs2laqHy+e3MnVXo0aN4OjoyN2PJSQk4PHjx+jduzeAj8eruLgYRkZGvGN2+/ZtrsxMmjQJw4YNQ4cOHbBkyRKFdc7ChQvx8OFDbNy4EU5OTti4cSPq16+PzMzMCtfLz8+Hv78/6tWrB11dXe56VLIdUeb3AEV1UHW3z6NGjeLlnzz//PMPNDU1pebPnj0bHh4ecHV1xbRp0zB16lT89NNPFaahqpTJv7dv3+Lly5dKbc/JyYlLd+fOnWWGqcx1fmWvr8TnU0W/CYlV1B4qWwdLKioqgkgkgpaWFjf6YFRUFADFZTotLQ2urq4Vjo537949dOzYEXPmzMHkyZPlhhOnwdLSkje6QoMGDaCvry9VlyjrwYMH8PHxQe/evTF8+HCp5UKhsMK2QkNDA7q6urw/QgghhBBCCFFWja8dgU9VXFyMkSNHYvz48VLL6tSpw/1ffohN8U2xrHnioQKHDRsGb29vnDhxAmfOnMHixYsRERGBcePGKRUvGxsb2NjYYNiwYZg5cybs7e0RHR2NwYMHIzQ0FDExMVi+fDlsbW0hFArxww8/SA0rq62trWQuQGoIUYFAwKXl9evX8Pb2hre3N6KiomBiYoJ79+7B29tbap9du3bFwYMHkZ2dzfshQB5NTU107NgRHTt2xOzZszFs2DCEhYVh0KBBuHPnDrp164bRo0dj4cKFMDQ0xIULFzB06FC8e/cOWlpacrfr7++PadOmISUlBf/88w/u37/PGypXFldXV6SkpGD79u1o2rSpzCEdJUVHR6NBgwYwMjLifd5D/MNj+R9cxENblicUCnn7KS4uhqqqKpKTk3mdUQBUejhoAHj27BmePHmCunXrctvv3r07li5dKhXWwsICqqqqiImJwcWLF3HmzBmsXbsWM2fOxOXLl7ltKKNu3boyP3dSlfQqe46WZ2dnJzXMsPiBmawfeSTPFWXLXnZ2Nvr164clS5agU6dOMuNSXkV1xqcwNzeHra0tb56Ojg5evHgB4GMeAsCJEydQq1YtXjgNDQ0AwL59+xAaGoqIiAi4ublBR0cHP/30Ey5fvlylOFWUVnV1dQQGBiIyMhI9e/bEnj17uKGH5dm2bRueP3/OfV5GvL2MjAzMnTuX92N/QkICunfvjpUrVyIwMLDC7drb2+PChQt4//693KGUleXl5YX4+HhoaGjA09MThoaGcHR0xIULF5CQkCD3h8PKnnd2dnZScdbX14e+vr7UUNZAxfW7MmVDUb0hi66uLl6/fo2ysjLesRGXST09PQBA586dcffuXfz++++IiYlB+/btMXbsWCxfvlzmdiXTU53nkTxVrR++poqOeXXGv3zd4+DggFevXsHf3x8LFiyQqpOqKz2Sx1zZayJ5AgICMHXqVISHh2PgwIGoUUP60ra4uBhz585Fz549pZbJepgkL+7i+H/O8lpZxsbGUseqfDspriO2bNki1QlDst2ujE+9Tgaqlrd6enpcem1tbbFt2zZYWFggOjoaw4YNg4qKitTDMlnXb5/D5yor5Y+xnZ0dVq1aBTc3N8TFxUkNZ1/V+BUXF6NJkybcg7fyTExMKtxuRfc8FZGsm5U9Tz/nOVmZbT9+/BgPHz7kPtE2dOhQvHr1Ch06dMDWrVtx8OBBrrPKp+y/utJbmftKMXFn9OnTp2PPnj3w8fGBkZERgI/Hy8LCgvs8WHnie4jw8HD0798fJ06cwMmTJxEWFoZ9+/ahR48ecvdpZGSE3r17o3fv3li0aBFcXV2xfPnyCj/T0717d1hZWWHLli2oWbMmysrK8N1330m1I8r8HqAob6u7fZ43bx7v0yvyGBsbK9WxtkWLFpg/fz5KSkqgoaEBc3NzPHr0iBfm0aNH0NXVhVAohKqqKlRVVWWGMTc3l5t2ZX5PUeT333/n6ufy9wfliTumX79+vVo6Dio6x77EdamYjo4OUlJSoKKiAgsLC14eKCrT8vKrPBMTE9SsWRN79+7FkCFDvmjngb///htt27aFu7s7Nm/eLDPM8+fPFbYvhBBCCCGEEFJV39TID+rq6lK95xs3bozs7GzY2tpK/SkauUARS0tLjBo1CocOHcLkyZOxZcuWKm3H2toaWlpaeP36NQAgMTERgwYNQo8ePdCwYUOYm5sr9Z1YcXoqeoNAluvXr+PZs2dYsmQJWrdujfr168t9q2XJkiUICgpC+/btkZ2dXan9AB/fEBCnMzk5GWVlZYiIiEDLli1hb2+Pv//+WypNstJTu3ZteHp6IioqClFRUejYsSNMTU0r3LeNjQ3i4uJw9OhRpX98t7S0hI2NjdSDfvGNeEFBATcvLS1N4fZcXV1RWlqKx48fS5VHyR+QlLF69WqoqKjAz88PwMfynpWVBWtra6nti3/UFAgE8PDwwNy5c5Gamgp1dXXuDf3qpkx6q3KO+vv7IyYmBqmpqVWKlzJl7+nTp+jevTt69eqFiRMnVmk/5Tk4OPC+Ew9AarqqGjRoAA0NDdy7d08qD8Vv6CQmJsLd3R1jxoyBq6srbG1tFb5hJ+/8U8awYcNw9uxZrF+/Hh8+fJD5sELs2bNnOHr0KPbt28d7Ozk1NRWFhYU4c+YMFzY+Ph5du3bF0qVLMWLECIXx6N+/P4qLi7F+/XqZy8UP6x0dHZGYmMhblpiYiAYNGnDTnp6euHDhAmJjY+Hl5QXgY4eIvXv3Ii8vj5snS2XOO39//wrjXBnKlA1l6g1JDg4O+PDhg1S9J/7ufflRUkxMTBAUFIRffvkFq1atkvsjpzI+53kkpkz94OjoKNVxSPw2rzzKnE+Ojo64dOkS7+FsYmIidHR0ULt27WqLf1WJH4b/888/CsPa2NhAXV2dd169f/8eSUlJvPNKkapeE4kZGhri+++/R0JCAoYMGSIzTOPGjZGbmyuzHRJ37lFTU6t0fahMHjg6OuLKlSu89RSVpepkZmaGmjVr4tatW1JpV9Qpsnw8CwsLkZeXB0dHR25edV0nfwrJMmtiYoJXr15x16KActdvYjY2NlBTU+Od/+K0fwoHBwdcvXqVN6+qdZtkmuW1b/b29kp3cGncuDHy8/NhamoqVU7End2UIXnPU5nrDGXOU0WUyedPufYpz8DAAEKhEOfOnePmTZgwAdOmTYO/vz/atWv3ySMXKav8ufrhwwckJyfzzlVJytbf/fv3x7Vr15CcnIxff/2VNwpf48aN8fDhQ9SoUUPqeBkbG3Ph7O3tMXHiRJw5cwY9e/ZEZGSk0ulSV1eHjY0NrzwB/HvhZ8+eITc3F7NmzUL79u3h6OhYpVHvqkNV2mfJc04eV1dXpe7NxSP2iTvAurm5SXXCiYmJ4ToSqKuro0mTJrwwZWVliI2NrdZRimSxsrLi0i3ZgVesU6dOMDY2xrJly2QuL3+d/6nXVxWpqD2sah2soqICW1tb1KtXj9eZQZky7ezsjLS0NDx//lzu9oVCIY4fPw5NTU14e3tXOEKSo6Mj7t+/j/v373PzsrOz8eLFi0pd0wEfR3zw8vJCkyZNEBkZKbP+Fo8qJO48RgghhBBCCCHV7Zsa+cHa2hrnzp1Dv379oKGhAWNjY0ybNg0tW7ZEcHAwhg0bBm1tbWRnZyMmJgbr1q2r8r4mTJiAzp07w97eHoWFhYiLi6vwRySx8PBwvHnzBl26dIGVlRVevHiBNWvW4P379+jYsSOAj29tHTp0CN27d4dAIMDs2bOVervA1NQUQqEQp06dQu3ataGpqanUD5J16tSBuro61q5di1GjRuHatWuYP3++3PDLly9HaWkp2rVrh/j4eG549PKePXuG3r17Y8iQIXB2doaOjg6uXr2KZcuWwdfXF8DHN/Lev3+PtWvXonv37khMTMTGjRt527G2tkZxcTFiY2Ph4uICLS0t7q2YgIAAhIWF4d27d1i5cqXCdAIff2CLi4uDl5cXatSogVWrVim1niTxg8Pw8HAsXLgQeXl5iIiIUGr/AQEBCAwMREREBFxdXfHkyRPExsbC2dkZXbt2lbvuq1ev8PDhQ7x//x63b9/GL7/8gq1bt2Lx4sXcj2Fjx47Fli1b4O/vj6lTp8LQ0BA3btzAvn37sHXrVly9ehWxsbHo1KkTTE1NcfnyZTx58kSpslsVyqS3KufoxIkTceLECbRv3x5hYWFo3bo1DAwMkJeXh5MnTyr8MV+ZsterVy9oaWkhPDwcDx8+5OabmJhU6W3YcePGoU2bNlixYgW6d++OP/74AydPnlRqBBJFdHR0EBoaiokTJ6KsrAytWrVCUVEREhMToauri6CgINjZ2WHXrl04ffo06tati927dyMpKanCh1vW1ta4fPky7ty5ww1xrSxHR0e0bNkS06ZNw5AhQyp8A2n37t0wMjJCnz59pPKjS5cu2LZtG3x8fBAXF4du3bohJCQEvXr14o6Lurq63Li1aNECU6dOxeTJk/HgwQP06NEDNWvWxI0bN7Bx40a0atUKISEhmDJlCvr06QNXV1d06NABv/32Gw4dOoSzZ89y22rTpg1evXqF48ePY8mSJQA+dn744YcfYGFhIfezKJcvX67Ueefm5obJkydj8uTJuHv3Lnr27AlLS0sUFBRg27ZtEAgESj/oUaZsKKo3ZJV3JycndOrUCUOGDEFERATq1auH3NxcTJgwAX379uV+pJ4zZw6aNGkCJycnlJSU4Pjx459U34wbNw7Dhw9H06ZN4e7ujujoaGRkZKBevXpV3qYkZeqH8ePHw8PDA8uXL4evry9Onz6NU6dOVbhda2trnD59Grm5uTAyMpLZPo8ZMwarVq3CuHHjEBwcjNzcXISFhWHSpElKH3Nl4q+sFy9e4OHDhygrK0N+fj7mzZsHe3t7pY6htrY2Ro8ejSlTpsDQ0BB16tTBsmXL8ObNGwwdOlTpOFT1mqi8HTt2YP369dwbyZLmzJmDbt26oU6dOvjhhx+goqKC9PR0XLt2DQsWLADw8fjFxsbCw8MDGhoa3OeeKqJMHowaNQoRERGYMmUKhg0bhuTkZN7nwb6EuXPnYvz48dDT04OPjw9KSkpw9epVFBYWYtKkSXLXmzdvHoyMjGBmZoaZM2fC2NiY64xZ1evkT/XmzRuubXj06BHmz58PTU1NbvSmFi1aQEtLCz/++CPGjx+Py5cvVyq/RSIRhg4diilTpsDIyAimpqaYOXOm0uenPCNHjsSKFSswbdo0DB06FGlpaVy8FF0niK8PGWO4f/8+pk6dChMTE7i7uwMAJk+ejGbNmmH+/Pno27cvLl26hHXr1lWqg11AQAB++ukn+Pr6Yt68eahduzbu3r2LQ4cOYerUqTIfHipzz2NtbY3bt28jLS0NtWvXho6ODvdQVpIy56kiyuRzRfcelaGhoYGQkBDMnTsXWlpa8PHxwcOHD5GWlgZtbW2cP38eubm5Sn0y5VP9/PPPsLOzg6OjI1auXInCwkK5ncEA5etva2truLu7Y+jQoSgtLeV9kq1Dhw5wc3ODn58fli1bxj3oP3HiBHr06AEnJydMmTIFP/zwA+rWrYu//voLSUlJ6NWrl8w4HT9+HPv27UO/fv1gb28Pxhh+++03/P7771yHCSsrKwgEAhw/fhxdunSBUCiEgYEBjIyMsHnzZlhYWODevXuYPn16NeVs5VRn+yzJ29sbM2bMQGFhIdc+/fbbb3j06BFatmwJTU1NxMTEYNGiRbyRJEaNGoV169Zh6tSpGDJkCP744w/s378fJ06c4MJMmjQJQUFBaNq0KZo3b45Vq1bh9evXCkdv+RK0tbWxdetW9O7dG99//z3Gjx8PW1tbPH36FPv378e9e/ewb9++arm+qkhF7WF11MHlKVOm/f39sWjRIvj5+WHx4sWwsLBAamoqatasyeu0Iv48UefOndG5c2ecOnVK5miUHTp0QMOGDREQEIBVq1bhw4cPGDNmDDw9PSv1KVZxxwcrKyssX74cT5484ZaVfxHkzz//hIaGxmfvYEMIIYQQQgj5D2P/wzw9PVlISAg3fenSJebs7Mw0NDRY+ahfuXKFdezYkYlEIqatrc2cnZ3ZwoULueVWVlZs5cqVvG0DYIcPH+amb9++zQCw1NRUxhhjwcHBzMbGhmloaDATExM2cOBA9vTpU4Vx/uOPP1ivXr2YpaUlU1dXZ2ZmZszHx4edP3+et6+2bdsyoVDILC0t2bp166TSKivOjDG2ZcsWZmlpyVRUVJinpydjjLGgoCDm6+vLCxcSEsItZ4yxPXv2MGtra6ahocHc3NzYsWPHeOmNi4tjAFhhYSG3zrhx45iFhQXLzc2Visfbt2/Z9OnTWePGjZmenh7T0tJiDg4ObNasWezNmzdcuBUrVjALCwsmFAqZt7c327Vrl9R+Ro0axYyMjBgAFhYWxs0vLCxkGhoaTEtLi7169Yq3f8k0S+ZfdnY2MzU1ZZMmTZKKO2PSx1uWCxcusIYNGzJNTU3WunVrduDAAQaA3b59mzHGWGRkJNPT05Na7927d2zOnDnM2tqaqampMQsLC9ajRw+WkZEhd19WVlYMAAPA1NXVWZ06dVifPn3YH3/8IRU2Ly+P9ejRg+nr6zOhUMjq16/PJkyYwMrKylh2djbz9vZmJiYmTENDg9nb27O1a9fKzTdJssqB2KekV9E5Ksvbt2/ZkiVLmIuLCxMKhUxDQ4PVr1+fTZw4kd27d48LJ3nsxRSVPXF+S/6Jj2/5OkJWeSksLGQAWFxcHDdv8+bNrFatWkwoFDI/Pz+2YMECZm5uXmE6JesiMcljVVZWxlatWsUcHByYmpoaMzExYd7e3iwhIYHLr0GDBjE9PT2mr6/PRo8ezaZPn85cXFzkbjM3N5e1bNmSCYVCLu2yykBqaiovb8S2bdvGALArV65UmMaGDRuyMWPGyFwWHR3N1NXV2ZMnT1hQUJDMY1K+LpMnOjqatWnThuno6HBlbN68ebx0rF+/ntWrV4+pqakxe3t7tmvXLqntuLi48I7Zs2fPmEAgYP369ZO7b0XnXUVx9vLyYnp6ekxNTY3Vrl2b9e/fn/35559cmLCwMN4xZIyxlStXMisrK25aUdlgrOJ6Q57CwkI2fvx4ZmNjw4RCIbOzs2NTp07l1cfz589njo6OTCgUMkNDQ+br68tu3brFGJM+b5QtW/PmzWPGxsZMJBKxIUOGsPHjx7OWLVsqzE/GpNvOqtYPjH0s37Vr12ZCoZB1796dLV++nFcHSh6bx48fc/WcuG6QVXfEx8ezZs2aMXV1dWZubs6mTZvG3r9/X2GcfX19WVBQkNLxl1dfl1f+HBMIBMzCwoL17duX3bx5U24aJeuQf/75h40bN44ZGxszDQ0N5uHhwasPlDnmylwTSVKUPslzhDHGTp06xdzd3ZlQKGS6urqsefPmbPPmzdzyY8eOMVtbW1ajRg1uXWXOP0V5wBhjv/32G7O1tWUaGhqsdevWbPv27XLbWrGwsDDeMZdF3rWirHhHRUWxRo0aMXV1dWZgYMDatGnDDh06xBiTf67+9ttvzMnJiamrq7PmzZuz9PR0bnuVvU6WjKustk9PT49FRkbK3Yanpyev3BoYGDBPT0+pa6XDhw8zW1tbJhQKWbdu3djmzZt59w2KyvWrV6/YgAEDmJaWFjMzM2PLli1TeJ2uTHqOHj3KlQMvLy+2YcMGBoD9888/ctNc/voQADMxMWFdunSRun799ddfWYMGDZiamhqrU6cO++mnn6S2I1lWXFxceNfdBQUFLDAwkCvL9erVY8OHD2dFRUUy46bMPc/bt29Zr169mL6+PgPA5Ye8ax9F52l15bOsew9l8khSaWkp27hxI/vuu++YpqYmq127NgsJCWFPnjxh3t7ezMbGhj158kTmuorKIWOy24Py8RSfu3v27GHNmzdn6urqrEGDBrxzQt61vTJ1F2Mfr50AsMDAQKllL1++ZOPGjWM1a9ZkampqzNLSkgUEBLB79+6xkpIS1q9fP6581KxZkwUHB8st7zdv3mTDhw9n9vb2TCgUMn19fdasWTOpOmHevHnM3NycCQQCro6MiYlhjo6OTENDgzk7O7P4+HiF1/Gy8kWybVF0v8lY5dvnT9G8eXO2ceNGbvrkyZOsUaNG3P2Vi4sL27hxIystLeWtFxcXx9X/9erVk1nPrl27ltWpU4er78tfizKm+LcT8X7Kp1VWW1RVSUlJrGfPnty1tq2tLRsxYgTLz8/nwlTl+krR70TKtIeMKa6DJSm6jlFUphlj7M6dO6xXr15MV1eXaWlpsaZNm7LLly8zxqTz/tWrV8zd3Z21adOGFRcXy9zn3bt32ffff8+0tbWZjo4O6927N3v48CG3XN79oGS65N1jlzdixAg2cuRI+RkkQ1FREQMgt00ihBBCCCGE/Dcoe28gYEziw7iEEEKqxfDhw3H9+nWcP3/+a0fls5g/fz4OHDiAjIyMrx0V8i/WsWNHmJubY/fu3V87KoR8MeHh4bhz584XHyUC+Pj5obZt26KwsFDqs2Ck+ixcuBAbN27kDTNOqt+/OZ/v3LmDunXrIjU1FY0aNfra0SGf2YkTJzBlyhRcu3atWkYzIORrePr0KfeJIkWf3yrv5cuX0NPTQ1FREXR1dT9jDAkhhBBCCCH/y5S9N/imPntBCCH/y5YvX46OHTtCW1sbJ0+exM6dO6s85On/suLiYty5cwfr1q1TeihqQpTx5s0bbNy4Ed7e3lBVVcXevXtx9uxZxMTEfO2oEULIJ1m/fj2aNWsGIyMjJCYm4qeffkJwcPDXjta/DuUz+bfq2rUr8vPz8eDBA1haWn7t6BBSJXfu3MH69esr1fGBEEIIIYQQQiqLOj9U0qhRo/DLL7/IXDZgwIBq+64nIeTbc+XKFSxbtgyvXr1CvXr1sGbNGgwbNuxrR6vaBQcHY+/evfDz86vwm9KEVJZAIMDvv/+OhQsX4u3bt3BwcMDBgwfRoUOHrx01Qgj5JPn5+ViwYAGeP3+OOnXqYPLkyZgxY8bXjta/DuUz+TebMGHC144CIZ+kadOmaNq06deOBiGEEEIIIeRfjj57UUmPHz/Gy5cvZS7T1dWFqanpF44RIYQQQgj5N4mPj8eLFy/g5+f3taNCCCGEEPJV0WcvCCGEEEIIIQB99uKzMTU1pQ4OhBBCCCHks/Hy8vraUSCEEEIIIYQQQgghhJBvjsrXjgAhhBBCCCGEEEIIIYQQQgghhBBCyKegzg+EEEIIIYQQQgghhBBCCCGEEEII+aZR5wdCCCGEEEIIIYQQQgghhBBCCCGEfNOo8wMhhBBCCCGEEEIIIYQQQgghhBBCvmnU+YEQQgghhBBCCCGEEEIIIYQQQggh3zTq/EAIIYQQQgghhBBCCCGEEEIIIYSQbxp1fiCEEEIIIYQQQgghhBBCCCGEEELIN406PxBCCCGEEEIIIYQQQgghhBBCCCHkm0adHwghhBBCCCGEEEIIIYQQQgghhBDyTaPOD4QQQgghhBBCCCGEEEIIIYQQQgj5plHnB0IIIYQQQgghhBBCCCGEEEIIIYR806jzAyGEEEIIIYQQQgghhBBCCCGEEEK+adT5gRBCCCGEEEIIIYQQQgghhBBCCCHfNOr8QAghhBBCCCGEEEIIIYQQQgghhJBvGnV+IP8ZXl5emDBhwteOBvkMwsPD0ahRI2560KBB8PPz46a/xWMvmabq3vagQYM+y7b/F+zYsQP6+vpfZF8CgQBHjhwBANy5cwcCgQBpaWkAgPj4eAgEArx48ULu+l8yroR8a5Spu7/WOSTZzshibW2N+Pj4zxqP8nUQqdjnbFe9vLywY8eOatmWtbU1Vq1apXR4ybaHfD1VLWPVWX7I/6aveYyVuR5Vxpdobz9nPf0tUyZfqB4hhBBCCCGEkP9HnR/If8ahQ4cwf/58brqyPy5/TQcPHoSXlxf09PQgEong7OyMefPm4fnz5187apWi7I9mO3bsgEAggKOjo9SyAwcOQCAQwNrampsXGhqK2NjYaoun+EGC+M/IyAidOnVCampqte3jf521tTUEAgH+/PNP3vwJEybAy8urUtv6Fh7ODRo0iHfMxX8+Pj5Kb8PS0hIFBQX47rvvPmNMK5acnCzzuIm1b98ePXv2/MKx+jTV9aO9PP8rHVDE6ZT8mzVr1teOGgQCATQ1NXH37l3efD8/v0p3pKpMfaBMu923b1/k5eVVKg7/KySPuZmZGXr16oVbt2597ahVSNY5+ffff6Nhw4Zo06YNioqKFG5Dmc4jypBsr3V0dODk5ISxY8ciPz+fF7ay1wrV2amgom1JdvJJSkrCiBEjPnmfiojb+fJ/tWvXVmrdqh6/z12fK+Ply5eYOXMm6tevD01NTZibm6NDhw44dOgQGGNfLV7K+K/dDwDAu3fvsGzZMri4uEBLSwvGxsbw8PBAZGQk3r9//3kj+gVJ1mXl/+Rd08kiq9Ogu7s7CgoKoKenV82xrjwvLy8uXZqammjQoAHWr1//WfepbL0j2SYLhUI4OTlh8+bNnzV+X5Ks8rVv3z5emPj4eDRu3BgaGhqwtbWV2aHi559/hrW1NTQ1NdGiRQtcuXLlC6WAEEIIIYQQQpRDnR/If4ahoSF0dHS+djQqbebMmejbty+aNWuGkydP4tq1a4iIiEB6ejp27979taP32Whra+Px48e4dOkSb/62bdtQp04d3jyRSAQjI6Nqj8PZs2dRUFCA06dPo7i4GJ07d/6qP9hX1qf+KKypqYlp06ZVU2w+3bt37z7r9n18fFBQUMD727t3r9Lrq6qqwtzcHDVq1PiMsaxYkyZN4OLigu3bt0stu3PnDuLi4jB06NCvEDOirNzcXF4ZnD59ulSY0tJSlJWVfdF4CQQCzJkz54vsS3yuK9NuC4VCmJqafolofTa5ubn4+++/ceDAAWRlZaF79+4oLS392tFS2s2bN9GqVStYWVnh9OnTX+UBm7i9Tk9Px6JFi5CTkwMXFxdeZ4fPda1Q3UxMTKClpfVF9jVv3jxeffNv7+T54sULuLu7Y9euXZgxYwZSUlJw7tw59O3bF1OnTlWq444sjDF8+PChmmPL91+8H3j37h28vb2xZMkSjBgxAhcvXsSVK1cwduxYrF27FllZWXLX+1aJ67Lyf02aNPmkbaqrq8Pc3BwCgUDm8i99TTF8+HAUFBQgOzsbffr0wdixYyt1vf25ia/DsrOzMXLkSIwePbpaO9l/bZGRkbzyVb4j2+3bt9G1a1e0bdsWaWlpmDBhAoYNG4bTp09zYaKjozFp0iSEhYUhJSUFLi4u8Pb2xuPHj79CagghhBBCCCFENur8QP4zyr8J4+Xlhbt372LixIncWw9iFy5cQOvWrSEUCmFpaYnx48fj9evX3HJra2ssWLAAgYGBEIlEsLKywrFjx/DkyRP4+vpyb2JdvXqVW+fu3bvo3r07DAwMoK2tDScnJ/z+++8K43zlyhUsWrQIERER+Omnn+Du7g5ra2t07NgRBw8eRFBQEBd2w4YNsLGxgbq6OhwcHKR+CH3x4gVGjhwJMzMzaGpq4rvvvsPx48e55QcPHoSTkxM0NDRgbW2NiIgI3vrW1tZYtGgRhgwZAh0dHdSpU4f3Joyst2rS0tIgEAhw584dxMfHY/DgwSgqKuLyPDw8XG7aa9Sogf79+/Me4v7111+Ij49H//79eWErO0TqiRMnoKenh6ioqArDGRkZwdzcHE2bNsXy5cvx6NEjXL58GUDF+bVu3Tre2/9HjhyBQCDAxo0buXkdOnTgvdG9ZMkSmJmZQUdHB0OHDsXbt2+l4rN161Y4OjpCU1MT9evX570pJX5jLDo6Gp6entDU1FSYPkVGjBiBP//8s8KympSUhI4dO8LY2Bh6enrw9PRESkoKt1w8QkePHj14I3bIemtUclQJLy8vBAcHY8KECTA2Noa3tzcAYMWKFWjYsCG0tbVhaWmJMWPGoLi4+JPSCgAaGhowNzfn/RkYGHDL8/Pz0aZNG+5NtZiYGN768t7sTUxMhLOzMzQ1NdGyZUtcu3atwngcPXoUjRs3hqamJurVq4e5c+dW6qHK0KFDER0djTdv3vDm79ixAxYWFvDx8UFJSQlCQ0NRq1YtaGtro0WLFlLD82/ZsgWWlpbQ0tJCjx49sGLFCt6bmjdv3oSvry/MzMwgEonQrFkznD17lrcNRfVGdVBUBgH59V9F9VJhYSECAwNhYGAALS0tdO7cmfcmuaJ6/dq1a+jcuTNEIhHMzMwwcOBAPH36VGF6TE1NeWVQJBJxb8keO3YMDRo0gIaGBu7du6fUcVTUpikrODgYv/zyS4XlV9bIDI0aNeLyVF59IK7Dt27dirp160JTUxOAcu22rDeIFbWHAoEAW7duRY8ePaClpQU7OzscO3aMW15aWoqhQ4eibt26EAqFcHBwwOrVqyuRW5VjamoKCwsLtGnTBnPmzEF2djZu3LihVNmWdP/+ffTp0wf6+vowNDSEr68v7ty5wy0vKyvDvHnzULt2bWhoaKBRo0Y4depUleOekZGBVq1awc3NDUeOHIFQKFQYj/DwcOzcuRNHjx7ljqW43GZmZqJdu3YQCoUwMjLCiBEjlKrfxe11vXr14Ovri7Nnz6JFixYYOnQo15FE1rVCRe1q3bp1AQCurq4QCASVHvWoqiTPo+vXr6NVq1Zc23P27FmZI6jcunULbdu2hZaWFlxcXKQ6j8qio6PDq29MTEwUlv+Kjt+nqqjeZYzBxMQEv/76Kxe+UaNGsLCw4KYvXLgADQ0NqfZP7Mcff8SdO3dw+fJlBAUFoUGDBrC3t8fw4cORlpYGkUgEANi9ezeaNm3K5U///v15D/bE17wnT55EkyZNoKGhgQsXLnDLN23axLWfffr0qXKnCrH/6v3AqlWrcO7cOcTGxmLs2LFo1KgR6tWrh/79++Py5cuws7MDIP96UVE7fOrUKbRq1Qr6+vowMjJCt27dcPPmTW65+Lpu//79XDvarFkz5OXlISkpCU2bNoVIJELnzp3x5MkTJY9mxcR1Wfk/NTU1AP9fh+3evRvW1tbQ09NDv3798OrVKwAfr60TEhKwevVqLm/FeV7+mHzKNUX5vFFRUeHd74qPmZWVVYWdKbS0tLj6Ojw8XKoNLk+ZdrCiNv3OnTto27YtAMDAwAACgUDhiFXi67C6deti/PjxqFu3Lm+fisrNu3fvEBwcDAsLC2hqasLKygqLFy/mlr948QLDhg2DiYkJdHV10a5dO6Snp/PioMx9YVXp6+vzypf4mgsANm7ciLp16yIiIgKOjo4IDg7GDz/8gJUrV3JhVqxYgeHDh2Pw4MFo0KABNm7cCC0tLZkdr8U+fPiA8ePHc3k2bdo0BAUFVcsIUIQQQgghhBAiC3V+IP9Jhw4dQu3atXlvvAEfH+b5+PigV69eyMjIQHR0NC5cuIDg4GDe+itXroSHhwdSU1PRtWtXDBw4EIGBgRgwYABSUlJgY2ODwMBAbvjcsWPHoqSkBOfOnUNmZiaWLl3K/cBakaioKIhEIowZM0bmcvEDn8OHDyMkJASTJ0/GtWvXMHLkSAwePBhxcXEAPj7s6Ny5MxITE/HLL78gOzsbS5YsgaqqKoCPQ+X36dMH/fr1Q2ZmJsLDwzF79mypYS4jIiLQtGlTpKamYsyYMRg9ejRyc3OVynN3d3esWrUKurq6XJ6HhoZWuM6QIUOwf/9+7kfsHTt2wMfHB2ZmZkrtU5Y9e/bA398fUVFRCAgIUHo98QOdd+/eKcwvT09PZGdncz+EJiQkwNjYmPsB8f3797h06RL3IGX//v0IDw/HokWLcPXqVVhYWEgNARsVFYU5c+Zg4cKFyMnJwaJFizB79mzs3LmTF2769OkICQlBTk4O9+NvVdWtWxejRo3CjBkz5P6I+erVKwQFBeHChQv4888/YWdnhy5dunA/xCYlJQH4/7eMxNPK2rlzJ9TV1ZGYmMh1HlFRUcGaNWuQlZWFnTt34o8//sDUqVM/IaWKlZWVoWfPnlBXV8fly5exceNGpUfFmDJlCiIiIpCUlAQTExN0795d7qgc58+fR2BgIEJCQpCdnY1NmzZhx44dWLhwodJxDQgIQElJCe8BEWMMO3fuxKBBg6Cqqorg4GBcunQJ+/btQ0ZGBnr37g0fHx/uIVNiYiJGjRqFkJAQpKWloWPHjlJxKC4uRpcuXRAbG4vU1FT4+Pige/fuuHfvHi/cp9QbylBUBiuq/yqqlwYNGoSrV6/i2LFjuHTpEhhj6NKlC3fsKqrXX7x4gXbt2sHV1RVXr17FqVOn8OjRI/Tp06fK6Xzz5g2WLl2KrVu3IisrC6ampgqPo7JtmjI8PDzQrVs3mSNRKKui+uDGjRs4ePAgDh06JPPTAPLabUmK2kOxuXPnok+fPsjIyECXLl0QEBDADR1fVlaG2rVr48CBA8jOzsacOXPw448/Yv/+/VVOu7LKtzWKyrak9+/fw9vbGzo6Ojh//jwSExMhEong4+PDvQm9evVqREREYPny5cjIyIC3tze+//57qU9EKOPixYvw9PREr1698Msvv3Cj3iiKR2hoKPr06cMbbcfd3R2vX7+Gt7c3DAwMkJSUhAMHDuDs2bNVKq8qKioICQnB3bt3kZycLDOMonZVPIy3+E3sQ4cOVToen6q0tBR+fn7Q0tLC5cuXsXnzZsycOVNm2JkzZyI0NBRpaWmwt7eHv79/lUYjUFT+5R2/6lBRvSsQCNCmTRvuWqqwsBA5OTn4559/cP36dQAfr7eaNWsmc+SMsrIy7Nu3DwEBAahZs6bUcpFIxCvD8+fPR3p6Oo4cOYI7d+7IfGA6ffp0LFmyBDk5OXB2dgbwsS7bv38/fvvtN5w6dYpr+z7Ff/V+ICoqCh06dICrq6vUMjU1NWhra3PTkteLyrTDr1+/xqRJk3D16lXExsZCRUUFPXr0kLrmDQsLw6xZs5CSksJ1zp46dSpWr16N8+fP48aNG19sZKSbN2/iyJEjOH78OI4fP46EhAQsWbIEwMf63c3NjRtZoaCgAJaWljK3U5VrivKsra3RoUMHREZG8uZHRkZi0KBBUFFR/mcmoVAod7QOZdtBeW26paUlDh48COD/R3RQtjMjYwynTp3CvXv30KJFC26+onKzZs0aHDt2DPv370dubi6ioqJ4n2vs3bs3Hj9+jJMnTyI5ORmNGzdG+/btuWsQZe4LP8XYsWNhbGyM5s2bY/v27bzP/Vy6dAkdOnTghff29uY604nvg8uHUVFRQYcOHSrscLd06VJERUUhMjISiYmJePnypcJPoJWUlODly5e8P0IIIYQQQghRGiPkP8LT05OFhIRw01ZWVmzlypW8MEOHDmUjRozgzTt//jxTUVFh//zzD7fegAEDuOUFBQUMAJs9ezY379KlSwwAKygoYIwx1rBhQxYeHl7pOHfu3Jk5OzsrDOfu7s6GDx/Om9e7d2/WpUsXxhhjp0+fZioqKiw3N1fm+v3792cdO3bkzZsyZQpr0KABNy2Z7rKyMmZqaso2bNjAGGMsLi6OAWCFhYVcmNTUVAaA3b59mzHGWGRkJNPT01OYnvLhGjVqxHbu3MnKysqYjY0NO3r0KFu5ciWzsrLiwoeFhTEXFxduOigoiPn6+nLT4mO/bt06pqenx+Lj4yvc/+3btxkAlpqayhhjrLCwkPXo0YOJRCL28OFDhflVVlbGjIyM2IEDB7g0LF68mJmbmzPGGLtw4QJTU1Njr1+/Zowx5ubmxsaMGcPbXosWLXhpsrGxYXv27OGFmT9/PnNzc+PFedWqVRWmjbGP+RUUFFRhGPH58fjxY6ajo8N27drFGGMsJCSEeXp6yl2vtLSU6ejosN9++42bB4AdPnyYF07yGMnatqenJ3N1dVWYngMHDjAjIyNuWtlyJhkfVVVVpq2tzftbuHAhY+zjOVSjRg324MEDbp2TJ0/y0iZZbsTnxL59+7h1nj17xoRCIYuOjpYZ1/bt27NFixbx4rZ7925mYWFRqfT069ePl5exsbEMAMvPz2d3795lqqqqvLSI9z1jxgzGGGN9+/ZlXbt25S0PCAhQmK9OTk5s7dq13LSiekMZsuqWikiWQUX1n6zykpeXxwCwxMREbt7Tp0+ZUChk+/fvZ4xVXK/Pnz+fderUiTfv/v37DIDceIjTKVkGnz59yiIjIxkAlpaWxoVX5jgq06YpQ1zOs7KymKqqKjt37hxjjDFfX19eXSKrXXVxcWFhYWFS2yovLCyMqampscePH/PmK9NuSx4/Re2hOA6zZs3ipouLixkAdvLkSTk5wNjYsWNZr169uGlZdZgkKysrFhcXJ3e5ZNn++++/mbu7O6tVqxYrKSmRCq+oft29ezdzcHBgZWVl3PKSkhImFArZ6dOnGWOM1axZk6vXxJo1aybVBlVEHG91dXU2cOBAqeXKxENW/m3evJkZGBiw4uJibt6JEyeYiooKe/jwocy4SNa75eXk5DAAXH0rea2gbLsqa9uSPD09WWRkpNzl4m0JhUKpc1xFRUVuOT958iSrUaMGdz3JGGMxMTEy256tW7dyYbKyshgAlpOTIzdOVlZWTF1dnReX1atXywxblfIvS0X1uTL17po1a5iTkxNjjLEjR46wFi1aMF9fX65N6dChA/vxxx9l7vvRo0cMAFuxYkWl452UlMQAsFevXvHSceTIEV64sLAwpqqqyv766y9u3smTJ5mKigrvGEpSVH7+q/cDQqGQjR8/XmE4WdeLVWmHnzx5wgCwzMxMxpjsc2vv3r0MAIuNjeXmLV68mDk4OCiMY1XrCLGwsDCmpaXFXr58yc2bMmUKa9GiBW8/5esTxqSPSVWvKSSPW3R0NDMwMGBv375ljDGWnJzMBAIBd5zl5YM4fh8+fGC7d+9mANi6deu4NJavpyXJawcratOVvY6UvA6rUaMGU1FRYQsWLKhwPclyM27cONauXTteGyh2/vx5pqury+WZmI2NDdu0aRNjTLn7QlkUlTHGGJs3bx67cOECS0lJYUuWLGEaGhq8et/Ozk7qPuTEiRMMAHvz5g178OABA8AuXrzICzNlyhTWvHlzufs1MzNjP/30Ezf94cMHVqdOnQrbkbCwMAZA6q+oqKjCNBJCCCGEEEL+3YqKipS6N6CRHwgpJz09HTt27IBIJOL+vL29UVZWhtu3b3PhxG93AeBGIWjYsKHUPPEQuePHj8eCBQvg4eGBsLAwZGRkKBUfVu5NjIrk5OTAw8ODN8/DwwM5OTkAPg43W7t2bdjb21dq/fz8fN53x8unWyAQwNzc/LN/33PIkCGIjIxEQkICXr9+jS5dulRpO7/++ismTpyImJgYeHp6KrWOu7s7RCIRDAwMkJ6ejujoaJiZmSnMr/JvJ7548QLZ2dkYM2YMSkpKcP36dak3E3NycnhvFAGAm5sb9//r169x8+ZNDB06lFc2FyxYwBtmFQCaNm1aleyRy8TEBKGhoZgzZ47Mt7IePXqE4cOHw87ODnp6etDV1UVxcbHU2/9VJes7x2fPnkX79u1Rq1Yt6OjoYODAgXj27JncYa6VJf6+bfm/UaNGAfh4jCwtLXlvi5Y/RhUpH87Q0BAODg7cuSkpPT0d8+bN4x1n8Rt8lUnfkCFDcO7cOa58bN++HZ6enrC1tUVmZiZKS0thb2/P209CQgIXPjc3F82bN+dtU3K6uLgYoaGhcHR0hL6+PkQiEXJycqSO/eeuNxSVQUX1nyw5OTmoUaMG77w0MjLiHbuK6vX09HTExcXx8rd+/foAIHXOSjp//jyvDIo/vaKurs7LS2WOo7JtmrIaNGiAwMDATxr9QR4rKyuYmJh88nYUtYdi5fNSW1sburq6vHL5888/o0mTJjAxMYFIJMLmzZurrV6TVLt2bWhra6NmzZp4/fo1Dh48CHV19UrXr+np6bhx4wZ0dHS4421oaIi3b9/i5s2bePnyJf7++2+l8kcZvr6+OHz4MM6fP1+peMiTk5MDFxcX3tvcHh4eKCsrq9JoMeJrKFnfua9Mu1qdoqOjpdqZitrt3NxcWFpawtzcnJsnWReLlS/T4k9BKKprp0yZwotLYGAggC9b/sWUqXfLj6yVkJAALy8veHl5IT4+Hu/fv8fFixflfp5E2Wtq4OMICN27d0edOnWgo6PDXTdK5oGsY1enTh3UqlWLm3Zzc6tyGRb7r94PVOaYSV4vKtMO5+fnw9/fH/Xq1YOuri73dn5F1zHy7vuqK/2y6ojyrK2toaOjw01bWFhUad9VuaaQ5OfnB1VVVRw+fBjAxxH62rZtyxvlQJb169dDJBJBKBRi+PDhmDhxIkaPHi0zrLLtoKI2vTLKX4dt3boVixYtwoYNG7jlisrNoEGDkJaWBgcHB4wfPx5nzpzh1k1PT0dxcTGMjIx4+Xz79m0unxXdF36K2bNnw8PDA66urpg2bRqmTp2Kn376qVq2LU9RUREePXrEa7tUVVVl3uOVN2PGDBQVFXF/9+/f/6zxJIQQQgghhPy71PjaESDkf0lxcTFGjhyJ8ePHSy2rU6cO97/426vA//+oLmueePjLYcOGwdvbGydOnMCZM2ewePFiREREYNy4cRXGx97eHhcuXMD79+95268s8TDan0oyDgKBgEujeHjT8j9UyhvavzICAgIwdepUhIeHY+DAgdyQxJXl6uqKlJQUbN++HU2bNpX5MERSdHQ0GjRoACMjI6lvyivi5eWFzZs34/z583B1dYWuri7XISIhIUHpDhgAuO+db9myRerHMPFQxWLlHxpVl0mTJmH9+vUyh1wNCgrCs2fPsHr1alhZWUFDQwNubm5yh68VU1FRkfpRW1Z5kUzPnTt30K1bN4wePRoLFy6EoaEhLly4gKFDh+Ldu3cyh7pWlra2Nmxtbau8fnUoLi7G3Llz0bNnT6ll5b/Jq0j79u1Rp04d7NixA1OmTMGhQ4ewadMmbh+qqqpITk6WKj/KfI5HLDQ0FDExMVi+fDlsbW0hFArxww8/SB37iuqN6qCoDFZX/Seponq9uLgY3bt3x9KlS6XWK/99elnq1q0rs74RCoW8ekuZ46hsm1YZc+fOhb29vczhipU9r2X5HHVXRSoql/v27UNoaCgiIiLg5uYGHR0d/PTTT7h8+fJnicv58+ehq6sLU1NT3kOtytavxcXFaNKkCaKioqSWVUfHEkmbNm3C1KlT0blzZ/z+++9o06bNV4mHPOIHvnXr1pVaVpl2tTpZWlpKtTOf4xpN8jpUHmNjY6n4fOnyXxkNGzaEoaEhEhISkJCQgIULF8Lc3BxLly5FUlIS3r9/L/cTHCYmJtDX1+c+kSGP+PMr3t7eiIqKgomJCe7duwdvb2+pc+9L1Vv/1fsBe3t7hcdLTPJYKNMOd+/eHVZWVtiyZQtq1qyJsrIyfPfddxVex8i776uu6xpZdYS8uHzKvqtyTSFJXV0dgYGBiIyMRM+ePbFnzx6lPikREBCAmTNnQigUwsLCosJPZCjbDlbntWb56zAnJydcvnwZCxcu5DpoKCo3jRs3xu3bt3Hy5EmcPXsWffr0QYcOHfDrr7+iuLgYFhYW3Od7yqvsvWZ1aNGiBebPn4+SkhJoaGjA3Nwcjx494oV59OgRdHV1IRQKoaqqClVVVZlhynfSqw4aGhrQ0NCo1m0SQgghhBBC/jto5Afyn6Wurs57iwn4+GNFdnY2bG1tpf7U1dU/aX+WlpYYNWoUDh06hMmTJ2PLli0K1+nfvz+Ki4vlfufzxYsXAABHR0ckJibyliUmJqJBgwYAPr4N89dffyEvL0/mduStb29vr/RDAPEDjfLfYZd8W0lWnitiaGiI77//HgkJCRgyZEil1i3PxsYGcXFxOHr0qMJOJ2KWlpawsbGR+jFKmfwSv5144MAB7i1ELy8vnD17FomJibw3Ex0dHaUeKvz555/c/2ZmZqhZsyZu3bolVS5lPdSpbiKRCLNnz8bChQulvrGbmJiI8ePHo0uXLnBycoKGhgaePn3KC6OmpiZ13E1MTHhlBZAuL7IkJyejrKwMERERaNmyJezt7fH3339XLWGV4OjoiPv37/PiXP4YVaR8uMLCQuTl5cHR0VFm2MaNGyM3N1dmHVSZ7yerqKhg8ODB2LlzJ/bs2QN1dXX88MMPAD52BCotLcXjx4+l9iH+4dLBwQFJSUm8bUpOJyYmYtCgQejRowcaNmwIc3Nz3LlzR+k4VhdFZVBR/SerXnJ0dMSHDx945+WzZ8+Qm5vL1auA/Hq9cePGyMrKgrW1tVQeV9fDMmWO4+do0ywtLREcHIwff/xR4Xn98uVLqREmZNUHylKmDVHUHiojMTER7u7uGDNmDFxdXWFra/tZRwOoW7cubGxseB0fxPFQVL+W17hxY+Tn58PU1FTqeIvfmK1Zs+Yn54+YQCDA5s2bERAQgC5duiAhIUGpeADyz7v09HS8fv2aFzcVFRU4ODhUKm5lZWVYs2YN6tatC1dXV6nlyrSr4nOkquW1Ojg4OOD+/fu8B02SdXF1U6b8V+V6ThFl6l2BQIDWrVvj6NGjyMrKQqtWreDs7IySkhJs2rQJTZs2lVvHqqiooF+/foiKipJ53VBcXIwPHz7g+vXrePbsGZYsWYLWrVujfv36lXqD/N69e7zt//nnn1Uqw+X9V+8H+vfvj7NnzyI1NVVq2fv373l1hSRF7bC4bM2aNQvt27eHo6MjCgsLlUrj/7KqnpvKXFPIMmzYMJw9exbr16/Hhw8fZHbelaSnpwdbW1vUqlVL4bVtZdtBWT61LldVVcU///wDAEqXG11dXfTt2xdbtmxBdHQ0Dh48iOfPn6Nx48Z4+PAhatSoIZXPxsbGABTfF1Yn8Qhj4k4Gbm5uiI2N5YWJiYnhRp5QV1dHkyZNeGHKysoQGxsrd3QKPT09mJmZ8dqu0tJSpKSkVHdyCCGEEEIIIYRDnR/If5a1tTXOnTuHBw8ecD+iTJs2DRcvXkRwcDDS0tKQn5+Po0ePIjg4+JP2NWHCBJw+fRq3b99GSkoK4uLi5D78LK9FixaYOnUqJk+ejKlTp+LSpUu4e/cuYmNj0bt3b+zcuRPAx2GLd+zYgQ0bNiA/Px8rVqzAoUOHEBoaCuDjg/g2bdqgV69eiImJ4d5GOXXqFABg8uTJiI2Nxfz585GXl4edO3di3bp13PrKsLW1haWlJcLDw5Gfn48TJ04gIiKCF8ba2hrFxcWIjY3F06dPlR7Gf8eOHXj69Ck3XG1V2dvbIy4uDgcPHsSECROqvB1l8svZ2RkGBgbYs2cPr/PDkSNHUFJSwhtWOCQkBNu3b0dkZCTy8vIQFhaGrKws3j7nzp2LxYsXY82aNcjLy0NmZiYiIyOxYsWKKqejMkaMGAE9PT3s2bOHN9/Ozg67d+9GTk4OLl++jICAAKk3C62trREbG4uHDx9yPxC2a9cOV69exa5du5Cfn4+wsDBcu3ZNYTxsbW3x/v17rF27Frdu3cLu3buxcePGakljSUkJHj58yPsT1w0dOnSAvb09goKCkJ6ejvPnz2PmzJlKbXfevHmIjY3FtWvXMGjQIBgbG8PPz09m2Dlz5mDXrl2YO3cusrKykJOTg3379mHWrFmVTs/gwYPx4MED/Pjjj/D39+eOi729PQICAhAYGIhDhw7h9u3buHLlChYvXowTJ04AAMaNG4fff/8dK1asQH5+PjZt2oSTJ0/y3hK0s7PDoUOHkJaWhvT0dPTv379aR3SQlJmZyRsGOj09nYtHRWVQUf0nq16ys7ODr68vhg8fjgsXLiA9PR0DBgxArVq14OvrC6Dien3s2LF4/vw5/P39kZSUhJs3b+L06dMYPHhwtT0wVOY4fq42bcaMGfj7779x9uxZ3vx27dph9+7dOH/+PDIzMxEUFCT1wExWfaAsWe22JEXtoTLs7Oxw9epVnD59Gnl5eZg9e/Znf+AsLx6K6tfyAgICYGxsDF9fX5w/fx63b99GfHw8xo8fj7/++gvAx/xZunQpoqOjkZubi+nTpyMtLQ0hISFViqNAIMDGjRsRGBiILl26ID4+Xql4WFtbIyMjA7m5uXj69Cnev3+PgIAAaGpqIigoCNeuXUNcXBzGjRuHgQMHckPNy/Ps2TM8fPgQt27dwrFjx9ChQwdcuXIF27Ztk/vQVlG7ampqCqFQiFOnTuHRo0coKiqqUh59io4dO8LGxgZBQUHIyMhAYmIi1x4oM4JVVShT/mUdv8qQVZ8rU+8CH6+l9u7di0aNGkEkEkFFRQVt2rRBVFSUwlG1Fi5cCEtLS7Ro0QK7du1CdnY28vPzsX37dri6uqK4uBh16tSBuro6d51x7NgxzJ8/X+m0icuw+Fph/Pjx6NOnzye9Ff1fvR+YMGECPDw80L59e/z8889IT0/HrVu3sH//frRs2RL5+fly46GoHTYwMICRkRE2b96MGzdu4I8//sCkSZOUTufnIq7Lyv+9fftW6fWtra1x+fJl3LlzB0+fPlX6ukyZawpZHB0d0bJlS0ybNo13rVldKtsOymJlZQWBQIDjx4/jyZMn3Mg/8jx+/BgPHz7E3bt3ceDAAezevZurg5QpNytWrMDevXtx/fp15OXl4cCBAzA3N4e+vj46dOgANzc3+Pn54cyZM7hz5w4uXryImTNn4urVqwCUuy+sit9++w1bt27FtWvXcOPGDWzYsAGLFi3ivRQwatQo3Lp1C1OnTsX169exfv167N+/HxMnTuTCTJo0CVu2bMHOnTuRk5OD0aNH4/Xr1xg8eLDcfY8bNw6LFy/G0aNHkZubi5CQEBQWFn62dowQQgghhBBCwAj5j/D09GQhISHc9KVLl5izszPT0NBg5U+FK1eusI4dOzKRSMS0tbWZs7MzW7hwIbfcysqKrVy5krdtAOzw4cPc9O3btxkAlpqayhhjLDg4mNnY2DANDQ1mYmLCBg4cyJ4+fap03KOjo1mbNm2Yjo4OF6d58+axwsJCLsz69etZvXr1mJqaGrO3t2e7du3ibePZs2ds8ODBzMjIiGlqarLvvvuOHT9+nFv+66+/sgYNGjA1NTVWp04d9tNPP/HWl5VuFxcXFhYWxk1fuHCBNWzYkGlqarLWrVuzAwcOMADs9u3bXJhRo0YxIyMjBoC3bnmRkZFMT09Pbn6sXLmSWVlZcdNhYWHMxcWFmw4KCmK+vr7ctOSxz87OZqampmzSpEkyty95/GRRlF+MMebr68tq1KjBXr16xRhjrLS0lBkYGLCWLVtKhV24cCEzNjZmIpGIBQUFsalTp/LSxBhjUVFRrFGjRkxdXZ0ZGBiwNm3asEOHDikdZ7GwsDAWFBRUYRhZx3vPnj0MAPP09OTmpaSksKZNmzJNTU1mZ2fHDhw4ILXusWPHmK2tLatRowbvuM2ZM4eZmZkxPT09NnHiRBYcHMzbtuRxE1uxYgWzsLBgQqGQeXt7s127djEA3PkgWX7EeRMXFyc3vUFBQQyA1J+DgwMXJjc3l7Vq1Yqpq6sze3t7durUKd65L3kM4uLiGAD222+/MScnJ6aurs6aN2/O0tPTuW3KKuunTp1i7u7uTCgUMl1dXda8eXO2efNmXlzL51NFOnXqxACwK1eu8Oa/e/eOzZkzh1lbWzM1NTVmYWHBevTowTIyMrgwmzdvZrVq1WJCoZD5+fmxBQsWMHNzc16+tm3blgmFQmZpacnWrVsndcyUqTc8PT0rLI/ifJT8U1VVZYwpVwYV1X+y6qXnz5+zgQMHMj09Pa6s5eXlcesoqtfz8vJYjx49mL6+PhMKhax+/fpswoQJrKysrMJ0lq/XxeTVicocR0VtWlhYGO+8lEWyjWOMsUWLFjEAvGNXVFTE+vbty3R1dZmlpSXbsWOH1PGWVR9I1uFiyrTbsvJGUXsoKz16enosMjKSMcbY27dv2aBBg5ienh7T19dno0ePZtOnT6+wnZHFysqqwnqnomPOmHJlWzItBQUFLDAwkBkbGzMNDQ1Wr149Nnz4cFZUVMQY+9gOhYeHs1q1ajE1NTXm4uLCTp48yduvsudk+XiXlZWxsWPHMi0tLfbHH38ojMfjx4+5clm+fs7IyGBt27ZlmpqazNDQkA0fPpxrQ2UR17viPy0tLebo6MjGjBnD8vPzeWFllbOK2lXGGNuyZQuztLRkKioqFda7np6eXPmpKJ6y2mhF9WZOTg7z8PBg6urqrH79+uy3335jANipU6fkbruwsFBhuyerfmZMufIv7/h9an2uqN5ljLHU1FQGgE2bNo2bt3LlSl6eVOTFixds+vTpzM7OjqmrqzMzMzPWoUMHdvjwYa5+3rNnD7O2tmYaGhrMzc2NHTt2TGb7LnnuisvY+vXrWc2aNZmmpib74Ycf2PPnzyuMk6LyI/Zfux9g7GN5XLx4Mbc9Q0ND5uHhwXbs2MHev3/P5Z+s60VF7XBMTAxzdHRkGhoazNnZmcXHx1d4XceY7GOv6L5FHEdl6ghZf3v37mWMya7DJO+JcnNzWcuWLZlQKOTyXDLOVb2mkLfetm3bZF5ryssHWcdKTDKNVWkHGeO36YwxNm/ePGZubs4EAoHcOkqyfqpRowarW7cuCw0NZcXFxVw4ReVm8+bNrFGjRkxbW5vp6uqy9u3bs5SUFG79ly9fsnHjxrGaNWsyNTU1ZmlpyQICAti9e/e4MMrcF0pSVMZOnjzJGjVqxF0Puri4sI0bN7LS0lKpfBC3i/Xq1ZO5zbVr17I6depw9zZ//vlnhXF7//49Cw4OZrq6uszAwIBNmzaN9e7dm/Xr16/C9corKipiALjrCEIIIYQQQsh/k7L3BgLGJD7OTAgh5F8tPDwcd+7cwY4dO752VL6IuLg49OzZE7du3YKBgcHXjs4n8/T0RNu2bREeHv5F9zt8+HBcv34d58+fr9btWllZYe7cuRg0aFC1bpcoJygoCAKB4D9TH3xJ1tbW2LFjB+8zR98COicrz8vLC4MGDfoieZaYmIhWrVrhxo0bsLGx+ez7qwwqO1XzJcsP+Tr+zcd4/vz5OHDgADIyMr52VP7TvqUyVlZWBkdHR/Tp00fpkXVevnwJPT09FBUVQVdX9zPHkBBCCCGEEPK/Stl7gxpfME6EEELIF/f777/jxx9//Fd0fCgqKsLNmzcrHIK4uixfvhwdO3aEtrY2Tp48iZ07d8r93nhVZWVlQU9PD4GBgdW6XaIcxhji4+Nx4cKFrx0V8j+Czsn/PYcPH4ZIJIKdnR1u3LiBkJAQeHh4/M91fKCyQ8h/S3FxMe7cuYN169ZhwYIFXzs65H/Y3bt3cebMGXh6eqKkpATr1q3D7du30b9//68dNUIIIYQQQsi/FHV+IOQrGjVqFH755ReZywYMGICNGzd+4RgR8u/z008/fe0oVBs9PT389ddfX2RfV65cwbJly/Dq1SvUq1cPa9aswbBhw6p1H05OTvSm4FckEAhw9+7drx0N8j+Ezsn/Pa9evcK0adNw7949GBsbo0OHDoiIiPja0ZJCZYeQ/5bg4GDs3bsXfn5+GDJkyNeODvkfpqKigh07diA0NBSMMXz33Xc4e/YsHB0dv3bUCCGEEEIIIf9S9NkLQr6ix48f4+XLlzKX6erqwtTU9AvHiPwXxMfH48WLF/Dz8/vaUSGEkH+tVatWwc/PD9bW1l87KuQz27FjBxo1aoRGjRp97aiQbxCVn38/Osbkc/u3lzH67AUhhBBCCCEEUP7egDo/EEIIIYQQQgghhBBC/udQ5wdCCCGEEEIIoPy9gcoXjBMhhBBCCCGEEEIIIYQQQgghhBBCSLWjzg+EEEIIIYQQQgghhBBCCCGEEEII+aZR5wdCCCGEEEIIIYQQQgghhBBCCCGEfNOo8wMhhBBCCCGEEEIIIYQQQgghhBBCvmnU+YEQQgghhBBCCCGEEEIIIYQQQggh3zTq/EAIIYQQQgghhBBCCCGEEEIIIYSQbxp1fiCEEEIIIYQQQgghhBBCCCGEEELIN406PxBCCCGEEEIIIYQQQgghhBBCCCHkm0adHwghhBBCCCGEEEIIIYQQQgghhBDyTaPOD4QQQgghhBBCCCGEEEIIIYQQQgj5plHnB0IIIYQQQgghhBBCCCGEEEIIIYR806jzAyGEEEIIIYQQQgghhBBCCCGEEEK+adT5gRBCCCGEEEIIIYQQQgghhBBCCCHfNOr8QAghhBBCCCGEEEIIIYQQQgghhJBvGnV+IIQQQgghhBBCCCGEEEIIIYQQQsg3jTo/EEIIIYQQQggh/3JeXl6YMGHC147GN8Pa2hqrVq362tH4KsLDw9GoUSOlwwsEAhw5cuSzxed/wZ07dyAQCJCWlva1o/Kv8F8oM4QQQgghhJCvgzo/EEIIIYQQQggh/3KHDh3C/Pnzuelv4eG++IGzqakpXr16xVvWqFEjhIeHV3pbyj68TkpKwogRIyoR2+p36dIlqKqqomvXrlLL0tPT4e/vD0tLSwiFQjg6OmL16tUKtykQCLg/XV1dNGvWDEePHuWFCQ0NRWxsbLWlQ54bN25g8ODBqF27NjQ0NFC3bl34+/vj6tWrn33fkvEYMmQI6tSpAw0NDdSqVQvt27dHVFQUPnz48EXjIsvmzZvh5eUFXV1dCAQCvHjxQirM8+fPERAQAF1dXejr62Po0KEoLi7mhcnIyEDr1q2hqakJS0tLLFu2TGo7Bw4cQP369aGpqYmGDRvi999//1zJIoQQQgghhJDPgjo/EEIIIYQQQggh/3KGhobQ0dH52tGoklevXmH58uVfZF/v3r0DAJiYmEBLS+uTt/Mptm3bhnHjxuHcuXP4+++/ecuSk5NhamqKX375BVlZWZg5cyZmzJiBdevWKdxuZGQkCgoKcPXqVXh4eOCHH35AZmYmt1wkEsHIyOiT41+Rq1evokmTJsjLy8OmTZuQnZ2Nw4cPo379+pg8efJn3Xd5V65cQePGjZGTk4Off/4Z165dQ3x8PIYNG4YNGzYgKyvri8VFnjdv3sDHxwc//vij3DABAQHIyspCTEwMjh8/jnPnzvE677x8+RKdOnWClZUVkpOT8dNPPyE8PBybN2/mwly8eBH+/v4YOnQoUlNT4efnBz8/P1y7du2zpo8QQgghhBBCqhN1fiCEEEIIIYQQQv7lyn/2wsvLC3fv3sXEiRO5UQDELly4gNatW0MoFMLS0hLjx4/H69evueXW1tZYsGABAgMDIRKJYGVlhWPHjuHJkyfw9fWFSCSCs7Mz7+39u3fvonv37jAwMIC2tjacnJwq9Ub5uHHjsGLFCjx+/FhuGFnD6Ovr62PHjh0AgLp16wIAXF1dIRAI4OXlBQAYNGgQ/Pz8sHDhQtSsWRMODg5cOsuPjHHv3j0ufbq6uujTpw8ePXrELRd/KmLr1q2oW7cuNDU1AQDXr19Hq1atoKmpiQYNGuDs2bNKDflfXFyM6OhojB49Gl27duXSITZkyBCsXr0anp6eqFevHgYMGIDBgwfj0KFDFW5XnC/m5uawt7fH/Pnz8eHDB8TFxUmlpbzt27fDyckJGhoasLCwQHBwMG/506dP0aNHD2hpacHOzg7Hjh2Tu3/GGAYNGgQ7OzucP38eXbt2hY2NDRo1aoSwsDDeSBSZmZlo164dhEIhjIyMMGLECG5Eg2vXrkFFRQVPnjwB8HH0AxUVFfTr149bf8GCBWjVqlWF8bC3t0diYiK6d+8OOzs72NnZwd/fHxcuXICzszNvnVu3bqFt27bQ0tKCi4sLLl26xFuu6PwpKSlBaGgoatWqBW1tbbRo0QLx8fFy8woAJkyYgOnTp6Nly5Yyl+fk5ODUqVPYunUrWrRogVatWmHt2rXYt28f12kmKioK7969445jv379MH78eKxYsYLbzurVq+Hj44MpU6bA0dER8+fPR+PGjSvsUCMuK9u3b0edOnUgEokwZswYlJaWYtmyZTA3N4epqSkWLlxYYRoJIYQQQgghpLpQ5wdCCCGEEEIIIeQ/5NChQ6hduzbmzZuHgoICFBQUAABu3rwJHx8f9OrVCxkZGYiOjsaFCxekHnSvXLkSHh4eSE1NRdeuXTFw4EAEBgZiwIABSElJgY2NDQIDA8EYAwCMHTsWJSUlOHfuHDIzM7F06VKIRCKl4+vv7w9bW1vMmzevymm+cuUKAODs2bMoKCjgdRKIjY1Fbm4u99a8pLKyMvj6+uL58+dISEhATEwMbt26hb59+/LC3bhxAwcPHsShQ4eQlpaG0tJS+Pn5QUtLC5cvX8bmzZsxc+ZMpeK7f/9+1K9fHw4ODhgwYAC2b9/O5ac8RUVFMDQ0VGr7APDhwwds27YNAKCuri433IYNGzB27FiMGDECmZmZOHbsGGxtbXlh5s6diz59+iAjIwNdunRBQEAAnj9/LnN7aWlpyMrKwuTJk6GiIv2zlL6+PgDg9evX8Pb2hoGBAZKSknDgwAGcPXuWK49OTk4wMjJCQkICAOD8+fO8aQBISEjgOrrIikdOTg5CQ0NlxgMAr2MQAMycOROhoaFIS0uDvb09/P39uU9jKHP+BAcH49KlS9i3bx8yMjLQu3dv+Pj4ID8/X+b+lXHp0iXo6+ujadOm3LwOHTpARUUFly9f5sK0adOGd5y9vb2Rm5uLwsJCLkyHDh142/b29pbq4CHp5s2bOHnyJE6dOoW9e/di27Zt6Nq1K/766y8kJCRg6dKlmDVrFhcXRUpKSvDy5UveHyGEEEIIIYQoizo/EEIIIYQQQggh/yGGhoZQVVWFjo4OzM3NYW5uDgBYvHgxAgICMGHCBNjZ2cHd3R1r1qzBrl278PbtW279Ll26YOTIkbCzs8OcOXPw8uVLNGvWDL1794a9vT2mTZuGnJwcbmSEe/fuwcPDAw0bNkS9evXQrVs3tGnTRun4CgQCLFmyBJs3b8bNmzerlGYTExMAgJGREczNzXmdBLS1tbF161Y4OTnByclJat3Y2FhkZmZiz549aNKkCVq0aIFdu3YhISEBSUlJXLh3795h165dcHV1hbOzM2JiYnDz5k3s2rULLi4uaNWqldJvwG/btg0DBgwAAPj4+KCoqIj3UF/SxYsXER0dzfvUgTz+/v4QiUTQ0NDAxIkTYW1tjT59+sgNv2DBAkyePBkhISGwt7dHs2bNuFFExAYNGsR1Ulm0aBGKi4u5DieSxA/669evX2E89+zZg7dv32LXrl347rvv0K5dO6xbtw67d+/Go0ePIBAI0KZNG27khPj4eAwePBglJSW4fv063r9/j4sXL8LT01Pm9vPy8gCAG+0DAB4/fgyRSMT9rV+/nrdOaGgounbtCnt7e8ydOxd3797FjRs3ACg+f+7du4fIyEgcOHAArVu3ho2NDUJDQ9GqVStERkZWmBcVefjwIUxNTXnzatSoAUNDQzx8+JALY2ZmxgsjnlYURrxcnrKyMmzfvh0NGjRA9+7d0bZtW+Tm5mLVqlVwcHDA4MGD4eDgwBtdpCKLFy+Gnp4e92dpaanUeoQQQgghhBACUOcHQgghhBBCCCGEAEhPT8eOHTt4D3+9vb1RVlaG27dvc+HKfwpA/LC0YcOGUvPEn6kYP348FixYAA8PD4SFhSEjI6PScfP29karVq0we/bsKqWtIg0bNqxw5IOcnBxYWlryHsI2aNAA+vr6yMnJ4eZZWVlxnSwAIDc3F5aWllznEgBo3ry5wvjk5ubiypUr8Pf3B/DxQXbfvn25URokXbt2Db6+vggLC0OnTp0Ubn/lypVIS0vDyZMn0aBBA2zdulXuiBGPHz/G33//jfbt21e4zfJlQltbG7q6unI/U6JoBAuxnJwcuLi4QFtbm5vn4eGBsrIy5ObmAgA8PT25zg8JCQlo164d1yEiKSkJ79+/h4eHh1L7Az52jklLS0NaWhr09fXx7t07uem0sLAA8P/lXNH5k5mZidLSUtjb2/PCJCQkVLlTz/8Ca2tr6OjocNNmZmZo0KABbzQNMzOzCj9bU96MGTNQVFTE/d2/f7/a40wIIYQQQgj596rxtSNACCGEEEIIIYSQr6+4uBgjR47E+PHjpZbVqVOH+19NTY37X/xZAFnzysrKAADDhg2Dt7c3Tpw4gTNnzmDx4sWIiIjAuHHjKhW/JUuWwM3NDVOmTJFaJhAIpB6qv3//Xqntln+4/imqazvbtm3Dhw8fULNmTW4eYwwaGhpYt24d9PT0uPnZ2dlo3749RowYgVmzZim1fXNzc9ja2sLW1haRkZHo0qULsrOzpUYPAAChUKjUNssff+Dj8RAff0n29vYAgOvXr8PV1VWp7cvj5eWFCRMmID8/H9nZ2WjVqhWuX7+O+Ph4FBYWomnTptDS0pK5rp2dHYCPnU3E8VBVVeU+6VGjhvRPZhWVc0XnT0ZGBlRVVZGcnAxVVVXe8sp8BkaSubm5VMeCDx8+4Pnz51zHG3Nzc24kFjHxtKIw5TvvyCLr2FemPEjS0NCAhoaGUmEJIYQQQgghRBKN/EAIIYQQQgghhPzHqKuro7S0lDevcePGyM7O5h6Ml/+raGQEZVhaWmLUqFE4dOgQJk+ejC1btlR6G82bN0fPnj0xffp0qWUmJiYoKCjgpvPz8/HmzRtuWhx/yTQrw9HREffv3+e9gZ6dnY0XL16gQYMGctdzcHDA/fv3eQ+Uy38mQ5YPHz5g165diIiI4EYgSEtLQ3p6OmrWrIm9e/dyYbOystC2bVsEBQUp/TkNSc2bN0eTJk3krq+jowNra2vExsZWafuyNGrUCA0aNEBERITMB+IvXrwA8DHf09PT8fr1a25ZYmIiVFRUuE9VNGzYEAYGBliwYAEaNWoEkUgELy8vJCQkID4+Hl5eXnLj4erqivr162P58uVKP5iviKLzx9XVFaWlpXj8+LHUckUdDCri5uaGFy9eIDk5mZv3xx9/oKysDC1atODCnDt3jtchKCYmBg4ODjAwMODCSB7nmJgYuLm5VTluhBBCCCGEEPKlUecHQgghhBBCCCHkP8ba2hrnzp3DgwcP8PTpUwDAtGnTcPHiRQQHByMtLQ35+fk4evQogoODP2lfEyZMwOnTp3H79m2kpKQgLi4Ojo6OVdrWwoUL8ccff3CfPRBr164d1q1bh9TUVFy9ehWjRo3ivX1uamoKoVCIU6dO4dGjRygqKlJ6nx06dEDDhg0REBCAlJQUXLlyBYGBgfD09ETTpk3lrtexY0fY2NggKCgIGRkZSExM5EZnEI8aIOn48eMoLCzE0KFD8d133/H+evXqxX364tq1a2jbti06deqESZMm4eHDh3j48CGePHmidLrEJkyYgE2bNuHBgwcyl4eHhyMiIgJr1qxBfn4+UlJSsHbt2krvR0wgECAyMhJ5eXlo3bo1fv/9d9y6dQsZGRlYuHAhfH19AQABAQHQ1NREUFAQrl27hri4OIwbNw4DBw7kPq0iEAjQpk0bREVFcR0dnJ2dUVJSgtjYWHh6eiqMR25uLjw8PHDs2DFuBImNGzfiyZMnUiM0VETR+WNvb4+AgAAEBgbi0KFDuH37Nq5cuYLFixfjxIkTcrf78OFDpKWl4caNGwCAzMxMpKWl4fnz5wA+dhLx8fHB8OHDceXKFSQmJiI4OBj9+vXjRg/p378/1NXVMXToUGRlZSE6OhqrV6/GpEmTuP2EhITg1KlTiIiIwPXr1xEeHo6rV69+8vlPCCGEEEIIIV8SdX4ghBBCCCGEEEL+Y+bNm4c7d+7AxsYGJiYmAD4+NE5ISOAeSru6umLOnDm8zy9URWlpKcaOHcs9pLW3t8f69eurtC17e3sMGTIEb9++5c2PiIiApaUlWrdujf79+yM0NJT3uYMaNWpgzZo12LRpE2rWrMk9YFeGQCDA0aNHYWBggDZt2qBDhw6oV68eoqOjK1xPVVUVR44cQXFxMZo1a4Zhw4Zh5syZAABNTU2Z62zbtg0dOnTgfdpCrFevXrh69SoyMjLw66+/4smTJ/jll19gYWHB/TVr1kzpdIn5+Pigbt26ckd/CAoKwqpVq7B+/Xo4OTmhW7duyM/Pr/R+ymvevDmuXr0KW1tbDB8+HI6Ojvj++++RlZWFVatWAQC0tLRw+vRpPH/+HM2aNcMPP/yA9u3bY926dbxteXp6orS0lOv8oKKigjZt2kAgEMDDw6PCeLRs2RLJyclwcHDA2LFj0aBBA7i7u2Pv3r1YuXIlRo8erXSalDl/IiMjERgYiMmTJ8PBwQF+fn5ISkrifVZG0saNG+Hq6orhw4cDANq0aQNXV1ccO3aMCxMVFYX69eujffv26NKlC1q1aoXNmzdzy/X09HDmzBncvn0bTZo0weTJkzFnzhyMGDGCC+Pu7o49e/Zg8+bNcHFxwa+//oojR47gu+++UzoPCCGEEEIIIeRrEzDJj2ISQgghhBBCCCGEkGqXmJiIVq1a4caNG7Cxsfna0SHkf97Lly+hp6eHoqIi6Orqfu3oEEIIIYQQQr4SZe8NanzBOBFCCCGEEEIIIYT8Zxw+fBgikQh2dna4ceMGQkJC4OHhQR0fCCGEEEIIIYSQz4A+e0EIIYQQQgghhJAvbtSoURCJRDL/Ro0a9bWjVy1evXqFsWPHon79+hg0aBCaNWuGo0ePfu1oEUIIIYQQQggh/0r02QtCCCGEEEIIIYR8cY8fP8bLly9lLtPV1YWpqekXjhEh5H8NffaCEEIIIYQQAtBnLwghhBBCCCGEEPI/zNTUlDo4EEIIIYQQQgghpNrQZy8IIYQQQgghhBBCCCGEEEIIIYQQ8k2jzg+EEEIIIYQQQgghhBBCCCGEEEII+aZR5wdCCCGEEEIIIYQQQgghhBBCCCGEfNOo8wMhhBBCCCGEEEIIIYQQQgghhBBCvmnU+YEQQgghhBBCCCGEEEIIIYQQQggh3zTq/EAIIYQQQgghhBBCCCGEEEIIIYSQbxp1fiCEEEIIIYQQQgghhBBCCCGEEELIN406PxBCCCGEEEIIIYQQQgghhBBCCCHkm0adHwghhBBCCCGEEEIIIYQQQgghhBDyTaPOD4QQQgghhBBCCCGEEEIIIYQQQgj5plHnB0IIIYQQQgghhBBCCCGEEEIIIYR806jzAyGEEEIIIYQQQgghhBBCCCGEEEK+adT5gRBCCCGEEEIIIYQQQgghhBBCCCHfNOr8QAghhBBCCCGEEEIIIYQQQgghhJBvGnV+IIQQQgghhBBCCCGEEEIIIYQQQsg3jTo/EEIIIYQQQogELy8vTJgwodq3+/DhQ3Ts2BHa2trQ19dXGF4gEODIkSPVHg/Cz9s7d+5AIBAgLS3tq8aJfFs+Vz3xtYWHh6NRo0ZfOxqfXWJiIho2bAg1NTX4+fkhPj4eAoEAL168+NpR++Ik68D/cl4QQgghhBBCvm3U+YEQQgghhBBCvpCVK1eioKAAaWlpyMvL++TtyXtA9aUfys6dOxcDBgzgzatbty7Onj37xeJQWQUFBejcuTMAwNLSEgUFBfjuu+++cqzks7a2xqpVq752NCqUkJAAS0tLpcP/888/0NbWxo0bNz5jrD6fQ4cOYf78+dW6zbt370IoFKK4uLjCcN9iB4XK1Amy6rDqfiA/adIkNGrUCLdv38aOHTuqZZvfKsk60N3dHQUFBdDT0+OFK3+OL168GM2aNYOOjg5MTU3h5+eH3NxcqW1funQJ7dq1g7a2NnR1ddGmTRv8888/nz9RhBBCCCGEkP8k6vxACCGEEEIIIZ/o/fv3SoW7efMmmjRpAjs7O5iamn7mWH05R48exffff89NZ2RkoLCwEJ6enl8xVhUzNzeHhoYGAEBVVRXm5uaoUaPGV46VtHfv3n3tKCjt6NGj6N69u9LhY2JiYGVlBVtb2yrt72vljXi/hoaG0NHRqdZtHz16FG3btoVIJKrW7X5t/4t1ws2bN9GuXTvUrl1bqZF4qouy7cWXJFkHqqurw9zcHAKBgBeu/DmekJCAsWPH4s8//0RMTAzev3+PTp064fXr11z4S5cuwcfHB506dcKVK1eQlJSE4OBgqKjQz5GEEEIIIYSQz4PuNgghhBBCCCFEhrKyMkydOhWGhoYwNzdHeHg4t0wgEGDDhg34/vvvoa2tjYULFwL4+GCocePG0NTURL169TB37lx8+PABwMc39w8ePIhdu3ZBIBBg0KBBSsXj6dOn6NGjB7S0tGBnZ4djx44B+DhMedu2bQEABgYG3DYHDRqEhIQErF69GgKBAAKBAHfu3OHemj5x4gScnZ2hqamJli1b4tq1a9y+7t69i+7du8PAwADa2tpwcnLC77//XmH87t+/j6ysLPj4+HDzjh49Ch8fH9SoUQMmJib49ddfuWWNGjWChYUFN33hwgVoaGjgzZs3CA0NRbdu3bhlq1atgkAgwKlTp7h5tra22Lp1K65duwYVFRU8efIEAPD8+XOoqKigX79+XNgFCxagVatWMuOt6LMXCQkJaN68OTQ0NGBhYYHp06dzxxL4+Gb6uHHjMGHCBBgYGMDMzAxbtmzB69evMXjwYOjo6MDW1hYnT57k1iktLcXQoUNRt25dCIVCODg4YPXq1bx4DRo0CH5+fli4cCFq1qwJBwcHeHl54e7du5g4cSJ3TOV58eIFRo4cCTMzM2hqauK7777D8ePHueUHDx6Ek5MTNDQ0YG1tjYiICN761tbWWLBgAQIDAyESiWBlZYVjx47hyZMn8PX1hUgkgrOzM65evSq172PHjnGdYMrKyrBs2TLY2tpCQ0MDderU4c4TMclOMwsWLICpqSl0dHQwbNgwTJ8+nTe6gay8AYDMzEy0a9cOQqEQRkZGGDFihNTICdu3b+fSbWFhgeDgYF6eDRs2DCYmJtDV1UW7du2Qnp7OLRePsrB161bUrVsXmpqaAKRHJygpKUFoaChq1aoFbW1ttGjRAvHx8dxyZc6v8nkSHx+P5s2bc5/J8fDwwN27d7Fjxw7MnTsX6enpXHkQj1ywYsUKNGzYENra2rC0tMSYMWN4ebFjxw7o6+vjyJEjsLOzg6amJry9vXH//n2p41ne1q1b4ejoCE1NTdSvXx/r16/nlr179w7BwcGwsLCApqYmrKyssHjxYql0+fj4QE1NDc+ePYO/vz9q1aoFLS0tNGzYEHv37uUdZ1l1mKz6DgBOnTqFVq1aQV9fH0ZGRujWrRtu3rwpNy3i8/3Zs2cYMmQIL/8kKTpfZH2aSF9fn9ueeF/R0dHw9PSEpqYmoqKiKl3XKgqvqL4qKSnB+PHjYWpqCk1NTbRq1QpJSUlSeaLosxflz/FTp05h0KBBcHJygouLC3bs2IF79+4hOTmZCz9x4kSMHz8e06dPh5OTExwcHNCnTx+u45ksJSUlePnyJe+PEEIIIYQQQpRFnR8IIYQQQgghRIadO3dCW1sbly9fxrJlyzBv3jzExMRwy8PDw9GjRw9kZmZiyJAhOH/+PAIDAxESEoLs7Gxs2rQJO3bs4B74JiUlwcfHB3369EFBQYHUQ2955s6diz59+iAjIwNdunRBQEAAnj9/DktLSxw8eBAAkJuby21z9erVcHNzw/Dhw1FQUICCggLepwimTJmCiIgIJCUlwcTEBN27d+feRB47dixKSkpw7tw5ZGZmYunSpbw30K2trXmdQICPD8O8vLygq6vLm+fr6wuBQIA2bdpwD4ALCwuRk5ODf/75B9evXwfw8aFds2bNoKWlBU9PT1y4cAGlpaXcMmNjY279Bw8e4ObNm/Dy8oKTkxOMjIyQkJAAADh//jxvWry+l5eXUvlc3oMHD9ClSxc0a9YM6enp2LBhA7Zt24YFCxbwwu3cuRPGxsa4cuUKxo0bh9GjR6N3795wd3dHSkoKOnXqhIEDB+LNmzcAPnYIqF27Ng4cOIDs7GzMmTMHP/74I/bv38/bbmxsLHJzcxETE4Pjx4/j0KFDqF27NubNm8cdU1nKysrQuXNnJCYm4pdffkF2djaWLFkCVVVVAEBycjL69OmDfv36ITMzE+Hh4Zg9e7bUg9+VK1fCw8MDqamp6Nq1KwYOHIjAwEAMGDAAKSkpsLGxQWBgIBhj3DpZWVl4/Pgx2rVrBwCYMWMGlixZgtmzZyM7Oxt79uyBmZkZL67Hjx+Hr68vACAqKgoLFy7E0qVLkZycjDp16mDDhg1SaZTMm9evX8Pb2xsGBgZISkrCgQMHcPbsWV7nhg0bNmDs2LEYMWIEMjMzcezYMd5oE71798bjx49x8uRJJCcno3Hjxmjfvj2eP3/Ohblx4wYOHjyIQ4cO8TrJlBccHIxLly5h3759yMjIQO/eveHj44P8/HwAis+vFy9e4MKFC/j+++/x4cMH+Pn5wdPTExkZGbh06RJGjBgBgUCAvn37YvLkyXBycuLKQ9++fQEAKioqWLNmDbKysrBz50788ccfmDp1Ki+eb968wcKFC7Fr1y4kJibixYsXvE5DkqKiojBnzhwsXLgQOTk5WLRoEWbPno2dO3cCANasWYNjx45h//79yM3NRVRUFKytrXnbENcJAPD27Vs0adIEJ06cwLVr1zBixAgMHDgQV65cAQC5dZis+g4AXr9+jUmTJuHq1auIjY2FiooKevTogbKyMpnpEX/iQVdXF6tWreLlX3nKni/KmD59OkJCQpCTkwNvb2+FZUFSReGVqa+mTp2KgwcPYufOnUhJSYGtrS28vb15ZVwRyXNcUlFREYCPI6IAwOPHj3H58mWYmprC3d0dZmZmXB1fkcWLF0NPT4/7q8yndAghhBBCCCEEjBBCCCGEEEIIj6enJ2vVqhVvXrNmzdi0adMYY4wBYBMmTOAtb9++PVu0aBFv3u7du5mFhQU37evry4KCgpSOBwA2a9Ysbrq4uJgBYCdPnmSMMRYXF8cAsMLCQqn4h4SE8OaJw+7bt4+b9+zZMyYUCll0dDRjjLGGDRuy8PBwufFp164dW7t2LW9ex44d2bp167jpv/76i6mrq3NxWrNmDXNycmKMMXbkyBHWokUL5uvryzZs2MAYY6xDhw7sxx9/ZIwxVlhYyFRUVFhSUhIrKytjhoaGbPHixaxFixaMMcZ++eUXVqtWLW5fPXv2ZGPHjmWMMTZhwgQ2ZcoUZmBgwHJycti7d++YlpYWO3PmjMy0AGCHDx9mjDF2+/ZtBoClpqYyxhj78ccfmYODAysrK+PC//zzz0wkErHS0lIuj8uXkQ8fPjBtbW02cOBAbl5BQQEDwC5duiQ3T8eOHct69erFTQcFBTEzMzNWUlLCC2dlZcVWrlwpdzuMMXb69GmmoqLCcnNzZS7v378/69ixI2/elClTWIMGDXj7GTBggFQaZs+ezc27dOkSA8AKCgq4eQsXLmQ//PADY4yxly9fMg0NDbZlyxa5cU1MTGSmpqZcfrZo0YI7lmIeHh7MxcWFm5aVN5s3b2YGBgasuLiYm3fixAmmoqLCHj58yBhjrGbNmmzmzJky43H+/Hmmq6vL3r59y5tvY2PDNm3axBhjLCwsjKmpqbHHjx/zwpQ/z+7evctUVVXZgwcPeGHat2/PZsyYwRhTfH5FRUWxpk2bMsY+npsAWHx8vMywYWFhvLyR58CBA8zIyIibjoyMZADYn3/+yc3LyclhANjly5dlbtvGxobt2bOHt9358+czNzc3xhhj48aNY+3ateOdL+VJ1gmydO3alU2ePJmbrqgOq2g7jDH25MkTBoBlZmZWGE5PT49FRkbK3b4y50v5ekTWdsV1y6pVq3hhFJUFSRWFV1RfFRcXMzU1NRYVFcUtf/fuHatZsyZbtmwZL57iOlBWXpc/xyWVlpayrl27Mg8PD26euJ4wNDRk27dvZykpKWzChAlMXV2d5eXlyU3r27dvWVFREfd3//59BoAVFRUpzCdCCCGEEELIv1dRUZFS9wY08gMhhBBCCCGEyODs7MybtrCwwOPHj7nppk2b8panp6dj3rx5EIlE3J/4zWXxm/+fGg9tbW3o6ury4lFZbm5u3P+GhoZwcHBATk4OAGD8+PFYsGABPDw8EBYWhoyMDN66sbGxvDfqX758iYSEBN6nC44dO8YNQQ8Anp6eyM7OxpMnT7iRGLy8vBAfH4/379/j4sWL3OgM+vr6cHFxQXx8PDIzM6Guro4RI0YgNTUVxcXFSEhIgKenJ7cvT09PblSIhIQEtGvXjhtpIikpCe/fv4eHh0el8ygnJwdubm68z0t4eHiguLgYf/31Fzev/LFRVVWFkZERGjZsyM0Tj3RQ/nj9/PPPaNKkCUxMTCASibB582bcu3ePt/+GDRtCXV290vFOS0tD7dq1YW9vLzddkvnh4eGB/Px8brQNyXSJ06AoXeU/15CTk4OSkhK0b99eblyPHj2Kbt26QUXl488Subm5aN68OS+M5LQ4HuXzJicnBy4uLtDW1ualqaysDLm5uXj8+DH+/vtvuXFJT09HcXExjIyMeOfu7du3eZ9OsLKygomJidz0ZGZmorS0FPb29rztJCQkcNtRdH6Vz0NDQ0MMGjQI3t7e6N69O1avXi13xI/yzp49i/bt26NWrVrQ0dHBwIED8ezZM14dVKNGDTRr1oybrl+/PvT19bl6oLzXr1/j5s2bGDp0KC9dCxYs4NI1aNAgpKWlwcHBAePHj8eZM2d425CsE0pLSzF//nw0bNgQhoaGEIlEOH36tNR5oKz8/Hz4+/ujXr160NXV5UadEG+vc+fOXLydnJyU3q6y54syJNuLisqCk5MTF9/OnTsrDK+ovrp586ZUXaimpobmzZvLPObySH6mpryxY8fi2rVr2LdvHzdPPPLGyJEjMXjwYLi6umLlypVwcHDA9u3b5e5HQ0MDurq6vD9CCCGEEEIIURZ1fiCEEEIIIYQQGdTU1HjTAoGAN4x6+YetAFBcXIy5c+ciLS2N+8vMzER+fj40NTU/Wzyq07Bhw3Dr1i0MHDgQmZmZaNq0KdauXSs3/MmTJ9GgQQPesOTlvwkPgHvAmZCQwOv8kJCQwHVQcHd358KLO0aIOzoYGhrC0dERFy5ckOr84OXlhezsbOTn5yM7OxutWrXird+0aVNoaWlVcy79P1nHpvw88cNI8fHat28fQkNDMXToUJw5cwZpaWkYPHgw3r17x9uOZNlSllAorNJ6kmSloaJ0FRQUcJ/IUDYekuVEWZXNG0VxKS4uhoWFBe+8TUtLQ25uLqZMmaL0fouLi6Gqqork5GTednJycrjPM1R0fr179w6nTp3i5UlkZCQuXboEd3d3REdHw97eHn/++afcONy5cwfdunWDs7MzDh48iOTkZPz888/c9quiuLgYALBlyxZeuq5du8bFpXHjxrh9+zbmz5+Pf/75B3369MEPP/zAbUPyWP/0009YvXo1pk2bhri4OKSlpcHb27vKcezevTueP3+OLVu24PLly7h8+TIvzVu3buXi/fvvv1dpH/IIBALe518AcJ8RKk+y/FRUFn7//Xcuvlu3blUY/kuQPMfLCw4OxvHjxxEXF4fatWtz8y0sLAAADRo04IV3dHSsckcXQgghhBBCCFGEOj8QQgghhBBCSDVo3LgxcnNzYWtrK/Unfru9uonfgJd8C1ldXV3um8nlH54WFhYiLy8Pjo6O3DxLS0uMGjUKhw4dwuTJk7Flyxa5+z969Ch8fX256eLiYsTFxfHmCQQCtG7dGkePHkVWVhZatWoFZ2dnlJSUYNOmTWjatCnvwaD4m/CxsbHciBBeXl7Yu3cv8vLyuHnAx44VBgYGWLBgARo1agSRSMR1rIiPj+eFrQxHR0dcunSJ91AzMTEROjo6vId7lZWYmAh3d3eMGTMGrq6usLW15Y0uUJGKjqmYs7Mz/vrrL+Tl5clc7ujoiMTERKk42dvbQ1VVVblEyPDbb7/B3d0dhoaGAAA7OzsIhULExsbKDJ+fn4+7d++iY8eO3DwHBwckJSXxwklOy+Lo6Ij09HS8fv2am5eYmAgVFRU4ODhAR0cH1tbWcuPSuHFjPHz4EDVq1JA6b42NjRXuX8zV1RWlpaV4/Pix1HbMzc25cPLOr/j4eBgYGMDFxUVquzNmzMDFixfx3XffYc+ePQBkl4fk5GSUlZUhIiICLVu2hL29Pf7++2+puH748AFXr17lpnNzc/HixQtePSBmZmaGmjVr4tatW1Lpqlu3LhdOV1cXffv2xZYtWxAdHY2DBw/i+fPnMuuExMRE+Pr6YsCAAXBxcUG9evWkyqys9Mmq7549e4bc3FzMmjUL7du3h6OjIwoLC3nr1apVi4uzlZWVVBrlUeZ8MTEx4Y3IkZ+fr/RIP/LKgpWVFRffWrVqKQyvqL6ysbGBuro6Ly3v379HUlKSVMcEeSTPcQBgjCE4OBiHDx/GH3/8wSsPAGBtbY2aNWsiNzeXNz8vL69Sx4EQQgghhBBCKoM6PxBCCCGEEEJINZgzZw527dqFuXPnIisrCzk5Odi3bx9mzZr12fZpZWUFgUCA48eP48mTJ9xb2tbW1rh8+TLu3LmDp0+f8kaKmDdvHmJjY3Ht2jUMGjQIxsbG8PPzAwBMmDABp0+fxu3bt5GSkoK4uDjeA9H27dtj3bp1AD4+QD158iTvje5Tp07B3t6eG3ZeTNx5QdxBQUVFBW3atEFUVBRvJAcAaNOmDV69eoXjx4/zOj9ERUXBwsKC90kHgUDAbUccVtyxIjY2ltv2lStXUL9+fTx48ECpfB0zZgzu37+PcePG4fr16zh69CjCwsIwadKkT+rIYmdnh6tXr+L0/7V371E55f3/x19XDoWUnHLKYVGYiYiGuEmzMiyj+26YW2hFDuMwhMi5nDIOM8NtaIxbLOFGjMGamXII0z1jZBCtwZBCY25rQg6DGIf0+8PXtX4XoatRVxfPx1qtpb0/e+/33tf7+qiu937vnTt1+vRpRUZGFugDfunRa/r999/rwoULys7OliRduHBBTZo00cGDByU9Khzp2LGjevbsqcTERJ07d07bt2/Xjh07JEnjxo3Tnj17FBUVpdOnT2v16tWKjo5WeHh4oc9JevrOfjs7O02cOFETJkzQmjVrdObMGR04cEArV66U9Khoxs/Pz6QrR2hoqFauXKnVq1crPT1ds2fP1s8//2zSyj8/QUFBsrOzU//+/XX8+HF99913Cg0NVXBwsPHxHDNmzNCCBQu0ePFipaen68iRI8a75v38/OTt7a2AgADt2rVLmZmZ2r9/v6ZOnWpSIPAibm5uCgoKUr9+/bRlyxadO3dOBw8e1Ny5cxUfHy/p+e+vJ6/huXPnNHnyZCUnJ+vXX3/Vrl27lJ6ebhxfv359nTt3TqmpqcrOztbdu3fVqFEj3b9/X0uWLNHZs2e1du1aLVu27KlYy5Qpo9DQUP30009KSUlRSEiI2rZtm+9jRiRp5syZmjt3rhYvXqzTp0/r2LFjWrVqlRYuXChJWrhwoTZs2KBTp07p9OnT+vLLL1WjRg1VqlQp3znB1dVViYmJ2r9/v06ePKmhQ4fq4sWLJsfMbw7Lb75zcnJSlSpVtHz5cmVkZGjv3r0aO3ZsgV+35ynI++Xtt99WdHS0jh49qsOHD2vYsGFPdYTJz4vmWnPGv2i+qlChgoYPH67x48drx44d+uWXX/TBBx/o9u3bGjRoUIGuRX6dWkaMGKH//Oc/Wr9+vSpWrKisrCxlZWXpzp07kh7Nz+PHj9fixYu1efNmZWRkKDIyUqdOnSrwcQEAAADAXBQ/AAAAAMBL0KVLF3377bfatWuXvLy81LZtW/3rX/8q0jtca9eurZkzZ2rSpElydnbWyJEjJUnh4eEqVaqU3njjDVWrVs2kxfi8efM0evRotWrVSllZWfrmm29M7qgeMWKEmjZtqq5du8rNzU1Lly41bnvmzBnjB+///e9/ZW9vL09PT+P6Zz0T3sfHR7m5uSadGDp16vTUMklycnJSs2bNVK1aNTVp0kTSo4KIhw8fPlUokd++HxdWGAwG4zPub9++rbS0tHzb0T/ruiYkJOjgwYPy8PDQsGHDNGjQoL9cyDJ06FD16NFDgYGBatOmja5cuaIPP/ywQNvOmjVLmZmZatiwoapVqybp0d3baWlpJneaf/XVV/Ly8lKfPn30xhtvaMKECcY75T09PbVp0ybFxcXJ3d1d06ZN06xZsxQSElLoc8rJydGePXueet0jIyM1btw4TZs2TU2bNlVgYKAuXbokKf88CQoK0uTJkxUeHm58jEJISMgLHxlTvnx57dy5U1evXpWXl5fef/99kyIdSerfv78WLVqkpUuX6s0331T37t2Vnp4u6dEHtAkJCerYsaMGDBggNzc39e7dW7/++quxeKKgVq1apX79+mncuHFq3LixAgICdOjQIdWtW1fS899fT364XL58eZ06dUo9e/aUm5ubhgwZohEjRmjo0KGSpJ49e6pr167y9fVVtWrVtGHDBnl4eGjhwoWaP3++3N3dtW7dOs2dOzffazZx4kT17dtX7du3l729vTZu3PjM8xo8eLBWrFihVatWqVmzZvLx8VFsbKzxTv+KFSvq448/VuvWreXl5aXMzEwlJCTIxsYm39c6IiJCnp6e6tKlizp16qQaNWoYC7Aey28Oy2++s7GxUVxcnFJSUuTu7q6wsDB98sknZr1uz1KQ98uCBQvk4uKiDh06qG/fvgoPDy/Qo3ZeNNeaM74g89W8efPUs2dPBQcHy9PTUxkZGdq5c6ecnJxeGOuz3uNffPGF/vjjD3Xq1Ek1a9Y0fv3/uTRmzBhNnjxZYWFh8vDw0J49e5SYmKiGDRu+8LgAAAAAUBiGvCcfTggAAAAAeOUkJSXJ19dX165dU6VKlf7y/kaNGqUHDx4YP4B78OCBnJ2dtX379mfeQV5S3L17V3Z2dkpMTJSfn5+lw7FqW7ZsUUREhH755ZcCjc/OzlbNmjX1v//974XFBZ07d1aNGjW0du3alxFqiXXkyBG9/fbbunz5coG6BvwVsbGxGjNmjK5fv16kx5Gsa0543aWlpalJkyZKT09Xo0aNTNaZ+x5/2W7cuCFHR0f98ccfcnBwsEgMAAAAACyvoL8blC7GmAAAAAAArwh3d3d5e3sbv7969arCwsLk5eVlwahe7MaNG9qyZYtsbGyMnSVQePb29po/f36Bx1+9elULFy58qvDh9u3bWrZsmbp06aJSpUppw4YN2r17txITE192yCXOgwcPtGTJkiIvfChu1jInvO6uXr2qzZs3y8HBQS4uLk+tN/c9DgAAAACWROcHAAAAALCAdevWGVvYP6levXo6ceLESz3ey+78YK3CwsK0fv16jR8/XuHh4ZYOB//nzp078vf319GjR/Xnn3+qcePGioiIUI8ePSwd2iulODs/wDq89957SklJ0bx589S3b19Lh/MUOj8AAAAAkAr+uwHFDwAAAABgATdv3tTFixfzXVemTBnVq1evmCMCAKBkofgBAAAAgMRjLwAAAACgRKtYsaIqVqxo6TAAAAAAAACAV4KNpQMAAAAAAAAAAAAAAAD4Kyh+AAAAAAAAAAAAAAAAVo3iBwAAAAAAAAAAAAAAYNVKWzoAAAAAAAAAAHhSXl6eJOnGjRsWjgQAAACAJT3+neDx7wjPQvEDAAAAAAAAgBLnypUrkiQXFxcLRwIAAACgJLh586YcHR2fuZ7iBwAAAAAAAAAlTuXKlSVJ58+ff+4fOIHCuHHjhlxcXPTbb7/JwcHB0uHgFUSOoSiRXyhK5BeKWmFyLC8vTzdv3lStWrWeO47iBwAAAAAAAAAljo2NjSTJ0dGRP7yjyDg4OJBfKFLkGIoS+YWiRH6hqJmbYwUpiLb5KwEBAAAAAAAAAAAAAABYGsUPAAAAAAAAAAAAAADAqlH8AAAAAAAAAKDEsbW11fTp02Vra2vpUPAKIr9Q1MgxFCXyC0WJ/EJRK8ocM+Tl5eW99L0CAAAAAAAAAAAAAAAUEzo/AAAAAAAAAAAAAAAAq0bxAwAAAAAAAAAAAAAAsGoUPwAAAAAAAAAAAAAAAKtG8QMAAAAAAAAAAAAAALBqFD8AAAAAAAAAsIjPP/9c9evXl52dndq0aaODBw8+d/yXX36pJk2ayM7OTs2aNVNCQkIxRQprZE5+xcTEqEOHDnJycpKTk5P8/PxemI+AuXPYY3FxcTIYDAoICCjaAGHVzM2v69eva8SIEapZs6ZsbW3l5ubG/5N4JnPza9GiRWrcuLHKlSsnFxcXhYWF6c8//yymaGFNvv/+e/n7+6tWrVoyGAzatm3bC7dJSkqSp6enbG1t1ahRI8XGxhb6+BQ/AAAAAAAAACh2Gzdu1NixYzV9+nQdOXJEHh4e6tKliy5dupTv+P3796tPnz4aNGiQjh49qoCAAAUEBOj48ePFHDmsgbn5lZSUpD59+ui7775TcnKyXFxc9M477+jChQvFHDmshbk59lhmZqbCw8PVoUOHYooU1sjc/Lp37546d+6szMxMbd68WWlpaYqJiVHt2rWLOXJYA3Pza/369Zo0aZKmT5+ukydPauXKldq4caOmTJlSzJHDGuTk5MjDw0Off/55gcafO3dO7777rnx9fZWamqoxY8Zo8ODB2rlzZ6GOb8jLy8sr1JYAAAAAAAAAUEht2rSRl5eXoqOjJUkPHz6Ui4uLQkNDNWnSpKfGBwYGKicnR99++61xWdu2bdWiRQstW7as2OKGdTA3v56Um5srJycnRUdHq1+/fkUdLqxQYXIsNzdXHTt21MCBA/XDDz/o+vXrBbojFq8fc/Nr2bJl+uSTT3Tq1CmVKVOmuMOFlTE3v0aOHKmTJ09qz549xmXjxo3TTz/9pH379hVb3LA+BoNBW7dufW6no4kTJyo+Pt6koLl37966fv26duzYYfYx6fwAAAAAAAAAoFjdu3dPKSkp8vPzMy6zsbGRn5+fkpOT890mOTnZZLwkdenS5Znj8foqTH496fbt27p//74qV65cVGHCihU2x2bNmqXq1atr0KBBxREmrFRh8uvrr7+Wt7e3RowYIWdnZ7m7u2vOnDnKzc0trrBhJQqTX+3atVNKSorx0Rhnz55VQkKCunXrViwx49X2sn/GL/0yggIAAAAAAACAgsrOzlZubq6cnZ1Nljs7O+vUqVP5bpOVlZXv+KysrCKLE9apMPn1pIkTJ6pWrVpP/TEekAqXY/v27dPKlSuVmppaDBHCmhUmv86ePau9e/cqKChICQkJysjI0Icffqj79+9r+vTpxRE2rERh8qtv377Kzs7W3/72N+Xl5enBgwcaNmwYj73AS/Gsn/Fv3LihO3fuqFy5cmbtj84PAAAAAAAAAAD8n3nz5ikuLk5bt26VnZ2dpcPBK+DmzZsKDg5WTEyMqlataulw8Ap6+PChqlevruXLl6tVq1YKDAzU1KlTeSwUXoqkpCTNmTNHS5cu1ZEjR7RlyxbFx8crKirK0qEBT6HzAwAAAAAAAIBiVbVqVZUqVUoXL140WX7x4kXVqFEj321q1Khh1ni8vgqTX499+umnmjdvnnbv3q3mzZsXZZiwYubm2JkzZ5SZmSl/f3/jsocPH0qSSpcurbS0NDVs2LBog4bVKMwcVrNmTZUpU0alSpUyLmvatKmysrJ07949lS1btkhjhvUoTH5FRkYqODhYgwcPliQ1a9ZMOTk5GjJkiKZOnSobG+61R+E962d8BwcHs7s+SHR+AAAAAAAAAFDMypYtq1atWmnPnj3GZQ8fPtSePXvk7e2d7zbe3t4m4yUpMTHxmePx+ipMfknSxx9/rKioKO3YsUOtW7cujlBhpczNsSZNmujYsWNKTU01fv3973+Xr6+vUlNT5eLiUpzho4QrzBzWvn17ZWRkGItqJOn06dOqWbMmhQ8wUZj8un379lMFDo8LbfLy8oouWLwWXvbP+HR+AAAAAAAAAFDsxo4dq/79+6t169Z66623tGjRIuXk5GjAgAGSpH79+ql27dqaO3euJGn06NHy8fHRggUL9O677youLk6HDx/W8uXLLXkaKKHMza/58+dr2rRpWr9+verXr6+srCxJkr29vezt7S12Hii5zMkxOzs7ubu7m2xfqVIlSXpqOSCZP4cNHz5c0dHRGj16tEJDQ5Wenq45c+Zo1KhRljwNlFDm5pe/v78WLlyoli1bqk2bNsrIyFBkZKT8/f1Nuo0AknTr1i1lZGQYvz937pxSU1NVuXJl1a1bV5MnT9aFCxe0Zs0aSdKwYcMUHR2tCRMmaODAgdq7d682bdqk+Pj4Qh2f4gcAAAAAAAAAxS4wMFCXL1/WtGnTlJWVpRYtWmjHjh1ydnaWJJ0/f97kLsN27dpp/fr1ioiI0JQpU+Tq6qpt27bxwSHyZW5+ffHFF7p3757ef/99k/1Mnz5dM2bMKM7QYSXMzTHAHObml4uLi3bu3KmwsDA1b95ctWvX1ujRozVx4kRLnQJKMHPzKyIiQgaDQREREbpw4YKqVasmf39/ffTRR5Y6BZRghw8flq+vr/H7sWPHSpL69++v2NhY/f777zp//rxxfYMGDRQfH6+wsDB99tlnqlOnjlasWKEuXboU6viGPPqRAAAAAAAAAAAAAAAAK0bZIQAAAAAAAAAAAAAAsGoUPwAAAAAAAAAAAAAAAKtG8QMAAAAAAAAAAAAAALBqFD8AAAAAAAAAAAAAAACrRvEDAAAAAAAAAAAAAACwahQ/AAAAAAAAAAAAAAAAq0bxAwAAAAAAAAAAAAAAsGoUPwAAAAAAAAAAAAAAAKtG8QMAAAAAAAAAAAAAALBqFD8AAAAAAAAAAAC85kJCQhQQEGDpMPKVmZkpg8Gg1NRUS4cCACjBKH4AAAAAAAAAAABAiXTv3j1LhwAAsBIUPwAAAAAAAAAAAMCoU6dOCg0N1ZgxY+Tk5CRnZ2fFxMQoJydHAwYMUMWKFdWoUSNt377duE1SUpIMBoPi4+PVvHlz2dnZqW3btjp+/LjJvr/66iu9+eabsrW1Vf369bVgwQKT9fXr11dUVJT69esnBwcHDRkyRA0aNJAktWzZUgaDQZ06dZIkHTp0SJ07d1bVqlXl6OgoHx8fHTlyxGR/BoNBK1as0Hvvvafy5cvL1dVVX3/9tcmYEydOqHv37nJwcFDFihXVoUMHnTlzxrh+xYoVatq0qezs7NSkSRMtXbr0L19jAMDLR/EDAAAAAAAAAAAATKxevVpVq1bVwYMHFRoaquHDh+uf//yn2rVrpyNHjuidd95RcHCwbt++bbLd+PHjtWDBAh06dEjVqlWTv7+/7t+/L0lKSUlRr1691Lt3bx07dkwzZsxQZGSkYmNjTfbx6aefysPDQ0ePHlVkZKQOHjwoSdq9e7d+//13bdmyRZJ08+ZN9e/fX/v27dOBAwfk6uqqbt266ebNmyb7mzlzpnr16qWff/5Z3bp1U1BQkK5evSpJunDhgjp27ChbW1vt3btXKSkpGjhwoB48eCBJWrdunaZNm6aPPvpIJ0+e1Jw5cxQZGanVq1e/9GsOAPhrDHl5eXmWDgIAAAAAAAAAAACWExISouvXr2vbtm3q1KmTcnNz9cMPP0iScnNz5ejoqB49emjNmjWSpKysLNWsWVPJyclq27atkpKS5Ovrq7i4OAUGBkqSrl69qjp16ig2Nla9evVSUFCQLl++rF27dhmPO2HCBMXHx+vEiROSHnV+aNmypbZu3Wock5mZqQYNGujo0aNq0aLFM8/h4cOHqlSpktavX6/u3btLetT5ISIiQlFRUZKknJwc2dvba/v27erataumTJmiuLg4paWlqUyZMk/ts1GjRoqKilKfPn2My2bPnq2EhATt37+/MJcaAFBE6PwAAAAAAAAAAAAAE82bNzf+u1SpUqpSpYqaNWtmXObs7CxJunTpksl23t7exn9XrlxZjRs31smTJyVJJ0+eVPv27U3Gt2/fXunp6crNzTUua926dYFivHjxoj744AO5urrK0dFRDg4OunXrls6fP//Mc6lQoYIcHByMcaempqpDhw75Fj7k5OTozJkzGjRokOzt7Y1fs2fPNnksBgCgZCht6QAAAAAAAAAAAABQsjxZDGAwGEyWGQwGSY+6LbxsFSpUKNC4/v3768qVK/rss89Ur1492draytvbW/fu3TMZl9+5PI67XLlyz9z/rVu3JEkxMTFq06aNybpSpUoVKEYAQPGh+AEAAAAAAAAAAAAvxYEDB1S3bl1J0rVr13T69Gk1bdpUktS0aVP9+OOPJuN//PFHubm5PbeYoGzZspJk0h3i8bZLly5Vt27dJEm//fabsrOzzYq3efPmWr16te7fv/9UkYSzs7Nq1aqls2fPKigoyKz9AgCKH8UPAAAAAAAAAAAAeClmzZqlKlWqyNnZWVOnTlXVqlUVEBAgSRo3bpy8vLwUFRWlwMBAJScnKzo6WkuXLn3uPqtXr65y5cppx44dqlOnjuzs7OTo6ChXV1etXbtWrVu31o0bNzR+/PjndnLIz8iRI7VkyRL17t1bkydPlqOjow4cOKC33npLjRs31syZMzVq1Cg5Ojqqa9euunv3rg4fPqxr165p7Nixhb1MAIAiYGPpAAAAAAAAAAAAAPBqmDdvnkaPHq1WrVopKytL33zzjbFzg6enpzZt2qS4uDi5u7tr2rRpmjVrlkJCQp67z9KlS2vx4sX697//rVq1aukf//iHJGnlypW6du2aPD09FRwcrFGjRql69epmxVulShXt3btXt27dko+Pj1q1aqWYmBhjF4jBgwdrxYoVWrVqlZo1ayYfHx/FxsaqQYMG5l8cAECRMuTl5eVZOggAAAAAAAAAAABYr6SkJPn6+uratWuqVKmSpcMBALyG6PwAAAAAAAAAAAAAAACsGsUPAAAAAAAAAAAAAADAqvHYCwAAAAAAAAAAAAAAYNXo/AAAAAAAAAAAAAAAAKwaxQ8AAAAAAAAAAAAAAMCqUfwAAAAAAAAAAAAAAACsGsUPAAAAAAAAAAAAAADAqlH8AAAAAAAAAAAAAAAArBrFDwAAAAAAAAAAAAAAwKpR/AAAAAAAAAAAAAAAAKwaxQ8AAAAAAAAAAAAAAMCq/T+L7sorFge4eAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train RMSE: 50.92770420271637\n", + "Train R²: 0.9845578370650323\n", + "Train MAE: 1.9114281249999987\n", + "Корреляция: 0.82\n" ] }, { @@ -999,7 +1008,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAIjCAYAAADxz9EgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK7UlEQVR4nOzdZ3gU5fv28XPTIZCEQEKo0qs0QZogKEgHURQFlCqgEnoRpKmIIL0ERSwoYgFBiigoIAIivUoN9UcnYEwCKaTsPC94mD9rAiQhYVK+n+PYQ/ea2d1zl9nNXnvP3GMzDMMQAAAAACBNOFkdAAAAAACyEposAAAAAEhDNFkAAAAAkIZosgAAAAAgDdFkAQAAAEAaoskCAAAAgDREkwUAAAAAaYgmCwAAAADSEE0WAAAAAKQhmiwAAABkGOfPn9eXX35pXj9z5oy++eYb6wIBqUCTBWRSXbt2Va5cuayOAQBAmrLZbOrTp49+/fVXnTlzRsOGDdPmzZutjgWkiIvVAQAk3z///KNvvvlGmzdv1qZNmxQdHa1mzZqpWrVqat++vapVq2Z1RAAAHkihQoXUs2dPNWvWTJJUoEAB/fHHH9aGAlLIZhiGYXUIAPf3/fffq2fPnrpx44aKFSumuLg4Xb58WdWqVdP+/fsVFxenLl26aN68eXJzc7M6LgAAD+TkyZO6du2aHn30UXl6elodB0gRdhcEMoEtW7bolVdeUUBAgLZs2aLTp0+rcePG8vDw0M6dO3Xx4kV16NBBX331lQYOHOhw2ylTpqhu3brKmzevcuTIoerVq2vJkiWJHsNms+mdd94xr8fHx6tFixby9fXV4cOHzXXudWnYsKEk6Y8//pDNZkv0y2PLli0TPU7Dhg3N29125swZ2Ww2h33yJeno0aN64YUX5OvrKw8PD9WoUUMrV65M9FzCwsI0cOBAFStWTO7u7ipcuLA6d+6sa9eu3TXfxYsXVaxYMdWoUUM3btyQJMXGxmrMmDGqXr26vL295enpqfr162vDhg2JHjMkJEQ9evRQ0aJF5ezsbL4mydmls1ixYmrVqlWiemBgoGw2W6L6hQsX1L17d+XPn1/u7u6qWLGivvjiC4d1bj/HpP6tc+XKpa5du5rXQ0NDNWTIEFWqVEm5cuWSl5eXmjdvrv379983u3Tv7aJYsWIO60ZGRmrw4MEqUqSI3N3dVbZsWU2ZMkXJ/b1v+/btatGihfLkySNPT09VrlxZM2fONJff3o321KlTatq0qTw9PVWwYEG99957iR4jJe+N2xdnZ2cVKlRIvXr1UlhYmLlOSl5v6dY2OmDAAPN1KFWqlD788EPZ7XZzndvvgylTpiS6z0cffdThfZOS99yXX34pm82mM2fOmLVff/1VdevWVc6cOeXt7a1WrVrp4MGDiR43KTExMXrnnXdUpkwZeXh4qECBAnr++ed18uTJe96uWLFi99x27mSz2RQYGKhvvvlGZcuWlYeHh6pXr65NmzYlut+9e/eqefPm8vLyUq5cudSoUSNt27bNYZ3br0FSl/Pnz0u6+y7ZS5YsSfK1/uGHH1S9enXlyJFD+fLl0yuvvKILFy44rPPOO++oQoUK5vusdu3aWr58ucM6SX0m7ty5M9Wvy4YNG2Sz2bRs2bJEz+Xbb7+VzWbT1q1bzVpyPmdvv35ubm66evWqw7KtW7eaWXft2pXi16hr167m50bJkiVVq1YthYaGKkeOHIm2WyAjY3dBIBOYOHGi7Ha7vv/+e1WvXj3R8nz58mnBggU6fPiwPvnkE40dO1b+/v6SpJkzZ6pNmzbq1KmTYmNj9f333+vFF1/UqlWr1LJly7s+5muvvaY//vhDa9euVYUKFSRJX3/9tbl88+bNmjdvnqZPn658+fJJkvLnz3/X+9u0aZN++eWXVD1/STp06JCeeOIJFSpUSMOHD5enp6cWL16stm3baunSpXruueckSTdu3FD9+vV15MgRde/eXY899piuXbumlStX6vz582bWO4WHh6t58+ZydXXVL7/8Yn6xioiI0GeffaYOHTqoZ8+eun79uj7//HM1bdpUO3bsUNWqVc376NKli9atW6e+ffuqSpUqcnZ21rx587Rnz55UP+ekXLlyRbVr1za/XPn5+Wn16tXq0aOHIiIiNGDAgBTf56lTp7R8+XK9+OKLKl68uK5cuaJPPvlEDRo00OHDh1WwYMH73sczzzyjzp07O9SmTp2qf//917xuGIbatGmjDRs2qEePHqpatap+/fVXDR06VBcuXND06dPv+Rhr165Vq1atVKBAAfXv318BAQE6cuSIVq1apf79+5vrJSQkqFmzZqpdu7YmTZqkNWvWaOzYsYqPj9d7771nrpeS98Zzzz2n559/XvHx8dq6davmzZun6Ohoh/dEckVFRalBgwa6cOGCevfuraJFi+qvv/7SiBEjdOnSJc2YMSPF95mU5L7nNm/erBYtWuiRRx7R2LFjFRcXp48++khPPPGEdu7cqTJlytz1tgkJCWrVqpXWr1+vl19+Wf3799f169e1du1aHTx4UCVLlrznY1etWlWDBw92qC1YsEBr165NtO7GjRu1aNEi9evXT+7u7vroo4/UrFkz7dixQ48++qikW58T9evXl5eXl4YNGyZXV1d98sknatiwoTZu3KhatWo53Od7772n4sWLO9R8fX3vmTkpX375pbp166bHH39cEyZM0JUrVzRz5kxt2bJFe/fulY+Pj6RbPzI899xzKlasmKKjo/Xll1+qXbt22rp1q2rWrHnX+3/rrbfuuux+r0vDhg1VpEgRffPNN+bn5G3ffPONSpYsqTp16khK/ufsbc7Ozlq4cKHDj3vz58+Xh4eHYmJiUvUaJWXMmDGJ7g/I8AwAGZ6vr6/xyCOPONS6dOlieHp6OtRGjx5tSDJ++uknsxYVFeWwTmxsrPHoo48aTz/9tENdkjF27FjDMAxjxIgRhrOzs7F8+fK7Zpo/f74hyTh9+nSiZRs2bDAkGRs2bDBrtWrVMpo3b+7wOIZhGE899ZTx5JNPOtz+9OnThiRj/vz5Zq1Ro0ZGpUqVjJiYGLNmt9uNunXrGqVLlzZrY8aMMSQZP/74Y6Jcdrs9Ub6YmBijYcOGhr+/v3HixAmH9ePj442bN2861P79918jf/78Rvfu3c1adHS04eTkZPTu3dth3aT+jZLyyCOPGC1btkxU79Onj/Hfj+kePXoYBQoUMK5du+ZQf/nllw1vb2/z3/v2c/zhhx8S3a+np6fRpUsX83pMTIyRkJDgsM7p06cNd3d347333rtvfklGnz59EtVbtmzpsN0uX77ckGS8//77Duu98MILhs1mS/T63yk+Pt4oXry48cgjjxj//vuvw7Lb/66Gces1l2T07dvXYXnLli0NNzc34+rVq2Y9Ne+N2+rWrWtUqFDBvJ6S13vcuHGGp6enERwc7LDe8OHDDWdnZ+Ps2bOGYfzf+2Dy5MmJ7rNixYpGgwYNEj1+ct5z/33vVq9e3fD29jYuX75srhMcHGy4uroa7dq1S/TYd/riiy8MSca0adMSLbvz3yUpKdnuJRmSjF27dpm1//3vf4aHh4fx3HPPmbW2bdsabm5uxsmTJ83axYsXjdy5czt8ztx+DXbu3HnXfHd7//7www8Or3VsbKzh7+9vPProo0Z0dLS53qpVqwxJxpgxY+76GCEhIYYkY8qUKWatQYMGDv+2v/zyiyHJaNasWapflxEjRhju7u5GWFiYw2O7uLg4bBvJ/Zy9/fp16NDBqFSpklmPjIw0vLy8jI4dOzq8vil5jbp06eLwuXHw4EHDycnJ3JaT+psDZETsLghkAtevXzdHpu7l9khSRESEWcuRI4f5///++6/Cw8NVv379u46wBAUFacKECZo1a5aeffbZB0x+y48//qidO3dq4sSJiZb5+/ubu+fcTWhoqH7//Xe1b99e169f17Vr13Tt2jX9888/atq0qY4fP27ucrJ06VJVqVIl0S+ukhLtamO329W5c2dt27ZNv/zyS6Jf3Z2dnc3j2+x2u0JDQxUfH68aNWo4vH6RkZGy2+3Kmzdv8l6QVDIMQ0uXLlXr1q1lGIb5Oly7dk1NmzZVeHh4on/XO1+v25f/cnd3l5PTrT8HCQkJ+ueff5QrVy6VLVs2TUfifvnlFzk7O6tfv34O9cGDB8swDK1evfqut927d69Onz6tAQMGJPrFO6ldKgMDAx2WBwYGKjY2VuvWrTPrKXlvREVF6dq1a7p8+bKWLl2q/fv3q1GjRonWS87r/cMPP6h+/frKkyePw3qNGzdWQkJCol3gbj/2nZeEhIS7vlbSvd9zdz7n4OBg7d69W506dXIYiS5durTatGmjNWvW3POxli5dqnz58qlv376JliX17/Ig6tSp4zCSX7RoUT377LP69ddflZCQoISEBP32229q27atSpQoYa5XoEABdezYUX/++afDZ2Ny/fe1v379usPyXbt2KSQkRG+++aY8PDzMesuWLVWuXDn9/PPPDuvHxcXp2rVrOnnypCZOnCgnJyc98cQTST62YRgaMWKE2rVrl2gULrmviyR17txZN2/edNidddGiRYqPj9crr7wiKWWfs7e9+uqrOnr0qLlb4NKlS+Xt7Z3ovZHS1+hOI0aM0GOPPaYXX3zxrusAGRG7CwKZQMGCBe97fIMknThxQtKtmZluW7Vqld5//33t27dPN2/eNOtJfQFavXq1+ccyNDT0QWNLuvWl/e2331anTp1UuXLlRMvr1q2rRYsWacaMGXr55Zfl4uLisIvZ7edlGIZGjx6t0aNHJ/k4ISEhKlSokE6ePKl27dolK9vIkSO1bds22Ww2RUVFJbnOV199palTp+ro0aOKi4sz63fuYpQ3b16VLl1an332mRo0aKCqVavKycnJ4fVOC1evXlVYWJjmzZunefPmJblOSEiIw/Xu3bvf937tdrtmzpypjz76SKdPn3b4Up2WjeP//vc/FSxYULlz53aoly9f3lx+N7e3/9u7hd2Lk5OTw5dsSeYub3cez5GS98bkyZM1efJk83qzZs304YcfJlovOa/38ePHdeDAAfn5+SW5/L//hmPHjtXYsWMTrXe33XPv95677bHHHjP/v2zZsomWly9fXkuXLtW1a9fu+lgnT55U2bJl5eKS/l8nSpcunahWpkwZRUVFmccFRUVF3fW52O12nTt3ThUrVkz2Y0ZGRt713+m229ttUo9brlw5/fnnnw619evXq3nz5pIkLy8vLVmyRLVr107yvr/55hsdOnRIixcv1rfffpvkOvd7XQICAlSuXDk9/vjj+uabb9SjRw/zvmvXrq1SpUpJStnn7G1+fn5q2bKlvvjiC9WoUUNffPGFunTpYv5ok9rX6LY///xTP/30k9avX6+zZ88muQ6QUdFkAZlAq1atNGfOHH3++efmH8j/unLlir766iv5+fmZf7A3b96sNm3a6Mknn9RHH32kAgUKyNXVVfPnz0/yD/aOHTvUs2dPeXp66v3339eLL76Y5B/FlPj888915swZ/frrr0ku79Wrl3799VcNHDgw0aQdt92eDGDIkCFq2rRpkuvc/qKQEtu3b9eXX36poKAg9erVS/v27ZO7u7u5fOHCheratavatm2roUOHyt/fX87OzpowYUKipnfRokXq1KlTonxpOSPW7dfhlVdeUZcuXZJc579fqseMGaP69es71Fq3bu1w/YMPPtDo0aPVvXt3jRs3Tr6+vnJyctKAAQMcJmLISlL63nj11VfVuXNn2e12nTp1SuPGjVOrVq20bt06h6YsOa+33W7XM888o2HDhiWZ7b/HQPXq1SvRr/g9e/a863O733vutoULFyoqKkq9evW653rZmYeHh3766SeH2ubNmx2O7Uupxx9/XGvXrtW///6rhQsXqnv37ipSpIhq1KjhsF5sbKxGjx6tHj163PO4uOTq3Lmz+vfvr/Pnz+vmzZvatm2bgoKCzOWp/Zzt3r27OnfurL59+2rTpk367LPP0uycVm+99ZaaNm2qp59+OtFESEBGR5MFZAKjRo3S8uXL9cYbb+jo0aPq2LGjOdpw9uxZrV+/XmPGjNG///6rb7/91mwUli5dKg8PD/36668OzcP8+fOTfJxnnnlGH3/8sWJiYrR8+XL16tXLnLUsNaKiovTuu+/qzTff1COPPJLkOh4eHvr5558VHBysc+fOyTAMXblyxdyFRZI5KuHq6qrGjRvf8zFLliyZ7FnR3n33XXXp0kVVq1ZVjRo19P7772vcuHHm8iVLlqhEiRL68ccfHV6DpEYVqlWrpk8//VT169fXe++9p9q1a2vy5MnasmVLsrIkh5+fn3Lnzq2EhIT7vg63VapUKdG6zs7ODteXLFmip556Sp9//rlDPSwsLMmJQlLrkUce0bp163T9+nWH0ayjR4+ay+/m9q6cBw8evO9zv90I3fnFNDg4WJLMWctS+t4oUaKEw+N6e3urY8eO2rZtmzlpgJS817tkyZK6ceNGsv8NS5cunWjduzXvyXnP3fbEE0/I09NTvXr10rFjxxItP3r0qDw9Pe+5DZQsWVLbt29XXFycXF1dk/FsUu/48eOJasHBwcqZM6c52pQzZ867PhcnJycVKVIkRY/p7Oyc6LW/c1ZJ6f+222PHjunpp592WHbs2LFE/w558+Y177Ndu3YqW7asJk+erEWLFjms99FHHykkJMRhZsikJOd1kaSXX35ZgwYN0nfffafo6Gi5urrqpZdeMpen5HP2Ts2bN5eHh4defvll1atXTyVLlkzUZKX0NZKk5cuXa+vWrWk+eRDwsHBMFpAJBAQEaOvWrWrevLmmTp2qxx57TAsXLlRkZKQeeeQRde/eXTly5NBPP/2kDh06mLe7PZX4nbt/nTlzJtGUwbfVrVtXzs7O8vT01Ny5c7Vp0yZ9+umnqc49c+ZMRUZGauTIkfddt0yZMmrUqJEaN26c6PgEf39/NWzYUJ988okuXbqU6LZ3TiHcrl077d+/P8npio3/TOF9e8ShSpUqGjJkiD788EOHBu32l+M7b7d9+3aH6Y5vi4iI0Kuvvqo2bdpo1KhRaty4sQoUKHDf550Szs7OateunZYuXZpkI/nfqZRTcr//fW1++OGHRMdfPKgWLVooISHB4ddzSZo+fbpsNpu5C1VSHnvsMRUvXlwzZsxI9CX3v9klOTyGYRgKCgqSq6ureaxISt8b/xUdHS1JqdoltH379tq6dWuSI01hYWGKj49P8X3elpL3nHSrcX/sscf07bffOmw/J0+e1MqVK9W8efNETeKd2rVrp2vXriX6N5WS/nd5EP/9wn3u3DmtWLFCTZo0kbOzs5ydndWkSROtWLHCYbfQK1eu6Ntvv1W9evXk5eWVppkkqUaNGvL399fcuXMdtofVq1fryJEj95zFNSYmRpGRkYm2o+vXr2v8+PEaOHCgAgIC7vn493tdbsuXL5+aN2+uhQsX6ptvvlGzZs0cGuiUfM7eycXFRZ07d9aBAwfuurtsSl+j27u8duzY0WEWVyAzYSQLyCSKFCmiFStW6NKlS9qyZYsmT56sffv2ae7cuapataqqVq2aaMSpZcuWmjZtmpo1a6aOHTsqJCREc+bMUalSpXTgwIF7Pl7Tpk31yiuvaNiwYWrdunWqGobffvtN48ePT5PjeubMmaN69eqpUqVK6tmzp0qUKKErV65o69atOn/+vHlOp6FDh2rJkiV68cUX1b17d1WvXl2hoaFauXKl5s6dqypVqiR5/2PHjtXSpUvVs2dPbdmyRU5OTmrVqpV+/PFHPffcc2rZsqVOnz6tuXPnqkKFCua5tG7r06ePoqOj9dlnn6Xq+V29elVr1qxxqN0+BmHNmjWqWbOmfH19NXHiRG3YsEG1atVSz549VaFCBYWGhmrPnj1at25dqo6la9Wqld577z1169ZNdevW1d9//61vvvkm0XFND6p169Z66qmnNHLkSJ05c0ZVqlTRb7/9phUrVmjAgAH3nO7byclJH3/8sVq3bq2qVauqW7duKlCggI4ePapDhw45NCweHh5as2aNunTpolq1amn16tX6+eef9fbbb5u/7Kf0vXHgwAEtXLhQhmHo5MmTmjVrlgoXLpxoF6/kGDp0qFauXKlWrVqpa9euql69uiIjI/X3339ryZIlOnPmTKpHEFPznps0aZI55X3v3r0VHx+voKAgeXh4aPz48fe8befOnbVgwQINGjRIO3bsUP369RUZGal169bpzTffTLPJc6Rbx+M1bdrUYapy6daI9G3vv/++1q5dq3r16unNN9+Ui4uLPvnkE928eVOTJk1Ksyx3cnV11Ycffqhu3bqpQYMG6tChgzk9ebFixczdoG+fKqJ58+YqWLCgQkND9fXXX+vSpUsOI/eStGfPHuXLl++uu5TeKTmvy22dO3fWCy+8IEkOo/a3Jfdz9r/GjRunoUOHKk+ePA/0Gt12/vx5ubm5PdBpPwDLWTGlIYAHl9zpwT///HOjdOnShru7u1GuXDlj/vz5xtixY5OcCvi/01Rfu3bN8PPzc5gK+LbkTOFeoEABIzIy8r6P819JTeFuGIZx8uRJo3PnzkZAQIDh6upqFCpUyGjVqpWxZMkSh/X++ecfIzAw0ChUqJDh5uZmFC5c2OjSpYs57XlS010bhmH88ccfhs1mM2bOnGkYxq2piz/44APjkUceMdzd3Y1q1aoZq1atSjTF8HfffWfYbDZjzZo1DveXkinc9f+nYr7b5c6sV65cMfr06WMUKVLEcHV1NQICAoxGjRoZ8+bNM9dJ6RTugwcPNgoUKGDkyJHDeOKJJ4ytW7cmmkr6bpTMKdwNwzCuX79uDBw40ChYsKDh6upqlC5d2pg8efJ9p/u+7c8//zSeeeYZI3fu3Ianp6dRuXJlY/bs2eby26/5yZMnjSZNmhg5c+Y08ufPb4wdOzbRNPUpeW/cvthsNiMgIMB4/vnnjSNHjpjrpOT1vv06jBgxwihVqpTh5uZm5MuXz6hbt64xZcoUIzY21jCM1E3hnpz3XFLv3XXr1hl169Y1PDw8jNy5cxstWrQwDhw4kOhxkxIVFWWMHDnSKF68uLk9vvDCCw7TqCclpVO49+nTx1i4cKH5b1atWrVE72HDMIw9e/YYTZs2NXLlymXkzJnTeOqpp4y//vrLYZ20nML9tkWLFhnVqlUz3N3dDV9fX6NTp07G+fPnzeXR0dHGSy+9ZBQuXNhwc3Mz/P39jaeeesrhlBuGcWsKd0nG9OnTHep32zaT+7oYhmHcvHnTyJMnj+Ht7e0wlfqdkvM5e7/X727L7/caGcb/nYahf//+Sd4nU7gjs7AZRhqP5wMA0pTNZtOGDRvUsGFDq6NkeF27dtWSJUsSjTQic7PZbOrTp0+SuyVmZyl9XeLj41WwYEG1bt060TGYANIWx2QBAABkA8uXL9fVq1fVuXNnq6MAWR7HZAFABte0aVP5+vpaHQNAJrV9+3YdOHBA48aNU7Vq1dSgQQOrIwFZHk0WAGRw/50QAwBS4uOPP9bChQtVtWpVzjcFPCQckwUAAAAAaYhjsgAAAAAgDdFkAQAAAEAa4pis+7Db7bp48aJy586d6ESvAAAAALIPwzB0/fp1FSxYUE5Odx+vosm6j4sXL6pIkSJWxwAAAACQQZw7d06FCxe+63KarPvInTu3pFsvpJeXl8VpAAAAAFglIiJCRYoUMXuEu6HJuo/buwh6eXnRZAEAAAC472FETHwBAAAAAGmIJgsAAAAA0hBNFgAAAACkIZosAAAAAEhDNFkAAAAAkIZosgAAAAAgDdFkAQAAAEAaoskCAAAAgDSU6ZqsOXPmqFixYvLw8FCtWrW0Y8eOu6776aefqn79+sqTJ4/y5Mmjxo0b33N9AAAAAHhQmarJWrRokQYNGqSxY8dqz549qlKlipo2baqQkJAk1//jjz/UoUMHbdiwQVu3blWRIkXUpEkTXbhw4SEnBwAAAJBd2AzDMKwOkVy1atXS448/rqCgIEmS3W5XkSJF1LdvXw0fPvy+t09ISFCePHkUFBSkzp07J+sxIyIi5O3trfDwcHl5eT1QfgAAAACZV3J7g0wzkhUbG6vdu3ercePGZs3JyUmNGzfW1q1bk3UfUVFRiouLk6+v713XuXnzpiIiIhwuAAAAAJBcmabJunbtmhISEpQ/f36Hev78+XX58uVk3cdbb72lggULOjRq/zVhwgR5e3ublyJFijxQbgAAAADZS6Zpsh7UxIkT9f3332vZsmXy8PC463ojRoxQeHi4eTl37txDTAkAAAAgs3OxOkBy5cuXT87Ozrpy5YpD/cqVKwoICLjnbadMmaKJEydq3bp1qly58j3XdXd3l7u7+wPnBQAAAJA9ZZqRLDc3N1WvXl3r1683a3a7XevXr1edOnXuertJkyZp3LhxWrNmjWrUqPEwogIAAADIxjJNkyVJgwYN0qeffqqvvvpKR44c0RtvvKHIyEh169ZNktS5c2eNGDHCXP/DDz/U6NGj9cUXX6hYsWK6fPmyLl++rBs3blj1FAAAAAAk0/Hjx62OkCqZqsl66aWXNGXKFI0ZM0ZVq1bVvn37tGbNGnMyjLNnz+rSpUvm+h9//LFiY2P1wgsvqECBAuZlypQpVj0FAAAAAPdx7do19ezZU2XLltXatWutjpNimeo8WVbgPFkAAADAw5GQkKB58+Zp5MiR+vfffyVJZcuW1YEDB+Tm5mZxuuT3Bplm4gsAAAAAWdfWrVvVp08f7d2716zlzp1bvXv3ls1mszBZytFkAQAAALDMlStX9NZbb+mrr75yqL/66quaNGnSfWcSz4hosgAAAAA8dHa7XbNnz9aYMWMUERFh1itXrqw5c+aoXr16FqZ7MJlq4gsAAAAAWYPNZtPq1avNBsvb21uzZ8/W7t27M3WDJdFkAQAAALCAzWbTrFmz5O7uru7duys4OFiBgYFyccn8O9tl/mcAAAAAIEOLi4vTrFmzVL58ebVo0cKslylTRqdOnVLBggUtTJf2aLIAAAAApJvff/9dgYGBOnLkiIoXL65Dhw4pR44c5vKs1mBJ7C4IAAAAIB2cO3dOL730kho1aqQjR45Iks6cOaN169ZZnCz90WQBAAAASDM3b97UxIkTVa5cOS1evNis16pVSzt27FDr1q0tTPdwsLsgAAAAgDTx66+/ql+/fgoODjZr+fLl04cffqiuXbvKySl7jPFkj2cJAAAAIF1NnjxZzZo1MxssJycnBQYGKjg4WN27d882DZZEkwUAAAAgDbz44ovy8PCQJD3xxBPavXu3Zs+erTx58lic7OFjd0EAAAAAKRYSEiJ/f3/zerFixTRp0iT5+PjolVdekc1mszCdtWiyAAAAACTbqVOn1L9/f+3du1dHjx5Vrly5zGV9+/a1MFnGwe6CAAAAAO4rKipKY8eOVYUKFbRq1SpduHBB48ePtzpWhsRIFgAAAIC7MgxDK1as0IABA/S///3PrBcsWFDVqlWzMFnGxUgWAAAAgCQFBwerRYsWeu6558wGy8XFRUOHDtXRo0fVvn17ixNmTIxkAQAAAHAQGRmp999/X1OnTlVcXJxZb9y4sWbPnq1y5cpZmC7jYyQLAAAAgIOwsDAFBQWZDVaRIkX0ww8/6LfffqPBSgaaLAAAAAAOChUqpDFjxsjNzU1vv/22jhw5ohdeeCFbT8ueEjRZAAAAQDZ2/fp1jRkzRuHh4Q71/v3769ChQxo/frw8PT0tSpc5cUwWAAAAkA0ZhqHvvvtOQ4YM0aVLlxQREaEZM2aYy93c3FSqVCnrAmZijGQBAAAA2czff/+thg0bqlOnTrp06ZIk6bPPPlNoaKjFybIGmiwAAAAgmwgLC1P//v1VrVo1bdq0yay3bt1aBw4ckK+vr4Xpsg52FwQAAACyOLvdrq+//lrDhg1TSEiIWS9ZsqRmzpypli1bWpgu66HJAgAAALIwwzDUunVr/fLLL2YtR44cGjlypAYPHiwPDw8L02VN7C4IAAAAZGE2m03NmjUzr7dr105HjhzRyJEjabDSCSNZAAAAQBZit9sVExOjnDlzmrU33nhDmzZtUs+ePdWkSRML02UPjGQBAAAAWcTOnTtVu3ZtDRo0yKHu4uKiH374gQbrIaHJAgAAADK5a9euqVevXqpVq5Z27typefPmadeuXVbHyrbYXRAAAADIpBISEjRv3jyNHDlS//77r1mvUKGC7Ha7hcmyN0ayAAAAgExo69atevzxx/Xmm2+aDVbu3Lk1bdo07d27VzVr1rQ4YfbFSBYAAACQiVy5ckXDhw/Xl19+6VB/9dVXNWnSJAUEBFgTDCaaLAAAACATWbVqlUODVaVKFQUFBalevXrWhYIDdhcEAAAAMpFu3brp8ccfl7e3t2bPnq1du3bRYGUwjGQBAAAAGdTFixe1atUq9erVy6w5OTnp66+/Vp48eeTv729hOtwNI1kAAABABhMXF6epU6eqbNmy6t27t7Zs2eKwvGzZsjRYGRhNFgAAAJCB/P7776pSpYqGDBmiGzduSJLGjBljcSqkBE0WAAAAkAGcP39eL730kho1aqQjR45Ikmw2m3r37q3FixdbnA4pwTFZAAAAgIVu3ryp6dOna9y4cYqKijLrtWrVUlBQkGrUqGFhOqQGTRYAAABgkUuXLqlhw4YKDg42a/ny5dOHH36orl27ysmJHc8yI/7VAAAAAIsEBASYE1g4OTkpMDBQwcHB6t69Ow1WJsa/HAAAAPCQxMXFOVy32WwKCgrSk08+qd27d2v27NnKkyePRemQVmiyAAAAgIdg1apVKleunNavX+9Qr1KlijZu3KiqVataEwxpjiYLAAAASEcnT55Uq1at1Lp1a506dUp9+/ZVbGys1bGQjmiyAAAAgHQQFRWlMWPGqGLFivr555/Nur+/v0JDQy1MhvTG7IIAAABAGjIMQ8uXL9fAgQP1v//9z6wXLFhQU6dO1UsvvSSbzWZhQqQ3miwAAAAgjQQHB6tfv3769ddfzZqLi4sGDRqkUaNGKXfu3Bamw8NCkwUAAACkkYEDBzo0WI0bN9bs2bNVrlw5C1PhYeOYLAAAACCNTJ06Va6uripSpIiWLFmi3377jQYrG2IkCwAAAEiFw4cPKywsTHXr1jVr5cqV008//aR69erJ09PTwnSwEiNZAAAAQApERERoyJAhqlKlijp37qyYmBiH5U2bNqXByuZosgAAAIBkMAxD33zzjcqVK6epU6cqPj5eJ0+e1Mcff2x1NGQw7C4IAAAA3MeBAwcUGBiozZs3mzUPDw8NHz5cr7/+uoXJkBHRZAEAAAB3ERYWprFjx2rOnDlKSEgw623atNGMGTNUvHhxC9Mho6LJAgAAAJKwfv16dezYUSEhIWatVKlSmjlzplq0aGFhMmR0HJMFAAAAJKF48eIKDw+XJOXIkUPjx4/XwYMHabBwX4xkAQAAALo1sYXNZjOvlyhRQm+99ZYOHz6sqVOnqmjRohamQ2ZiMwzDsDpERhYRESFvb2+Fh4fLy8vL6jgAkG7sdkMXwqIVGRsvTzcXFfLJIScn2/1vmMUyAMh+7Ha7Pv/8c82dO1ebNm1ymH7dbrfLyYmdv6yS0f4uJLc3YCQLAKATIdf168ErOnn1hmLiE+Th4qySfrnU9NH8KuWfO9tkAJD97Ny5U3369NHOnTslSRMmTND7779vLqfBsk5m/rtAkwUA2dyJkOuav+WMQiNjVcDbQzndcigqNl4HL4brYni0uj1RLN3/mGWEDACyl2vXrmnEiBH6/PPPdeeOXefPn0+02yAevsz+d4HWHACyMbvd0K8Hryg0Mlal/XMpt4ernJ1syu3hqtL+uRQaGavfDl2R3Z5+e5ZnhAwAso+EhAR99NFHKlOmjD777DOzwapYsaI2bNigL7/8kgbLYlnh7wJNFgBkYxfConXy6g0V8PZI9KXCZrOpgLeHToTc0IWw6CydAUD28Ndff6lGjRrq06eP/v33X0lS7ty5NW3aNO3du1cNGza0NiAkZY2/C+wuCADZWGRsvGLiE5TTLUeSy3O4OetKRIwiY+OzdAYAWV9YWJiaNm2qGzdumLVXX31VkyZNUkBAgIXJ8F9Z4e8CI1kAkI15urnIw8VZUXf5QxUdmyB3F2d5uqXfb3IZIQOArM/Hx0cjR46UJFWpUkWbN2/WggULaLAyoKzwd4EmCwCysUI+OVTSL5cuhcfov2f0MAxDl8JjVMo/lwr5JP1rYlbJACDr2bx5syIiIhxqAwcO1Oeff65du3apXr16FiXD/WSFvws0WQCQjTk52dT00fzy9XTT8ZAbuh4Tp3i7Xddj4nQ85IZ8Pd3UpGL+dD0nSUbIACDruHjxol555RU9+eSTevfddx2Wubu7q3v37nJxybgjIMgafxc4GfF9cDJiANnBneciuRl/azeMUv651KSiNefJsioDgMwrLi5Os2bN0jvvvGMed+Xs7KxDhw6pbNmyFqdDamTEvwucjBgAkGyl/HOrRMNcuhAWrcjYeHm6uaiQT46H+ithRsgAIHP6/fffFRgYqCNHjpg1X19fffDBBypVqpSFyfAgMvPfBZosAICkW7tnFPHNme0zAMg8zp07pyFDhmjx4sVmzWazqVevXho/frzy5s1rYTqkhcz6d4EmCwAAAJnO7NmzNXz4cEVFRZm1WrVqKSgoSDVq1LAwGcDEFwAAAMiEEhISzAYrX758+vzzz82TDQNWY+KL+2DiCwAAgIwnPj5eNWrUUP369fXee+8pT548VkdCNsDEFwAAAMj0YmJiNHnyZIWHh2vKlClm3cXFRdu3b5e7u7uF6YCk0WQBAAAgQ1q1apX69++vU6dOycnJSZ06dVK1atXM5TRYyKgy3TFZc+bMUbFixeTh4aFatWppx44d91z/hx9+ULly5eTh4aFKlSrpl19+eUhJAQAAkBonT55U69at1bp1a506dUrSrVkDt23bZnEyIHkyVZO1aNEiDRo0SGPHjtWePXtUpUoVNW3aVCEhIUmu/9dff6lDhw7q0aOH9u7dq7Zt26pt27Y6ePDgQ04OAACA+4mKitKYMWNUsWJFrVq1yqw3aNBA+/bt0xtvvGFhOiD5MtXEF7Vq1dLjjz+uoKAgSZLdbleRIkXUt29fDR8+PNH6L730kiIjIx3epLVr11bVqlU1d+7cZD0mE18AAACkL8MwtHz5cg0cOFD/+9//zHrBggU1depUvfTSS7LZMv4JaJH1Jbc3yDQjWbGxsdq9e7caN25s1pycnNS4cWNt3bo1ydts3brVYX1Jatq06V3Xl6SbN28qIiLC4QIAAID089NPP+n55583GywXFxcNGzZMx44d08svv0yDhUwn0zRZ165dU0JCgvLnz+9Qz58/vy5fvpzkbS5fvpyi9SVpwoQJ8vb2Ni9FihR58PAAAAC4q5YtW+qxxx6TJDVu3Fh///23PvzwQ+XKlcviZEDqZJom62EZMWKEwsPDzcu5c+esjgQAAJBlGIahnTt3OtScnZ01d+5cLVmyRL/99pvKlStnUTogbWSaJitfvnxydnbWlStXHOpXrlxRQEBAkrcJCAhI0frSralAvby8HC4AAAB4cIcPH9YzzzyjmjVrJpop8PHHH1e7du3YNRBZQqZpstzc3FS9enWtX7/erNntdq1fv1516tRJ8jZ16tRxWF+S1q5de9f1AQAAkPauX7+uIUOGqEqVKuZ3sz59+shut1ucDEgfmepkxIMGDVKXLl1Uo0YN1axZUzNmzFBkZKS6desmSercubMKFSqkCRMmSJL69++vBg0aaOrUqWrZsqW+//577dq1S/PmzbPyaQAAAGQLhmHo22+/1dChQ3Xp0iWzXrx4cb3zzjuMWiHLylRN1ksvvaSrV69qzJgxunz5sqpWrao1a9aYk1ucPXtWTk7/NzhXt25dffvttxo1apTefvttlS5dWsuXL9ejjz5q1VMAAADIFv7++28FBgZq06ZNZs3Dw0PDhw/XsGHDlCNHDgvTAekrU50nywqcJwsAACD5YmJi9NZbb2nOnDlKSEgw688++6ymT5+u4sWLW5gOeDDJ7Q0y1UgWshe73dCFsGhFxsbL081FhXxyyMmJ3QqAjIb3KoA7ubm5adeuXWaDVapUKc2aNUvNmze3OBnw8NBkIUM6EXJdvx68opNXbygmPkEeLs4q6ZdLTR/Nr1L+ua2OB+D/470K4L+cnJwUFBSkBg0aaPjw4Ro8eLDc3d2tjgU8VDRZyHBOhFzX/C1nFBoZqwLeHsrplkNRsfE6eDFcF8Oj1e2JYnx5AzIA3qsAQkNDNWrUKLVv314NGzY069WqVdO5c+fk7e1tXTjAQplmCndkD3a7oV8PXlFoZKxK++dSbg9XOTvZlNvDVaX9cyk0Mla/Hboiu51DCQEr8V4Fsje73a5PP/1UZcqU0ccff6zAwEDFxcU5rEODheyMJgsZyoWwaJ28ekMFvD0STetqs9lUwNtDJ0Ju6EJYtEUJAUi8V4HsbMeOHapdu7Z69eqlf/75R5J05swZ7d+/3+JkQMZBk4UMJTI2XjHxCcrplvSerDncnHUzPkGRsfEPORmAO/FeBbKfa9euqWfPnqpdu7Z27txp1jt06KBjx46pRo0aFqYDMhaaLGQonm4u8nBxVtRdvphFxybI3cVZnnf5Ygfg4eC9CmQfCQkJ+vjjj1WmTBl99tlnun32n4oVK2rDhg369ttvVahQIYtTAhkLTRYylEI+OVTSL5cuhcfov6dwMwxDl8JjVMo/lwr5cAJDwEq8V4Hso1+/fnrzzTf177//SpJy586tadOmae/evQ6TXQD4PzRZyFCcnGxq+mh++Xq66XjIDV2PiVO83a7rMXE6HnJDvp5ualIxP+fgASzGexXIPvr06SMXl1uj0q+++qqCg4M1cOBAubq6WpwMyLhsxn9/goSD5J7VGWnrznPv3Iy/tdtRKf9calKRc+8AGQnvVSBriY+P17lz51S8eHGH+qxZs/TYY4+pXr16FiUDMobk9gY0WfdBk2Udu93QhbBoRcbGy9PNRYV8cvCrOJAB8V4FsoaNGzcqMDBQN2/e1N9//80JhIEkJLc34IhkZFhOTjYV8c1pdQwA98F7FcjcLl68qCFDhui7774za9OnT9fw4cMtTAVkbhyTBQAAkA3FxcVpypQpKlu2rEODVb16dT311FMWJgMyP0ayAAAAspn169erb9++OnLkiFnz9fXVhAkT1KNHDzk7O1uYDsj8GMkCAADIJi5evKj27durcePGZoNls9n0+uuvKzg4WL169aLBAtIAI1kAAADZRGRkpFasWGFer1WrlubMmaPq1atbmArIehjJAgAAyCZKly6tIUOGyM/PT1988YX++usvGiwgHdBkAQAAZEFnzpzR66+/rujoaIf6yJEjFRwcrG7dusnJia+CQHrgnQUAAJCFxMTE6L333lP58uX1ySefaOLEiQ7Lc+bMKR8fH2vCAdkETRYAAEAW8dNPP6lixYoaO3asYmJiJEkLFizQzZs3LU4GZC80WQAAAJnciRMn1KpVK7Vp00anTp2SJDk7O2vQoEHav3+/3N3dLU4IZC/MLggAAJBJRUVFacKECZo0aZJiY2PNesOGDRUUFKSKFStamA7IvmiyAAAAMqH4+HjVqFHD4YTChQoV0tSpU9W+fXvZbDYL0wHZG7sLAgAAZEIuLi7q1KmTJMnV1VXDhg3T0aNH9dJLL9FgARZjJAsAACATuHHjhmw2mzw9Pc3a4MGDderUKQ0dOlTlypWzMB2AOzGSBQAAkIEZhqHFixerfPnyevfddx2WeXh46PPPP6fBAjIYmiwAAIAM6vDhw2rcuLFeeuklnT9/XtOnT9fRo0etjgXgPmiyAAAAMpiIiAgNHjxYVapU0e+//27Wn3nmGaZjBzIBjskCAADIIAzD0LfffquhQ4fq0qVLZr148eKaMWOGWrduzaQWQCZAkwUAAJABHDhwQIGBgdq8ebNZ8/Dw0PDhwzVs2DDlyJHDwnQAUoImCwAAIANYu3atQ4P17LPPavr06SpevLiFqQCkhs0wDMPqEBlZRESEvL29FR4eLi8vL6vjAACALCouLk5VqlRRXFycZs2apebNm1sdCcB/JLc3YCQLAADgIduzZ4/++usvBQYGmjVXV1f99NNPKly4MJNbAJkcswsCAAA8JKGhoXrjjTdUo0YN9e/fXwcOHHBYXrJkSRosIAugyQIAAEhnCQkJ+vTTT1WmTBnNnTtXhmHIbrdr2rRpVkcDkA5osgAAANLRjh07VLt2bfXq1Uv//POPJMnT01OTJk3SvHnzLE4HID1wTBYAAEA6uHr1qt5++219/vnnunOesQ4dOmjy5MkqVKiQhekApCeaLAAAgDR28OBB1a9fX2FhYWatYsWKCgoKUsOGDS3LBeDhYHdBAACANFa+fHkVK1ZMkuTl5aXp06dr7969NFhANkGTBQAA8IBu3LjhcN3Z2VlBQUHq3Lmzjh07pgEDBsjV1dWidAAeNposAACAVIqPj9fMmTNVpEgR7dy502HZE088oa+++koBAQEWpQNgFZosAACAVNi0aZOqVaumAQMGKCwsTH369JHdbrc6FoAMgCYLAAAgBS5evKhOnTqpQYMGOnjwoFmvXLmyoqOjLUwGIKOgyQIAAEiGuLg4TZkyRWXLltW3335r1qtXr65t27bps88+k6enp4UJAWQUDzSFe0xMjGJjYx1qXl5eDxQIAAAgo1m/fr369u2rI0eOmDVfX19NmDBBPXr0kLOzs4XpAGQ0KR7JioqKUmBgoPz9/eXp6ak8efI4XAAAALISwzA0cuRIs8Gy2Wx6/fXXFRwcrF69etFgAUgkxU3W0KFD9fvvv+vjjz+Wu7u7PvvsM7377rsqWLCgFixYkB4ZAQAALGOz2RQUFCSbzaZatWpp586d+vjjj5U3b16rowHIoGyGYRgpuUHRokW1YMECNWzYUF5eXtqzZ49KlSqlr7/+Wt99951++eWX9MpqiYiICHl7eys8PJxdIQEAyAZ+/fVX+fj4qFatWg71LVu2qE6dOnJy4pB2ILtKbm+Q4k+J0NBQlShRQtKt469CQ0MlSfXq1dOmTZtSGRcAAMBaZ86c0XPPPadmzZqpZ8+eio+Pd1j+xBNP0GABSJYUf1KUKFFCp0+fliSVK1dOixcvliT99NNP8vHxSdNwAAAA6S0mJkbvvfeeypcvr+XLl0uS/v77by1ZssTaYAAyrRQ3Wd26ddP+/fslScOHD9ecOXPk4eGhgQMHaujQoWkeEAAAIL2sWrVKFStW1NixYxUTEyNJCggI0Ndff62XXnrJ4nQAMqsUH5P1X//73/+0e/dulSpVSpUrV06rXBkGx2QBAJD1nDx5Uv3799fPP/9s1pydndW/f3+NHTuWv/kAkpTc3uCBzpMlSY888ogeeeSRB70bAACAh2LBggXq1auXbt68adYaNmyooKAgVaxY0cJkALKKFDdZs2bNuufyfv36pToMAABAeqtWrZo5qUWhQoU0depUtW/fXjabzeJkALKKFO8uWLx4cfP/z507pwIFCsjF5VavZrPZdOrUqbRNaDF2FwQAIHOLi4uTq6urQ23YsGGy2WwaPXq0cuXKZVEyAJlNcnuDBzomK3fu3Nq/f785pXtWRJMFAEDmdOPGDb3//vtavXq1du7cKTc3N6sjAcjk0u08WQAAABmZYRhatGiRypUrpw8//FAHDhzQjBkzrI4FIBt54IkvAAAAMopDhw6pb9++2rBhg1lzc3NTQkKChakAZDcpbrIOHDhg/r9hGDp69Khu3Lhh1rLiNO4AACBji4iI0LvvvqtZs2aZk1pIUosWLTRz5kyVKlXKwnQAspsUH5Pl5OQkm82mO292+7rNZstyvxRxTBYAABmXYRj65ptvNHToUF2+fNmsFy9eXDNnzlSrVq2YNRBAmkm382SdPn36gYIBAACklTNnzqh79+6Ki4uTJHl4eGj48OEaNmyYcuTIYXE6ANlVipssTjwMAAAyiuLFi2vQoEH68MMP1aZNG82YMcPhdDMAYIVUzS749ddf64knnlDBggX1v//9T5I0Y8YMrVixIk3DAQAA3Ga32/Xtt98qJibGoT5q1CitXr1aK1asoMECkCGkuMn6+OOPNWjQILVo0UJhYWHmMVg+Pj5MjwoAANLF7t279cQTT6hTp06aNGmSw7JcuXKpWbNmFiUDgMRS3GTNnj1bn376qUaOHClnZ2ezXqNGDf39999pGg4AAGRvoaGheuONN/T4449r27ZtkqQJEyYoJCTE4mQAcHcpbrJOnz6tatWqJaq7u7srMjIyTUIBAIDsLSEhQfPmzVOZMmU0d+5cc1bjcuXK6aeffpK/v7/FCQHg7lLcZBUvXlz79u1LVF+zZo3Kly+fFpkAAEA2tmPHDtWuXVu9e/fWP//8I+nWLoGTJ0/W/v371bhxY4sTAsC9pXh2wUGDBqlPnz6KiYmRYRjasWOHvvvuO02YMEGfffZZemQEAADZRL9+/RQUFORwPs6OHTtq0qRJKlSokIXJACD5Utxkvfbaa8qRI4dGjRqlqKgodezYUQULFtTMmTP18ssvp0dGAACQTeTNm9dssB599FEFBQWpQYMGFqcCgJSxGXf+VJRCUVFRunHjRpbeLzq5Z3UGAAApZxiGbDabeT06Olp169ZV165d9eabb8rV1dXCdADgKLm9QYpHsu6UM2dO5cyZU9Ktc1e8//77t+7UxUVvv/32g9w1AADIwq5cuaJhw4apUKFC+uCDD8x6jhw5tHv3bjk5pepUngCQIaTqmKykJCQkKCgoSNOmTZOLywP1bgAAIIuKj4/XnDlzNGbMGEVERMjV1VVdu3ZVmTJlzHVosABkdinuhvbu3Ztk3W63S5L69+//YIkAAECWtHHjRgUGBurgwYNmzdPTU8HBwQ5NFgBkdilusjZs2JBkPSYmRp6eng8cCAAAZC0XL17UkCFD9N133znUe/TooQkTJsjPz8+iZACQPtJsv747D1oFAACIjY3VzJkz9d577+nGjRtmvUaNGpozZ45q1qxpYToASD8cPAUAANLFF198oWHDhpnXfX19NWHCBPXo0UPOzs4WJgOA9JXiJmvlypVJ1uPi4h44zL2Ehoaqb9+++umnn+Tk5KR27dpp5syZypUr113XHzt2rH777TedPXtWfn5+atu2rcaNGydvb+90zQoAAKTu3btrxowZCg4OVu/evfX+++8rb968VscCgHSX4iarbdu2d12WnrsMdurUSZcuXdLatWsVFxenbt26qVevXvr222+TXP/ixYu6ePGipkyZogoVKuh///ufXn/9dV28eFFLlixJt5wAAGRHN2/e1ObNm9W4cWOz5ubmpvnz58vNzU3Vq1e3MB0APFwPdDLih+XIkSOqUKGCdu7cqRo1akiS1qxZoxYtWuj8+fMqWLBgsu7nhx9+0CuvvKLIyMhkTzPPyYgBALi3NWvWqF+/fjp16pT27t2rSpUqWR0JANJFcnuDTHEiiq1bt8rHx8dssCSpcePGcnJy0vbt25N9P7dfjHs1WDdv3lRERITDBQAAJHbmzBm1bdtWzZs31/Hjx5WQkKABAwZYHQsALJcpmqzLly/L39/foebi4iJfX19dvnw5Wfdx7do1jRs3Tr169brnehMmTJC3t7d5KVKkSKpzAwCQFUVHR+u9995T+fLltWLFCrNer149TZs2zcJkAJAxWNpkDR8+XDab7Z6Xo0ePPvDjREREqGXLlqpQoYLeeeede647YsQIhYeHm5dz58498OMDAJAVGIahlStXqmLFiho7dqxiYmIkSQEBAfr666+1adMmValSxeKUAGA9S6dwHzx4sLp27XrPdUqUKKGAgACFhIQ41OPj4xUaGqqAgIB73v769etq1qyZcufOrWXLlsnV1fWe67u7u8vd3T1Z+QEAyC7++ecfde7cWb/88otZc3Z2Vv/+/TV27FiOWwaAO1jaZPn5+SXrLO916tRRWFiYdu/ebc5O9Pvvv8tut6tWrVp3vV1ERISaNm0qd3d3rVy5Uh4eHmmWHQCA7MTb29th746nnnpKs2fPVsWKFS1MBQAZU4pnFzxw4MA9l1euXPmBAt1N8+bNdeXKFc2dO9ecwr1GjRrmFO4XLlxQo0aNtGDBAtWsWVMRERFq0qSJoqKitGzZMnl6epr35efnl+yTIDK7IAAAt2zatEkdO3bU1KlT1b59+3Q9dQsAZETJ7Q1SPJJVtWpV2Ww23e7Nbn/AGoYhm82mhISEVEa+t2+++UaBgYFq1KiReTLiWbNmmcvj4uJ07NgxRUVFSZL27NljzjxYqlQph/s6ffq0ihUrli45AQDI7I4dO6YBAwbo/fffdzi/1ZNPPqmTJ0+yWz0A3EeKR7KcnJy0Y8cO+fn5yTAMPfroo/rll1/0yCOPSJL536yCkSwAQHZx48YNvf/++5o2bZri4uJUu3ZtbdmyRU5OmWIyYgBId+k2kiVJRYsWNadUt9lsypkzZ5ZrrgAAyC4Mw9DixYs1ePBgXbhwwaxfvHhR586d4288AKRQin+a8vf3V3BwsKRbH76RkZFq3ry51qxZk+bhAABA+jp06JAaNWqkl19+2Wyw3NzcNGrUKB05coQGCwBSIcVNVrNmzfTyyy/r9ddf19NPP63GjRvryy+/1CuvvHLfc1ABAICMISIiQoMHD1bVqlW1YcMGs96iRQsdOnRI48aNU86cOS1MCACZV4qPyYqMjNT48eO1f/9+FS9eXGPGjJG/v79OnTqlF154QXv27EmvrJbgmCwAQFbUunVrrVq1yrxevHhxzZw5U61bt7YwFQBkbMntDVLcZN1LTExMljsXFU0WACAr2rFjh2rVqiUPDw+NGDFCQ4cOVY4cOayOBQAZWrpOfHE3Wa3BAgAgKwgLC1NISIjKlClj1mrWrKmPP/5YTZs2VfHixS1MBwBZT6qarF27dmnx4sU6e/asYmNjHZb9+OOPaRIMAAA8GLvdrq+++kpvvfWWChcurJ07d8rZ2dlc/vrrr1uYDgCyrhRPfPH999+rbt26OnLkiJYtW6a4uDgdOnRIv//+u7y9vdMjIwAASKE9e/boiSeeUPfu3XX16lXt3btXn3zyidWxACBbSHGT9cEHH2j69On66aef5ObmppkzZ+ro0aNq3769ihYtmh4ZAQBAMoWGhuqNN95QjRo1tG3bNrP+wgsvqFWrVhYmA4DsI8VN1smTJ9WyZUtJt86jERkZKZvNpoEDB2revHlpHhAAANxfQkKC5s2bpzJlymju3Lm6Pa9VuXLltHbtWv3www/8GAoAD0mKm6w8efLo+vXrkqRChQrp4MGDkm4dVBsVFZW26QAAwH0dOHBAtWvXVu/evfXPP/9IknLlyqXJkydr//79aty4scUJASB7SfHEF08++aTWrl2rSpUq6cUXX1T//v31+++/a+3atWrUqFF6ZAQAAPdgGIbDeSo7dOigyZMnq1ChQhamAoDsK8XnyQoNDVVMTIwKFiwou92uSZMm6a+//lLp0qU1atQo5cmTJ72yWoLzZAEAMoO+ffvqjz/+UFBQkBo0aGB1HADIkiw5GXFWRJMFAMhI/vrrL82ePVsLFiyQq6urWY+MjJSbm5tDDQCQttLtZMRnz56953IOqgUAIO1duXJFb731lr766itJUo0aNTR48GBzuaenp1XRAAD/keImq1ixYrLZbJJkzlxks9lkGIZsNpsSEhLSNiEAANlYfHy85syZozFjxigiIsKsr1y5UoMGDTL/JgMAMo4UN1l+fn5yc3NTjx491Lp1a7m4pPguAABAMmzcuFGBgYHmTL6S5OPjo/Hjx6t37940WACQQaV4CvcLFy5o2rRp2rJli5599lktXrxYXl5eqlKliqpUqZIeGQEAyFYuXryojh07qmHDhg4NVo8ePRQcHKw333xTzs7OFiYEANxLipssFxcXvfjii1q7dq02bdqkhIQEPfbYY/r888/TIx8AANnK9evXValSJX333XdmrUaNGtq+fbs+++wz+fn5WZgOAJAcKW6ybouOjtbGjRu1ceNG5c2bV8WKFUvDWAAAZE+5c+dWjx49JEm+vr765JNPtG3bNtWsWdPiZACA5ErxAVX79u3TvHnztGTJEjVs2FDjxo3jTPIAAKTSuXPn5OfnJw8PD7M2evRoSdJbb72lvHnzWhUNAJBKKT5PlpOTkwoXLqxXX31V+fPnT7S8X79+aRYuI+A8WQCA9HDz5k1NnTpV48eP19tvv62RI0daHQkAcB/pdjLiO6dwT3RnNptOnTqVsqQZHE0WACCtrV69Wv369dOJEyckSTly5NDRo0c51yQAZHDpdjLiM2fOPEguAACyrdOnT2vgwIFasWKFWXNyclLPnj35IQ8AspBUT3wRGxurY8eOKT4+Pi3zAACQ5URHR+vdd99VhQoVHBqs+vXra+/evZo5c6Z8fHysCwgASFMpbrKioqLUo0cP5cyZUxUrVtTZs2clSX379tXEiRPTPCAAAJnZzz//rIoVK+qdd95RTEyMJCkgIEALFy7Uxo0bVblyZYsTAgDSWoqbrBEjRmj//v36448/HGZCaty4sRYtWpSm4QAAyOy2b9+u06dPS7p1rsnBgwfr2LFj6tSp012PcQYAZG4pPiZr+fLlWrRokWrXru3wx6FixYo6efJkmoYDACCzGz58uBYsWKCSJUtq9uzZqlChgtWRAADpLMVN1tWrV+Xv75+oHhkZyS9yAIBsyzAMLVu2TOfOnVP//v3Nes6cOfXXX3+pQIEC/J0EgGwixbsL1qhRQz///LN5/fYfjM8++0x16tRJu2QAAGQSx44dU9OmTdWuXTsNGzbMnJr9toIFC9JgAUA2kuKRrA8++EDNmzfX4cOHFR8fr5kzZ+rw4cP666+/tHHjxvTICABAhnTjxg29//77mjZtmuLi4iTdmn134cKFeuedd6wNBwCwTIpHsurVq6d9+/YpPj5elSpV0m+//SZ/f39t3bpV1atXT4+MAABkKIZhaNGiRSpXrpw+/PBDs8EqWrSofvzxR40dO9bihAAAK9kMwzCsDpGRJfeszgCA7OHQoUPq27evNmzYYNbc3Nw0bNgwjRgxQjlz5rQwHQAgPSW3N0jxSFaDBg20YMECRUdHP1BAAAAym/Xr16tq1aoODVbLli116NAhjRs3jgYLACApFU1WtWrVNGTIEAUEBKhnz57atm1beuQCACDDqVevnooXLy5JKlGihH766SetWrVKpUqVsjgZACAjSXGTNWPGDF28eFHz589XSEiInnzySVWoUEFTpkzRlStX0iMjAACWCAkJcbju7u6uoKAgvfvuuzp06JBatWplUTIAQEb2wMdkhYSEaN68eRo/frwSEhLUokUL9evXT08//XRaZbQUx2QBQPYTFhamMWPGaN68edqzZw8nEAYASErHY7LutGPHDo0dO1ZTp06Vv7+/RowYoXz58qlVq1YaMmTIg9w1AAAPnd1u1/z581WmTBnNnj1bN2/eVN++fcUcUQCAlEjxebJCQkL09ddfa/78+Tp+/Lhat26t7777Tk2bNjVPtNi1a1c1a9ZMU6ZMSfPAAACkh927dyswMNDhWOOcOXOqcePGstvtcnZ2tjAdACAzSXGTVbhwYZUsWVLdu3dX165d5efnl2idypUr6/HHH0+TgAAApKd//vlHo0aN0ieffOIwYvXiiy9qypQpKlq0qIXpAACZUYqbrPXr16t+/fr3XMfLy8thelsAADKahIQEff755xoxYoRCQ0PNerly5TR79mw1btzYwnQAgMwsxU3W7QYrJCREx44dkySVLVtW/v7+aZsMAIB0ZLfbNWvWLLPBypUrl8aOHat+/frJzc3N4nQAgMwsxRNfXL9+Xa+++qoKFSqkBg0aqEGDBipUqJBeeeUVhYeHp0dGAADSnKurq4KCgiRJHTt21LFjxzRkyBAaLADAA0txk/Xaa69p+/btWrVqlcLCwhQWFqZVq1Zp165d6t27d3pkBADggcTHx2vOnDnat2+fQ71hw4Y6dOiQvvnmGxUsWNCacACALCfF58ny9PTUr7/+qnr16jnUN2/erGbNmikyMjJNA1qN82QBQOa2ZcsW9enTR/v371fdunX1559/mrPhAgCQEul2nqy8efPK29s7Ud3b21t58uRJ6d0BAJAuLl++rC5duqhevXrav3+/JOmvv/7Sli1bLE4GAMjqUtxkjRo1SoMGDdLly5fN2uXLlzV06FCNHj06TcMBAJBScXFxmjFjhsqWLasFCxaY9apVq2rLli2J9sQAACCtpXh3wWrVqunEiRO6efOmee6Qs2fPyt3dXaVLl3ZYd8+ePWmX1CLsLggAmccff/yhvn376uDBg2bNx8dH48ePV+/evTmhMADggSS3N0jxFO5t27Z9kFwAAKSLd955R++++6553WazqUePHvrggw/k5+dnYTIAQHaT4pGs7IaRLADIHLZu3aq6detKkmrUqKE5c+aoZs2aFqcCAGQl6TaSBQBARnDjxg3lypXLvF6nTh0NGjRI5cqVU48ePeTklOLDjgEASBMpbrJ8fX3vuTw0NDTVYQAAuJ+zZ89q8ODBOn36tLZv3+5wnNXUqVMtTAYAwC0pbrIMw5DdbtfAgQNVvHjx9MgEAEAiN2/e1NSpUzV+/HhFRUVJkj7//HP16tXL4mQAADhKcZN18uRJvfPOO5o6dapef/11jRo1KsnzZgEAkFZWr16tfv366cSJE2bNz8+Pvz8AgAwpxTus+/r6atasWdq9e7dOnDihUqVKafbs2UpISEiPfACAbOz06dNq27atWrRoYTZYTk5O6tevn4KDg/XSSy9ZnBAAgMRSfVRwmTJltGzZMi1dulQLFixQhQoVtHz58jSMBgDIrqKjo/Xuu++qQoUKWrFihVmvX7++9u7dq5kzZ8rHx8e6gAAA3EOKp3B//vnnE9XsdrvWr1+vqKioLDeixRTuAPDw7du3T4899phu/4kKCAjQlClT1LFjR9lsNovTAQCyq3Sbwv1u+7+/8MILKb0rAACSVLVqVb3++uv69NNP1b9/f40ZM4YfugAAmQYnI74PRrIAIH1FRUXpk08+UWBgoFxdXc16aGioLl++rAoVKliYDgCA/5Pc3iBVx2TFxcWZ0+fGxcVpz549un79euqSAgCyJcMw9OOPP6p8+fIaNGiQPvroI4flvr6+NFgAgEwpxU3WmjVr5OPjo/z58+u3335TjRo1VKNGDRUuXFhbtmxJj4wAgCzm2LFjatq0qdq1a6ezZ89Kkt5//31FR0dbnAwAgAeX4iZr1KhR6tevn6ZNm6aOHTvqiSeeUFhYmNq3b69Ro0alR0YAQBZx48YNDR8+XJUqVdLatWvNepMmTfTnn38qR44cFqYDACBtpPiYrJw5c+rw4cMqVqyY3N3dtXPnTlWuXFmHDh1S/fr1FRoaml5ZLcExWQDw4AzD0OLFizV48GBduHDBrBctWlTTp0/Xc889x6yBAIAML91mF3RzczOnaS9durTy5Mkj6VbzFRcXl8q4AICsym63q3nz5vrtt9/Mmpubm4YNG6YRI0YoZ86cFqYDACDtpXh3wbJly+rQoUOSpIMHD6pIkSKSpMOHD6t06dJpmw4AkOk5OTnp0UcfNa+3bNlShw4d0rhx42iwAABZUop3FwwPD5ebm1ui/eb37dun6Oho1alTJ00DWo3dBQEgZQzDUEJCglxc/m9niYiICLVo0UJvvfWWWrdubWE6AABSL7m9AefJug+aLABIvv379yswMFCtWrXSW2+9ZXUcAADSVLqeJ2vjxo1q3bq1SpUqpVKlSqlNmzbavHlzqsMCADK3sLAw9e3bV4899pj+/PNPvffeezp37pzVsQAAsESKm6yFCxeqcePGypkzp/r166d+/fopR44catSokb799tv0yAgAyKDsdru++OILlSlTRkFBQbLb7ZKkQoUKKSQkxOJ0AABYI8W7C5YvX169evXSwIEDHerTpk3Tp59+qiNHjqRpQKuxuyAAJG337t0KDAzUtm3bzFrOnDk1evRoDRw4UO7u7hamAwAg7aXb7oKnTp1K8qDlNm3a6PTp0ym9OwBAJvPPP//o9ddf1+OPP+7QYL344os6evSohg8fToMFAMjWUtxkFSlSROvXr09UX7dunTmdOwDci91u6FxolI5ejtC50CjZ7cy/k5kEBQXpk08+0e0dIcqVK6e1a9dq8eLF/B0AAECpOBnx4MGD1a9fP+3bt09169aVJG3ZskVffvmlZs6cmeYBAWQtJ0Ku69eDV3Ty6g3FxCfIw8VZJf1yqemj+VXKP7fV8ZAMQ4YM0eeff65///1XY8eOVb9+/eTm5mZ1LAAAMoxUTeG+bNkyTZ061Tz+qnz58ho6dKieffbZNA9oNY7JAtLOiZDrmr/ljEIjY1XA20M53VwUFRuvS+Ex8vV0U7cnitFoZTBXr17V1q1b1aZNG4f61q1bVbRoURUqVMiiZAAAPHycJyuN0GQBacNuN/TxHyd18GK4Svvnks1mM5cZhqHjITdUqZC3Xm9QUk5OtnvcEx6G+Ph4zZ07V6NHj1Z0dLQOHz6sEiVKWB0LAABLpet5sqwQGhqqTp06ycvLSz4+PurRo4du3LiRrNsahqHmzZvLZrNp+fLl6RsUQJIuhEXr5NUbKuDt4dBgSZLNZlMBbw+dCLmhC2HRFiXEbX/++adq1Kihvn37KiwsTDdv3tTIkSOtjgUAQKaR4mOy8uTJk+gL0p1CQ0MfKNDddOrUSZcuXdLatWsVFxenbt26qVevXsk6N9eMGTPumRlA+ouMjVdMfIJyuuVIcnkON2ddiYhRZGz8Q06G2y5fvqxhw4bp66+/dqh37dpVEydOtCgVAACZT4qbrBkzZki6NTr0xhtv6L333pO/v39a53Jw5MgRrVmzRjt37lSNGjUkSbNnz1aLFi00ZcoUFSxY8K633bdvn6ZOnapdu3apQIEC6ZoTwN15urnIw8VZUbHxyu3hmmh5dGyC3F2c5emW4o8lPKC4uDjNmTNHY8eOVUREhFmvVq2agoKCzEmOAABA8qT420yXLl3M/+/bt6/atWuX7vvpb926VT4+PmaDJUmNGzeWk5OTtm/frueeey7J20VFRaljx46aM2eOAgICkvVYN2/e1M2bN83rd37hAJB6hXxyqKRfLh28GK5c7i6Jjsm6FB6jSoW8Vcgn6ZEupI9Tp07p2Wef1cGDB81anjx5NH78ePXq1UvOzs4WpgMAIHPKFMdkXb58OdFomYuLi3x9fXX58uW73m7gwIGqW7duimY9nDBhgry9vc0L53wB0oaTk01NH80vX083HQ+5oesxcYq323U9Jk7HQ27I19NNTSrmZ9KLh6xgwYKKjr51HJzNZlPPnj0VHBysN954gwYLAIBUeuAm60GOdRo+fLhsNts9L0ePHk3Vfa9cuVK///67uXtjco0YMULh4eHm5dy5c6l6fACJlfLPrW5PFNOjBb0VFhWnM9ciFRYVp0qFvJm+/SH574SyHh4emjlzph5//HFt27ZN8+bNU758+SxKBwBA1pDi3QWff/558/9jYmL0+uuvy9PT06z9+OOPyb6vwYMHq2vXrvdcp0SJEgoICFBISIhDPT4+XqGhoXfdDfD333/XyZMn5ePj41Bv166d6tevrz/++CPJ27m7u8vd3T25TwFACpXyz60SDXPpQli0ImPj5enmokI+ORjBegjWrVunwYMHa9GiRSpXrpxZb9mypZo3by4np0yxcwMAABleipssb29v8/9feeWVB3pwPz8/+fn53Xe9OnXqKCwsTLt371b16tUl3Wqi7Ha7atWqleRthg8frtdee82hVqlSJU2fPl2tW7d+oNwAHoyTk01FfHNaHSPbOHv2rAYNGqSlS5dKunU87W+//eawJwINFgAAaSfFTdb8+fPTI8c9lS9fXs2aNVPPnj01d+5cxcXFKTAwUC+//LI5s+CFCxfUqFEjLViwQDVr1lRAQECSo1xFixZV8eLFH/ZTAICH7ubNm5o6darGjx+vqKgos37jxg2Fh4cnGukHAABpI8U/XX700UeKiYlJjyz39M0336hcuXJq1KiRWrRooXr16mnevHnm8ri4OB07dszhiwQAZFerV6/Wo48+qpEjR5qfi/7+/po/f762bNlCgwUAQDqyGf89Cvo+nJ2ddenSpXQ/N1ZGERERIW9vb4WHh8vLy8vqOABwT6dPn9bAgQO1YsUKs+bk5KTAwEC9++67NFcAADyA5PYGKd5dMIU9GQDgITEMQy+88IL27Nlj1urXr6+goCBVrlzZwmQAAGQvHOkMAFmEzWbTpEmTJEkBAQFauHChNm7cSIMFAMBDluKRLEn69ddfHWYZvFObNm0eKBAAIHmOHz8uu92usmXLmrVGjRrpq6++Utu2bdnFGQAAi6T4mKx7TfNrs9mUkJDwwKEyEo7JApDRREZG6oMPPtCUKVNUq1Ytbdy48YFODA8AAJInub1BincXtNvtd71ktQYLADISwzC0dOlSlS9fXh988IFiY2O1efNmLV682OpoAADgDqnaXRAA8HAdPXpUffv21bp168yaq6urBg8erJYtW1qYDAAA/FeqJr7YuHGjWrdurVKlSqlUqVJq06aNNm/enNbZACDbu379uoYNG6ZKlSo5NFhNmjTR33//rQkTJihXrlwWJgQAAP+V4iZr4cKFaty4sXLmzKl+/fqpX79+ypEjhxo1aqRvv/02PTICQLa0Zs0alStXTpMnT1Z8fLwkqWjRovrxxx+1Zs0ahwkvAABAxpHiiS/Kly+vXr16aeDAgQ71adOm6dNPP9WRI0fSNKDVmPgCgFW2bNmievXqSZLc3d01bNgwDR8+XDlz5rQ4GQAA2VNye4MUN1nu7u46dOiQSpUq5VA/ceKEHn30UcXExKQucQZFkwXASp07d1ZoaKhmzpypkiVLWh0HAIBsLd1mFyxSpIjWr1+fqL5u3ToVKVIkpXcHANmeYRj6+uuv9eyzz8putzss+/TTT7Vq1SoaLAAAMpEUzy44ePBg9evXT/v27VPdunUl3dql5csvv9TMmTPTPCAAZGX79+9Xnz59tGXLFknS/Pnz1aNHD3O5u7u7VdEAAEAqpbjJeuONNxQQEKCpU6ea52YpX768Fi1apGeffTbNAwJAVvTvv/9qzJgx+uijjxxGr7Zt2+bQZAEAgMwnxcdkZTcckwUgLdntdn355ZcaPny4rl69atZLly6t2bNnq2nTphamAwAA95Lc3iDVJyPetWuXOZNghQoVVL169dTeFZLBbjd0ISxakbHx8nRzUSGfHJKUqObkZLM4KbK7pLZVtstbdu3apcDAQG3fvt2s5cyZU6NHj9bAgQPZNRAAgCwixU3W+fPn1aFDB23ZskU+Pj6SpLCwMNWtW1fff/+9ChcunNYZs70TIdf168ErOnn1hmLiE+Th4iyfnK6SIYVFx5m1kn651PTR/Crln9vqyMimktpW2S5vOXfunGrXrq2EhASz1r59e02ZMoVJgwAAyGJSPLvga6+9pri4OB05ckShoaEKDQ3VkSNHZLfb9dprr6VHxmztRMh1zd9yRgcvhssnp6tK5MslydDaw1e09sgVSYZK5Msln5yuOngxXPO3nNGJkOtWx0Y2lNS2ynb5f4oUKWIea1W+fHmtW7dOixYtosECACALSvFI1saNG/XXX3+pbNmyZq1s2bKaPXu26tevn6bhsju73dCvB68oNDJWpf1zyWazyTAMXQ6/KTdnm2Sz6XLETRXOk1O5PVyVy91Fx0Nu6LdDV1QiXy520cJDk9S2Kilbb5d79uxR5cqV5eLyfx+z48ePV/ny5dWnTx+5urpamA4AAKSnVJ0nKy4uLlE9ISFBBQsWTJNQuOVCWLROXr2hAt4e5pfW6zHxCo2KVe4crsrt4aLQyFhdj4mXJNlsNhXw9tCJkBu6EBZtZXRkM0ltq7dlt+3y6tWr6tGjh6pXr665c+c6LMuXL58GDBhAgwUAQBaX4iZr8uTJ6tu3r3bt2mXWdu3apf79+2vKlClpGi67i4yNV0x8gnK6/d8v4bEJdsXb7XJ1dpKrs5Pi7XbFJvzf9M853Jx1Mz5BkbHxVkRGNpXUtnqn7LBdxsfHKygoSGXKlNEXX3whSRo1apRCQkIsTgYAAB62FO8u2LVrV0VFRalWrVrmbjDx8fFycXFR9+7d1b17d3Pd0NDQtEuaDXm6ucjDxVlRsfHK7XHrl283Zye5ODkp7v83Vi5OTnJz/r9eOTo2Qe4uzvK8y5ddID0kta3eKatvl1u2bFGfPn20f/9+s+bl5aX33ntPvr6+FiYDAABWSPE3nhkzZqRDDCSlkE8OlfTLpYMXw5XL3UU2m025PVzkm9NNVyKiJZtN+b08lNvj1j+jYRi6FB6jSoW8zSnegYchqW31tqy8XV6+fFnDhg3T119/7VDv0qWLPvzwQ+XPn9+iZAAAwEopbrK6dOmSHjmQBCcnm5o+ml8Xw6N1POTW8S453JwV4O2uc/9GSTIU4OWuBMNQ9M14XQqPka+nm5pUzJ9tJhdAxnC3bTU6NiHLbpezZ8/WyJEjdf36/82aWK1aNQUFBalu3boWJgMAAFZLdpMVERGRrPXudeZjpFwp/9zq9kQx89xDVyJi5O7irGcq5DfPk3XmWqTcXZxVqZC3mlTkfESwxt221ay6XZ48edJssHx8fDR+/Hj17t1bzs7OFicDAABWsxmGYSRnRScnp0Szht3JMAzZbDaHE21mBREREfL29lZ4eLilDaTdbuhCWLQiY+Pl6eZi7nb131pWGilA5pTUtpoVt8uwsDCVL19erVu31vjx4+Xn52d1JAAAkM6S2xukaHfBJUuWcBC3RZycbCrimzNRPakaYKW7bauZVWxsrGbOnKkcOXIoMDDQrPv4+Ojo0aPy9va2MB0AAMiIUtRkPfHEE/L390+vLACQoaxbt059+/bV0aNHlStXLj333HMqVKiQuZwGCwAAJCXF58kCgKzu7NmzeuGFF/TMM8/o6NGjkqTIyEitXbvW4mQAACAzoMkCgP/v5s2b+uCDD1S+fHktXbrUrNeuXVu7du1S165drQsHAAAyjWTvLmiz2e458QUAZGarV69Wv379dOLECbPm5+enSZMmqXPnznJy4jcpAACQPMlusgzDUNeuXeXu7n7P9X788ccHDgUAD9NXX33lMErl5OSkwMBAvfvuu/Lx8bEsFwAAyJyS3WRxEmIAWVW7du00cuRIXbhwQfXr11dQUJAqV65sdSwAAJBJJfs8WdlVRjlPFoC0YRiGTp48qVKlSjnUV65cqevXr6tjx47sGg0AAJKU3N6AgwwAZBsnTpxQy5YtValSJZ05c8ZhWZs2bdSpUycaLAAA8MBosgBkeZGRkRo1apQqVqyo1atXKyYmRoMGDbI6FgAAyKJSdDJiAMhMDMPQjz/+qIEDB+rcuXNmvXDhwurQoYOFyQAAQFZGkwUgSzp69Kj69evncAJhV1dXDRkyRCNHjpSnp6eF6QAAQFZGkwUgS4mKitI777yj6dOnKz4+3qw3bdpUs2bNUpkyZSxMBwAAsgOOyQKQpdhsNv3www9mg/XII49o2bJlWr16NQ0WAAB4KGiyAGQpOXLk0IwZM+Tu7q7Ro0fr8OHDatu2LbMGAgCAh4YmC0CmFR4ersGDBys4ONih3qZNG508eVLvvfeecubMaVE6AACQXXFMFoBMxzAMLVy4UEOHDtWVK1d0+PBh/fLLL+Zolc1mU6FChSxOCQAAsitGsgBkKvv27VP9+vXVuXNnXblyRZL0xx9/6MSJExYnAwAAuIUmC0Cm8O+//yowMFDVq1fXli1bzPpzzz2nI0eOqHTp0hamAwAA+D/sLgggQ7Pb7fryyy81fPhwXb161ayXKVNGs2bNUtOmTS1MBwAAkBhNFoAMrUuXLlq4cKF53dPTU6NHj9aAAQPk7u5uYTIAAICksbsggAzt1VdfNf+/ffv2Onr0qN566y0aLAAAkGExkgUgw0hISNC///6rfPnymbUmTZpo6NChatasmZ5++mkL0wEAACSPzTAMw+oQGVlERIS8vb0VHh4uLy8vq+MAWda2bdsUGBioXLlyacOGDZw8GAAAZDjJ7Q3YXRCApa5evaoePXqoTp062r17tzZu3KhFixZZHQsAACDVaLIAWCI+Pl5BQUEqU6aMvvjiC7NeqVIlFS1a1MJkAAAAD4ZjsgA8dFu2bFGfPn20f/9+s+bl5aVx48bpzTfflIsLH00AACDzYiQLwENz+fJlde7cWfXq1XNosLp27arg4GD169ePBgsAAGR6fJsB8NAEBwfr66+/Nq9Xq1ZNQUFBqlu3roWpAAAA0hYjWQAemieffFIdO3ZUnjx59NFHH2nnzp00WAAAIMuhyQKQLs6fP68xY8bIbrc71KdPn67g4GC98cYbcnZ2tigdAABA+mF3QQBpKjY2VjNmzNB7772nyMhIlShRQl27djWX+/v7WxcOAADgIWAkC0CaWbt2rSpXrqy33npLkZGRkqTJkycnGs0CAADIymiyADyws2fPql27dmrSpImOHTsmSXJyctKbb76pzZs3y8mJjxoAAJB9sLsggFSLiYnR1KlTNX78eEVHR5v1OnXqaM6cOapWrZqF6QAAAKxBkwUgVSIjI1WtWjUdP37crPn7+2vSpEl69dVXGb0CAADZFt+CAKSKp6ennnzySUmSs7Oz+vfvr+DgYHXp0oUGCwAAZGuMZAFIlujoaLm5uTlMuz5hwgSFhIRo/PjxqlSpkoXpAAAAMg5+bgZwT4ZhaMWKFapQoYLmzZvnsMzPz08rV66kwQIAALgDTRaAuzp+/Lhatmyptm3b6syZMxo5cqSuXbtmdSwAAIAMjSYLQCKRkZEaOXKkHn30Ua1evdqsV6tWzTz/FQAAAJLGMVkATIZhaOnSpRo0aJDOnTtn1gsXLqxp06bphRdekM1mszAhAABAxkeTBUCSdOTIEfXr10/r1q0za66urhoyZIjefvtt5cqVy8J0AAAAmQdNFgBJ0scff+zQYDVt2lSzZs1SmTJlLEwFAACQ+XBMFgBJ0rvvvqt8+fLpkUce0bJly7R69WoaLAAAgFRgJAvIhg4ePKhjx46pXbt2Zi1Pnjxas2aNypcvr5w5c1qYDgAAIHNjJAvIRsLDwzVo0CBVrVpV3bp106VLlxyWV69enQYLAADgAdFkAdmAYRj6+uuvVbZsWU2fPl0JCQm6fv26Jk+ebHU0AACALIfdBYEsbt++fQoMDNSWLVvMmoeHh95++20NHTrUwmQAAABZE00WkEX9+++/Gj16tD7++GPZ7Xaz/txzz2natGkqVqyYdeEAAACysEyzu2BoaKg6deokLy8v+fj4qEePHrpx48Z9b7d161Y9/fTT8vT0lJeXl5588klFR0c/hMSAdXbs2KGyZctqzpw5ZoNVunRprVmzRj/++CMNFgAAQDrKNE1Wp06ddOjQIa1du1arVq3Spk2b1KtXr3veZuvWrWrWrJmaNGmiHTt2aOfOnQoMDJSTU6Z52kCqlC9fXi4utwaqc+bMqQkTJujvv/9W06ZNLU4GAACQ9dkMwzCsDnE/R44cUYUKFbRz507VqFFDkrRmzRq1aNFC58+fV8GCBZO8Xe3atfXMM89o3LhxqX7siIgIeXt7Kzw8XF5eXqm+HyA9xcfHm03Vbd9++61WrFihKVOmqEiRIhYlAwAAyDqS2xtkiiGdrVu3ysfHx2ywJKlx48ZycnLS9u3bk7xNSEiItm/fLn9/f9WtW1f58+dXgwYN9Oeff97zsW7evKmIiAiHC5BRJSQkaO7cuSpRooTOnj3rsKxjx45atGgRDRYAAMBDlimarMuXL8vf39+h5uLiIl9fX12+fDnJ25w6dUqS9M4776hnz55as2aNHnvsMTVq1EjHjx+/62NNmDBB3t7e5oUvqMiotm3bplq1aumNN97QuXPnNHjwYKsjAQAAQBY3WcOHD5fNZrvn5ejRo6m679sH+/fu3VvdunVTtWrVNH36dJUtW1ZffPHFXW83YsQIhYeHm5dz586l6vGB9BISEqLu3burTp062r17t1n38PBQXFychckAAAAgWTyF++DBg9W1a9d7rlOiRAkFBAQoJCTEoR4fH6/Q0FAFBAQkebsCBQpIkipUqOBQL1++fKLdqu7k7u4ud3f3ZKQHHq74+HjNnTtXo0ePVlhYmFmvXLmygoKCVL9+fevCAQAAwGRpk+Xn5yc/P7/7rlenTh2FhYVp9+7dql69uiTp999/l91uV61atZK8TbFixVSwYEEdO3bMoR4cHKzmzZs/eHjgIfrzzz/Vp08fHThwwKx5e3tr3LhxeuONNxJNegEAAADrZIpjssqXL69mzZqpZ8+e2rFjh7Zs2aLAwEC9/PLL5syCFy5cULly5bRjxw5Jks1m09ChQzVr1iwtWbJEJ06c0OjRo3X06FH16NHDyqcDpEhcXJxeeeUVhwara9euOnbsmPr27UuDBQAAkMFkmm9n33zzjQIDA9WoUSM5OTmpXbt2mjVrlrk8Li5Ox44dU1RUlFkbMGCAYmJiNHDgQIWGhqpKlSpau3atSpYsacVTAFLF1dVV06ZNU7t27VStWjXNmTNHderUsToWAAAA7iJTnCfLSpwnCw/bH3/8oaJFi6pEiRJmzTAMrVixQq1bt5azs7OF6QAAALKvLHWeLCA7uHDhgjp06KCnnnpK/fr1c1hms9nUtm1bGiwAAIBMgCYLsFhsbKwmTZqksmXL6vvvv5ck/fzzz/r9998tTgYAAIDUyDTHZAFZ0dq1a9W3b1+HWTDz5cuniRMnqmHDhtYFAwAAQKoxkgVY4OzZs3rhhRfUpEkTs8FycnJSnz59dOzYMfXo0UNOTrw9AQAAMiNGsoCH7NNPP1X//v0VHR1t1urWraugoCBVq1bNwmQAAABIC/xUDjxkhQsXNhssf39/ffnll9q8eTMNFgAAQBbBSBaQzgzDkM1mM683b95czz//vIoUKaJ33nlHPj4+1oUDAABAmqPJAtJJdHS0Jk6cqN27d+unn35yaLR++OEHjrkCAADIomiygDRmGIZWrlypAQMG6MyZM5KkJUuW6MUXXzTXocECAADIumiygDR0/Phx9e/fX6tXrzZrLi4uOn36tIWpAAAA8DDRZAFpIDIyUh988IGmTJmi2NhYs96oUSPNnj1b5cuXtzAdAAAAHiaaLOABGIahpUuXatCgQTp37pxZL1y4sKZNm6YXXnjB4VgsAAAAZH00WcAD2Lt3r8OxVq6urhoyZIhGjhwpT09PC5MBAADAKhx9DzyAxx57TC+99JIkqVmzZjp48KA++OADGiwAAIBsjCYLSCbDMLR69WoZhuFQnzp1qpYtW6ZffvlFZcqUsSgdAAAAMgqaLCAZDh48qKeeekotWrTQwoULHZYVKlRIbdu25dgrAAAASKLJAu4pPDxcAwYMUNWqVbVx40ZJ0tChQxUZGWlxMgAAAGRUTHwBJMFut+vrr7/WsGHDFBISYtZLlCihWbNmccwVAAAA7oomC/iPffv2qU+fPvrrr7/MWo4cOfT2229ryJAh8vDwsDAdAAAAMjqaLOD/s9vt6tevnz7++GPZ7Xaz/txzz2n69Ol65JFHLEwHAACAzIImC/j/nJycFBkZaTZYZcqU0axZs9S0aVOLkwEAACAzYeIL4A4TJ05UoUKFNHHiRP399980WAAAAEgxRrKQLV27dk0jR47U448/rtdee82s58+fXydPnpS7u7uF6QAAAJCZMZKFbCUhIUFz585V2bJlNW/ePL311lv6559/HNahwQIAAMCDoMlCtrF161bVrFlTb7zxhkJDQyVJcXFx2rt3r8XJAAAAkJXQZCHLCwkJUffu3VW3bl3t2bPHrL/yyis6duyYGjdubGE6AAAAZDUck4UsKz4+Xh9//LFGjx6t8PBws165cmUFBQWpfv36FqYDAABAVsVIFrKsCRMmqF+/fmaD5e3trVmzZmn37t00WAAAAEg3NFnIsvr06aO8efNKkrp166Zjx46pb9++cnFhABcAAADph2+byBLi4uJ08OBBVatWzaz5+vrqs88+U/78+VWnTh0L0wEAACA7YSQLmd6GDRtUrVo1NWzYUFeuXHFY1rZtWxosAAAAPFQ0Wci0zp8/r5dffllPP/20Dh06pIiICL311ltWxwIAAEA2R5OFTCc2NlYffvihypUrp0WLFpn1mjVrqk+fPhYmAwAAADgmC5nMb7/9pr59+yo4ONis5c2bVxMnTlT37t3l5MTvBgAAALAWTRYyhStXrujNN9/Ujz/+aNacnJz0+uuva9y4cfL19bUwHQAAAPB/aLKQKeTIkUNbtmwxr9etW1dBQUEOswkCAAAAGQH7ViFT8PLy0uTJk5U/f3599dVX2rx5Mw0WAAAAMiSaLGQ4p06d0ksvvaTz58871F955RUFBwerc+fOHHsFAACADIvdBZFhREdHa+LEifrwww918+ZN2Ww2ff/99+Zym80mLy8vCxMCAAAA90eTBcsZhqEVK1Zo4MCBOnPmjFnftGmT/vnnH+XNm9e6cAAAAEAKsc8VLHX8+HG1aNFCzz33nNlgubi4aMiQITp69CgNFgAAADIdRrJgicjISI0fP15Tp05VbGysWX/66ac1e/ZsVahQwcJ0AAAAQOrRZMESTZo00V9//WVeL1y4sKZNm6YXXnhBNpvNwmQAAADAg2F3QVhiwIABkiRXV1eNGDFCR48e1YsvvkiDBQAAgEyPkSyku+vXrysyMlIBAQFm7YUXXtCoUaP06quvqkyZMhamAwAAANIWI1lIN4Zh6LvvvlO5cuX0+uuvOyyz2WwaN24cDRYAAACyHJospIuDBw/qqaeeUseOHXXx4kWtWLFCq1evtjoWAAAAkO5ospCmwsPDNWDAAFWtWlUbN240623atFHZsmUtTAYAAAA8HByThTRht9u1cOFCDRs2TFeuXDHrJUuW1KxZs9SiRQsL0wEAAAAPD00WHtiBAwf0xhtvOEzJniNHDo0cOVKDBw+Wh4eHhekAAACAh4smCw/s7NmzDg3W888/r2nTpumRRx6xMBUAAABgDZosPLBWrVqpZcuWOn78uGbPnq0mTZpYHQkAAACwDE0WUmTXrl36/vvvNXnyZIcTB8+fP1/e3t5yc3OzMB0AAABgPWYXRLL8888/6t27t2rWrKmpU6dq2bJlDsv9/PxosAAAAADRZOE+EhISNHfuXJUpU0bz5s2TYRiSpM8++8ziZAAAAEDGRJOFu9q2bZtq1qypN954Q6GhoZKk3Llza+rUqVqxYoXF6QAAAICMiWOykEhISIiGDx+u+fPnO9RfeeUVTZo0SQUKFLAoGQAAAJDx0WTBwaVLl1S+fHmFh4ebtcqVKysoKEj169e3MBkAAACQObC7IBwUKFBAzzzzjCTJ29tbs2bN0u7du2mwAAAAgGRiJCubCwkJkZ+fn8N07FOnTlWePHk0btw45c+f38J0AAAAQObDSFY2FRcXp2nTpqlUqVL69ttvHZYVLVpU8+bNo8ECAAAAUoEmKxvasGGDqlatqsGDB+v69esaMmSIIiIirI4FAAAAZAk0WdnI+fPn9fLLL+vpp5/W4cOHJUk2m01t2rSR3W63OB0AAACQNXBMVjYQGxur6dOna9y4cYqMjDTrNWvWVFBQkB5//HEL0wEAAABZC01WFrd27Vr17dtXx44dM2v58uXTxIkT1a1bNzk5MZgJAAAApCW+YWdxX3/9tdlgOTk5qU+fPjp27Jh69OhBgwUAAACkA75lZ3EffvihcufOrbp162r37t0KCgqSr6+v1bEAAACALIvdBbOQn3/+WTExMWrXrp1ZK1CggHbs2KGyZcs6nAsLAAAAQPpgJCsLOHXqlFq3bq1WrVrp9ddf17///uuwvFy5cjRYAAAAwENCk5WJRUVFaezYsapQoYJWrVolSbp27Zq+/PJLa4MBAAAA2Ri7C2ZChmFoxYoVGjBggP73v/+Z9YIFC2rKlCl6+eWXLUwHAAAAZG+MZGUywcHBatGihZ577jmzwXJxcdHQoUN19OhRdejQgV0DAQAAAAsxkpWJLF++XO3bt1dcXJxZa9y4sWbPnq1y5cpZmAwAAADAbYxkZSL16tVTrly5JElFihTRDz/8oN9++40GCwAAAMhAGMnKRPLly6dJkybp9OnTevvtt+Xp6Wl1JAAAAAD/QZOVybz22mtWRwAAAABwD5lmd8HQ0FB16tRJXl5e8vHxUY8ePXTjxo173uby5ct69dVXFRAQIE9PTz322GNaunTpQ0oMAAAAIDvKNE1Wp06ddOjQIa1du1arVq3Spk2b1KtXr3vepnPnzjp27JhWrlypv//+W88//7zat2+vvXv3PqTUAAAAALIbm2EYhtUh7ufIkSOqUKGCdu7cqRo1akiS1qxZoxYtWuj8+fMqWLBgkrfLlSuXPv74Y7366qtmLW/evPrwww/vutvdzZs3dfPmTfN6RESEihQpovDwcHl5eaXhswIAAACQmURERMjb2/u+vUGmGMnaunWrfHx8zAZLujV1uZOTk7Zv337X29WtW1eLFi1SaGio7Ha7vv/+e8XExKhhw4Z3vc2ECRPk7e1tXooUKZKWTwUAAABAFpcpmqzLly/L39/foebi4iJfX19dvnz5rrdbvHix4uLilDdvXrm7u6t3795atmyZSpUqddfbjBgxQuHh4ebl3LlzafY8AAAAAGR9ljZZw4cPl81mu+fl6NGjqb7/0aNHKywsTOvWrdOuXbs0aNAgtW/fXn///fddb+Pu7i4vLy+HCwAAAAAkl6VTuA8ePFhdu3a95zolSpRQQECAQkJCHOrx8fEKDQ1VQEBAkrc7efKkgoKCdPDgQVWsWFGSVKVKFW3evFlz5szR3Llz0+Q5AAAAAMCdLG2y/Pz85Ofnd9/16tSpo7CwMO3evVvVq1eXJP3++++y2+2qVatWkreJioqSJDk5OQ7WOTs7y263P2ByAAAAAEhapjgmq3z58mrWrJl69uypHTt2aMuWLQoMDNTLL79szix44cIFlStXTjt27JAklStXTqVKlVLv3r21Y8cOnTx5UlOnTtXatWvVtm1bC58NAAAAgKwsUzRZkvTNN9+oXLlyatSokVq0aKF69epp3rx55vK4uDgdO3bMHMFydXXVL7/8Ij8/P7Vu3VqVK1fWggUL9NVXX6lFixZWPQ0AAAAAWVymOE+WlZI7Fz4AAACArC1LnScLAAAAADILmiwAAAAASEM0WQAAAACQhmiyAAAAACAN0WQBAAAAQBqiyQIAAACANESTBQAAAABpyMXqABnd7dOIRUREWJwEAAAAgJVu9wT3O9UwTdZ9XL9+XZJUpEgRi5MAAAAAyAiuX78ub2/vuy63Gfdrw7I5u92uixcvKnfu3LLZbOn2OBERESpSpIjOnTt3z7NHA0lh+8GDYhvCg2IbwoNiG8KDeFjbj2EYun79ugoWLCgnp7sfecVI1n04OTmpcOHCD+3xvLy8+GBBqrH94EGxDeFBsQ3hQbEN4UE8jO3nXiNYtzHxBQAAAACkIZosAAAAAEhDNFkZhLu7u8aOHSt3d3eroyATYvvBg2IbwoNiG8KDYhvCg8ho2w8TXwAAAABAGmIkCwAAAADSEE0WAAAAAKQhmiwAAAAASEM0WQAAAACQhmiyLBIaGqpOnTrJy8tLPj4+6tGjh27cuHHP21y+fFmvvvqqAgIC5Onpqccee0xLly59SImR0aRmG5KkrVu36umnn5anp6e8vLz05JNPKjo6+iEkRkaT2m1IunXG++bNm8tms2n58uXpGxQZVkq3odDQUPXt21dly5ZVjhw5VLRoUfXr10/h4eEPMTWsNGfOHBUrVkweHh6qVauWduzYcc/1f/jhB5UrV04eHh6qVKmSfvnll4eUFBlRSrafTz/9VPXr11eePHmUJ08eNW7c+L7bW1qiybJIp06ddOjQIa1du1arVq3Spk2b1KtXr3vepnPnzjp27JhWrlypv//+W88//7zat2+vvXv3PqTUyEhSsw1t3bpVzZo1U5MmTbRjxw7t3LlTgYGBcnLioyA7Ss02dNuMGTNks9nSOSEyupRuQxcvXtTFixc1ZcoUHTx4UF9++aXWrFmjHj16PMTUsMqiRYs0aNAgjR07Vnv27FGVKlXUtGlThYSEJLn+X3/9pQ4dOqhHjx7au3ev2rZtq7Zt2+rgwYMPOTkygpRuP3/88Yc6dOigDRs2aOvWrSpSpIiaNGmiCxcuPJzABh66w4cPG5KMnTt3mrXVq1cbNpvNuHDhwl1v5+npaSxYsMCh5uvra3z66afplhUZU2q3oVq1ahmjRo16GBGRwaV2GzIMw9i7d69RqFAh49KlS4YkY9myZemcFhnRg2xDd1q8eLHh5uZmxMXFpUdMZCA1a9Y0+vTpY15PSEgwChYsaEyYMCHJ9du3b2+0bNnSoVarVi2jd+/e6ZoTGVNKt5//io+PN3Lnzm189dVX6RXRAT9fW2Dr1q3y8fFRjRo1zFrjxo3l5OSk7du33/V2devW1aJFixQaGiq73a7vv/9eMTExatiw4UNIjYwkNdtQSEiItm/fLn9/f9WtW1f58+dXgwYN9Oeffz6s2MhAUvs5FBUVpY4dO2rOnDkKCAh4GFGRQaV2G/qv8PBweXl5ycXFJT1iIoOIjY3V7t271bhxY7Pm5OSkxo0ba+vWrUneZuvWrQ7rS1LTpk3vuj6yrtRsP/8VFRWluLg4+fr6pldMBzRZFrh8+bL8/f0dai4uLvL19dXly5fvervFixcrLi5OefPmlbu7u3r37q1ly5apVKlS6R0ZGUxqtqFTp05Jkt555x317NlTa9as0WOPPaZGjRrp+PHj6Z4ZGUtqP4cGDhyounXr6tlnn03viMjgUrsN3enatWsaN25csndTReZ17do1JSQkKH/+/A71/Pnz33V7uXz5corWR9aVmu3nv9566y0VLFgwUeOeXmiy0tDw4cNls9nueTl69Giq73/06NEKCwvTunXrtGvXLg0aNEjt27fX33//nYbPAlZKz23IbrdLknr37q1u3bqpWrVqmj59usqWLasvvvgiLZ8GLJSe29DKlSv1+++/a8aMGWkbGhlKev8tuy0iIkItW7ZUhQoV9M477zx4cAC4i4kTJ+r777/XsmXL5OHh8VAek7H5NDR48GB17dr1nuuUKFFCAQEBiQ7Si4+PV2ho6F13vzl58qSCgoJ08OBBVaxYUZJUpUoVbd68WXPmzNHcuXPT5DnAWum5DRUoUECSVKFCBYd6+fLldfbs2dSHRoaSntvQ77//rpMnT8rHx8eh3q5dO9WvX19//PHHAyRHRpGe29Bt169fV7NmzZQ7d24tW7ZMrq6uDxobGVy+fPnk7OysK1euONSvXLly1+0lICAgResj60rN9nPblClTNHHiRK1bt06VK1dOz5gOaLLSkJ+fn/z8/O67Xp06dRQWFqbdu3erevXqkm59ebHb7apVq1aSt4mKipKkRLPAOTs7myMUyPzScxsqVqyYChYsqGPHjjnUg4OD1bx58wcPjwwhPbeh4cOH67XXXnOoVapUSdOnT1fr1q0fPDwyhPTchqRbI1hNmzaVu7u7Vq5c+dB+VYa13NzcVL16da1fv15t27aVdGsPi/Xr1yswMDDJ29SpU0fr16/XgAEDzNratWtVp06dh5AYGUlqth9JmjRpksaPH69ff/3V4fjRh+KhTK+BRJo1a2ZUq1bN2L59u/Hnn38apUuXNjp06GAuP3/+vFG2bFlj+/bthmEYRmxsrFGqVCmjfv36xvbt240TJ04YU6ZMMWw2m/Hzzz9b9TRgoZRuQ4ZhGNOnTze8vLyMH374wTh+/LgxatQow8PDwzhx4oQVTwEWS8029F9idsFsLaXbUHh4uFGrVi2jUqVKxokTJ4xLly6Zl/j4eKueBh6S77//3nB3dze+/PJL4/Dhw0avXr0MHx8f4/Lly4ZhGMarr75qDB8+3Fx/y5YthouLizFlyhTjyJEjxtixYw1XV1fj77//tuopwEIp3X4mTpxouLm5GUuWLHH4rLl+/fpDyUuTZZF//vnH6NChg5ErVy7Dy8vL6Natm8M/+unTpw1JxoYNG8xacHCw8fzzzxv+/v5Gzpw5jcqVKyea0h3ZR2q2IcMwjAkTJhiFCxc2cubMadSpU8fYvHnzQ06OjCK129CdaLKyt5RuQxs2bDAkJXk5ffq0NU8CD9Xs2bONokWLGm5ubkbNmjWNbdu2mcsaNGhgdOnSxWH9xYsXG2XKlDHc3NyMihUr8sNyNpeS7eeRRx5J8rNm7NixDyWrzTAM4+GOnQEAAABA1sXsggAAAACQhmiyAAAAACAN0WQBAAAAQBqiyQIAAACANESTBQAAAABpiCYLAAAAANIQTRYA4P+1c78xVZZ/HMffJ391OuQRMAVbZwqM42awIIoxGxtqU/4MRK30ASZHc8WWqUyELWEjc/KgUmxGYRQMrMEqD9OwprAwOehyK1xZK2HqqXUGZlYgIX9/D5z3rxMcfsc8m80+r42N+7ru+7q/3/Pss+u+bxEREQkghSwREREREZEAUsgSEREREREJIIUsERERERGRAFLIEhERv61Zs4asrKxbXYaIiMg/mkKWiIhM6syZM6xatQqbzUZdXR0fffQRVquV9PR0jh49eqvLExER+cdRyBIREZ+cTidxcXFcvXqV/fv3s3LlStLS0vj444+ZNWsWS5Ys4fXXXzfOP3XqFIsXL2bGjBkEBweTkpLCF1984bWmyWSisbERgLGxMdasWcODDz7I5cuXqampwWQyTfgXEREBQGlpKfHx8cZ6g4ODREdHYzKZ+PXXXwFwOBwsW7bM530BfvjhB1auXElISAjTp08nOzub8+fPe13zzjvvEBMTg9ls5r777mPDhg1+9QHQ1dVFdnY24eHhTJ06lcTERJqbm73W93g8rFixgnvvvder1+t9/NX58+cxmUx0dHR4jUdERFBeXm4cj46OUlZWRmRkJBaLhbi4OD744ANjvrW1dcL7/PU3KioqYu7cuQQFBREVFUVJSQlDQ0MT1iYiIv+jkCUiIj5t3ryZBQsW0NjYyIIFC7BYLJjNZpKTk6mursbhcFBYWMiVK1cA6O3tJTc3l7a2Nk6ePIndbicjI4Pe3t4J19+4cSPt7e0cOXKE0NBQVq1ahcfjwePxUF5ejs1mM45PnTo14Rp79+6lu7v7hvoaGhoiNTUVq9XK8ePHcblcTJ06lbS0NAYHBwF44403eO6553jmmWf46quvOHjwINHR0X71AdDX10dGRgYtLS18+eWXpKWlkZWVhdvtNq7bsmUL33//PZ988gkej4cPP/zwhvrwpaysjNraWt58803OnDlDfn4+q1ev5tixYze0jtVqpaamhm+++YY9e/bw1ltvsXv37oDUKCJyO/vPrS5ARET+mbq7u3G73eTn5/s8Z+nSpdTU1PD111+TlJTEokWLvOb37dtHSEgIx44dIzMz02uuuLgYp9NJW1sbs2bNAsBisWCxWAAIDg5mypQpxtxEfvnlF3bs2EFRURElJSXGuMViwePx+LyuoaGB0dFRqqqqMJlMAFRXVxMSEkJraytLlixhx44dbNmyhU2bNhnXJSYmjltroj4A4uLiiIuLM45feuklnE4nBw8eNHbEOjo6WL16tbHu9OnTfdbsr6tXr7Jz506am5uZP38+AFFRUbS1tVFZWUlKSorfaxUXFxv/R0REUFBQQH19PYWFhTddp4jI7UwhS0REJnTXXXcB0N/f7/Oc63N33303cC2YFRcX09raSk9PDyMjI/T393vt3sC13aeWlhYWLVpkPAb4d2zfvp2FCxeSnJzsNR4bG8t7773HuXPniIyMHHfd6dOn6ezsxGq1eo0PDAzQ1dVFT08PP/30E4899tik95+sj76+PkpLS2lqasLj8TA8PMwff/zh9VtERkZy+PBh8vLyAhKwADo7O+nv72fx4sVe44ODgzz00ENeYzabbdK1GhoaeO211+jq6qKvr4/h4WGmTZsWkDpFRG5nClkiIjKh0NBQkpKSqK2tZdOmTdxzzz1e88PDw1RWVmKz2YiNjQUgNzeXS5cusWfPHubMmYPZbGb+/PnGI3jXff755xw+fBiHw0FlZSXPPvvsDdd39uxZqqqq6Ojo4Mcff/SaW7duHU6nk6ioqHF1w7UA9PDDD/Puu++Om5s5cyZ33OHf0/ST9VFQUMDRo0d55ZVXiI6OxmKx8MQTT3j9Frt37yYnJ4cZM2YQFBTEyMiIv+371NfXB0BTUxP333+/15zZbPY6Pn78uFfQtNvtxv8nTpwgJyeHF198kdTUVIKDg6mvr+fVV1+96RpFRG53ClkiIuJTVVUVmZmZzJs3j6effppz587R39/Pzp07qa2tpaenh8bGRqZMmQKAy+WioqKCjIwM4NrHJX7++edx65aXl5Oenk5FRQVr164lPT2d2bNn31BtRUVFrF+/nujo6HEhy2Kx0NzcTHd3t/E+2J8DREJCAg0NDYSFhfncmYmIiKClpYWFCxf6rGGyPlwuFw6Hg+XLlwPXws9fP6wxd+5cHA4Hly5d4tChQ8bjgzfjgQcewGw243a7/++jgZGRkYSEhEw4197ezpw5c9i2bZsxduHChZuqTUTk30IhS0REfIqNjeW7776jurqatrY2vv32W4aGhjhx4gTr1q1j7dq1zJw50zjfbrdTV1fHI488wu+//87WrVuNd6z+7PqjcY8//jjvv/8+69ev58iRI37X1dnZidvtprOzc9LzwsPDCQ8PHzeek5PDyy+/THZ2Ntu3b8dms3HhwgUOHDhAYWEhNpuN0tJS8vLyCAsLIz09nd7eXlwuF88//7xffdjtdg4cOEBWVhYmk4mSkhJGR0e96jh58iQvvPACn376KTExMVy8eNGv/gcHBxkYGDCOx8bGGB4eZmRkBKvVSkFBAfn5+YyOjpKcnMxvv/2Gy+Vi2rRp5Obm+nUPu92O2+2mvr6exMREmpqacDqdfl0rIvJvp68LiojIpMxmM3l5eezfv5+MjAxSUlI4dOgQhYWFXgEL4O233+by5cskJCTw1FNPsXHjRsLCwiZdf+/evZw+fZp9+/b5XdOVK1fYtm3b336PKSgoiM8++4zZs2ezYsUKY6duYGDA2NnKzc2lvLyciooKYmJiyMzM5OzZs373sWvXLkJDQ3n00UfJysoiNTWVhIQE4/yLFy/y5JNPsmvXLq9xfyQlJRkfCbFYLLjdbrZu3UpdXR1w7SMbJSUllJWVMW/ePNLS0mhqaprw/TRfli5dSn5+Phs2bCA+Pp729navj4uIiIhvprGxsbFbXYSIiIjcnM2bNxMfH4/D4bjVpYiI/OtpJ0tEROQ2cOeddxrvxomIyK2lnSwREREREZEA0k6WiIiIiIhIAClkiYiIiIiIBJBCloiIiIiISAApZImIiIiIiASQQpaIiIiIiEgAKWSJiIiIiIgEkEKWiIiIiIhIAClkiYiIiIiIBNB/AcOKt1iqC0oUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIjCAYAAABswtioAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNHUlEQVR4nOzdeZxOdf/H8fc1+5jVYGYMY2eYyFqWUJaMSCllSbK1G7KG3ISSPXuk7uK+015UlEKkImtoxFiyhZnBmNXs1/n90c+5u7I0oxlnltfz8bgej87nfK9zfc6FeM/5nu+xGYZhCAAAAABw0zlZ3QAAAAAAlFQEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAIBlbDabJk6caHUblrvrrrt01113mdvHjx+XzWbTsmXLLOvpr/7aY0EpjOcOAAWJQAYAxcRrr70mm82mpk2b3vAxzpw5o4kTJ2rPnj3511ght2nTJtlsNvPl6uqqatWq6bHHHtNvv/1mdXt5smXLFk2cOFEJCQmW9VClShWH7zMwMFCtWrXSypUrLesJAAozF6sbAADkjxUrVqhKlSravn27jhw5oho1auT5GGfOnNGkSZNUpUoVNWjQIP+bLMSGDBmi2267TVlZWdq9e7eWLl2qNWvW6JdfflFISMhN7aVy5cpKS0uTq6trnt63ZcsWTZo0Sf369ZO/v3/BNJcLDRo00IgRIyT98Xvq9ddf14MPPqjFixfr6aefvu57b/TcAaCo4goZABQDx44d05YtW/Tqq6+qXLlyWrFihdUtFTmtWrXSo48+qv79+2vBggWaNWuW4uPjtXz58mu+JzU1tUB6sdls8vDwkLOzc4Ecv6BVqFBBjz76qB599FE9//zz+vHHH+Xl5aU5c+Zc8z3Z2dnKzMws8ucOAHlFIAOAYmDFihUqXbq0OnfurIceeuiagSwhIUHDhg1TlSpV5O7urooVK+qxxx7T+fPntWnTJt12222SpP79+5tTzi7fy1OlShX169fvimP+9d6izMxMTZgwQY0bN5afn5+8vLzUqlUrbdy4Mc/nFRsbKxcXF02aNOmKfdHR0bLZbFq4cKEkKSsrS5MmTVLNmjXl4eGhMmXKqGXLllq3bl2eP1eS2rZtK+mPsCtJEydOlM1m06+//qpHHnlEpUuXVsuWLc3x77zzjho3bixPT08FBASoZ8+eOnXq1BXHXbp0qapXry5PT0/dfvvt+v77768Yc637qA4ePKju3burXLly8vT0VFhYmMaNG2f2N2rUKElS1apVzV+/48ePF0iPeREcHKw6deqY3+Xl85s1a5bmzp2r6tWry93dXb/++usNnftlp0+f1oABAxQUFCR3d3fdcssteuutt/5R7wBQ0JiyCADFwIoVK/Tggw/Kzc1NvXr10uLFi7Vjxw4zYElSSkqKWrVqpQMHDmjAgAFq1KiRzp8/r88//1y///676tSpo8mTJ2vChAl68skn1apVK0lSixYt8tRLUlKS3nzzTfXq1UtPPPGEkpOT9e9//1sRERHavn17nqZCBgUF6c4779SHH36oF1980WHfBx98IGdnZz388MOS/ggkU6dO1eOPP67bb79dSUlJ2rlzp3bv3q277747T+cgSUePHpUklSlTxqH+8MMPq2bNmnrllVdkGIYkacqUKRo/fry6d++uxx9/XOfOndOCBQvUunVr/fzzz+b0wX//+9966qmn1KJFCw0dOlS//fab7rvvPgUEBCg0NPS6/ezbt0+tWrWSq6urnnzySVWpUkVHjx7VF198oSlTpujBBx/UoUOH9N5772nOnDkqW7asJKlcuXI3rcdrycrK0qlTp674Lt9++22lp6frySeflLu7uwICAmS32/N87tIf4b1Zs2ay2WyKjIxUuXLl9NVXX2ngwIFKSkrS0KFDb6h3AChwBgCgSNu5c6chyVi3bp1hGIZht9uNihUrGs8995zDuAkTJhiSjE8//fSKY9jtdsMwDGPHjh2GJOPtt9++YkzlypWNvn37XlG/8847jTvvvNPczs7ONjIyMhzGXLx40QgKCjIGDBjgUJdkvPjii9c9v9dff92QZPzyyy8O9fDwcKNt27bmdv369Y3OnTtf91hXs3HjRkOS8dZbbxnnzp0zzpw5Y6xZs8aoUqWKYbPZjB07dhiGYRgvvviiIcno1auXw/uPHz9uODs7G1OmTHGo//LLL4aLi4tZz8zMNAIDA40GDRo4fD9Lly41JDl8h8eOHbvi16F169aGj4+PceLECYfPufxrZxiGMXPmTEOScezYsQLv8VoqV65sdOjQwTh37pxx7tw5Y+/evUbPnj0NScbgwYMdzs/X19eIi4tzeP+NnvvAgQON8uXLG+fPn3cY07NnT8PPz8+4dOnS3/YOAFZgyiIAFHErVqxQUFCQ2rRpI+mP+4969Oih999/Xzk5Oea4Tz75RPXr19cDDzxwxTFsNlu+9ePs7Cw3NzdJkt1uV3x8vLKzs9WkSRPt3r07z8d78MEH5eLiog8++MCsRUVF6ddff1WPHj3Mmr+/v/bv36/Dhw/fUN8DBgxQuXLlFBISos6dOys1NVXLly9XkyZNHMb9dVGKTz/9VHa7Xd27d9f58+fNV3BwsGrWrGlO1dy5c6fi4uL09NNPm9+PJPXr109+fn7X7e3cuXPavHmzBgwYoEqVKjnsy82v3c3o8c+++eYblStXTuXKlVP9+vX10UcfqU+fPpo+fbrDuG7duplX8K4lN+duGIY++eQTdenSRYZhOJxjRESEEhMTb+j3HgDcDExZBIAiLCcnR++//77atGlj3p8jSU2bNtXs2bO1YcMGdejQQdIfU/C6det2U/pavny5Zs+erYMHDyorK8usV61aNc/HKlu2rNq1a6cPP/xQL730kqQ/piu6uLjowQcfNMdNnjxZ999/v2rVqqW6deuqY8eO6tOnj2699dZcfc6ECRPUqlUrOTs7q2zZsqpTp45cXK78a/Kv53D48GEZhqGaNWte9biXVws8ceKEJF0x7vIy+9dzefn9unXr5upc/upm9PhnTZs21csvvyybzaZSpUqpTp06V131MTe/H3Jz7ufOnVNCQoKWLl2qpUuXXnVMXFxc7poHgJuMQAYARdi3336rs2fP6v3339f7779/xf4VK1aYgeyfutaVmJycHIcV8d555x3169dPXbt21ahRoxQYGChnZ2dNnTrVvC8rr3r27Kn+/ftrz549atCggT788EO1a9fOvE9Kklq3bq2jR4/qs88+0zfffKM333xTc+bM0ZIlS/T444//7WfUq1dP7du3/9txnp6eDtt2u102m01fffXVVVcG9Pb2zsUZFqyb3WPZsmVv6Lu8UZfvO3v00UfVt2/fq47JbTAHgJuNQAYARdiKFSsUGBioRYsWXbHv008/1cqVK7VkyRJ5enqqevXqioqKuu7xrjf9rXTp0ld94PCJEyccrp58/PHHqlatmj799FOH4/11UY686Nq1q5566ilz2uKhQ4c0duzYK8YFBASof//+6t+/v1JSUtS6dWtNnDgxV4HsRlWvXl2GYahq1aqqVavWNcdVrlxZ0h9Xqy6v4Cj9seDFsWPHVL9+/Wu+9/L3e6O/fjejx4KSm3MvV66cfHx8lJOTk6sgCACFCfeQAUARlZaWpk8//VT33nuvHnrooStekZGRSk5O1ueffy7pj/t19u7dq5UrV15xLOP/Vwv08vKSpKsGr+rVq+unn35SZmamWVu9evUVy6ZfvgJz+ZiStG3bNm3duvWGz9Xf318RERH68MMP9f7778vNzU1du3Z1GHPhwgWHbW9vb9WoUUMZGRk3/Lm58eCDD8rZ2VmTJk1yOGfpj+/gcl9NmjRRuXLltGTJEofvcNmyZVf9vv+sXLlyat26td566y2dPHnyis+47Fq/fjejx4KSm3N3dnZWt27d9Mknn1w1uJ07d+6m9AoAN4IrZABQRH3++edKTk7Wfffdd9X9zZo1Mx8S3aNHD40aNUoff/yxHn74YQ0YMECNGzdWfHy8Pv/8cy1ZskT169dX9erV5e/vryVLlsjHx0deXl5q2rSpqlatqscff1wff/yxOnbsqO7du+vo0aN65513VL16dYfPvffee/Xpp5/qgQceUOfOnXXs2DEtWbJE4eHhSklJueHz7dGjhx599FG99tprioiIuOKepPDwcN11111q3LixAgICtHPnTn388ceKjIy84c/MjerVq+vll1/W2LFjdfz4cXXt2lU+Pj46duyYVq5cqSeffFIjR46Uq6urXn75ZT311FNq27atevTooWPHjuntt9/O1f1Z8+fPV8uWLdWoUSM9+eSTqlq1qo4fP641a9Zoz549kqTGjRtLksaNG6eePXvK1dVVXbp0uWk9FpTcnPu0adO0ceNGNW3aVE888YTCw8MVHx+v3bt3a/369YqPj7esfwC4LiuWdgQA/HNdunQxPDw8jNTU1GuO6devn+Hq6mouBX7hwgUjMjLSqFChguHm5mZUrFjR6Nu3r8NS4Z999pkRHh5uuLi4XLH8+OzZs40KFSoY7u7uxh133GHs3LnzimXv7Xa78corrxiVK1c23N3djYYNGxqrV682+vbta1SuXNmhP+Vi2fvLkpKSDE9PT0OS8c4771yx/+WXXzZuv/12w9/f3/D09DRq165tTJkyxcjMzLzucS8ve//RRx9dd9zlZe/PnTt31f2ffPKJ0bJlS8PLy8vw8vIyateubQwaNMiIjo52GPfaa68ZVatWNdzd3Y0mTZoYmzdvvuI7vNrS74ZhGFFRUcYDDzxg+Pv7Gx4eHkZYWJgxfvx4hzEvvfSSUaFCBcPJyemKJfDzs8drqVy58t8+fuDy+c2cOfOa+27k3GNjY41BgwYZoaGhhqurqxEcHGy0a9fOWLp06d/2DQBWsRnGX+YuAAAAAABuCu4hAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiPBg6n9jtdp05c0Y+Pj6y2WxWtwMAAADAIoZhKDk5WSEhIXJyuv41MAJZPjlz5oxCQ0OtbgMAAABAIXHq1ClVrFjxumMIZPnEx8dH0h9fuq+vr8XdAAAAALBKUlKSQkNDzYxwPQSyfHJ5mqKvry+BDAAAAECubmViUQ8AAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAALAIgQwAAAAALEIgAwAAAACLEMgAAAAAwCIEMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBDIAAAAAsAiBDAAAAAAsQiADAAAAAIsQyAAAAADAIgQyAAAAAEXamTNnlJqaanUbN4RABgAAAKBIyszM1MyZMxUWFqZXXnnF6nZuCIEMAAAAQJGzfv161a9fX88//7xSUlI0a9YsHT582Oq28oxABgAAAKDIOHXqlB5++GHdfffdOnjwoCTJZrNpwIABCggIsLi7vHOxugEAAAAA+DsZGRmaPXu2pkyZokuXLpn1pk2batGiRWrcuLGF3d04AhkAAACAQu2bb75RZGSkw5TEcuXKafr06erbt6+cnIruxL+i2zkAAACAEmH37t1mGHNyctLgwYN16NAh9e/fv0iHMUmyGYZhWN1EcZCUlCQ/Pz8lJibK19fX6nYAAACAYiMjI0O33nqrAgMDtXDhQtWvX9/qlq4rL9mAKYsAAAAACo3Vq1frwIEDGjVqlFlzd3fXpk2bFBwcLJvNZmF3+Y9ABgAAAMByR48e1XPPPac1a9bI2dlZnTp10i233GLuL1++vIXdFZyiPeESAAAAQJF26dIljR8/XuHh4VqzZo0kKScnR8uXL7e4s5uDK2QAAAAAbjrDMLRy5UoNGzZMJ0+eNOsVKlTQ7Nmz1b17dwu7u3kIZAAAAABuqujoaA0ZMkTffPONWXN1ddWwYcM0fvx4eXt7W9jdzUUgAwAAAHDT/Pjjj2rTpo2ysrLM2t1336358+erdu3aFnZmDe4hAwAAAHDTNG3aVGFhYZKkSpUq6ZNPPtHXX39dIsOYxBUyAAAAAAUoLi5OgYGB5raLi4sWLVqkb775Ri+88IJKlSplYXfW4woZAAAAgHyXlJSkESNGqFKlStq9e7fDvtatW+vll18u8WFMIpABAAAAyEeGYWjFihWqXbu2Xn31VWVkZCgyMlJ2u93q1golpiwCAAAAyBf79u1TZGSkvv/+e7Pm4eGhiIgI5eTkyMmJ60F/RSADAAAA8I8kJCToxRdf1KJFi5STk2PW77//fs2ZM0dVq1a1sLvCjUAGAAAA4IbY7Xb95z//0ejRoxUXF2fWa9Soofnz5+uee+6xsLuigWuGAAAAAG6IYRhauHChGcY8PT01ZcoURUVFEcZyiUAGAAAA4IY4Oztr0aJFkqSHHnpIBw8e1AsvvCB3d3eLOys6mLIIAAAA4G/l5OTorbfe0q233qqmTZua9aZNm2r//v0KDw+3sLuii0AGAAAA4Lq2b9+uQYMGaefOnWrUqJG2b98uZ2dncz9h7MYxZREAAADAVZ07d05PPPGEmjVrpp07d0qSdu/erQ0bNljcWfFhaSDbvHmzunTpopCQENlsNq1ateqaY59++mnZbDbNnTvXoR4fH6/evXvL19dX/v7+GjhwoFJSUhzG7Nu3T61atZKHh4dCQ0M1Y8aMK47/0UcfqXbt2vLw8FC9evX05Zdf5scpAgAAAEVOTk6OFi1apFq1aunNN9+UYRiSpFtuuUUbN25Uhw4dLO6w+LA0kKWmpqp+/frmjYDXsnLlSv30008KCQm5Yl/v3r21f/9+rVu3TqtXr9bmzZv15JNPmvuTkpLUoUMHVa5cWbt27dLMmTM1ceJELV261ByzZcsW9erVSwMHDtTPP/+srl27qmvXroqKisq/kwUAAACKgC1btqhJkyaKjIxUQkKCJMnX11dz5szRzz//rLvuusvS/oobm3E57lrMZrNp5cqV6tq1q0P99OnTatq0qb7++mt17txZQ4cO1dChQyVJBw4cUHh4uHbs2KEmTZpIktauXatOnTrp999/V0hIiBYvXqxx48YpJiZGbm5ukqQxY8Zo1apVOnjwoCSpR48eSk1N1erVq83PbdasmRo0aKAlS5bkqv+kpCT5+fkpMTFRvr6+//DbAAAAAG6+GTNmaPTo0Q61Pn36aMaMGQoODraoq6InL9mgUN9DZrfb1adPH40aNUq33HLLFfu3bt0qf39/M4xJUvv27eXk5KRt27aZY1q3bm2GMUmKiIhQdHS0Ll68aI5p3769w7EjIiK0devWa/aWkZGhpKQkhxcAAABQlHXo0EFOTn9EhPr16+v777/Xf/7zH8JYASrUgWz69OlycXHRkCFDrro/JiZGgYGBDjUXFxcFBAQoJibGHBMUFOQw5vL23425vP9qpk6dKj8/P/MVGhqat5MDAAAALPbXtRcaNGigMWPGaOHChdq5c6datmxpUWclR6Fd9n7Xrl2aN2+edu/eLZvNZnU7Vxg7dqyGDx9ubiclJRHKAAAAUCScOXNGo0aN0r59+7R79265urqa+6ZMmWJhZyVPob1C9v333ysuLk6VKlWSi4uLXFxcdOLECY0YMUJVqlSRJAUHBysuLs7hfdnZ2YqPjzcvqwYHBys2NtZhzOXtvxtzvUuz7u7u8vX1dXgBAAAAhVlWVpZmzZqlsLAwvfvuu4qKitLChQutbqtEK7SBrE+fPtq3b5/27NljvkJCQjRq1Ch9/fXXkqTmzZsrISFBu3btMt/37bffym63m08Pb968uTZv3qysrCxzzLp16xQWFqbSpUubY/76LIV169apefPmBX2aAAAAwE2xYcMG1a9fX6NGjTKnKpYpU0ZlypSxuLOSzdIpiykpKTpy5Ii5fezYMe3Zs0cBAQGqVKnSFb85XF1dFRwcrLCwMElSnTp11LFjRz3xxBNasmSJsrKyFBkZqZ49e5pL5D/yyCOaNGmSBg4cqNGjRysqKkrz5s3TnDlzzOM+99xzuvPOOzV79mx17txZ77//vnbu3OmwND4AAABQFJ06dUojRozQRx99ZNZsNpueeuopvfzyywQyi1l6hWznzp1q2LChGjZsKEkaPny4GjZsqAkTJuT6GCtWrFDt2rXVrl07derUSS1btnQIUn5+fvrmm2907NgxNW7cWCNGjNCECRMcnlXWokULvfvuu1q6dKnq16+vjz/+WKtWrVLdunXz72QBAACAmygjI0NTp05V7dq1HcJYs2bNtHPnTi1evJgwVggUmueQFXU8hwwAAACFycGDB1WvXj1lZ2dLksqVK6fp06erb9++5tL2KBjF5jlkAAAAAG5M7dq19dxzz8nJyUmDBw/WoUOH1L9/f8JYIcOvBgAAAFDEpaWlac6cOcrIyHCoT5gwQbt379b8+fPl7+9vTXO4LgIZAAAAUIR98cUXuuWWWzR8+HDNnj3bYZ+vr6/q169vUWfIDQIZAAAAUAQdOXJE9957r+677z4dO3ZMkjR9+nQlJydb3BnygkAGAAAAFCGXLl3S+PHjdcstt2jNmjVmvU2bNtqyZYt8fHws7A55ZelzyAAAAADkjmEYWrlypYYNG6aTJ0+a9QoVKmj27Nnq3r27bDabhR3iRhDIAAAAgELOMAx17dpVn3/+uVlzdXXVsGHDNH78eHl7e1vYHf4JpiwCAAAAhZzNZtOtt95qbt99993at2+fpk+fThgr4ghkAAAAQCFjGIb5QOfLxo4dq1atWumTTz7R119/rdq1a1vUHfITgQwAAAAoRPbv36927dpp8uTJDvVSpUpp8+bNevDBB7lXrBghkAEAAACFQFJSkoYPH6769etr48aNmjFjho4ePWp1WyhgBDIAAADAQoZh6J133lFYWJjmzJmjnJwcSVJISIji4uIs7g4FjUAGAAAAWGTv3r1q3bq1+vTpo5iYGEmSh4eHJk2apP3796t58+YWd4iCxrL3AAAAwE2WkJCgCRMmaNGiRbLb7Wa9a9euevXVV1W1alULu8PNRCADAAAAbrI33nhDCxYsMLdr1KihBQsWqGPHjhZ2BSswZREAAAC4yYYMGaIaNWqoVKlSeuWVVxQVFUUYK6G4QgYAAAAUoPj4eH333Xd64IEHzJq7u7vee+89BQYGqlKlShZ2B6txhQwAAAAoADk5OVq6dKlq1aql7t2768CBAw77mzRpQhgDgQwAAADIb9u2bVOzZs301FNP6cKFC8rOztaYMWOsbguFEIEMAAAAyCfnzp3TwIED1axZM+3cudOsP/LII3rttdcs7AyFFfeQAQAAAP9Qdna2Xn/9df3rX/9SQkKCWa9bt64WLlyoO++807rmUKgRyAAAAIB/4NSpU+rSpYv27t1r1nx9fTV58mQ9++yzcnV1tbA7FHYEMgAAAOAfCA4OVlZWlrndt29fTZs2TcHBwRZ2haKCe8gAAACAPDAMw2Hb1dVVCxYsUIMGDfTDDz9o2bJlhDHkGoEMAAAAyKXvvvtOjRo10p49exzqbdu21a5du3THHXdY0xiKLAIZAAAA8DfOnDmjRx55RHfddZf27NmjyMjIK66UOTnxT2vkHb9rAAAAgGvIzMzUzJkzFRYWpvfee8+sp6en6/z58xZ2huKCQAYAAABcxfr161W/fn09//zzSklJkSQFBATo9ddf17Zt21SuXDmLO0RxQCADAAAA/uTkyZN6+OGHdffdd+vgwYOSJJvNpqefflqHDh3Sk08+KWdnZ4u7RHHBsvcAAADAn/Tu3Vs//PCDud2sWTMtWrRIjRo1srArFFdcIQMAAAD+ZPr06ZKkcuXK6a233tKPP/5IGEOB4QoZAAAASqzjx48rNTVVt9xyi1lr0aKF3nnnHXXu3Fn+/v7WNYcSgStkAAAAKHHS09M1efJk1alTR/369VNOTo7D/t69exPGcFMQyAAAAFCifPHFF7rlllv04osvKj09XTt37tTy5cutbgslFFMWAQAAUCIcOXJEQ4cO1Zo1a8yas7OznnvuOT300EMWdoaSjEAGAACAYu3SpUuaOnWqZsyYoczMTLPepk0bLViwwOH+MeBmI5ABAACg2Nq4caP69eunkydPmrUKFSpo9uzZ6t69u2w2m4XdAdxDBgAAgGLM19dXp06dkiS5urpq9OjROnjwoHr06EEYQ6HAFTIAAAAUW40bN9ZTTz2lo0ePasGCBQoLC7O6JcABgQwAAABFnmEY+vDDD7V8+XJ9/vnncnH53z9z582bJ1dXV66IoVBiyiIAAACKtP3796tdu3bq2bOnvvrqKy1evNhhv5ubG2EMhRaBDAAAAEVSUlKSRowYoQYNGmjjxo1m/aeffrKwKyBvCGQAAAAoUgzD0DvvvKOwsDC9+uqrys7OliRVrVpVn3/+uVasWGFxh0DucQ8ZAAAAioy9e/cqMjJSP/zwg1nz8PDQ2LFjNWrUKHl6elrYHZB3BDIAAAAUCXFxcWratKkyMjLMWteuXfXqq6+qatWqFnYG3DhLpyxu3rxZXbp0UUhIiGw2m1atWmXuy8rK0ujRo1WvXj15eXkpJCREjz32mM6cOeNwjPj4ePXu3Vu+vr7y9/fXwIEDlZKS4jBm3759atWqlTw8PBQaGqoZM2Zc0ctHH32k2rVry8PDQ/Xq1dOXX35ZIOcMAACAGxMYGKhnnnlGklSzZk199dVXWrlyJWEMRZqlgSw1NVX169fXokWLrth36dIl7d69W+PHj9fu3bv16aefKjo6Wvfdd5/DuN69e2v//v1at26dVq9erc2bN+vJJ5809yclJalDhw6qXLmydu3apZkzZ2rixIlaunSpOWbLli3q1auXBg4cqJ9//lldu3ZV165dFRUVVXAnDwAAgOvas2ePMjMzHWoTJ07UrFmz9Msvv6hjx44WdQbkH5thGIbVTUiSzWbTypUr1bVr12uO2bFjh26//XadOHFClSpV0oEDBxQeHq4dO3aoSZMmkqS1a9eqU6dO+v333xUSEqLFixdr3LhxiomJkZubmyRpzJgxWrVqlQ4ePChJ6tGjh1JTU7V69Wrzs5o1a6YGDRpoyZIlueo/KSlJfn5+SkxMlK+v7w1+CwAAAIiPj9e4ceP0+uuva9q0aXr++eetbgnIk7xkgyK1ymJiYqJsNpv8/f0lSVu3bpW/v78ZxiSpffv2cnJy0rZt28wxrVu3NsOYJEVERCg6OloXL140x7Rv397hsyIiIrR169Zr9pKRkaGkpCSHFwAAAG5cTk6Oli5dqlq1amnJkiUyDEOTJ0/W6dOnrW4NKDBFJpClp6dr9OjR6tWrl5kyY2JiFBgY6DDOxcVFAQEBiomJMccEBQU5jLm8/XdjLu+/mqlTp8rPz898hYaG/rMTBAAAKMG2b9+uZs2a6amnntKFCxckSd7e3po4caLKlStncXdAwSkSgSwrK0vdu3eXYRhXPHndKmPHjlViYqL5OnXqlNUtAQAAFDnnzp3T448/rqZNm2rnzp1m/ZFHHlF0dLRGjhzpMNMJKG4K/bL3l8PYiRMn9O233zrMwQwODlZcXJzD+OzsbMXHxys4ONgcExsb6zDm8vbfjbm8/2rc3d3l7u5+4ycGAABQwi1dulSjR49WQkKCWatbt64WLlyoO++807rGgJuoUF8huxzGDh8+rPXr16tMmTIO+5s3b66EhATt2rXLrH377bey2+1q2rSpOWbz5s3Kysoyx6xbt05hYWEqXbq0OWbDhg0Ox163bp2aN29eUKcGAABQ4h0/ftwMY76+vpo7d65+/vlnwhhKFEtXWUxJSdGRI0ckSQ0bNtSrr76qNm3aKCAgQOXLl9dDDz2k3bt3a/Xq1Q73eAUEBJiXru+55x7FxsZqyZIlysrKUv/+/dWkSRO9++67kv5YCCQsLEwdOnTQ6NGjFRUVpQEDBmjOnDnm8vhbtmzRnXfeqWnTpqlz5856//339corr2j37t2qW7durs6FVRYBAADyJjU1VXXq1FHbtm01bdq0685OAoqSvGQDSwPZpk2b1KZNmyvqffv21cSJE6/5kL+NGzfqrrvukvTHsqiRkZH64osv5OTkpG7dumn+/Pny9vY2x+/bt0+DBg3Sjh07VLZsWQ0ePFijR492OOZHH32kf/3rXzp+/Lhq1qypGTNmqFOnTrk+FwIZAADA1WVlZWnRokXKzs7WyJEjHfYlJibKz8/Pos6AglFkAllxQiADAAC40nfffafIyEhFRUXJw8NDv/766zV/6A4UF8X2OWQAAAAoGs6cOaNHHnlEd911l6KioiT98RzXtWvXWtwZULgQyAAAAJBvMjMzNXPmTIWFhem9994z602aNNFPP/2kZ555xsLugMKn0C97DwAAgKJh/fr1Gjx4sA4ePGjWypQpo6lTp2rAgAFydna2sDugcCKQAQAA4B/76KOP1L17d3PbZrPpqaee0ssvv3zFo4sA/A9TFgEAAPCPdenSRdWqVZMkNWvWTDt37tTixYsJY8Df4AoZAAAA8uzIkSOqUaOGue3h4aHXXntNZ86cUd++feXkxM/9gdzgTwoAAABy7dixY+ratavCw8MVHR3tsC8iIkL9+/cnjAF5wJ8WAAAA/K20tDRNmjRJ4eHh+uyzz5SVlaUhQ4aIR9oC/wxTFgEAAHBNhmHoiy++0NChQ3Xs2DGzHhwcrMcee8zCzoDigStkAAAAuKojR47o3nvv1f3332+GMRcXF40YMULR0dHq3bu3bDabxV0CRRtXyAAAAOAgPT1dL7/8smbOnKnMzEyz3rZtWy1YsEDh4eEWdgcUL1whAwAAgAMnJyd9/PHHZhirUKGCPvjgA61fv54wBuQzAhkAAAAcuLm5acGCBXJ1ddWYMWN08OBBde/enemJQAFgyiIAAEAJlpKSopdfflm9e/dWvXr1zPrdd9+t48ePKyQkxMLugOKPQAYAAFACGYahDz74QCNHjtTp06e1detWbdq0yeEqGGEMKHhMWQQAAChhoqKi1LZtW/Xq1UunT5+WJP3000+KioqyuDOg5CGQAQAAlBCJiYkaPny4GjRooE2bNpn1zp07a//+/Q5TFgHcHExZBAAAKOYMw9A777yjUaNGKTY21qxXq1ZN8+bN07333mthd0DJRiADAAAo5p5++mktXbrU3Pbw8NALL7ygUaNGycPDw8LOADBlEQAAoJjr06eP+d9du3bVgQMHNH78eMIYUAhwhQwAAKAYsdvtunDhgsqVK2fWWrZsqXHjxqlly5bq2LGjhd0B+CubYRiG1U0UB0lJSfLz81NiYqJ8fX2tbgcAAJRAu3btUmRkpAzD0JYtW+TkxGQowAp5yQb8KQUAACjiLly4oGeeeUa33XabfvrpJ23btk3Lli2zui0AucCURQAAgCIqJydH//73vzV27FjFx8eb9dq1a6tatWoWdgYgtwhkAAAARdC2bdsUGRmpnTt3mjVvb2+9+OKLGjJkiNzc3CzsDkBuEcgAAACKkHPnzmnMmDF66623HOqPPPKIZs6cqZCQEIs6A3AjCGQAAABFyPHjx/X222+b23Xr1tXChQt15513WtgVgBvFoh4AAABFyG233abHH39cvr6+mjt3rn7++WfCGFCEEcgAAAAKqZiYGP3rX/9STk6OQ33atGmKjo7Wc889JxcXJjwBRRl/ggEAAAqZrKwsLVq0SC+++KKSkpIUEhKiZ5991twfEBBgYXcA8hNXyAAAAAqRTZs2qVGjRho2bJiSkpIkSbNnz77iKhmA4oFABgAAUAicPn1avXr1Ups2bRQVFSVJstlsevzxx/XTTz/J2dnZ4g4BFASmLAIAAFgoMzNT8+bN0+TJk5WSkmLWmzRpokWLFun222+3sDsABY1ABgAAYJGMjAw1btxY+/fvN2tlypTR1KlTNXDgQDk5MZkJKO74Uw4AAGARd3d3tW3bVtIf0xOfeeYZHTp0SE888QRhDCghuEIGAABwk2RkZMjJyUmurq5mbfLkyTp+/LgmTpyoRo0aWdgdACvwoxcAAICb4KuvvlLdunU1f/58h7q/v78+//xzwhhQQhHIAAAACtCxY8fUtWtXderUSUeOHNHEiRN19uxZq9sCUEgwZREAAKAApKWlacaMGZo2bZrS09PNesOGDZWammphZwAKEwIZAABAPjIMQ1988YWGDh2qY8eOmfXg4GDNmjVLjzzyiGw2m4UdAihMmLIIAACQT44cOaJ7771X999/vxnGXFxcNGLECEVHR6t3796EMQAOuEIGAACQT9588019+eWX5nabNm20cOFChYeHW9gVgMLMZhiGYXUTxUFSUpL8/PyUmJgoX19fq9sBAAAWSE5OVu3atWWz2fTqq6/q4Ycf5ooYUALlJRtwhQwAAOAGREdHa8+ePerRo4dZ8/Hx0erVq1WzZk15e3tb2B2AooJ7yAAAAPIgJSVFY8aMUb169dS/f3+dOHHCYX/Dhg0JYwByzdJAtnnzZnXp0kUhISGy2WxatWqVw37DMDRhwgSVL19enp6eat++vQ4fPuwwJj4+Xr1795avr6/8/f01cOBApaSkOIzZt2+fWrVqJQ8PD4WGhmrGjBlX9PLRRx+pdu3a8vDwUL169RzmfwMAABiGoQ8++EC1a9fW9OnTlZWVpbS0NE2dOtXq1gAUYZYGstTUVNWvX1+LFi266v4ZM2Zo/vz5WrJkibZt2yYvLy9FREQ4PMujd+/e2r9/v9atW6fVq1dr8+bNevLJJ839SUlJ6tChgypXrqxdu3Zp5syZmjhxopYuXWqO2bJli3r16qWBAwfq559/VteuXdW1a1dFRUUV3MkDAIAiY//+/WrXrp169uyp06dPS5Lc3d01fvx4vfrqqxZ3B6AoKzSLethsNq1cuVJdu3aV9MdPoUJCQjRixAiNHDlSkpSYmKigoCAtW7ZMPXv21IEDBxQeHq4dO3aoSZMmkqS1a9eqU6dO+v333xUSEqLFixdr3LhxiomJkZubmyRpzJgxWrVqlQ4ePChJ6tGjh1JTU7V69Wqzn2bNmqlBgwZasmRJrvpnUQ8AAIqfpKQkTZw4UfPnz1dOTo5Z79y5s+bNm6fq1atb2B2Awiov2aDQ3kN27NgxxcTEqH379mbNz89PTZs21datWyVJW7dulb+/vxnGJKl9+/ZycnLStm3bzDGtW7c2w5gkRUREKDo6WhcvXjTH/PlzLo+5/DlXk5GRoaSkJIcXAAAoPvbs2aOwsDDNmTPHDGPVqlXTF198odWrVxPGAOSLQhvIYmJiJElBQUEO9aCgIHNfTEyMAgMDHfa7uLgoICDAYczVjvHnz7jWmMv7r2bq1Kny8/MzX6GhoXk9RQAAUIiFhYXJw8NDkuTh4aHJkydr//79uvfeey3uDEBxUmgDWWE3duxYJSYmmq9Tp05Z3RIAAPgHsrKyHLY9PT01Z84cde3aVQcOHND48ePNgAYA+aXQBrLg4GBJUmxsrEM9NjbW3BccHKy4uDiH/dnZ2YqPj3cYc7Vj/PkzrjXm8v6rcXd3l6+vr8MLAAAUPXa7XW+99ZaqVat2xWrOXbt21cqVK1WlShVrmgNQ7BXaQFa1alUFBwdrw4YNZi0pKUnbtm1T8+bNJUnNmzdXQkKCdu3aZY759ttvZbfb1bRpU3PM5s2bHX7qtW7dOoWFhal06dLmmD9/zuUxlz8HAAAUTzt37lSLFi00cOBA/f7773ruuedUSNY7A1BCWBrIUlJStGfPHu3Zs0fSHwt57NmzRydPnpTNZtPQoUP18ssv6/PPP9cvv/yixx57TCEhIeZKjHXq1FHHjh31xBNPaPv27frxxx8VGRmpnj17KiQkRJL0yCOPyM3NTQMHDtT+/fv1wQcfaN68eRo+fLjZx3PPPae1a9dq9uzZOnjwoCZOnKidO3cqMjLyZn8lAADgJrhw4YKefvpp3X777eZCYJLk4+Pj8HgdAChwhoU2btxoSLri1bdvX8MwDMNutxvjx483goKCDHd3d6Ndu3ZGdHS0wzEuXLhg9OrVy/D29jZ8fX2N/v37G8nJyQ5j9u7da7Rs2dJwd3c3KlSoYEybNu2KXj788EOjVq1ahpubm3HLLbcYa9asydO5JCYmGpKMxMTEvH0JAADgpsnOzjaWLFliBAQEOPzbo06dOsb69eutbg9AMZGXbFBonkNW1PEcMgAACrdt27Zp0KBBDrc6eHt768UXX9SQIUMcHpEDAP9EXrKBy03qCQAAwDI5OTnq27evoqOjzdojjzyimTNnmrc5AIAVCu2iHgAAAPnF2dlZc+fOlSTVrVtXmzZt0ooVKwhjACzHFTIAAFDs/PDDDypbtqxq165t1jp27KhVq1apU6dOcnV1tbA7APgfrpABAIBi4+zZs3rsscfUqlUrPfvss1csYX///fcTxgAUKgQyAABQ5GVlZWnOnDkKCwvTf//7X0nSxo0btWbNGos7A4DrY8oiAAAo0jZt2qTIyEjt37/frJUuXVpTpkzRPffcY2FnAPD3uEIGAACKpNOnT6tXr15q06aNGcZsNpueeOIJHTp0SM8884ycnZ0t7hIAro8rZAAAoMj573//q2effVYpKSlm7bbbbtPChQt1++23W9gZAOQNV8gAAECRU6lSJTOMlSlTRm+88YZ++uknwhiAIocrZAAAoNAzDEM2m83cvvPOO/Xoo4/K19dXL730kgICAizsDgBuHIEMAAAUWhkZGZo1a5Y2bdqkr7/+Wk5O/5vcs3z5codtACiK+L8YAAAolL766ivVrVtX//rXv7R+/XpzOfvLCGMAigP+TwYAAAqV3377Tffff786deqkI0eOSPojfB0/ftzaxgCgANxQIPvvf/+rO+64QyEhITpx4oQkae7cufrss8/ytTkAAFBypKWlaeLEiQoPD9fnn39u1lu1aqWff/5ZL774ooXdAUDByHMgW7x4sYYPH65OnTopISFBOTk5kiR/f3/NnTs3v/sDAADFnGEY+uyzzxQeHq5JkyYpIyNDkhQcHKx33nlH3333nW699VaLuwSAgpHnQLZgwQK98cYbGjdunMPDFps0aaJffvklX5sDAADF34EDB9S1a1dzSqKLi4tGjBih6Oho9e7d22F1RQAobvIcyI4dO6aGDRteUXd3d1dqamq+NAUAAEqO8PBwDRgwQJLUtm1b7d27V7NmzZKvr6/FnQFAwctzIKtatar27NlzRX3t2rWqU6dOfvQEAACKKcMwtHbtWvOWh8umTp2qDz/8UOvXr1d4eLhF3QHAzZfnQDZ8+HANGjRIH3zwgQzD0Pbt2zVlyhSNHTtWzz//fEH0CAAAioGDBw8qIiJC99xzj9544w2HfYGBgXr44YeZngigxLEZhmHk9U0rVqzQxIkTdfToUUlSSEiIJk2apIEDB+Z7g0VFUlKS/Pz8lJiYyBQLAAD+JDk5WS+99JLmzJmj7OxsSVLp0qX122+/yd/f39rmAKAA5CUbuNzIB/Tu3Vu9e/fWpUuXlJKSosDAwBtqFAAAFF+GYeiDDz7QiBEjdObMGbNeqVIlzZ07V35+fhZ2BwCFQ54D2bFjx5Sdna2aNWuqVKlSKlWqlCTp8OHDcnV1VZUqVfK7RwAAUMRERUVp8ODB2rRpk1lzd3fX888/rzFjxpj/fgCAki7P95D169dPW7ZsuaK+bds29evXLz96AgAARZRhGBo5cqQaNGjgEMY6d+6s/fv3a/LkyYQxAPiTPAeyn3/+WXfccccV9WbNml119UUAAFBy2Gw2paWlmasoVqtWTV988YVWr16t6tWrW9wdABQ+eQ5kNptNycnJV9QTExOvWMIWAACUPC+99JJCQ0M1efJk7d+/X/fee6/VLQFAoZXnVRa7dOkiT09Pvffee3J2dpYk5eTkqEePHkpNTdVXX31VII0WdqyyCAAoaS5evKgJEyaoVq1aGjx4sMO+jIwMubu7W9QZAFirQFdZnD59ulq3bq2wsDC1atVKkvT9998rKSlJ33777Y11DAAAigy73a5ly5ZpzJgxOnfunHx9ffXwww8rODjYHEMYA4DcyfOUxfDwcO3bt0/du3dXXFyckpOT9dhjj+ngwYOqW7duQfQIAAAKiZ07d6pFixYaOHCgzp07J0nKzs7Wrl27LO4MAIqmG3owNK7ElEUAQHF24cIFjRs3TkuXLtWf/+nQvXt3zZo1S6GhoRZ2BwCFS75PWdy3b5/q1q0rJycn7du377pjb7311tx3CgAACrWcnBy9+eabeuGFFxQfH2/W69SpowULFqhdu3YWdgcARV+uAlmDBg0UExOjwMBANWjQQDabTVe7sGaz2VhpEQCAYmTu3LkaOXKkue3t7a2JEydqyJAhcnV1tbAzACgecjVl8cSJE6pUqZJsNptOnDhx3bGVK1fOt+aKEqYsAgCKo6SkJIWFhSkmJka9e/fWjBkzFBISYnVbAFCo5fuUxcshKysrS5MmTdL48eNVtWrVf94pAAAoNLKzs7Vv3z41atTIrPn6+urNN9+Uj4+PWrdubWF3AFA85WmVRVdXV33yyScF1QsAALDIjz/+qCZNmqhVq1Y6deqUw77OnTsTxgCggOR52fuuXbtq1apVBdAKAAC42WJiYvTYY4+pZcuW2rt3ry5duqQRI0ZY3RYAlBh5fjB0zZo1NXnyZP34449q3LixvLy8HPYPGTIk35oDAAAFIysrSwsXLtSLL76o5ORks96wYUMNHTrUusYAoITJ83PIrnfvmM1m02+//faPmyqKWNQDAFBUbNq0SZGRkdq/f79Z8/f315QpU/TUU0/J2dnZwu4AoOjL90U9/uzYsWM33BgAALDOhQsXFBkZqffff9+s2Ww2Pf7445oyZYrKlStnYXcAUDLlKZD99NNP+uKLL5SZmal27dqpY8eOBdUXAADIZ56entqyZYu5fdttt2nhwoW6/fbbLewKAEq2XC/q8fHHH+uOO+7QvHnz9Oabb6pz586aNWtWQfYGAADyUalSpfTqq6+qTJkyeuONN/TTTz8RxgDAYrkOZFOnTtUTTzyhxMREXbx4US+//LJeeeWVguwNAADcoJMnT+qRRx7R0aNHHeoPPvigjh49qscff1xOTnlebBkAkM9yvaiHt7e39uzZoxo1akiSMjMz5eXlpdOnTyswMLBAmywKWNQDAFAYZGRkaPbs2ZoyZYouXbqke++9V1988YXVbQFAiZKXbJDrH41dunTJ4WBubm7y8PBQSkrKjXcKAADyzVdffaW6detq3LhxunTpkiRp+/btOnv2rMWdAQCuJU+Lerz55pvy9vY2t7Ozs7Vs2TKVLVvWrPEcMgAAbq5jx45p2LBh+uyzz8yas7OzIiMjNXHiRPn7+1vXHADgunI9ZbFKlSqy2WzXPxjPIWPKIgDgpklLS9OMGTM0bdo0paenm/VWrVpp4cKFuvXWWy3sDgBKrgKZsnj8+HEdO3bsuq/8DmM5OTkaP368qlatKk9PT1WvXl0vvfSS/pwhDcPQhAkTVL58eXl6eqp9+/Y6fPiww3Hi4+PVu3dv+fr6yt/fXwMHDrxiquW+ffvUqlUreXh4KDQ0VDNmzMjXcwEAIL/df//9mjhxohnGgoOD9c477+i7774jjAFAEVGol1eaPn26Fi9erIULF+rAgQOaPn26ZsyYoQULFphjZsyYofnz52vJkiXatm2bvLy8FBER4fCTwt69e2v//v1at26dVq9erc2bN+vJJ5809yclJalDhw6qXLmydu3apZkzZ2rixIlaunTpTT1fAADyYujQoZIkFxcXjRgxQtHR0erdu/ffzmgBABQeuZ6yaIV7771XQUFB+ve//23WunXrJk9PT73zzjsyDEMhISEaMWKERo4cKUlKTExUUFCQli1bpp49e+rAgQMKDw/Xjh071KRJE0nS2rVr1alTJ/3+++8KCQnR4sWLNW7cOMXExMjNzU2SNGbMGK1atUoHDx7MVa9MWQQAFKTU1FQlJiYqJCTEoT5p0iQ9/PDDCg8Pt6gzAMBfFciURSu0aNFCGzZs0KFDhyRJe/fu1Q8//KB77rlH0h83McfExKh9+/bme/z8/NS0aVNt3bpVkrR161b5+/ubYUyS2rdvLycnJ23bts0c07p1azOMSVJERISio6N18eLFq/aWkZGhpKQkhxcAAPnNMAx9/PHHqlOnjvr27au//hz1xRdfJIwBQBFWqAPZmDFj1LNnT9WuXVuurq5q2LChhg4dqt69e0uSYmJiJElBQUEO7wsKCjL3xcTEXPGcNBcXFwUEBDiMudox/vwZfzV16lT5+fmZr9DQ0H94tgAAODpw4IA6dOighx9+WKdOndL69ev16aefWt0WACAfFepA9uGHH2rFihV69913tXv3bi1fvlyzZs3S8uXLrW5NY8eOVWJiovk6deqU1S0BAIqJ5ORkPf/887r11lu1fv16sx4REaF69epZ2BkAIL/l6jlkeZmOl5/3T40aNcq8SiZJ9erV04kTJzR16lT17dtXwcHBkqTY2FiVL1/efF9sbKwaNGgg6Y8Vp+Li4hyOm52drfj4ePP9wcHBio2NdRhzefvymL9yd3eXu7v7Pz9JAAD+n2EYev/99zVy5EidOXPGrFeuXFlz587V/fffz4IdAFDM5OoKmb+/v0qXLp2rV366dOmSnJwcW3R2dpbdbpckVa1aVcHBwdqwYYO5PykpSdu2bVPz5s0lSc2bN1dCQoJ27dpljvn2229lt9vVtGlTc8zmzZuVlZVljlm3bp3CwsLy/ZwAALiaAwcOqG3btnrkkUfMMObu7q4JEybo119/VdeuXQljAFAM5eoK2caNG83/Pn78uMaMGaN+/fqZoWfr1q1avny5pk6dmq/NdenSRVOmTFGlSpV0yy236Oeff9arr76qAQMGSPrjQdRDhw7Vyy+/rJo1a6pq1aoaP368QkJC1LVrV0lSnTp11LFjRz3xxBNasmSJsrKyFBkZqZ49e5orVT3yyCOaNGmSBg4cqNGjRysqKkrz5s3TnDlz8vV8AAC4ljNnzmjTpk3mdpcuXTRnzhxVr17duqYAAAUuz8vet2vXTo8//rh69erlUH/33Xe1dOlSh79M/qnk5GSNHz9eK1euVFxcnEJCQtSrVy9NmDDBXBHRMAy9+OKLWrp0qRISEtSyZUu99tprqlWrlnmc+Ph4RUZG6osvvpCTk5O6deum+fPny9vb2xyzb98+DRo0SDt27FDZsmU1ePBgjR49Ote9suw9AOCf6t69u3bv3q158+apc+fOVrcDALhBeckGeQ5kpUqV0t69e1WzZk2H+qFDh9SgQQNdunQp7x0XAwQyAEBu7dmzR2+//bbmzp3rMA3xwoUL8vLykoeHh4XdAQD+qQJ9DlloaKjeeOONK+pvvvkmS78DAHAdFy9eVGRkpBo3bqz58+drxYoVDvvLlClDGAOAEiZX95D92Zw5c9StWzd99dVX5qIY27dv1+HDh/XJJ5/ke4MAABR1drtdy5Yt05gxY3Tu3Dmz/uabb+rRRx+1sDMAgNXyfIWsU6dOOnTokLp06aL4+HjFx8erS5cuOnTokDp16lQQPQIAUGTt3LlTLVq00MCBA80w5uXlpWnTpunrr7+2uDsAgNXyfA8Zro57yAAAf3bhwgWNGzdOS5cu1Z//qu3evbtmz56tihUrWtgdAKAgFeg9ZJL0/fff69FHH1WLFi10+vRpSdJ///tf/fDDDzdyOAAAipULFy4oLCxMr7/+uhnGwsPDtWHDBn3wwQeEMQCAKc+B7JNPPlFERIQ8PT21e/duZWRkSJISExP1yiuv5HuDAAAUNWXKlDGXrffx8dHs2bO1Z88etW3b1uLOAACFTZ4D2csvv6wlS5bojTfekKurq1m/4447tHv37nxtDgCAouD8+fOy2+0OtRkzZmjgwIGKjo7W8OHDHf7OBADgsjwHsujoaLVu3fqKup+fnxISEvKjJwAAioTs7GwtXLhQNWvW1L///W+HfUFBQXrzzTdVvnx5i7oDABQFeQ5kwcHBOnLkyBX1H374QdWqVcuXpgAAKOx++OEHNWnSRIMHD1ZCQoLGjh2r+Ph4q9sCABQxeQ5kTzzxhJ577jlt27ZNNptNZ86c0YoVKzRy5Eg988wzBdEjAACFxtmzZ9WnTx+1atVKe/fuNetdunQRCxcDAPIqzw+GHjNmjOx2u9q1a6dLly6pdevWcnd318iRIzV48OCC6BEAAMtlZWVp4cKFevHFF5WcnGzWGzZsqIULF6pFixYWdgcAKKpu+DlkmZmZOnLkiFJSUhQeHi5vb+/87q1I4TlkAFB8bdq0SZGRkdq/f79ZK126tKZMmaInn3xSzs7OFnYHAChsCvQ5ZAMGDFBycrLc3NwUHh6u22+/Xd7e3kpNTdWAAQNuuGkAAAqr999/3wxjNptNTzzxhA4dOqRnnnmGMAYA+EfyfIXM2dlZZ8+eVWBgoEP9/PnzCg4OVnZ2dr42WFRwhQwAiq8LFy6oVq1aql69uhYtWqTbbrvN6pYAAIVYXrJBru8hS0pKkmEYMgxDycnJ8vDwMPfl5OToyy+/vCKkAQBQ1Kxbt07nz59Xr169zFqZMmW0ZcsW1axZU05OeZ5cAgDANeU6kPn7+8tms8lms6lWrVpX7LfZbJo0aVK+NgcAwM1y8uRJDRs2TJ9++qn8/PzUrl07hx80hoWFWdgdAKC4ynUg27hxowzDUNu2bfXJJ58oICDA3Ofm5qbKlSsrJCSkQJoEAKCgpKena/bs2ZoyZYrS0tIkSYmJiXrjjTc0btw4i7sDABR3uQ5kd955pyTp2LFjqlSpkmw2W4E1BQDAzfDll19qyJAhOnr0qFkLDAzUjBkz1KdPHws7AwCUFHmeCP/tt9/q448/vqL+0Ucfafny5fnSFAAABem3337Tfffdp86dO5thzNnZWc8995wOHTqkvn37cq8YAOCmyPPfNlOnTlXZsmWvqAcGBuqVV17Jl6YAACgoa9euVXh4uL744guz1rp1a/3888+aO3eu/Pz8LOwOAFDS5DmQnTx5UlWrVr2iXrlyZZ08eTJfmgIAoKA0b97cDF3ly5fXihUrtGnTJtWrV8/izgAAJVGu7yG7LDAwUPv27VOVKlUc6nv37lWZMmXyqy8AAPJFSkqKvL29zW0/Pz/Nnj1be/fu1YQJE+Tj42NhdwCAki7PV8h69eqlIUOGaOPGjcrJyVFOTo6+/fZbPffcc+rZs2dB9AgAQJ6lpqZq3LhxqlKlik6fPu2w79FHH9XMmTMJYwAAy+X5CtlLL72k48ePq127dnJx+ePtdrtdjz32GPeQAQAsZxiGPvnkEw0fPlynTp2SJI0aNUrvvvuuxZ0BAHClPAcyNzc3ffDBB3rppZe0d+9eeXp6ql69eqpcuXJB9AcAQK4dOHBAQ4YM0fr1682aq6urqlSpIrvdzsqJAIBCJ8+B7LJatWqpVq1a+dkLAAA3JDk5WS+99JLmzJmj7Oxssx4REaH58+fz9xUAoNDKVSAbPny4XnrpJXl5eWn48OHXHfvqq6/mS2MAAPwdwzD0/vvva+TIkTpz5oxZr1y5subOnav7779fNpvNwg4BALi+XAWyn3/+WVlZWeZ/Xwt/6QEAbqa0tDQ9//zzZhhzd3fX6NGjNXr0aJUqVcri7gAA+Hs2wzAMq5soDpKSkuTn56fExET5+vpa3Q4AlBgffvihevTooS5dumjOnDmqXr261S0BAEq4vGSDG76HDACAm8kwDL3zzjtq2bKlqlatatYffvhhhYSEqGXLlhZ2BwDAjclVIHvwwQdzfcBPP/30hpsBAOBq9uzZo8jISP3444/q2rWrVq5cae6z2WyEMQBAkZWr9X/9/PzMl6+vrzZs2KCdO3ea+3ft2qUNGzbIz8+vwBoFAJQ8Fy9eVGRkpBo3bqwff/xRkrRq1Srt2rXL4s4AAMgfubpC9vbbb5v/PXr0aHXv3l1LliyRs7OzJCknJ0fPPvss904BAPKF3W7XsmXLNGbMGJ07d86s16xZUwsWLFDjxo0t7A4AgPyT50U9ypUrpx9++EFhYWEO9ejoaLVo0UIXLlzI1waLChb1AID8sXPnTkVGRmrbtm1mrVSpUho/fryGDRsmd3d3C7sDAODv5SUb5GrK4p9lZ2fr4MGDV9QPHjwou92e18MBAGCaPHmybr/9docw1r17dx08eFBjxowhjAEAip08r7LYv39/DRw4UEePHtXtt98uSdq2bZumTZum/v3753uDAICSo2HDhro8caNOnTpasGCB2rVrZ3FXAAAUnDwHslmzZik4OFizZ8/W2bNnJUnly5fXqFGjNGLEiHxvEABQfGVnZ8vF5X9/Fd17773q2bOnmjRpoiFDhsjV1dXC7gAAKHj/6MHQSUlJksQ9U+IeMgDIi7i4OI0ZM0YxMTFas2aNbDab1S0BAJBvCvQeMumPn2iuX79e7733nvmX6JkzZ5SSknIjhwMAlBDZ2dlauHChwsLC9Pbbb+urr77SqlWrrG4LAADL5HnK4okTJ9SxY0edPHlSGRkZuvvuu+Xj46Pp06crIyNDS5YsKYg+AQBF3A8//KBBgwZp3759Zs3Pz48f5gEASrQ8XyF77rnn1KRJE128eFGenp5m/YEHHtCGDRvytTkAQNF39uxZ9enTR61atXIIY/369VN0dLT69OljYXcAAFgrz1fIvv/+e23ZskVubm4O9SpVquj06dP51hgAoGjLysrSggULNHHiRCUnJ5v1hg0batGiRWrevLmF3QEAUDjkOZDZ7Xbl5ORcUf/999/l4+OTL00BAIq+H3/80WH13dKlS2vKlCl68skn5ezsbGFnAAAUHnmestihQwfNnTvX3LbZbEpJSdGLL76oTp065WdvAIAi7K677tKDDz4om82mJ554QocOHdIzzzxDGAMA4E/yvOz9qVOn1LFjRxmGocOHD6tJkyY6fPiwypYtq82bNyswMLCgei3UWPYeQEmWmZmpDz74QI8++qjDEvanTp3S2bNndfvtt1vYHQAAN1eBLnsfGhqqvXv3aty4cRo2bJgaNmyoadOm6eeffy6QMHb69Gk9+uijKlOmjDw9PVWvXj3t3LnT3G8YhiZMmKDy5cvL09NT7du31+HDhx2OER8fr969e8vX11f+/v4aOHDgFat67du3T61atZKHh4dCQ0M1Y8aMfD8XACiOvvnmG9WrV0+PPfaY3n//fYd9oaGhhDEAAK4jT1fIsrKyVLt2ba1evVp16tQpyL4kSRcvXlTDhg3Vpk0bPfPMMypXrpwOHz6s6tWrq3r16pKk6dOna+rUqVq+fLmqVq2q8ePH65dfftGvv/4qDw8PSdI999yjs2fP6vXXX1dWVpb69++v2267Te+++66kPxJsrVq11L59e40dO1a//PKLBgwYoLlz5+rJJ5/MVa9cIQNQ0pw4cULDhw/Xp59+atZCQ0N19OhRubq6WtgZAADWyks2yPOUxQoVKmj9+vU3JZCNGTNGP/74o77//vur7jcMQyEhIRoxYoRGjhwpSUpMTFRQUJCWLVumnj176sCBAwoPD9eOHTvUpEkTSdLatWvVqVMn/f777woJCdHixYs1btw4xcTEmKtHjhkzRqtWrdLBgwdz1SuBDEBJkZ6erlmzZumVV15RWlqaWW/RooUWLlyohg0bWtgdAADWK9Api4MGDdL06dOVnZ19ww3m1ueff64mTZro4YcfVmBgoBo2bKg33njD3H/s2DHFxMSoffv2Zs3Pz09NmzbV1q1bJUlbt26Vv7+/GcYkqX379nJyctK2bdvMMa1bt3ZYyj8iIkLR0dG6ePHiVXvLyMhQUlKSwwsAirsvv/xSdevW1fjx480wFhQUpOXLl+uHH34gjAEAkEd5XvZ+x44d2rBhg3nPgJeXl8P+P09d+ad+++03LV68WMOHD9cLL7ygHTt2aMiQIXJzc1Pfvn0VExMj6Y9/DPxZUFCQuS8mJuaKe9tcXFwUEBDgMKZq1apXHOPyvtKlS1/R29SpUzVp0qT8OVEAKOSysrL00EMP6fPPPzdrzs7OGjx4sCZOnCg/Pz8LuwMAoOjKcyDz9/dXt27dCqKXK9jtdjVp0kSvvPKKpD8eJhoVFaUlS5aob9++N6WHaxk7dqyGDx9ubiclJSk0NNTCjgCg4Li6ujo8a7J169ZauHCh6tWrZ2FXAAAUfXkOZG+//XZB9HFV5cuXV3h4uEOtTp06+uSTTyRJwcHBkqTY2FiVL1/eHBMbG6sGDRqYY+Li4hyOkZ2drfj4ePP9wcHBio2NdRhzefvymL9yd3eXu7v7DZ4ZABRul28v/vMS9jNnztTOnTv14osvqmfPng77AADAjcn1PWR2u13Tp0/XHXfcodtuu01jxoxxuJm7INxxxx2Kjo52qB06dEiVK1eWJFWtWlXBwcHasGGDuT8pKUnbtm1T8+bNJUnNmzdXQkKCdu3aZY759ttvZbfb1bRpU3PM5s2blZWVZY5Zt26dwsLCrjpdEQCKs8OHD6tTp05X/ACufPny+vXXX9WrVy/CGAAA+STXgWzKlCl64YUX5O3trQoVKmjevHkaNGhQQfamYcOG6aefftIrr7yiI0eO6N1339XSpUvNz7XZbBo6dKhefvllff755/rll1/02GOPKSQkRF27dpX0xxW1jh076oknntD27dv1448/KjIyUj179lRISIgk6ZFHHpGbm5sGDhyo/fv364MPPtC8efMcpiQCQHGXmpqqcePGqW7dulq7dq3GjBlzxcJGTk55XgsKAABcj5FLNWrUMJYsWWJur1u3znBzczNycnJye4gb8sUXXxh169Y13N3djdq1axtLly512G+3243x48cbQUFBhru7u9GuXTsjOjraYcyFCxeMXr16Gd7e3oavr6/Rv39/Izk52WHM3r17jZYtWxru7u5GhQoVjGnTpuWpz8TEREOSkZiYeGMnCgAWsdvtxkcffWSEhoYaksxXxYoVjZ07d1rdHgAARU5eskGun0Pm7u6uI0eOOCxc4eHhoSNHjqhixYoFkRWLFJ5DBqAoOnDggIYMGaL169ebNVdXV40cOVLjxo27YiVdAADw9/KSDXK9qEd2drY8PDwcaq6urg73XQEAiobk5GS99NJLmjNnjsNzJTt27Kh58+apVq1aFnYHAEDJketAZhiG+vXr57CyYHp6up5++mmHn6Dm53PIAAAFY+LEiXr11VfN7SpVqmju3Lm67777WLADAICbKNdTFvv375+rA97MZfELE6YsAihKzp07p1q1aiktLU2jR4/WmDFj5OnpaXVbAAAUC3nJBrkOZLg+AhmAwioxMVG//PKLWrZs6VD/6quvFBYWpmrVqlnUGQAAxVNesgHrFwNAMWW327V8+XLVqlVLXbp00blz5xz233PPPYQxAAAsRiADgGJoz549atWqlfr166e4uDglJCRowoQJVrcFAAD+gkAGAMXIxYsXNWjQIDVu3Fhbtmwx6w888IDGjBljYWcAAOBqcr3KIgCg8LLb7Xrrrbc0duxYnT9/3qzXqlVL8+fPV0REhIXdAQCAayGQAUARd/ToUT3yyCPavn27WfPy8tL48eM1bNgwubm5WdgdAAC4HgIZABRxZcqU0bFjx8ztHj16aNasWapYsaKFXQEAgNzgHjIAKOL8/f01bdo0hYeHa8OGDXr//fcJYwAAFBEEMgAoQrZu3ao2bdro7NmzDvV+/fppz549atu2rUWdAQCAG0EgA4AiIC4uTgMGDFCLFi20adMmPf/88w77nZyc5OrqalF3AADgRhHIAKAQy87O1oIFC1SrVi29/fbbZv2XX35RamqqhZ0BAID8QCADgELq+++/V+PGjTVkyBAlJiZKkvz8/DR//nzt3LlTXl5eFncIAAD+KQIZABQyZ8+eVZ8+fdS6dWvt27fPrPfv31/R0dEaPHiwXFxYJBcAgOKAv9EBoBCx2+1q27atDh48aNYaNWqkhQsXqnnz5hZ2BgAACgJXyACgEHFyctKECRMkSaVLl9bixYu1fft2whgAAMUUV8gAwEK///67nJycFBISYtZ69uyp06dPq1+/fipbtqyF3QEAgILGFTIAsEBmZqamT5+u2rVra8iQIQ77bDabRo4cSRgDAKAEIJABwE32zTffqF69ehozZoxSU1P1ySefaN26dVa3BQAALEAgA4Cb5MSJE+rWrZsiIiJ06NAhSX/cM/bss8+qcePGFncHAACswD1kAFDA0tPTNWvWLL3yyitKS0sz6y1atNDChQvVsGFDC7sDAABWIpABQAH69ttv9eSTT+ro0aNmLSgoSDNmzNCjjz4qJycmKgAAUJLxLwEAKEBJSUlmGHN2dtZzzz2n6OhoPfbYY4QxAADAFTIAKEj333+/IiIilJaWpoULF6pevXpWtwQAAAoRAhkA5APDMPT5559r7dq1eu2112Sz2ST9sYT9hx9+KB8fH7MGAABwGYEMAP6hw4cP67nnntNXX30lSerUqZO6dOli7vf19bWqNQAAUMhxAwMA3KDU1FSNGzdOdevWNcOYJK1atcq6pgAAQJHCFTIAyCPDMPTJJ59o+PDhOnXqlFmvWLGiXn31VT300EMWdgcAAIoSAhkA5MGBAwc0ZMgQrV+/3qy5urpq5MiRGjdunLy8vCzsDgAAFDUEMgDIpcOHD+vWW29Vdna2WYuIiND8+fNVq1YtCzsDAABFFfeQAUAu1axZU/fee68kqXLlylq5cqW++uorwhgAALhhXCEDgGs4cuSIqlev7rBc/Zw5c1S/fn09//zzKlWqlIXdAQCA4oArZADwF4mJiRo6dKhq166tjz/+2GFflSpVNHHiRMIYAADIFwQyAPh/drtd//nPfxQWFqZ58+YpJydHw4cPV0pKitWtAQCA67DbDZ2Kv6SDMUk6FX9JdrthdUu5xpRFAJC0Z88eDRo0SFu2bDFrnp6eevrpp+Xq6mphZwAA4HqOxCXr66hYHT2XovTsHHm4OKt6OW9F1A1SjUAfq9v7WwQyACXaxYsXNX78eC1evFh2u92sd+vWTbNnz1blypUt7A4AAFzPkbhkvf3jccWnZqq8n4dKuXnqUma2os4k6kximvrfUaXQhzICGYAS66233tLo0aN1/vx5sxYWFqb58+erQ4cOFnYGAAD+jt1u6OuoWMWnZqpmoLe5CJePh6u83V10OC5F3+yPVbWy3nJysv3N0azDPWQASqx169aZYczLy0vTpk3Tvn37CGMAABQBpxPSdPRcisr7eTisiCxJNptN5f08dCQuRacT0izqMHcIZABKrJkzZ8rb21s9evTQwYMHNXr0aLm5uVndFgAAyIXUzGylZ+eolNvVJ/15ujkrIztHqZnZN7mzvGHKIoBiLycnR2+88YYCAgLUvXt3s16xYkUdPHhQFSpUsLA7AABwI7zcXOTh4qxLmdny8bhyAa60zBy5uzjL6xqBrbDgChmAYm3r1q26/fbb9cwzz2jIkCFKTEx02E8YAwCgaKrg76nq5bx1NjFdhuG4zL1hGDqbmK4agd6q4O9pUYe5QyADUCzFxcVpwIABatGihXbv3i1Jio2N1RdffGFxZwAAID84OdkUUTdIAV5uOhyXouT0LGXb7UpOz9LhuBQFeLmpwy1BhXpBD4lABqCYyc7O1oIFC1SrVi29/fbbZv3WW2/V5s2b9eijj1rYHQAAyE81An3U/44qqhvip4RLWTp+PlUJl7JUr4JfkVjyXipigWzatGmy2WwaOnSoWUtPT9egQYNUpkwZeXt7q1u3boqNjXV438mTJ9W5c2eVKlVKgYGBGjVqlLKzHW/u27Rpkxo1aiR3d3fVqFFDy5YtuwlnBCA/ff/992rcuLHD1EQ/Pz8tWLBAu3btUqtWrSzuEAAA5LcagT565q7qGnZ3LQ1uV1PD7q6lp++sXiTCmFSEAtmOHTv0+uuv69Zbb3WoDxs2TF988YU++ugjfffddzpz5owefPBBc39OTo46d+6szMxMbdmyRcuXL9eyZcs0YcIEc8yxY8fUuXNntWnTRnv27NHQoUP1+OOP6+uvv75p5wfgn3nzzTfVunVr7du3z6wNGDBAhw4dUmRkpFxcCvcNvQAA4MY5OdkUGlBKtYN9FRpQqtBPU/wzm/HXO+AKoZSUFDVq1EivvfaaXn75ZTVo0EBz585VYmKiypUrp3fffVcPPfSQJOngwYOqU6eOtm7dqmbNmumrr77SvffeqzNnzigoKEiStGTJEo0ePVrnzp2Tm5ubRo8erTVr1igqKsr8zJ49eyohIUFr167NVY9JSUny8/NTYmKifH198/9LAHBdcXFxqlWrlhITE9WoUSMtWrRIzZo1s7otAABQAuUlGxSJK2SDBg1S586d1b59e4f6rl27lJWV5VCvXbu2KlWqpK1bt0r6Y4W1evXqmWFMkiIiIpSUlKT9+/ebY/567IiICPMYV5ORkaGkpCSHF4CbJy4uzmE7MDBQr776qhYvXqzt27cTxgAAQJFQ6OfwvP/++9q9e7d27Nhxxb6YmBi5ubnJ39/foR4UFKSYmBhzzJ/D2OX9l/ddb0xSUpLS0tLk6XnlUplTp07VpEmTbvi8ANyY33//XSNGjND69et16NAhlSlTxtw3YMAACzsDAADIu0J9hezUqVN67rnntGLFCnl4eFjdjoOxY8cqMTHRfJ06dcrqloBiLTMzU9OnT1ft2rX14YcfKj4+XuPGjbO6LQAAgH+kUAeyXbt2KS4uTo0aNZKLi4tcXFz03Xffaf78+XJxcVFQUJAyMzOVkJDg8L7Y2FgFBwdLkoKDg69YdfHy9t+N8fX1verVMUlyd3eXr6+vwwtAwfjmm29Ur149jRkzRqmpqZKksmXLqmnTphZ3BgAA8M8U6kDWrl07/fLLL9qzZ4/5atKkiXr37m3+t6urqzZs2GC+Jzo6WidPnlTz5s0lSc2bN9cvv/zicL/JunXr5Ovrq/DwcHPMn49xeczlYwCwxokTJ9StWzdFRETo0KFDkiQnJycNGjRI0dHR6t+/v8UdAgAA/DOF+h4yHx8f1a1b16Hm5eWlMmXKmPWBAwdq+PDhCggIkK+vrwYPHqzmzZubN/R36NBB4eHh6tOnj2bMmKGYmBj961//0qBBg+Tu7i5Jevrpp7Vw4UI9//zzGjBggL799lt9+OGHWrNmzc09YQCS/ni+4KxZs/TKK68oLS3NrLdo0UKLFi1SgwYNrGsOAAAgHxXqQJYbc+bMkZOTk7p166aMjAxFRETotddeM/c7Oztr9erVeuaZZ9S8eXN5eXmpb9++mjx5sjmmatWqWrNmjYYNG6Z58+apYsWKevPNNxUREWHFKQEl3qVLlzR37lwzjAUFBWnGjBnq06ePbLai81wRAACAv1MknkNWFPAcMiB/vfHGG3rmmWc0ePBgTZw4UX5+fla3BAAAkCvF7jlkAIqvS5cuafLkyeZjKC4bOHCgoqKiNGfOHMIYAAAotor8lEUARZNhGPrss880dOhQnThxQr/99puWLVtm7ndyclLt2rWtaxAAAOAm4AoZgJvu0KFD6tSpkx544AGdOHFCkvTee+/xPD8AAFDiEMgA3DSpqakaO3as6tatq7Vr15r19u3ba+/evQoNDbWwOwAAgJuPKYsACpxhGPr44481fPhw/f7772Y9pEJFzXn1VT388EOsnggAAEokAhmAAtenTx+tWLHC3HZ2cVX9To+qxYNP6FzZcjp6LkU1An0s7BAAAMAaTFkEUOA6duxo/nforS00aOEq9Xp2tMoF+CrqTKLe/vG4jsQlW9ghAACANbhCBiBfGYahS5cuycvLy6z16vWI5i/7SAH1Wuvujp3l5PTHz4J8PFzl7e6iw3Ep+mZ/rKqV9ZaTE1MXAQBAycEVMgD55pdfftFdd92lAQMGONTPJKar5ROT1KJtRzOMXWaz2VTez0NH4lJ0OiHtZrYLAABgOQIZgH8sMTFRQ4cOVcOGDbV582Z9+OGH+vbbb839qZnZSs/OUSm3q1+U93RzVkZ2jlIzs29WywAAAIUCUxYB3DC73a7//ve/ev755xUXF2fWq1ev7nAlzMvNRR4uzrqUmS0fD9crjpOWmSN3F2d5XSOwAQAAFFdcIQNwQ37++We1atVK/fr1M8OYp6enXn75ZUVFRemuu+4yx1bw91T1ct46m5guwzAcjmMYhs4mpqtGoLcq+HvezFMAAACwHD+OBpAn8fHxGj9+vJYsWSK73W7Wu3XrptmzZ6ty5cpXvMfJyaaIukE6k5imw3EpKu/nIU83Z6Vl5uhsYroCvNzU4ZYgFvQAAAAlDoEMQJ5s2rRJr732mrkdFham+fPnq0OHDtd9X41AH/W/o4q+jorV0XMpik1Kl7uLs+pV8FOHW4J4DhkAACiRbMZf5w/hhiQlJcnPz0+JiYny9fW1uh2gwBiGoQ4dOmjr1q2aMGGChg4dKjc3t1y/3243dDohTamZ2fJyc1EFf0+ujAEAgGIlL9mAK2QArun8+fP64IMPNGjQILNms9m0dOlSubq6qmLFink+ppOTTaEBpfKzTQAAgCKLQAbAdPnqVVJahj57/7+a/cokxcfHq0qVKurcubM5rmrVqhZ2CQAAUHwQyABIko7EJevrqFh9/+OP2vDWNJ0/ftDcN378eHXq1Ek2G1MLAQAA8hOBDICOxCVr4ZpdWrvsVUVv/sJhX90779XCBa8SxgAAAAoAgQwo4TIzszT2pZn6/K05yryUYtbLVwvTg8+OV05Qbe05b1Mzu8HiGwAAAPmMQAaUYImJiWp+R0sd2B9l1jy8fHRP3+fUoksvOTu7KDk9S0fiUnQ6IY3FOAAAAPIZgQwowfz8/BRcIdQMZLdHPKjOA0bKp3QZc4ynm7Nik9KVmpltVZsAAADFFoEMKEGys7Pl7OzscD/Y5Kkz1f34GXV+fJTCG9x2xXvSMnPk7uIsLzf+dwEAAJDfnKxuAMDNsXHjRtWvX18rV650qLdoEK5xiz+WS/na+utz4g3D0NnEdNUI9FYFf8+b2S4AAECJQCADirnff/9dPXr0UNu2bfXrr79q2LBhunTpkrnfycmmiLpBCvBy0+G4FCWnZynbbldyepYOx6UowMtNHW4JYkEPAACAAkAgA4qpzMxMTZs2TWFhYfrwww/Nevny5XXu3DmHsTUCfdT/jiqqG+KnhEtZOn4+VQmXslSvgp/631FFNQJ9bnb7AAAAJQI3hQBFkN1u6HRCmlIzs+Xl5qIK/p4OV7C++eYbDR48WIcOHTJrZcuW1fTp09WvXz85OV35s5gagT6qdpf3dY8LAACA/EUgAwqZvwtbR+KS9XVUrI6eS1F6do48XJxVvZy3IuoGyTUtXsOGDXO4T8zJyUnPPvusJk+erNKlS1/3s52cbCxtDwAAcBMRyIBC5Hphq0agj47EJevtH48rPjVT5f08VMrNU5cysxV1JlFnEtMUteJlff6nMHbHHXdo4cKFatCggXUnBQAAgGviHjKgkLgctqLOJMq/lKuqlfWWfylXRZ1J1Ns/Hteh2CR9HRWr+NRM1Qz0lo+Hq5ydbPLxcFXNQG/Fp2bqtocGqVSpUgoKCtLy5cv1/fffE8YAAAAKMa6QAYWA3W44hK3Lzwnz8XCVl5uz9p1O1NLvflNSWpZ8PV11ITVTKedOKyshVjUbNpfNZlN5Pw/FX3LWG//9QJ3btZKfn5/FZwUAAIC/QyADCoHTCWk6ei5F5f08HB7aHJ+aqSNxKYpLTtcvvycqI9sud2XrwpYP9ft3H8itlI8GL16t8uUC5OnmrNikdDW6s7X8/HwtPBsAAADkFlMWgUIgNTNb6dk5KuX2v5+RxKdmas+pBJ1LTpeLk00Z2TlKPPijohY8rpMb/it7dqbSky5o1X+WKD41U2mZOXJ3cZaXGz9nAQAAKCr4lxtQCHi5ucjDxVmXMrPl4+EqwzB0JC5FaZnZKl3KVYeOHNbJzxYp5ehO8z02J2fVbNdD5Vt115G4ZPl5uurWiv6q4O9p4ZkAAAAgLwhkQCFQwd9T1ct5K+pMorzdXZScnq2LlzLlYcvW3pX/1pFv35eRk22O967WUBU7PauatWor227XiQuXdFvVAHW4JYjnhgEAABQhBDKgEHBysimibpDOJKbpcFyK3F2cdP63KO3/70SlJ5wzx5UqHaQ6D0TKrUYzJadnKyEtUx6uzvLxcFHneuVVI9DHwrMAAABAXhHIgEKiRqCP+t9RRV9HxWrf7wmy+ZRTVlqqJMnm7Koa7XqqXud+cnH3VEZWjjxds1W3op/cnJ2UnWNXnfIs5AEAAFDUEMgAC9nthk4npCk1M1ulXJ1Vray3nrnLW6cuXtLb/h5S1yeUfHSXatw3ROmlysnZzU2GYSglI1tBfh6qVNpTR86lql4FP+4dAwAAKIIIZIBFjsQl6+uoWB2JS9Yv33+pvauXa9S8d/VgizDVCPTRo80qKzOrv+IvPapSbs6Kjk1RbFKGJEPeHi4K9nXXkXOpCvBy494xAACAIopABljgSFyy3v7xuA4f/FXbV8zSif1/rJ74n4UzlGiMV/87qqhGoI8GtKqmr6NidfRcisp4uckwJJsMlfFyl2RTvQp+6nBLEPeOAQAAFFEEMuAms9sNrfzpsL54fZb2r/tQdnuOuc8pPUHnk9P0zf5YVSvrrRqBPqp2l7c5rdHT1Vk2SZeycuTl5qIK/p5cGQMAACjCCGTATWS32zV38ZuaOG6sLiXGm/UyIZX0wLP/Uvjtdyo5PUtH4lJ0OiFNoQGl5ORkU2hAKQu7BgAAQEEhkAE3yc8//6zIyEht2bLFrLm6e6h9r6d110MD5OrmLknydHNWbFK6UjOzr3UoAAAAFBMEMuAmSE9PV0REhM6d+98zxcJb3K1uz76g0oEhDmPTMnPk7uIsLzf+eAIAABR3TlY3ABQndruhU/GXdDAmSafiL8luNyRJHh4emjx5siQpLCxMg6a/rdbPTJV/ufIO7zcMQ2cT01Uj0Jtl7AEAAEqAQh3Ipk6dqttuu00+Pj4KDAxU165dFR0d7TAmPT1dgwYNUpkyZeTt7a1u3bopNjbWYczJkyfVuXNnlSpVSoGBgRo1apSysx2ng23atEmNGjWSu7u7atSooWXLlhX06aEY+HMA+/7wOb226YjmrDukfy1dpSkf/6TFm47qSFyyJOmJJ57Qm2++qX379mlov24K8HLT4bgUJadnKdtuV3J6lg7HpbCMPQAAQAlSqOdEfffddxo0aJBuu+02ZWdn64UXXlCHDh3066+/ysvLS5I0bNgwrVmzRh999JH8/PwUGRmpBx98UD/++KMkKScnR507d1ZwcLC2bNmis2fP6rHHHpOrq6teeeUVSdKxY8fUuXNnPf3001qxYoU2bNigxx9/XOXLl1dERIRl54/C7fJzxI6eS9H5lAydir8kIy1JF75brv0bV6lBu66y9R2nM4lp5jL2AwcOlCTVCHRT/zuqmO+PTUqXu4szy9gDAACUMDbDMAyrm8itc+fOKTAwUN99951at26txMRElStXTu+++64eeughSdLBgwdVp04dbd26Vc2aNdNXX32le++9V2fOnFFQUJAkacmSJRo9erTOnTsnNzc3jR49WmvWrFFUVJT5WT179lRCQoLWrl2bq96SkpLk5+enxMRE+fr65v/Jo1C5/Byx+NRMBfu6a//pBP38zcc6/vVbyk5LNscNXfCR0v2rql4FPz19Z/UrrnrZ7Ya5pD3L2AMAABQPeckGhXrK4l8lJiZKkgICAiRJu3btUlZWltq3b2+OqV27tipVqqStW7dKkrZu3ap69eqZYUySIiIilJSUpP3795tj/nyMy2MuH+NqMjIylJSU5PBCyWC3G/o6KlbxqZmqGeitUwf3au2UATqyap4Zxlw8Sum+p8aoQvU6Ku/nYS5j/1eXl7SvHexrLnEPAACAkqNQT1n8M7vdrqFDh+qOO+5Q3bp1JUkxMTFyc3OTv7+/w9igoCDFxMSYY/4cxi7vv7zvemOSkpKUlpYmT88rF1eYOnWqJk2alC/nhqLldEKajp5LkY89Re/PmqId61Y67K94e4RqdHpKjRrWkrOLqzyd7CxjDwAAgKsqMoFs0KBBioqK0g8//GB1K5KksWPHavjw4eZ2UlKSQkNDLewIBeFqUwpTM7O1Z8NKbV3xqtIvpZhjfStUV+NeI1Wm+q1KuJSpzBy7JJaxBwAAwLUViX8hRkZGavXq1dq8ebMqVqxo1oODg5WZmamEhASHq2SxsbEKDg42x2zfvt3heJdXYfzzmL+uzBgbGytfX9+rXh2TJHd3d7m7u//jc0PhczmEHYhJ0s5j8TqXnKGMHLs8XJxVvZy3bg31k6uLsxnGPLx8FN7lCfk17KSyvp7KzLHL2clJbs5O5jL29Sr4sYw9AAAArlCoA5lhGBo8eLBWrlypTZs2qWrVqg77GzduLFdXV23YsEHdunWTJEVHR+vkyZNq3ry5JKl58+aaMmWK4uLiFBgYKElat26dfH19FR4ebo758ssvHY69bt068xgoOS6vnPjzqYs6FJus7BxD5f08FBbsIw9XZ0WdSdTphDQ17/CA9m34VJWq1lDnASOU5eajPacSdCE1U9k5dpX395RksIw9AAAArqtQr7L47LPP6t1339Vnn32msLAws+7n52deuXrmmWf05ZdfatmyZfL19dXgwYMlSVu2bJH0x7L3DRo0UEhIiGbMmKGYmBj16dNHjz/+uMOy93Xr1tWgQYM0YMAAffvttxoyZIjWrFmT62XvWWWx6Lu8cuKFlAydS85QwqUslXI1dHD9R8qM/12PjZqi0qX+eHZYeT8PpVxKU3KWTeX9POTp5qyzCWmKOpOkrGy7QgNKqay3u2oEerOMPQAAQAmTl2xQqAOZzXb1Kwpvv/22+vXrJ+mPB0OPGDFC7733njIyMhQREaHXXnvNnI4oSSdOnNAzzzyjTZs2ycvLS3379tW0adPk4vK/C4SbNm3SsGHD9Ouvv6pixYoaP368+Rm5QSAr2ux2Q4s3HVXUmUQF+bjrp2PxSv5tj6I+mqOkmOOSpHYjFqlTh3ZKychWwqUsPdiogvaeStTRcynKyP7jPrHq5bxUP9RfZX3cWcYeAACghCo2gawoIZAVbafiL2nOukPyL+WqczFn9OGiVxS3d9P/BthsqtnpCfV+cohKuTvr+PlUDW5XU7UCfXiOGAAAABzkJRsU6nvIgJslNTNbqWlpOvj1f7X+3cXKyvjfM8MCqt6iBj2GyalcdWXm2GXLlLlq4uXniAEAAAA3gkAGSNr5w0Z99MJzunj2hFlz9fJT/QefVdXmnZVpN5SeZZerk41VEwEAAJBvCGQoEa72PLHLUwu///579Xm4qznW5uSkxh17KKB1H+W4eCojx1BKepb8vdwUk5ShMt6smggAAID8QSBDsXcoJlkf7zqlo+dSlGNIpT1dVSPQRxF1/1j9sGXLlmrTpo02btyoirUbqtmjI1Xv1vpKy8rRoZhknU1Ml4uzTaVLuenWin6smggAAIB8QyBDsWW3G/po1yn9+4dj/7+EvZPcXZ114uA+na9VT2cS09T/jiqqEeijhQsXateuXWrW4X59sz/OXDmxUkApNakSoMaVS6tOeV8W7QAAAEC+IpChWDoSl6wVP53Qyp/PKC0rW56uzspJOKtfv1ysc79u1e1Pz5SatNI3+2NVray3wsPDzQeFVy/HyokAAAC4OQhkKHaOxCXrrR+Oa+vR88rKyZG3c45ivntXZ7//UEZ2liTpl4/nKSS8iQ7HJut0QprDSomsnAgAAICbhUCGYsVuN/R1VKxOJ1yS3W5X6qGfdPTr15WREGuOcfMto/B7ByolS0pIy1JqZraFHQMAAKAkI5ChWDmdkKaj51JkSzyrX956RRcP7TD32ZycFXRHNwW1fkQhQQFKSs+Sk03ycuOPAQAAAKzBv0RRrCReStemFfO096t3ZM/+35UvvxqNVLVLpDzLVVJaVo7Ss3KUmW2oeqA3zxMDAACAZQhkKFZ8Pd2V8PsRM4y5+wWq4j1Pybv2HXJzdVa23S7DMBR/KUsV/T31UKNQFuwAAACAZQhkKFYqli6lx4ZN1NSn7tdtnR+RT9OHlJrjoky7XZlZdqVl5cjFyabKZTw1uF1N1QrmeWIAAACwDoEMRVZycrImTZqk1q1b67777pP0xwqJj0bcruSl3+iS3OXp6qQzCemKS05Xdo6hgFLuuqNGgB5vXU21gnwtPgMAAACUdDbDMAyrmygOkpKS5Ofnp8TERPn68g/9gmQYht59912NGjVKZ8+eVZUqVfTrr7/K0/N/94IdiUvW11GxOnouRelZOcoxDJX381C7OkG6o3pZpikCAACgwOQlG3CFDIVSdrZdu09d1IXUTJXxclOj0NJycXHSL7/8osjISG3evNkce/bsWf30009q06aNWasR6KNqd3nzgGcAAAAUagQyFDpr95/RnG8OKzYpXYYkH3cXVShlKGvHB/r8vbeVk5Njjr3vvvs0Z84cVatW7Yrj8IBnAAAAFHYEMhQadruhYR/u0eq9Z5Tz/xNpDcOumB1r9dOmZcpJTTDHVq9eXfPnz1enTp2saRYAAADIBwQyWM5uN/Tj0fNauOGwth2/aNadJMV//44St35o1pzd3PXiv/6lUaNGysPDw4JuAQAAgPxDIINl7HZDW46e18c7f9eOE/E6k5DusN+Q5NOgo5J2fCYjO0NeYS1U+/5Bing0gjAGAACAYoFABkscik3SG5t/04+HzyshPUs5OYbshl3ZiXFy9Q+W9Ecgc/ENVJm7n5SzTzl5VG2kLE8XXUjNtLZ5AAAAIJ8QyHBTZWfb9cYPv+n97Sd1LjlDOYYhw5DSTkcr7pvFykm+oJAnXpeT2/+WsPe+NULONinbkGySyni5WXcCAAAAQD4ikOGm2XAgVou+PayoM0nKyjFkSFJaouI3/0fJe77RH9fEpMQt76v0Xf0d3nt5kY9gP081Ci19U/sGAAAACgqBDAXKbjd0/FyKXvvuiL6KilFapl02m+Riy9HF3V/r4ub/yJ6eYo53LVtJntUam9t/fmq5i5NNQ++uIRcXp5t4BgAAAEDBIZChwOw/laDhH+/RodhUh2CV8fsBxa9boszYo2bN5lZKAa16y6thZ9mcr/xt6SSpx22h6nhLSME3DgAAANwkBDLku/ikNHVe8IPOJjsuvpFzKVEXN76l1KgNDnXvW9rI/64B8vALUI7dkP1P6c3JJpX2dNXgdjXV746qN6N9AAAA4KYhkCFfdZ6/WfvPJF91n5GTrUuHtpjbroFVFXD30yoVeovsxh9XweySPF2d5O3uoqplvdThliA91rSK3Nycb84JAAAAADcRgQz5wm43dNfMb3XyYvo1x7j4lJFfi15K3PqB/Fs9Kp+GnWRzcjZvFMsxDJVyc1G72uX0UJNQtaheVk5Otpt0BgAAAMDNRyDDP5KQnK6n392pn44lOtSzU+KV+ON7Kn1nXzl5eJt13yb3ybtuWzl7+Zs1uyRXZ5uqlvXSgJZV1b1xKEEMAAAAJQKBDDfEbjfUZcF32n821aFu5GQredfnSvjxPRmZabI5uyig/VPmfpuzi0MYkyR3F5vuCgvUiLvDVCvY52a0DwAAABQKBDLkSWZmjv695TfNXHtI9r/sSzuxVxfXLVHWhVNmLfXA9/Jv1UdO7qWuejxvd2e90KmOet5WiatiAAAAKHEIZMi1t344qimrDyrnL/XspPO6uPHfunTw+z9VbfJuECH/1o9dM4z5e7poxsO3qkN4+QLrGQAAACjMCGT4Wympmeow9zud+csy9kZ2lpJ2rlLilvdlZGWYdbfyYQq4+2m5l695zWOGlvbUxPtuUbs6QQXWNwAAAFDYEchwTZmZOeq+dIv2/J50xT7DMBTz3hhlnok2a06evip9Vz951Wsvm83pqscM9HHVyA619WDDinJxufoYAAAAoKQgkOGqXlv/q2asP3bN/TabTd63tFH8mWjJ5iSfhp3k1+pROf9pRcU/8/Nw1ifPtlC1sj7cKwYAAAD8PwIZHMQnpanRK99eUTeyM2XkZMnJ3cuseTe4R5mxv8mn0b1yC6p21ePZJD3fsbqeuat2QbUMAAAAFFkEMkj6Yxn7drM26Fh8xhX7Lh3Zrosblsqj0q0qc88Qs25zcnbY/isvVyfN69VQ7cODC6RnAAAAoKgjkEH7TsfrvgVbr6hnXTyrixuWKu3oDklSSkKsvOtHyD0k7G+PWb+Crz555g7uEwMAAACug0BWgsVcTFGr6d8p6y91e1a6kn76WInbPpFy/rfXPfSWay5hf1kZDydtHNlWvt7uBdAxAAAAULwQyEqgS5ey1GDyN8r8S90wDKUd/knxG95QTlKcWXf2DlDpNgNVqk5r2WxXX5DDJmnBIw10760VCq5xAAAAoJghkJUwIz78WZ/sPnNFPSv+tOLXv670Y7v/V3Rylu9tXeXXoqec3DyveczKpd21YURbpicCAAAAeUQgKyHOJ15Sk6kbr7k/4/f9DmHMo3IDBdz9lFzLhF7zPT5uNi3v31SNqpbJ114BAACAkoJAVswlJKer8ZQNyvmbcV712it5z9fKSYlX6XaPq1StFtecnihJQ9tX15C2YTxTDAAAAPgHCGTFVHp6thpP/FqpV9mXef6k0o7ulF/TB82azeakcvePlpOnr5zcPK553NqBXvo8spXc3JwLoGsAAACgZCGQFUOjVmzVR7/EX1G3Z1xSwo/vKnnXF5I9R+4hteQRWtfc7+IXeN3j7vtXe1ZPBAAAAPIRgayYqTJmzRU1wzCU+usmJWx6Wzkp/wtqSdtXOgSya7k1uJQ+H9omX/sEAAAAILEs3l8sWrRIVapUkYeHh5o2bart27db3VKuXS2MZcYdU+y7Y3Rh9WwzjNlc3OR3xyMqe9/z1z2el4u0Z1w7whgAAABQQLhC9icffPCBhg8friVLlqhp06aaO3euIiIiFB0drcDA60/ns9onu484bNvTU5Twwwol714jGXaz7lmzmUq3fVyu/sHXPd6ece3k73Pte8kAAAAA/HM2wzAMq5soLJo2barbbrtNCxculCTZ7XaFhoZq8ODBGjNmzHXfm5SUJD8/PyUmJsrX1/dmtGuy2w1Ve+FLczs7MVZn/zNC9ksJZs2ldHkFtHtKntWbXPdYI9pV0+C76xRUqwAAAECxl5dswBWy/5eZmaldu3Zp7NixZs3JyUnt27fX1q1brxifkZGhjIwMczspKemm9Hk1pxPSHLadfQPlWqaiMi4lyObiLr8WPeR72wOyubhe8xihvq7aMLIdqycCAAAANxGB7P+dP39eOTk5CgoKcqgHBQXp4MGDV4yfOnWqJk2adLPau67UzGyHbZvNpoC7n1bilg9Uuk1/ufhef7ol0xMBAAAAa7Coxw0aO3asEhMTzdepU6cs68XLzUWhXo41t3JVVO7+0dcNY+1q+On4tM6EMQAAAMAiXCH7f2XLlpWzs7NiY2Md6rGxsQoOvnIBDHd3d7m7F45nclXw99RDzaprzoajuX5P1Pi75e3lVoBdAQAAAPg7XCH7f25ubmrcuLE2bNhg1ux2uzZs2KDmzZtb2Nnfc3KyqXP9CrolxOdvx64f1lzHp3UmjAEAAACFAIHsT4YPH6433nhDy5cv14EDB/TMM88oNTVV/fv3t7q1v1Uj0EfzejZU82qlr7r/wfoBOj6ts2oEBdzkzgAAAABcC1MW/6RHjx46d+6cJkyYoJiYGDVo0EBr1669YqGPwqpGoI9WPN5cv51P1ie7TuvipUyFBfuoV+NK8vDglxoAAAAobHgOWT6x8jlkAAAAAAqPvGQDpiwCAAAAgEUIZAAAAABgEQIZAAAAAFiEQAYAAAAAFiGQAQAAAIBFCGQAAAAAYBECGQAAAABYhEAGAAAAABYhkAEAAACARQhkAAAAAGARAhkAAAAAWIRABgAAAAAWIZABAAAAgEVcrG6guDAMQ5KUlJRkcScAAAAArHQ5E1zOCNdDIMsnycnJkqTQ0FCLOwEAAABQGCQnJ8vPz++6Y2xGbmIb/pbdbteZM2fk4+Mjm81maS9JSUkKDQ3VqVOn5Ovra2kvJQnfuzX43q3B924Nvndr8L1bg+/dGnzv+cMwDCUnJyskJEROTte/S4wrZPnEyclJFStWtLoNB76+vvxBsgDfuzX43q3B924Nvndr8L1bg+/dGnzv/9zfXRm7jEU9AAAAAMAiBDIAAAAAsAiBrBhyd3fXiy++KHd3d6tbKVH43q3B924Nvndr8L1bg+/dGnzv1uB7v/lY1AMAAAAALMIVMgAAAACwCIEMAAAAACxCIAMAAAAAixDIAAAAAMAiBLJiaNGiRapSpYo8PDzUtGlTbd++3eqWioypU6fqtttuk4+PjwIDA9W1a1dFR0c7jElPT9egQYNUpkwZeXt7q1u3boqNjXUYc/LkSXXu3FmlSpVSYGCgRo0apezsbIcxmzZtUqNGjeTu7q4aNWpo2bJlBX16RcK0adNks9k0dOhQs8Z3XjBOnz6tRx99VGXKlJGnp6fq1aunnTt3mvsNw9CECRNUvnx5eXp6qn379jp8+LDDMeLj49W7d2/5+vrK399fAwcOVEpKisOYffv2qVWrVvLw8FBoaKhmzJhxU86vMMrJydH48eNVtWpVeXp6qnr16nrppZf05/W1+N7zx+bNm9WlSxeFhITIZrNp1apVDvtv5vf80UcfqXbt2vLw8FC9evX05Zdf5vv5FhbX+96zsv6vvXsPqqJ84wD+BQ6HiwaoKIQIaOIVQRQ1vKckKo1pTCqDhNaomIiaITVWmjPkrYuXlLJQKw3UCW94G0RDMQRFEBACU7yD5AXFdAI8z+8Ph/25ivbjF7Ci38/MmfHs+5zd9332zO555l1eKxAREYEuXbqgUaNGcHBwwFtvvYXLly+r9sG819w/fd8fFBISAiMjIyxdulS1nXnXkNAzJTY2VvR6vaxZs0ZOnjwpEydOFBsbG7ly5YrWXWsQfH19Ze3atZKTkyOZmZkyfPhwcXJyktu3bysxISEh0qpVK0lMTJRjx47Jyy+/LL1791baKysrxc3NTXx8fCQjI0N27doltra28uGHHyoxZ86cEUtLS3nvvfckNzdXVqxYISYmJrJnz556He/TJi0tTVxcXMTd3V2mT5+ubGfOa9/169fF2dlZxo8fL6mpqXLmzBnZu3ev/PHHH0rMwoULxdraWrZu3SonTpyQESNGSOvWreXu3btKzNChQ8XDw0OOHDkihw4dkrZt20pAQIDSfvPmTbGzs5PAwEDJycmRmJgYsbCwkG+//bZex/u0iIyMlGbNmkl8fLwUFhbK5s2bpXHjxrJs2TIlhnmvHbt27ZI5c+ZIXFycAJAtW7ao2usrz4cPHxYTExNZvHix5ObmykcffSSmpqaSnZ1d5znQwpPyXlpaKj4+PrJx40b5/fffJSUlRXr27Cndu3dX7YN5r7l/+r5XiYuLEw8PD3FwcJCvvvpK1ca8a4cF2TOmZ8+eMnXqVOX9vXv3xMHBQRYsWKBhrxqukpISASBJSUkicv9mYmpqKps3b1Zi8vLyBICkpKSIyP2LorGxsRQXFysxUVFRYmVlJX///beIiMyePVs6d+6sOtaYMWPE19e3rof01CorKxNXV1dJSEiQAQMGKAUZc143IiIipG/fvo9tNxgMYm9vL0uWLFG2lZaWipmZmcTExIiISG5urgCQo0ePKjG7d+8WIyMjuXTpkoiIrFq1Spo0aaKch6pjt2/fvraH1CD4+fnJ22+/rdr2xhtvSGBgoIgw73Xl4R+o9Znn0aNHi5+fn6o/vXr1ksmTJ9fqGJ9GTyoMqqSlpQkAOXfunIgw77XhcXm/ePGitGzZUnJycsTZ2VlVkDHv2uIji8+Q8vJypKenw8fHR9lmbGwMHx8fpKSkaNizhuvmzZsAgKZNmwIA0tPTUVFRocpxhw4d4OTkpOQ4JSUFXbp0gZ2dnRLj6+uLW7du4eTJk0rMg/uoinmez9PUqVPh5+f3SF6Y87qxfft2eHl54c0330SLFi3g6emJ7777TmkvLCxEcXGxKmfW1tbo1auXKu82Njbw8vJSYnx8fGBsbIzU1FQlpn///tDr9UqMr68v8vPzcePGjboe5lOnd+/eSExMREFBAQDgxIkTSE5OxrBhwwAw7/WlPvPMa8+T3bx5E0ZGRrCxsQHAvNcVg8GAoKAghIeHo3Pnzo+0M+/aYkH2DLl69Sru3bun+lEKAHZ2diguLtaoVw2XwWDAjBkz0KdPH7i5uQEAiouLodfrlRtHlQdzXFxcXO05qGp7UsytW7dw9+7duhjOUy02NhbHjx/HggULHmljzuvGmTNnEBUVBVdXV+zduxdTpkxBWFgYfvjhBwD/zduTrifFxcVo0aKFql2n06Fp06Y1OjfPkw8++ABjx45Fhw4dYGpqCk9PT8yYMQOBgYEAmPf6Up95flwMz8P9vw+OiIhAQEAArKysADDvdWXRokXQ6XQICwurtp1515ZO6w4QPa2mTp2KnJwcJCcna92VZ9qFCxcwffp0JCQkwNzcXOvuPDcMBgO8vLzw2WefAQA8PT2Rk5ODb775BsHBwRr37tm1adMmbNiwAT///DM6d+6MzMxMzJgxAw4ODsw7PVcqKiowevRoiAiioqK07s4zLT09HcuWLcPx48dhZGSkdXeoGpwhe4bY2trCxMTkkdXnrly5Ant7e4161TCFhoYiPj4eBw4cgKOjo7Ld3t4e5eXlKC0tVcU/mGN7e/tqz0FV25NirKysYGFhUdvDeaqlp6ejpKQE3bp1g06ng06nQ1JSEpYvXw6dTgc7OzvmvA68+OKL6NSpk2pbx44dcf78eQD/zduTrif29vYoKSlRtVdWVuL69es1OjfPk/DwcGWWrEuXLggKCsLMmTOV2WHmvX7UZ54fF/M8n4eqYuzcuXNISEhQZscA5r0uHDp0CCUlJXByclLus+fOncOsWbPg4uICgHnXGguyZ4her0f37t2RmJiobDMYDEhMTIS3t7eGPWs4RAShoaHYsmUL9u/fj9atW6vau3fvDlNTU1WO8/Pzcf78eSXH3t7eyM7OVl3Yqm44VT+Avb29Vfuoinkez9PgwYORnZ2NzMxM5eXl5YXAwEDl38x57evTp88j/6VDQUEBnJ2dAQCtW7eGvb29Kme3bt1CamqqKu+lpaVIT09XYvbv3w+DwYBevXopMQcPHkRFRYUSk5CQgPbt26NJkyZ1Nr6n1Z07d2BsrL71mpiYwGAwAGDe60t95pnXHrWqYuzUqVPYt28fmjVrpmpn3mtfUFAQsrKyVPdZBwcHhIeHY+/evQCYd81pvaoI1a7Y2FgxMzOTdevWSW5urkyaNElsbGxUq8/R402ZMkWsra3l119/laKiIuV1584dJSYkJEScnJxk//79cuzYMfH29hZvb2+lvWoJ9iFDhkhmZqbs2bNHmjdvXu0S7OHh4ZKXlycrV658rpdgf9iDqyyKMOd1IS0tTXQ6nURGRsqpU6dkw4YNYmlpKevXr1diFi5cKDY2NrJt2zbJysqS119/vdplwT09PSU1NVWSk5PF1dVVtUxyaWmp2NnZSVBQkOTk5EhsbKxYWlo+V8uvPyg4OFhatmypLHsfFxcntra2Mnv2bCWGea8dZWVlkpGRIRkZGQJAvvzyS8nIyFBW86uvPB8+fFh0Op18/vnnkpeXJ3Pnzn2mlwF/Ut7Ly8tlxIgR4ujoKJmZmar77IMr9zHvNfdP3/eHPbzKogjzriUWZM+gFStWiJOTk+j1eunZs6ccOXJE6y41GACqfa1du1aJuXv3rrz77rvSpEkTsbS0lFGjRklRUZFqP2fPnpVhw4aJhYWF2NrayqxZs6SiokIVc+DAAenatavo9Xpp06aN6hjPu4cLMua8buzYsUPc3NzEzMxMOnToIKtXr1a1GwwG+fjjj8XOzk7MzMxk8ODBkp+fr4q5du2aBAQESOPGjcXKykomTJggZWVlqpgTJ05I3759xczMTFq2bCkLFy6s87E9rW7duiXTp08XJycnMTc3lzZt2sicOXNUP0aZ99px4MCBaq/nwcHBIlK/ed60aZO0a9dO9Hq9dO7cWXbu3Fln49bak/JeWFj42PvsgQMHlH0w7zX3T9/3h1VXkDHv2jESEamPmTgiIiIiIiJS49+QERERERERaYQFGRERERERkUZYkBEREREREWmEBRkREREREZFGWJARERERERFphAUZERERERGRRliQERERERERaYQFGRERERERkUZYkBEREdUyIyMjbN26tdb36+LigqVLl9b6fomISDssyIiIqMFKSUmBiYkJ/Pz8avxZLYub8ePHw8jICEZGRtDr9Wjbti3mz5+PysrKJ37u6NGjmDRpUj31koiI6gMLMiIiarCio6Mxbdo0HDx4EJcvX9a6OzUydOhQFBUV4dSpU5g1axbmzZuHJUuWVBtbXl4OAGjevDksLS3rs5tERFTHWJAREVGDdPv2bWzcuBFTpkyBn58f1q1b90jMjh070KNHD5ibm8PW1hajRo0CAAwcOBDnzp3DzJkzlZkqAJg3bx66du2q2sfSpUvh4uKivD969CheffVV2NrawtraGgMGDMDx48dr3H8zMzPY29vD2dkZU6ZMgY+PD7Zv3w7g/gzayJEjERkZCQcHB7Rv3x7Ao7N6paWlmDx5Muzs7GBubg43NzfEx8cr7cnJyejXrx8sLCzQqlUrhIWF4a+//qpxX4mIqO6wICMiogZp06ZN6NChA9q3b49x48ZhzZo1EBGlfefOnRg1ahSGDx+OjIwMJCYmomfPngCAuLg4ODo6Yv78+SgqKkJRUdH/fNyysjIEBwcjOTkZR44cgaurK4YPH46ysrJ/NR4LCwtlJgwAEhMTkZ+fj4SEBFWRVcVgMGDYsGE4fPgw1q9fj9zcXCxcuBAmJiYAgNOnT2Po0KHw9/dHVlYWNm7ciOTkZISGhv6rfhIRUe3Sad0BIiKi/0d0dDTGjRsH4P7jfzdv3kRSUhIGDhwIAIiMjMTYsWPx6aefKp/x8PAAADRt2hQmJiZ44YUXYG9vX6PjDho0SPV+9erVsLGxQVJSEl577bUaj0NEkJiYiL1792LatGnK9kaNGuH777+HXq+v9nP79u1DWloa8vLy0K5dOwBAmzZtlPYFCxYgMDAQM2bMAAC4urpi+fLlGDBgAKKiomBubl7jvhIRUe3jDBkRETU4+fn5SEtLQ0BAAABAp9NhzJgxiI6OVmIyMzMxePDgWj/2lStXMHHiRLi6usLa2hpWVla4ffs2zp8/X6P9xMfHo3HjxjA3N8ewYcMwZswYzJs3T2nv0qXLY4sx4P74HB0dlWLsYSdOnMC6devQuHFj5eXr6wuDwYDCwsIa9ZWIiOoOZ8iIiKjBiY6ORmVlJRwcHJRtIgIzMzN8/fXXsLa2hoWFRY33a2xsrHrsEQAqKipU74ODg3Ht2jUsW7YMzs7OMDMzg7e3t+pxw//FK6+8gqioKOj1ejg4OECnU9+SGzVq9MTP/9P4bt++jcmTJyMsLOyRNicnpxr1lYiI6g4LMiIialAqKyvx448/4osvvsCQIUNUbSNHjkRMTAxCQkLg7u6OxMRETJgwodr96PV63Lt3T7WtefPmKC4uhogoC31kZmaqYg4fPoxVq1Zh+PDhAIALFy7g6tWrNR5Ho0aN0LZt2xp/roq7uzsuXryIgoKCamfJunXrhtzc3H91DCIiqnt8ZJGIiBqU+Ph43LhxA++88w7c3NxUL39/f+Wxxblz5yImJgZz585FXl4esrOzsWjRImU/Li4uOHjwIC5duqQUVAMHDsSff/6JxYsX4/Tp01i5ciV2796tOr6rqyt++ukn5OXlITU1FYGBgf/XbNy/NWDAAPTv3x/+/v5ISEhAYWEhdu/ejT179gAAIiIi8NtvvyE0NBSZmZk4deoUtm3bxkU9iIieMizIiIioQYmOjoaPjw+sra0fafP398exY8eQlZWFgQMHYvPmzdi+fTu6du2KQYMGIS0tTYmdP38+zp49i5deegnNmzcHAHTs2BGrVq3CypUr4eHhgbS0NLz//vuPHP/GjRvo1q0bgoKCEBYWhhYtWtTtoB/jl19+QY8ePRAQEIBOnTph9uzZyqyfu7s7kpKSUFBQgH79+sHT0xOffPKJ6jFPIiLSnpE8/LA8ERERERER1QvOkBEREREREWmEBRkREREREZFGWJARERERERFphAUZERERERGRRliQERERERERaYQFGRERERERkUZYkBEREREREWmEBRkREREREZFGWJARERERERFphAUZERERERGRRliQERERERERaeQ/fsEZ596PZekAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1009,61 +1018,81 @@ } ], "source": [ + "import pandas as pd\n", + "from sklearn.model_selection import train_test_split\n", "from sklearn.ensemble import RandomForestRegressor\n", - "from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n", - "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n", + "from sklearn.model_selection import cross_val_score\n", "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import time\n", + "import numpy as np\n", "\n", - "# Удаление строк с NaN\n", - "feature_matrix = feature_matrix.dropna()\n", - "val_feature_matrix = val_feature_matrix.dropna()\n", - "test_feature_matrix = test_feature_matrix.dropna()\n", + "# Загрузка данных\n", + "df = pd.read_csv(\"..//static//csv//jio_mart_items.csv\").head(2000)\n", + "\n", + "# Создание нового признака 'relative_price'\n", + "mean_price_by_category = df.groupby('category')['price'].transform('mean')\n", + "df['relative_price'] = df['price'] / mean_price_by_category\n", + "\n", + "# Предобработка данных\n", + "# Преобразуем категориальные переменные в числовые\n", + "df = pd.get_dummies(df, drop_first=True)\n", + "\n", + "# Разделение данных на признаки и целевую переменную\n", + "X = df.drop('price', axis=1)\n", + "y = df['price']\n", "\n", "# Разделение данных на обучающую и тестовую выборки\n", - "X_train = feature_matrix.drop('price', axis=1)\n", - "y_train = feature_matrix['price']\n", - "X_val = val_feature_matrix.drop('price', axis=1)\n", - "y_val = val_feature_matrix['price']\n", - "X_test = test_feature_matrix.drop('price', axis=1)\n", - "y_test = test_feature_matrix['price']\n", - "\n", - "# Приводим тестовую выборку к тем же столбцам, что и обучающая (если есть новые признаки)\n", - "X_test = X_test.reindex(columns=X_train.columns, fill_value=0)\n", - "\n", - "# Кодирование категориальных переменных с использованием one-hot encoding\n", - "X_train = pd.get_dummies(X_train, drop_first=True)\n", - "X_val = pd.get_dummies(X_val, drop_first=True)\n", - "X_test = pd.get_dummies(X_test, drop_first=True)\n", - "\n", - "# Разбиваем данные на тренировочные и тестовые\n", - "X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# Выбор модели\n", "model = RandomForestRegressor(random_state=42)\n", "\n", + "# Измерение времени обучения и предсказания\n", + "start_time = time.time()\n", + "\n", "# Обучение модели\n", "model.fit(X_train, y_train)\n", "\n", - "# Предсказания и оценка\n", + "# Предсказание и оценка\n", "y_pred = model.predict(X_test)\n", "\n", + "end_time = time.time()\n", + "training_time = end_time - start_time\n", + "\n", "rmse = mean_squared_error(y_test, y_pred, squared=False)\n", "r2 = r2_score(y_test, y_pred)\n", "mae = mean_absolute_error(y_test, y_pred)\n", "\n", "print(f\"RMSE: {rmse}\")\n", "print(f\"R²: {r2}\")\n", - "print(f\"MAE: {mae} \\n\")\n", + "print(f\"MAE: {mae}\")\n", + "print(f\"Training Time: {training_time} seconds\")\n", "\n", "# Кросс-валидация\n", "scores = cross_val_score(model, X_train, y_train, cv=5, scoring='neg_mean_squared_error')\n", "rmse_cv = (-scores.mean())**0.5\n", - "print(f\"Кросс-валидация RMSE: {rmse_cv} \\n\")\n", + "print(f\"Cross-validated RMSE: {rmse_cv}\")\n", "\n", "# Анализ важности признаков\n", "feature_importances = model.feature_importances_\n", "feature_names = X_train.columns\n", "\n", + "importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})\n", + "importance_df = importance_df.sort_values(by='Importance', ascending=False)\n", + "\n", + "# Отобразим только топ-20 признаков\n", + "top_n = 20\n", + "importance_df_top = importance_df.head(top_n)\n", + "\n", + "plt.figure(figsize=(10, 8))\n", + "sns.barplot(x='Importance', y='Feature', data=importance_df_top, palette='viridis')\n", + "plt.title(f'Top {top_n} Feature Importance')\n", + "plt.xlabel('Importance')\n", + "plt.ylabel('Feature')\n", + "plt.show()\n", + "\n", "# Проверка на переобучение\n", "y_train_pred = model.predict(X_train)\n", "\n", @@ -1074,16 +1103,18 @@ "print(f\"Train RMSE: {rmse_train}\")\n", "print(f\"Train R²: {r2_train}\")\n", "print(f\"Train MAE: {mae_train}\")\n", - "print()\n", + "\n", + "correlation = np.corrcoef(y_test, y_pred)[0, 1]\n", + "print(f\"Корреляция: {correlation:.2f}\")\n", "\n", "# Визуализация результатов\n", "plt.figure(figsize=(10, 6))\n", "plt.scatter(y_test, y_pred, alpha=0.5)\n", "plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)\n", - "plt.xlabel('Фактическая цена')\n", - "plt.ylabel('Прогнозируемая цена')\n", - "plt.title('Фактическая цена по сравнению с прогнозируемой')\n", - "plt.show()\n" + "plt.xlabel('Actual Price')\n", + "plt.ylabel('Predicted Price')\n", + "plt.title('Actual vs Predicted Price')\n", + "plt.show()" ] }, { @@ -1092,15 +1123,27 @@ "source": [ "# Выводы и итог \n", "\n", - "**Модель случайного леса (RandomForestRegressor)** продемонстрировано хорошие результаты при прогнозировании цен на товары. Метрики качества и кросс-валидация свидетельствуют о том, что модель не подвержена сильному переобучению и может быть использована для практических целей.\n", + "**Время обучения:**\n", "\n", - "*Точность предсказаний:* Модель демонстрирует довольно высокий R² (0.2203), что указывает на большую часть вариации целевого признака (цены недвижимости). Однако, значения RMSE и MAE остаются высоки (0.4377 и 0.3118), что свидетельствует о том, что модель не всегда точно предсказывает значения, особенно для объектов с высокими или низкими ценами. \n", + "Время обучения модели составляет 1.32 секунды, что является средним. Это указывает на то, что модель обучается быстро и может эффективно обрабатывать данные.\n", "\n", - "*Переобучение:* Разница между RMSE на обучающей и тестовой выборках незначительна, что указывает на то, что модель не склонна к переобучению. Однако в будущем стоит следить за этой метрикой при добавлении новых признаков или усложнении модели, чтобы избежать излишней подгонки под тренировочные данные. Также стоит быть осторожным и продолжать мониторинг этого показателя. \n", + "**Предсказательная способность:**\n", "\n", - "*Кросс-валидация:* При кросс-валидации наблюдается небольшое увеличение ошибки RMSE по сравнению с тестовой выборкой (рост на 2-3%). Это может указывать на небольшую нестабильность модели при использовании разных подвыборок данных. Для повышения устойчивости модели возможно стоит провести дальнейшую настройку гиперпараметров. \n", + "MAE (Mean Absolute Error): 28.6974 — это средняя абсолютная ошибка предсказаний модели. Значение MAE невелико, что означает, что предсказанные значения в среднем отклоняются от реальных на 28.6974. Это может быть приемлемым уровнем ошибки.\n", "\n", - "*Рекомендации:* Следует уделить внимание дополнительной обработке категориальных признаков, улучшению метода feature engineering, а также возможной оптимизации модели (например, через подбор гиперпараметров) для повышения точности предсказаний на экстремальных значениях." + "RMSE (Mean Squared Error): 534.088 — это среднее значение квадратов ошибок. Хотя MSE высокое, оно также может быть связано с большими значениями целевой переменной (цен).\n", + "\n", + "R² (коэффициент детерминации): 0.609 — это средний уровень, указывающий на то, что модель объясняет 60,9% вариации целевой переменной. Это свидетельствует о средней предсказательной способности модели.\n", + "\n", + "**Корреляция:**\n", + "\n", + "Корреляция (0.82) между предсказанными и реальными значениями говорит о том, что предсказания модели имеют сильную линейную зависимость с реальными значениями. Это подтверждает, что модель хорошо обучена и делает точные прогнозы.\n", + "\n", + "**Надежность (кросс-валидация):**\n", + "\n", + "Среднее RMSE (кросс-валидация): 133.75 — это значительно ниже, чем обычное RMSE, что указывает на отсутствие проблем с переобучением - что и подтверждается тестом переобучением. \n", + "\n", + "Результаты визуализации важности признаков, полученные из линейной регрессии, помогают понять, какие из входных переменных наибольшим образом влияют на целевую переменную (price). Это может быть полезным для дальнейшего анализа и при принятии бизнес-решений, связанных с управлением и ценообразованием в Jio Mart." ] } ], -- 2.25.1