diff --git a/lab_4/lab4.ipynb b/lab_4/lab4.ipynb
index 4104768..956f170 100644
--- a/lab_4/lab4.ipynb
+++ b/lab_4/lab4.ipynb
@@ -25,15 +25,15 @@
"metadata": {},
"source": [
"# Определим бизнес цели:\n",
- "## 1- Прогнозирование возраста миллиардера(классификация)\n",
- "## 2- Прогнозирование состояния миллиардера(регрессия)"
+ "## 1- Прогнозирование состояния миллиардера(регрессия)\n",
+ "## 2- Прогнозирование возраста миллиардера(классификация)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Подготовим данные: категоризируем колонку age"
+ "# Проверим данные на пустые значения"
]
},
{
@@ -83,1901 +83,6 @@
" print(f\"{i} процент пустых значений: %{null_rate:.2f}\")"
]
},
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " Rank Name Networth Country \\\n",
- "0 1 Elon Musk 219.0 United States \n",
- "1 2 Jeff Bezos 171.0 United States \n",
- "2 3 Bernard Arnault & family 158.0 France \n",
- "3 4 Bill Gates 129.0 United States \n",
- "4 5 Warren Buffett 118.0 United States \n",
- "\n",
- " Source Industry Age_category \n",
- "0 Tesla, SpaceX Automotive 50-60 \n",
- "1 Amazon Technology 50-60 \n",
- "2 LVMH Fashion & Retail 70-80 \n",
- "3 Microsoft Technology 60-70 \n",
- "4 Berkshire Hathaway Finance & Investments 80+ \n"
- ]
- }
- ],
- "source": [
- "\n",
- "\n",
- "bins = [0, 30, 40, 50, 60, 70, 80, 101] # границы для возрастных категорий\n",
- "labels = ['Under 30', '30-40', '40-50', '50-60', '60-70', '70-80', '80+'] # метки для категорий\n",
- "\n",
- "df[\"Age_category\"] = pd.cut(df['Age'], bins=bins, labels=labels, right=False)\n",
- "# Удаляем оригинальные колонки 'country', 'industry' и 'source' из исходного DataFrame\n",
- "df.drop(columns=['Age'], inplace=True)\n",
- "\n",
- "# Просмотр результата\n",
- "print(df.head())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'X_train'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Rank | \n",
- " Name | \n",
- " Networth | \n",
- " Country | \n",
- " Source | \n",
- " Industry | \n",
- " Age_category | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1909 | \n",
- " 1818 | \n",
- " Tran Ba Duong & family | \n",
- " 1.6 | \n",
- " Vietnam | \n",
- " automotive | \n",
- " Automotive | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 2099 | \n",
- " 2076 | \n",
- " Mark Dixon | \n",
- " 1.4 | \n",
- " United Kingdom | \n",
- " office real estate | \n",
- " Real Estate | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 1392 | \n",
- " 1341 | \n",
- " Yingzhuo Xu | \n",
- " 2.3 | \n",
- " China | \n",
- " agribusiness | \n",
- " Food & Beverage | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 627 | \n",
- " 622 | \n",
- " Bruce Flatt | \n",
- " 4.6 | \n",
- " Canada | \n",
- " money management | \n",
- " Finance & Investments | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 527 | \n",
- " 523 | \n",
- " Li Liangbin | \n",
- " 5.2 | \n",
- " China | \n",
- " lithium | \n",
- " Manufacturing | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 84 | \n",
- " 85 | \n",
- " Theo Albrecht, Jr. & family | \n",
- " 18.7 | \n",
- " Germany | \n",
- " Aldi, Trader Joe's | \n",
- " Fashion & Retail | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 633 | \n",
- " 622 | \n",
- " Tony Tamer | \n",
- " 4.6 | \n",
- " United States | \n",
- " private equity | \n",
- " Finance & Investments | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 922 | \n",
- " 913 | \n",
- " Bob Gaglardi | \n",
- " 3.3 | \n",
- " Canada | \n",
- " hotels | \n",
- " Real Estate | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- " 2178 | \n",
- " 2076 | \n",
- " Eugene Wu | \n",
- " 1.4 | \n",
- " Taiwan | \n",
- " finance | \n",
- " Finance & Investments | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 415 | \n",
- " 411 | \n",
- " Leonard Stern | \n",
- " 6.2 | \n",
- " United States | \n",
- " real estate | \n",
- " Real Estate | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- "
\n",
- "
2080 rows × 7 columns
\n",
- "
"
- ],
- "text/plain": [
- " Rank Name Networth Country \\\n",
- "1909 1818 Tran Ba Duong & family 1.6 Vietnam \n",
- "2099 2076 Mark Dixon 1.4 United Kingdom \n",
- "1392 1341 Yingzhuo Xu 2.3 China \n",
- "627 622 Bruce Flatt 4.6 Canada \n",
- "527 523 Li Liangbin 5.2 China \n",
- "... ... ... ... ... \n",
- "84 85 Theo Albrecht, Jr. & family 18.7 Germany \n",
- "633 622 Tony Tamer 4.6 United States \n",
- "922 913 Bob Gaglardi 3.3 Canada \n",
- "2178 2076 Eugene Wu 1.4 Taiwan \n",
- "415 411 Leonard Stern 6.2 United States \n",
- "\n",
- " Source Industry Age_category \n",
- "1909 automotive Automotive 60-70 \n",
- "2099 office real estate Real Estate 60-70 \n",
- "1392 agribusiness Food & Beverage 50-60 \n",
- "627 money management Finance & Investments 50-60 \n",
- "527 lithium Manufacturing 50-60 \n",
- "... ... ... ... \n",
- "84 Aldi, Trader Joe's Fashion & Retail 70-80 \n",
- "633 private equity Finance & Investments 60-70 \n",
- "922 hotels Real Estate 80+ \n",
- "2178 finance Finance & Investments 70-80 \n",
- "415 real estate Real Estate 80+ \n",
- "\n",
- "[2080 rows x 7 columns]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "'y_train'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Age_category | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1909 | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 2099 | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 1392 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 627 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 527 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 84 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 633 | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 922 | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- " 2178 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 415 | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- "
\n",
- "
2080 rows × 1 columns
\n",
- "
"
- ],
- "text/plain": [
- " Age_category\n",
- "1909 60-70\n",
- "2099 60-70\n",
- "1392 50-60\n",
- "627 50-60\n",
- "527 50-60\n",
- "... ...\n",
- "84 70-80\n",
- "633 60-70\n",
- "922 80+\n",
- "2178 70-80\n",
- "415 80+\n",
- "\n",
- "[2080 rows x 1 columns]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "'X_test'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Rank | \n",
- " Name | \n",
- " Networth | \n",
- " Country | \n",
- " Source | \n",
- " Industry | \n",
- " Age_category | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 2075 | \n",
- " 2076 | \n",
- " Radhe Shyam Agarwal | \n",
- " 1.4 | \n",
- " India | \n",
- " consumer goods | \n",
- " Fashion & Retail | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 1529 | \n",
- " 1513 | \n",
- " Robert Duggan | \n",
- " 2.0 | \n",
- " United States | \n",
- " pharmaceuticals | \n",
- " Healthcare | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 1803 | \n",
- " 1729 | \n",
- " Yao Kuizhang | \n",
- " 1.7 | \n",
- " China | \n",
- " beverages | \n",
- " Food & Beverage | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 425 | \n",
- " 424 | \n",
- " Alexei Kuzmichev | \n",
- " 6.0 | \n",
- " Russia | \n",
- " oil, banking, telecom | \n",
- " Energy | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 2597 | \n",
- " 2578 | \n",
- " Ramesh Genomal | \n",
- " 1.0 | \n",
- " Philippines | \n",
- " apparel | \n",
- " Fashion & Retail | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 935 | \n",
- " 913 | \n",
- " Alfred Oetker | \n",
- " 3.3 | \n",
- " Germany | \n",
- " consumer goods | \n",
- " Fashion & Retail | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 1541 | \n",
- " 1513 | \n",
- " Thomas Lee | \n",
- " 2.0 | \n",
- " United States | \n",
- " private equity | \n",
- " Finance & Investments | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 1646 | \n",
- " 1645 | \n",
- " Roberto Angelini Rossi | \n",
- " 1.8 | \n",
- " Chile | \n",
- " forestry, mining | \n",
- " diversified | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 376 | \n",
- " 375 | \n",
- " Patrick Drahi | \n",
- " 6.6 | \n",
- " France | \n",
- " telecom | \n",
- " Telecom | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 1894 | \n",
- " 1818 | \n",
- " Gerald Schwartz | \n",
- " 1.6 | \n",
- " Canada | \n",
- " finance | \n",
- " Finance & Investments | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- "
\n",
- "
520 rows × 7 columns
\n",
- "
"
- ],
- "text/plain": [
- " Rank Name Networth Country \\\n",
- "2075 2076 Radhe Shyam Agarwal 1.4 India \n",
- "1529 1513 Robert Duggan 2.0 United States \n",
- "1803 1729 Yao Kuizhang 1.7 China \n",
- "425 424 Alexei Kuzmichev 6.0 Russia \n",
- "2597 2578 Ramesh Genomal 1.0 Philippines \n",
- "... ... ... ... ... \n",
- "935 913 Alfred Oetker 3.3 Germany \n",
- "1541 1513 Thomas Lee 2.0 United States \n",
- "1646 1645 Roberto Angelini Rossi 1.8 Chile \n",
- "376 375 Patrick Drahi 6.6 France \n",
- "1894 1818 Gerald Schwartz 1.6 Canada \n",
- "\n",
- " Source Industry Age_category \n",
- "2075 consumer goods Fashion & Retail 70-80 \n",
- "1529 pharmaceuticals Healthcare 70-80 \n",
- "1803 beverages Food & Beverage 50-60 \n",
- "425 oil, banking, telecom Energy 50-60 \n",
- "2597 apparel Fashion & Retail 70-80 \n",
- "... ... ... ... \n",
- "935 consumer goods Fashion & Retail 50-60 \n",
- "1541 private equity Finance & Investments 70-80 \n",
- "1646 forestry, mining diversified 70-80 \n",
- "376 telecom Telecom 50-60 \n",
- "1894 finance Finance & Investments 80+ \n",
- "\n",
- "[520 rows x 7 columns]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "'y_test'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Age_category | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 2075 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 1529 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 1803 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 425 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 2597 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 935 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 1541 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 1646 | \n",
- " 70-80 | \n",
- "
\n",
- " \n",
- " 376 | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- " 1894 | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- "
\n",
- "
520 rows × 1 columns
\n",
- "
"
- ],
- "text/plain": [
- " Age_category\n",
- "2075 70-80\n",
- "1529 70-80\n",
- "1803 50-60\n",
- "425 50-60\n",
- "2597 70-80\n",
- "... ...\n",
- "935 50-60\n",
- "1541 70-80\n",
- "1646 70-80\n",
- "376 50-60\n",
- "1894 80+\n",
- "\n",
- "[520 rows x 1 columns]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from utils import split_stratified_into_train_val_test\n",
- "\n",
- "X_train, X_val, X_test, y_train, y_val, y_test = split_stratified_into_train_val_test(\n",
- " df, stratify_colname=\"Age_category\", frac_train=0.80, frac_val=0, frac_test=0.20, random_state=9\n",
- ")\n",
- "\n",
- "display(\"X_train\", X_train)\n",
- "display(\"y_train\", y_train)\n",
- "\n",
- "display(\"X_test\", X_test)\n",
- "display(\"y_test\", y_test)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Формирование конвейера для классификации данных\n",
- "## preprocessing_num -- конвейер для обработки числовых данных: заполнение пропущенных значений и стандартизация\n",
- "## preprocessing_cat -- конвейер для обработки категориальных данных: заполнение пропущенных данных и унитарное кодирование\n",
- "## features_preprocessing -- трансформер для предобработки признаков\n",
- "## features_engineering -- трансформер для конструирования признаков\n",
- "## drop_columns -- трансформер для удаления колонок\n",
- "## pipeline_end -- основной конвейер предобработки данных и конструирования признаков"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " prepocessing_num__Networth | \n",
- " prepocessing_cat__Country_Argentina | \n",
- " prepocessing_cat__Country_Australia | \n",
- " prepocessing_cat__Country_Austria | \n",
- " prepocessing_cat__Country_Barbados | \n",
- " prepocessing_cat__Country_Belgium | \n",
- " prepocessing_cat__Country_Belize | \n",
- " prepocessing_cat__Country_Brazil | \n",
- " prepocessing_cat__Country_Bulgaria | \n",
- " prepocessing_cat__Country_Canada | \n",
- " ... | \n",
- " prepocessing_cat__Industry_Logistics | \n",
- " prepocessing_cat__Industry_Manufacturing | \n",
- " prepocessing_cat__Industry_Media & Entertainment | \n",
- " prepocessing_cat__Industry_Metals & Mining | \n",
- " prepocessing_cat__Industry_Real Estate | \n",
- " prepocessing_cat__Industry_Service | \n",
- " prepocessing_cat__Industry_Sports | \n",
- " prepocessing_cat__Industry_Technology | \n",
- " prepocessing_cat__Industry_Telecom | \n",
- " prepocessing_cat__Industry_diversified | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1909 | \n",
- " -0.309917 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 2099 | \n",
- " -0.329245 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 1392 | \n",
- " -0.242268 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 627 | \n",
- " -0.019995 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 527 | \n",
- " 0.037990 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 84 | \n",
- " 1.342637 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 633 | \n",
- " -0.019995 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 922 | \n",
- " -0.145628 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 2178 | \n",
- " -0.329245 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " 415 | \n",
- " 0.134630 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
2080 rows × 860 columns
\n",
- "
"
- ],
- "text/plain": [
- " prepocessing_num__Networth prepocessing_cat__Country_Argentina \\\n",
- "1909 -0.309917 0.0 \n",
- "2099 -0.329245 0.0 \n",
- "1392 -0.242268 0.0 \n",
- "627 -0.019995 0.0 \n",
- "527 0.037990 0.0 \n",
- "... ... ... \n",
- "84 1.342637 0.0 \n",
- "633 -0.019995 0.0 \n",
- "922 -0.145628 0.0 \n",
- "2178 -0.329245 0.0 \n",
- "415 0.134630 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Australia prepocessing_cat__Country_Austria \\\n",
- "1909 0.0 0.0 \n",
- "2099 0.0 0.0 \n",
- "1392 0.0 0.0 \n",
- "627 0.0 0.0 \n",
- "527 0.0 0.0 \n",
- "... ... ... \n",
- "84 0.0 0.0 \n",
- "633 0.0 0.0 \n",
- "922 0.0 0.0 \n",
- "2178 0.0 0.0 \n",
- "415 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Barbados prepocessing_cat__Country_Belgium \\\n",
- "1909 0.0 0.0 \n",
- "2099 0.0 0.0 \n",
- "1392 0.0 0.0 \n",
- "627 0.0 0.0 \n",
- "527 0.0 0.0 \n",
- "... ... ... \n",
- "84 0.0 0.0 \n",
- "633 0.0 0.0 \n",
- "922 0.0 0.0 \n",
- "2178 0.0 0.0 \n",
- "415 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Belize prepocessing_cat__Country_Brazil \\\n",
- "1909 0.0 0.0 \n",
- "2099 0.0 0.0 \n",
- "1392 0.0 0.0 \n",
- "627 0.0 0.0 \n",
- "527 0.0 0.0 \n",
- "... ... ... \n",
- "84 0.0 0.0 \n",
- "633 0.0 0.0 \n",
- "922 0.0 0.0 \n",
- "2178 0.0 0.0 \n",
- "415 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Bulgaria prepocessing_cat__Country_Canada \\\n",
- "1909 0.0 0.0 \n",
- "2099 0.0 0.0 \n",
- "1392 0.0 0.0 \n",
- "627 0.0 1.0 \n",
- "527 0.0 0.0 \n",
- "... ... ... \n",
- "84 0.0 0.0 \n",
- "633 0.0 0.0 \n",
- "922 0.0 1.0 \n",
- "2178 0.0 0.0 \n",
- "415 0.0 0.0 \n",
- "\n",
- " ... prepocessing_cat__Industry_Logistics \\\n",
- "1909 ... 0.0 \n",
- "2099 ... 0.0 \n",
- "1392 ... 0.0 \n",
- "627 ... 0.0 \n",
- "527 ... 0.0 \n",
- "... ... ... \n",
- "84 ... 0.0 \n",
- "633 ... 0.0 \n",
- "922 ... 0.0 \n",
- "2178 ... 0.0 \n",
- "415 ... 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Manufacturing \\\n",
- "1909 0.0 \n",
- "2099 0.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 1.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 0.0 \n",
- "2178 0.0 \n",
- "415 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Media & Entertainment \\\n",
- "1909 0.0 \n",
- "2099 0.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 0.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 0.0 \n",
- "2178 0.0 \n",
- "415 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Metals & Mining \\\n",
- "1909 0.0 \n",
- "2099 0.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 0.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 0.0 \n",
- "2178 0.0 \n",
- "415 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Real Estate \\\n",
- "1909 0.0 \n",
- "2099 1.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 0.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 1.0 \n",
- "2178 0.0 \n",
- "415 1.0 \n",
- "\n",
- " prepocessing_cat__Industry_Service prepocessing_cat__Industry_Sports \\\n",
- "1909 0.0 0.0 \n",
- "2099 0.0 0.0 \n",
- "1392 0.0 0.0 \n",
- "627 0.0 0.0 \n",
- "527 0.0 0.0 \n",
- "... ... ... \n",
- "84 0.0 0.0 \n",
- "633 0.0 0.0 \n",
- "922 0.0 0.0 \n",
- "2178 0.0 0.0 \n",
- "415 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Technology \\\n",
- "1909 0.0 \n",
- "2099 0.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 0.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 0.0 \n",
- "2178 0.0 \n",
- "415 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Telecom \\\n",
- "1909 0.0 \n",
- "2099 0.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 0.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 0.0 \n",
- "2178 0.0 \n",
- "415 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_diversified \n",
- "1909 0.0 \n",
- "2099 0.0 \n",
- "1392 0.0 \n",
- "627 0.0 \n",
- "527 0.0 \n",
- "... ... \n",
- "84 0.0 \n",
- "633 0.0 \n",
- "922 0.0 \n",
- "2178 0.0 \n",
- "415 0.0 \n",
- "\n",
- "[2080 rows x 860 columns]"
- ]
- },
- "execution_count": 37,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "\n",
- "from sklearn.compose import ColumnTransformer\n",
- "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
- "from sklearn.impute import SimpleImputer\n",
- "from sklearn.pipeline import Pipeline\n",
- "import pandas as pd\n",
- "\n",
- "# Исправляем ColumnTransformer с сохранением имен колонок\n",
- "columns_to_drop = [\"Age_category\", \"Rank \", \"Name\"]\n",
- "\n",
- "num_columns = [\n",
- " column\n",
- " for column in X_train.columns\n",
- " if column not in columns_to_drop and X_train[column].dtype != \"object\"\n",
- "]\n",
- "cat_columns = [\n",
- " column\n",
- " for column in X_train.columns\n",
- " if column not in columns_to_drop and X_train[column].dtype == \"object\"\n",
- "]\n",
- "\n",
- "# Предобработка числовых данных\n",
- "num_imputer = SimpleImputer(strategy=\"median\")\n",
- "num_scaler = StandardScaler()\n",
- "preprocessing_num = Pipeline(\n",
- " [\n",
- " (\"imputer\", num_imputer),\n",
- " (\"scaler\", num_scaler),\n",
- " ]\n",
- ")\n",
- "\n",
- "# Предобработка категориальных данных\n",
- "cat_imputer = SimpleImputer(strategy=\"constant\", fill_value=\"unknown\")\n",
- "cat_encoder = OneHotEncoder(handle_unknown=\"ignore\", sparse_output=False, drop=\"first\")\n",
- "preprocessing_cat = Pipeline(\n",
- " [\n",
- " (\"imputer\", cat_imputer),\n",
- " (\"encoder\", cat_encoder),\n",
- " ]\n",
- ")\n",
- "\n",
- "# Общая предобработка признаков\n",
- "features_preprocessing = ColumnTransformer(\n",
- " verbose_feature_names_out=True, # Сохраняем имена колонок\n",
- " transformers=[\n",
- " (\"prepocessing_num\", preprocessing_num, num_columns),\n",
- " (\"prepocessing_cat\", preprocessing_cat, cat_columns),\n",
- " ],\n",
- " remainder=\"drop\" # Убираем неиспользуемые столбцы\n",
- ")\n",
- "\n",
- "# Итоговый конвейер\n",
- "pipeline_end = Pipeline(\n",
- " [\n",
- " (\"features_preprocessing\", features_preprocessing),\n",
- " ]\n",
- ")\n",
- "\n",
- "# Преобразуем данные\n",
- "preprocessing_result = pipeline_end.fit_transform(X_train)\n",
- "\n",
- "# Создаем DataFrame с правильными именами колонок\n",
- "preprocessed_df = pd.DataFrame(\n",
- " preprocessing_result,\n",
- " columns=pipeline_end.get_feature_names_out(),\n",
- " index=X_train.index, # Сохраняем индексы\n",
- ")\n",
- "\n",
- "preprocessed_df"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Формирование набора моделей для классификации\n",
- "## logistic -- логистическая регрессия\n",
- "## ridge -- гребневая регрессия\n",
- "## decision_tree -- дерево решений\n",
- "## knn -- k-ближайших соседей\n",
- "## naive_bayes -- наивный Байесовский классификатор\n",
- "## gradient_boosting -- метод градиентного бустинга (набор деревьев решений)\n",
- "## random_forest -- метод случайного леса (набор деревьев решений)\n",
- "## mlp -- многослойный персептрон (нейронная сеть)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn import ensemble, linear_model, naive_bayes, neighbors, neural_network, tree\n",
- "\n",
- "class_models = {\n",
- " \"logistic\": {\"model\": linear_model.LogisticRegression()},\n",
- " # \"ridge\": {\"model\": linear_model.RidgeClassifierCV(cv=5, class_weight=\"balanced\")},\n",
- " \"ridge\": {\"model\": linear_model.LogisticRegression(penalty=\"l2\", class_weight=\"balanced\")},\n",
- " \"decision_tree\": {\n",
- " \"model\": tree.DecisionTreeClassifier(max_depth=7, random_state=9)\n",
- " },\n",
- " \"knn\": {\"model\": neighbors.KNeighborsClassifier(n_neighbors=7)},\n",
- " \"naive_bayes\": {\"model\": naive_bayes.GaussianNB()},\n",
- " \"gradient_boosting\": {\n",
- " \"model\": ensemble.GradientBoostingClassifier(n_estimators=210)\n",
- " },\n",
- " \"random_forest\": {\n",
- " \"model\": ensemble.RandomForestClassifier(\n",
- " max_depth=11, class_weight=\"balanced\", random_state=9\n",
- " )\n",
- " },\n",
- " \"mlp\": {\n",
- " \"model\": neural_network.MLPClassifier(\n",
- " hidden_layer_sizes=(7,),\n",
- " max_iter=500,\n",
- " early_stopping=True,\n",
- " random_state=9,\n",
- " )\n",
- " },\n",
- "}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Обучение моделей на обучающем наборе данных и оценка на тестовом"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "metadata": {},
- "outputs": [],
- "source": [
- "y_train['Age_category'] = y_train['Age_category'].cat.codes\n",
- "y_test['Age_category'] = y_test['Age_category'].cat.codes"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: logistic\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\validation.py:1339: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
- " y = column_or_1d(y, warn=True)\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\validation.py:1339: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
- " y = column_or_1d(y, warn=True)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: ridge\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\neighbors\\_classification.py:238: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
- " return self._fit(X, y)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: decision_tree\n",
- "Model: knn\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\validation.py:1339: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
- " y = column_or_1d(y, warn=True)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: naive_bayes\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_label.py:114: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
- " y = column_or_1d(y, warn=True)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: gradient_boosting\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\base.py:1473: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n",
- " return fit_method(estimator, *args, **kwargs)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: random_forest\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:1105: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
- " y = column_or_1d(y, warn=True)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: mlp\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
- ]
- }
- ],
- "source": [
- "import numpy as np\n",
- "from sklearn import metrics\n",
- "\n",
- "for model_name in class_models.keys():\n",
- " print(f\"Model: {model_name}\")\n",
- " model = class_models[model_name][\"model\"]\n",
- "\n",
- " model_pipeline = Pipeline([(\"pipeline\", pipeline_end), (\"model\", model)])\n",
- " model_pipeline = model_pipeline.fit(X_train, y_train)\n",
- "\n",
- " y_train_predict = model_pipeline.predict(X_train)\n",
- " y_test_probs = model_pipeline.predict_proba(X_test)\n",
- " y_test_predict = np.argmax(y_test_probs, axis=1)\n",
- "\n",
- " class_models[model_name][\"pipeline\"] = model_pipeline\n",
- " class_models[model_name][\"probs\"] = y_test_probs\n",
- " class_models[model_name][\"preds\"] = y_test_predict\n",
- "\n",
- " # Метрики\n",
- " class_models[model_name][\"Precision_train\"] = metrics.precision_score(\n",
- " y_train, y_train_predict, average=\"macro\"\n",
- " )\n",
- " class_models[model_name][\"Precision_test\"] = metrics.precision_score(\n",
- " y_test, y_test_predict, average=\"macro\"\n",
- " )\n",
- " class_models[model_name][\"Recall_train\"] = metrics.recall_score(\n",
- " y_train, y_train_predict, average=\"macro\"\n",
- " )\n",
- " class_models[model_name][\"Recall_test\"] = metrics.recall_score(\n",
- " y_test, y_test_predict, average=\"macro\"\n",
- " )\n",
- " class_models[model_name][\"Accuracy_train\"] = metrics.accuracy_score(\n",
- " y_train, y_train_predict\n",
- " )\n",
- " class_models[model_name][\"Accuracy_test\"] = metrics.accuracy_score(\n",
- " y_test, y_test_predict\n",
- " )\n",
- " class_models[model_name][\"ROC_AUC_test\"] = metrics.roc_auc_score(\n",
- " y_test, y_test_probs, multi_class=\"ovr\"\n",
- " )\n",
- " class_models[model_name][\"F1_train\"] = metrics.f1_score(\n",
- " y_train, y_train_predict, average=\"macro\"\n",
- " )\n",
- " class_models[model_name][\"F1_test\"] = metrics.f1_score(\n",
- " y_test, y_test_predict, average=\"macro\"\n",
- " )\n",
- " class_models[model_name][\"MCC_test\"] = metrics.matthews_corrcoef(\n",
- " y_test, y_test_predict\n",
- " )\n",
- " class_models[model_name][\"Cohen_kappa_test\"] = metrics.cohen_kappa_score(\n",
- " y_test, y_test_predict\n",
- " )\n",
- " class_models[model_name][\"Confusion_matrix\"] = metrics.confusion_matrix(\n",
- " y_test, y_test_predict\n",
- " )"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Сводная таблица оценок качества для использованных моделей классификации"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAb5CAYAAABKIMnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT1R8G8DdN26Qz3YtuaCkFKlAZZQnIlCkVFPGHbMGCUMWBsmUoiiAKqIggKiI4EGRvWUUoe5VVaKGL7t2mSX5/VAKxpTRp6c1t38/z3EdzV9+EtPnek3POlWg0Gg2IiIiIiIiIiIhqGROhAxARERERERERET0JbPgiIiIiIiIiIqJaiQ1fRERERERERERUK7Hhi4iIiIiIiIiIaiU2fBERERERERERUa3Ehi8iIiIiIiIiIqqV2PBFRERERERERES1Ehu+iIiIiIiIiIioVmLDFxERERERERER1Ups+CISqTVr1kAikeDWrVtP5Py3bt2CRCLBmjVrquV8Bw4cgEQiwYEDB6rlfERERERUt8yaNQsSiaRS+0okEsyaNevJBiIiUWDDFxFVq+XLl1dbYxkRERERERFRVZgKHYCIjJOPjw8KCgpgZmam13HLly+Hk5MThg8frrO+Y8eOKCgogLm5eTWmJCIiIqK6Ytq0aXjvvfeEjkFEIsOGLyIql0QigVwur7bzmZiYVOv5iIiIiKjuyMvLg5WVFUxNeQlLRPrhUEeiWmT58uVo3LgxZDIZPDw8EBERgczMzDL7LVu2DP7+/rCwsECrVq1w6NAhdOrUCZ06ddLuU94cX0lJSRgxYgQ8PT0hk8ng7u6O/v37a+cZ8/X1xcWLF3Hw4EFIJBJIJBLtOR81x9fx48fx3HPPwd7eHlZWVggJCcHnn39evS8MEREREYnG/bm8Ll26hJdffhn29vZo3759uXN8FRUVITIyEs7OzrCxsUG/fv1w586dcs974MABPP3005DL5ahfvz6+/vrrR84b9uOPPyI0NBQWFhZwcHDASy+9hPj4+CfyfInoyWJzOVEtMWvWLMyePRtdu3bF+PHjERMTgxUrVuDEiRM4cuSIdsjiihUrMGHCBHTo0AGRkZG4desWBgwYAHt7e3h6elb4M8LDw3Hx4kVMnDgRvr6+SElJwe7duxEXFwdfX18sWbIEEydOhLW1NT744AMAgKur6yPPt3v3bvTp0wfu7u6YNGkS3NzccPnyZfz111+YNGlS9b04RERERCQ6gwYNQkBAAObPnw+NRoOUlJQy+4wePRo//vgjXn75ZbRt2xb79u1D7969y+x3+vRp9OzZE+7u7pg9ezZUKhXmzJkDZ2fnMvvOmzcP06dPx+DBgzF69Gjcu3cPX3zxBTp27IjTp0/Dzs7uSTxdInpC2PBFVAvcu3cPCxYsQPfu3bF9+3aYmJR25gwKCsKECRPw448/YsSIESguLsb06dPRsmVL7Nu3T9tVPCQkBMOHD6+w4SszMxNHjx7FJ598gilTpmjXT506Vfv/AwYMwLRp0+Dk5IRXXnmlwswqlQqvvfYa3N3dcebMGZ0CQqPRGPIyEBEREVEt8tRTT2HdunXax/+9S+PZs2fx448/4vXXX8eyZcsAABERERg6dCjOnTuns+/MmTMhlUpx5MgReHh4AAAGDx6MRo0a6ex3+/ZtzJw5E3PnzsX777+vXT9w4EA0b94cy5cv11lPRMaPQx2JaoE9e/aguLgYkydP1jZ6AcCYMWNga2uLrVu3AgBOnjyJtLQ0jBkzRmd+hKFDh8Le3r7Cn2FhYQFzc3McOHAAGRkZVc58+vRpxMbGYvLkyWW+NavsbaqJiIiIqPYaN25chdu3bdsGAHjjjTd01k+ePFnnsUqlwp49ezBgwABtoxcANGjQAL169dLZ9/fff4darcbgwYORmpqqXdzc3BAQEID9+/dX4RkRkRDY44uoFrh9+zYAoGHDhjrrzc3N4e/vr91+/78NGjTQ2c/U1BS+vr4V/gyZTIaPP/4Yb731FlxdXdGmTRv06dMHw4YNg5ubm96Zb9y4AQBo0qSJ3scSERERUe3n5+dX4fbbt2/DxMQE9evX11n/35o4JSUFBQUFZWpgoGxdfO3aNWg0GgQEBJT7M/W94zkRCY8NX0RUaZMnT0bfvn2xadMm7Ny5E9OnT8eCBQuwb98+NG/eXOh4RERERFSLWFhY1PjPVKvVkEgk2L59O6RSaZnt1tbWNZ6JiKqGQx2JagEfHx8AQExMjM764uJixMbGarff/+/169d19ispKdHemfFx6tevj7feegu7du3ChQsXUFxcjEWLFmm3V3aY4v1v5i5cuFCp/YmIiIiIHubj4wO1Wq0dSXDff2tiFxcXyOXyMjUwULYurl+/PjQaDfz8/NC1a9cyS5s2bar/iRDRE8WGL6JaoGvXrjA3N8fSpUt1JoZftWoVsrKytHe2efrpp+Ho6IiVK1eipKREu99PP/302Hm78vPzUVhYqLOufv36sLGxQVFRkXadlZUVMjMzH5u5RYsW8PPzw5IlS8rsz8ntiYiIiOhx7s/PtXTpUp31S5Ys0XkslUrRtWtXbNq0CQkJCdr1169fx/bt23X2HThwIKRSKWbPnl2mJtVoNEhLS6vGZ0BENYFDHYlqAWdnZ0ydOhWzZ89Gz5490a9fP8TExGD58uVo2bKl9g6L5ubmmDVrFiZOnIguXbpg8ODBuHXrFtasWYP69etX2Fvr6tWrePbZZzF48GAEBwfD1NQUf/zxB5KTk/HSSy9p9wsNDcWKFSswd+5cNGjQAC4uLujSpUuZ85mYmGDFihXo27cvmjVrhhEjRsDd3R1XrlzBxYsXsXPnzup/oYiIiIio1mjWrBmGDBmC5cuXIysrC23btsXevXvL7dk1a9Ys7Nq1C+3atcP48eOhUqnw5ZdfokmTJjhz5ox2v/r162Pu3LmYOnUqbt26hQEDBsDGxgaxsbH4448/MHbsWJ07nBOR8WPDF1EtMWvWLDg7O+PLL79EZGQkHBwcMHbsWMyfP19nEs4JEyZAo9Fg0aJFmDJlCp566ils3rwZb7zxBuRy+SPP7+XlhSFDhmDv3r344YcfYGpqiqCgIGzYsAHh4eHa/WbMmIHbt29j4cKFyMnJwTPPPFNuwxcA9OjRA/v378fs2bOxaNEiqNVq1K9fH2PGjKm+F4aIiIiIaq3vvvsOzs7O+Omnn7Bp0yZ06dIFW7duhZeXl85+oaGh2L59O6ZMmYLp06fDy8sLc+bMweXLl3HlyhWdfd977z0EBgZi8eLFmD17NoDSWrh79+7o169fjT03IqoeEg3HFBHVeWq1Gs7Ozhg4cCBWrlwpdBwiIiIiohoxYMAAXLx4EdeuXRM6ChE9IZzji6iOKSwsLDNfwdq1a5Geno5OnToJE4qIiIiI6AkrKCjQeXzt2jVs27aNNTBRLcceX0R1zIEDBxAZGYlBgwbB0dERp06dwqpVq9CoUSNER0fD3Nxc6IhERERERNXO3d0dw4cPh7+/P27fvo0VK1agqKgIp0+fRkBAgNDxiOgJ4RxfRHWMr68vvLy8sHTpUqSnp8PBwQHDhg3DRx99xEYvIiIiIqq1evbsiZ9//hlJSUmQyWQICwvD/Pnz2ehFVMuxxxcREREREREREdVKnOOLiIiIiIiIiIhqJTZ8ERERERERERFRrcQ5voyUWq1GQkICbGxsIJFIhI5DRGQUNBoNcnJy4OHhAROTmv/uprCwEMXFxVU6h7m5OeRyeTUlIiIyPqxjiYjKErqOBapey4q1jmXDl5FKSEiAl5eX0DGIiIxSfHw8PD09a/RnFhYWws/HGkkpqiqdx83NDbGxsaIsGoiIKoN1LBHRowlRxwLVU8uKtY5lw5eRsrGxAQC0x3MwhZnAaUgMJGbivSOjRlm1HjSkP7G+X0o0Shwq2aT9G1mTiouLkZSiQmy0D2xtDPuWLjtHDb/Q2yguLhZdwUBEVFmsY0lfYq1LANaxQhDr+0XIOhaoei0r5jqWDV9G6n63cFOYwVTCgoEeTyLi94lGwpvL1jQxv18ACDp0xsq6dDGEim91IqoDWMeSvsRcl7COrXlifr8AwtaxgOG1rJjrWE5uT0REREREREREtRJ7fBEREelBDQ3UMOwrL0OPIyIiIiKqDobWsmKuY9nwRUREpAc11FBX4VgiIiIiIqEYWsuKuY5lwxcREZEeVBoNVBrDvvEy9DgiIiIioupgaC0r5jqWDV9ERER64FBHIiIiIhKrujjUkZPbExERERERERFRtZk1axYkEonOEhQUpN1eWFiIiIgIODo6wtraGuHh4UhOTn4iWdjji4iISA9qaKBijy8iIiIiEiFDa1lD6tjGjRtjz5492sempg+aoCIjI7F161Zs3LgRCoUCEyZMwMCBA3HkyBG9f87jsOGLiIhIDxzqSERERERiVZNDHU1NTeHm5lZmfVZWFlatWoV169ahS5cuAIDVq1ejUaNGiIqKQps2bfT+WRXhUEciIiI93J8Q1NCFiIiIiEgoVa1js7OzdZaioqJH/qxr167Bw8MD/v7+GDp0KOLi4gAA0dHRUCqV6Nq1q3bfoKAgeHt749ixY9X+nNnwRUREpAd1FRciIiIiIqFUtY718vKCQqHQLgsWLCj357Ru3Rpr1qzBjh07sGLFCsTGxqJDhw7IyclBUlISzM3NYWdnp3OMq6srkpKSqvspc6gjERERERERERE9Xnx8PGxtbbWPZTJZufv16tVL+/8hISFo3bo1fHx8sGHDBlhYWDzxnA9jwxcREZEeVFWY3N7Q44iIiIiIqoOhtez9Y2xtbXUavirLzs4OgYGBuH79Orp164bi4mJkZmbq9PpKTk4ud06wquJQRyIiIj2oNFVbiIiIiIiEIlQdm5ubixs3bsDd3R2hoaEwMzPD3r17tdtjYmIQFxeHsLCwKj7DstjwRUREpIeanuPr7t27eOWVV+Do6AgLCws0bdoUJ0+e1G7XaDSYMWMG3N3dYWFhga5du+LatWtVeIZEREREVFvVVB07ZcoUHDx4ELdu3cLRo0fx/PPPQyqVYsiQIVAoFBg1ahTefPNN7N+/H9HR0RgxYgTCwsKq/Y6OAIc6EhERGa2MjAy0a9cOnTt3xvbt2+Hs7Ixr167B3t5eu8/ChQuxdOlSfP/99/Dz88P06dPRo0cPXLp0CXK5XMD0RERERFRX3blzB0OGDEFaWhqcnZ3Rvn17REVFwdnZGQCwePFimJiYIDw8HEVFRejRoweWL1/+RLLU6oYvX19fTJ48GZMnTxY6ilHpOzwVL4xPgYNzCW5essDyafUQc8ZS6FiVItbsYs3dpFUOXngtEQFN8+HoqsTsMQ1wbJf94w80EmJ93QFxZhf7+6Wy1JBABYnBx+rj448/hpeXF1avXq1d5+fnp/1/jUaDJUuWYNq0aejfvz8AYO3atXB1dcWmTZvw0ksvGZSTiITHOrZ8Yvx8vI/Za5bY6xIxvub3iTG72N8v+jC0ltW3jl2/fn2F2+VyOZYtW4Zly5bpnUVfgg517NSpU7kf5mvWrClzW0tjEhMTg86dO8PV1RVyuRz+/v6YNm0alEqlzn4bN25EUFAQ5HI5mjZtim3btgmU+IFn+mVg7MwE/PSZGyJ6BOLmJTnmrbsJhaPy8QcLTKzZxZobAOSWKsRetsSy6T5CR9GbmF93sWYX8/tFH2pN1RYAyM7O1lmKiorK/VmbN2/G008/jUGDBsHFxQXNmzfHypUrtdtjY2ORlJSErl27atcpFAq0bt0ax44de6KvA1Fdxzq25on18xFgdiGIuS4R62sOiDe7mN8v+qpqHStGnOOrAsXFxeWuNzMzw7Bhw7Br1y7ExMRgyZIlWLlyJWbOnKnd5+jRoxgyZAhGjRqF06dPY8CAARgwYAAuXLhQU/HLNXBsKnasc8CuXxwQd02Ope96oqhAgh5D0gXNVRlizS7W3ABw8oAdvv/UE0d3iu/bDjG/7mLNLub3iz5U/35LZugCAF5eXlAoFNplwYIF5f6smzdvYsWKFQgICMDOnTsxfvx4vPHGG/j+++8BAElJSQAAV1dXneNcXV2124iobmIda1yYveaJuS4R62sOiDe7mN8v+qpqHStGomj4Gj58OAYMGIBPP/0U7u7ucHR0REREhM43UykpKejbty8sLCzg5+eHn376qcx5MjMzMXr0aDg7O8PW1hZdunTB2bNntdtnzZqFZs2a4dtvv4Wfn98j50bx9/fHiBEj8NRTT8HHxwf9+vXD0KFDcejQIe0+n3/+OXr27Im3334bjRo1wocffogWLVrgyy+/rMZXRj+mZmoEhOTj1CEb7TqNRoLTh2wQHJovWK7KEGt2seYWOzG/7mLOXldUR8NXfHw8srKytMvUqVPL/VlqtRotWrTA/Pnz0bx5c4wdOxZjxozBV199VZNPmYiqgHVs9RDz5yOzkz7E/JqLOXtdwoYvI7Z//37cuHED+/fvx/fff481a9ZgzZo12u3Dhw9HfHw89u/fj19//RXLly9HSkqKzjkGDRqElJQUbN++HdHR0WjRogWeffZZpKc/aH2+fv06fvvtN/z+++84c+ZMpbJdv34dO3bswDPPPKNdd+zYMZ2hJwDQo0ePRw49KSoqKjP0pbrZOqggNQUy7+lO7ZaRagp755Jq/3nVSazZxZpb7MT8uos5O1Wera2tziKTycrdz93dHcHBwTrrGjVqhLi4OACAm5sbACA5OVlnn+TkZO02IhIe69iqE/PnI7OTPsT8mos5O9Vuomn4sre3x5dffomgoCD06dMHvXv3xt69ewEAV69exfbt27Fy5Uq0adMGoaGhWLVqFQoKCrTHHz58GP/88w82btyIp59+GgEBAfj0009hZ2eHX3/9VbtfcXEx1q5di+bNmyMkJKTCTG3btoVcLkdAQAA6dOiAOXPmaLclJSXpNfRkwYIFOsNevLy89H6NiIjoyVNrJFVa9NGuXTvExMTorLt69Sp8fErnn/Dz84Obm5v28xAonT/s+PHjCAsLq/qTJaJqwTqWiIiMRU3VscZENA1fjRs3hlQq1T52d3fXfhN2+fJlmJqaIjQ0VLs9KChIZ2LRs2fPIjc3F46OjrC2ttYusbGxuHHjhnY/Hx8f7e01H+eXX37BqVOnsG7dOmzduhWffvqpwc9v6tSpOsNe4uPjDT7Xo2SnS6EqAez+09pu71SCjHvGfYNPsWYXa26xE/PrLubsdUV1DHWsrMjISERFRWH+/Pm4fv061q1bh2+++QYREREAAIlEgsmTJ2Pu3LnYvHkzzp8/j2HDhsHDwwMDBgx4As+eiAzBOrbqxPz5yOykDzG/5mLOXpfUxaGOgr77bG1tkZWVVWZ9ZmYmFAqFzjozMzOdxxKJBGq1utI/Kzc3F+7u7jhw4ECZbQ8XFlZWVpU+5/1vs4KDg6FSqTB27Fi89dZbkEqlcHNz02voiUwme+RQl+pSojTBtXOWaN4+B8d2lL6+EokGzdrnYvMaxyf6s6tKrNnFmlvsxPy6izl7XaGCCVQGfm+k0nP/li1b4o8//sDUqVMxZ84c+Pn5YcmSJRg6dKh2n3feeQd5eXkYO3YsMjMz0b59e+zYseOR8/sQUfVgHfsA69iKMTvpQ8yvuZiz1yWG1rL61rHGRNCGr4YNG2LXrl1l1p86dQqBgYGVPk9QUBBKSkoQHR2Nli1bAii9VXNmZqZ2nxYtWiApKQmmpqbw9fWtavQy1Go1lEol1Go1pFIpwsLCsHfvXp3bXO/evVvwoSe/f+OEKUvicfWsJWJOW+L5Mfcgt1Rj13oHQXNVhlizizU3UHpbXw/fIu1jN68i+AfnIydTinsJT7bArSoxv+5izS7m94sx69OnD/r06fPI7RKJBHPmzNEZpkRETx7r2Jon1s9HgNmFIOa6RKyvOSDe7GJ+v9DjCdrwNX78eHz55Zd44403MHr0aMhkMmzduhU///wztmzZUunzNGzYED179sRrr72GFStWwNTUFJMnT4aFhYV2n65duyIsLAwDBgzAwoULERgYiISEBGzduhXPP/88nn766Ur/vJ9++glmZmZo2rQpZDIZTp48ialTp+LFF1/UfqM3adIkPPPMM1i0aBF69+6N9evX4+TJk/jmm28q/wI9AQc320PhqMKwt5Ng71yCmxct8MFQP2Smmj3+YIGJNbtYcwNAYEgeFv7yYH6h12aUDl3YvdERi6b4CxWrUsT8uos1u5jfL/rQVGGOA42I50YgIl2sY2ueWD8fAWYXgpjrErG+5oB4s4v5/aIvQ2tZMdexgjZ8+fv74++//8YHH3yArl27ori4GEFBQdi4cSN69uyp17lWr16N0aNH45lnnoGrqyvmzp2L6dOna7dLJBJs27YNH3zwAUaMGIF79+7Bzc0NHTt2LDN55+OYmpri448/xtWrV6HRaODj44MJEyYgMjJSu0/btm2xbt06TJs2De+//z4CAgKwadMmNGnSRK+f9SRsXu2EzaudhI5hELFmF2vuc1G26OnTUugYBhPr6w6IM7vY3y+VVZU5DsQ8NwIR6WIdKwwxfj7ex+w1S+x1iRhf8/vEmF3s7xd9GFrLirmOlWg0Go3QIais7OxsKBQKdEJ/mEqMu3WcjIPEzFzoCAbTKIuFjlDniPX9UqJRYr9yI7KysmBra1ujP/v+3+Xt5/xgZWPYHF95OWr0CokVJD8RUU1hHUv6EmtdArCOFYJY3y9C1rFA1WtZMdexvLUCERGRHtSQQG3g5PZq8LsmIiIiIhKOobWsmOtYwyp3IiIiIiIiIiIiI8ceX0RERHrgHF9EREREJFZ1cY4vNnwRERHpQaUxgUpjWIdpFafVJCIiIiIBGVrLirmOZcMXERGRHkrnRTDsGy9DjyMiIiIiqg6G1rJirmPZ8EVERKQHNUyg4uT2RERERCRChtayYq5jObk9ERERERERERHVSuzxRUREpAfO8UVEREREYsU5voiIiKhCaphAzaGORERERCRChtayYq5j2fBFRESkB5VGApXGsMk9DT2OiIiIiKg6GFrLirmO5RxfRERERERERERUK7HHFxERkR5UVbiro0rEXcSJiIiISPwMrWXFXMey4YuIiEgPao0J1AZObq8W8aSgRERERCR+htayYq5j2fBFRESkB/b4IiIiIiKxYo8vIiIiqpAahk/uqa7eKEREREREejG0lhVzHcvJ7YmIiIiIiIiIqFZijy8iIiI9qGECtYHfGxl6HBERERFRdTC0lhVzHcuGL3oiJGbmQkcwiMRMxL8Sgb5CJzCYye1EoSMYRJWRIXQEg2mUxUJHMIhGoxQ6AlQaE6gMnNze0OOIiMTIxMYaJhLx1YQmtjZCRzCMuZnQCQymTk0XOkKdI9ZakKrO0FpWzHWsiK/yiYiIap4aEqhh6Bxfhh1HRERERFQdDK1lxVzHirfJjoiIiIiIiIiIqALs8UVERKQHDnUkIiIiIrHiUEciIiKqkAomUBnYYdrQ44iIiIiIqoOhtayY61g2fBEREelBrZFArTFwji8DjyMiIiIiqg6G1rJirmPZ8EVERKQHdRV6fIn5NtBEREREJH6G1rJirmPFm5yIiIiIiIiIiKgC7PFFRESkB7XGBGoDJ/c09DgiIiIioupgaC0r5jqWDV9ERER6UEECFQyb48DQ44iIiIiIqoOhtayY61g2fBEREemBPb6IiIiISKzY44uIiIgqpILh33ipqjcKEREREZFeDK1lxVzHirfJjoiIiIiIiIiIqALs8UVERKQHDnUkIiIiIrHiUEciIiKqkEpjApWBH/yGHkdEREREVB0MrWXFXMey4YuIiEgPGkigNnCOL42I74ZDREREROJnaC0r5jpWvE12REREREREREREFWCPrzqo7/BUvDA+BQ7OJbh5yQLLp9VDzBlLoWNVqEmrHLzwWiICmubD0VWJ2WMa4Ngue6FjVcrgcXfRrnsaPP0LUFxkgkunbPDdQh/cjbUQOtpjWVgoMex/5xDW9g7sFEW4ccMeX3/dAlevOQodrULPvXgXvV9MgGu9QgDA7etW+HmFD04eNu7cDxPj7ykg3tz64FBHIqKaN3hs/IN6qtAEl07b4LtPfXE3VnyfMYNevYHhE65i088+WPlZsNBxKvTyyCsYOuqqzrr429YY93IXgRJVjtjfL2K+9gHEWQ+K/TXXR10c6ije5GSQZ/plYOzMBPz0mRsiegTi5iU55q27CYWjUuhoFZJbqhB72RLLpvsIHUVvTVtlYcuPbogc1BTvvxoMU1MN5q25BJmF8d8QdtKkf9C8eRI+/TQM41/vhVOn3TB//n44OuYLHa1CqckyrF7sjzcGhWLS4FCcPW6H6V9egHf9PKGjVYpYf0/Fmltfao2kSgsREemvaassbPnJHZGDQ/D+iMal9dSqi6Kopx4WEJyJns/H4+ZVG6GjVNqtmzZ4pW937fLO+HZCR3ossb9fxHztI9Z6UMyvub7qYh1bqxu+VqxYgZCQENja2sLW1hZhYWHYvn27dnthYSEiIiLg6OgIa2trhIeHIzk5udLnv379OmxsbGBnZ1dm28aNGxEUFAS5XI6mTZti27Zt1fGUqmzg2FTsWOeAXb84IO6aHEvf9URRgQQ9hqQLHa1CJw/Y4ftPPXF0p/ha3aePDMae310Qd80SsVes8Nm7DeBarxgBTYy7EcbcvATt28Vj1XfNcOGCCxITbfDTT02RkGCN3r2vCx2vQv8ccMLJQ45IiLPE3duWWLvUH4X5UgQ9lS10tEoR6++pWHPrSwWTKi1ERJXBOlbX9NFNsOcPV8Rdt0JsjDU+ey8QrvWKENA4V+holSa3KMHbc87ii/lNkJtjJnScSlOrJMhIl2uX7CyZ0JEeS+zvFzFf+4i1HhTza66vuljHijd5JXh6euKjjz5CdHQ0Tp48iS5duqB///64ePEiACAyMhJbtmzBxo0bcfDgQSQkJGDgwIGVOrdSqcSQIUPQoUOHMtuOHj2KIUOGYNSoUTh9+jQGDBiAAQMG4MKFC9X6/PRlaqZGQEg+Th168A2TRiPB6UM2CA417h48tYmlTQkAICfTuEcaS6UaSKUaKIulOuuLi6VoHHxPoFT6MzHRoGOvZMgtVLh81lboOI8l1t9TseY2RE32+Jo1axYkEonOEhQUpN1e1QtfIjJerGMrpq2nsoy7nnrY+Hcu4cQRF5z5x0noKHrx8MzD2j93YtWGPZgyMxrOruL7XBfj+0WM6lI9KGbs8VXL9O3bF8899xwCAgIQGBiIefPmwdraGlFRUcjKysKqVavw2WefoUuXLggNDcXq1atx9OhRREVFPfbc06ZNQ1BQEAYPHlxm2+eff46ePXvi7bffRqNGjfDhhx+iRYsW+PLLL5/E06w0WwcVpKZA5j3dP/gZqaawdy4RKFXdIpFo8NoHt3DxpA1uXzPuce4FBWa4dMkJQ4ZchINDPkxM1OjcORZBQWlwcCgQOt5j+Qbk4rcTf+PP0wcxYcZVfPhGE8TfsBI61mOJ9fdUrLnFoHHjxkhMTNQuhw8f1m6ryoUvERk31rGPJpFo8Nr7N3Ex2ha3rxn/ZzsAdOyWgAZBWVizLFDoKHqJuWSPxfOaY8abbbDs0xC4uedj4fIjsLAUz2e7GN8vYsV6kIxVrW74ephKpcL69euRl5eHsLAwREdHQ6lUomvXrtp9goKC4O3tjWPHjlV4rn379mHjxo1YtmxZuduPHTumc14A6NGjR4XnLSoqQnZ2ts5CtU/ErFj4Bhbgo8kBQkeplE8/bQOJRIOffvwTm//cgP79ruLgQW+o1cbf2n/nliUmhD+NyCGh2PZLPbw1/wq8RDLHFxk3NUyqtOjL1NQUbm5u2sXJqbSnQFUvfIlIPFjH6oqYeQO+Afn4KLLhE/051cXJtQBj37qMT6Y/VaYnvbGLjnLF4f0euHVDgVP/uGDmlDawslaiQ5e7QkerNLG9X4ietJqsY41Fre/ref78eYSFhaGwsBDW1tb4448/EBwcjDNnzsDc3LzMvAaurq5ISkp65PnS0tIwfPhw/Pjjj7C1LX/YVFJSElxdXfU674IFCzB79uzKPzEDZKdLoSoB7P7T2m7vVIKMe7X+rSC48TNvolWXDLw9pDFSk4x/bgQASEyywTvvdoVMVgJLSyUyMizw3ntHkJRkLXS0xypRmiAxrrRX3fVLNghoko3+r9zBl7ONu+gR6++pWHMbQqWRQGVgV+/7x/33olAmk0EmK//vwrVr1+Dh4QG5XI6wsDAsWLAA3t7ej73wbdOmjUEZich4sI4ta/z0G2jVKR1vvxKC1GRx1FMNgrJh71iMpT8c1a6TmmrQpHk6+g6Kw4B2PUTxpSIA5OWa4W68Ndw9xfFlohjfL2JWl+pBMTO0ljW0/jUG4m2yq6SGDRvizJkzOH78OMaPH49XX30Vly5dqtSxjRs3hrW1NaytrdGrVy8AwJgxY/Dyyy+jY8eO1Zpz6tSpyMrK0i7x8fHVen6gtCHg2jlLNG+fo10nkWjQrH0uLkUb97A7cdNg/MybaNstHe+9EozkO3KhA+mtqMgUGRkWsLYuRmiLRERF1RM6kt5MTAAzc7XQMR5LrL+nYs1tiOqY48vLywsKhUK7LFiwoNyf1bp1a6xZswY7duzAihUrEBsbiw4dOiAnJwdJSUkGXfgSkXiwjn2YBuOn30Dbbml479Wmoqqnzp5wxOsvtcfEV9ppl6uXFDiwwwMTX2knmkYvoHSCfvd6eUhPNfbXX7zvFzGrS/WgmAkxx9dHH30EiUSCyZMna9fV5Fy1tb7Z1dzcHA0aNAAAhIaG4sSJE/j888/x4osvori4GJmZmToXDcnJyXBzcwMAbNu2DUpl6W1XLSwsAJR2D9+8eTM+/fRTAIBGo4FarYapqSm++eYbjBw5Em5ubmX+wR4+b3kq+ra/Ov3+jROmLInH1bOWiDltiefH3IPcUo1d6x2e+M+uCrmlCh6+RdrHbl5F8A/OR06mFPcSjPvbm4jZsejUNxVzxjVEQZ4U9k7FAIC8HCmKi4y7u3uLFomQSDS4c8cWHh45GDXyDO7cscWu3f5CR6vQ8Mk3cfKQA1ISZbC0UqFT7xQ0bZmJ6WNDhI5WKWL9PRVrbiHEx8fr9LZ41N//+xerABASEoLWrVvDx8cHGzZs0H4uEVHtxTr2gYiZN9Cpzz3MeT1YdPVUQb4pbt+w0VlXWCBFdpZZmfXGZlTERRw/4oqUJEs4OhVi6OgrUKskOLjHuL8EFfP7BRD3tY9Y60Exv+bG7sSJE/j6668REqJ7LRYZGYmtW7di48aNUCgUmDBhAgYOHIgjR45Ue4Za3/D1X2q1GkVFRQgNDYWZmRn27t2L8PBwAEBMTAzi4uIQFhYGAPDx8Slz/LFjx6BSqbSP//zzT3z88cc4evQo6tUr/QAICwvD3r17dVozd+/erT2vkA5utofCUYVhbyfB3rkENy9a4IOhfshMNe5bKgeG5GHhLzHax6/NKP0mcfdGRyyaYtyNMH2GlhaPC9fpfkO76J362PO7ixCRKs3KSokRw8/CySkfOTnmOHzEC99/HwKVyrg7iyocivHWgstwcC5GXo4pYq9aYfrYEJw+ZtwfuPeJ9fdUrLn1pdGYQK0x7HdA8+9xtra2jxxmVBE7OzsEBgbi+vXr6Nat22MvfImodqnLdWyfl0t7si788bzO+kXvBWDPH67lHULVwNGlAO/MjoatrRJZmea4eM4Bb77WAdmZxt0QIPb3i5ivfcRaD4r5NdeXobWsxoBjcnNzMXToUKxcuRJz587Vrr8/V+26devQpUsXAMDq1avRqFEjREVFVfuUHbW64Wvq1Kno1asXvL29kZOTg3Xr1uHAgQPYuXMnFAoFRo0ahTfffBMODg6wtbXFxIkTERYWVuGL3KhRI53HJ0+ehImJCZo0aaJdN2nSJDzzzDNYtGgRevfujfXr1+PkyZP45ptvnthz1cfm1U7YvFpct1E+F2WLnj4thY5hkF4NhG/wNNShQ944dMhb6Bh6+3xGkNARqkyMv6eAeHPrQwUJVDBwji8Dj7svNzcXN27cwP/+979KXfgSkXixjtXVq2F7QX9+dZs6rrXQESpl4cynhY5gELG/X8R87QOIsx4U+2uuD0Nr2fvH6DNXbUREBHr37o2uXbvqNHzV9Fy1tbrhKyUlBcOGDUNiYiIUCgVCQkKwc+dOdOvWDQCwePFimJiYIDw8HEVFRejRoweWL19e5Z/btm1brFu3DtOmTcP777+PgIAAbNq0SaeoICIicVJrYPAcB2qNfvtPmTIFffv2hY+PDxISEjBz5kxIpVIMGTLE4AtfIhIH1rFERPQkGFrL3q9jvby8dNbPnDkTs2bNKrP/+vXrcerUKZw4caLMtpqeq7ZWN3ytWrWqwu1yuRzLli175O2cK2P48OEYPnx4mfWDBg3CoEGDDD4vEREZJ3UVhjrqe9ydO3cwZMgQpKWlwdnZGe3bt0dUVBScnZ0BPLkLXyISHutYIiJ6EgytZe8fU5m5auPj4zFp0iTs3r0bcrnwN5eo1Q1fREREYrZ+/foKt1fHhS8RERERUWVVZq7a6OhopKSkoEWLFtp1KpUKf//9N7788kvs3LmzRueqZcMXERGRHtSQQG3gXF2GHkdEREREVB0MrWX1OebZZ5/F+fO6N5cYMWIEgoKC8O6778LLy6tG56plwxcREZEeVBoJVAbO8WXocURERERE1cHQWlafY2xsbMrMDWllZQVHR0ft+pqcq5YNX0RERHqoyTm+iIiIiIiqU1Xn+KouNTlXLRu+iIiI9KCGxPC7OnKoIxEREREJyNBatqp17IEDB3Qe1+RctfzqmYiIiIiIiIiIaiX2+CIiItKDpgqT22vY44uIiIiIBGRoLSvmOpYNX0RERHpQa6ow1JGT2xMRERGRgAytZcVcx7Lhi4iISA+c3J6IiIiIxMpYJrevSeJNTkREREREREREVAH2+CIiItIDhzoSERERkVhxqCMRERFVSF2Fye2rehtoIiIiIqKqMLSWFXMdy4YvIiIiPbDHFxERERGJFXt8ERERUYXY8EVEREREYlUXG744uT0REREREREREdVK7PFFRESkB/b4IiIiIiKxqos9vtjwRU+EibWV0BEM4+wgdAKDFbiJ9DUHYKrwFTqCQczjbIWOYLhipdAJDKMuAhIEjsCGLyKi2s3cTOgEBslu5iZ0BINZJNsJHcFgplfvCB3BIBKZTOgIBito7CF0BIOUlBQCezcKHYMNX0RERFQxDQy/q42meqMQEREREenF0FpWzHUs5/giIiIiIiIiIqJaiT2+iIiI9MChjkREREQkVhzqSERERBViwxcRERERiRUbvoiIiKhCbPgiIiIiIrFiwxcRERFViA1fRERERCRWdbHhi5PbExERERERERFRrcQeX0RERHrQaCTQGPiNl6HHERERERFVB0NrWTHXsWz4IiIi0oMaEqhh4FBHA48jIiIiIqoOhtayYq5j2fBFRESkB87xRURERERiVRfn+GLDFxERkR441JGIiIiIxKouDnXk5PZERERERERERFQrsccXERGRHjjUkYiIiIjEikMdiYiIqEIc6khEREREYlUXhzqy4YuIiEgPmir0+BJzwUBERERE4mdoLSvmOpZzfBERERERERERUa3EHl9ERER60ADQaAw/loiIiIhIKIbWsmKuY9nwVQf1HZ6KF8anwMG5BDcvWWD5tHqIOWMpdKwKPffiXfR+MQGu9QoBALevW+HnFT44edhR4GSPt3r9Dri65ZdZ/9cf/lj+ebOaD/QIIYGJeLHnOQT6psHJLh/TvuiKI6d9y9038n+H0a/zFXz5cxv8trtJzQYtR9OgJAzqcwGB/mlwtC/AzEWdcfSkDwBAKlVjxOBTaNXsDtxccpFfYIZT5z2wan0o0jKM833v6FSAEa9fQmibFMjkKiTescLi+c1x/Yqd0NEe6eUx1zB07HWddfG3rDBuUEeBEj05akgggYGT2xt4HBFRXTd4bDzadU+Dp38BigtNcOm0Db771Bd3Y43zs/xhL4+8gqGjruqsi79tjXEvdxEo0aM91SARQ7qeRUOvVDjZ5eP9r7vj0Dlf7fYRz53Es6E34GKfhxKVCWLinLFyS0tcuuUiXOhHsJAr8epLZ9CudRzsbAtx/ZYDVnzXEldvOAkdrULPDb6D3oPvwtXj3+ueG1b4+Ws/UVz3PGzQqzcwfMJVbPrZBys/CxY6ThkhgYl48bnzCPBJg5N9PqYvfRZHTvlqt3cIvYW+nS8jwDcNCusijJkxADfixPVv8CiG1rJirmPZ8FXHPNMvA2NnJuCL9zxx5ZQlnh9zD/PW3cSoDg2RlWYmdLxHSk2WYfVifyTctoBEAjzbPwnTv7yAieFPI+6GldDxKjTptc6QSh+0j/v4ZWP+osM4dLCegKnKkstKcCPeEdsPN8SHE/Y8cr/2LW4huH4K7hlRo5FcVoKbcQ7YeSAAs97ar7NNZl6CBn5p+PGPp3DztgNsrIow/tV/MGfKXkR80FegxI9mbVOMT746jHOnnDDzrTbIyjSHh1cecnOM9/fzvls3rDEtopX2sapEvB+OFeHk9kRENa9pqyxs+ckdV89bQyrVYPibtzFv1UW81rsFigqkQsd7rFs3bTBtUpj2sUplnJ8HcnMlrt9xxNZjDTF/7O4y2+NT7LB4QzskpNpCZl6CFzufx6IJWzFk1kvIzLUQIPGjRY4/Cl/vTCxc2h5pGRZ4tuNNfDxjN0ZH9kdauvHUsf+VmizH6iX1kRBnWXrd0y8R0z8/h4mDWyLuhrXQ8SolIDgTPZ+Px82rNkJHeSS5rAQ34hyw/e9AzHljbznblTh/1Q0H/vHHlJGHBUj45NTFye3rzBxfH330ESQSCSZPnqxdV1hYiIiICDg6OsLa2hrh4eFITk6u8Dy3bt2CRCIps0RFRenst3HjRgQFBUEul6Np06bYtm3bk3haehs4NhU71jlg1y8OiLsmx9J3PVFUIEGPIelCR6vQPweccPKQIxLiLHH3tiXWLvVHYb4UQU9lCx3tsbKzZMhIl2uXVmGJSLhrhfNnjOvbpn/Oe+G7P57G4Ye+6fgvJ7s8vPHyUcz7pjNUKuP583HirCfWbGiBI//28npYfoE53pvfA39H+eFOogKXr7vgy9VtEOifBmfHXAHSVuyFoddxL8UCS+Y3x9XL9khOtMLpf1yQdNe4G3gBQK2SICNNpl2ys8yFjvRE3L8FtKELEZG+WMcC00c3wZ4/XBF33QqxMdb47L1AuNYrQkBj4/ssL49aJdGpB7OzZEJHKtfxS9749q+WOHTWr9zte042QHSMJxLTbHEr0QFf/B4Gawsl6tczrmsJc/MSdGgTh29/CMX5y65ISLLFDxuaISHJBn27xwgdr0L/HHTCycNOD657vqhfet0TYvzXPQAgtyjB23PO4ov5TYz6i9t/znvhu98ffe2z+2gAftjcHNGXPGo2WA2oi3Ws8Vy5PkEnTpzA119/jZCQEJ31kZGR2LJlCzZu3IiDBw8iISEBAwcOrNQ59+zZg8TERO0SGhqq3Xb06FEMGTIEo0aNwunTpzFgwAAMGDAAFy5cqNbnpS9TMzUCQvJx6tCDlneNRoLTh2wQHFp2KJ6xMjHRoGOvZMgtVLh81lboOHoxNVWjc7d47NrmA4isq6hEosHUMQfwy44Q3EqwFzpOlVhZFkOtBvLyja9hpnX7JFy/YoepH57AT3/twNLVB9Cj722hY1WKh1c+1m7bh1WbDmDKh2fg7FogdCQiItFjHVs+S5sSAEBOljgGsHh45mHtnzuxasMeTJkZDWdX8dTej2IqVaFfu8vIyTfH9TvGNQRMaqKBVKpBsVK3N2BRsRSNG6UIlEp/JiYadOx5/7pHIXScShn/ziWcOOKCM/8Y15f8VLeJ45OiCnJzczF06FCsXLkSc+fO1a7PysrCqlWrsG7dOnTpUjq+fvXq1WjUqBGioqLQpk2bCs/r6OgINze3crd9/vnn6NmzJ95++20AwIcffojdu3fjyy+/xFdffVXuMUVFRSgqKtI+zs6u/hZ9WwcVpKZA5j3df/aMVFN4NSh6xFHGwzcgF4vWnYK5uRoF+VJ8+EYTxBv5MMf/CmufAGtrJfbsKNszydgN6XUWKpUJftvTWOgoVWJmVoLRQ6Kx/6g/8guMr+HLzSMfzw24hT9+qY9f1gYisFEGXos8j5ISCfZu9xY63iPFXLTD4tlNcee2FRycivDymOtYuDIKr7/UAQX5teujRqOpwuT2Yp4VlIhqHOvY8kkkGrz2/k1cjLbF7WvGXwvGXLLH4nnNcSfOCg6ORXh5ZAwWLj+C1//XWZSfkW2b3MbMkXshNytBWrYl3vziOWTlyYWOpaOg0AwXY5wx9IVziLujQGaWHJ3b3UKjwFQkJBnv8Lv7fANyseiH6AfXPZObIv6m8b/XO3ZLQIOgLEx+ta3QUagChtayYq5ja32Pr4iICPTu3Rtdu3bVWR8dHQ2lUqmzPigoCN7e3jh27Nhjz9uvXz+4uLigffv22Lx5s862Y8eOlfl5PXr0qPC8CxYsgEKh0C5eXl6VeXp1yp1blpgQ/jQih4Ri2y/18Nb8K/Cqnyd0LL10f+4WTh53RXqacc2B8DiBPqkI73YRH3/XEWLrqfYwqVSN6ZMOQiLRYOl3FV8UCEViosGNqwqs/boRbl5TYMdmX+zc7INeA4y711f0UWcc3uuOW9dtcSrKGTMnPQ0rmxJ06JoodLRqd39eBEMXIqLKYh1bvoiZN+AbkI+PIhs+0Z9TXaKjXHF4vwdu3VDg1D8umDmlDayslejQ5a7Q0Qxy6qoHRi4Ix/hF/XH8khdmj9oLO2vj6+W9cGl7SACsX/krtv78E/o/dxkHjviK4rP4TqwlJgxqicihodi2oR7emnsZXv7Gfd3j5FqAsW9dxifTn4Ky2Pjn3avL6mIdK76vGPSwfv16nDp1CidOnCizLSkpCebm5rCzs9NZ7+rqiqSkpEee09raGosWLUK7du1gYmKC3377DQMGDMCmTZvQr18/7bldXV31Ou/UqVPx5ptvah9nZ2dXe9GQnS6FqgSwcy7RWW/vVIKMe8b/VihRmiAxrnQiyuuXbBDQJBv9X7mDL2eLo+hxcc1Hs9AUzJthnA0uFWkamAQ7mwL88sl67TqpVIPxLx7HC90uYMg7LwmYrnKkUjWmTToAF6dcvD23h1H29gKAjDQ54m7pfhMZf8sabTuJqwEpL9cMd+Os4O4l/qEc/8XJ7YmoJrCOLd/46TfQqlM63n4lBKnJxjlP1uPk5Zrhbrw13D2NuyHjUQqLzXD3ngJ37ylw6ZYr1s1cjz5tr+DHXc2FjqYjMdkGU2b2gFymhKWFEumZlng/8iASk41/gviSEhMkxv973XPZtvS6Z2g8vvwwSOBkj9YgKBv2jsVY+sNR7TqpqQZNmqej76A4DGjXA2o16yBjUBcntzf+1g4DxcfHY9KkSdi9ezfkcsO63jZu3Bi3b5f2sujQoQO2b98OJycnnQ/2li1bIiEhAZ988om2YDCETCaDTPZkP7xLlCa4ds4Szdvn4NiO0jHiEokGzdrnYvMa4xqXXxkmJoCZuVroGJXWrdctZGXK8E9U+UMLjNnuow3KTOy48M0d2H2sAXYcDhQoVeXdb/Sq55aNtz/siZxc4+qO/7BL5xxQz1t3ot563nm4lySuXoJyixK418vHvtTaOSGoxMAP/qpMCvrRRx9h6tSpmDRpEpYsWQKgdHLrt956C+vXr0dRURF69OiB5cuXl7loJSJxYR1bHg3GT7+Jtt3S8O7/miL5jvF+lj9O6WdkHvbt8BQ6SrUwkWhgZqoSOsYjFRaZobDIDNZWRXi6WQK+/SH08QcZGRMTjdFf95w94YjXX2qvs27yjPO4c8sKv671Z6OXETG0lhXz5Pa1tuErOjoaKSkpaNGihXadSqXC33//jS+//BI7d+5EcXExMjMzdb4tS05O1s55sG3bNiiVSgCAhcWjLzpbt26N3bsf3O7Xzc2tzF11Hj6vkH7/xglTlsTj6llLxJy2xPNj7kFuqcau9Q5CR6vQ8Mk3cfKQA1ISZbC0UqFT7xQ0bZmJ6WNDHn+wEZBINOjW8zb27PSB2ojuhvgwuUyJei4P5uRwd8pBfa805OTJkJJujez/zN2gUpkgPcsS8Ul2NZy0LLlMiXpuD7K7Oeeivk8asnNlSM+0xIzJ+9HALw3TF3aFiYka9orSXkg5uTKUqIyrK/amX/zx6deHMXjYVRza64HA4Ez07HcbXyx8SuhoFRo16QqOH3JGSqIFHJ2LMHTsNajVwMGd7kJHqxUqmtx669at2LhxIxQKBSZMmICBAwfiyJEjAiUlourAOrasiJk30KnPPcx5PRgFeVLYOxUDAPJypCguMq7P8v8aFXERx4+4IiXJEo5OhRg6+grUKgkO7qkndLQyLGRK1HPO0j52d8xGA89UZOfJkZ0nw7Cep3H4nA/Ssi2hsCrEwGcuwskuH/tP+wuYunyhT92FRALcSbCFh1sOxvwvGvF3Fdi5v4HQ0So0/I0bOHnEASmJ8tLrnl7JaPp0JqaPayZ0tAoV5Jvi9g3dUQuFBVJkZ5mVWW8M5DIl6rk+fO2Ti/reacjJLb32sbEqgotjLpzsSq8bvNxKfy/SsyyQkWUpSGYyXK1t+Hr22Wdx/vx5nXUjRoxAUFAQ3n33XXh5ecHMzAx79+5FeHg4ACAmJgZxcXEICwsDAPj4VG4C8jNnzsDd/cHFXVhYGPbu3atzy+ndu3drzyukg5vtoXBUYdjbSbB3LsHNixb4YKgfMlON91azAKBwKMZbCy7DwbkYeTmmiL1qheljQ3D6mHE32N3XLDQFLm4F2L3NeCe1b+h7D0vefXC78oghxwEAOw4H4OPvnhEqVqUE+qdi0Yyd2sfjh5UOC9l1sD7W/toMbZ+OBwB8/bHuPCZvzemBc5eNq2Hm2hV7zJ3aEsPHXcaQ4VeRnGiJbz5vggO7jPtbYUeXQrwz9yxsFcXIyjDHxbMOeHNEGLIzxTkMpSI1Pbn9k5rcmoiMF+vYsvq8XDrUcuGPuq/LovcCsOcP4+7l6uhSgHdmR8PWVomsTHNcPOeAN1/rYJSfkQ297+GLyX9pH098IQoAsD0qEJ/+3B7erpmYO+YqFFaFyM6T43KcMyZ81he3Eo2vJreyVGLk0FNwcsxHTq4Mh6O8sfrn5lAZ6ZfQ9ykcivHW3MtwcC5CXq4pYq9aY/q4ZjgdZXyvsZg19EvF4vceXPu8/vKDa5+F33ZE2+a38e7oQ9rtM17fDwD4flNzfL+pBcSsLk5uL9FoxBxfP506dUKzZs20Q0TGjx+Pbdu2Yc2aNbC1tcXEiRMBlN7G+VG+//57mJubo3nz0jHsv//+O6ZPn45vv/0WI0aM0B7/zDPP4KOPPkLv3r2xfv16zJ8/H6dOnUKTJk0qlTU7OxsKhQKd0B+mEuNulCqP1N5e6AiGcRbvB0qBv3izmxaUPH4nI2Qely50BMMVK4VOYJASdRH2JHyNrKws2Nra1ujPvv93OeDH9yC1NGyIjSq/ENde+Qjx8fE6+SsaJvTqq6/CwcEBixcv1vkc27dvH5599llkZGTo9Pjw8fHB5MmTERkZaVBGIjJOYqxju9gMhanEOOfUrIiJkzhrquxmwo8uMZRFcqHQEQxmevWO0BEMInniw5OfnILG4pxKo6SkEEf2zhKkjgWqXsver2OFyl8VtbbHV2UsXrwYJiYmCA8P15kb5XE+/PBD3L59G6ampggKCsIvv/yCF154Qbu9bdu2WLduHaZNm4b3338fAQEB2LRpU6WLBSIiMl7VMbn9fyd9njlzJmbNmlVm/ycxuTUR1Q6sY4mIyBCc3L6WO3DggM5juVyOZcuWYdmyZZU+x6uvvopXX331sfsNGjQIgwYN0jciERHVAeX1+Cpvn6pObk1EtQfrWCIiIsMY9wBnIiIiI6Op4gIAtra2Okt5DV8PT25tamoKU1NTHDx4EEuXLoWpqSlcXV21k1s/zBgmoSYiIiIi41TVOlaM6lSPLyIioqqqjqGOlVEdk1sTERERET2MQx2JiIioYlX5ykuP42xsbMrMqWNlZQVHR0ft+lGjRuHNN9+Eg4ODdnLrsLAw3tGRiIiIiMpnaC0r4i5fbPgiIiLSRxV6fKGavykzdHJrIiIiIqqjDK1l2eOLiIiInrTqmNyaiIiIiKguYcMXERGRHjSa0sXQY4mIiIiIhGJoLSvmOpYNX0RERHqoqcntiYiIiIiqGye3JyIiooppJIbPcSDigoGIiIiIagFDa1kR17GVavjavHlzpU/Yr18/g8MQEREREVUn1rFERER1W6UavgYMGFCpk0kkEqhUqqrkISIiMmqc44tIXFjHEhERPVAX5/gyqcxOarW6UguLBSIiqvU0VVyIqEaxjiUiInpIDdWxK1asQEhICGxtbWFra4uwsDBs375du72wsBARERFwdHSEtbU1wsPDkZycXOWnV55KNXw9SmFhYXXlICIiEoX7E4IauhCRcWAdS0REdVFN1bGenp746KOPEB0djZMnT6JLly7o378/Ll68CACIjIzEli1bsHHjRhw8eBAJCQkYOHDgk3jK+jd8qVQqfPjhh6hXrx6sra1x8+ZNAMD06dOxatWqag9IRERkdNjbi0iUWMcSERGhRurYvn374rnnnkNAQAACAwMxb948WFtbIyoqCllZWVi1ahU+++wzdOnSBaGhoVi9ejWOHj2KqKio6nmOD9G74WvevHlYs2YNFi5cCHNzc+36Jk2a4Ntvv63WcERERERE1YV1LBERUdVkZ2frLEVFRY89RqVSYf369cjLy0NYWBiio6OhVCrRtWtX7T5BQUHw9vbGsWPHqj2z3g1fa9euxTfffIOhQ4dCKpVq1z/11FO4cuVKtYYjIiIyNhzqSCRerGOJiKiuq2od6+XlBYVCoV0WLFjwyJ91/vx5WFtbQyaTYdy4cfjjjz8QHByMpKQkmJubw87OTmd/V1dXJCUlVftzrtRdHR929+5dNGjQoMx6tVoNpVJZLaGIiIiMVlWGLXK4I5GgWMcSEVGdZ2gt++8x8fHxsLW11a6WyWSPPKRhw4Y4c+YMsrKy8Ouvv+LVV1/FwYMHDfjhVaN3w1dwcDAOHToEHx8fnfW//vormjdvXm3BSNxUGRlCRzCISSW6aRqr/Qd+EzqCwZoteF3oCAZRtaondASD2V0X593LSpSFQILQKST/LoYeS0RCYR1bszSFxdBIxNfir05NFzqCQfLcPISOYLBDy74XOoLBur48UugIBonr/ujGCmNnohRnPaUqVAN7hU4BGF7Llh5z/y6NlWFubq79wik0NBQnTpzA559/jhdffBHFxcXIzMzU6fWVnJwMNzc3A7JVTO+GrxkzZuDVV1/F3bt3oVar8fvvvyMmJgZr167FX3/9Ve0BiYiIjAp7fBGJFutYIiKq86rY46sq1Go1ioqKEBoaCjMzM+zduxfh4eEAgJiYGMTFxSEsLKzqP+g/9G746t+/P7Zs2YI5c+bAysoKM2bMQIsWLbBlyxZ069at2gMSEREREVUH1rFEREQ1Y+rUqejVqxe8vb2Rk5ODdevW4cCBA9i5cycUCgVGjRqFN998Ew4ODrC1tcXEiRMRFhaGNm3aVHsWvRu+AKBDhw7YvXt3dWchIiIyfuzxRSRqrGOJiKhOq6EeXykpKRg2bBgSExOhUCgQEhKCnTt3ar9oWrx4MUxMTBAeHo6ioiL06NEDy5cvNyDY4xnU8AUAJ0+exOXLlwGUzpcQGhpabaGIiIiMlkZSuhh6LBEJjnUsERHVWYbWsnoes2rVqgq3y+VyLFu2DMuWLdM/i570bvi6c+cOhgwZgiNHjmgnIcvMzETbtm2xfv16eHp6VndGIiIio6HRlC6GHktEwmEdS0REdZ2htayY61gTfQ8YPXo0lEolLl++jPT0dKSnp+Py5ctQq9UYPXr0k8hIRERERFRlrGOJiIjqHr17fB08eBBHjx5Fw4YNtesaNmyIL774Ah06dKjWcEREREaHc3wRiRbrWCIiqvMEvKujUPRu+PLy8oJSqSyzXqVSwcPDo1pCERERGS3O8UUkWqxjiYiozquhOb6Mid5DHT/55BNMnDgRJ0+e1K47efIkJk2ahE8//bRawxERERkbiaZqCxEJh3UsERHVdXWxjq1Ujy97e3tIJA9a9/Ly8tC6dWuYmpYeXlJSAlNTU4wcORIDBgx4IkGJiIiMAoc6EokK61giIqKHcKhj+ZYsWfKEYxARERERVT/WsURERHVbpRq+Xn311Sedg4iISBw4xxeRqLCOJSIiekgdnONL78ntH1ZYWIji4mKddba2tlUKREREZNQ41JGoVmAdS0REdVIdHOqo9+T2eXl5mDBhAlxcXGBlZQV7e3udhYiIqFbTVHEhIsGwjiUiojqvDtaxejd8vfPOO9i3bx9WrFgBmUyGb7/9FrNnz4aHhwfWrl37JDISEREREVUZ61giIqK6R++hjlu2bMHatWvRqVMnjBgxAh06dECDBg3g4+ODn376CUOHDn0SOYmIiIwDhzoSiRbrWCIiqvM41PHx0tPT4e/vD6B0HoT09HQAQPv27fH3339XbzoiIiJjc39CUEMXIhIM61giIqrz6mAdq3ePL39/f8TGxsLb2xtBQUHYsGEDWrVqhS1btsDOzu4JRKTq1nd4Kl4YnwIH5xLcvGSB5dPqIeaMpdCxKkWM2QePu4t23dPg6V+A4iITXDplg+8W+uBurIXQ0cpITTTDqnnuOLHfFkUFJvDwLcJbi+MQ+FRBmX0/f9cT235wwmuz72LgmHsCpH1gZNgpPNvwJnwdMlFUIsXZu25Ysr8Nbqc/mK9lWs+DaO17B87WechXmuHsHTd8vr8Nbj20T00b1fIUuja4CT+HTBSWSHE2wQ2LD7fBrYwHmb574U+09ErQOW7DuWB8uPeZmo6r46kGiRjS9SwaeqXCyS4f73/dHYfO+ers4+OagXEDjqNZQCKkJhrcSrLHtJXdkJJhLUzoaiLRlC6GHktEwmEdK25NWuXghdcSEdA0H46uSswe0wDHdhn/3GyDx8Y/qAULTXDptA2++9QXd2ONr4Zt4Z2AYWFn0cj9Hpxt8vHmhh44EOOn3W5hpsQbz0ahU8NbUFgUIiHTFj//0wS/nWosYGrgh0/d8ONnbjrrPOsXYtWhK8jOkOKHT91w6qANUhLMoXAoQdueWXj1nURY2aoFSvxA06AkDO5zAQF+qXCyL8CMz7rg6Emfh/bQ4NUXTuO5zldhbVWMi1dd8Pl3YbibpBAsMwC81vQUuvvEwk9RWn+fvueGT062QWy2XTl7a/Bt123o6BmP1/f1wJ44v3L2qTljnzqFbn434a/IRKFKitPJblj0TxvEZj34ezK7/UGE1bsDF8vSa4fTyW749D/7iJWhtayY61i9e3yNGDECZ8+eBQC89957WLZsGeRyOSIjI/H2229Xe0BDzZo1CxKJRGcJCgrSbi8sLERERAQcHR1hbW2N8PBwJCcnP/a8Go0Gn376KQIDAyGTyVCvXj3MmzdPZ58DBw6gRYsWkMlkaNCgAdasWVPdT89gz/TLwNiZCfjpMzdE9AjEzUtyzFt3EwpHpdDRHkus2Zu2ysKWH90QOagp3n81GKamGsxbcwkyC5XQ0XTkZErxZv8ASE01mPvjTaw8cAVjZyTAWlE255HtClyJtoKjW3E5Z6p5od4J+CW6CYatHYhx6/vC1ESNFS/9BbnZg/fG5SRnzNzaGQNXvoTX1/eBRKLBipf+golEuILnac8ErD/bBEPXD8TY30pzfz3wL1iY6r6nfz3fCJ2+flW7fHYoTKDED8jNlbh+xxGfbWhX7nYPp2wse3Mz4pLt8MaSvhg+/wV8v705ipXSGk76BHByeyLREksdC7CWLY/cUoXYy5ZYNt3n8TsbkaatsrDlJ3dEDg7B+yMal9aCqy4aXS0IAHKzElxNdsRH2zuUu/2t7kfRtn48pm3qgvAVL2Ld8aZ4t9dhdAy8VbNBy+HTsAA/n7mgXT7bdA0AkJ5shrRkM4yZkYCv913BlCVxOHnABp+95S1w4lJyWQlu3rbHF6vLr+9e7Hsez/e4jM+/C8OE6X1QWGiKj97bBTOzkhpOqqulWyJ+vNIYg7c+jxG7+sBUosZ33cvWsQAwPPicUZVALd0TsO5iE7y4eSBGbiutwb/tpZv9Yqoz3j/YGb03voTR20uvHVY9J+y1Q7Wpg3Ws3j2+IiMjtf/ftWtXXLlyBdHR0WjQoAFCQkKqNVxVNW7cGHv27NE+NjV98HQjIyOxdetWbNy4EQqFAhMmTMDAgQNx5MiRCs85adIk7Nq1C59++imaNm2K9PR0bTd5AIiNjUXv3r0xbtw4/PTTT9i7dy9Gjx4Nd3d39OjRo/qfpJ4Gjk3FjnUO2PWLAwBg6bueaPVsNnoMSceGL10FTlcxsWafPjJY5/Fn7zbA+n9OIqBJHi6cMJ7bpm9Y5gInj2JMWRKvXefmXbZhKzXRDMun1cO8dTcx43/+NRnxkSJ+6aPzeMZfXbB/8hoEu93DqXgPAMBvZx78OyRkAcsOtsbG0RvgocjBnUxhvjEb/4du7mm7uuDvcWsQ7HoP0Xc9tOsLlKZIyzeub4WPX/LG8UuPLhjH9v0HUZe8sGJTG+26hFTjeb8TUd0kpjoWYC37XycP2OHkATtBMxhi+ugmOo8/ey8Q66OOI6BxLi6cFLbXzn8dveGNozce/fke4pmELecaIvp2PQDA76eDER56CU08UvD3Vd8aSlk+qRRwcCnbGOQbVIgZ397SPvbwLcbwdxOxcKIPVCWAVO8r4up14qwnTpz1fMRWDQb2vISfNoXgaHRpg+/HKzpi44r1aPd0HA4cE64WH727t87jdw93xvEh36Ox4z2cTH5QxzZySMXIxucw8K9wHH3ROG4iMmaHbg0+9WAXHPvfGjR2uoeTSaXZN1x5cO1wNxdYcrI1NodvQD3rHMTnGNfvLT1elX/NfXx84ONjnN+6mJqaws3Nrcz6rKwsrFq1CuvWrUOXLl0AAKtXr0ajRo0QFRWFNm3alDkGAC5fvowVK1bgwoULaNiwIQDAz0+3m+ZXX30FPz8/LFq0CADQqFEjHD58GIsXLxa8WDA1UyMgJB/rv3TRrtNoJDh9yAbBofkCJns8MWf/L0ub0g/knEyBP2X/I2qXAqGdsjF3rC/OHbOCk5sSfYan4rmhD4phtRpY+IY3XhifAt+GhQKmrZi1vLTBLqtAVu52uZkS/UOu4E6GDZKyjWfYnbX5v7kLdXP3DrqGPo2uITXPAgdv+uLr46EoLDETImKlSCQahDWJx7rdT2FRxDYEeKUiMc0GP+5sXmY4JBGRkIy5jgVYy9ZW2lowy7hqwco4d8cNzwTewp9nGuJejhWe9kmAt0MWFt18VMNNzbkba44hzRvDXKZGo9A8jJyaCBfP8keG5GVLYWmtFrzR63HcXXLhaF+AUxceNCTlFZjj8g0nBAekCNrw9V829+vYIrl2nVyqxKKOezE7qj1SC4zrS9yHPche/rWDhakSAwOvID7bBkl5xnPtQJVXqV/1pUuXVvqEb7zxhsFhqtu1a9fg4eEBuVyOsLAwLFiwAN7e3oiOjoZSqUTXrl21+wYFBcHb2xvHjh17ZLGwZcsW+Pv746+//kLPnj2h0WjQtWtXLFy4EA4Opb2Qjh07pnNeAOjRowcmT55cYdaioiIUFRVpH2dnZxv4rB/N1kEFqSmQeU/3nz0j1RReDYoecZRxEHP2h0kkGrz2wS1cPGmD29eM649/Ypw5/lrrhIFj7+Glicm4etYSK6Z7wsxMg26DMwCU9gqTSjUYMCpV4LSPJoEGb3c9gtPxbriR6qizbXCLC5jc+RgszUsQm2aHcev7okRtHEPvJNDg3U5HcOquG66nPci9LSYACdnWuJdrhUDnNES2j4KvfSYi/+opYNqK2dsUwFKuxNDuZ/Dtlqex4s9WaN3oDuaO2YVJn/fBmesejz+JEZOgCnN8VWsSIqoMsdaxgHhq2ZqoY2sLiUSD196/iYvRtrh9zUroOHr7eEd7TOt9EDsn/wilygQaDfDh1mdwKk7Yz/agFnmYsqQAnvWLkJ5ihh8XueGt5wPw9f4rsLTWHZqWlSbFuiVu6PWK8daz99krSr/gz8jSnRs4M8sCDoqyc/AKRQINPmh1BNHJbriW6aBd/36rozid4oq98cLO6VURCTR4P+wIopPccC1D99phSKMLmNL6GKzMSnAz0w4jt/WF0kiuHarC0FpWzHVspRq+Fi9eXKmTSSQSoykYWrdujTVr1qBhw4ZITEzE7Nmz0aFDB1y4cAFJSUkwNzcvM4mpq6srkpKSHnnOmzdv4vbt29i4cSPWrl0LlUqFyMhIvPDCC9i3bx8AICkpCa6uusPuXF1dkZ2djYKCAlhYlD+h+YIFCzB79uyqPWkyehGzYuEbWIApLwk7AWh5NGogIKQAI6cmAgAaNC3ArStybP3BCd0GZ+DaOQts+tYZy3bGQGLEf/Wm9vgbDZzSMfzHAWW2bbsYgKhYTzhZ52NY6zNYOGAXhv/wPIpVwn/d90GXv9HAMR2vbhigs/7X8w+6WV9Lc8S9PEusemELPBVZuJNlnN2sJf9+kh4+54MN+0uHDl2/44Qm/kno3+Gy6Bu+qnRXGxHfDYdIrMRYxwLiqmVZx1ZexMwb8A3Ix5SXjW9obWW81PI8mnomY/L6nkjMskEL70S81/Mw7uVY4Z9Y4Xp9teySo/1//+BCBDXPx/9aBePvzXbo+fKD0Qt5OSaYPswf3oGF+N9bj/5dIf3MbHMIAfbpGLJtgHZdF69baON+FwM2DxIuWCXMaPc3AuzT8fKWAWW2bbkegKN3PeFsmY+RIWew5NldGLLFOK4dqsTQWlbEdWyl/sViY2OfdI5q16tXL+3/h4SEoHXr1vDx8cGGDRse2fj0sMaNG+P27dsAgA4dOmD79u1Qq9UoKirC2rVrERgYCABYtWoVQkNDERMTo+0yboipU6fizTff1D7Ozs6Gl5eXwecrT3a6FKoSwM5Zd+y7vVMJMu4Z9y+vmLPfN37mTbTqkoG3hzRGalL53WiF5OBSAp9A3eGLXgGFOLyttHHl/HFrZKaa4pWWDxrt1CoJVs72wKaVzlj7z6UazVue97ofQscGtzHyxwFIySnbDTm3SIbcIhniMuxw7q4rDkV+hy4NY7HjUoAAaR94v/MhPON/G8M3DEBybsXdp88nll6MeNsZb8NXVq4cJSoJbiXp3vXmdpI9QurXgiKzKpN7inhSUCKxEmMdC4irlq2JOrY2GD/9Blp1Ssfbr4QgNdn4asHHkZmWYEKXf/DWhh44fL10iPC1FEcEuqViWJuzgjZ8/Ze1QgVP/yIk3HrwOufnmuCDl+vDwkqNmatiYWq8s0ZoZWSVjhCxVxQgPfPBaBE7RQFu3HZ41GE1akbrQ+jsdRtDt/dHcv6DOraN+11422Tj5Mvf6ez/RaddOJnihv/t6F/TUcuY3vYQOnnfxit/DUByOUMYc5Uy5CpluJ1th7Mprjg+7Dt0843F1hvCXjtUmaG1rIjrWHG0GFQDOzs7BAYG4vr16+jWrRuKi4uRmZmp801ZcnKydh6Fbdu2QaksHRN+v7hwd3eHqamptlAASuc9AIC4uDg0bNgQbm5uZe6ok5ycDFtb2wqLFJlMBpnsyX4AlihNcO2cJZq3z8GxHaUXzBKJBs3a52LzGsfHHC0sMWcHNBg/MxZtu6Xj3aGNkXxH/vhDBBDcMg/xN3Tfg3dvyuBSr/T3oGt4Olp0yNHZ/v7L/ng2PAPdX0yHsDR4r/thdAmMxeif+iEh6/GTqEskACSAuVTIOypp8H7nw+jSIBYjN/bD3ezH527oUtotPzXPeIdHlKikuHzbBd6umTrrvVyykJTOeRGIiAxhzLVsTdSx4qbB+Ok30bZbGt79X1OjrQUfx9REDTOpGur/9PpQqyXa3t7GoiDPBAm3zfFseOnvQF5OaaOXmbkGs9fchLncuPI+SmKKNdIyLNC8cSJu3C695rG0KEaj+qnYsifoMUc/aRrMaH0Y3bxj8cqOfriTq1vHfnO+OTZebaSzbuuADZh/oi32xws9t6IG09seRlffWAz7qx/u5lTuBkwSCWBuYnx3Y6XHqzMNX7m5ubhx4wb+97//ITQ0FGZmZti7dy/Cw8MBADExMYiLi0NYWOltZMub6LRdu3YoKSnBjRs3UL9+fQDA1atXdfYPCwvDtm3bdI7bvXu39rxC+/0bJ0xZEo+rZy0Rc9oSz4+5B7mlGrvWG8c3BhURa/aI2bHo1DcVc8Y1REGeFPZOpZMn5uVIUVxkPGPEB45NQWS/QPy81AUd+2Yi5rQltv3oiMmf3AFQOs+arYPuH3pTU8DepUTwedbe73EIvYKvYfKvvZBXbA5Hq9L5EHKLzFFUYop6dtno0eg6jsV6ISNfDlebPIwIO4WiEikOVXDnoiftgy6H8FzDa5i0+d/clg/lVpnCU5GF3kHXcCjWB5mFMgQ6peGdZ47i5B13XE0VtsHXQqZEPecs7WN3x2w08ExFdp4cKRnW+HlPCGaP3Iuz19xx6poHWgfHo23T23jj874Cpq4m7PFFRAJgLQvILVXw8H1Qc7h5FcE/OB85mVLcSzDehreImTfQqc89zHk92KhrQQCwMFPCy+HB53s9u2wEuqYiu0CGpGwbnLzljsldj6GoRIrELBuEeiegd8hVfLa7rYCpgW9me6BN9yy4eCqRlmSKHz51h9QE6PR8BvJyTPD+kPooKjDBO1/EIj9Xivzc0uMUjiWQCvxPIJcpUc/twbx47s65qO+ThpxcGVLSrPH7jmAMff4s7ibZIumeNYYPOo20TAscOSlcDQuUDm/s638d4/f2RF6JOZwsSuvYnOLSOja1wLLcCe0T86zLNJLVtBntDqFP/WuI2NULecqy2T1tsvGc/3UcueuF9AI53KzyMKZZ6bXDwXhhX/dqwR5ftceUKVPQt29f+Pj4ICEhATNnzoRUKsWQIUOgUCgwatQovPnmm3BwcICtrS0mTpyIsLCwR04GCpTe9rpFixYYOXIklixZArVajYiICHTr1k37zdm4cePw5Zdf4p133sHIkSOxb98+bNiwAVu3bq2pp16hg5vtoXBUYdjbSbB3LsHNixb4YKgfMlONv6+vWLP3GVr6renCdbpDARe9Ux97fncp7xBBNGxWgBmrYrF6gTt+WuwGN69ijJtzF10GZggd7bEGt7gIAFj1yp8662f81RmbzwehuESKFl6JGNryHGzlRUjLs8CpeA+8uvZ5ZOQLd5OBl54qzb16sG7uaTs7489LQVCqpGjjfQevND8HC7MSJOVYY/d1f3xzPFSIuDoaet/DF5P/0j6e+EIUAGB7VCDm/9AJh8764dP17fFK9zOYNOgo4lLsMP3bbjh/o+zdycRGoqnC5PYiLhiIqGaxli0rMCQPC3+J0T5+bUY8AGD3RkcsmmI8d7f7rz4vlw7zX/jjeZ31i94LwJ4/XMs7RDDBHilYOWyL9vFb3Y8BADafDcSszV0w9fdumNjlOOYN2AtbiyIkZtlg2f5W+DU6+FGnrBGpiWZY8LovcjKkUDiWoHHLPCz56yrsHFU4e9QaV06V9pQf0VY35/fHL8HNq1iIyFoN/VOxaPoO7ePx//sHALDzYAN88nUH/LKlKeSyEkSOPgpry2JcuOqC9z7qDqVS2Ev5oUGl1zY/9dqss/7dw53wx3Whe6NV7OXg0hr8h766NfjUA53xx7UgFKukCHVLxLAm52ArK0JagQVOJnlgyObnkV5oXDcoM4ShtayY61iJRqMRcfxHe+mll/D3338jLS0Nzs7OaN++PebNm6f9dquwsBBvvfUWfv75ZxQVFaFHjx5Yvnx5ubeMflhCQgImTpyIXbt2wcrKCr169cKiRYu0d8IBgAMHDiAyMhKXLl2Cp6cnpk+fjuHDh+uVPzs7GwqFAp3QH6YS427YqU1MLMX7h2z79aNCRzBYswWvCx3BICpxjlQAANhdF2c37RJlIf7ZMh1ZWVmwta3Zbwvv/132nTsPJnLD/vHVhYW4Ne0DQfITkbiIuZa9//eys9kgUdaxErnx9h6rSPIrTYSOYLBT01cIHcFgXV8eKXQEg8R1F+f7HABMlOKcZF1VWIib898XrA6sai0r5jq21vb4Wr9+fYXb5XI5li1bhmXLlul1Xg8PD/z2228V7tOpUyecPn1ar/MSEREREd3HWpaIiKh6mBhy0KFDh/DKK68gLCwMd+/eBQD88MMPOHz4cLWGIyIiMjqaKi56WLFiBUJCQmBrawtbW1uEhYVh+/bt2u2FhYWIiIiAo6MjrK2tER4eXmZSaiLSxTqWiIjqtBqqY42J3g1fv/32G3r06AELCwucPn0aRUWlE0xmZWVh/vz51R6QiIjImNyfF8HQRR+enp746KOPEB0djZMnT6JLly7o378/Ll4snZsiMjISW7ZswcaNG3Hw4EEkJCRg4MCBT+BZE9UOrGOJiKiuq6k61pjo3fA1d+5cfPXVV1i5ciXMzB6M2W/Xrh1OnTpVreGIiIiMjkZStQWlcyw8vNy/+P6vvn374rnnnkNAQAACAwMxb948WFtbIyoqCllZWVi1ahU+++wzdOnSBaGhoVi9ejWOHj2KqKiomnxFiESDdSwREdV5VaxjxUjvhq+YmBh07NixzHqFQoHMzMzqyERERGS8qmGoo5eXFxQKhXZZsGDBY3+sSqXC+vXrkZeXh7CwMERHR0OpVKJr167afYKCguDt7Y1jx45V29Mlqk1YxxIRUZ1XB4c66j25vZubG65fvw5fX1+d9YcPH4a/v/HeRpiIiMhYxMfH69wNRyZ79J2Vzp8/j7CwMBQWFsLa2hp//PEHgoODcebMGZibm8POzk5nf1dXVyQlJT2p6ESixjqWiIio7tG74WvMmDGYNGkSvvvuO0gkEiQkJODYsWOYMmUKpk+f/iQyEhERGY2qzHFw/7j7k9VXRsOGDXHmzBlkZWXh119/xauvvoqDBw8aFoCojmMdS0REdZ2htayY5/jSu+Hrvffeg1qtxrPPPov8/Hx07NgRMpkMU6ZMwcSJE59ERiIiIuNRla7eBhxnbm6OBg0aAABCQ0Nx4sQJfP7553jxxRdRXFyMzMxMnV5fycnJcHNzMzAgUe3GOpaIiOo8Q2vZutTwJZFI8MEHH+Dtt9/G9evXkZubi+DgYFhbWz+JfERERMalKne1qYaCQa1Wo6ioCKGhoTAzM8PevXsRHh4OoHT+ori4OISFhVX9BxHVQqxjiYiozjO0lq1LDV/3mZubIzg4uDqzEBER0UOmTp2KXr16wdvbGzk5OVi3bh0OHDiAnTt3QqFQYNSoUXjzzTfh4OAAW1tbTJw4EWFhYWjTpo3Q0YmMGutYIiKiukPvhq/OnTtDInn0bSz37dtXpUBERERGrQaHOqakpGDYsGFITEyEQqFASEgIdu7ciW7dugEAFi9eDBMTE4SHh6OoqAg9evTA8uXLDQxHVPuxjiUiojqPQx0fr1mzZjqPlUolzpw5gwsXLuDVV1+trlxERETGqQYbvlatWlXhdrlcjmXLlmHZsmUGBiKqW1jHEhFRnceGr8dbvHhxuetnzZqF3NzcKgciIiIyZtVxV0ciEgbrWCIiquvq4l0dTarrRK+88gq+++676jodEREREVGNYB1LRERUe1Vbw9exY8cgl8ur63RERERERDWCdSwREVHtpfdQx4EDB+o81mg0SExMxMmTJzF9+vRqC0ZERGSUanCOLyKqXqxjiYiozuMcX4+nUCh0HpuYmKBhw4aYM2cOunfvXm3BiIiIjBHn+CISL9axRERU19XFOb70avhSqVQYMWIEmjZtCnt7+yeViYiIyLiJ+IOfqK5iHUtERPSvOlbL6tXwJZVK0b17d1y+fJkFA5GR8ftrjNARDBY7dbnQEQwi5te83v4CoSMYpERVKHQEDnUkEinWsVRZRWENhY5gEFmWeD9k6v8yTugIBlO/pBY6gkEkSnHmBoCnm18XOoJBlHnFuDlf6BSok0Md9Z7cvkmTJrh58+aTyEJERERE9MSwjiUiIqp79G74mjt3LqZMmYK//voLiYmJyM7O1lmIiIhqs/vzIhi6EJFwWMcSEVFdVxfr2EoPdZwzZw7eeustPPfccwCAfv36QSKRaLdrNBpIJBKoVKrqT0lERGQsONSRSHRYxxIREf2rDg51rHTD1+zZszFu3Djs37//SeYhIiIyaryrI5H4sI4lIiIqxbs6VkCjKX2WzzzzzBMLQ0RERERU3VjHEhER1V163dXx4S7hREREdRKHOhKJEutYIiIicKjj4wQGBj62aEhPT69SICIiIqPGhi8iUWIdS0REBDZ8Pc7s2bOhUCieVBYiIiKjxzm+iMSJdSwRERHn+Hqsl156CS4uLk8qCxERkfFjjy8iUWIdS0REhDrZ48uksjtyXgQiIiIiEiPWsURERDVrwYIFaNmyJWxsbODi4oIBAwYgJiZGZ5/CwkJERETA0dER1tbWCA8PR3JycrVnqXTD1/274RAREdVpmiouRFTjWMcSERH9q4bq2IMHDyIiIgJRUVHYvXs3lEolunfvjry8PO0+kZGR2LJlCzZu3IiDBw8iISEBAwcOrPJT/K9KD3VUq9XV/sOJiIjEhnN8EYkP61giIqJSNTXH144dO3Qer1mzBi4uLoiOjkbHjh2RlZWFVatWYd26dejSpQsAYPXq1WjUqBGioqLQpk0b/UM+QqV7fBERERHY44uIiIiIxKuKdWx2drbOUlRUVKkfm5WVBQBwcHAAAERHR0OpVKJr167afYKCguDt7Y1jx45V9VnqYMMXERGRHu5/S2boQkREREQklKrWsV5eXlAoFNplwYIFj/2ZarUakydPRrt27dCkSRMAQFJSEszNzWFnZ6ezr6urK5KSkqr1Oet1V0ciIiIiIiIiIqqb4uPjYWtrq30sk8kee0xERAQuXLiAw4cPP8loj8SGLyIiIn1UZcgie3wRERERkZAMrWX/PcbW1lan4etxJkyYgL/++gt///03PD09tevd3NxQXFyMzMxMnV5fycnJcHNzMyDgo7Hhqw7qOzwVL4xPgYNzCW5essDyafUQc8ZS6FiVIsbsg8fdRbvuafD0L0BxkQkunbLBdwt9cDfWQuhoOhQHUmB3MAWmaaVjtIs9LJDW2wP5Te0AAJ6fXoHl1RydYzI7OiPlFd8aTlq+1EQzrJrnjhP7bVFUYAIP3yK8tTgOgU8VlNn383c9se0HJ7w2+y4GjrknQNpSYn7NmzROxgvPX0ZA/XQ4OhZg9ryOOHbc66E9NPjfy+fQq/t1WFkpcemyM75Y0RIJiZX/kDRabPgiIhJEk1Y5eOG1RAQ0zYejqxKzxzTAsV32QscqIyQwES8+dx4BPmlwss/H9KXP4sgpX+32DqG30LfzZQT4pkFhXYQxMwbgRpyjcIEf0sw/AUM7nUXDeqlwVuTj3dXd8fdFP+32aS/uR++WV3WOibriichve9d0VB32e+7C6lw6zFMKoDYzQaGvDdL6ekPpoltvy2/lwGFrPORxuYBEgqJ6lkh4rRE05sLNAGS/IwE2pzNgnlQAtbkJCv2tce95LyjdHmSXZhXD+fd4WF7OhkmhCsWucqT38kBuCwfhcu+6C+uzGTBP/vc197NBan8vKF1Lc5umFcFv1plyj00c2QC5zYV7zxf9UYjiTYVQJ5be+ETqJ4VsuAXMwswBAOo0NQqX56HkhBKafA1MvKWQD7OAWafH92wShSo2fFV6d40GEydOxB9//IEDBw7Az89PZ3toaCjMzMywd+9ehIeHAwBiYmIQFxeHsLAwAwI+Ghu+6phn+mVg7MwEfPGeJ66cssTzY+5h3rqbGNWhIbLSzISOVyGxZm/aKgtbfnTD1fPWkEo1GP5WHOatuYTXejZDUYFU6HhaJfbmSB3oiWIXOQDA9mgq6i2/jtvTG6PYo/QDLLODM9L61dMeI2SR8LCcTCne7B+AkLY5mPvjTdg5luDuTRmsFaoy+x7ZrsCVaCs4uhULkFSXmF9zuawEsbF22LWnPma8/3eZ7YMGXkL/PjH49PMwJCdbY9jQc5g3ez/GRvSBUmk873tDSP5dDD2WiIgMI7dUIfayJXZtcMaMb64LHeeR5LIS3IhzwPa/AzHnjb3lbFfi/FU3HPjHH1NGCjPs51Hk5iW4luCIv/4JwkfDd5W7z7ErXpj7SyftY2WJ8J/r8hvZyGrviiIva0CtgePWeHh8dRlx7z4Fjaw0n/xWDty/voKMZz2QOtAXGqkEsrv50AhcWllezUHmMy4o9LUC1IDTpnh4Lo3BrZlNtdnd1tyENF+FhPEBUFmbwuZEGtxXXkfc1MYo8rYSJLfF9RxkdnBFkY8VoNLAacsd1Ft2Bbc/CIFGJkWJvTluzmuuc4ziSArs9yYiL9hOkMz3mTibQD7OEiaeUkADKLcXIX9qDqy/U0Dqb4qCubnQ5Kph+ZENTBQmKN5dhPwZubD+VgppoPibUAytZfU9JiIiAuvWrcOff/4JGxsb7bxdCoUCFhYWUCgUGDVqFN588004ODjA1tYWEydORFhYWLXe0RGo5ZPb3717F6+88gocHR1hYWGBpk2b4uTJk9rtGo0GM2bMgLu7OywsLNC1a1dcu3atwnOuWbMGEomk3CUlJUW734EDB9CiRQvIZDI0aNAAa9aseVJPUy8Dx6ZixzoH7PrFAXHX5Fj6rieKCiToMSRd6GiPJdbs00cGY8/vLoi7ZonYK1b47N0GcK1XjIAmeUJH05H3lB3ymtpB6SqH0lWOtOc9oZaZQH4zV7uPxtwEKoWZdlFbCF/oAMCGZS5w8ijGlCXxCGqeDzfvYoR2yoGHr27jVmqiGZZPq4d3l92GqRF8Zon5NT95qh6+/6kZjkZ5lbNVg+f7XcHPG5og6rgXYm/Z45PFYXB0yEfbNvE1npWISKxYy+o6ecAO33/qiaM7ja+X18P+Oe+F735/Gocf6uX1sN1HA/DD5uaIvuRRs8EqIeqKN77Z0QoHL/g9cp/iEinScyy1S06B8L1gEl9rhJxWLih2t0RxPSskv1wfZhnFkN15UG87bbqNrA5uyOxaD8XullC6WJT2OjIV9pL47hsNkd3WGcUelij2tETyq/4wSy+GPO5Bdoubucjo7IpCP2soneVIf64e1JZSyOKEu55IeD0IOW2cS19zTyskv+Jf+prH/5vJRAKVrbnOYnUuAznNHbUNekIxa28OszBzSL2kkHpLIX/NEhILCVSXSgAAJReUMA+3gGmwGUzqSSEfbgmJtQSqmBJBc4vNihUrkJWVhU6dOsHd3V27/PLLL9p9Fi9ejD59+iA8PBwdO3aEm5sbfv/992rPYgSXfk9GRkYG2rVrh86dO2P79u1wdnbGtWvXYG//4INy4cKFWLp0Kb7//nv4+flh+vTp6NGjBy5dugS5XF7ueV988UX07NlTZ93w4cNRWFgIFxcXAEBsbCx69+6NcePG4aeffsLevXsxevRouLu7o0ePHk/uST+GqZkaASH5WP+li3adRiPB6UM2CA7NFyxXZYg5+39Z2pT+wczJNOJfP7UGNifTISlWo9DfWrva5ngabKPSUKIwQ16IAmm9PQT/4AKAqF0KhHbKxtyxvjh3zApObkr0GZ6K54Y+aBRVq4GFb3jjhfEp8G1YKGDaRxDZa14RN9dcODgU4vTZB2Pz8/PNceWqExo1TMXBQ77ChasOHOpIRDWAtSwZqxb1E7B11vfIyZch+no9fL2jJbLzy3+/CUVaUNrrX21ZWm9Lc5SQ385FTgsn1Pv8AsxSi0q/dHzOC4X+xjUNg8m/2VWWD64VCvytYROdhrymdlBbSGETnQ6JUoOCQOPJblKo+5r/lywuD/I7+bg3yLcGUz2eRqWBcn8xNIUaSBuXZjdtYgblviKYtjWDxFoC5b5iaIo1kDY33lFGeqnBoY6PI5fLsWzZMixbtsyAQJVnxFfeVfPxxx/Dy8sLq1ev1q57eEypRqPBkiVLMG3aNPTv3x8AsHbtWri6umLTpk146aWXyj2vhYUFLCwejLe+d+8e9u3bh1WrVmnXffXVV/Dz88OiRYsAAI0aNcLhw4exePFiQYsFWwcVpKZA5j3df/aMVFN4NSgSKFXliDn7wyQSDV774BYunrTB7WvGNzeZ+Z18eH98GRKlGmqZFInjG2iH3OW0coDSUYYShRlkdwvg9Fs8zJILkTg+QODUQGKcOf5a64SBY+/hpYnJuHrWEiume8LMTINugzMAlPYKk0o1GDAqVeC0usT6mlfE3r60YTEzU3dejcxMOezty865JjYP387ZkGOJiCqDtSwZo6gYLxw474fEdBvUc8zGuOf+weLR2zDmiwFQCz1m8D61Bk6bbqHAzwbF7qX1tmlaaW3isPMOUvt5o6ieFWxP3EO95ZcR924IlM5GMveuWgPnjbdRUN8axfUeXCskjmkA92+vo8Fbp6AxkUBtboKEcQFQuhhJg6NaA+ffbqPA3xrFHuVf49geS0GRmxyF/jY1HK58qhslyB2XBRQDsJDAcr4NpH6l15qWc6yRPzMXOc9lAFIA8n+3exr3l8+VZWgtK+Y61kj+OlW/zZs34+mnn8agQYPg4uKC5s2bY+XKldrtsbGxSEpKQteuXbXrFAoFWrdujWPHjlX656xduxaWlpZ44YUXtOuOHTumc14A6NGjR4XnLSoqQnZ2ts5CtU/ErFj4Bhbgo8nG2XBR7CbH7emNETc1GFnPOMN1dSzME0obKrI6uiC/sQLFnpbIae2IpJH+sDmdCbMU4XtPadRAgyYFGDk1EQ2aFuC5V9LQ6+U0bP3BCQBw7ZwFNn3rjClL4iAxskmWxPqa12maKi5ERJUgplqWdWzdsedMAxy+5IsbSY74+6IfpqzqhWDve2hRP0HoaFrOv8XCPDEfScMaaNfdv2DPauuCnNYuKPa0Qurzvih2sYDtceFudPRfLutvQ3a3AImjG+isd9x8Byb5KsRPbojb7zdGRlc3uK+8DvO7xjHyxXnjrdLXfHiDcrdLitWwiU5DdhuXcrcLwcRbCuvVdrD+WgHZABkK5uVCFVs6Mqfw2wJocjSwWmIL628VkL0oR/6MXKhu1JKhjnWwjq21DV83b97EihUrEBAQgJ07d2L8+PF444038P333wOAdmI1V1dXneNcXV212ypj1apVePnll3W+OUtKSir3vNnZ2SgoKL+3w4IFC6BQKLSLl1d58+ZUTXa6FKoSwM5Z9xfW3qkEGfeMu/OfmLPfN37mTbTqkoF3XwlGapLwcyGUy9QEShc5inyskDrQC0WelrDbm1zuroV+pRNpmt0Tvsedg0sJfAJ1G4O8AgqRcre0O/L549bITDXFKy0bo5fXU+jl9RSS75hj5WwPDGsVLETkB0T6mlckI6P020c7O92/d3Z2hcjIMJJvVKuqjhULRFTzxFTL1kQdS8YpId0WGblyeDoZR2On02+xsLyUibsRwVDZPai3S2xLa8JiV906pNhVDtMM46irXH6+BavzmYh/sxFK7M21683uFcL+QAqSh/mhIKj0C9H0PvVQ6GMFuwPl14w1yXnDLVhdyMSdiY1QYl/+NY71mTSYFKuR08qphtM9msRMAqmnFNIgU8jHWcGkvimKNxZCdVeF4t8KYTHVCqZPm0EaYAr5SEtIG5qi+Pda9OVzHatja23Dl1qtRosWLTB//nw0b94cY8eOxZgxY/DVV19V+hy9evWCtbU1rK2t0bhx4zLbjx07hsuXL2PUqFFVzjt16lRkZWVpl/j46p8AukRpgmvnLNG8fY52nUSiQbP2ubgUbXzD7h4m5uyABuNn3kTbbul475VgJN8xki7JlSDRaCApUZe7TRZf+g1TiUL4se7BLfMQf0P3g/buTRlc6ikBAF3D0/HV3his2P1gcXQrxgvjUzBv3Q0hIj+SWF7ziiQlWyM9XY5mTz0oxiwtlAgKTMXlGOMpeIiIjJmYatmaqGPJODkrcqGwLERqtsD1uEYDp99iYX0+HQmvN0KJo269XeJQOnWE+X96zZvfK4TSQeAvpDUauPx8C9ZnMnBnchBKnHTzSIr/rQv/O2zBBMI2Rmg0cN5wC9bn0nF3YiOUOD36Gsf22D3kNrWDysaIa1iNBholgMJ/X9T/tJRIpKWjTEicxNFVxgDu7u4IDtbtydGoUSP89ttvAAA3t9JJl5OTk+Hu7q7dJzk5Gc2aNQMAfPvtt9pvtczMyv6Sfvvtt2jWrBlCQ0N11ru5uSE5Wbf1PTk5Gba2tjrfpj1MJpNBJnvyf3R//8YJU5bE4+pZS8SctsTzY+5BbqnGrvUOT/xnV5VYs0fMjkWnvqmYM64hCvKksHcqvdNgXo4UxUXGM07c6fd45DWxg9LBHCaFKtj+kwaLqzlInxQIs5RC2PyTjrymCqisTCG7kw/nDfHID7BBsafwDY8Dx6Ygsl8gfl7qgo59MxFz2hLbfnTE5E/uACidI87WQaVzjKkpYO9SIugccWJ+zeVyJTzcHzREu7nmwt8vHTk5MtxLtcIfm4MwZPAFJCTYICnZCsOGnkNauuUj7gIpLpzji4hqgphq2ZqqY+WWKnj4PvjcdvMqgn9wPnIypbiXYDy96eUyJeq5PugB5e6Ui/reacjJlSEl3Ro2VkVwccyFk13pF1peblkAgPQsC2RkCfsZb2GuhKdTlvaxh0MOAjxSkZ0vQ3a+HKO6n8T+c/5Iy7GEp2MWIvocx500BY7HCPv57vzbLVhHpyJxVEOoZVJIs0vrbbXcFBpzE0AiQUZnDzjsuIMij9I7P9qcuAezlAJkDw8UNLvLz7dhcyINCeMDoJabQJr1b3aL0uzFbnIUO8vg8tMtpIZ7QWVtCuszGbC8nI2E14XL7rzhFmyi05A4JrA0939f83+Z3SuExY0cJIxrKFTUMgq/yoNpG3OYuJpAk6+BcncRVKdLIPvMAiY+Uph4mqDgkzzIIywhUZig5O9ilJxQwnKhccxPVlV1cY6vWtvw1a5dO8TExOisu3r1Knx8fACUTg7q5uaGvXv3aouD7OxsHD9+HOPHjwcA1KtX75Hnz83NxYYNG7BgwYIy28LCwrBt2zaddbt370ZYWFhVnlK1OLjZHgpHFYa9nQR75xLcvGiBD4b6ITPViFvf/yXW7H2GlhaOC9dd0lm/6J362PO78Yxzl+aUwG31TUizlFBbSFFUzxJ3JwUiP1gB0/QiWF7Ohv3eJEiK1ChxMEduC3uk9zaO23A3bFaAGatisXqBO35a7AY3r2KMm3MXXQZmCB2tQmJ+zQMbpGPh/D3ax6+NPgUA2L3XH4s+D8PG34Mhl5fgjYjjsLYqxsVLLpg2qzOUSuNp7DUY7+pIRDWAtWxZgSF5WPjLg9fktRmlPct2b3TEoin+QsUqo6FfKha/9+D1e/3l4wCAHYcDsPDbjmjb/DbeHX1Iu33G6/sBAN9vao7vN7Wo2bD/EeR1D8vHb9E+ntS/dF63rScC8clvHVDfPR29nr4KG3kxUrMtcfyqJ77Z0RJKlbCf74ojpfW25zLdejt5iD9yWpXW21nPuEOiVMPpz9uQ5pegyMMSCeMq7qlUE+z+TgEAeH12RWd90jA/ZLd1BqQmuDuhIZw2xcNj+VWYFKmhdJYh6VV/5DW1EyBxKbvDpbk9l17WWZ801B85bZy1j22P3UOJnTnygxQ1mq8i6gwN8ufmQpOmhsRKApP6prD8zAZmLUuHmFp+YovCr/KR/24ONAUamNSTwuIDa5iFmT/mzCJRQ3d1NCYSTWXuMSlCJ06cQNu2bTF79mwMHjwY//zzD8aMGYNvvvkGQ4cOBVB6t5yPPvpI5xbQ586dq/AW0PetWrUKEyZMQGJiIuzs7HS2xcbGokmTJoiIiMDIkSOxb98+vPHGG9i6dWul74STnZ0NhUKBTugPU4lxN+zUJiaWwvekMdSVJWWHMIhFbJ+Vj9/JCPn9NUboCAZr+I04765YoirE/lMfISsrC7a2NXsL7/t/l5uOng+puWFFsqq4EOe/fV+Q/EQkLmKuZe//vexsNkiUdWxx5xChIxikwEm8fRpSWgqdwHBqC3GOf5MojeyOT3p4uvl1oSMYRJlXjM3dVwtWB1a1lhVzHSvev46P0bJlS/zxxx+YOnUq5syZAz8/PyxZskRbKADAO++8g7y8PIwdOxaZmZlo3749duzY8dhCASgtFgYOHFimUABKv4HbunUrIiMj8fnnn8PT0xPffvstb/9MRERERJXCWpaIiKh61NqGLwDo06cP+vTp88jtEokEc+bMwZw5c/Q+99GjRyvc3qlTJ5w+fVrv8xIRkZHjUEciqiGsZYmIqNrVwaGOtbrhi4iIqLpxcnsiIiIiEitObk9EREQVY48vIiIiIhIr9vgiIiKiCrHhi4iIiIjEqg42fJkIHYCIiIiIiIiIiOhJYMMXERGRHu7Pi2Dooo8FCxagZcuWsLGxgYuLCwYMGICYmBidfQoLCxEREQFHR0dYW1sjPDwcycnJ1fiMiYiIiKi2qKk61piw4YuIiEgfmiouejh48CAiIiIQFRWF3bt3Q6lUonv37sjLy9PuExkZiS1btmDjxo04ePAgEhISMHDgwKo+SyIiIiKqjWqojjUmnOOLiIhIDxKNBhKNYZ/894/Lzs7WWS+TySCTycrsv2PHDp3Ha9asgYuLC6Kjo9GxY0dkZWVh1apVWLduHbp06QIAWL16NRo1aoSoqCi0adPGoJxEREREVDsZWssaWv8aA/b4IiIi0kc19Pjy8vKCQqHQLgsWLKjUj87KygIAODg4AACio6OhVCrRtWtX7T5BQUHw9vbGsWPHqvhEiYiIiKjWYY8vIiIietLi4+Nha2urfVxeb6//UqvVmDx5Mtq1a4cmTZoAAJKSkmBubg47OzudfV1dXZGUlFStmYmIiIiIxIgNX0RERHqoyuSe94+ztbXVafiqjIiICFy4cAGHDx827IcTERERUZ1naC3Lye2JiIjqihqc3P6+CRMm4K+//sL+/fvh6empXe/m5obi4mJkZmbq7J+cnAw3NzfDfhgRERER1V51cKgjG76IiIj0UJVbQOv7TZlGo8GECRPwxx9/YN++ffDz89PZHhoaCjMzM+zdu1e7LiYmBnFxcQgLC6uOp0tEREREtUhN1bHGhEMdiYiIjFRERATWrVuHP//8EzY2Ntp5uxQKBSwsLKBQKDBq1Ci8+eabcHBwgK2tLSZOnIiwsDDe0ZGIiIiICGz4IiIi0k9VunrredyKFSsAAJ06ddJZv3r1agwfPhwAsHjxYpiYmCA8PBxFRUXo0aMHli9fbmBAIiIiIqrVDK1l2eOLiIiobqiOye0rS6N5/AFyuRzLli3DsmXLDAtFRERERHVGXZzcng1fRERE+qjBHl9ERERERNWKPb6I6jaJjbXQEQzmsVu896rwl48UOoJBzBVFQkcwmFIhEzqCQUpKjOMTV8zfeBER1RSNshgaEf7BlCXlCh3BIEorhdARDOa1Ry10hDrn7jNSoSMYzMcyXegIBilSK4WOoCXCP81VIt4rZSIiIiIiIiIiogqwxxcREZE+NJrSxdBjiYiIiIiEYmgtK+I6lg1fREREeqjJye2JiIiIiKoTJ7cnIiKiinFyeyIiIiISqzo4uT3n+CIiIiIiIiIiolqJPb6IiIj0IFGXLoYeS0REREQkFENrWTHXsWz4IiIi0geHOhIRERGRWNXBoY5s+CIiItIDJ7cnIiIiIrHi5PZERERUMUNvAX3/WCIiIiIioRhay4q4juXk9kREREREREREVCuxxxcREZEeONSRiIiIiMSKQx2JiIioYpzcnoiIiIjEipPbExERUUXY44uIiIiIxIo9voiIiKhinNyeiIiIiMSKk9sTERERERERERHVDuzxRUREpAcOdSQiIiIiseJQRyIiIqoYJ7cnIiIiIrHi5PZUF/QdnooXxqfAwbkENy9ZYPm0eog5Yyl0rEoRc3YAGDQiFiPeuI5NP3njm08bCh1Hx1P1E/Fyl7MI8kqFkyIf733bHYfO+2q3H/n8m3KPW/Zna6zb91QNpSyfYu89KPbdg+m9YgBAcT0LpA9wQ/5TCpjeK4LfWxfLPS5xgh9yW9nXZFQdNrvSYLM77UFuTzmywl1Q0NwWAGCaVAT7HxMhv5IHSYkGBU/ZIG2EB9R2ZoJlvq9pwyS82Ps8AnxT4WRfgBlLnsWRaB/t9mHPn0LnNrFwdsxDSYkJrsY64rtfQ3HlhouAqasHe3wREQlHjLXgmu+3wNU1v8z6LVsaYPmyUAESPdpTDRIxpOtZNPRKhZNdPt7/ujsOnfPVbh/x3Ek8G3oDLvZ5KFGZICbOGSu3tMSlW8J+vocEJOKlHucQ6JMGJ7t8TFvWFYfP+AIApFI1Rg04iTZN4uHunIO8AnNEX/bAN7+1RFqWlaC5AfFmf63xKXT3joW/bSaKVFKcuueGT063QWy2nXafH7v9idauiTrH/Xw1GDP+6VjDaSuWslqDpC8ApyGAx9sSAEDabxpk7gAKrgDqPKDxQUBqIxE4afVgjy+q9Z7pl4GxMxPwxXueuHLKEs+PuYd5625iVIeGyEoT/mK6ImLODgABwVnoFX4HN69aCx2lXBbmSly/64itxxtiwajdZbb3nfaKzuM2wfGY+tJBHDjrV1MRH6nEwQypg+tB6SoDNIDt4TR4LLmJuA+DUOwhx82lTXX2VxxIhf22ZOSF2AqUuFSJoxkyXnaD0q00t/XfGXD55DYSPg5AibM5XOfHothbjqQZ/gAA+1+S4brwFhLnNgBMhP3gtZApcSPOAdsPBmDO5H1ltt9JUuCLtW2QmGIDc3MVXuh5ER+/sxPDpryArBwLARITEZHYibUWnPRGN5iYPLhi9PHNwoIFB3HokJeAqconN1fi+h1HbD3WEPPHlq0H41PssHhDOySk2kJmXoIXO5/HoglbMWTWS8jMFe7zXS4rwY07jth2pCHmvr5Hd5t5CQK9U7F2a3PciHeAjVUxJrx4DPMn7MZr8wYIE/jhfCLN3so1ET/FNMa5NBeYStR4q/k/WN3lL/Ta8iIKVA9+H9dfa4TPz7bUPi5UGVcTRP5FDdJ+A+QBuuvVhYBN29Il6QthslH1qdWT2/v6+kIikZRZIiIiAACFhYWIiIiAo6MjrK2tER4ejuTk5Meed+fOnWjTpg1sbGzg7OyM8PBw3Lp1S2efAwcOoEWLFpDJZGjQoAHWrFnzBJ6h/gaOTcWOdQ7Y9YsD4q7JsfRdTxQVSNBjSLrQ0R5LzNnlFiV4Z/4FLP0wGLnZxlmYRV32xsptLfH3ufIbstJzLHWWDk1u4dR1DySkCdt4BAB5ze2Q/5QCSjc5lO5ypA2qB7XcBPIbeYCJBCo7M53F6mQmclrZQyOXCpq7INQWBc1tUeIuQ4mHDJkvuUEtN4HsWj5kMXkwTSlG6uteUHpbQOltgXsRXjC/WQD5hVxBcwPAP+e8sPrXUByJ9i13+75j9XHqYj0k3rPF7bv2WPFTK1hbKuHvlVGzQZ8EtaZqCxFRJbCOLUustWBWlhwZGRbapXWrBCQkWOP8OWeho5Vx/JI3vv2rJQ494ovNPScbIDrGE4lptriV6IAvfg+DtYUS9esJ+2/wzwUvrNr0NA6f9i2zLa/AHFMWP4cDJ/0Rn2yHSzdd8PnPbdHQNxUuDkZQU4k0+6h9vfH7zSBcz3LAlUwnvHu0M+pZ56KJ4z2d/QpLTJFaaKldcpXmAiUuS5WvQdwHgOd0QPqfSxrnoRK4jJDAsmn5x4paHaxja3XD14kTJ5CYmKhddu8u/dZi0KBBAIDIyEhs2bIFGzduxMGDB5GQkICBAwdWeM7Y2Fj0798fXbp0wZkzZ7Bz506kpqbqHBcbG4vevXujc+fOOHPmDCZPnozRo0dj586dT+7JVoKpmRoBIfk4dchGu06jkeD0IRsEh5btfm1MxJwdAF6fegX/HHLCmeOOQkepFvY2+WjbOA5/RQUJHaUstQbWUemQFKlR2KBsF3BZbD7kcQXIfsbI/i3UGlgdyYRJkRpFgZaQlGgACaAxe9CzS2MmASSAPCZPwKD6M5Wq0LtLDHLzzHEjzkHoOFWnqeJCRFQJrGN1ib0WvM/UVIXOXW5j104/AOIeNmUqVaFfu8vIyTfH9TtGVlc9hrVFMdRqIDffeBphKstYs1ublU7dkVkk11nfz+8ajr+wBlv7/IK3mh2HXKoUIl65Ej4CbNsDNq3F/buotzpYxxpXP8Nq5uys+y3KRx99hPr16+OZZ55BVlYWVq1ahXX/Z+++w5sq/zaA32nTNt2bDmihQKFMGSqUIatakFUBEcRXlqCIylAUlK2IICgyBFFk/AARHIiyKVvKKhSRUVoobYEOVpvukTzvH7WR2FKatPTkpPfnus6lOSt3kkPy7XOe85yNG9G1a1cAwOrVq9GoUSMcP34cbdu2LXWfkZGR0Gg0+OSTT2BhUdRu+N5776Fv374oKCiAlZUVVqxYgYCAACxcuBAA0KhRIxw9ehRffvklQkNDH+MrLpuTmwaWSiDttv7Hfv+OEn718yRKVT5yzv5MaDLqB2Vg3CtPSx2l0vR46gqyc61x6FwdqaPoWCfmwG92NBQFWmhVlkgaVxf5NUt2uXc6dAd5virkBprGJadWCTnwmXoVigIthMoCqe/VRkEtFTROSggbC7htSMb9wd6AAFw3JkGhBSzvF0odu1zatkjA1LEHYWNdiHtpdnh/XijUmapHb2jiFKjAGF+VmoSIzBnrWH1yrgUfFBx8Ew4OBdi7V/qhIozVrmk8ZowIh8qqEHfVdpi45HmkZ8nn991aWYjR/U8i/FQ9ZOeaVuPRo5hqdgUEpj75J06neiMm/d+TnL/HBeJmliNSc+wQ5HIXk1qeQF2nNIw9LN13SbG03QI5l4H6/5M6SdUztpaVcx1r1j2+HpSfn4/169djxIgRUCgUiIyMREFBAUJCQnTrBAUFwd/fHxEREQ/dT+vWrWFhYYHVq1dDo9EgPT0d//vf/xASEgIrq6JL2CIiIvT2CwChoaFl7jcvLw9qtVpvIvnz8MrF65OiMf+jpijIl/ayusrUq2009kTWR36h6bSd5/vYIOGTICTOCEJ6Vw94rYyH9c0cvXUU+Vo4Hr9vUr29CnxtcGt+IJLm1If6WXd4LEuE1Y1caJ2USJ1QG7Zn1PAf+jf8h/8Ni2wN8gJsIWTyzR11yQejPwrDO7N74dT5mpj29gG4OOU8ekNTJ0TFJiIiA7GONR+h3eNw+pQP7t2T73iXZ674YsTc/hizsC9OXPTDrJHhcHGQx++7paUWM17fDwWAL9e3lzqOQUw5+8ynjyDQ5R4mHNX/7vgxtjGOJvnhSpo7tl1vgEnHuuI5/zj4O6RLlLRIfrLArc8Bv08ACxs5N+cYqRrWsTL586nitm7dirS0NAwbNgwAkJycDGtra7i4uOit5+XlheTk5IfuJyAgAHv27MGHH34IGxsbuLi44MaNG9i8ebNuneTkZHh5eZXYr1qtRk5O6T8Kc+fOhbOzs27y86v8wS7V9yyhKQRcPPV7i7h6FOL+bdNpwCiNXLMHNlLD1T0fSzaewO+n9uH3U/vQ/Mn76DM4Ab+f2qc30KlcPFE3CbW90vF7hIld5qi0QIGXCnkBdrg7sCby/Wzhskd/jAGHU/dhkadFRnsTutxOaYFCbxvk17VD2ss+yK9tC6cddwAAuU844ubiICSubIzE75rgzlv+UN4rQGEN0znDV5bcPCvcSnXCpas1sOC7jtBoLNCj0xWpYxERyQ7rWPnWgg+qUSMLLVqkYNeuulJHqZDcfCvcvO2Mi9e9MG9DJ2i0CvRqd1nqWI9kaanFzNfD4eWeife+7GFSPaYexZSzT3/qCLrUjMf/7e2D5Oyyr6g4d6fo7p/+jtI2judcAgrvATFDgL+eEvjrKYGsSODOpqLHQiO/v9GobNWm4WvVqlXo0aMHfH19y71NkyZN4ODgAAcHB/To0QNAUTEwatQoDB06FKdOncKhQ4dgbW2NAQMGQFSgBXTKlClIT0/XTYmJiUbv62EKCywQ85cdWnbI0M1TKARadMjExUjTvg20XLNHnXTDmAHBeGtQW9105YITDu7wwVuD2kKrld8Zhl5to3E5wQOxt0yn11SphICiQKs3y+nQXWS2cobGyTRvMACgKHeh/neJ1kkJrb0lVH9nwkJdiOwnpb+hgDEsFAJWSo3UMSqs+BbQxk5ERIZiHSvfWvBBzz4Xh/R0G5w86SN1lEolh9/34oajWjXUePeLHlDL6NJM080uMP2pI3jWLw7/t683bmQ9uj5t5FZ0cvd2jrT/Zh2eBhpsBhr88O9k2xhw6VH0/wpL+f2NZojqWMfK4/RIBcXHx2Pfvn345ZdfdPO8vb2Rn5+PtLQ0vbNlKSkp8Pb2BgDs2LEDBQVFg+/Z2hZ1R162bBmcnZ0xf/583Tbr16+Hn58fTpw4gbZt28Lb27vEXXVSUlLg5OSk289/2djYwMbGplJeb1l+WemB9xYl4so5O0SfLboNtMpOiz2bTKgHzEPIMXtOthLxV/XPfOTmWEKdblVivtRsrQtQy/Pfbse+7moE1rwDdbYKKfeLstrZ5KNLi2tY+lvpY4dIxX3zTWQ1d0KhuzUscrVwjLgH28uZuDWpvm4dq5Rc2EZn4ta79SRMqs9lYxJyWjhC42ENRa4G9kfToLqYhZQPi86GORy4h4KaNtA4KWETkw23Nbegft4Dhb7SFzwqmwLU9Pr3bJ23Zwbq+d9FRpYN1Jk2GNLnHI6d8cfdNDs4O+aib8gleLhm49BJ+Y5polORwT1lXDAQkTRYx/5LjrVgMYVC4Nln47Bvbx1otabb98DWpgA1H6gHfdzVqF/rDtRZKqizbPBq97M4+ldt3FXbwdk+F/06XYCHSzYOnJW2F5utTQFq1nigLvHIQH2/u1Bn2eBuuh1mvbEPDfzvYsqS52BpIeDmVHRDBHWWDQo10g5HItfsM586gt4BsRhzsDuyCqzhoSrKlVFgjTyNEv4O6egdEIuDN/2RlmeDhq738FHrYziZ4oPoNGlPoFvaK2BZX3+eha2A0hlQ1S9q9Cq4I1B4F8j7px0/NwawsBew8gaUzjJvGDO2lpVxHVstGr5Wr16NGjVqoGfPnrp5rVu3hpWVFcLDw9G/f38AQHR0NBISEhAcHAwAqF27dol9ZWdn6wYDLWZpWfSFo9UW9S4JDg7Gjh079NbZu3evbr9SOrTNFc7uGrw6KRmunoW4dsEWHw0JQNodE+4B8w85Z5eDIP/bWPr2H7rH77xwHACw40QDzNnYGQAQ0uoqFAqBvZH1S9uFZCzVhfBeGQ/LtAJobS2R72eLW5PqI7vpv2eenA7fRaGrld48qVmqC+H5dSIs7xdCa2eBfH9bpHwYgNzmRXesskrKg+sPybDI1KCwhhXSX6gBdU8PiVMXaRhwB198tFP3+M0hJwEAu4/Ux5er28HPJx0z39kPJ8dcqDNtEH3NE+M/eR7xN12lilxpFEJAYWTPCGO3I6Lqi3Xsv+RcC7ZsmQIvr2zs2WPalzk29L+NJeP/rQffHlBUD+483gALfugAf680fDLqCpztc6HOUuFSgife+qI3ridJ2/jYsPZtLJr073H71ksnAAC7jgVizbZW6NAiAQCwasavetuN//x5RF0pf0/Kx0Gu2Yc0vAgA2PDcNr35HxzrjF+uBSFfa4l23jcwNOgv2CkLkZRlj90JAfj679ZSxDXY3Z+A1JX/Pr76WtF/a80E3PpIEqnSGFvLGrrN4cOH8fnnnyMyMhJJSUn49ddfERYWplsuhMCMGTPw7bffIi0tDe3bt8fy5csRGBhocLZHUYiK9GuWAa1Wi4CAAAwePBifffaZ3rIxY8Zgx44dWLNmDZycnPD2228DAI4dO/bQ/e3fvx8hISGYOXMmBg8ejIyMDHz44Ye4fPkyLl26BFtbW8TFxaFp06YYO3YsRowYgf379+Odd97B9u3by303HLVaDWdnZ3RGXygVpv9jbi4svWpIHcFo6c/ItydNUm/Tua2xIaxs5HF3xdLUWinP75XCwlwcPTgL6enpcHKq2kbM4u/ljp1nQKk0rtddYWEujkiUn4jkh3WsNCyam9g4puWUWc9Z6ghGs8zXPnolqlQ3O8m3D0xYyHGpIxglL7MAyzpulawOrGgta2gdu3PnTvz5559o3bo1+vXrV6Lha968eZg7dy7Wrl2LgIAATJs2DefPn8fFixehUlXuFS6m28+2kuzbtw8JCQkYMWJEiWVffvklevXqhf79++OZZ56Bt7e3Xjfy0nTt2hUbN27E1q1b0bJlS3Tv3h02NjbYtWuXrvt3QEAAtm/fjr179+KJJ57AwoUL8d1330l6C2giIqok2gpORETlxDqWiIgqXRXVsT169MAnn3yCF154ocQyIQQWLVqEqVOnom/fvmjevDnWrVuHW7duYevWrca+soeSbzNvOT333HMPHaxTpVJh2bJlWLZsmUH7HDRoEAYNGlTmOp07d8bZs2cN2i8REZk+XupIRFWFdSwREVW2il7qqFbr35XTmHEe4+LikJycjJCQEN08Z2dntGnTBhEREY/8nTKU2ff4IiIiqlSighMRERERkVQqWMf6+fnB2dlZN82dO9fgCMnJyQAALy8vvfleXl66ZZXJ7Ht8ERERVSohiiZjtyUiIiIikoqxtew/2yQmJuqN8VUVd/WtKPb4IiIiIiIiIiKiR3JyctKbjGn48vb2BgCkpKTozU9JSdEtq0xs+CIiIjKAQlRsIiIiIiKSiinUsQEBAfD29kZ4eLhunlqtxokTJxAcHFx5T/QPXupIRERkCF7qSERERERyVcFLHcsrMzMTsbGxusdxcXGIioqCm5sb/P39MX78eHzyyScIDAxEQEAApk2bBl9fX4SFhRme7RHY8EVERGQAhbZoMnZbIiIiIiKpGFvLGrrN6dOn0aVLF93jiRMnAgCGDh2KNWvW4P3330dWVhZGjx6NtLQ0dOjQAbt27YJKpTI83COw4YuIiMgQ7PFFRERERHJVRT2+OnfuDFHGNgqFArNnz8bs2bMNz2IgjvFFRERERERERERmiQ1fREREhhAVnAxw+PBh9O7dG76+vlAoFNi6dat+FCEwffp0+Pj4wNbWFiEhIYiJianAiyMiIiIis1ZFdawpYcMXERGRARRCVGgyRFZWFp544gksW7as1OXz58/H4sWLsWLFCpw4cQL29vYIDQ1Fbm5uZbxUIiIiIjIzVVXHmhKO8UVERGSIKhzjq0ePHujRo8dDdiWwaNEiTJ06FX379gUArFu3Dl5eXti6dSsGDRpkXEYiIiIiMl9VNMaXKWGPLyIioiqmVqv1pry8PIP3ERcXh+TkZISEhOjmOTs7o02bNoiIiKjMuEREREREssWGLyIiIkMIAFojp39OlPn5+cHZ2Vk3zZ071+AYycnJAAAvLy+9+V5eXrplRERERER6jK1l5dvhi5c6EhERGaIiYxwUb5eYmAgnJyfdfBsbm0rJRkRERERUFmNrWY7xRUREVF0IVGCMr6L/ODk56TV8GcPb2xsAkJKSAh8fH938lJQUtGjRokL7JiIiIiIzZWwtK992L17qSEREZJDiAUGNnSpJQEAAvL29ER4erpunVqtx4sQJBAcHV9rzEBEREZEZMYE6tqqxxxfRAzQpqVJHMJrLaVupIxgty7um1BGMklFXK3UEo1nfVUsdwSgWGsMHgZezzMxMxMbG6h7HxcUhKioKbm5u8Pf3x/jx4/HJJ58gMDAQAQEBmDZtGnx9fREWFiZdaCIiuYu7KXUCozjJ9LcdALTqDKkjGC3nmSCpIxhFUSh1AuP9cqiN1BGMos3NBbBV6hjVEhu+iIiIDKEFoKjAtgY4ffo0unTpons8ceJEAMDQoUOxZs0avP/++8jKysLo0aORlpaGDh06YNeuXVCpVEYGJCIiIiKzZmwtK99z/mz4IiIiMkRlDG5fXp07d4YoYxuFQoHZs2dj9uzZRuUhIiIiouqFg9sTERFR2SoyxoGMCwYiIiIiMgPG1rIyrmM5uD0REREREREREZkl9vgiIiIyBHt8EREREZFcVcMeX2z4IiIiMgQbvoiIiIhIrtjwRURERGWqwrs6EhERERFVKt7VkYiIiMpSlXd1JCIiIiKqTNXxro4c3J6IiIiIiIiIiMwSe3wREREZgmN8EREREZFccYwvIiIiKpNWAAojf/i18i0YiIiIiMgMGFvLyriOZcMXERGRIdjji4iIiIjkij2+iIiIqGwVaPiCfAsGIiIiIjIHxtay8q1jObg9ERERERERERGZJfb4IiIiMgQvdSQiIiIiueKljkRERFQmrYDRXb1lPCgoEREREZkBY2tZGdexbPgiIiIyhNAWTcZuS0REREQkFWNrWRnXsWz4qoZ6D7uDAWNS4eZZiGsXbfH11JqIjrKTOla5yDW7XHO7e+Rg+JsX0bptKmxUGiTdsMeXn7ZE7GUXqaPpGRF8Bt0aXkMdtzTkFVri3E1vLDrQFvH3XHXrTO1+CG3q3ICnQxayC6xw7oY3vjrQFtcfWKeqOf2ZDOc/U2F1Lw8AkO9ti3uhNZHdyBUWWYVw25UIu+h0KNPyoLG3QlYzN9zrUQtaW9P86ra1LcCr//cXgtvdgItzHq5edcU337TClRh3qaMREZGZkGNNNXB0Ito/dxe16uYgP9cCF8864vsFdXAzzrRz/9eLQ69i2FtXsPWH2vj2i8ZSxymTnN7z5oFJGBT6FxrUvgsPl2xMXRaCo1F1AACWllqMDDuNtk0T4eOZgawca0Re8sXKn5/C3XR7SXO/3uwMnqsdhwDnovr77G1vfH66LeLULqWsLfBdyA48UysRb+4Pxb6EgKqOq8d1303Y/3UP1qk50FpZILeOI+729kdBDVu99VTXM+C2PRGqhExAoUBeTTvcer0RhDWHSpcbfmIANBoNpk2bhoCAANja2qJevXr4+OOPIR64hlUIgenTp8PHxwe2trYICQlBTEyMhKmN06nPfYyecQsbvvDG2NAGuHZRhTkbr8HZvUDqaI8k1+xyze3gmI/PVxxFYaEFZrzbFmOGdMF3S5sgM8NK6mgltPa/hR8jm+LVdf3wxqbeUFposXzQH1BZ/fseX0r2xIztXdDv20F4c1MvKBQCywf9AQuFdGcuCp1tcLeXHxLfbYrEiU2RHegEn1VXYJ2UDaU6H0p1Ae70qY2E959A6sv1YHc5DTU2XZMs76OMG3cSLVsmY8GCYIx5swfOnPXGp58egLt7ttTRKlfxuAjGTkRElYh1rOnXVM2eTsfvG3wwYWBzfDi8CZRKgTmrLsDGViN1tHILbJyG7i8k4toVR6mjlIuc3nOVTSGu3nDHoo3tSi6zLkQD/ztYt70lRn8chunLQ+DnlY5P39orQVJ9T3knYf3lJhi4/QUM39MLSoUW3z/3B2yVJf89Dmv8l0ndD1B1VY30Dl64Ma4pbr3RCAqNgO+KS1Dk/Xt8qK5nwOeby8hu6Iwb44tq9fQO3hDm0IJSDetYc/jYKmzevHlYvnw5li5dikuXLmHevHmYP38+lixZoltn/vz5WLx4MVasWIETJ07A3t4eoaGhyM3NLXWf169fh0KhqKqXUG79Rt/Bro1u2POjGxJiVFj8QS3k5SgQOvie1NEeSa7Z5Zp7wJBY3E61xaJPW+LKJVekJNnj7MkaSL4p7dml0oz9sRe2nQ/C1TtuuJLqgel/dIWvcyYae9/WrfNzVGOcSfTFrXQnXE7xxLJDbeDjnAlf5wzJcmc3dUV2Y1cUeNqioIYt7vX0h9bGAjbxmcj3sUPy8AbIbuqKQg8VcgKdcfd5P9hfuA9oTO9Hx9q6EB3aJ2LV9y3w9981kJTkiA0bmuHWLQf07BkrdbzKpRUVm4iIKhHrWNOvqaa91hT7fvVCQqw94qId8MXkBvCqmYfAJplSRysXlW0hJs0+hyWfNjXJE6ClkdN7fvJvP6za+iSOnq1TYllWjjXe+/J5HDxdF4kpLrh4rQa++qEdGta5gxpu0r6W1/b2xK+xQYhNc8Pl+x744GgX1HTIRBP323rrNXK7gxFN/sKUP7tIlLSkpNcbIePpGsj3sUN+TXukvFwPVvfzYXMjS7eOx9Z4pHf0RlpITeT72KGghi0yW7oDSjNoQqmGdawZfGoVd+zYMfTt2xc9e/ZEnTp1MGDAADz33HM4efIkgKKzZIsWLcLUqVPRt29fNG/eHOvWrcOtW7ewdetWacMbQGmlRWDzbJw58u+ZGiEUOHvEEY1bm3aPDLlml2tuAGjTIRmxl10w5eNT2PDHLixefRChveOljlUuDqp8AEB6jk2py1VWBejb/DJu3HdEstqhKqM9nFbA4cwdWORpkVun9EyWuRpoVZaApen9MWJpKWBpKVCQb6k3Pz/fEk0a337IVjLFHl9EZEJYx5p+TfVfdo6FAICMdNMcuuC/xrx/Eaf+rIGokx5SRzGa3N7zsjjY5kOrBTKzraWOosfR+p/6O0+lm6eyLMDCZ8Ix63gH3MkxvctMi1nmFPX00toVHR+WGQVQxWdC42CFml/9jTrTIlFz6QWorqmljFl5qmEdy4YvAO3atUN4eDiuXLkCADh37hyOHj2KHj16AADi4uKQnJyMkJAQ3TbOzs5o06YNIiIiKiVDXl4e1Gq13lTZnNw0sFQCabf1v/Dv31HC1bOw0p+vMsk1u1xzA4C3bzaeD7uOmzccMG1CMHb8WgevTziPbj0SpI5WJgUEJoX8ibOJ3rh6R39sqYGt/saxd7/F8fe+Q/t6CXhjU28Uai0fsqeqYX0rG3U/OIl6k07Ac0sckkY0QIF3ycLAIrMArntuID24hgQpHy0nxwoXL3pg8OALcHPLhoWFFl26xCEo6C7c3HKkjle5BCpQMEgdnojMDetY06+pHqRQCLz+4TVciHRCfIzp9aL/r2eevYX6QelYs6yB1FGMJrf3vCzWykKM7n8S4afqITvXdBq+FBD46Ok/EZnijZg0N938D58+hrOpXghPlHZMrzJpBTy2XkdOgCPyfYpqcOXdot6wbrtvQN22Bm69HoS8mvao+fUlWN02g7rW6FpW6uDGk3+TdyWYPHky1Go1goKCYGlpCY1Ggzlz5mDIkCEAgOTkZACAl5eX3nZeXl66ZRU1d+5czJo1q1L2RVQZFBYCsZddsO6bRgCAazHOqF03Az3C4hG+01/idA83JfQw6nvcw7D1YSWW7bgQiONxteDhkI1X20RhftgeDPvfC8jXSPdVmF9DhcT3msMitxAO5+7Ba+NV3HirsV7jlyK3EL7fXka+ly3uda8lWdZHWbCgLSZMOIEN63+DRqNAbKwrDh3yR/3696WORkRktljHysvYGVdRJzAb773cXOooj+ThlYPR717C1LeeKtGjW07k9J6XxdJSixmv74cCwJfr20sdR8+MtkcQ6HoPg3eE6eZ19buOtj43EbbtRemClYPnz3GwTsrGjXea6OYp/mngSW9XAxltik4636llD9sYNZxO3MbdXqb7txCVjg1fADZv3owNGzZg48aNaNKkCaKiojB+/Hj4+vpi6NCh5d5PkyZNEB9fdClY8YCiDg7/XrLUsWNH7Ny5s9Rtp0yZgokTJ+oeq9Vq+Pn5GfNyHkp9zxKaQsDlP2fFXD0Kcf+2aR8Kcs0u19wAcP+uCgnX9QcwTbzugHadkyRK9GiTnzuCZ+rHY8T6MKRmlLxcMDPPBpl5Nki474K/bnrhyITv0bVhHHZdDJQg7T+UFijwLOoSnufnAJuETLgcTsbtgXUBAIpcDXy/uQytjSWSRzQELE23o25SsiPe/yAENjaFsLMrwP37tpg8+U8kJ5vI5aSVpSJdvWXcRZyITBPrWNOvqYqNmXYVT3e+h0mvNMedlNKHYzAl9YPUcHXPx+L/HdPNs1QKNG15D71fTEBY+1BotaY3/MKD5PaeP4ylpRYzXw+Hl3smJi583qR6e01vcwRd/OIxZGdfpGT/+53R1ucm/B3VOP3y93rrL+m8B6dTvfF/u/pWddQSPH6Og93FNNx8qzE0Lv8eH4VORWPZ5Xvp3+Ux30sF5f28Ks34WBhby8q4jpXHr8RjNmnSJEyePBmDBg0CADRr1gzx8fGYO3cuhg4dCm9vbwBASkoKfHx8dNulpKSgRYsWusc7duxAQUHRXSxu3ryJzp07IyoqSrfc1lb/H86DbGxsYGPzeL+MCwssEPOXHVp2yEDELmcARV1/W3TIxLY17o/YWlpyzS7X3ABw8S831PTXHzSzpn8Wbic//DiWjsDk546ia4M4vLahD26lOz1yC4UCgAKwtjSxu/sIQFFYdKdJRW4haq64DKFUIOm1hhBWptvo9aC8PCXy8pRwcMhH61ZJ+P77FlJHqlxaLQAj7waqle4uokRknljHmn5NBQiMmXYN7Z69iw/+rxlSbqgevYkJOHfKHW8O6qA3b/z087hx3R4/ratr4o1e8nzPS1Pc6FWrhhrjFzwPdZapvBaB6W2O4ln/OLyyqw9uZOrX3yvPt8SWK4305m0P24xPT7XDgcTaVRm0JCHg8ct1OJy/h5tjG6PQXf89LXSzQaGzFaxT9W8AYn07F1mNXKow6GNibC0r4zqWDV8AsrOzYWGh/welpaUltP98sAEBAfD29kZ4eLiuQFCr1Thx4gTGjBmj26Z27X//ASuVRW9t/fr1H3N6w/yy0gPvLUrElXN2iD5rhxdG3YbKTos9m9wevbHE5Jpdrrm3/lgXC745ioGvXsGRcF80aJyG7n3isWT+E1JHK+HD0CPo0TgG43/qgax8a7jbFw1ym5lnjbxCJWq6qBHaKBYRcX64n62Cl2MWhgefQV6hJY5cla6rsvsfCchq5IJCV2tY5GrheOYObK+qcev1IF2jlyJfi+RXGsAiVwPkFjXSaRysAAvTKzZbtUqCQiFw44YTfH0zMHJEFG7ccMKevXWljla52OOLiEwI61jTr6nGzriKzr1uY/abjZGTZQlXj6JBwLMyLJGfZ7qXEOZkKxF/Vb/3f26OJdTpViXmmxo5vee2NgWoWePfcfG8PTJQ3+8u1Fk2uJtuh1lv7EMD/7uYsuQ5WFoIuDkV1bnqLBsUaqR7LTPaHkHvurEYE94dWYXW8LAtypWRb408jRJ3cuxKHdA+KcuhRCNZVfP8+TocIu8gaWRDaG0sYakuOj60KiWEtQWgUOB+F1+47bqBPN+iOz86nroNq9QcqIfJd7w7Hfb4qp569+6NOXPmwN/fH02aNMHZs2fxxRdfYMSIEQAAhUKB8ePH45NPPkFgYCACAgIwbdo0+Pr6IiwsTNrwBjq0zRXO7hq8OikZrp6FuHbBFh8NCUDaHdO/NbFcs8s1d8xlV3wy5SkMe+MSBg+7gpQkO6z8qikO7jG9MaYGtroAAFj1ym9686f/0QXbzgchv9ASrfySMOSpv+CkysPdLFucSfTF0HUv4H62dHeYscwsgNeGWCjVBdDYWiLfxw63Xg9CTkMX2MamQxVf1OOuzpwove2uT2uBQjdTOdv3L3v7Agwfdg4eHtnIyLDG0T/9sHZtc2g08uipVm5s+CIiE8I61vRrql4vF42lNn/9eb35CycHYt+vXqVtQhUkp/e8Ye3bWDRph+7xWy+dAADsOhaINdtaoUOLohtLrZrxq9524z9/HlFXfKsu6H8MCboIANjQY5ve/A+OdsavsUFSRCo35z9TAAC1ll3Um58yuC4yni4a0yu9kw8UBVp4/BYPy+xC5Pna4dYbjVDoYXo1uMGqYcOXQggZp68kGRkZmDZtGn799VekpqbC19cXgwcPxvTp02FtXXT9tBACM2bMwMqVK5GWloYOHTrg66+/RoMGpbf4Xr9+HQEBATD27VWr1XB2dkZn9IVSYdo/5mQalAESdxmugJu9akodwSgZdeXb3bfBWnnejrlQk4f9f81Deno6nJyq9mxh8fdyiMcIKC2MG1ujUJuPfXe+lyQ/EZkn1rGVz8LRtHszPYyFkzxzA4BWnSF1BKPlPGPajTwPc6u9fPvAaGzl2YShzc1FwuSpktWBFa1l5VzHsuHLRMm9YKCqx4avqseGr6pnEg1fbsMr1vB1b7UsCwYiovKSex3Lhq+qx4avqseGr6pnMg1fRtaycq5j5Xu0ExERSUAILYQwrtHT2O2IiIiIiCqDsbWsnOtYNnwREREZQghAyzG+iIiIiEiGjK1lZVzHmtmIw0REREREREREREXY44uIiMgQQgBgjy8iIiIikiFja1kZ17Fs+CIiIjKEVgsojBzjQMZjIxARERGRGTC2lpVxHcuGLyIiIkOwxxcRERERyRV7fBEREVFZhFYLYWSPLznfDYeIiIiI5M/YWlbOdSwHtyciIiIiIiIiIrPEHl9ERESG4KWORERERCRXvNSRiIiIyqQVgIINX0REREQkQ8bWsjKuY9nwRUREZAghABh7V0f5FgxEREREZAaMrWVlXMdyjC8iIiIiIiIiIjJL7PFFRERkAKEVEEZe6ihkfKaMiIiIiOTP2FpWznUse3wREREZQmgrNhlo2bJlqFOnDlQqFdq0aYOTJ08+hhdFRERERNVCFdaxgGnUsmz4IiIiMoDQigpNhvjxxx8xceJEzJgxA2fOnMETTzyB0NBQpKamPqZXR0RERETmrKrqWMB0alk2fBERERmiCnt8ffHFFxg1ahSGDx+Oxo0bY8WKFbCzs8P333//mF4cEREREZm1KuzxZSq1LMf4MlHF188WogCQ76W0VJW0eVInMJomL1fqCEbR5hp5Zz8TUKiR5/FSnFvKMQYq8r1ciAIAgFqt1ptvY2MDGxsbvXn5+fmIjIzElClTdPMsLCwQEhKCiIgI4wIQEVUBudexFiJf6ghGsZBxLaiV6XsOAIUFcq1j5dsUoDVyrFWpaXOLjhWpx8oy9rvZkDoWMK1aVr5Hu5nLyMgAABzFDomTkGxclzpABXwjdYDqJ0HqABWUkZEBZ2fnKn1Oa2treHt742hyxb6XHRwc4OfnpzdvxowZmDlzpt68O3fuQKPRwMvLS2++l5cXLl++XKEMRESPk+zr2AypAxhJrrnlbrfUAYwk19xmQIo6FqicWra8dSxgWrUsG75MlK+vLxITE+Ho6AiFQlHp+1er1fDz80NiYiKcnJwqff+Pi1xzA8wuBbnmBpj9YYQQyMjIgK+vb6XutzxUKhXi4uKQn1+xs9JCiBLf66WdJSMikivWsaWTa26A2aUg19wAsz+MlHUsUDm1rFzrWDZ8mSgLCwvUqlXrsT+Pk5OT7L6MAPnmBphdCnLNDTB7aaQ4Q1ZMpVJBpVJVyXN5eHjA0tISKSkpevNTUlLg7e1dJRmIiIzBOrZscs0NMLsU5JobYPbSSFnHAtW3luXg9kRERCbI2toarVu3Rnh4uG6eVqtFeHg4goODJUxGRERERFQ2U6pl2eOLiIjIRE2cOBFDhw7Fk08+iaeffhqLFi1CVlYWhg8fLnU0IiIiIqIymUoty4avasrGxgYzZsyQxfW4D5JrboDZpSDX3ACzU5GXXnoJt2/fxvTp05GcnIwWLVpg165dJQYJJSKqTuT6OyPX3ACzS0GuuQFmp3+ZSi2rEFLfS5OIiIiIiIiIiOgx4BhfRERERERERERkltjwRUREREREREREZokNX0REREREREREZJbY8GXm6tSpg0WLFkkdg4iIiIjIIKxjiYioMrDhS2KdO3fG+PHjS8xfs2YNXFxcqjxPeUVHR6NLly7w8vKCSqVC3bp1MXXqVBQUFOitt2XLFgQFBcHKygoqlQp2dnZwcnJCcHAwdu7cqVsvNzcXY8eOhbu7OxwcHNC/f3+kpKSUO09sbCwcHR1Lfc+KM6hUKjRr1gw7duww+nUDwGeffQaFQqH3uRmT//r161AoFCWm48ePV1r+mTNnlth/UFBQhXIDgBACCxYsQIMGDWBjY4OaNWtizpw5euscPHgQrVq1go2NDerXr481a9aUOzcA3Lx5E6+88grc3d1ha2uLZs2a4fTp03oZpk+fDh8fH9ja2iIkJAQxMTFl7nPNmjWlvucKhQKpqamVkr1OnTql7n/s2LEAjH/Pd+/ejbZt28LR0RGenp7o378/rl+/rrdORd/z0mg0GkybNg0BAQGwtbVFvXr18PHHH+PB+6IY81kQEZH8sY4twjqWdex/sY7VxzqWJCdIUp06dRLjxo0rMX/16tXC2dm5wvuvXbu2+PLLL43ePi8vr9T5V69eFd9//72IiooS169fF7/99puoUaOGmDJlim6dP//8U1haWor58+eLZcuWiUGDBgmlUil+//138eGHHworKyvx999/CyGEeOONN4Sfn58IDw8Xp0+fFm3bthXt2rUrV8b8/Hzx5JNPih49epR4zx7McPHiRTF16lRhZWUlzp8/b9T7cfLkSVGnTh3RvHlzvc/NmPxxcXECgNi3b59ISkrSTfn5+ZWWf8aMGaJJkyZ6+799+3aFcgshxNtvvy0aNmwofvvtN3Ht2jVx+vRpsWfPHt3ya9euCTs7OzFx4kRx8eJFsWTJEmFpaSl27dpVrtz37t0TtWvXFsOGDRMnTpwQ165dE7t37xaxsbG6dT777DPh7Owstm7dKs6dOyf69OkjAgICRE5OzkP3m52drfdeJCUlidDQUNGpU6dKy56amqq3/7179woA4sCBA0II497za9euCRsbGzFlyhQRGxsrIiMjxTPPPCNatmxZabkfZs6cOcLd3V388ccfIi4uTmzZskU4ODiIr776SreOoZ9F8bFPRETyxjqWdSzr2JJYx+pjHUumgJ+YxMpbMAwdOlT07dtXfP7558Lb21u4ubmJN998U+/HJSUlRfTq1UuoVCpRp04dsX79+hIFw/3798XIkSOFh4eHcHR0FF26dBFRUVG65TNmzBBPPPGE+Pbbb0WdOnWEQqEo92uZMGGC6NChg+7xwIEDRc+ePfXWadOmjXj99deFEEK4urqK7777TqSlpQkrKyuxZcsW3XqXLl0SAERERMQjn/f9998Xr7zySqlF1qMyGCIjI0MEBgaKvXv36n1uxuYv/tI8e/bsQ9epaP7iz7M0xua+ePGiUCqV4vLlyw9d5/333xdNmjTRm/fSSy+J0NDQcuX+4IMP9I6l/9JqtcLb21t8/vnnunlpaWnCxsZG/PDDD+V6DiGKftytrKzEunXrKi37f40bN07Uq1dPaLVao9/zLVu2CKVSKTQajW7etm3bhEKh0H0HVHbuYj179hQjRozQm9evXz8xZMgQIYRxnwULBiIi88A6lnUs69iSWMfqYx1LpoCXOsrIgQMHcPXqVRw4cABr167FmjVr9LqADhs2DImJiThw4AB++uknfP3113rdXgHgxRdfRGpqKnbu3InIyEi0atUK3bp1w71793TrxMbG4ueff8Yvv/yCqKiocmWLjY3Frl270KlTJ928iIgIhISE6K0XGhqKY8eOYdOmTcjKykJwcDAiIyNRUFCgt25QUBD8/f0RERFR5vPu378fW7ZswbJly0pd/rAMj9pvacaOHYuePXuW2F9F8gNAnz59UKNGDXTo0AHbtm2r9PwxMTHw9fVF3bp1MWTIECQkJFQo9++//466devijz/+QEBAAOrUqYPXXntN7xiqaO5t27bhySefxIsvvogaNWqgZcuW+Pbbb3XL4+LikJycrPcczs7OaNOmjUHvzbp162BnZ4cBAwZUWvYH5efnY/369RgxYgQUCoXR73nr1q1hYWGB1atXQ6PRID09Hf/73/8QEhICKyurSs/9oHbt2iE8PBxXrlwBAJw7dw5Hjx5Fjx49AFTeZ0FEROaNdWxJrGMfjXXsw7GOfTTWsVRMKXUAKj9XV1csXboUlpaWCAoKQs+ePREeHo5Ro0bhypUr2LlzJ06ePImnnnoKALBq1So0atRIt/3Ro0dx8uRJpKamwsbGBgCwYMECbN26FT/99BNGjx4NoOhLbt26dfD09Hxkpnbt2uHMmTPIy8vD6NGjMXv2bN2y5ORkeHl56R6fP38en332GfLz8/HGG2/g119/RePGjREVFQVra+sS4xp4eXkhOTn5oc999+5dDBs2DOvXr4eTk1Op6/w3Q3n2W5pNmzbhzJkzOHXqVKnPYUx+BwcHLFy4EO3bt4eFhQV+/vlnhIWFYevWrejTp0+l5G/Tpg3WrFmDhg0bIikpCbNmzULHjh3x999/G5372rVriI+Px5YtW7Bu3TpoNBpMmDABAwYMwP79+8vMrVarkZOTA1tb2zJzX7t2DcuXL8fEiRPx4Ycf4tSpU3jnnXdgbW2NoUOH6vJV9LNdtWoVXn75Zb08Fc3+oK1btyItLQ3Dhg3T7duY9zwgIAB79uzBwIED8frrr0Oj0SA4OFhvnIzKzP2gyZMnQ61WIygoCJaWltBoNJgzZw6GDBmie97i5zLkNRERUfXCOlYf69hHYx1bNtaxj8Y6loqxx5eMNGnSBJaWlrrHPj4+ujNhly5dglKpROvWrXXLg4KC9L6Yzp07h8zMTN1ghMVTXFwcrl69qluvdu3a5SoWAODHH3/EmTNnsHHjRmzfvh0LFix46LoNGzbElClT4OrqijFjxmDo0KG4ePFiuV97cd7iFvpRo0bh5ZdfxjPPPFOufRgrMTER48aNw4YNG6BSqYzaR2n5PTw8MHHiRLRp0wZPPfUUPvvsM7zyyiv4/PPPKy17jx498OKLL6J58+YIDQ3Fjh07kJaWhs2bNxudW6vVIi8vD+vWrUPHjh3RuXNnrFq1CgcOHEB0dHSl5NZqtWjVqhU+/fRTtGzZEqNHj8aoUaOwYsWKcu+jR48euuxNmjQpsTwiIgKXLl3CyJEjKyVzaVatWoUePXrA19e33NuU9p4nJydj1KhRGDp0KE6dOoVDhw7B2toaAwYM0Buc83HYvHkzNmzYgI0bN+LMmTNYu3YtFixYgLVr1xq0nwdfV/Hn8eD3UPFrJSIi88Q6lnWsoVjHso6tKNaxVIw9viTm5OSE9PT0EvPT0tLg7OysN6+4K2gxhUIBrVZb7ufKzMyEj48PDh48WGLZg4WFvb19uffp5+cHAGjcuDE0Gg1Gjx6Nd999F5aWlvD29ta7y4e1tTWEEPDz88PcuXNx6tQpfPXVV3jppZeQn5+PtLQ0vRwpKSnw9vYGAOzYsUN3p53iFv/9+/dj27ZtuiJFCAGtVgulUomVK1dixIgRJTL8d7/lERkZidTUVLRq1Uo3T6PR4PDhw1i6dCl2795tVP7StGnTBnv37tU9roz8D3JxcUGDBg0QGxuLZ5991qjcPj4+UCqVaNCggW6b4jOyCQkJaNiw4UNzOzk5leuMjY+PDxo3bqw3r1GjRvj5558BQJcvJSUFPj4+es/RokULAMB3332HnJwcACX/7RQvb9GihV6RXbzvimQvFh8fj3379uGXX37R27cx7/myZcvg7OyM+fPn67ZZv349/Pz8cOLECbRt27bScv/XpEmTMHnyZAwaNAgA0KxZM8THx2Pu3LkYOnRouT6L/76umzdvonPnznqXoFQkIxERSYN1LOvYB7GOhe45WMeyjiXTwh5fEmvYsCHOnDlTYv6ZM2f0vpAfJSgoCIWFhYiMjNTNi46ORlpamu5xq1atkJycDKVSifr16+tNHh4eFXodQNHZjYKCAl0RExwcjPDwcL119u7di+DgYN36eXl5aN26NaysrPTWjY6ORkJCgm7d2rVr67LWrFkTQNGZjqioKN00e/ZsODo6IioqCi+88EK5MpRHt27dcP78eb3nevLJJzFkyBDd/xuTvzRRUVF6X7qVkf9BmZmZuHr1Knx8fIx+39u3b4/CwkK9s6vF183Xrl27UnK3b9++xFm3K1eu6PYfEBAAb29vvedQq9U4ceKE7jlq1qypy1683YPvw+bNm0s9S1ZZ7/nq1atRo0YN9OzZUzfP2Pc8OzsbFhb6X9fFZ83L++/NWA977uLnLc9n8d/XVfx5PPgdVNa/CyIiMk2sY1nHPoh1LHTPwTqWdSyZGClH1qei2ymrVCrx9ttvi3PnzonLly+LhQsXCqVSKXbu3Klbr/huOA8aN26c3u1ru3fvLlq2bCmOHz8uTp8+LTp06CBsbW11d8PRarWiQ4cO4oknnhC7d+8WcXFx4s8//xQffvihOHXqlBCi7LunPGj9+vXixx9/FBcvXhRXr14VP/74o/D19dXdIUOIolsYK5VKsWDBAjFq1CgxbNgwoVQqxc8//ywmT54sFAqF7tbBb7zxhvD39xf79+8Xp0+fFsHBwSI4ONig97K0u+E8mOHSpUtixowZFboNdLH/3sXImPxr1qwRGzduFJcuXRKXLl0Sc+bMERYWFuL777+vtPzvvvuuOHjwoO6zDgkJER4eHiI1NdXo3BqNRrRq1Uo888wz4syZM+L06dOiTZs24tlnn9WtU3xL4kmTJolLly6JZcuWGXRL4pMnTwqlUinmzJkjYmJixIYNG4SdnZ1Yv369bp3PPvtMuLi4iN9++0389ddfom/fvo+8DXSx7777TqhUKnH//v0SyyqaXYii98jf31988MEHJZYZ856Hh4cLhUIhZs2aJa5cuSIiIyNFaGioqF27tsjOzq603KUZOnSoqFmzpu420L/88ovw8PAQ77//vm4dQz8L3g2HiMg8sI5lHcs6tiTWsfpYx5Ip4CdmAk6ePCmeffZZ4enpKZydnUWbNm3Er7/+qrdOeQqGpKQk0bNnT2FjYyP8/f3FunXrStwGWq1Wi7ffflv4+voKKysr4efnJ4YMGSISEhKEEOUvGDZt2iRatWolHBwchL29vWjcuLH49NNPS3xBbN68WTRo0EBYWFgIKysroVQqhaenp+jWrZuuWBBCiJycHPHmm28KV1dXYWdnJ1544QWRlJRUrvevWGkFw4MZrK2tRZMmTcT27dsN2m9p/lswGJN/zZo1olGjRsLOzk44OTmJp59+Wu/2wJWR/6WXXhI+Pj7C2tpa1KxZU7z00ksiNja2QrmFEOLmzZuiX79+wsHBQXh5eYlhw4aJu3fv6q1z4MAB0aJFC2FtbS3q1q0rVq9eXe7cQgjx+++/i6ZNmwobGxsRFBQkVq5cqbdcq9WKadOmCS8vL2FjYyO6desmoqOjy7Xv4OBg8fLLLz90eUWz7969WwAoNY+x7/kPP/wgWrZsKezt7YWnp6fo06ePuHTpUqXmLo1arRbjxo0T/v7+QqVSibp164qPPvpI5OXl6dYx9LNgwUBEZD5Yx7KOZR1bEutYfaxjSWoKIR7ziHJEREREREREREQS4BhfRERERERERERkltjwRUREREREREREZokNX0REREREREREZJbY8EVERERERERERGaJDV9ERERERERERGSW2PBFRERERERERERmiQ1fRERERERERERkltjwRUREREREREREZokNX0RmYtiwYQgLC9M97ty5M8aPH1/lOQ4ePAiFQoG0tLSHrqNQKLB169Zy73PmzJlo0aJFhXJdv34dCoUCUVFRFdoPEREREVUu1rFlYx1LVDFs+CJ6jIYNGwaFQgGFQgFra2vUr18fs2fPRmFh4WN/7l9++QUff/xxudYtz488EREREVUfrGOJyFwopQ5AZO66d++O1atXIy8vDzt27MDYsWNhZWWFKVOmlFg3Pz8f1tbWlfK8bm5ulbIfIiIiIqqeWMcSkTlgjy+ix8zGxgbe3t6oXbs2xowZg5CQEGzbtg3Av92658yZA19fXzRs2BAAkJiYiIEDB8LFxQVubm7o27cvrl+/rtunRqPBxIkT4eLiAnd3d7z//vsQQug973+7iOfl5eGDDz6An58fbGxsUL9+faxatQrXr19Hly5dAACurq5QKBQYNmwYAECr1WLu3LkICAiAra0tnnjiCfz00096z7Njxw40aNAAtra26NKli17O8vrggw/QoEED2NnZoW7dupg2bRoKCgpKrPfNN9/Az88PdnZ2GDhwINLT0/WWf/fdd2jUqBFUKhWCgoLw9ddfG5yFiIiIiIqwjn001rFEpo8NX0RVzNbWFvn5+brH4eHhiI6Oxt69e/HHH3+goKAAoaGhcHR0xJEjR/Dnn3/CwcEB3bt31223cOFCrFmzBt9//z2OHj2Ke/fu4ddffy3zeV999VX88MMPWLx4MS5duoRvvvkGDg4O8PPzw88//wwAiI6ORlJSEr766isAwNy5c7Fu3TqsWLECFy5cwIQJE/DKK6/g0KFDAIoKm379+qF3796IiorCa6+9hsmTJxv8njg6OmLNmjW4ePEivvrqK3z77bf48ssv9daJjY3F5s2b8fvvv2PXrl04e/Ys3nzzTd3yDRs2YPr06ZgzZw4uXbqETz/9FNOmTcPatWsNzkNEREREJbGOLYl1LJEMCCJ6bIYOHSr69u0rhBBCq9WKvXv3ChsbG/Hee+/plnt5eYm8vDzdNv/73/9Ew4YNhVar1c3Ly8sTtra2Yvfu3UIIIXx8fMT8+fN1ywsKCkStWrV0zyWEEJ06dRLjxo0TQggRHR0tAIi9e/eWmvPAgQMCgLh//75uXm5urrCzsxPHjh3TW3fkyJFi8ODBQgghpkyZIho3bqy3/IMPPiixr/8CIH799deHLv/8889F69atdY9nzJghLC0txY0bN3Tzdu7cKSwsLERSUpIQQoh69eqJjRs36u3n448/FsHBwUIIIeLi4gQAcfbs2Yc+LxEREREVYR1bOtaxRPLDMb6IHrM//vgDDg4OKCgogFarxcsvv4yZM2fqljdr1kxvPIRz584hNjYWjo6OevvJzc3F1atXkZ6ejqSkJLRp00a3TKlU4sknnyzRTbxYVFQULC0t0alTp3Lnjo2NRXZ2Np599lm9+fn5+WjZsiUA4NKlS3o5ACA4OLjcz1Hsxx9/xOLFi3H16lVkZmaisLAQTk5Oeuv4+/ujZs2aes+j1WoRHR0NR0dHXL16FSNHjsSoUaN06xQWFsLZ2dngPERERETEOrY8WMcSmT42fBE9Zl26dMHy5cthbW0NX19fKJX6/+zs7e31HmdmZqJ169bYsGFDiX15enoalcHW1tbgbTIzMwEA27dv1/uhBorGe6gsERERGDJkCGbNmoXQ0FA4Oztj06ZNWLhwocFZv/322xIFjKWlZaVlJSIiIqpOWMeWjXUskTyw4YvoMbO3t0f9+vXLvX6rVq3w448/okaNGiXOFhXz8fHBiRMn8MwzzwAoOiMUGRmJVq1albp+s2bNoNVqcejQIYSEhJRYXnymTqPR6OY1btwYNjY2SEhIeOgZtkaNGukGOC12/PjxR7/IBxw7dgy1a9fGRx99pJsXHx9fYr2EhATcunULvr6+uuexsLBAw4YN4eXlBV9fX1y7dg1Dhgwx6PmJiIiIqHSsY8vGOpZIHji4PZGJGTJkCDw8PNC3b18cOXIEcXFxOHjwIN555x3cuHEDADBu3Dh89tln2Lp1Ky5fvow333wTaWlpD91nnTp1MHToUIwYMQJbt27V7XPz5s0AgNq1a0OhUOCPP/7A7du3kZmZCUdHR7z33nuYMGEC1q5di6tXr+LMmTNYsmSJbqDNN954AzExMZg0aRKio6OxceNGrFmzxqDXGxgYiISEBGzatAlXr17F4sWLSx3gVKVSYejQoTh37hyOHDmCd955BwMHDoS3tzcAYNasWZg7dy4WL16MK1eu4Pz581i9ejW++OILg/IQERERkXFYx7KOJTJFbPgiMjF2dnY4fPgw/P390a9fPzRq1AgjR45Ebm6u7szZu+++i//7v//D0KFDERwcDEdHR7zwwgtl7nf58uUYMGAA3nzzTQQFBWHUqFHIysoCANSsWROzZs3C5MmT4eXlhbfeegsA8PHHH2PatGmYO3cuGjVqhO7du2P79u0ICAgAUDRewc8//4ytW7fiiSeewIoVK/Dpp58a9Hr79OmDCRMm4K233kKLFi1w7NgxTJs2rcR69evXR79+/fD888/jueeeQ/PmzfVu8/zaa6/hu+++w+rVq9GsWTN06tQJa9as0WUlIiIioseLdSzrWCJTpBAPG0WQiIiIiIiIiIhIxtjji4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiqyMyZM6FQKExm39evX4dCocCaNWseSyYiIiIiospUXPPeuXNH6ihEJCNs+CIiSe3YsQMzZ86UOgYRERERERGZITZ8EZmBqVOnIicnx6BtateujZycHPzf//3fY0pVPjt27MCsWbMkzUBERERERETmSSl1ACKqOKVSCaXSsH/OCoUCKpXqMSV6PAoLC6HVamFtbS11FCIiIiIiIpIB9vgiegyOHj2Kp556CiqVCvXq1cM333xT6nrr169H69atYWtrCzc3NwwaNAiJiYkl1jtx4gSef/55uLq6wt7eHs2bN8dXX32lW17aGF979+5Fhw4d4OLiAgcHBzRs2BAffvihbvnDxvjav38/OnbsCHt7e7i4uKBv3764dOmS3jrFzxcbG4thw4bBxcUFzs7OGD58OLKzs8v9Pg0bNgzLli0DUNQQVzw9mG/BggVYtGgR6tWrBxsbG1y8eBEAcPnyZQwYMABubm5QqVR48sknsW3bthLPkZaWhvHjx8PPzw82NjaoX78+5s2bB61WW+6cRERERGSa4uPjUb9+fTRt2hQpKSno3LkzmjZtiosXL6JLly6ws7NDzZo1MX/+fL3tDh48CIVCgc2bN2POnDmoVasWVCoVunXrhtjYWIleDRE9DuzxRVTJzp8/j+eeew6enp6YOXMmCgsLMWPGDHh5eemtN2fOHEybNg0DBw7Ea6+9htu3b2PJkiV45plncPbsWbi4uAAoasDq1asXfHx8MG7cOHh7e+PSpUv4448/MG7cuFIzXLhwAb169ULz5s0xe/Zs2NjYIDY2Fn/++WeZ2fft24cePXqgbt26mDlzJnJycrBkyRK0b98eZ86cQZ06dfTWHzhwIAICAjB37lycOXMG3333HWrUqIF58+aV6716/fXXcevWLezduxf/+9//Sl1n9erVyM3NxejRo2FjYwM3NzdcuHAB7du3R82aNTF58mTY29tj8+bNCAsLw88//4wXXngBAJCdnY1OnTrh5s2beP311+Hv749jx45hypQpSEpKwqJFi8qVk4iIiIhMz9WrV9G1a1e4ublh79698PDwAADcv38f3bt3R79+/TBw4ED89NNP+OCDD9CsWTP06NFDbx+fffYZLCws8N577yE9PR3z58/HkCFDcOLECSleEhE9DoKIKlVYWJhQqVQiPj5eN+/ixYvC0tJSFP+Tu379urC0tBRz5szR2/b8+fNCqVTq5hcWFoqAgABRu3Ztcf/+fb11tVqt7v9nzJghHvzn/OWXXwoA4vbt2w/NGRcXJwCI1atX6+a1aNFC1KhRQ9y9e1c379y5c8LCwkK8+uqrJZ5vxIgRevt84YUXhLu7+0OfszRjx44VpX0VFedzcnISqampesu6desmmjVrJnJzc3XztFqtaNeunQgMDNTN+/jjj4W9vb24cuWK3vaTJ08WlpaWIiEhwaCsRERERCSd4hr09u3b4tKlS8LX11c89dRT4t69e7p1OnXqJACIdevW6ebl5eUJb29v0b9/f928AwcOCACiUaNGIi8vTzf/q6++EgDE+fPnq+ZFEdFjx0sdiSqRRqPB7t27ERYWBn9/f938Ro0aITQ0VPf4l19+gVarxcCBA3Hnzh3d5O3tjcDAQBw4cAAAcPbsWcTFxWH8+PG6HmDF/ntp44OK1/3tt9/KfUlfUlISoqKiMGzYMLi5uenmN2/eHM8++yx27NhRYps33nhD73HHjh1x9+5dqNXqcj1nefTv3x+enp66x/fu3cP+/fsxcOBAZGRk6N67u3fvIjQ0FDExMbh58yYAYMuWLejYsSNcXV313ueQkBBoNBocPny40nISERERUdX4+++/0alTJ9SpUwf79u2Dq6ur3nIHBwe88sorusfW1tZ4+umnce3atRL7Gj58uN74sR07dgSAUtclInliwxdRJbp9+zZycnIQGBhYYlnDhg11/x8TEwMhBAIDA+Hp6ak3Xbp0CampqQCKum8DQNOmTQ3K8dJLL6F9+/Z47bXX4OXlhUGDBmHz5s1lNoLFx8eXyFmsUaNGuHPnDrKysvTmP9i4B0BXdNy/f9+gvGUJCAjQexwbGwshBKZNm1bivZsxYwYA6N6/mJgY7Nq1q8R6ISEheusRERERkXz07t0bjo6O2L17N5ycnEosr1WrVomTxK6urqXWqFVRzxKRtDjGF5EEtFotFAoFdu7cCUtLyxLLHRwcKrR/W1tbHD58GAcOHMD27duxa9cu/Pjjj+jatSv27NlT6nMa42H7EUJUyv6BotfyoOLGu/fee0+vF92D6tevr1v32Wefxfvvv1/qeg0aNKi0nERERERUNfr374+1a9diw4YNeP3110ssN6RGrYp6loikxYYvokrk6ekJW1tbxMTElFgWHR2t+/969epBCIGAgIAyG1/q1asHoKg7d3EvpfKysLBAt27d0K1bN3zxxRf49NNP8dFHH+HAgQOl7qt27dolcha7fPkyPDw8YG9vb1CG8ijrks3S1K1bFwBgZWX1yPekXr16yMzMNPi9IyIiIiLT9fnnn0OpVOLNN9+Eo6MjXn75ZakjEZEJ46WORJXI0tISoaGh2Lp1KxISEnTzL126hN27d+se9+vXD5aWlpg1a1aJs0lCCNy9excA0KpVKwQEBGDRokVIS0srsd7D3Lt3r8S8Fi1aAADy8vJK3cbHxwctWrTA2rVr9Z7r77//xp49e/D8888/9Pkqorgx7b+v72Fq1KiBzp0745tvvkFSUlKJ5bdv39b9/8CBAxEREaH33hdLS0tDYWGhcaGJiIiISDIKhQIrV67EgAEDMHToUGzbtk3qSERkwtjji6iSzZo1C7t27ULHjh3x5ptvorCwEEuWLEGTJk3w119/ASjqifTJJ59gypQpuH79OsLCwuDo6Ii4uDj8+uuvGD16NN577z1YWFhg+fLl6N27N1q0aIHhw4fDx8cHly9fxoULF0pt0AGA2bNn4/Dhw+jZsydq166N1NRUfP3116hVqxY6dOjw0Oyff/45evTogeDgYIwcORI5OTlYsmQJnJ2dMXPmzMfxdqF169YAgHfeeQehoaGwtLTEoEGDytxm2bJl6NChA5o1a4ZRo0ahbt26SElJQUREBG7cuIFz584BACZNmoRt27ahV69eGDZsGFq3bo2srCycP38eP/30E65fv6677TURERERyYeFhQXWr1+PsLAwDBw4EDt27EDXrl2ljkVEJogNX0SVrHnz5ti9ezcmTpyI6dOno1atWpg1axaSkpJ0DV8AMHnyZDRo0ABffvklZs2aBQDw8/PDc889hz59+ujWCw0NxYEDBzBr1iwsXLgQWq0W9erVw6hRox6aoU+fPrh+/Tq+//573LlzBx4eHujUqRNmzZoFZ2fnh24XEhKCXbt2YcaMGZg+fTqsrKzQqVMnzJs3r8Qg85WlX79+ePvtt7Fp0yasX78eQohHNnw1btwYp0+fxqxZs7BmzRrcvXsXNWrUQMuWLTF9+nTdenZ2djh06BA+/fRTbNmyBevWrYOTkxMaNGjwyPeCiIiIiEyblZUVfvrpJ/To0QN9+/bFvn37pI5ERCZIIThqHxERERERERERmSGO8UVERERERERERGaJlzoS0WORnp6OnJycMtfx9vauojRERERERERUHfFSRyJ6LIYNG4a1a9eWuQ6/foiIiIiIiOhxYsMXET0WFy9exK1bt8pcJyQkpIrSEBERERERUXXEhi8iIiIiIiIiIjJLHOPLRGm1Wty6dQuOjo5QKBRSxyEiMglCCGRkZMDX1xcWFlV/f5bc3Fzk5+dXaB/W1tZQqVSVlIiIyPSwjiUiKknqOhaoeC0r1zqWDV8m6tatW/Dz85M6BhGRSUpMTEStWrWq9Dlzc3MRUNsByamaCu3H29sbcXFxsiwaiIjKg3UsEdHDSVHHApVTy8q1jmXDl4lydHQEAHTA81DCSuI0JAsWllInqH60FWsAIcMVogBHsUP3HVmV8vPzkZyqQXxkHTg5GneWTp2hRe3W15Gfny+7goGIqLxYx5KhFEr+WVrVRGGh1BGqHSnrWKDitayc61h+w5io4m7hSlhBqWDBQOWgYMNXlVNI00W5WvtnVEopL51xcFTAwdG459eCl/wQkfljHUuGUij4Z2lVE7wMueqZQB0LGF/LyrmO5TcMERGRATRCC42Rt4XRCG3lhiEiIiIiMoCxtayc61g2fBERERlACwEtjGv5MnY7IiIiIqLKYGwtK+c6ltfpEBERERERERGRWWKPLyIiIgNooYWxHb2N35KIiIiIqOKMrWXlXMey4YuIiMgAGiGgEcZ19TZ2OyIiIiKiymBsLSvnOpYNX0RERAbgGF9EREREJFfVcYwvNnwREREZQAsBDRu+iIiIiEiGjK1l5VzHcnB7IiIiIiIiIiIyS+zxRUREZABe6khEREREcsVLHYmIiKhMHNyeiIiIiOSKg9sTERFRmbT/TMZuS0REREQkFWNrWTnXsWz4IiIiMoCmAoPbG7sdEREREVFlMLaWlXMdy8HtiYiIiIiIiIjILLHHFxERkQE0omgydlsiIiIiIqkYW8vKuY5lwxcREZEBOMYXEREREclVdRzji5c6VkO9h93B2hMX8fu1v/DVHzFo2CJb6kjlJtfscs3dtE0GZq2OxcbT57H7xhkEh6ZJHalc5Jr7QXI9ZuSa2xBaKKAxctJCIXV8IiJZk/PvDLNXraZPZ2Dm97HYcOov7EqIRPBzaVJHKjc5ZwfkebwA8s1tKGNrWTnXsWbd8FWnTh0sWrRI6hgmpVOf+xg94xY2fOGNsaENcO2iCnM2XoOze4HU0R5JrtnlmhsAVHZaXLtoh6VT/aSOYhC55i4m12NGrrmJiEwR69iS5Pw7w+xVT2WnRdxFWyyTYT0o5+xyPV7kmpvKR9KGr86dO2P8+PEl5q9ZswYuLi5Vnqe8oqOj0aVLF3h5eUGlUqFu3bqYOnUqCgr0/1Fs2bIFQUFBUKlUaNasGXbs2CFR4n/1G30Huza6Yc+PbkiIUWHxB7WQl6NA6OB7Ukd7JLlml2tuADh9wBlrP/fFsV0uUkcxiFxzF5PrMSPX3IbSiopNRGQeWMdWPTn/zjB71Tt90BlrF9TEsd2uUkcxmJyzy/V4kWtuY1THOtase3xVVH5+fqnzrays8Oqrr2LPnj2Ijo7GokWL8O2332LGjBm6dY4dO4bBgwdj5MiROHv2LMLCwhAWFoa///67quKXoLTSIrB5Ns4ccdTNE0KBs0cc0bi1aXfjlGt2ueYm6cj1mJFrbmMYe5lj8UREVBVYx5oOZqfqQq7Hi1xzG6s61rGyaPgaNmwYwsLCsGDBAvj4+MDd3R1jx47VOzOVmpqK3r17w9bWFgEBAdiwYUOJ/aSlpeG1116Dp6cnnJyc0LVrV5w7d063fObMmWjRogW+++47BAQEQKVSlZqnbt26GD58OJ544gnUrl0bffr0wZAhQ3DkyBHdOl999RW6d++OSZMmoVGjRvj444/RqlUrLF26tBLfGcM4uWlgqQTSbuvf0+D+HSVcPQslSlU+cs0u19wkHbkeM3LNbQw2fBGRIVjHVg45/84wO1UXcj1e5JrbWNWxjpXNXR0PHDgAHx8fHDhwALGxsXjppZfQokULjBo1CkBRUXHr1i0cOHAAVlZWeOedd5Camqq3jxdffBG2trbYuXMnnJ2d8c0336Bbt264cuUK3NzcAACxsbH4+eef8csvv8DS0rJc2WJjY7Fr1y7069dPNy8iIgITJ07UWy80NBRbt24tdR95eXnIy8vTPVar1eV6biIiqlpaoYBWGPfDb+x2RCRvrGOJiMhUGFvLyrmOlUWPLwBwdXXF0qVLERQUhF69eqFnz54IDw8HAFy5cgU7d+7Et99+i7Zt26J169ZYtWoVcnJydNsfPXoUJ0+exJYtW/Dkk08iMDAQCxYsgIuLC3766Sfdevn5+Vi3bh1atmyJ5s2bl5mpXbt2UKlUCAwMRMeOHTF79mzdsuTkZHh5eemt7+XlheTk5FL3NXfuXDg7O+smP7/KH8hQfc8SmkLA5T+t1q4ehbh/27TbQOWaXa65STpyPWbkmtvUHT58GL1794avry8UCkWJPzqFEJg+fTp8fHxga2uLkJAQxMTE6K1z7949DBkyBE5OTnBxccHIkSORmZlZha+CiFjHVpycf2eYnaoLuR4vcs1N5Sebhq8mTZronbny8fHRnQm7dOkSlEolWrdurVseFBSkN7DouXPnkJmZCXd3dzg4OOimuLg4XL16Vbde7dq14enpWa5MP/74I86cOYONGzdi+/btWLBggdGvb8qUKUhPT9dNiYmJRu/rYQoLLBDzlx1adsjQzVMoBFp0yMTFSLtKf77KJNfscs1N0pHrMSPX3Maoyksds7Ky8MQTT2DZsmWlLp8/fz4WL16MFStW4MSJE7C3t0doaChyc3N16wwZMgQXLlzA3r178ccff+Dw4cMYPXp0hd4DIjIM69iKk/PvDLNTdSHX40WuuY3FSx2rmJOTE9LT00vMT0tLg7Ozs948KysrvccKhQJarbbcz5WZmQkfHx8cPHiwxLIHCwt7e/ty77P4bFbjxo2h0WgwevRovPvuu7C0tIS3tzdSUlL01k9JSYG3t3ep+7KxsYGNjU25n9tYv6z0wHuLEnHlnB2iz9rhhVG3obLTYs8mt8f+3BUl1+xyzQ0AKjsNfOv8e+mCt18e6jbORkaaErdvWUuYrGxyzV1MrseMXHMbSgMLaIw8b6T557//vQzoYb8BPXr0QI8ePUrdlxACixYtwtSpU9G3b18AwLp16+Dl5YWtW7di0KBBuHTpEnbt2oVTp07hySefBAAsWbIEzz//PBYsWABfX1+jXgcRsY59EOvYR2P2qifnelDO2eV6vMg1tzGMrWU1j17FZEna8NWwYUPs2bOnxPwzZ86gQYMG5d5PUFAQCgsLERkZiaeeegpA0a2a09LSdOu0atUKycnJUCqVqFOnTkWjl6DValFQUACtVgtLS0sEBwcjPDxc7zbXe/fuRXBwcKU/tyEObXOFs7sGr05KhqtnIa5dsMVHQwKQdsfq0RtLTK7Z5ZobABo8kY3Pt/x72dQbM28CAPZsdsPCiXUkSvVocs1dTK7HjFxzG0pUYIwv8c92/70MaMaMGZg5c6ZB+4qLi0NycjJCQkJ085ydndGmTRtERERg0KBBiIiIgIuLi67RCwBCQkJgYWGBEydO4IUXXjDqdRAR61gpyPl3htmrXoPm2Zi/+Yru8eszbgAA9m5xx8J360iUqnzknF2ux4tccxvD2FpWyHiML0kbvsaMGYOlS5finXfewWuvvQYbGxts374dP/zwA37//fdy76dhw4bo3r07Xn/9dSxfvhxKpRLjx4+Hra2tbp2QkBAEBwcjLCwM8+fPR4MGDXDr1i1s374dL7zwgt4fBY+yYcMGWFlZoVmzZrCxscHp06cxZcoUvPTSS7ozeuPGjUOnTp2wcOFC9OzZE5s2bcLp06excuXK8r9Bj8m21R7YttpD6hhGkWt2ueb+K8IRobVaSR3DYHLN/SC5HjNyzV3VEhMT4eTkpHtsTE+J4rF2yhqHJzk5GTVq1NBbrlQq4ebm9tCxeoiofFjHSkPOvzPMXrX+Ou6I7v6tH72iCZJzdkCexwsg39z0aJKO8VW3bl0cPnwYly9fRkhICNq0aYPNmzdjy5Yt6N69u0H7Wr16NXx9fdGpUyf069cPo0eP1iv2FQoFduzYgWeeeQbDhw9HgwYNMGjQIMTHx5f4o+FRlEol5s2bh6effhrNmzfHrFmz8NZbb+G7777TrdOuXTts3LgRK1euxBNPPIGffvoJW7duRdOmTQ16LiIiMi2VMcaXk5OT3lQVlwgRUeViHUtERHJUHcf4UgghhNQhqCS1Wg1nZ2d0Rl8oFebXvZIeA4vy3bacKpFWzle6y1OhKMBB/Ib09HS9HlNVofh7eedfAbB3NO68UVaGFj2axxmVX6FQ4Ndff0VYWBgA4Nq1a6hXrx7Onj2LFi1a6Nbr1KkTWrRoga+++grff/893n33Xdy/f1+3vLCwECqVClu2bOGljkT0WLCOJUMplLxzXlUThYWPXokqlZR1LFDxWrYidazUZHNXRyIiIlOghQJaWBg5Vd6ZsoCAAHh7eyM8PFw3T61W48SJE7pxeIKDg5GWlobIyEjdOvv374dWq0WbNm0qLQsRERERyYPxtazhdezNmzfxyiuvwN3dHba2tmjWrBlOnz6tWy6EwPTp0+Hj4wNbW1uEhIQgJiamjD0ah03rREREBqhIV29Dt8vMzERsbKzucVxcHKKiouDm5gZ/f3+MHz8en3zyCQIDAxEQEIBp06bB19dX1yusUaNG6N69O0aNGoUVK1agoKAAb731FgYNGsQ7OhIRERFVQ8bWsoZuc//+fbRv3x5dunTBzp074enpiZiYGLi6uurWmT9/PhYvXoy1a9fqatnQ0FBcvHgRKpXK4IwPw4YvIiIiE3X69Gl06dJF93jixIkAgKFDh2LNmjV4//33kZWVhdGjRyMtLQ0dOnTArl279AqFDRs24K233kK3bt1gYWGB/v37Y/HixVX+WoiIiIio+pg3bx78/PywevVq3byAgADd/wshsGjRIkydOhV9+/YFAKxbtw5eXl7YunUrBg0aVGlZ2PBFRERkAI2wgEYYN1KAxsBhNTt37oyyhuJUKBSYPXs2Zs+e/dB13NzcsHHjRoOel4iIiIjMk7G1bHEdq1ar9ebb2NiUeqOmbdu2ITQ0FC+++CIOHTqEmjVr4s0338SoUaMAFF3JkJycjJCQEN02zs7OaNOmDSIiIiq14YtjfBERERmgaFwE4yciIiIiIqlUtI718/ODs7Ozbpo7d26pz3Pt2jUsX74cgYGB2L17N8aMGYN33nkHa9euBQAkJycDQIm7E3t5eemWVRb2+CIiIjKAFhbQGHneSAveSJmIiIiIpGNsLVtcxyYmJurd1bG03l4AoNVq8eSTT+LTTz8FALRs2RJ///03VqxYgaFDhxqR3Hjs8UVERGSA4u7hxk5ERERERFKpaB3r5OSkNz2s4cvHxweNGzfWm9eoUSMkJCQAALy9vQEAKSkpeuukpKTollUWVuBERERERERERFRp2rdvj+joaL15V65cQe3atQEUDXTv7e2N8PBw3XK1Wo0TJ04gODi4UrPwUkciIiIDaGEBLS91JCIiIiIZMraWNbSOnTBhAtq1a4dPP/0UAwcOxMmTJ7Fy5UqsXLkSQNFNmsaPH49PPvkEgYGBCAgIwLRp0+Dr64uwsDCD85WFDV9EREQG0AgFNMK4QeqN3Y6IiIiIqDIYW8saus1TTz2FX3/9FVOmTMHs2bMREBCARYsWYciQIbp13n//fWRlZWH06NFIS0tDhw4dsGvXLqhUKoPzlYUNX0RERAbQVGBwew17fBERERGRhIytZY2pY3v16oVevXo9dLlCocDs2bMxe/Zsg/dtCI7xRUREREREREREZok9voiIiAygFRbQGnl3Rq1gjy8iIiIiko6xtayc61g2fBERERmAlzoSERERkVxV5aWOpoINX0RERAbQwvhB6rWVG4WIiIiIyCDG1rJyrmPZ8EVERGQAY28BXbwtEREREZFUjK1l5VzHsuGL6AEWdnZSRzCahbOT1BGMps3MkjqCUbQZGVJHICIiokqmUMrzTyRLrxpSR6iWRJZM61iZ1t8AIAoLpY5AMiPPb3UiIiKJaIQFNEYObm/sdkRERERElcHYWlbOdSwbvoiIiAyghQJaGDvGl3HbERERERFVBmNrWTnXsWz4IiIiMgB7fBERERGRXLHHFxEREZXJ2FtAF29LRERERCQVY2tZOdex8k1ORERERERERERUBvb4IiIiMoBWKKAVRo7xZeR2RERERESVwdhaVs51LBu+iIiIDKCtwKWOWna0JiIiIiIJGVvLyrmOZcMXERGRAbTCAlojB/c0djsiIiIiospgbC0r5zpWvsmJiIiIiIiIiIjKwB5fREREBtBAAQ2MG+PA2O2IiIiIiCqDsbWsnOtYNnwREREZgJc6EhEREZFcVcdLHdnwRUREZAANjD/jpancKEREREREBjG2lpVzHcuGLyIiIgOwxxcRERERyVV17PEl3+RERERERERERERlYI8vIiIiA2iEBTRGnvEydjsiIiIiospgbC0r5zqWDV9EREQGEFBAa+QYX0LGd8MhIiIiIvkztpaVcx3Lhi8iIiIDsMcXEREREckVe3xRtdB72B0MGJMKN89CXLtoi6+n1kR0lJ3UscpFjtl7vpyMni+nwKtWHgAgPsYWG5fUwunDrhInK5uFhcDLr8eiS48kuLrn4d4dG+z7vSY2fVcXkFlr/4ujEjHivXhsXeuLbz6tK3WccpHjsQ7INzcREcmDHH9nmj6dgQFvpCCwWTbcvQow67V6iNjjInWscnl5VAyGjI7Vm5d43R5vvPiMRInKR665AeD5l26h56AkeNXMBQDEx9rhh+W1cfqIm8TJHk3Oxzogz+8XKh82fFUznfrcx+gZt7Bkci1cPmOHF0bdxpyN1zCyY0Ok37WSOl6Z5Jr9TrI1Vn/uj5vXVVAogJB+tzF9RTTe6tscCTGm+0U6YGgcnh+QiC9nNEP8VQcENk7H+Bl/IytTid831ZY6Xrk1aJaB5wcl49pl032v/0uux7pccxtKKxTQCuMaf43djoiI5Ps7o7LTIu6iLfb86I7p316TOo7Brl91wNSxT+seawrl8Vsm19x3Umyw+ssA3Iq3hQIC3cJSMG3pBbzdvxUSYu2ljlcmOR/rcv1+MYaxtayc61j59lUrh+XLl6N58+ZwcnKCk5MTgoODsXPnTt3y3NxcjB07Fu7u7nBwcED//v2RkpJS7v3HxsbC0dERLi4uJZZt2bIFQUFBUKlUaNasGXbs2FEZL6nC+o2+g10b3bDnRzckxKiw+INayMtRIHTwPamjPZJcs5/Y74ZTh1xxK94WN6/bYu0X/sjNtkBQiwypo5Wp0RNpOHGwBk4d9URqki3+DPfG2ePuaNgkXepo5aay02DS59H4amogMtPl084v12NdrrkNpYFFhSYiovJgHVuSXH9nTh90xtoFNXFst2n39n8YrUaB+3dtdJM63VrqSOUi19wnD7rj9GG3or8d4u2w7qsA5GZbIqi5WupojyTnY12u3y/GqI51rHyTl0OtWrXw2WefITIyEqdPn0bXrl3Rt29fXLhwAQAwYcIE/P7779iyZQsOHTqEW7duoV+/fuXad0FBAQYPHoyOHTuWWHbs2DEMHjwYI0eOxNmzZxEWFoawsDD8/ffflfr6DKW00iKweTbOHHHUzRNCgbNHHNG4dbaEyR5NztkfZGEh0KnnHajstLh81vHRG0jo0jkXPPH0Xfj6ZwEAAgLVaNwiDaePeUicrPzGTr+KU4fcEBXhInWUcpPrsS7X3MYoPktm7EREVB6sY/VVp98ZU+Prl411O/Zj1daDeO/jKHh65UgdqVzkmvtBFhYCz/RIhcpWg0vnnKSOY7aq2/dLdaxj5dMFwgi9e/fWezxnzhwsX74cx48fR61atbBq1Sps3LgRXbt2BQCsXr0ajRo1wvHjx9G2bdsy9z116lQEBQWhW7duOHbsmN6yr776Ct27d8ekSZMAAB9//DH27t2LpUuXYsWKFaXuLy8vD3l5ebrHanXlt+g7uWlgqQTSbut/7PfvKOFXP+8hW5kGOWcHgDoNsvDFlr9hbaNFTrYlPh7TEAmxpn3p3ZY1AbBzKMQ3Px+FVquAhYXAuq8DcXCnr9TRyqXT87dRr3Emxg1oIXUUg8j1WJdrbmNoYQGtkeeNjN2OiKof1rH6qtPvjCmJvuCCL2c1w414e7h55OHlUbGY/+1xvDmoI3KyTfdPSbnmLlYnMAsLfzgLa+t//nZ4pwkSr5r2ZY5yVt2+X4ytZeVcx8o3uYE0Gg02bdqErKwsBAcHIzIyEgUFBQgJCdGtExQUBH9/f0RERJS5r/3792PLli1YtmxZqcsjIiL09gsAoaGhZe537ty5cHZ21k1+fn4GvDoydTfibDG2T3OM798M2zd64d3PY+Ff37TPHnR8Nhmduyfh84+a450hwfhiRjP0e+U6uvW6KXW0R/LwzsPrH13D/EkNUZBfbb7miIjITLGOJalEHvPE0XAfXI91wpnjnpgx7knYOxaiY0iS1NHKJNfcxW5ct8Vb/VpjwqCW2PGjL979NBp+9bKkjkUkW6bf3F1B58+fR3BwMHJzc+Hg4IBff/0VjRs3RlRUFKytrUuMa+Dl5YXk5OSH7u/u3bsYNmwY1q9fDyen0rubJicnw8vLy6D9TpkyBRMnTtQ9VqvVlV40qO9ZQlMIuHgW6s139SjE/dumfSjIOTsAFBZYICneFgAQe8EBDZploe/QJCyZVk/iZA83YtwVbFkTgMN7fAAA8bGOqOGTgxeHxyH8j5oSpytbYJNMuHoUYOkvZ3XzLJVA06fU6D3kFvo0aw+t1jS76sr1WJdrbmNohAIaI7t6G7sdEVVPrGP/VZ1+Z0xZVqYVbibYw8fPtE/g/pfcchcWWCAp4Z+/HS46IrBpBvr+300sndlA4mTmqbp9vxhby8q5jjX7rhANGzZEVFQUTpw4gTFjxmDo0KG4ePFiubZt0qQJHBwc4ODggB49egAARo0ahZdffhnPPFO5t8K1sbHRDV5aPFW2wgILxPxlh5Yd/h1UXaEQaNEhExcjTfuyOzlnL43CQsDKWkgdo0w2Kg3EfyJqtQpYKEw7NwBEHXfGG71aYmzYv9OV8w448Lsnxoa1NNlGL0C+x7pccxuDY3wRUVVhHfuv6vQ7Y8pUtoXwqZmNe3dspI5iELnmLmahELCyMv0aXK6q2/dLdaxjza/58j+sra1Rv359AEDr1q1x6tQpfPXVV3jppZeQn5+PtLQ0vbNlKSkp8Pb2BgDs2LEDBQUFAABb26IW9/3792Pbtm1YsGABAEAIAa1WC6VSiZUrV2LEiBHw9vYucVedB/crpV9WeuC9RYm4cs4O0WeLbtOqstNizyY3qaM9klyzD3svHqcPuSL1ljXs7DXo3OcOmrdRY+rwRlJHK9PJI554acQ13E62RfxVB9QLUuOFIdex9zfT7u0FADlZSsTH6H+95WZbICPNCvExpj8+glyPdbnmNpQQFtAK484bCSO3I6LqiXWsPrn+zqjsNPCt8+84Qd5+eajbOBsZaUrcvmXadxocOe4yThwpusO3u2cehoyOgVYLHNrtI3W0Msk1NwAMmxCH04ddkZqkKvrboVcqmj2djmmj/KWO9khyPtbl+v1iDGNrWTnXsWbf8PVfWq0WeXl5aN26NaysrBAeHo7+/fsDAKKjo5GQkIDg4GAAQO3atUtsHxERAY1Go3v822+/Yd68eTh27Bhq1ixqEAgODkZ4eDjGjx+vW2/v3r26/Urp0DZXOLtr8OqkZLh6FuLaBVt8NCQAaXespI72SHLN7uJegPc+j4VbjXxkZVgi7rI9pg5vhLN/ukgdrUwr5jfCK2Ni8Obki3B2zce9OzbY+bMffvjWdC/PNBdyPdblmttQGiiggZGXOhq5HRERwDpWrr8zDZpnY/7mK7rHr8+4AQDYu8UdC9+tI1Gq8nGvkYv3PzkHJ+d8pN+3xoVzbpg4PBjqNNPuOSXX3ADg7JaPdz+LhptnPrIylIi7Yo9po5rhbISr1NEeSc7Huly/X4xhbC0r5zpWIcR/L2YyH1OmTEGPHj3g7++PjIwMbNy4EfPmzcPu3bvx7LPPYsyYMdixYwfWrFkDJycnvP322wBQ4u42ZVmzZg3Gjx+PtLQ03bxjx46hU6dO+Oyzz9CzZ09s2rQJn376Kc6cOYOmTZuWa79qtRrOzs7ojL5QKszvH5upsrCTb1dWC2f53uJYmynPwTq1GRmPXokqVaEowEH8hvT09MdyKU1Zir+XRx4aCGsH476X8zMLsKrTZknyE5G8sI6VjkIpz74Bll41pI5QLYksmdaxMq2/AUAUFj56JRMkZR0LVLyWlXMdK89v9XJKTU3Fq6++iqSkJDg7O6N58+a6YgEAvvzyS1hYWKB///7Iy8tDaGgovv766wo/b7t27bBx40ZMnToVH374IQIDA7F169ZyFwtERGS6tAJGj3GgNdtTTURU2VjHEhHR42BsLSvnOtase3zJmdzPlMkVe3xJQ65nnNjjq+qZQo+voQcGwdrBuHEq8jPzsbbLJlmeKSMiKi+517Hs8UWGYI+vqsceX8apaC0r5zpWnt/qREREEtFCAa2RYxwYux0RERERUWUwtpaVcx0r32H5iYiIiIiIiIjI5MycORMKhUJvCgoK0i3Pzc3F2LFj4e7uDgcHB/Tv37/EXYUrC3t8ERERGUAjFNAYOcaXsdsREREREVUGY2tZY7Zp0qQJ9u3bp3usfOBS8gkTJmD79u3YsmULnJ2d8dZbb6Ffv374888/DX6eR2HDFxERkQG0wgJaYVyHaWO3IyIiIiKqDMbWssZso1Qq4e3tXWJ+eno6Vq1ahY0bN6Jr164AgNWrV6NRo0Y4fvw42rZta/BzlYUVOBERkQG0UEArjJxkPDYCEREREcmf0bXsP3WsWq3Wm/Ly8h76XDExMfD19UXdunUxZMgQJCQkAAAiIyNRUFCAkJAQ3bpBQUHw9/dHREREpb9mNnwREREZQPwzIKgxk2DDFxERERFJyNhatriO9fPzg7Ozs26aO3duqc/Tpk0brFmzBrt27cLy5csRFxeHjh07IiMjA8nJybC2toaLi4veNl5eXkhOTq7018yGLyIiIhOl0Wgwbdo0BAQEwNbWFvXq1cPHH38MIYRuHSEEpk+fDh8fH9ja2iIkJAQxMTESpiYiIiIic5WYmIj09HTdNGXKlFLX69GjB1588UU0b94coaGh2LFjB9LS0rB58+YqTsyGLyIiIoMYfZnjP5Mh5s2bh+XLl2Pp0qW4dOkS5s2bh/nz52PJkiW6debPn4/FixdjxYoVOHHiBOzt7REaGorc3NzKfulEREREJHMVrWOdnJz0Jhsbm3I9r4uLCxo0aIDY2Fh4e3sjPz8faWlpeuukpKSUOiZYRbHhi4iIyADFA4IaOwHlHxvh2LFj6Nu3L3r27Ik6depgwIABeO6553Dy5EkARb29Fi1ahKlTp6Jv375o3rw51q1bh1u3bmHr1q1V9ZYQERERkUxUtI41VmZmJq5evQofHx+0bt0aVlZWCA8P1y2Pjo5GQkICgoODK/oSS2DDFxERkQEqo8dXecdGaNeuHcLDw3HlyhUAwLlz53D06FH06NEDABAXF4fk5GS9gUGdnZ3Rpk2bxzIwKBERERHJW1VdufDee+/h0KFDuH79Oo4dO4YXXngBlpaWGDx4MJydnTFy5EhMnDgRBw4cQGRkJIYPH47g4OBKv6MjACgrfY9ERERUpsTERDg5OekeP6yL+OTJk6FWqxEUFARLS0toNBrMmTMHQ4YMAQDd4J9eXl562z2ugUGJiIiIiMrjxo0bGDx4MO7evQtPT0906NABx48fh6enJwDgyy+/hIWFBfr374+8vDyEhobi66+/fixZ2PBFRERkgOI72xi7LfDv2AiPsnnzZmzYsAEbN25EkyZNEBUVhfHjx8PX1xdDhw41KgMRERERVV/G1rKGbrNp06Yyl6tUKixbtgzLli0zOIuh2PBFRERkAGO6ej+4rSEmTZqEyZMnY9CgQQCAZs2aIT4+HnPnzsXQoUN1g3+mpKTAx8dHt11KSgpatGhhVEYiIiIiMl/G1rLG1r+mgGN8ERERGaAq7+qYnZ0NCwv9n2pLS0totVoAQEBAALy9vfUGBlWr1Thx4sRjGRiUiIiIiOStqupYU8IeX0RERAaoyh5fvXv3xpw5c+Dv748mTZrg7Nmz+OKLLzBixAgAgEKhwPjx4/HJJ58gMDAQAQEBmDZtGnx9fREWFmZURiIiIiIyX9WxxxcbvogeoLCzlTqC0fIa+kodwWiKQq3UEYxicTRK6ghk5pYsWYJp06bhzTffRGpqKnx9ffH6669j+vTpunXef/99ZGVlYfTo0UhLS0OHDh2wa9cuqFQqCZMTEQEWdrawUFhLHcNgCmsrqSMYRdiWfqMUObj/lNejVzJRjgm5UkcwivJCnNQRjKbNzJI6glEUQgCFUqeontjwRUREZICq7PHl6OiIRYsWYdGiRQ9dR6FQYPbs2Zg9e7ZRmYiIiIio+mCPLyIiIiqTgOF3tXlwWyIiIiIiqRhby8q5jmXDFxERkQGqsscXEREREVFlYo8vIiIiKhMbvoiIiIhIrqpjw5fFo1chIiIiIiIiIiKSH/b4IiIiMgB7fBERERGRXFXHHl9s+CIiIjIAG76IiIiISK7Y8EVERERlEkIBYeQPv7HbERERERFVBmNrWTnXsRzji4iIiIiIiIiIzBJ7fBERERlACwW0MPJSRyO3IyIiIiKqDMbWsnKuY9nwRUREZACO8UVEREREcsUxvoiIiKhMHOOLiIiIiOSqOo7xxYYvIiIiA7DHFxERERHJVXXs8cXB7YmIiIiIiIiIyCyxxxcREZEBeKkjEREREckVL3UkIiKiMokKXOoo54KBiIiIiOTP2FpWznUsG76IiIgMIAAIYfy2RERERERSMbaWlXMdyzG+iIiIiIiIiIjILLHHVzXUe9gdDBiTCjfPQly7aIuvp9ZEdJSd1LHKRY7Z3WvkYfj4WDzZ4S5sVFokJdriy2mNEHPRSepoegb3+QsdnoqHn28a8vKVuBhTA9/+8CRuJDnr1unZNRpd211D/Tp3YW9XgL6vvYysbBsJUxcZFHYeHZ6Oh1/N9KLsVzzx3frWetmtrDR449VT6NzuOqysNDh9zheLv2uLtHRbCZM/nByPdUC+uQ2hhQIKGHlXRyO3IyKq7ga+cRPtn7uLWnVzkJ9ngYtnHPH9/Nq4GWeav+MPev6lW+g5KAleNXMBAPGxdvhheW2cPuImcbJHW/3jbnj55JSY/8evAfj6yyckSFS6FnVvYUjnc2hY6w48nbPxwerncPjvAN1yV4dsjO11Ak83uAFH23xEXfPGwl874MYd5zL2WjWaNUrGi30uILDuXbi75WDm/C44dsofAGBpqcWwQWfxdKsb8KmRiaxsK5w574NVG1rj3n3Tq6/kfKw3fToDA95IQWCzbLh7FWDWa/UQscdF6liPhbG1rJzr2GrT4+uzzz6DQqHA+PHjdfNyc3MxduxYuLu7w8HBAf3790dKSkqZ+7l+/ToUCkWJ6fjx43rrbdmyBUFBQVCpVGjWrBl27NjxOF6WwTr1uY/RM25hwxfeGBvaANcuqjBn4zU4uxdIHe2R5JjdwbEAC9ZGQlOowPQ3W+CNF9rg2wX1kaE2vTbn5o2S8dveILw9vRc+mBsKpaUW8ybvhsrm3/fXxroQp87VxA+/NZcwaUnNGydj2+4gvPPR85j8ybNQWmrx2dS9etnHDD2Jtq1v4OMvOuHdGd3h7pqDme8ekDD1w8nxWAfkm9tQxQOCGjsRERmKdSzQ7Ol0/L7eGxNebIYPhzaGUikwZ81F2NhqpI72SHdSbLD6ywC882IrjHuxJc6dcMG0pRfgXz9L6miPNG50ZwwJ666bPpzQDgBw5ICvxMn0qawLEXPLHQt/6VDKUoF5w3fD102ND1aHYugX/ZF83xGLX/8DKmvpaxSVTSGuxbti6ao2JZbZ2BQisO5dbPjpCbz5QS/MWtAFfr5qzP5gvwRJH03Ox7rKTou4i7ZYNtVP6iiPXXWsY6tFw9epU6fwzTffoHlz/T/WJ0yYgN9//x1btmzBoUOHcOvWLfTr169c+9y3bx+SkpJ0U+vWrXXLjh07hsGDB2PkyJE4e/YswsLCEBYWhr///rtSX5cx+o2+g10b3bDnRzckxKiw+INayMtRIHTwPamjPZIcsw8YEY/bKTb4cnpjXPnbCSk3bXE2wh3JN0zvDM2Uec9hz+FAxN90xbUEN8xf0RFenlkIDLirW+eXXU2w6ffmuBTrKWHSkj789FnsOVQf8TdccS3eDZ8v61CUvW5RdjvbfHTvGosVa59E1AUfxMS5Y8HX7dEk6DYaBd6WOH1JcjzWAfnmNpT2nwFBjZ2IiAzBOrbItBGNse+XGkiIsUPcZXt88UF9eNXMR2BT0/+D+uRBd5w+7IZb8ba4GW+HdV8FIDfbEkHN1VJHeyR1ug3u31PppqfbJePWDXucj/KQOpqe45f9sXLX0zj0QC+vYn4e6WhWJxWf/9wRlxJrIOG2C+b/3BE2VoV4tmWsBGn1nYqqhTWbWuHPk7VLLMvOtsbkj5/D4Yg6uHHLGZdjqpU9MwABAABJREFUPLF0VRs0qHcXnh6ZEqQtm5yP9dMHnbF2QU0c2+0qdZTHrjrWsWbf8JWZmYkhQ4bg22+/havrvwdxeno6Vq1ahS+++AJdu3ZF69atsXr1ahw7dqzEWa/SuLu7w9vbWzdZWVnpln311Vfo3r07Jk2ahEaNGuHjjz9Gq1atsHTp0sfyGstLaaVFYPNsnDniqJsnhAJnjziicetsCZM9mlyzt+18BzEXnDBlwXlsPHgES348idD+N6WOVS72dvkAgIxM6S9lNNR/szeoexdWSi3OnP/37GTiLWek3LZHowapkmR8GLke63LNbQwhKjYREZUX69iHs3MsBABkpJleL/qyWFgIPNMjFSpbDS6dM61hLx5FqdSiy7M3sGeHPyCjS56slUW9AvMLLXXzhFCgQGOJJwKSpYplNHu7fGi1QFaWtdRRyiTnY93cVcc61uwbvsaOHYuePXsiJCREb35kZCQKCgr05gcFBcHf3x8RERGP3G+fPn1Qo0YNdOjQAdu2bdNbFhERUeL5QkNDy9xvXl4e1Gq13lTZnNw0sFQCabf1C4T7d5Rw9Sys9OerTHLN7l0rFz0H3sStBDtMfaMFtm+uiTc+iEG3PklSRyuTQiHw5v+dwN/RNXD9hrzOeigUAmOGncLfl2vgemJRdleXHOQXWCArW79AuJ+ugptLrhQxH0qux7pccxMRmTLWsaVTKARe/+g6Lpx2RHyM6fWiL02dwCz8fPoofos6grdmxODjd5og8aq91LEMEtwxCQ4OBdi301/qKAa5nuqCpHsOGPP8STja5kFpqcErXaLg5ZIFdyd5nZyzstLgtVcicfDPAGTnmGbDlzkc62R+5HWKxECbNm3CmTNncOrUqRLLkpOTYW1tDRcXF735Xl5eSE5+eMu/g4MDFi5ciPbt28PCwgI///wzwsLCsHXrVvTp00e3by8vL4P2O3fuXMyaNcuAV0dyoLAQiLngiLWL6wEArl12RO36WXj+xZsI3+YjcbqHe2d4BOr4pWH8rOeljmKwt0ceRx2/+5gwvYfUUchMVWSMAzmPjUBEVYt17MONnRmHOg1y8N6gJlX2nBV147ot3urXGvYOhegQegfvfhqN94c2l1WDwHM943H6RA3cu2v6NxR4kEZriSlrn8OHAw9hzydrUKhR4HRMTRy75CejfmtFA91PnXgQALD427bShimDORzr5s7YWlbOdazZNnwlJiZi3Lhx2Lt3L1QqlVH7aNKkCeLj4wEAHTt2xM6dO+Hh4YGJEyfq1nnqqadw69YtfP7557qCwRhTpkzR269arYafX+UOrKe+ZwlNIeDyn94Xrh6FuH/btA8FuWa/f9saidf0v+QT4+zQPsS0Lq970FvDItCmZSImzn4ed+7J6wfqrRHH0abVDbw7o7te9vtptrC20sLeLl+v15ercy7upRn3/fC4yPVYl2tuY7Dhi4geN9axDzdmxjU83fU+Jg1ugjvJ8hmOobDAAkkJRQ1GsRcdEdg0A33/7yaWzmwgcbLyqeGVjRatUzFnWskB2OUg+oYnhn4xAPaqPFhZapGWZYvv3vkVl2+Y1lhlD1Pc6FXDIwvvz3rOZHt7AfI/1quD6tjwZbaXOkZGRiI1NRWtWrWCUqmEUqnEoUOHsHjxYiiVSnh5eSE/Px9paWl626WkpMDb2xsAsGPHDkRFRSEqKgrffffdQ5+rTZs2iI39d2BEb2/vEnfVeXC/pbGxsYGTk5PeVNkKCywQ85cdWnbI0M1TKARadMjExUjT7iYu1+wXo1xQs45+F+qatXOQmmRajS1FBN4aFoEOTyZg0pzuSL7t+OhNTIbAWyOOo/3TCXh/dmiJ7FeuuaOg0AItm/17iWktn3R4eWbh0pUaVR22THI91uWa2xgc3J6IHjfWsaURGDPjGto9ew+TX2mMlBumWEuVn4VCwMpKPgPmPPt8PNLTbHAywuvRK5uwrFwbpGXZopZHOoL8buPw33WkjvRIxY1eNb0zMPnj55CRKa9jX27HenVQHetY8zoN/4Bu3brh/PnzevOGDx+OoKAgfPDBB/Dz84OVlRXCw8PRv39/AEB0dDQSEhIQHBwMAKhdu+SdNUoTFRUFH59/L1sLDg5GeHi43i2n9+7dq9uvlH5Z6YH3FiXiyjk7RJ+1wwujbkNlp8WeTW5SR3skOWb/9X9+WLguEgNfu44ju2ugYTM1egy4icWzgqSOVsI7w4+ja7trmL6wG7JzrODqXNRgl5VtjfyCoq8KV+dsuLnkwNerqHEjwO8+cnKtkHrHARlZ0p11fXvkCXTtcA0z5nf9J3vOP9mtkF+gRHaONXbtr483Xj2FjExrZGdbY+yIE7gQ7YlLMaZ1h0pAnsc6IN/chqrI4J5yHhSUiKoO69iSxs6KQ+fedzD7jYbIybKEq0fRjWyyMiyRn2f5iK2lNWxCHE4fdkVqkgp29hp07pWKZk+nY9ooeYyVpVAIPNsjAft2+UOrMc1+E7bWBajlka577OuWgUDfO1Bn2yAlzRFdm1/F/SxbpNx3QD2fe5gQ9icO/10HJ688np6JhlCpCuDr/e+JQ+8aGahb5x4yMq1x774dpr17EIEBdzHts26wsBBwdSmqczMyrVFYaFrHvpyPdZWdBr518nSPvf3yULdxNjLSlLh9y3R72BnD2FpWznWs2TZ8OTo6omnTpnrz7O3t4e7urps/cuRITJw4EW5ubnBycsLbb7+N4OBgtG378Gum165dC2tra7Rs2RIA8Msvv+D777/XO5M2btw4dOrUCQsXLkTPnj2xadMmnD59GitXrnwMr9Qwh7a5wtldg1cnJcPVsxDXLtjioyEBSLtj9eiNJSbH7DEXnPDJhGYYNu4qXn79OpJvqvDN/EAc3PHws6ZS6fPsZQDAF9N36s2fv6ID9hwOBAD0DonGq/2jdMsWzdhZYh0p9AmNBgAsnLVbb/7ny9pjz6H6AIDla5+GEKcw/d2DsFJqEXnOF4u/M83xEeR4rAPyzU1EZGpYx5bUa0hRL7T5Gy/qzV/4fj3s+8W0em//l7NbPt79LBpunvnIylAi7oo9po1qhrMR8riBUIsnb6OGdw72bi9fY6oUgvxu4+s3f9c9Hte36GYM2081wCebusDdKRvv9I2Am0MO7qjtsCuyAb7f20qquHoa1L2LBQ/UsG8MOw0A2HOwHv63uQXaPZUIAFix4He97d6bEYq/LprW3xRyPtYbNM/G/M1XdI9fn3EDALB3izsWvltHolRUWRRCyLndzjCdO3dGixYtsGjRIgBAbm4u3n33Xfzwww/Iy8tDaGgovv766zK7cq9duxbz5s1DfHw8lEolgoKCMGnSJAwYMEBvvS1btmDq1Km4fv06AgMDMX/+fDz/fPkHCler1XB2dkZn9IVSwT8aq4qlh7vUEYyW39R0i5FHURRqpY5gFIujUVJHqHYKRQEO4jekp6c/pktpHq74ezlw/WRY2hl3mYEmOxcxr3wmSX4ikjc51rFd7QZBqZBfTwmFtUxrbw/59rC+/5R8L6F0TDCtO4SXl/JCnNQRjKbNzJI6glEKRQEOFP4sWR1Y0VpWznVstWr4khM2fEmDDV/SYMMXlZcpNHzV/9+UCjV8xf7fXFkWDERE5cWGL4mw4UsSbPiqemz4Mk5Fa1k517Fme6kjERHR4yD+mYzdloiIiIhIKsbWsnKuY01zdEIiIiIiIiIiIqIKYo8vIiIiAwihgDDyds7GbkdEREREVBmMrWXlXMey4YuIiMgQvNaRiIiIiOSqGl7ryEsdiYiIDPHPWTJjJsj4TBkRERERmQEJ6tjPPvsMCoUC48eP183Lzc3F2LFj4e7uDgcHB/Tv3x8pKSmV8AJLYsMXERGRAYSo2EREREREJJWqrmNPnTqFb775Bs2bN9ebP2HCBPz+++/YsmULDh06hFu3bqFfv36V8ApLYsMXERERERERERFVqszMTAwZMgTffvstXF1ddfPT09OxatUqfPHFF+jatStat26N1atX49ixYzh+/Hil52DDFxERkQGMvcyxIoPiExERERFVhorWsWq1Wm/Ky8t76HONHTsWPXv2REhIiN78yMhIFBQU6M0PCgqCv78/IiIiKv01l2tw+23btpV7h3369DE6DBERkcmryBgHbPgiqnKsY4mIiB5gbC37zzZ+fn56s2fMmIGZM2eWWH3Tpk04c+YMTp06VWJZcnIyrK2t4eLiojffy8sLycnJhmd7hHI1fIWFhZVrZwqFAhqNpiJ5iIiITFpFxjjgGF9EVY91LBER0b+MrWWLt0lMTISTk5Nuvo2NTYl1ExMTMW7cOOzduxcqlcrYqJWmXA1fWq32cecgIiIiIqp0rGOJiIgqj5OTk17DV2kiIyORmpqKVq1a6eZpNBocPnwYS5cuxe7du5Gfn4+0tP9n777jm6j/P4C/0pWkK90Lupgtewplg8WKICjLgf7YCAIyRBSVqQgiCCoIKshQEEEFZYNspGyKzDJa2gJdULrbNE3u90e/BGILNOm4XPp6Ph73eJDL3eWVNk3evPO5z6UbjPpKTk6Gj49PuWcuVePrcfLz882ie0dERFRphP8tpu5LRGaBdSwREVVJptayRuzz7LPP4vz58wbrBg8ejJCQELz//vvw9/eHra0t9u7diz59+gAAoqOjER8fj7CwMBPCPZnRk9trtVp88sknqFatGhwdHRETEwMAmDp1KlasWFHuAYmIiMwJJ7cnki7WsUREVNVVRh3r5OSEBg0aGCwODg5wd3dHgwYNoFKpMHToUEycOBH79+/H6dOnMXjwYISFhaF169bl/pyNbnzNnj0bq1atwrx582BnZ6df36BBAyxfvrxcwxEREZklwcSFiETFOpaIiAhmUccuXLgQPXr0QJ8+fdChQwf4+Pjgjz/+KP8HggmnOq5Zswbff/89nn32WYwcOVK/vnHjxrhy5Uq5hiMiIjI3ZRm5xRFfROJiHUtERFWdqbVsWevYAwcOGNxWKBRYsmQJlixZUqbjlobRI75u376NWrVqFVuv0+mg0WjKJRQRERERUXljHUtERFT1GD3iq169ejh8+DACAwMN1v/2229o2rRpuQUjEoMuI0vsCCa7+aLd0zcyUz71U8SOYBKH58VOQKLg5PZEksU6tnLpcvOgkxWKHcNosoIyXf9LNNaqJ19lzZxFLlgmdgSThSwfJXYEk7gGhIodwWSuJ5PFjmASK60aiBE7BSplcntzY/S7+rRp0zBw4EDcvn0bOp0Of/zxB6Kjo7FmzRps3bq1IjISERGZEdn/FlP3JSKxsI4lIiIytZaVbh1r9KmOvXr1wpYtW/D333/DwcEB06ZNw+XLl7FlyxZ07dq1IjISERGZD1MntucE90SiYx1LRERVXhWsY41ufAFA+/btsWfPHqSkpCA3NxdHjhzBc889V97ZiIiIzE8lN75u376NN954A+7u7lAqlWjYsCFOnTr1MI4gYNq0afD19YVSqUR4eDiuXbtWlmdIZNFYxxIRUZVWBRtfJp/AfurUKVy+fBlA0XwJzZs3L7dQREREBNy/fx9t27ZF586dsWPHDnh6euLatWtwdXXVbzNv3jx8/fXXWL16NYKDgzF16lRERETg0qVLUCgUIqYnMl+sY4mIiKoOoxtft27dwmuvvYZ//vkHLi4uAID09HS0adMG69evR/Xq1cs7IxERkfkQZEWLqfsa4fPPP4e/vz9WrlypXxccHPzwcIKARYsW4eOPP0avXr0AAGvWrIG3tzc2b96MV1991bScRBaKdSwREVV5ptaypta/ZsDoUx2HDRsGjUaDy5cvIy0tDWlpabh8+TJ0Oh2GDRtWERmJiIjMhiCUbQGAzMxMg0WtVpf4WH/99RdatGiBfv36wcvLC02bNsUPP/ygvz82NhZJSUkIDw/Xr1OpVGjVqhUiIyMr9OdAJEWsY4mIqKorax0rRUY3vg4ePIilS5eibt26+nV169bFN998g0OHDpVrOCIiIrNTDnN8+fv7Q6VS6Zc5c+aU+FAxMTFYunQpateujV27dmHUqFF45513sHr1agBAUlISAMDb29tgP29vb/19RPQQ61giIqryOMfX0/n7+0Oj0RRbr9Vq4efnVy6hiIiILFlCQgKcnZ31t+VyeYnb6XQ6tGjRAp999hkAoGnTprhw4QKWLVuGgQMHVkpWIkvCOpaIiKjqMXrE1xdffIGxY8caXFHq1KlTGDduHObPn1+u4YiIiMzOg3kRTF0AODs7GyyPa3z5+vqiXr16ButCQ0MRHx8PAPDx8QEAJCcnG2yTnJysv4+IHmIdS0REVV4Z61gpKtWIL1dXV8hkD59kTk4OWrVqBRubot0LCwthY2ODIUOG4KWXXqqQoEREROZAJhQtpu5rjLZt2yI6Otpg3dWrVxEYGAigaKJ7Hx8f7N27F02aNAFQNH/Y8ePHMWrUKNNCElkY1rFEREQPmVrLmlr/moNSNb4WLVpUwTGIiIgkoixzHBi534QJE9CmTRt89tln6N+/P06cOIHvv/8e33//PQBAJpNh/Pjx+PTTT1G7dm0EBwdj6tSp8PPz43/gif6HdSwREdEjTK1lLb3xxXlEiIiI/qcsQ72N3K9ly5bYtGkTpkyZglmzZiE4OBiLFi3CgAED9NtMnjwZOTk5GDFiBNLT09GuXTvs3LkTCoXCtIxEFoZ1LBER0SNMrWUt/VTHx8nPz0dBQYHBukcn6yUiIqKy6dGjB3r06PHY+2UyGWbNmoVZs2ZVYioi6WMdS0REVDUYPbl9Tk4OxowZAy8vLzg4OMDV1dVgISIismhluQS0hIeIE1kC1rFERFTlVcE61ujG1+TJk7Fv3z4sXboUcrkcy5cvx8yZM+Hn54c1a9ZUREYiIiLzwcYXkWSxjiUioiqvCtaxRp/quGXLFqxZswadOnXC4MGD0b59e9SqVQuBgYFYu3atwbwjREREFqcSJ7cnovLFOpaIiKq8Kji5vdEjvtLS0lCjRg0ARfMgpKWlAQDatWuHQ4cOlW86IiIic/NgQlBTFyISDetYIiKq8qpgHWv0iK8aNWogNjYWAQEBCAkJwYYNG/DMM89gy5YtcHFxqYCIVN5eHHQXfUelwM2zEDGXlPj242qIjrIXO1apSDH7K2/fQdvn76N6zXwU5Fvh0mlH/Di3Om7FKMWOZuCdBqfwTsPTButuZLogYtsr/9lSwIqOO9DRLwEjDz2Hv28HV17Ix1D+XzysUgqLrdf0cEbBGI+HKwQB8qlJsDmVh/xp3tC2cajElMaR4msdkG5uIqoaWMdKnxQ/Zxo8k4W+I5NRu2Eu3L01mDmsJiJ3u4gdq9TcPfMw+O0raB6WArlCi8RbDlj4aWNcv+IidjQDdxNtsWK2L07ud4Y6zwp+QWq8uzAedRrnAQAi/JqUuN+wj2+j39uplZjU0KuhF/Fa6EVUc8wCAFy/74YlZ5vj8K0AAICddSHebxWJ7jWuw9Zai39u+WPm0fa4lyf+675JjTsY0Okc6la/C09VLt5f+RwOXXj4fwNXx1yM7nEcz9S5BSdlAaJifLBgUzvcuqsSMXXJVv66C96+ecXWb90UjG8XNhYhEZUnoxtfgwcPxrlz59CxY0d88MEHePHFF7F48WJoNBp8+eWXFZGRylHHnvcxYvodfPNBdVw5Y4+Xh6di9roYDG1fFxn3bMWO90RSzd6wVRa2rPHG1XMOsLIRMHjyLcz+6SpGhDeAOs9a7HgGrqa74v/2P7x6nFZXvKs/uO55sxvlmvd1Nch0D1PJbhZA+WESCtsbNrZsNmUAEviiQqqvdanmNpZMKFpM3ZeIxMM6Vtqk+jmjsNch9pISu391x7QfYsSOYxRHpwJ88d1R/HvaHdMnPoOM+3L4+ecgO8u8ft5Z6daY2Ks2GrXJwqc/x8DFvRC3Y+RwVGn12/wSdcFgn5P7nLHwXX+0655R2XENJOc4YMGJVojLVEEG4KU60VjSdSd6b+qL6+lumNL6KDr6x2Pc3ueQXWCHqW2O4JvwXXh9y8ui5gYAhV0hrt1xx9YTIZg7ePd/7hXw+eBdKNRa4f2VEcjJt8NrHf/F129txetf9Ed+gXm9hsaN6ARr64eFWmBwJj5beBSH9/uJmKpimFrLSrmONfpUxwkTJuCdd94BAISHh+PKlStYt24dzp49i3HjxpV7QFPNmDEDMpnMYAkJCdHfn5+fj9GjR8Pd3R2Ojo7o06cPkpOTn3pcQRAwf/581KlTB3K5HNWqVcPs2bMNtjlw4ACaNWsGuVyOWrVqYdWqVeX99EzWe8Rd7Fznht2/uiH+mgJfv18d6jwZIl5LEzvaU0k1+8cD62LPbx6Iu6ZE7GV7LHg3GN7VC1C7Ya7Y0YopFKxwN99ev9wvMByVFupyF0ND/sUHxzuJE/BxXKwhuNnoF5sTudD52kDXSKHfxOqGGrZ/ZKBggqeIQUtHqq91qeY2Gie3J5IsqdSxAGvZkkj1c+bUARVWz6+Go7ukd+XQvm/cQGqyEotmN8HVS65ITrTH2ROeSLptXqPmNyzxgodfASYtSkBI01z4BBSgeacs+AUV6Ldx8yo0WCJ3qdC4bTZ8AwuecOSKtz8+CIduBSIu0wU3M12w6FQr5Gps0dgrGY62avSpcwWfHwvD8cRquHjPE1MOdUIz72Q09nz633tFO3YlAN/vfAYHLxQ/A8TfIwMNg1Lwxe/tcTnBC/GpLpj3e3vIbQvRtel1EdI+WWaGHPfTFPrlmTZJuHPLAeejPJ6+s9RUwTrW6BFf/xUYGIjAwMDyyFLu6tevj7///lt/28bm4dOdMGECtm3bho0bN0KlUmHMmDHo3bs3/vnnnycec9y4cdi9ezfmz5+Phg0bIi0tTT8/BADExsaie/fuGDlyJNauXYu9e/di2LBh8PX1RURERPk/SSPY2OpQu1Eu1i/20q8TBBnOHnZCvebm14R5lJSz/5e9U9E3T1np5jXaCwCCnDLwT6+foNZZ4+xdb8w/9wwSc50AAAprDRa22YsZp9rhbr74Q6sfSyPAZl82NL1VgOx/w7vydZB/noKC0R4Q3Mr8tlehpPpal2puIqrazLmOBVjLPoqfM+Jo1T4ZZ457Ysrs02jQ5B7u3VVg2++B2PWXef3dHNutQvNOmfh0RBD+jXSAh48GPQbdxQsDSm6K3k+1wYm9zpi0KK6Skz6ZlUyH54NjYG+rQVSKN+p73IWdtQ5H71TXbxOb4YrbWY5o4p2Ec6neIqZ9Mjubov/zFBQ+/D+PIMig0VqjcXASthwPFSvaU9nY6NC56y1s2lATkjhdhJ6qVP8D/Prrr0t9wAffopkDGxsb+Pj4FFufkZGBFStWYN26dejSpQsAYOXKlQgNDcWxY8fQunXrEo93+fJlLF26FBcuXEDdunUBAMHBht3tZcuWITg4GAsWLAAAhIaG4siRI1i4cKHojS9nNy2sbYD0VMNf+/27NvCvpRYpVelIOfujZDIBI6fH4+JJR8RdNa/mUdQ9L7x/rBNislzgpcjF2AansT78L7ywvR9yCu3wUbNInLnrg79vB4kd9YmsI3OAbB0Kuzrp19l9dw/aUAW0Yeb17WRJpPpal2puIrJ8Uq1jAdayj+LnjDh8/HLxwstx2LS+Bn5dXQt1QtPx1sSLKCy0wt7t/mLH00uMt8PWNR7oPSIVr45NxtVz9lg6tTpsbQV07X+/2PZ7NrhB6ahFuxfEPc3xgTqu9/BLz02QW2uRq7HFmD0RuJHuhlD3ayjQWiGrQG6w/b08JTyUxeejMic3U1yQmOaIUS+cwOe/dUBegQ1e7XAe3i45cHc272Z1WPtEODpq8PeOALGjUDkpVeNr4cKFpTqYTCYzq4Lh2rVr8PPzg0KhQFhYGObMmYOAgACcPn0aGo0G4eHh+m1DQkIQEBCAyMjIxxYLW7ZsQY0aNbB161Y8//zzEAQB4eHhmDdvHtzc3AAAkZGRBscFgIiICIwfP/6JWdVqNdTqhx/amZmZJj5rMmejP4lDUJ08vNvX/L7hOJT48I09Gu6IuueFQz3X4YWAGKSpFQjzvo2eO/uKmLB0bHZmQdvSHoJ70dubdWQOrM/lIW9J9afsSVQ6MpRhjq9yTUJEpSHVOhaQTi3LOtZyyawEXL/igjXLik6zjbmqQmCNLHR7Kc6sGl+CDqjdKA9DpiQCAGo1zMPNKwps+8mjxMbXrvVu6PLyfdgpzOPcrdgMF7y8qR+cbAsQERyDuR33481tPcWOVSZanTWmrH4OH/Y/iN2frkKhVoZT16rh6GV/s6+Hnuseh1PHvZB2z7wuRlZeTK1lzf339iSlanzFxsZWdI5y16pVK6xatQp169ZFYmIiZs6cifbt2+PChQtISkqCnZ1dsav3eHt7Iykp6bHHjImJQVxcHDZu3Ig1a9ZAq9ViwoQJ6Nu3L/bt2wcASEpKgre34ZBTb29vZGZmIi8vD0plyX88c+bMwcyZM8v2pJ8iM80a2kLAxdPw6neuHoW4n2rep39JOfsDb8+KQ6tn0zGpfyjuJtmJHeepsjRyxGapEOiUgTou9xDgmIkzfVYabLOk3R6cSvXBgH3m8cEsS9bAOioP6qkP/watz+VBllgI+z43DbaVf5oMXX0F8r8wrwkrpfpal2puk5Tlcs4Svgw0kVRJsY4FpFXLso61XPfvKhAf62iwLuGmI9p0ThQpUcncvAoRWCffYJ1/7Xwc2V786oHnjzvg1g0FPlx2s5LSPZ1GZ434zKKsF+95ooFnCv6v/nlsj6kFO2sdnOzUBqO+3JV5uJtn/k2Z6FueGPhlXzgo1LC11iE9R4nl72zClVvmO2+Wl3cumjRPweyprcSOUnFMrWUlXMda7KdEt27d9P9u1KgRWrVqhcDAQGzYsOGxzadH1a9fH3FxRed8t2/fHjt27IBOp4NarcaaNWtQp04dAMCKFSvQvHlzREdH64eMm2LKlCmYOHGi/nZmZib8/cv3W5RCjRWu/WuPpu2yELmz6I1VJhPQpF02/lrlXq6PVd6knB0Q8PaseLSJuI/Jr4QgOUH+9F3MgL2NBgGOmdh8sza2x9fEhhuGo9R2vLARs8+GYd9t85njwWZ3FgSVNbTPPDyNVNPfBZrnnQ22sx95CwUj3KFtbV6nmwLSfa1LNbdJyjK5p3l8sUxEEiClWpZ1rOW6dN4V1QJyDNZVC8hBapJ51VD1WuYg4YZhjX07Rg6vappi2+76xR21G+WiZv38YveZCyuZADtrLS7e9UCB1gphfrex+2YNAECwKh3VnLIRlVz8NGhzlZNf9Lup7pGBEP9UfL+zhciJHq/rC3HISJfjRKT5zp9WZqbWshKuYy228fVfLi4uqFOnDq5fv46uXbuioKAA6enpBt+UJScn6+dR2L59OzSaojfKB8WFr68vbGxs9IUCUDTvAQDEx8ejbt268PHxKXZFneTkZDg7Oz+xSJHL5ZDLK74h8sf3Hpi0KAFXz9kj+mzRZaAV9jrsXu9W4Y9dVlLNPvrTOHTumYaZw2shL8carp5Fr6ucTGsUqI2+sGqF+aBJJPbdDsTtXCd4KXMwruEp6AQZtsbVQppaWeKE9ndyHHErx7mEo4lAJ8BmTzYKuzoC1g+/jRDcbIASXiKClw0EH/O6jPIDUn2tSzW30dj4IiIRmHMtyzr2yRT2WvgFPTwV1MdfjRr1cpGVboPUO+Z9FsDm9TUw//t/0H/gNRze64c69dLxfK94fDO3odjRDPQekYIJPevgl6+90OHFdESftcf2n90x/otbBtvlZFnh0BYVRky/I1LS4ia2OI5Dt/yRmO0IB1sNetS8jmd872DYzu7I1sjx+9UQvN/qKDLUcmQX2OHjNkdwNtnbLCa2V9ppUN3j4Txpfm5ZqO13F5m5ciSnO6FLoxu4n6NE8n1H1PRNw4SX/sGhC0E4cdV8TpN9lEwmoGu3ePy9MwA6rfn8P63csfFlubKzs3Hjxg28+eabaN68OWxtbbF371706dMHABAdHY34+HiEhYUBQIlX+Gnbti0KCwtx48YN1KxZEwBw9epVg+3DwsKwfft2g/327NmjP67YDv7lCpW7Fv/3XhJcPQsRc1GJjwYEI/2ueTYAHiXV7C++mQoA+GJDtMH6Be8GY89v5jPM18c+Bwvb7IWrPB9paiVOpfqg756XkKY2/2HUAGB9Ng9WKYUofM7p6RubOam+1qWam4hICljLSvdzpk6jXMzbcFV/+63pRc2YPRvdseDdIJFSlc61yy749IMWGDTqCl4bfA3Jifb4flE9HNhtXnOn1m2Sh2krYrFyji/WLvSBj38BRs66jS69Def3OvinKyDI0Pml4vN+icVNmYfPO+6Dp30usgrsEJ3mjmE7u+Po7aLm0JxjbaBrJcNXz+6GnbUWR277Y9Y/7UVOXSTEPxXfvr1Ff3tcr0gAwLaTdfDp+s5wd87FO70i4eaYh7uZ9th5ug5+3NNMrLhP1aRFKrx88rBnm/mc0ULlQyYIgoT7do83adIkvPjiiwgMDMSdO3cwffp0REVF4dKlS/D09MSoUaOwfft2rFq1Cs7Ozhg7diwA4OjRo489pk6nQ8uWLeHo6IhFixZBp9Nh9OjRcHZ2xu7duwEUzSPRoEEDjB49GkOGDMG+ffvwzjvvYNu2bUZdCSczMxMqlQqd0As2MvP+MLckMlvz/tbtSa7PNd8PkafxqZ8idgSTODwfI3aEKqdQ0OAA/kRGRgacnSt3tOGD9+Wg2bNhpVCYdAxdfj5ufvSRKPmJSFqkXMtKvY6V2UhzbIB1NV+xI5hsW+SWp29kpkKWjxI7gklcL0u3DeB6MvnpG5mhQq0ae2O+Fq0OLGstK+U6Vprv6qVw69YtvPbaa7h37x48PT3Rrl07HDt2DJ6engCKrvBjZWWFPn36QK1WIyIiAt9+++0Tj2llZYUtW7Zg7Nix6NChAxwcHNCtWzf95Z6BoktCb9u2DRMmTMBXX32F6tWrY/ny5aJe/pmIiMoRT3UkokrAWpaIiCoET3UsncOHD+O7777DjRs38Ntvv6FatWr46aefEBwcjHbt2pV3RpOsX7/+ifcrFAosWbIES5YsMeq4fn5++P3335+4TadOnXD27FmjjktERBLBxheRpEmhjgVYyxIRUQWpgo0vo2ds+/333xEREQGlUomzZ89CrS6aqDEjIwOfffZZuQckIiIiIioPrGOJiIiqHqMbX59++imWLVuGH374Aba2D8/Zb9u2Lc6cOVOu4YiIiMyNTCjbQkTiYR1LRERVXVWsY40+1TE6OhodOnQotl6lUiE9Pb08MhEREZkvQVa0mLovEYmGdSwREVV5ptayEq5jjR7x5ePjg+vXrxdbf+TIEdSoUaNcQhEREZktoYwLEYmGdSwREVV5VbCONbrxNXz4cIwbNw7Hjx+HTCbDnTt3sHbtWkyaNAmjRknzUq5ERESlxVMdiaSLdSwREVV1VbGONfpUxw8++AA6nQ7PPvsscnNz0aFDB8jlckyaNAljx46tiIxERERERGXGOpaIiKjqMXrEl0wmw0cffYS0tDRcuHABx44dQ2pqKj755JOKyEdERGReeKojkWSxjiUioiqvkurYpUuXolGjRnB2doazszPCwsKwY8cO/f35+fkYPXo03N3d4ejoiD59+iA5ObnMT68kRo/4esDOzg716tUrzyxERETmryxDvdn4IjILrGOJiKjKMrWWNXKf6tWrY+7cuahduzYEQcDq1avRq1cvnD17FvXr18eECROwbds2bNy4ESqVCmPGjEHv3r3xzz//mBDuyYxufHXu3Bky2eNn89+3b1+ZAhEREZm1sozcYuOLSFSsY4mIqMoztZY1cp8XX3zR4Pbs2bOxdOlSHDt2DNWrV8eKFSuwbt06dOnSBQCwcuVKhIaG4tixY2jdurUJAR/P6MZXkyZNDG5rNBpERUXhwoULGDhwYHnlIiIiMk9sfBFJFutYIiKq8srY+MrMzDRYLZfLIZfLn7irVqvFxo0bkZOTg7CwMJw+fRoajQbh4eH6bUJCQhAQEIDIyEjxG18LFy4scf2MGTOQnZ1d5kBERERERBWBdSwREVHZ+Pv7G9yePn06ZsyYUeK258+fR1hYGPLz8+Ho6IhNmzahXr16iIqKgp2dHVxcXAy29/b2RlJSUrlnNnmOr/9644038Mwzz2D+/PnldUgiIiKzU5bLOUv5MtBElox1LBERVRWm1rIP9klISICzs7N+/ZNGe9WtWxdRUVHIyMjAb7/9hoEDB+LgwYPGP3gZlVvjKzIyEgqForwOR0RERERUKVjHEhERlc6DqzSWhp2dHWrVqgUAaN68OU6ePImvvvoKr7zyCgoKCpCenm4w6is5ORk+Pj7lntnoxlfv3r0NbguCgMTERJw6dQpTp04tt2BERERmiXN8EUkW61giIqryKmly+5LodDqo1Wo0b94ctra22Lt3L/r06QMAiI6ORnx8PMLCwsr+QP9hdONLpVIZ3LayskLdunUxa9YsPPfcc+UWjIiIiIioPLGOJSIiqhxTpkxBt27dEBAQgKysLKxbtw4HDhzArl27oFKpMHToUEycOBFubm5wdnbG2LFjERYWVu4T2wNGNr60Wi0GDx6Mhg0bwtXVtdzDEBERmTvO8UUkTaxjiYiIyj7HV2mlpKTg//7v/5CYmAiVSoVGjRph165d6Nq1K4CiC85YWVmhT58+UKvViIiIwLfffmt8sFIwqvFlbW2N5557DpcvX2bBQBZJ0GrFjmAylysysSOY7Mhrf4gdwSQRaCJ2BBILG1hEksM6tvLJbGwgk5XblMKVRigsFDuCSbQepZtzxxyFnesjdgSTzXhlvdgRTLJg7qtiRzCZ1sNJ7Agm0RbaAjFip/ifSqhlV6xY8cT7FQoFlixZgiVLllR4Fitjd2jQoAFiYszlt0VERFTJhDIuRCQa1rFERFTlVcE61ujG16effopJkyZh69atSExMRGZmpsFCRERkyR4MDzd1ISLxsI4lIqKqrirWsaUeezxr1iy8++67eOGFFwAAPXv2hEz28NQqQRAgk8mglfCpYkRERERkeVjHEhERVV2lbnzNnDkTI0eOxP79+ysyDxERkXkry1BvCX9TRiRlrGOJiIj+x9RaVsJ1bKkbX4JQ9Cw7duxYYWGIiIjMHa/qSCQ9rGOJiIiKVNZVHc2JUZdZeXRIOBERUZXEEV9EksQ6loiICBzx9TR16tR5atGQlpZWpkBEREREROWNdSwREVHVZFTja+bMmVCpVBWVhYiIyPxxxBeRJLGOJSIiAkd8Pc2rr74KLy+vispCRERk9jjHF5E0sY4lIiLiHF9PxHkRiIiIwBFfRBLEOpaIiOh/OOLr8R5cDYeIiKhKY+OLSHJYxxIREf0PG1+Pp9PpKjIHEREREVGFYB1LRERUdRk1xxcREVFVxzm+iIiIiEiqOMcXERERPRlPdSQiIiIiqeKpjkRERPQkHPFFRERERFJVFUd8WYkdgIiISFKEMi4mmjt3LmQyGcaPH69fl5+fj9GjR8Pd3R2Ojo7o06cPkpOTTX8QIiIiIrJsItSxYmPji4iIyMydPHkS3333HRo1amSwfsKECdiyZQs2btyIgwcP4s6dO+jdu7dIKYmIiIiIzA9PdayCXhx0F31HpcDNsxAxl5T49uNqiI6yFztWqUgxe4NWWeg3Mhm1G+bB3UeDGUNrIHKXi9ixiunT8iL6trgIX5csAEBMqhuWH2iOo9cD9Ns0rJ6Et589gQbVU6DVyXA1yQNjf+oOdWHlvpWcP+aAjd964dp5e6Ql22L6ili06Zahv18QgDVf+GDnOndkZ1qjXoscvDM3AdVqFOi3ufavEitm++HqOXtYWQto90I63ppxB0oH87jylxRf64B0cxulkuf4ys7OxoABA/DDDz/g008/1a/PyMjAihUrsG7dOnTp0gUAsHLlSoSGhuLYsWNo3bq1iSGJiMxTg2ey0HdkMmo3zIW7twYzh9VE5G4XsWOVmhQ+IxvUT0Hf3pdQu+Z9uLvnYebs9og85v/IFgLeHHAe3Z67DgcHDS5d9sA337bEnURn0TKXxG7DfShWpkHdSwX1SA8AgP3k27A5n2+wXcELzsgf6ylGRL2z36gQtdjFYJ0qWIPeO+8AAHJTrXBqnivuHFVCkyODc7AGjUdmIigiV4S0Dw3qcAad68ci0DMdao01/o33weJdrRF310W/zcstLyGi0TXU9bsLR4UGnT8ZjOx8uXihH9GgXjL69bqI2jXT4O6WhxlzOyLyxMP/97RtFY/uEVdRu+Y9ODsVYNTE7oi56SZi4nJUBef44oivKqZjz/sYMf0O1n7pg9ERdRBzSYHZ62KgcteIHe2ppJpdYa9DzCV7LP7Y/+kbiyglwwGL/26FN7/rg//7vg9OxfphwWs7UcMzDUBR0+ubN7fj2A1/DPy+NwZ+3wcbTtSHTpBVetb8XCvUqJ+HMZ/dKvH+DUu88OePnhg7NwFfbb0Khb0OH75eEwX5RVnvJdngg1drwi9Yja+2XsXstTcQF63A/PEBJR6vskn1tS7V3MaSlXEBgMzMTINFrVY/9vFGjx6N7t27Izw83GD96dOnodFoDNaHhIQgICAAkZGR5fJciYjMicJeh9hLSiwx85qqJFL5jFQoChEb64oly1qUeH+/PpfRq0c0vv72GYyf9Bzy820we9Z+2NpqKznp41lF58Nueya0wXbF7it43glZawP1S/4QdxESFudSuwCvHEnQLy+sS9Lfd/h9D2TE2uLZpSl4aUsiArvm4cB4D9y7ZCtiYqBZcCI2HquPIctexpiVPWBjrcM3g7ZCYfvwNa2wLUTktQCsOthMxKQlU8gLEXPTFYt/eKbk+xWFuHjZCyt+Mr/sZVXWOlaKLLrxdfv2bbzxxhtwd3eHUqlEw4YNcerUKf39giBg2rRp8PX1hVKpRHh4OK5du/bEY65atQoymazEJSUlRb/dgQMH0KxZM8jlctSqVQurVq2qqKdplN4j7mLnOjfs/tUN8dcU+Pr96lDnyRDxWprY0Z5KqtlP7Vdh9Rd+OLrTRewoT3T4ahD+uRaIhDQXxN9zwbd7WyG3wBYN/YvmC5r4/FGsP94Aq480RUyqG+LuueDvi7Wg0VpXetaWXbIw6P0ktH1klNcDggBsXu6J18Yloc3zmahRLx+Tv47DvWRbHN2pAgAc/1sFGxsBYz67Bf9aatRtkod3Pr+FI9tccDu2eJFU2aT6WpdqbqOVwxxf/v7+UKlU+mXOnDklPtT69etx5syZEu9PSkqCnZ0dXFxcDNZ7e3sjKSmp2PZEJD2sZQ2dOqDC6vnVcHSXq9hRjCaVz8hTp/2w+ufGOHqspOaigJd7XsEvGxrg2PHqiL3pii8WhsHdLQ9tWidUetYS5emg/CIFeeM8ITgW/6+uILeC4GajX+BgHv8dtrIG7D11+kXh9vAMhJSzcoS+kQXPRgVw8i9Ek7czYOesw72L4o6cemd1d2w9G4KYFDdcS/LAzN86w9c1G6HVUvXb/HK0EVYfaorzCV4iJi3ZqbPVsPqXpjh6vOQvvvcerIG1Gxvh7DnfSk5WCTjHl+W4f/8+2rZtC1tbW+zYsQOXLl3CggUL4Or68INy3rx5+Prrr7Fs2TIcP34cDg4OiIiIQH5+/mOP+8orryAxMdFgiYiIQMeOHeHlVfQHHRsbi+7du6Nz586IiorC+PHjMWzYMOzatavCn/eT2NjqULtRLs4cdtKvEwQZzh52Qr3m4g6VfRopZ5ciK5kOzzW4DqWdBv8meMPVIQ8N/VNwP0eJFUM3Ydd7q/Hd4D/ROCBR7KjFJMXbIS3FFs3aZ+vXOTjrENI0F5dPOwAANGoZbGwFWD3yDminKCowLp5wrNS8/yXV17pUc4slISEBGRkZ+mXKlCklbjNu3DisXbsWCoVChJREJCbWspbDUj4jfbxz4OaWj7NRPvp1ubl2uHLVA6Ehd0VM9pBiSSoKW9pD27TkU0ht92fB8ZVYOIyMh3zlPSDfPKa4yIyzwfp21bDxWT8cfNcD2XcefrHs1VSN2B32UKdbQdABMdvsoVXL4PPM4//OxeCoKJpSJDOXNQuZH4ud4+vzzz+Hv78/Vq5cqV8XHBys/7cgCFi0aBE+/vhj9OrVCwCwZs0aeHt7Y/PmzXj11VdLPK5SqYRSqdTfTk1Nxb59+7BixQr9umXLliE4OBgLFiwAAISGhuLIkSNYuHAhIiIiyvV5GsPZTQtrGyA91fDXfv+uDfxrPf40G3Mg5exSUtPrHlYO2wQ7Gy3yCmzx3voIxKa6oUH1olFfwzudwle7wnA1yQPdm0Rj6cAteGVJfySkuYgb/BFpKUWvERdPw1MHXDw1+vsat8vGdzOrYeO3nnhp2F3k51rhx8/8DPYXi1Rf61LNbQpTLwH9YF8AcHZ2hrPzk+dDOX36NFJSUtCs2cMh9lqtFocOHcLixYuxa9cuFBQUID093WDUV3JyMnx8fEo4IhFJCWtZy2Epn5GurnkAgPR0w8ZGeroCrq7iN2FsDmTB+kYBcr6qVuL9mk5O0HnbQHCzhlVsARQ/3oPVLQ3ypor7menZSI12c+5BFaxBXqo1zi5RYfsAH7y85Q5sHQV0WpSKAxM8sa6VP2Q2AmwUArosToVzYKGouR8lkwmY2P0fRN30wY0UC5kHy4KZWsuaWv+aA4sd8fXXX3+hRYsW6NevH7y8vNC0aVP88MMP+vtjY2ORlJRkMDeKSqVCq1atjJobZc2aNbC3t0ffvn316yIjI4vNxRIREfHE46rV6mJzvhBVtrh7Lnh9WT8M+qE3fjtVHzNe3o9gzzRY/e9d7o9T9bAlKgTRSR74cmdbxN11Qc9m0SKnNl5Q3XxMWhSH37/zQs+ajfBak/rw8S+Aq6cGMimfvE6VoxxOdSyNZ599FufPn0dUVJR+adGiBQYMGKD/t62tLfbu3avfJzo6GvHx8QgLCyuPZ0pEIpJSLcs6lsQmSy2E4rt7yJvsBdiV/F9czQvO0Da3hy5YjsIuTsib5AXbozmQ3RF3nrXqHfMR3C0XbiEaVGufj67fp6Ag0wqxO4rOVDj7lQsKMq0QsSoZPX9PRP3BmTgw3hNp0eLO8fWoyS8eRk3vNHz0a/jTNybxVcFTHS12xFdMTAyWLl2KiRMn4sMPP8TJkyfxzjvvwM7ODgMHDtTPf+Lt7W2wn7Fzo6xYsQKvv/66wTdnSUlJJR43MzMTeXl5Bts+MGfOHMycOdOYp2i0zDRraAsBF0/DbwdcPQpxP9W8XwpSzi4lhVpr3EormgfrSqIn6vml4LXW57HqcFMAQGyq4ZwasXdd4aPKqvScT+LmVfQaSU+1hbv3w9dLeqotatbP09/u0jsdXXqn436qDRT2OshkwB/fe8I3UNxvXqX6WpdqbpNVwge/k5MTGjRoYLDOwcEB7u7u+vVDhw7FxIkT4ebmBmdnZ4wdOxZhYWG8oiORBZBSLVsZdayUWcpn5P37Rb93F5d8pN1/+BpwcclHTIyLSKmKWF9TwypdC4cxDy98JNMB1hfyYbclA1l/1QCsDb/d1IYUjVyzStRA62c+TSS5swBVkAaZ8TbIjLfB5Z+d8dLWO3CtXdSgcwvJQPIpOa6sdUKbWeLPEffei4fRvm4cRizvhZRMcacMISNIuIllCosd8aXT6dCsWTN89tlnaNq0KUaMGIHhw4dj2bJlpT5Gt27d4OjoCEdHR9SvX7/Y/ZGRkbh8+TKGDh1a5rxTpkwxmO8lIaH8J4gs1Fjh2r/2aNruYaNCJhPQpF02Lp02r0sp/5eUs0uZlUyArbUWd9KdkJJpj0CPdIP7A93TkZjuVPLOIvEJKICblwZnjzz84M3JssKVs/YIbZ5TbHtXz0IoHXQ4+KcLbOU6NOuQXWybyiTV17pUc5viwfBwU5fytHDhQvTo0QN9+vRBhw4d4OPjgz/++KN8H4SIRCGlWrYy6lgps5TPyKRkB6SlKdCk8cPGqr1Sg5A6d3H5ioeIyYDCJkpkL62OnCUPF21tOTSdHZGzpHqxphcAWN8o+rJTcKv8CzU9iSZHhswEG9h7alGYV5RbZmVYQMisiy7oJC4B7714GJ3qxWLUjy/izv0nT+FA5sNc6tjKJJ2vGIzk6+uLevXqGawLDQ3F77//DgD6+U+Sk5Ph6/vwSg3Jyclo0qQJAGD58uXIyysaIWJrW/xbgOXLl6NJkyZo3ry5wXofHx8kJycbrEtOToazs3OJo70AQC6XQy6v+Ctz/PG9ByYtSsDVc/aIPmuPl4enQmGvw+715n8utlSzK+y18At6OIrIx1+NGvVykZVug9Q74l9B8IHR4cdx9Jo/kjIcYW+nwfONrqN50B2M/ak7ABl++qcJ3up8CteS3BGd5IEeTaIR6JGOyb8+V+lZ83KscCf24d9LUoIdblxQwsmlEF7VNXhpWCp++cob1YLV8AkowOp5vnD31qDN8w+vAvnnjx6o1yIHSgcdzhxywvJP/DDkwztwVIl/OW6pvtalmltKDhw4YHBboVBgyZIlWLJkiTiBiKjCSKmWraw6Vio1VUmk8hmpUGjg5/vwS0Af7xzUCL6PrGw7pKY6YNNfIXjtlQu4c8cJScmO+L83/sW9NOVjrgJZieytoAsyfA0KChkEJ2voguSQ3dHA9kAWCls6QHC2gnVsARTf3UVhAwV0weJeHfHE5y4I6JwHB79C5KbYIOobFWRWQI0eObBz0sEpUIOj09zR8v37kLvoEP+3Enf+USD8u5SnH7wCvd/zMCIaXcekn59HrtoO7o5FF2rIzreDurCozeDumAt3p1z4uxed/lzLOw25BbZISndEZp64k+ArFBr4+TxsRvt4ZaNGUBqysuVIvesAJ0c1PD1y4O5W9B7qX63oOdxPV+J+esn/pyfzZbGNr7Zt2yI62nDuoatXryIwMBBA0eSgPj4+2Lt3r744yMzMxPHjxzFq1CgAQLVqJU+MCADZ2dnYsGFDiZeYDwsLw/bt2w3W7dmzxyzmXDn4lytU7lr833tJcPUsRMxFJT4aEIz0u+YzvPdxpJq9TuNcfLHx4aXFR864DQDYvcENCyYGiZSqODeHPMx8eR88nHKRnW+Ha8nuGPtTdxyPKSpkfjnWCHY2Wkx4/ihUSjWuJrlj9JoeuH1fVelZr56zx+S+tfS3v5tR9LfatX8aJi2KR//RKcjPtcJXk/2RnWmN+i1zMHttDOwUD7+miI6yx08LfJCfY4XqtdR4Z14Cwvver/TnUhKpvtalmttoZZnjQMLflBFR5WItW1ydRrmYt+Gq/vZb04tOa9uz0R0L3g0SKVXpSOUzsk6tNMyb83DuyLeGnQEA7NkbjAWLwrDx91AoFIV4Z8wJODoU4OIlT3w8vTM0GvMaNVWMrQw2Z/NgtzkDsnwBOk8baNo5Qv2q69P3rWC5STY4MNED6nRrKNy08G6uRo8NSVC4FV1xsuv3KTi9wAV/j/RCYa4MTgGFaD/3Hvw7intBgb6tLgEAvhv+l8H6mb91wtazIQCA3s9cxIhnT+vv+2HEn8W2EUudmvfwxSd79LdHDinKuXtfDSxY3BatW97CpLFH9fd/+O5hAMBPvzbCz782rtyw5c3UWlbCdaxMEMQfJFkRTp48iTZt2mDmzJno378/Tpw4geHDh+P777/HgAEDABRdLWfu3LlYvXo1goODMXXqVPz777+4dOnSUy8dv2LFCowZMwaJiYkGV9MCiiYbbdCgAUaPHo0hQ4Zg3759eOedd7Bt27ZSXwknMzMTKpUKndALNjLz+kC0aFZm/qH9BPeGPiN2BJOdmrlU7AgmifBrInaEKqdQ0OAA/kRGRsZTr4pY3h68Lzcc9hms7Uz7llJbkI/zyz8UJT8RSYuUa9kH75edbfpIso4VCs3nannGkDUvfjqrVGR8Kv5VIU01rsY+sSOYZMHckq/8KgVul4tPXyIFhYX5OHDyM9HqwLLWslKuYy12xFfLli2xadMmTJkyBbNmzUJwcDAWLVqkLxQAYPLkycjJycGIESOQnp6Odu3aYefOnU8tFICiYqF3797FCgWg6Bu4bdu2YcKECfjqq69QvXp1LF++nJd/JiKyBBzxRUSVgLUsERFViCo44stiG18A0KNHD/To0eOx98tkMsyaNQuzZs0y+thHjx594v2dOnXC2bNnjT4uERERERHAWpaIiKg8WHTji4iIqLyV5ao2Ur4aDhERERFJn6m1rJTrWDa+iIiIjMFTHYmIiIhIqniqIxERET0RG19EREREJFVsfBEREdGT8FRHIiIiIpKqqniqo5XYAYiIiIiIiIiIiCoCR3wREREZg6c6EhEREZFU8VRHIiIiehKZIEAmmPbJb+p+RERERETlwdRaVsp1LBtfRERExuCILyIiIiKSqio44otzfBERERnhwYSgpi5ERERERGKprDp2zpw5aNmyJZycnODl5YWXXnoJ0dHRBtvk5+dj9OjRcHd3h6OjI/r06YPk5ORyfLZF2PgiIiIiIiIiIqJyc/DgQYwePRrHjh3Dnj17oNFo8NxzzyEnJ0e/zYQJE7BlyxZs3LgRBw8exJ07d9C7d+9yz8JTHYmIiIzBUx2JiIiISKoq6VTHnTt3GtxetWoVvLy8cPr0aXTo0AEZGRlYsWIF1q1bhy5dugAAVq5cidDQUBw7dgytW7c2IWTJOOKLiIjICDzVkYiIiIikqqx1bGZmpsGiVqtL9bgZGRkAADc3NwDA6dOnodFoEB4ert8mJCQEAQEBiIyMLNfnzMYXERGRMYQyLkREREREYiljHevv7w+VSqVf5syZ89SH1Ol0GD9+PNq2bYsGDRoAAJKSkmBnZwcXFxeDbb29vZGUlFT25/kInupIRERERERERERPlZCQAGdnZ/1tuVz+1H1Gjx6NCxcu4MiRIxUZ7bHY+CIiIjJCWU5Z5KmORERERCQmU2vZB/s4OzsbNL6eZsyYMdi6dSsOHTqE6tWr69f7+PigoKAA6enpBqO+kpOT4ePjY3zAJ2Dji+hROq3YCUzmfj7n6RuZqe8z/MSOQFR6nNyeiKhUhMJCCDKZ2DGMJrOR5n+RrJPuix3BZLm7gsSOYLIpjcv/CnSVwbqBdIsSz2N5YkcwiaAt3VxYFa6SJrcXBAFjx47Fpk2bcODAAQQHBxvc37x5c9ja2mLv3r3o06cPACA6Ohrx8fEICwszIeDjSfNdnYiISEQcuUVEREREUlUZtezo0aOxbt06/Pnnn3ByctLP26VSqaBUKqFSqTB06FBMnDgRbm5ucHZ2xtixYxEWFlauV3QE2PgiIiIyjiAULabuS0REREQkFlNrWSP3Wbp0KQCgU6dOButXrlyJQYMGAQAWLlwIKysr9OnTB2q1GhEREfj222+Nz/YUbHwREREREREREVG5EUrRKFMoFFiyZAmWLFlSoVnY+CIiIjICJ7cnIiIiIqkq6+T2UsTGFxERkTE4uT0RERERSVUlTW5vTtj4IiIiMoJMV7SYui8RERERkVhMrWWlXMey8UVERGQMjvgiIiIiIqmqgiO+rMQOQEREREREREREVBE44ouIiMgInNyeiIiIiKSKk9sTERHRkwlC0WLqvkREREREYjG1lpVwHcvGFxERkRE44ouIiIiIpKoqjvjiHF9ERERERERERGSROOKLiIjIGLyqIxERERFJVRW8qiMbX0REREbgqY5EREREJFVV8VRHNr6IiIiMwcntiYiIiEiqOLk9ERERPQlHfBERERGRVFXFEV+c3J6IiIiIiIiIiCwSR3wREREZg5PbExEREZFUcXJ7qgpeHHQXfUelwM2zEDGXlPj242qIjrIXO1apSDW7FHI3qJeMfr0uonbNNLi75WHG3I6IPBGgv1+h0GDoG2cR1ioBzo5qJKU44s9tIdi2u46IqYtocmS49JUD7vwtR36aFVxCC9H4wyy4NSyETgNc/MoBSYfkyLllDVtHHbzCCtDg3RwovXRiR38sKbxmSiLV3MbgqY5EROKR4udMg2ey0HdkMmo3zIW7twYzh9VE5G4XsWOVyuvDr2HAiOsG6xJuOmBkvw4iJSrZkFZn8GydGAS7p0OtsUbUHR8sOtgacWmu+m2Wv/onWgbcMdhvY1Q9fLq7Y2XHNaDalwqX/amwuasGABRUU+JeT1/kNlIBAKwzNPD89RbsL2bCKl+HAh850l70RXYL1ycdtsK9XusiXq99CdUdsgAA1zJc8c2F5jiUWPT/h09aHkJb79vwUuYgt9AWZ+56Y15UK8RkiZu7JFZWAgb830V0Do+Hq1s+0u4p8feuQPzycygAmdjxyh1PdbQwQUFBkMlkxZbRo0cDAPLz8zF69Gi4u7vD0dERffr0QXJy8lOPu2vXLrRu3RpOTk7w9PREnz59cPPmTYNtDhw4gGbNmkEul6NWrVpYtWpVBTxD43XseR8jpt/B2i99MDqiDmIuKTB7XQxU7hqxoz2VVLNLJbdCXoiYm65Y/MMzJd7/1qBTaNH0DuYtaovh7/TEpq0hGD38BFq3TKjkpMWd+dgJyUft0OLzTHT9Mw3ebQtweIgL8pKtoM2XIf2SLUJH5eDZ39PQ+usMZN20wdG3VWLHfiypvGb+S6q5jaYTyrYQEZUC69jipPo5o7DXIfaSEks+9hc7iklu3nDEG8930S+Th7UWO1IxLfzv4NezDfDmT73x1oYXYWOlw7J+W6G0NXxt/HYuFF2WDNQvCw+EiZT4oUI3W9ztWw3x00MRPz0UuaFOqPb1DdjdzgMA+PwQC7ukfNwZVwtxn9RDdnNX+H4bA3lcrqi5k3Id8EVUK/Ta2Qcv7eqNyORqWNZ+F2o7pwEALqR54P3jHRGx/RUMPvACZABWdd4OK5n5ffHc99UreKFnDJZ+0xRvDY7Ajz80RJ9XrqLny9efvrMUVcE61qIbXydPnkRiYqJ+2bNnDwCgX79+AIAJEyZgy5Yt2LhxIw4ePIg7d+6gd+/eTzxmbGwsevXqhS5duiAqKgq7du3C3bt3DfaLjY1F9+7d0blzZ0RFRWH8+PEYNmwYdu3aVXFPtpR6j7iLnevcsPtXN8RfU+Dr96tDnSdDxGtpYkd7Kqlml0ruU2erYfUvTXH0eECJ99cLScWeAzXw70UfJKc6YseeOoi56Yq6te5WclJD2nzg9h45Gk7KhmdLDRwDtag3JgeOAVrE/KKErZOA9j+mo3o3NZyCtXBvUogmH2ch/aItcu+Y51ugVF4z/yXV3ERE5oh1bHFS/Zw5dUCF1fOr4egu8xvpUho6rQz378n1S2aGndiRinn7tx7460IIbtxzw9VUD0zb3gV+qmyEeqcabJevscG9HHv9klMg/nPJaeKCnMYqaHwU0PgocK9PNegUVlDcyAEAKK/n4H64F/JrOEDjJUdaT1/o7K0hvylu42vfnSAcTAxAXLYKN7Nc8OW/zyC30BZNPFIAAL/eqIeTqX64neOEi/c98eX5lvBzyNaPEDMn9erfw7Gjfjh53BcpyQ7451B1nD3ljToh98WORuXEok919PT0NLg9d+5c1KxZEx07dkRGRgZWrFiBdevWoUuXLgCAlStXIjQ0FMeOHUPr1iV/k3H69GlotVp8+umnsLIq+k/zpEmT0KtXL2g0Gtja2mLZsmUIDg7GggULAAChoaE4cuQIFi5ciIiIiAp8xk9mY6tD7Ua5WL/YS79OEGQ4e9gJ9ZqL+8b5NFLNLtXcJbl0xROtW97Crr21cC9NicYNklHNLxPLVrYQNZdOK4OglcFabvgNhLVCwN0ztiXuo8mSATIBts7m962FVF8zUs1tEs7xRUSVgHWsoSr1OWNm/PxzsWb7PmgKrHD5vAtWL66L1GSl2LGeyFFeAADIzJcbrH+h3jV0r3cN93KUOHgjCN8fbY78wpLrRVHoBDidvA+ZWof8mg4AgLxaDnA6cR85jVTQ2VsX3a8RkBfiKHLYh6xkOnTzj4G9jQZn73oXu19prUHf4GjEZzshMdd8cj9w6aI7unWPRbXqWbh9ywnBNdJRr+Fd/LC0sdjRKgbn+LJcBQUF+PnnnzFx4kTIZDKcPn0aGo0G4eHh+m1CQkIQEBCAyMjIxxYMzZs3h5WVFVauXIlBgwYhOzsbP/30E8LDw2FrW/SmGRkZaXBcAIiIiMD48eMfm0+tVkOtVutvZ2ZmluHZlszZTQtrGyA91fDXfv+uDfxrqR+zl3mQanap5i7Jt8ufwbhRx7Bu+e8oLJRBJ8jw1dLWuHCp+IdbZbJ1EODWRIPLSx3gVDMTCncdErbJcS/KFo4B2mLba9XAhQWO8O+uhq2j+b17S/U1I9XcppChDHN8lWsSIqoqWMdWrc8ZcxJ90QULZzbErTgHuHmo8frw65j3wzG8/Wp75OWa538lZRAw+dl/cPaWD67fddev33G5NhIzHJGS7YA6XvcwvuMxBLmlY+Lm50VMW8QuIQ8Bs69AptFBJ7dG4piaKKhW1FxMfLsGfL+NRa2x5yBYAzo7K9wZWxMab4XIqYE6qnvY2HUz5NZa5BbaYtThCFzPfDiycUCti5jc5BgcbAtxI9MFg/Z3h0ZnLWLikm38JQT29oX4buUu6HQyWFkJWPNjAxzYW/KZMFJnai0r5TrWPN+tKsDmzZuRnp6OQYMGAQCSkpJgZ2cHFxcXg+28vb2RlJT02OMEBwdj9+7d6N+/P9566y1otVqEhYVh+/bt+m2SkpLg7W3YDPD29kZmZiby8vKgVBb/hmTOnDmYOXOm6U+QqIL16n4FIXXuYtpnnZCS6oiG9ZIxevgJ3Euzx9l/fUXN1vLzTJz+yAnbO3pAZi3ApV4h/LurkX7R8C1OpwGOT1ABAtB0uvkNsyaJEISixdR9iYiMxDqWxHL66MORhzevA9EXXLByywG0D0/E7r/Mc86yD7seQk2PNAxa+5LB+t/P1dP/+/pdd9zNtscPr25BdZcM3EoXd+7XAl854maGwipPC6eT6fBefhO3PqiDgmpKuP9xB1Z5hUh4rza0jjZwPJMO329jkDClLgr8xR15F5vlgp47+8LRtgDdAmLwRev9eH1vT33z68+4WjiSVB1eyhwMC/kXX7f9G/339EKBzrzaEO073ULnZ+Mx77NWiL/pjBo10zFi9Dncu6fA3t1BYscrf6bWshKuY81zgpsKsGLFCnTr1g1+fn6l3qd+/fpwdHSEo6MjunXrBqCoGBg+fDgGDhyIkydP4uDBg7Czs0Pfvn0hlOGFMGXKFGRkZOiXhITynzA8M80a2kLAxbPQYL2rRyHup5rXm89/STW7VHP/l51dIQa9HoXvVzXH8VP+iI1zxV87QnDwnyD07XVJ7HhwDNCi40/p6HU6Bd323UOXDfchaACH6g9HfD1oeuXesUK7FelmOdoLkO5rRqq5TfHgSjimLkRExmIdW7U+Z8xZTrYtbsc7wNffPE8vnRJ+GB1qxmH4+p5IyX7yKXXnE4savAEuGZUR7clsrKDxVkAd5IC7/apBHaCEy54U2Kao4bo3FclDgpBXzxkFAfZIe8kP+cH2cNmXInZqaHTWiMtW4eJ9T8w/1wqX090xsO55/f3ZGjnislU4meqHMf90RQ3ndDznf1O8wI8xdMS/2Li+Lg7t98fNWBX2/R2Izb/VRv/XosWOViGqYh1bJT4l4uLi8Pfff+OPP/7Qr/Px8UFBQQHS09MNvi1LTk6Gj48PAGD79u3QaIquBPLg260lS5ZApVJh3rx5+n1+/vln+Pv74/jx42jdujV8fHyKXVUnOTkZzs7OJX5LBgByuRxyubzE+8pLocYK1/61R9N2WYjcWfSthkwmoEm7bPy1yv0pe4tLqtmlmvu/bKx1sLXVQaczHOCq08kgM6N3QBt7wMZeh4IMGZL/sUODSdkAHja9suOs0WH1fchdzSfzf0n1NSPV3ERE5o51bBF+zpgHhbIQvtVyse9u6ZuwlUPAlPAj6FI7FkPX98TtDOen7lHXq+gCTak5DhUdzmgyHSArFCBT/+8KiP89x0wmM8v5lqxkAuysik81Avzv9DrgsfeLSa7Qlvj/HCsrM/whk0mqRONr5cqV8PLyQvfu3fXrmjdvDltbW+zduxd9+vQBAERHRyM+Ph5hYUWXtQ0MDCx2rNzcXP1koA9YWxedp6zTFb0x/XfIOADs2bNHf1wx/fG9ByYtSsDVc/aIPmuPl4enQmGvw+71bmJHeyqpZpdKboVCAz+fh6f/+Xhlo0ZQGrKy5Ui964BzF7wxfOBpFBRYIznVAY3qpyC8Ywy+X9VcxNRFko7YAQLgFFyI7DhrnJ/vCKdgLYJezodOAxwbr0L6JRu0WZoBQStDfmrRB5udSgcr8S/mU4xUXjP/JdXcRuPk9kRUiVjHPiTVzxmFvRZ+QQ/nIfPxV6NGvVxkpdsg9Y4ZFiKPGDruCo4f9kRKohLunmoMGHENOh1wcJe401z814ddD6Nb6DWM39QNOQV2cHcoGpGWrbaDutAG1V0y8ELoNRyOCURGnhy1ve7hvc5HcSrBF9dSxW2cemy8jZxGztC428EqTwfnY2lQRmch7d3aKPBVoMBLDq/V8bj7SnX9qY72lzJxZ1wtUXNPanwcB+/4406uExxsCtAz6Dpaed3B4APd4e+Qie6BN3A4sTrS1Ar42OdgZGgU8rXWOHDH/ObNOh7pi1cHXEFqij3ibjqjZq10vNz3KnbvDBI7WsXg5PaWR6fTYeXKlRg4cCBsbB4+XZVKhaFDh2LixIlwc3ODs7Mzxo4di7CwsMdOCAoA3bt3x8KFCzFr1iy89tpryMrKwocffojAwEA0bdoUADBy5EgsXrwYkydPxpAhQ7Bv3z5s2LAB27Ztq/Dn+zQH/3KFyl2L/3svCa6ehYi5qMRHA4KRfteMrmbyGFLNLpXcdWrewxef7NHfHjnkNABg974aWLC4LeZ82R5D3jiL98cfgZNjAVJSHbBqXRNs3VVHrMh6hVkyXFjoiLwkK9ipdPB7To0G43NgZQvk3LZC4r6ib6H3vmxYGHdYfR+ez2jEiPxEUnnN/JdUcxtLJgiQmXhKkKn7EVHVxDrWkFQ/Z+o0ysW8DVf1t9+afgsAsGejOxa8GyRSqtJx98rH5E/PwVlVgIz7drh4zg0TB4chM71iR/gZ65WmFwEAP772p8H6qds7468LIdBordEq6BYGtPgXSttCJGU54u+rNfBDpPhf4FpnaeDzw01YZ2igU1pD7a/E7XdrI7d+0ai12xNqweO32/D76jqs8nXQeMuRNCwIOY3FnZfMXZ6HL1rvh5cyF1kaO1xJd8fgA93xz//m9GrhmYhBdc/D2VaNe/lKnEj1Rf89LyFNbX5XBF32TRO8OfgiRo87C5VLPtLuKbFjaw2s+6ne03eWIFNrWSnXsTKhLCf0S8Du3bsRERGB6Oho1Klj+B/0/Px8vPvuu/jll1+gVqsRERGBb7/9Vj9E/HHWr1+PefPm4erVq7C3t0dYWBg+//xzhISE6Lc5cOAAJkyYgEuXLqF69eqYOnWqfkLS0sjMzIRKpUIn9IKNzLw/zMlMtG4kdgKT9Vn5t9gRTPJ7qNfTN6JyVShocAB/IiMjA87OTz+NoTw9eF9u32E6bGxMu5JSYWE+Dh+aKUp+IpIe1rHikNlIc2yAtbd065Jb/YLEjmCyzMbSvKqodZr0/jYfqLP8ntgRTFKoVWNv9Jei1YFlrWWlXMdafONLqqReMJAI2PiqdGx8VT5zaHx1aD+tTI2vQ4dnlTr/nDlz8Mcff+DKlStQKpVo06YNPv/8c9StW1e/zYP//K5fv97gP7//vSobEVFlkXody8ZX5WPjq/Kx8VX5zKXxZWota2wda06qzFUdiYiIpObgwYMYPXo0jh07hj179kCj0eC5555DTk6OfpsJEyZgy5Yt2LhxIw4ePIg7d+6gd+/eIqYmIiIiIjIf0vw6g4iISCyVOLn9zp07DW6vWrUKXl5eOH36NDp06ICMjAysWLEC69atQ5cuXQAUTYQdGhqKY8eOPXGuHyIiIiKqgqrg5PYc8UVERGQMQSjbgqKh5o8uanXpTpPIyMgAALi5FV2o4fTp09BoNAgPD9dvExISgoCAAERGRpbzEyciIiIiyStjHStFbHwREREZQSaUbQEAf39/qFQq/TJnzpynPq5Op8P48ePRtm1bNGjQAACQlJQEOzs7uLi4GGzr7e2NpKSk8n7qRERERCRxZa1jpYinOhIREVWyhIQEg0lB5fKnXxZ+9OjRuHDhAo4cOVKR0YiIiIiILAobX0RERMYoy1Dv/+3n7Oxs1NVwxowZg61bt+LQoUOoXr26fr2Pjw8KCgqQnp5uMOorOTkZPj4+pmUkIiIiIstlai3LUx2JiIiqBpmubIsxBEHAmDFjsGnTJuzbtw/BwcEG9zdv3hy2trbYu3evfl10dDTi4+MRFhZWHk+XiIiIiCxIZdWx5oQjvoiIiIxRDiO+Smv06NFYt24d/vzzTzg5Oenn7VKpVFAqlVCpVBg6dCgmTpwINzc3ODs7Y+zYsQgLC+MVHYmIiIiouCo44ouNLyIiImOYegnoB/saYenSpQCATp06GaxfuXIlBg0aBABYuHAhrKys0KdPH6jVakRERODbb781MSARERERWTRTa1np9r3Y+CIiIjJXQim+WVMoFFiyZAmWLFlSCYmIiIiIiKSFjS8iIiIjyAQBMhOHepu6HxERERFReTC1lpVyHcvJ7YmIiIzxYF4EUxciIiIiIrFUUh176NAhvPjii/Dz84NMJsPmzZv/E0PAtGnT4OvrC6VSifDwcFy7dq0cn+hDbHwREREZQwCgM3Fh34uIiIiIxGRqLWtkHZuTk4PGjRs/djqOefPm4euvv8ayZctw/PhxODg4ICIiAvn5+SY9rSfhqY5ERERERERERFRuunXrhm7dupV4nyAIWLRoET7++GP06tULALBmzRp4e3tj8+bNePXVV8s1C0d8ERERGeHBvAimLkREREREYilrHZuZmWmwqNVqozPExsYiKSkJ4eHh+nUqlQqtWrVCZGRkuT3XB9j4IiIiMoaAMsyNIHZ4IiIiIqrSTK5li3b39/eHSqXSL3PmzDE6QlJSEgDA29vbYL23t7f+vvLEUx2JHmVlLXYCk1ldjBU7gsnmnnhe7AgmqWN7QewIJhM0BWJHkK6yTFLPEV9ERFRBhJwcsSOYzOVGodgRTGaXYSd2BJMUOsjEjmAyWaY0X+synfEjoyqEqbXs//ZJSEiAs7OzfrVcLi+vZBWGjS8iIiJj6ACYWivqyjMIEREREZGRTK1l/1fHOjs7GzS+TOHj4wMASE5Ohq+vr359cnIymjRpUqZjl4SnOhIRERERERERUaUIDg6Gj48P9u7dq1+XmZmJ48ePIywsrNwfjyO+iIiIjFCWSeo5uT0RERERicnUWtbYfbKzs3H9+nX97djYWERFRcHNzQ0BAQEYP348Pv30U9SuXRvBwcGYOnUq/Pz88NJLLxmd7WnY+CIiIjIG5/giIiIiIqkq4xxfpXXq1Cl07txZf3vixIkAgIEDB2LVqlWYPHkycnJyMGLECKSnp6Ndu3bYuXMnFAqF8dmego0vIiIiY7DxRURERERSVUmNr06dOkF4wj4ymQyzZs3CrFmzjM9iJDa+iIiIjMHGFxERERFJVSU1vswJJ7cnIiIiIiIiIiKLxBFfRERExjD1EtAP9iUiIiIiEouptayE61g2voiIiIzAqzoSERERkVRV1lUdzQkbX0RERMbgHF9EREREJFWc44uIiIiIiIiIiMgycMQXERGRMXQCIDPxGy+ddL8pIyIiIiILYGotK+E6lo0vIiIiY/BURyIiIiKSqip4qiMbX0REREYpQ+ML0i0YiIiIiMgSmFrLSreOZeOLiIjIGBzxRURERERSVQVHfHFyeyIiIiIiIiIiskgc8UVERGQMnQCTh3pLeFJQIiIiIrIAptayEq5j2fgiIiIyhqArWkzdl4iIiIhILKbWshKuY9n4qoJeHHQXfUelwM2zEDGXlPj242qIjrIXO1apSDF7g1ZZ6DcyGbUb5sHdR4MZQ2sgcpeL2LGM1m94AoZMisPm1X747rMaYscpxjqtAB4bbsPh30zICnTQeMuRPCwQ6mAHAIDbpjtwOn4fNvc0EGxkUAfZ425fP6hrOoic3NArb99B2+fvo3rNfBTkW+HSaUf8OLc6bsUoxY5WKlL8GzUa5/giIhKNFD9nGjyThb4jk1G7YS7cvTWYOawmIne7iB2rVF545Q66v5oI72r5AIC46/b4ZWkgTh12EzmZoUa1E/Hac/+iTsBdeLjk4qNvu+LIuSCDbQJ97uOt3ifQuE4irK0ExCW6YOqyrki57yhO6P8Z1OEMOtePRaBnOtQaa/wb74PFu1oj7q6LfpuXW15CRKNrqOt3F44KDTp/MhjZ+XLxQgMYEnYGXerGIMg9HepCa5y75YOv9rdGXJprCVsLWPzKNrStmYAJvz2PA1eDKz3v07w+/BoGjLhusC7hpgNG9usgUqIKxDm+qiatVoupU6ciODgYSqUSNWvWxCeffALhkV+sIAiYNm0afH19oVQqER4ejmvXromY2jQde97HiOl3sPZLH4yOqIOYSwrMXhcDlbtG7GhPJdXsCnsdYi7ZY/HH/mJHMVmdhll44dUkxFwxz8LSKqcQ/rOvAtYy3H63FuLm1MPdV6tDZ/+wt6/xUSDlTX/EzQ7FrY/qQONhh2pfXIN1pnm9fhq2ysKWNd6Y8FI9THmjLmxsBcz+6SrkSq3Y0Z5Kqn+jRERSxjrW/D9nFPY6xF5SYokEa8G7yXKsXBiMd/o1w7h+TXHuuAumLr6IgFo5YkczoLQrxPVbblj0S5sS7/fzyMQ3721BfJILxi/ogSGz+mD1tmYoKLSu5KTFNQtOxMZj9TFk2csYs7IHbKx1+GbQVihsH76uFbaFiLwWgFUHm4mY1FCzgDv49XQD/N/q3hj1y4uwsdZh6WuGuR8Y0PJfCIJMhJTGuXnDEW8830W/TB7WWuxIVE7Y+ALw+eefY+nSpVi8eDEuX76Mzz//HPPmzcM333yj32bevHn4+uuvsWzZMhw/fhwODg6IiIhAfn5+ice8efMmZDLz++PuPeIudq5zw+5f3RB/TYGv368OdZ4MEa+liR3tqaSa/dR+FVZ/4YejO13EjmIShb0W730Rja8+ro3sDPMcJOq6LRmFbrZIHh4EdU0HFHrKkdvQGRrvh9+EZYW5Ia++Mwq95CiorsTd16vDOk8Hu4Q8EZMX9/HAutjzmwfirikRe9keC94Nhnf1AtRumCt2tKeS6t+o0XRC2RYionLEOtb8P2dOHVBh9fxqOLqrpJEw5u3EAXecOuSGO3FK3I6zx5qvgpGfa42QRpliRzNw/KI/VvzZEoejSh5JNOylkzh+wR/L/miFawkeuHPXGUf/DUR6lvgj6t9Z3R1bz4YgJsUN15I8MPO3zvB1zUZotVT9Nr8cbYTVh5rifIKXiEkNjfm1B7acD0HMXTdcTfHA9K1d4KvKRj2fVIPt6njdxZutzmHGts4iJS09nVaG+/fk+iUzw07sSBWjCtax5vm/2Ep29OhR9OrVC927dwcABAUF4ZdffsGJEycAFH1LtmjRInz88cfo1asXAGDNmjXw9vbG5s2b8eqrr4qW3Rg2tjrUbpSL9YsfvmEKggxnDzuhXnPz/k+1lLNL3ehpN3DyoBuiIl3w2qh4seOUyOFsBnIbOMNncQyUV7JR6GqLjGc9kdnJo+QdCnVw3n8XWntrqAPMcxTbA/ZORSO9stLF/0bySarU3yhPdSQiM8I61gI/Z8yUlZWAdhGpUCi1uHzOWew4pSaTCQhrmIBfdjXCF+9sR23/e0i854S1O5oUOx3SHDgqCgAAmbkKkZMYx1FelDvjkVMwFTYazHnpb8zd1R73csy75gYAP/9crNm+D5oCK1w+74LVi+siNVn85mi546mOVVObNm2wd+9eXL16FQBw7tw5HDlyBN26dQMAxMbGIikpCeHh4fp9VCoVWrVqhcjIyHLJoFarkZmZabCUN2c3LaxtgPRUw37n/bs2cPUsLPfHK09Szi5lHV9IRc162Vi5IEjsKE9km6qGan8qNN5y3HmvFjK6eMLz5wQ4HblnsJ1DVAZqjohCrWFRcN2Vgtvv1YLOyXz7/zKZgJHT43HxpCPirpp3sVCl/kYFPCwYjF7EDk9EloZ1rAV+zpiZoNo5+P3UEfwZdRhjpl/DJ+/UR8IN85oj9UlcnfJgr9Dg9efP4cRFf0z66gUcPhuET0buQePaiWLHMyCTCZjY/R9E3fTBjRTzmkftSWQQMCn8H5xN8MGNVHf9+ne7HsW5W944cM385vT6r+iLLlg4syGmvdMCS+bWh49fHub9cAxKewt8fzG5lhU7uOnM9398leiDDz5AZmYmQkJCYG1tDa1Wi9mzZ2PAgAEAgKSkJACAt7e3wX7e3t76+8pqzpw5mDlzZrkci6g8ePio8dZHMfhwSANoCsy7Ry7TAfnB9rjXrxoAQB1oD/ntPKj23UVWu4cfvrmhjoj/JATWWVo4H7wL3yWxSJheF1pnW7GiP9HoT+IQVCcP7/YNFTsKPYojvojIjLCOpYp266YSY3o3h4NjIdpF3MW7n0Vj8sBGkml+yWRFn73/nAvExr0NAQDXb7mjQc1k9OpwGeeu+YoZz8DkFw+jpncahn//kthRjDLl+UOo5ZmGwT+9pF/XsXYsngm8jVdX9BMvmBFOH/XU//vmdSD6ggtWbjmA9uGJ2P2X9Obne6IqOOKLjS8AGzZswNq1a7Fu3TrUr18fUVFRGD9+PPz8/DBw4MBSH6d+/fqIi4sDAP2Eoo6OD68S0r59e+zYsaPEfadMmYKJEyfqb2dmZsLfv3z/wDLTrKEtBFz+862Yq0ch7qea90tBytmlqnb9bLh6aLD4j7P6ddY2QIOWmXhxwB30bNgWOp15zP9R6GKLAj/D4eAFvgo4nkw3WCfIraHxtobGG8iv5YDAyRfhfPAe7r/oU4lpS+ftWXFo9Ww6JvUPxd0k859fgH+jRETiYB3Lz5mKVqixQmJ80ele1y85oXaDLPR68zYWz6gjcrLSychWoFArw81EF4P1cUkuaFgzWZxQJXjvxcNoXzcOI5b3QkqmuFeaNMb7zx1G+1pxGPrTS0jJepi7ZeBtVHfNwKF3VxhsP7/3LpxN8MXwtb0qO6pRcrJtcTveAb7+PJXaEvBTAsB7772HDz74QD/HQcOGDREXF4c5c+Zg4MCB8PEp+k9xcnIyfH0ffiOQnJyMJk2a6G9v374dGk3RVSxu376NTp06ISoqSn+/Uvn484Plcjnk8oq9JG2hxgrX/rVH03ZZiNypAlD0DUiTdtn4a5X7U/YWl5SzS1XUMRVG9mhqsG7inGtIiFFi4w/VzabpBQD5tR1gl2Q4Qa9tkhoaj6c0jHQCZIW6CkxmCgFvz4pHm4j7mPxKCJITxL1UdWlVqb9RnQ6Aia8bnbm93ohI6ljHWuDnjJmzkgmwtZXOyI9CrTWu3PREgHeGwXp/rwwkp5lDg0nAey8eQad6sRi5vCfu3JfK/GkC3n/uCLrUjcXwn3viToZh7pWRzbDpnOFZC78N34AFf7fBwWtBlZjTNAplIXyr5WLfXT+xo5Q/U2tZCdexbHwByM3NhZWV4alc1tbW0P3vFxscHAwfHx/s3btXXyBkZmbi+PHjGDVqlH6fwMBA/b9tbIp+tLVq1arg9Mb543sPTFqUgKvn7BF91h4vD0+Fwl6H3evN/xxyqWZX2GvhF6TW3/bxV6NGvVxkpdsg9Y75juTJy7FB3DXDt4j8XCtkpdsi7pp5DW2/H+EF/0+j4bolCdnPuEARkwvVgbtIGRwAAJCptXD7Kwk5TV1Q6GID6ywtVHtTYZOuQXZL87rC0uhP49C5ZxpmDq+FvBxruHoW/SckJ9MaBWrzPuVUqn+jRuOpjkRkRljHmv/njFRrQQAYNCEWpw65IiVRAXsHLTr1SEHDZzIwdXiA2NEMKOUaVPN8OLecr0cWalW/h8wcOVLuO2L97kaYPnwfzl3zxdloXzxT/xbCGsVj/IIeIqYu8n7Pw4hodB2Tfn4euWo7uDsWjTDKzreDurDob9HdMRfuTrnwdy96jrW805BbYIukdEdk5okzCf6UiMPoVv8aJvzWDTkFdnB3+F9udVHuezn2JU5on5jpVKxJZg6GjruC44c9kZKohLunGgNGXINOBxzcZT6nwpYbnupYNb344ouYPXs2AgICUL9+fZw9exZffvklhgwZAgCQyWQYP348Pv30U9SuXRvBwcGYOnUq/Pz88NJLL4kb3kgH/3KFyl2L/3svCa6ehYi5qMRHA4KRftc85zh6lFSz12mciy82XtPfHjnjNgBg9wY3LJgYJFIqy6Ku4YDEd2rCfeNtuP2ZiEIPO6QOqI6sNv8rhGUy2CXmw/lIDKyyC6FztEF+sD1ufVgHBdXN60otL75ZdAnoLzZEG6xf8G4w9vz2mKtUmgmp/o0ajY0vIjIjrGPN/3OmTqNczNtwVX/7rem3AAB7NrpjwbtBIqUqHZVbAd6dGw03zwLkZNkg9qoDpg5viLOR5vXFYd3AVHz17jb97TH9jwEAdhytjbmrO+FwVDC+XNsOA56PwjuvHEV8sgrTvgvH+RviT3fRt9UlAMB3w/8yWD/zt07YejYEAND7mYsY8exp/X0/jPiz2DaVrX/ziwCA5W/8abB+2pbO2HJenExl4e6Vj8mfnoOzqgAZ9+1w8ZwbJg4OQ2a6NM6+MEoVbHzJBEHC6ctJVlYWpk6dik2bNiElJQV+fn547bXXMG3aNNjZFX0LIwgCpk+fju+//x7p6elo164dvv32W9SpU/K57Tdv3kRwcDBM/fFmZmZCpVKhE3rBRmbeH+YWxcpa7AQms3Iw76v+PUn04tpiRzBJnWEXxI5gMkFTIHYEkxQKGhzAn8jIyICzc+V+W/jgfTncbTBsrEz7hr5QV4C/01aKkp+ILBPr2PIns5Hm2AArR/MakW+MnPZ1xY5gslwPaf7/odDBfKYtMZbfpptiRzBJoU6Nv+98J1odWNZaVsp1LBtfZkrqBYNksfElCja+Kh8bX8Zj44uIqHSkXsey8VX52PiqfGx8VT42vsQjzXd1IiIikQiCDoJg2uSepu5HRERERFQeTK1lpVzHsvFFRERkDEEAdJzji4iIiIgkyNRaVsJ1LBtfRERExhAEAGx8EREREZEEmVrLSriOtXr6JkRERERERERERNLDEV9ERETG0OkAmYlzHEh4bgQiIiIisgCm1rISrmPZ+CIiIjIGT3UkIiIiIqmqgqc6svFFRERkBEGng2DiiC8pXw2HiIiIiKTP1FpWynUsG19ERETG4IgvIiIiIpKqKjjii5PbExERERERERGRReKILyIiImPoBEDGEV9EREREJEGm1rISrmPZ+CIiIjKGIAAw9aqO0i0YiIiIiMgCmFrLSriOZeOLiIjICIJOgGDiiC9BwgUDEREREUmfqbWslOtYzvFFRERkxpYsWYKgoCAoFAq0atUKJ06cEDsSEREREVGpmEMty8YXERGRMQRd2RYj/Prrr5g4cSKmT5+OM2fOoHHjxoiIiEBKSkoFPTkiIiIismiVVMcC5lPLsvFFRERkBEEnlGkxxpdffonhw4dj8ODBqFevHpYtWwZ7e3v8+OOPFfTsiIiIiMiSVVYdC5hPLcs5vszUg/NnC6EBpHsqrfSY0MU2F1ZCgdgRTKbLyxc7gkkKBY3YEUwmSDR7IYpyiznHQKGgNvm94kH+zMxMg/VyuRxyudxgXUFBAU6fPo0pU6bo11lZWSE8PByRkZEmPT4RUWWQeh0rk+g8NlKuBQs10qwFAUBbYC12BJNobWViRzBZoU4tdgSTFOqK/kbFnivL1FrWmDoWMK9alo0vM5WVlQUAOILtIiepYqTb9wKyxA5QBm+JHcA0CWIHqMKysrKgUqkq9THt7Ozg4+ODI0lle192dHSEv7+/wbrp06djxowZBuvu3r0LrVYLb29vg/Xe3t64cuVKmTIQEVUkydexhWIHMFG62AHKYIfYAUhKLoodoIzEqGOB8qllS1vHAuZVy7LxZab8/PyQkJAAJycnyGTl343PzMyEv78/EhIS4OzsXO7HryhSzQ0wuxikmhtg9scRBAFZWVnw8/Mr1+OWhkKhQGxsLAoKyvaNuiAIxd7XS/qWjIhIqljHlkyquQFmF4NUcwPM/jhi1rFA+dSyUq1j2fgyU1ZWVqhevXqFP46zs7Pk3owA6eYGmF0MUs0NMHtJxPiG7AGFQgGFQlEpj+Xh4QFra2skJycbrE9OToaPj0+lZCAiMgXr2CeTam6A2cUg1dwAs5dEzDoWqLq1LCe3JyIiMkN2dnZo3rw59u7dq1+n0+mwd+9ehIWFiZiMiIiIiOjJzKmW5YgvIiIiMzVx4kQMHDgQLVq0wDPPPINFixYhJycHgwcPFjsaEREREdETmUsty8ZXFSWXyzF9+nRJnI/7KKnmBphdDFLNDTA7FXnllVeQmpqKadOmISkpCU2aNMHOnTuLTRJKRFSVSPVzRqq5AWYXg1RzA8xOD5lLLSsTxL6WJhERERERERERUQXgHF9ERERERERERGSR2PgiIiIiIiIiIiKLxMYXERERERERERFZJDa+iIiIiIiIiIjIIrHxZeGCgoKwaNEisWMQERERERmFdSwREZUHNr5E1qlTJ4wfP77Y+lWrVsHFxaXS85RWdHQ0OnfuDG9vbygUCtSoUQMff/wxNBqNwXYbN25ESEgIbG1toVAoYG9vD2dnZ4SFhWHHjh367fLz8zF69Gi4u7vD0dERffr0QXJycqnzXL9+HU5OTiX+zB5kUCgUaNiwIbZv327y8waAuXPnQiaTGfzeTMl/8+ZNyGSyYsuxY8fKLf+MGTOKHT8kJKRMuQFAEATMnz8fderUgVwuR7Vq1TB79myDbQ4cOIBmzZpBLpejVq1aWLVqValzA8Dt27fxxhtvwN3dHUqlEg0bNsSpU6cMMkybNg2+vr5QKpUIDw/HtWvXnnjMVatWlfgzl8lkSElJKZfsQUFBJR5/9OjRAEz/me/atQutW7eGk5MTPD090adPH9y8edNgm7L+zEui1WoxdepUBAcHQ6lUombNmvjkk0/w6AWBTfldEBGR9LGOLcI6lnXsf7GONcQ6lkQnkKg6duwojBs3rtj6lStXCiqVqszHDwwMFBYuXGjy/mq1usT1N27cEH788UchKipKuHnzpvDnn38KXl5ewpQpU/Tb/PPPP4K1tbUwb948YcmSJcKrr74q2NjYCFu2bBE+/PBDwdbWVrhw4YIgCIIwcuRIwd/fX9i7d69w6tQpoXXr1kKbNm1KlbGgoEBo0aKF0K1bt2I/s0czXLp0Sfj4448FW1tb4fz58yb9PE6cOCEEBQUJjRo1Mvi9mZI/NjZWACD8/fffQmJion4pKCgot/zTp08X6tevb3D81NTUMuUWBEEYO3asULduXeHPP/8UYmJihFOnTgm7d+/W3x8TEyPY29sLEydOFC5duiR88803grW1tbBz585S5U5LSxMCAwOFQYMGCcePHxdiYmKEXbt2CdevX9dvM3fuXEGlUgmbN28Wzp07J/Ts2VMIDg4W8vLyHnvc3Nxcg59FYmKiEBERIXTs2LHcsqekpBgcf8+ePQIAYf/+/YIgmPYzj4mJEeRyuTBlyhTh+vXrwunTp4UOHToITZs2LbfcjzN79mzB3d1d2Lp1qxAbGyts3LhRcHR0FL766iv9Nsb+Lh689omISNpYx7KOZR1bHOtYQ6xjyRzwNyay0hYMAwcOFHr16iV88cUXgo+Pj+Dm5ia8/fbbBh8uycnJQo8ePQSFQiEEBQUJP//8c7GC4f79+8LQoUMFDw8PwcnJSejcubMQFRWlv3/69OlC48aNhR9++EEICgoSZDJZqZ/LhAkThHbt2ulv9+/fX+jevbvBNq1atRLeeustQRAEwdXVVVi+fLmQnp4u2NraChs3btRvd/nyZQGAEBkZ+dTHnTx5svDGG2+UWGQ9LYMxsrKyhNq1awt79uwx+L2Zmv/Bm+bZs2cfu01Z8z/4fZbE1NyXLl0SbGxshCtXrjx2m8mTJwv169c3WPfKK68IERERpcr9/vvvG7yW/kun0wk+Pj7CF198oV+Xnp4uyOVy4ZdffinVYwhC0Ye7ra2tsGbNmnLL/l/jxo0TatasKeh0OpN/5hs3bhRsbGwErVarX/fXX38JMplM/x5Q3rkf6N69uzBkyBCDdb179xYGDBggCIJpvwsWDEREloF1LOtY1rHFsY41xDqWzAFPdZSQ/fv348aNG9i/fz9Wr16NVatWGQwBHTRoEBISErB//3789ttv+Pbbbw2GvQJAv379kJKSgh07duD06dNo1qwZnn32WaSlpem3uX79On7//Xf88ccfiIqKKlW269evY+fOnejYsaN+XWRkJMLDww22i4iIwNGjR7F+/Xrk5OQgLCwMp0+fhkajMdg2JCQEAQEBiIyMfOLj7tu3Dxs3bsSSJUtKvP9xGZ523JKMHj0a3bt3L3a8suQHgJ49e8LLywvt2rXDX3/9Ve75r127Bj8/P9SoUQMDBgxAfHx8mXJv2bIFNWrUwNatWxEcHIygoCAMGzbM4DVU1tx//fUXWrRogX79+sHLywtNmzbFDz/8oL8/NjYWSUlJBo+hUqnQqlUro342a9asgb29Pfr27Vtu2R9VUFCAn3/+GUOGDIFMJjP5Z968eXNYWVlh5cqV0Gq1yMjIwE8//YTw8HDY2tqWe+5HtWnTBnv37sXVq1cBAOfOncORI0fQrVs3AOX3uyAiIsvGOrY41rFPxzr28VjHPh3rWHrARuwAVHqurq5YvHgxrK2tERISgu7du2Pv3r0YPnw4rl69ih07duDEiRNo2bIlAGDFihUIDQ3V73/kyBGcOHECKSkpkMvlAID58+dj8+bN+O233zBixAgARW9ya9asgaen51MztWnTBmfOnIFarcaIESMwa9Ys/X1JSUnw9vbW3z5//jzmzp2LgoICjBw5Eps2bUK9evUQFRUFOzu7YvMaeHt7Iykp6bGPfe/ePQwaNAg///wznJ2dS9zmvxlKc9ySrF+/HmfOnMHJkydLfAxT8js6OmLBggVo27YtrKys8Pvvv+Oll17C5s2b0bNnz3LJ36pVK6xatQp169ZFYmIiZs6cifbt2+PChQsm546JiUFcXBw2btyINWvWQKvVYsKECejbty/27dv3xNyZmZnIy8uDUql8Yu6YmBgsXboUEydOxIcffoiTJ0/inXfegZ2dHQYOHKjPV9bf7YoVK/D6668b5Clr9kdt3rwZ6enpGDRokP7YpvzMg4ODsXv3bvTv3x9vvfUWtFotwsLCDObJKM/cj/rggw+QmZmJkJAQWFtbQ6vVYvbs2RgwYID+cR88ljHPiYiIqhbWsYZYxz4d69gnYx37dKxj6QGO+JKQ+vXrw9raWn/b19dX/03Y5cuXYWNjg+bNm+vvDwkJMXhjOnfuHLKzs/WTET5YYmNjcePGDf12gYGBpSoWAODXX3/FmTNnsG7dOmzbtg3z589/7LZ169bFlClT4OrqilGjRmHgwIG4dOlSqZ/7g7wPOvTDhw/H66+/jg4dOpTqGKZKSEjAuHHjsHbtWigUCpOOUVJ+Dw8PTJw4Ea1atULLli0xd+5cvPHGG/jiiy/KLXu3bt3Qr18/NGrUCBEREdi+fTvS09OxYcMGk3PrdDqo1WqsWbMG7du3R6dOnbBixQrs378f0dHR5ZJbp9OhWbNm+Oyzz9C0aVOMGDECw4cPx7Jly0p9jG7duumz169fv9j9kZGRuHz5MoYOHVoumUuyYsUKdOvWDX5+fqXep6SfeVJSEoYPH46BAwfi5MmTOHjwIOzs7NC3b1+DyTkrwoYNG7B27VqsW7cOZ86cwerVqzF//nysXr3aqOM8+rwe/D4efR968FyJiMgysY5lHWss1rGsY8uKdSw9wBFfInN2dkZGRkax9enp6VCpVAbrHgwFfUAmk0Gn05X6sbKzs+Hr64sDBw4Uu+/RwsLBwaHUx/T39wcA1KtXD1qtFiNGjMC7774La2tr+Pj4GFzlw87ODoIgwN/fH3PmzMHJkyfx1Vdf4ZVXXkFBQQHS09MNciQnJ8PHxwcAsH37dv2Vdh50/Pft24e//vpLX6QIggCdTgcbGxt8//33GDJkSLEM/z1uaZw+fRopKSlo1qyZfp1Wq8WhQ4ewePFi7Nq1y6T8JWnVqhX27Nmjv10e+R/l4uKCOnXq4Pr16+jatatJuX19fWFjY4M6dero93nwjWx8fDzq1q372NzOzs6l+sbG19cX9erVM1gXGhqK33//HQD0+ZKTk+Hr62vwGE2aNAEALF++HHl5eQCK/+08uL9JkyYGRfaDY5cl+wNxcXH4+++/8ccffxgc25Sf+ZIlS6BSqTBv3jz9Pj///DP8/f1x/PhxtG7dutxy/9d7772HDz74AK+++ioAoGHDhoiLi8OcOXMwcODAUv0u/vu8bt++jU6dOhmcglKWjEREJA7WsaxjH8U6FvrHYB3LOpbMC0d8iaxu3bo4c+ZMsfVnzpwxeEN+mpCQEBQWFuL06dP6ddHR0UhPT9ffbtasGZKSkmBjY4NatWoZLB4eHmV6HkDRtxsajUZfxISFhWHv3r0G2+zZswdhYWH67dVqNZo3bw5bW1uDbaOjoxEfH6/fNjAwUJ+1WrVqAIq+6YiKitIvs2bNgpOTE6KiovDyyy+XKkNpPPvsszh//rzBY7Vo0QIDBgzQ/9uU/CWJiooyeNMtj/yPys7Oxo0bN+Dr62vyz71t27YoLCw0+Hb1wXnzgYGB5ZK7bdu2xb51u3r1qv74wcHB8PHxMXiMzMxMHD9+XP8Y1apV02d/sN+jP4cNGzaU+C1Zef3MV65cCS8vL3Tv3l2/ztSfeW5uLqysDN+uH3xrXtq/N1M97rEfPG5pfhf/fV4Pfh+Pvgc96e+CiIjME+tY1rGPYh0L/WOwjmUdS2ZGzJn1qehyygqFQhg7dqxw7tw54cqVK8KCBQsEGxsbYceOHfrtHlwN51Hjxo0zuHzt888/LzRt2lQ4duyYcOrUKaFdu3aCUqnUXw1Hp9MJ7dq1Exo3bizs2rVLiI2NFf755x/hww8/FE6ePCkIwpOvnvKon3/+Wfj111+FS5cuCTdu3BB+/fVXwc/PT3+FDEEouoSxjY2NMH/+fGH48OHCoEGDBBsbG+H3338XPvjgA0Emk+kvHTxy5EghICBA2Ldvn3Dq1CkhLCxMCAsLM+pnWdLVcB7NcPnyZWH69Ollugz0A/+9ipEp+VetWiWsW7dOuHz5snD58mVh9uzZgpWVlfDjjz+WW/53331XOHDggP53HR4eLnh4eAgpKSkm59ZqtUKzZs2EDh06CGfOnBFOnToltGrVSujatat+mweXJH7vvfeEy5cvC0uWLDHqksQnTpwQbGxshNmzZwvXrl0T1q5dK9jb2ws///yzfpu5c+cKLi4uwp9//in8+++/Qq9evZ56GegHli9fLigUCuH+/fvF7itrdkEo+hkFBAQI77//frH7TPmZ7927V5DJZMLMmTOFq1evCqdPnxYiIiKEwMBAITc3t9xyl2TgwIFCtWrV9JeB/uOPPwQPDw9h8uTJ+m2M/V3wajhERJaBdSzrWNaxxbGONcQ6lswBf2Nm4MSJE0LXrl0FT09PQaVSCa1atRI2bdpksE1pCobExEShe/fuglwuFwICAoQ1a9YUuwx0ZmamMHbsWMHPz0+wtbUV/P39hQEDBgjx8fGCIJS+YFi/fr3QrFkzwdHRUXBwcBDq1asnfPbZZ8XeIDZs2CDUqVNHsLKyEmxtbQUbGxvB09NTePbZZ/XFgiAIQl5envD2228Lrq6ugr29vfDyyy8LiYmJpfr5PVBSwfBoBjs7O6F+/frCtm3bjDpuSf5bMJiSf9WqVUJoaKhgb28vODs7C88884zB5YHLI/8rr7wi+Pr6CnZ2dkK1atWEV155Rbh+/XqZcguCINy+fVvo3bu34OjoKHh7ewuDBg0S7t27Z7DN/v37hSZNmgh2dnZCjRo1hJUrV5Y6tyAIwpYtW4QGDRoIcrlcCAkJEb7//nuD+3U6nTB16lTB29tbkMvlwrPPPitER0eX6thhYWHC66+//tj7y5p9165dAoAS85j6M//ll1+Epk2bCg4ODoKnp6fQs2dP4fLly+WauySZmZnCuHHjhICAAEGhUAg1atQQPvroI0GtVuu3MfZ3wYKBiMhysI5lHcs6tjjWsYZYx5LYZIJQwTPKERERERERERERiYBzfBERERERERERkUVi44uIiIiIiIiIiCwSG19ERERERERERGSR2PgiIiIiIiIiIiKLxMYXERERERERERFZJDa+iIiIiIiIiIjIIrHxRUREREREREREFomNLyILMWjQILz00kv62506dcL48eMrPceBAwcgk8mQnp7+2G1kMhk2b95c6mPOmDEDTZo0KVOumzdvQiaTISoqqkzHISIiIqLyxTr2yVjHEpUNG19EFWjQoEGQyWSQyWSws7NDrVq1MGvWLBQWFlb4Y//xxx/45JNPSrVtaT7kiYiIiKjqYB1LRJbCRuwARJbu+eefx8qVK6FWq7F9+3aMHj0atra2mDJlSrFtCwoKYGdnVy6P6+bmVi7HISIiIqKqiXUsEVkCjvgiqmByuRw+Pj4IDAzEqFGjEB4ejr/++gvAw2Hds2fPhp+fH+rWrQsASEhIQP/+/eHi4gI3Nzf06tULN2/e1B9Tq9Vi4sSJcHFxgbu7OyZPngxBEAwe979DxNVqNd5//334+/tDLpejVq1aWLFiBW7evInOnTsDAFxdXSGTyTBo0CAAgE6nw5w5cxAcHAylUonGjRvjt99+M3ic7du3o06dOlAqlejcubNBztJ6//33UadOHdjb26NGjRqYOnUqNBpNse2+++47+Pv7w97eHv3790dGRobB/cuXL0doaCgUCgVCQkLw7bffGp2FiIiIiIqwjn061rFE5o+NL6JKplQqUVBQoL+9d+9eREdHY8+ePdi6dSs0Gg0iIiLg5OSEw4cP459//oGjoyOef/55/X4LFizAqlWr8OOPP+LIkSNIS0vDpk2bnvi4//d//4dffvkFX3/9NS5fvozvvvsOjo6O8Pf3x++//w4AiI6ORmJiIr766isAwJw5c7BmzRosW7YMFy9exIQJE/DGG2/g4MGDAIoKm969e+PFF19EVFQUhg0bhg8++MDon4mTkxNWrVqFS5cu4auvvsIPP/yAhQsXGmxz/fp1bNiwAVu2bMHOnTtx9uxZvP322/r7165di2nTpmH27Nm4fPkyPvvsM0ydOhWrV682Og8RERERFcc6tjjWsUQSIBBRhRk4cKDQq1cvQRAEQafTCXv27BHkcrkwadIk/f3e3t6CWq3W7/PTTz8JdevWFXQ6nX6dWq0WlEqlsGvXLkEQBMHX11eYN2+e/n6NRiNUr15d/1iCIAgdO3YUxo0bJwiCIERHRwsAhD179pSYc//+/QIA4f79+/p1+fn5gr29vXD06FGDbYcOHSq89tprgiAIwpQpU4R69eoZ3P/+++8XO9Z/ARA2bdr02Pu/+OILoXnz5vrb06dPF6ytrYVbt27p1+3YsUOwsrISEhMTBUEQhJo1awrr1q0zOM4nn3wihIWFCYIgCLGxsQIA4ezZs499XCIiIiIqwjq2ZKxjiaSHc3wRVbCtW7fC0dERGo0GOp0Or7/+OmbMmKG/v2HDhgbzIZw7dw7Xr1+Hk5OTwXHy8/Nx48YNZGRkIDExEa1atdLfZ2NjgxYtWhQbJv5AVFQUrK2t0bFjx1Lnvn79OnJzc9G1a1eD9QUFBWjatCkA4PLlywY5ACAsLKzUj/HAr7/+iq+//ho3btxAdnY2CgsL4ezsbLBNQEAAqlWrZvA4Op0O0dHRcHJywo0bNzB06FAMHz5cv01hYSFUKpXReYiIiIiIdWxpsI4lMn9sfBFVsM6dO2Pp0qWws7ODn58fbGwM/+wcHBwMbmdnZ6N58+ZYu3ZtsWN5enqalEGpVBq9T3Z2NgBg27ZtBh/UQNF8D+UlMjISAwYMwMyZMxEREQGVSoX169djwYIFRmf94YcfihUw1tbW5ZaViIiIqCphHftkrGOJpIGNL6IK5uDggFq1apV6+2bNmuHXX3+Fl5dXsW+LHvD19cXx48fRoUMHAEXfCJ0+fRrNmjUrcfuGDRtCp9Ph4MGDCA8PL3b/g2/qtFqtfl29evUgl8sRHx//2G/YQkND9ROcPnDs2LGnP8lHHD16FIGBgfjoo4/06+Li4optFx8fjzt37sDPz0//OFZWVqhbty68vb3h5+eHmJgYDBgwwKjHJyIiIqKSsY59MtaxRNLAye2JzMyAAQPg4eGBXr164fDhw4iNjcWBAwfwzjvv4NatWwCAcePGYe7cudi8eTOuXLmCt99+G+np6Y89ZlBQEAYOHIghQ4Zg8+bN+mNu2LABABAYGAiZTIatW7ciNTUV2dnZcHJywqRJkzBhwgSsXr0aN27cwJkzZ/DNN9/oJ9ocOXIkrl27hvfeew/R0dFYt24dVq1aZdTzrV27NuLj47F+/XrcuHEDX3/9dYkTnCoUCgwcOBDnzp3D4cOH8c4776B///7w8fEBAMycORNz5szB119/jatXr+L8+fNYuXIlvvzyS6PyEBEREZFpWMeyjiUyR2x8EZkZe3t7HDp0CAEBAejduzdCQ0MxdOhQ5Ofn6785e/fdd/Hmm29i4MCBCAsLg5OTE15++eUnHnfp0qXo27cv3n77bYSEhGD48OHIyckBAFSrVg0zZ87EBx98AG9vb4wZMwYA8Mknn2Dq1KmYM2cOQkND8fzzz2Pbtm0IDg4GUDRfwe+//47NmzejcePGWLZsGT777DOjnm/Pnj0xYcIEjBkzBk2aNMHRo0cxderUYtvVqlULvXv3xgsvvIDnnnsOjRo1MrjM87Bhw7B8+XKsXLkSDRs2RMeOHbFq1Sp9ViIiIiKqWKxjWccSmSOZ8LhZBImIiIiIiIiIiCSMI76IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji4iIiIiIiIiILBIbX0REREREREREZJHY+CIiIiIiIiIiIovExhcREREREREREVkkNr6IiIiIiIiIiMgisfFFREREREREREQWiY0vIiIiIiIiIiKySGx8ERERERERERGRRWLji0hCOnXqhE6dOomeoUGDBqJmICIiIiLzIZPJMGPGDP3tVatWQSaT4ebNm6JlepIDBw5AJpPht99+EzuKUW7evAmZTIZVq1aJHYVIUtj4IiIiIiIiIknJzc3FjBkzcODAAbGjlLt169Zh0aJFYscgshg2YgcgotLbvXu32BGIiIiIiJ7ozTffxKuvvgq5XF5hj5Gbm4uZM2cCgOhnRJS3devW4cKFCxg/frzB+sDAQOTl5cHW1lacYEQSxcYXkYTY2dmJHYGIiIiILIBOp0NBQQEUCkW5H9va2hrW1tblftyqTiaTVcjvi8jS8VRHogo0Y8YMyGQyXL9+HYMGDYKLiwtUKhUGDx6M3Nxc/XYrV65Ely5d4OXlBblcjnr16mHp0qXFjvfoHF/JycmwsbHRf9P1qOjoaMhkMixevFi/Lj09HePHj4e/vz/kcjlq1aqFzz//HDqdzqTndvr0abRp0wZKpRLBwcFYtmyZwf0FBQWYNm0amjdvDpVKBQcHB7Rv3x779+/XbyMIAoKCgtCrV69ix8/Pz4dKpcJbb72lX6dWqzF9+nTUqlULcrkc/v7+mDx5MtRqtcG+e/bsQbt27eDi4gJHR0fUrVsXH374oUnPk4iIiMjcHThwAC1atIBCoUDNmjXx3Xff6evQB2QyGcaMGYO1a9eifv36kMvl2LlzJwBg/vz5aNOmDdzd3aFUKtG8efMS579Sq9WYMGECPD094eTkhJ49e+LWrVvFtnvcHF87duxA+/bt4eDgACcnJ3Tv3h0XL1402GbQoEFwdHTE7du38dJLL8HR0RGenp6YNGkStFotgKK5rjw9PQEAM2fOhEwmKzbPWGlotVp8+OGH8PHxgYODA3r27ImEhIRi223cuBHNmzeHUqmEh4cH3njjDdy+fbvYdvv27dM/PxcXF/Tq1QuXL1822CYrKwvjx49HUFAQ5HI5vLy80LVrV5w5cwZAUb2/bds2xMXF6Z9XUFCQ/nn/d46v0vy8Hrh37x7efPNNODs7w8XFBQMHDsS5c+c4bxhZPI74IqoE/fv3R3BwMObMmYMzZ85g+fLl8PLywueffw4AWLp0KerXr4+ePXvCxsYGW7Zswdtvvw2dTofRo0eXeExvb2907NgRGzZswPTp0w3u+/XXX2FtbY1+/foBKBoK3rFjR9y+fRtvvfUWAgICcPToUUyZMgWJiYlGzyFw//59vPDCC+jfvz9ee+01bNiwAaNGjYKdnR2GDBkCAMjMzMTy5cvx2muvYfjw4cjKysKKFSsQERGBEydOoEmTJpDJZHjjjTcwb948pKWlwc3NTf8YW7ZsQWZmJt544w0ARd9K9uzZE0eOHMGIESMQGhqK8+fPY+HChbh69So2b94MALh48SJ69OiBRo0aYdasWZDL5bh+/Tr++ecfo54jERERkRScPXsWzz//PHx9fTFz5kxotVrMmjVL3xh61L59+7BhwwaMGTMGHh4e+obKV199hZ49e2LAgAEoKCjA+vXr0a9fP2zduhXdu3fX7z9s2DD8/PPPeP3119GmTRvs27fP4P4n+emnnzBw4EBERETg888/R25uLpYuXYp27drh7Nmz+ixAUUMqIiICrVq1wvz58/H3339jwYIF/8/enYdFVbZhAL9nGGDY91UQUUHccCEzck1RNDNNLVMrNdM0s9TSsjSXUktzqVzaDLU0lTJzX3MXN5RcQxHEBQFR9mUYZs73B59jEyjMsJw5cP+u61yX855lnjMOzMMz74IGDRpgzJgxcHNzw/LlyzFmzBi88MIL6NevHwAgODjYoNdu9uzZkMlk+OCDD5CamorFixcjLCwMMTExsLKyAlBcxBs+fDjatGmDuXPnIiUlBV999RWOHj2Ks2fPwtHREQCwd+9e9OzZE/Xr18eMGTOQn5+Pb775Bu3atcOZM2d09zd69Gj89ttvePvtt9GkSRPcu3cPR44cweXLl9G6dWt8/PHHyMzMxK1bt7Bo0SIAgK2t7WPvo6zXCyjOpXv37o2TJ09izJgxCAoKwp9//omhQ4ca9JoRSZJARFVm+vTpAgDh9ddf12t/4YUXBBcXF93jvLy8EueGh4cL9evX12vr1KmT0KlTJ93j7777TgAgnD9/Xu+4Jk2aCF26dNE9/vTTTwUbGxvhypUresd9+OGHgpmZmXDjxo1y31OnTp0EAMKCBQt0bSqVSmjZsqXg7u4uFBYWCoIgCEVFRYJKpdI7Nz09XfDw8NB7PWJjYwUAwvLly/WOff7554V69eoJWq1WEARB+PnnnwW5XC4cPnxY77hvv/1WACAcPXpUEARBWLRokQBAuHv3brnviYiIiEiqevfuLVhbWwu3b9/WtV29elVQKBTCv//cAyDI5XLh4sWLJa7x31y0sLBQaNasmV4+GRMTIwAQ3nrrLb1jBw8eLAAQpk+frmuLiIgQAAgJCQmCIAhCdna24OjoKIwcOVLv3OTkZMHBwUGvfejQoQIAYdasWXrHtmrVSggJCdE9vnv3bonnLa/9+/cLAIQ6deoIWVlZuvYNGzYIAISvvvpK9zq4u7sLzZo1E/Lz83XHbd26VQAgfPLJJ7q2B7nwvXv3dG1///23IJfLhddee03X5uDgIIwdO/ax8fXq1Uvw8/Mr0Z6QkCAAECIiInRt5X29fv/9dwGAsHjxYl2bRqMRunTpUuKaRDUNhzoSVYPRo0frPe7QoQPu3buHrKwsANB9owQAmZmZSEtLQ6dOnRAfH4/MzMxHXrdfv35QKBRYv369ru3ChQu4dOkSBg4cqGuLjIxEhw4d4OTkhLS0NN0WFhYGjUaDQ4cOGXQ/CoVCbwiihYUF3nzzTaSmpiI6OhpA8dwOD+Yk02q1uH//PoqKivDEE0/ounIDQGBgINq2bYs1a9bo2u7fv48dO3ZgyJAhui76kZGRaNy4MYKCgvTuoUuXLgCgG0L54Fu3P//80+hhnERERERSoNFosHfvXvTt2xfe3t669oYNG6Jnz54lju/UqROaNGlSov3fuWh6ejoyMzPRoUMHvZxt+/btAIB33nlH79z/TsBemj179iAjIwODBg3Sy+PMzMzQtm1bvakwHigtf46Pjy/zuQzx2muvwc7OTvd4wIAB8PLy0t3r6dOnkZqairfeektvbq1evXohKCgI27ZtAwDcuXMHMTExGDZsmN4IhuDgYHTr1k13PaA4Vz1x4gSSkpIq9V7Ker127twJc3NzjBw5Utcml8sfObqEqCZh4YuoGtStW1fvsZOTE4DixAIAjh49irCwMN18AG5ubro5qR5X+HJ1dUXXrl2xYcMGXdv69euhUCh0Xb4B4OrVq9i5cyfc3Nz0trCwMABAamqqQffj7e0NGxsbvbbAwEAA0JvLYdWqVQgODoZSqYSLiwvc3Nywbdu2Evf02muv4ejRo0hMTARQXORSq9V49dVX9e7h4sWLJe7hwfM+uIeBAweiXbt2eOONN+Dh4YGXX34ZGzZsYBGMiIiIapzU1FTk5+ejYcOGJfaV1ubv71/qdbZu3YqnnnoKSqUSzs7OuqGE/87ZEhMTIZfL0aBBA71zGzVqVGacV69eBQB06dKlRC63e/fuErmoUqksMVTTyclJlztXloCAAL3HMpkMDRs21OWzD3LT0u4xKChIt/9xxzVu3BhpaWnIzc0FAMybNw8XLlyAr68vnnzyScyYMaPCBb3yvF6JiYnw8vKCtbW13nGlvU+IahrO8UVUDR61qo0gCLh27Rq6du2KoKAgLFy4EL6+vrCwsMD27duxaNGiMgs2L7/8MoYPH46YmBi0bNkSGzZsQNeuXeHq6qo7RqvVolu3bpg8eXKp13hQPKpMv/zyC4YNG4a+ffti0qRJcHd3h5mZGebOnYtr166VuIcJEyZgzZo1+Oijj/DLL7/giSee0EsetFotmjdvjoULF5b6fL6+vgCKv7E8dOgQ9u/fj23btmHnzp1Yv349unTpgt27d3OFISIiIqq1/t2z64HDhw/j+eefR8eOHbFs2TJ4eXnB3NwcERERWLt2baU874N89ueff4anp2eJ/QqF/p+lNTlfe+mll9ChQwf88ccf2L17N+bPn48vvvgCGzduLLWXXnnU5NeLqDKw8EUksi1btkClUmHz5s16PcNK6/Jdmr59++LNN9/UDXe8cuUKpkyZondMgwYNkJOTo+vhVVFJSUnIzc3V6/V15coVANBN3Pnbb7+hfv362Lhxo96KQv+diB8AnJ2d0atXL6xZswZDhgzB0aNHS0y436BBA/z999/o2rWr3vVKI5fL0bVrV3Tt2hULFy7EnDlz8PHHH2P//v2V9hoQERERic3d3R1KpRJxcXEl9pXWVprff/8dSqUSu3btgqWlpa49IiJC7zg/Pz9otVpcu3ZN78vJ2NjYMp/jQS8xd3f3SsvFysoHy+NBT7QHBEFAXFycbpJ8Pz8/AMX3+GB6jQdiY2N1+/993H/9888/cHV11cubvby88NZbb+Gtt95CamoqWrdujdmzZ+sKX5Vxb//l5+eH/fv3Iy8vT6/XV3nfJ0RSxqGORCJ78A2NIAi6tszMzBLJxqM4OjoiPDwcGzZswLp162BhYYG+ffvqHfPSSy8hKioKu3btKnF+RkYGioqKDIq5qKgI3333ne5xYWEhvvvuO7i5uSEkJOSR93XixAlERUWVes1XX30Vly5dwqRJk2BmZoaXX365xD3cvn0bP/zwQ4lz8/Pzdd3H79+/X2J/y5YtARQvwU1ERERUU5iZmSEsLAybNm3SmzMqLi4OO3bsKPc1ZDIZNBqNru369eu6FbMfeFCU+frrr/Xay7M6eHh4OOzt7TFnzhyo1eoS++/evVuuWP/tQfEmIyPD4HMfWL16NbKzs3WPf/vtN9y5c0d3r0888QTc3d3x7bff6uWRO3bswOXLl3UrWnp5eaFly5ZYtWqVXjwXLlzA7t278eyzzwIonpPtv1N+uLu7w9vbW+/6NjY2j53uxBjh4eFQq9V6ubRWq8XSpUsr9XmITBF7fBGJrHv37rCwsEDv3r3x5ptvIicnBz/88APc3d1x586dcl1j4MCBeOWVV7Bs2TKEh4frJnh/YNKkSdi8eTOee+45DBs2DCEhIcjNzcX58+fx22+/4fr163pDI8vi7e2NL774AtevX0dgYCDWr1+PmJgYfP/99zA3NwcAPPfcc9i4cSNeeOEF9OrVCwkJCfj222/RpEkT5OTklLhmr1694OLigsjISPTs2RPu7u56+1999VVs2LABo0ePxv79+9GuXTtoNBr8888/2LBhA3bt2oUnnngCs2bNwqFDh9CrVy/4+fkhNTUVy5Ytg4+PD9q3b1/ueyQiIiKSghkzZmD37t1o164dxowZA41GgyVLlqBZs2aIiYkp8/xevXph4cKF6NGjBwYPHozU1FQsXboUDRs2xLlz53THtWzZEoMGDcKyZcuQmZmJp59+Gvv27StXjyF7e3ssX74cr776Klq3bo2XX34Zbm5uuHHjBrZt24Z27dphyZIlBt23lZUVmjRpgvXr1yMwMBDOzs5o1qwZmjVrVu5rODs7o3379hg+fDhSUlKwePFiNGzYUDcBvLm5Ob744gsMHz4cnTp1wqBBg5CSkoKvvvoK9erVw4QJE3TXmj9/Pnr27InQ0FCMGDEC+fn5+Oabb+Dg4IAZM2YAALKzs+Hj44MBAwagRYsWsLW1xd69e3Hq1CksWLBAd62QkBCsX78eEydORJs2bWBra4vevXsb9Pr8V9++ffHkk0/ivffeQ1xcHIKCgrB582bdl8ZV0cuMyGSIu6gkUc02ffp0AYBw9+5dvfb/LvG8efNmITg4WFAqlUK9evWEL774Qvjpp5/0jhEEQejUqZPQqVOnEs+TlZUlWFlZCQCEX375pdRYsrOzhSlTpggNGzYULCwsBFdXV+Hpp58WvvzyS6GwsLDc99SpUyehadOmwunTp4XQ0FBBqVQKfn5+wpIlS/SO02q1wpw5cwQ/Pz/B0tJSaNWqlbB161Zh6NChpS7PLAiC8NZbbwkAhLVr15a6v7CwUPjiiy+Epk2bCpaWloKTk5MQEhIizJw5U8jMzBQEQRD27dsn9OnTR/D29hYsLCwEb29vYdCgQcKVK1fKfY9EREREUrJv3z6hVatWgoWFhdCgQQPhxx9/FN577z1BqVTqjgEgjB07ttTzV6xYIQQEBAiWlpZCUFCQEBERoctj/y0/P1945513BBcXF8HGxkbo3bu3cPPmTQGAMH36dN1x/811H9i/f78QHh4uODg4CEqlUmjQoIEwbNgw4fTp07pjhg4dKtjY2JSIsbR4jh07JoSEhAgWFhYlYnic/fv3CwCEX3/9VZgyZYrg7u4uWFlZCb169RISExNLHL9+/XqhVatWgqWlpeDs7CwMGTJEuHXrVonj9u7dK7Rr106wsrIS7O3thd69ewuXLl3S7VepVMKkSZOEFi1aCHZ2doKNjY3QokULYdmyZXrXycnJEQYPHiw4OjoKAHS5c0JCggBAiIiIMOr1unv3rjB48GDBzs5OcHBwEIYNGyYcPXpUACCsW7euXK8dkRTJBOFf45CIiEQ0YcIErFixAsnJySVWnCEiIiKi8uvbty8uXrxYYh4ron/btGkTXnjhBRw5cgTt2rUTOxyiKsE5vojIJBQUFOCXX35B//79WfQiIiIiMkB+fr7e46tXr2L79u3o3LmzOAGRSfrv+0Sj0eCbb76Bvb09WrduLVJURFWPc3wREYDiSeELCwsfud/MzAxubm6V/rypqanYu3cvfvvtN9y7dw/vvvtupT8HERERUU1Wv359DBs2DPXr10diYiKWL18OCwsLTJ48WezQqlVhYWGpCx39m4ODA6ysrKopItMybtw45OfnIzQ0FCqVChs3bsSxY8cwZ86cWvuaUO3AwhcRAQD69euHgwcPPnK/n58frl+/XunPe+nSJQwZMgTu7u74+uuvdSswEhEREVH59OjRA7/++iuSk5NhaWmJ0NBQzJkzBwEBAWKHVq2OHTuGZ5555rHHREREYNiwYdUTkInp0qULFixYgK1bt6KgoAANGzbEN998g7ffflvs0IiqFOf4IiIAQHR0NNLT0x+538rKiuP+iYiIiMhkpaenIzo6+rHHNG3aFF5eXtUUERGZAha+iIiIiIiIiIioRuJQRxOl1WqRlJQEOzs7yGQyscMhIjIJgiAgOzsb3t7ekMurf32WgoKCx86FVx4WFhZQKpWVFBERkelhHktEVJLYeSxQ8VxWqnksC18mKikpCb6+vmKHQURkkm7evAkfH59qfc6CggL4+9kiOVVToet4enoiISFBkkkDEVF5MI8lIno0MfJYoHJyWanmsSx8mSg7OzsAQHs8CwXMRY6GiEojV1qKHUKtUySocUj1h+53ZHUqLCxEcqoGCdF+sLcz7lu6rGwt/EMSUVhYKLmEgYiovJjHksHkZmJHYDxtxb4QIyNI9P1SJKhxRNgiSh4LVDyXlXIey8KXiXrQLVwBcyhkTBiITJFcZiF2CLWWmENn7O3kRhe+iIhqA+axZDCZNAsZAAAZc4JqJ+X3iyBuHgvUzlyWhS8iIiIDaAQtNEYuC6MRtJUbDBERERGRAYzNZaWcx7LwRUREZAAtBGhhXOXL2POIiIiIiCqDsbmslPNYFr6IiIgMoIUWxn7fZfyZREREREQVZ2wuK+U8loUvIiIiA2gEARrBuG+8jD2PiIiIiKgyGJvLSjmPrV0zmhERERERERERUa3BHl9EREQG4BxfRERERCRVnOOLiIiIHksLARoWvoiIiIhIgozNZaWcx7LwRUREZAD2+CIiIiIiqaqNPb44xxcREREREREREdVI7PFFRERkAK7qSERERERSVRtXdWThi4iIyADa/2/GnktEREREJBZjc1kp57Ec6khERGQAzf8nBDV2M8Ty5csRHBwMe3t72NvbIzQ0FDt27NDt79y5M2Qymd42evToyr5lIiIiIqohqiuPNSXs8UVERGQAjVC8GXuuIXx8fPD5558jICAAgiBg1apV6NOnD86ePYumTZsCAEaOHIlZs2bpzrG2tjYuOCIiIiKq8YzNZY3Nf00BC19EREQmqnfv3nqPZ8+ejeXLl+P48eO6wpe1tTU8PT3FCI+IiIiIyORxqCMREZEBtBXcACArK0tvU6lUZT6vRqPBunXrkJubi9DQUF37mjVr4OrqimbNmmHKlCnIy8urrFslIiIiohqmonmsFLHHVy3Ue1gaBoxJhbNbEeIvWWHZ1DqIjZHG0Bipxi7VuAHGXt2atcnCgFF30LBZLlw81Jj1ZgCi9jiLHVa5SDl2Q2ghgwYyo88FAF9fX7326dOnY8aMGaWec/78eYSGhqKgoAC2trb4448/0KRJEwDA4MGD4efnB29vb5w7dw4ffPABYmNjsXHjRqPiIyIydVL8bH+AsVevZm2z8eLoFAQ0z4eLpxozRtRH1C5HscMqNym+5g9IMXapv18MYWwuqzUy/zUFNbrHV7169bB48WKxwzApnZ5Px6jpSViz0BNjwwMRf0mJ2Wvj4eCiFju0Mkk1dqnGDTB2MSittYi/bI1l0+uJHYrBpBy7IbRCxTYAuHnzJjIzM3XblClTHvl8jRo1QkxMDE6cOIExY8Zg6NChuHTpEgBg1KhRCA8PR/PmzTFkyBCsXr0af/zxB65du1YdLwURVSHmsSVJ9bMdYOxiUFprEX/JGkum+pZ9sImR6msOSDd2Kb9fDFXRPLa8NBoNpk2bBn9/f1hZWaFBgwb49NNPIQgPLyQIAj755BN4eXnBysoKYWFhuHr1aiXfsciFr86dO2P8+PEl2leuXAlHR8dqj6e8YmNj8cwzz8DDwwNKpRL169fH1KlToVbr/zBHRkYiKCgISqUSzZs3x/bt20WK+KF+o9Kwc60zdq93xo2rSnz9gQ9U+TKED7ovdmhlkmrsUo0bYOxiOH3QEasX+uLYbun1lJJy7NXtwSqNDzZLS8tHHmthYYGGDRsiJCQEc+fORYsWLfDVV1+Vemzbtm0BAHFxcVUSNxE9xDy2+kn1sx1g7GI4vd8Bq+Z749hOR7FDMZhUX3NAurFL+f1iqr744gssX74cS5YsweXLl/HFF19g3rx5+Oabb3THzJs3D19//TW+/fZbnDhxAjY2NggPD0dBQUGlxlKje3xVVGFhYant5ubmeO2117B7927ExsZi8eLF+OGHHzB9+nTdMceOHcOgQYMwYsQInD17Fn379kXfvn1x4cKF6gq/BIW5FgHBeThz2E7XJggynD1shyYhpj0njFRjl2rcAGMnehTN/7uHG7tVlFarfeScYDExMQAALy+vCj8PEUkb81jTwdjJEFJ+zaUce21SXXnssWPH0KdPH/Tq1Qv16tXDgAED0L17d5w8eRJAcW+vxYsXY+rUqejTpw+Cg4OxevVqJCUlYdOmTZV6z5IofA0bNgx9+/bFl19+CS8vL7i4uGDs2LF630ylpqaid+/esLKygr+/P9asWVPiOhkZGXjjjTfg5uYGe3t7dOnSBX///bdu/4wZM9CyZUv8+OOP8Pf3h1KpLDWe+vXrY/jw4WjRogX8/Pzw/PPPY8iQITh8+LDumK+++go9evTApEmT0LhxY3z66ado3bo1lixZUuo1VSpVicmOK5u9swZmCiDjrv7UbulpCji5FVX681UmqcYu1bgBxk70KNVZ+JoyZQoOHTqE69ev4/z585gyZQoOHDiAIUOG4Nq1a/j0008RHR2N69evY/PmzXjttdfQsWNHBAcHV9HdE5GhmMdWDil/tjN2MoSUX3Mpx16bVDSPLe8iTU8//TT27duHK1euAAD+/vtvHDlyBD179gQAJCQkIDk5GWFhYbpzHBwc0LZtW0RFRVXqPUtmcvv9+/fDy8sL+/fvR1xcHAYOHIiWLVti5MiRAIqTiqSkJOzfvx/m5uZ45513kJqaqneNF198EVZWVtixYwccHBzw3XffoWvXrrhy5QqcnYuH5sTFxeH333/Hxo0bYWZmVq7Y4uLisHPnTvTr10/XFhUVhYkTJ+odFx4e/sjK5dy5czFz5szyvhxERCQSrSCDVjBycnsDz0tNTcVrr72GO3fuwMHBAcHBwdi1axe6deuGmzdvYu/evVi8eDFyc3Ph6+uL/v37Y+rUqUbFRkRVh3ksERGZCmNz2QfnlHeRpg8//BBZWVkICgqCmZkZNBoNZs+ejSFDhgAAkpOTAQAeHh5653l4eOj2VRbJFL6cnJywZMkSmJmZISgoCL169cK+ffswcuRIXLlyBTt27MDJkyfRpk0bAMCKFSvQuHFj3flHjhzByZMnkZqaqptL5csvv8SmTZvw22+/YdSoUQCKu4WvXr0abm5uZcb09NNP48yZM1CpVBg1ahRmzZql25ecnGzQf+CUKVP0EoysrKwSb6iKyrpvBk0R4PifaruTaxHS75r2W0GqsUs1boCxEz1KRYYsGnreihUrHrnP19cXBw8eNCoOIqpezGMrTsqf7YydDCHl11zKsdcmxuayD865efMm7O3tde2Pmqt2w4YNWLNmDdauXYumTZsiJiYG48ePh7e3N4YOHWpc8EaSxFBHAGjatKneN1deXl66b8IuX74MhUKBkJAQ3f6goCC9iUX//vtv5OTkwMXFBba2trotISFBb/UrPz+/ciULALB+/XqcOXMGa9euxbZt2/Dll18afX+WlpYlJjuubEVqOa6es0ar9tm6NplMQMv2ObgUbdrLy0o1dqnGDTB2IiKiysI8tuKk/NnO2MkQUn7NpRw7lV95F2maNGkSPvzwQ7z88sto3rw5Xn31VUyYMAFz584FAHh6egIAUlJS9M5LSUnR7assopZd7e3tkZmZWaI9IyMDDg4Oem3m5uZ6j2UyGbRabbmfKycnB15eXjhw4ECJff9OLGxsbMp9zQffZDVp0gQajQajRo3Ce++9BzMzM3h6elbLf6ChNn7vivcX38SVv60Re9YaL4y8C6W1FrvXmf4qbFKNXapxA4xdDEprDbz9Hq5i4uGrQv3GucjOVOBu0qNX/jMFUo7dEBrIoTHyeyNNJcdCROJhHlv9pPrZDjB2MSitNfCu93DuIU9fFeo3yUN2hgJ3kyxEjKxsUn3NAenGLuX3i6GMzWUNzWPz8vIgl+s/j5mZme7zz9/fH56enti3bx9atmwJoLjH8IkTJzBmzBiD43scUQtfjRo1wu7du0u0nzlzBoGBgeW+TlBQEIqKihAdHa3rIh4bG4uMjAzdMa1bt0ZycjIUCgXq1atX0dBL0Gq1UKvV0Gq1MDMzQ2hoKPbt26e3zPWePXsQGhpa6c9tiIObneDgosFrk5Lh5FaE+ItW+HiIPzLSzMs+WWRSjV2qcQOMXQwBzXMx79fLusdvTr0BANjzmysWTm4gVljlIuXYDSFUYI4vwcjziMj0MI+tflL9bAcYuxgCW+RhfuRV3ePRM24DAHZvcMaCifVEiqp8pPqaA9KNXcrvF0MZm8samsf27t0bs2fPRt26ddG0aVOcPXsWCxcuxOuvvw6g+Eug8ePH47PPPkNAQAD8/f0xbdo0eHt7o2/fvgbH9ziiFr7GjBmDJUuW4J133sEbb7wBS0tLbNu2Db/++iu2bNlS7us0atQIPXr0wJtvvonly5dDoVBg/PjxsLKy0h0TFhaG0NBQ9O3bF/PmzUNgYCCSkpKwbds2vPDCC3jiiSfK/Xxr1qyBubk5mjdvDktLS5w+fRpTpkzBwIEDdd/ovfvuu+jUqRMWLFiAXr16Yd26dTh9+jS+//778r9AVWRzhCs2R7iKHYZRpBq7VOMGGHt1O3/CHj3rtxU7DKNIOXZDVOccX0RkupjHikOKn+0PMPbqdS7KDuE+rcUOw2hSfM0fkGLsUn+/GKKic3yV1zfffINp06bhrbfeQmpqKry9vfHmm2/ik08+0R0zefJk5ObmYtSoUcjIyED79u2xc+fOR65MbCxRC1/169fHoUOH8PHHHyMsLAyFhYUICgpCZGQkevToYdC1IiIi8MYbb6BTp07w8PDAZ599hmnTpun2y2QybN++HR9//DGGDx+Ou3fvwtPTEx07diwxeWdZFAoFvvjiC1y5cgWCIMDPzw9vv/02JkyYoDvm6aefxtq1azF16lR89NFHCAgIwKZNm9CsWTODnouIiEyLRpBDIxg51FGo5GCISDTMY4mISIqMzWUNzWPt7OywePFiLF68+JHHyGQyzJo1S2+BlaogEwSBabgJysrKgoODAzqjDxQy0+4WSlRbySv5mwgqW5FQiL8KNiAzM7NKJk9+nAe/l3ec84eNnXGFr9xsLXoGJ4gSPxFRdWEeSwaTm5V9jKnScgbPaifR90uRoMYB7UbR8sCK5rJSzmO5pigREZEBtJBBa+Tk9lrwuyYiIiIiEo+xuayU81gWvoiIiAzAOb6IiIiISKqqa44vU8LCFxERkQEqNseXdL8pIyIiIiLpM36OL+nmscZl7kRERERERERERCaOPb6IiIgMUDwvgnFdvY09j4iIiIioMhiby0o5j2Xhi4iIyABayKHh5PZEREREJEHG5rJSzmNZ+CIiIjIA5/giIiIiIqmqjXN8sfBFRERkAC3kRi0BXXyudBMGIiIiIpI+Y3NZKeexnNyeiIiIiIiIiIhqJPb4IiIiMoBGkEEjGDe5p7HnERERERFVBmNzWSnnsSx8ERERGUBTgcntNRLuIk5ERERE0mdsLivlPJaFLyIiIgNoBTm0Rk5ur5XwpKBEREREJH3G5rJSzmM5xxcREREREREREdVI7PFFRERkAA51JCIiIiKp4lBHIiIieiwtjJ/cU1u5oRARERERGcTYXFbKeSwLX0RERAbQQg6tkT2+jD2PiIiIiKgyGJvLSjmPZeHLxJk1qAczM0uxwzCYYGUhdghGkd/PFjsEown5+WKHYDQhN0/sEIyiLSgQO4RaRyuoxQ4BGkEOjZGT2xt7HhERVR+5jY3YIRhFmy/dvMTM3lbsEIwms5Vm7EW3bosdgvG0GrEjMI5gGnEbm8tKOY+VbuRERERERERERESPwR5fREREBtBCBi2MnePLuPOIiIiIiCqDsbmslPNYFr6IiIgMwKGORERERCRVtXGoIwtfREREBjB2CegH5xIRERERicXYXFbKeSwLX0RERAbQCjJojVgC+sG5RERERERiMTaXlXIeK92SHRERERERERER0WOwxxcREZEBtBUY6qjl901EREREJCJjc1kp57EsfBERERlAK8ihNXJyT2PPIyIiIiKqDMbmslLOY1n4IiIiMoAGMmiMXM7Z2POIiIiIiCqDsbmslPNY6ZbsiIiIiIiIiIjI5NSrVw8ymazENnbsWABAQUEBxo4dCxcXF9ja2qJ///5ISUmpklhY+CIiIjLAg+7hxm6GWL58OYKDg2Fvbw97e3uEhoZix44duv3VmTAQERERkfRVVx576tQp3LlzR7ft2bMHAPDiiy8CACZMmIAtW7YgMjISBw8eRFJSEvr161fp9wuw8EVERGQQDR52ETd8M4yPjw8+//xzREdH4/Tp0+jSpQv69OmDixcvAqjehIGIiIiIpM/4XNYwbm5u8PT01G1bt25FgwYN0KlTJ2RmZmLFihVYuHAhunTpgpCQEERERODYsWM4fvx4pd8z5/giIiIyQHVObt+7d2+9x7Nnz8by5ctx/Phx+Pj4YMWKFVi7di26dOkCAIiIiEDjxo1x/PhxPPXUU0bFSEREREQ1V0Unt8/KytJrt7S0hKWl5WPPLSwsxC+//IKJEydCJpMhOjoaarUaYWFhumOCgoJQt25dREVFVXoeyx5fREREBtAI8gptQHHC8O9NpVKV/bwaDdatW4fc3FyEhoaWmTAQEREREf1XRfNYX19fODg46La5c+eW+ZybNm1CRkYGhg0bBgBITk6GhYUFHB0d9Y7z8PBAcnJyZd8ye3wRERFVN19fX73H06dPx4wZM0o99vz58wgNDUVBQQFsbW3xxx9/oEmTJoiJianWhIGIiIiI6ObNm7C3t9c9Lqu3FwCsWLECPXv2hLe3d1WG9kgsfBERERlAgAxaI5dzFv5/niEJQ6NGjRATE4PMzEz89ttvGDp0KA4ePGjU8xMRERFR7WZsLvsgj32w6FJ5JSYmYu/evdi4caOuzdPTE4WFhcjIyND7EjclJQWenp4Gx1YWFr6IiIgM8O+u3sacCxiWMFhYWKBhw4YAgJCQEJw6dQpfffUVBg4cWK0JAxERERFJn7G5rLH5b0REBNzd3dGrVy9dW0hICMzNzbFv3z70798fABAbG4sbN24gNDTUqOd5HBa+arEXB8di+JuXsCmyAb5fEix2OI815JULeOWVi3ptN2/aYdTIZ0WKqPye7Z+IZ/vdgIdXPgAgMcEWv/7YENFR7iJH9ngvjUjE02F34eOfh8ICOS7/7YCfFjXA7evWYodWpmZtsjBg1B00bJYLFw81Zr0ZgKg9zmKHZZDew9IwYEwqnN2KEH/JCsum1kFsjOm/9lKN2xBaQQatYFyPL2PP07uGVguVSlXtCQMRkSmQ4udMr8HJ6DUoGR4+xfM5Jl61wtolvjh9yEnkyMrWrG02XhydgoDm+XDxVGPGiPqI2uUodlgGe/GNGxg+8To2ra6D7z9vIHY4j/XTpv3w8M4v0b41si6Wz28mQkSGk+LPKSDduA1lbC5r1DlaLSIiIjB06FAoFA/LTw4ODhgxYgQmTpwIZ2dn2NvbY9y4cQgNDa2SBZpq9OT2y5cvR3BwsO6b9dDQUOzYsUO3v6CgAGPHjoWLiwtsbW3Rv39/pKSklPv6cXFxsLOzKzG/CgBERkYiKCgISqUSzZs3x/bt2yvjlipNQFA6ej5/HfFx5e+iKLbr1+0xeNDzuu3997qKHVK5pKUosXJpI7w7tB3eHfY0zp12wbQvo1G3frbYoT1WsycysHVdHUwcEoKPR7WEmUKL2d/FwNLK0IVsq5/SWov4y9ZYNr2e2KEYpdPz6Rg1PQlrFnpibHgg4i8pMXttPBxc1GKH9lhSjduUTZkyBYcOHcL169dx/vx5TJkyBQcOHMCQIUP0Eob9+/cjOjoaw4cPr7KEgYiqF/PYkqT6OZOWbIGIL/0wrm8w3nkhGH9HOeCT5f+gbsM8sUMrk9Jai/hL1lgy1bfsg01UQLNs9HzpDuL/sRE7lHIZP+xpvNKzq277eOyTAIAj+7xEjqx8pPpzKtW4Td3evXtx48YNvP766yX2LVq0CM899xz69++Pjh07wtPTU284ZGWq0YUvHx8ffP7554iOjsbp06fRpUsX9OnTBxcvFvccmjBhArZs2YLIyEgcPHgQSUlJ6NevX7murVarMWjQIHTo0KHEvmPHjmHQoEEYMWIEzp49i759+6Jv3764cOFCpd6fsZRWRZg89RS+nt8KOdkWYodTbhqNHOnpVrotK6vsSfRMwckjHjh9zB1JN22QdMMWq5c3QkGeAkHNMsQO7bE+GdMCe//0wo1rNki4YouFUxvD3VuFgCamXbADgNMHHbF6oS+O7ZZWL68H+o1Kw861zti93hk3rirx9Qc+UOXLED7ovtihPZZU4zaUBvIKbYZITU3Fa6+9hkaNGqFr1644deoUdu3ahW7dugGo3oSBiKoX89iSpPo5c+IvZ5w66ISkRCvcvm6FVYv8UJBnhqCWEsip9jtg1XxvHNvpKHYoRlFaazB53j/4enogcrKkMdgpK8MS6fcebm3apyLppjXOn5FGXivVn1Opxm2M6spjAaB79+4QBAGBgYEl9imVSixduhT3799Hbm4uNm7cWGXTddTowlfv3r3x7LPPIiAgAIGBgZg9ezZsbW1x/PhxZGZmYsWKFVi4cCG6dOmCkJAQRERE4NixYzh+/HiZ1546dSqCgoLw0ksvldj31VdfoUePHpg0aRIaN26MTz/9FK1bt8aSJUuq4jYN9tb4GJyM8kRMtGkPtfuvOnWy8cuaP/FTxFZMnhwFN7dcsUMymFwuoGO3JCitNLh83lHscAxiY1sEAMjOlEbSIFUKcy0CgvNw5rCdrk0QZDh72A5NQkz3m2Gpxm2MB93Djd0MsWLFCly/fh0qlQqpqanYu3evrugFVG/CQETVi3msvpryOSOXC+jUKw1Kaw3+ibEr+wSqkLemXsXJg86IiTL9YaWlUSi0eKbnbezZ4gMYubBOdZLqz6lU4zZWdeWxpqTW/AWr0WgQGRmJ3NxchIaGIjo6Gmq1GmFhYbpjgoKCULduXURFRT12mMhff/2FyMhIxMTElPrNelRUFCZOnKjXFh4ejk2bNj3ymiqVCiqVSvc4KyvLgLsrv45dbqFhYCbefbNzlVy/qsT+44IFC9ri1i07ODvnY8iQi5j/5V8YM7oH8vPNxQ6vTH4NsrBgRRQsLLTIzzfDZ5Nb42aCdJIdmUzAmx/E4eIZByTG2YodTo1m76yBmQLIuKv/6zk9TQHfhqpHnCU+qcZtDC3k0Br5vZGx5xFR7cY8VvqfM/UCc7Fww3lYWGqRn2eGT98Kwo24mjd3kCnp2DMVDZvk4N2XWosditGe6pwCW9si7N3qI3Yo5SLVn1Opxm0sY3NZKeexNb7wdf78eYSGhqKgoAC2trb4448/0KRJE8TExMDCwqLEvAYeHh5ITk5+5PXu3buHYcOG4ZdffnnkilzJycnw8PAw6Lpz587FzJkzy39jRnB1y8Ob487h4/faQV1oVqXPVdlOn344pv16giNi/3HBqtVb0aHjTezeVV/EyMrndqItxr3SHja2RWjX5Q4mTj+HD0a3lUzx662Pr8CvYS7eH9pK7FCIRKcRZNAY+Y2XsecRUe3EPLbmuJVghbHPt4CNnQbte9zDe/OuYvKQZix+VRFXzwK8OeUaPn6jOdSF0v1jvfvzN3E6yg3305Rih0I1iLG5rJTzWOn+FiinRo0aISYmBidOnMCYMWMwdOhQXLp0qVznNm3aFLa2trC1tUXPnj0BACNHjsTgwYPRsWPHSo1zypQpyMzM1G03b96s1OsDQECjDDg5q/DND/uxZd8mbNm3CcGt0vB8/2vYsm8T5HKh0p+zquTmWuD2bVt4e+eIHUq5FBXJceeWDeL+ccCqZUFIuGqHPgOvix1WuYz56Aqe7HQPH45oiXsp/NCtaln3zaApAhzdivTanVyLkH7XdL+rkGrcRESmjHnsQ1L/nClSy3HnhhXiLtpi5QI/xF+2QZ+hd8QOq8YKaJoDJ1c1vvntDLacO4Qt5w4h+MlMPP/KbWw5d0gSf/e4eeajZZs07P5TOgsLSPXnVKpxU/nV+P9FCwsLNGzYEAAQEhKCU6dO4auvvsLAgQNRWFiIjIwMvW/LUlJSdPOjbN++HWp18SoOVlZWAIq7h2/evBlffvklAEAQBGi1WigUCnz//fd4/fXX4enpWWJVnX9ftzSWlpawtKzaydpjot0wZpj+SogTPozGrRt2iFwbCK1WOhVcpVINL69c7NsnzUKMTA6YW2jFDqMMAsZ8dBWhXe7iw9dbIeW2ldgB1QpFajmunrNGq/bZiNrpAKB4qGnL9jnYvNJF5OgeTapxG6MicxxIeW4EIqp+zGMfqmmfMzK5IIFcULpiohwx5vkQvbYJs2NxK8EakT/6SuLvnm69byIz3RInj7qJHUq5SfXnVKpxG8vYXFbKeWyNL3z9l1arhUqlQkhICMzNzbFv3z70798fABAbG4sbN24gNDQUAODn51fi/KioKGg0Gt3jP//8E1988QWOHTuGOnXqAABCQ0Oxb98+jB8/Xnfcnj17dNcVS36+ORIT9OfDKshXICvTAokJpXd3NxVvvBGDEye8kZJqAxfnfLzy6gVoNTIcPFBX7NDKNPStf3A6yh13k5Wwsi5C5/AkNG99D9PeaSN2aI/11sdX0PnZVMx6txnyc83g5FI8vj03R4FClWkPlVVaa+DtV6B77OGrQv3GucjOVOBukumvBrrxe1e8v/gmrvxtjdiz1nhh5F0orbXYvc60V/ORatyGEgQ5tIJxHaYFI88jIgJqdx4LSPdzZth7iTh9yBGpSZawttGgc+80BLfNwtTXm4gdWpmU1hp413s4x5Gnrwr1m+QhO0OBu0mmuzp8fp4CiXH6f+oW5JshK8MciXE2IkVVfjKZgG7P3cK+bXWg1Ugrd5Dqz6lU4zaGsbmslPPYGl34mjJlCnr27Im6desiOzsba9euxYEDB7Br1y44ODhgxIgRmDhxIpydnWFvb49x48YhNDT0sROCNm7cWO/x6dOnIZfL0axZM13bu+++i06dOmHBggXo1asX1q1bh9OnT+P777+vsnut6Vxd8/DBh1GwtytEZqYlLl50xYQJYcjMNP0eX47OhXhv+t9wdlUhN0eB63F2mPZOG8ScNO1vb557OQkAMC8iRq994dQg7P3Tq5QzTEdA81zM+/Wy7vGbU28AAPb85oqFkxuIFVa5HdzsBAcXDV6blAwntyLEX7TCx0P8kZFm2gs5SDVuQ2kgg8bIlZWMPY+Iah/msSVJ9XPG0UWN9+fFwdm9ELnZZkj4xwZTX2+Cs0cdxQ6tTIEt8jA/8qru8egZtwEAuzc4Y8HEeiJFVfO1fDIN7l4F2L1FGpPa/5tUf06lGrcxjM1lpZzHygRBMP0BzkYaMWIE9u3bhzt37sDBwQHBwcH44IMPdEvBFxQU4L333sOvv/4KlUqF8PBwLFu2zKCl4FeuXInx48cjIyNDrz0yMhJTp07F9evXERAQgHnz5uHZZ58t93WzsrLg4OCArg3ehcLM9Huo/JdgZbrfAD2O/H622CEYTcjPFzsEowm50lwmWFtQUPZBVKmKBDUO4E9kZmY+cmLmqvLg9/LwAy/Bwta433GFOYWI6LxBlPiJSFpqQh7bGX2gkEnvj0a5jen3CCqNNl+6eYmZvXRXDZfZSjP2olu3xQ6h1hEzjwUqnstKOY+t0YUvKWPhSxwsfImDhS8qLxa+iIhMHwtf4mDhSxwsfFF5sfAlnho91JGIiKiyaSswx5ex5xERERERVQZjc1kp57EsfBERERlACxm0Rs5xYOx5RERERESVwdhcVsp5LAtfREREBtAIMmiMXM7Z2POIiIiIiCqDsbmslPNY6fZVIyIiIiIiIiIiegz2+CIiIjIA5/giIiIiIqniHF9ERET0WFrIoDWyq7eU50YgIiIiIukzNpeVch7LwhcREZEBhApMbi9IOGEgIiIiIukzNpeVch7LwhcREZEBtEIFenxJeFJQIiIiIpI+Y3NZKeex0h2kSURERERERERE9Bjs8UVERGQATm5PRERERFLFye2JiIjosTjUkYiIiIikqjYOdWThi4iIyADaCkxuL+XVcIiIiIhI+ozNZaWcx7LwRUREZAD2+CIiIiIiqaqNPb6kO0iTiIiIiIiIiIjoMdjji4iIyADs8UVEREREUlUbe3yx8EVERGQAFr6IiIiISKpY+CLTk54JyC3EjsJgSa8FiR2CUbL9HcQOwWhB39wVOwSjae/dFzsEo5i5OIsdgtE0DeqIHYJxigqA6D9FDYGFLyKimk0oKhI7BKMovD3FDsFo6rquYodgtAI3S7FDMIpVUrLYIdQ+ghbQih1E7Sx8cY4vIiIiIiIiIiKqkVj4IiIiMoCAh8tAG7oJYgdPRERERLWasbmsMXns7du38corr8DFxQVWVlZo3rw5Tp8+/TAWQcAnn3wCLy8vWFlZISwsDFevXq20e32AhS8iIiIDPOgebuxGRERERCSW6spj09PT0a5dO5ibm2PHjh24dOkSFixYACcnJ90x8+bNw9dff41vv/0WJ06cgI2NDcLDw1FQUFCp98w5voiIiAzAOb6IiIiISKqqa46vL774Ar6+voiIiNC1+fv76/4tCAIWL16MqVOnok+fPgCA1atXw8PDA5s2bcLLL79scIyPwh5fREREBmCPLyIiIiKSqormsVlZWXqbSqUq9Xk2b96MJ554Ai+++CLc3d3RqlUr/PDDD7r9CQkJSE5ORlhYmK7NwcEBbdu2RVRUVKXeMwtfRERERERERERUJl9fXzg4OOi2uXPnlnpcfHw8li9fjoCAAOzatQtjxozBO++8g1WrVgEAkpOLVxb18PDQO8/Dw0O3r7JwqCMREZEBONSRiIiIiKSqokMdb968CXt7e127paVl6cdrtXjiiScwZ84cAECrVq1w4cIFfPvttxg6dKgRkRuPPb6IiIgMIAiyCm1ERERERGKpaB5rb2+vtz2q8OXl5YUmTZrotTVu3Bg3btwAAHh6egIAUlJS9I5JSUnR7assLHwREREZwJjln/+9GWLu3Llo06YN7Ozs4O7ujr59+yI2NlbvmM6dO0Mmk+lto0ePrsxbJiIiIqIaorry2Hbt2pXIW69cuQI/Pz8AxRPde3p6Yt++fbr9WVlZOHHiBEJDQyt+o//CwhcREZGJOnjwIMaOHYvjx49jz549UKvV6N69O3Jzc/WOGzlyJO7cuaPb5s2bJ1LERERERETAhAkTcPz4ccyZMwdxcXFYu3Ytvv/+e4wdOxYAIJPJMH78eHz22WfYvHkzzp8/j9deew3e3t7o27dvpcbCOb6IiIgMUJ1zfO3cuVPv8cqVK+Hu7o7o6Gh07NhR125tbV3pXcKJiIiIqOap6Bxf5dWmTRv88ccfmDJlCmbNmgV/f38sXrwYQ4YM0R0zefJk5ObmYtSoUcjIyED79u2xc+dOKJVKg+N7HBa+iIiIDFCRuboenJeVlaXXbmlp+cj5Ef4tMzMTAODs7KzXvmbNGvzyyy/w9PRE7969MW3aNFhbWxsVIxERERHVXMbmssac89xzz+G555575H6ZTIZZs2Zh1qxZBl/bECx8ERERGaAyenz5+vrqtU+fPh0zZsx4/LlaLcaPH4927dqhWbNmuvbBgwfDz88P3t7eOHfuHD744APExsZi48aNRsVIRERERDVXdfX4MiUsfBERERmgMnp8lXcZ6H8bO3YsLly4gCNHjui1jxo1Svfv5s2bw8vLC127dsW1a9fQoEEDo+IkIiIiopqpOnt8mQoWvoiIiKrZg+Wfy+vtt9/G1q1bcejQIfj4+Dz22LZt2wIA4uLiWPgiIiIiolqPhS8iIiIDCBUY6mjoN2WCIGDcuHH4448/cODAAfj7+5d5TkxMDADAy8vLmBCJiIiIqAYzNpdljy8iIqJaQgAgCMafa4ixY8di7dq1+PPPP2FnZ4fk5GQAgIODA6ysrHDt2jWsXbsWzz77LFxcXHDu3DlMmDABHTt2RHBwsHFBEhEREVGNZWwua2T6axJY+KpFXhqRiKfD7sLHPw+FBXJc/tsBPy1qgNvXTW/lr9Y+SRjWJgaNPe/C3TYP4//ogf1xpfd0mNrtIF5seQnz/noaa6JbVHOkJSnjsuC07w6UN3OhyFIj6Y0A5AY/XIHNLEsN1803YP1PJuT5GuQ3sMPdAfWgdq/cJVsr24uDYzH8zUvYFNkA3y+Rxh/UvYelYcCYVDi7FSH+khWWTa2D2BjTe7//m5R+Tv/LxTkPI147gzatk2BpqUFSsh0WfB2Kq9dcxA6tUmkhgwxGTm5v4HnLly8HAHTu3FmvPSIiAsOGDYOFhQX27t2LxYsXIzc3F76+vujfvz+mTp1qVHxERKZOip/tA8ckoV14Onwa5KOwQI5LZ2zx0xe+uBVvJXZoZfpp0354eOeXaN8aWRfL5zcr5QxxNG+cghf7XERA/Xtwcc7HjC8649ipurr97489iu7PXNM759RZb3w8O6y6Qy1hSHgMOrZMgJ9nJlRqM1y45oFvNz2JmymOumN6t7+MsDbXEOibBhsrNZ6d+Bpy8sueH7S6NWubjRdHpyCgeT5cPNWYMaI+onY5ih1WuUg5dkMZm8samseaEha+apFmT2Rg67o6uHLBHmZmAoa+ew2zv4vBm33bQpVvJnZ4eqzM1Yi964JNF4KwqO+uRx7XJSAezb1TkJptU43RPZ68UIvCOtbIesoN3iuu6u8UBHj9eAUwkyFpZCC0SjM47U9GnaWXkfhRMARL0/p/eCAgKB09n7+O+Ljyz0kktk7Pp2PU9CR886EP/jljjRdG3sXstfEY0aERMu+Zix3eI0np5/TfbG1UWPj5Lpw774Gpn3ZBRqYSdbyzkJNrIXZola4yJrcv//GP/27N19cXBw8eNCoWIiKpkepne/O22djyszuunLOBXAEMf/8mZq+OxahuzU36sx0Axg97Gmb/CtGvfjZmLz2JI/tMazi9UlmE+OtO2PVXQ0yffKDUY06d9caXS9vpHqvV8mqK7vFaBtzBHweb4p9EV5jJBYzqcwoLxu3Aa7MGoKCw+H2ttCjCyYs+OHnRB2++cErkiB9Naa1F/CVr7Frviuk/xosdjkGkHLuhauPk9qbx014NPv/8c8hkMowfP17XVlBQgLFjx8LFxQW2trbo378/UlJSHnud69evQyaTldiOHz+ud1xkZCSCgoKgVCrRvHlzbN++vSpuyyCfjGmBvX964cY1GyRcscXCqY3h7q1CQJNssUMr4WiCH5YeaYu/rtZ/5DHutjn4sOsRfLQ1DGqt6byV85o44t5zvsht4Vxin/ndAlhdz0HqS/Wg8rOF2sMKqS/Vg0ythV30PRGiLZvSqgiTp57C1/NbISdbOkWMfqPSsHOtM3avd8aNq0p8/YEPVPkyhA+6L3ZojyWln9N/e6nfJaSlWWPBN08j9qorUlJtcSbGG3eS7cQOjYhI8pjHFpPqZ/vUYY2w53c3JF61RsJlayyYVB8edQoR0DxX7NDKlJVhifR7D7c27VORdNMa58+UzHPFdOpsHaxc1wpHT9Z95DFqtRnSM6x0W06uafSYmrSkJ3YeD8T1O864dtsFc1Z3gqdLDhrVTdMdE/lXc6zZ3RIXE9xFjLRsp/c7YNV8bxzb6Sh2KAaTcuxUNtOpFlShU6dO4bvvvisx38mECROwZcsWREZG4uDBg0hKSkK/fv3Kdc29e/fizp07ui0kJES379ixYxg0aBBGjBiBs2fPom/fvujbty8uXLhQqfdVUTa2RQCA7EzpdfyTQcDsZ/dh5cmWuHbPtD54H0dWVNx7Q1D860dPLoOgkMMq3jQLG2+Nj8HJKE/ERJv2B+2/Kcy1CAjOw5nDD4sugiDD2cN2aBKSJ2JkhpPKz+lTT97ClTgXfDzpENavjMTShdvQs9vVsk+UIO3/JwQ1diMiMgTz2GI16bPd2k4DAMjOMO3P9v9SKLR4pudt7NniA0hwyFNw02RsWLEBK77ahHEjj8POtkDskEpla1UIAMjKM43CHNU8tTGPrfGFr5ycHAwZMgQ//PADnJycdO2ZmZlYsWIFFi5ciC5duiAkJAQRERE4duxYiW+9SuPi4gJPT0/dZm7+sHv1V199hR49emDSpElo3LgxPv30U7Ru3RpLliypkns0hkwm4M0P4nDxjAMS42zFDsdgw9uehUaQY+2Z5mKHYpBCDyXUThZw2XIT8rwioEgLpz1JMM8ohFmWWuzwSujY5RYaBmZi5Q9NxQ7FIPbOGpgpgIy7+gllepoCTm5FIkVlOCn9nHp5ZOO5HleQdMcOH83siq07AzHmjdMI+898GjWBIFRsIyIqL+axD9Wkz/bR0xJx8ZQtEq+Y9txk//VU5xTY2hZh71YfsUMx2OkYb8z7pj0mz+yGFb+0RnCTFMz+eB/kcq3YoemRyQSMezEK5+I8kJAknS/3SVpqYx5b4wtfY8eORa9evRAWpj9xYXR0NNRqtV57UFAQ6tati6ioqDKv+/zzz8Pd3R3t27fH5s2b9fZFRUWVeL7w8PDHXlelUiErK0tvq0pvfXwFfg1z8fnkJlX6PFWhscddDAk5h2nbu0By3zaZyXFnRCAs7hagwYfRaPj+KVhdzUJuEweTuxVXtzy8Oe4c5n36BNSFpj3/RE0lpZ9TmQyIi3dGxC+tcC3BGTt2B2DHnoboFV7zen09mBfB2I2IqLyYx9Y8Y2clol6jfMx9p6HYoRis+/M3cTrKDffTTHtBptIcOOqP46d9cf2GE46dqotpc7sgKOAegps+fnhwdZvw8lH4e6dj5oouYodCNVhtzGOl1b/WQOvWrcOZM2dw6lTJCQCTk5NhYWEBR0dHvXYPDw/dcvGlsbW1xYIFC9CuXTvI5XL8/vvv6Nu3LzZt2oTnn39ed20PDw+Drjt37lzMnDnTgLsz3piPruDJTvcweVgr3EuR3gdXa58kOFvnY+fon3VtCrmA9zpHYUjIeTz7/SsiRlc2VV0b3PigOeT5RZAVCdDYmcN3wQUU+JrOBP0AENAoA07OKnzzw35dm5lCQLMWaej9Qjz6dOsDrdY0f/ll3TeDpghw/M83wE6uRUi/K41fe1L7Ob2fboXEmw56bTdvOaB96A2RIiIikjbmsfpqwmf7WzOvo22XDLw/sDHSkqUzbyoAuHnmo2WbNMz5IKTsgyUgOdUOGZmWqOOZjZjzpjFR//iBR/F0sxsYt/A53M0w7Z7+RFIjjU8JI9y8eRPvvvsu9uzZA6XSuD8amzZtisTERABAhw4dsGPHDri6umLixIm6Y9q0aYOkpCTMnz9flzAYY8qUKXrXzcrKgq+vr9HXK52AMR9dRWiXu/jw9VZIuW36SyiXZuvFRjiRqN/FevmAbdh6KRCbzjcSKSrDaa2Kf/zMUwtgeSMX9541rW7jMdFuGDOsq17bhA+jceuGHSLXBpps0QsAitRyXD1njVbtsxG1s7gYI5MJaNk+B5tXuogcXVmk+XN66R83+NbR/4a/jncWUu+aVkG3MlTnqo5EVDsxjy1J6p/tb81MxNPd0zF5UGOk3JLe3E3det9EZrolTh51EzuUSuHqnAt7OxXupZtCniVg/MBj6NDyOt5d+Bzu3JPOKuokTbVxVccaW/iKjo5GamoqWrdurWvTaDQ4dOgQlixZgl27dqGwsBAZGRl635alpKTA09MTALB9+3ao1cXzLllZPfqXYtu2bbFnzx7dY09PzxKr6vz7uqWxtLSEpWXVfgi+9fEVdH42FbPebYb8XDM4uagAALk5ChSqTGsom5W5GnWdMnWP6zhkoZF7GjLzLZGcbYfMAv0kUK2VIy3XConpTv+9VLWTqTQwv/twskzzeypY3MqF1lqBImdL2J69B42tOdROFrBMyoPbxkTkBjshr7GjeEGXIj/fHIkJ+kuDF+QrkJVpgcQE0/9A3vi9K95ffBNX/rZG7NniJc+V1lrsXmfa8yVI6ef03zZuDsKiz3fh5QEXcOiIHxoFpuHZ7lexeNlTYodW6bSCDDIjP/ilPCkoEVUf5rGlk+pn+9hZiXimzz3MHBWA/Bw5nFyLJy/PzVagUGX6M8/IZAK6PXcL+7bVgVZjmvEqlWp4ez5cKMrTIwf1691Hdo4FsnMs8eqLf+PwcT+kZ1jByzMbI1+JRlKyHaJjvEWMutiEl48irM01fPRtd+SpzOFsX7xYQ06+BQrVxX+uO9vnwdk+H3Xci79krF/nPvIKLJBy3wbZeaYzMkBprYF3PZXusaevCvWb5CE7Q4G7Sabdy1HKsRvK2FxWynlsjS18de3aFefPn9drGz58OIKCgvDBBx/A19cX5ubm2LdvH/r37w8AiI2NxY0bNxAaGgoA8PPzK9dzxcTEwMvrYRfZ0NBQ7Nu3T2/J6T179uiuK5bnXk4CAMyLiNFrXzg1CHv/NI0uvg809UzFipcfzjkxqcsxAMCfFxrhkx2mPeZdeSMXPt9c1j12+6N4qFfWk65IeaUBzLLUcP3jBhTZahTZmyPrSVfcD68jVrg11sHNTnBw0eC1SclwcitC/EUrfDzEHxlp5mWfLCIp/Zz+25U4V8z6vBOGvxqDIS+dQ3KKLb5d8QT2H/IXO7RKV5HJPaU8KSgRVR/msaWT6md771dTAQDz1/2j177gfX/s+d30e1C1fDIN7l4F2L3FtEYn/Ftgg3v4cuZu3ePRw04DAHbvb4Cvf2gLf790dOscDxvrQtxLt8KZv72xcl1LqIvE/1LxhU7Ffzd8M3GrXvucVZ2w83ggAKBPh8sY/twZ3b4l720tcYwpCGyRh/mRD+d3HT3jNgBg9wZnLJhYT6SoykfKsRvK2FxWynmsTBCkHL5hOnfujJYtW2Lx4sUAgDFjxmD79u1YuXIl7O3tMW7cOADFyzg/yqpVq2BhYYFWrVoBADZu3Ihp06bhxx9/xPDhw3Xnd+rUCZ9//jl69eqFdevWYc6cOThz5gyaNWtWrlizsrLg4OCArs7DoJBLr8J8+7UgsUMwSra/RuwQjBb0zV2xQzCa5mq82CEYxczFtL9hfhxNA2kWW4uKCnAgei4yMzNhb1+9PQ8f/F4O+OVDmFkb9+2qJq8AV1/5XJT4iUjapJjHdkYfKGSmXZQqjawaeq9VBTM3V7FDMJq6rnRjL3CT5vvFaku02CHUOkWCGge0G0XLAyuay0o5j62xPb7KY9GiRZDL5ejfvz9UKhXCw8OxbNmyMs/79NNPkZiYCIVCgaCgIKxfvx4DBgzQ7X/66aexdu1aTJ06FR999BECAgKwadOmcicLRERERESPwzyWiIiofGpVjy8pYY8vcbDHlzjY46v6sceX4R78Xm7485QK9fiKe1Wc+ImIqgt7fImDPb7EwR5fVF6m0uPL2FxWynlsre7xRUREZCjh/5ux5xIRERERicXYXFbKeSwLX0RERAYwdgnoB+cSEREREYnF2FxWynmsaa5HS0REREREREREVEHs8UVERGQIjnUkIiIiIqmqhWMdWfgiIiIyRAWGOkLCXcSJiIiIqAYwNpeVcB7LwhcREZEBBKF4M/ZcIiIiIiKxGJvLSjmPZeGLiIjIAJzcnoiIiIikipPbExERERERERER1RDl6vG1efPmcl/w+eefNzoYIiIikyfIjJ/jQMLflBFJFfNYIiKifzE2l5VwHluuwlffvn3LdTGZTAaNRlOReIiIiEwa5/gikhbmsURERA9V1xxfM2bMwMyZM/XaGjVqhH/++QcAUFBQgPfeew/r1q2DSqVCeHg4li1bBg8PD8ODK0O5Cl9arbbSn5iIiEiSjF0C+sG5RFStmMcSERH9i7G5rBHnNG3aFHv37tU9VigelqAmTJiAbdu2ITIyEg4ODnj77bfRr18/HD161IjgHq9Ck9sXFBRAqVRWVixEREQmj5PbE9UMzGOJiKg2qs7J7RUKBTw9PUu0Z2ZmYsWKFVi7di26dOkCAIiIiEDjxo1x/PhxPPXUUwY/1+MYPLm9RqPBp59+ijp16sDW1hbx8fEAgGnTpmHFihWVGhwRERERUWVhHktERFQxWVlZeptKpXrksVevXoW3tzfq16+PIUOG4MaNGwCA6OhoqNVqhIWF6Y4NCgpC3bp1ERUVVekxG1z4mj17NlauXIl58+bBwsJC196sWTP8+OOPlRocERGRSRKM3IhIVMxjiYiIUKE81tfXFw4ODrpt7ty5pT5F27ZtsXLlSuzcuRPLly9HQkICOnTogOzsbCQnJ8PCwgKOjo5653h4eCA5ObmSb9aIoY6rV6/G999/j65du2L06NG69hYtWugmKSMiIqqpONSRSLqYxxIRUW1X0aGON2/ehL29va7d0tKy1ON79uyp+3dwcDDatm0LPz8/bNiwAVZWVgY/f0UY3OPr9u3baNiwYYl2rVYLtVpdKUERERGZLGN7e7HXF5HomMcSEVGtV8E81t7eXm97VOHrvxwdHREYGIi4uDh4enqisLAQGRkZesekpKSUOidYRRnc46tJkyY4fPgw/Pz89Np/++03tGrVqtICo/9zcgDMyvdGMiV/T1omdghGGXAtrOyDTFTMTB+xQzBawOvSnFz49mtBYodgNNvwyu9CXB2KclVAP7GjICKpYh5L5SGoi8QOwSja9AyxQzBa2jJbsUMwWvpt6f2tBgANslqIHYLRLK+miB2CcbQq4LbYQYgnJycH165dw6uvvoqQkBCYm5tj37596N+/PwAgNjYWN27cQGhoaKU/t8GFr08++QRDhw7F7du3odVqsXHjRsTGxmL16tXYunVrpQdIRERkWmT/34w9l4jEwjyWiIjI2FzWsHPef/999O7dG35+fkhKSsL06dNhZmaGQYMGwcHBASNGjMDEiRPh7OwMe3t7jBs3DqGhoZW+oiNgxFDHPn36YMuWLdi7dy9sbGzwySef4PLly9iyZQu6detW6QESERGZFA51JJIs5rFERFTrVVMee+vWLQwaNAiNGjXCSy+9BBcXFxw/fhxubm4AgEWLFuG5555D//790bFjR3h6emLjxo2Vcov/ZXCPLwDo0KED9uzZU9mxEBERmb6KFLBY+CISHfNYIiKq1YzNZQ08Z926dY/dr1QqsXTpUixdutSIYAxjVOELAE6fPo3Lly8DKJ4vISQkpNKCIiIiMlmCrHgz9lwiEh3zWCIiqrWMzWUlnMcaXPh60F3t6NGjcHR0BABkZGTg6aefxrp16+DjI90JtomIiIio5mIeS0REVPsYPMfXG2+8AbVajcuXL+P+/fu4f/8+Ll++DK1WizfeeKMqYiQiIjIZglCxzRBz585FmzZtYGdnB3d3d/Tt2xexsbF6xxQUFGDs2LFwcXGBra0t+vfvj5QUia52RFTFmMcSEVFtV115rCkxuPB18OBBLF++HI0aNdK1NWrUCN988w0OHTpUqcERERGZnGqc3P7gwYMYO3Ysjh8/jj179kCtVqN79+7Izc3VHTNhwgRs2bIFkZGROHjwIJKSktCvX7+K3iVRjcQ8loiIar1auEiTwUMdfX19oVarS7RrNBp4e3tXSlBEREQmqxrn+Nq5c6fe45UrV8Ld3R3R0dHo2LEjMjMzsWLFCqxduxZdunQBAERERKBx48Y4fvx4lSwHTSRlzGOJiKjWq4VzfBnc42v+/PkYN24cTp8+rWs7ffo03n33XXz55ZeVGhwREVFNlJWVpbepVKpynZeZmQkAcHZ2BgBER0dDrVYjLCxMd0xQUBDq1q2LqKioyg+cSOKYxxIREdU+5erx5eTkBJnsYXUvNzcXbdu2hUJRfHpRUREUCgVef/119O3bt0oCJSIiMgUyoXgz9lyguNfJv02fPh0zZsx47LlarRbjx49Hu3bt0KxZMwBAcnIyLCwsdJN0P+Dh4YHk5GTjgiSqYZjHEhERPWRsLmts/msKylX4Wrx4cRWHQUREJBEVmePg/+fdvHkT9vb2umZLS8syTx07diwuXLiAI0eOGPnkRLUT81giIqJ/MTaXremFr6FDh1Z1HERERNJQCXN82dvb6xW+yvL2229j69atOHToEHx8fHTtnp6eKCwsREZGhl6vr5SUFHh6ehoXI1ENwzyWiIjoXzjHl2EKCgpKzFNCRERUo1Xjqo6CIODtt9/GH3/8gb/++gv+/v56+0NCQmBubo59+/bp2mJjY3Hjxg2EhoYadXtEtQXzWCIiqpW4qmPZcnNz8cEHH2DDhg24d+9eif0ajaZSAiMiIqrtxo4di7Vr1+LPP/+EnZ2dbt4uBwcHWFlZwcHBASNGjMDEiRPh7OwMe3t7jBs3DqGhoVzRkagUzGOJiIhqH4N7fE2ePBl//fUXli9fDktLS/z444+YOXMmvL29sXr16qqIkYiIyHRUY4+v5cuXIzMzE507d4aXl5duW79+ve6YRYsW4bnnnkP//v3RsWNHeHp6YuPGjRW9S6IaiXksERHVeuzxVbYtW7Zg9erV6Ny5M4YPH44OHTqgYcOG8PPzw5o1azBkyJCqiJOIiMg0VMLk9uU+XCj7BKVSiaVLl2Lp0qVGBkVUezCPJSKiWq8WTm5vcI+v+/fvo379+gCKJ+e9f/8+AKB9+/Y4dOhQ5UZHRERkah5MCGrsRkSiYR5LRES1Xi3MYw3u8VW/fn0kJCSgbt26CAoKwoYNG/Dkk09iy5YteitKkel7cXAshr95CZsiG+D7JcFih6NnyyoXbFvtipSbFgAAv0YFGDIhGW26ZCP5pgWGtm1S6nkff5eAjr0zqzNUPaqf81B0qBDaRA1kloBZM3NYjrGGvG7xj5r2jga5L6WXeq5ylh3Mn7GsznD1OP6ZAptTGbBIUkGwkKMgwBr3BnlD7a0EAMhziuD8WzKszmdDkVYIjb0CuU84IP1FL2itzUSLuzTN2mRhwKg7aNgsFy4easx6MwBRe5zFDqtUrX2SMKxNDBp73oW7bR7G/9ED++P8Sz12areDeLHlJcz762msiW5RzZHqM1+XDsXRPMhvFUKwkEHbRAnV684QfC10x1hNSoLZ+QK989TP2kH1jlt1h1upZELxZuy5RCQe5rHS13tYGgaMSYWzWxHiL1lh2dQ6iI2xFjusx2rWNhsvjk5BQPN8uHiqMWNEfUTtchQ7rHLpNTgZvQYlw8NHBQBIvGqFtUt8cfqQk8iR6bNemwabdfrz9hXVsUD68oc5leKffNj8nAbzK/kQ5DIU+Vsic6YPYFmh9d4qldOuJLhtuoX0Zzxw9yU/XbsyPhuuf96C8nouBDmg8rHB7XGNIFiIG3vzoGS81OsCAvzT4OqUj08WdsGx6Idx710TUep53699Ahu2Na+uMMvlp0374eGdX6J9a2RdLJ/fTISIqo6xuayU81iDC1/Dhw/H33//jU6dOuHDDz9E7969sWTJEqjVaixcuLAqYqQqEBCUjp7PX0d8nL3YoZTKzUuN1z9KQh1/FQRBhj2RTpgx3B9Ld1+Bb8MC/BpzQe/47b+44Lfl7mjTJVukiItpYtSweEEJeWMFoAFU3+Uib2IWbH52gsxKBpm7HDab9Asw6s0FKPw1H4q2Fo+4avWwupyDrG6uKGhgDZkGcF5/B16fX8PNeUEQlGZQpKthlq7GvcHeKPRRwjytEK4rbkGRrkbK+NILNWJRWmsRf9kauyPdMO3bq2KH81hW5mrE3nXBpgtBWNR31yOP6xIQj+beKUjNtqnG6B7N7HwB1L3toQ20BLQCLCLuw+rjZOR97wMoHyZh6p52KHz1YXIsmFBySUS1D/NYaev0fDpGTU/CNx/64J8z1nhh5F3MXhuPER0aIfOeudjhPZLSWov4S9bYtd4V03+MFzscg6QlWyDiSz/cvq6ETAaEvZCKT5b/g7f7tMCNONMqOBbVtUDGp74PG/71vazin3w4zLiFvAHOyHnTHZDLoLheYMT4p6pjeT0HjodToapjpdeujM9GnW+u4H4PL6QO9IMgl8Hydh5gAp1vlJZFiL/hhJ0HAzBzwl8l9r/41kC9x0+2uI33Rh7B4ZP1qinC8hs/7GmY/es941c/G7OXnsSRfV7iBUWVxuAf9QkTJuCdd94BAISFheGff/7B2rVrcfbsWbz77ruVHqCxZsyYAZlMprcFBQXp9hcUFGDs2LFwcXGBra0t+vfvj5SUlDKvKwgCvvzySwQGBsLS0hJ16tTB7Nmz9Y45cOAAWrduDUtLSzRs2BArV66s7NurEKVVESZPPYWv57dCTra4xZZHeap7Fp7smo069Qvh00CF4R8mQ2mjxT/R1jAzA5zdi/S2Yzsc0LF3BqxstKLGbb3AAebPKmHmr4BZQwWUH9lBSNFCE1sEAJCZySB3kettRYdVMO9iAZm1uJ9edz5sgOxOLlD7WKHQzwqpo+vCPE0Ny4Tibz4Kfa2QMsEfeSEOKPKwRH5TO9x/yQs2Z7IAjWmV/08fdMTqhb44tts0e3n929EEPyw90hZ/Xa3/yGPcbXPwYdcj+GhrGNRa08jQCmZ7oai7HbT1LKCtb4mC99whTy2C/KpK7zjBUgbBWaHbYGMa8VdINU5uT0SVSyp5LMBctjT9RqVh51pn7F7vjBtXlfj6Ax+o8mUIH3Rf7NAe6/R+B6ya741jOx3FDsVgJ/5yxqmDTkhKtMLt61ZYtcgPBXlmCGop7pfNpTKTQXBSPNzsH/bxsP0xFfnPOSF/gAs0dS2h8bGAqr09YG4aeYmsQAOviGtIGeIPjbV+3xS3yBvIeMYD6eHeKPS2htrTCjkhLhBMIPZTf/sgIjIER0/7lbo/PdNab3s65AZiLnnhzl27ao60bFkZlki/93Br0z4VSTetcf6M6f89YbBamMca3OPrv/z8/ODnV/obXWxNmzbF3r17dY8Vioe3O2HCBGzbtg2RkZFwcHDA22+/jX79+uHo0aOPvea7776L3bt348svv0Tz5s1x//593fwQAJCQkIBevXph9OjRWLNmDfbt24c33ngDXl5eCA8Pr/ybNMJb42NwMsoTMdHuePnVWLHDKZNGAxze4ghVnhyNn8gtsf/qOStcu2iNsXNuiRBdGXKLfzvI7Esvamlii6C9qoFygm11RlUu8rziJd21to8exijP10BrJQfMTOArpxpKBgGzn92HlSdb4to90/3gleX9v+hsp/9+Md+fA/O/cqB1MoOmrQ0KBzvq9QgjIhKTKeexAHPZf1OYaxEQnId1S9x1bYIgw9nDdmgSkidaXLWJXC6gQ897UFpr8E+M6RUuzJIK4TwsDjCXQx2kRO5rbtC6mUOWUQTzKwUo6GwPx8mJMLujRpGPBXJfdUVRE9Potea+7jpymzkir7EDnHck6drNstSwup6L7Cdd4Dv/EszvFqDQ0wppz/ugoKHp/R88jqN9Ptq2vIl533UQO5QyKRRaPNPzNjat9YdJdK2jCitX4evrr78u9wUffItmChQKBTw9PUu0Z2ZmYsWKFVi7di26dOkCAIiIiEDjxo1x/PhxPPXUU6Ve7/Lly1i+fDkuXLiARo0aAQD8/fWHeH377bfw9/fHggULAACNGzfGkSNHsGjRIpMofHXscgsNAzPx7pudxQ6lTAmXlRjfOwCFKjmsbLT4ZEUC/AJVJY7b+asL6gYUoGkb00p6BK2Agq9zYNZcAbP6pf+oqbcWQO5nBrPmJtY9XyvA9efbyA+0QaGvVamHyLOK4PRHMrK6uFZzcLXL8LZnoRHkWHvGtOZB0KMVYPntPWiaWEJb72EvUvUzthDcFRBcFJAnqGDx033IbxWi4JOSv5elRIYKzPFVqZEQUXlINY8FmMv+m72zBmYKIOOufk6VnqaAb8OS+SFVnnqBuVi44TwsLLXIzzPDp28Fmd4wx0ZKZL3rBU0dc8jTNbBZlwbHD28g/Rt/mCWrAQA2v6YhZ7g7NP6WsNyfBcept5C+pB403uKOgLE7dQ/Km3m48WHTEvvM04rf2y7bbuNuv7pQ+VrD/ngafL76B4nTmkPtrqzucI3WvWMc8grMcfiU6X7Z8MBTnVNga1uEvVt9xA6lShiby0o5jy1X4WvRokXluphMJjOphOHq1avw9vaGUqlEaGgo5s6di7p16yI6OhpqtRphYWG6Y4OCglC3bl1ERUU9MlnYsmUL6tevj61bt6JHjx4QBAFhYWGYN28enJ2Le2JERUXpXRcAwsPDMX78+MfGqlKpoFI9/NDOysoy8q4fzdUtD2+OO4eP32sHdaFpTUZeGp8GKizbE4u8bDMc3uqIL9/1w/yNV/WKX6p8Gfb/4YTB45NFjLR0qoW50CZoYL3UodT9gkqAeq8KlkNLLyyJyTXiFixu5uP29IBS98vyNPCaHw91HSXu95d2EcOUNfa4iyEh5/Dyqhdhyh81lkvTIL9eiPwF3nrtRc8+nENQ628BwVkBqw/vQJakhuBtYsVeIqqxpJrHAtLJZasjjyXx3EqwwtjnW8DGToP2Pe7hvXlXMXlIM5MqfhWGPBw9ofEHMgOVcH4jHpZHslDkW7x4VEG4I1RhxXl5UQMlLP7OhXJPJnKHirfojuK+Cm6Ribj1TlDpQxeF4upERnt3ZD1dHOddXxtYx2bB4dhdpPX1LXmOierR6Sr+OtoAanWFB51Vue7P38TpKDfcT5NOYZEer1zvuoSEhKqOo9K1bdsWK1euRKNGjXDnzh3MnDkTHTp0wIULF5CcnAwLC4sSq/d4eHggOfnRBZT4+HgkJiYiMjISq1evhkajwYQJEzBgwAD89VfxZH7Jycnw8PAocd2srCzk5+fDyqr0IsfcuXMxc+bMit10GQIaZcDJWYVvftivazNTCGjWIg29X4hHn259oNWazh/X5hYC6vgXAgACgvMRG2ONTT+64d15D4c0Ht7mCFW+DGEvmtbcDgWLclAUVQjrbxwgdy+9yFi0XwUUCFCEm9YvVNeIW7A5m4XbnzSExqXkN2CyfA28v7gGrVKO5An+gMJ03jM1TWufJDhb52Pn6J91bQq5gPc6R2FIyHk8+/0rIkZXzGJpGsxO5CH/S28Ibo//SNEEFSee8iQ1NFIufFVkOWcJLwNNJFVSzGMBaeWy1ZHHZt03g6YIcHQr0mt3ci1C+l3T/0NayorUcty5Ufz/HnfRFoHNc9Bn6B18M62ByJE9mmBrBo23BczuqFEYXFygK/LVz2uLfC0hT1OLEZ6O5Y08KLKL4Df34cJdMi1gFZcNx4MpuD4jGABQ6KX/c1foaQXF/cJqjbUimjVKRl3vTHz2TWexQymTm2c+WrZJw5wPQsQOpeoYm8tKOI+tsZ8SPXv21P07ODgYbdu2hZ+fHzZs2PDI4tO/NW3aFImJiQCADh06YMeOHdBqtVCpVFi9ejUCAwMBACtWrEBISAhiY2N1XcaNMWXKFEycOFH3OCsrC76+lVvBj4l2w5hhXfXaJnwYjVs37BC5NtCkil6lEQRAXaj/TciuX13wVPcsOLpoRIpKnyAIUC3ORdGhQlh/7QC596N71qm3FUDRzgJyJxOZ70gQ4LryNmxOZyJpakMUuVuWOESWp4H359cgmMuQ/H590ZdQrum2XmyEE4n6XayXD9iGrZcCsem88b9vKoUgwGLZPSiO5SJ/njcEz7ILWfJrxQma4Gz6PU4fqyKTe0p4UlAiql5SymWrI48tUstx9Zw1WrXPRtTO4l47MpmAlu1zsHmlS6U+Fz2eTC7A3ELcBaXKlK+FWXIhVM/YQ+thDo2zAma39YtcZrcLoQ4Rd7XsvCB7XJ/aTK/N8+cEFHoocb+7F9SulihyMIdFSoHeMeYpBchtWvqoElPUs/NVxMa7IP6G6c5X+0C33jeRmW6Jk0fF6wlY5YzNZSWcx9bYwtd/OTo6IjAwEHFxcejWrRsKCwuRkZGh901ZSkqKbh6F7du3Q60u/uX4ILnw8vKCQqHQJQpA8bwHAHDjxg00atQInp6eJVbUSUlJgb29/WOTFEtLS1haliw0VKb8fHMkJuj/cVqQr0BWpgUSE+wfcZY4fprjhTZdsuBWR438HDn2/+GEc8dsMXvtNd0xtxMscP64DT79xXSWhVYtzIV6rwpWc+wBaxm094qTApmtDDLLh4VF7S0NNH8XwWq+6bzurhG3YHssHcnv1YfWSg6zjOL3v9baDIKFXFf0kqm0SBnrD3m+BsgvLjhq7BWA3HQKp0prDbz9HiYIHr4q1G+ci+xMBe4mVe3PmaGszNWo65Spe1zHIQuN3NOQmW+J5Gw7ZBbo9whUa+VIy7VCYrpTdYeqx3LpPSj25yB/ugdgJYPsfvE38IKNHLCUQ5akhmJ/DjRPWkOwk0OeUAjL7+9B01wJbX3T+j8wGAtfRCQCU85lqyOPBYCN37vi/cU3ceVva8SetcYLI+9Caa3F7nWm/ce00loD73oPh4J6+qpQv0kesjMUuJtkmiusPzDsvUScPuSI1CRLWNto0Ll3GoLbZmHq603EDk2PzU+pKHzSFho3c8jvF8FmbRogl6Ggox0gkyH/BSdY/3oPRf6WKPK3hPKvLChuFyLrQ++yL16FBKUZCuvoDxnVWsihsVHo2u9384LL1ttQ+VhD5VM8x5dFSj7ujGooRsh6lJZq1PF8OLTZyy0HDfzuITvHEqn3ioefWlsVouOT1/Hd2jZihVluMpmAbs/dwr5tdaDV1OAv+Fn4qrlycnJw7do1vPrqqwgJCYG5uTn27duH/v37AwBiY2Nx48YNhIaGAkCpK/y0a9cORUVFuHbtGho0KO7ae+XKFb3jQ0NDsX37dr3z9uzZo7sulU9GmgLz3/HD/VQFrO008G9cgNlrryGkU47umF3rXODqpUZIJ9NZTlm9qbjYkv9Opl67cootzJ99WMBQbyuAzE0OszamM9zLYe89AECdT+P02lPf9EV2JxdYXs+DMq54AQG/CZf1jkn8qjGK3EynmBHQPBfzfn0Y45tTbwAA9vzmioWTTatbflPPVKx4ebPu8aQuxwAAf15ohE92dBErrDKZby1Ocqwn39FrL5johqLudoC5DIqYfFhsygQKBAhuZihqZ4PCQeIW7CqDTKjA5PYSThiISFzMZYGDm53g4KLBa5OS4eRWhPiLVvh4iD8y0kwnnypNYIs8zI+8qns8esZtAMDuDc5YMLGeSFGVj6OLGu/Pi4OzeyFys82Q8I8Npr7eBGePOoodmh75vSLYfZkEeZYWWgczqJtYIX1+XQgOxX/u5vdxBtQCbFekQp6tQZG/JTJm+UDrZdqFRwDI6OoJWZEWbr/dgFluEVQ+1rj1ThDUbuJPl9KofhoWTN2pezzm1ZMAgF2HGmL+/1dvfOapBMhkAvYfqy9KjIZo+WQa3L0KsHtLzZzU/gFjc1kp57EyQRAkHP6jvf/+++jduzf8/PyQlJSE6dOnIyYmBpcuXYKbmxvGjBmD7du3Y+XKlbC3t8e4ceMAAMeOHXvkNbVaLdq0aQNbW1ssXrwYWq0WY8eOhb29PXbv3g2geB6JZs2aYezYsXj99dfx119/4Z133sG2bdsMWgknKysLDg4O6NrgXSjMTKegUF7bD24UOwSjDLgWVvZBJirmpnR/QQe8/o/YIRglaUxrsUMwmm246S0IUR5FuSqc7vcVMjMzYW9fvT0mH/xerjd7NuRK45JNbUEBrn/8sSjxE5G0SDmXffD7sjP6QCEz7aJUqeTSHJIvtxK/EGKslF+lm8em35bOkMN/a7ChqOyDTJTl1ZSyDzJBRVoV9t7+VrQ8sKK5rJTz2Brb4+vWrVsYNGgQ7t27Bzc3N7Rv3x7Hjx+Hm1vxWN1FixZBLpejf//+UKlUCA8Px7Jlyx57Tblcji1btmDcuHHo2LEjbGxs0LNnT91yz0DxktDbtm3DhAkT8NVXX8HHxwc//vijqMs/ExFRJeJQRyKqBsxliYioSnCoY/kcPnwY3333Ha5du4bffvsNderUwc8//wx/f3+0b9++smM0yrp16x67X6lUYunSpVi6dKlB1/X29sbvv//+2GM6d+6Ms2fPGnRdIiKSCBa+iCRNCnkswFyWiIiqSC0sfBk8Y9vvv/+O8PBwWFlZ4ezZs1CpiidqzMzMxJw5cyo9QCIiIlPyYF4EYzciEg/zWCIiqu3EyGM///xzyGQyjB8/XtdWUFCAsWPHwsXFBba2tujfv3+JxVUqi8GFr88++wzffvstfvjhB5ibPxyz365dO5w5c6ZSgyMiIiIiqizMY4mIiKrXqVOn8N133yE4OFivfcKECdiyZQsiIyNx8OBBJCUloV+/flUSg8GFr9jYWHTs2LFEu4ODAzIyMiojJiIiItMlyCq2EZFomMcSEVGtV415bE5ODoYMGYIffvgBTk4PV3fPzMzEihUrsHDhQnTp0gUhISGIiIjAsWPHcPz48cq8WwBGFL48PT0RFxdXov3IkSOoX9/0lyglIiKqEKGCGxGJhnksERHVehXMY7OysvS2B9MGlGbs2LHo1asXwsLC9Nqjo6OhVqv12oOCglC3bl1ERUVV0o0+ZHDha+TIkXj33Xdx4sQJyGQyJCUlYc2aNXj//fcxZsyYSg+QiIjIlHCOLyLpYh5LRES1XUXzWF9fXzg4OOi2uXPnlvo869atw5kzZ0rdn5ycDAsLCzg6Ouq1e3h4IDk5ubJv2fBVHT/88ENotVp07doVeXl56NixIywtLfH+++9j3LhxlR4gERGRSeGqjkSSxTyWiIhqvQqu6njz5k3Y29vrmi0tLUscevPmTbz77rvYs2cPlEqlcXFWIoMLXzKZDB9//DEmTZqEuLg45OTkoEmTJrC1ta2K+IiIiIiIKgXzWCIiooqxt7fXK3yVJjo6GqmpqWjdurWuTaPR4NChQ1iyZAl27dqFwsJCZGRk6PX6SklJgaenZ6XHbHDh6wELCws0adKkMmMhIiIyfRUZssgeX0QmgXksERHVWsbmsgac07VrV5w/f16vbfjw4QgKCsIHH3wAX19fmJubY9++fejfvz+A4gVobty4gdDQUCOCezyDC1/PPPMMZLJHz+b/119/VSggIiIik8ahjkSSxTyWiIhqvQoOdSwPOzs7NGvWTK/NxsYGLi4uuvYRI0Zg4sSJcHZ2hr29PcaNG4fQ0FA89dRTRgT3eAYXvlq2bKn3WK1WIyYmBhcuXMDQoUMrKy4iIiLTxMIXkWQxjyUiolqvGgpf5bFo0SLI5XL0798fKpUK4eHhWLZsWeU+yf8ZXPhatGhRqe0zZsxATk5OhQMiIiIyZRVZnZGrOhKJi3ksERHVdsbmshXNYw8cOKD3WKlUYunSpVi6dGnFLlwO8sq60CuvvIKffvqpsi5HRERERFQtmMcSERHVXJVW+IqKijKJZSqJiIiIiAzBPJaIiKjmMnioY79+/fQeC4KAO3fu4PTp05g2bVqlBUZERGSSOMcXkWQxjyUiolrPROb4qk4GF74cHBz0HsvlcjRq1AizZs1C9+7dKy0wIiIiU8Q5voiki3ksERHVdmLN8SUmgwpfGo0Gw4cPR/PmzeHk5FRVMRERERERVSrmsURERLWTQYUvMzMzdO/eHZcvX2bCUE3UXvYQFNKbcyJTmy92CEYZ5XVQ7BCMNu37N8QOwWgFnZqJHYJRcr2l+7XH/IZbxA7BKLnZGgwQOwhA0l29iWor5rFUXjJzgwfFmAShqEjsEIwm2+YsdghGS5i+XOwQjPLMnyPFDsF4CjOxIzCO1oTirmW5rMGT2zdr1gzx8fFVEQsREZHpEyq4EZFomMcSEVGtVwvzWIMLX5999hnef/99bN26FXfu3EFWVpbeRkREVJM9mBfB2I2IxMM8loiIarvamMeWux/vrFmz8N577+HZZ58FADz//POQyWS6/YIgQCaTQaPRVH6UREREpoKrOhJJDvNYIiKi/+Oqjo82c+ZMjB49Gvv376/KeIiIiOj/Dh06hPnz5yM6Ohp37tzBH3/8gb59++r2Dxs2DKtWrdI7Jzw8HDt37qzmSIlMG/NYIiKi2qvchS9BKC7vderUqcqCISIiMnUV6ept6Hm5ublo0aIFXn/9dfTr16/UY3r06IGIiAjdY0tLS+OCI6rBmMcSEREVMzaXrRVDHQHodQknIiKqlSphqON/5xKytLQstWDVs2dP9OzZ87GXtLS0hFrJC7kAAQAASURBVKenp5EBEdUezGOJiIjAoY5lCQwMLDNpuH//foUCIiIiMmmVUPjy9fXVa54+fTpmzJhh1CUPHDgAd3d3ODk5oUuXLvjss8/g4uJiZIBENRfzWCIiIrDwVZaZM2fCwcGhqmIhIiIyeZUx1PHmzZuwt7fXtRs7PLFHjx7o168f/P39ce3aNXz00Ufo2bMnoqKiYGZmZlyQRDUU81giIiIOdSzTyy+/DHd396qKhYiIqFawt7fXK3wZ6+WXX9b9u3nz5ggODkaDBg1w4MABdO3atcLXJ6pJmMcSERHVTvLyHsh5EYiIiPCwe7ixWxWqX78+XF1dERcXV7VPRCQxzGOJiIj+z0Tz2Kpk8KqOREREtVolzPFVVW7duoV79+7By8urap+ISGKYxxIREf0f5/h6NK1WW5VxEBERSUJlzPFVXjk5OXq9txISEhATEwNnZ2c4Oztj5syZ6N+/Pzw9PXHt2jVMnjwZDRs2RHh4uHEBEtVQzGOJiIiKcY4vIiIiMhmnT5/GM888o3s8ceJEAMDQoUOxfPlynDt3DqtWrUJGRga8vb3RvXt3fPrpp0ZPlk9EREREVNOw8EVERGSIahzq2Llz58cO0dq1a5eRgRARERFRrcShjkRERPQ41TnUkYiIiIioMnGoIxERET2eCU9uT0RERET0WOzxRURERI/FwhcRERERSRULX1ST/fx1JDzdcku0b94dhG8inhIhotLtXu2B3as9cPdW8eTMPoH5GDD+Flp1ydAdcyXaFr9+URdxZ20hNxNQr2kePv7lMiysxF21KWaNE/5e64ysW+YAAJcAFULH3YV/pxwAwJ6pXkg8aovcVAXMrbXwbp2HDpNT4NKgUMywAQAt/ZPwSse/EeRzF272eZi0KhyHLvnr9nduGo9+T11CUJ27cLBR4ZXFA3D1jquIET+aXKbF0L5n0S00Ds4O+UjLsMauIwH4eUtLADKxw9PTxj0JIxv/jabOd+FhnYfRB8Ox99bD191aocaklsfRzfc6HC0KcCvXHqtim+HXq01FjFra73UiIpKu3sPSMGBMKpzdihB/yQrLptZBbIy12GE91sAxSWgXng6fBvkoLJDj0hlb/PSFL27FW4kdWpmkEvvw9mfwTFAC6rlmQFVkhnM3PfH13qeQeM9Rd4yPUybGd4tCy7rJMFdoEBXni3k72uN+rrjvH40G+GWBJ/b97oT0u+Zw8VCj20v3MXh8CmT/SltvXLXEis+8ce64LTRFgF+gCtN+SIC7j1q02IMD72Bgj3MIrHcPro55mPpNGI6erafb72Sfh1EDTuGJZrdha6XCuSte+HpNKG6nOogWc2nkcgGDR8TimfBbcHJR4X6aEnu3+WLdygCY2t8OZBy52AFUpdu3b+OVV16Bi4sLrKys0Lx5c5w+fVq3XxAEfPLJJ/Dy8oKVlRXCwsJw9erVx15z5cqVkMlkpW6pqam64w4cOIDWrVvD0tISDRs2xMqVK6vqNsvt7Y9746XRL+m2ybO7AwAOHvcTOTJ9zl6FGDzlBj7ffh5zt59Hs3aZmDeiEW7GFn/AXom2xexXGqNFxwzM2Xoec7edR/iwZMjk4peg7TzV6DApBa/8GY8hm+JRNzQXm0b7Iu1KcRHPo1kBenxxG8N2xaF/RCIEAfh9mB+0GpEDB2BlUYSrd1wwf1OHR+7/+7onluwwnSLpowx69hz6PHMZX/8SiqEf9cf3kW3wcs/z6Bd2SezQSrBSFOFyhgtmnCr9df+o9TF09L6J9452QfjWgYj4pzmmP3EEXetcr95A/0PK7/WKklVwIyIqL+ay+jo9n45R05OwZqEnxoYHIv6SErPXxsPBRbw//MujedtsbPnZHRP6NcGU14KgUAiYvToWllam/6Eoldhb+91B5KmmGLbiBbz183NQyLVY+spWKM2L3xtKczWWvrINAmQYvbo3RvzUF+ZmWiwatAMykbuxbFjqjq2rXDF29m38cPAfjPg4CZHL3PHniodfMCddt8DEvgHwbViA+b/F4dt9sRg8PhkWSnFjV1oW4dpNF3z1y9Ol7BXw6dt74eWWjalfd8OomS8g5Z4tvnx/B5QWpvUzO+CVODz7wnV8u7A5Rg96BhHLGqP/kDj0fjFB7NCqRG3MY2tsj6/09HS0a9cOzzzzDHbs2AE3NzdcvXoVTk5OumPmzZuHr7/+GqtWrYK/vz+mTZuG8PBwXLp0CUqlstTrDhw4ED169NBrGzZsGAoKCuDu7g4ASEhIQK9evTB69GisWbMG+/btwxtvvAEvLy+Eh4dX3U2XITNb/55e7nMet5PtcO6yp0gRle6Jbul6jwd9cBO7V3vi6hk7+DbKx6oZ9dDz9WT0fTtJd4x3g4LqDrNUDbrm6D1u/14q/l7rhDsxVnANVCH45Yf35uCjRvuJqVj9XENk3TKHo5+4HwBRsXURFVv3kft3nA0EAHg5ZVVXSEZr2jAVR8/64fi54vtJuWeHrm3jEVT/rsiRlXQoqS4OJT36dW/tloyN8Y1wIrUOAGB9XBMMangJwa6p2He7XjVFWZKU3+sVxqGORFQNmMuW1G9UGnaudcbu9c4AgK8/8MGTXbMQPug+NizxEC2uskwd1kjv8YJJ9bE++iwCmufiwkl7kaIqH6nEPm5NL73H0/98BvsmrUJjr7s4e8MbLX2T4eWYjcHfDUBuoUXxMZuewf4PItDG/zZOJviIETYA4NJpG4SGZ6JtWHGO7elbiP2bsvV6Mq783AtPdsnCG9Pu6Nq864nfi/7keV+cPO9b6j4fjyw0bZiK4VP743pS8e+tRT+3w++L1qBL22vYfjioOkN9rMbN7+PEYU+cOlb8eyQ12Rqdwm6jUZMMbBE5tipRC4c61tgeX1988QV8fX0RERGBJ598Ev7+/ujevTsaNGgAoPgbssWLF2Pq1Kno06cPgoODsXr1aiQlJWHTpk2PvK6VlRU8PT11m5mZGf766y+MGDFCd8y3334Lf39/LFiwAI0bN8bbb7+NAQMGYNGiRVV92+WmMNOga/t47Dpg2t03tRrg6J8uUOXLERiSjcw0Ba6etYODixpT+zTDyJYhmN6/Kf45aSd2qCVoNcA/W+2hzpPDu1V+if3qPBku/OYEB99C2HkViRBhzXUxzh2tmyTBxyMTANDA9x6aBSTj5Dnxkhpjnbnria4+1+FhlQNAwFMet1HPPhNH7pjOvdS29/qDlXCM3YiIyoO5rD6FuRYBwXk4c/hhzicIMpw9bIcmIXmixWUMa7vi3lLZGdLrgyCV2G0ti4tCWfnFBWBzhQYCgEKNme4YVZECWkGGlnXvlHaJatPkiVzEHLHDrWvFveavXVTi4kkbtOmSDQDQaoGT++xRp74KHw2qj5eaN8U7vQJwbIdpDRf8L3NF8XulUP3wNRcEGdRFZmgekCJWWKW6fN4ZLZ5Ig7dv8Re7/g0z0aTFfZyOchc5sqpRG/PYGlv42rx5M5544gm8+OKLcHd3R6tWrfDDDz/o9ickJCA5ORlhYWG6NgcHB7Rt2xZRUVHlfp7Vq1fD2toaAwYM0LVFRUXpXRcAwsPDH3tdlUqFrKwsva0qPd3mBmytC7H7UMMqfR5j3bhsjVcDn8Tg+k/hhyn18f4PsfAJzEdKYvGHV+RCH3QdnIKPfrkM/+Y5mPVyE9yJL/2bzep2N9YSXwcHYXGTJtg7zRvPL78JlwCVbn/ML074OjgIXwc3QcIhWwxYeR1mFhL+LWKC1m5vgb9O1MeqOb9hzw8/4fsZm/D7nmbYe9w03++PM+t0e8RlOuFov19wedAP+OmZbZhxqj1OpXqLHRrf60REVUhKuWx15LH2zhqYKYCMu/oFl/Q0BZzcpPOlikwmYPS0RFw8ZYvEK6Y9N9l/SSV2GQS83+MoYm544trd4t6B5295oKDQHO+EHYdSoYbSXI3x3aOgkAtwtRO3cDrw7VR06pOONzoG4dm6LTC2eyO8MPIuuvQr7j2fkaZAfq4Z1i9xxxPPZGPur/Fo1yMTs96oh3NRNqLG/jg3kh2RnGaLkQNOwdZaBYWZBi/3/BvuzrlwcTStYnXkzw1xaG8dfPfrfvx5aCu+XnkIf66vjwO7TeeLZilavnw5goODYW9vD3t7e4SGhmLHjh26/QUFBRg7dixcXFxga2uL/v37IyWlaoqipl2qr4D4+HgsX74cEydOxEcffYRTp07hnXfegYWFBYYOHYrk5GQAgIeHfrdoDw8P3b7yWLFiBQYPHgwrq4cTPCYnJ5d63aysLOTn5+sd+8DcuXMxc+ZMQ26xQnp2voqTMXVwL900P7S8G+Rj/q5zyMs2w/FtLlg6oSFm/nYRwv//Zg57JQXPDCwetubfLBEXjjhg/3p3DJ5yQ8Soizn7F+LVzfEozJHjyg577JxUBwPXXtcVBBr3yYRf+1zkpipw6kcXbHnHF4M2JEBhyYJAZencJh5hodfw2XedcT3JCQ1972Hs4BO4l2GNXUcDxA7PIK82Oo+WrikYdaAHbufa4Un3O5jR5ghS821wLFncD+Na+17nUEciqgZSymWrO4+VsrGzElGvUT7ee7GJ2KEYTCqxf9jrMBq438eIn/rq2jLyrPBBZDdM6XUYL7c9D60gw67zDXE5yRWCIO7ol0ObHfHXRid8uDQRfo0KcO2iFb6dXuf/k9ynQ/j/2l2h4VnoN6r4758GzfJx6bQNtq12RXBoycXLTIFGI8f0pWGYNPwQtiz5GRqNDNGX6uD4OR+9SftNQYeuSejc/Rbmz2iNxHg71A/MxKh3L+J+mhL7dpQ+lFPSqmmoo4+PDz7//HMEBARAEASsWrUKffr0wdmzZ9G0aVNMmDAB27ZtQ2RkJBwcHPD222+jX79+OHr0qBHBPV6NLXxptVo88cQTmDNnDgCgVatWuHDhAr799lsMHTq0XNfo2bMnDh8+DADw8/PDxYsX9fZHRUXh8uXL+Pnnnysc75QpUzBx4kTd46ysLPj6Vs0PmbtrDlo1v4OZC5+pkutXBoWFAE//4nm76gfn4trfNti+wgt9x94GAPgE6A+nqhOQj7TbFtUeZ2nMLAQ4/X/MvUezAiSft8KZVc7o9llxN2pLOy0s7QrhVK8QXi3zsSQkCFd326Fxb9OfO0sqRg88hV+3BWP/yeLhIAm3nOHhmoPBvf6WVOHL0qwI77U4ibcOheNAUvEiFLEZLmjslIY3Gv8teuGrVr/XWcAioiompVy2OvLYrPtm0BQBjv/p3eXkWoT0u9L4k+atmdfRtksG3h/YGGnJppG3lpdUYp/c8zDaByRi5Mo+SM221dt3PN4Xfb4ZDEerfBRp5chRWWLXe6tw66K4c5X98Kk3Br6dis59MwAA/o0LkHrLAuu+8UC3l9L/39tRgF+g/pzGvgEFuHjSdHt8AcCVRFeMnNEPNlaFUCg0yMy2wrKpfyL2ummtDP/62Eu6Xl8AkBhvD3fPfLz42tWaWfgCqiWX7d27t97j2bNnY/ny5Th+/Dh8fHywYsUKrF27Fl26dAEAREREoHHjxjh+/DieeqpyF1STxqeEEby8vNCkif63EY0bN8bvv/8OAPD0LJ7QPSUlBV5eXrpjUlJS0LJlSwDAjz/+iPz84gKLubl5ief48ccf0bJlS4SEhOi1e3p6luiil5KSAnt7+1J7ewGApaUlLC0tDbhD44V3uoqMTCVOnJVO102tVgZ1oQxuvio4eRQi6T9LKN+Jt0LLZ9Ifcba4BC2gKSz9aw3h/9V2TWGNHXUsCkuLImj/8+2dViuHTGID081lWliYaaH9zzx8GkEGuQneS215r1dkjgMT/G8jIhMlpVy2OvLYIrUcV89Zo1X7bETtLJ7bSCYT0LJ9DjavdKnS5644AW/NTMTT3dMxeVBjpNyqnpy/ckgldgGTex7BM0EJGLXqeSRlPLqYlZFf/B5uU+82nG3ycSi2XjXFWDpVgbzE6vRyM0E30sXcQkBgizzdHGAP3I63hLuPNBYMys0vLpbWcc9EYL00/PRHSBlnVC9LpaZEzz+tRga5ifVMqyzG5rIPzvnvcPbyfAZoNBpERkYiNzcXoaGhiI6Ohlqt1htWHxQUhLp16yIqKoqFr/Jq164dYmNj9dquXLkCP7/iXhP+/v7w9PTEvn37dMlBVlYWTpw4gTFjxgAA6tSp88jr5+TkYMOGDZg7d26JfaGhodi+fbte2549exAaGlqRW6oUMpmA8E5x2HOoAbRa0/wDdO3cumj5TDpc6xSiIMcMRza54lKUPT5ecxkyGfD8mNvYsMAX9Rrnol7TPBz4zQ2346ww8bvYsi9exQ7Pd4d/pxzYeatRmCvHP5sdcPOEDfpHJCLjhjlitzmgXoccWDlrkJ2swMlvXaFQalG/c7bYocPKQg0fl0zdY2/nLAR4pSEr3xIpGXawtyqAh2MO3OyLu1P7uWUAAO5lW+N+jmkNmY2KqYtXnotB6j0bJNx2QoDfPbwYfgE7Dpteby9rhRp+dg9fd1/bLDR2SkOGyhJ38uxwIsULH7aKgqrIrHioo0cSXvC/gjlnSls2uvpI+b1eYRzqSETVgLlsSRu/d8X7i2/iyt/WiD1rjRdG3oXSWovd65xFjassY2cl4pk+9zBzVADyc+Rwci3uLZ2brUChyjTz8QekEvuHzx5Gj+ZxmLiuB/JUFnCxKZ5DKkdlAVVR8Z+8vVv+g4S7TsjIU6K5Twre73EUa48HI/Geo4iRA091y8K6rz3gXkddPNTxghU2fueO7i/f0x3z4lupmDPaD82eykGLp3Nwer89ju9xwPzf4kSMHFBaqlHH/WERxMs1Gw187yE71xKp923R6Yl4ZGQrkXrfFvXrpOPtwVE4esYPpy+aVgeMk0c8MHDoVdxNsUJivB0aBGbihZfjsWdbDe7tVYGhjv/t0Tt9+nTMmDGj1FPOnz+P0NBQFBQUwNbWFn/88QeaNGmCmJgYWFhYwNHRUe94Q4frl1eNLXxNmDABTz/9NObMmYOXXnoJJ0+exPfff4/vv/8eACCTyTB+/Hh89tlnCAgI0C0B7e3tjb59+5Z5/fXr16OoqAivvPJKiX2jR4/GkiVLMHnyZLz++uv466+/sGHDBmzbtq2yb9NgrZslwcMtFzsPmF4B4IHMNHMsHd8Q6akWsLbTwK9xLj5ecxnBHYuLA73eSIa6QI5VM+shJ0MBvyZ5mPbrJXjWU5Vx5aqXd0+BHZPqIDdVAQs7LdyCCtA/IhH12uciJ0WB26etcWalCwqy5LB20cDnyVwM2pAAaxeN2KGjsU8qlr/5cMHeCb2LJ7DdejoQn0Z2QYcm1/HJSwd0+2cP2QsA+GFPCH7c26ZaYy3L12uewusvnMG7rx6Dk30B0jKsseVAI6z+s5XYoZXQ3DkVa7o9fN0/Dil+3X+/FogPjnfBu0e64f2WJ7Cg3T44WqhwO9cOC/9+Emuviju/hpTf60REUsBctqSDm53g4KLBa5OS4eRWhPiLVvh4iD8y0kr2ZjMlvV9NBQDMX/ePXvuC9/2x53c3MUIqN6nE/mKbSwCAH4Zt1mufsakztvwdBACo55KBt7uegIOVCkkZdvjpcGusOR5c7bH+11uf3cKqeV5YMsUHGfcUcPFQ49lX0zBkwsNel+16ZuKdz29h3RIPLJ/mA5/6Kkz7IQHN2oo7v1ejenex+IOHRfKxg04AAHYeCcAXP3WCi2Me3nr5BJzs83Evwxq7oxri582ml49/u6g5Xhn5D956/zwcnFS4n6bEjj/98OtPgWKHZpJu3rwJe/uHvSof19urUaNGiImJQWZmJn777TcMHToUBw8erI4w9cgEQaix3z9v3boVU6ZMwdWrV+Hv74+JEydi5MiRuv2CIGD69On4/vvvkZGRgfbt22PZsmUIDCz7Df7000/D398fa9asKXX/gQMHMGHCBFy6dAk+Pj6YNm0ahg0bVu7Ys7Ky4ODggI7tp0GhMI3VCg3x25plYodglBMF4o7xr4hpM98QOwSjWadKo5v2f90MM+1E+3GWvfCj2CEYJTdbgwEtryAzM1PvA7c6PPi93PyNOTCzMO73sqawAOd//EiU+IlIeqSayz74fdkZfaCQSe+zUlZN04/QQ3eHtRY7BKNFT18udghGeeb1kWUfZKKs/6malf+qWpFWhb2JS0XLAyuay1ZGHhsWFoYGDRpg4MCB6Nq1K9LT0/V6ffn5+WH8+PGYMGGCUdd/lBrb4wsAnnvuOTz33HOP3C+TyTBr1izMmjXL4GsfO3bssfs7d+6Ms2fPGnxdIiIycRzqSETVhLksERFVumpa1bE0Wq0WKpUKISEhMDc3x759+9C/f38AQGxsLG7cuFElw+prdOGLiIiosnFyeyIiIiKSqopObl9eU6ZMQc+ePVG3bl1kZ2dj7dq1OHDgAHbt2gUHBweMGDECEydOhLOzM+zt7TFu3DiEhoZW+sT2AAtfREREhmGPLyIiIiKSqmrq8ZWamorXXnsNd+7cgYODA4KDg7Fr1y5069YNALBo0SLI5XL0798fKpUK4eHhWLasaqZMYuGLiIiIiIiIiIgqzYoVKx67X6lUYunSpVi6dGmVx8LCFxERkSHY44uIiIiIpErEOb7EwsIXERGRATjHFxERERFJVXXN8WVKWPgiIiIyBHt8EREREZFU1cIeX3KxAyAiIiIiIiIiIqoK7PFFRERkAJkgQCYY95WXsecREREREVUGY3NZKeexLHwREREZgkMdiYiIiEiqauFQRxa+iIiIDMDJ7YmIiIhIqji5PRERET0ee3wRERERkVTVwh5fnNyeiIiIiIiIiIhqJPb4IiIiMgCHOhIRERGRVHGoIxERET0ehzoSERER0f/Yu/OwqMq/DeD3wAADsi+yKCCuuGZqIWquFJI/l7RMs8IyTdNyKS1LcylzydJM0xaTTM20hTL3fUncQKzUUAQVRcANkB1mnvcPXkYnFpkDcuYM9+e6znU5Z73nOAxfnvOc5yhVLbzVkQ1fRERERmCPLyIiIiJSqtrY44tjfBERERERERERkVlijy8TZ3UtE2rLfLljGK1HzHC5I0gyr8UvckeQzO1IqtwRah3LAk+5I0j2zpmBckeQRJuTD2ChvCF4qyMRkVkThUVyR5DE0tFe7giSuf2dI3cEyUZc7iJ3BEmEpdwJpBNZ2XJHkEToCuSOUIy3OhIREdH9KLmrNxERERHVbrWtluWtjkRERMYQomqTEQ4cOIC+ffvCx8cHKpUKkZGR/4ki8P7778Pb2xu2trYICQnB+fPnq/HNEhEREZFZqaE61pSw4YuIiMgIJQOCSp2MkZ2djYceegjLli0rc/mCBQuwZMkSrFixAkePHkWdOnUQGhqKvLy8aninRERERGRuaqqONSW81ZGIiMhEhYWFISwsrMxlQggsXrwY06ZNQ//+/QEAq1evhqenJyIjIzFkyJCajEpEREREZJLY44uIiMgYoooTgMzMTIMpP9/4h5gkJiYiJSUFISEh+nlOTk4ICgpCVFSU5LdHRERERGasinWsErHhi4iIyAgqXdUmAPD19YWTk5N+mjt3rtE5UlJSAACenoZPF/X09NQvIyIiIiK6V1XrWCXirY5ERETGqMoVr//fLikpCY6OjvrZNjY2VY5FRERERHRfUmtZBff4YsMXERGREaoyuGfJdo6OjgYNX1J4eXkBAFJTU+Ht7a2fn5qairZt21Zp30RERERknqTWskoe3J63OhIRESlQQEAAvLy8sHv3bv28zMxMHD16FMHBwTImIyIiIiIyHezxRUREZAwhiiep2xohKysL8fHx+teJiYmIjY2Fq6sr/Pz8MGHCBHz44Ydo0qQJAgICMH36dPj4+GDAgAHS8hERERGReZNay0qtf00AG76IiIiMUB23OlbWiRMn0KNHD/3rSZMmAQDCw8MRERGBKVOmIDs7G6NGjUJ6ejq6dOmCbdu2QaPRSAtIRERERGatNt7qyIYvIiIiY1TD4PaV1b17d4gKrq6pVCrMnj0bs2fPlhiIiIiIiGqVWji4Pcf4IiIiIiIiIiIis8SGLyIiIiOUdA+XOhERERERyaWm6ti5c+fikUcegYODA+rWrYsBAwYgLi7OYJ28vDyMHTsWbm5usLe3x6BBg5CamlqN77YYG76IiIiMUTIgqNSJiIiIiEguNVTH7t+/H2PHjsWRI0ewc+dOFBYW4oknnkB2drZ+nYkTJ2LTpk3YuHEj9u/fj+TkZAwcOLC63zHH+CIiIjJGTQ5uT0RERERUnWpqcPtt27YZvI6IiEDdunURHR2Nrl27IiMjAytXrsS6devQs2dPAMCqVavQvHlzHDlyBB07djQ+ZDnY44uIiMgYoooTEREREZFcqljHZmZmGkz5+fmVOmxGRgYAwNXVFQAQHR2NwsJChISE6NcJDAyEn58foqKiqvouDbDhi4iIiIiIiIiI7svX1xdOTk76ae7cuffdRqfTYcKECejcuTNatWoFAEhJSYG1tTWcnZ0N1vX09ERKSkq1ZuatjrXYM8/F4aVXzyByYyN8tbSN3HH0bDfehE1UFiyv5gPWFigMtEV2uAe09a1LrywEnGZdhXVMNjLe9UFBR4eaD3yP2LUuOLXOFZlXrAAAbk3yEfz6dQR0ywIA7JzmjUt/2iM7TQ0rOx182uXgsSmpcGtUIGfsSjHVz0tlmHL2Dp7JGNHqFFq5X0dduxy8tjsUuy8H6JfHvbSizO0WHO+Ilf+0raGUpSn557SqeKsjEZF8+g6/gafHpMHVowgJZ2zxxbR6iIu1kztWhVoF3cEzo1PRpHUu3LwKMXNEQ0Rtd5Y7ltGeeeUyXpp0EZGr6+GreY3kjmOgdfNUPNP/NJo0vAk311zMnN8dh4/76Ze/NfZPPNHjgsE2x0/64L05If/dlSy0aTpkLCtAXlQRdPmAur4FXKfZwLq5JQDg1uw85GwpMtjGpqMlPBbbyhEXAPBcWCy6trsIP68M5BdY4vQFT3z58yNISnXWr2OtLsKYwUfR85EEWKu1OHa6Phav7YTbd0zvZ3bYmAQMG3PRYF5Soh1e7V99t9uZiqre6piUlARHR0f9fBsbm/tuO3bsWPzzzz84dOiQ8QeuBmbd46tBgwZQqVSlprFjxwKQ/gSB7du3o2PHjnBwcICHhwcGDRqEixcvGqyzb98+tGvXDjY2NmjcuDEiIiIewDuUrkngbYT1u4iEeMf7r1zDrP/JQW4fZ6R/7I/02fUBrYDTjCQgT1dqXdvfb0OoZAhZDgevQjw2ORXP/5aAYZEJ8AvORuRoX9w4V/xl4NkqD73nX8Xw7fEYtOoShAB+Hu4PnVbm4Pdhyp+X+zH17HbqIsTddsOsqMfKXN55/YsG09SD3aETwPaLDWs4qSEl/5xWmU5UbSIiqgTWsaV163cbo2YkY+2nXhgb2hQJZzSYsy4BTm6FckerkMZOh4Qzdlg6zVfuKJI1aXUHYYOvIeHfOnJHKZNGU4SEiy5Y+k1QuescP+mDZ195Rj/NXVx27VXTdJkCaaNyATXgvsgWXj/YwfkNa1g4GBZPNh0t4b3ZTj+5zdbIlLhY26YpiNzbAq/N7Ye3FoXB0lKHjydug8b67s/j2GePoFOby5j5ZS+M//h/cHfOwezXdsmYumIX4+tgWI/O+mlyeDu5Iz0YVaxjHR0dDab7NXyNGzcOf/zxB/bu3Yv69evr53t5eaGgoADp6ekG66empsLLy6ta37JZN3wdP34c165d0087d+4EADzzzDMApD1BIDExEf3790fPnj0RGxuL7du348aNGwbbJSYmok+fPujRowdiY2MxYcIEvPLKK9i+ffuDe7NG0NgWYcq041jy8cPIulNG7wyZZczyRX4vJ2j9bKAN0ODOeC9YXi+CVXyewXqWCXmwjbyNO29U7w9FVTTqlYWG3bPg0qAArgEF6PJmGqztdLgWW3w1ps2Q26j/aA6c6hfCs1UeukxKw51r1voeYqbI1D8vFVFC9gNX/bA45lHsuqeX171u5NoZTL38LuLotXq4kiVvQ56Sf06rjGN8EVENYB1b2sBRN7BtnSt2/OiKy+c1WPJ2feTnqhA69Jbc0Sp0Yq8TvvvYB4e3OcsdRRKNnRZTFvyLJTOaIivTNG8YOn6yHiLWP4w/j/mVu05hoSVup9vqp6zs+/dSqQl3vi+ApacKrtM1sG5pCbWPBTRBaqjrG/6prrIGLN0s9JOFo7xXFad81hvbDjfFxWQXXLjihnmrusLLLQtN/W8AAOrYFuDJLufwxYaOOPmvD85ddsf8iK5o3TgNLRqmyZq9PNoiFW7ftNFPmemm+fdDldVQHSuEwLhx4/Drr79iz549CAgw/Hunffv2sLKywu7du/Xz4uLicPnyZQQHB0t7b+UwzW+uauLh4WHwet68eWjUqBG6desm+QkC0dHR0Gq1+PDDD2FhUfxl9NZbb6F///4oLCyElZUVVqxYgYCAAHzyyScAgObNm+PQoUNYtGgRQkNDH+A7rpzXJsTiWJQXYqPrYsgLcXLHuS9VdnEPEp2D5d2Z+To4fnINWa/WhXAxzY+xTguc2+qIwhwL+DycW2p5YY4K//zkAiffAjh4F5WxB9OgtM/LvZScvSxumhx0872Mdw72kDtKKUr9OSUiMlWsYw2prXRo0iYH65fW1c8TQoWTBx3Qon2ObLlqg9emncex/a6IjXLBkFcvyx1HsjYtU7Bh5QbcybJG7D9eiPihLe5kydtrCgByDxZB01GNm+/mIv+kDpYeKtQZaAX7AYYXxvNjtEgOy4aFA2DT3hKOo21g6WQ6XertbYuHbrnz/w2KTf1vwEqtQ/RZH/06l1OckXLTHi0apuJMQt0y9yOnev45+H7XIRQUWODfU06I+KwRrqfI/xlRqrFjx2LdunX47bff4ODgoB+3y8nJCba2tnBycsKIESMwadIkuLq6wtHREa+//jqCg4Or9YmOgJn3+LpXQUEB1qxZg5dffhkqlUryEwTat28PCwsLrFq1ClqtFhkZGfj+++8REhICK6viL6eoqCiD/QJAaGhohfvNz88v9XSEB6Frzyto3DQDEV+3fCD7r3Y6Aftv0lDY3BZa/7tXZey/SUNhoK1JjhV0Pc4GS9oEYnGLFtg13Qf9lifBrcndJ13ErnHBkjaBWNKmBRIP2OPpiIuwtDbNbiCK+7zcQ8nZy/NU4zhkF1phx6Wye4fJRoE/p1Whwt2xEYye5A5PRIrEOhZwdNXCUg2kXze8kHL7hhouHqZ7AVHpuoaloXGLLEQsMrHaw0gnYn2w4PMumDLrcaxc0w5tWqRiznu7YWFReoiGmlaULJD1SyHUvhZwX6xBnYFWSF+Uj+zNd28Z1ARbwvV9DTw+18BprA3yT2pxY2IuhNY0/oZQqQTGDTmCv897IjG5+Il9ro45KCi0QFauYc+625m2cHUq3SlAbnF/O+HTaS0wfUxbLPuwGTzr5eLjiGjY2pnf94vkWtbI4yxfvhwZGRno3r07vL299dOPP/6oX2fRokX43//+h0GDBqFr167w8vLCL7/8Uq3vFzDzHl/3ioyMRHp6OoYPHw5A+hMEAgICsGPHDgwePBivvvoqtFotgoODsWXLFv06KSkp8PT0LLXfzMxM5Obmwta29CCEc+fOxaxZs6S/wUpw98jBq6//hffe7IzCAsv7b2AC7FekQn05H+nz7nZbtj6aBau/cnB7cQP5glXANaAAL/yegIIsC5zb6ohtk+vh2XUX9Y1fzftnwL9LNrLT1Dj+jRs2veGLoRsSobYxjV9cJZT4eSmh5OwVGdQkDpsuNEGB1rS+upX4c1olQhRPUrclIjIS61iSg7tXHl6degHvvdIahQXK7i+x78+7DXcXL7sg4ZILVn/xK9q0TEXs394yJgOgA6ybW8BpTHEDkXUzSxRd0CH710LU6VPcIG33+N3eX1aNAavGFkgZlIP8GC00j8hfF0547k8E+NzG6wv6yh1FshOH3PT/vnjeHnF/OyJi22E8FpqGHb/6VLClAkmtZY3cRlRifY1Gg2XLlmHZsmXG5zGCsr/BjLBy5UqEhYXBx6fyH9qWLVvC3t4e9vb2CAsLA1BcDIwcORLh4eE4fvw49u/fD2trazz99NOV+o8tz9SpU5GRkaGfkpKSJO+rPE2apcPFNR+ff70Xm3ZHYtPuSLR5+Ab6DbqATbsjYWFhWn+Q2a9IhfWJbKR/6Aud+z1f9n/lwDKlEO5Dz8N9QBzcBxTfwuY4LxlO78rf/drSWsClQQE8W+Xhsclp8Gieh5jvXPXLbRx0cGlQgPqP5qDf0iu4lWCD8ztMr0eM0j4v91Jy9vK097yGhs7p2HguUO4oBpT6c1oVknt7VeFpkERUu7GOBTJvWUJbBDj/p3eXi3sRbl+X/w9/c9SkZRZc3Avx+U8x2PTXAWz66wDaPJqBfs9fxaa/DiiyniqRkuaA9Awb1PO6I3cUWLqroG5g+Ge5uoEFilLLP7/qehawcAaKrsj/fzB+6GEEt0nChE/64Prtuw8/uJVpB2srHext8w3Wd3HMxa0M+Z5GWVnZd6xw9ZIdfHxNr3daVdXGOrZW/Ja4dOkSdu3aZdBl7t4nCNx7tezeJwhs2bIFhYXFXUxLrm4tW7YMTk5OWLBggX6bNWvWwNfXF0ePHkXHjh3h5eVV6qk6qampcHR0LPMqGVD8CNDKPAa0KmKjPTBmeC+DeRPficaVyw7YuK4pdDoTuQlHCNh/mQbrI1nI+MgXOi/DQQVznnZF3hNOBvNcX7+I7BF1kf+I6T1pRugAbUHZ51b8/yCBWhO8iqaYz0sZlJy9PE83OYt/bngg7ra73FGKmdnPqVGqMki9ggsGIpIH69hiRYUWOP+XHR7ucgdR24p/v6hUAm27ZOH3CLf7bE1SxEY5Y0y/9gbzJs6Jw5VEO2z8xleR9VQJd9dsODrk4+Zt+RtgrNtYouiy4S2XRUk6qL3KP79FaTroMgBLNzn/DwTGD41Cl4cvYsLCPki5YXgh/9wldxQWWaBd82QciCnucefrmQ4vtyycSfAsa4cmRWNbBG/fXOz5wwwHuJdayyq4jq0VDV+rVq1C3bp10adPH/28e58gMGjQIAClnyDg7+9fal85OTn6wUBLWFoW30ql0xV/Yf23yzgA7Ny5s9qfTGCs3FwrXEo0HCQxL1eNzAxrXEqU9wlx97JfkQabA5nIfK8edLYWUN0uvrIn7CwAGwsIFzW0ZQyUrfVQl/rju6Yd/LguArplwcGnEAXZFvj3dyckHa2DQasuIf2yFeI2O6HBY1mwddXiTooax1a4Q63RoWF3+a82/ZdSPi9lUVJ2O3Uh/Bwz9K/r22ci0PUGMvJtcC27uICoY1WA3g0SMP+4vN8h91LyzykRkZKwjr3rl6/c8dbiJJw7ZYe4k3Z4auR1aOx02LHe9f4by0hjp4VPg7u9Xrx889GwRQ7upKtxPdl0fyfm5qhxKd7wd3leriUy061wKd60LmJpNIXwuaf3lpdnFho2uIU7Wda4k2WDF545hYNH/HE73RbeXncw8vloJKc4IDpW/lvYHIZYIW1kLjIjCmDXS42CM1pkRxbC5Z3ixmRdjkDmygLY9lDD0lWFoqs6ZCwtgLq+CpqO8g3pMeG5wwgJuoD3lj2O3DwruDoWP2QiK9caBYVqZOdaY8uhpnht8FFkZtsgJ9cabww9jH/i65rkwPYj3jyPo/vckXZNAzePAjz/WgJ0WhX2bTX9Rjq6P7Nv+NLpdFi1ahXCw8OhVt99u1KfINCnTx8sWrQIs2fPxtChQ3Hnzh28++678Pf3x8MPPwwAGD16NJYuXYopU6bg5Zdfxp49e7BhwwZs3rz5gb9fc2C7NR0A4PyuYTf5zPFeyO/lVMYWpiPnphpbJ9dDdpoa1g46eATmYdCqS2jQJRtZqWpcPWGHmAg35GVawM5Ni/qPZmPohkTYuWnljk4yaeWehu/DNulfvxtUPHjwL+ebYuqh4id19QmIh0oF/JHQWJaMZVHyz2lVqYSASuItQVK3I6LaiXWsof2/u8DJTYsXJ6fAxaMICadt8d6wAKTfsLr/xjJq+lAOPt54Xv969MyrAIAdG1zxyaQGMqUyL00b3cTCWTv0r0cPPwEA2LG3EZZ8HYQA/9t4vHsC6tgV4OZtW8Sc8kHE+rYoLJJ/LFjrFpZwm69BxvICZH5bALW3Ck4TbGDXu/hzrbIACuN1yNmSB90dAUt3FTRBlnAcZQ2VtXw9vgb0OAsA+Gyy4XfDvFVdse1wUwDAsh87QieOYvaY3bBSa3H8dD0sXtu5xrNWhnvdfLw9/zQcnQuRcdsap2OcMPH59si8bbqN01JJrWWVXMeqRFVu6FeAHTt2IDQ0FHFxcWjatKnBsry8PLz55pv44YcfkJ+fj9DQUHzxxRf6LuLlWb9+PRYsWIBz587Bzs4OwcHBmD9/PgID7469s2/fPkycOBFnzpxB/fr1MX36dP2ApJWRmZkJJycn9Go0HmrLB9t1/EFI+cS0C5DyzGtR/U+QqCmLw5Q7mKRSXRiu3CtAdVrfkjuCJNqcfPzz7EJkZGTA0bFme++VfC8/1nUG1Gppj7YuKsrDwQOzZMlPRMqj9Dq2O/pDrVJgTWghf2OIFJaO9nJHkKyoRQO5I0jm++kFuSNIcuGD5nJHkMzuaILcESQp0hVg981VstWBVa1llVzHmn2PryeeeKLcwTqlPkFgyJAhGDJkSIXrdO/eHSdPnjRqv0REZPrY44uIagrrWCIiqm61sceX2Td8ERERVSsObk9ERERESlULB7c3vUfJERERERERERERVQP2+CIiIjKGEMWT1G2JiIiIiOQitZZVcB3Lhi8iIiIjqETxJHVbIiIiIiK5SK1llVzHsuGLiIjIGOzxRURERERKVQt7fHGMLyIiIiIiIiIiMkvs8UVERGQEla54krotEREREZFcpNaySq5j2fBFRERkDN7qSERERERKVQtvdWTDFxERkTHE/09StyUiIiIikovUWlbBdSwbvoiIiIygEgIqiVe8pG5HRERERFQdpNaySq5jObg9ERERERERERGZJfb4IiIiMgbH+CIiIiIipeIYX0RERFQhAUDqU22UWy8QERERkTmQWssquI5lwxcREZEROMYXERERESkVx/giIiIiIiIiIiIyE2z4IiIiMobA3bERjJ6MO9TMmTOhUqkMpsDAwAfytoiIiIioFpBcy8odXDre6mjihK01hKW13DGMZvG7i9wRJBl98WW5I0jWLOmU3BFqHed/PeWOIFmaj73cESTR5ZrAr60aHty+ZcuW2LVrl/61Wm0C54CIyJzptHInkESbmSV3BMmsElLkjiDZ/kOt5I4gSaPr2XJHkEyl0cgdQRKVTiV3hGIc3J6IiIgqpAMgtW6RMJCoWq2Gl5eXxAMSEREREd1Dai0r9eFOJoC3OhIRERmhZEBQqRMAZGZmGkz5+fnlHu/8+fPw8fFBw4YNMWzYMFy+fLmm3ioRERERmZmq1rFKxIYvIiKiGubr6wsnJyf9NHfu3DLXCwoKQkREBLZt24bly5cjMTERjz32GO7cuVPDiYmIiIiIlIm3OhIRERmjGsb4SkpKgqOjo362jY1NmauHhYXp/92mTRsEBQXB398fGzZswIgRI6RlICIiIqLaqxaO8cUeX0RERMaQ/ETHu0WGo6OjwVRew9d/OTs7o2nTpoiPj3+Q75CIiIiIzFUV69jKOnDgAPr27QsfHx+oVCpERkb+J4bA+++/D29vb9ja2iIkJATnz5+vxjd6Fxu+iIiIjFENDV9SZWVl4cKFC/D29q6mN0NEREREtUoN1bHZ2dl46KGHsGzZsjKXL1iwAEuWLMGKFStw9OhR1KlTB6GhocjLy6uOd2mAtzoSEREZowaf6vjWW2+hb9++8Pf3R3JyMmbMmAFLS0sMHTpUYgAiIiIiqtVq6KmOYWFhBsN23EsIgcWLF2PatGno378/AGD16tXw9PREZGQkhgwZIiFg+djji4iIyERduXIFQ4cORbNmzTB48GC4ubnhyJEj8PDwkDsaEREREdVCxjydvDyJiYlISUlBSEiIfp6TkxOCgoIQFRVVnXEBsMcXERGRUaryOGdjt1u/fr2k4xARERERlUVqLVuyja+vr8H8GTNmYObMmUbtKyUlBQDg6elpMN/T01O/rDqx4YuIiMgY1fBURyIiIiIiWVTxqY6VfTq5KWHDFxERkTF0AlBJbMDSseGLiIiIiGQktZbVGT6dvCq8vLwAAKmpqQYPbUpNTUXbtm2rtO+ycIwvIiIiIiIiIiKqEQEBAfDy8sLu3bv18zIzM3H06FEEBwdX+/HY44uIiMgYvNWRiIiIiJSqirc6VlZWVhbi4+P1rxMTExEbGwtXV1f4+flhwoQJ+PDDD9GkSRMEBARg+vTp8PHxwYABA4zPdh9s+CIiIjJKFRq+wIYvIiIiIpKT1FrWuG1OnDiBHj166F9PmjQJABAeHo6IiAhMmTIF2dnZGDVqFNLT09GlSxds27YNGo1GQraKseGLiIjIGOzxRURERERKVUM9vrp37w5RwTYqlQqzZ8/G7Nmzjc9iJDZ8ERERGUMnILnnFge3JyIiIiI5Sa1lFVzHcnB7IiIiIiIiIiIyS+zxVYsMe/4fPP/8aYN5SUkOGDXySZkSle9h/2S80OUUmntfh4djDt5cF4r9/wYAACwttHit13F0bnoZ9VwykZVnjWMJ9fH5ziDcuFNH5uSAJj4TLruvQZOUDXVmIZJfaYLsNq765ZaZhXD//TLs/s2ARa4WuY0ccP3pBiisW/33MldVq0cy8fSoa2jcKhtunoWY/WoTRO10vf+GMlNS7rYByXi+6ykE1i/+rE/+LhQHzgTol3dvmYCBHc8gsN51ONXJx/OLn8b5a+4yJi7m8sc1OESnwzolDzorC+Q1roPrz9RHoffdz7HTvutwOHILNpdyYJmnQ/yyh6CzM4NfO0JXPEndloiIJOs7/AaeHpMGV48iJJyxxRfT6iEu1k7uWJWixOytgu7gmdGpaNI6F25ehZg5oiGitjvLHatS3Dzy8NL482jf6QZsNFpcS7LDopktEX/WSe5o5Xq1xUlMbnsMq/5thTkxneFknYfxrU+gi/cV+Nhl4Va+LXZeaYBFf3VAVqGN3HHRqkUqnnnqDJo0ugU311zMnNsNUUd9y1z3jdFH0af3eaxY2R6/bmpew0nv79vIvfD0yS01/4+Nflj+cSsZEj1AUmtZBdex7PFVy1y86IjnhvbTT2+92UvuSGWytS7C+RQ3zN/8WKllGqsiBPpcxzf72uH55U9j8vpQ+Lun49PntsmQtDSLAh0K6tkh7ZkGpRcKAe9vzsHqZj6SRzbF5SmtUORqg3rLzkKVr63xrPejsdMh4awdvpjRQO4oRlFSblvrIpy/5oaPI0t/1kuWn7rohaVbO9ZwsorZxWUhvZcHLk8LxJW3mgBagfqfnDf4HKsKdMhu7YRb//OWMekDUDIugtSJiIgk6dbvNkbNSMbaT70wNrQpEs5oMGddApzcCuWOdl9Kza6x0yHhjB2WTiu7McNU2TsU4uNVx1BUpMKM19thzNOd8M2ipsi6YyV3tHK1dk3DkMZncfb23Yu1dW1zUNc2B/NOdsSTW57BlCPd0dU7CfOC9suY9C6NpggJiS5Y+uUjFa7XKegyApvdwI2btjWUzHgThnfC82G99NN7Yx8FABzabWZ1LFAr61g2fAHQarWYPn06AgICYGtri0aNGuGDDz4wGIhNCIH3338f3t7esLW1RUhICM6fPy9jamm0Wgvcvm2rnzIz5b9SUJbD5/2wfPej2Hc2oNSy7HwbjP2uL3adboxLN53xzxVPLPijC1rUuw5PpzsypDWU08IZN//ni+yHSvcwsrqeB9uLWUgb3AD5/vYo9LRF2uAGUBXq4BB9U4a0FTux3xmrP/XF4R2m2VuqPErKHRXnhy93PIr9p0t/1gFg68mmWLm7A47H16vhZBW7+mYTZHZxR0E9WxT42SF1RANY3SyA5mKOfp30Jzxxu48X8hrJ3xOzWulE1SYiompUm+rYgaNuYNs6V+z40RWXz2uw5O36yM9VIXToLbmj3ZdSs5/Y64TvPvbB4W3OckcxytPDE3E9VYPFM1vh3GknpCbb4eQRd6RcMc0ednbqQnzaaQ/eO9oVmQV3/z47n+GKcYeewJ6rDXA5ywlHUuvh01OPoGe9S7BUyd/75kRMPXy3ri0OH/Urdx031xy8NvIE5n/aGUVa021+yEy3we2bd6dHuqQhOckOf8eY/t8TRquFdazpfvJq0Pz587F8+XIsXboUZ8+exfz587FgwQJ8/vnn+nUWLFiAJUuWYMWKFTh69Cjq1KmD0NBQ5OXllbnPixcvQqVS1dRbqLR69e5gzdrf8O2qPzBlShQ8PLLljlQt7DUF0OmArDzTbMgroSoq/rIQ6nt+9CxUEGoL2CbI32hHJJVFbnFPL20dM7iV8X7Y44uITEhtqWPVVjo0aZODmIMO+nlCqHDyoANatM+pYEv5KTm7UgV1u474M46YOv8U1u7aiyXrohD61BW5Y5VrZodD2Jfsh8Op9e+7roN1AbIKraEVpv+nvEolMGXCn/gpsgUuJTnLHafS1GodeoRdxc5N9QGY1ndhtaiFdazp/7TUgMOHD6N///7o06cPGjRogKeffhpPPPEEjh07BqD4KtnixYsxbdo09O/fH23atMHq1auRnJyMyMhIecMbIe5fN3zySRCmTeuGpUvbw9MrGx8v3ANbW9PuYn0/1uoivP7EEWz/uzGy863ljlOhAk8NCl2s4bYpCRY5RUCRDi47k2GVXgDLTGX/P1AtphPw+OEKcpvUQUF90+3CTkRkjmpLHevoqoWlGki/bniB5fYNNVw8imRKVTlKzq5UXvVy8eTTV3A1yQ7Tx7bHlp988erkf9Hrf1fljlZKH/94tHS9gY9jH73vui42uRjbKgbr401vjKyyDB54GlqdBSL/aCZ3FKN07J4Ke/si7Prj/g2RpAxs+ALQqVMn7N69G+fOnQMAnDp1CocOHUJYWBgAIDExESkpKQgJCdFv4+TkhKCgIERFRVVLhvz8fGRmZhpM1e3ECW8cOuiLi4nOiIn2xvvTu8LevhCPdU2q9mPVFEsLLeYN3gkVgHl/dJU7zv1ZWuDaiKawvp6HRu9Eo/Fbx2F7PhPZLZzM8mIC1Q5111yGzZVcXBvdUO4oNUOgClfK5A5PROamttSxRMZQWQhc+NcBq5c2QUKcI7b9Uh/bf62PsKdNq9eXt10Wprc7jEmHe6JAV3GveXt1Ab7utg3xGS5Y8nf7GkooXeNGNzHgf/9i4WfBUNofOk/0S8KJKA/cumF6Dx+rFpJrWbmDS1cL7km5v3feeQeZmZkIDAyEpaUltFot5syZg2HDhgEAUlJSAACenp4G23l6euqXVdXcuXMxa9asatlXZWVnW+PqVXv4+GTV6HGrS0mjl5dzFsas6mvyvb1K5PvVweW3W8MitwiqIgGtgxV8P/kHeb5mNg4S1Qp1v7+MOrEZSJraDEWuyvgZrLKqdPVWcBdxIjJNtaWOzbxlCW0R4PyfHlIu7kW4fd20/6RRcnalun3DBpcT7A3mJSXWQadeqTIlKltL1+twt83Fb71/1s9TWwg8UvcaXmh6Gi1+fAU6YYE66gJ822MLsousMObAEygSljKmrpzWLdLg7JSHNd/8qp9naSkwcngMBvT9F+GjnpIxXfk8vHLR9pEb+Oht029clExqLavgOpbftAA2bNiAtWvXYt26dWjZsiViY2MxYcIE+Pj4IDw8vNL7admyJS5dugQA+gFF7e3vfuE+9thj2Lp1a5nbTp06FZMmTdK/zszMhK/vg316ikZTCG/vbOzerbyW7JJGLz+3DLy6qh8ycpX3HnS2xT9+Vml5sLmcjZtPsistKYgQqLsmCfYx6Uh6uymKPEx7fL1qpdMBkDigrE7+gWiJyLzUljq2qNAC5/+yw8Nd7iBqmxOA4vGD2nbJwu8RbtV6rOqm5OxKdSbWGfUaGI5lXM8/G9evmdbfDFEp9RC2+RmDefM77kNCpjO+PNMWOmEBe3UBVvXcjAKtJV7dH3rfnmGmYte+hog5ZfhExI9m7MbufQ2xY7fp3iXweN8kZNy2wbE/PeSO8uBIrWUVXMcq46fmAZs8eTLeeecdDBkyBADQunVrXLp0CXPnzkV4eDi8vLwAAKmpqfD2vvvDm5qairZt2+pfb9myBYWFxeM0Xb16Fd27d0dsbKx+ua1t+WPf2NjYwMbmwf7h+MorsTh61AepaXXg5pqL51/4BzqtCvv3lf8UDrnYWhfC1zVD/7qeSyaaet1ARq4Nbtyxw4Jnd6KZz3VMXBMGSwsBN/vigUEzcm1QpJX3CogqXwur63cHi7W6mQ/rK9nQ2alR5GoD+5M3obW3QqGLNWySc+DxyyVkt3FBTnNn+UKXQ2OnhY//3ffi6ZuPhs2zcSdDjevJptvQoaTcttaFqO9297Pu45qJJt43kJlrg9R0Bzja5sHTOQsejsXFm79HOgDg5h073MqS78lEdb9PgsORW0h+oxF0tpawzCj+7tPZWkJYF99Fb5lRCHVGIaxS8wEANldyodNYotDVGjp7/vohIqoOtaWOBYBfvnLHW4uTcO6UHeJO2uGpkdehsdNhx3rTf+qaUrNr7LTwaZCvf+3lm4+GLXJwJ12N68mm29M7cq0/Fq46hsEvJ+DgTi80bZmB3gOv4PMPW8odzUB2kTXOZxh+BnKL1Lidb4PzGa6wVxcgoudmaCyL8ObhnrC3KoS9VfHP6a18DXQyD3Cv0RTCx/vuA7q86mahYcAt3Lljg+s36uDOHcPvhSKtBW6na3Al2ammo1aKSiXw+P+uYPfmetCZ8BMoyXj8ywNATk4OLCwMP9iWlpbQ/X+LZkBAALy8vLB79259gZCZmYmjR49izJgx+m38/f31/1ari09t48aNH3D6ynN3z8Hb70TB0aEAGRk2OH3aHRMnhiAjw7SufABAC580fPnyJv3rSWHFY1BsOtkUX+3tgG7NLwIAfhj7k8F2r37bF9EX69VYzrJoLmej/udn9a89fr0MAMh81B2pzzeCZWYh3H+9DPWdQhQ5WiHzUXfcCpU3c3matM7Ggh/uvpdXpxW/l50/uePTKY3kinVfSsrdvH4alr9697M+sW/xZ/2PE03xwcaeeKzFRbw/eJ9++ZxhuwAAX+9sj292PVKjWe/lvPc6AMB3/jmD+Skj/JHZxV2/jttv1/TLfOeeK7WOIvFWRyIyIbWljgWA/b+7wMlNixcnp8DFowgJp23x3rAApN+wkjvafSk1e9OHcvDxxvP616NnFg8Ov2ODKz6Z1ECmVPd3/owTPnyrLYaPO4+hIxOQmmyLrxYGYt9W7/tvbEJaut5AW/c0AMCefusNlnX77TlczXYoa7Ma07TxTXz84S7969EjogEAO/Y0xCdLOskVS7K2j95AXe887Nhk5nfi1MJbHVVCKDh9NRk+fDh27dqFL7/8Ei1btsTJkycxatQovPzyy5g/fz6A4kdFz5s3D9999x0CAgIwffp0/PXXXzhz5gw0mtINRxcvXkRAQACknt7MzEw4OTmhZ6vJUFuaVg+Vyrj+qIvcESS51Ua53TebTTkld4Ra59YzD8sdQbK0ngVyR5BEl5uHK2NmISMjA46OjjV67JLv5RD3l6G2kHaVu0hXgF03vpUlPxGZJ1OuY7ujP9Qq027YMSsWpj/uU3nUdZV7QSzurQC5I0jSaEP2/VcyUerkW3JHkKRIl49dV1fIVgdWtZZVch3LHl8APv/8c0yfPh2vvfYa0tLS4OPjg1dffRXvv/++fp0pU6YgOzsbo0aNQnp6Orp06YJt27aVWSwQEZEZ0wlIfqyNrtZfayKiasY6loiIjCK1llVwHcuGLwAODg5YvHgxFi9eXO46KpUKs2fPxuzZsyu1zwYNGki+SkZERKZLCB2EkNY7VOp2RETlYR1LRETGkFrLKrmO5YhtRERERERERERkltjji4iIyBhCSO/qzR4URERERCQnqbWsgutYNnwREREZQ1RhjC8FFwxEREREZAak1rIKrmPZ8EVERGQMnQ5QSRzjQMFjIxARERGRGZBayyq4juUYX0REREREREREZJbY44uIiMgYvNWRiIiIiJSKtzoSERFRRYROByHxVkclPwaaiIiIiJRPai2r5DqWDV9ERETGYI8vIiIiIlIq9vgiIiKiCukEoGLDFxEREREpkNRaVsF1LAe3JyIiIiIiIiIis8QeX0RERMYQAoDEMQ4UfKWMiIiIiMyA1FpWwXUsG76IiIiMIHQCQuKtjkLBBQMRERERKZ/UWlbJdSxvdSQiIjKG0FVtMtKyZcvQoEEDaDQaBAUF4dixYw/gTRERERFRrVCDdSxgGrUsG76IiIiMIHSiSpMxfvzxR0yaNAkzZsxATEwMHnroIYSGhiItLe0BvTsiIiIiMmc1VccCplPLsuGLiIjIRH366acYOXIkXnrpJbRo0QIrVqyAnZ0dvv32W7mjERERERFVyFRqWY7xZaJK7p8t0ubLnEQabUGe3BEk0eVKHLDaBBSJArkj1DpK/ZwDgC5XmZ8XXW7xd6KcYwwUiXzJXb2LUAgAyMzMNJhvY2MDGxsbg3kFBQWIjo7G1KlT9fMsLCwQEhKCqKgoSccnIqoJ+joWhYByh4RRHom/m0yCTpl1CQDo8pRZDxYVKTM3AECnzL+Ri/7/cy73WFlSa1lj6ljAtGpZNnyZqDt37gAADpxdInMSif6RO0DtkyR3gNpo/Qa5E0i3Xu4AVXPnzh04OTnV6DGtra3h5eWFQylbqrQfe3t7+Pr6GsybMWMGZs6caTDvxo0b0Gq18PT0NJjv6emJf//9t0oZiIgepJI69hCq9n1JRlJwuxdS5Q5QBe/JHUCaS3IHqMXkqGOB6qllK1vHAqZVy7Lhy0T5+PggKSkJDg4OUKlU1b7/zMxM+Pr6IikpCY6OjtW+/wdFqbkBZpeDUnMDzF4eIQTu3LkDHx+fat1vZWg0GiQmJqKgoGpXpYUQpb7Xy7pKRkSkVKxjy6bU3ACzy0GpuQFmL4+cdSxQPbWsUutYNnyZKAsLC9SvX/+BH8fR0VFxX0aAcnMDzC4HpeYGmL0sclwhK6HRaKDRaGrkWO7u7rC0tERqquFl8NTUVHh5edVIBiIiKVjHVkypuQFml4NScwPMXhY561ig9tayHNyeiIjIBFlbW6N9+/bYvXu3fp5Op8Pu3bsRHBwsYzIiIiIiooqZUi3LHl9EREQmatKkSQgPD0eHDh3w6KOPYvHixcjOzsZLL70kdzQiIiIiogqZSi3Lhq9aysbGBjNmzFDE/bj3UmpugNnloNTcALNTsWeffRbXr1/H+++/j5SUFLRt2xbbtm0rNUgoEVFtotTfM0rNDTC7HJSaG2B2ustUalmVkPtZmkRERERERERERA8Ax/giIiIiIiIiIiKzxIYvIiIiIiIiIiIyS2z4IiIiIiIiIiIis8SGLzPXoEEDLF68WO4YRERERERGYR1LRETVgQ1fMuvevTsmTJhQan5ERAScnZ1rPE9lxcXFoUePHvD09IRGo0HDhg0xbdo0FBYWGqy3ceNGBAYGwsrKChqNBnZ2dnB0dERwcDC2bt2qXy8vLw9jx46Fm5sb7O3tMWjQIKSmplY6T3x8PBwcHMo8ZyUZNBoNWrdujS1btkh+3wAwb948qFQqg/83KfkvXrwIlUpVajpy5Ei15Z85c2ap/QcGBlYpNwAIIbBw4UI0bdoUNjY2qFevHubMmWOwzr59+9CuXTvY2NigcePGiIiIqHRuALh69Sqef/55uLm5wdbWFq1bt8aJEycMMrz//vvw9vaGra0tQkJCcP78+Qr3GRERUeY5V6lUSEtLq5bsDRo0KHP/Y8eOBSD9nG/fvh0dO3aEg4MDPDw8MGjQIFy8eNFgnaqe87JotVpMnz4dAQEBsLW1RaNGjfDBBx/g3ueiSPm/ICIi5WMdW4x1LOvY/2Ida4h1LMlOkKy6desmxo8fX2r+qlWrhJOTU5X37+/vLxYtWiR5+/z8/DLnX7hwQXz77bciNjZWXLx4Ufz222+ibt26YurUqfp1/vzzT2FpaSkWLFggli1bJoYMGSLUarXYtGmTePfdd4WVlZX4559/hBBCjB49Wvj6+ordu3eLEydOiI4dO4pOnTpVKmNBQYHo0KGDCAsLK3XO7s1w5swZMW3aNGFlZSX+/vtvSefj2LFjokGDBqJNmzYG/29S8icmJgoAYteuXeLatWv6qaCgoNryz5gxQ7Rs2dJg/9evX69SbiGEeP3110WzZs3Eb7/9JhISEsSJEyfEjh079MsTEhKEnZ2dmDRpkjhz5oz4/PPPhaWlpdi2bVulct+6dUv4+/uL4cOHi6NHj4qEhASxfft2ER8fr19n3rx5wsnJSURGRopTp06Jfv36iYCAAJGbm1vufnNycgzOxbVr10RoaKjo1q1btWVPS0sz2P/OnTsFALF3714hhLRznpCQIGxsbMTUqVNFfHy8iI6OFl27dhUPP/xwteUuz5w5c4Sbm5v4448/RGJioti4caOwt7cXn332mX4dY/8vSj77RESkbKxjWceyji2Ndawh1rFkCvg/JrPKFgzh4eGif//+4uOPPxZeXl7C1dVVvPbaawa/XFJTU8X//vc/odFoRIMGDcSaNWtKFQy3b98WI0aMEO7u7sLBwUH06NFDxMbG6pfPmDFDPPTQQ+Lrr78WDRo0ECqVqtLvZeLEiaJLly7614MHDxZ9+vQxWCcoKEi8+uqrQgghXFxcxDfffCPS09OFlZWV2Lhxo369s2fPCgAiKirqvsedMmWKeP7558sssu6XwRh37twRTZo0ETt37jT4f5Oav+RL8+TJk+WuU9X8Jf+fZZGa+8yZM0KtVot///233HWmTJkiWrZsaTDv2WefFaGhoZXK/fbbbxt8lv5Lp9MJLy8v8fHHH+vnpaenCxsbG/HDDz9U6hhCFP9yt7KyEqtXr6627P81fvx40ahRI6HT6SSf840bNwq1Wi20Wq1+3u+//y5UKpX+O6C6c5fo06ePePnllw3mDRw4UAwbNkwIIe3/ggUDEZF5YB3LOpZ1bGmsYw2xjiVTwFsdFWTv3r24cOEC9u7di++++w4REREGXUCHDx+OpKQk7N27Fz/99BO++OILg26vAPDMM88gLS0NW7duRXR0NNq1a4devXrh1q1b+nXi4+Px888/45dffkFsbGylssXHx2Pbtm3o1q2bfl5UVBRCQkIM1gsNDcXhw4exfv16ZGdnIzg4GNHR0SgsLDRYNzAwEH5+foiKiqrwuHv27MHGjRuxbNmyMpeXl+F++y3L2LFj0adPn1L7q0p+AOjXrx/q1q2LLl264Pfff6/2/OfPn4ePjw8aNmyIYcOG4fLly1XKvWnTJjRs2BB//PEHAgIC0KBBA7zyyisGn6Gq5v7999/RoUMHPPPMM6hbty4efvhhfP311/rliYmJSElJMTiGk5MTgoKCjDo3q1evhp2dHZ5++ulqy36vgoICrFmzBi+//DJUKpXkc96+fXtYWFhg1apV0Gq1yMjIwPfff4+QkBBYWVlVe+57derUCbt378a5c+cAAKdOncKhQ4cQFhYGoPr+L4iIyLyxji2Ndez9sY4tH+vY+2MdSyXUcgegynNxccHSpUthaWmJwMBA9OnTB7t378bIkSNx7tw5bN26FceOHcMjjzwCAFi5ciWaN2+u3/7QoUM4duwY0tLSYGNjAwBYuHAhIiMj8dNPP2HUqFEAir/kVq9eDQ8Pj/tm6tSpE2JiYpCfn49Ro0Zh9uzZ+mUpKSnw9PTUv/77778xb948FBQUYPTo0fj111/RokULxMbGwtrautS4Bp6enkhJSSn32Ddv3sTw4cOxZs0aODo6lrnOfzNUZr9lWb9+PWJiYnD8+PEyjyElv729PT755BN07twZFhYW+PnnnzFgwABERkaiX79+1ZI/KCgIERERaNasGa5du4ZZs2bhsccewz///CM5d0JCAi5duoSNGzdi9erV0Gq1mDhxIp5++mns2bOnwtyZmZnIzc2Fra1thbkTEhKwfPlyTJo0Ce+++y6OHz+ON954A9bW1ggPD9fnq+r/7cqVK/Hcc88Z5Klq9ntFRkYiPT0dw4cP1+9byjkPCAjAjh07MHjwYLz66qvQarUIDg42GCejOnPf65133kFmZiYCAwNhaWkJrVaLOXPmYNiwYfrjlhzLmPdERES1C+tYQ6xj7491bMVYx94f61gqwR5fCtKyZUtYWlrqX3t7e+uvhJ09exZqtRrt27fXLw8MDDT4Yjp16hSysrL0gxGWTImJibhw4YJ+PX9//0oVCwDw448/IiYmBuvWrcPmzZuxcOHCctdt1qwZpk6dChcXF4wZMwbh4eE4c+ZMpd97Sd6SFvqRI0fiueeeQ9euXSu1D6mSkpIwfvx4rF27FhqNRtI+ysrv7u6OSZMmISgoCI888gjmzZuH559/Hh9//HG1ZQ8LC8MzzzyDNm3aIDQ0FFu2bEF6ejo2bNggObdOp0N+fj5Wr16Nxx57DN27d8fKlSuxd+9exMXFVUtunU6Hdu3a4aOPPsLDDz+MUaNGYeTIkVixYkWl9xEWFqbP3rJly1LLo6KicPbsWYwYMaJaMpdl5cqVCAsLg4+PT6W3Keucp6SkYOTIkQgPD8fx48exf/9+WFtb4+mnnzYYnPNB2LBhA9auXYt169YhJiYG3333HRYuXIjvvvvOqP3c+75K/j/u/R4qea9ERGSeWMeyjjUW61jWsVXFOpZKsMeXzBwdHZGRkVFqfnp6OpycnAzmlXQFLaFSqaDT6Sp9rKysLHh7e2Pfvn2llt1bWNSpU6fS+/T19QUAtGjRAlqtFqNGjcKbb74JS0tLeHl5GTzlw9raGkII+Pr6Yu7cuTh+/Dg+++wzPPvssygoKEB6erpBjtTUVHh5eQEAtmzZon/STkmL/549e/D777/rixQhBHQ6HdRqNb766iu8/PLLpTL8d7+VER0djbS0NLRr104/T6vV4sCBA1i6dCm2b98uKX9ZgoKCsHPnTv3r6sh/L2dnZzRt2hTx8fF4/PHHJeX29vaGWq1G06ZN9duUXJG9fPkymjVrVm5uR0fHSl2x8fb2RosWLQzmNW/eHD///DMA6POlpqbC29vb4Bht27YFAHzzzTfIzc0FUPpnp2R527ZtDYrskn1XJXuJS5cuYdeuXfjll18M9i3lnC9btgxOTk5YsGCBfps1a9bA19cXR48eRceOHast939NnjwZ77zzDoYMGQIAaN26NS5duoS5c+ciPDy8Uv8X/31fV69eRffu3Q1uQalKRiIikgfrWNax92IdC/0xWMeyjiXTwh5fMmvWrBliYmJKzY+JiTH4Qr6fwMBAFBUVITo6Wj8vLi4O6enp+tft2rVDSkoK1Go1GjdubDC5u7tX6X0AxVc3CgsL9UVMcHAwdu/ebbDOzp07ERwcrF8/Pz8f7du3h5WVlcG6cXFxuHz5sn5df39/fdZ69eoBKL7SERsbq59mz54NBwcHxMbG4qmnnqpUhsro1asX/v77b4NjdejQAcOGDdP/W0r+ssTGxhp86VZH/ntlZWXhwoUL8Pb2lnzeO3fujKKiIoOrqyX3zfv7+1dL7s6dO5e66nbu3Dn9/gMCAuDl5WVwjMzMTBw9elR/jHr16umzl2x373nYsGFDmVfJquucr1q1CnXr1kWfPn3086Se85ycHFhYGH5dl1w1r+zPm1TlHbvkuJX5v/jv+yr5/7j3O6iinwsiIjJNrGNZx96LdSz0x2AdyzqWTIycI+tT8eOUNRqNeP3118WpU6fEv//+Kz755BOhVqvF1q1b9euVPA3nXuPHjzd4fG3v3r3Fww8/LI4cOSJOnDghunTpImxtbfVPw9HpdKJLly7ioYceEtu3bxeJiYnizz//FO+++644fvy4EKLip6fca82aNeLHH38UZ86cERcuXBA//vij8PHx0T8hQ4jiRxir1WqxcOFCMXLkSDF8+HChVqvFzz//LN555x2hUqn0jw4ePXq08PPzE3v27BEnTpwQwcHBIjg42KhzWdbTcO7NcPbsWTFjxowqPQa6xH+fYiQlf0REhFi3bp04e/asOHv2rJgzZ46wsLAQ3377bbXlf/PNN8W+ffv0/9chISHC3d1dpKWlSc6t1WpFu3btRNeuXUVMTIw4ceKECAoKEo8//rh+nZJHEk+ePFmcPXtWLFu2zKhHEh87dkyo1WoxZ84ccf78ebF27VphZ2cn1qxZo19n3rx5wtnZWfz222/ir7/+Ev3797/vY6BLfPPNN0Kj0Yjbt2+XWlbV7EIUnyM/Pz/x9ttvl1om5Zzv3r1bqFQqMWvWLHHu3DkRHR0tQkNDhb+/v8jJyam23GUJDw8X9erV0z8G+pdffhHu7u5iypQp+nWM/b/g03CIiMwD61jWsaxjS2Mda4h1LJkC/o+ZgGPHjonHH39ceHh4CCcnJxEUFCR+/fVXg3UqUzBcu3ZN9OnTR9jY2Ag/Pz+xevXqUo+BzszMFK+//rrw8fERVlZWwtfXVwwbNkxcvnxZCFH5gmH9+vWiXbt2wt7eXtSpU0e0aNFCfPTRR6W+IDZs2CCaNm0qLCwshJWVlVCr1cLDw0P06tVLXywIIURubq547bXXhIuLi7CzsxNPPfWUuHbtWqXOX4myCoZ7M1hbW4uWLVuKzZs3G7Xfsvy3YJCSPyIiQjRv3lzY2dkJR0dH8eijjxo8Hrg68j/77LPC29tbWFtbi3r16olnn31WxMfHVym3EEJcvXpVDBw4UNjb2wtPT08xfPhwcfPmTYN19u7dK9q2bSusra1Fw4YNxapVqyqdWwghNm3aJFq1aiVsbGxEYGCg+OqrrwyW63Q6MX36dOHp6SlsbGxEr169RFxcXKX2HRwcLJ577rlyl1c1+/bt2wWAMvNIPec//PCDePjhh0WdOnWEh4eH6Nevnzh79my15i5LZmamGD9+vPDz8xMajUY0bNhQvPfeeyI/P1+/jrH/FywYiIjMB+tY1rGsY0tjHWuIdSzJTSXEAx5RjoiIiIiIiIiISAYc44uIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLiIiIiIiIiIjMEhu+iIiIiIiIiIjILLHhi4iIiIiIiIiIzBIbvoiIiIiIiIiIyCyx4YuIiIiIiIiIiMwSG76IiIiIiIiIiMgsseGLyEwMHz4cAwYM0L/u3r07JkyYUOM59u3bB5VKhfT09HLXUalUiIyMrPQ+Z86cibZt21Yp18WLF6FSqRAbG1ul/RARERFR9WIdWzHWsURVw4Yvogdo+PDhUKlUUKlUsLa2RuPGjTF79mwUFRU98GP/8ssv+OCDDyq1bmV+yRMRERFR7cE6lojMhVruAETmrnfv3li1ahXy8/OxZcsWjB07FlZWVpg6dWqpdQsKCmBtbV0tx3V1da2W/RARERFR7cQ6lojMAXt8ET1gNjY28PLygr+/P8aMGYOQkBD8/vvvAO52654zZw58fHzQrFkzAEBSUhIGDx4MZ2dnuLq6on///rh48aJ+n1qtFpMmTYKzszPc3NwwZcoUCCEMjvvfLuL5+fl4++234evrCxsbGzRu3BgrV67ExYsX0aNHDwCAi4sLVCoVhg8fDgDQ6XSYO3cuAgICYGtri4ceegg//fSTwXG2bNmCpk2bwtbWFj169DDIWVlvv/02mjZtCjs7OzRs2BDTp09HYWFhqfW+/PJL+Pr6ws7ODoMHD0ZGRobB8m+++QbNmzeHRqNBYGAgvvjiC6OzEBEREVEx1rH3xzqWyPSx4Yuohtna2qKgoED/evfu3YiLi8POnTvxxx9/oLCwEKGhoXBwcMDBgwfx559/wt7eHr1799Zv98knnyAiIgLffvstDh06hFu3buHXX3+t8LgvvvgifvjhByxZsgRnz57Fl19+CXt7e/j6+uLnn38GAMTFxeHatWv47LPPAABz587F6tWrsWLFCpw+fRoTJ07E888/j/379wMoLmwGDhyIvn37IjY2Fq+88greeecdo8+Jg4MDIiIicObMGXz22Wf4+uuvsWjRIoN14uPjsWHDBmzatAnbtm3DyZMn8dprr+mXr127Fu+//z7mzJmDs2fP4qOPPsL06dPx3XffGZ2HiIiIiEpjHVsa61giBRBE9MCEh4eL/v37CyGE0Ol0YufOncLGxka89dZb+uWenp4iPz9fv833338vmjVrJnQ6nX5efn6+sLW1Fdu3bxdCCOHt7S0WLFigX15YWCjq16+vP5YQQnTr1k2MHz9eCCFEXFycACB27txZZs69e/cKAOL27dv6eXl5ecLOzk4cPnzYYN0RI0aIoUOHCiGEmDp1qmjRooXB8rfffrvUvv4LgPj111/LXf7xxx+L9u3b61/PmDFDWFpaiitXrujnbd26VVhYWIhr164JIYRo1KiRWLduncF+PvjgAxEcHCyEECIxMVEAECdPniz3uERERERUjHVs2VjHEikPx/giesD++OMP2Nvbo7CwEDqdDs899xxmzpypX966dWuD8RBOnTqF+Ph4ODg4GOwnLy8PFy5cQEZGBq5du4agoCD9MrVajQ4dOpTqJl4iNjYWlpaW6NatW6Vzx8fHIycnB48//rjB/IKCAjz88MMAgLNnzxrkAIDg4OBKH6PEjz/+iCVLluDChQvIyspCUVERHB0dDdbx8/NDvXr1DI6j0+kQFxcHBwcHXLhwASNGjMDIkSP16xQVFcHJycnoPERERETEOrYyWMcSmT42fBE9YD169MDy5cthbW0NHx8fqNWGP3Z16tQxeJ2VlYX27dtj7dq1pfbl4eEhKYOtra3R22RlZQEANm/ebPCLGige76G6REVFYdiwYZg1axZCQ0Ph5OSE9evX45NPPjE669dff12qgLG0tKy2rERERES1CevYirGOJVIGNnwRPWB16tRB48aNK71+u3bt8OOPP6Ju3bqlrhaV8Pb2xtGjR9G1a1cAxVeEoqOj0a5duzLXb926NXQ6Hfbv34+QkJBSy0uu1Gm1Wv28Fi1awMbGBpcvXy73Clvz5s31A5yWOHLkyP3f5D0OHz4Mf39/vPfee/p5ly5dKrXe5cuXkZycDB8fH/1xLCws0KxZM3h6esLHxwcJCQkYNmyYUccnIiIiorKxjq0Y61giZeDg9kQmZtiwYXB3d0f//v1x8OBBJCYmYt++fXjjjTdw5coVAMD48eMxb948REZG4t9//8Vrr72G9PT0cvfZoEEDhIeH4+WXX0ZkZKR+nxs2bAAA+Pv7Q6VS4Y8//sD169eRlZUFBwcHvPXWW5g4cSK+++47XLhwATExMfj888/1A22OHj0a58+fx+TJkxEXF4d169YhIiLCqPfbpEkTXL58GevXr8eFCxewZMmSMgc41Wg0CA8Px6lTp3Dw4EG88cYbGDx4MLy8vAAAs2bNwty5c7FkyRKcO3cOf//9N1atWoVPP/3UqDxEREREJA3rWNaxRKaIDV9EJsbOzg4HDhyAn58fBg4ciObNm2PEiBHIy8vTXzl788038cILLyA8PBzBwcFwcHDAU089VeF+ly9fjqeffhqvvfYaAgMDMXLkSGRnZwMA6tWrh1mzZuGdd96Bp6cnxo0bBwD44IMPMH36dMydOxfNmzdH7969sXnzZgQEBAAoHq/g559/RmRkJB566CGsWLECH330kVHvt1+/fpg4cSLGjRuHtm3b4vDhw5g+fXqp9Ro3boyBAwfiySefxBNPPIE2bdoYPOb5lVdewTfffINVq1ahdevW6NatGyIiIvRZiYiIiOjBYh3LOpbIFKlEeaMIEhERERERERERKRh7fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxcREREREREREZklNnwREREREREREZFZYsMXERERERERERGZJTZ8ERERERERERGRWWLDFxERERERERERmSU2fBERERERERERkVliwxeRwqlUKsycOVPuGOX6/vvvERgYCCsrKzg7O8sdh4iIiIhqoYsXL0KlUiEiIkLuKERUw9jwRUQPzL///ovhw4ejUaNG+Prrr/HVV1/JHamU5ORkzJw5E7GxsXJHISIiIiIiomqmljsAEZmvffv2QafT4bPPPkPjxo3ljlOm5ORkzJo1Cw0aNEDbtm3ljkNERERERETViD2+iKpZdna23BFMRlpaGgBU6y2OOTk51bYvIiIiIiIiMm9s+CKqgpkzZ0KlUuHMmTN47rnn4OLigi5duuCvv/7C8OHD0bBhQ2g0Gnh5eeHll1/GzZs3y9w+Pj4ew4cPh7OzM5ycnPDSSy+VauDJz8/HxIkT4eHhAQcHB/Tr1w9XrlwpM9fJkycRFhYGR0dH2Nvbo1evXjhy5IjBOhEREVCpVDh06BDeeOMNeHh4wNnZGa+++ioKCgqQnp6OF198ES4uLnBxccGUKVMghKj0uWnQoAFmzJgBAPDw8Cg1FtkXX3yBli1bwsbGBj4+Phg7dizS09MN9tG9e3e0atUK0dHR6Nq1K+zs7PDuu+/qz8eMGTPQuHFj2NjYwNfXF1OmTEF+fr7BPnbu3IkuXbrA2dkZ9vb2aNasmX4f+/btwyOPPAIAeOmll6BSqTj2AxEREZGJKqmdz507h+effx5OTk7w8PDA9OnTIYRAUlIS+vfvD0dHR3h5eeGTTz6pcH/Dhw+Hvb09EhISEBoaijp16sDHxwezZ882qu4lItPGWx2JqsEzzzyDJk2a4KOPPoIQAjt37kRCQgJeeukleHl54fTp0/jqq69w+vRpHDlyBCqVymD7wYMHIyAgAHPnzkVMTAy++eYb1K1bF/Pnz9ev88orr2DNmjV47rnn0KlTJ+zZswd9+vQpleX06dN47LHH4OjoiClTpsDKygpffvklunfvjv379yMoKMhg/ddffx1eXl6YNWsWjhw5gq+++grOzs44fPgw/Pz88NFHH2HLli34+OOP0apVK7z44ouVOieLFy/G6tWr8euvv2L58uWwt7dHmzZtABQXLbNmzUJISAjGjBmDuLg4LF++HMePH8eff/4JKysr/X5u3ryJsLAwDBkyBM8//zw8PT2h0+nQr18/HDp0CKNGjULz5s3x999/Y9GiRTh37hwiIyP15+J///sf2rRpg9mzZ8PGxgbx8fH4888/AQDNmzfH7Nmz8f7772PUqFF47LHHAACdOnWq1HskIiIiopr37LPPonnz5pg3bx42b96MDz/8EK6urvjyyy/Rs2dPzJ8/H2vXrsVbb72FRx55BF27di13X1qtFr1790bHjh2xYMECbNu2DTNmzEBRURFmz55dg++KiB4YQUSSzZgxQwAQQ4cONZifk5NTat0ffvhBABAHDhwotf3LL79ssO5TTz0l3Nzc9K9jY2MFAPHaa68ZrPfcc88JAGLGjBn6eQMGDBDW1tbiwoUL+nnJycnCwcFBdO3aVT9v1apVAoAIDQ0VOp1OPz84OFioVCoxevRo/byioiJRv3590a1bt/ucEUMl7+/69ev6eWlpacLa2lo88cQTQqvV6ucvXbpUABDffvutfl63bt0EALFixQqD/X7//ffCwsJCHDx40GD+ihUrBADx559/CiGEWLRoUanj/9fx48cFALFq1Sqj3hsRERER1ayS2nLUqFH6eSV1qkqlEvPmzdPPv337trC1tRXh4eFCCCESExNL1Xzh4eECgHj99df183Q6nejTp4+wtrausIYkIuXgrY5E1WD06NEGr21tbfX/zsvLw40bN9CxY0cAQExMzH23f+yxx3Dz5k1kZmYCALZs2QIAeOONNwzWmzBhgsFrrVaLHTt2YMCAAWjYsKF+vre3N5577jkcOnRIv88SI0aMMOiBFhQUBCEERowYoZ9naWmJDh06ICEhoewTYIRdu3ahoKAAEyZMgIXF3a+gkSNHwtHREZs3bzZY38bGBi+99JLBvI0bN6J58+YIDAzEjRs39FPPnj0BAHv37gVwd2yx3377DTqdrsrZiYiIiEh+r7zyiv7fJXXqf+tXZ2dnNGvWrFL167hx4/T/VqlUGDduHAoKCrBr167qDU5EsmDDF1E1CAgIMHh969YtjB8/Hp6enrC1tYWHh4d+nYyMjFLb+/n5Gbx2cXEBANy+fRsAcOnSJVhYWKBRo0YG6zVr1szg9fXr15GTk1NqPlB8W59Op0NSUlKFx3ZycgIA+Pr6lppfkqcqLl26VGZ2a2trNGzYUL+8RL169WBtbW0w7/z58zh9+jQ8PDwMpqZNmwK4O6j+s88+i86dO+OVV16Bp6cnhgwZgg0bNrARjIiIiEjByqpfNRoN3N3dS82/X/1qYWFhcMEYgL6mvHjxYtXDEpHsOMYXUTW4t4cXUDxm1+HDhzF58mS0bdsW9vb20Ol06N27d5mNLpaWlmXuV9TAoJrlHbus+TWR57/+e24BQKfToXXr1vj000/L3Kak0c7W1hYHDhzA3r17sXnzZmzbtg0//vgjevbsiR07dpT73omIiIjIdJVVw8lZTxORaWPDF1E1u337Nnbv3o1Zs2bh/fff188/f/685H36+/tDp9PhwoULBj2l4uLiDNbz8PCAnZ1dqfkA8O+//8LCwqJUT66a5u/vD6A4+71X1woKCpCYmIiQkJD77qNRo0Y4deoUevXqVepBAf9lYWGBXr16oVevXvj000/x0Ucf4b333sPevXsREhJy3+2JiIiIyHzpdDokJCToe3kBwLlz5wAUP6WciJSPtzoSVbOSq03/vbq0ePFiyfsMCwsDACxZsqTCfVpaWuKJJ57Ab7/9ZtA1OzU1FevWrUOXLl3g6OgoOUd1CAkJgbW1NZYsWWJwjlauXImMjIwyn1T5X4MHD8bVq1fx9ddfl1qWm5uL7OxsAMW3nP5X27ZtAQD5+fkAgDp16gAA0tPTjX0rRERERGQGli5dqv+3EAJLly6FlZUVevXqJWMqIqou7PFFVM0cHR3RtWtXLFiwAIWFhahXrx527NiBxMREyfts27Ythg4dii+++AIZGRno1KkTdu/ejfj4+FLrfvjhh9i5cye6dOmC1157DWq1Gl9++SXy8/OxYMGCqry1auHh4YGpU6di1qxZ6N27N/r164e4uDh88cUXeOSRR/D888/fdx8vvPACNmzYgNGjR2Pv3r3o3LkztFot/v33X2zYsAHbt29Hhw4dMHv2bBw4cAB9+vSBv78/0tLS8MUXX6B+/fro0qULgOLeY87OzlixYgUcHBxQp04dBAUFlRq3jYiIiIjMj0ajwbZt2xAeHo6goCBs3boVmzdvxrvvvgsPDw+54xFRNWDDF9EDsG7dOrz++utYtmwZhBB44oknsHXrVvj4+Eje57fffgsPDw+sXbsWkZGR6NmzJzZv3lzq1sWWLVvi4MGDmDp1KubOnQudToegoCCsWbMGQUFBVX1r1WLmzJnw8PDA0qVLMXHiRLi6umLUqFH46KOPYGVldd/tLSwsEBkZiUWLFmH16tX49ddfYWdnh4YNG2L8+PH6rur9+vXDxYsX8e233+LGjRtwd3dHt27dMGvWLP0g/lZWVvjuu+8wdepUjB49GkVFRVi1ahUbvoiIiIhqAUtLS2zbtg1jxozB5MmT4eDggBkzZhgMWUJEyqYSHO2PiIiIiIiIapnhw4fjp59+QlZWltxRiOgB4hhfRERERERERERklnirIxEZ7datWygoKCh3uaWlJcdEICIiIiIiItmx4YuIjDZw4EDs37+/3OX+/v4GT5UkIiIiIiIikgPH+CIio0VHR+P27dvlLre1tUXnzp1rMBERERERERFRaWz4IiIiIiIiIiIis8TB7YmIiIiIiIiIyCxxjC8TpdPpkJycDAcHB6hUKrnjEBGZBCEE7ty5Ax8fH1hY1Py1m7y8vAof7FAZ1tbW0Gg01ZSIiMj0sI4lIipN7joWqHotq9Q6lg1fJio5ORm+vr5yxyAiMklJSUmoX79+jR4zLy8PAf72SEnTVmk/Xl5eSExMVGTRQERUGaxjiYjKJ0cdC1RPLavUOpYNXybKwcEBANAFT0INK5nTkBKorKzljiCZKKxaDxoynlI/L0WiEAeLIvXfkTWpoKAAKWlaJEb7w9FB2lW6zDs6BLS/hIKCAsUVDERElcU6loylUiv3z1JRVCR3BFKIIhTiELbIUscCVa9llVzHKvcbxsyVdAtXwwpqFQsGuj+Vgj8nQsVnbNQ0JX9eAMh660wd++JJCi0/6kRUC7COJWOpVMr9s1Twdl6qrP+vA+W+BVxqLavkOpaD2xMRERERERERkVlSbtM6ERGRDHQQ0EHaJS+p2xERERERVQeptayS61g2fBERERlBBx10VdiWiIiIiEguUmtZJdexbPgiIiIyglYIaIW0K15StyMiIiIiqg5Sa1kl17Fs+CIiIjICb3UkIiIiIqWqjbc6cnB7IiIiEzVz5kyoVCqDKTAwUL88Ly8PY8eOhZubG+zt7TFo0CCkpqbKmJiIiIiIyLSw4YuIiMgIOghoJU5SrpS1bNkS165d00+HDh3SL5s4cSI2bdqEjRs3Yv/+/UhOTsbAgQOr8+0SERERkRmRWssaW8ceOHAAffv2hY+PD1QqFSIjI8tdd/To0VCpVFi8eLHB/Fu3bmHYsGFwdHSEs7MzRowYgaysLKPfM291JCIiMkJN3+qoVqvh5eVVan5GRgZWrlyJdevWoWfPngCAVatWoXnz5jhy5Ag6duwoKSMRERERma+autUxOzsbDz30EF5++eUKL8z++uuvOHLkCHx8fEotGzZsGK5du4adO3eisLAQL730EkaNGoV169YZlYUNX0REREaojsHtMzMzDebb2NjAxsamzG3Onz8PHx8faDQaBAcHY+7cufDz80N0dDQKCwsREhKiXzcwMBB+fn6IiopiwxcRERERlVJTg9uHhYUhLCyswnWuXr2K119/Hdu3b0efPn0Mlp09exbbtm3D8ePH0aFDBwDA559/jieffBILFy4ss6GsPLzVkYiIqIb5+vrCyclJP82dO7fM9YKCghAREYFt27Zh+fLlSExMxGOPPYY7d+4gJSUF1tbWcHZ2NtjG09MTKSkpNfAuiIiIiKi2yczMNJjy8/Ml7Uen0+GFF17A5MmT0bJly1LLo6Ki4OzsrG/0AoCQkBBYWFjg6NGjRh2LPb6IiIiMoPv/Seq2AJCUlARHR0f9/PJ6e917laxNmzYICgqCv78/NmzYAFtbW4kpiIiIiKi2klrLlmzj6+trMH/GjBmYOXOm0fubP38+1Go13njjjTKXp6SkoG7dugbz1Go1XF1djb7Iy4YvIiIiI5QM8Cl1WwBwdHQ0aPiqLGdnZzRt2hTx8fF4/PHHUVBQgPT0dINeX6mpqWWOCUZEREREJLWWLdmmshdwKxIdHY3PPvsMMTExUKlURm9vLN7qSEREZAStqNpUFVlZWbhw4QK8vb3Rvn17WFlZYffu3frlcXFxuHz5MoKDg6v4LomIiIjIHFW1ji25gFsySWn4OnjwINLS0uDn5we1Wg21Wo1Lly7hzTffRIMGDQAAXl5eSEtLM9iuqKgIt27dMvoiL3t8ERERGaE6bnWsrLfeegt9+/aFv78/kpOTMWPGDFhaWmLo0KFwcnLCiBEjMGnSJLi6usLR0RGvv/46goODObA9EREREZWpqrc6VocXXnjB4AFNABAaGooXXngBL730EgAgODgY6enpiI6ORvv27QEAe/bsgU6nQ1BQkFHHY8MXERGRibpy5QqGDh2KmzdvwsPDA126dMGRI0fg4eEBAFi0aBEsLCwwaNAg5OfnIzQ0FF988YXMqYmIiIiotsvKykJ8fLz+dWJiImJjY+Hq6go/Pz+4ubkZrG9lZQUvLy80a9YMANC8eXP07t0bI0eOxIoVK1BYWIhx48ZhyJAhRj3RETDzhq8GDRpgwoQJmDBhgtxRTErf4Tfw9Jg0uHoUIeGMLb6YVg9xsXZyx6oUpWZXau5Wj97B069eQ5PWOXDzLMSskY0RtcNF7liVptTzDigzu9I/L5WlgwpaSBuLQGfkduvXr69wuUajwbJly7Bs2TJJeYjIdLGOLZsSfz+WYPaa8+zYa+jcOx31G+WhIM8CZ6Lr4Nu59XElQSN3tEpT2jm/l1KzKzW3saTWssbWsSdOnECPHj30rydNmgQACA8PR0RERKX2sXbtWowbNw69evXSX+xdsmSJUTkAmcf46t69e5m/zCMiIko9nt2UxMXFoUePHvD09IRGo0HDhg0xbdo0FBYWGqy3ceNGBAYGQqPRoHXr1tiyZYtMie/q1u82Rs1IxtpPvTA2tCkSzmgwZ10CnNwK77+xzJSaXam5AUBjp0XiWTssm+4vdxSjKfm8KzW7kj8vxtCJqk1EZB5Yx9Y8pf5+BJi9prUOysKm7zwwcUAgpg5rArVaYM6a87Cx1codrVKUeM5LKDW7UnNLUVN1bPfu3SGEKDWV1+h18eLFUr9XXV1dsW7dOty5cwcZGRn49ttvYW9vb/R75uD2FSgoKChzvpWVFV588UXs2LEDcXFxWLx4Mb7++mvMmDFDv87hw4cxdOhQjBgxAidPnsSAAQMwYMAA/PPPPzUVv0wDR93AtnWu2PGjKy6f12DJ2/WRn6tC6NBbsuaqDKVmV2puADixzxnfLayPw9uV12tHyeddqdmV/Hkxhvb/r5JJnYiIagLrWNPC7DVr2otNsPMnd1w6Z4vEs3b45M0G8KxfgCatc+SOVilKPOcllJpdqbmlqI11rCIavoYPH44BAwZg4cKF8Pb2hpubG8aOHWtwZSotLQ19+/aFra0tAgICsHbt2lL7SU9PxyuvvAIPDw84OjqiZ8+eOHXqlH75zJkz0bZtW3zzzTcICAiARlN2V9iGDRvipZdewkMPPQR/f3/069cPw4YNw8GDB/XrfPbZZ+jduzcmT56M5s2b44MPPkC7du2wdOnSajwzxlFb6dCkTQ5iDjro5wmhwsmDDmjR3rR/CSg1u1JzK52Sz7uSsxMRUWmsY6uHkn8/Mrv87ByKe3rdSTf9kX6UfM6Vml2puanyTP8n///t3bsX3t7e2Lt3L+Lj4/Hss8+ibdu2GDlyJIDioiI5ORl79+6FlZUV3njjjVKPvnzmmWdga2uLrVu3wsnJCV9++SV69eqFc+fOwdXVFQAQHx+Pn3/+Gb/88gssLS0rlS0+Ph7btm3DwIED9fOioqL097CWCA0NRWRkZJn7yM/PR35+vv51ZmZmpY5tDEdXLSzVQPp1w//22zfU8G2cX85WpkGp2ZWaW+mUfN6VnL22qMoVLyVfKSMi6VjHVp2Sfz8yu7xUKoHRM6/g9PE6uHTOVu4496Xkc67U7ErNLZXUWlbJdaxiGr5cXFywdOlSWFpaIjAwEH369MHu3bsxcuRInDt3Dlu3bsWxY8fwyCOPAABWrlyJ5s2b67c/dOgQjh07hrS0NNjY2AAAFi5ciMjISPz0008YNWoUgOJu4atXr9Y/MasinTp1QkxMDPLz8zFq1CjMnj1bvywlJQWenp4G63t6eiIlJaXMfc2dOxezZs0y7qQQEVGN0wkVdELi4PYStyMiZWMdSySfsR9eRoOmuXhzUDO5oxCZBKm1rJLrWEXc6ggALVu2NLhy5e3trb8SdvbsWajVarRv316/PDAw0GBg0VOnTiErKwtubm6wt7fXT4mJibhw4YJ+PX9//0oVCwDw448/IiYmBuvWrcPmzZuxcOFCye9v6tSpyMjI0E9JSUmS91WezFuW0BYBzh5FBvNd3Itw+7ppt4EqNbtScyudks+7krPXFhzji4iMxTq26pT8+5HZ5fPa7MsI6pWBKUOa4kaKtdxxKkXJ51yp2ZWaW6raWMfK+r/o6OiIjIyMUvPT09Ph5ORkMM/KysrgtUqlgk6nq/SxsrKy4O3tjX379pVadm9hUadOnUrv09fXFwDQokULaLVajBo1Cm+++SYsLS3h5eWF1NRUg/VTU1Ph5eVV5r5sbGz0V/AelKJCC5z/yw4Pd7mDqG3F51elEmjbJQu/R7g90GNXlVKzKzW30in5vCs5e22hhQW0Eq8bKeNZUkRUGaxj72IdWzFml4PAa7OT0Kl3OqYMborUpAf7+axOyj3nys2u1NxSSa1llVzHytrw1axZM+zYsaPU/JiYGDRt2rTS+wkMDERRURGio6P1XcTj4uKQnp6uX6ddu3ZISUmBWq1GgwYNqhq9FJ1Oh8LCQuh0OlhaWiI4OBi7d+82eBznzp07ERwcXO3HNsYvX7njrcVJOHfKDnEn7fDUyOvQ2OmwY72rrLkqQ6nZlZobADR2Wvg0uHtfu5dvPhq2yMGddEtcTzbtAkLJ512p2ZX8eSEiMhbr2Jqn1N+PALPXtLEfJqFH/1uY9Uoj5GZbwsWj+GES2ZmWKMg3/ZuelHjOSyg1u1JzU+XI2vA1ZswYLF26FG+88QZeeeUV2NjYYPPmzfjhhx+wadOmSu+nWbNm6N27N1599VUsX74carUaEyZMgK3t3cELQ0JCEBwcjAEDBmDBggVo2rQpkpOTsXnzZjz11FPo0KFDpY+3du1aWFlZoXXr1rCxscGJEycwdepUPPvss/oreuPHj0e3bt3wySefoE+fPli/fj1OnDiBr776qvIn6AHY/7sLnNy0eHFyClw8ipBw2hbvDQtA+g2r+28sM6VmV2puAGjaJhsLfozTv371/eJbF3ZudMMnbzWUK1alKPm8KzW7kj8vxhBVGONLKHhsBCIyxDq25in19yPA7DWt74vXAQAfbzxnMP+TSf7Y+ZO7HJGMosRzXkKp2ZWaWwqptayS61hZG74aNmyIAwcO4L333kNISAgKCgoQGBiIjRs3onfv3kbta9WqVXjllVfQrVs3eHp64sMPP8T06dP1y1UqFbZs2YL33nsPL730Eq5fvw4vLy907dq11OCd96NWqzF//nycO3cOQgj4+/tj3LhxmDhxon6dTp06Yd26dZg2bRreffddNGnSBJGRkWjVqpVRx3oQfl/ljt9Xmf4XflmUml2puf864oje/o/IHUMypZ53QJnZlf55qSw+1ZGIANaxclHi78cSzF5zevu1v/9KJk5p5/xeSs2u1NzGqo1PdVQJIYTcIai0zMxMODk5oTv6Q60yv1Zmqn4qK2UM2FkWUVggd4RaR6mflyJRiL2FG5GRkQFHR8caPXbJ9/LWvwJQx0HabRLZd3QIa5MoS34ioprCOpaMpVIrdwBxUVR0/5WIUFzH7sNvstWBVa1llVzHKvcbhoiISAY6qKCTOLi9DrzWRERERETykVrLKrmONf2R/YiIiIiIiIiIiCRgjy8iIiIjcIwvIiIiIlKq2jjGFxu+iIiIjKAVFtAKaR2mtRxWk4iIiIhkJLWWVXIdy4YvIiIiIxSPiyDtipfU7YiIiIiIqoPUWlbJdSzH+CIiIiIiIiIiIrPEHl9ERERG0MECWj7VkYiIiIgUSGotq+Q6lg1fRERERuAYX0RERESkVBzji4iIiCqkgwV07PFFRERERAoktZZVch3Lhi8iIiIjaIUKWiFtcE+p2xERERERVQeptayS61gObk9ERERERERERGaJPb6IiIiMoK3C4PZaBXcRJyIiIiLlk1rLKrmOZcMXERGREXTCAjqJg9vrFDwoKBEREREpn9RaVsl1LBu+iIiIjMAeX0RERESkVOzxRURERBXSQfrgnrrqjUJEREREZBSptayS61gObk9ERERERERERGaJPb6IiIiMoIMFdBKvG0ndjoiIiIioOkitZZVcx7Lhy8RZurnC0sJa7hikACK/QO4IklnWdZc7giRFV5PljiCZKFTm50WIQrkjQCssoJU4uL3U7YiIiMyZRQNfuSNIpo1PlDsCkVGk1rJKrmPZ8EVERGQEHVTQQeoYX9K2IyIiIiKqDlJrWSXXscptsiMiIiIiIiIiIqoAe3wREREZgbc6EhEREZFS8VZHIiIiqpAWFtBK7DAtdTsiIiIiouogtZZVch3Lhi8iIiIj6IQKOiFxjC+J2xERERERVQeptayS61g2fBERERlBV4UeX0p+DDQRERERKZ/UWlbJdaxykxMRERERERERkck5cOAA+vbtCx8fH6hUKkRGRuqXFRYW4u2330br1q1Rp04d+Pj44MUXX0RycrLBPm7duoVhw4bB0dERzs7OGDFiBLKysozOwoYvIiIiI+iERZUmIiIiIiK51FQdm52djYceegjLli0rtSwnJwcxMTGYPn06YmJi8MsvvyAuLg79+vUzWG/YsGE4ffo0du7ciT/++AMHDhzAqFGjjH7PvNWRiIjICFqooIW0MQ6kbkdEREREVB2k1rLGbhMWFoawsLAylzk5OWHnzp0G85YuXYpHH30Uly9fhp+fH86ePYtt27bh+PHj6NChAwDg888/x5NPPomFCxfCx8en0ll46ZmIiMgI7PFFREREREpV1To2MzPTYMrPz6+WXBkZGVCpVHB2dgYAREVFwdnZWd/oBQAhISGwsLDA0aNHjdo3K3AiIiIiIiIiIrovX19fODk56ae5c+dWeZ95eXl4++23MXToUDg6OgIAUlJSULduXYP11Go1XF1dkZKSYtT+easjERGREbSQfsuitnqjEBEREREZRWotW1LHJiUl6RunAMDGxqZKeQoLCzF48GAIIbB8+fIq7as8bPgiIiIyQlVuWeStjkREREQkJ6m1bMk2jo6OBg1fVVHS6HXp0iXs2bPHYL9eXl5IS0szWL+oqAi3bt2Cl5eXUcdhwxcREZERtMICWokNWFK3IyIiIiKqDlJr2equY0savc6fP4+9e/fCzc3NYHlwcDDS09MRHR2N9u3bAwD27NkDnU6HoKAgo47Fhi8iIiIjCKigk3iro+BTHYmIiIhIRlJrWWPr2KysLMTHx+tfJyYmIjY2Fq6urvD29sbTTz+NmJgY/PHHH9Bqtfpxu1xdXWFtbY3mzZujd+/eGDlyJFasWIHCwkKMGzcOQ4YMMeqJjgAbvoiIiIiIiIiIqBqdOHECPXr00L+eNGkSACA8PBwzZ87E77//DgBo27atwXZ79+5F9+7dAQBr167FuHHj0KtXL1hYWGDQoEFYsmSJ0VnY8FWLPDn4CvoMvgpPnzwAwKULdfDDlwE4ccjtPlvKj9lr3uBRSej8xE3Ub5iLgjwLnDnpgG8XNsDVRDu5oxntmfALGD7uHCJ/8MfXn7aQO06l9B1+A0+PSYOrRxESztjii2n1EBdr+udeqbmNwVsdiYjko+TfM8z+4LR66AYGDTmPxs0y4Oaehw/efRRRh+72CJk4NRqPhyUZbHPiaF28P7lTTUetNFM/5xVRanal5jZWTd3q2L17dwghyl1e0bISrq6uWLdunVHHLQsr8FrkRqoGqxY3whtDHsH4oY/g1DEXTP/sL/g1ypI72n0xe81r/WgGNq31xsTBbfDuSy2hVgvMWXkaNrbKei5dkxbp6P1UEhLOOcgdpdK69buNUTOSsfZTL4wNbYqEMxrMWZcAJ7dCuaNVSKm5jaUTqipNREQkjZJ/zzD7g6XRaJF4wQlfLGpT7jonjtTFsAG99dOCWR1qMKFxlHDOy6PU7ErNLUVtrGPNuuFr+fLlaNOmjf6pA8HBwdi6dat+eV5eHsaOHQs3NzfY29tj0KBBSE1NrfT+4+Pj4eDgAGdn51LLNm7ciMDAQGg0GrRu3RpbtmypjrdUJcf2u+PEIXckX7bD1Ut2WP15I+TlWCKwTabc0e6L2Wve9FdaYdevnrgcXweJcfb49J2m8KyXjyYtTbvB7l4a2yJMnn0Kn3/UCll3rOSOU2kDR93AtnWu2PGjKy6f12DJ2/WRn6tC6NBbckerkFJzG0sLiypNRESVwTq2NCX/nmH2B+vEUU+s/qYFog6WP+5PYaEFbt/S6KesLOsaTGgcJZzz8ig1u1JzS1Eb61jlJq+E+vXrY968eYiOjsaJEyfQs2dP9O/fH6dPnwYATJw4EZs2bcLGjRuxf/9+JCcnY+DAgZXad2FhIYYOHYrHHnus1LLDhw9j6NChGDFiBE6ePIkBAwZgwIAB+Oeff6r1/VWFhYVA196p0NhqcfaUk9xxjMLs8rBzKAIA3MlQzh3SY6acwfE/6yL2mLvcUSpNbaVDkzY5iDl4t4eaECqcPOiAFu1zZExWMaXmloI9voioJrCONaTk3zPMbhpat72Bdb9twVdrdmHspFg4OBbIHalMSj7nSs2u1NxS1cY6Vjl/wUrQt29fg9dz5szB8uXLceTIEdSvXx8rV67EunXr0LNnTwDAqlWr0Lx5cxw5cgQdO3ascN/Tpk1DYGAgevXqhcOHDxss++yzz9C7d29MnjwZAPDBBx9g586dWLp0KVasWFGN79B4DZpk4ZPvo2FtrUNujiU+mNAaSQl1ZM1UWcwuH5VK4NV3E3A62hGXzisjd9fHk9E4MAMTwk137IayOLpqYakG0q8bfj3fvqGGb+N8mVLdn1JzExGZKtaxhpT8e4bZ5Rd91BOHD/gg9ZodvH2yET7qLGZ/fBhvjukGnc60/phX8jlXanal5qbKM+seX/fSarVYv349srOzERwcjOjoaBQWFiIkJES/TmBgIPz8/BAVFVXhvvbs2YONGzdi2bJlZS6Piooy2C8AhIaGVrjf/Px8ZGZmGkwPwpVEO4x75hFMHNYeWzbUw5sfnoVvw+wHcqzqxuzyGTvjAho0ycG8ic3kjlIp7p65GPXmWXw8/SEUFljKHYfMjA4WVZqIiIzFOpaoag7sqY+jf3rjYoITog75YObbHdGseTpat70hdzSiGlcb61iz7vEFAH///TeCg4ORl5cHe3t7/Prrr2jRogViY2NhbW1dalwDT09PpKSklLu/mzdvYvjw4VizZg0cHR3LXCclJQWenp5G7Xfu3LmYNWtW5d+YREVFFriWVPxkivizjmjSKhP9hyVh6QeBD/zYVcXs8hgz/QIe7X4Lk59vgxupNnLHqZTGgZlwcSvAku/vXsW2VAu0evgW+j5zGQM6h5rc1b0SmbcsoS0CnD2KDOa7uBfh9nXT/cpWam4ptEIFrcSu3lK3I6LaiXXsXUr+PcPspiflWh1kpFvDp34WTsV4yB3HgJLPuVKzKzW3VFJrWSXXscptsqukZs2aITY2FkePHsWYMWMQHh6OM2fOVGrbli1bwt7eHvb29ggLCwMAjBw5Es899xy6du1arTmnTp2KjIwM/ZSUlHT/jaqBhYWAlbWuRo5V3Zj9QRMYM/0COj1+E++Et0bqFY3cgSrt1HE3vDakC15/vrN+OnfGCfu2+eD15zubbKMXABQVWuD8X3Z4uMsd/TyVSqBtlyyciTbdxykrNbcUco3xNW/ePKhUKkyYMEE/r6qDWxORaWMde5eSf88wu+lx88iFg2MBbt00vfpWyedcqdmVmlsqjvFlhqytrdG4cWMAQPv27XH8+HF89tlnePbZZ1FQUID09HSDq2Wpqanw8vICAGzZsgWFhcWPL7W1tQVQ3D38999/x8KFCwEAQgjodDqo1Wp89dVXePnll+Hl5VXqD49791sWGxsb2Ng82N40w9+4gBN/uiLtmgZ2dbToHpaK1h3SMX102wd63OrA7DVv7IwL6P6/65j9WgvkZlvCxb14ANDsO5YoyDft2wdzc9S4dMHBYF5eriUyM6xKzTdFv3zljrcWJ+HcKTvEnbTDUyOvQ2Onw471rnJHq5BScyvB8ePH8eWXX6JNG8PHtE+cOBGbN2/Gxo0b4eTkhHHjxmHgwIH4888/ZUpKRNWJdawhJf+eYfYHS2NbBJ96d5887umdg4aN03En0xp37ljjueH/4s/9Prh9ywbePjl4ecw/uHa1DqKP1ZUxdfmUcM7Lo9TsSs1NlWP2DV//pdPpkJ+fj/bt28PKygq7d+/GoEGDAABxcXG4fPkygoODAQD+/v6lto+KioJWq9W//u233zB//nwcPnwY9erVAwAEBwdj9+7dBlfld+7cqd+vXJxcC/Dmh2fh6pGP7Cw1Es/ZY/rotjh5xPR/mJm95v3vueJbGhas+dtg/ifvNMGuXz3L2oSqyf7fXeDkpsWLk1Pg4lGEhNO2eG9YANJvWMkdrUJKzW0sISygE9I6TAsJ22VlZWHYsGH4+uuv8eGHH+rnZ2RkVGlwayJSntpcxwLK/j3D7A9Wk2a3MX/J3Ys+o14vfgrpzq2+WPZJWwQ0ykRI78uoY1+IWzc0iDleF9+vbI6iQtO8mKuEc14epWZXam4ppNayUupYU6ESQgi5QzwoU6dORVhYGPz8/HDnzh2sW7cO8+fPx/bt2/H4449jzJgx2LJlCyIiIuDo6IjXX38dAEo93aYiERERmDBhAtLT0/XzDh8+jG7dumHevHno06cP1q9fj48++ggxMTFo1apVpfabmZkJJycn9HJ7CWoLa6PeN9VOIt80H8lcGRaOpt8LqyxFV5PljlDrFIlC7MNvyMjIKHd8mgel5Ht5xP7BsLaXVgQVZBViZbcNSEpKMshfUW+J8PBwuLq6YtGiRejevTvatm2LxYsXY8+ePejVqxdu375t0OPD398fEyZMwMSJEyVlJCLTYA51bHf0h1plfn80UvWzbBwgdwTJtPGJckcghZCzjgWqXsuW1LFy5a8Ks+7xlZaWhhdffBHXrl2Dk5MT2rRpoy8WAGDRokWwsLDAoEGDkJ+fj9DQUHzxxRdVPm6nTp2wbt06TJs2De+++y6aNGmCyMjIShcLRERkunQCksc40P3/pSZfX1+D+TNmzMDMmTNLrb9+/XrExMTg+PHjpZalpKRIGtyaiJSBdSwRET0IUmtZnYK7TJl1w9fKlSsrXK7RaLBs2bJyH+dcGcOHD8fw4cNLzX/mmWfwzDPPSN4vERGZJl0VbnUs2a6sHl//lZSUhPHjx2Pnzp3QaExv8F0ierBYxxIR0YMgtZaVWv+aAuUmJyIiUihHR0eDqayGr+joaKSlpaFdu3ZQq9VQq9XYv38/lixZArVaDU9PT/3g1ve63yDURERERES1iVn3+CIiIqpuOqigg8RbHY3YrlevXvj7b8OHS7z00ksIDAzE22+/DV9f3/sObk1EREREdC+ptazU+tcUsOGLiIjICFqhglbiGF/GbOfg4FBqTJ06derAzc1NP3/EiBGYNGkSXF1d9YNbBwcH84mORERERFQmqbWs1PrXFLDhi4iIyAjVMcZXdXlQg1sTERERkXmqjWN8seGLiIhIIfbt22fwujoGtyYiIiIiMmds+CIiIjKCDipJj4Au2ZaIiIiISC5Sa1kl17Fs+CIiIjKCqMLg9kLBBQMRERERKZ/UWlbJdSwbvoiIiIygE1Xo8aXgQUGJiIiISPmk1rJKrmPZ8EVERGQEUxrcnoiIiIjIGLVxcHvlJiciIiIiIiIiIqoAe3wREREZgbc6EhEREZFS8VZHIiIiqpCuCoPbK/lpOERERESkfFJrWSXXsWz4IiIiMgJ7fBERERGRUrHHFxEREVWIDV9EREREpFS1seGLg9sTEREREREREZFZYo8vIiIiI7DHFxEREREpVW3s8cWGLxMnCgqgxM+XysdT7giSZLRxkzuCZHWu5skdQTLVuStyR5DE0l25n5eCVv5yR5BEW5QHHPxN1gxs+CIiIqpead285I4gmVt8otwRiIzChi8iIiKqkID0p9qI6o1CRERERGQUqbWskutYjvFFRERERERERERmiT2+iIiIjMBbHYmIiIhIqXirIxEREVWIDV9EREREpFRs+CIiIqIKseGLiIiIiJSqNjZ8cYwvIiIiI5QUC1InIiIiIiK51FQde+DAAfTt2xc+Pj5QqVSIjIw0WC6EwPvvvw9vb2/Y2toiJCQE58+fN1jn1q1bGDZsGBwdHeHs7IwRI0YgKyvL6PfMhi8iIiIiIiIiIqo22dnZeOihh7Bs2bIyly9YsABLlizBihUrcPToUdSpUwehoaHIy8vTrzNs2DCcPn0aO3fuxB9//IEDBw5g1KhRRmfhrY5ERERGEEIFIbHnltTtiIiIiIiqg9Ra1thtwsLCEBYWVs6+BBYvXoxp06ahf//+AIDVq1fD09MTkZGRGDJkCM6ePYtt27bh+PHj6NChAwDg888/x5NPPomFCxfCx8en0lnY44uIiMgIOqiqNBERERERyaWqdWxmZqbBlJ+fb3SGxMREpKSkICQkRD/PyckJQUFBiIqKAgBERUXB2dlZ3+gFACEhIbCwsMDRo0eNOh4bvoiIiIzAMb6IiIiISKmqWsf6+vrCyclJP82dO9foDCkpKQAAT09Pg/menp76ZSkpKahbt67BcrVaDVdXV/06lcVbHYmIiIiIiIiI6L6SkpLg6Oiof21jYyNjmsphwxcREZEROMYXERERESlVVcf4cnR0NGj4ksLLywsAkJqaCm9vb/381NRUtG3bVr9OWlqawXZFRUW4deuWfvvK4q2ORERERuCtjkRERESkVKZQxwYEBMDLywu7d+/Wz8vMzMTRo0cRHBwMAAgODkZ6ejqio6P16+zZswc6nQ5BQUFGHY89voiIiIzAHl9EREREpFQ19VTHrKwsxMfH618nJiYiNjYWrq6u8PPzw4QJE/Dhhx+iSZMmCAgIwPTp0+Hj44MBAwYAAJo3b47evXtj5MiRWLFiBQoLCzFu3DgMGTLEqCc6Amz4IiIiMoqowhUvNnwRERERkZyk1rLG1rEnTpxAjx499K8nTZoEAAgPD0dERASmTJmC7OxsjBo1Cunp6ejSpQu2bdsGjUaj32bt2rUYN24cevXqBQsLCwwaNAhLliwxOjsbvoiIiIiIiIiIqNp0794dQohyl6tUKsyePRuzZ88udx1XV1esW7euylnY8EVERGQEAaCC3+H33ZaIiIiISC5Sa1kl17Fs+KpFBo9KQucnbqJ+w1wU5FngzEkHfLuwAa4m2skdrVLc3HPx0qi/0eHRVNhoinDtqj0Wze+A8+dc5I5m4KFG1/Bcz1MI9L0Bd6ccvPPNEzj4d4My1508+CAGdD6Lz34Jxob9rWs2aCXYagoRPiQWnYMuw9kxD/EXXbH820dw7oK73NEq9OTgK+gz+Co8ffIAAJcu1MEPXwbgxCE3mZPdn1Kytw5MweD//YMmATfg7pKL9z/ticMn/O9ZQyD86ZN4ssc52NcpwOlzdfHZt8G4muIkW+bqooMKKki7ZVEncTsiIirWd/gNPD0mDa4eRUg4Y4svptVDXKwyallmrznhj53E608cxbrDrfHp1s7wds7EpjfL7jXy9vrHsft0oxpOeH9KO+f3Ump2peY2ltRaVsl1LJ/qWIu0fjQDm9Z6Y+LgNnj3pZZQqwXmrDwNG1ut3NHuy96+AAs/3wdtkQXef6czRg9/Al8vb4M7WVZyRyvF1roQ8Vfd8MlPnStcr2ubRLT0T8P1dNP9Mp045jDaPZSMBUu64NU3+yLmlDfmv78Tbq45cker0I1UDVYtboQ3hjyC8UMfwaljLpj+2V/wa5Qld7T7Ukp2jU0REi654PNVwWUuf7bv33gq9Cw++zYY46b/D3l5asx7ZwesrIpqOGn1KxkQVOpERETSdOt3G6NmJGPtp14YG9oUCWc0mLMuAU5uhXJHuy9mrzkt6qVh4CNncC7l7kXD1Ax7hM5/0WBasbsDsvOtcPi8n4xpy6a0c34vpWZXam4pamMdW2savubNmweVSoUJEybo5+Xl5WHs2LFwc3ODvb09Bg0ahNTU1Ar3c/HiRahUqlLTkSNHDNbbuHEjAgMDodFo0Lp1a2zZsuVBvC2jTH+lFXb96onL8XWQGGePT99pCs96+WjS0rT+oC7L00PjcD3NFosWdMC5f12RmlIHJ094IiXZXu5opRw564evtzyCA38FlLuOu1M2Jg46jFnf90CR1jR/DK2ti/BYx8v45vv2+PusJ5JTHPH9hrZITnFA3yfi5I5XoWP73XHikDuSL9vh6iU7rP68EfJyLBHYJlPuaPellOzHT9XHqo3t8adBL68SAgN7n8HayDY4HO2PxCRXzF/eFW7Ouejc4XKNZ61uVXkEdHU+BpqIag/WscUGjrqBbetcseNHV1w+r8GSt+sjP1eF0KG35I52X8xeM2ytC/HB07sxJ7Ib7uRa6+frhAVuZtkZTD1aJGLXP42QW2B6F9KVdM7/S6nZlZpbitpYx5rmX9zV7Pjx4/jyyy/Rpk0bg/kTJ07Epk2bsHHjRuzfvx/JyckYOHBgpfa5a9cuXLt2TT+1b99ev+zw4cMYOnQoRowYgZMnT2LAgAEYMGAA/vnnn2p9X1Vl51Dc8+JOhunf8dqx0zWcj3PB1BlHsO6XP/D5V7sQ2idR7liSqFQC7z+/F+v2tEFiiqvcccplaSFgaSlQUGhpMD+/wBItm6fJlMp4FhYCXXunQmOrxdlTyrrNTqnZvetmwc0lFzH/3H3McHauNc5ecEeLJsr57BARmQLWscXUVjo0aZODmIMO+nlCqHDyoANatDftnujMXnPe/t9B/HnOD8cS6le4XqDPdTTzvonfogNrKFnlKe2c30up2ZWamyrP7Bu+srKyMGzYMHz99ddwcbk7FlRGRgZWrlyJTz/9FD179kT79u2xatUqHD58uNRVr7K4ubnBy8tLP1lZ3b1S8Nlnn6F3796YPHkymjdvjg8++ADt2rXD0qVLH8h7lEKlEnj13QScjnbEpfN15I5zX14+2ejTPwHJV+0xbUoXbP69IUa/HoteoZfkjma053vFQqtTYeP+VnJHqVBunhVOx3lg2NN/wdUlBxYWOvR6LAHNm96Aq3Ou3PHuq0GTLPx8ZD9+O7EP46bF4YMJrZGUYPqfdUDZ2QHAxam4QLidYWswPz3DFq5Opv/ZuR8hqjYREVUW69i7HF21sFQD6dcNL9jevqGGi4dp30bP7DXjidbxCPS5gaU7g+67bv92Z5GQ5oK/krxqIJlxlHTO/0up2ZWaW6raWMeafcPX2LFj0adPH4SEhBjMj46ORmFhocH8wMBA+Pn5ISoq6r777devH+rWrYsuXbrg999/N1gWFRVV6nihoaEV7jc/Px+ZmZkG04M0dsYFNGiSg3kTmz3Q41QXlUog/pwzvvumFRLinbHtj4bYtjkAT/ZNkDuaUZrVv45nuv2DOWu7AwoYHHDBki5QAVj/9U/Y/MNa9H/yLPb92UAR93dfSbTDuGcewcRh7bFlQz28+eFZ+DbMljtWpSg5e23AMb6IqKawjiWqHE/HLLz55J+YtrEXCooqvpvFRl2E3m3iTbK3F1FNqI11rOnf41YF69evR0xMDI4fP15qWUpKCqytreHs7Gww39PTEykpKeXu097eHp988gk6d+4MCwsL/PzzzxgwYAAiIyPRr18//b49PT2N2u/cuXMxa9YsI96ddGOmX8Cj3W9h8vNtcCPVpkaOWVW3b9oi6ZKjwbykSw7o/NhVmRJJ81CjFPxfe/cd3lTZvwH8TtIm6Uq6dwtllDJliFBAlpXKiwoC4oBXEMUXRKbIUAuCIooiiDJ+CjIERJAhIILIRvYoopSyCi10AaUNXWmanN8flUBsgSYNPTnt/bmuc2nOvHNKk2+f85zneLkXYM0Hd54q46QQ8FaPg+jT4RR6T3lZxHSlpWV4YMykWKhVBri6GJCV7Yp3R+1GWobjja32b8XFcqSllDw44HyCBnUb6dC9bwq+/tDxixwpZweAmzkl2b20Bci66+ENntoCXLjsuLf3lldFvvilXDAQUeViHWtJl6WAsRjw/FfvCy/fYty85th/0jD7wxcVcg0+7gVYNuQn8zwnhYBmNdLQp9VfaDN5EExCSZ+PJxpehNq5GL/ER4oV976kcs7LItXsUs1tK1trWSnXsVXvp/iPlJQUjBgxAtu2bYNarbZpHw0bNsTlyyW30j3++OP49ddf4evri9GjR5vXadmyJVJTU/HZZ5+ZCwZbTJgwwWK/Op0OYWFhNu+vbAKGxF1EmydvYNx/GyPjim3nRQyn//ZBSNgti3khobnIzHDcJyKWZcuRujhyNsRi3szBm7HlaF1sPuS4ve8K9c4o1DvD3U2PR5umYsH3LR68kYORywU4K01ix7CJ1LKnZbrjxk0XNGuYhguXS56o5OpShPq1r2Pj79JovCMiEhPr2NKKDXKc+9MVzdrdwoEtJeNeymQCmrbLxYbFPg/YWlzM/vAduRCCF77qYzFv4nM7cfm6J5bsbWZu9AKA7i0SsCexJrLzXf69G4cglXNeFqlml2puKr8q2/B17NgxZGZmonnz5uZ5RqMRe/bswddff42tW7eiqKgI2dnZFlfLMjIyEBhYcq/35s2bYTCUPL7UxeXeH4ytWrXCtm3bzK8DAwNLPVXn7v2WRaVSQaV6uL2vhk66gI5PX8OUNxugIE8BL98iAEDeLQWK9IoHbC2udavrYMbXu9Cn7xns3RmKevWz0PXpJMz+ovmDN65kLkoDQv1yzK+DfXSoG3Idunw1Mm66Q5dvWcAWG+XI0rkiOdOzkpM+WItHrkImA66kahAceAuD/nsMKVe12LqzjtjR7mvA8As4+oc3MtPUcHUzomPXDDR+NBtxg5uKHe2BpJJdrTIgJPDOrSxBfrmoXeMGbuWqkHnDHWu3NEDf507iaroG6dfcMeD5E7iR7YI/jjreI8OtZRJkkNl4xUvKT8MhosrDOrZsa7/xxZhZKTh70hWJJ1zx3KBrULua8NtKx+9NzOwPV36REhcyLfMUGpyQna+2mB/qnYNmNdIw4vv/VHZEq0jhnN+LVLNLNbctbK1lpVzHVtmGryeeeAKnTp2ymPfqq68iKioK48aNQ1hYGJydnbF9+3b06tULAJCYmIjk5GRER0cDAGrUqFGuY8XHxyMoKMj8Ojo6Gtu3b7d45PS2bdvM+xXL0y+XdFGfvszyvMwYXxe/rwsoaxOHcS7RGx/FRWPAoL/w8isJSE9zw//NeQS7fne8P6Kjwq/h62GbzK+HP1cyyOzmQ5GYuqKjSKls4+ZqwMC+x+Hrk49buSrsOxiORT80g9Ho2MMDar2L8PZHCfD20yMv1wlJZ90RN7gpThx0/C8uqWSvV+s6ZsRtMb8e8t/DAICtu+vgs/97HD9ubAy1qhijXt8Pd9ci/HXWH+M/6QKDQfpfOxUZ3FPKg4ISUeVhHVu23Ru8oPUx4pV30uHlV4yLf7vgvb4RyL7u/OCNRcbsjuHZ5meQqXPHwQv2vrPGvqR8zqWaXaq5bWFrLSvlOlYmCFKOb52OHTuiadOmmDVrFgBgyJAh2Lx5MxYvXgyNRoNhw4YBKHmM870sWbIESqUSzZo1AwCsXbsWcXFxWLBgAV599VXz9h06dMAnn3yCbt26YeXKlfj4449x/PhxNGpUvif56XQ6aLVadPboCyeZsgLvWhyyYMduSLuXnCbS7crqdrVQ7Ag2czp7RewI1U5Ro/L9QeRoiosLsXfvFOTk5ECj0Tx4Azu6/blcd9l4KFxtu/XImF+Ic/0+ESU/EUmbFOvYjugOJ1nV+6OR7O/Ga+I3rNrKZ+GDHyhBBADFggG78LNodWBFa1kp17HSv/ReATNnzoRcLkevXr2g1+sRGxuLuXPnPnC7Dz/8EJcvX4aTkxOioqLw448/onfv3ublbdq0wYoVK/D+++/j3XffRd26dbF+/fpyFwtEROS4OLg9ETkC1rFERGSL6ji4fbXq8SUl7PElDvb4Egd7fFU+9viy3u3P5TrfT6hQj6/z/50myStlRETlxR5fZC32+KLqwFF6fNlay0q5jq3WPb6IiIisJfwz2botEREREZFYbK1lpVzHsuGLiIjICrzVkYiIiIikqjre6siGLyIiImuwyxcRERERSVU17PIlFzsAERERERERERHRw8AeX0RERNaowK2OkHAXcSIiIiKqAmytZSVcx7Lhi4iIyAqCUDLZui0RERERkVhsrWWlXMey4YuIiMgKHNyeiIiIiKSKg9sTERHR/Qky27t6S7hgICIiIqIqwNZaVsJ1bLkavjZs2FDuHT777LM2hyEiIiIisifWsURERNVbuRq+evToUa6dyWQyGI3GiuQhIiJyaBzji0haWMcSERHdUR3H+JKXZyWTyVSuicUCERFVeUIFJyvMmzcPTZo0gUajgUajQXR0NH799Vfz8sLCQgwdOhQ+Pj5wd3dHr169kJGRUdF3SFSlsI4lIiK6SyXVsY6kXA1f91JYWGivHERERJJwe0BQWydrhIaG4pNPPsGxY8dw9OhRdO7cGd27d8fff/8NABg1ahQ2btyI1atXY/fu3UhNTUXPnj0fxtsmqnJYxxIRUXVUWXWsI7G64ctoNOLDDz9ESEgI3N3dcfHiRQBAXFwcFi5caPeAREREDqeSrpI988wz+M9//oO6desiMjISU6dOhbu7Ow4ePIicnBwsXLgQX3zxBTp37owWLVpg0aJF2L9/Pw4ePGiXt0lU1bCOJSIiQrXq7QXY0PA1depULF68GNOnT4dSqTTPb9SoERYsWGDXcERERFWRTqezmPR6/QO3MRqNWLlyJfLy8hAdHY1jx47BYDAgJibGvE5UVBTCw8Nx4MCBhxmfSLJYxxIREVU/Vjd8LV26FN988w369u0LhUJhnv/II4/gzJkzdg1HRETkaOxxq2NYWBi0Wq15mjZt2j2Pd+rUKbi7u0OlUmHw4MFYt24dGjRogPT0dCiVSnh6elqsHxAQgPT09Id5Cogki3UsERFVd9XxVsdyPdXxblevXkWdOnVKzTeZTDAYDHYJRURE5LAq0t37n+1SUlKg0WjMs1Uq1T03qVevHuLj45GTk4OffvoJ/fv3x+7du20MQFS9sY4lIqJqz9ZaVsK3O1rd8NWgQQPs3bsXNWrUsJj/008/oVmzZnYLRiVMt3JhkjmLHcNqTkXeYkewidtV6Q50+9tPS8SOYLPHJgwRO4JNirTSveqR06RI7Ag2MRXIgb1ip5D9M9m6LcxPaSwPpVJp/kO9RYsWOHLkCL788ku88MILKCoqQnZ2tkWvr4yMDAQGBtqYj6hqYx1L5Jg+mvCd2BFsNnNhfbEjEFnJ1lpWun/7WN3wNXHiRPTv3x9Xr16FyWTC2rVrkZiYiKVLl2LTpk0PIyMRERH9w2QyQa/Xo0WLFnB2dsb27dvRq1cvAEBiYiKSk5MRHR0tckoix8Q6loiIqPqxuuGre/fu2LhxI6ZMmQI3NzdMnDgRzZs3x8aNG/Hkk08+jIxERESOww63OpbXhAkT0LVrV4SHh+PWrVtYsWIFdu3aha1bt0Kr1eK1117D6NGj4e3tDY1Gg2HDhiE6OhqtW7e2MSBR1cY6loiIqj3e6lg+jz/+OLZt22bvLERERI6vEhu+MjMz8corryAtLQ1arRZNmjTB1q1bzX+gz5w5E3K5HL169YJer0dsbCzmzp1rYzii6oF1LBERVWts+Cq/o0ePIiEhAUDJeAktWrSwWygiIiKHJchKJlu3tcLChQvvu1ytVmPOnDmYM2eObXmIqinWsUREVG3ZWstauY3RaMQHH3yAZcuWIT09HcHBwRgwYADef/99yGQl+xIEAZMmTcK3336L7OxstG3bFvPmzUPdunWtz3cfVjd8XblyBS+99BL++OMP82C62dnZaNOmDVauXInQ0FC7BiQiInIkglAy2botEYmHdSwREVV3ttay1m7z6aefYt68eViyZAkaNmyIo0eP4tVXX4VWq8Xw4cMBANOnT8fs2bOxZMkSREREIC4uDrGxsTh9+jTUarX1Ie9Bbu0Gr7/+OgwGAxISEpCVlYWsrCwkJCTAZDLh9ddft1swIiIiIiJ7Yh1LRERUOfbv34/u3bujW7duqFmzJnr37o0uXbrg8OHDAEp6e82aNQvvv/8+unfvjiZNmmDp0qVITU3F+vXr7ZrF6oav3bt3Y968eahXr555Xr169fDVV19hz549dg1HRETkcIQKTkQkGtaxRERU7VWwjtXpdBaTXq8v8zBt2rTB9u3bcfbsWQDAyZMnsW/fPnTt2hUAkJSUhPT0dMTExJi30Wq1aNWqFQ4cOGDXt2z1rY5hYWEwGAyl5huNRgQHB9slFBERkcOqxDG+iMi+WMcSEVG1V8ExvsLCwixmT5o0CR988EGp1cePHw+dToeoqCgoFAoYjUZMnToVffv2BQCkp6cDAAICAiy2CwgIMC+zF6t7fH322WcYNmwYjh49ap539OhRjBgxAp9//rldwxERETkamVCxiYjEwzqWiIiqu4rWsSkpKcjJyTFPEyZMKPM4q1atwvLly7FixQocP34cS5Ysweeff44lS5ZU4rstUa4eX15eXuZR9wEgLy8PrVq1gpNTyebFxcVwcnLCwIED0aNHj4cSlIiIyCFU5JZFNnwRVTrWsURERHextZb9ZxuNRgONRvPA1d955x2MHz8eL774IgCgcePGuHz5MqZNm4b+/fsjMDAQAJCRkYGgoCDzdhkZGWjatKkNAe+tXA1fs2bNsutBiYiIiIgqA+tYIiKiypefnw+53PImQ4VCAZPJBACIiIhAYGAgtm/fbm7o0ul0OHToEIYMGWLXLOVq+Orfv79dD0pERCRZHOOLSFJYxxIREd2lgmN8ldczzzyDqVOnIjw8HA0bNsSJEyfwxRdfYODAgQAAmUyGkSNH4qOPPkLdunURERGBuLg4BAcH270HttWD29+tsLAQRUVFFvPK0+WNiIhIsnirI1GVwDqWiIiqpQre6lheX331FeLi4vDmm28iMzMTwcHB+N///oeJEyea1xk7dizy8vLwxhtvIDs7G+3atcOWLVugVqttCHhvVjd85eXlYdy4cVi1ahVu3LhRarnRaLRLMCIiIofEhi8iyWIdS0RE1V4lNXx5eHhg1qxZ9x1yQCaTYcqUKZgyZYoNgcrP6qc6jh07Fjt27MC8efOgUqmwYMECTJ48GcHBwVi6dOnDyEhEREREVGGsY4mIiKofq3t8bdy4EUuXLkXHjh3x6quv4vHHH0edOnVQo0YNLF++HH379n0YOYmIiBwDe3wRSRbrWCIiqvYqqceXI7G6x1dWVhZq1aoFoGQchKysLABAu3btsGfPHvumIyIicjS3BwS1dSIi0bCOJSKiaq8a1rFW9/iqVasWkpKSEB4ejqioKKxatQqPPfYYNm7cCE9Pz4cQkeztmQHX0XtIJrz9inHxtAvmvh+CxHhXsWPd18sDz6Dva2ct5qVcdsfglzuLlKj8XNQG9H8xHm1bJcNTU4jzl7wx77uWOHvBV+xoFr7/PBDLvgi0mBdauxAL956B7qYC338eiOO7PZCZqoTWuxhtnspB/7FpcNOYREp8R7OaqejX/iSiQq7BT5OPd76Pxe7TERbr1PS7ibeeOojmtdKgkJuQlOmFccu6ICPHQ6TUJZqHpaJ/q3jUD7gGf498jFrzFHaeu5Pd2zUfIzsdROuaKfBQF+F4ShA+3dYOyTc9xQsNwGtzGjyO34QyrRAmpRyFtd1xrXcoDIF3BqJ0ziyE3+orUJ/LhazYhPxGWmS+FA6j1lnE5BUnE0omW7clIvGwjpU+KdaxtzG7/Vw57IKj3/og82818jKd8cy8FNR5Mte8/MCXvkj8RYNbac5QOAvwb1SItqMzEdS00LxOYbYcO6cE4uJ2d8jkQJ3YW+gYlw6lm2N8WTvaObeGVLNLNbe1bK1lpVzHWt3j69VXX8XJkycBAOPHj8ecOXOgVqsxatQovPPOO3YPaKsPPvgAMpnMYoqKijIvLywsxNChQ+Hj4wN3d3f06tULGRkZD9yvIAj4/PPPERkZCZVKhZCQEEydOtVinV27dqF58+ZQqVSoU6cOFi9ebO+3Z7MOz97EG5NSsfyLQAyNjcTF02pMXXERWh+D2NEe6NJFD/R7pot5GjukrdiRymXUkP1o/kgqps9uh/+9/QyOnwzCpxO3wcc7X+xopdSoV4Af4v8yT1+sPwcAyMpwxo0MZwyamIr/23EGY2Yl4+guD3zxdrjIiUuolcU4l+aDz35+vMzlId45+Hbwely+5onB3zyLl798Hgt3tEBRcYUebGsXLs4GnM3wwbRtZWUXMLPXFoR46jBqTVe8uKg30nI8MP/FjVA7i/s765p4C9md/JH8bn1cGR0JGAWEfnEWMn3JwNAyvREhM89BAHBlTCRSxkdBViwg5KtzgEnC35rAne7htk5EJBqp1LEAa9mySLmOZXb7MhTI4Vdfj84flP1v3iuiCJ0mpeO/v1xEn5WXoA0xYO2AcOTfUJjX+XV0CG6cU6HnkmR0/zYFV4+44vf3gyrrLdyXI57z8pJqdqnmtkk1rGOtbvgaNWoUhg8fDgCIiYnBmTNnsGLFCpw4cQIjRoywe8CKaNiwIdLS0szTvn37zMtGjRqFjRs3YvXq1di9ezdSU1PRs2fPB+5zxIgRWLBgAT7//HOcOXMGGzZswGOPPWZenpSUhG7duqFTp06Ij4/HyJEj8frrr2Pr1q0P5T1aq+cb17FlhTd++9EbyefUmD0uFPoCGWJfyhI72gOZjDLczFKbJ12OSuxID6RUFuPx1slY8H0LnEoIQGq6Bt+vaorUdA880yVR7HilKBSAt3+xedL6lDRi1IwqxMQFl9C6iw7BNYvQtF0uBoxLw6FtGhiLRQ4N4MDZcMzf9hh2/auX121DuhzGH4nh+GpLNM6m+eJqlhZ7E2riZp5LJSct7Y+LNTBnbyvsPFur1LJwrxw8EpKBj7e2x9/p/ric5YWpW9tD7VSMrvXPiZD2jqujIqFr64uiEBcUhbkiY2BNOGcVQX25pEHX5XwunK/rkTEwAkWhrigKdUX6wJpQXc6H65lbomYnoupLSnUswFr236RcxzK7fUV0yEPb0ddQp0vZNUXUszrUaJsPz3ADfCOL0P7dDBTlKnA9seTvhxvnlbi0xx0xH6chqGkhQh4tQKeJ6UjcpEFuhvgXRh3xnJeXVLNLNTeVT4V/q2vUqIEaNWrYI4vdOTk5ITAwsNT8nJwcLFy4ECtWrEDnziW3yi1atAj169fHwYMH0bp16zL3l5CQgHnz5uGvv/5CvXr1AAAREZZ/aM+fPx8RERGYMWMGAKB+/frYt28fZs6cidjYWHu+Pas5OZtQt0k+Vn7tb54nCDKc2OuBBi0cr/fRvwWH5mHpz1th0CuQ8LcXlsyvj2sZjt31VCEXoFAIKDIoLObrixRoWD9TpFT3djVJiZeaNYRSZUL9FnkYOCEN/qFlX+XI0yng6m6CQvza4L5kMgFto5Lx/Z6mmP3qJkQGX0fqTQ2W7GpW6nZIR6N0Kml41Bff+fcjQIYiowLNwtKx7s8GYkUrRZ5fktXoVvIPQmYQABkgON0ZC0BwlgMywOXcLeQ30IiSk4jobo5cxwKsZe8m5TqW2cVlLAJO/egJlYcRflF6AEDaCReoNEYENr5z62N42zzI5ED6SZd7NqhVBimfc6lml2puKr9y/ck6e/bscu/w9lU0R3Du3DkEBwdDrVYjOjoa06ZNQ3h4OI4dOwaDwYCYmBjzulFRUQgPD8eBAwfuWSxs3LgRtWrVwqZNm/DUU09BEATExMRg+vTp8Pb2BgAcOHDAYr8AEBsbi5EjR943q16vh16vN7/W6XQ2vut703gboXACsq9Z/thvXndCWB39PbZyDImnvTBzajNcSXaDt48eLw9MxPS5f+DN/3ZCQb7jtrwUFDrj70Q/9O39J5KvaJGdo0antpdQP/I6UtPFHVvq36Ka52HMrAKE1tYjK9MZy2YE4u3n6uL/dp6Bq7vlOF45NxRYMSsQXftdFylt+Xm7FcBNZUD/Dicw/7eW+GpLa0RHpuDTvlsxZMGzOJEULHbEe7p0wxOpOe4Y3uEQPtzSAQUGJ/Rr+ScCNXnwdXOgL2GTAL8fU1BQxx1FISW96Apru8GkUsB3zRVcfy4EAOC75ipkJkCRI+0u4zJUYIwvuyYhovKQah0LSKeWZR17f8wujos73LF5ZAgMBTK4+Rej55JkuHiXXKjLv+YEVx/L2xbkToBaa0TeNUVZu6s0Uj7nUs0u1dy2srWWlXIdW64Wg5kzZ5ZrZzKZzGEKhlatWmHx4sWoV68e0tLSMHnyZDz++OP466+/kJ6eDqVSWWoQ04CAAKSnp99znxcvXsTly5exevVqLF26FEajEaNGjULv3r2xY8cOAEB6ejoCAgJK7Ven06GgoAAuLmXfWjVt2jRMnjy5Ym+6Cjt28M45vXShpCFs0ZpteLzzVfy2yXGv1ALA9Nnt8Pab+7Hy259gNMpw7qI3dv1RE3VrOVa32Zad71zZqtWgEFHN8vHfxxpgzwZPPPXynax5t+SIe6UWwiML8d+37/374ihk/3yq7zldEz/88QgA4FyaL5qEp6Nnq9MO3fBVbFLg7bVP4YP/7MTeUd+h2CTDoUuh2HchHI50k73/8mSorhYgZdydsWeMHs5IG1wL/suS4bk9E5ABtx7zRmG4KyCT8tcmKvZUGwk/DYdIqqRYxwLSqmVZx5IjCmudh34bLqLgpgKnfvTCL8ND8NKaS3D9ZygPomrL1lpWwnVsuRq+kpKSHnYOu+vatav5/5s0aYJWrVqhRo0aWLVq1T0bn+7WsGFDXL58GQDw+OOP49dff4XJZIJer8fSpUsRGRkJAFi4cCFatGiBxMREc5dxW0yYMAGjR482v9bpdAgLC7N5f2XRZSlgLAY8/Syvbnj5FuPmNcftNVWWvFxnXE1xR1BonthRHigtwwNjJsVCrTLA1cWArGxXvDtqN9Iy3MWOdl/uWiNCa+mReunOWGr5uXK893JtuLiZMGlhEpwk8HC+7Hw1io1yJGV6Wcy/dM0Lj9RIEylV+SVk+OGFRX3grtLDWW7CzQIXfP/KGpxO8xM7GgDAf/lluP2ZjZSxUSj2Vlosy2+oxaVpjSG/ZQAUMphcnVBrdDwMft4ipSWi6kiKdSwgrVqWdez9Mbs4nF0FeNY0wLOmAUHN0rDoidr4a5UnHhtyA65+xci/YZnfVAwU5ijg5iduw5iUz7lUs0s1N5Wf1YPbS5WnpyciIyNx/vx5BAYGoqioCNnZ2RbrZGRkmMdR2Lx5M+Lj4xEfH48FCxYAAIKCguDk5GQuFICScQ8AIDk5GQAQGBhY6ok6GRkZ0Gg09y1SVCoVNBqNxWRvxQY5zv3pimbt7vTskckENG2Xi9PHHHusrH9TuxQjKCQPWdfVYkcpt0K9M7KyXeHupsejTVNx4Ih9C0J7K8iTI/WyEt7+Jbel5d2S492XasNZKWDy4otQqh2nx9H9FBsVOH3FD+F+2Rbzw32zkZ7tWLeb3k+uXoWbBS4I98pGg8Br2HVO5PHJBAH+yy/D/UQ2royph2K/ez9swuThDJOrE1wSdFDcKkZuU8/Ky/kw8KmORCQCR65lWcfeH7M7BsEEGItKeqwENSuAXqdAxl93/pZIOeAGwQQEPlIgVkQA0j7nUs0u1dw2q4Z1bLVpvszNzcWFCxfw3//+Fy1atICzszO2b9+OXr16AQASExORnJyM6OhoAChzoNO2bduiuLgYFy5cQO3atQEAZ8+etVg/Ojoamzdvtthu27Zt5v2Kbe03vhgzKwVnT7oi8YQrnht0DWpXE35b6dg9MF4b+jcO/RGAzHRX+PgWou/rZ2AyyrD79xCxoz1Qi0euQiYDrqRqEBx4C4P+ewwpV7XYurOO2NEsfDM5GK275MA/1IAb6U74/vMgKORAx+dumhu99AVyjP0qCfm5CuTnlmyn9SmGQtyhEOCiNCDUJ8f8OthLh7pB16HLVyEjxwPL9jTF1Je24URSEI5dDEF0ZAraRV3GkG+fFTF1CRdnA8K97mQP8dShnv915BSqkK7zwJP1LuBmgRppOR6o638DY2P+wM5zNXHgkrgNp/7Lk+FxKAupb9WBSa0wj9tlclFAUJZcU9Hsu46iIDWMHk5QX8iD/8pk3IwJgCFQOg3WZarIF7+ECwYiEhdrWenWsQCz21tRngzZl+/0NNelKJF5WgW1pxEunkYcmuuL2k/cgpt/MQpuOuHkMi/kZjihbteS8ed86hShZvtc/P5uEJ74MA3GYhl2TA5Avad1cA8Q/5HljnjOy0uq2aWa2ya21rISrmOrbMPXmDFj8Mwzz6BGjRpITU3FpEmToFAo8NJLL0Gr1eK1117D6NGj4e3tDY1Gg2HDhiE6Ovqeg4ECJY+9bt68OQYOHIhZs2bBZDJh6NChePLJJ81XzgYPHoyvv/4aY8eOxcCBA7Fjxw6sWrUKv/zyS2W99fvavcELWh8jXnknHV5+xbj4twve6xuB7OuOfc+aj38Bxk4+Bo3GgJxsJf7+0xuj//c4dNn37mXiKNxcDRjY9zh8ffJxK1eFfQfDseiHZjAaHavD5fU0Z0x7syZu3VRA61OMhi3zMGvTWXj6GHFyvzvOHHcDALzaxvJJgksOnUZgWJEYkc3qh2Ri/hsbza9HPX0AALDpWCSm/NQZu05H4JP17dG/43G8/cwfSL7mifHLu+Dk5SCxIps1DMrEgpc3mF+PeWI/AGDDqXqY+Etn+Lrn4e0n/oCPWwGu5bpi01/18M0fLcSKa+a56xoAIOyzRIv56a/WhK6tLwBAmV4I37VXoMgzwuCrxI1uQch+MqDUvqRGJlRgcHsJFwxEVLlYy5Ym1ToWYHZ7yzjlgp/63Wnc3f1xSX3RoGc2nvgwHTcvKrFxXSgKsxRQexkR0LgQfVZehm/knZq16xdXsWNyIH56JRwyGVD3qVvoGOcY49c64jkvL6lml2puW9hay0q5jpUJgiDh+Pf24osvYs+ePbhx4wb8/PzQrl07TJ061Xx1q7CwEG+//TZ++OEH6PV6xMbGYu7cuWU+MvpuqampGDZsGH777Te4ubmha9eumDFjhvlJOACwa9cujBo1CqdPn0ZoaCji4uIwYMAAq/LrdDpotVp0RHc4yaT3y+YU4dgDzt+LIchT7Ag2++2nJWJHsNljE4aIHcEmRVrpDvCY00TcxkpbmQoKceWtD5CTk/NQbqW5n9ufyzU/mgq52rZea6bCQlx6/z1R8hORtEi5lpV6HUuVb9T5BLEj2GxmnfpiRyCJKBYM2IWfRasDK1rLSrmOrbI9vlauXHnf5Wq1GnPmzMGcOXOs2m9wcDDWrFlz33U6duyIEydOWLVfIiIiIqLbWMsSERHZh033Wu3duxf9+vVDdHQ0rl69CgD4/vvvsW/fPruGIyIicjgc3J5I0ljHEhFRtVYN61irG77WrFmD2NhYuLi44MSJE9Dr9QCAnJwcfPzxx3YPSERE5Ehuj4tg60RE4mEdS0RE1V11rGOtbvj66KOPMH/+fHz77bdwdr5zz37btm1x/Phxu4YjIiJyOIKsYhMRiYZ1LBERVXvVsI61eoyvxMREtG/fvtR8rVaL7Oxse2QiIiJyXBXp6i3hK2VEVQHrWCIiqvZsrWUlXMda3eMrMDAQ58+fLzV/3759qFWrll1CERERERHZG+tYIiKi6sfqhq9BgwZhxIgROHToEGQyGVJTU7F8+XKMGTMGQ4YMeRgZiYiIHAbH+CKSLtaxRERU3VXHOtbqWx3Hjx8Pk8mEJ554Avn5+Wjfvj1UKhXGjBmDYcOGPYyMREREjoO3OhJJFutYIiKq9qrhrY5WN3zJZDK89957eOedd3D+/Hnk5uaiQYMGcHd3fxj5iIiIHEtFrnhJuGAgqgpYxxIRUbVnay0r4TrW6oav25RKJRo0aGDPLEREREREDx3rWCIiourD6oavTp06QSa792Msd+zYUaFAREREDo23OhJJFutYIiKq9nir44M1bdrU4rXBYEB8fDz++usv9O/f3165iIiIHBMbvogki3UsERFVe2z4erCZM2eWOf+DDz5Abm5uhQMRERE5soo81UbKT8MhqgpYxxIRUXVnay0r5TpWbq8d9evXD9999529dkdEREREVClYxxIREVVddmv4OnDgANRqtb12R0RERERUKVjHEhERVV1W3+rYs2dPi9eCICAtLQ1Hjx5FXFyc3YIRERE5JI7xRSRZrGOJiKja4xhfD6bVai1ey+Vy1KtXD1OmTEGXLl3sFoyIiMgRcYwvIuliHUtERNVddRzjy6qGL6PRiFdffRWNGzeGl5fXw8pERETk2CT8xU9UXbGOJSIi+kc1q2WtavhSKBTo0qULEhISWDBUEoWPNxRypdgxrGbycBE7gk2y67qKHcFmEZtfFzuCzZzriZ3ANvI6t8SOYLNgTZ7YEWxSnKfHFbFDEJEksY4lclxPuerFjmCzsp8VS0SOxOrB7Rs1aoSLFy8+jCxERESOT6jgRESiYR1LRETVXiXWsVevXkW/fv3g4+MDFxcXNG7cGEePHr0TRRAwceJEBAUFwcXFBTExMTh37lyF3l5ZrG74+uijjzBmzBhs2rQJaWlp0Ol0FhMREVFVdntcBFsnIhIP61giIqruKquOvXnzJtq2bQtnZ2f8+uuvOH36NGbMmGHR63r69OmYPXs25s+fj0OHDsHNzQ2xsbEoLCy063su962OU6ZMwdtvv43//Oc/AIBnn30WMpnMvFwQBMhkMhiNRrsGJCIicih8qiOR5LCOJSIi+kclPdXx008/RVhYGBYtWmSeFxERcWd3goBZs2bh/fffR/fu3QEAS5cuRUBAANavX48XX3zRhpBlK3fD1+TJkzF48GDs3LnTbgcnIiKSGj7VkUh6WMcSERGVqOhTHf/dQ1qlUkGlUpVaf8OGDYiNjcXzzz+P3bt3IyQkBG+++SYGDRoEAEhKSkJ6ejpiYmLM22i1WrRq1QoHDhwQp+FLEEreZYcOHex2cCIiIiKih411LBERkX2EhYVZvJ40aRI++OCDUutdvHgR8+bNw+jRo/Huu+/iyJEjGD58OJRKJfr374/09HQAQEBAgMV2AQEB5mX2YtVTHe/uEk5ERFQt8VZHIkliHUtERIQK3+qYkpICjUZjnl1Wby8AMJlMePTRR/Hxxx8DAJo1a4a//voL8+fPR//+/W0IYDurGr4iIyMfWDRkZWVVKBAREZFDY8MXkSSxjiUiIkKFG740Go1Fw9e9BAUFoUGDBhbz6tevjzVr1gAAAgMDAQAZGRkICgoyr5ORkYGmTZvaEPDerGr4mjx5MrRarV0DEBERSQnH+CKSJtaxREREFR/jq7zatm2LxMREi3lnz55FjRo1AJQMdB8YGIjt27ebG7p0Oh0OHTqEIUOGWB/wPqxq+HrxxRfh7+9v1wBERESSwh5fRJLEOpaIiAiV9lTHUaNGoU2bNvj444/Rp08fHD58GN988w2++eYbACVDEIwcORIfffQR6tati4iICMTFxSE4OBg9evSwIeC9ycu7IsdFICIiqlzTpk1Dy5Yt4eHhAX9/f/To0aPUlbPCwkIMHToUPj4+cHd3R69evZCRkSFSYiLHxDqWiIiocrVs2RLr1q3DDz/8gEaNGuHDDz/ErFmz0LdvX/M6Y8eOxbBhw/DGG2+gZcuWyM3NxZYtW6BWq+2apdwNX7efhkNERFStCRWcrLB7924MHToUBw8exLZt22AwGNClSxfk5eWZ1xk1ahQ2btyI1atXY/fu3UhNTUXPnj0r+i6JqhTWsURERP+opDoWAJ5++mmcOnUKhYWFSEhIwKBBgyyWy2QyTJkyBenp6SgsLMTvv/+OyMhIm9/avZT7VkeTyWT3gxMREUlNZY7xtWXLFovXixcvhr+/P44dO4b27dsjJycHCxcuxIoVK9C5c2cAwKJFi1C/fn0cPHgQrVu3ti0oURXDOpaIiKhEZY3x5UjK3eOLiIiIYJceXzqdzmLS6/XlOnROTg4AwNvbGwBw7NgxGAwGxMTEmNeJiopCeHg4Dhw4UME3SkRERERVTiX2+HIUbPgiIiKqZGFhYdBqteZp2rRpD9zGZDJh5MiRaNu2LRo1agQASE9Ph1KphKenp8W6AQEBSE9PfxjRiYiIiIgkxaqnOhIREVV39rjVMSUlBRqNxjxfpVI9cNuhQ4fir7/+wr59+2w7OBERERFVe9XxVkc2fBEREVmjIl29/9lOo9FYNHw9yFtvvYVNmzZhz549CA0NNc8PDAxEUVERsrOzLXp9ZWRkIDAw0MaQRERERFRl2VrLSrjhi7c6EhERWaMSn+ooCALeeustrFu3Djt27EBERITF8hYtWsDZ2Rnbt283z0tMTERycjKio6NtentEREREVIVVwzG+2OOrGvlPnyvo1ucqAoILAQCXL7jhh/+LwNF9PiIne7DFSzYiICC/1PyNG+tg7pwWIiS6t2Y1U9Gv/UlEhVyDnyYf73wfi92nLf9Yrel3E289dRDNa6VBITchKdML45Z1QUaOh0ipAa/NafA4fhPKtEKYlHIU1nbHtd6hMASqzes4ZxbCb/UVqM/lQlZsQn4jLTJfCodR6yxabgD4X+Pj6FIjCRHabOiLFThxLRCfHW2NJJ1nGWsLWBCzGe1DU/Dmjlj8nhxRxjqVw/23G/D4LQtO14oAAIZQFbJ7B6CwmQfkucXQrsqEy8lbUFw3wKRxQn5LDbJfDIDgqhAt821Om3Rw3qSDPNMAADCFK1HU1wvGlq4AAJd3UqE4VWixjeE/HtAP96v0rPYm+2eydVtrDB06FCtWrMDPP/8MDw8P87hdWq0WLi4u0Gq1eO211zB69Gh4e3tDo9Fg2LBhiI6O5hMdiahKembAdfQekglvv2JcPO2Cue+HIDHeVexY5cLs9nPqoBtWz/XHuVOuyMpwxqSFSWjTNafMdb8cF4rN3/vif5OvouegaxbLDv2uwfKZAUhKcIFSZULj1nn4YFFSZbyFB3K0c24NqWaXam5r2VrL2lr/OoIq3ePr6tWr6NevH3x8fODi4oLGjRvj6NGj5uWCIGDixIkICgqCi4sLYmJicO7cufvuc/HixZDJZGVOmZmZ5vV27dqF5s2bQ6VSoU6dOli8ePHDepvldj1DjUWzamP4iy0x4qWWOHnYC3Ff/onw2rliR3ugEcOfxMsvPWueJkzoAADYuzdM5GSlqZXFOJfmg89+frzM5SHeOfh28HpcvuaJwd88i5e/fB4Ld7RAUbG47dCuibeQ3ckfye/Wx5XRkYBRQOgXZyHTGwEAMr0RITPPQQBwZUwkUsZHQVYsIOSrc4BJ3Ob/loFpWHamIfr88hxe/e1pOMlM+K7LJrg4GUqtO6DBnw5zscLo7YybLwcg7ZM6SJtWB4WN3OE//TKcUwqhyCqGIsuAm/8NQtqMurgxNBQuJ2/BZ94VsWMDAARfBYoGeiP/q1Dkzw6BsakL1JPTIb9UZF7H0NUDeSvCzZP+NcdvZHc08+bNQ05ODjp27IigoCDz9OOPP5rXmTlzJp5++mn06tUL7du3R2BgINauXStiaiKyF9ayljo8exNvTErF8i8CMTQ2EhdPqzF1xUVofUp/3zsaZrevwnw5ajUswFsf378u+uNXLc4cc4NPYFGpZXt/0WL68HB0eSEL87Yl4oufz6HTczcfVmSrOOI5Ly+pZpdqbiqfKtvwdfPmTbRt2xbOzs749ddfcfr0acyYMQNeXl7mdaZPn47Zs2dj/vz5OHToENzc3BAbG4vCwsJ77veFF15AWlqaxRQbG4sOHTrA398fAJCUlIRu3bqhU6dOiI+Px8iRI/H6669j69atD/1938/h3b44us8XqcmuuHrZFUu/qo3CfAWimuhEzVUeOTlq3LzpYp5aPZaK1FR3nPrT8XqPHDgbjvnbHsOu02X3JBrS5TD+SAzHV1uicTbNF1eztNibUBM381wqOamlq6MioWvri6IQFxSFuSJjYE04ZxVBfbmkp53L+Vw4X9cjY2AEikJdURTqivSBNaG6nA/XM7dEzf76tm5Ydz4K57O9ceamL8bt64QQ91w09LG8qlff+zoGNvwTE/7oJFJSSwWPalDYXIPiIBWKg1XIfikQJrUcqnP5MISrcX1MDRQ8qkFxoAqFjdyR/WIgXI/dAoziN90ZW7vB+JgrhBBnCKFKFA3wBtRyyM/c+fwUVDII3k7mCW5V5Cunkm91LGsaMGCAeR21Wo05c+YgKysLeXl5WLt2Lcf3IqoCWMuW1vON69iywhu//eiN5HNqzB4XCn2BDLEvZYmaqzyY3b5adr6FAePS0fYevbwA4HqaM+a+H4Jxcy7D6V/Xl43FwPyJIRj0fiqefuUGQmvrUSNSjw7PZj/c4OXkiOe8vKSaXaq5bcJbHauOTz/9FGFhYVi0aJF53t1jowiCgFmzZuH9999H9+7dAQBLly5FQEAA1q9fjxdffLHM/bq4uMDF5U4DxbVr17Bjxw4sXLjQPG/+/PmIiIjAjBkzAAD169fHvn37MHPmTMTGxtr1fdpKLhfQrksm1C5GJJzUih3HKk5ORnTqfBnr1taD1DpcymQC2kYl4/s9TTH71U2IDL6O1JsaLNnVrNTtkGKT55f09DK6lXxMyAwCIAMEpzvnXHCWAzLA5dwt5Dco/0DdD5uHsuSqXo7+zm2aaoUBM9pvx+SD7XC9wAG7LJsEuB7IgVxvgj6y7HzyfCNMLnJA4WD/7o0CnPbmAXoTjPXvujV2Zy6cd+TC5KWAsZUbil72BNTSb/yyx1MdiYgehLWsJSdnE+o2ycfKr/3N8wRBhhN7PdCgRenhMBwJs1c+kwmYPjwcvYdkoma90g3B50654nqaEjI58OaTkbh5zRm1GhZgUFwqakbdu+G4Mkj1nAPSzS7V3Laqjk91lP5fIPewYcMGPProo3j++efh7++PZs2a4dtvvzUvT0pKQnp6OmJiYszztFotWrVqhQMHDpT7OEuXLoWrqyt69+5tnnfgwAGL/QJAbGzsffer1+uh0+kspoehZt1crDm4Gz8f3YW33k/EhyMbI+Wi20M51sMSHX0V7u4GbNvmWA1F5eHtVgA3lQH9O5zAgbNhGPbd09j1dwQ+7bsVzSJSxY53h0mA348pKKjjjqKQkuK4sLYbTCoFfNdcgUxvhExvhO/qK5CZAEWO43QBlkHAe4/9gWMZgTiX7W2e/+5j+3EiMwDbUxzr341zciHC/vs3wl/+Cz7fXkXmmHAYQtWl1pPriqFdk4ncGO8y9iIOeVIR3Hokwe2ZJKi+uo7CuEAINZQAAEMndxS+44+CT4NheMETTjtuQT098wF7lIhK7PFFRNWXlGrZyqhjNd5GKJyA7GuW1+1vXneCl1+x3Y9nT8xe+VbN8YdCIaDHa9fLXJ5+uaReWTYjEC+NzMCUpRfhrjXinV51oLsp7liqUj3ngHSzSzW3zaphHVtlG74uXryIefPmoW7duti6dSuGDBmC4cOHY8mSJQBgHiA4ICDAYruAgADzsvJYuHAhXn75ZYsrZ+np6WXuV6fToaCgoMz9TJs2DVqt1jyFhT2csauuJLniredbYlTfFti8KgRvf5SAsFp5D+VYD0vsU0k4eiQIWVni3hpoC9k/zeR7TtfED388gnNpvli6uxn2namBnq1Oi5zuDv/lyVBdLUDaG7XM84wezkgbXAtuJ3NQ560TqDPsBBT5xSgMdwVkjtMDaVLrvajrlYWRu+8U7J3DLqF10FVMPdxWxGRlMwQrkfZZHaR/XAe3uvjAd84VOF+xvNIoyzfC/5NLJYPfPx9wjz1VPlOoM/LnhqLgyxAYummgnpEJ2eWS3nbF/9HA+KgrTBFKFHf2gH6MP5z250OW6jiNpEREjkxKtWxl1bFE5XHuTxesX+CHMbOS71mimkwl/31pRAYe75aDuk0K8PbMkvX3bvKstKxEVDmq7K2OJpMJjz76KD7++GMAQLNmzfDXX39h/vz56N+/f7n20bVrV+zduxcAUKNGDfz9998Wyw8cOICEhAR8//33Fc47YcIEjB492vxap9M9lKKhuFiOtJSS26jOJ2hQt5EO3fum4OsPo+x+rIfB3z8PTZtm4KMPHa8Bozyy89UoNsqRlOllMf/SNS88UiNNpFSW/Jdfhtuf2UgZG4Vib6XFsvyGWlya1hjyWwZAIYPJ1Qm1RsfD4OcYvZAmttqLTmGX0ffX7sjIdzfPbx10FeEeOhx9+TuL9b/q+BuOZgbiv1u6V3bUO5zkKA5UAQCKarlAeSEfHptvIOuNEACArMAI/48vweQiR+aYGoCT4zQywlkGIdgZAoCiuirIz+qhXJ8D/YjSY+8Zo0reozzVAGOwuE8BtQsJX/EiImmQUi1bGXWsLksBYzHg+a/eF16+xbh5zbH/pGH2ynXqkDuyrzuhX8uG5nkmowzfTg7G+m/9sPTwaXgHlLyf8Lp3LjYqVQICa+iReVXcOkWK5/w2qWaXau4KqWa1bBX9KQJBQUFo0KCBxbz69etjzZo1AGAe+DcjIwNBQUHmdTIyMtC0aVMAwIIFC8xXtZydS38ALliwAE2bNkWLFi0s5gcGBiIjI8NiXkZGBjQajcXVtLupVCqoVCor3qF9yOUCnJWmSj+urZ7skoScHBUOHw568MoOqNiowOkrfgj3y7aYH+6bjfRsD3FC3SYI8F+RDPcT2Uh5px6K/e7979HkUfL74JKgg+JWMXKbelZSyHsRMLHVPjwZnoR+W57FlVzL8ca+OdUMq8/Wt5j3S49V+PhIG+xMqVGZQR9IZgJkhpLfSVm+EQFTkyA4y3FtbE1A6eCddAUBMJT9LSq/UNITTPAW9/YBe+AYX0RUGaRUy1ZGHVtskOPcn65o1u4WDmwpGZ9WJhPQtF0uNix27KcGM3vliumVheaPWz546d2Xa+GJXjfR5YWSgcrrNsmHs8qEKxdUaNSq5O6XYgOQkaJEQKi4vdOleM5vk2p2qea2VXUc46vKNny1bdsWiYmJFvPOnj2LGjVK/siNiIhAYGAgtm/fbi4OdDodDh06hCFDhgAAQkJC7rn/3NxcrFq1CtOmTSu1LDo6Gps3b7aYt23bNkRHR1fkLVXYgOEXcPQPb2SmqeHqZkTHrhlo/Gg24gY3FTVXeclkAp58Mgm/b6sJk8lxGwBclAaE+tx5wkywlw51g65Dl69CRo4Hlu1piqkvbcOJpCAcuxiC6MgUtIu6jCHfPiti6pLbGz0OZSH1rTowqRXmcbtMLgoI/zS4aPZdR1GQGkYPJ6gv5MF/ZTJuxgTAEFh6TKrKNKn1XjxT6zyGbH8KecVK+LqUDEJ5q0gJvdEJ1wtcyxzQPi3PvVQjWWXyXJGOgqYeKPZ1hrzQBLd92VCdzkPOezXNjV4yvYDrw0IgKzBCVlDywAGTxgmQi9vzS/ldFopbukDwc4KsQIDTzlwo/ixE4dRAyFINcNqZW/LURw855ElFUH1zA8bGaphqVX4Dv91VZIwDCRcMRFS5WMuWtvYbX4yZlYKzJ12ReMIVzw26BrWrCb+tdIye5/fD7PZVkCdHatKdmiI9RYkLf7nAw7MY/qEGaLyNFus7OQFe/sUIq6MHALh5mNDtvzfw/YxA+AUb4B9ahJ/mlQxs/vjT2ZX2Pu7FEc95eUk1u1Rz28TWWlbCdWyVbfgaNWoU2rRpg48//hh9+vTB4cOH8c033+Cbb74BAMhkMowcORIfffQR6tati4iICMTFxSE4OBg9evR44P5//PFHFBcXo1+/fqWWDR48GF9//TXGjh2LgQMHYseOHVi1ahV++eUXe79Nq2i9i/D2Rwnw9tMjL9cJSWfdETe4KU4clMYvc7NmGQgIyMdvv9V68Moiqh+SiflvbDS/HvV0yUCwm45FYspPnbHrdAQ+Wd8e/Tsex9vP/IHka54Yv7wLTl4Wtxeb565rAICwzyyL7PRXa0LX1hcAoEwvhO/aK1DkGWHwVeJGtyBkPyn+mFN9o0rGR1vedYPF/HH7OmLdece9jVeRUwzfOSlQ3CyGyVWOohpqZL5XE4VNPKD6OxeqcyVX6UOGn7XY7srX9WD0V5a1y0ojyzZC/dk1yG4WQ3CVwxShQuHUQBibu0J2rRhO8QVQrs8BCgUIfgoUt3VD0UteD96xBLDHFxFVBtaype3e4AWtjxGvvJMOL79iXPzbBe/1jUD2dce/hZ7Z7evsSVeM7V3H/Pr/Pihp5H2yTxbGzEou1z4GxV2FQiFg+vBwFBXKUa9ZPj5dfQEensYHb/yQOeI5Ly+pZpdqbltUxx5fMkEQJBz//jZt2oQJEybg3LlziIiIwOjRozFo0CDzckEQMGnSJHzzzTfIzs5Gu3btMHfuXERGRj5w323atEFERASWL19e5vJdu3Zh1KhROH36NEJDQxEXF4cBAwaUO7tOp4NWq8UTPq/CSS7uH7i2EIJLj/EjBTeaSfcP82uPS3fQcOdMaX6hyOvkih3BZj4aaT3U4rbiPD2O9vwSOTk50Ggqt7fe7c/lxq9/DIXStl6OxqJCnFrwrij5iUh6pFrL3v687IjucJJJ8zueKtfW1HixI9gsNrip2BFIIooFA3bhZ9HqwIrWslKuY6t0w5eUseFLHGz4EgcbviofG76sZy4WXqtgw9dCaRYMRETlxYYvshYbvqg6cJiGLxtrWSnXsVX2VkciIqKHgbc6EhEREZFUVcdbHdnwRUREZA0Obk9EREREUsXB7YmIiOi+2PBFRERERFJVDRu+5GIHICIiIiIiIiIiehjY44uIiMgKHOOLiIiIiKSKY3wRERHR/fFWRyIiIiKSqmp4qyMbvoiIiKwgEwTIBNu++W3djoiIiIjIHmytZaVcx3KMLyIiIiIiIiIiqpLY44uIiMgavNWRiIiIiKSKtzoSERHR/XBweyIiIiKSKg5uT0RERPfHHl9EREREJFXs8UVERET3wx5fRERERCRV1bHHFwe3JyIiIiIiIiKiKok9voiIiKzBWx2JiIiISKp4qyMRERHdD291JCIiIiKpqo63OrLhi4iIyBrs8UVEREREUsUeX+RoTLpcmGTOYsewmlQHj/O7oRM7gs2c88PEjmCzAl+xE9jmpr9K7Ag2a1PnL7Ej2ESfa8BRsUNA2le8iIiIHM2ryY+LHaECbokdgMhqlV3LfvLJJ5gwYQJGjBiBWbNmAQAKCwvx9ttvY+XKldDr9YiNjcXcuXMREBBg9+NLtX2CiIiIiIiIiIgc2JEjR/B///d/aNKkicX8UaNGYePGjVi9ejV2796N1NRU9OzZ86FkYMMXERGRNQShYhMRERERkVgqsY7Nzc1F37598e2338LLy8s8PycnBwsXLsQXX3yBzp07o0WLFli0aBH279+PgwcP2vPdAmDDFxERkVVuDwhq60REREREJJaK1rE6nc5i0uv19zzW0KFD0a1bN8TExFjMP3bsGAwGg8X8qKgohIeH48CBA3Z/z2z4IiIisoZQwYmIiIiISCwVrGPDwsKg1WrN07Rp08o8zMqVK3H8+PEyl6enp0OpVMLT09NifkBAANLT0yv+Hv+Fg9sTEREREREREdEDpaSkQKPRmF+rVKUf+JWSkoIRI0Zg27ZtUKvVlRmvTGz4IiIisoLMVDLZui0RERERkVhsrWVvb6PRaCwavspy7NgxZGZmonnz5uZ5RqMRe/bswddff42tW7eiqKgI2dnZFr2+MjIyEBgYaH24B2DDFxERkTUqcssib3UkIiIiIjHZWstasc0TTzyBU6dOWcx79dVXERUVhXHjxiEsLAzOzs7Yvn07evXqBQBITExEcnIyoqOjbQh3f2z4IiIiskJFBqnn4PZEREREJCZba1lrtvHw8ECjRo0s5rm5ucHHx8c8/7XXXsPo0aPh7e0NjUaDYcOGITo6Gq1bt7Y+3AOw4YuIiMgaNj7O2bwtEREREZFYbK1l7VzHzpw5E3K5HL169YJer0dsbCzmzp1r12PcxoYvIiIiIiIiIiJ6aHbt2mXxWq1WY86cOZgzZ85DPzYbvoiIiKzAWx2JiIiISKoq41ZHR8OGLyIiImtwcHsiIiIikqpKGNze0bDhi4iIyArs8UVEREREUlUde3zJxQ5ARERERERERET0MLDHFxERkTX4VEciIiIikioHeapjZWLDFxERkRV4qyMRERERSVV1vNWRDV9ERETW4OD2RERERCRVHNyeqrpGj91C7/+loW7jfPgEGDB5UB0c+M1L7FgP9J8+V9Ctz1UEBBcCAC5fcMMP/xeBo/t8RE5mnef7X8CAt85i/Q818O0XDcSOY+GR2ml4ufNJRIVdh682H+MXdMHeUzXLXPedPnvRo20CvlwbjVW7G1du0DI0D0/FK9EnUT/oGvw88jF6VSx2JUaYl7s4GzD8iYPoWO8StC6FSM3W4IfDjbDmeEMRUwNem9PgcfwmlGmFMCnlKKztjmu9Q2EIVJvXcc4shN/qK1Cfy4Ws2IT8RlpkvhQOo9ZZxOSlZS4SkP4V4PsSEPyODABwY42A7C1AwRnAlAc03A0oPGQiJ6049vgiIhLPMwOuo/eQTHj7FePiaRfMfT8EifGuYscqF2a3H/2JYuQuK4Ih0QTTdQFen6rh0uFObVSw04D8dQYUnTFC0AF+S13hHKmw2IegF5AzW4+CbQbAAKhaOUH7jgoKH8cYBtvRzrk1pJpdqrmtVR17fDnGbzVVGrWrEUkJrpgTV0PsKFa5nqHGolm1MfzFlhjxUkucPOyFuC//RHjtXLGjlVvdBtl46rkUXDzrIXaUMrkoDTh/1Qczfmp73/XaN0lCwxqZuJbtOF8CaudinM3wwSe/Pl7m8re77Eeb2il4f31n9Jr3AlYcaoxxXfehfeSlyg36L66Jt5DdyR/J79bHldGRgFFA6BdnIdMbAQAyvREhM89BAHBlTCRSxkdBViwg5KtzgMlxvnny/xZwYw2grms531QIeLQB/AeKk4uIiKqWDs/exBuTUrH8i0AMjY3ExdNqTF1xEVofg9jRHojZ7UsoAJzrKqAdoyp7eSGgfEQBzdCylwNAziw99PuK4f2xC3zmucJ43YSs8QUPK7JVHPGcl5dUs0s1N5VPlW74qlmzJmQyWalp6NChAIDCwkIMHToUPj4+cHd3R69evZCRkfHA/W7duhWtW7eGh4cH/Pz80KtXL1y6dMlinV27dqF58+ZQqVSoU6cOFi9e/BDeofWO7vLEks9DsX+r4/fyutvh3b44us8XqcmuuHrZFUu/qo3CfAWimujEjlYuapdivDPlJL76uBFybzlWT53bDiaE49vNLbHnz4h7ruOrzcOoXvsx+ftOKDY6zsfH/gvhmLvrMexMLDt7k9B0bPyzHo5dDkFajgZrTzTAuQwfNArOrOSklq6OioSurS+KQlxQFOaKjIE14ZxVBPXlfACAy/lcOF/XI2NgBIpCXVEU6or0gTWhupwP1zO3RM1+mzFfQPJ7QGgcoNBYLvPrK4P/qzK4it8p0L5MQsUmIqJyYB1bWs83rmPLCm/89qM3ks+pMXtcKPQFMsS+lCV2tAdidvtSt3GCZrAKLh3LrqtduzrD4zUVVC3LvsHJlCsgf6MBmhEqqB51gjJKAc/31TCcMqHoL+PDjF4ujnjOy0uq2aWa2ybVsI51nL9cH4IjR44gLS3NPG3btg0A8PzzzwMARo0ahY0bN2L16tXYvXs3UlNT0bNnz/vuMykpCd27d0fnzp0RHx+PrVu34vr16xbbJSUloVu3bujUqRPi4+MxcuRIvP7669i6devDe7PViFwuoP1TGVC7GJFwUit2nHIZMvY0jvzhj/jDvmJHsZlMJmBiv51YsaMJktK9xY5jlT+vBKJD5CX4eeQCEPBojasI987BwYuhYkezIM8vKbSMbiVFmswgADJAcLpze6DgLAdkgMs5x2j4Sv0E0LQDPFpJ/xbGchMqOBERlQPrWEtOzibUbZKP43vv9JwXBBlO7PVAgxb5IiZ7MGZ3PIYzRqAYFg1jzjUVUATKUHRK3IYvKZ9zqWaXam6bVcM6tkqP8eXn52fx+pNPPkHt2rXRoUMH5OTkYOHChVixYgU6d+4MAFi0aBHq16+PgwcPonXr1mXu89ixYzAajfjoo48gl5e0G44ZMwbdu3eHwWCAs7Mz5s+fj4iICMyYMQMAUL9+fezbtw8zZ85EbGzsQ3zHVVvNurmY8f0xKJUmFOQr8OHIxki56CZ2rAdq/2Qq6kTlYGT/NmJHqZB+T8TDaJJh9e5GYkex2qdb2uH9bruxdeQyGIxyCALw4S8dcDw5WOxod5gE+P2YgoI67igKcQEAFNZ2g0mlgO+aK7j+XAgAwHfNVchMgCJH/G7X2VsFFJwB6nwvdpLKJUMFxviyaxIiqspYx1rSeBuhcAKyr1n++XLzuhPC6uhFSlU+zO54jDcEwBmQ/2vsUbm3DKYb4v51L+VzLtXsUs1tK1trWSnXsVW6x9fdioqKsGzZMgwcOBAymQzHjh2DwWBATEyMeZ2oqCiEh4fjwIED99xPixYtIJfLsWjRIhiNRuTk5OD7779HTEwMnJ1LutoeOHDAYr8AEBsbe9/96vV66HQ6i4ksXUlyxVvPt8Sovi2weVUI3v4oAWG18sSOdV++AQV44+0EfBb3CAxFigdv4KDqhV7D8x3+wtTlHSHFj7wXW55C49AMjFz5FPot6IWZ29pg/FP78FjEFbGjmfkvT4bqagHS3qhlnmf0cEba4FpwO5mDOm+dQJ1hJ6DIL0ZhuCsgE/fnUJQuIPUzIOwjQK6S3r+JChGEik1ERFZiHUtERHZTDevYKt3j627r169HdnY2BgwYAABIT0+HUqmEp6enxXoBAQFIT0+/534iIiLw22+/oU+fPvjf//4Ho9GI6OhobN682bxOeno6AgICSu1Xp9OhoKAALi4upfY7bdo0TJ482fY3WA0UF8uRllIyoPr5BA3qNtKhe98UfP1hlMjJ7q1OlA5ePkWY/f1+8zyFk4BGzbLwzPPJ6NE2FiaT4zcaPFI7HV7uBVjzwQrzPCeFgLd6HESfDqfQe8rLIqa7P5VTMd7qfBhvr4rFvvMlD3U4l+mDyMDreKX1SRxOEv92R//ll+H2ZzZSxkah2FtpsSy/oRaXpjWG/JYBUMhgcnVCrdHxMPiJe7tpQQJQnAWc6wuY+z0bgbzjwPVVAhofBGQKx/+3TUQkBaxjAV2WAsZiwNOv2GK+l28xbl5z7D9pmN3xKHxkgAEw3RIsen2ZsgTIfcStX6R8zqWaXaq5qfyqTY+vhQsXomvXrggOLv+tTQ0bNoS7uzvc3d3RtWtXACXFwKBBg9C/f38cOXIEu3fvhlKpRO/evSFUoAV0woQJyMnJMU8pKSk276u6kMsFOCtNYse4r5NHfPDmi+0wrF9b83T2tBa7tgRjWL+2kmj0AoAtR+rilem9MeCzXubpWrYrVuxogtHz/yN2vPtykpvgrDDBJFiea5NJBpnYz+QVBPgvvwz3E9m4MqYeiv3u/eQhk4czTK5OcEnQQXGrGLlNPSsvZxncHwMiVwGRP9yZXBoAnl1L/r8qN3rdfgS0rRMRkbVYxwLFBjnO/emKZu3ujHEpkwlo2i4Xp485zpOmy8Lsjsc5SgE4Afojdxo6ii+bYEwXoGws7l0aUj7nUs0u1dy2qo51bLVovrx8+TJ+//13rF271jwvMDAQRUVFyM7OtrhalpGRgcDAQADA5s2bYTCUjKNz++rWnDlzoNVqMX36dPM2y5YtQ1hYGA4dOoTWrVsjMDCw1FN1MjIyoNFoyrxKBgAqlQoq1b3/6LUXtasRwTXv3KccGKZHrQb5uJWtwLXUh398Ww0YfgFH//BGZpoarm5GdOyagcaPZiNucFOxo91XQb4TLl/wsJhXWKCALse51HyxuSgNCPXLMb8O9tGhbsh16PLVyLjpDl2+2mL9YqMcWTpXJGd6VnLS0lycDQjzvpM9xFOHyIDr0BWokK7zwNFLQRgZcwD6YgXScjzQIjwV3ZqcxRfbxB13zX95MjwOZSH1rTowqRXmcbtMLgoIypLrEpp911EUpIbRwwnqC3nwX5mMmzEBMASq77frh07hJoOijuU8uYsAJy2grlPS6GW4LqD4BqD/5++fwnOA3E2AcyDgpJVww1hFBveUcMFAROJgHXvH2m98MWZWCs6edEXiCVc8N+ga1K4m/LbS8R+6w+z2ZcoXYLxy5wK4MVWA4awRMo0MToFymHIEGDNMMF4v+eItvlyyrtxHBoWPHHJ3GVyfcYZuth5yrQwyNxlyZhTCubEcykbiD0/iiOe8vKSaXaq5bWJrLSvhOrZaNHwtWrQI/v7+6Natm3leixYt4OzsjO3bt6NXr14AgMTERCQnJyM6OhoAUKNGjVL7ys/PNw8GeptCUfLhaDKVfKD+u8s4AGzbts28XzFFNsnD9B8Tza//N7HkL9Jtq30wY0yte20mOq13Ed7+KAHefnrk5Toh6aw74gY3xYmDVfCDSCRR4dfw9bBN5tfDnzsIANh8KBJTV3QUKVX5NAjOxLevbDS/frtLyTgkG05G4oMNnTFh7ZMY1vkQpvbYDo2LHmk5Hpiz8zH8dKyBWJEBAJ67rgEAwj5LtJif/mpN6NqWPAFUmV4I37VXoMgzwuCrxI1uQch+MqDUvhzRjZ+AzG/uvL7wesl/Qz8AvJ8VJZJdyAQBMht7Rli73Z49e/DZZ5/h2LFjSEtLw7p169CjRw/zckEQMGnSJHz77bfIzs5G27ZtMW/ePNStW9emfETkeFjH3rF7gxe0Pka88k46vPyKcfFvF7zXNwLZ153FjvZAzG5fhgQjbgwtML/WfVlyYd/lP07wmuiCwr3FyP6o0Lz8ZlzJ/7u/poRmUEkjrXakCjlyIGtCAVAEqFo5QTvWMToCOOI5Ly+pZpdqblvYWsvaWv86AplQkX7NEmAymRAREYGXXnoJn3zyicWyIUOGYPPmzVi8eDE0Gg2GDRsGANi/f39ZuwIA7NixAzExMfjggw/w0ksv4datW3j33Xdx5swZJCQkwMXFBUlJSWjUqBGGDh2KgQMHYseOHRg+fDh++eWXcj8NR6fTQavVopPz83CSSe+XTa51rN5M5SWrhKuVD0t2mzCxI9iswFead13fbCH+kxVt1bv5MbEj2ESfa8Ccx9cjJycHGo2mUo99+3P58Y6T4ORkW4+74uJC7N01udz5f/31V/zxxx9o0aIFevbsWarh69NPP8W0adOwZMkSREREIC4uDqdOncLp06ehVovbK5CIKk7qdWxHdJdkHUuVL/igNP92AIDU1rcevBIRgGLBgF34WZQ6Fqh4LWttHetIpPnXphV+//13JCcnY+DAgaWWzZw5E08//TR69eqF9u3bIzAw0KIbeVk6d+6MFStWYP369WjWrBmeeuopqFQqbNmyxdz9OyIiAr/88gu2bduGRx55BDNmzMCCBQtEfQQ0ERHZiamCkxW6du2Kjz76CM8991ypZYIgYNasWXj//ffRvXt3NGnSBEuXLkVqairWr19v45sjIkfCOpaIiOyukupYR1Llb3Xs0qXLPQfrVKvVmDNnDubMmWPVPl988UW8+OKL912nY8eOOHHihFX7JSIix2ePWx11Op3FfFvGx0lKSkJ6ejpiYmLM87RaLVq1aoUDBw488HuKiBwf61giIrK36nirY5Xv8UVERGRXQgUnAGFhYdBqteZp2rRpVsdIT08HAAQEWI75FhAQYF5GRERERGShgnWsFFX5Hl9ERER2JQglk63bAkhJSbEYG6EynoZGRERERGRzLcseX0RERFReGo3GYrKl4SswMBAAkJGRYTE/IyPDvIyIiIiIqLpjwxcREZEVZELFJnuJiIhAYGAgtm/fbp6n0+lw6NAhREdH2+9ARERERFRlOEIdW9l4qyMREZE17HCrY3nl5ubi/Pnz5tdJSUmIj4+Ht7c3wsPDMXLkSHz00UeoW7cuIiIiEBcXh+DgYPTo0cO2fERERERUtVXDWx3Z8EVERGQFmalksnVbaxw9ehSdOnUyvx49ejQAoH///li8eDHGjh2LvLw8vPHGG8jOzka7du2wZcsWqNVq2wISERERUZVmay1ra/3rCNjwRURE5KA6duwI4T5X12QyGaZMmYIpU6ZUYioiIiIiIulgwxcREZE1KvFWRyIiIiIiu+KtjkRERHRfwj+TrdsSEREREYnF1lpWwnUsG76IiIisIBMEyGy84mXrdkRERERE9mBrLSvlOpYNX0RERNbgrY5EREREJFXV8FZHudgBiIiIiIiIiIiIHgb2+CIiIrKGAMDWxzlL90IZEREREVUFttayEq5j2fBFRERkBY7xRURERERSVR3H+OKtjkRERNYQcGdsBKsnscMTERERUbVmcy1r3WGmTZuGli1bwsPDA/7+/ujRowcSExMt1iksLMTQoUPh4+MDd3d39OrVCxkZGfZ7r/9gwxcREZE1bG70qsCg+ERERERE9lBJdezu3bsxdOhQHDx4ENu2bYPBYECXLl2Ql5dnXmfUqFHYuHEjVq9ejd27dyM1NRU9e/a09zvmrY6OTjAUQZBJ7w8lQV8kdgSbSDU3AGh3nhc7gs1MXeqKHcEmHglKsSPY7KfilmJHsImpoBDAerFjEBERkR3t291I7Ag2q4UDYkcgckhbtmyxeL148WL4+/vj2LFjaN++PXJycrBw4UKsWLECnTt3BgAsWrQI9evXx8GDB9G6dWu7ZWGPLyIiImuYKjgREREREYmlgnWsTqezmPR6fbkOm5OTAwDw9vYGABw7dgwGgwExMTHmdaKiohAeHo4DB+zboMyGLyIiIivcHhDU1omIiIiISCwVrWPDwsKg1WrN07Rp0x54TJPJhJEjR6Jt27Zo1Kikh2d6ejqUSiU8PT0t1g0ICEB6erpd3zNvdSQiIrJGRcbqYsMXEREREYnJ1lr2n21SUlKg0WjMs1Uq1QM3HTp0KP766y/s27fP+uPaARu+iIiIiIiIiIjogTQajUXD14O89dZb2LRpE/bs2YPQ0FDz/MDAQBQVFSE7O9ui11dGRgYCAwPtGZm3OhIREVmFT3UkIiIiIqmqpDpWEAS89dZbWLduHXbs2IGIiAiL5S1atICzszO2b99unpeYmIjk5GRER0fb5a3exh5fRERE1uCtjkREREQkVRW81bG8hg4dihUrVuDnn3+Gh4eHedwurVYLFxcXaLVavPbaaxg9ejS8vb2h0WgwbNgwREdH2/WJjgAbvoiIiKxjAiCrwLZERERERGKxtZa1so6dN28eAKBjx44W8xctWoQBAwYAAGbOnAm5XI5evXpBr9cjNjYWc+fOtSHc/bHhi4iIyAoVeTojn+pIRERERGKytZa1dhuhHOur1WrMmTMHc+bMsTqPNTjGFxERERERERERVUns8UVERGQNjvFFRERERFJVSWN8ORI2fBEREVnDJAAyG7/4TdItGIiIiIioCrC1lpVwHcuGLyIiImuwxxcRERERSVU17PHFMb6IiIiIiIiIiKhKYo8vIiIiq1Sgxxeke6WMiIiIiKoCW2tZ6daxbPgiIiKyBm91JCIiIiKpqoa3OrLhi4iIyBomATZf8ZLwoKBEREREVAXYWstKuI5lwxcREZE1BFPJZOu2RERERERisbWWlXAdy4avauiZAdfRe0gmvP2KcfG0C+a+H4LEeFexY91XnzdS0LbLDYTWKkBRoRynT3jgu89r4mqSY+cGpJv9P32uoFufqwgILgQAXL7ghh/+LwJH9/mInKy0prVS0bfjSdQLuQ4/bT7GLeqCPX9HmJe//8JOdGt51mKbg2dCMWpBt8qOauG1x47jiboXEeGdDX2xAvGpgZi1pzUu3fQyr6NUFGNMx/14qt55KBVG7L8Uho+2t0dWvrj/fry2pMLjxE0o0wtgUspRWMsd154LgyHQxbyOIqcIfmtT4Jqgg7zQiKIANbK6BiO3ubeIyYmISMqkWMfexuwPz87nliHUPbfU/GWJDTH58ONQyosx4dED6FbzPJRyI/alhmHS4cdxo9Bx3sO/Ofo5vx+pZpdqbnowPtURgNFoRFxcHCIiIuDi4oLatWvjww8/hHDXPayCIGDixIkICgqCi4sLYmJicO7cORFT26bDszfxxqRULP8iEENjI3HxtBpTV1yE1scgdrT7avxYDjYuD8KoPk3w7qsN4eQkYOrCv6FyMYod7YGkmv16hhqLZtXG8BdbYsRLLXHysBfivvwT4bVLFxViUyuLcS7VBzPWtbvnOgfOhKHb5P+ap4nLYyoxYdkeDU3FyvhG6LeiJ9746Rk4yU2Y33sTXJzu/D6O7fgHOtS6jDEbu+DVH3vAzz0fM5/dKmLqEq5nbyG7gz+SxzXAlRFRgFFA6OxEyPR3/l0HLr4IZXohUofUxeW4Rsht5oWgb89DlZwnYnI7uD0ugq0TEZEdsY51/DoWYPaHrdfmXohe/Yp56r/taQDAr5drAQDee3Q/OodexvA9XdD3t+7wd83HnA7i11P3IoVzfi9SzS7V3DaphnUsG74AfPrpp5g3bx6+/vprJCQk4NNPP8X06dPx1VdfmdeZPn06Zs+ejfnz5+PQoUNwc3NDbGwsCgsLy9znpUuXIJPJKustlFvPN65jywpv/PajN5LPqTF7XCj0BTLEvpQldrT7inu9EX5fF4Dk825ISnTHF+MjERCiR92GjtcI829SzX54ty+O7vNFarIrrl52xdKvaqMwX4GoJjqxo5Vy8Ew4vtnyGHb/FXHPdYqKFci65WqebhWoKjFh2YasfRob/o7ChRveOHvNF3FbOiNYk4sGAdcAAO5KPZ5rfAaf72qDwymhSMj0Q9zWTmgWko4mQemiZr86vB50bfxQFOyKolBXZPSvBeesIqjvatRyuZiLm50CUBjhDoOfGln/CYHJVSH9hi+TULGJiMiOWMc6fh0LMPvDlqV3wfVCV/PUKfQyLus0OJwRDHdnPXrXOYNpR6NxMD0Ef2f5Yfz+jmjhn4GmvhliRy+TFM75vUg1u1Rz26Qa1rFs+AKwf/9+dO/eHd26dUPNmjXRu3dvdOnSBYcPHwZQcpVs1qxZeP/999G9e3c0adIES5cuRWpqKtavXy9ueCs4OZtQt0k+ju/1MM8TBBlO7PVAgxb5IiaznqtHMQDgVo707taVYna5XED7pzKgdjEi4aRW7Dg2aV47Fb98sAQrx67EOz33QuNadrEvJndVEQAgp7CkUa5BwDU4K0w4mBxqXudSlhdSde5oEuRYhZq8oKSnl9H1zr/rglru8Dh2A/K8YsAkwOPIDcgMAgoiNWLFtA/2+CIiB8I61vHrWGavXM5yI56NOIefLkQBkKGRz3UoFSb8kXannrqo88LVXHc09RP3QmJZpHjOb5Nqdqnmtlk1rGPZ8AWgTZs22L59O86eLRkD6OTJk9i3bx+6du0KAEhKSkJ6ejpiYu7cGqXVatGqVSscOHDALhn0ej10Op3FZG8abyMUTkD2NcsGl5vXneDlV2z34z0sMpmA/717EX8f0+DyOTex41hFatlr1s3FmoO78fPRXXjr/UR8OLIxUi46fu5/O5gYhik/dMLw+U9j7i+t0Kx2Kma+vhlymeMM0CiDgLEd/8Dxq4E4f6NkHDVft3wUFctxS2/ZO+1Gnit83RzoS9gkwG/1ZRTUdkdRyJ1xENIG1YHMKKDO28dR962j8F9+CamD68LgrxYxrB0IqEDBIHZ4IqpqWMc6fh3L7JUrJiwJGqUeay/UAwD4qfNRZJTjlsGynrpe6AI/dYEYEe9Liuf8Nqlml2pum9lcy4od3HbS6XLyEI0fPx46nQ5RUVFQKBQwGo2YOnUq+vbtCwBITy+5EhAQEGCxXUBAgHlZRU2bNg2TJ0+2y76quqGTLqBm3XyMebmJ2FGsJrXsV5Jc8dbzLeHmXox2T17D2x8lYOzA5pJr/Po9vo75/y+k++B8mg/WvPsDmtdOxdHzoffZsvK898Qe1PHNwoCVPcSOYjX/lZehulqAlHcaWMz32XAF8nwjUkbWg9HdGe7xNxH07XmkjKlv0UBGRES2Yx1LZOn5OmewJzUcmQXSqleJ6OFhjy8Aq1atwvLly7FixQocP34cS5Ysweeff44lS5ZYtZ+GDRvC3d0d7u7uaNiwIQCYX7u7u5uvvJVlwoQJyMnJMU8pKSkVek9l0WUpYCwGPP/Vau3lW4yb16TRBjok7gIe65iFcf0b43qG+GM0WUOK2YuL5UhLccX5BA0Wz66Ni2fd0b2v/f9tVrbULA1u5qoR6usY45VN6LwX7WtfxuurnkVGrrt5/vU8VyidTPBQ6S3W93HLx/U8x2g48v/hEtxOZSNldH0UeynN852vFcJrVyYyXolAQZQWRaGuyHo6BIU13OC5y7Fu07Qab3UkIgfCOtbx61hmrzzBbrfQJvAqVp2LMs+7VugKpcIED2fLespXXYBrhS7/3oXopHbO7ybV7FLNbbNqWMdWwZ+i9d555x2MHz8eL774IgCgcePGuHz5MqZNm4b+/fsjMDAQAJCRkYGgoCDzdhkZGWjatKn59ebNm2EwlDz14erVq+jYsSPi4+PNy11c7v3BqlKpoFI93MaQYoMc5/50RbN2t3BgS8k4TTKZgKbtcrFhsc9DPXbFCRgSdxFtnryBcf9tjIwrUrpVSsrZLcnlApyVjnN7oK38tLnQuhbiuk7sxiMBEzrvQ+c6SXht1bO4qrMc++p0hh8MRjlahV/B7+dqAwBqet1EsCYsgWt1AAAiCElEQVQXf6YFlLXDyiMI8F95Ge7xN0savXwtP79kRf/8O/n34MhySLqbNADAZAJg4++BSfq/P0TkWFjHOn4dy+yVp1ftM7hR6IJdV2uY5/11wxdFRjnaBF3F1uSSpzxGaLIR4p6L+GuBYkW9J6md87tJNbtUc9vM1lpWwnUsG74A5OfnQy637PymUChg+ucHGxERgcDAQGzfvt1cIOh0Ohw6dAhDhgwxb1Ojxp0PWCenklNbp86dW6wcwdpvfDFmVgrOnnRF4glXPDfoGtSuJvy20lvsaPc1dNIFdHz6Gqa82QAFeQp4+ZYMAp53S4EivULkdPcn1ewDhl/A0T+8kZmmhqubER27ZqDxo9mIG9xU7GiluCgNCPXNMb8O9r6FusHXoctXQZevxmtdjmLnn7Vw45YrQn1yMPTpQ7hyQ4tDiWEipgbee2Ivukadw4ifuyKvSAkf15Jxu3KLlNAXOyG3SIV1p6IwpuN+5BSqkatXYsITexGfGoA/08Qt1Px/uAyPIzeQOqQuTGo5FDkl/65NLk4QlHIUBapR5KeC//JLuN4rDEZ3J7jH34Rrgg6pb0aKmr3CKnLFS8JXyojIMbGOdfw6FmD2yiCDgF61E7HuYiSMwp3fiVyDCj+dj8KEFvuRrVch16DExJb7cDwzAPHXRb6QeA9SOedlkWp2qea2ia21rITrWDZ8AXjmmWcwdepUhIeHo2HDhjhx4gS++OILDBw4EAAgk8kwcuRIfPTRR6hbty4iIiIQFxeH4OBg9OjRQ9zwVtq9wQtaHyNeeScdXn7FuPi3C97rG4Hs685iR7uvp18uGYNi+rJTFvNnjK+L39c55hfWbVLNrvUuwtsfJcDbT4+8XCcknXVH3OCmOHHQ8T78o8KuYe6QjebXI7qXDNb7y5FIfLbmcdQOykLXR8/CQ12E6zpXHDobim+2tITBKG7D4wtN/wYALHrhZ4v572/phA1/l3TRn76rLUyQ4YtntkLpZMQfl8Iw9ff2lZ713zz3ZAIAwr44YzE//ZUI6Nr4AQo5rr5VD77rUxA89yzkehMMfiqk96+FvMaeIiQmIqqaWMc6fh0LMHtlaBt0BSHuufjpfFSpZVOPtoEJMnzd4TcoFUbsSw3DpEOPi5CyfKRyzssi1exSzU3lIxMECTfb2cmtW7cQFxeHdevWITMzE8HBwXjppZcwceJEKJUlY9YIgoBJkybhm2++QXZ2Ntq1a4e5c+ciMrLsnguXLl1CREQEbD29Op0OWq0WHdEdTjLp/bLJPTwevBLZlUylfPBKDupml7piR7BJXpB0h0m8VVeaT6gxFRTiysiJyMnJgUajefAGdnT7cznGdyCc5Lb9vhWbivD79e9EyU9EVRPrWKoKLn4aLXYEm9UaZ5+no1LVVywYsAs/i1YHVrSWlXIdy4YvByX1goENX5WPDV+Vjw1flc8hGr68X61Yw1fWIkkWDERE5SX1OpYqHxu+qDpwmIYvG2tZKdexvNWRiIjICoJggiDYNrinrdsREREREdmDrbWslOtYNnwRERFZQxAAEwe3JyIiIiIJsrWWlXAdK937dIiIiIiIiIiIiO6DPb6IiIisIQgA2OOLiIiIiCTI1lpWwnUsG76IiIisYTIBMhvHOJDw2AhEREREVAXYWstKuI5lwxcREZE12OOLiIiIiKSqGvb44hhfRERERERERERUJbHHFxERkRUEkwmCjbc6Svkx0EREREQkfbbWslKuY9nwRUREZA3e6khEREREUlUNb3VkwxcREZE1TAIgY8MXEREREUmQrbWshOtYNnwRERFZQxAA2PpUR+kWDERERERUBdhay0q4juXg9kREREREREREVCWxxxcREZEVBJMAwcZbHQUJXykjIiIiIumztZaVch3LHl9ERETWEEwVm6w0Z84c1KxZE2q1Gq1atcLhw4cfwpsiIiIiomqhEutYwDFqWTZ8ERERWUEwCRWarPHjjz9i9OjRmDRpEo4fP45HHnkEsbGxyMzMfEjvjoiIiIiqssqqYwHHqWXZ8EVERGSNSuzx9cUXX2DQoEF49dVX0aBBA8yfPx+urq747rvvHtKbIyIiIqIqrRJ7fDlKLcsxvhzU7ftni2EAJHgrrVwoEjtCtSOz8SFzjsBoKBQ7gk2MeuleOzAVFIsdwSamwpJ/K2KOMVCRz+ViGAAAOp3OYr5KpYJKpbKYV1RUhGPHjmHChAnmeXK5HDExMThw4IBtAYiIKoHU61iqfLe/36WoWDCIHYEk4nYdKPZYWbZ+NltTxwKOVcuy4ctB3bp1CwCwD5tFTmKjW2IHIElZJXYAkppbt25Bq9VW6jGVSiUCAwOxL71in8vu7u4ICwuzmDdp0iR88MEHFvOuX78Oo9GIgIAAi/kBAQE4c+ZMhTIQET1Mkq9jqfJN/FnsBDa7JHYAkhwx6ljAPrVseetYwLFqWTZ8Oajg4GCkpKTAw8MDMpnM7vvX6XQICwtDSkoKNBqN3ff/sEg1N8DsYpBqboDZ70UQBNy6dQvBwcF23W95qNVqJCUloaioYj1aBUEo9ble1lUyIiKpYh1bNqnmBphdDFLNDTD7vYhZxwL2qWWlWsey4ctByeVyhIaGPvTjaDQayX0YAdLNDTC7GKSaG2D2sohxhew2tVoNtVpdKcfy9fWFQqFARkaGxfyMjAwEBgZWSgYiIluwjr0/qeYGmF0MUs0NMHtZxKxjgepby0p3gBoiIqIqTKlUokWLFti+fbt5nslkwvbt2xEdHS1iMiIiIiKi+3OkWpY9voiIiBzU6NGj0b9/fzz66KN47LHHMGvWLOTl5eHVV18VOxoRERER0X05Si3Lhq9qSqVSYdKkSZK4H/duUs0NMLsYpJobYHYq8cILL+DatWuYOHEi0tPT0bRpU2zZsqXUIKFERNWJVL9npJobYHYxSDU3wOx0h6PUsjJB7GdpEhERERERERERPQQc44uIiIiIiIiIiKokNnwREREREREREVGVxIYvIiIiIiIiIiKqktjwVcXVrFkTs2bNEjsGEREREZFVWMcSEZE9sOFLZB07dsTIkSNLzV+8eDE8PT0rPU95JSYmolOnTggICIBarUatWrXw/vvvw2AwWKy3evVqREVFwdnZGWq1Gq6urtBoNIiOjsavv/5qXq+wsBBDhw6Fj48P3N3d0atXL2RkZJQ7z/nz5+Hh4VHmObudQa1Wo3Hjxti8ebPN7xsAPvnkE8hkMoufmy35L126BJlMVmo6ePCg3fJ/8MEHpfYfFRVVodwAIAgCPv/8c0RGRkKlUiEkJARTp061WGfXrl1o3rw5VCoV6tSpg8WLF5c7NwBcvXoV/fr1g4+PD1xcXNC4cWMcPXrUIsPEiRMRFBQEFxcXxMTE4Ny5c/fd5+LFi8s85zKZDJmZmXbJXrNmzTL3P3ToUAC2n/OtW7eidevW8PDwgJ+fH3r16oVLly5ZrFPRc14Wo9GIuLg4REREwMXFBbVr18aHH36Iu5+LYsvPgoiIpI91bAnWsaxj/411rCXWsSQ6gUTVoUMHYcSIEaXmL1q0SNBqtRXef40aNYSZM2favL1ery9z/oULF4TvvvtOiI+PFy5duiT8/PPPgr+/vzBhwgTzOn/88YegUCiE6dOnC3PmzBFefPFFwcnJSdi4caPw7rvvCs7OzsJff/0lCIIgDB48WAgLCxO2b98uHD16VGjdurXQpk2bcmUsKioSHn30UaFr166lztndGU6fPi28//77grOzs3Dq1Cmbzsfhw4eFmjVrCk2aNLH4udmSPykpSQAg/P7770JaWpp5Kioqslv+SZMmCQ0bNrTY/7Vr1yqUWxAEYdiwYUK9evWEn3/+Wbh48aJw9OhR4bfffjMvv3jxouDq6iqMHj1aOH36tPDVV18JCoVC2LJlS7lyZ2VlCTVq1BAGDBggHDp0SLh48aKwdetW4fz58+Z1PvnkE0Gr1Qrr168XTp48KTz77LNCRESEUFBQcM/95ufnW5yLtLQ0ITY2VujQoYPdsmdmZlrsf9u2bQIAYefOnYIg2HbOL168KKhUKmHChAnC+fPnhWPHjgnt27cXmjVrZrfc9zJ16lTBx8dH2LRpk5CUlCSsXr1acHd3F7788kvzOtb+LG7/2yciImljHcs6lnVsaaxjLbGOJUfAn5jIylsw9O/fX+jevbvw2WefCYGBgYK3t7fw5ptvWny5ZGRkCE8//bSgVquFmjVrCsuWLStVMNy8eVN47bXXBF9fX8HDw0Po1KmTEB8fb14+adIk4ZFHHhG+/fZboWbNmoJMJiv3exk1apTQrl078+s+ffoI3bp1s1inVatWwv/+9z9BEATBy8tLWLBggZCdnS04OzsLq1evNq+XkJAgABAOHDjwwOOOHTtW6NevX5lF1oMyWOPWrVtC3bp1hW3btln83GzNf/tD88SJE/dcp6L5b/88y2Jr7tOnTwtOTk7CmTNn7rnO2LFjhYYNG1rMe+GFF4TY2Nhy5R43bpzFv6V/M5lMQmBgoPDZZ5+Z52VnZwsqlUr44YcfynUMQSj5cnd2dhaWLl1qt+z/NmLECKF27dqCyWSy+ZyvXr1acHJyEoxGo3nehg0bBJlMZv4MsHfu27p16yYMHDjQYl7Pnj2Fvn37CoJg28+CBQMRUdXAOpZ1LOvY0ljHWmIdS46AtzpKyM6dO3HhwgXs3LkTS5YsweLFiy26gA4YMAApKSnYuXMnfvrpJ8ydO9ei2ysAPP/888jMzMSvv/6KY8eOoXnz5njiiSeQlZVlXuf8+fNYs2YN1q5di/j4+HJlO3/+PLZs2YIOHTqY5x04cAAxMTEW68XGxmL//v1YuXIl8vLyEB0djWPHjsFgMFisGxUVhfDwcBw4cOC+x92xYwdWr16NOXPmlLn8XhketN+yDB06FN26dSu1v4rkB4Bnn30W/v7+aNeuHTZs2GD3/OfOnUNwcDBq1aqFvn37Ijk5uUK5N27ciFq1amHTpk2IiIhAzZo18frrr1v8G6po7g0bNuDRRx/F888/D39/fzRr1gzffvuteXlSUhLS09MtjqHVatGqVSurzs3SpUvh6uqK3r172y373YqKirBs2TIMHDgQMpnM5nPeokULyOVyLFq0CEajETk5Ofj+++8RExMDZ2dnu+e+W5s2bbB9+3acPXsWAHDy5Ens27cPXbt2BWC/nwUREVVtrGNLYx37YKxj74117IOxjqXbnMQOQOXn5eWFr7/+GgqFAlFRUejWrRu2b9+OQYMG4ezZs/j1119x+PBhtGzZEgCwcOFC1K9f37z9vn37cPjwYWRmZkKlUgEAPv/8c6xfvx4//fQT3njjDQAlH3JLly6Fn5/fAzO1adMGx48fh16vxxtvvIEpU6aYl6WnpyMgIMD8+tSpU/jkk09QVFSEwYMHY926dWjQoAHi4+OhVCpLjWsQEBCA9PT0ex77xo0bGDBgAJYtWwaNRlPmOv/OUJ79lmXlypU4fvw4jhw5UuYxbMnv7u6OGTNmoG3btpDL5VizZg169OiB9evX49lnn7VL/latWmHx4sWoV68e0tLSMHnyZDz++OP466+/bM598eJFXL58GatXr8bSpUthNBoxatQo9O7dGzt27Lhvbp1Oh4KCAri4uNw398WLFzFv3jyMHj0a7777Lo4cOYLhw4dDqVSif//+5nwV/dkuXLgQL7/8skWeima/2/r165GdnY0BAwaY923LOY+IiMBvv/2GPn364H//+x+MRiOio6MtxsmwZ+67jR8/HjqdDlFRUVAoFDAajZg6dSr69u1rPu7tY1nznoiIqHphHWuJdeyDsY69P9axD8Y6lm5jjy8JadiwIRQKhfl1UFCQ+UpYQkICnJyc0KJFC/PyqKgoiw+mkydPIjc31zwY4e0pKSkJFy5cMK9Xo0aNchULAPDjjz/i+PHjWLFiBX755Rd8/vnn91y3Xr16mDBhAry8vDBkyBD0798fp0+fLvd7v533dgv9oEGD8PLLL6N9+/bl2oetUlJSMGLECCxfvhxqtdqmfZSV39fXF6NHj0arVq3QsmVLfPLJJ+jXrx8+++wzu2Xv2rUrnn/+eTRp0gSxsbHYvHkzsrOzsWrVKptzm0wm6PV6LF26FI8//jg6duyIhQsXYufOnUhMTLRLbpPJhObNm+Pjjz9Gs2bN8MYbb2DQoEGYP39+uffRtWtXc/aGDRuWWn7gwAEkJCTgtddes0vmsixcuBBdu3ZFcHBwubcp65ynp6dj0KBB6N+/P44cOYLdu3dDqVSid+/eFoNzPgyrVq3C8uXLsWLFChw/fhxLlizB559/jiVLlli1n7vf1+2fx92fQ7ffKxERVU2sY1nHWot1LOvYimIdS7exx5fINBoNcnJySs3Pzs6GVqu1mHe7K+htMpkMJpOp3MfKzc1FUFAQdu3aVWrZ3YWFm5tbufcZFhYGAGjQoAGMRiPeeOMNvP3221AoFAgMDLR4yodSqYQgCAgLC8O0adNw5MgRfPnll3jhhRdQVFSE7OxsixwZGRkIDAwEAGzevNn8pJ3bLf47duzAhg0bzEWKIAgwmUxwcnLCN998g4EDB5bK8O/9lsexY8eQmZmJ5s2bm+cZjUbs2bMHX3/9NbZu3WpT/rK0atUK27ZtM7+2R/67eXp6IjIyEufPn8eTTz5pU+6goCA4OTkhMjLSvM3tK7LJycmoV6/ePXNrNJpyXbEJCgpCgwYNLObVr18fa9asAQBzvoyMDAQFBVkco2nTpgCABQsWoKCgAEDp353by5s2bWpRZN/ed0Wy33b58mX8/vvvWLt2rcW+bTnnc+bMgVarxfTp083bLFu2DGFhYTh06BBat25tt9z/9s4772D8+PF48cUXAQCNGzfG5cuXMW3aNPTv379cP4t/v6+rV6+iY8eOFregVCQjERGJg3Us69i7sY6F+RisY1nHkmNhjy+R1atXD8ePHy81//jx4xYfyA8SFRWF4uJiHDt2zDwvMTER2dnZ5tfNmzdHeno6nJycUKdOHYvJ19e3Qu8DKLm6YTAYzEVMdHQ0tm/fbrHOtm3bEB0dbV5fr9ejRYsWcHZ2tlg3MTERycnJ5nVr1KhhzhoSEgKg5EpHfHy8eZoyZQo8PDwQHx+P5557rlwZyuOJJ57AqVOnLI716KOPom/fvub/tyV/WeLj4y0+dO2R/265ubm4cOECgoKCbD7vbdu2RXFxscXV1dv3zdeoUcMuudu2bVvqqtvZs2fN+4+IiEBgYKDFMXQ6HQ4dOmQ+RkhIiDn77e3uPg+rVq0q8yqZvc75okWL4O/vj27dupnn2XrO8/PzIZdbflzfvmpe3t83W93r2LePW56fxb/f1+2fx92fQff7vSAiIsfEOpZ17N1Yx8J8DNaxrGPJwYg5sj6VPE5ZrVYLw4YNE06ePCmcOXNGmDFjhuDk5CT8+uuv5vVuPw3nbiNGjLB4fO1TTz0lNGvWTDh48KBw9OhRoV27doKLi4v5aTgmk0lo166d8Mgjjwhbt24VkpKShD/++EN49913hSNHjgiCcP+np9xt2bJlwo8//iicPn1auHDhgvDjjz8KwcHB5idkCELJI4ydnJyEzz//XBg0aJAwYMAAwcnJSVizZo0wfvx4QSaTmR8dPHjwYCE8PFzYsWOHcPToUSE6OlqIjo626lyW9TScuzMkJCQIkyZNqtBjoG/791OMbMm/ePFiYcWKFUJCQoKQkJAgTJ06VZDL5cJ3331nt/xvv/22sGvXLvPPOiYmRvD19RUyMzNtzm00GoXmzZsL7du3F44fPy4cPXpUaNWqlfDkk0+a17n9SOJ33nlHSEhIEObMmWPVI4kPHz4sODk5CVOnThXOnTsnLF++XHB1dRWWLVtmXueTTz4RPD09hZ9//ln4888/he7duz/wMdC3LViwQFCr1cLNmzdLLatodkEoOUfh4eHCuHHjSi2z5Zxv375dkMlkwuTJk4WzZ88Kx44dE2JjY4UaNWoI+fn5dstdlv79+wshISHmx0CvXbtW8PX1FcaOHWtex9qfBZ+GQ0RUNbCOZR3LOrY01rGWWMeSI+BPzAEcPnxYePLJJwU/Pz9Bq9UKrVq1EtatW2exTnkKhrS0NKFbt26CSqUSwsPDhaVLl5Z6DLROpxOGDRsmBAcHC87OzkJYWJjQt29fITk5WRCE8hcMK1euFJo3by64u7sLbm5uQoMGDYSPP/641AfEqlWrhMjISEEulwvOzs6Ck5OT4OfnJzzxxBPmYkEQBKGgoEB48803BS8vL8HV1VV47rnnhLS0tHKdv9vKKhjuzqBUKoWGDRsKv/zyi1X7Lcu/CwZb8i9evFioX7++4OrqKmg0GuGxxx6zeDywPfK/8MILQlBQkKBUKoWQkBDhhRdeEM6fP1+h3IIgCFevXhV69uwpuLu7CwEBAcKAAQOEGzduWKyzc+dOoWnTpoJSqRRq1aolLFq0qNy5BUEQNm7cKDRq1EhQqVRCVFSU8M0331gsN5lMQlxcnBAQECCoVCrhiSeeEBITE8u17+joaOHll1++5/KKZt+6dasAoMw8tp7zH374QWjWrJng5uYm+Pn5Cc8++6yQkJBg19xl0el0wogRI4Tw8HBBrVYLtWrVEt577z1Br9eb17H2Z8GCgYio6mAdyzqWdWxprGMtsY4lsckE4SGPKEdERERERERERCQCjvFFRERERERERERVEhu+iIiIiIiIiIioSmLDFxERERERERERVUls+CIiIiIiIiIioiqJDV9ERERERERERFQlseGLiIiIiIiIiIiqJDZ8ERERERERERFRlcSGLyIiIiIiIiIiqpLY8EVURQwYMAA9evQwv+7YsSNGjhxZ6Tl27doFmUyG7Ozse64jk8mwfv36cu/zgw8+QNOmTSuU69KlS5DJZIiPj6/QfoiIiIjIvljH3h/rWKKKYcMX0UM0YMAAyGQyyGQyKJVK1KlTB1OmTEFxcfFDP/batWvx4Ycflmvd8nzJExEREVH1wTqWiKoKJ7EDEFV1Tz31FBYtWgS9Xo/Nmzdj6NChcHZ2xoQJE0qtW1RUBKVSaZfjent722U/RERERFQ9sY4loqqAPb6IHjKVSoXAwEDUqFEDQ4YMQUxMDDZs2ADgTrfuqVOnIjg4GPXq1QMApKSkoE+fPvD09IS3tze6d++OS5cumfdpNBoxevRoeHp6wsfHB2PHjoUgCBbH/XcXcb1ej3HjxiEsLAwqlQp16tTBwoULcenSJXTq1AkA4OXlBZlMhgEDBgAATCYTpk2bhoiICLi4uOCRRx7BTz/9ZHGczZs3IzIyEi4uLujUqZNFzvIaN24cIiMj4erqilq1aiEuLg4Gg6HUev/3f/+HsLAwuLq6ok+fPsjJybFYvmDBAtSvXx9qtRpRUVGYO3eu1VmIiIiIqATr2AdjHUvk+NjwRVTJXFxcUFRUZH69fft2JCYmYtu2bdi0aRMMBgNiY2Ph4eGBvXv34o8//oC7uzueeuop83YzZszA4sWL8d1332Hfvn3IysrCunXr7nvcV155BT/88ANmz56NhIQE/N///R/c3d0RFhaGNWvWAAASExORlpaGL7/8EgAwbdo0LF26FPPnz8fff/+NUaNGoV+/fti9ezeAksKmZ8+eeOaZZxAfH4/XX38d48ePt/qceHh4YPHixTh9+jS+/PJLfPvtt5g5c6bFOufPn8eqVauwceNGbNmyBSdOnMCbb75pXr58+XJMnDgRU6dORUJCAj7++GPExcVhyZIlVuchIiIiotJYx5bGOpZIAgQiemj69+8vdO/eXRAEQTCZTMK2bdsElUoljBkzxrw8ICBA0Ov15m2+//57oV69eoLJZDLP0+v1gouLi7B161ZBEAQhKChImD59unm5wWAQQkNDzccSBEHo0KGDMGLECEEQBCExMVEAIGzbtq3MnDt37hQACDdv3jTPKywsFFxdXYX9+/dbrPvaa68JL730kiAIgjBhwgShQYMGFsvHjRtXal//BkBYt27dPZd/9tlnQosWLcyvJ02aJCgUCuHKlSvmeb/++qsgl8uFtLQ0QRAEoXbt2sKKFSss9vPhhx8K0dHRgiAIQlJSkgBAOHHixD2PS0REREQlWMeWjXUskfRwjC+ih2zTpk1wd3eHwWCAyWTCyy+/jA8++MC8vHHjxhbjIZw8eRLnz5+Hh4eHxX4KCwtx4cIF5OTkIC0tDa1atTIvc3JywqOPPlqqm/ht8fHxUCgU6NChQ7lznz9/Hvn5+XjyySct5hcVFaFZs2YAgISEBIscABAdHV3uY9z2448/Yvbs2bhw4QJyc3NRXFwMjUZjsU54eDhCQkIsjmMymZCYmAgPDw9cuHABr732GgYNGmRep7i4GFqt1uo8RERERMQ6tjxYxxI5PjZ8ET1knTp1wrx586BUKhEcHAwnJ8tfOzc3N4vXubm5aNGiBZYvX15qX35+fjZlcHFxsXqb3NxcAMAvv/xi8UUNlIz3YC8HDhxA3759MXnyZMTGxkKr1WLlypWYMWOG1Vm//fbbUgWMQqGwW1YiIiKi6oR17P2xjiWSBjZ8ET1kbm5uqFOnTrnXb968OX788Uf4+/uXulp0W1BQEA4dOoT27dsDKLkidOzYMTRv3rzM9Rs3bgyTyYTdu3cjJiam1PLbV+qMRqN5XoMGDaBSqZCcnHzPK2z169c3D3B628GDBx/8Ju+yf/9+1KhRA++995553uXLl0utl5ycjNTUVAQHB5uPI5fLUa9ePQQEBCA4OBgXL15E3759rTo+EREREZWNdez9sY4lkgYObk/kYPr27QtfX190794de/fuRVJSEnbt2oXhw4fjypUrAIARI0bgk08+wfr163HmzBm8+eabyM7Ovuc+a9asif79+2PgwIFYv369eZ+rVq0CANSoUQMymQybNm3CtWvXkJubCw8PD4wZMwajRo3CkiVLcOHCBRw/fhxfffWVeaDNwYMH49y5c3jnnXeQmJiIFStWYPHixVa937p16yI5ORkrV67EhQsXMHv27DIHOFWr1ejfvz9OnjyJvXv3Yvjw4ejTpw8CAwMBAJMnT8a0adMwe/ZsnD17FqdOncKiRYvwxRdfWJWHiIiIiGzDOpZ1LJEjYsMXkYNxdXXFnj17EB4ejp49e6J+/fp47bXXUFhYaL5y9vbbb+O///0v+vfvj+joaHh4eOC55567737nzZuH3r17480330RUVBQGDRqEvLw8AEBISAgmT56M8ePHIyAgAG+99RYA4MMPP0RcXBymTZuG+vXr46mnnsIvv/yCiIgIACXjFaxZswbr16/HI488gvnz5+Pjjz+26v0+++yzGDVqFN566y00bdoU+/fvR1xcXKn16tSpg549e+I///kPunTpgiZNmlg85vn111/HggULsGjRIjRu3BgdOnTA4sWLzVmJiIiI6OFiHcs6lsgRyYR7jSJIREREREREREQkYezxRUREREREREREVRIbvoiIiIiIiIiIqEpiwxcREREREREREVVJbPgiIiIiIiIiIqIqiQ1fRERERERERERUJbHhi4iIiIiIiIiIqiQ2fBERERERERERUZXEhi8iIiIiIiIiIqqS2PBFRERERERERERVEhu+iIiIiIiIiIioSmLDFxERERERERERVUn/D397j9eg5H9zAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from sklearn.metrics import ConfusionMatrixDisplay\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "_, ax = plt.subplots(int(len(class_models) / 2), 2, figsize=(17, 17), sharex=False, sharey=False)\n",
- "for index, key in enumerate(class_models.keys()):\n",
- " c_matrix = class_models[key][\"Confusion_matrix\"]\n",
- " disp = ConfusionMatrixDisplay(\n",
- " confusion_matrix=c_matrix, display_labels=[\"Under 30\", \"30-40\", \"40-50\", \"50-60\", \"60-70\", \"70-80\", \"80+\"]\n",
- " ).plot(ax=ax.flat[index])\n",
- " disp.ax_.set_title(key)\n",
- "\n",
- "plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.1)\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Точность, полнота, верность (аккуратность), F-мера"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 52,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
- " \n",
- " | \n",
- " Precision_train | \n",
- " Precision_test | \n",
- " Recall_train | \n",
- " Recall_test | \n",
- " Accuracy_train | \n",
- " Accuracy_test | \n",
- " F1_train | \n",
- " F1_test | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " logistic | \n",
- " 0.567471 | \n",
- " 0.278074 | \n",
- " 0.444883 | \n",
- " 0.232769 | \n",
- " 0.618269 | \n",
- " 0.353846 | \n",
- " 0.465219 | \n",
- " 0.237759 | \n",
- "
\n",
- " \n",
- " gradient_boosting | \n",
- " 0.836061 | \n",
- " 0.287405 | \n",
- " 0.725411 | \n",
- " 0.235795 | \n",
- " 0.689904 | \n",
- " 0.344231 | \n",
- " 0.760847 | \n",
- " 0.240251 | \n",
- "
\n",
- " \n",
- " knn | \n",
- " 0.477783 | \n",
- " 0.221788 | \n",
- " 0.460090 | \n",
- " 0.214239 | \n",
- " 0.497115 | \n",
- " 0.328846 | \n",
- " 0.456182 | \n",
- " 0.211556 | \n",
- "
\n",
- " \n",
- " decision_tree | \n",
- " 0.618281 | \n",
- " 0.163157 | \n",
- " 0.244223 | \n",
- " 0.184231 | \n",
- " 0.387981 | \n",
- " 0.325000 | \n",
- " 0.227570 | \n",
- " 0.146479 | \n",
- "
\n",
- " \n",
- " random_forest | \n",
- " 0.581578 | \n",
- " 0.236539 | \n",
- " 0.735419 | \n",
- " 0.246556 | \n",
- " 0.627404 | \n",
- " 0.288462 | \n",
- " 0.599765 | \n",
- " 0.231541 | \n",
- "
\n",
- " \n",
- " ridge | \n",
- " 0.518033 | \n",
- " 0.238462 | \n",
- " 0.695673 | \n",
- " 0.247678 | \n",
- " 0.556250 | \n",
- " 0.284615 | \n",
- " 0.553233 | \n",
- " 0.226955 | \n",
- "
\n",
- " \n",
- " mlp | \n",
- " 0.035714 | \n",
- " 0.035714 | \n",
- " 0.142857 | \n",
- " 0.142857 | \n",
- " 0.250000 | \n",
- " 0.250000 | \n",
- " 0.057143 | \n",
- " 0.057143 | \n",
- "
\n",
- " \n",
- " naive_bayes | \n",
- " 0.524162 | \n",
- " 0.239277 | \n",
- " 0.664585 | \n",
- " 0.202308 | \n",
- " 0.494231 | \n",
- " 0.176923 | \n",
- " 0.465319 | \n",
- " 0.151713 | \n",
- "
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 52,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "class_metrics = pd.DataFrame.from_dict(class_models, \"index\")[\n",
- " [\n",
- " \"Precision_train\",\n",
- " \"Precision_test\",\n",
- " \"Recall_train\",\n",
- " \"Recall_test\",\n",
- " \"Accuracy_train\",\n",
- " \"Accuracy_test\",\n",
- " \"F1_train\",\n",
- " \"F1_test\",\n",
- " ]\n",
- "]\n",
- "class_metrics.sort_values(\n",
- " by=\"Accuracy_test\", ascending=False\n",
- ").style.background_gradient(\n",
- " cmap=\"plasma\",\n",
- " low=0.3,\n",
- " high=1,\n",
- " subset=[\"Accuracy_train\", \"Accuracy_test\", \"F1_train\", \"F1_test\"],\n",
- ").background_gradient(\n",
- " cmap=\"viridis\",\n",
- " low=1,\n",
- " high=0.3,\n",
- " subset=[\n",
- " \"Precision_train\",\n",
- " \"Precision_test\",\n",
- " \"Recall_train\",\n",
- " \"Recall_test\",\n",
- " ],\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## значения далеки от идела, датасет так себе..."
- ]
- },
{
"cell_type": "code",
"execution_count": 51,
@@ -2012,1154 +117,6 @@
"pip install Jinja2"
]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## ROC-кривая, каппа Коэна, коэффициент корреляции Мэтьюса"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 53,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
- " \n",
- " | \n",
- " Accuracy_test | \n",
- " F1_test | \n",
- " ROC_AUC_test | \n",
- " Cohen_kappa_test | \n",
- " MCC_test | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gradient_boosting | \n",
- " 0.344231 | \n",
- " 0.240251 | \n",
- " 0.649816 | \n",
- " 0.131708 | \n",
- " 0.138628 | \n",
- "
\n",
- " \n",
- " logistic | \n",
- " 0.353846 | \n",
- " 0.237759 | \n",
- " 0.615478 | \n",
- " 0.160238 | \n",
- " 0.161282 | \n",
- "
\n",
- " \n",
- " ridge | \n",
- " 0.284615 | \n",
- " 0.226955 | \n",
- " 0.612260 | \n",
- " 0.129672 | \n",
- " 0.133551 | \n",
- "
\n",
- " \n",
- " knn | \n",
- " 0.328846 | \n",
- " 0.211556 | \n",
- " 0.602333 | \n",
- " 0.128794 | \n",
- " 0.130205 | \n",
- "
\n",
- " \n",
- " random_forest | \n",
- " 0.288462 | \n",
- " 0.231541 | \n",
- " 0.599541 | \n",
- " 0.126828 | \n",
- " 0.129917 | \n",
- "
\n",
- " \n",
- " decision_tree | \n",
- " 0.325000 | \n",
- " 0.146479 | \n",
- " 0.581718 | \n",
- " 0.078698 | \n",
- " 0.098279 | \n",
- "
\n",
- " \n",
- " naive_bayes | \n",
- " 0.176923 | \n",
- " 0.151713 | \n",
- " 0.562024 | \n",
- " 0.071080 | \n",
- " 0.079232 | \n",
- "
\n",
- " \n",
- " mlp | \n",
- " 0.250000 | \n",
- " 0.057143 | \n",
- " 0.554978 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 53,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "class_metrics = pd.DataFrame.from_dict(class_models, \"index\")[\n",
- " [\n",
- " \"Accuracy_test\",\n",
- " \"F1_test\",\n",
- " \"ROC_AUC_test\",\n",
- " \"Cohen_kappa_test\",\n",
- " \"MCC_test\",\n",
- " ]\n",
- "]\n",
- "class_metrics.sort_values(by=\"ROC_AUC_test\", ascending=False).style.background_gradient(\n",
- " cmap=\"plasma\",\n",
- " low=0.3,\n",
- " high=1,\n",
- " subset=[\n",
- " \"ROC_AUC_test\",\n",
- " \"MCC_test\",\n",
- " \"Cohen_kappa_test\",\n",
- " ],\n",
- ").background_gradient(\n",
- " cmap=\"viridis\",\n",
- " low=1,\n",
- " high=0.3,\n",
- " subset=[\n",
- " \"Accuracy_test\",\n",
- " \"F1_test\",\n",
- " ],\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 54,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'logistic'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "best_model = str(class_metrics.sort_values(by=\"MCC_test\", ascending=False).iloc[0].name)\n",
- "\n",
- "display(best_model)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Вывод данных с ошибкой предсказания для оценки"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 56,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'Error items count: 336'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Rank | \n",
- " Predicted | \n",
- " Name | \n",
- " Networth | \n",
- " Country | \n",
- " Source | \n",
- " Industry | \n",
- " Age_category | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 6 | \n",
- " 7 | \n",
- " 4 | \n",
- " Sergey Brin | \n",
- " 107.0 | \n",
- " United States | \n",
- " Google | \n",
- " Technology | \n",
- " 40-50 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 9 | \n",
- " 3 | \n",
- " Steve Ballmer | \n",
- " 91.4 | \n",
- " United States | \n",
- " Microsoft | \n",
- " Technology | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 12 | \n",
- " 13 | \n",
- " 3 | \n",
- " Carlos Slim Helu & family | \n",
- " 81.2 | \n",
- " Mexico | \n",
- " telecom | \n",
- " Telecom | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- " 14 | \n",
- " 15 | \n",
- " 3 | \n",
- " Mark Zuckerberg | \n",
- " 67.3 | \n",
- " United States | \n",
- " Facebook | \n",
- " Technology | \n",
- " 30-40 | \n",
- "
\n",
- " \n",
- " 22 | \n",
- " 23 | \n",
- " 5 | \n",
- " Amancio Ortega | \n",
- " 59.6 | \n",
- " Spain | \n",
- " Zara | \n",
- " Fashion & Retail | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 2586 | \n",
- " 2578 | \n",
- " 3 | \n",
- " Roy Chi Ping Chung | \n",
- " 1.0 | \n",
- " Hong Kong | \n",
- " manufacturing | \n",
- " Manufacturing | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 2588 | \n",
- " 2578 | \n",
- " 3 | \n",
- " Ronald Clarke | \n",
- " 1.0 | \n",
- " United States | \n",
- " payments technology | \n",
- " Technology | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 2591 | \n",
- " 2578 | \n",
- " 5 | \n",
- " Sefik Yilmaz Dizdar | \n",
- " 1.0 | \n",
- " Turkey | \n",
- " fashion retail | \n",
- " Fashion & Retail | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- " 2593 | \n",
- " 2578 | \n",
- " 6 | \n",
- " Larry Fink | \n",
- " 1.0 | \n",
- " United States | \n",
- " money management | \n",
- " Finance & Investments | \n",
- " 60-70 | \n",
- "
\n",
- " \n",
- " 2596 | \n",
- " 2578 | \n",
- " 5 | \n",
- " Nari Genomal | \n",
- " 1.0 | \n",
- " Philippines | \n",
- " apparel | \n",
- " Fashion & Retail | \n",
- " 80+ | \n",
- "
\n",
- " \n",
- "
\n",
- "
336 rows × 8 columns
\n",
- "
"
- ],
- "text/plain": [
- " Rank Predicted Name Networth Country \\\n",
- "6 7 4 Sergey Brin 107.0 United States \n",
- "8 9 3 Steve Ballmer 91.4 United States \n",
- "12 13 3 Carlos Slim Helu & family 81.2 Mexico \n",
- "14 15 3 Mark Zuckerberg 67.3 United States \n",
- "22 23 5 Amancio Ortega 59.6 Spain \n",
- "... ... ... ... ... ... \n",
- "2586 2578 3 Roy Chi Ping Chung 1.0 Hong Kong \n",
- "2588 2578 3 Ronald Clarke 1.0 United States \n",
- "2591 2578 5 Sefik Yilmaz Dizdar 1.0 Turkey \n",
- "2593 2578 6 Larry Fink 1.0 United States \n",
- "2596 2578 5 Nari Genomal 1.0 Philippines \n",
- "\n",
- " Source Industry Age_category \n",
- "6 Google Technology 40-50 \n",
- "8 Microsoft Technology 60-70 \n",
- "12 telecom Telecom 80+ \n",
- "14 Facebook Technology 30-40 \n",
- "22 Zara Fashion & Retail 80+ \n",
- "... ... ... ... \n",
- "2586 manufacturing Manufacturing 60-70 \n",
- "2588 payments technology Technology 60-70 \n",
- "2591 fashion retail Fashion & Retail 80+ \n",
- "2593 money management Finance & Investments 60-70 \n",
- "2596 apparel Fashion & Retail 80+ \n",
- "\n",
- "[336 rows x 8 columns]"
- ]
- },
- "execution_count": 56,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "preprocessing_result = pipeline_end.transform(X_test)\n",
- "preprocessed_df = pd.DataFrame(\n",
- " preprocessing_result,\n",
- " columns=pipeline_end.get_feature_names_out(),\n",
- ")\n",
- "\n",
- "y_pred = class_models[best_model][\"preds\"]\n",
- "\n",
- "error_index = y_test[y_test[\"Age_category\"] != y_pred].index.tolist()\n",
- "display(f\"Error items count: {len(error_index)}\")\n",
- "\n",
- "error_predicted = pd.Series(y_pred, index=y_test.index).loc[error_index]\n",
- "error_df = X_test.loc[error_index].copy()\n",
- "error_df.insert(loc=1, column=\"Predicted\", value=error_predicted)\n",
- "error_df.sort_index()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Многовато..."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Пример использования обученной модели (конвейера) для предсказания"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 57,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Rank | \n",
- " Name | \n",
- " Networth | \n",
- " Country | \n",
- " Source | \n",
- " Industry | \n",
- " Age_category | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 450 | \n",
- " 438 | \n",
- " Ruan Liping | \n",
- " 5.8 | \n",
- " Hong Kong | \n",
- " power strips | \n",
- " Manufacturing | \n",
- " 50-60 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Rank Name Networth Country Source Industry \\\n",
- "450 438 Ruan Liping 5.8 Hong Kong power strips Manufacturing \n",
- "\n",
- " Age_category \n",
- "450 50-60 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " prepocessing_num__Networth | \n",
- " prepocessing_cat__Country_Argentina | \n",
- " prepocessing_cat__Country_Australia | \n",
- " prepocessing_cat__Country_Austria | \n",
- " prepocessing_cat__Country_Barbados | \n",
- " prepocessing_cat__Country_Belgium | \n",
- " prepocessing_cat__Country_Belize | \n",
- " prepocessing_cat__Country_Brazil | \n",
- " prepocessing_cat__Country_Bulgaria | \n",
- " prepocessing_cat__Country_Canada | \n",
- " ... | \n",
- " prepocessing_cat__Industry_Logistics | \n",
- " prepocessing_cat__Industry_Manufacturing | \n",
- " prepocessing_cat__Industry_Media & Entertainment | \n",
- " prepocessing_cat__Industry_Metals & Mining | \n",
- " prepocessing_cat__Industry_Real Estate | \n",
- " prepocessing_cat__Industry_Service | \n",
- " prepocessing_cat__Industry_Sports | \n",
- " prepocessing_cat__Industry_Technology | \n",
- " prepocessing_cat__Industry_Telecom | \n",
- " prepocessing_cat__Industry_diversified | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 450 | \n",
- " 0.289255 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
1 rows × 860 columns
\n",
- "
"
- ],
- "text/plain": [
- " prepocessing_num__Networth prepocessing_cat__Country_Argentina \\\n",
- "450 0.289255 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Australia prepocessing_cat__Country_Austria \\\n",
- "450 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Barbados prepocessing_cat__Country_Belgium \\\n",
- "450 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Belize prepocessing_cat__Country_Brazil \\\n",
- "450 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Country_Bulgaria prepocessing_cat__Country_Canada \\\n",
- "450 0.0 0.0 \n",
- "\n",
- " ... prepocessing_cat__Industry_Logistics \\\n",
- "450 ... 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Manufacturing \\\n",
- "450 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Media & Entertainment \\\n",
- "450 1.0 \n",
- "\n",
- " prepocessing_cat__Industry_Metals & Mining \\\n",
- "450 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Real Estate \\\n",
- "450 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Service prepocessing_cat__Industry_Sports \\\n",
- "450 0.0 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Technology \\\n",
- "450 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_Telecom \\\n",
- "450 0.0 \n",
- "\n",
- " prepocessing_cat__Industry_diversified \n",
- "450 0.0 \n",
- "\n",
- "[1 rows x 860 columns]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'predicted: 3 (proba: [0.00172036 0.04303104 0.02714323 0.36848158 0.19524859 0.2037863\\n 0.1605889 ])'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "'real: 3'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "model = class_models[best_model][\"pipeline\"]\n",
- "\n",
- "example_id = 450\n",
- "test = pd.DataFrame(X_test.loc[example_id, :]).T\n",
- "test_preprocessed = pd.DataFrame(preprocessed_df.loc[example_id, :]).T\n",
- "display(test)\n",
- "display(test_preprocessed)\n",
- "result_proba = model.predict_proba(test)[0]\n",
- "result = model.predict(test)[0]\n",
- "real = int(y_test.loc[example_id].values[0])\n",
- "display(f\"predicted: {result} (proba: {result_proba})\")\n",
- "display(f\"real: {real}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Подбор гиперпараметров методом поиска по сетке"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\numpy\\ma\\core.py:2881: RuntimeWarning: invalid value encountered in cast\n",
- " _data = np.array(data, dtype=dtype, copy=copy,\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'model__criterion': 'gini',\n",
- " 'model__max_depth': 10,\n",
- " 'model__max_features': 2,\n",
- " 'model__n_estimators': 250}"
- ]
- },
- "execution_count": 60,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from sklearn.model_selection import GridSearchCV\n",
- "\n",
- "optimized_model_type = \"random_forest\"\n",
- "\n",
- "random_forest_model = class_models[optimized_model_type][\"pipeline\"]\n",
- "\n",
- "param_grid = {\n",
- " \"model__n_estimators\": [10, 20, 30, 40, 50, 100, 150, 200, 250, 500],\n",
- " \"model__max_features\": [\"sqrt\", \"log2\", 2],\n",
- " \"model__max_depth\": [2, 3, 4, 5, 6, 7, 8, 9 ,10],\n",
- " \"model__criterion\": [\"gini\", \"entropy\", \"log_loss\"],\n",
- "}\n",
- "\n",
- "gs_optomizer = GridSearchCV(\n",
- " estimator=random_forest_model, param_grid=param_grid, n_jobs=-1\n",
- ")\n",
- "gs_optomizer.fit(X_train, y_train.values.ravel())\n",
- "gs_optomizer.best_params_"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Обучение модели с новыми гиперпараметрами"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 69,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
- " warnings.warn(\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
- "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
- ]
- }
- ],
- "source": [
- "optimized_model = ensemble.RandomForestClassifier(\n",
- " random_state=9,\n",
- " criterion=\"gini\",\n",
- " max_depth=10,\n",
- " max_features=2,\n",
- " n_estimators=250,\n",
- ")\n",
- "\n",
- "result = {}\n",
- "\n",
- "result[\"pipeline\"] = Pipeline([(\"pipeline\", pipeline_end), (\"model\", optimized_model)]).fit(X_train, y_train.values.ravel())\n",
- "result[\"train_preds\"] = result[\"pipeline\"].predict(X_train)\n",
- "result[\"probs\"] = result[\"pipeline\"].predict_proba(X_test)\n",
- "result[\"preds\"] = np.argmax(y_test_probs, axis=1)\n",
- "\n",
- "result[\"Precision_train\"] = metrics.precision_score(y_train, result[\"train_preds\"],average=\"macro\")\n",
- "result[\"Precision_test\"] = metrics.precision_score(y_test, result[\"preds\"], average=\"macro\")\n",
- "result[\"Recall_train\"] = metrics.recall_score(y_train, result[\"train_preds\"], average=\"macro\")\n",
- "result[\"Recall_test\"] = metrics.recall_score(y_test, result[\"preds\"], average=\"macro\")\n",
- "result[\"Accuracy_train\"] = metrics.accuracy_score(y_train, result[\"train_preds\"])\n",
- "result[\"Accuracy_test\"] = metrics.accuracy_score(y_test, result[\"preds\"])\n",
- "result[\"ROC_AUC_test\"] = metrics.roc_auc_score(y_test, result[\"probs\"], multi_class=\"ovr\")\n",
- "result[\"F1_train\"] = metrics.f1_score(y_train, result[\"train_preds\"], average=\"macro\")\n",
- "result[\"F1_test\"] = metrics.f1_score(y_test, result[\"preds\"], average=\"macro\")\n",
- "result[\"MCC_test\"] = metrics.matthews_corrcoef(y_test, result[\"preds\"])\n",
- "result[\"Cohen_kappa_test\"] = metrics.cohen_kappa_score(y_test, result[\"preds\"])\n",
- "result[\"Confusion_matrix\"] = metrics.confusion_matrix(y_test, result[\"preds\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Формирование данных для оценки старой и новой версии модели"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 70,
- "metadata": {},
- "outputs": [],
- "source": [
- "optimized_metrics = pd.DataFrame(columns=list(result.keys()))\n",
- "optimized_metrics.loc[len(optimized_metrics)] = pd.Series(\n",
- " data=class_models[optimized_model_type]\n",
- ")\n",
- "optimized_metrics.loc[len(optimized_metrics)] = pd.Series(\n",
- " data=result\n",
- ")\n",
- "optimized_metrics.insert(loc=0, column=\"Name\", value=[\"Old\", \"New\"])\n",
- "optimized_metrics = optimized_metrics.set_index(\"Name\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Оценка параметров старой и новой модели"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 71,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
- " \n",
- " | \n",
- " Precision_train | \n",
- " Precision_test | \n",
- " Recall_train | \n",
- " Recall_test | \n",
- " Accuracy_train | \n",
- " Accuracy_test | \n",
- " F1_train | \n",
- " F1_test | \n",
- "
\n",
- " \n",
- " Name | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Old | \n",
- " 0.581578 | \n",
- " 0.236539 | \n",
- " 0.735419 | \n",
- " 0.246556 | \n",
- " 0.627404 | \n",
- " 0.288462 | \n",
- " 0.599765 | \n",
- " 0.231541 | \n",
- "
\n",
- " \n",
- " New | \n",
- " 0.181388 | \n",
- " 0.035714 | \n",
- " 0.157692 | \n",
- " 0.142857 | \n",
- " 0.306250 | \n",
- " 0.250000 | \n",
- " 0.090702 | \n",
- " 0.057143 | \n",
- "
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 71,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "optimized_metrics[\n",
- " [\n",
- " \"Precision_train\",\n",
- " \"Precision_test\",\n",
- " \"Recall_train\",\n",
- " \"Recall_test\",\n",
- " \"Accuracy_train\",\n",
- " \"Accuracy_test\",\n",
- " \"F1_train\",\n",
- " \"F1_test\",\n",
- " ]\n",
- "].style.background_gradient(\n",
- " cmap=\"plasma\",\n",
- " low=0.3,\n",
- " high=1,\n",
- " subset=[\"Accuracy_train\", \"Accuracy_test\", \"F1_train\", \"F1_test\"],\n",
- ").background_gradient(\n",
- " cmap=\"viridis\",\n",
- " low=1,\n",
- " high=0.3,\n",
- " subset=[\n",
- " \"Precision_train\",\n",
- " \"Precision_test\",\n",
- " \"Recall_train\",\n",
- " \"Recall_test\",\n",
- " ],\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 72,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
- " \n",
- " | \n",
- " Accuracy_test | \n",
- " F1_test | \n",
- " ROC_AUC_test | \n",
- " Cohen_kappa_test | \n",
- " MCC_test | \n",
- "
\n",
- " \n",
- " Name | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Old | \n",
- " 0.288462 | \n",
- " 0.231541 | \n",
- " 0.599541 | \n",
- " 0.126828 | \n",
- " 0.129917 | \n",
- "
\n",
- " \n",
- " New | \n",
- " 0.250000 | \n",
- " 0.057143 | \n",
- " 0.605446 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 72,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "optimized_metrics[\n",
- " [\n",
- " \"Accuracy_test\",\n",
- " \"F1_test\",\n",
- " \"ROC_AUC_test\",\n",
- " \"Cohen_kappa_test\",\n",
- " \"MCC_test\",\n",
- " ]\n",
- "].style.background_gradient(\n",
- " cmap=\"plasma\",\n",
- " low=0.3,\n",
- " high=1,\n",
- " subset=[\n",
- " \"ROC_AUC_test\",\n",
- " \"MCC_test\",\n",
- " \"Cohen_kappa_test\",\n",
- " ],\n",
- ").background_gradient(\n",
- " cmap=\"viridis\",\n",
- " low=1,\n",
- " high=0.3,\n",
- " subset=[\n",
- " \"Accuracy_test\",\n",
- " \"F1_test\",\n",
- " ],\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAGsCAYAAABpd84aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrbElEQVR4nOzdd3gU5drH8e/upmx6rySBUEOVIkIApYgERAQBFURFUDlyAKVZ8FAERWwIooAH5QVREMWCoggiSJOAdJESWiCBNEJIQvq2948cFtaEErLJTnbvz3XNpTszO/lll+y9zzzPPKMymUwmhBBCCCGEEELYJbWtAwghhBBCCCGEqDrS6BNCCCGEEEIIOyaNPiGEEEIIIYSwY9LoE0IIIYQQQgg7Jo0+IYQQQgghhLBj0ugTQgghhBBCCDsmjT4hhBBCCCGEsGPS6BNCCCGEEEIIO+Zk6wBCCCGUpaioiJKSEqsdz8XFBa1Wa7XjCSGEEBUhdU0afUIIIa5RVFREdG1P0jIMVjtmaGgoiYmJNa5ACiGEqPmkrpWSRp8QQgizkpIS0jIMJO6tjbdX5a8AyL1sJLrNWUpKSmpUcRRCCGEfpK6VkkafEEKIMry91FYpjkIIIYQSOHpdk0afEEKIMgwmIwaTdY4jhBBC2Jqj1zVp9AkhhCjDiAkjla+O1jiGEEIIUVmOXtcct49TCCGEEEIIIRyA9PQJIYQow4gRawxgsc5RhBBCiMpx9LomjT4hhBBlGEwmDKbKD2GxxjGEEEKIynL0uibDO4UQQgghhBDCjklPnxBCiDIc/YJ3IYQQ9sXR65o0+oQQQpRhxITBgYujEEII++LodU2GdwohhFCE1157DZVKZbHExMSYtxcVFTFq1CgCAgLw9PRkwIABpKen2zCxEEIIUTNIo08IIUQZV4bBWGOpiKZNm5Kammpetm/fbt42btw41qxZw6pVq9iyZQspKSn079/f2r+6EEIIO2SrurZ161b69OlDeHg4KpWK1atXX3ff5557DpVKxdy5cy3WZ2VlMWTIELy9vfH19eXpp58mLy+vQjmk0SeEEEIxnJycCA0NNS+BgYEA5OTksHjxYt5//326detGmzZtWLJkCTt27GDnzp02Ti2EEEKULz8/nzvuuIP58+ffcL/vv/+enTt3Eh4eXmbbkCFDOHz4MBs2bOCnn35i69atjBgxokI55Jo+IYQQZVh7auvc3FyL9a6urri6upbZ/8SJE4SHh6PVaomNjWXWrFlERUWxd+9edDod3bt3N+8bExNDVFQU8fHxtG/fvtJZhRBC2C9b3bKhV69e9OrV64b7nD9/njFjxrB+/Xp69+5tse3o0aOsW7eO3bt3c+eddwLw4Ycfcv/99/Pee++V20gsj/T0CSGEKMNoxQUgMjISHx8f8zJr1qwyP7Ndu3YsXbqUdevWsXDhQhITE7n77ru5fPkyaWlpuLi44Ovra/GckJAQ0tLSrP3rCyGEsDPWrmu5ubkWS3Fx8e3lMhp54oknePHFF2natGmZ7fHx8fj6+pobfADdu3dHrVaza9euW/450tMnhBCiyiUnJ+Pt7W1+XF4v37VnQlu0aEG7du2oXbs2X3/9NW5ubtWSUwghhLgVkZGRFo+nTZvGa6+9VuHjvP322zg5OfH888+Xuz0tLY3g4GCLdU5OTvj7+1fopKc0+oQQQpRhsNLU1leO4e3tbdHouxW+vr40bNiQkydPct9991FSUkJ2drZFb196ejqhoaGVzimEEMK+Wbuu3crJzJvZu3cvH3zwAfv27UOlUlU6243I8E4hhBBlGEzWW25XXl4ep06dIiwsjDZt2uDs7MzGjRvN2xMSEkhKSiI2NtYKv7EQQgh7Zu26duVk5pXldhp927ZtIyMjg6ioKJycnHBycuLs2bNMmDCBOnXqABAaGkpGRobF8/R6PVlZWRU66Sk9fUIIIRRh4sSJ9OnTh9q1a5OSksK0adPQaDQMHjwYHx8fnn76acaPH4+/vz/e3t6MGTOG2NhYmcRFCCFEjfTEE09YTFAGEBcXxxNPPMGwYcMAiI2NJTs7m71799KmTRsANm3ahNFopF27drf8s6TRJ4QQooxrL1av7HFu1blz5xg8eDAXL14kKCiITp06sXPnToKCggCYM2cOarWaAQMGUFxcTFxcHAsWLLBCSiGEEPbOFnUNSketnDx50vw4MTGRAwcO4O/vT1RUFAEBARb7Ozs7ExoaSqNGjQBo3LgxPXv25Nlnn+Xjjz9Gp9MxevRoBg0adMszd4I0+oQQQpTDiAoDlb++wFiBY6xcufKG27VaLfPnz7/pvY6EEEKIf7JFXQPYs2cPXbt2NT8eP348AEOHDmXp0qW3dIzly5czevRo7r33XvPJz3nz5lUohzT6hBBCCCGEEKIKdOnSBVMF7u135syZMuv8/f1ZsWJFpXJIo08IIUQZRlPpYo3jCCGEELbm6HVNZu8UQgghhBBCCDsmPX1CCCHKMFjp2gdrHEMIIYSoLEeva9LoE0IIUYajF0chhBD2xdHrmgzvFEIIIYQQQgg7Jj19QgghyjCaVBhNVpja2grHEEIIISrL0euaNPqEEEKU4ejDYIQQQtgXR69rMrxTCCGEEEIIIeyY9PQJIYQow4AagxXOCxqskEUIIYSoLEeva9LoE0IIUYbJStc+mGrotQ9CCCHsi6PXNRneKYQQQgghhBB2THr6hBBClOHoF7wLIYSwL45e16TRJ4QQogyDSY3BZIVrH0xWCCOEEEJUkqPXNRneKYQQQgghhBB2THr6hBBClGFEhdEK5wWN1NBTokIIIeyKo9c16ekTQgghhBBCCDsmPX1CCCHKcPQL3oUQQtgXR69r0ugTQghRhvUueK+Zw2CEEELYF0evazK8UwghhBBCCCHsmPT0CSGEKKP0gvfKD2GxxjGEEEKIynL0uiaNPiGEEGUYUWNw4FnOhBBC2BdHr2syvFMIIYQQQggh7Jj09AkhhCjD0S94F0IIYV8cva5Jo08IIUQZRtQOfRNbIYQQ9sXR65oM7xRCCCGEEEIIOyY9fUIIIcowmFQYTFa4ia0VjiGEEEJUlqPXNenpE0IIIYQQQgg7Jj19QgghyjBYaWprQw299kEIIYR9cfS6Jo0+IYQQZRhNaoxWmOXMWENnORNCCGFfHL2uyfBOIYQQQgghhLBj0tMnhBCiDEcfBiOEEMK+OHpdk0afEEKIMoxYZ4YyY+WjCCGEEJXm6HVNhncKIYQQQgghhB2Tnj4hhBBlGFFjtMJ5QWscQwghhKgsR69r0ugTQghRhsGkxmCFWc6scQwhhBCishy9rtXM1EIIIYQQQgghbon09AkhhCjDiAoj1rjgvfLHEEIIISrL0euaNPqEEEKU4ejDYIQQQtgXR69rNTO1EEIIIYQQQohbIj19QgghyrDeTWzl3KIQQgjbc/S6VjNTCyGEEEIIIYS4JdLTp1BGo5GUlBS8vLxQqWrmBaNCiOplMpm4fPky4eHhqNWVO6dnNKkwmqxwwbsVjiHsg9Q1IURFSV2zHmn0KVRKSgqRkZG2jiGEqIGSk5OJiIio1DGMVhoGU1NvYiusT+qaEOJ2SV2rPGn0KZSXlxcAnbgfJ5xtnEZYg8rZxdYRymXSldg6Qo2j1PdSb9KxTb/a/PkhhJJIXbM/Kidlfo006fW2jiCsRI+O7ayVumYFyvxrFeahL04446SS4mgPVAp9H00qk60j1DhKfS+vsMbQOaNJjdEK01Jb4xjCPkhdsz8qlTK/Rppk+LD9+N9XlJpc17Zu3cq7777L3r17SU1N5fvvv6dfv34A6HQ6Jk+ezNq1azl9+jQ+Pj50796dt956i/DwcPMxsrKyGDNmDGvWrEGtVjNgwAA++OADPD09bzmHVGMhhBBlGFBZbRFCCCFszVZ1LT8/nzvuuIP58+eX2VZQUMC+ffuYMmUK+/bt47vvviMhIYEHH3zQYr8hQ4Zw+PBhNmzYwE8//cTWrVsZMWJEhXIo8xSNEEIIIYQQQtRwvXr1olevXuVu8/HxYcOGDRbrPvroI+666y6SkpKIiori6NGjrFu3jt27d3PnnXcC8OGHH3L//ffz3nvvWfQI3og0+oQQQpQhwzuFEELYE2vXtdzcXIv1rq6uuLq6Vvr4OTk5qFQqfH19AYiPj8fX19fc4APo3r07arWaXbt28dBDD93ScaUaCyGEKMOAtYbCCCGEELZn7boWGRmJj4+PeZk1a1alMxYVFfHyyy8zePBgvL29AUhLSyM4ONhiPycnJ/z9/UlLS7vlY0tPnxBCCCGEEEJUQHJysrlhBlS6l0+n0/HII49gMplYuHBhZeOVIY0+IYQQZcjwTiGEEPbE2nXN29vbotFXGVcafGfPnmXTpk0Wxw0NDSUjI8Nif71eT1ZWFqGhobf8M6QaCyGEEEIIIYQNXGnwnThxgt9++42AgACL7bGxsWRnZ7N3717zuk2bNmE0GmnXrt0t/xzp6RNCCFGGwaTGYIUzotY4hhBCCFFZtqpreXl5nDx50vw4MTGRAwcO4O/vT1hYGAMHDmTfvn389NNPGAwG83V6/v7+uLi40LhxY3r27Mmzzz7Lxx9/jE6nY/To0QwaNOiWZ+4EafQJIYQohwkVRivcY88k9+kTQgihALaqa3v27KFr167mx+PHjwdg6NChvPbaa/z4448AtGzZ0uJ5v//+O126dAFg+fLljB49mnvvvdd8c/Z58+ZVKIc0+oQQQgghhBCiCnTp0gWTyXTd7TfadoW/vz8rVqyoVA5p9DmAPk9lMnBkBv5Bek4fcWPB5FokHHC3dSzF5gJlZmt212UG/iuVBs0LCAjRMf3Z+sT/6mfTTNdS4mum5FxKfz9leKdQMqX+XSs1Fygz26OjUunYM5uIekWUFKk5steD/5sVwbnTWpvmukKJr5mSc4Gyszl6XauZqW9RnTp1mDt3rq1j2FTnBy8xYloKy98PZVRcQ04f0TJzxWl8AnSSq4Zl07obSDzqzvwptW2aozxKfc2UmguU/X4CGE0qqy3CeqSuKffvWqm5lJytebs81nwWxLh+MUwa0gAnJxMzvziBq5vt7/Cp1NdMqbmUng2krtm00delSxfGjh1bZv3SpUvNd6FXooSEBLp27UpISAharZa6desyefJkdDrLf9SrVq0iJiYGrVZL8+bNWbt2bbVn7T8ik3Ur/Pn1K3+STmiZ93IExYUq4gZnVXuWmpBLydn2bPbls/ci2LFeOb1BVyj1NVNqLlD2+ylun9S1qqfUv2ul5lJytslPNmDDN4GcPe5G4lF3Zk+oQ0hECQ2aF9g0Fyj3NVNqLqVnE3be01dZJSUl5a53dnbmySef5NdffyUhIYG5c+fyySefMG3aNPM+O3bsYPDgwTz99NPs37+ffv360a9fP/7+++/qio+Ts5EGLQrYt83LvM5kUrF/mxdN2tjuA1WpuUDZ2ZRKqa+ZUnPVFAbUVluEckhdc6xcoOxs/+TuVdrDdznbtlcfKfU1U2ouUHa2Kxy9rtWI1E899RT9+vXjvffeIywsjICAAEaNGmVxBjIjI4M+ffrg5uZGdHQ0y5cvL3Oc7OxsnnnmGYKCgvD29qZbt24cPHjQvP21116jZcuWfPrpp0RHR6PVlj+mvG7dugwbNow77riD2rVr8+CDDzJkyBC2bdtm3ueDDz6gZ8+evPjiizRu3JjXX3+d1q1b89FHH1nxlbkxb38DGifIvmD54Xkp0wm/IH215fgnpeYCZWdTKqW+ZkrNVVM4+jCYqiZ17fYo9e9aqblA2dmupVKZeO61cxze7cHZ4242zaLU10ypuUDZ2a5w9LpWYyZy+f333wkLC+P333/n5MmTPProo7Rs2ZJnn30WKC2gKSkp/P777zg7O/P888+XuXv9ww8/jJubG7/88gs+Pj7897//5d577+X48eP4+/sDcPLkSb799lu+++47NBrNLWU7efIk69ato3///uZ18fHx5ilZr4iLi2P16tXlHqO4uJji4mLz49zc3Fv62UIIIWomqWtCXDXqjSTqNCxkwoBGto4ihF2qMY0+Pz8/PvroIzQaDTExMfTu3ZuNGzfy7LPPcvz4cX755Rf+/PNP2rZtC8DixYtp3Lix+fnbt2/nzz//JCMjA1dXVwDee+89Vq9ezTfffMOIESOA0qEvy5YtIygo6KaZOnTowL59+yguLmbEiBHMmDHDvC0tLY2QkBCL/UNCQsw3XPynWbNmMX369Iq9KDeRm6XBoAfff5xh8QvUc+mC7d56peYCZWdTKqW+ZkrNVVMYUWO0wmAQaxzDXkldqzil/l0rNRcoO9sV/56RRLt7c5j4cCMy01xsHUexr5lSc4Gys13h6HWtxqRu2rSpxRnKsLAw8xnPo0eP4uTkRJs2bczbY2JiLC6aP3jwIHl5eQQEBODp6WleEhMTOXXqlHm/2rVr31JhBPjqq6/Yt28fK1as4Oeff+a999677d9v0qRJ5OTkmJfk5OTbPtYVep2aE3+506rTZfM6lcpEy055HNlru+lzlZoLlJ1NqZT6mik1V01hMKmstojySV2rOKX+XSs1Fyg7G5j494wkOvTM5uVBDUlPdrVxnlJKfc2UmguUne0KR69rNm16e3t7k5OTU2Z9dnY2Pj4+FuucnZ0tHqtUKoxG4y3/rLy8PMLCwti8eXOZbdcWUQ8Pj1s+ZmRkJABNmjTBYDAwYsQIJkyYgEajITQ0lPT0dIv909PTCQ0NLfdYrq6u5jO11vTdokAmzk3m+EF3Eva789CzF9C6G/l1pb/Vf5Y95FJyNq27gfA6V4dKhUYWU7dJAZezNVxIsW2hVOprptRcoOz3U9w+qWtXSV1TRi4lZxv1RjJd+2Yx/Zl6FOZr8AsqvaY1P1dDSbFt+yWU+popNZfSswkbN/oaNWrEr7/+Wmb9vn37aNiw4S0fJyYmBr1ez969e83DYBISEsjOzjbv07p1a9LS0nBycqJOnTqVjV6G0WhEp9NhNBrRaDTExsayceNGi6m7N2zYQGxsrNV/9o1s+dEPnwADT76Yhl+QntOH3fjPkGiyM51v/mQHzKXkbA1b5PPOVwnmx/+aWnrWfMOqAGZPrGurWIByXzOl5gJlv5+A1S5Wr6kXvN8uqWtVT6l/10rNpeRsfZ68AMC7q45brJ89vjYbvgm0RSQzpb5mSs2l9Gwgdc2mjb6RI0fy0Ucf8fzzz/PMM8/g6urKzz//zJdffsmaNWtu+TiNGjWiZ8+e/Otf/2LhwoU4OTkxduxY3Nyuzv7UvXt3YmNj6devH++88w4NGzYkJSWFn3/+mYceeog777zzln/e8uXLcXZ2pnnz5ri6urJnzx4mTZrEo48+aj5z+8ILL9C5c2dmz55N7969WblyJXv27GHRokW3/gJZyY9LAvlxiW0/PMuj1FygzGx/7fSmZ+22to5xXUp8zUC5uZT+firBW2+9xaRJk3jhhRfMNyQvKipiwoQJrFy5kuLiYuLi4liwYEGZa81sRepa9VDq37VSc4Eys/WManPznWxIia8ZKDcXKDubo7Np33ndunXZunUrx44do3v37rRr146vv/6aVatW0bNnzwoda8mSJYSHh9O5c2f69+/PiBEjCA4ONm9XqVSsXbuWe+65h2HDhtGwYUMGDRrE2bNnK/xlwcnJibfffpu77rqLFi1aMH36dEaPHs2nn35q3qdDhw6sWLGCRYsWcccdd/DNN9+wevVqmjVrVqGfJYQQtmAyqTFaYTGZbq/M7N69m//+97+0aNHCYv24ceNYs2YNq1atYsuWLaSkpFjMMGlrUteEEEKZbF3XbE1lMplMtg4hysrNzcXHx4cu9MVJpYxucVE5Kmfbz0hWHpOu/Js1i+tT6nupN+n4XbeKnJwcvL29b+sYVz57nt7yCC6elf/sKcnTsbjz1xXKlJeXR+vWrVmwYAFvvPEGLVu2ZO7cueTk5BAUFMSKFSsYOHAgAMeOHaNx48bEx8fTvn37SucVVUfqmv1ROSljVsZ/MumVcV84UXl6k47N/FDj65oS1MymqhBCiBolNzfXYrn2/m3/NGrUKHr37k337t0t1u/duxedTmexPiYmhqioKOLj46ssuxBCCFHTKfMUjRBCCJsymqxzsbrxf2NJrswKecW0adN47bXXyuy/cuVK9u3bx+7du8tsS0tLw8XFxWJmSrjxveKEEEIIsH5dq2mk0SeEEKKMK9cuWOM4AMnJyRbDYMqbyj85OZkXXniBDRs2oNVqK/2zhRBCiCusXddqmpqZWgghRI3i7e1tsZTX6Nu7dy8ZGRm0bt0aJycnnJyc2LJlC/PmzcPJyYmQkBBKSkosblsAN75XnBBCCCGkp08IIUQ5jKgwYoVhMBU4xr333suhQ4cs1g0bNoyYmBhefvllIiMjcXZ2ZuPGjQwYMAAovXddUlJStd8rTgghRM1ii7qmJNLoE0IIUYbBpMJghWsfKnIMLy+vMtP/e3h4EBAQYF7/9NNPM378ePz9/fH29mbMmDHExsbKzJ1CCCFuyBZ1TUmk0SeEEKLGmDNnDmq1mgEDBljcnF0IIYQQ1yeNPiGEEGUo5YL3zZs3WzzWarXMnz+f+fPnV+q4QgghHItS6pqt1MzUQgghhBBCCCFuifT0CSGEKMOIyjr3M6qhF7wLIYSwL45e16TRJ4QQogyTlWY5M9XQ4iiEEMK+OHpdk0afwmkC/NGoXWwdQ1iBqbjE1hHKpQkOtHWE69KfT7F1hHKZdMp8L00mna0jCCEciLpOpK0jlMtwMtHWEYRQHGn0CSGEKMNostIwmBo6tbUQQgj74uh1TRp9QgghynD0Wc6EEELYF0evazUztRBCCCGEEEKIWyI9fUIIIcpw9GEwQggh7Iuj1zVp9AkhhCjDaKVZzmrq1NZCCCHsi6PXNRneKYQQQgghhBB2THr6hBBClOHow2CEEELYF0eva9LoE0IIUYajF0chhBD2xdHrmgzvFEIIIYQQQgg7Jj19QgghynD0M6JCCCHsi6PXNenpE0IIIYQQQgg7Jj19QgghynD0M6JCCCHsi6PXNWn0CSGEKMOEde5FZKp8FCGEEKLSHL2uyfBOIYQQQgghhLBj0tNnx+5/5By9HzlPSHgRAGdPefDlf6PZsz3AxsmUm02puQAeGZFMxx4XiahbSEmRmiP7vfi/9+pwPtHd1tEsPDz0FE+NPs7qL2vzyftNbB2HPk9lMnBkBv5Bek4fcWPB5FokHFDGa6bkbI4+DEYom1L/dpSaC5SRrdkdmQwYdIL6jXIICCzi9VfvIn57uHn7uEl7ua9XssVz9uwKZuqLHao15xVKeM1qUi5QdjZHr2t23dO3cOFCWrRogbe3N97e3sTGxvLLL7+YtxcVFTFq1CgCAgLw9PRkwIABpKen3/LxT548iZeXF76+vmW2rVq1ipiYGLRaLc2bN2ft2rXW+JUqJDNdy5K59Xh+UFteGNyWg3/6MeWDv4iql1ftWWpKNqXmAmh+Vw5rlocx7pEWvDqsKU5OJmYuPoyrm8HW0cwaNMmm50PJnD7uZesoAHR+8BIjpqWw/P1QRsU15PQRLTNXnMYnQGfraIrOBleLozUWYT2OXtdAuX87Ss2lpGxarYHEUz4smNPiuvvs2RnMkH49zcs70++sxoRXKeU1qym5lJ4NpK7ZdaMvIiKCt956i71797Jnzx66detG3759OXz4MADjxo1jzZo1rFq1ii1btpCSkkL//v1v6dg6nY7Bgwdz9913l9m2Y8cOBg8ezNNPP83+/fvp168f/fr14++//7bq73czf24JZM/2QFKS3Dl/1p1lH9ajqEBDTIvcas1Rk7IpNRfAlGea8dv3ISSd9CAxwZP3X2lISK1iGjS1fYMUQOum58UZB/nwzWbkXXa2dRwA+o/IZN0Kf379yp+kE1rmvRxBcaGKuMFZto6m6GxCuRy9roFy/3aUmktJ2fbsCmHZp02I3xZ+3X10OjWXsrTmJS/PpRoTXqWU16ym5FJ6NmHnjb4+ffpw//3306BBAxo2bMjMmTPx9PRk586d5OTksHjxYt5//326detGmzZtWLJkCTt27GDnzp03PfbkyZOJiYnhkUceKbPtgw8+oGfPnrz44os0btyY119/ndatW/PRRx9Vxa95S9RqE/f0TEfrZuDoQR+b5SiPUrMpNdcV7l56AC7nKGOU9siXjrD7j2AO/Blo6ygAODkbadCigH3brvY6mkwq9m/zokmbAhsmU3a2Kxz9jKhSOXpdU+rfjlJzgbKzlad5y0xW/LCWRV/8xqjxB/DyLqn2DEp9zZSaC5Sd7QpHr2vK+LZYDQwGA6tWrSI/P5/Y2Fj27t2LTqeje/fu5n1iYmKIiooiPj6e9u3bX/dYmzZtYtWqVRw4cIDvvvuuzPb4+HjGjx9vsS4uLo7Vq1df95jFxcUUFxebH+fmWqdnqU6DPGZ/vhcXFyOFBRpeH9uc5NMeVjl2ZSk1m1JzXUulMvGvV09zeK83Z0/YPts996VQPyaHsUNtc91Febz9DWicIPuC5cfcpUwnIusXX+dZ1UPJ2a5w9GsfagJHrGtK/dtRai5QdrZ/2rsrhB1bw0lPdScsPJ+hI44y490dTBjZGaOx+j5LlPqaKTUXKDvbFY5e1+y6pw/g0KFDeHp64urqynPPPcf3339PkyZNSEtLw8XFpcx1CyEhIaSlpV33eBcvXuSpp55i6dKleHt7l7tPWloaISEhFTrurFmz8PHxMS+RkZG3/kvewLlEd0Y/3JZxQ9qw9utaTHjjKJF1861y7MpSajal5rrWqGmnqNOggLfGNbJ1FAJDChkx4SjvTrkDXYnG1nGEsHuOXteE/dq6KYJdf4Rx5rQP8dvDee3l9jRqnE3zlpm2jibEbdu6dSt9+vQhPDwclUpV5mSZyWRi6tSphIWF4ebmRvfu3Tlx4oTFPllZWQwZMgRvb298fX15+umnycur2OU9dt/oa9SoEQcOHGDXrl2MHDmSoUOHcuTIkVt6btOmTfH09MTT05NevXoB8Oyzz/LYY49xzz33WDXnpEmTyMnJMS/Jyck3f9It0OvVpCa7c/KoN0vn1eP0cU/6DrHOsStLqdmUmuuKkVNOcVeXLF4e2pzMdFdbx6F+TC5+ASXM+3wHP8av48f4dbRok8WDj57lx/h1qNW2uaNNbpYGgx58g/QW6/0C9Vy6YNtBDkrOdoXJpLLaIqzLkeuaUv92lJoLlJ3tZtJSPcjJdiE8onqvXVfqa6bUXKDsbFfYqq7l5+dzxx13MH/+/HK3v/POO8ybN4+PP/6YXbt24eHhQVxcHEVFReZ9hgwZwuHDh9mwYQM//fQTW7duZcSIERXKoYx3oQq5uLhQv359ANq0acPu3bv54IMPePTRRykpKSE7O9virGh6ejqhoaEArF27Fp2udMYhNzc3oHQIzI8//sh7770HlLbOjUYjTk5OLFq0iOHDhxMaGlpmtrRrj1seV1dXXF2r/gu8Wm3C2cVY5T/ndig1m3JymRg55TQd7rvIy080J/2c1taBADi4O4B/D+pksW7s1EOcO+PBN8vqVuuQnGvpdWpO/OVOq06XiV9Xek2mSmWiZac8flxq21twKDmbUD5HrmtK/dtRai6lZ7uZgKBCvLxLyLpYvfVOqa+ZUnMpPZut9erVy3yS7Z9MJhNz585l8uTJ9O3bF4Bly5YREhLC6tWrGTRoEEePHmXdunXs3r2bO+8snc32ww8/5P777+e9994jPPz6EyNdy+4bff9kNBopLi6mTZs2ODs7s3HjRgYMGABAQkICSUlJxMbGAlC7du0yz4+Pj8dguDpF/g8//MDbb7/Njh07qFWrFgCxsbFs3LiRsWPHmvfbsGGD+bjV5annT7HnD38yUrW4exjo0iud5ndmM+W5ltWaoyZlU2ouKB3S2eWBC8z4dxMK8zX4BZZe3J5/WUNJse2GVRYWOHH2lOUtGooKNeTmOJdZX92+WxTIxLnJHD/oTsJ+dx569gJadyO/rvS3aS6lZwMwosKIFa59sMIxxI05Ul0D5f7tKDWXkrJp3fSE17raaxcSVkDd+tlcznXh8mUXHnvqGH9sCedSlith4QUMH/k3qec92PtncLXmBOW8ZjUll9KzgfXr2j+vU76dE12JiYmkpaVZXIvt4+NDu3btiI+PZ9CgQcTHx+Pr62tu8AF0794dtVrNrl27eOihh27pZ9l1o2/SpEn06tWLqKgoLl++zIoVK9i8eTPr16/Hx8eHp59+mvHjx+Pv74+3tzdjxowhNjb2hhe7N27c2OLxnj17UKvVNGvWzLzuhRdeoHPnzsyePZvevXuzcuVK9uzZw6JFi6rsdy2Pj38JE944in9QMfl5TiQe92TKcy3Zv9P2f3xKzabUXAAPPFZ67cw7XxyyWD/7lQb89n1IeU9xeFt+9MMnwMCTL6bhF6Tn9GE3/jMkmuxM299SQsnZQC54VypHr2ug3L8dpeZSUrYGjS7x9rw/zI9HjCm95ceGXyKZP7sl0fVy6d4zCQ9PHVmZWvbtDubzxY3R66r/xKZSXrOakkvp2cD6de2f1ylPmzaN1157rULHunJd9I2umU5LSyM42PLEh5OTE/7+/je8rvqf7LrRl5GRwZNPPklqaio+Pj60aNGC9evXc9999wEwZ84c1Go1AwYMoLi4mLi4OBYsWFDpn9uhQwdWrFjB5MmTefXVV2nQoAGrV6+2KKDV4YPXGt98JxtRajal5gLo1ajTzXdSiEnPtbN1BLMflwTy4xJl3Ebin5ScTSiTo9e1K5T6t6PUXKCMbIcOBHH/Pf2uu33KROXMAA3KeM3Ko9RcoOxs1pacnGwx+VV1XKZVGXbd6Fu8ePENt2u1WubPn3/dCytvxVNPPcVTTz1VZv3DDz/Mww8/fNvHFUIIW7LWJCwykYt1SV0TQojbY+265u3tfd0Zj2/Vleui09PTCQsLM69PT0+nZcuW5n0yMjIsnqfX68nKyrrhddX/ZPezdwohhKg4R7+JrRBCCPuixLoWHR1NaGgoGzduNK/Lzc1l165d5mumY2Njyc7OZu/eveZ9Nm3ahNFopF27Wx9ZZdc9fUIIIYQQQghhK3l5eZw8edL8ODExkQMHDuDv709UVBRjx47ljTfeoEGDBkRHRzNlyhTCw8Pp168fUHrddc+ePXn22Wf5+OOP0el0jB49mkGDBt3yzJ0gjT4hhBDlkOGdQggh7Imt6tqePXvo2rWr+fH48eMBGDp0KEuXLuWll14iPz+fESNGkJ2dTadOnVi3bh1a7dVblSxfvpzRo0dz7733mq/bnjdvXoVySKNPCCFEGSYrDWGRRp8QQgglsFVd69KlCyaT6brbVSoVM2bMYMaMGdfdx9/fnxUrVlTo5/6TXNMnhBBCCCGEEHZMevqEEEKUYQJucGKyQscRQgghbM3R65o0+oQQQpRhRIUKK9zE1grHEEIIISrL0euaDO8UQgghhBBCCDsmPX1CCCHKkNk7hRBC2BNHr2vS0yeEEEIIIYQQdkx6+oQQQpRhNKlQWeFspjWmxxZCCCEqy9HrmjT6hBBClGEyWWmWs5o6zZkQQgi74uh1TRp9CmcqKUGJJxRU4SG2jlCunBYBto5wXR7ni2wdoVyq4+dsHeG6NIHKfD9LmtW2dYRyGfRFsO0HW8cQQjiIjM6hto5QroCTibaOIITiSKNPCCFEGY5+wbsQQgj74uh1TRp9QgghynD04iiEEMK+OHpdk9k7hRBCCCGEEMKOSU+fEEKIMhx9ljMhhBD2xdHrmjT6hBBClOHos5wJIYSwL45e12R4pxBCCCGEEELYMenpE0IIUUbpGVFrXPBuhTBCCCFEJTl6XZOePiGEEEIIIYSwY9LTJ4QQogxHn9paCCGEfXH0uiaNPiGEEGWY/rdY4zhCCCGErTl6XZPhnUIIIYQQQghhx6SnTwghRBmOPgxGCCGEfXH0uiaNPiGEEGU5+jgYIYQQ9sXB65o0+uzYIyOS6djjIhF1CykpUnNkvxf/914dzie62zoaAYGFDBtxiDvvSsdVqyf1vCdz3r6TE8f9qjXHHfVSeazbQWIiMwn0KeCVT3uw7VCdcvd98ZFt9Ot4lA++i+XrLc2rNSeAm1bH0EEH6NguCV/vIk6e8Wfh/7Xl+KnAas9yrfsfOUfvR84TEl4EwNlTHnz532j2bA+waS5QTrbmMWk88sDfNIjOJNCvkKnvd2PHntrX7GFi6MD93N/1OJ4eJRw+HswH/xfL+TSfas0pRE3R56lMBo7MwD9Iz+kjbiyYXIuEA7avbUrNBcrLNvTu/YzpsYsVO5rz/i8dCfPNZc2EFeXu+/LK+9h4uF41J1Tea6b0XKDsbI5OrumzY83vymHN8jDGPdKCV4c1xcnJxMzFh3F1M9g0l6dnCe99uBmDXs3UVzry3FM9+GRhCy7nOVd7FjcXHSfPBzD7m4433O+eFok0rZ3BhWzbfXCNG7mD1nek8M68TvxrQh/2HQzj7akbCPAvsFkmgMx0LUvm1uP5QW15YXBbDv7px5QP/iKqXp5Ncykpm9ZVz+mzfny4JLbc7Y/2OcRDcUf54P9iGT3lAYqKnHjrlV9xdtZXa04L/xsGU9mFGjoMRihX5wcvMWJaCsvfD2VUXENOH9Eyc8VpfAJ0kquGZGtSK4P+bY9wPO3qCbj0HE/i3n7SYvl4453kFzuz40RUtWdU2mum9FxKzwY4fF1zmEbfW2+9hUqlYuzYseZ1RUVFjBo1ioCAADw9PRkwYADp6ek3PM6ZM2dQqVRllp07d1rst2rVKmJiYtBqtTRv3py1a9dWxa91Q1OeacZv34eQdNKDxARP3n+lISG1imnQ1LZfxgcOTuBChhtz3rmT48f8SU/zYP+eENJSPKs9y86jUXyyti1b/4q+7j6BPvmMG7CD6Z93RW+wzZ+Mi4ueu9sn8ennbTh0NISUNG8+/7olKWle9OmRYJNMV/y5JZA92wNJSXLn/Fl3ln1Yj6ICDTEtcm2aS0nZdh+MYMmqNvxh0bt3hYn+PY+wfHULduytTWKyP28vvIcA30I63plUrTktUpmst4iq4Yh1DaD/iEzWrfDn16/8STqhZd7LERQXqogbnGWTPErPpbRsbi46Xh+4kZmrO3O50MW83mhSczHP3WLp2iSR3/6uR2FJ9Z8UVtJrVhNyKT0bSF1ziEbf7t27+e9//0uLFi0s1o8bN441a9awatUqtmzZQkpKCv3797+lY/7222+kpqaalzZt2pi37dixg8GDB/P000+zf/9++vXrR79+/fj777+t+ntVlLtXaa/B5Rzbjupt3yGVEwl+TJq2kxXf/cSHi34jrneiTTNdj0plYurjv7NiUwsS0/xtlkOjNqHRmCjRaSzWF5doaNo4w0apylKrTdzTMx2tm4GjB5U1NFGp2cKC8wjwK2Tf3+HmdfmFLhw9FUiTBsp5b4WyOGpdc3I20qBFAfu2eZnXmUwq9m/zokkb2416UGouUF62lx/Yxh/Ho/jzdMQN94sJv0CjsIv8sDemmpJdpbTXTOm5QNnZRCm7b/Tl5eUxZMgQPvnkE/z8rl4vlpOTw+LFi3n//ffp1q0bbdq0YcmSJezYsaPM2c3yBAQEEBoaal6cna+ehfrggw/o2bMnL774Io0bN+b111+ndevWfPTRR1XyO94KlcrEv149zeG93pw94WGzHACh4fn07nualPOeTH6pEz//WJfnxhzg3rizNs1VnsfvPYDBqGLVlmY2zVFY5MzhhCCGDPwLf78C1Goj9959msYNM/H3LbRpNoA6DfL4ducWftizmdGTE3h9bHOST9v239kVSs4G4OdTWgwv5bhZrM/OccPfx3bvrTWGwFhrpjRhyZHrmre/AY0TZF+wPHl5KdMJvyDbDYdWai5QVrYezU8SE57JRxva3XTfvq2PcjrDj7+SQ6shmSUlvWbXUmouUHa2Kxy9rtl9o2/UqFH07t2b7t27W6zfu3cvOp3OYn1MTAxRUVHEx8ff9LgPPvggwcHBdOrUiR9//NFiW3x8fJmfFxcXd8PjFhcXk5uba7FY06hpp6jToIC3xjWy6nFvh0pl4uRxXz77tBmnT/qy7qe6rPs5mvv7nLZ1NAuNIi7wcOe/mbm8C2D7P/B35nVCBaz85Bt+/nI5fe8/yuY/6ijiw+dcojujH27LuCFtWPt1LSa8cZTIuvm2jgUoO5uiXbluwRqLsCqpa6ImCvHOY8L9fzB51b2U6G884sjVSU/PFidt0ssn7JiD1zW7nr1z5cqV7Nu3j927d5fZlpaWhouLC76+vhbrQ0JCSEtLu+4xPT09mT17Nh07dkStVvPtt9/Sr18/Vq9ezYMPPmg+dkhISIWOO2vWLKZPn16B3+7WjZxyiru6ZPHi4y3ITHetkp9REZcuupF81ttiXfJZLzrefd5Gicp3R700/DwL+fa1q7OJOWlMjO63k0c6H2LgjMeqNU9quhcTp8WhddXh7qYjK9udV8dtITW9+q+F/Ce9Xk1qcukkNyePetOgWS59hyTz0eu2L9hKzgZwKac0m59PIVnXTBTk61PIqbO2G1IslMnR61pulgaDHnz/0XPgF6jn0gXbfaVRai5QTraYWhcI8Czki5HfmNc5aUy0qp3KI+3+psP0ZzGaSvsi7m16Gq2znp8PNKy2fNdSymv2T0rNBcrOJkrZ7buQnJzMCy+8wIYNG9Bqtbd1jKZNm3L2bOmQw7vvvptffvmFwMBAxo8fb96nbdu2pKSk8O6775qL4+2YNGmSxXFzc3OJjIy87eOVMjFyymk63HeRl59oTvq523sdrO3I4QBqRV62WFcrIo+MdGVN6btudwN2H69lsW7Oc2tZt6cBa3fZrse0qNiZomJnPD2KubNlCp9+3ubmT6pmarUJZxejrWOUS2nZUjM8uXjJjVZNUzl1tnQmO3e3EhrXy2TNb7ZrmFrrYvWaesG7EkldA71OzYm/3GnV6TLx60qvzVWpTLTslMePS213mxil5lJStt2navHoh49YrJv60O+czfTls22tzA0+gL5tjrI1oQ7ZBW7/PEy1UMprVlNyKT3bFY5e1+y20bd3714yMjJo3bq1eZ3BYGDr1q189NFHrF+/npKSErKzsy3OiqanpxMaWjp+fO3ateh0pdPMurld/4OnXbt2bNiwwfw4NDS0zGxp1x63PK6urri6WrcXbtS0U3R54AIz/t2EwnwNfoElAORf1lBSrLnJs6vO96vqM/ujzTwy5Bjbfo+gUeMsej2QyLz3W9/8yVbm5qIjIijH/Dg8IJcGtTLJLdCSfsmT3ALLL1Z6g5qsXHeSMnyrOSm0ueM8KhWcS/EmPPQyzz6xl+TzPqz/vX61Z7nWU8+fYs8f/mSkanH3MNClVzrN78xmynMtbZpLSdm0rjpqhV4d2hYWlEe92he5nOdKxkVPvlvXhCEPHeR8mjdpFzx56uH9XMx244891T9NuVAuqWulvlsUyMS5yRw/6E7CfnceevYCWncjv660bc+4UnMpJVtBiQunMix/XpHOiewCrcX6CP8cWtVO5YXP76+2bOVRwmtWk3IpPZuw40bfvffey6FDhyzWDRs2jJiYGF5++WUiIyNxdnZm48aNDBgwAICEhASSkpKIjS29l1bt2uVNr17WgQMHCAsLMz+OjY1l48aNFtNob9iwwXzc6vLAY6XDbt75wvJ1mP1KA377PqS8p1SLEwn+vDEllqee/ZvHnjxKWqoH/51/B5t/q/4vuDFRF/hozE/mx88/VDrZwdpdDZm5oku157kRD3cdw4fsIzCggMt5rmzfGcWSL1thsNFtJK7w8S9hwhtH8Q8qJj/PicTjnkx5riX7d9r+Q14p2RrVzWT2lHXmxyOf+BOA9Vvq8+5/7+arNc3RuuoZ98wOPN1L+Pt4MK+81QOdzoYf0ab/LdY4jrAKqWultvzoh0+AgSdfTMMvSM/pw278Z0g02ZnVP61/Tcil9Gz/9GDrY2TkerLzVGVHO1WOUl8zpeZSejbA4euaymSqqZ2UFdelSxdatmzJ3LlzARg5ciRr165l6dKleHt7M2bMGKB0aurr+eyzz3BxcaFVq1YAfPfdd0yZMoVPP/2UYcOGmZ/fuXNn3nrrLXr37s3KlSt588032bdvH82a3doskLm5ufj4+NDNawhOKpebP6GaqcJt12i8kZwWyhhCUB6P80W2jlAup+PnbB2hxilpdmtfnKubXl/Etm0zyMnJwdvb++ZPKMeVz56oRVNRu1d+SLixoIikEbeWaeHChSxcuJAzZ84ApUMRp06dSq9evYDSe9BNmDCBlStXUlxcTFxcHAsWLChzrZkjqYl1rQt9cVIp5EugqJSLT1d/o/9WBCy++cRFombQm3Rs5ocaW9eUxG57+m7FnDlzUKvVDBgwwOILxM28/vrrnD17FicnJ2JiYvjqq68YOHCgeXuHDh1YsWIFkydP5tVXX6VBgwasXr36lgujEEI4ooiICN566y0aNGiAyWTis88+o2/fvuzfv5+mTZsybtw4fv75Z1atWoWPjw+jR4+mf//+/PHHH7aOrhhS14QQQpTHoXr6ahLp6bs90tNXcdLTV3EO09PnZoUzooWVOyPq7+/Pu+++y8CBAwkKCmLFihXmxsixY8do3Lgx8fHxtG/fvtJZRdWSnj77Iz19oqpZvadPAXXNVm6pp++f9+u5kcrM9CWEEEIZrHUD2ivH+Oc92m42yYfBYGDVqlXk5+cTGxt703vQVbTRJ3VNCCEci7XrWk1zS42+fv363dLBVCoVBoOhMnmEEELYoX9O1T9t2jRee+21MvsdOnSI2NhYioqK8PT05Pvvv6dJkyYcOHDgtu5Bdz1S14QQQjiSW2r0GY3KuaeVEEKIamDlWc6Sk5MthsFcr5evUaNGHDhwgJycHL755huGDh3Kli1brBDEktQ1IYRwMA4+e2elJnIpKiq67RvECiGEUDLV/xZrHAe8vb1v6doHFxcX6tcvvfdkmzZt2L17Nx988AGPPvroTe9BZw1S14QQwl5Zt67VNBW+wZfBYOD111+nVq1aeHp6cvr0aQCmTJnC4sWLrR5QCCGE4zIajRQXF9OmTRvzPeiu+Oc96G6X1DUhhBD2rsKNvpkzZ7J06VLeeecdXFyuzirZrFkzPv30U6uGE0IIYSMmKy63aNKkSWzdupUzZ85w6NAhJk2axObNmxkyZAg+Pj48/fTTjB8/nt9//529e/cybNgwYmNjKz1zp9Q1IYRwADaoa0pS4UbfsmXLWLRoEUOGDEGj0ZjX33HHHRw7dsyq4YQQQjiOjIwMnnzySRo1asS9997L7t27Wb9+Pffddx9Qeg+6Bx54gAEDBnDPPfcQGhrKd999V+mfK3VNCCGEvavwNX3nz583X29xLaPRiE6ns0ooIYQQNmaDC95vNpRSq9Uyf/585s+fX8lQlqSuCSGEA3DwiVwq3NPXpEkTtm3bVmb9N998Q6tWrawSSgghhI2ZVNZbFE7qmhBCOAAb1DWDwcCUKVOIjo7Gzc2NevXq8frrr2MyXW05mkwmpk6dSlhYGG5ubnTv3p0TJ05Y/devcE/f1KlTGTp0KOfPn8doNPLdd9+RkJDAsmXL+Omnn6weUAghhKhKUteEEEJUhbfffpuFCxfy2Wef0bRpU/bs2cOwYcPw8fHh+eefB+Cdd95h3rx5fPbZZ0RHRzNlyhTi4uI4cuSIVWeTrnBPX9++fVmzZg2//fYbHh4eTJ06laNHj7JmzRrzdRdCCCFqNpPJeovSSV0TQgj7Z4u6tmPHDvr27Uvv3r2pU6cOAwcOpEePHvz555//y2Ri7ty5TJ48mb59+9KiRQuWLVtGSkoKq1evturvf1v36bv77rvZsGGDVYMIIYRQEAe79kHqmhBC2Dkr17Xc3FyL1a6urri6ulqs69ChA4sWLeL48eM0bNiQgwcPsn37dt5//30AEhMTSUtLo3v37ubn+Pj40K5dO+Lj4xk0aJAVApe67Zuz79mzh6NHjwKl10O0adPGaqHEVcbLeRhVzraOUYZTib+tI5TL43yRrSNc16/ffGbrCOW6a9JIW0e4rhIfZV4PltOixNYRymUsVEPZS9PELZK6JkTFvDHp/2wdoVxzFje2dQThACIjIy0eT5s2jddee81i3SuvvEJubi4xMTFoNBoMBgMzZ85kyJAhAKSlpQEQEhJi8byQkBDzNmupcKPv3LlzDB48mD/++ANfX18AsrOz6dChAytXriQiIsKqAYUQQtiAtSZhqQETuUhdE0IIB2DlupacnIy3t7d59T97+QC+/vprli9fzooVK2jatCkHDhxg7NixhIeHM3To0MpnqYAKX9P3zDPPoNPpOHr0KFlZWWRlZXH06FGMRiPPPPNMVWQUQghRzVQm6y1KJ3VNCCHsn7Xrmre3t8VSXqPvxRdf5JVXXmHQoEE0b96cJ554gnHjxjFr1iwAQkNDAUhPT7d4Xnp6unmbtVS40bdlyxYWLlxIo0aNzOsaNWrEhx9+yNatW60aTgghhKhqUteEEEJUhYKCAtRqy+aWRqPBaDQCEB0dTWhoKBs3bjRvz83NZdeuXcTGxlo1S4WHd0ZGRpZ7s1qDwUB4eLhVQgkhhLAxB5rIReqaEEI4ABvUtT59+jBz5kyioqJo2rQp+/fv5/3332f48OEAqFQqxo4dyxtvvEGDBg3Mt2wIDw+nX79+Vgh7VYV7+t59913GjBnDnj17zOv27NnDCy+8wHvvvWfVcEIIIWzEgW7OLnVNCCEcgA3q2ocffsjAgQP597//TePGjZk4cSL/+te/eP311837vPTSS4wZM4YRI0bQtm1b8vLyWLdunVXv0Qe32NPn5+eHSnX1F8zPz6ddu3Y4OZU+Xa/X4+TkxPDhw63eKhVCCCGsTeqaEEKIqubl5cXcuXOZO3fudfdRqVTMmDGDGTNmVGmWW2r03SioEEIIO2TnwzulrgkhhIOx87p2M7fU6KvuKUWFEEKIqiR1TQghhCO57ZuzAxQVFVFSYnmT4mvvVyGEEKKGctAzolLXhBDCTjloXbuiwhO55OfnM3r0aIKDg/Hw8MDPz89iEUIIYQdMVlwUTuqaEEI4AAeqa+WpcKPvpZdeYtOmTSxcuBBXV1c+/fRTpk+fTnh4OMuWLauKjEIIIUSVkbomhBDC3lV4eOeaNWtYtmwZXbp0YdiwYdx9993Ur1+f2rVrs3z5coYMGVIVOYUQQlQna91uoQbcskHqmhBCOAAHqmvlqXBPX1ZWFnXr1gVKr3PIysoCoFOnTmzdutW66YQQQtiEymS9RemkrgkhhP1zpLpWngr39NWtW5fExESioqKIiYnh66+/5q677mLNmjX4+vpWQURRWX2eymTgyAz8g/ScPuLGgsm1SDjgbtNMjw0/xpCnj1usSz7ryXOPdbNRoqvctDqGDjpAx3ZJ+HoXcfKMPwv/ry3HTwVWW4bP3wvli/dDLdZF1Cti8bZj5F7S8Pl7oezb4kVGigs+/no69Mxh6EupeHgbqzxbqzopPH7PQWJqXSDIu4AXP49jy5Foi33qBF1idM+dtK6bikZtJDHDj5e/6EF6jleVZmsdmcLQdgdoHHKBYK8Cxn3bk99PXM3m717A2K47aV8nGS9tCfuSw3h7QyeSLvlWaS6/tal47buES2oRRhc1RfU8uTAwAl3o1RuvOmcUEbTqHNoTeaj0Rgqa+ZAxOAqDj3OVZhNS12oiJdY1JeeC6s927k839nwSQMZhLfkZzvRZmEz9+/LM2+M/CCThZ28upzqjcTYR3KyIjuMzCGtZZN6nKFvN7zNCOb3RE5Ua6sddpsuUNFw8qudbt1LfT6XmAmVnc3QV7ukbNmwYBw8eBOCVV15h/vz5aLVaxo0bx4svvmj1gLfrtddeQ6VSWSwxMTHm7UVFRYwaNYqAgAA8PT0ZMGAA6enpNz2uyWTivffeo2HDhri6ulKrVi1mzpxpsc/mzZtp3bo1rq6u1K9fn6VLl1r717tlnR+8xIhpKSx/P5RRcQ05fUTLzBWn8QnQ2SzTFWdOe/F4nx7m5aWRHW0dCYBxI3fQ+o4U3pnXiX9N6MO+g2G8PXUDAf4F1ZqjdqNCvjzwt3l5f/UJALLSnbmY7syzU1P476ZjTJybxJ7NXrw/Iapacmld9JxIDeDdH+4ud3st/xw+eW41Zy/48tyiB3nsg4dZvKkNJfpKTRZ8S9ycdRxPD2DWhvKymZgzYB21fHMZ920vBi0ZSGqOFx8PWoPWuWr/HtwTLpPdNZikVxtzbnxDMJiIeP84qmIDAKpiA7XmnMAEnJvYkORXYlDpTdT68AQYbXRK0YEueK8pdQ2ktoFy65pSc9kqm65QTVDjYrq9Vv6/P7/oErpOS+OJn0/zyMoz+NTS8d1TURRc1Jj3+WV8LS6ecKX/Z0n0/SSZ87vd+W1yWJVlvpZS30+l5lJ6NsCh6lp5KtzoGzduHM8//zwA3bt359ixY6xYsYL9+/fzwgsvWD1gZTRt2pTU1FTzsn37dvO2cePGsWbNGlatWsWWLVtISUmhf//+Nz3mCy+8wKeffsp7773HsWPH+PHHH7nrrrvM2xMTE+nduzddu3blwIEDjB07lmeeeYb169dXye94M/1HZLJuhT+/fuVP0gkt816OoLhQRdzgLJvkuZbRoOJSlta85Oa42joSLi567m6fxKeft+HQ0RBS0rz5/OuWpKR50adHQrVm0WjAP1hvXnwCShsIdWKKmPrpGdr3yCW8TgktO+Xx1Mup7NrgjUFf9bnij0fx8Ya72PyP3r0rRvb4kz8SovhwXSzHUwM5n+XDtqN1uJTvVuXZ/jhdm/nb2vH78bpltkX55XBHrXTeXH8Ph9OCOZvlx8z196B10tOr8YkqzXV+XENyOwZSUsuNkkh30ofXwTmrBO3Z0hMJbifzcM4sJn14NCUR7pREuJM2vA6uZwtwP3a5SrOJmlXXQGqbUuuaUnPZKlt053w6jr9A/R7lf4bFPJhL7Y4F+EbpCGxYwj2vplOSpyEzofS7wMWTLpzZ6kn3N1MJa1lErTsL6To1jYSfvMlLr/qTiEp9P5WaS+nZRCXv0wdQu3ZtateubY0sVufk5ERoaGiZ9Tk5OSxevJgVK1bQrVvpcMIlS5bQuHFjdu7cSfv27cs93tGjR1m4cCF///03jRo1AiA62vKL78cff0x0dDSzZ88GoHHjxmzfvp05c+YQFxdnzV/vppycjTRoUcDKj4LN60wmFfu3edGkTfX2WpUnPCKfZT+sR1es4ehhPz77uDEX0m07BECjNqHRmCjRaSzWF5doaNo4o1qznE90YXCrpri4GmncJp/hk1IJjij/bFl+rgZ3TyOaqq+DN6RSmegYk8TnW1syb9hPNAzPJOWSN59tblVmCGh1c3EqbTQX66++tyZUlBg0tIpM4/u/mlRbFnVBaRaDR+kbptKZQAUmp6sXh5uc1aACtxOXKWgi94mrTkqua+DYtU2pdU2puUDZ2a4wlMChr3xx9TIQFFMMQOp+N1y9DYQ2vzrcM6pjPio1pB10u25j0hqU+popNRcoO5sodUtfEefNm3fLB7xytlQJTpw4QXh4OFqtltjYWGbNmkVUVBR79+5Fp9PRvXt3874xMTFERUURHx9/3cK4Zs0a6taty08//UTPnj0xmUx0796dd955B39/fwDi4+MtjgsQFxfH2LFjq+z3vB5vfwMaJ8i+YPk2X8p0IrJ+cbXnuVbCET/mzGzFuSQP/AOKeWx4Au8s+IN/P9GVwgLbtVwKi5w5nBDEkIF/kXTOh+wcLV07nqFxw0xS0qr2erRrxbTOZ+LcQiLqFZOV4cwXs0OZ8FAD/vv7Mdw9La/by7moYcXcUHo9nllt+a7H36MQD1cdQzvv5+Nf2/LhuvbENkzm7SHrGfnpg+xPDLdZtjMXfUnJ8eT5zrt4fV1nCnVOPN72L0K98wn0qMaCZDQR9FUyhfU9KalV2vtZVM8Do6uGwG/PkflQLQACvz2PygiaHNsMi1FhnYvVlTrHWU2ta+DYtU2pdU2puUDZ2U5v8mTt2FroClV4BOvp/1kSbv6lJ8UKLjjhHmA5fEXtBFofA/kXNOUdzmqU+popNRcoO9sV9l7XbuaWvl3PmTPnlg6mUqkUUxzbtWvH0qVLadSoEampqUyfPp27776bv//+m7S0NFxcXMpcoB8SEkJaWtp1j3n69GnOnj3LqlWrWLZsGQaDgXHjxjFw4EA2bdoEQFpaGiEhIWWOm5ubS2FhIW5u5Q9xKy4uprj46h9Fbm7ubf7mNcPenVdfozOnShuBS77dwN3dzvPrT7Y9w/7OvE5M+PcOVn7yDQaDihOn/dn8Rx0a1K2+4Qltu109g1m3SRExrQp44q4mbP3Rl56PXc2Rf1nNlCfrEtWwiCcmXP/fbnVR/e/TdOuROnz5xx0AnEgNpEVUGv3bHbFpo09v1DDhu568dv/vbBv3f+iNKnadiWD7qSiqc4B+8PIkXM8Xkvzy1euwDF7OpD5Xl+AvkvDdmAEquHyXP0VR7qCqqeVF2WpiXYOaVdscra6Jiotsn8/jP56m8JKGQ1/58fPztRj87Rnc/3c5gxDCem6p0ZeYmFjVOayuV69e5v9v0aIF7dq1o3bt2nz99dfXbXhdq2nTppw9exaAu+++m19++QWj0UhxcTHLli2jYcOGACxevJg2bdqQkJBgHhZzO2bNmsX06dNv+/nlyc3SYNCDb5DlmTK/QD2XLth4HOA/5Oc5cz7Zk7CIfFtHITXdi4nT4tC66nB305GV7c6r47aQmu5ps0yePgYi6haTcubqdY8FeWr+81g93DyMTFuciJMCJnnMLtCiN6hJzPCzWH/mgh931E61UaqrjqYH8eiSR/B0LcZZbeRSoRufP/ktR1KDquXnBy8/i8df2SS/FIPe38ViW0FTH87Mao76sg40KozuTtQdfwBdkH+1ZCvDzu9nVBPrGtSs2uZIdU2puUDZ2ZzdTfjW0eFbR0dYq1SW3FuPv7/25a6RF3EP0lNw0TKfUQ9FORo8gqq2UajU10ypuUDZ2czsvK7dTIUncqmpfH19adiwISdPniQ0NJSSkhKys7Mt9klPTzdfJ7F27VoOHDjAgQMH+PTTTwEICwvDycnJXBSh9LoGgKSkJABCQ0PLzJSWnp6Ot7f3DQvypEmTyMnJMS/JycmV/p31OjUn/nKnVaervUYqlYmWnfI4sldZ0+dq3fSE1conK1N7852rSVGxM1nZ7nh6FHNnyxTid0faLEthvpqUsy74B5cO9cu/rObVwfVwdjExfelpXLTKmEpKb9Bw5FwQUUHZFuujArNJy66+4bE3k1fsyqVCN6L8smkSeoHNJ6r4ekOTieDlZ/Hcn825iY3QB11/0iKjlzNGdyfcjuaiuawnr6Vv1Wa7Hgef5aymUHJtc6S6ptRcoOxs/2QygqGk9At1WKtCinM1pP999XtBcrwHJiOE3lFYpTmU+popNRcoO5uZg9c1hTS9q15eXh6nTp3iiSeeoE2bNjg7O7Nx40YGDBgAQEJCAklJScTGxgKUexF/x44d0ev1nDp1inr16gFw/Phxi/1jY2NZu3atxfM2bNhgPu71uLq64upq/dkrv1sUyMS5yRw/6E7CfnceevYCWncjv660Ue/B/zw96jC7/gghI82dgMAihjxzDKNBxZbfatk0F0CbO86jUsG5FG/CQy/z7BN7ST7vw/rf61dbhkXTw2nfI4fgCB0X05z4/L0wNGro8tAlc4OvuFDNSx8mUpCnoeB/tz7yCdCjqdpLHXBz0RERkGN+HO6XS4OwTHILXEnP8eKLrS2ZOXgD+xPD2Hu6FrENk+kUc5aRnzxYtcEovWVDlN/VbLV8c2kUnElOkStpuV7c1+gUlwq1pOZ40SD4Ii91/4PfT9Qh/kzVNuiDlyfhtSuLlNH1MWo15uv0jG4aTC6l5968t2dSEqbF4OWE9lQ+wSuTuNQ9xOJefkL8k5Jrm6PVNaXmslW2knwV2WevjmjITXYh44grWl8Dbr4Gdi0IpN69l/EI1lN4yYmDX/iRl+5Eg16lw4AD6pdQ5548fns1jHtfT8WgV7FpegiNHsjFM6Tqp6pW6vup1FxKzybsuNE3ceJE+vTpQ+3atUlJSWHatGloNBoGDx6Mj48PTz/9NOPHj8ff3x9vb2/GjBlDbGzsdS90h9KpvFu3bs3w4cOZO3cuRqORUaNGcd9995nPkD733HN89NFHvPTSSwwfPpxNmzbx9ddf8/PPP1fXr25hy49++AQYePLFNPyC9Jw+7MZ/hkSTnWnbsYABwYW8NH0v3t46crJdOPyXP+P/dTe52ba/bYOHu47hQ/YRGFDA5TxXtu+MYsmXrTAYqq9jPDPVmVn/rsPlSxp8AvQ0bZvP3J+O4xtg4OAOT47t8wBgWAfLGSc/23WE0MiSKs3WuFYGH49YY3487oF4AH7a25AZ33Rj85Fo3lp9D0O77GNCnz9IuuDLK8t7cPBs1d9bqWlYBp8+9qP58cR7dwDw46FGTP25G4Ge+Uy49w8CPAq5kOfOT383YtEfbao8l+/mCwBEvmt524+0YXXI7RgIgEtaEYHfnUOTb0AX6MLF3mFk3xdS5ljVxlpnM2voGVGlktqm3Lqm1Fy2ypZ+yI1vHr96kmHLm6WfZ036Z3Pv62lcOu3Cmu8jKMrSoPUzENK8iEdWniWw4dUa1uv982yaHso3T0ahUkGDnqU3Z68OSn0/lZpL6dkAh69rKpPJVEOj39igQYPYunUrFy9eJCgoiE6dOjFz5kzzWcyioiImTJjAl19+SXFxMXFxcSxYsKDcabCvlZKSwpgxY/j111/x8PCgV69ezJ492zzDGZTewHbcuHEcOXKEiIgIpkyZwlNPPVWh/Lm5ufj4+NCFvjipFPLHcg2naGVOZ64L87V1hOv69ZvPbB2hXHdNGmnrCNdV4qPMcfM5Laq2YX27jIVFnBv9Gjk5OXh7395tHq589tSZORO1tvK9jMaiIs785z+VyiSuqsm1Tel1TVTcuJNHbR2hXHPqN7Z1BGElepOOzfwgdc0K7Lanb+XKlTfcrtVqmT9/PvPnz6/QccPDw/n2229vuE+XLl3Yv39/hY4rhBBC3IzUNiGEELfjtsarbdu2jccff5zY2FjOnz8PwOeff8727dutGk4IIYSNONgF71LXhBDCzjlYXfunCjf6vv32W+Li4nBzc2P//v3me/Dk5OTw5ptvWj2gEEIIG3Cg4ih1TQghHIAD1bXyVLjR98Ybb/Dxxx/zySef4Ox8dUx+x44d2bdvn1XDCSGEEFVN6poQQgh7V+Fr+hISErjnnnvKrPfx8SlzbyAhhBA1k8pUuljjOEondU0IIeyfI9W18lS4py80NJSTJ0+WWb99+3bq1q1rlVBCCCFszKSy3qJwUteEEMIBOFBdK0+FG33PPvssL7zwArt27UKlUpGSksLy5cuZOHEiI0cqd+p3IYQQojxS14QQQti7Cg/vfOWVVzAajdx7770UFBRwzz334OrqysSJExkzZkxVZBRCCFHdHOgmtlLXhBDCAThQXStPhRt9KpWK//znP7z44oucPHmSvLw8mjRpgqenZ1XkE0IIIaqU1DUhhBD27rZvzu7i4kKTJk2smUUIIYRCOOIF71LXhBDCfjliXbtWhRt9Xbt2RaW6/gWMmzZtqlQgIYQQCuBAw2CkrgkhhANwoLpWngo3+lq2bGnxWKfTceDAAf7++2+GDh1qrVxCCCFEtZC6JoQQwt5VuNE3Z86ccte/9tpr5OXlVTqQEEIIBbDSMJiacEZU6poQQjgAB6pr5bnta/r+6fHHH+euu+7ivffes9YhBaAJ8EejdrF1jDKMXm62jlCu7Abuto5wXdFrn7F1hHI5N7J1gutT179s6wjlCvfOt3WEcunzizlnrYM5+DAYkLomxM30dC+2dYRylX8aRzg8B69rFb5P3/XEx8ej1WqtdTghhBDCpqSuCSGEsBcV7unr37+/xWOTyURqaip79uxhypQpVgsmhBDChhzojKjUNSGEcAAOVNfKU+FGn4+Pj8VjtVpNo0aNmDFjBj169LBaMCGEELbjSFNbS10TQgj750h1rTwVavQZDAaGDRtG8+bN8fPzq6pMQgghRLWQuiaEEMIRVOiaPo1GQ48ePcjOzq6iOEIIIUT1kbomhBDCEVR4IpdmzZpx+vTpqsgihBBCVDupa0IIIexdhRt9b7zxBhMnTuSnn34iNTWV3Nxci0UIIYQdMFlxUTipa0II4QAcqK6V55av6ZsxYwYTJkzg/vvvB+DBBx9EpVKZt5tMJlQqFQaDwfophRBCVCtHuOBd6poQQjgOR6hrN3LLjb7p06fz3HPP8fvvv1dlHiGEEKJaSF0TQgjhKG650WcylTZrO3fuXGVhhBBCKEgNPZt5q6SuCSGEg7HzunYjFbplw7XDXoQQQtgxB7mJrdQ1IYRwEA5S166nQo2+hg0b3rRAZmVlVSqQEEIIUV2krgkhhHAEFWr0TZ8+HR8fn6rKIoQQQiEc5YJ3qWtCCOEYbFXXzp8/z8svv8wvv/xCQUEB9evXZ8mSJdx5551A6aUG06ZN45NPPiE7O5uOHTuycOFCGjRoUPmw16hQo2/QoEEEBwdbNYAQQggFcpBhMFLXhBDCQdigrl26dImOHTvStWtXfvnlF4KCgjhx4gR+fn7mfd555x3mzZvHZ599RnR0NFOmTCEuLo4jR46g1WqtELjULTf65LqHmuf+R87R+5HzhIQXAXD2lAdf/jeaPdsDbJwMln62hpCQgjLr16ypz4L5baotR6s6KTx+z0Fial0gyLuAFz+PY8uRaIt96gRdYnTPnbSum4pGbSQxw4+Xv+hBeo5XleXyW5uK175LuKQWYXRRU1TPkwsDI9CFXv3jd84oImjVObQn8lDpjRQ08yFjcBQGH+cqywXwr+b76FE7kWifbIr1GvZfCOXdPe1JzPUtZ28Tn3Zfyz0Ryfx7Uxy/JUWXs491eP56Ea9fs3C6UAKALsKV7IEhFLXyQp2nx+frDNwOXkaTqcPo7URBW2+yB4VgctdUWaYrnH7KxfmnXNQZOgCMUS6UDPHD0NYdALcXU9AcKrJ4ju5+L4qfD6rybI5M6lrN1eepTAaOzMA/SM/pI24smFyLhAPuto6l2FxQ/dkO7fRg1YJgThxyJyvdmWmLE+nQK6fcfT94OYK1nwfyr+nn6f/sBYttu37zZvmcEBKPuuHiaqR5+3xeW5JYZbmvpdT3U6m5QNnZbOHtt98mMjKSJUuWmNdFR1/9LmQymZg7dy6TJ0+mb9++ACxbtoyQkBBWr17NoEGDrJbllm/OfmWWs5rk/PnzPP744wQEBODm5kbz5s3Zs2ePebvJZGLq1KmEhYXh5uZG9+7dOXHixA2PuXTpUlQqVblLRkaGeb/NmzfTunVrXF1dqV+/PkuXLq2qX/O6MtO1LJlbj+cHteWFwW05+KcfUz74i6h6edWe5Z9eeP4+Hhv8oHmZNKl09rxt2yKrNYfWRc+J1ADe/eHucrfX8s/hk+dWc/aCL88tepDHPniYxZvaUKKvUCd5hbknXCa7azBJrzbm3PiGYDAR8f5xVMWl9wtTFRuoNecEJuDcxIYkvxKDSm+i1ocnwFi1f6ttQ1P54lhTHvn5IYb9+gBOKiP/1+Mn3Jx0ZfZ9qslf1dbRY/B35tJjIaS+VZ/UWfUpauZJ8DtncU4uQpOlR5Ol49ITYaTObsDFURG4HbxMwMJz1ZLNFKihZLg/BR9GUDCvFoaWbminp6E+U2LeR9fLi/wVUeal+Gnbnpy5MgzGGotSSV0rVZPqGkDnBy8xYloKy98PZVRcQ04f0TJzxWl8Asp+Bkku22UrKlBTt2kho9+88efsH7/4cGyvBwGhJWW2bfvZh3eej6LHo1ks3JDA+z+coOtDl6oqsgWlvp9KzaX0bGD9upabm2uxFBcXl/mZP/74I3feeScPP/wwwcHBtGrVik8++cS8PTExkbS0NLp3725e5+PjQ7t27YiPj7fq73/LjT6j0VijhsBc6U51dnbml19+4ciRI8yePbvc7tSPP/6YXbt24eHhQVxcHEVFRdc97qOPPkpqaqrFEhcXR+fOnc2vT2JiIr1796Zr164cOHCAsWPH8swzz7B+/foq/72v9eeWQPZsDyQlyZ3zZ91Z9mE9igo0xLTIrdYc5cnJ0XLpkpt5aXdXCikpnhz6q3p7NuKPR/HxhrvYfKT8HqiRPf7kj4QoPlwXy/HUQM5n+bDtaB0u5btVaa7z4xqS2zGQklpulES6kz68Ds5ZJWjPlvaOup3MwzmzmPTh0ZREuFMS4U7a8Dq4ni3A/djlKs32zIbefH8yhpPZ/hy7FMjL27tSyzOPpgGWZ2cb+2cyvOlfTPqja5XmuaLwTm+KWnujD3NFH+5K9uBQjFo1ricK0EVpyZxYm8I7vdGHulLUzJPsQaG4770Mhqr/4m9o74HhLndMtZwxRbhQ8pQ/aNWoj139rDG5qjD5O5kXPG7547lqmKy4KJTUtVI1qa4B9B+RyboV/vz6lT9JJ7TMezmC4kIVcYNtO+GOUnPZKlvbbpd56uU0Ol6ndw8gM9WZBZNr8fL8szj941yqQQ8fT63Fs5NTeODJi0TUK6Z2w2I6P5hdZZmvpdT3U6m5lJ4NsHpdi4yMxMfHx7zMmjWrzI88ffq0+fq89evXM3LkSJ5//nk+++wzANLS0gAICQmxeF5ISIh5m7VUbXeFDVVVd6qbmxtuble/8F+4cIFNmzaxePFi87qPP/6Y6OhoZs+eDUDjxo3Zvn07c+bMIS4uzqq/561Sq0106pGB1s3A0YPKmrTAyclA125n+f67RoByhlupVCY6xiTx+daWzBv2Ew3DM0m55M1nm1uVGQJa1dQFpT18Bo/SP1mVzgQqMDldfb1MzmpQgduJyxQ08a62bF4upWdnc4qvDj3VanTMvmcj03d2IrPQBsM6jCbc43NQFxspblj+z1cXGDC6qUFTzf/mDCactuVDsRFD42uG6/6eh/OmPIx+GgztPCh5zBe0Nm74CUWRugZOzkYatChg5UdXG+smk4r927xo0qbsJQOOnguUm81ohHeej2LgyAzqNCp7UuLEIXcyU11QqeHf9zXk0gVn6jYt5NkpKdSJuf5JDGtQ6mum1Fyg7GxVJTk5GW/vq9+3XF1dy+xjNBq58847efPNNwFo1aoVf//9Nx9//DFDhw6ttqxQgZ6+mqa6ulOXLVuGu7s7AwcONK+Lj4+3OC5AXFzcDY9bXFxcppvYGuo0yOPbnVv4Yc9mRk9O4PWxzUk+7WGVY1tLbOx5PD11bNhQvQ2pm/H3KMTDVcfQzvuJPx7JmP97gM2Ho3l7yHpaRadUXxCjiaCvkims70lJrdIvZkX1PDC6agj89hyqYgOqYgOBq86hMoImp/qGUagw8Z+7/mBveignsv3N61+9awf7M0LYmFy976lzUhGRTxwm6rG/CfjkPBkTo9BFlL0IWp2rx+fbDPK6+5dzlKqhTizBo18iHn0Scf0wk6IpoZhquwCg6+pJ0YvBFL4dju5RX5w2XUb7TsZNjljFHKCnr6aRugbe/gY0TpB9wfKc9aVMJ/yC9JU+/u1Sai5Qbrav5wej0Zjo93RmudvTzpZ+Pn4xO5TBY9OZsew0nj4GXhxQn9xLVXsttlJfM6XmAmVnM7NyXfP29rZYymv0hYWF0aRJE4t1jRs3JikpCYDQ0FAA0tPTLfZJT083b7MWu230VVd36uLFi3nssccszpKmpaWVe9zc3FwKCwvLPc6sWbMsuogjI61zbdu5RHdGP9yWcUPasPbrWkx44yiRdfOtcmxrieuZyJ7dYWRlVe2QyYpS/W/Q9tYjdfjyjzs4kRrIsi2t2H6sNv3bHam2HMHLk3A9X0jqiLrmdQYvZ1Kfq4vHwRzqj95P/TH70RToKYpyh2qcnGJa+2008Mti7JarXwa7RZ6hfdh5Zv7ZsdpyXKELdyH13fqkvVmfyz0CCJx/DudzlmeEVQUGgt86UzrRy8Mh1zmS9RkjnClYEEHhB7XQ9fZGOzsD1dnSXlL9/d4Y7nTHGO2CvpsXxRODcdpRgCpFGddBCGWQuibsxYm/3Fj9aRAT5yZdt2QZjaX/HfxCOnf3zqFBi0ImzCndf9tPvtWWVYjK6NixIwkJCRbrjh8/Tu3atYHS0RqhoaFs3LjRvD03N5ddu3YRGxtr1Sx2O7zTGt2pvXr1Ytu2bQDUrl2bw4cPW2yPj4/n6NGjfP7555XOO2nSJMaPH29+nJuba5UCqderSU0uHd528qg3DZrl0ndIMh+9HlPpY1tDcHA+LVum88br1d9AuJnsAi16g5rEDD+L9Wcu+HFH7dRqyRC8/Cwef2WT/FIMen8Xi20FTX04M6s56ss60KgwujtRd/wBdEHV03s1td02ukaeZcgvfUkv8DSvbx92niivXPY89n8W+3/Y5Vf2ZITyxLq+VRfKSY0+tPRMW0ldN1xOFeC19iJZI2oBoCo0EPzmGYxuajIm1ganahza6azCFO6MCShp4Ir6eDEuq3MofqHsdayGmNLfQZ2iwxBetbOxXo+j3KevJpG6BrlZGgx68P1Hz4FfoJ5LF2z3lUapuUCZ2Q7t8iQ704nH2zY1rzMaVHwyPZzVnwSx7M8j+IeU5o1qcPXEnYuridDaxWScr9rPRSW+ZqDcXKDsbFfYoq6NGzeODh068Oabb/LII4/w559/smjRIhYtWlR6LJWKsWPH8sYbb9CgQQPzLRvCw8Pp169f5cNeQxnvQhW4Xnfqt99+C1h2p4aFhZn3SU9Pp2XLlgB8+umn5jOYzs5lP2A+/fRTWrZsSZs2lrcYCA0NLbeb1tvb2+LM6bVcXV3L7Ra2NrXahLOLscp/zq26r0ciOTmu/Pln2M13rmZ6g4Yj54KICsq2WB8VmE1adtXdrgEAk4ngFUl47s8m+cVG6IOu/2/D6FX6b9PtaC6ay3ryWvpWbTZMTG23nfuiEnl83YOcy7O8fnDRoVasOt7YYt3P/b7mzd0d+D25dhVns6QygkpX+u9dVWAgZGYiJmc1F16qAy62nijFBLryK4f6VGkPoMm/6m8ncV3WGpopjT6rkboGep2aE3+506rTZeLXlV6frlKZaNkpjx+X2m7GW6XmUmq27gOyaH235aRjrz5Wl3sHXKLHo6WTfjRoUYCzq5Fzp1xp1q50hJJeB+nJLoREVO0oCCW+ZkrOpfRsZjaoa23btuX7779n0qRJzJgxg+joaObOncuQIUPM+7z00kvk5+czYsQIsrOz6dSpE+vWrbPqPfrAjht9FelOvVIMr3Snjhw5EoBatWpd9/h5eXl8/fXX5c7UExsby9q1ay3WbdiwwerdtDfz1POn2POHPxmpWtw9DHTplU7zO7OZ8lzLas1xPSqVifvuS+S3DXUwGm3zBdzNRUdEwNWZxcL9cmkQlklugSvpOV58sbUlMwdvYH9iGHtP1yK2YTKdYs4y8pMHqzRX8PIkvHZlkTK6PkatxnydntFNg+l/jRXv7ZmUhGkxeDmhPZVP8MokLnUPsbiXX1WY1n4bfeqeZOTGnuTrXQh0K71A+3KJC8UGJzIL3cudvCU137NMA9GafFekUdjSC32gM+oiIx7bs3E9kk/Of+qYG3yqYhOZY2qhKjSgKiydHMfo7QTqqu3xc/m/LPRt3TAFOaEqNOH0ex6av4oomhmKKkWH0+95pbN7eqlRJ5bguugihuZajHWr/kSQqDmkrpX6blEgE+cmc/ygOwn73Xno2Qto3Y38urL6rtGtSblsla0wX01K4tXPsLRkF0797YaXr57gCB3e/gaL/Z2cwC9YT2T90mnvPbyM9H7iIp/PDiUoXEdwRAnfLCydJOTuB7KrLPcVSn0/lZpL6dls6YEHHuCBBx647naVSsWMGTOYMWNGleaw20ZfVXenfvXVV+j1eh5//PEy25577jk++ugjXnrpJYYPH86mTZv4+uuv+fnnn639a96Qj38JE944in9QMfl5TiQe92TKcy3Zv1MZf3ytWqUTElLAr7/WvfnOVaRxrQw+HrHG/HjcA6WTEvy0tyEzvunG5iPRvLX6HoZ22ceEPn+QdMGXV5b34ODZqu2Z9N1cevuDyHctv+ClDatDbsdAAFzSigj87hyafAO6QBcu9g4j+76qv0ZtSEzp9YzLe/1osf7l7V34/qTthg1rcvQEzk9Gc0mP0V1NSW0tGf+pQ1ELL1wP5+F6orR3o9bzxy2ed+6jRhiCXco7pNWosg1o372A6pIek7saY7QrRTNDMbR2R3VBj9OBQlxW50CRCVOQBn1HD0oG+938wFXJBmdEZ82axXfffcexY8dwc3OjQ4cOvP322zRq1Mi8T1FRERMmTGDlypUUFxcTFxfHggULylxvZo+krpXa8qMfPgEGnnwxDb8gPacPu/GfIdFkZ9pmKLTSc9kq2/GD7rw0sL758X9fKz3hcN8jWUycm3RLx3h2ynk0GhPvPB9FSZGaRq0KeHvVKbx8DTd/ciUp9f1Uai6lZwMcfgSLylQT7057i3766ScmTZrEiRMniI6OZvz48Tz77LPm7SaTiWnTprFo0SJzd+qCBQto2LDhTY/doUMHoqOjWb58ebnbN2/ezLhx4zhy5AgRERFMmTKFp5566paz5+bm4uPjw70Bw3BSV+0X0tthCq/e++ndqoutbPxF+QYu3K3MSTmcMxTyYVwOdf08W0coV4C3siZDukKfX8ye/h+Qk5NjMY10RVz57Il5/k00rpXvNTYUF3Fs3qu3lKlnz54MGjSItm3botfrefXVV/n77785cuQIHh6lsw6PHDmSn3/+maVLl+Lj48Po0aNRq9X88ccflc5aE9hDXetCX5xUyv3cEbdufcoBW0coV1x4S1tHEFaiN+nYzA81tq4piV03+moyafTdHmn0VZw0+ipOGn23rjLF8cKFCwQHB7NlyxbuuececnJyCAoKYsWKFebbCRw7dozGjRsTHx9P+/btK51XVB1p9NkfafSJqiaNPuux21s2CCGEqAQr38/on/drKy4uvmmEnJzS6239/UuHpO/duxedTmdxv7iYmBiioqIqdB86IYQQDsjB7z8rjT4hhBBlXJna2hoLQGRkpMU928qbLORaRqORsWPH0rFjR5o1awaU3ivOxcUFX19fi30reh86IYQQjsfada2msduJXIQQQihHcnKyxTCYm03lP2rUKP7++2+2b99e1dGEEEIIuyeNPiGEEGVZeZYzb2/vW772YfTo0fz0009s3bqViIgI8/rQ0FBKSkrIzs626O1LT08336NOCCGEKJeDz94pwzuFEEIogslkYvTo0Xz//fds2rSJ6Ohoi+1t2rTB2dmZjRs3mtclJCSQlJRkk/vFCSGEEDWF9PQJIYQoywZnREeNGsWKFSv44Ycf8PLyMl+n5+Pjg5ubGz4+Pjz99NOMHz8ef39/vL29GTNmDLGxsTJzpxBCiBtz8J4+afQJIYQoQ/W/xRrHuVULFy4EoEuXLhbrlyxZYr4f3Jw5c1Cr1QwYMMDi5uxCCCHEjdiirimJNPqEEEIowq3cNlar1TJ//nzmz59fDYmEEEII+yCNPiGEEGU5+DAYIYQQdsbB65o0+oQQQpRhrXsR1dT7GQkhhLAvjl7XZPZOIYQQQgghhLBj0tMnhBCiLAcfBiOEEMLOOHhdk0afwhlz8zCqnG0dowyldhEHXcy1dYTrci6ItHWEchUG2jrB9V0KdrV1hHJ1qP+3rSOUqzhPxx5rHrCGFjYhRPUYlnS3rSNcx2VbBxBK5cB1Tanf3YUQQgghhBBCWIH09AkhhCjD0S94F0IIYV8cva5Jo08IIURZDn7tgxBCCDvj4HVNhncKIYQQQgghhB2Tnj4hhBBlOPowGCGEEPbF0eua9PQJIYQQQgghhB2Tnj4hhBBlOfi1D0IIIeyMg9c1afQJIYQow9GHwQghhLAvjl7XZHinEEIIIYQQQtgx6ekTQghRloMPgxFCCGFnHLyuSaNPCCFEWQ5eHIUQQtgZB69rMrxTCCGEEEIIIeyY9PQJIYQow9EveBdCCGFfHL2uSaPPzjW76zID/5VKg+YFBITomP5sfeJ/9bN1LO5/5By9HzlPSHgRAGdPefDlf6PZsz3AxsksPTz0FE+NPs7qL2vzyftNqvVn31Evlce6HSQmMpNAnwJe+bQH2w7VKXffFx/ZRr+OR/ngu1i+3tK8SnO1jkrhydiDNA67QJBXAeO/jmNzQrR5u5uzjufv3UmXRmfwcSsiJdubL/9sxrf7mlZpLr+1qXjtu4RLahFGFzVF9Ty5MDACXajWvI9zRhFBq86hPZGHSm+koJkPGYOjMPg4V2m2a2UsMZH2IQQOhvAXVQBc/NZE9jooPAbGfGi6BTReqmrLVC4HHwYjlK3PU5kMHJmBf5Ce00fcWDC5FgkH3G0dS7G5oPqzFe/Xk/dFCboEI8ZME35va3HrfPWztvB3HQXf6yg5ZsCUC0HL3HFuqLE4hqnYRM68Ygo36EAHru2c8HnRFU1A9QxUU+r7qdRcoOxsjl7XZHinndO6G0g86s78KbVtHcVCZrqWJXPr8fygtrwwuC0H//Rjygd/EVUvz9bRzBo0yabnQ8mcPu5lk5/v5qLj5PkAZn/T8Yb73dMikaa1M7iQXT0fqlpnPcfTA3jrl7vL3T6hxw461Etm8upuDFj4KCt2NeflXtu5p+GZKs3lnnCZ7K7BJL3amHPjG4LBRMT7x1EVGwBQFRuoNecEJuDcxIYkvxKDSm+i1ocnwFg9n+AFh01c/Ba0DSzXG4vAqwMED6+WGELUaJ0fvMSIaSksfz+UUXENOX1Ey8wVp/EJ0EkuBWUzFYJzAw0+E13L314ELndo8B5V/naAnLnFFG/X4/+mGwEL3TFkGsl6pbCqIltQ6vup1FxKzybsvNFXp04dVCpVmWXUqFEAFBUVMWrUKAICAvD09GTAgAGkp6ff9Ljr16+nffv2eHl5ERQUxIABAzhz5ozFPps3b6Z169a4urpSv359li5dWgW/4c3t2ezLZ+9FsGO97Xv3rvXnlkD2bA8kJcmd82fdWfZhPYoKNMS0yLV1NAC0bnpenHGQD99sRt7l6usFutbOo1F8srYtW/+Kvu4+gT75jBuwg+mfd0VvqJ4/5x2noliw+S5+Tyg/V4uINNb81Yi9Z2uRmuPNd/ubcCI9gGbhGVWa6/y4huR2DKSklhslke6kD6+Dc1YJ2rMFALidzMM5s5j04dGURLhTEuFO2vA6uJ4twP3Y5SrNBmAoMJH0H4iYAhpvy21BQ1QED1PhXrWdtBWiMpmstgjrkboG/Udksm6FP79+5U/SCS3zXo6guFBF3OAsm+RRei5bZdN2cML7OVfcupRfQ917OeP1tCuubcsfdGbMM1GwRof3C6643umES4wG38ladIeMlPxtqLLcVyj1/VRqLqVnA6lrdt3o2717N6mpqeZlw4YNADz88MMAjBs3jjVr1rBq1Sq2bNlCSkoK/fv3v+ExExMT6du3L926dePAgQOsX7+ezMxMi+clJibSu3dvunbtyoEDBxg7dizPPPMM69evr7pftgZTq03c0zMdrZuBowd9bB0HgJEvHWH3H8Ec+DPQ1lGuS6UyMfXx31mxqQWJaf62jmP217lQOjc8Q5BXHmDiztrnifLPYefpiGrNoS4o/VJg8Cj9QqHSmUAFJqerwyZNzmpQgduJqm/0pbwF3p3Aq52Nh22KGs3R65qTs5EGLQrYt+3qCAyTScX+bV40aVNQrVlqQi5QdrYb0R0zgB6LRqFzHQ2aUBUlh6q20afU10ypuUDZ2UQpu76mLygoyOLxW2+9Rb169ejcuTM5OTksXryYFStW0K1bNwCWLFlC48aN2blzJ+3bty/3mHv37sVgMPDGG2+gVpe2mSdOnEjfvn3R6XQ4Ozvz8ccfEx0dzezZswFo3Lgx27dvZ86cOcTFxVXhb1yz1GmQx+zP9+LiYqSwQMPrY5uTfNrD1rG4574U6sfkMHZoB1tHuaHH7z2Awahi1ZZmto5i4e11nZjcewvrx36BzqDGZILXf+7MvqTw6gthNBH0VTKF9T0pqeUGQFE9D4yuGgK/PUfmQ7UACPz2PCojaHKqduhJ9noThceg/udV+mOsy8GvfVAqR69r3v4GNE6QfcHy68ulTCci6xdXW45/UmouUHa2GzFcNIEzqP9xfbPaX4XxYtV+sCj1NVNqLlB2NjMHr2t23dN3rZKSEr744guGDx+OSqVi79696HQ6unfvbt4nJiaGqKgo4uPjr3ucNm3aoFarWbJkCQaDgZycHD7//HO6d++Os3PpEIb4+HiL4wLExcXd8LjFxcXk5uZaLPbuXKI7ox9uy7ghbVj7dS0mvHGUyLr5Ns0UGFLIiAlHeXfKHehKNDd/go00irjAw53/ZubyLoCyeo4GtT1E84h0xq7syeOfDmDOhg680nM7d0Wfq7YMwcuTcD1fSOqIuuZ1Bi9nUp+ri8fBHOqP3k/9MfvRFOgpinIHVdW9hiVpJlLehcg3QO2qrPfqRq7McmaNRVQNqWtCCHHrHL2u2XVP37VWr15NdnY2Tz31FABpaWm4uLjg6+trsV9ISAhpaWnXPU50dDS//vorjzzyCP/6178wGAzExsaydu1a8z5paWmEhISUOW5ubi6FhYW4ubmVOe6sWbOYPn367f+CNZBeryY1uXTykZNHvWnQLJe+Q5L56PUYm2WqH5OLX0AJ8z7fYV6ncTLRrFUWfR5Ool/HOIxG239xv6NeGn6ehXz72grzOieNidH9dvJI50MMnPGYTXK5OukZ3e1PJnwdx/aTpZMHncgIoGFoJk+2P8ifiVU/xDN4+Vk8/som+aUY9P4uFtsKmvpwZlZz1Jd1oFFhdHei7vgD6IKqbnhs4VHQZ8GJIWA+PWiA/H2Q+bWJ5jtBpbH9vylR8zhiXcvN0mDQg2+Q3mK9X6CeSxds95VGqblA2dluRBOgAh0YL5ssevuMWSbUAVX7manU10ypuUDZ2UQph+npW7x4Mb169SI8/NaHmDVt2hRPT088PT3p1asXUFr4nn32WYYOHcru3bvZsmULLi4uDBw4EFMlLuycNGkSOTk55iU5Ofm2j1VTqdUmnF2MNs1wcHcA/x7UiTGPdzQvx4/4sHldOGMe76iIBh/Aut0NePKdgTz17gDzciHbnRWbWjD+4/ttlstJbcRZY8RosnydjEYVqqo+NWYyEbz8LJ77szk3sRH6oOvPCGf0csbo7oTb0Vw0l/XktfStslied0HDr6Hhl1cXtybg26v0/xXb4DNZcRFVwhHrml6n5sRf7rTqdPU6XJXKRMtOeRzZa7tp4ZWaC5Sd7UacYzTgBMW7rzYi9GeNGNJMuDSv2pE4Sn3NlJoLlJ3NzMHrmkM0vc+ePctvv/3Gd999Z14XGhpKSUkJ2dnZFmdF09PTCQ0NBWDt2rXodKXX+lw5izl//nx8fHx45513zM/54osviIyMZNeuXbRv357Q0NAys6Wlp6fj7e1d7tlQAFdXV1xdr/8l9XZp3Q2E17k6ljo0spi6TQq4nK3hQor1f96teur5U+z5w5+MVC3uHga69Eqn+Z3ZTHmupc0yARQWOHH2lOUtGooKNeTmOJdZX9XcXHREBOWYH4cH5NKgVia5BVrSL3mSW6C12F9vUJOV605Shm/V5nLWEel/NVct31wahmSSW+hKWq4Xe86EMbZ7PMV6Dak5XrSJSqF3i+O8v6Fqr5EMXp6E164sUkbXx6jVmK/TM7ppMLmUnt/y3p5JSZgWg5cT2lP5BK9M4lL3EIt7+VmbxkOFpr7lOrWbCScf0NYvbfDpMk3oL0Lx/74TF50AtYcJ51Bw8rFNo9DRb2KrdI5c175bFMjEuckcP+hOwn53Hnr2Alp3I7+utO2EVkrNZatsxgIThnNXT+QaUkzojhtQeatwClVjzDFhSDdiyCz9kNCfLd1XHaBCE6BG7anCvY8zufOKUfuoUHmoyJldhHNzNS7Nqv7yC6W+n0rNpfRsIHXNIRp9S5YsITg4mN69e5vXtWnTBmdnZzZu3MiAAQMASEhIICkpidjYWABq1y57b7uCggLzhe5XaDSlHz5GY+kH1j+HxQBs2LDBfNzq1LBFPu98lWB+/K+ppd8qN6wKYPbEutd7WpXz8S9hwhtH8Q8qJj/PicTjnkx5riX7dyrjg0EJYqIu8NGYn8yPn39oJwBrdzVk5oouNkoFTcIz+OTJNebHE3qUXtPz48GGvPZjNyZ9dx9juu1iZr+NeLsVk5rjxfzf7+KbvVV7c3vfzRcAiHw3wWJ92rA65HYsnYXVJa2IwO/Oock3oAt04WLvMLLvCylzrOp28RvIWHT18alnSv8b8Rr4P2iTSELhHLmubfnRD58AA0++mIZfkJ7Th934z5BosjNtc3sdpeeyVTbdUQMXR129p17uB6UnoN3ud8JvqhtF2/Rkv1Fk3n5pSun/ez7tgvezpScLfMa6kqOGrEmFUPK/m7O/VD0nrJX6fio1l9KzCVCZKjN2owYwGo1ER0czePBg3nrrLYttI0eOZO3atSxduhRvb2/GjBkDwI4dO8o7FACbNm2ie/fuvPbaawwePJjLly/z6quvcuzYMY4ePYqbmxuJiYk0a9aMUaNGMXz4cDZt2sTzzz/Pzz//fMuznOXm5uLj40NX54dxUinvj0XtY5sblt+MqgrOKltLdodIW0coV2Ggckd5X2qjzBu6Dmy919YRylWcp2P+3avJycnB29v75k8ox5XPntaDZqJxqXwPqKGkiH0r/1OpTMJSTa9rXeiryLomKi58pzK/C6S0r/rb8IjqoTfp2MwPUtesQLnf9qzkt99+IykpieHDh5fZNmfOHB544AEGDBjAPffcQ2hoqMVQmfJ069aNFStWsHr1alq1akXPnj1xdXVl3bp15iEu0dHR/Pzzz2zYsIE77riD2bNn8+mnn8rtGoQQNYajz3KmZFLXhBCi4hy9rtl9T19NJT19t0d6+ipOevoqzhF6+to8ar0zonu/qnlnRIX1SU+f/ZGePlHVrNnT5+h1zSGu6RNCCFFB1pqhTE4rCiGEUAIHr2vS6BNCCFGumjqERQghhCiPI9c15Y7rEkIIIYQQQgg78dZbb6FSqRg7dqx5XVFREaNGjSIgIABPT08GDBhQ5hY51iCNPiGEEGWZTNZbhBBCCFuzcV3bvXs3//3vf2nRooXF+nHjxrFmzRpWrVrFli1bSElJoX///tb4jS1Io08IIYQQQgghqkheXh5Dhgzhk08+wc/Pz7w+JyeHxYsX8/7779OtWzfatGnDkiVL2LFjBzt37rRqBmn0CSGEKMPRp7YWQghhX6xd13Jzcy2W4uLi6/7sUaNG0bt3b7p3726xfu/eveh0Oov1MTExREVFER8fb9XfXxp9QgghyjJZcRFCCCFszcp1LTIyEh8fH/Mya9ascn/sypUr2bdvX7nb09LScHFxwdfX12J9SEgIaWlplft9/0Fm7xRCCCGEEEKICkhOTra4T59rOfeKTk5O5oUXXmDDhg1otZW/R2BlSKNPCCFEGSpj6WKN4wghhBC2Zu265u3tfdObs+/du5eMjAxat25tXmcwGNi6dSsfffQR69evp6SkhOzsbIvevvT0dEJDQysf9hrS6BNCCFGWg9/EVgghhJ2xQV279957OXTokMW6YcOGERMTw8svv0xkZCTOzs5s3LiRAQMGAJCQkEBSUhKxsbFWCHuVNPqEEEIIIYQQwsq8vLxo1qyZxToPDw8CAgLM659++mnGjx+Pv78/3t7ejBkzhtjYWNq3b2/VLNLoUziTrgSTAqe/MxWX2DpCuZSaC8Dn95O2jlAuY48Gto5wXV5HXWwdoVzf6NvaOkK5jIVFwGqrHMtaM28q8ONLCGEl27c0u/lONlAX6856KOyDUuvanDlzUKvVDBgwgOLiYuLi4liwYIF1fwjS6BNCCFEea91YXW7OLoQQQgkUUtc2b95s8Vir1TJ//nzmz59fqePejNyyQQghhBBCCCHsmPT0CSGEKEOpw2CEEEKI2+HodU16+oQQQgghhBDCjklPnxBCiLLklg1CCCHsiYPXNWn0CSGEKMPRh8EIIYSwL45e12R4pxBCCCGEEELYMenpE0IIUZZCprYWQgghrMLB65o0+oQQQpTh6MNghBBC2BdHr2syvFMIIYQQQggh7Jj09AkhhCjLwWc5E0IIYWccvK5Jo08IIUQZjj4MRgghhH1x9LomwzuFEEIIIYQQwo5JT58QQoiyjKbSxRrHEUIIIWzNweuaNPocQJ+nMhk4MgP/ID2nj7ixYHItEg642zTTIyOS6djjIhF1CykpUnNkvxf/914dzidKruu5/5Fz9H7kPCHhRQCcPeXBl/+NZs/2gGrN0bJuCkO6HKRRrUyCfAp4eUkPth6ONm+f/Ojv9G573OI5O49FMO7T3lWa6+m79nFvg9NE+2dTrNdwICWUuVvbc+aSn3kfF42eiV120LPRSVw0BnacieSNjfeQVVC176/fuhS89l/CJa0Qo4uaorqeXHgoEl2om3kfTU4JQd8l4340F3WRgZIQLVm9wslr7V+l2a7Lwa99EMqmxLqm5Fxg+2y/P/QFEZ55ZdZ/kdCU6X/ejYtaz6Q74+ld5yQuagPbUyKZ9ufdXCyy3etn69espuUCZWdz9LomwzsBg8HAlClTiI6Oxs3NjXr16vH6669juuY+HCaTialTpxIWFoabmxvdu3fnxIkTNkx9azo/eIkR01JY/n4oo+IacvqIlpkrTuMToLNpruZ35bBmeRjjHmnBq8Oa4uRkYubiw7i6GSTXdWSma1kytx7PD2rLC4PbcvBPP6Z88BdR9coW0aqkddFzIiWA2d93uu4+8cci6T39CfMydXn3Ks91Z0QKKw804/EV/RnxTR+c1EY+HvgTbk5X/62/1OUPOtc9y8Q1PRj2VT+CPAuY8+D6Ks/mfvwy2Z2DSXq5CedeiAGDiYh5CaiKr/67Cl16Gpe0IlJGNuDslGbktfIj7JOTuCblV3k+YX+krkkupWUbsHYAsaueNC9DNzwAwC9n6wLwnzt30C3iLM9v7cGQX/sS7F7A/M5V//l8PUp4zWpSLqVnE9LoA+Dtt99m4cKFfPTRRxw9epS3336bd955hw8//NC8zzvvvMO8efP4+OOP2bVrFx4eHsTFxVFUVFTuMc+cOYNKpaquX+G6+o/IZN0Kf379yp+kE1rmvRxBcaGKuMFZNs015Zlm/PZ9CEknPUhM8OT9VxoSUquYBk2rtwFTU3IB/LklkD3bA0lJcuf8WXeWfViPogINMS1yqzXHzmNRLFp3F1v+jr7uPiV6DVmX3c3L5ULXKs818rsH+PFwDKcu+nP8QiBT1nUj3DuPJiEXAPB0Keah5sd4b3MH/kyO4GhGEFPWd6VVrTRahKVVabbzzzcit0MQJeHulES4kz60Ls5ZJWivadC5nc7jUtcQiqI90QVpybq/FkZ3jc0afSquXvReqcUm6YXUNcmltGxZxW5kFrmbl64RZzmb682f6eF4OhczsP4xZu2JZWdaLQ5nBfHKji60CU6nZWB6tWW8lhJes5qUS+nZQOqaNPqAHTt20LdvX3r37k2dOnUYOHAgPXr04M8//wRKz4bOnTuXyZMn07dvX1q0aMGyZctISUlh9erVtg1/A07ORhq0KGDfNi/zOpNJxf5tXjRpU2DDZGW5e+kBuJyjrBHHSs2lVpu4p2c6WjcDRw/62DpOGa3rpfDza5+x8qWVvNh/G97u5X+JrEqeriUA5BSVNjibhFzAWWNkZ1KEeZ8zWX6k5HrSIqx6v1SoC0t7+AzuV/9dFdb1xGvvRdT5ejCa8Np9EZXORGFD72rNJuyD1DXJdYUSszmrDTwYfYJvTsUAKpoFZOKiMfJH6tXP59O5fpzP86RlUNWelCuPEl8zJecCZWcTpaTRB3To0IGNGzdy/HjpdUgHDx5k+/bt9OrVC4DExETS0tLo3v3qEDUfHx/atWtHfHy8VTIUFxeTm5trsVSWt78BjRNkX7BssFzKdMIvSF/p41uLSmXiX6+e5vBeb86e8LB1HDMl5qrTII9vd27hhz2bGT05gdfHNif5tDKyXbEzIZIZX3bl+Y8fYMHP7WhVL4U5z6xFrTJWWwYVJl7q8gf7zody8mLpNY+BHgWU6NVcLrbsdbyY706gRzUWJKOJoFVnKaznSUmtq9c5pD5bH5XBRP0J+2gweg/By8+Q8lwDdMHa6st2LZPJeouodlLXqpdSc4Eys3WPTMTbpZjvTjUCIEhbQIlBzWWd5edzZpEbQdrCas+nxNcMlJsLlJ3NzMHrmrK6L2zklVdeITc3l5iYGDQaDQaDgZkzZzJkyBAA0tJKzzKFhIRYPC8kJMS8rbJmzZrF9OnTrXKsmmbUtFPUaVDAxMda2DqKBSXmOpfozuiH2+LhqafTfReY8MZRXhreWlENv98O1Df//6m0AE6mBvDtq1/Sul4Ke05G3OCZ1vOfe7dSPzCLp1b2q5afVxHBK8/ier6Q5BebWKwP+PEc6gIDyWMbYfB0xvPAJcI+OUnyxMYWjcPq4uj3M6rppK4JJXu4/jG2pkSRUaic2iXsn6PXNenpA77++muWL1/OihUr2LdvH5999hnvvfcen332WYWO07RpUzw9PfH09KRp06YA5seenp7mM6zlmTRpEjk5OeYlOTm5Ur8TQG6WBoMefP9xhsUvUM+lC8po74+ccoq7umTx8tDmZKZX/XVft0qpufR6NanJ7pw86s3SefU4fdyTvkMq/2+lKqVkeXMpT0tEYPVcezip2zbuqXeWZ75+kPQ8T/P6zHx3XJyMeLkWW+wf4FFAZn71NKqCvzyDx6Fsksc3Ru/nYl7vfKEIv80ZpD8ZTWGMDyUR7mQ9UIui2h74brbN9SyiZpO6Vr2UmguUly3c4zIdQs/z9YkY87oLRe64aIx4OVt+PgdqC7lQ5PbPQ1Q5pb1mVyg1Fyg7mygl7wLw4osv8sorrzBo0CAAmjdvztmzZ5k1axZDhw4lNDQUgPT0dMLCwszPS09Pp2XLlubHa9euRacrnaHo/PnzdOnShQMHDpi3u7ld/4PL1dUVV1frNi70OjUn/nKnVafLxK8rve5LpTLRslMePy6t3mn+yzIxcsppOtx3kZefaE76ORsNYStDqbnKp1abcHapvmGTtyPIJw8f9yIyc6u6YWViUrftdKufyNNfP8j5XMtr4Y6kB6EzqGkXdY7fTtQDoI7fJcK98/grNaS8A1oxmonglWfxPHCptMEXaPm3rir533v4z0ky1NhuamgHn9q6ppO6Vr2UmkuJ2QbUO8bFIjc2n69tXvf3xUBKDGo6hJ1nfVLpbJ7R3tnU8szjwIXQas+otNdM6bmUns3MweuaNPqAgoIC1GrLTk+NRoPRWPpFLDo6mtDQUDZu3Gguhrm5uezatYuRI0ean1O79tUPMCen0pe2fv2rQ91s4btFgUycm8zxg+4k7HfnoWcvoHU38utKG937639GTTtFlwcuMOPfTSjM1+AXWDrpRv5lDSXFGslVjqeeP8WeP/zJSNXi7mGgS690mt+ZzZTnWlZrDjcXHRGBOebH4f6XaRCeSW6BK7kFWp7usYff/6rLxcvuRATkMOqBXZy76MOuhMgqzfWfe7fRK+YEL/zQi/wSFwLcS6/TyytxoVjvRF6JK98fimFilx3kFGnJK3Zh0r3bOJASwl+pVfulIvjLs3jtvkjKyAYYtWo0OaX/roxuTphc1JSEaikJciV4+RkyB0Ri8HTC88Al3I/mkvLvhlWa7XpUJhMqK1y3YI1jiIqTuia5lJhNhYkB9RL4/nRDDKar/z7zdK58czKGSW12kF3sSp7Ohaltt7MvI4QDmVV8Uu46lPKa1ZRcSs8GUtek0Qf06dOHmTNnEhUVRdOmTdm/fz/vv/8+w4cPB0ClUjF27FjeeOMNGjRoQHR0NFOmTCE8PJx+/frZNvxNbPnRD58AA0++mIZfkJ7Th934z5BosjOdbZrrgcdKrxl554tDFutnv9KA3763zQc8KDcXgI9/CRPeOIp/UDH5eU4kHvdkynMt2b+zej9MYyIvsGDkGvPjF/qWTvrw8+6GvPvt3dQLy6LXncfx0paQmevOruMRLFrXFp2hahvNj7Y8DMCSR3+wWD95XVd+PFw6jOidzR0xouL9PutxcTLwx5lIZv52T5XmAvDdmgFA5PvHLNanPRlNbocg0Kg5P7oRgauTCV9wHHWxEV2QK2lD65Lf3LfK8ynJ1q1beffdd9m7dy+pqal8//33Fp+zJpOJadOm8cknn5CdnU3Hjh1ZuHAhDRo0sF1oBZK6JrmUmK1j2DlqeebxzcmYMttm7umAERUfdf4VF83/bs6+6+5qzXctpbxmNSWX0rMJUJlMNbS5akWXL19mypQpfP/992RkZBAeHs7gwYOZOnUqLi6l191c+aKxaNEisrOz6dSpEwsWLKBhw/LPwp85c4bo6Ghu9+XNzc3Fx8eHLvTFSaW8Pxa1l9fNdxIWVK4uN9/JBi71UO6X5fwwZV52fLmBQmYi+wdjYRHnxk4lJycHb+/bu9XDlc+eu++ZhpNT5Yc36/VFbNs6/ZYz/fLLL/zxxx+0adOG/v37l2n0vf3228yaNYvPPvvM3FA5dOgQR44cQatV9nDs6iR1TVSH02/H2jpCueq+bJ0ZaIXt6U06NvNDja5rSiGNPoVSenGURl/FSaOv4qTRVzHWbPTdc/dUqxXHrdtm3FYmlUpl0egzmUyEh4czYcIEJk6cCEBOTg4hISEsXbrUfP2aUCal1zVRcdLoE1XNmo0+JdQ1W/r/9u48LKrq/wP4e1iHHTc2Y1NT0EgFk0gTUQyLHjU0KbVwCSuxXMqlxa0y1KT8mqYWBhka7uSOhFqauIDi8hVREJVKtPomiAvLzPn9Qdwf47AMMMow8349z30e595zz/3MAe7Hc+859+rm/6iIiEiv3P++tpKSkrp3us/DeLccERGRPmKnj4iI1AktLgBcXV1hZ2cnLdHR0fUO6WG8W46IiPSUlvNac8MHuRAR0QOXn5+vMgxG24/yJyIiopqx00dEROqEqFi0UQ8AW1vbRs990PTdckRERGq0nNeaGw7vJCIiNTKhvUVbqr5brlLlu+UCAnTzgRJERKQbdDGvPUy800dERDqjuLgYOTk50ue8vDxkZmaiZcuWcHNza7bvliMiImpK7PQREZG6JhoGk56ejqCgIOnz1KlTAQARERGIj4/H9OnTcfv2bYwfP156t9yePXv4jj4iIqqdgQ/vZKePiIjUyJQVizbqqY++ffvW+vJvmUyGjz76CB999FEjIyMiIkPSVHlNV3BOHxERERERkR7jnT4iIlJn4MNgiIhIzxh4XmOnj4iI1GnrBbTNMzcSEZG+MfC8xk6fjqqc01KOMp385TISpU0dQrOjq2PAFWX3mjqEGilKdHMEuvJueVOHUC3lvYqfZW1z4oiaiq7nNaq/ynOOrikXZU0dAmlJOSp+lsxrjcdOn466desWAOAQdjVxJDW41dQBkNZsaOoASNtu3boFOzu7RtUhEwIyLSRZbdRB+kHn8xrV3+wfmzqCal1u6gBI65jXGo+dPh3l4uKC/Px82NjYQCaTNaquoqIiuLq6Ij8/H7a2tlqKUDt0NTZdjQvQ3dh0NS5Ad2PTdlxCCNy6dQsuLi6ND87A5z6Q9jGvNS1djQvQ3dh0NS7AcGJjXtMedvp0lJGRER555BGt1mlra6tzJ4ZKuhqbrsYF6G5suhoXoLuxaTOuxl4JJXpQmNd0g67GBehubLoaF2AYsTGvaQc7fUREpE4A0MY81OZ5QZSIiPSNgec13XxKAhEREREREWkF7/QZAHNzc8yZMwfm5uZNHYoaXY1NV+MCdDc2XY0L0N3YdDUugBPeSbfp8t+Orsamq3EBuhubrsYFMLaGMPS8JhN8BioREf2rqKgIdnZ26NdtJkyMG5+wyxUl2Je5AIWFhTo774SIiPQX81oFDu8kIiIiIiLSsujoaDzxxBOwsbGBg4MDhgwZguzsbJUy9+7dQ1RUFFq1agVra2sMHToU169f13os7PQREZG6ykdba2MhIiJqak2Q137++WdERUXhyJEjSElJQVlZGZ555hncvn1bKjNlyhRs374dGzduxM8//4w//vgDYWFhWv/6nNNHRETqlAAa9yq1/6+HiIioqTVBXtuzZ4/K5/j4eDg4OCAjIwN9+vRBYWEhVq9ejXXr1qFfv34AgLi4OHh7e+PIkSN48skntRBwBd7pIyIiIiIiqoeioiKVpaSkpM59CgsLAQAtW7YEAGRkZKCsrAzBwcFSGS8vL7i5uSEtLU2r8bLTp0c8PDywZMmSpg6DiPRA5VPOtLEQNQZzGxFpg7bzmqurK+zs7KQlOjq61uMrlUpMnjwZvXr1wmOPPQYAKCgogJmZGezt7VXKOjo6oqCgQKvfn52+h6hv376YPHmy2vr4+Hi1H7Yuyc7ORlBQEBwdHSGXy9GuXTs8++yz8PHxga2tLWxtbREQEID3338fXl5ekMvl6NKlC55//vkGT0rNycmBjY1Nte2yceNG6Tg+Pj7YtWtXjfUsWLAAMplMpd0bMmH28uXLkMlkasuRI0c0jm3u3Llq+3t5eTUqLgAQQmDx4sXo2LEjzM3N0bZtW8yfP1+lzIEDB+Dr6wtzc3N06NAB8fHxKtt///13jBo1Cq1atYKFhQV8fHyQnp6ucozZs2fD2dkZFhYWCA4OxsWLF2uNKz4+vto2k8lkuHHjhkaxeXh4VLt/VFRUo9osOTkZTz75JGxsbNCmTRsMHToUly9frlebVUehUGDWrFnw9PSEhYUF2rdvj48//hhVH5LckLZsEpzTRxrSl9zWunVrODo6quS13bt3S+d1c3NztGrVCra2tsxr/2JeY15raFs2CS3ntfz8fBQWFkrLe++9V+vho6KicPbsWSQmJj6Mb6uGnT6SlJaWVrve1NQUr776Kvbu3Yvs7GwsWbIEaWlp8Pb2RkZGBtLT09GxY0dER0cjNDQUJ0+ehFwux86dO7Fo0aJ6T0otKyvDyy+/jKefflpt2+HDh/Hyyy9j3LhxOHnyJIYMGYIhQ4bg7NmzamWPHz+OVatW4fHHH1dZ35gJsz/99BOuXbsmLX5+fvWKrUuXLir7Hzp0qNFxTZo0CbGxsVi8eDHOnz+Pbdu2oWfPntL2vLw8hIaGIigoCJmZmZg8eTJee+01JCcnAwD++ecf9OrVC6ampti9ezfOnTuHmJgYtGjRQqpj0aJFWLp0KVauXImjR4/CysoKISEhuHfvXo1xhYeHq3zXa9euISQkBIGBgXBwcNAotuPHj6vsn5KSAgB48cUXG9xmeXl5GDx4MPr164fMzEwkJyfjr7/+UtmvrrhqsnDhQqxYsQLLli1DVlYWFi5ciEWLFuHLL79scFtW/seMiBpG09z2xhtvoKSkBCNGjEB6ejr69euHQYMG4aWXXsK4cePwwgsvoLy8HHfu3MHq1auZ1/7FvMa8Zqh5rfICUeVS23sJJ06ciB07dmD//v145JFHpPVOTk4oLS3FzZs3Vcpfv34dTk5O2g1Y0EMTGBgoJk2apLY+Li5O2NnZSZ8jIiLE4MGDxWeffSacnJxEy5YtxYQJE0RpaalU5vr16+L5558XcrlceHh4iISEBOHu7i6++OILqcw///wjxo0bJ1q3bi1sbGxEUFCQyMzMlLbPmTNHdO3aVXzzzTfCw8NDyGQyjb/LlClTRO/evaXPw4cPF6ampiI2NlbcvHlTmJqaig4dOojXX39dCCFEVlaWACDS0tLqrHv69Oli1KhRau1SeZzQ0FCVdf7+/tJxKt26dUs8+uijIiUlRaXdK2PbuHGjVFaT2PLy8gQAcfLkyRrL1BVbZXtXp6FxnTt3TpiYmIjz58/XWGb69OmiS5cuKuvCw8NFSEiIEEKIGTNmqPws76dUKoWTk5P47LPPVOI1NzcXP/zwQ4373e/GjRvC1NRUrFmzRuPY7jdp0iTRvn17oVQqG9xmGzduFCYmJkKhUEjrtm3bJmQymfQ3Vt+4KoWGhoqxY8eqrAsLCxMjR44UQjSsLSt/9x6WwsJCAUD07/yuCPH5oNFL/87vCgCisLDwoX0Herj0ObeZmZkJHx8flfNN5XmdeY15jXmNea0uSqVSREVFCRcXF3HhwgW17ZU/802bNknrzp8/r/G5pT54p09H7d+/H7m5udi/fz++++47xMfHq9yGHz16NPLz87F//35s2rQJX331lcrQAqDiqtGNGzewe/duZGRkwNfXF/3798f//vc/qUxOTg42b96MLVu2IDMzU6PYcnJysGfPHgQGBgKouPWfmpoKpVKJgIAAaVJqWFiYNAlV00mp+/btw8aNG7F8+fJqt6elpalMdgWAkJAQtXqjoqIQGhqqVraxE2YHDRoEBwcH9O7dG9u2bat3bBcvXoSLiwvatWuHkSNH4urVq42Ka/v27WjXrh127NgBT09PeHh44LXXXlP5GdcV17Zt29CjRw+8+OKLcHBwQPfu3fHNN99IZfPy8lBQUKBSh52dHfz9/es1yXjNmjWwtLTEsGHDNI6tqtLSUiQkJGDs2LGQyWQNbjM/Pz8YGRkhLi4OCoUChYWF+P777xEcHAxTU9N6x1XVU089hdTUVFy4cAEAcOrUKRw6dAjPPvssAO21JVFz1Vxym0KhQGJiIkpLS/Hcc8+pnG8qzwXMaxWY15jXmNdqFhUVhYSEBKxbtw42NjYoKChAQUEB7t69C6CircaNG4epU6di//79yMjIwJgxYxAQEKDVJ3cCfGWDzmrRogWWLVsGY2NjeHl5ITQ0FKmpqYiMjMSFCxewe/duHDt2DE888QQAYPXq1fD29pb2P3ToEI4dO4YbN25It5sXL16MpKQkbNq0CePHjwdQccJZs2YN2rRpU2dMTz31FE6cOIGSkhKMHz8eL774IqytrXHv3j0oFApMmzYNnTt3RmZmJszMzODu7q4yCbWuSal///03Ro8ejYSEBNja2lZbpqCgAI6Ojirr7q83MTERJ06cwPHjx6vdvyETZq2trRETE4NevXrByMgImzdvxpAhQ5CUlIRBgwZpFJu/vz/i4+PRqVMnXLt2DfPmzcPTTz+Ns2fPNjiuS5cu4cqVK9i4cSPWrFkDhUKBKVOmYNiwYdi3b1+tcRUVFeHu3bu4dOkSVqxYgalTp+L999/H8ePH8fbbb8PMzAwRERHS8etq97qsXr0aI0aMgIWFhbSurtiqlk1KSsLNmzcxevRoad+GtJmnpyf27t2L4cOH4/XXX4dCoUBAQIDKPJX6xFXVzJkzUVRUBC8vLxgbG0OhUGD+/PkYOXKkVG9lXfWJuUloaz4e5/RRFbqe24YNG4YlS5ZgwYIFsLa2hrGxMbp27apyvqn698q8xrzGvMa8VpsVK1YAqJj7XFVcXJz0c//iiy9gZGSEoUOHoqSkBCEhIfjqq68aH+d92OnTUV26dIGxsbH02dnZGWfOnAEAZGVlwcTERGXcvZeXl8pJ4tSpUyguLkarVq1U6r179y5yc3Olz+7u7holRQBYv349bt26hVOnTmHatGlwd3dHZmYmCgsL0bNnT6xcuVL6Bdbk+125cgUA8PTTT2P37t2IjIzEiBEj0KdPH43qqE5+fj4mTZqElJQUyOXyBtVRXWytW7fG1KlTpTJPPPEE/vjjD3z22WdScqxL5VUxAHj88cfh7+8Pd3d3bNiwocaTbV1xKZVKlJSUYM2aNejYsSOAiiTk5+eH7OxsdOrUqc56lUolevTogU8//RQA0L17d5w9exYrV65ERESExt/t4MGDACp+p/773/+qbE9LS0NWVha+//57jeqrzurVq/Hss8/CxcVF432qa7OCggJERkYiIiICL7/8Mm7duoXZs2dj2LBhSElJadQ8gw0bNmDt2rVYt24dunTpIs2bcHFx0bgt749b/JtcrK2tpe2V3+WB4nv66AHQ9dz27rvvYsKECQgPD8emTZuwYMEC/Pbbb2jbtq1G3415jXmtPpjX9D+vCQ06iHK5HMuXL69xNIC2sNP3ENna2krv56jq5s2bsLOzU1lXeTu+kkwmg1Kp+W9ZcXExnJ2dceDAAbVtVROolZWVxnW6uroCADp37gyFQoHx48djxowZMDY2Rtu2bSGXy/Gf//wH4eHhKC0txZUrV1QmoVadlLpr1y6UlZUBgJQY9u3bh23btmHx4sUAKv5QlEolTExM8PXXX2Ps2LFwcnJSe4pV1XozMjJw48YN+Pr6StsVCgV++eUXLFu2DMnJydKE2artUFds1fH395cmYAOoM7b72dvbo2PHjsjJycGAAQMaFJezszNMTEykxAhAuip+9epVdOrUqca4bG1tYWFhAWdnZ3Tu3Fllu7e3NzZv3ix9r8p9nJ2dVero1q0bACA2NlYaqnD/727l9m7duqn8Z662NquMrdKVK1fw008/YcuWLSr7NqTNli9fDjs7OyxatEjaJyEhAa6urjh69CiefPJJjeO637Rp0zBz5ky89NJLAAAfHx9cuXIF0dHRiIiI0Kgt74/7999/R9++fVWGqGnynymih0Ufc1t0dDT8/PzwxRdfYOvWrfjkk0+k803VcwzzmirmNea1qnUzr+kWdvoeok6dOmHv3r1q60+cOKFycquLl5cXysvLkZGRIQ2Byc7OVnnyj6+vLwoKCmBiYgIPD4/Ghq5GqVSirKwMSqUSxsbGCAgIQGpqKkpKSuDn5wdTU1MkJSUhKChIiu/q1asICAgAUHHV7H5paWlQKBTS5x9//BELFy7E4cOHpauslcep+qjqlJQUqd7+/ftLV40rjRkzBl5eXpgxYwZcXV1hamqK1NRUDB06VOPYqpOZmalygqsrtvsVFxcjNzcXr7zyitRm9Y2rV69eKC8vR25uLtq3bw8A0rj7yvL3D/G4P65evXohOztbZfuFCxek/T09PeHk5ITU1FTpBF5UVISjR4/izTffBIBar4IXFxdjw4YN1b6/pq7YKsXFxcHBwQGhoaHSuoa22Z07d2BkpDqdufLOQ+V/PjWNS9O6K+vVpC3vj9vEpOI03aFDh1qPrW3aesce39On//Q5t9nZ2SE/P1/lfFN5LmBeU8e8xrwGMK/pLK0+FoZqlZubK+RyuXjrrbfEqVOnxPnz50VMTIwwMTERu3fvlspVPuGsqkmTJonAwEDp88CBA0X37t3FkSNHRHp6uujdu7ewsLCQnnCmVCpF7969RdeuXUVycrLIy8sTv/76q3j//ffF8ePHhRC1P3WrqoSEBLF+/Xpx7tw5kZubK9avXy+sra1FcHCwyMvLE6dPnxajRo0SAMT48eNFVlaW8PPzEwDE6tWrRXp6uggICBABAQH1aq/qnnL266+/ChMTE7F48WKRlZUl5syZI0xNTcWZM2dqrOf+J8u98cYbws3NTezbt0/j2OLj48W6detEVlaWyMrKEvPnzxdGRkbi22+/1Ti2d955Rxw4cED6WQQHB4vWrVuLGzduNDguhUIhfH19RZ8+fcSJEydEenq68Pf3FwMGDJDKXLp0SVhaWopp06aJrKwssXz5cmFsbCz27NkjhBDi2LFjwsTERMyfP19cvHhRrF27VlhaWoqEhASpjgULFgh7e3vx448/itOnT4vBgwcLT09Pcffu3VrjE0KI2NhYIZfLxT///KO2ra7YKr+jm5ubmDFjhtr+DWmz1NRUIZPJxLx588SFCxdERkaGCAkJEe7u7uLOnTsax1WdiIgI0bZtW7Fjxw6Rl5cntmzZIlq3bi2mT58ulalvWzbVU86CH50iBnrNbPQS/OgUPr1Tz+lLbhs8eLBo1aqVGDx4sDh9+rSYOXOmkMlkwsjISCxevFiEh4cLOzs7YWxsLBITE5nXBPMa81oF5rXmgZ2+h+zYsWNiwIABok2bNsLOzk74+/uLrVu3qpTRJDFeu3ZNhIaGCnNzc+Hm5ibWrFmj9ljroqIi8dZbbwkXFxdhamoqXF1dxciRI8XVq1eFEJonxsTEROHr6yusra2FlZWV6Ny5s/Dz8xNubm7CzMxMtGnTRvTv3198+OGHomPHjsLMzEx4e3uL0NBQ0aJFC2FpaSleeOEFce3atXq1VXXJUQghNmzYIB2nS5cuYufOnbXWc39yvHv3rpgwYUK9YouPjxfe3t7C0tJS2Nraip49e6o8UlmT2MLDw4Wzs7MwMzMTbdu2FeHh4SInJ6dRcQkhxO+//y7CwsKEtbW1cHR0FKNHjxZ///23Spn9+/eLbt26CTMzM9GuXTsRFxensn379u3iscceE+bm5sLLy0t8/fXXKtuVSqWYNWuWcHR0FObm5qJ///4iOzu7ztiEECIgIECMGDGixu11xZacnCwAVHu8hrbZDz/8ILp37y6srKxEmzZtxKBBg0RWVla94qpOUVGRmDRpknBzcxNyuVy0a9dOfPDBB6KkpEQqU9+2ZHKk5kAfcpu9vb2wt7dXyWt79+6VzuumpqaiRYsWwtramnntX8xr1WNeY17TRTIhmus9SiIi0raioiLY2dkhuP1kmBjX/KJZTZUrSvBT7hIUFhbW+PRCIiKiB4V5rQLn9BERkTq+soGIiPSJgec1vpydiIiIiIhIj/FOHxERVUNLV0TRPK+IEhGRvjHsvMZOHxERqTPwYTBERKRnDDyvcXgnERERERGRHuOdPiIiUqcU0MoQFmXzvCJKRER6xsDzGu/0ERERERER6TF2+ogegNGjR2PIkCHS5759+2Ly5MkPPY4DBw5AJpPh5s2bNZaRyWRISkrSuM65c+eiW7dujYrr8uXLkMlkyMzMbFQ99AAJpfYWImr2mNdqx7zWDBh4XmOnjwzG6NGjIZPJIJPJYGZmhg4dOuCjjz5CeXn5Az/2li1b8PHHH2tUVpOERvTAVU5418ZCRA8E8xpRPRh4XuOcPjIoAwcORFxcHEpKSrBr1y5ERUXB1NQU7733nlrZ0tJSmJmZaeW4LVu21Eo9REREVTGvEZEmeKePDIq5uTmcnJzg7u6ON998E8HBwdi2bRuA/x+6Mn/+fLi4uKBTp04AgPz8fAwfPhz29vZo2bIlBg8ejMuXL0t1KhQKTJ06Ffb29mjVqhWmT58Ocd9VoPuHwZSUlGDGjBlwdXWFubk5OnTogNWrV+Py5csICgoCALRo0QIymQyjR48GACiVSkRHR8PT0xMWFhbo2rUrNm3apHKcXbt2oWPHjrCwsEBQUJBKnJqaMWMGOnbsCEtLS7Rr1w6zZs1CWVmZWrlVq1bB1dUVlpaWGD58OAoLC1W2x8bGwtvbG3K5HF5eXvjqq6/qHQs1IaXQ3kJEDwzzWt2Y1wiAwec13ukjg2ZhYYG///5b+pyamgpbW1ukpKQAAMrKyhASEoKAgAAcPHgQJiYm+OSTTzBw4ECcPn0aZmZmiImJQXx8PL799lt4e3sjJiYGW7duRb9+/Wo87quvvoq0tDQsXboUXbt2RV5eHv766y+4urpi8+bNGDp0KLKzs2FrawsLCwsAQHR0NBISErBy5Uo8+uij+OWXXzBq1Ci0adMGgYGByM/PR1hYGKKiojB+/Hikp6fjnXfeqXeb2NjYID4+Hi4uLjhz5gwiIyNhY2OD6dOnS2VycnKwYcMGbN++HUVFRRg3bhwmTJiAtWvXAgDWrl2L2bNnY9myZejevTtOnjyJyMhIWFlZISIiot4xURMw8PcZETVXzGvqmNcIgMHnNXb6yCAJIZCamork5GS89dZb0norKyvExsZKw18SEhKgVCoRGxsLmUwGAIiLi4O9vT0OHDiAZ555BkuWLMF7772HsLAwAMDKlSuRnJxc47EvXLiADRs2ICUlBcHBwQCAdu3aSdsrh8w4ODjA3t4eQMUV1E8//RQ//fQTAgICpH0OHTqEVatWITAwECtWrED79u0RExMDAOjUqRPOnDmDhQsX1qttPvzwQ+nfHh4eePfdd5GYmKiSHO/du4c1a9agbdu2AIAvv/wSoaGhiImJgZOTE+bMmYOYmBipTTw9PXHu3DmsWrWKyZGI6AFgXqsZ8xoRO31kYHbs2AFra2uUlZVBqVRixIgRmDt3rrTdx8dHZb7DqVOnkJOTAxsbG5V67t27h9zcXBQWFuLatWvw9/eXtpmYmKBHjx5qQ2EqZWZmwtjYGIGBgRrHnZOTgzt37mDAgAEq60tLS9G9e3cAQFZWlkocAKREWh/r16/H0qVLkZubi+LiYpSXl8PW1laljJubm5QYK4+jVCqRnZ0NGxsb5ObmYty4cYiMjJTKlJeXw87Ort7xUBMR0NIV0cZXQUQ1Y16rG/MaATD4vMZOHxmUoKAgrFixAmZmZnBxcYGJieqfgJWVlcrn4uJi+Pn5ScM7qmrTpk2DYqgc1lIfxcXFAICdO3eqJCWgYj6HtqSlpWHkyJGYN28eQkJCYGdnh8TEROkqa31i/eabb9SStbGxsdZipQfMwIfBEDUXzGu1Y14jiYHnNXb6yKBYWVmhQ4cOGpf39fXF+vXr4eDgoHZVsJKzszOOHj2KPn36AKi48peRkQFfX99qy/v4+ECpVOLnn3+WhsFUVXlFVqFQSOs6d+4Mc3NzXL16tcYrqd7e3tLk/UpHjhyp+0tWcfjwYbi7u+ODDz6Q1l25ckWt3NWrV/HHH3/AxcVFOo6RkRE6deoER0dHuLi44NKlSxg5cmS9jk9ERPXDvFY75jWiCnx6J1EtRo4cidatW2Pw4ME4ePAg8vLycODAAbz99tv47bffAACTJk3CggULkJSUhPPnz2PChAm1vovIw8MDERERGDt2LJKSkqQ6N2zYAABwd3eHTCbDjh078Oeff6K4uBg2NjZ49913MWXKFHz33XfIzc3FiRMn8OWXX+K7774DALzxxhu4ePEipk2bhuzsbKxbtw7x8fH1+r6PPvoorl69isTEROTm5mLp0qXYunWrWjm5XI6IiAicOnUKBw8exNtvv43hw4fDyckJADBv3jxER0dj6dKluHDhAs6cOYO4uDh8/vnn9YqHmpBSqb2FiHQG8xrzmsEy8LzGTh9RLSwtLfHLL7/Azc0NYWFh8Pb2xrhx43Dv3j3pCuk777yDV155BREREQgICICNjQ1eeOGFWutdsWIFhg0bhgkTJsDLywuRkZG4ffs2AKBt27aYN28eZs6cCUdHR0ycOBEA8PHHH2PWrFmIjo6Gt7c3Bg4ciJ07d8LT0xNAxXyEzZs3IykpCV27dsXKlSvx6aef1uv7Dho0CFOmTMHEiRPRrVs3HD58GLNmzVIr16FDB4SFheG5557DM888g8cff1zl0dWvvfYaYmNjERcXBx8fHwQGBiI+Pl6KlYiImgbzGvMaGSaZqGlWLhERGZyioiLY2dkhuM04mBg1/iXO5cpS/PTnahQWFtY4lIyIiOhBYV6rwDl9RESkzsAnvBMRkZ4x8LzG4Z1ERERERER6jHf6iIhInVJAKy8jUjbPK6JERKRnDDyvsdNHRERqhFBCiMY/oUwbdRARETWWoec1Du8kIiIiIiLSY7zTR0RE6oTQzhCWZjrhnYiI9IyB5zV2+oiISJ3Q0tyHZpociYhIzxh4XuPwTiIiIiIiIj3GO31ERKROqQRkWpis3kwnvBMRkZ4x8LzGTh8REakz8GEwRESkZww8r3F4JxERERERkR7jnT4iIlIjlEoILQyDaa7vMyIiIv1i6HmNd/qIiIiIiIj0GO/0ERGROgOf+0BERHrGwPMaO31ERKROKQCZ4SZHIiLSMwae1zi8k4iIiIiISI/xTh8REakTAoA23mfUPK+IEhGRnjHwvMZOHxERqRFKAaGFYTCimSZHIiLSL4ae1zi8k4iIiIiISI+x00dEROqEUntLPS1fvhweHh6Qy+Xw9/fHsWPHHsAXJCIig2LgeY2dPiIiUiOUQmtLfaxfvx5Tp07FnDlzcOLECXTt2hUhISG4cePGA/qmRERkCAw9r7HTR0REOuPzzz9HZGQkxowZg86dO2PlypWwtLTEt99+29ShERER1Zuu5DV2+oiISF0TDIMpLS1FRkYGgoODpXVGRkYIDg5GWlrag/iWRERkKAw8r/HpnUREpKYcZYAWHlBWjjIAQFFRkcp6c3NzmJubq6z766+/oFAo4OjoqLLe0dER58+fb3wwRERksAw9r7HTR0REEjMzMzg5OeFQwS6t1WltbQ1XV1eVdXPmzMHcuXO1dgwiIqLqMK9VYKePiIgkcrkceXl5KC0t1VqdQgjIZDKVdfdfDQWA1q1bw9jYGNevX1dZf/36dTg5OWktHiIiMhzMaxXY6SMiIhVyuRxyufyhH9fMzAx+fn5ITU3FkCFDAABKpRKpqamYOHHiQ4+HiIj0A/MaO31ERKRDpk6dioiICPTo0QM9e/bEkiVLcPv2bYwZM6apQyMiIqo3Xclr7PQREZHOCA8Px59//onZs2ejoKAA3bp1w549e9QmwRMRETUHupLXZEIILTzHhoiIiIiIiHQR39NHRERERESkx9jpIyIiIiIi0mPs9BEREREREekxdvqIiIiIiIj0GDt9REREREREeoydPiIiIiIiIj3GTh8REREREZEeY6ePiIiIiIhIj7HTR0REREREpMfY6SMiIiIiItJj7PQRERERERHpMXb6iIiIiIiI9Nj/AeC7QkeTPktnAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "_, ax = plt.subplots(1, 2, figsize=(10, 4), sharex=False, sharey=False\n",
- ")\n",
- "\n",
- "for index in range(0, len(optimized_metrics)):\n",
- " c_matrix = optimized_metrics.iloc[index][\"Confusion_matrix\"]\n",
- " disp = ConfusionMatrixDisplay(\n",
- " confusion_matrix=c_matrix, display_labels=[\"Under 30\", \"30-40\", \"40-50\", \"50-60\", \"60-70\", \"70-80\", \"80+\"]\n",
- " ).plot(ax=ax.flat[index])\n",
- "\n",
- "plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.3)\n",
- "plt.show()"
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
@@ -3167,13 +124,23 @@
"# Задача регрессии"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Создадим выборки"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
"from sklearn.model_selection import train_test_split\n",
+ "df = pd.read_csv(\"C://Users//annal//aim//static//csv//Forbes_Billionaires.csv\")\n",
"X = df.drop(columns=['Networth','Rank ', 'Name']) # Признаки\n",
"y = df['Networth'] # Целевая переменная для регрессии\n",
"\n",
@@ -3181,198 +148,21 @@
]
},
{
- "cell_type": "code",
- "execution_count": 12,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Rank | \n",
- " Name | \n",
- " Networth | \n",
- " Age | \n",
- " Country | \n",
- " Source | \n",
- " Industry | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1 | \n",
- " Elon Musk | \n",
- " 219.0 | \n",
- " 50 | \n",
- " United States | \n",
- " Tesla, SpaceX | \n",
- " Automotive | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2 | \n",
- " Jeff Bezos | \n",
- " 171.0 | \n",
- " 58 | \n",
- " United States | \n",
- " Amazon | \n",
- " Technology | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 3 | \n",
- " Bernard Arnault & family | \n",
- " 158.0 | \n",
- " 73 | \n",
- " France | \n",
- " LVMH | \n",
- " Fashion & Retail | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 4 | \n",
- " Bill Gates | \n",
- " 129.0 | \n",
- " 66 | \n",
- " United States | \n",
- " Microsoft | \n",
- " Technology | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 5 | \n",
- " Warren Buffett | \n",
- " 118.0 | \n",
- " 91 | \n",
- " United States | \n",
- " Berkshire Hathaway | \n",
- " Finance & Investments | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 2595 | \n",
- " 2578 | \n",
- " Jorge Gallardo Ballart | \n",
- " 1.0 | \n",
- " 80 | \n",
- " Spain | \n",
- " pharmaceuticals | \n",
- " Healthcare | \n",
- "
\n",
- " \n",
- " 2596 | \n",
- " 2578 | \n",
- " Nari Genomal | \n",
- " 1.0 | \n",
- " 82 | \n",
- " Philippines | \n",
- " apparel | \n",
- " Fashion & Retail | \n",
- "
\n",
- " \n",
- " 2597 | \n",
- " 2578 | \n",
- " Ramesh Genomal | \n",
- " 1.0 | \n",
- " 71 | \n",
- " Philippines | \n",
- " apparel | \n",
- " Fashion & Retail | \n",
- "
\n",
- " \n",
- " 2598 | \n",
- " 2578 | \n",
- " Sunder Genomal | \n",
- " 1.0 | \n",
- " 68 | \n",
- " Philippines | \n",
- " garments | \n",
- " Fashion & Retail | \n",
- "
\n",
- " \n",
- " 2599 | \n",
- " 2578 | \n",
- " Horst-Otto Gerberding | \n",
- " 1.0 | \n",
- " 69 | \n",
- " Germany | \n",
- " flavors and fragrances | \n",
- " Food & Beverage | \n",
- "
\n",
- " \n",
- "
\n",
- "
2600 rows × 7 columns
\n",
- "
"
- ],
- "text/plain": [
- " Rank Name Networth Age Country \\\n",
- "0 1 Elon Musk 219.0 50 United States \n",
- "1 2 Jeff Bezos 171.0 58 United States \n",
- "2 3 Bernard Arnault & family 158.0 73 France \n",
- "3 4 Bill Gates 129.0 66 United States \n",
- "4 5 Warren Buffett 118.0 91 United States \n",
- "... ... ... ... ... ... \n",
- "2595 2578 Jorge Gallardo Ballart 1.0 80 Spain \n",
- "2596 2578 Nari Genomal 1.0 82 Philippines \n",
- "2597 2578 Ramesh Genomal 1.0 71 Philippines \n",
- "2598 2578 Sunder Genomal 1.0 68 Philippines \n",
- "2599 2578 Horst-Otto Gerberding 1.0 69 Germany \n",
- "\n",
- " Source Industry \n",
- "0 Tesla, SpaceX Automotive \n",
- "1 Amazon Technology \n",
- "2 LVMH Fashion & Retail \n",
- "3 Microsoft Technology \n",
- "4 Berkshire Hathaway Finance & Investments \n",
- "... ... ... \n",
- "2595 pharmaceuticals Healthcare \n",
- "2596 apparel Fashion & Retail \n",
- "2597 apparel Fashion & Retail \n",
- "2598 garments Fashion & Retail \n",
- "2599 flavors and fragrances Food & Beverage \n",
- "\n",
- "[2600 rows x 7 columns]"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
"source": [
- "df"
+ "# Формирование конвейера для классификации данных\n",
+ "## preprocessing_num -- конвейер для обработки числовых данных: заполнение пропущенных значений и стандартизация\n",
+ "## preprocessing_cat -- конвейер для обработки категориальных данных: заполнение пропущенных данных и унитарное кодирование\n",
+ "## features_preprocessing -- трансформер для предобработки признаков\n",
+ "## features_engineering -- трансформер для конструирования признаков\n",
+ "## drop_columns -- трансформер для удаления колонок\n",
+ "## pipeline_end -- основной конвейер предобработки данных и конструирования признаков"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
@@ -3875,7 +665,7 @@
"[2080 rows x 855 columns]"
]
},
- "execution_count": 4,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -3951,6 +741,17 @@
"preprocessed_df"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Формирование набора моделей\n",
+ "## LinearRegression -- логистическая регрессия\n",
+ "## RandomForestRegressor -- метод случайного леса (набор деревьев решений)\n",
+ "## GradientBoostingRegressor -- метод градиентного бустинга (набор деревьев решений)\n",
+ "# Обучение этих моделей с применением RandomizedSearchCV(для подбора гиперпараметров)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": 13,
@@ -4190,9 +991,16 @@
"# Классификация"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Категоризируем колонку возраста миллиардеров"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
@@ -4231,9 +1039,629 @@
"print(df.head())"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Создадим выборки"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = df.drop(columns=['Age_category','Rank ', 'Name']) # Признаки\n",
+ "# Целевая переменная для классификации\n",
+ "y_class = df['Age_category'] \n",
+ "\n",
+ "# Разделение данных\n",
+ "X_train_clf, X_test_clf, y_train_clf, y_test_clf = train_test_split(X, y_class, test_size=0.2, random_state=42)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Вновь запустим конвейер"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " prepocessing_num__Networth | \n",
+ " prepocessing_cat__Country_Argentina | \n",
+ " prepocessing_cat__Country_Australia | \n",
+ " prepocessing_cat__Country_Austria | \n",
+ " prepocessing_cat__Country_Barbados | \n",
+ " prepocessing_cat__Country_Belgium | \n",
+ " prepocessing_cat__Country_Belize | \n",
+ " prepocessing_cat__Country_Brazil | \n",
+ " prepocessing_cat__Country_Bulgaria | \n",
+ " prepocessing_cat__Country_Canada | \n",
+ " ... | \n",
+ " prepocessing_cat__Industry_Logistics | \n",
+ " prepocessing_cat__Industry_Manufacturing | \n",
+ " prepocessing_cat__Industry_Media & Entertainment | \n",
+ " prepocessing_cat__Industry_Metals & Mining | \n",
+ " prepocessing_cat__Industry_Real Estate | \n",
+ " prepocessing_cat__Industry_Service | \n",
+ " prepocessing_cat__Industry_Sports | \n",
+ " prepocessing_cat__Industry_Technology | \n",
+ " prepocessing_cat__Industry_Telecom | \n",
+ " prepocessing_cat__Industry_diversified | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 582 | \n",
+ " -0.013606 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " 1.994083 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1772 | \n",
+ " -0.288162 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 964 | \n",
+ " -0.159464 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 2213 | \n",
+ " -0.322481 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1638 | \n",
+ " -0.271002 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1095 | \n",
+ " -0.193783 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1130 | \n",
+ " -0.193783 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1294 | \n",
+ " -0.228103 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 860 | \n",
+ " -0.133724 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2080 rows × 855 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " prepocessing_num__Networth prepocessing_cat__Country_Argentina \\\n",
+ "582 -0.013606 0.0 \n",
+ "48 1.994083 0.0 \n",
+ "1772 -0.288162 0.0 \n",
+ "964 -0.159464 0.0 \n",
+ "2213 -0.322481 0.0 \n",
+ "... ... ... \n",
+ "1638 -0.271002 0.0 \n",
+ "1095 -0.193783 0.0 \n",
+ "1130 -0.193783 0.0 \n",
+ "1294 -0.228103 0.0 \n",
+ "860 -0.133724 0.0 \n",
+ "\n",
+ " prepocessing_cat__Country_Australia prepocessing_cat__Country_Austria \\\n",
+ "582 0.0 0.0 \n",
+ "48 0.0 0.0 \n",
+ "1772 1.0 0.0 \n",
+ "964 0.0 0.0 \n",
+ "2213 0.0 0.0 \n",
+ "... ... ... \n",
+ "1638 0.0 0.0 \n",
+ "1095 0.0 0.0 \n",
+ "1130 0.0 0.0 \n",
+ "1294 0.0 0.0 \n",
+ "860 0.0 0.0 \n",
+ "\n",
+ " prepocessing_cat__Country_Barbados prepocessing_cat__Country_Belgium \\\n",
+ "582 0.0 0.0 \n",
+ "48 0.0 0.0 \n",
+ "1772 0.0 0.0 \n",
+ "964 0.0 0.0 \n",
+ "2213 0.0 0.0 \n",
+ "... ... ... \n",
+ "1638 0.0 0.0 \n",
+ "1095 0.0 0.0 \n",
+ "1130 0.0 0.0 \n",
+ "1294 0.0 0.0 \n",
+ "860 0.0 0.0 \n",
+ "\n",
+ " prepocessing_cat__Country_Belize prepocessing_cat__Country_Brazil \\\n",
+ "582 0.0 0.0 \n",
+ "48 0.0 0.0 \n",
+ "1772 0.0 0.0 \n",
+ "964 0.0 0.0 \n",
+ "2213 0.0 1.0 \n",
+ "... ... ... \n",
+ "1638 0.0 0.0 \n",
+ "1095 0.0 1.0 \n",
+ "1130 0.0 0.0 \n",
+ "1294 0.0 0.0 \n",
+ "860 0.0 0.0 \n",
+ "\n",
+ " prepocessing_cat__Country_Bulgaria prepocessing_cat__Country_Canada \\\n",
+ "582 0.0 0.0 \n",
+ "48 0.0 0.0 \n",
+ "1772 0.0 0.0 \n",
+ "964 0.0 0.0 \n",
+ "2213 0.0 0.0 \n",
+ "... ... ... \n",
+ "1638 0.0 0.0 \n",
+ "1095 0.0 0.0 \n",
+ "1130 0.0 0.0 \n",
+ "1294 0.0 0.0 \n",
+ "860 0.0 0.0 \n",
+ "\n",
+ " ... prepocessing_cat__Industry_Logistics \\\n",
+ "582 ... 0.0 \n",
+ "48 ... 0.0 \n",
+ "1772 ... 0.0 \n",
+ "964 ... 0.0 \n",
+ "2213 ... 0.0 \n",
+ "... ... ... \n",
+ "1638 ... 0.0 \n",
+ "1095 ... 0.0 \n",
+ "1130 ... 0.0 \n",
+ "1294 ... 0.0 \n",
+ "860 ... 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Manufacturing \\\n",
+ "582 0.0 \n",
+ "48 1.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 1.0 \n",
+ "1095 0.0 \n",
+ "1130 0.0 \n",
+ "1294 0.0 \n",
+ "860 1.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Media & Entertainment \\\n",
+ "582 0.0 \n",
+ "48 0.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 0.0 \n",
+ "1095 0.0 \n",
+ "1130 0.0 \n",
+ "1294 0.0 \n",
+ "860 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Metals & Mining \\\n",
+ "582 0.0 \n",
+ "48 0.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 0.0 \n",
+ "1095 0.0 \n",
+ "1130 0.0 \n",
+ "1294 0.0 \n",
+ "860 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Real Estate \\\n",
+ "582 1.0 \n",
+ "48 0.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 0.0 \n",
+ "1095 0.0 \n",
+ "1130 1.0 \n",
+ "1294 0.0 \n",
+ "860 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Service prepocessing_cat__Industry_Sports \\\n",
+ "582 0.0 0.0 \n",
+ "48 0.0 0.0 \n",
+ "1772 0.0 0.0 \n",
+ "964 0.0 0.0 \n",
+ "2213 0.0 0.0 \n",
+ "... ... ... \n",
+ "1638 0.0 0.0 \n",
+ "1095 0.0 0.0 \n",
+ "1130 0.0 0.0 \n",
+ "1294 0.0 0.0 \n",
+ "860 0.0 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Technology \\\n",
+ "582 0.0 \n",
+ "48 0.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 0.0 \n",
+ "1095 0.0 \n",
+ "1130 0.0 \n",
+ "1294 0.0 \n",
+ "860 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_Telecom \\\n",
+ "582 0.0 \n",
+ "48 0.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 0.0 \n",
+ "1095 0.0 \n",
+ "1130 0.0 \n",
+ "1294 0.0 \n",
+ "860 0.0 \n",
+ "\n",
+ " prepocessing_cat__Industry_diversified \n",
+ "582 0.0 \n",
+ "48 0.0 \n",
+ "1772 0.0 \n",
+ "964 0.0 \n",
+ "2213 0.0 \n",
+ "... ... \n",
+ "1638 0.0 \n",
+ "1095 0.0 \n",
+ "1130 0.0 \n",
+ "1294 0.0 \n",
+ "860 0.0 \n",
+ "\n",
+ "[2080 rows x 855 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.compose import ColumnTransformer\n",
+ "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
+ "from sklearn.impute import SimpleImputer\n",
+ "from sklearn.pipeline import Pipeline\n",
+ "import pandas as pd\n",
+ "\n",
+ "# Исправляем ColumnTransformer с сохранением имен колонок\n",
+ "columns_to_drop = []\n",
+ "\n",
+ "num_columns = [\n",
+ " column\n",
+ " for column in X_train_clf.columns\n",
+ " if column not in columns_to_drop and X_train_clf[column].dtype != \"object\"\n",
+ "]\n",
+ "cat_columns = [\n",
+ " column\n",
+ " for column in X_train_clf.columns\n",
+ " if column not in columns_to_drop and X_train_clf[column].dtype == \"object\"\n",
+ "]\n",
+ "\n",
+ "# Предобработка числовых данных\n",
+ "num_imputer = SimpleImputer(strategy=\"median\")\n",
+ "num_scaler = StandardScaler()\n",
+ "preprocessing_num = Pipeline(\n",
+ " [\n",
+ " (\"imputer\", num_imputer),\n",
+ " (\"scaler\", num_scaler),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "# Предобработка категориальных данных\n",
+ "cat_imputer = SimpleImputer(strategy=\"constant\", fill_value=\"unknown\")\n",
+ "cat_encoder = OneHotEncoder(handle_unknown=\"ignore\", sparse_output=False, drop=\"first\")\n",
+ "preprocessing_cat = Pipeline(\n",
+ " [\n",
+ " (\"imputer\", cat_imputer),\n",
+ " (\"encoder\", cat_encoder),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "# Общая предобработка признаков\n",
+ "features_preprocessing = ColumnTransformer(\n",
+ " verbose_feature_names_out=True, # Сохраняем имена колонок\n",
+ " transformers=[\n",
+ " (\"prepocessing_num\", preprocessing_num, num_columns),\n",
+ " (\"prepocessing_cat\", preprocessing_cat, cat_columns),\n",
+ " ],\n",
+ " remainder=\"drop\" # Убираем неиспользуемые столбцы\n",
+ ")\n",
+ "\n",
+ "# Итоговый конвейер\n",
+ "pipeline_end = Pipeline(\n",
+ " [\n",
+ " (\"features_preprocessing\", features_preprocessing),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "# Преобразуем данные\n",
+ "preprocessing_result = pipeline_end.fit_transform(X_train_clf)\n",
+ "\n",
+ "# Создаем DataFrame с правильными именами колонок\n",
+ "preprocessed_df = pd.DataFrame(\n",
+ " preprocessing_result,\n",
+ " columns=pipeline_end.get_feature_names_out(),\n",
+ " index=X_train_clf.index, # Сохраняем индексы\n",
+ ")\n",
+ "\n",
+ "preprocessed_df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Формирование набора моделей\n",
+ "## LogisticRegression -- логистическая регрессия\n",
+ "## RandomForestClassifier -- метод случайного леса (набор деревьев решений)\n",
+ "## KNN -- k-ближайших соседей\n",
+ "# Обучение этих моделей с применением RandomizedSearchCV(для подбора гиперпараметров)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
@@ -4248,23 +1676,83 @@
"output_type": "stream",
"text": [
"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:320: UserWarning: The total space of parameters 3 is smaller than n_iter=10. Running 3 iterations. For exhaustive searches, use GridSearchCV.\n",
+ " warnings.warn(\n",
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan]\n",
+ " warnings.warn(\n",
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
" warnings.warn(\n"
]
},
{
- "ename": "ValueError",
- "evalue": "\nAll the 15 fits failed.\nIt is very likely that your model is misconfigured.\nYou can try to debug the error by setting error_score='raise'.\n\nBelow are more details about the failures:\n--------------------------------------------------------------------------------\n15 fits failed with the following error:\nTraceback (most recent call last):\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py\", line 3805, in get_loc\n return self._engine.get_loc(casted_key)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"index.pyx\", line 167, in pandas._libs.index.IndexEngine.get_loc\n File \"index.pyx\", line 196, in pandas._libs.index.IndexEngine.get_loc\n File \"pandas\\\\_libs\\\\hashtable_class_helper.pxi\", line 7081, in pandas._libs.hashtable.PyObjectHashTable.get_item\n File \"pandas\\\\_libs\\\\hashtable_class_helper.pxi\", line 7089, in pandas._libs.hashtable.PyObjectHashTable.get_item\nKeyError: 'Age'\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\_indexing.py\", line 361, in _get_column_indices\n col_idx = all_columns.get_loc(col)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py\", line 3812, in get_loc\n raise KeyError(key) from err\nKeyError: 'Age'\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_validation.py\", line 888, in _fit_and_score\n estimator.fit(X_train, y_train, **fit_params)\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\base.py\", line 1473, in wrapper\n return fit_method(estimator, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\pipeline.py\", line 469, in fit\n Xt = self._fit(X, y, routed_params)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\pipeline.py\", line 406, in _fit\n X, fitted_transformer = fit_transform_one_cached(\n ^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\joblib\\memory.py\", line 312, in __call__\n return self.func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\pipeline.py\", line 1310, in _fit_transform_one\n res = transformer.fit_transform(X, y, **params.get(\"fit_transform\", {}))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\_set_output.py\", line 316, in wrapped\n data_to_wrap = f(self, X, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\base.py\", line 1473, in wrapper\n return fit_method(estimator, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py\", line 968, in fit_transform\n self._validate_column_callables(X)\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py\", line 536, in _validate_column_callables\n transformer_to_input_indices[name] = _get_column_indices(X, columns)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\_indexing.py\", line 369, in _get_column_indices\n raise ValueError(\"A given column is not a column of the dataframe\") from e\nValueError: A given column is not a column of the dataframe\n",
- "output_type": "error",
- "traceback": [
- "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[1;32mIn[18], line 48\u001b[0m\n\u001b[0;32m 46\u001b[0m param_grid \u001b[38;5;241m=\u001b[39m param_grids_classification[name]\n\u001b[0;32m 47\u001b[0m grid_search \u001b[38;5;241m=\u001b[39m RandomizedSearchCV(pipeline, param_grid, cv\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m, scoring\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mf1\u001b[39m\u001b[38;5;124m'\u001b[39m, n_jobs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m---> 48\u001b[0m \u001b[43mgrid_search\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train_clf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train_clf\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;66;03m# Лучшая модель\u001b[39;00m\n\u001b[0;32m 51\u001b[0m best_model \u001b[38;5;241m=\u001b[39m grid_search\u001b[38;5;241m.\u001b[39mbest_estimator_\n",
- "File \u001b[1;32mc:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\base.py:1473\u001b[0m, in \u001b[0;36m_fit_context..decorator..wrapper\u001b[1;34m(estimator, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1466\u001b[0m estimator\u001b[38;5;241m.\u001b[39m_validate_params()\n\u001b[0;32m 1468\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m config_context(\n\u001b[0;32m 1469\u001b[0m skip_parameter_validation\u001b[38;5;241m=\u001b[39m(\n\u001b[0;32m 1470\u001b[0m prefer_skip_nested_validation \u001b[38;5;129;01mor\u001b[39;00m global_skip_validation\n\u001b[0;32m 1471\u001b[0m )\n\u001b[0;32m 1472\u001b[0m ):\n\u001b[1;32m-> 1473\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfit_method\u001b[49m\u001b[43m(\u001b[49m\u001b[43mestimator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
- "File \u001b[1;32mc:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:1019\u001b[0m, in \u001b[0;36mBaseSearchCV.fit\u001b[1;34m(self, X, y, **params)\u001b[0m\n\u001b[0;32m 1013\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_results(\n\u001b[0;32m 1014\u001b[0m all_candidate_params, n_splits, all_out, all_more_results\n\u001b[0;32m 1015\u001b[0m )\n\u001b[0;32m 1017\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m results\n\u001b[1;32m-> 1019\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run_search\u001b[49m\u001b[43m(\u001b[49m\u001b[43mevaluate_candidates\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1021\u001b[0m \u001b[38;5;66;03m# multimetric is determined here because in the case of a callable\u001b[39;00m\n\u001b[0;32m 1022\u001b[0m \u001b[38;5;66;03m# self.scoring the return type is only known after calling\u001b[39;00m\n\u001b[0;32m 1023\u001b[0m first_test_score \u001b[38;5;241m=\u001b[39m all_out[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtest_scores\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n",
- "File \u001b[1;32mc:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:1960\u001b[0m, in \u001b[0;36mRandomizedSearchCV._run_search\u001b[1;34m(self, evaluate_candidates)\u001b[0m\n\u001b[0;32m 1958\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_run_search\u001b[39m(\u001b[38;5;28mself\u001b[39m, evaluate_candidates):\n\u001b[0;32m 1959\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Search n_iter candidates from param_distributions\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1960\u001b[0m \u001b[43mevaluate_candidates\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1961\u001b[0m \u001b[43m \u001b[49m\u001b[43mParameterSampler\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1962\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparam_distributions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_iter\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom_state\u001b[49m\n\u001b[0;32m 1963\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1964\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
- "File \u001b[1;32mc:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:996\u001b[0m, in \u001b[0;36mBaseSearchCV.fit..evaluate_candidates\u001b[1;34m(candidate_params, cv, more_results)\u001b[0m\n\u001b[0;32m 989\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(out) \u001b[38;5;241m!=\u001b[39m n_candidates \u001b[38;5;241m*\u001b[39m n_splits:\n\u001b[0;32m 990\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 991\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcv.split and cv.get_n_splits returned \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 992\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minconsistent results. Expected \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 993\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msplits, got \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(n_splits, \u001b[38;5;28mlen\u001b[39m(out) \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m/\u001b[39m n_candidates)\n\u001b[0;32m 994\u001b[0m )\n\u001b[1;32m--> 996\u001b[0m \u001b[43m_warn_or_raise_about_fit_failures\u001b[49m\u001b[43m(\u001b[49m\u001b[43mout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43merror_score\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 998\u001b[0m \u001b[38;5;66;03m# For callable self.scoring, the return type is only know after\u001b[39;00m\n\u001b[0;32m 999\u001b[0m \u001b[38;5;66;03m# calling. If the return type is a dictionary, the error scores\u001b[39;00m\n\u001b[0;32m 1000\u001b[0m \u001b[38;5;66;03m# can now be inserted with the correct key. The type checking\u001b[39;00m\n\u001b[0;32m 1001\u001b[0m \u001b[38;5;66;03m# of out will be done in `_insert_error_scores`.\u001b[39;00m\n\u001b[0;32m 1002\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscoring):\n",
- "File \u001b[1;32mc:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_validation.py:529\u001b[0m, in \u001b[0;36m_warn_or_raise_about_fit_failures\u001b[1;34m(results, error_score)\u001b[0m\n\u001b[0;32m 522\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_failed_fits \u001b[38;5;241m==\u001b[39m num_fits:\n\u001b[0;32m 523\u001b[0m all_fits_failed_message \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 524\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mAll the \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_fits\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m fits failed.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 525\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIt is very likely that your model is misconfigured.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 526\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou can try to debug the error by setting error_score=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mraise\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 527\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBelow are more details about the failures:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfit_errors_summary\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 528\u001b[0m )\n\u001b[1;32m--> 529\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(all_fits_failed_message)\n\u001b[0;32m 531\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 532\u001b[0m some_fits_failed_message \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 533\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mnum_failed_fits\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m fits failed out of a total of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_fits\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 534\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe score on these train-test partitions for these parameters\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 538\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBelow are more details about the failures:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfit_errors_summary\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 539\u001b[0m )\n",
- "\u001b[1;31mValueError\u001b[0m: \nAll the 15 fits failed.\nIt is very likely that your model is misconfigured.\nYou can try to debug the error by setting error_score='raise'.\n\nBelow are more details about the failures:\n--------------------------------------------------------------------------------\n15 fits failed with the following error:\nTraceback (most recent call last):\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py\", line 3805, in get_loc\n return self._engine.get_loc(casted_key)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"index.pyx\", line 167, in pandas._libs.index.IndexEngine.get_loc\n File \"index.pyx\", line 196, in pandas._libs.index.IndexEngine.get_loc\n File \"pandas\\\\_libs\\\\hashtable_class_helper.pxi\", line 7081, in pandas._libs.hashtable.PyObjectHashTable.get_item\n File \"pandas\\\\_libs\\\\hashtable_class_helper.pxi\", line 7089, in pandas._libs.hashtable.PyObjectHashTable.get_item\nKeyError: 'Age'\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\_indexing.py\", line 361, in _get_column_indices\n col_idx = all_columns.get_loc(col)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py\", line 3812, in get_loc\n raise KeyError(key) from err\nKeyError: 'Age'\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_validation.py\", line 888, in _fit_and_score\n estimator.fit(X_train, y_train, **fit_params)\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\base.py\", line 1473, in wrapper\n return fit_method(estimator, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\pipeline.py\", line 469, in fit\n Xt = self._fit(X, y, routed_params)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\pipeline.py\", line 406, in _fit\n X, fitted_transformer = fit_transform_one_cached(\n ^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\joblib\\memory.py\", line 312, in __call__\n return self.func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\pipeline.py\", line 1310, in _fit_transform_one\n res = transformer.fit_transform(X, y, **params.get(\"fit_transform\", {}))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\_set_output.py\", line 316, in wrapped\n data_to_wrap = f(self, X, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\base.py\", line 1473, in wrapper\n return fit_method(estimator, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py\", line 968, in fit_transform\n self._validate_column_callables(X)\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\compose\\_column_transformer.py\", line 536, in _validate_column_callables\n transformer_to_input_indices[name] = _get_column_indices(X, columns)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\utils\\_indexing.py\", line 369, in _get_column_indices\n raise ValueError(\"A given column is not a column of the dataframe\") from e\nValueError: A given column is not a column of the dataframe\n"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training RandomForestClassifier...\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan nan nan nan nan]\n",
+ " warnings.warn(\n",
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training KNN...\n",
+ "\n",
+ "Model: LogisticRegression\n",
+ "Best Params: {'model__C': 0.1}\n",
+ "Accuracy: 0.3903846153846154\n",
+ "F1 Score: 0.20313635491500218\n",
+ "Confusion_matrix: [[ 0 1 2 6 1 0 0]\n",
+ " [ 0 1 27 18 7 0 0]\n",
+ " [ 0 1 82 35 13 3 0]\n",
+ " [ 0 1 45 80 34 4 0]\n",
+ " [ 0 0 15 51 37 4 0]\n",
+ " [ 0 0 5 28 14 3 0]\n",
+ " [ 0 0 0 2 0 0 0]]\n",
+ "\n",
+ "Model: RandomForestClassifier\n",
+ "Best Params: {'model__n_estimators': 200, 'model__max_features': 'sqrt', 'model__max_depth': 7, 'model__criterion': 'gini', 'model__class_weight': 'balanced'}\n",
+ "Accuracy: 0.29615384615384616\n",
+ "F1 Score: 0.23917948939202166\n",
+ "Confusion_matrix: [[ 2 3 1 1 0 1 2]\n",
+ " [ 1 21 11 4 2 14 0]\n",
+ " [ 1 18 65 7 12 31 0]\n",
+ " [ 2 23 35 12 20 70 2]\n",
+ " [ 1 4 12 3 20 65 2]\n",
+ " [ 0 5 1 5 5 34 0]\n",
+ " [ 1 0 0 1 0 0 0]]\n",
+ "\n",
+ "Model: KNN\n",
+ "Best Params: {'model__weights': 'uniform', 'model__n_neighbors': 3}\n",
+ "Accuracy: 0.32884615384615384\n",
+ "F1 Score: 0.23870853259159636\n",
+ "Confusion_matrix: [[ 3 0 4 2 1 0 0]\n",
+ " [ 4 19 13 10 6 1 0]\n",
+ " [ 8 14 65 27 15 5 0]\n",
+ " [ 9 14 49 53 29 10 0]\n",
+ " [ 8 8 28 25 24 14 0]\n",
+ " [ 0 4 9 18 12 7 0]\n",
+ " [ 1 0 0 1 0 0 0]]\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\numpy\\ma\\core.py:2881: RuntimeWarning: invalid value encountered in cast\n",
+ " _data = np.array(data, dtype=dtype, copy=copy,\n",
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\model_selection\\_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan nan nan nan nan]\n",
+ " warnings.warn(\n",
+ "c:\\Users\\annal\\aim\\.venv\\Lib\\site-packages\\sklearn\\preprocessing\\_encoders.py:242: UserWarning: Found unknown categories in columns [0, 1] during transform. These unknown categories will be encoded as all zeros\n",
+ " warnings.warn(\n"
]
}
],
@@ -4272,14 +1760,11 @@
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
+ "from sklearn.model_selection import GridSearchCV, RandomizedSearchCV\n",
"from sklearn.metrics import accuracy_score, confusion_matrix, f1_score\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.pipeline import Pipeline\n",
"\n",
- "X = df.drop(columns=['Age_category','Rank ', 'Name']) # Признаки\n",
- "# Целевая переменная для классификации\n",
- "y_class = df['Age_category'] \n",
- "\n",
- "# Разделение данных\n",
- "X_train_clf, X_test_clf, y_train_clf, y_test_clf = train_test_split(X, y_class, test_size=0.2, random_state=42)\n",
"\n",
"# Модели и параметры\n",
"models_classification = {\n",
@@ -4297,6 +1782,7 @@
" \"model__max_features\": [\"sqrt\", \"log2\", 2],\n",
" \"model__max_depth\": [2, 3, 4, 5, 6, 7, 8, 9 ,10, 20],\n",
" \"model__criterion\": [\"gini\", \"entropy\", \"log_loss\"],\n",
+ " \"model__class_weight\": [\"balanced\"]\n",
" },\n",
" \"KNN\": {\n",
" 'model__n_neighbors': [3, 5, 7, 9, 11],\n",
@@ -4324,7 +1810,7 @@
"\n",
" # Метрики\n",
" acc = accuracy_score(y_test_clf, y_pred)\n",
- " f1 = f1_score(y_test_clf, y_pred)\n",
+ " f1 = f1_score(y_test_clf, y_pred, average=\"macro\")\n",
"\n",
" # Вычисление матрицы ошибок\n",
" c_matrix = confusion_matrix(y_test_clf, y_pred)\n",
@@ -4343,6 +1829,56 @@
" for metric, value in metrics.items():\n",
" print(f\"{metric}: {value}\")"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Покажем матрицы в виде диаграмм"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABaEAAAbVCAYAAAAtZQkZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5dfG8XvTAyEJhJDQO4QqAlIEBBEICCgSQBCVIooUKSoqP0GKAoIoqBRFEbAgiiKCSBdQmkhTKdI7JJSQBAipu+8febO6JIS6mdnk+7muuXRnZnfODpvds2fPPI/FZrPZBAAAAAAAAACAE7gZHQAAAAAAAAAAIOeiCA0AAAAAAAAAcBqK0AAAAAAAAAAAp6EIDQAAAAAAAABwGorQAAAAAAAAAACnoQgNAAAAAAAAAHAaitAAAAAAAAAAAKehCA0AAAAAAAAAcBqK0AAAAAAAAAAAp6EIDQAAAAAAAABwGorQAAAAAAAAAHAXlSpVShaLJcPSr18/SVJCQoL69eunoKAg+fn5KSIiQlFRUQZH7TwWm81mMzoIAAAAAAAAAMgpzp07p9TUVPvtXbt2qXnz5lqzZo2aNGmiPn36aMmSJZo9e7YCAgLUv39/ubm5acOGDQZG7TwUoQEAAAAAAADAiQYNGqSffvpJBw4cUFxcnIKDgzV37lx16NBBkvTPP/+oUqVK2rRpk+rVq2dwtHefh9EBAAAAwLkSEhKUlJRkdBh2Xl5e8vHxMToMAAAAuAAz5bI2m00Wi8Vhnbe3t7y9vbO8X1JSkr788ku9+OKLslgs2rZtm5KTk9WsWTP7PmFhYSpRogRFaAAAALiehIQElS7pp8izqTfeOZuEhobqyJEjFKIBAACQJbPlsn5+frp8+bLDuhEjRmjkyJFZ3m/hwoWKiYlR9+7dJUmRkZHy8vJSYGCgw34hISGKjIy8ixGbB0VoAACAHCwpKUmRZ1N1bFsp+eczfk7quEtWlax1VElJSRShAQAAkCUz5bLpeeyJEyfk7+9vX3+jLmhJmjlzplq1aqUiRYo4M0RTowgNAACQC/jnc5N/PnejwwAAAABumZlyWX9/f4ci9I0cO3ZMq1at0oIFC+zrQkNDlZSUpJiYGIdu6KioKIWGht7NcE2DIjQAAEAuYJVNVlmNDkNWMSc2AAAAbo0ZctnbzWNnzZqlQoUKqXXr1vZ1tWrVkqenp1avXq2IiAhJ0r59+3T8+HHVr1//rsRrNhShAQAAAAAAAOAus1qtmjVrlrp16yYPj3/LsAEBAXrmmWf04osvqkCBAvL399cLL7yg+vXr58hJCSWK0AAAAAAAAABw161atUrHjx9Xz549M2ybNGmS3NzcFBERocTERIWHh2vatGkGRJk9LDabjWsiAQAAcqi4uDgFBATo7L6Shk/mIqVN6FKo4jHFxsbe0lh6AAAAyH3MlMuSx94Z47+JAAAAAAAAAAByLIrQAAAAAAAAAACnYUxoAACAXCBtRnHjR2EzQwwAAABwLWbIZY0+vqujExoAAAAAAAAA4DR0QgMAAOQCVlllNToIySRRAAAAwJWYIZc1PgLXRic0AAAAAAAAAMBpKEIDAADAtFJTUzV8+HCVLl1avr6+Klu2rN58803ZbP+OyWez2fTGG2+ocOHC8vX1VbNmzXTgwAEDowYAAADwXwzHAQAAkAuk2mxKtRk/mcqtxjB+/HhNnz5dc+bMUZUqVbR161b16NFDAQEBGjBggCRpwoQJ+uCDDzRnzhyVLl1aw4cPV3h4uPbs2SMfHx9nPA0AAABkIzPkskYf39VRhAYAAIBpbdy4UY8++qhat24tSSpVqpS+/vprbdmyRVJaF/TkyZM1bNgwPfroo5Kkzz//XCEhIVq4cKE6d+5sWOwAAAAA0jAcBwAAAEzr/vvv1+rVq7V//35J0p9//qn169erVatWkqQjR44oMjJSzZo1s98nICBAdevW1aZNmwyJGQAAAIAjOqEBAAByAatsssr4SwjTY4iLi3NY7+3tLW9v7wz7v/baa4qLi1NYWJjc3d2VmpqqMWPGqGvXrpKkyMhISVJISIjD/UJCQuzbAAAA4NrMkMsafXxXRyc0AAAAsl3x4sUVEBBgX8aNG5fpft9++62++uorzZ07V9u3b9ecOXM0ceJEzZkzJ5sjBgAAAHC76IQGAABAtjtx4oT8/f3ttzPrgpakIUOG6LXXXrOP7VytWjUdO3ZM48aNU7du3RQaGipJioqKUuHChe33i4qKUo0aNZz3BAAAAADcNIrQAAAAuYBVNqWa4BLC9MsY/f39HYrQ1xMfHy83N8eL99zd3WW1WiVJpUuXVmhoqFavXm0vOsfFxen3339Xnz597m7wAAAAMIQZclmG47gzFKEBAABgWm3bttWYMWNUokQJValSRTt27NB7772nnj17SpIsFosGDRqkt956S+XLl1fp0qU1fPhwFSlSRO3atTM2eAAAAACSKEIDAADkCmaYzCU9jlvx4Ycfavjw4erbt6/Onj2rIkWKqHfv3nrjjTfs+7zyyiu6cuWKnnvuOcXExKhhw4ZatmyZfHx87nb4AAAAMIAZclmjj+/qLDabjTMIAACQQ8XFxSkgIECH/glVvnzGz0l96ZJVZcMiFRsbe1PDcQAAACD3MlMuSx57Z4z/JgIAAAAAAAAAyLEYjgMAACAXSLXZlGqCC+DMEAMAAABcixlyWaOP7+rohAYAAAAAAAAAOA1FaAAAAAAAAACA0zAcBwAAQC5g/f/FaGaIAQAAAK7FDLms0cd3dXRCAwAAAAAAAACchiI0AAAAAAAAAMBpGI4DAAAgF0iVTakyfkZvM8QAAAAA12KGXNbo47s6OqEBAAAAAAAAAE5DJzQAAEAukGpLW4xmhhgAAADgWsyQyxp9fFdHJzQAAAAAAAAAwGkoQgMAAAAAAAAAnIbhOAAAAHIB6/8vRjNDDAAAAHAtZshljT6+q6MTGgAAAAAAAADgNBShAQAAAAAAAABOw3AcAAAAuYBVFqXKYnQYspogBgAAALgWM+Sy5LF3hk5oAAAAAAAAAIDTUIQGAAAAAAAAADgNw3EAAADkAlZb2mI0M8QAAAAA12KGXNbo47s6OqEBAAAAAAAAAE5DERoAAAAAAAAA4DQMxwEAAJALpJpgRvH0OAAAAIBbYYZc1ujjuzo6oQEAAAAAAAAATkMnNAAAQC5ghu6R9DgAAACAW2GGXNbo47s6OqEBAAAAAAAAAE5DERoAAAAAAAAA4DQMxwEAAJALWG0WWW3GX0JohhgAAADgWsyQyxp9fFdHJzQAAAAAAAAAwGkoQgMAAAAAAAAAnIbhOAAAAHIBM8wonh4HAAAAcCvMkMsafXxXRyc0AAAAAAAAAMBpKEIDAAAAAAAAAJyG4TgAAABygVS5KdUE/QepRgcAAAAAl2OGXJY89s4Y/00EAAAAAAAAAJBj0QkNAACQC9hsFlltxk+mYjNBDAAAAHAtZshlyWPvDJ3QAAAAAAAAAACnoQgNAAAAAAAAAHAahuMAAADIBVJlUaqMv4TQDDEAAADAtZghlzX6+K6OTmgAAAAAAAAAgNNQhAYAAAAAAAAAOA3DcQAAAOQCqTY3pdqM7z9ItRkdAQAAAFyNGXJZ8tg7Y/w3EQAAAAAAAABAjkURGgAAAAAAAADgNAzHAQAAkAtYZZHVBP0HVnEdIwAAAG6NGXJZ8tg7Y/w3EQAAAAAAAABAjkUnNAAAQC6QKotSZTE6DFPEAAAAANdihlzW6OO7OjqhAQAAAAAAAABOQxEaAAAAAAAAAOA0DMcBAACQC6Ta3JRqM77/INXGhC4AAAC4NWbIZclj74zx30QAAAAAAAAAADkWRWgAAAAAAAAAgNMwHAcAAEAuYJVFVhPM6G2GGAAAAOBazJDLGn18V0cnNAAAAAAAAADAaShCAwAAAAAAAACchuE4AAAAcgGr3JRqgv4Dq5hVHAAAALfGDLkseeydMf6bCAAAAAAAAAAgx6IIDQAAAAAAAABwGorQAHKMJk2aqEmTJnft8UqVKqXu3bvftcfLTdauXSuLxaK1a9caHQqA/5dqczPNAgA5Wffu3VWqVCmjw8hVjh49KovFotmzZxsWQ2bfHQ4cOKAWLVooICBAFotFCxcu1OzZs2WxWHT06FFD4gRcldH5K3nsnePsAXCK9ORq69atRoeSpY0bN2rkyJGKiYm5K4+XngCnL25ubipQoIBatWqlTZs23ZVjAAAAIE16zpm+eHh4qGjRourevbtOnTpldHjZrnv37g7n47/LsmXLjA4vg9OnT2vkyJHauXPndfdZu3at2rdvr9DQUHl5ealQoUJq27atFixYkH2B3qZu3brp77//1pgxY/TFF1+odu3aRocEAIZhYkIAOcaKFStu+T4bN27UqFGj1L17dwUGBjps27dvn9zcbu+3ui5duujhhx9Wamqq9u/fr2nTpunBBx/UH3/8oWrVqt3WY7qSBx54QFevXpWXl5fRoQD4f1a5yWqC/gMmdAHgDKNHj1bp0qWVkJCgzZs3a/bs2Vq/fr127dolHx8fo8PLVt7e3vr0008zrL/nnnsMiCZrp0+f1qhRo1SqVCnVqFEjw/YRI0Zo9OjRKl++vHr37q2SJUvqwoUL+vnnnxUREaGvvvpKTzzxRPYHnolrvztcvXpVmzZt0uuvv67+/fvb1z/11FPq3LmzvL29jQgTcFlmyGXJY+8MRWgAOcbdLnjeSWJYs2ZNPfnkk/bbjRo1UqtWrTR9+nRNmzbtboR3065cuaK8efNm6zHd3Nxy3Rc+AABgnFatWtm7THv16qWCBQtq/PjxWrRokTp16mRwdNnLw8PDIQ+9m+Lj45UnTx6nPPa1vvvuO40ePVodOnTQ3Llz5enpad82ZMgQLV++XMnJydkSy8249rvDuXPnJClDo4u7u7vc3d3v2nGNyPUB4HYY3w4DINfasWOHWrVqJX9/f/n5+emhhx7S5s2bM+z3119/qXHjxvL19VWxYsX01ltvadasWRnGUstsTOgPP/xQVapUUZ48eZQ/f37Vrl1bc+fOlSSNHDlSQ4YMkSSVLl3afqli+mNmNq5bTEyMBg8erFKlSsnb21vFihXT008/rfPnz2f5XBs1aiRJOnToUIbHGzRokIoXLy5vb2+VK1dO48ePl9VqddjvwoULeuqpp+Tv76/AwEB169ZNf/75Z4ax77p37y4/Pz8dOnRIDz/8sPLly6euXbtKkqxWqyZPnqwqVarIx8dHISEh6t27ty5evOhwrK1btyo8PFwFCxaUr6+vSpcurZ49ezrsM2/ePNWqVUv58uWTv7+/qlWrpvfff9++/XpjQs+fP1+1atWSr6+vChYsqCeffDLDpbLpz+HUqVNq166d/Pz8FBwcrJdfflmpqalZnmcAAAApY+6VlJSkN954Q7Vq1VJAQIDy5s2rRo0aac2aNQ73Sx9abeLEiZoxY4bKli0rb29v3Xffffrjjz8yHGfhwoWqWrWqfHx8VLVqVf3www+ZxnPlyhW99NJL9pyvYsWKmjhxomw2x646i8Wi/v37a/78+apcubJ8fX1Vv359/f3335Kkjz/+WOXKlZOPj4+aNGly2+MKT5s2TVWqVJG3t7eKFCmifv36ZRierkmTJqpataq2bdumBx54QHny5NH//vc/SVJiYqJGjBihcuXKydvbW8WLF9crr7yixMREh8dYuXKlGjZsqMDAQPn5+alixYr2x1i7dq3uu+8+SVKPHj3suXh6bjt8+HAVKFBAn332mUMBOl14eLjatGlz3ef4119/qXv37ipTpox8fHwUGhqqnj176sKFCw77Xbp0SYMGDbLn94UKFVLz5s21fft2+z4HDhxQRESEQkND5ePjo2LFiqlz586KjY217/Pf7w4jR45UyZIlJaUVzC0Wi32c8OuNCb106VI1atRIefPmVb58+dS6dWvt3r3bYZ+scn0AMDs6oQEYYvfu3WrUqJH8/f31yiuvyNPTUx9//LGaNGmidevWqW7dupKkU6dO6cEHH5TFYtHQoUOVN29effrppzfVpfzJJ59owIAB6tChgwYOHKiEhAT99ddf+v333/XEE0+offv22r9/v77++mtNmjRJBQsWlCQFBwdn+niXL19Wo0aNtHfvXvXs2VM1a9bU+fPntWjRIp08edJ+/8ykJ5n58+e3r4uPj1fjxo116tQp9e7dWyVKlNDGjRs1dOhQnTlzRpMnT5aUVjxu27attmzZoj59+igsLEw//vijunXrlumxUlJSFB4eroYNG2rixIn2bpXevXtr9uzZ6tGjhwYMGKAjR45oypQp2rFjhzZs2CBPT0+dPXtWLVq0UHBwsF577TUFBgbq6NGjDmPurVy5Ul26dNFDDz2k8ePHS5L27t2rDRs2aODAgdc9B+nHvu+++zRu3DhFRUXp/fff14YNG7Rjxw6HLpHU1FSFh4erbt26mjhxolatWqV3331XZcuWVZ8+fa57DADXl2qzKNVmMToMU8QAIOe7NveKi4vTp59+qi5duujZZ5/VpUuXNHPmTIWHh2vLli0ZhoKYO3euLl26pN69e8tisWjChAlq3769Dh8+bC+IrlixQhEREapcubLGjRunCxcuqEePHipWrJjDY9lsNj3yyCNas2aNnnnmGdWoUUPLly/XkCFDdOrUKU2aNMlh/99++02LFi1Sv379JEnjxo1TmzZt9Morr2jatGnq27evLl68qAkTJqhnz5765ZdfMjz/axskPD09FRAQICmtQDpq1Cg1a9ZMffr00b59+zR9+nT98ccf9pww3YULF9SqVSt17txZTz75pEJCQmS1WvXII49o/fr1eu6551SpUiX9/fffmjRpkvbv36+FCxdKSsv327Rpo+rVq2v06NHy9vbWwYMHtWHDBklSpUqVNHr0aL3xxht67rnn7D8c3H///Tpw4ID++ecf9ezZU/ny5bupf/NrrVy5UocPH1aPHj0UGhqq3bt3a8aMGdq9e7c2b94siyXt8+j555/Xd999p/79+6ty5cq6cOGC1q9fr71796pmzZpKSkpSeHi4EhMT9cILLyg0NFSnTp3STz/9pJiYGPt5/a/27dsrMDBQgwcPtg/T5+fnd91Yv/jiC3Xr1k3h4eEaP3684uPjNX36dDVs2FA7duxwmOjyerk+kNOZIZc1+viujiI0AEMMGzZMycnJWr9+vcqUKSNJevrpp1WxYkW98sorWrdunSRp/PjxunjxorZv327/ctCjRw+VL1/+hsdYsmSJqlSpovnz52e6vXr16qpZs6a+/vprtWvX7oazmL/zzjvatWuXFixYoMcee8zhuVzbxRIfH6/z588rNTVVBw4c0IsvvihJ6tChg32f9957T4cOHdKOHTvsz6d3794qUqSI3nnnHXu3zMKFC7Vp0yZNnjzZXuTt06ePmjdvnmmciYmJ6tixo8aNG2dft379en366acZxs178MEH1bJlS82fP19PPPGENm7cqIsXL2rFihUOE6e89dZbDufV399fy5cvv+lLCZOTk/Xqq6+qatWq+vXXX+1DdTRs2FBt2rTRpEmTNGrUKPv+CQkJevzxxzV8+HBJaV8OatasqZkzZ1KEBgAAGcTGxur8+fNKSEjQ77//rlGjRsnb29veKZs/f34dPXrUYfi2Z599VmFhYfrwww81c+ZMh8c7fvy4Dhw4YC9iV6xYUY8++qiWL19uf8xXX31VISEhWr9+vb0Q2bhxY7Vo0cLeBStJixYt0i+//KK33npLr7/+uiSpX79+6tixo95//331799fZcuWte+/b98+/fPPP/bcNH/+/Ordu7feeust7d+/316UTU1N1bhx43T06FGHPPbKlSsZmioaN26stWvX6ty5cxo3bpxatGihpUuX2scwDgsLU//+/fXll1+qR48e9vtFRkbqo48+Uu/eve3rvvzyS61atUrr1q1Tw4YN7eurVq2q559/Xhs3btT999+vlStXKikpSUuXLs20WSMkJEStWrXSG2+8ofr16zsMIbJo0SJJuqO5VPr27auXXnrJYV29evXUpUsXrV+/3l70XrJkiZ599lm9++679v1eeeUV+//v2bNHR44c0fz58x1y+TfeeOO6x65evbr8/f01ePDgDMP0Xevy5csaMGCAevXqpRkzZtjXd+vWTRUrVtTYsWMd1meW6wOAK2A4DgDZLjU1VStWrFC7du3sBWhJKly4sJ544gmtX79ecXFxkqRly5apfv36Dt0pBQoUuKnLzgIDA3Xy5MlML528Hd9//73uuecehwJ0uvROinQjRoxQcHCwQkND7d3T7777rkPiOn/+fDVq1Ej58+fX+fPn7UuzZs2UmpqqX3/9VVLaOfD09NSzzz5rv6+bm5u9OyYz1xZq58+fr4CAADVv3tzhWLVq1ZKfn5/9UtT0buSffvrpumPsBQYG6sqVK1q5cmUWZ8vR1q1bdfbsWfXt29dhrOjWrVsrLCxMS5YsyXCf559/3uF2o0aNdPjw4Zs+JgAAyD2aNWum4OBgFS9eXB06dFDevHm1aNEie1eyu7u7vQBttVoVHR2tlJQU1a5d22HYhXSPP/64wxVs6QXL9FzkzJkz2rlzp7p16+bQCdu8eXNVrlzZ4bF+/vlnubu7a8CAAQ7rX3rpJdlsNi1dutRh/UMPPeRQVE6/QjAiIsKhKzh9/bX5kY+Pj1auXOmwpBdYV61apaSkJA0aNMhhEr1nn31W/v7+GXIyb29vh6K0lJZXVqpUSWFhYQ55ZdOmTSUpQ175448/Zhhq7kbSvwvcbhe0JPn6+tr/PyEhQefPn1e9evUkyeHfPDAwUL///rtOnz6d6eOk//suX75c8fHxtx3P9axcuVIxMTHq0qWLw/l0d3dX3bp1MwwZI2XM9QHAFVCEBpDtzp07p/j4eFWsWDHDtkqVKslqterEiROSpGPHjqlcuXIZ9sts3bVeffVV+fn5qU6dOipfvrz69etnv/zvdhw6dEhVq1a9qX2fe+45rVy5UosXL9bgwYN19erVDOMZHzhwQMuWLVNwcLDD0qxZM0nS2bNnJaWdg8KFC2e41O5658DDwyPDZaAHDhxQbGysChUqlOF4ly9fth+rcePGioiI0KhRo1SwYEE9+uijmjVrlsP4fn379lWFChXUqlUrFStWTD179tSyZcuyPB/Hjh2TpEz/zcPCwuzb0/n4+GTo4MmfP3+G8asB3LxUuZlmAYC7berUqVq5cqW+++47Pfzwwzp//nyG4dvmzJmj6tWry8fHR0FBQQoODtaSJUscxvVNV6JECYfb6QXp9FwkPXfJ7Oq8a/OdY8eOqUiRIhkKqpUqVXJ4rOsdO70IWrx48UzXX5sfubu7q1mzZg5LrVq1HI51bYxeXl4qU6ZMhliKFi2aYfLvAwcOaPfu3RlyygoVKkj6N4d9/PHH1aBBA/Xq1UshISHq3Lmzvv3225sqSPv7+0tKG6/5dkVHR2vgwIEKCQmRr6+vgoODVbp0aUly+DefMGGCdu3apeLFi6tOnToaOXKkQ2G/dOnSevHFF/Xpp5+qYMGCCg8P19SpUzN93dyOAwcOSJKaNm2a4ZyuWLHCfj7TZZbrA7mB0fkreeydYzgOADlWpUqVtG/fPv30009atmyZvv/+e02bNk1vvPGGw9APzlC+fHl7MblNmzZyd3fXa6+9pgcffNA+zIXValXz5s0dLvf7r/RE/lZ5e3s7dLakH6tQoUL66quvMr1PesHXYrHou+++0+bNm7V48WItX75cPXv21LvvvqvNmzfLz89PhQoV0s6dO7V8+XItXbpUS5cu1axZs/T0009rzpw5txXzte7mjOEAACDnq1Onjj3HateunRo2bKgnnnhC+/btk5+fn7788kt1795d7dq105AhQ1SoUCG5u7tr3LhxGSaOlq6fi1w7BJszXO/YRsT0327idFarVdWqVdN7772X6X3Si+W+vr769ddftWbNGi1ZskTLli3TN998o6ZNm2rFihVZ5nthYWGSZJ+Q8XZ06tRJGzdu1JAhQ1SjRg35+fnJarWqZcuWDoXwTp06qVGjRvrhhx+0YsUKvfPOOxo/frwWLFigVq1aSZLeffddde/eXT/++KNWrFihAQMGaNy4cdq8efMdF4TTY/niiy8UGhqaYbuHh2PZJrNcHwBcAUVoANkuODhYefLk0b59+zJs++eff+Tm5mZPXkuWLKmDBw9m2C+zdZnJmzevHn/8cT3++ONKSkpS+/btNWbMGA0dOlQ+Pj4ZhtHIStmyZbVr166b3v+/Xn/9dX3yyScaNmyYvWu4bNmyunz5sr1YfT0lS5bUmjVrFB8f79ANfbPnIP1Yq1atUoMGDTL9MnGtevXqqV69ehozZozmzp2rrl27at68eerVq5ektG6Ztm3bqm3btrJarerbt68+/vhjDR8+PNMO7fRxEfft22e/VDPdvn37HMZNBAAAuBPpxeUHH3xQU6ZM0WuvvabvvvtOZcqU0YIFCxzyvxEjRtzWMdJzl/Qu1v+6NsctWbKkVq1apUuXLjl0Q//zzz8Oj5Ud/puT/XdYvKSkJB05cuSGeamUllf++eefeuihh26YS7u5uemhhx7SQw89pPfee09jx47V66+/rjVr1qhZs2bXvX+FChVUsWJF/fjjj3r//feznNQvMxcvXtTq1as1atQoh7GbM/v3ktKGBezbt6/69u2rs2fPqmbNmhozZoy9CC2ljU9drVo1DRs2TBs3blSDBg300UcfOcydcjvSxwMvVKjQTZ1/AHBV/HwGINu5u7urRYsW+vHHH+0zl0tSVFSU5s6dq4YNG9ovwQsPD9emTZu0c+dO+37R0dHX7ej9rwsXLjjc9vLyUuXKlWWz2ezjHefNm1eSFBMTc8PHi4iI0J9//qkffvghw7YbdaAEBgaqd+/eWr58uf25dOrUSZs2bdLy5csz7B8TE6OUlBRJaecgOTlZn3zyiX271WrV1KlTbxhzuk6dOik1NVVvvvlmhm0pKSn253/x4sUMzyV9PO70ITmuPa9ubm6qXr26wz7Xql27tgoVKqSPPvrIYZ+lS5dq7969at269U0/FwC3x2pzM80CAM7WpEkT1alTR5MnT1ZCQoK96/a/ec7vv/+uTZs23dbjFy5cWDVq1NCcOXMchmVYuXKl9uzZ47Dvww8/rNTUVE2ZMsVh/aRJk2SxWBwKnc7WrFkzeXl56YMPPnA4FzNnzlRsbOxN5WSdOnXSqVOnHHLTdFevXtWVK1ckpeXs17o2r8wqFx81apQuXLigXr162fPi/1qxYoV++umnTGPM7N9bkiZPnuxwOzU1NcOwGoUKFVKRIkXsMcbFxWU4frVq1eTm5nbd3PdWhIeHy9/fX2PHjs10TpZz587d8TGAnMDo/JU89s7RCQ3AqT777LNMxwseOXKkVq5cqYYNG6pv377y8PDQxx9/rMTERE2YMMG+3yuvvKIvv/xSzZs31wsvvKC8efPq008/VYkSJRQdHZ1l90WLFi0UGhqqBg0aKCQkRHv37tWUKVPUunVrexdK+vh4r7/+ujp37ixPT0+1bdvWnhD/15AhQ/Tdd9+pY8eO6tmzp2rVqqXo6GgtWrRIH330ke65554sz8XAgQM1efJkvf3225o3b56GDBmiRYsWqU2bNurevbtq1aqlK1eu6O+//9Z3332no0ePqmDBgmrXrp3q1Kmjl156SQcPHlRYWJgWLVpkT+xvppu7cePG6t27t8aNG6edO3eqRYsW8vT01IEDBzR//ny9//776tChg+bMmaNp06bpscceU9myZXXp0iV98skn8vf318MPPyxJ6tWrl6Kjo9W0aVMVK1ZMx44d04cffqgaNWrYxza8lqenp8aPH68ePXqocePG6tKli6KiovT++++rVKlSGjx48A2fAwAAwK0YMmSIOnbsqNmzZ6tNmzZasGCBHnvsMbVu3VpHjhzRRx99pMqVK+vy5cu39fjjxo1T69at1bBhQ/Xs2VPR0dH68MMPVaVKFYfHbNu2rR588EG9/vrrOnr0qO655x6tWLFCP/74owYNGmTvhM0OwcHBGjp0qEaNGqWWLVvqkUce0b59+zRt2jTdd999evLJJ2/4GE899ZS+/fZbPf/881qzZo0aNGig1NRU/fPPP/r222+1fPly1a5dW6NHj9avv/6q1q1bq2TJkjp79qymTZumYsWKqWHDhpLSuoADAwP10UcfKV++fMqbN6/q1q2r0qVL6/HHH9fff/+tMWPGaMeOHerSpYtKliypCxcuaNmyZVq9erXmzp2baYz+/v564IEHNGHCBCUnJ6to0aJasWKFjhw54rDfpUuXVKxYMXXo0EH33HOP/Pz8tGrVKv3xxx/2yRx/+eUX9e/fXx07dlSFChWUkpKiL774Qu7u7oqIiLjDf5G0WKdPn66nnnpKNWvWVOfOnRUcHKzjx49ryZIlatCgQYYfMADAFVGEBuBU06dPz3R99+7d9dtvv2no0KEaN26crFar6tatqy+//NI+07eUNqbcmjVrNGDAAI0dO1bBwcHq16+f8ubNqwEDBsjHx+e6x+7du7e++uorvffee7p8+bKKFSumAQMGaNiwYfZ97rvvPr355pv66KOPtGzZMlmtVh05ciTTIrSfn59+++03jRgxQj/88IPmzJmjQoUK6aGHHrqpseCKFCmiJ554Ql988YUOHTqksmXLat26dRo7dqzmz5+vzz//XP7+/qpQoYJGjRpln2zG3d1dS5Ys0cCBAzVnzhy5ubnpscce04gRI9SgQYMsz8F/ffTRR6pVq5Y+/vhj/e9//5OHh4dKlSqlJ598Ug0aNJCUVqzesmWL5s2bp6ioKAUEBKhOnTr66quv7BO5PPnkk5oxY4amTZummJgYhYaG6vHHH9fIkSOzHJ+ue/fuypMnj95++229+uqryps3rx577DGNHz/ePns6AOcxy2QqqXL+eKoAIEnt27dX2bJlNXHiRO3bt0+RkZH6+OOPtXz5clWuXFlffvml5s+fr7Vr197W47ds2VLz58/XsGHDNHToUJUtW1azZs3Sjz/+6PCYbm5uWrRokd544w198803mjVrlkqVKqV33nlHL7300t15srdg5MiRCg4O1pQpUzR48GAVKFBAzz33nMaOHStPT88b3t/NzU0LFy7UpEmT9Pnnn+uHH35Qnjx5VKZMGQ0cONA+r8kjjzyio0eP6rPPPtP58+dVsGBBNW7c2CHP9fT01Jw5czR06FA9//zzSklJ0axZs+x551tvvaWmTZvqgw8+0PTp0xUdHa38+fOrXr16+vHHH/XII49cN865c+fqhRde0NSpU2Wz2dSiRQstXbpURYoUse+TJ08e9e3bVytWrNCCBQtktVpVrlw5TZs2TX369JEk3XPPPQoPD9fixYt16tQp5cmTR/fcc4+WLl2qevXq3fa/w3898cQTKlKkiN5++2298847SkxMVNGiRdWoUSP16NHjrhwDcHVmyGXJY++MxZYdMysAwF02aNAgffzxx7p8+XKuncRu4cKFeuyxx7R+/Xp7ERkArhUXF6eAgAB9sr2W8uQz/v0y/lKqnq25TbGxsfahlwAAAIDMmCmXJY+9M8a3wwDADVy9etXh9oULF/TFF1+oYcOGuaYAfe05SE1N1Ycffih/f3/VrFnToKgAAAAAAABujOE4AJhe/fr11aRJE1WqVElRUVGaOXOm4uLiNHz4cKNDyzYvvPCCrl69qvr16ysxMVELFizQxo0bNXbsWPn6+hodHgAXYJWUarvxGPLZEQcAAABwK8yQy95OHnvq1Cm9+uqrWrp0qeLj41WuXDnNmjVLtWvXlpQ2geqIESP0ySefKCYmRg0aNND06dNVvnz5uxu8CVCEBmB6Dz/8sL777jvNmDFDFotFNWvW1MyZM/XAAw8YHVq2adq0qd5991399NNPSkhIULly5fThhx+qf//+RocGAAAAAACucfHiRTVo0EAPPvigli5dquDgYB04cED58+e37zNhwgR98MEHmjNnjkqXLq3hw4crPDxce/bsuen5n1wFY0IDAADkYOnj6H28vZZ8/YzvP7h6OUW9GUsPAAAAN8FMueyt5rGvvfaaNmzYoN9++y3T7TabTUWKFNFLL72kl19+WZIUGxurkJAQzZ49W507d76r8RuNMaEBAAByAavcTLPcilKlSslisWRY+vXrJ0lKSEhQv379FBQUJD8/P0VERCgqKsoZpxAAAAAGMTp//W8eGxcX57AkJiZmGvOiRYtUu3ZtdezYUYUKFdK9996rTz75xL79yJEjioyMVLNmzezrAgICVLduXW3atMm5J9QAFKEBAABgWn/88YfOnDljX1auXClJ6tixoyRp8ODBWrx4sebPn69169bp9OnTat++vZEhAwAAIAcrXry4AgIC7Mu4ceMy3e/w4cP28Z2XL1+uPn36aMCAAZozZ44kKTIyUpIUEhLicL+QkBD7tpzE+GsykSmr1arTp08rX758sliMn0QIAADcPpvNpkuXLqlIkSJyc6MH4FYEBwc73H777bdVtmxZNW7cWLGxsZo5c6bmzp2rpk2bSpJmzZqlSpUqafPmzapXr54RIed65LEAAOQc5LEZnThxwmE4Dm9v70z3s1qtql27tsaOHStJuvfee7Vr1y599NFH6tatW7bEaiYUoU3q9OnTKl68uNFhAACAu+jEiRMqVqyYIcdOtbkp1Wb8F4f0GOLi4hzWe3t7XzeBT5eUlKQvv/xSL774oiwWi7Zt26bk5GSHSxjDwsJUokQJbdq0iSK0QchjAQDIeYzMYyVz5LLpx/f397+pMaELFy6sypUrO6yrVKmSvv/+e0lSaGioJCkqKkqFCxe27xMVFaUaNWrcpajNgyK0SeXLl0+S1FAPy0OeBkdjPhYPXrpZsXi4Gx2CqbkFBhodgqmlnr9gdAimZUtJMToEuKgUJWu9frZ/vkMZipQjRozQyJEjs7zPwoULFRMTo+7du0tKu4TRy8tLgde8r+fUSxhdRfrr/AHfCHlYyGOvRR6bNWv8VaNDgAsjV7s+3nuyZvHi8+p6UmzJ+vXq9+Sxt6FBgwbat2+fw7r9+/erZMmSkqTSpUsrNDRUq1evthed4+Li9Pvvv6tPnz7ZHa7T8S5kUumXLnrIk+Q9ExYLL92scH6y5ubmZXQIpmbhPee6bFxWjttlS/uPkUMTWGWRVca/htNjuNnLGP9r5syZatWqlYoUKeK0+HDn7HmsxVMeFj5zr0WeljWrhSIibh+52vXx3pM1C59XN2T0EFtmyGVv9fiDBw/W/fffr7Fjx6pTp07asmWLZsyYoRkzZkhKO6eDBg3SW2+9pfLly6t06dIaPny4ihQponbt2jnhGRiLdyEAAABku5u9jDHdsWPHtGrVKi1YsMC+LjQ0VElJSYqJiXHoho6KirJf3ggAAAAY4b777tMPP/ygoUOHavTo0SpdurQmT56srl272vd55ZVXdOXKFT333HOKiYlRw4YNtWzZMvn4+BgYuXNQhAYAAIDpzZo1S4UKFVLr1q3t62rVqiVPT0+tXr1aERERkqR9+/bp+PHjql+/vlGhAgAAAJKkNm3aqE2bNtfdbrFYNHr0aI0ePTobozIGRWgAAIBcwAyTuaTHcausVqtmzZqlbt26yeM/Y1oGBATomWee0YsvvqgCBQrI399fL7zwgurXr8+khAAAADmIGXJZo4/v6ihCAwAAwNRWrVql48ePq2fPnhm2TZo0SW5uboqIiFBiYqLCw8M1bdo0A6IEAAAAcD0UoQEAAGBqLVq0kM1my3Sbj4+Ppk6dqqlTp2ZzVAAAAABuFkVoAACAXCBVbkqV8ZcQmiEGAAAAuBYz5LJGH9/VcfYAAAAAAAAAAE5DERoAAAAAAAAA4DQMxwEAAJALWG0WWW0Wo8MwRQwAAABwLWbIZY0+vqujExoAAAAAAAAA4DR0QgMAAOQCVhNM5pIeBwAAAHArzJDLksfeGc4eAAAAAAAAAMBpKEIDAAAAAAAAAJyG4TgAAAByAavNTVab8f0HZogBAAAArsUMuazRx3d1nD0AAAAAAAAAgNNQhAYAAAAAAAAAOA3DcQAAAOQCqbIoVRajwzBFDAAAAHAtZshljT6+q6MTGgAAAAAAAADgNBShAQAAAAAAAABOw3AcAAAAuYAZZhRPjwMAAAC4FWbIZY0+vqvj7AEAAAAAAAAAnIYiNAAAAAAAAADAaRiOAwAAIBdIlTlm9E41OgAAAAC4HDPksuSxd4ZOaAAAAAAAAACA09AJDQAAkAuYYTKX9DgAAACAW2GGXNbo47s6zh4AAAAAAAAAwGkoQgMAAAAAAAAAnIbhOAAAAHKBVJubUk1wCaEZYgAAAIBrMUMua/TxXV2OLkKXKlVKgwYN0qBBg4wOxeW17X5eHfqcVYHgFB3e46tpw4pq3848RodluKp1LqnD81EqXy1eQSHJGtWrrDatCDQ6LFPo1OeUGoRfVLEyV5WU4KY92/Pps/HFdeqIr9GhmUZQcIJ6DNivWvefl7dPqs6czKNJI6vq4N4Ao0MzHH9bN8b7ctY4P3B15LF3rtPzp9SgxYW0XCTx/3ORCSXJRf7fw51Pq3WXMwopmihJOnYwj76eWkJbfytgcGTmQC5yfZybGyMPuT5eP9fH5xZyOkNL+E2aNMk0sZ49e7YCAwOzPZ6btW/fPj344IMKCQmRj4+PypQpo2HDhik5Odlhv/nz5yssLEw+Pj6qVq2afv75Z4MivjONH7mo50ac1lfvhapfeAUd3uOjMXMPKyAo+cZ3zuF88lh1ZI+vpg4rbnQoplOtziUt/iJEgyOq6H9Ph8nD06Yxn/8jb99Uo0MzBb98yXrns9+VkmLRiAE11adjA306qaIuX/I0OjRT4G8ra7wvZ43zg+xAHmt+1erEavGXoRrcsZr+162yPDxsGjN7D7nI/zsf5a1Z75bWgIh7NbBDDf25OVDDp+5RiXJXjA7NFMhFro9zkzXykKzx+rk+PreQ0+XoTug7lZSUJC8vrwzrPT099fTTT6tmzZoKDAzUn3/+qWeffVZWq1Vjx46VJG3cuFFdunTRuHHj1KZNG82dO1ft2rXT9u3bVbVq1ex+Knek/XPntWxuAa34Jq0r4oNXi6nOQ3EK7xKtb6eEGBydsbauDdDWtXStZmZ4jzCH2+8NKaN5W7erfNUr2vWHv0FRmUeH7kd0LspHk0dVs6+LOk13RDr+trLG+3LWOD+Zs8kiqyxGhyGbCWLIDchjpeE9Kzvcfu/Vcpq3ZSu5yP/bsibI4fbnk0updeczCrvnko4fzGtQVOZBLnJ9nJuskYdkjdfP9fG5lTUz5LLksXfGJQYz6d69u9q1a6eJEyeqcOHCCgoKUr9+/Rw6Ns6ePau2bdvK19dXpUuX1ldffZXhcWJiYtSrVy8FBwfL399fTZs21Z9//mnfPnLkSNWoUUOffvqpSpcuLR8fn0zjKVOmjHr06KF77rlHJUuW1COPPKKuXbvqt99+s+/z/vvvq2XLlhoyZIgqVaqkN998UzVr1tSUKVPu4plxPg9Pq8pXj9f23/LZ19lsFu34LZ8q14o3MDK4mjz50n69vRTLb1+SVPeBszq4J0BDx+/UVyvX6IOvNir8sRNGhwUXwPty1jg/MBvyWPPIky9FknQphlzkWm5uNj3w8Fn55EnV3p35bnwHAJkiD8HdxOcWchqXeSWvWbNGhQsX1po1a3Tw4EE9/vjjqlGjhp599llJaQn+6dOntWbNGnl6emrAgAE6e/asw2N07NhRvr6+Wrp0qQICAvTxxx/roYce0v79+1WgQNqvlAcPHtT333+vBQsWyN3d/aZiO3jwoJYtW6b27dvb123atEkvvviiw37h4eFauHBhpo+RmJioxMRE++24uLibOraz+RdIlbuHFHPO8aVy8byHipdLvM69AEcWi029hx/T7q1+Orafbl9JCi16VQ93OKEfviqpbz4rowqVY9X75X+Ukuym1T8VNTo8mBjvy1nj/MCMyGONZ7HY1Pv1o9q9NZ+OHSAXSVeqwhW9+/VOeXlbdTXeXW/2r6wTh+iCBm4XeQjuFj63kBO5TBE6f/78mjJlitzd3RUWFqbWrVtr9erVevbZZ7V//34tXbpUW7Zs0X333SdJmjlzpipVqmS///r167VlyxadPXtW3t7ekqSJEydq4cKF+u677/Tcc89JSrt08fPPP1dwcPANY7r//vu1fft2JSYm6rnnntPo0aPt2yIjIxUS4nipTUhIiCIjIzN9rHHjxmnUqFG3dlIAF9Fv9FGVqhCvlztVvvHOuYTFzaaDewL0+dQKkqTD+/xVstxltYo4QREagFOYYUbx9DhyG/JY4/UbeUSlKlzVy52rGB2KqZw84qv+j9VU3nwpahh+Xi+9vU+vPFWdQjQAGIzPrYzMkMsafXxX5zJnr0qVKg4dHYULF7Z3iOzdu1ceHh6qVauWfXtYWJjDpDB//vmnLl++rKCgIPn5+dmXI0eO6NChQ/b9SpYseVOJuyR988032r59u+bOnaslS5Zo4sSJt/38hg4dqtjYWPty4oQ5LsuPi3ZXaooUGJzisD5/wRRdPOcyv2HAQH1GHlWdB2P06hOVdD7S2+hwTOPieW8dP+L4Be/EkbwKDk0wKCK4Ct6Xs8b5gRmRxxqrz4jDqtP0ol59sjK5yDVSkt105rivDu7Op9nvldbhf/z06NOnjQ4LcFnkIbgb+NxCTmXou6C/v79iY2MzrI+JiVFAgONA9Z6eng63LRaLrFbrTR/r8uXLKly4sNauXZth23+T/Lx5b/5X/+LF02ZzrVy5slJTU/Xcc8/ppZdekru7u0JDQxUVFeWwf1RUlEJDQzN9LG9vb3tni5mkJLvpwF95dG/DS9q0LO3fxGKxqUbDy1o0O+gG90buZlOfkcd0f4tovfpEZUWdzHxsytxqz5+BKlrScfb5oiXide6Mr0ERwVXwvpw1zs/1WW0WWW3GT6ZihhjuBvLYf5k1j5Vs6jPiiO5vHq1Xu1YhF7kJbm42eXrd/GsTgCPyENwZPreyYoZc1ujjuzpDO6ErVqyo7du3Z1i/fft2VahQ4aYfJywsTCkpKdq2bZt93b59+xQTE2O/XbNmTUVGRsrDw0PlypVzWAoWLHhHz0OSrFarkpOT7V8o6tevr9WrVzvss3LlStWvX/+Oj5XdFswoqFZPRKtZx2gVL5egF94+KZ88Vq2YV8Do0AznkydVZSrHq0zltEkmQosnqkzleAUXSTI4MuP1G31UTdud14RB5XT1spvyF0xS/oJJ8vLmi40kLfyqlMKqxapTj8MqXOyKGrc8rZbtT+qn+cWNDs0U+NvKGu/LWeP8IDuQx5pfv1FH1PTR85rwYnldveL+n1wk1ejQTKH7i0dUtXasChVNUKkKV9T9xSOqVidWaxcXMjo0UyAXuT7OTdbIQ7LG6+f6+NxCTmdoJ3SfPn00ZcoUDRgwQL169ZK3t7eWLFmir7/+WosXL77px6lYsaJatmyp3r17a/r06fLw8NCgQYPk6/tvR2GzZs1Uv359tWvXThMmTFCFChV0+vRpLVmyRI899phq165908f76quv5OnpqWrVqsnb21tbt27V0KFD9fjjj9s7XQYOHKjGjRvr3XffVevWrTVv3jxt3bpVM2bMuPkTZBLrFuVXQFCqnh4SqfzBKTq821evdy2tmPOeN75zDleherwmfLvffrv3iJOSpJXzg/TuS6UMisoc2jyZdpnxhHl7Hda/O6SMVn1/c5cK52QH9gTorZdrqHv/A+ry7CFFnfbVjHcrau3SIkaHZgr8bWWN9+WscX6QHchjza9N17Ru7glz9zisf/eVslq1gEJrQIFkvTR+nwoEJ+nKJQ8d2ZdXw3tV1Y6N+Y0OzRTIRa6Pc5M18pCs8fq5Pj63kNMZWoQuU6aMfv31V73++utq1qyZkpKSFBYWpvnz56tly5a39FizZs1Sr1691LhxY4WEhOitt97S8OHD7dstFot+/vlnvf766+rRo4fOnTun0NBQPfDAAxkmXrkRDw8PjR8/Xvv375fNZlPJkiXVv39/DR482L7P/fffr7lz52rYsGH63//+p/Lly2vhwoWqWrXqLR3LLBbNKqhFs+680yan+WtzPrUsUevGO+ZCrcrUNToE0/vjt0L64zeSiczwt3VjvC9njfOTUarclGqC6UDMEMPdQB5rfq3KuVbndnZ7f9jNd+znRuQi18e5uTHykOvj9XN9fG5lzQy5rNHHd3UWm81mMzoIZBQXF6eAgAA10aPysPCL6bUsHkzqkBXOT9bc8gcaHYKppZ47b3QIpmVLSbnxTkAmUmzJWqsfFRsbK39//2w9dnpOMWjDI/L2Mz6nSLycrMkNFhlyLpA90l9zTfN0lofFy+hwTIc8LWvW+HijQ4ALI1e7Pt57smbx4vPqelJsSfolfp5huZuZclny2DtDCR8AAAAAAAAA4DT8FAYAAJALmGFG8fQ4AAAAgFthhlzW6OO7OjqhAQAAAAAAAABOQxEaAAAAAAAAAOA0DMcBAACQC1jlJqsJ+g/MEAMAAABcixlyWaOP7+o4ewAAAAAAAAAAp6ETGgAAIBdItVmUaoLJVMwQAwAAAFyLGXJZo4/v6uiEBgAAAAAAAAA4DUVoAAAAAAAAAIDTMBwHAABALmC1WWQ1wSWEZogBAAAArsUMuazRx3d1dEIDAAAAAAAAAJyGIjQAAAAAAAAAwGkYjgMAACAXsNncZLUZ339gM0EMAAAAcC1myGXJY+8MZw8AAAAAAAAA4DQUoQEAAAAAAAAATsNwHAAAALlAqixKlfEzepshBgAAALgWM+SyRh/f1dEJDQAAAAAAAABwGorQAAAAAAAAAACnYTgOAACAXMBqk6w24y8htNqMjgAAAACuxgy5LHnsnaETGgAAAAAAAADgNHRCAwAA5AJWm5usNuP7D8wQAwAAAFyLGXJZo4/v6jh7AAAAAAAAAACnoQgNAAAAAAAAAHAahuMAAADIBayyyCoTTExoghgAAADgWsyQyxp9fFdHJzQAAAAAAAAAwGkoQgMAAAAAAAAAnIbhOAAAAHKBVJtFqTbjLyE0QwwAAABwLWbIZY0+vqujExoAAAAAAAAA4DQUoQEAAAAAAAAATsNwHEAOdO6pe40OwdTynUgxOgRTy7Obj4brSTlx0ugQgNtmtbnJajO+/8AMMSB72JKSxVWrGUVH3GN0CKaW/5/LRodgam5HThsdgqnZ4q8aHYJpJdWrZHQIpubxyzajQzAtqy3Z6BAkmSOXNfr4ro6zBwAAAAAAAABwGtrdAAAAcgGrLLKaoC3VKuNjAAAAgGsxQy5LHntn6IQGAAAAAAAAADgNRWgAAAAAAAAAgNMwHAcAAEAuYJPFFJcQ2kwQAwAAAFyLGXJZ8tg7Qyc0AAAAAAAAAMBpKEIDAAAAAAAAAJyG4TgAAAByAavN+BnF0+MAAAAAboUZclmjj+/q6IQGAAAAAAAAADgNRWgAAAAAAAAAgNNQhAYAAMgFrDY30yy36tSpU3ryyScVFBQkX19fVatWTVu3brVvt9lseuONN1S4cGH5+vqqWbNmOnDgwN08fQAAADCQ0fnr7eax+BdnDwAAAKZ18eJFNWjQQJ6enlq6dKn27Nmjd999V/nz57fvM2HCBH3wwQf66KOP9Pvvvytv3rwKDw9XQkKCgZEDAAAASMfEhAAAALmAGSZzSY/jVowfP17FixfXrFmz7OtKly5t/3+bzabJkydr2LBhevTRRyVJn3/+uUJCQrRw4UJ17tz57gQOAAAAw5ghlzX6+K6OTmgAAABku7i4OIclMTEx0/0WLVqk2rVrq2PHjipUqJDuvfdeffLJJ/btR44cUWRkpJo1a2ZfFxAQoLp162rTpk1Ofx4AAAAAbowiNAAAALJd8eLFFRAQYF/GjRuX6X6HDx/W9OnTVb58eS1fvlx9+vTRgAEDNGfOHElSZGSkJCkkJMThfiEhIfZtAAAAAIzFcBwAAAC5gFUWWWX8JYTpMZw4cUL+/v729d7e3pnvb7Wqdu3aGjt2rCTp3nvv1a5du/TRRx+pW7duzg8YAAAAhjNDLmv08V0dndAAAADIdv7+/g7L9YrQhQsXVuXKlR3WVapUScePH5ckhYaGSpKioqIc9omKirJvAwAAAGAsitAAAAAwrQYNGmjfvn0O6/bv36+SJUtKSpukMDQ0VKtXr7Zvj4uL0++//6769etna6wAAAAAMsdwHAAAALmAGWYUT4/jVgwePFj333+/xo4dq06dOmnLli2aMWOGZsyYIUmyWCwaNGiQ3nrrLZUvX16lS5fW8OHDVaRIEbVr184JzwAAAADZzQy5rNHHd3UUoQEAAGBa9913n3744QcNHTpUo0ePVunSpTV58mR17drVvs8rr7yiK1eu6LnnnlNMTIwaNmyoZcuWycfHx8DIAQAAAKSjCA0AAABTa9Omjdq0aXPd7RaLRaNHj9bo0aOzMSoAAAAAN4siNAAAQC5ghksY0+MAAAAAboUZclmjj+/qmJgQAAAAAAAAAO6ikSNHymKxOCxhYWH27QkJCerXr5+CgoLk5+eniIgIRUVFGRixc9EJDQAAkAuYoXskPQ4AAADgVpghl72d41epUkWrVq2y3/bw+LcUO3jwYC1ZskTz589XQECA+vfvr/bt22vDhg13JV6zoQgNAAAAAAAAAHeZh4eHQkNDM6yPjY3VzJkzNXfuXDVt2lSSNGvWLFWqVEmbN29WvXr1sjtUp2M4DgAAAAAAAAC4yw4cOKAiRYqoTJky6tq1q44fPy5J2rZtm5KTk9WsWTP7vmFhYSpRooQ2bdpkVLhORSc0AABALmCGSxjT4wAAAABuhRly2fTjx8XFOaz39vaWt7d3hv3r1q2r2bNnq2LFijpz5oxGjRqlRo0aadeuXYqMjJSXl5cCAwMd7hMSEqLIyEinPQcjUYQGAAAAAAAAgJtQvHhxh9sjRozQyJEjM+zXqlUr+/9Xr15ddevWVcmSJfXtt9/K19fX2WGaDkVoAAAAAAAAALgJJ06ckL+/v/12Zl3QmQkMDFSFChV08OBBNW/eXElJSYqJiXHoho6Kisp0DOmcgCI0bkrb7ufVoc9ZFQhO0eE9vpo2rKj27cxjdFiGq1rnkjo8H6Xy1eIVFJKsUb3KatOKQKPDMkT3Rtv1YKUjKlUwRonJ7vrrRKg+XFlPxy4ESpIKB8Zp8eC5md731W+aa/WestkYbfarXuGMHm/5lyqUuqCCgfEa9mEzbdhRyr7dxztZz3X4Qw3vPSp/v0SdOZ9PC1ZV0eK1lYwL2kCf/fCLQopczbD+p+9Kavo7VQ2IyHx4X84a5ycjmySrjB8Kw2Z0AMg1yNP+1a3JdjWpekQlC6XlaX8fC9WUn+vp+PlA+z7t6uxRixoHFFb0vPL6JOuhET10OeHmvlS7uqqVo9ThsT0qXy5aQQWuatTYxtr0+79dbg3qHdfDLQ+ofNkL8vdPUt9BD+vwkQIGRmwuHXseVY9Bh7Xwy2KaMaGC0eEYrtPzp9SgxQUVK3NVSYlu2rM9nz6bUFKnjuS+rsdqFSP1eOu/Vb70eRXMf1VvTHpIG7aVzHTfQT02qO1D+zT1i7pasLxKNkdqLuSxmTNDLpuex/r7+zsUoW/W5cuXdejQIT311FOqVauWPD09tXr1akVEREiS9u3bp+PHj6t+/fp3MWrzYGJC3FDjRy7quRGn9dV7oeoXXkGH9/hozNzDCghKNjo0w/nkserIHl9NHVb8xjvncDVLntH8LVXU45PH1O/zNvJwt2rK0z/JxzPtdRIV66fwd552WD76pbauJHpq48ESBkfvfD7eKTp0Ikjvf3l/ptv7dd6sOlVPaswnTdTt9Q76fmVVDey6UffXOJbNkZrDoB4N9GSrh+zL6/3rSpLWry5scGTmwPty1jg/ACTytP+6t8wZfbepip6Z+pgGfNpGHm5WfdDr3zxNkny8UrR5fwnNXlPTwEiN4eOToiNH82vqx/ddd/vuvcH67PN7szky8ytfJU6tOp7W4X1+RodiGtXqxGrxl6Ea3LGa/tetsjw8bBoze4+8fVONDi3b+Xon69DxAvpgTtYFtQa1j6pSuXM6H02hlTw2Z3n55Ze1bt06HT16VBs3btRjjz0md3d3denSRQEBAXrmmWf04osvas2aNdq2bZt69Oih+vXrq169ekaH7hQ5ugg9ffp0Va9e3f4LRf369bV06VL79oSEBPXr109BQUHy8/NTRESEoqKibvrxDx48qHz58mUYRFyS5s+fr7CwMPn4+KhatWr6+eef78ZTMkT7585r2dwCWvFNAR0/4KMPXi2mxKsWhXeJNjo0w21dG6A5E4tq4/L8RodiuAFfttZPO8N0+FwBHYgqqJE/PKjCgZdVqcg5SZLV5qYLl/M4LA9WOqJVu8vqapKnwdE735a/i+uzH2pr/fZSmW6vUvaslm8srz/3FVHUhXz6aV2YDp0ooLDS57I3UJOIi/HWxWgf+3JfwyidPpFHf2+n60jifflGOD/ICchj7xx52r8GfdZaS7aF6UhUAR04U1Cj5z+owvkvK6zYv3nGvPXV9fnae7XreCEDIzXG1u1FNeerGtq4OfPGiNVry2juN9W1409+DP8vH98UvTJutz4YGabLcVxknW54z8pataCQjh/IoyP/5NV7r5ZTSNEkla96xejQst2Wv4pr1ne1tGFrqevuUzD/Fb3w9GaNndZYKak5ukR1U8hjc5aTJ0+qS5cuqlixojp16qSgoCBt3rxZwcHBkqRJkyapTZs2ioiI0AMPPKDQ0FAtWLDA4KidJ0f/hRcrVkxvv/22tm3bpq1bt6pp06Z69NFHtXv3bknS4MGDtXjxYs2fP1/r1q3T6dOn1b59+5t67OTkZHXp0kWNGjXKsG3jxo3q0qWLnnnmGe3YsUPt2rVTu3bttGvXrrv6/LKDh6dV5avHa/tv+ezrbDaLdvyWT5VrxRsYGczOzydJkhR31SfT7WGFz6li4Qv6cXtYdoZlWrsPFdL9NY6pYOAVSTbVCDutYqFx2rq7qNGhGc7Dw6oHW57SysXFJRMMJWA03pezxvm5vvQZxc2w4MbIY+FM9jwtPvM8DbgZfV/fry2/FdTO32kSyEqefCmSpEsxFOqvZbHY9Nrzv+rbJdV07BQ/GJLHZs3o/PV28th58+bp9OnTSkxM1MmTJzVv3jyVLfvvUKQ+Pj6aOnWqoqOjdeXKFS1YsCDHjgct5fAidNu2bfXwww+rfPnyqlChgsaMGSM/Pz9t3rxZsbGxmjlzpt577z01bdpUtWrV0qxZs7Rx40Zt3rz5ho89bNgwhYWFqVOnThm2vf/++2rZsqWGDBmiSpUq6c0331TNmjU1ZcoUZzxNp/IvkCp3DynmnOMH5sXzHsofnGJQVDA7i8Wml1pu0M5joTp0NvOk9NGae3X4bH79dSLnvsHeig++ul/HTufX/Pe+1soZn2n84GV6/8v79dd+Om7qNY6Un1+KVi0pZnQopsD7ctY4P8gpyGPhLBaLTYPbbtCfR0J1OIriIW7PAy2jVK7SJc1+v4zRoZiaxWJT79ePavfWfDp2gKEmrtW5zV9KtVq0YHllo0MxBfJY5HQ5ugj9X6mpqZo3b56uXLmi+vXra9u2bUpOTlazZs3s+4SFhalEiRLatGlTlo/1yy+/aP78+Zo6dWqm2zdt2uTwuJIUHh6e5eMmJiYqLi7OYQFc1autf1PZQtH633fNMt3u7ZGiltUO6scddEGne+yh3apU9qz+935z9R7dTtO/qauBT25UzcqnjA7NcC0eOaGtm4IVfZ5uLQC5E3ks7qYhj/6mMiHRGvZ15nkacCMFQxLU+9X9mvBaFSUnuRsdjqn1G3lEpSpc1duDyhsdiumUL3Ve7cP3aMLHD4irHYHcIcdfD/L333+rfv36SkhIkJ+fn3744QdVrlxZO3fulJeXV4Zx8EJCQhQZGXndx7tw4YK6d++uL7/88rozYUZGRiokJOSWHnfcuHEaNWrUzT+xbBIX7a7UFCnwml/d8hdM0cVzOf7lg9vwysO/qWGFY3rus0d1Ni7zCUoeqnxYPp4pWrKT2bMlycszRb0ituqNKc20+a+0sQgPnwxSuRIX9Hj439q+J/cOyREcGq8a953X2NdqGR2KafC+nDXOz/WZZSgMM8TgKshjcbe9/OhvaljpmHp/9KjOxjKRHG5P+cqXlD8oWR9+84d9nbuHTVVrxaht51N6tHYTWa281/cZcVh1ml7UkC5VdD7S2+hwTKdaxSgF+l/V1+9/Y1/n7m7T8123KKLlbnUdnPFqnZyOPDZrZshljT6+q8vxr+KKFStq586dio2N1Xfffadu3bpp3bp1N3XfKlWq6NixY5KkRo0aaenSpXr22Wf1xBNP6IEHHrircQ4dOlQvvvii/XZcXJyKFzd+Ju+UZDcd+CuP7m14SZuWBUhKu6SoRsPLWjQ7yODoYC42vfLwejWpdES9Zz2i0zGZf7mV0obi+HVfKcXE+2ZjfObl4W6Vp4c1wwea1eomi8VmUFTm0LzNScVe9NaWDblvkqTr4X05a5wf5CTksbh7bHr50fVqXOWI+n78iM5cvH6eBtzIzt/zq0/7Og7rBo/eq5NH8mj+rJIUoGVTnxFHdH/zaL3atYqiTnI1X2ZWbSir7buLOKwb/8pyrdxQVst+zZ3NSuSxyOlyfBHay8tL5cqVkyTVqlVLf/zxh95//309/vjjSkpKUkxMjEMXSVRUlH0Q8J9//lnJycmSJF/ftGLZL7/8okWLFmnixImSJJvNJqvVKg8PD82YMUM9e/ZUaGhohtnJ//u4mfH29pa3tzl/HV0wo6BennxC+//Mo3078uixZ8/JJ49VK+YxhpxPnlQVKZVovx1aPFFlKsfrUoyHzp32MjCy7Pdq69/UstpBvfR1S8UneSnIL23ihMsJXkpM+fetpliBWN1b8owGfvWwUaEawsc7WUUL/Xt5cuGCl1S2+AVduuKts9F+2vlPqJ7vuEWJSe6KupBP91Q8oxb3H9C0eXUNjNpYFotNzduc1OolxWRlpmwHvC9njfOTOTN0j6THgZtDHntnyNP+NaTdbwqvcVBD5rTUlUQvFfj/PO3Kf/K0An7xCsoXr2JBaflKudBoXUn0VFSM33Unms4pfHySVaTwJfvt0JDLKlM6Wpcueevc+bzy80tUoeArCipwVZJUrGjaObp40VcXY3JfU8XVeA8dO+jYSZ9w1V1xsZ4Z1udG/UYdUZO25zX6+Yq6esVd+QumTQR65ZK7khJz1/AlPt7JKhry73eg0OBLKlvi/78DXfBT3GXH95aUVDdFx+TRyTMB2R2qaZDHXp8Zclmjj+/qcnwR+lpWq1WJiYmqVauWPD09tXr1akVEREiS9u3bp+PHj6t+/fqSpJIlS2a4/6ZNm5Sammq//eOPP2r8+PHauHGjihZNu2S+fv36Wr16tQYNGmTfb+XKlfbHdTXrFuVXQFCqnh4SqfzBKTq821evdy2tmPOeRodmuArV4zXh2/32271HnJQkrZwfpHdfKmVQVMboWGePJGlGz0UO60f+0EQ/7fx37OdH7v1HZ+P8tPlQ7uqQqljqnCa/+rP9dr8uv0uSlq0vr/GfNdboj5rq2Q5/6PXn1so/b6KiLvhp5oLaWrS2klEhG65GnfMqVPiqVixmQsJr8b6cNc4Pciry2FtDnvavDvXT8rSPnnfM00Z/20RLtqXlae3r7dazzbfZt33c58cM++RUFcpd0IQxq+y3ez+Tdh5Wri6jdz+4X/XrnNRLA/8dF/1/Q9ZLkr78upq+nHdP9gYL02vTNe2HvAlz9zisf/eVslq1IHdd3VexzHm99/pS++2+T26RJC3/tZwmzLi7V+XkFOSxyMksNpstx17rPXToULVq1UolSpTQpUuXNHfuXI0fP17Lly9X8+bN1adPH/3888+aPXu2/P399cILL0iSNm7ceNPHmD17tgYNGqSYmBj7uo0bN6px48Z6++231bp1a82bN09jx47V9u3bVbVq1Zt63Li4OAUEBKiJHpWHhTeba1k8ct3vJ7fkfI/7jA7B1PKdYGbhrOTZfcboEEwr5cRJo0OAi0qxJWutflRsbOx1x+J1lvSc4oHFfeWR1/hu1ZQrifq17TRDzoUryQl57IMeEeSxmbjYhTwtK/n/uWx0CKbmduS00SGYmi3+qtEhmFZSvdzb3HIzPH7ZduOdcikj81jJXLkseeydydGVvLNnz+rpp5/WmTNnFBAQoOrVq9sTd0maNGmS3NzcFBERocTERIWHh2vatGl3fNz7779fc+fO1bBhw/S///1P5cuX18KFC286cQcAALjbzHAJY3ocuDHyWAAAgH+ZIZc1+viuLkd3QrsyOqGzRid01uiEzhqd0FmjE/r66ITG7TJDJ3TDRf0M7x6R0jpI1j8ylQ6SHIxO6KzRCZ01OqGzRid01uiEvj46obNGJ/T1maUT2gy5LHnsnWGmJwAAAAAAAACA09BOCgAAkAvYbBbZTHAJoRliAAAAgGsxQy5r9PFdHZ3QAAAAAAAAAACnoQgNAAAAAAAAAHAahuMAAADIBayyyCrjLyE0QwwAAABwLWbIZY0+vqujExoAAAAAAAAA4DR0QgMAAOQCVptFVhNMpmKGGAAAAOBazJDLGn18V0cnNAAAAAAAAADAaShCAwAAAAAAAACchuE4AAAAcgGbzSKbCS4hNEMMAAAAcC1myGWNPr6roxMaAAAAAAAAAOA0FKEBAAAAAAAAAE7DcBwAAAC5gBlmFE+PAwAAALgVZshljT6+q6MTGgAAAAAAAADgNBShAQAAAAAAAABOw3AcAAAAuYAZZhRPjwMAAAC4FWbIZY0+vqujExoAAAAAAAAA4DR0QgMAAOQCNhNM5pIeBwAAAHArzJDLksfeGTqhAQAAAAAAAABOQxEaAAAAAAAAAOA0DMcBAACQC9gk2WxGR5EWBwAAAHArzJDLksfeGTqhAQAAAAAAAABOQxEaAAAAAAAAAOA0DMcBAACQC1hlkUXGz+htNUEMAAAAcC1myGXJY+8MndAAAAAAAAAAAKehCA0AAAAAAAAAcBqG4wAAAMgFbDaLbDbjLyE0QwwAAABwLWbIZY0+vqujExoAAAAAAAAA4DR0QgM50NZR040OwdQqT+9rdAimVuJCfqNDMC23mFijQzA166VLRocAAKbndcVqdAimNmH+J0aHYGpDm3Y2OgRTSylfzOgQTOtUY2+jQzC1kr8YHQGQ81GEBgAAyAWsNossJriE0GqCGAAAAOBazJDLksfeGYbjAAAAAAAAAAA4DZ3QAAAAuYDNlrYYzQwxAAAAwLWYIZc1+viujk5oAAAAAAAAAIDTUIQGAAAAAAAAADgNw3EAAADkAjabRTYTTKZihhgAAADgWsyQyxp9fFdHJzQAAAAAAAAAwGkoQgMAAAAAAAAAnIbhOAAAAHIBM1zCmB4HAAAAcCvMkMsafXxXRyc0AAAAAAAAAMBpKEIDAAAAAAAAAJyG4TgAAAByAavNIosJLiG0miAGAAAAuBYz5LLksXeGTmgAAAAAAAAAgNPQCQ0AAJAL2Gxpi9HMEAMAAABcixlyWaOP7+rohAYAAAAAAAAAOA1FaAAAAAAAAACA0zAcBwAAQC6Qdgmj8ZOpcBkjAAAAbpUZclny2DtDJzQAAAAAAAAAwGkoQgMAAAAAAAAAnIbhOAAAAHIBm81i+CWM6XEAAAAAt8IMuazRx3d1dEIDAAAAAAAAAJyGIjQAAAAAAAAAwGkYjgMAACAXsP3/YjQzxAAAAADXYoZc1ujjuzo6oQEAAAAAAAAATkMnNAAAQC5ghslc0uMAAAAAboUZclmjj+/q6IQGAACAaY0cOVIWi8VhCQsLs29PSEhQv379FBQUJD8/P0VERCgqKsrAiAEAAABciyI0AAAATK1KlSo6c+aMfVm/fr192+DBg7V48WLNnz9f69at0+nTp9W+fXsDowUAAABwLYbjAAAAyA3MMJuLdFsxeHh4KDQ0NMP62NhYzZw5U3PnzlXTpk0lSbNmzVKlSpW0efNm1atX706jBQAAgBmYIZc1+vgujk5oAAAAmNqBAwdUpEgRlSlTRl27dtXx48clSdu2bVNycrKaNWtm3zcsLEwlSpTQpk2bjAoXAAAAwDXohAYAAEC2i4uLc7jt7e0tb2/vDPvVrVtXs2fPVsWKFXXmzBmNGjVKjRo10q5duxQZGSkvLy8FBgY63CckJESRkZHODB8AAADALaAIjZvStvt5dehzVgWCU3R4j6+mDSuqfTvzGB2W4arWuaQOz0epfLV4BYUka1Svstq0ItDosAyRmip9+W6oVn+fXxfPeSooJFnNO0XriUFRsliklGRp9vjC+uMXf5055qW8/lbd2+iSnvnfaQWFphgdvlM9XmWXOlfZraL5LkmSDkYX0PRttfTb8ZKSpNmP/Kg6RU873Oeb3ZU16tfG2R6rUapWjlKHx/aofLloBRW4qlFjG2vT78Xt25/s/KcaNzqm4IJXlJziroOHCmj2lzW0b39BA6M2RusuZ9S6yxmFFE2UJB07kEdzpxXX1l8LGByZufC5lQkTzCieHockFS9e3GH1iBEjNHLkyAy7t2rVyv7/1atXV926dVWyZEl9++238vX1dWqocG3kaY7uKXtGXZr9qYolzqtgQLz+N6OFfvurlH27r1eyej/6uxpVP6aAvAk6cyGfvltXVT+ur2xc0NkoNtJTS94uoX1rA5V01V0FSyWo0zuHVLz6FUnSvJfKatv3wQ73qfBAjJ79/B8jwjXUZ/NXKKTw1Qzrf1pQStPfu8eAiIxVrXKUOj66W+XLXFBQgasaOb6JNm4pIUlyd7eqe5cdqlPzlAqHXNaVeE9t/6uwZn5ZU9EXc35e0rnSLnWp9J/vQRcLaOr2WvrtZNr3oE5he9Sm7AFVLnhOfl7Jum9OT11KyviDdG5DHnsdZshljT6+i8s1w3G8/fbbslgsGjRokH3d7cymfvTo0QwztFssFm3evNlhv/nz5yssLEw+Pj6qVq2afv75Z2c8rWzR+JGLem7EaX31Xqj6hVfQ4T0+GjP3sAKCko0OzXA+eaw6ssdXU4cVv/HOOdy3UwvppzkF1W/MKX2y7h898/ppzZ9WSD/OTCsSJl5108G/8+iJQVGauny/3vj0iE4e8taI7mUMjtz5oi77adLmeur4XQd1/K6Dfj9VVFNaLlO5/NH2fb7dU0kPzO5mXyZuqm9gxNnPxydFR47m19SP78t0+8nT/po24z49P6CNXn6thaLO5tXYkasV4J+QzZEa73ykl2ZNLKUX2tfQgIga+nNzgN6Yulclyl0xOjTT4HPLNZw4cUKxsbH2ZejQoTd1v8DAQFWoUEEHDx5UaGiokpKSFBMT47BPVFRUpmNIuyry2NtDnubIxztZB08F6b1vGmS6vX/EJtWtfFJvfv6gnnyrk75dW02DOm5Qg2pHszdQA8THumtqRFW5e9j0zOx/NGTVn2rz+jH5Bjg2SlRsHKPhW7bZl64fHjAoYmMNeraxnnwk3L68Pigtb12/pqjBkRnDxztFh4/m15RP6mbY5u2dovJlovXVd9XVd0hrjZrQRMWLxGn0a2sMiDT7RV3x07t/1FPEDx3UYWEHbT5dVFNb/Ps9yMcjWb+dLK6Pd9Y0OFLzII9FTpYrOqH/+OMPffzxx6pevbrD+sGDB2vJkiWaP3++AgIC1L9/f7Vv314bNmy44WOuWrVKVapUsd8OCgqy///GjRvVpUsXjRs3Tm3atNHcuXPVrl07bd++XVWrVr17TyybtH/uvJbNLaAV36R12X3wajHVeShO4V2i9e2UEIOjM9bWtQHaujbA6DBMYc/WvKofHqu6zdIurw4tnqQ1Cy/Zf7HN62/V298ccrhPvzEnNeDhijp70lOFiuXcD9W1x0o53H5/S111rrJb1UOidPBi2t9VQoqHzl/Nvb9ub91eVFu3X/+Ly9pfSzvcnjGzllo2P6TSpS5q51+FnR2eqfy+Jsjh9pzJpdS6S6TCalzS8YN5DYrKXPjccg3+/v7y9/e/5ftdvnxZhw4d0lNPPaVatWrJ09NTq1evVkREhCRp3759On78uOrXzxk/5pHH3j7yNEe/7ymh3/eUuO72qqWjtOz3Ctp5oIgkafGGSnq0wV5VKnlOG/4ulU1RGmPt9CIKLJKoxycetq8rUDwxw34eXlb5F8q5OevNiotx7FTt8OQBnT6ZV3/vCLrOPXK2P3YU1R87Ms9j4+O99Nro5g7rpnxaR1Mm/Kzggpd17rxfdoRomDXHSzncnry1rjpX2q17CqV9D/p8V1rnfJ3CpwyIzpzIY5GT5fhO6MuXL6tr16765JNPlD9/fvv69NnU33vvPTVt2lS1atXSrFmztHHjxgzdIJkJCgpSaGioffH09LRve//999WyZUsNGTJElSpV0ptvvqmaNWtqypQpTnmOzuThaVX56vHa/ls++zqbzaIdv+VT5VrxBkYGs6lc+4p2rs+nk4fSktJDu320e0te3df00nXvcyXOXRaLTXkDUrMrTMO5WaxqVe6AfD2T9WfUv0lEm/IHtKH7LP34+DwNrrtZPh58wbkeD49UtQo/qMuXPXX4SP4b3yEHc3OzqfHD5+STJ1X/7Lj1Yl5OxOfW9dls5lluxcsvv6x169bp6NGj2rhxox577DG5u7urS5cuCggI0DPPPKMXX3xRa9as0bZt29SjRw/Vr19f9erVc86JzEbkschOu46EqEG1YyoYcEWSTfeWP63ihWL1x95iRofmdLtX5Vexalf0Rd/yGlmrliY9XE2/f10ow36HNvtrZK1amtD0Hn3/emlduZgrerqy5OFh1YMtTmrlkhKSuEz9ZuTNmySrVbpyxcvoULKVm8Wqh8scUB7PZO2MopiaGfLYrBmdv95OHgtHOf5Ts1+/fmrdurWaNWumt956y77+RrOp3+iLyyOPPKKEhARVqFBBr7zyih555BH7tk2bNunFF1902D88PFwLFy68O08qG/kXSJW7hxRzzvGlcvG8h4qXy9gdgNzr8f5nFX/JXb0eCJObu2RNlbq/dkZN21/MdP+kBItmjimiJu0uKm8+azZHm/3KF7igr9svkJd7quKTPTVgWUsd+v8u6CUHyuv0ZT+dvZJXFYMu6MV6m1UqMEYDl7c0OGpzqVP7pIa+vF7e3imKvuir/414SHGXfIwOyxClKlzRe/P+lJe3VVfj3fVmv0o6fij3dtL/F59bOc/JkyfVpUsXXbhwQcHBwWrYsKE2b96s4OC0sVknTZokNzc3RUREKDExUeHh4Zo2bZrBUd8d5LHITpPnN9CQLr/qhzFfKSXVIqvVoglfP6A/D+X8K46ij/to05c+eqDXGTXte0on/vLTwpGl5O5pVe0O5yVJYY1jVK1ltAoUT9CFYz5a+k5xzewepv4LdsnN3eAnYKB6D5yRn1+yVv3MsDc3w9MzVb2e3K6160sr/mruKEJXyH9BXz+6QN7//z2o/8qWOhTDXCaZIY9FTpeji9Dz5s3T9u3b9ccff2TYdruzqfv5+endd99VgwYN5Obmpu+//17t2rXTwoUL7Ql8ZGSkQkIcf9m70eMmJiYqMfHfN5VrZ4wHzO7XRYH6ZUF+vTb1mEpWTNCh3b76aETR/5+g0LEQnZIsjeldSrJJL7x90piAs9nRmEC1/7aT/LySFF72kMY2/UXdfnxUhy4W0Py9/074cyA6SOfi82jWI4tV3D9WJ+K4jDjdn3+Hqu+g1grwT1CrFgf1v1d+08AhrRQbm/sK0SeP+Kpfu3uVN1+qGoaf10vj9+uVJ6tTiEaONG/evCy3+/j4aOrUqZo6dWo2RZQ9yGOR3SIa71KVUmf16kfhior20z3lzujFTht0PjaPtu3L2d3QNptUrNoVtXrlhCSpaNV4Re731aavQuxF6BqPXLDvXzjsqgpXitfbD9yrQ5v9Vb5B7n3Nt2h9TFt/L6ToC0wUeyPu7lYNe2mdZJE+mJFx/Oic6khsoB5b0En5vJIUXvqQ3m78i5766VEK0UAulGOL0CdOnNDAgQO1cuVK+fjcXoGiSpUqOnbsmCSpUaNGWrp0qQoWLOjQHXLffffp9OnTeueddxy6SG7VuHHjNGrUqNu+v7PERbsrNUUKDHaclCN/wRRdPJdjXz64DZ+8WUSP9z+rJu1iJEmlKyXo7EkvzfswxKEInV6AjjrlpQnfHswVXdCSlGx11/H/LyjvOR+sqoXO6qlqf2vkr40z7PvX/1+eViKAIvR/JSZ66ExkPp2JzKd/9gdr5vQf1bLZQX3zvWuNUXo3pCS76czxtC97B3f7qUK1S3r06dP6cEQ5gyMzHp9b12czw4zi/x8HskYei+zm5Zmi59r+odc/aaFNu9PGjT50Okjli11Ql4f+yvFF6HyFkhVS/qrDukJlE/T30uuPcRxUIlF5CyTr/FGfXFuEDg6JV43a5zT29TpGh2J66QXoQsFX9MqI5rmmC1py/B60+3ywqgaf1dNV/9aI9Rm/B+V25LFZM0Mua/TxXV2OHRN627ZtOnv2rGrWrCkPDw95eHho3bp1+uCDD+Th4aGQkJAbzqb+888/a+fOndq5c6c+/fTT6x6rbt26OnjwoP12aGhohtnJbzRL+9ChQx1miD9x4sRtPOu7LyXZTQf+yqN7G/47rq/FYlONhpe1Zxsdd/hXYoKbLG6OAyS5udscxkxKL0CfOuKtt785KP8CuWcs6GtZLDZ5umf+/MMKpnXcnLvCJHNZsVhs8vTMva+h/7K4SZ5eueMHnRvhcws5AXksspuHu1WeHlZZrxnrMtVqkcWS8wfALFXrks4ddvzB5/wRH+Uvev3L32POeCn+okeunqiweevjir3orS2bGN83K+kF6KKFL+m1Uc116XLuu4rvv9wsNnld53tQbkcei5wux/6U8tBDD+nvv/92WNejRw+FhYXp1VdfVfHixW84m3rJkiVv6lg7d+5U4cL/jpVWv359rV69WoMGDbKvW7lyZZaztHt7e8vb2/u62420YEZBvTz5hPb/mUf7duTRY8+ek08eq1bM4/IZnzypKlLq3+Q0tHiiylSO16UYD507nXt+3Zakes3jNO+DEBUqmpw2HMcuXy34uJBadE67dDElWXrz2dI6+LevRn9+WNZUi6LPpr0F5QtMladXzv2CM7juZv16vITOXPZTXs9ktSl/QHWKnNazP7VRcf9YtS5/QL8eK6mYRG9VDLqgV+/fqD9OF9b+6Nwzw7iPT7KKFP432QoNuawypaN16ZK34i55q0vHv7V5SzFFX/SVv3+i2j68XwWD4vXbhpt7n85Jur94VFt/za+zZ7yVJ2+qmrQ5p+p1YjXsmSpGh2YafG5dh82SthjNDDGYHHns3UGe5sjXK1lFg2PttwsHxalc0fOKi/fR2Yt+2nGgsPq2+12JyR6KivZTjXJn1LLOAU1ZcP1/+5zigWfOaEpEFa2eWkT3tL6gE3/6afPXhdRh3GFJUuIVN618v5iqtYxWvuBkXTjurSXjSiioVIIqPhBjbPAGsVhsav7wca1eVlzW1Bzb23ZTfHySVST0P3lsocsqUypaly57KfpiHg1/ea3Kl4nW8LFN5eZmU/7AtK77S5e9lJKSswcUf/G+zfr1xH++B5U7oDqFT6vX0jaSpIK+8SroG68S/mnvTRUKXNCVJC+dueKn2MTcWawnj82CGXJZo4/v4nJsETpfvnyqWtXxEu28efMqKCjIvj59NvUCBQrI399fL7zwwg1nU58zZ468vLx07733SpIWLFigzz77zKHDZODAgWrcuLHeffddtW7dWvPmzdPWrVs1Y8YMJzxT51u3KL8CglL19JBI5Q9O0eHdvnq9a2nFnPe88Z1zuArV4zXh2/32271HpI1vvHJ+kN59qZRBURmj71snNWdCYU0ZWkwxFzwUFJKsh586r66D07qpzkd6afOKtMuw+jYPc7jvhO8O6p77L2d7zNmlgO9Vvd30FwXnvaJLSV7afyFIz/7URptOFldo3suqX+yknq7+l3w9UhR52U8rD5fRR9tqGR12tqpQ7oImjFllv937mW2SpJWry+iD6XVVvFicmjX9Vf7+ibp0yVv7DwTp5aEtdOxEoEERGycwKFkvj9+vAoWSdOWSh47sy6Nhz1TRjo35jQ7NNPjcgqsjj707yNMcVSx5Th8O/Ml++4WIzZKkpZsraOyXTTTys4fU+9EteqPbL/LPk6jIaD998tN9Wri+klEhZ5vi91xRt4/3a+mEElr1fjEVKJ6oR984pprt0pop3NxtOrM3j7Z+H6yEOHf5F0pWhQdiFP7iSXl459xGiqzUqH1OhUKvasWS3NcQcK0KZS9o4ugV9tvP99gqSVqxpqy++OYe3V8n7b3no/d+crjfy2+00F+7r3+VSU5QwPeqxjf5RcF50r4H7YsOUq+lbbTxVNpElp0r7Vb/Wlvt+3/V9kdJ0tC1D+qHA2GZPmZORx6LnMxis9lyzadmkyZNVKNGDU2ePFmSlJCQoJdeeklff/21w2zqWV1uOGfOHI0fP17Hjh2Th4eHwsLCNGTIEHXo0MFhv/nz52vYsGE6evSoypcvrwkTJujhhx++6Vjj4uIUEBCgJnpUHhbebK5l8cixv5/cFcuOb73xTrlY5el9jQ7B1Eosu3TjnXIpyz9HjQ7B1KyXeO1cT4otWWv1o2JjY+Xv75+tx07PKUrNHC63PMZ3FVnjE3T0mTcNOReuzBXz2Ac9IshjM3Hlkdz1Q/Otmvre+0aHYGpDm3Y2OgRTSw5hPpXrOd6Sof6yUnLERqNDMC0j81jJXLkseeydyVWVvLVr1zrcvp3Z1Lt166Zu3brdcL+OHTuqY8eOtxoiAACAU9hskhlaD8wQgysijwUAALmZGXJZo4/v6nL34E0AAAAAAAAAAKeiCA0AAAAAAAAAcJpcNRwHAABArmX7/8VoZogBAAAArsUMuazRx3dxdEIDAAAAAAAAAJyGIjQAAAAAAAAAwGkYjgMAACAXsNksstksRodhihgAAADgWsyQyxp9fFdHJzQAAAAAAAAAwGnohAYAAMgtmEwFAAAAropc1qXRCQ0AAAAAAAAAcBqK0AAAAAAAAAAAp2E4DgAAgFzADJO5pMcBAAAA3Aoz5LJGH9/V0QkNAAAAAAAAAE7y9ttvy2KxaNCgQfZ1CQkJ6tevn4KCguTn56eIiAhFRUUZF6STUYQGAAAAAAAAACf4448/9PHHH6t69eoO6wcPHqzFixdr/vz5WrdunU6fPq327dsbFKXzUYQGAADIDWwmWgAAAIBbYXT+ept57OXLl9W1a1d98sknyp8/v319bGysZs6cqffee09NmzZVrVq1NGvWLG3cuFGbN2++9QO5AIrQAAAAAAAAAHAT4uLiHJbExMTr7tuvXz+1bt1azZo1c1i/bds2JScnO6wPCwtTiRIltGnTJqfFbiSK0AAAAAAAAABwE4oXL66AgAD7Mm7cuEz3mzdvnrZv357p9sjISHl5eSkwMNBhfUhIiCIjI50RtuE8jA4AAAAA2cHy/4vRzBADAAAAXIsZctm04584cUL+/v72td7e3hn2PHHihAYOHKiVK1fKx8cn2yI0MzqhAQAAAAAAAOAm+Pv7OyyZFaG3bdums2fPqmbNmvLw8JCHh4fWrVunDz74QB4eHgoJCVFSUpJiYmIc7hcVFaXQ0NBseibZi05oAACA3MAskwKaIQYAAAC4FjPksrdw/Iceekh///23w7oePXooLCxMr776qooXLy5PT0+tXr1aERERkqR9+/bp+PHjql+//t2M2jQoQgMAAAAAAADAXZIvXz5VrVrVYV3evHkVFBRkX//MM8/oxRdfVIECBeTv768XXnhB9evXV7169YwI2ekoQgMAAAAAAABANpo0aZLc3NwUERGhxMREhYeHa9q0aUaH5TQUoQEAAHIDM1zCKJkjBgAAALgWM+Syd3j8tWvXOtz28fHR1KlTNXXq1Dt7YBfBxIQAAAAAAAAAAKehCA0AAAAAAAAAcBqG4wAAAMgNbJa0xWhmiAEAAACuxQy5rNHHd3F0QgMAAAAAAAAAnIYiNAAAAAAAAADAaRiOAwAAIBew2dIWo5khBgAAALgWM+SyRh/f1dEJDQAAAAAAAABwGjqhgRyo9E/PGh2Cqe3s/a7RIZja/akvGR2CaZU8yMcmXJjt/xejmSEGZAuLl6csFi+jwzCdq0H0AWXlsR8GGR2CqZUNuWp0CKZ2qbSv0SGY1j/PTjM6BFNrNf5+o0MwLTdbkhRvdBQyRy5r9PFdHBkQAAAAAAAAAMBpKEIDAAAAAAAAAJyG64oBAAByA5slbTGaGWIAAACAazFDLmv08V3cTRWhFy1adNMP+Mgjj9x2MAAAAMDdRB4LAAAAGO+mitDt2rW7qQezWCxKTU29k3gAAACAu4Y8FgAAADDeTRWhrVars+MAAACAE1lsaYvRsjsG8lgAAADXZ4Zc1ujju7o7mpgwISHhbsUBAAAAZBvyWAAAACD73HIROjU1VW+++aaKFi0qPz8/HT58WJI0fPhwzZw5864HCAAAANwN5LEAAACAMW65CD1mzBjNnj1bEyZMkJeXl3191apV9emnn97V4AAAAHCX2Ey0GIQ8FgAAwEUZnb8anMfmBLdchP788881Y8YMde3aVe7u7vb199xzj/7555+7GhwAAABwt5DHAgAAAMa45SL0qVOnVK5cuQzrrVarkpOT70pQAAAAwN1GHgsAAAAY45aL0JUrV9Zvv/2WYf13332ne++9964EBQAAgLvMZjHPYhDyWAAAABdldP5qcB6bE3jc6h3eeOMNdevWTadOnZLVatWCBQu0b98+ff755/rpp5+cESMAAABwx8hjAQAAAGPccif0o48+qsWLF2vVqlXKmzev3njjDe3du1eLFy9W8+bNnREjAAAA7pTRk7iYYEIX8lgAAAAXZXT+ysSEd+yWO6ElqVGjRlq5cuXdjgUAAABwKvJYAAAAIPvdVhFakrZu3aq9e/dKShtfr1atWnctKAAAAMBZyGMBAACA7HXLReiTJ0+qS5cu2rBhgwIDAyVJMTExuv/++zVv3jwVK1bsbscIAACAO2WWSwgNjIE8FgAAwEWZIZc1+vgu7pbHhO7Vq5eSk5O1d+9eRUdHKzo6Wnv37pXValWvXr2cESMAAABwx8hjAQAAAGPccif0unXrtHHjRlWsWNG+rmLFivrwww/VqFGjuxocAAAAcLeQxwIAAADGuOUidPHixZWcnJxhfWpqqooUKXJXggIAAMBdZoZLGCVDYyCPBQAAcFFmyGWNPr6Lu+XhON555x298MIL2rp1q33d1q1bNXDgQE2cOPGuBgcAAADcLeSxAAAAgDFuqhM6f/78slgs9ttXrlxR3bp15eGRdveUlBR5eHioZ8+eateunVMCBQAAAG4VeSwAAABgvJsqQk+ePNnJYQAAAMCpbJa0xWjZHAN5LAAAQA5ghlzW6OO7uJsqQnfr1s3ZcQAAAAB3HXksAAAAYLxbnpjwvxISEpSUlOSwzt/f/44CAgAAwN1nsaUtRjNDDBJ5LAAAgCsxQy5r9PFd3S1PTHjlyhX1799fhQoVUt68eZU/f36HBQAAADAj8lgAAADAGLdchH7llVf0yy+/aPr06fL29tann36qUaNGqUiRIvr888+dESMAAABwx8hjAQAAAGPc8nAcixcv1ueff64mTZqoR48eatSokcqVK6eSJUvqq6++UteuXZ0RJwAAAO6E7f8XoxkYA3ksAACAizJDLmv08V3cLXdCR0dHq0yZMpLSxs2Ljo6WJDVs2FC//vrr3Y0OAAAAuEvIYwEAAABj3HIRukyZMjpy5IgkKSwsTN9++62ktM6SwMDAuxocAAAAcLeQxwIAAADGuOXhOHr06KE///xTjRs31muvvaa2bdtqypQpSk5O1nvvveeMGGECbbufV4c+Z1UgOEWH9/hq2rCi2rczj9FhGa5qnUvq8HyUyleLV1BIskb1KqtNKwKNDstw+ZeeUfAPJ3XxoRCde7yEJKnYxH+UZ/8lh/1iHgjW2SdLGRBh9rKmSt++V1y/LSiomLNeKhCapMYdzypi4ClZLGn72GzStxOLa/XXhXQl1kNh98Wp19gjKlwmwdjgs8HjVXfp8aq7VdQ/7fVxMLqApm+ppfXHS16zp00ftV2iRiVP6IUlLfXLkdLZH6wJdex1TD0GH9HCL4pqxtvljQ7HNPjcQmbIY3OXTs+fUoMWF1SszFUlJbppz/Z8+mxCSZ064mt0aNmue6PterDSEZUqGKPEZHf9dSJUH66sp2MXAu37/K/tOtUpc0oF813R1SRP/XUiVB+srKtj53P+pJ3+GyIVsOGsPKMTJUlJob6KDi+q+Eppz73olN3yPeSYx8bWL6Rzncpke6xGqFY5Sh0f3a3yZS4oqMBVjRzfRBu3pOX47u5Wde+yQ3VqnlLhkMu6Eu+p7X8V1swvayr6Ys7/3H266Q41rnZEJYNjlJjirr+Phmrakro6fi7Qvo+XR4oGtN2kZjUOydMjVb/vK653FjTUxcu54PzUqayok14Z1rftdk79x51SUoJFM0YV0dpF+ZWcaFGtJpf0wriTyh+cYkC0xuNzCzndLXdCDx48WAMGDJAkNWvWTP/884/mzp2rHTt2aODAgXc9wNs1cuRIWSwWhyUsLMy+PSEhQf369VNQUJD8/PwUERGhqKioGz6uzWbTxIkTVaFCBXl7e6to0aIaM2aMwz5r165VzZo15e3trXLlymn27Nl3++llq8aPXNRzI07rq/dC1S+8gg7v8dGYuYcVEJRsdGiG88lj1ZE9vpo6rLjRoZiG99HLCvz1rBKLZfygjGkUrEPv1LAv5yNyx3lbOK2oVn4eomfeOqJJa3eq69BjWjS9qJZ+Fmrf58dpRbR0VqieHXdYYxf/Le88Vo15spKSEiwGRp49oi77adKmeur4TQd1+raDfj9ZVFNaL1PZAtEO+z19z1+y2XL++bgV5avGqVXHMzq8L6/RoZgKn1u4HlfJYyVy2buhWp1YLf4yVIM7VtP/ulWWh4dNY2bvkbdvqtGhZbuaJc9o/pYq6vHJY+r3eRt5uFs15emf5OP57/vi3tPBGrWwiTpOeVz9v2gti2ya+tQSuVmsBkaePVICvHWhTXGdeKmqTrxYVfHl/VV45n55nYm37xNbr5COjKppX84/UsLAiLOXj3eKDh/Nrymf1M2wzds7ReXLROur76qr75DWGjWhiYoXidPo19YYEGn2u7fMaX2/oYqe/bCdBn6c9rc1+bkl8vH6929r4COb1KDycb3+RXP1nfaICvpf0dvdVhgYdfb5YOk+fb1zl30ZN++gJKlR21hJ0kcji2rzygAN+/ioJi44qOgoT41+ppSBERuLzy3kdLfcCX2tkiVLqmTJa7vVzKFKlSpatWqV/baHx79Pd/DgwVqyZInmz5+vgIAA9e/fX+3bt9eGDRuyfMyBAwdqxYoVmjhxoqpVq6bo6Gj7eIKSdOTIEbVu3VrPP/+8vvrqK61evVq9evVS4cKFFR4efvefZDZo/9x5LZtbQCu+KSBJ+uDVYqrzUJzCu0Tr2ykhBkdnrK1rA7R1bYDRYZiGJSFVhT89rKinSqnAz2cybLd5uSk1wNOAyIy1f2s+1W5xUTUfipEkFSqeqPU/xujgTj9JaV3QP88srPYDTuq+8IuSpP6TD+rZe2vrj+UF1ODRC0aFni3WHi3lcPuDzXXVuepu3RMSpUPRae87YQXPq9u9f+rxbztoXc85BkRpPj55UvTK+L36YEQFde59zOhwTIXPLdwsM+exErnsnRres7LD7fdeLad5W7aqfNUr2vWHv0FRGWPAl60dbo/84UGtenWOKhU5px3HikiSftj27/k6EyNN+6WO5vWdr8KBl3TqYs7Od+OrOnZ7R7cuoYCNUfI+dllJhdO6VW1ebkr1z9jRmRv8saOo/thRNNNt8fFeem10c4d1Uz6toykTflZwwcs6d94vO0I0zOBPHf+23prXREtHfa6wYue083AR5fVJVNs6/2jE3Ie07WDaORzzTRPNe/VbVSkRpd3Hc3ZeEhjkWDz9ZkqACpdKVPX6l3Ulzk3Lvy6g16YeU42GlyVJL753XM82rqS92/KoUq34zB4yR+NzCzndTRWhP/jgg5t+wPTuEjPw8PBQaGhohvWxsbGaOXOm5s6dq6ZNm0qSZs2apUqVKmnz5s2qV69epo+3d+9eTZ8+Xbt27VLFihUlSaVLO14O/tFHH6l06dJ69913JUmVKlXS+vXrNWnSJJdL3CXJw9Oq8tXjNW9KIfs6m82iHb/lU+Vc+KGArBX6+piuVAtUfOWATIvQ+X6/IP/NF5QS4Kkr1QN0oXUR2bzdDYg0e1WofUmrvyqk04d9VKRMgo7uyaN9f+TT02+kFQ7PHvdWzFkvVW8Ua79PHv9UlatxWfu35cvxRej/crNYFV7ukHw9k/VnZFpS7uORrAktVumtdY10Pj7nX7Z4s/oOO6AtvwZp5+YCFKH/g8+t67NIsphgRu/svp7BVfNYiVz2bsuTL+3y7ksxd9yH4/L8fJIkSXFXfTLd7uOZrEfu/Ucno/MpKi5nFxEzsNrkt/OC3BKtSij173PPt+288m07r5R8noqvkl/RLYrK5pXz89jbkTdvkqxW6cqV3Fe0t/9txaf9bYUVOy9PD6v+2P9vEf/Yufw6c9FP1Urm/CL0fyUnWfTL9/nVvvdZWSzSgb/yKCXZTfc2umzfp0T5RBUqmqS92/LmyiL0tfjccmSGXJbrcu/MTb2SJ02adFMPZrFYTJW8HzhwQEWKFJGPj4/q16+vcePGqUSJEtq2bZuSk5PVrFkz+75hYWEqUaKENm3adN3EffHixSpTpox++ukntWzZUjabTc2aNdOECRNUoEBat9WmTZscHleSwsPDNWjQoCxjTUxMVGJiov12XFzcbT7ru8u/QKrcPaSYc44vlYvnPVS8XOJ17oXcKN+WC/I5Fq/jr1fOdPulOgWUHOStlABPeZ+6qoLfn5BnVILO9Mn5Y9i263dKVy+5a3DjGnJzt8maalHnV4+rUfvzkqSYc2nd4QEFHYcKCAhOsm/L6coHXdDciAXy8khVfLKnBvzcUocupr2vvtpwo3acCdEaxoC2e6BVlMpVuqyBj9c0OhTT4XML13LVPFZynVzWrHnsf1ksNvV+/ah2b82nYwdy9w+aFotNL7XcoJ3HQnXobAGHbR3u26UBzTcrj3eKjp4LVL/P2yglNXcUWr1Ox6vY+7tkSbHK6uWuMz0rKDk07bVyqWZBpRTwVoq/l7zOxKvg4uPyPHtVkT0rGhy1+Xh6pqrXk9u1dn1pxV/NXUVoi8WmQY9u1J9HQnU4Mu1vKyhfvJJS3HQ5wdth34uXfFXAP3cVWTcuC9DlOHe16JR29U30WQ95elnlF+DYLR0YnKzosxRd+dxCTnRTf9nps4i7krp162r27NmqWLGizpw5o1GjRqlRo0batWuXIiMj5eXllWEW9JCQEEVGRl73MQ8fPqxjx45p/vz5+vzzz5WamqrBgwerQ4cO+uWXXyRJkZGRCglx/DUzJCREcXFxunr1qnx9Mx9Qfty4cRo1atSdPWnAIB7RiQr+5rhODq4om2fmQ83HPvBvV2JSsTxKCfBU8ff26fzZBCUXyrwLJ6fYtDhI638oqAFTDqh4has6ujuPZo8spfwhyWrS8ZzR4ZnC0YuBivimk/y8ktSi3CGNbfaLui94VCUCYlW32Cl1+Kaj0SGaRsHQBPV+7aBef/YeJSfljsIA7hKbJW0xWjbH4Ip5rORauawr5LH9Rh5RqQpX9XLnKkaHYrj/Y+++w6Mo1z6O/zY9IY1QEkqAUEOVokJEpYhGREXBjq8giIqoVNtRBDkqoKIcj4AFDtgQwcIRQRFBUI4RqRbA0EJRSKhphNSd94/I4goJCWSY2ez3c11zXezM7My9D7O7d+595nke6/WdGtU8onv+c8Mp2774uYlW76ir6mE5+r9LftLEW5Zq0MwblF9Y+QtC+TWDtHd0G/nkFir0pyOKnrNDvz/YQgUxIcq85OR7Ir92iIrC/VVn2hb5HcpVYfXKnceWh6+vU0+NWik5pFffPHX86Mpu9I2r1DDmiO6b2tvqUGxpyQdRuqhbpqrFeOekg+XF99Zp2CGXtfr8Hq7SZhM9e/Z0/btNmzbq2LGj6tevr3nz5pVYCP6rli1bavfu4tubL7vsMn3xxRdyOp3Ky8vTO++8o6ZNm0qSZs6cqQ4dOig5Odl1W+PZeOKJJzRy5EjX48zMTMXGWj9pW+YRXxUVSpF/m522avVCHT1YaS8flFPg7hz5ZRWq/rObXOscTil4W5Yiv0nTtmkXSj7uH9a5ccUTqfkfzKv0Rej3nq2v3kP/cA2rUa95jg7+EagFr9VR15sPKrJGcQ/ojEP+qhp9sjd0xsEANWh5zJKYz7cCp6/2ZBSPN7n5YA21qnlAd17wi/IKfRUbkaGkwTPd9p/Sc4nW7a+luz/1viS/SYssVa1eoH/PX+ta5+sntbowQ9fd/od6t+sip9N7kyO+t1BZeFIua9c89oQhY3fq4u5H9cjtLXUoNfDMT6jEHr3mO13adLfu/U9vHTjNMBvH8gJ1LC9Qe49E6pffo/XN47PULT5FS36t/Heuyc9HBTWKc9K82FAF7slW5LepOnhLw1N2za1X3HYBFKFdThSga9Y4pkfHXul1vaBH3bhKnVvs1pBp1+tgxsn31uGsEAX4ORUalOfWG7pq2HEdyfSe3q1pv/trw3dhGjPj5A/DUTULVZDvo+wMX7fe0OkH/RVV07sL1XxvobLymr/GIiMj1bRpU23fvl1XXnml8vPzlZ6e7taDJC0tzTXu3uLFi1VQUFwMOpHo16pVS35+fq6kXSoeJ0+S9uzZo2bNmikmJuaUmcnT0tIUHh5e6h8MgYGBCgy034dLYYGPtv0conaXZinpy+ICkcNhqO2l2fpsdjWLo4Nd5DQP166x7r/QxsxOUX5MsI5cHXNKAVqSAvcW335W6AUTFeYd95HP3zqI+/gaMv6cbL5mvTxF1szXL6si1KBlcbvkZPlq+8ZQXXVXyT3aKjMfh6EA3yJN/fEifbS5udu2/94xT5NWXaIVKQ2sCc5iG3+oqiG9L3RbN+K5ZP2+M0TzZ8Z6dQFa4nsLlZedc1m75rGSoSFjU3TJlUf0WL+WSvvdm4uFhh69ZpW6Nk/RfbOu1770M09w5fhz8fcrOtOulZMhOQqdp90U+MefeWx45c9jy+JEAbpOrSw9MvYqZWV703vN0Kgb/6curVL0wPTrtf+I+3vrt9+rq6DQRxc2+UMrfin+QaNejXTVqpqtX3Z7z3jQX82tpsjqherY4+RwTU3a5MjP36kNq0J1Wa/iuXH2bg/UgT8C1LyDd3TEORXfW6jcvKYInZ2drR07duj//u//1KFDB/n7+2vZsmXq27evJCk5OVl79uxRQkKCJJ12pvTOnTursLBQO3bsUKNGjSRJW7dudds/ISFBixcvdnve0qVLXcf1RJ+8WV2jp+zV1p9ClLwhRDcOPqigEKe+mht15idXckEhRard4OQYiDGxeWrYIkdZ6X46uM97fv03gnyVX8f9l3xnoK+KQv2UXydE/gdyFfbjER1rHaGiKn4K/D1HNebtVU6TMOXXrfw9ADpceVSfvFpH1evkqW7T49r1axV9/mZtdbv1gCTJ4ZCuGbRfn7xaV7XiclUzNk9zX4pV1eh8XZR4xOLozTc84Qd9t7ue9meFqkpAgXo13aaL6uzTvZ9dq0M5IaedjHB/Vpj+yPLOGaKP5/hp93b33mu5OT7KzDh1vbfie6sExp+L1ewQgwcily2/oc+kqOt1hzT+/mY6fsxXVasXTxh2LMtX+XneNZzRY72+09Wtt2vUB1crJz9A1UKLi6jZuQHKK/RTnaqZurLVdv2wPVZHc4IUHX5MAy7doNxCX/1v26nXUmVT7fM9OtY8UoVVA+ST61TY+kMK3pGpfffFy+9QrsLWH1JO80gVVfFTwL4c1ViwW8cbhSm/dhWrQz8vgoIKVDsmy/U4pma2GjY4oqzsAB05GqIxo1eoScMjGvN8d/n4GKoaeVySlJUdoMLCyv1eG91nla5qt12PzUpUTp6/osKK31vHjhe/t47lBmrhj/F6+PokZeYE6lhugEbd+D/9sivaayYldDqlrz6MUo+bj8j3LxWoKuFOJd5+RG+Oq6OwyCJVCSvS1CfrqnmHY147KSHfW2dgh1zW6vN7uEpbhB49erSuu+461a9fX/v27dPYsWPl6+ur22+/XRERERo0aJBGjhypqKgohYeH66GHHlJCQkKJE7lIUo8ePdS+fXsNHDhQU6ZMkdPp1NChQ3XllVe6epTcf//9eu211/Too49q4MCBWr58uebNm6dFixadr5de4VZ+VlUR1Yp01yOpqlqjUDs3BevJfnFKP8Qv/03b5OiFeVtdj+8b+7skaen8apo8qoFFUdmP4edQyJZMVV2WKkeeU4VRAcpuX1VHetW2OrTzYuA/U/Thi/U04x8NlXHIX1Ex+bryzjTdNPx31z69H9invBxfvfFYQ+Vk+in+okz9470tCgiq/N9yUcHHNaHHctWockxZeQHaeria7v3sWiXttc+t3PAsfG+hMiCXPXfX9ivu0f3CnM1u6yc/2khff1LzdE+ptG6+uLgN3hz4mdv6cZ921ecb45VX6Kt29fbr9k6/KDwoT4ePBWvD7loaNONGHT125uFfPJ1vdoGi398uv8wCFQX7Kr9WiPbdF6/jzSLldzRPIVszFLkyVY78IhVGBiq7TZSOXFXH6rDPm6aNDuul8V+5Ht9/d/GQYF9900jvfniBLrm4OKd9/eXP3Z43+umr9POmmPMXqAX6XlL83pr2wEK39f+c21WL1xYPcfSvzxJkGNKE/kvl71ek1cl19eInl533WK2y4dswHfgjQIm3ndq55v5xf8jHYeifgxuoIM+hC7tm6cEJv5/mKN6B7y1Udg7DMCplheO2227Tt99+q8OHD6tGjRq69NJL9dxzz7l6feTm5mrUqFH64IMPlJeXp8TERE2bNs11C2NJ9u3bp4ceekhfffWVqlSpop49e2ry5MmuGcUlacWKFRoxYoQ2b96sunXrasyYMRowYEC54s/MzFRERIS6qrf8HPzR/HcOv0r7+0mFSJ7WzuoQbG3jNa9aHYKtXTJtlNUh2Fb96VusDsHWio4etToE2yo0CrRC/1VGRobCw89vL/4TOUX9Cc/JJ8j62zqdubna/cSTZ9UWEydO1BNPPKFhw4ZpypQpkk7mdHPnznXL6f4+uZ6n8eRc9sQ11z3kNvk5vOfOsLI62O8Cq0OwtaMtKuWfpxWm0bzjVodga1lxlf9Hk7OV9NLrVodgaz0bX2J1CLZVaORrec5cS/JYyV657LnksTjLntDfffed3njjDe3YsUMfffSR6tSpo3fffVdxcXG69NJLKzrGszJ37txStwcFBWnq1KmaOnVquY5bu3Ztffzxx6Xu07VrV23YsKFcxwUAADCVHW5hlM46hjVr1uiNN95QmzZt3NaPGDFCixYt0vz58xUREaEHH3xQffr00f/+97/THscT8liJXBYAAMCNHXJZq8/v4XzOvIu7jz/+WImJiQoODtaGDRuUl1c8Hm5GRoaef/75Cg8QAAAA3i07O1v9+vXTW2+9papVq7rWZ2RkaObMmXr55ZfVvXt3dejQQbNmzdL333+vH3744ZTjkMcCAAAA1ih3EfrZZ5/V66+/rrfeekv+/ieHiejcubPWr19focEBAACgcsrMzHRbThSET2fo0KHq1auXevTo4bZ+3bp1KigocFsfHx+vevXqKSkp6ZTjkMcCAAAA1ij3cBzJycm6/PLLT1kfERGh9PT0iogJAAAAFcxhFC9WOxFDbKz75KNjx47VuHHjTtl/7ty5Wr9+vdasWXPKttTUVAUEBCgyMtJtfXR0tFJTU0/ZnzwWAADAM9khl7X6/J6u3EXomJgYbd++XQ0aNHBbv2rVKjVs2LCi4gIAAEAltnfvXrcJXQIDA0+7z7Bhw7R06VIFVcBENOSxAAAAgDXKPRzH4MGDNWzYMK1evVoOh0P79u3T+++/r9GjR2vIkCFmxAgAAIBKJjw83G05XRF63bp1OnDggNq3by8/Pz/5+flp5cqVevXVV+Xn56fo6Gjl5+ef0os5LS1NMTExpxyPPBYAAACwRrl7Qj/++ONyOp264oorlJOTo8svv1yBgYEaPXq0HnroITNiBAAAwLmyw4ziUrliuOKKK/TLL7+4rbv77rsVHx+vxx57TLGxsfL399eyZcvUt29fScVDbuzZs0cJCQmnHI88FgAAwEPZIZe1+vwertxFaIfDoSeffFKPPPKItm/fruzsbLVo0UKhoaFmxAcAAAAvFRYWplatWrmtq1KliqpVq+ZaP2jQII0cOVJRUVEKDw/XQw89pISEBHXq1OmU45HHAgAAANYodxH6hICAALVo0aIiYwEAAIBZ7NB7RKrwGF555RX5+Piob9++ysvLU2JioqZNm1bqc8hjAQAAPIwdclmrz+/hyl2E7tatmxwOR4nbly9ffk4BAQAAACVZsWKF2+OgoCBNnTpVU6dOPeNzyWMBAAAAa5S7CN22bVu3xwUFBdq4caN+/fVX9e/fv6LiAgAAACoUeSwAAABgjXIXoV955ZXTrh83bpyys7PPOSAAAABUPIdRvFjNyhjIYwEAADyTHXJZq8/v6Xwq6kB33nmn/vOf/1TU4QAAAIDzgjwWAAAAMFeFFaGTkpIUFBRUUYcDAAAAzgvyWAAAAMBc5R6Oo0+fPm6PDcPQ/v37tXbtWo0ZM6bCAgMAAEAFMhzFi9UsjIE8FgAAwEPZIZe1+vwertxF6IiICLfHPj4+atasmcaPH6+rrrqqwgIDAAAAKhJ5LAAAAGCNchWhi4qKdPfdd6t169aqWrWqWTEBAAAAFYo8FgAAALBOucaE9vX11VVXXaX09HSTwgEAAIApDBstFiCPBQAA8GBW568W5rGVRbknJmzVqpV27txpRiwAAACAachjAQAAAGuUuwj97LPPavTo0fr888+1f/9+ZWZmui0AAACwH4dhn8Uq5LEAAACeyer81eo8tjIo85jQ48eP16hRo3TNNddIkq6//no5HCdnhTQMQw6HQ0VFRRUfJQAAAHCWyGMBAAAAa5W5CP3MM8/o/vvv1zfffGNmPAAAAECFIo8FAAAArFXmIrRhFPc579Kli2nBAAAAwCR2mUzFghjIYwEAADycHXJZq8/v4co1JvRfb1sEAAAAPAV5LAAAAGCdMveElqSmTZueMYE/cuTIOQUEAAAAVDTyWAAAAMA65SpCP/PMM4qIiDArFgAAAJjFLjN6WxQDeSwAAIAHs0Mua/X5PVy5itC33XabatasaVYsAAAAgCnIYwEAAADrlHlMaMbRAwAAgCcijwUAAACsVeae0CdmFQcAAIAHssOM4pIlMZDHAgAAeDg75LJWn9/DlbkI7XQ6zYwDAAAAMAV5LAAAAGCtco0JDdiFUVhodQi21vidAqtDsLWEqMFWh2BrRcH8vAtUSnboPSLZIwacF0Z+gQxGQjlFzU+3Wh2CrUX9WtfqEGzNb1OK1SHYW1wLqyOwrZ/zc60OATg3dshlrT6/hyvzmNAAAAAAAAAAAJQXRWgAAAAAAAAAgGkYjgMAAMALOIzixWp2iAEAAACexQ65rNXn93T0hAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGn8rA4AAAAA54Hx52I1O8QAAAAAz2KHXNbq83s4ekIDAAAAAAAAAExDERoAAMALOAz7LAAAAEB5WJ2/nk0eO336dLVp00bh4eEKDw9XQkKCvvjiC9f23NxcDR06VNWqVVNoaKj69u2rtLS0Cm45+6AIDQAAAAAAAAAVqG7dupo4caLWrVuntWvXqnv37urdu7c2bdokSRoxYoQWLlyo+fPna+XKldq3b5/69OljcdTmYUxoAAAAAAAAAKhA1113ndvj5557TtOnT9cPP/ygunXraubMmZozZ466d+8uSZo1a5aaN2+uH374QZ06dbIiZFNRhAYAAPAWDIUBAAAAT2WTXDYzM9PtcWBgoAIDA0t9TlFRkebPn69jx44pISFB69atU0FBgXr06OHaJz4+XvXq1VNSUlKlLEIzHAcAAAAAAAAAlEFsbKwiIiJcy4QJE0rc95dfflFoaKgCAwN1//3369NPP1WLFi2UmpqqgIAARUZGuu0fHR2t1NRUk1+BNegJDQAAAAAAAABlsHfvXoWHh7sel9YLulmzZtq4caMyMjL00UcfqX///lq5cuX5CNN2KEIDAAB4A0P2uIXRDjEAAADAs9ghl/3z/OHh4W5F6NIEBASocePGkqQOHTpozZo1+te//qVbb71V+fn5Sk9Pd+sNnZaWppiYmIqO3BYYjgMAAAAAAAAATOZ0OpWXl6cOHTrI399fy5Ytc21LTk7Wnj17lJCQYGGE5qEnNAAAAAAAAABUoCeeeEI9e/ZUvXr1lJWVpTlz5mjFihVasmSJIiIiNGjQII0cOVJRUVEKDw/XQw89pISEhEo5KaFEERoAAMArOIzixWp2iAEAAACexQ65bHnPf+DAAd11113av3+/IiIi1KZNGy1ZskRXXnmlJOmVV16Rj4+P+vbtq7y8PCUmJmratGkmRG4PFKEBAAAAAAAAoALNnDmz1O1BQUGaOnWqpk6dep4ishZjQgMAAAAAAAAATENPaAAAAG9ghxnFJXvEAAAAAM9ih1zW6vN7OHpCAwAAAAAAAABMQ09oAAAAL2CHyVxOxAEAAACUhx1yWavP7+noCQ0AAAAAAAAAMA1FaAAAAAAAAACAaRiOAwAAwBvYYTIXyR4xAAAAwLPYIZe1+vwejp7QAAAAAAAAAADT0BMaZXLdgEO6acgBRdUo1M7NwZr2VB0lbwyxOixboG2KtW6eqpuv36SmcYdVLeq4xr7YTd+vqefa/sgDq3RV1x1uz1mzsbb+8fyV5zvU8y78wzRFzD/otq6gdoBSX20qSaqy9IhCvktXQEqufI479fvbzWVU8bUiVEvcHr9JtzffpDqhWZKkbelRmrahg779vZ7qhGZq+a1zTvu8Ycuu1Je7Gp3PUG3p5nt26+4RKVrwbh29ObGJ1eHYBp/NAFpdnKWb7k9Tk9Y5qhZdoGfuaaSkryKtDsuWbh64S3cP36kF79XVmy80tTqc8651izTd3HuTmjQszmPHTeqq738szmN9fZ0acPsGXdz+D9WKztaxHH+t/7mWZr7XXkeOeuf3yjW37VOv2/cruk6eJGn39hB9MLWe1n4XZXFk599d3TeoS+sU1a+RrrxCX/2yK0bTFnXUnoORrn0C/Ar18HVJ6tF2h/z9irQ6OVYvfnKpjmZ7x/WTkeqvRRPrKXlFpPKP+6p6g1zd8uIOxbY5JkmaO6qR1n1cw+05TS9P1+B3frMiXEvdcv8f6nzVYdVteFz5eT7avD5M/3mhvv5ICbY6NKBCUITGGXW5/qjuHbtP/368rn5bH6IbBx/Uc3N2atBlzZRx2N/q8CxF25wUFFionbuqasnyxhr3yIrT7vPjhjp6aVpn1+OCQu+5GaMgNlAHnm5wcoWvw/VPR55Tue3ClNsuTJHvp53/4CyWeqyKXlrTUbszI+SQdEOTZE3t8aVuXHCTdmZEqvOcu9z2v7XZZg1q/ZO+/b3e6Q/oRZq0ylTPm/drZ3IVq0OxFT6bS2CHWxgle8QArxAU4lTK5mB99WE1Pf3WTqvDsa0mLTPV8+Z92pkcanUolnHlscsaa+xjK9y2BQYWqknDI3r/ozbauauqQqvk64GBazT+8W/04GO9rAnYYofSAjVrcpz27Q6Ww2HoihsOaMzUzXqoTzvt2e5dOUm7hvv08f9aasveGvL1MXT/NT9qyr2LdMeLtyg3vzjnGHZ9ki5pvkdPvnulso8HaNSNqzSx/1e6b+oN1gZ/HuRk+Gpq31ZqlJChQbN/U2i1Qh1MCVJwRKHbfs26pOuWF092WPILdJ7vUG2h9cUZWvhejLb+EipfX0MDRu3Rc7M3676r2yrvuPd0UiqRHXJZq8/v4Sp1BeiPP/7QnXfeqWrVqik4OFitW7fW2rVrXdsNw9DTTz+tWrVqKTg4WD169NC2bdtKPebs2bPlcDhOuxw4cMC134oVK9S+fXsFBgaqcePGmj17tlkv03R97j2kL+dE6asPo7RnW5Befayu8o47lHj7EatDsxxtc9KajXU1+8P2+t+a+iXuU1Doo6MZwa4l+1jgeYzQWoavQ86q/ieX8JO/AWZfW11ZN9ZQfhPv/IX7m70N9O3v9bU7M1K7MiM1ZV1H5RT6q23NNDkNHx06HuK29GiQoi9SGimn0IuLiZKCQgr16KQtenVsU2Vn8JvyX/HZjMqCXPbcrF0RobdfqqPvl1S1OhTbCgou1KMTNunVcfHKzvTe75I1G+po9gft9L8fT/2BOycnQI+Pv1Lfft9Av++L0G/baui1GReraePDqlE924JorffjN9W09tso7dsdrD92heidKQ2Um+Or+AuyrA7tvBsxo5cWr22mlLQobd9fTc/O7apaVbMVX7f4LsgqQXm67uLf9OrCBK3bXkfJf9TQcx92VZu4NLWsV/k7n6yYXluRtfN060s7Va/tMUXF5qnZ5RmqXj/PbT+/AKfCaxa4lpCIIosittaYgS309Sc1tWdbiFJ+q6KXH2us6Dr5atLqmNWhARWi0hahjx49qs6dO8vf319ffPGFNm/erMmTJ6tq1ZNJ6AsvvKBXX31Vr7/+ulavXq0qVaooMTFRubm5JR731ltv1f79+92WxMREdenSRTVr1pQkpaSkqFevXurWrZs2btyo4cOH65577tGSJUtMf90Vzc/fqSZtcrT+uzDXOsNwaMN3YWrRIcfCyKxH25TfBS1SNe+tD/WfKZ/q4XuSFBZa8nutsvHbn6fag39TrQeSFTVlr3wP5lsdki35OJy6puF2hfgVaMOB6FO2t6x2UC2qHdZHW+MtiM5eHnhqm378tpo2/uB9t76Whs9mVBbksjgfHnhyq378rro2rua7pDyqVMmX0ykdOxZgdSiW8/ExdPk1BxQUUqQtG8PO/IRKLjSoOMfPzAmSJMXXPSR/P6fWbK3j2mf3warafzRUretX/iL0pq+rqm7rY3r3gSYa16GDXrmmtVZ/UPOU/Xb8EK5xHTrohe4X6OMn43TsqPf+KPZXIWHFPcaz0mkPVA6V9kqeNGmSYmNjNWvWLNe6uLg4178Nw9CUKVP01FNPqXfv3pKkd955R9HR0VqwYIFuu+220x43ODhYwcEneysePHhQy5cv18yZM13rXn/9dcXFxWny5MmSpObNm2vVqlV65ZVXlJiYWKGv02zhUUXy9ZPSD7pfKkcP+Sm2cV4Jz/IOtE35rNlYR6tW19P+A2GqHZOlgbev1/P/+FrDnrxGTqPS/h4mScpvEqIjQ+uqsHagfNMLFD7vgGqOSVHqK41lBHNblSQ1rXpYc6/7VIG+Rcop8NfQrxO1I/3UP4hvarZF249W1YYDMRZEaR+X90xT4+bZGnZre6tDsR0+m0vmMIoXq9khBk9ALguzXX51mho3z9Kw2y+0OhSP4u9fpHvuXK8Vq+KUc9x7i9ANmh7T5A82KiDQqeM5vvrngy20d4d3DcXxdw6HoeG9v9dPKTHamVqcx1YLy1F+oY+yc93vAD2aFayo8Mr/4/iRPUFKei9Il9+zX90f+EN7fw7VgnEN5Ovv1IU3HZIkxXdJV+urjygqNleHdwfpixdjNXNAvB785Ff5ePGfSg6Hofue3KVNa8O0e5t3jB9+JnbIZa0+v6ertJWfzz77TBdeeKFuvvlm1axZU+3atdNbb73l2p6SkqLU1FT16NHDtS4iIkIdO3ZUUlJSmc/zzjvvKCQkRDfddJNrXVJSkttxJSkxMbHU4+bl5SkzM9NtASqTFd/HKWldPe3aW1Xfr6mnpyZeofjGh3VBy8rfAyC3fZiOXxKhggZBym0bpoNPNpBPTpFCvs+wOjTbSMmI1A2f3qxbPuujD35rqUmXf6NGke5DJwT6Furahtu9vhd09Zhc3ff4dr3wWHMV5HtxZg5Ucp6Uy5LHep7q0bm677GteuHxlnyXlIOvr1NPjVopOaRX3+xodTiW+j0lWA/e2F4jbm2rxXNradTEZMU28u4hA0bfuEoNY45ozHtXWB2KbRiGVKfVMfV8dK/qtMpRpzsOqOPtaUp6/+Qdj22vP6yWVx5VrfjjapV4VAP/k6y9P4Vqxw/hFkZuvaHjUtSg6XFNHM7E46g8Km0ReufOnZo+fbqaNGmiJUuWaMiQIXr44Yf19ttvS5JSU1MlSdHR7rd7R0dHu7aVxcyZM3XHHXe49ShJTU097XEzMzN1/Pjx0x5nwoQJioiIcC2xsbFljsFMmUd8VVQoRdZwnzigavVCHT1YaTvSlwltc25SD4QpPTNQtWO87w9Vo4qvCmsFyi+VITlOKHD6ak9WhDYdrqGX13bUb0eq6a6Wv7jtc3XcTgX5FWrB9qYWRWkPTVpkqWr1Av17/lot/GmFFv60Qm0uztD1/f7Qwp9WyMfHu3+e57O5FIaNFpyRJ+Wyds1jUbImLbJUtVqB/v3hGi1c/40Wrv9GbS5K1/V3/K6F67/x+u+S0zlRgK5Z45gef6aHV/eClqTCAh/t3xOs7ZvCNPvlOO38LVS979pndViWGXXjKnVusVtDX79OBzNOTvJ5OCtEAX5OhQa5341VNey4jmRW/t6tYTULFN3E/XujZqNcpe8reW6gavXyVCWqQId2BZkdnm0NGbtTF3c/qsfubKFDqd4zj9IZWZ2/ksees0r715jT6dSFF16o559/XpLUrl07/frrr3r99dfVv3//Mh2jZ8+e+u677yRJ9evX16ZNm9y2JyUlacuWLXr33XfPOd4nnnhCI0eOdD3OzMy0RQJfWOCjbT+HqN2lWUr6MkJS8W0hbS/N1mezq1kcnbVom3NTPeqYwkPzdOSo903G5zheJN+0fBVFRlodim35OAwF+LhPSNK36RYt39NAR3O975r5q40/VNWQ3u63To94Llm/7wzR/JmxcjodFkVmD3w2o7LwpFzWrnksSrZxdVUN6XOx27oR47fo95QQzZ9V3+u/S/7uRAG6Tq0sPTL2KmVle29xrCQ+Pob8A5xWh2EBQ6Nu/J+6tErRA9Ov1/4j7r13f/u9ugoKfXRhkz+04peGkqR6NdJVq2q2ftl96vwnlU2DDlk6uNP9/XIoJUhV65Q8RFr6/gDlHPVTeM0Cs8OzIUNDxqbokiuP6LF+LZX2O581qFwqbRG6Vq1aatGihdu65s2b6+OPP5YkxcQUjyealpamWrVqufZJS0tT27ZtJUkzZsxw9fbw9/c/5RwzZsxQ27Zt1aFDB7f1MTExSktzH2IgLS1N4eHhbr1M/iowMFCBgfb8heuTN6tr9JS92vpTiJI3hOjGwQcVFOLUV3OZwIS2OSkosEB1Yk7OiB1TM0uN6h9RZnaAsrID9X83/6RVq+vrSHqwakdn6Z4712pfarjW/lSnlKNWDhFv71fuheEqrOEv3yOFipiXJvlIOZcWF8h8jhbIN73Q1TPaf3eujGAfFVX3lzOs0n5Mu4y8cLW+/T1W+7NDVcW/QNc22q6La+3ToC97ufapF5ahi2L2694l11gYqT0cz/HT7u2hbutyc3yUmXHqem/FZzMqA0/KZe2axwaFFKl2g5OFjpjYPDVskaOsdD8d3OfdvVhP+11y3FeZGf5e+V0SFFSg2m55bLYaNjiirOwAHTkaojGjV6hJwyMa83x3+fgYqhpZ/L7Kyg5QYaH3DWcyYGSK1n4bpQP7AxVSpUhdrz2g1hdnaMw9rawO7bwb3WeVrmq3XY/NSlROnr+iworHeT52PEB5hX46lhuohT/G6+Hrk5SZE6hjuQEadeP/9MuuaG3aU/mL0JcP2q/X+rbUsqm1dUGvw9r7U6h++KCmbpqwU5KUd8xHS/9VV62vPqKwGgU6vCdQiybUU7UGuWp2ebq1wVtg6DMp6nrdIY2/v5mOH/NV1erFfx8ey/JVfp73fdag8qm01Y3OnTsrOTnZbd3WrVtVv359ScUTu8TExGjZsmWuRD0zM1OrV6/WkCFDJEl16pRcHMvOzta8efM0YcKEU7YlJCRo8eLFbuuWLl2qhISEc3lJlln5WVVFVCvSXY+kqmqNQu3cFKwn+8Up/dCpf8x4G9rmpKaNDmvyuCWux0P6r5UkfbWikf71Vic1rHdUV3bZodAq+Tp8JFjrfq6t2R+2U4EXJO5+hwtVbcpe+WQVqSjcV/nxVZT2fEM5I4o/gkO/OqKI+Qdd+0c/nSJJOjy0jnK6VbUk5vOpWtBxTbp8uWqG5CgrP0DJR6pp0Je99P2+k73o+jb9TanHQrXqD3rW4cz4bC6BXW4htEMMHoBc9tw1bZOjF+ZtdT2+b+zvkqSl86tp8qgGFkUFO2ra6LBeGv+V6/H9d/+Zx37TSO9+eIEuubj42nn95c/dnjf66av08ybvmyw5IqpAoyYlK6pGvo5l+SkluYrG3NNKG76v/Hnr3/W9ZLMkadoDC93W/3NuVy1e20yS9K/PEmQY0oT+S+XvV6TVyXX14ieXnfdYrRB7wTH1f2Orvnihnr7+V11Fxeap99O71f6Gw5IkH19D+7eEaO3HNZSb6avwmgVqenm6Ekf+Lr9A70sYru1X/APwC3M2u62f/Ggjff1JTStCshc75LJWn9/DOQzDqJRNuGbNGl1yySV65plndMstt+jHH3/U4MGD9eabb6pfv36Simcdnzhxot5++23FxcVpzJgx+vnnn7V582YFBZV+28PMmTP14IMPav/+/Yr82y31KSkpatWqlYYOHaqBAwdq+fLlevjhh7Vo0aIyzyiemZmpiIgIdVVv+Tm8/I9mlJvz0rZWh2BrfwwvPPNOXqxoS5jVIdhWo5d/szoEWys6etTqEGyr0CjQCv1XGRkZCg8/vxPtnMgpmg17Xr6B1t/WWZSXq+R//cOStvAknpzLnrjmuvn1JY89DZ/ICKtDsLXCJnWtDsHW/DalWB2CrR29tsWZd/JSbzw/xeoQbO2xFt2tDsG2Co18Lc+Za1nuZqdcljz23FTantAXXXSRPv30Uz3xxBMaP3684uLiNGXKFFfSLkmPPvqojh07pnvvvVfp6em69NJL9eWXX54xaZeKE/c+ffqckrRLxT1TFi1apBEjRuhf//qX6tatqxkzZpS5AA0AAADvRi4LAACAyqTSFqEl6dprr9W1115b4naHw6Hx48dr/Pjx5T72999/X+r2rl27asOGDeU+LgAAgBkcRvFiNTvE4CnIZQEAAIrZIZe1+vyezsfqAAAAAAAAAAAAlRdFaAAAAAAAAACAaSr1cBwAAAD4kx1mFJfsEQMAAAA8ix1yWavP7+HoCQ0AAAAAAAAAMA09oQEAALyAHSZzOREHAAAAUB52yGWtPr+noyc0AAAAAAAAAMA0FKEBAAAAAAAAAKZhOA4AAABvYIfJXCR7xAAAAADPYodc1urzezh6QgMAAAAAAAAATEMRGgAAAAAAAABgGobjAAAA8AZ2uIVRskcMAAAA8Cx2yGWtPr+Hoyc0AAAAAAAAAMA0FKEBAABgW9OnT1ebNm0UHh6u8PBwJSQk6IsvvnBtz83N1dChQ1WtWjWFhoaqb9++SktLszBiAAAAAH9HERoAAMALOGy0lEfdunU1ceJErVu3TmvXrlX37t3Vu3dvbdq0SZI0YsQILVy4UPPnz9fKlSu1b98+9enTp7zNAwAAABuzOn89mzwW7hgTGgAAALZ13XXXuT1+7rnnNH36dP3www+qW7euZs6cqTlz5qh79+6SpFmzZql58+b64Ycf1KlTJytCBgAAAPA39IQGAADAeZeZmem25OXlnfE5RUVFmjt3ro4dO6aEhAStW7dOBQUF6tGjh2uf+Ph41atXT0lJSWaGDwAAAKAcKEIDAAB4A8NGi6TY2FhFRES4lgkTJpQY+i+//KLQ0FAFBgbq/vvv16effqoWLVooNTVVAQEBioyMdNs/OjpaqampZ91UAAAAsBmr89e/5LE4OwzHAQAAgPNu7969Cg8Pdz0ODAwscd9mzZpp48aNysjI0EcffaT+/ftr5cqV5yNMAAAAABWAIjQAAIAXcBjFi9VOxBAeHu5WhC5NQECAGjduLEnq0KGD1qxZo3/961+69dZblZ+fr/T0dLfe0GlpaYqJiano0AEAAGARO+SyVp/f0zEcBwAAADyK0+lUXl6eOnToIH9/fy1btsy1LTk5WXv27FFCQoKFEQIAAAD4K3pCAwAAwLaeeOIJ9ezZU/Xq1VNWVpbmzJmjFStWaMmSJYqIiNCgQYM0cuRIRUVFKTw8XA899JASEhLUqVMnq0MHAAAA8CeK0AAAAN7ALpOplDOGAwcO6K677tL+/fsVERGhNm3aaMmSJbryyislSa+88op8fHzUt29f5eXlKTExUdOmTTMhcAAAAFjGDrms1ef3cBShAQAAYFszZ84sdXtQUJCmTp2qqVOnnqeIAAAAAJQXY0IDAAAAAAAAAExDT2gAAABvwS2EAAAA8FTksh6NntAAAAAAAAAAANNQhAYAAAAAAAAAmIbhOAAAALyAwyherGaHGAAAAOBZ7JDLWn1+T0cRGqiE/JP/sDoEWwv6urHVIdha9Z9yrA7BtozCQqtDAACPYRQWynA4rA7Ddhz+/laHYGs+azZZHYKtOWpUtzoEW4v6ZpfVIdhWn/kjrA7B1hrlJFkdgm05jQKrQ0AlQREaAADAGxiyx2QudogBAAAAnsUOuazV5/dwjAkNAAAAAAAAADANRWgAAAAAAAAAgGkYjgMAAMAL2GEylxNxAAAAAOVhh1zW6vN7OnpCAwAAAAAAAABMQxEaAAAAAAAAAGAahuMAAADwBnaYUVyyRwwAAADwLHbIZa0+v4ejJzQAAAAAAAAAwDQUoQEAAAAAAAAApmE4DgAAAC9ghxnFT8QBAAAAlIcdclmrz+/p6AkNAAAAAAAAADANPaEBAAC8gR0mc5HsEQMAAAA8ix1yWavP7+HoCQ0AAAAAAAAAMA1FaAAAAAAAAACAaRiOAwAAwBvY4RZGyR4xAAAAwLPYIZe1+vwejp7QAAAAAAAAAADTUIQGAAAAAAAAAJiG4TgAAAC8gMMoXqxmhxgAAADgWeyQy1p9fk9HT2gAAAAAAAAAgGkoQgMAAAAAAAAATMNwHAAAAN7ADjOKS/aIAQAAAJ7FDrms1ef3cPSEBgAAAAAAAACYhp7QAAAAXsBhGHIY1nffsEMMAAAA8Cx2yGWtPr+noyc0AAAAAAAAAMA0FKEBAAAAAAAAAKZhOA4AAABvYIfJXCR7xAAAAADPYodc1urzezh6QgMAAAAAAAAATEMRGgAAAAAAAABgGobjAAAA8AIOo3ixmh1iAAAAgGexQy5r9fk9HT2hAQAAAAAAAACmoSc0yuS6AYd005ADiqpRqJ2bgzXtqTpK3hhidVi2QNucXr/7d6jfkBS3dXtTQnTfDZdYFJF17u68Xt3jU9SgerryCn31094Yvbqsk3YfjnTtU61KjoZfmaSODX9XlYAC7TocqZnftdfy3xpaF/h51LpFmm7uvUlNGh5WtajjGjepq77/sd5p93343h90beJWTf/Phfp0UYvzHKn1et2+X71u36/oOnmSpN3bQjRnWqzWfhtlcWT2wmczgBP4PDi9O+7drn737XBbt3dXFd3f91KLIrKXVhdn6ab709SkdY6qRRfomXsaKemrSKvDsgWundLRPifd0WST7miySXVDsyRJ29Kj9O9fO+jbfX/P8w3N7LZYXWrv1f0rE/X173HnP1gb4XsLlRVFaJxRl+uP6t6x+/Tvx+vqt/UhunHwQT03Z6cGXdZMGYf9rQ7PUrRN6XZtr6In723velxU5LAwGut0qL9f89a21KZ9NeXr49SD3X/UtH6fq+/0W5VbUHydjL9hucKC8jRi7tVKzwnW1a23adJNS3XnjL5KTq1u8SswX1BgoXbuqqolyxpr7GMrStyv88V71LzpQR06HHz+grOZQ6kBmvVSA/2xO1gOh9TjhjQ9PXWLHryxrfZsr2J1eLbAZ3MJ7DCjuGSPGOA1+Dwo3a7toXrqgQtdj701VzudoBCnUjYH66sPq+npt3ZaHY7tcO2UjvYplppTRS9u7KhdWRFySOrTMFmvX/6len9xk7ZlnOxAcXf8zzLIDyTxvVUqO+SyVp/fw1Xq4TgaNGggh8NxyjJ06FBJUm5uroYOHapq1aopNDRUffv2VVpa2hmPu2TJEnXq1ElhYWGqUaOG+vbtq127drnts2LFCrVv316BgYFq3LixZs+ebcIrPD/63HtIX86J0lcfRmnPtiC9+lhd5R13KPH2I1aHZjnapnRFhQ4dPRzoWjLTA6wOyRIPzumlhT/Fa+fBKG1Lq66x/+2mWpHZalHroGufC2JT9eGPrbVpX7T+SA/XzO86KCs3QM3/sk9ltmZDHc3+oJ3+V0LvZ0mqFpWjB+75URP/dZkKiyr111epVn9TTWu+jdK+3cH6Y1ew3p7SQLk5vopvm2V1aLbBZzMqA/LYisHnQemcReRqJVm7IkJvv1RH3y+panUotsS1Uzrap9jyPxpo5b762p0VqV1ZkXr5p47KKfRX2+onv6+aVz2kQc1/1uM/dLMwUvvgewuVWaX+K37NmjXav3+/a1m6dKkk6eabb5YkjRgxQgsXLtT8+fO1cuVK7du3T3369Cn1mCkpKerdu7e6d++ujRs3asmSJTp06JDb81JSUtSrVy9169ZNGzdu1PDhw3XPPfdoyZIl5r1Yk/j5O9WkTY7WfxfmWmcYDm34LkwtOuRYGJn1aJszq1M/R+8u/VYzF/1Pjzz/q2rE5Fodki2EBeZLkjKOB7nW/bQ3Rle13K7woFw5ZOiqltsV6FekdbtqWxWmrTgchh57eJXm/7eldu+NtDoc2/DxMdTlmoMKCinSbxvCrQ7HFvhsRmVBHnvu+Dw4s9r1cvTOlys087/favSzP6tGzHGrQ4KH4NopHe1zKh+HU73qb1eIX4E2HIyWJAX5FuiVzss0bs2lOpTLcBN8b6Gyq9TDcdSoUcPt8cSJE9WoUSN16dJFGRkZmjlzpubMmaPu3btLkmbNmqXmzZvrhx9+UKdOnU57zHXr1qmoqEjPPvusfHyKa/ijR49W7969VVBQIH9/f73++uuKi4vT5MmTJUnNmzfXqlWr9MorrygxMdHEV1zxwqOK5OsnpR90v1SOHvJTbOM8i6KyB9qmdMm/ROjlMS31+64QRdXI1x337dSLs9ZqSN9OOp5TqT96SuWQodGJ/9OGPTHacfDkLWiPfXSlJt20VCsena2CIh/lFvhp1LxE7T0aYWG09nHrDb+qqMihBYvirQ7FFho0PaaX5/6kgECnjuf46p9Dm2vPDhJ3ic/m0thhRvETceDMyGPPHZ8HpUv+NUKvjGul33dVUVSNPN0xeIdemPGjHrils1fnajgzrp3S0T7umkYe1vyrPlWgb5FyCv015NtEbc8s/jvoyQ7fa/3BaK8fA/oEvrdKZ4dc1urze7pK3RP6r/Lz8/Xee+9p4MCBcjgcWrdunQoKCtSjRw/XPvHx8apXr56SkpJKPE6HDh3k4+OjWbNmqaioSBkZGXr33XfVo0cP+fsXj8+TlJTkdlxJSkxMLPW4eXl5yszMdFsAT7b2f9W1amm0dm0L0/rvq2nsg21VJaxAlyWe+Vbhyuzxa75To5pH9MTH7p8RD3Rbo9CgfN3/7rW6c0Yfvf9DG026aaka1zxsUaT20aThYd3Qa4tefK2zJO8cT+/vfk8J1tAb2mn4LW216INaGjVpq+o1oncEUFmRx8IM676voVVfx2jX9jCtT6qusQ+3V5WwQl12ZarVocHmuHZKR/u4S8mM1PWLb1bfJX00Z1tLvZjwjRqHH9EVdXYpIfoPPbuus9UhAjhPvOZnuAULFig9PV0DBgyQJKWmpiogIECRkZFu+0VHRys1teQvh7i4OH311Ve65ZZbdN9996moqEgJCQlavHixa5/U1FRFR0efctzMzEwdP35cwcGnTqg1YcIEPfPMM2f/Ak2SecRXRYVSZI1Ct/VVqxfq6EGvuXxOi7Ypn2NZ/vpjdxXVjvXeW9Eeu/o7XdZkt+55u7cOZIW61tetmqHbLv5VN02/RTv/7B29La262tXbr1su3KTnF19uVci20Kp5miIjcvX+Gx+71vn6Grq3/zrdeO0W3TWkr4XRWaOwwEf79xR/l2zfFKqmrbPU+659+vfYxhZHZj0+m0thh8lcJHvE4GHIY88OnwflcyzbX3/sDlGtWH7URPlw7ZTO29unwOmr3dnFd3duOlJDraMOqH/8L8ot8lO9sEytv/k/bvtPvewrrT0Yo35f97YiXEvxvXUGdshlrT6/h/OantAzZ85Uz549Vbt22cdXbdmypUJDQxUaGqqePXtKKk7MBw8erP79+2vNmjVauXKlAgICdNNNN8k4h+lcn3jiCWVkZLiWvXv3nvWxKlJhgY+2/RyidpeenPDK4TDU9tJsbV7n3bd+0zblExRcqFqxOTpyyBsn5TD02NXfqVt8iu579zrtS3cfuzfIvzjJMAz3Xr5OwyEf7vfR1ysb6v6R12nIqGtdy6HDwZr/WQv94589znwAL+DwkfwDnFaHYQt8NqMyIo89O3welE9QcKFq1c3RkUOBVocCD8O1Uzrax52Pw1CAT5He2NROvRbdousW3+xaJOm59ZfosSTvnKSQ7y1Udl7xU8ru3bv19ddf65NPPnGti4mJUX5+vtLT0916kaSlpSkmJkaStHjxYhUUFEiSq9fH1KlTFRERoRdeeMH1nPfee0+xsbFavXq1OnXqpJiYmFNmJ09LS1N4ePhpe49IUmBgoAID7fml9Mmb1TV6yl5t/SlEyRtCdOPggwoKceqruVFnfnIlR9uUbNDIrVq9soYO7A9StRp5unPITjmLHFrxRYzVoZ13j/f8Tj1bb9eID69WTl6AqlUp7gWRnRegvEI/7ToUqT2Hw/Vkr2/1ytJOyjgepK7Ndqljw9817IOeFkd/fgQFFah2zMlkK6Zmtho2OKKs7AAdPBSqrOwgt/0Li3x09Giwft/nfWNmDxi5S2u/raoD+wMVUqVIXa89qDYXZ+ipQS2tDs02+GxGZUIee274PCjZoOHJWv1tDR3YH6xqNXLV774dcjodWvllLatDs4WgkCLVbnByDNaY2Dw1bJGjrHQ/HdznjZ0qTuLaKR3tc9Lotqu1cl+s9h0LVRX/Al3fYLs6Ru/T3ct76VBuyGknI9x3LFS/H/PeCbf53kJl5hVF6FmzZqlmzZrq1auXa12HDh3k7++vZcuWqW/f4lu5k5OTtWfPHiUkJEiS6tevf8qxcnJyXBO5nODr6ytJcjqLe6H9/bZGSVq6dKnruJ5m5WdVFVGtSHc9kqqqNQq1c1OwnuwXp/RD/laHZjnapmTVo/P02MRfFB5ZoIyjAdq0IVIj/u8iZR71vqT9los2S5Jm9P/Mbf3Y/3bVwp/iVej01UMfXKOHr1itKbd9qZCAAu09EqGxC7rrf9tP/RyqjJo2OqyXxn/lenz/3WslSV9900gvvcY4cX8VWa1AoydtVVTNfB3L8lNKcoieGtRSG76vanVotsFn8+nZYTKXE3Gg7Mhjzw2fByWrVjNXjz7/s8Ij8otztY1VNXJAJ2Wme1+udjpN2+TohXlbXY/vG/u7JGnp/GqaPKqBRVHZA9dO6Wifk6oFHteLCctVMzhHWQUB+u1oNd29vJf+lxprdWi2xfdWyeyQy1p9fk/nMM7l3jsP4HQ6FRcXp9tvv10TJ0502zZkyBAtXrxYs2fPVnh4uB566CFJ0vfff1/i8ZYvX64ePXpo3Lhxuv3225WVlaV//OMf+u2337RlyxYFBwcrJSVFrVq10tChQzVw4EAtX75cDz/8sBYtWlTmWcUzMzMVERGhruotPwcfNigf3xo1rA7B1lL7Mm5uaar/5J3j1ZWF7687rQ7B1pxZWWfeyUsVGgVaof8qIyND4eHnt3fPiZyiw63PyTcg6MxPMFlRfq7WffikJW3hachjKye/Wt53V1h5FB08ZHUItuZbo7rVIcBDJY+MszoEW2v0SMkT8Ho7K/NYyV65bHnz2AkTJuiTTz7Rb7/9puDgYF1yySWaNGmSmjVr5tonNzdXo0aN0ty5c5WXl6fExERNmzbtlDk6KoNKPyb0119/rT179mjgwIGnbHvllVd07bXXqm/fvrr88ssVExPjdqvj6XTv3l1z5szRggUL1K5dO1199dUKDAzUl19+6bpFMS4uTosWLdLSpUt1wQUXaPLkyZoxY0aZE3cAAACAPBYAAMBzrVy5UkOHDtUPP/ygpUuXqqCgQFdddZWOHTvm2mfEiBFauHCh5s+fr5UrV2rfvn3q06ePhVGbp9L3hPZU9CDBuaAndOnoCV06ekKXjJ7QpaMndMls0RP6Fut7j0h/9iCZR0/oyow8tnT0hC4dPaFLR09onC16QpeOntAls01PaBvksueaxx48eFA1a9bUypUrdfnllysjI0M1atTQnDlzdNNNN0mSfvvtNzVv3lxJSUnq1KlTRb8ES1X6ntAAAAAAAAAAUBEyMzPdlry8vDM/SVJGRoYkKSqqeKLJdevWqaCgQD169HDtEx8fr3r16ikpqfL9MEIRGgAAAAAAAADKIDY2VhEREa5lwoQJZ3yO0+nU8OHD1blzZ7Vq1UqSlJqaqoCAAEVGRrrtGx0drdTUVDNCt5Sf1QEAAADg/GBGbwAAAHgqu+Sye/fudRuOIzAw8IzPGTp0qH799VetWrXKzNBsjSI0AAAAAAAAAJRBeHh4ucaEfvDBB/X555/r22+/Vd26dV3rY2JilJ+fr/T0dLfe0GlpaYqJqXxzSDAcBwAAgDcwDPssAAAAQHlYnb+eRR5rGIYefPBBffrpp1q+fLni4twnCO3QoYP8/f21bNky17rk5GTt2bNHCQkJFdJsdkJPaAAAAAAAAACoQEOHDtWcOXP03//+V2FhYa5xniMiIhQcHKyIiAgNGjRII0eOVFRUlMLDw/XQQw8pISFBnTp1sjj6ikcRGgAAAAAAAAAq0PTp0yVJXbt2dVs/a9YsDRgwQJL0yiuvyMfHR3379lVeXp4SExM1bdq08xzp+UERGgAAwAs4DHtM5mKHGAAAAOBZ7JDLlvf8RhmG7wgKCtLUqVM1derUs4zKczAmNAAAAAAAAADANBShAQAAAAAAAACmYTgOAAAAb2D8uVjNDjEAAADAs9ghl7X6/B6OntAAAAAAAAAAANNQhAYAAAAAAAAAmIbhOAAAALyAw1m8WM0OMQAAAMCz2CGXtfr8no6e0AAAAAAAAAAA09ATGgAAwBvYYTIXyR4xAAAAwLPYIZe1+vwejp7QAAAAAAAAAADTUIQGAAAAAAAAAJiG4TgAAAC8gMMoXqxmhxgAAADgWeyQy1p9fk9HT2gAAAAAAAAAgGkoQgMAAAAAAAAATMNwHAAAAN7AMIoXq9khBgAAAHgWO+SyVp/fw9ETGgAAAAAAAABgGorQAAAAAAAAAADTMBwHAACAF7DDjOIn4gAAAADKww65rNXn93T0hAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAvIFho6UcJkyYoIsuukhhYWGqWbOmbrjhBiUnJ7vtk5ubq6FDh6patWoKDQ1V3759lZaWVr4TAQAAwL6szl/PIo+FO8aEBiqhooMHrQ7B1qJnZ1kdgq05c3OtDsG2nFYHAHihlStXaujQobroootUWFiof/zjH7rqqqu0efNmValSRZI0YsQILVq0SPPnz1dERIQefPBB9enTR//73/8sjt67Ofz85HDw58bfFe5PtToEeLCig4esDsHWjMJCq0OwrUaP8NkDwFpkhQAAAF7ADpO5nIijPL788ku3x7Nnz1bNmjW1bt06XX755crIyNDMmTM1Z84cde/eXZI0a9YsNW/eXD/88IM6depUUaEDAADAInbIZa0+v6djOA4AAACcd5mZmW5LXl5emZ6XkZEhSYqKipIkrVu3TgUFBerRo4drn/j4eNWrV09JSUkVHzgAAACAcqMIDQAAgPMuNjZWERERrmXChAlnfI7T6dTw4cPVuXNntWrVSpKUmpqqgIAARUZGuu0bHR2t1FRuPQYAAADsgOE4AAAAvIFhFC9W+zOGvXv3Kjw83LU6MDDwjE8dOnSofv31V61atcq08AAAAGBDdshlrT6/h6MIDQAAgPMuPDzcrQh9Jg8++KA+//xzffvtt6pbt65rfUxMjPLz85Wenu7WGzotLU0xMTEVGTIAAACAs8RwHAAAALAtwzD04IMP6tNPP9Xy5csVFxfntr1Dhw7y9/fXsmXLXOuSk5O1Z88eJSQknO9wAQAAAJwGPaEBAAC8gB1mFD8RR3kMHTpUc+bM0X//+1+FhYW5xnmOiIhQcHCwIiIiNGjQII0cOVJRUVEKDw/XQw89pISEBHXq1MmEVwAAAIDzzQ65rNXn93QUoQEAAGBb06dPlyR17drVbf2sWbM0YMAASdIrr7wiHx8f9e3bV3l5eUpMTNS0adPOc6QAAAAASkIRGgAAALZllGECmKCgIE2dOlVTp049DxEBAAAAKC+K0AAAAN7A+HOxmh1iAAAAgGexQy5r9fk9HBMTAgAAAAAAAABMQ09oAAAAL2CHyVxOxAEAAACUhx1yWavP7+noCQ0AAAAAAAAAMA1FaAAAAAAAAACAaRiOAwAAwBs4jeLFanaIAQAAAJ7FDrms1ef3cPSEBgAAAAAAAACYhiI0AAAAAAAAAMA0DMcBAADgDYw/F6vZIQYAAAB4Fjvkslaf38PRExoAAAAAAAAAYBqK0AAAAAAAAAAA0zAcBwAAgBdwSHLY4BZCh9UBAAAAwOPYIZcljz039IQGAAAAAAAAAJiGntAAAADewDCKF6vZIQYAAAB4Fjvkslaf38PRExoAAAAAAAAAYBqK0AAAAAAAAAAA0zAcBwAAgBdwGNZP5nIiDgAAAKA87JDLWn1+T0dPaAAAAAAAAACAaShCAwAAAAAAAABMw3AcAAAA3sD4c7GaHWIAAACAZ7FDLmv1+T0cPaEBAAAAAAAAAKahJzTK5LoBh3TTkAOKqlGonZuDNe2pOkreGGJ1WLZA25SO9jm9W4b8oc6JR1W34XHl5/po8/ow/WdSrP5ICbY6NNvg2ikd7VM62gdAq4uzdNP9aWrSOkfVogv0zD2NlPRVpNVh2QqflaWjfU6P99aZce2UjvYpHe2Dyoqe0JKKioo0ZswYxcXFKTg4WI0aNdI///lPGcbJfvaGYejpp59WrVq1FBwcrB49emjbtm0WRn3+dLn+qO4du0/vvxyjoYlNtXNzkJ6bs1MR1QqsDs1ytE3paJ+Stb44SwvfjdaIvi31j7vi5edv6Ll3flNgcJHVodkC107paJ/S0T6n5zAM2yyoOOSxJQsKcSplc7CmPhVrdSi2xGdl6WifkvHeKh3XTulon9LRPiWzOn8ljz13FKElTZo0SdOnT9drr72mLVu2aNKkSXrhhRf073//27XPCy+8oFdffVWvv/66Vq9erSpVqigxMVG5ubmnPeauXbvkcDjO10swVZ97D+nLOVH66sMo7dkWpFcfq6u84w4l3n7E6tAsR9uUjvYp2Zi74/X1xzW0Z1uIUn6ropcfaajoOvlq0uqY1aHZAtdO6Wif0tE+8CbksSVbuyJCb79UR98vqWp1KLbEZ2XpaJ+S8d4qHddO6Wif0tE+qMwoQkv6/vvv1bt3b/Xq1UsNGjTQTTfdpKuuuko//vijpOLeI1OmTNFTTz2l3r17q02bNnrnnXe0b98+LViwwNrgTebn71STNjla/12Ya51hOLThuzC16JBjYWTWo21KR/uUT0hYcQ/orAxGSeLaKR3tUzrapxROGy2oMOSxOBt8VpaO9sHZ4topHe1TOtrnDKzOX8ljzxlFaEmXXHKJli1bpq1bt0qSfvrpJ61atUo9e/aUJKWkpCg1NVU9evRwPSciIkIdO3ZUUlKSJTGfL+FRRfL1k9IPuhfGjh7yU9UahRZFZQ+0Telon7JzOAzdN2a3Nq0N1e6tjPXFtVM62qd0tA+8DXkszgaflaWjfXC2uHZKR/uUjvZBZUeXO0mPP/64MjMzFR8fL19fXxUVFem5555Tv379JEmpqamSpOjoaLfnRUdHu7adq7y8POXl5bkeZ2ZmVshxAdjf0PG71KBpjkbf0sLqUAAAHoY8FgAAAJ6AIrSkefPm6f3339ecOXPUsmVLbdy4UcOHD1ft2rXVv3//Mh+nZcuW2r17tyS5JoMJDQ11bb/sssv0xRdfnPa5EyZM0DPPPHMOr8IcmUd8VVQoRf7tV7eq1Qt19KB3Xz60Telon7IZMm6XLu6Wrkdua65DqYFWh2MLXDulo31KR/uUzC6TqdghhsqEPBZng8/K0tE+OFtcO6WjfUpH+5TODrms1ef3dAzHIemRRx7R448/rttuu02tW7fW//3f/2nEiBGaMGGCJCkmJkaSlJaW5va8tLQ01zZJWrx4sTZu3KiNGzdq8eLFkuR6vHHjRs2YMaPEGJ544gllZGS4lr1791b0yzwrhQU+2vZziNpdmuVa53AYantptjav8+5hA2ib0tE+Z2JoyLhduuSqI3r8zuZK+z3I6oBsg2undLRP6WgfeBvyWJwNPitLR/vgbHHtlI72KR3tg8qOn1Ik5eTkyMfHvR7v6+srp7N4xPG4uDjFxMRo2bJlatu2raTi2wxXr16tIUOGuJ5Tv35917/9/IqbtnHjxmWKITAwUIGB9uwF+cmb1TV6yl5t/SlEyRtCdOPggwoKceqruVFWh2Y52qZ0tE/Jho7fpa7XH9b4e5vqeLaPqlbPlyQdy/JTfh6/D3LtlI72KR3tA29CHluyoJAi1W5wcpiQmNg8NWyRo6x0Px3cF2BhZPbAZ2XpaJ+S8d4qHddO6Wif0tE+qMwoQku67rrr9Nxzz6levXpq2bKlNmzYoJdfflkDBw6UJDkcDg0fPlzPPvusmjRpori4OI0ZM0a1a9fWDTfcYG3w58HKz6oqolqR7nokVVVrFGrnpmA92S9O6Yf8rQ7NcrRN6Wifkl175wFJ0gtzt7itn/xIQ339cQ0rQrIVrp3S0T6lo31KYPy5WM0OMVQi5LEla9omRy/M2+p6fN/Y3yVJS+dX0+RRDSyKyj74rCwd7VMy3lul49opHe1TOtqnFHbIZa0+v4dzGAYDmmRlZWnMmDH69NNPdeDAAdWuXVu33367nn76aQUEFP+SaxiGxo4dqzfffFPp6em69NJLNW3aNDVt2vS0x9y1a5fi4uJ0ts2bmZmpiIgIdVVv+Tn4sAEqkk8QQ1+Uxpmba3UIQKVTaBRohf6rjIwMhYeHn9dzn8gpLr/0afn5Wf/5V1iYq29XjbekLSojO+ex3fz6kseehlFYeOadgBI4/OhHVhreX0DFszKPleyVy5LHnhuK0DZFERowD0Xo0lGEBioeReiTSN4rP4rQpaNIhnNBEbp0vL+AikcR+iTy2HPDNxgAAIA3MIzixWp2iAEAAACexQ65rNXn93DMfgUAAAAAAAAAMA1FaAAAAAAAAACAaRiOAwAAwAs4jOLFanaIAQAAAJ7FDrms1ef3dPSEBgAAAAAAAACYhp7QAAAA3sAOk7mciAMAAAAoDzvkslaf38PRExoAAAAAAAAAYBqK0AAAAAAAAAAA0zAcBwAAgBdwOIsXq9khBgAAAHgWO+SyVp/f09ETGgAAAAAAAABgGorQAAAAAAAAAADTMBwHAACAN7DDjOIn4gAAAADKww65rNXn93D0hAYAAAAAAAAAmIYiNAAAAAAAAADANAzHAQAA4A2MPxer2SEGAAAAeBY75LJWn9/D0RMaAAAAAAAAAGAaekIDAAB4AYdhyGGDyVTsEAMAAAA8ix1yWavP7+noCQ0AAAAAAAAAMA1FaAAAAAAAAACAaRiOAwAAwBsYRvFiNTvEAAAAAM9ih1zW6vN7OHpCAwAAAAAAAABMQxEaAAAAAAAAAGAahuMAAADwBoYkp9VBqDgOAAAAoDzskMuSx54TekIDAAAAAAAAAExDERoAAAAAAAAAYBqG4wAAAPACDsOQwwYzetshBgAAAHgWO+SyVp/f09ETGgAAAAAAAABgGorQAAAA3sCQZBg2WKxuCAAAAHgcW+Sy5Qv522+/1XXXXafatWvL4XBowYIF7i/JMPT000+rVq1aCg4OVo8ePbRt27YKazK7YTgOmzL+7OJfqAL+WAMqmI/B72+lcRoFVocAVDqFKn5fnfh+ByozVx7L98lpGUah1SHAg3EreOl4fwEVjzz27B07dkwXXHCBBg4cqD59+pyy/YUXXtCrr76qt99+W3FxcRozZowSExO1efNmBQUFWRCxuShC21RWVpYkaZUWWxwJUAnlWh0AAG+VlZWliIgIq8MATHUij/2u6DOLIwEqIWqsACxCHlt+PXv2VM+ePU+7zTAMTZkyRU899ZR69+4tSXrnnXcUHR2tBQsW6LbbbjufoZ4XFKFtqnbt2tq7d6/CwsLkcDisDkeZmZmKjY3V3r17FR4ebnU4tkP7lIy2KR3tUzrap3S0T8ns1jaGYSgrK0u1a9e2MojixWp2iAGmIo/1LLRP6WifktE2paN9Skf7lMxubWOLPLY4EOvzyD/Pn5mZ6bY6MDBQgYGB5TpUSkqKUlNT1aNHD9e6iIgIdezYUUlJSRShcf74+Piobt26VodxivDwcFt8CNoV7VMy2qZ0tE/paJ/S0T4ls1Pb0HME3oI81jPRPqWjfUpG25SO9ikd7VMyO7UNeay72NhYt8djx47VuHHjynWM1NRUSVJ0dLTb+ujoaNe2yoYiNAAAAAAAAACUwd97qZe3F7S3oggNAADgDZySrB8ZoTgOAAAAoDzskMv+mcdWRC/1mJgYSVJaWppq1arlWp+Wlqa2bdue07HtysfqAOAZAgMDNXbsWH7dKQHtUzLapnS0T+lon9LRPiWjbQCcwOdB6Wif0tE+JaNtSkf7lI72KRlt4x3i4uIUExOjZcuWudZlZmZq9erVSkhIsDAy8zgMw+pRvQEAAGCWzMxMRUREqHvrx+Tna/0fM4VFeVr+yyRlZGTYZpxDAAAA2JOdctny5rHZ2dnavn27JKldu3Z6+eWX1a1bN0VFRalevXqaNGmSJk6cqLfffltxcXEaM2aMfv75Z23evFlBQUFmv5zzjuE4AAAAvIDDMOSwQd8DO8QAAAAAz2KHXLa851+7dq26devmejxy5EhJUv/+/TV79mw9+uijOnbsmO69916lp6fr0ksv1ZdfflkpC9ASRWgAAAAAAAAAqFBdu3ZVaQNQOBwOjR8/XuPHjz+PUVmHMaEBAAAAAAAAAKahCA03DRo00JQpU6wOAwAAVDTDsM8CmIA8FgCASszq/JU89pxRhPYwXbt21fDhw09ZP3v2bEVGRp73eMoqOTlZ3bp1U3R0tIKCgtSwYUM99dRTKigocNtv/vz5io+PV1BQkFq3bq3FixebGtf06dPVpk0bhYeHKzw8XAkJCfriiy9c23NzczV06FBVq1ZNoaGh6tu3r9LS0sp8/O3btyssLOy0/zfn+7Weq4kTJ8rhcLhdf2fTPrt27ZLD4Thl+eGHH9z2s3v7jBs37pTXEB8f79p+tteOYRh66aWX1LRpUwUGBqpOnTp67rnn3PZZsWKF2rdvr8DAQDVu3FizZ8+u6JdXIf744w/deeedqlatmoKDg9W6dWutXbvWtd0wDD399NOqVauWgoOD1aNHD23btq3UY86ePfu014/D4dCBAwdc+9m9jRo0aHDa1zB06FBJZ3/9LFmyRJ06dVJYWJhq1Kihvn37ateuXW772L1tSlJUVKQxY8YoLi5OwcHBatSokf75z3+63d52NtcUgPOHPLZikceWHXmsO/LYMyOPLRl5bPmRxwLFKEKjQuXn5592vb+/v+666y599dVXSk5O1pQpU/TWW29p7Nixrn2+//573X777Ro0aJA2bNigG264QTfccIN+/fVX0+KtW7euJk6cqHXr1mnt2rXq3r27evfurU2bNkmSRowYoYULF2r+/PlauXKl9u3bpz59+pTp2AUFBbr99tt12WWXnbLNitd6LtasWaM33nhDbdq0cVt/Lu3z9ddfa//+/a6lQ4cOrm2e0j4tW7Z0ew2rVq1ybTvbthk2bJhmzJihl156Sb/99ps+++wzXXzxxa7tKSkp6tWrl7p166aNGzdq+PDhuueee7RkyRJTXuPZOnr0qDp37ix/f3998cUX2rx5syZPnqyqVau69nnhhRf06quv6vXXX9fq1atVpUoVJSYmKjc3t8Tj3nrrrW5tvn//fiUmJqpLly6qWbOmJM9oozVr1ri9hqVLl0qSbr75Zklnd/2kpKSod+/e6t69uzZu3KglS5bo0KFDbs/zhLYpyaRJkzR9+nS99tpr2rJliyZNmqQXXnhB//73v137lPeaOlFM8BpW9xqhBwlsjjz2JPLY0pHHnh55LHmsRB57OuSxFcTq/JU89twZ8ChdunQxhg0bdsr6WbNmGREREa7H/fv3N3r37m28+OKLRkxMjBEVFWU88MADRn5+vmuftLQ049prrzWCgoKMBg0aGO+9955Rv35945VXXnHtc/ToUWPQoEFG9erVjbCwMKNbt27Gxo0bXdvHjh1rXHDBBcZbb71lNGjQwHA4HGV+LSNGjDAuvfRS1+NbbrnF6NWrl9s+HTt2NO67774yH7MiVK1a1ZgxY4aRnp5u+Pv7G/Pnz3dt27JliyHJSEpKOuNxHn30UePOO+885f/GMOzzWssiKyvLaNKkibF06VK36+9s2yclJcWQZGzYsKHEfTyhfU5c+6dztm2zefNmw8/Pz/jtt99K3OfRRx81WrZs6bbu1ltvNRITE8v3Akz22GOPub2//87pdBoxMTHGiy++6FqXnp5uBAYGGh988EGZz3PgwAHD39/feOedd1zrPKWN/mrYsGFGo0aNDKfTedbXz/z58w0/Pz+jqKjIte6zzz4zHA6H67PfE9vmhF69ehkDBw50W9enTx+jX79+hmGc3TV14vOossvIyDAkGVe0GG0ktn7S8uWKFqMNSUZGRkaZ4l+5cqVx7bXXGrVq1TIkGZ9++qnbdqfTaYwZM8aIiYkxgoKCjCuuuMLYunWrCS2Jc0Ueaz7yWHfksadHHls68tjyIY89M/LYc2OnXLa8eSzc0RO6Evvmm2+0Y8cOffPNN3r77bc1e/Zst9tVBgwYoL179+qbb77RRx99pGnTprndBiQV/5p54MABffHFF1q3bp3at2+vK664QkeOHHHts337dn388cf65JNPtHHjxjLFtn37dn355Zfq0qWLa11SUpJ69Ojhtl9iYqKSkpLK/+LPQlFRkebOnatjx44pISFB69atU0FBgVtM8fHxqlev3hljWr58uebPn6+pU6eedrvVr7U8hg4dql69ep0S77m0jyRdf/31qlmzpi699FJ99tlnbts8pX22bdum2rVrq2HDhurXr5/27Nkj6ezbZuHChWrYsKE+//xzxcXFqUGDBrrnnnvc3m+e0jafffaZLrzwQt18882qWbOm2rVrp7feesu1PSUlRampqW6vJSIiQh07dizXa3nnnXcUEhKim266ybXOU9rohPz8fL333nsaOHCgHA7HWV8/HTp0kI+Pj2bNmqWioiJlZGTo3XffVY8ePeTv7y/J89rmry655BItW7ZMW7dulST99NNPWrVqlXr27Cmp4q4p2M+xY8d0wQUXlPideja90WB/5LHlQx57euSxJSOPLRl5bNmRx5YNeSxQzM/qAGCeqlWr6rXXXpOvr6/i4+PVq1cvLVu2TIMHD9bWrVv1xRdf6Mcff9RFF10kSZo5c6aaN2/uev6qVav0448/6sCBAwoMDJQkvfTSS1qwYIE++ugj3XvvvZKKv3jeeecd1ahR44wxXXLJJVq/fr3y8vJ07733avz48a5tqampio6Odts/Ojpaqamp59wWpfnll1+UkJCg3NxchYaG6tNPP1WLFi20ceNGBQQEnDIO3pliOnz4sAYMGKD33ntP4eHhp93HqtdaXnPnztX69eu1Zs2aU7alpqaeVfuEhoZq8uTJ6ty5s3x8fPTxxx/rhhtu0IIFC3T99de7jm339unYsaNmz56tZs2aaf/+/XrmmWd02WWX6ddffz3rttm5c6d2796t+fPn65133lFRUZFGjBihm266ScuXL5dUcttkZmbq+PHjCg4OrvDXejZ27typ6dOna+TIkfrHP/6hNWvW6OGHH1ZAQID69+/vaodz/X+eOXOm7rjjDrfX7SltdMKCBQuUnp6uAQMGSDr791ZcXJy++uor3XLLLbrvvvtUVFSkhIQEt3EoPa1t/urxxx9XZmam4uPj5evrq6KiIj333HPq16+fJFXYNVWp2eUWwnLG0LNnT9cfaaceytCUKVP01FNPqXfv3pKK/6iPjo7WggULdNttt51zuLAGeWzZkMeWjDy2ZOSxpSOPLTvy2LIhj60gdshlrT6/h6MndCXWsmVL+fr6uh7XqlXL1UNky5Yt8vPzcxu/LD4+3u3L4qefflJ2drZrQoETS0pKinbs2OHar379+mVK3CXpww8/1Pr16zVnzhwtWrRIL7300jm+ynPXrFkzbdy4UatXr9aQIUPUv39/bd68uUzPbdmypatdTvyBPHjwYN1xxx26/PLLzQzbdHv37tWwYcP0/vvvKygo6KyOcbr2qV69ukaOHKmOHTvqoosu0sSJE3XnnXfqxRdfrMjwTdezZ0/dfPPNatOmjRITE7V48WKlp6dr3rx5ZXr+6drG6XQqLy9P77zzji677DJ17dpVM2fO1DfffKPk5GQzX06Fczqdat++vZ5//nm1a9dO9957rwYPHqzXX3+9zMfo2bOnq41atmx5yvakpCRt2bJFgwYNqsjQz7uZM2eqZ8+eql27dpmfc7rrJzU1VYMHD1b//v21Zs0arVy5UgEBAbrpppvcJj3xVPPmzdP777+vOXPmaP369Xr77bf10ksv6e233y7Xcf7adieuq79+x5VU7ETFy8zMdFvy8vLKfQx6DlVe5LFlQx57euSxpSOPLR15bNmRx5YNeSxQjJ7QHiY8PFwZGRmnrE9PT1dERITbuhO3rZzgcDjkdDrLfK7s7GzVqlVLK1asOGXbX5P8KlWqlPmYsbGxkqQWLVqoqKhI9957r0aNGiVfX1/FxMScMmtuWlqaYmJiynz8sxEQEKDGjRtLKr4NaM2aNfrXv/6lW2+9Vfn5+UpPT3d7vX+NafHixa6Z0U/88rp8+XJ99tlnrj9MDMOQ0+mUn5+f3nzzTQ0cONCy11oe69at04EDB9S+fXvXuqKiIn377bd67bXXtGTJkrNqn9Pp2LGja0ILSR7RPn8XGRmppk2bavv27bryyivPqm1q1aolPz8/NW3a1PWcE7269uzZo2bNmpXYNuHh4bb69b9WrVpq0aKF27rmzZvr448/liRXO6SlpalWrVqufdLS0tS2bVtJ0owZM3T8+HFJp36endjetm1btyLEiWN7QhtJ0u7du/X111/rk08+ca2LiYk5q+tn6tSpioiI0AsvvOB6znvvvafY2FitXr1anTp18qi2+btHHnlEjz/+uKtna+vWrbV7925NmDBB/fv3L9M1Jbm33R9//KGuXbu63YJv93aoTE7kBCeMHTtW48aNK9cx6DnkWchjKx557OmRx5YPeaw78tiyIY8tO/JYoBhFaA/TrFkzffXVV6esX79+vdsX/pnEx8ersLBQ69atc93GmJycrPT0dNc+7du3V2pqqvz8/NSgQYNzDf0UTqdTBQUFcjqd8vX1VUJCgpYtW6bhw4e79lm6dKkSEhIq/NxniisvL08dOnSQv7+/li1bpr59+0oqbqM9e/a4Yqpfv/4pz09KSlJRUZHr8X//+19NmjRJ33//verUqSNJtnmtpbniiiv0yy+/uK27++67FR8fr8cee0yxsbFn1T6ns3HjRrcvW09on7/Lzs7Wjh079H//939nfe107txZhYWF2rFjhxo1aiRJrnHDTuz/99vSJHu2TefOnU/p9bJ161bX64iLi1NMTIyWLVvmSqwyMzNdPbkkud4vp5Odna158+ZpwoQJp2zzlDaSpFmzZqlmzZrq1auXa93ZXj85OTny8XG/welEL8IThRtPapu/K+n1nXhtZbmmJPe28/MrToNOFHAqPackO0yi/mcdce/evW63+58YMgGVF3ms+chji5HHlg95rDvy2LIhjy078tgKYodctuy/h+M0KEJ7mCFDhui1117Tww8/rHvuuUeBgYFatGiRPvjgAy1cuLDMx2nWrJmuvvpq3XfffZo+fbr8/Pw0fPhwt1/OevTooYSEBN1www164YUX1LRpU+3bt0+LFi3SjTfeqAsvvLDM53v//ffl7++v1q1bKzAwUGvXrtUTTzyhW2+91fXL8LBhw9SlSxdNnjxZvXr10ty5c7V27Vq9+eabZW+gcnriiSfUs2dP1atXT1lZWZozZ45WrFihJUuWKCIiQoMGDdLIkSMVFRWl8PBwPfTQQ0pISFCnTp1KPOZfxyOUpLVr18rHx0etWrVyrbPitZZXWFiYW8xScW+hatWqudafTfu8/fbbCggIULt27SRJn3zyif7zn/9oxowZrn08oX1Gjx6t6667TvXr19e+ffs0duxY+fr66vbbbz/ra6dHjx5q3769Bg4cqClTpsjpdGro0KG68sorXX+c33///Xrttdf06KOPauDAgVq+fLnmzZunRYsWna+XXiYjRozQJZdcoueff1633HKLfvzxR7355puu/0OHw6Hhw4fr2WefVZMmTRQXF6cxY8aodu3auuGGG854/A8//FCFhYW68847T9nmKW3kdDo1a9Ys9e/f35VESjrr66dXr1565ZVXNH78eN1+++3KysrSP/7xD9WvX9/1fvOUtjmd6667Ts8995zq1aunli1basOGDXr55Zc1cOBASed+TeH8Cw8PL3HM2bIqa88h2AN5bMUijy0ZeWzpyGNLRx57ZuSx5UMeC/zJgMf58ccfjSuvvNKoUaOGERERYXTs2NH49NNP3fbp37+/0bt3b7d1w4YNM7p06eJ6vH//fqNXr15GYGCgUa9ePeOdd94x6tevb7zyyiuufTIzM42HHnrIqF27tuHv72/ExsYa/fr1M/bs2WMYhmGMHTvWuOCCC84Y89y5c4327dsboaGhRpUqVYwWLVoYzz//vHH8+HG3/ebNm2c0bdrUCAgIMFq2bGksWrSoPE1TbgMHDjTq169vBAQEGDVq1DCuuOIK46uvvnJtP378uPHAAw8YVatWNUJCQowbb7zR2L9/f7nOMWvWLCMiIuKU9ef7tVaELl26GMOGDXM9Ppv2mT17ttG8eXMjJCTECA8PNy6++GJj/vz5p+xn9/a59dZbjVq1ahkBAQFGnTp1jFtvvdXYvn27a/vZXjt//PGH0adPHyM0NNSIjo42BgwYYBw+fNhtn2+++cZo27atERAQYDRs2NCYNWtWRb+8CrFw4UKjVatWRmBgoBEfH2+8+eabbtudTqcxZswYIzo62ggMDDSuuOIKIzk5uUzHTkhIMO64444St3tCGy1ZssSQdNrXfLbXzwcffGC0a9fOqFKlilGjRg3j+uuvN7Zs2eK2jye0zelkZmYaw4YNM+rVq2cEBQUZDRs2NJ588kkjLy/PtU95r6mUlBTDG1KhjIwMQ5JxRbNRRmKLf1i+XNFslCHJyMjIKPdrkeSW8zidTiMmJsZ46aWX3F5vYGCg8cEHH1RE86GCkcdWHPLY8iGPPYk89szIY0tHHls+5LHnxk657LnksTAMh2FUglHeAQAAcFqZmZmKiIhQj6Yj5edr/ZAXhUV5+nrry8rIyChTT+js7Gxt375dktSuXTu9/PLL6tatm6KiolSvXj1NmjRJEydO1Ntvv+3qOfTzzz9r8+bNZz0hGQAAAOzBTrlsefNYuGM4DgAAANjW2rVr1a1bN9fjkSNHSpL69++v2bNn69FHH9WxY8d07733Kj09XZdeeqm+/PJLCtAAAACAjVCEBgAA8AaGUbxYrZwxdO3aVaXduOdwODR+/HiNHz/+XCMDAACAXdkhl7X6/B7O58y7AAAAAAAAAABwdihCAwAAAAAAAABMw3AcAAAA3sBpSA4b3ELotEEMAAAA8Cx2yGXJY88JPaEBAAAAAAAAAKahCA0AAAAAAAAAMA3DcQAAAHgDO8wofiIOAAAAoDzskMtafX4PR09oADiDAQMG6IYbbnA97tq1q4YPH37e41ixYoUcDofS09NL3MfhcGjBggVlPua4cePUtm3bc4pr165dcjgc2rhx4zkdBwAAABWLPLZ05LEAcP5QhAbgkQYMGCCHwyGHw6GAgAA1btxY48ePV2Fhoenn/uSTT/TPf/6zTPuWJeEGAACA9yCPBQB4I4bjAOCxrr76as2aNUt5eXlavHixhg4dKn9/fz3xxBOn7Jufn6+AgIAKOW9UVFSFHAcAzi8b3MIoSbJDDABgLfJYACgvO+SyVp/fs9ETGoDHCgwMVExMjOrXr68hQ4aoR48e+uyzzySdvPXwueeeU+3atdWsWTNJ0t69e3XLLbcoMjJSUVFR6t27t3bt2uU6ZlFRkUaOHKnIyEhVq1ZNjz76qIy/fdH9/TbGvLw8PfbYY4qNjVVgYKAaN26smTNnateuXerWrZskqWrVqnI4HBowYIAkyel0asKECYqLi1NwcLAuuOACffTRR27nWbx4sZo2barg4GB169bNLc6yeuyxx9S0aVOFhISoYcOGGjNmjAoKCk7Z74033lBsbKxCQkJ0yy23KCMjw237jBkz1Lx5cwUFBSk+Pl7Tpk0rdywAAAAoRh57ZuSxAFC50BMaQKURHBysw4cPux4vW7ZM4eHhWrp0qSSpoKBAiYmJSkhI0HfffSc/Pz89++yzuvrqq/Xzzz8rICBAkydP1uzZs/Wf//xHzZs31+TJk/Xpp5+qe/fuJZ73rrvuUlJSkl599VVdcMEFSklJ0aFDhxQbG6uPP/5Yffv2VXJyssLDwxUcHCxJmjBhgt577z29/vrratKkib799lvdeeedqlGjhrp06aK9e/eqT58+Gjp0qO69916tXbtWo0aNKnebhIWFafbs2apdu7Z++eUXDR48WGFhYXr00Udd+2zfvl3z5s3TwoULlZmZqUGDBumBBx7Q+++/L0l6//339fTTT+u1115Tu3bttGHDBg0ePFhVqlRR//79yx0TAIvYYTKXE3EAANyQx56KPBaAGzvkslaf38NRhAbg8QzD0LJly7RkyRI99NBDrvVVqlTRjBkzXLcvvvfee3I6nZoxY4YcDockadasWYqMjNSKFSt01VVXacqUKXriiSfUp08fSdLrr7+uJUuWlHjurVu3at68eVq6dKl69OghSWrYsKFr+4lbHmvWrKnIyEhJxT1Onn/+eX399ddKSEhwPWfVqlV644031KVLF02fPl2NGjXS5MmTJUnNmjXTL7/8okmTJpWrbZ566inXvxs0aKDRo0dr7ty5bsl7bm6u3nnnHdWpU0eS9O9//1u9evXS5MmTFRMTo7Fjx2ry5MmuNomLi9PmzZv1xhtvkLwDAACcA/LYkpHHAkDlQhEagMf6/PPPFRoaqoKCAjmdTt1xxx0aN26ca3vr1q3dxs/76aeftH37doWFhbkdJzc3Vzt27FBGRob279+vjh07urb5+fnpwgsvPOVWxhM2btwoX19fdenSpcxxb9++XTk5Obryyivd1ufn56tdu3aSpC1btrjFIcmV6JfHhx9+qFdffVU7duxQdna2CgsLFR4e7rZPvXr1XIn7ifM4nU4lJycrLCxMO3bs0KBBgzR48GDXPoWFhYqIiCh3PAAAACCPLQvyWACoXChCA/BY3bp10/Tp0xUQEKDatWvLz8/9I61KlSpuj7Ozs9WhQwfX7Xl/VaNGjbOK4cRtieWRnZ0tSVq0aJFb0iwVjw9YUZKSktSvXz8988wzSkxMVEREhObOnevqlVKeWN96661T/pjw9fWtsFgBnAdOQ7aYTMVpgxgAwGLksaUjjwVwCjvksuSx54QiNACPVaVKFTVu3LjM+7dv314ffvihataseUovihNq1aql1atX6/LLL5dU3FNi3bp1at++/Wn3b926tZxOp1auXOm6jfGvTvRgKSoqcq1r0aKFAgMDtWfPnhJ7njRv3tw1Oc0JP/zww5lf5F98//33ql+/vp588knXut27d5+y3549e7Rv3z7Vrl3bdR4fHx81a9ZM0dHRql27tnbu3Kl+/fqV6/wAAAA4PfLY0pHHAkDl42N1AABwvvTr10/Vq1dX79699d133yklJUUrVqzQww8/rN9//12SNGzYME2cOFELFizQb7/9pgceeEDp6eklHrNBgwbq37+/Bg4cqAULFriOOW/ePElS/fr15XA49Pnnn+vgwYPKzs5WWFiYRo8erREjRujtt9/Wjh07tH79ev373//W22+/LUm6//77tW3bNj3yyCNKTk7WnDlzNHv27HK93iZNmmjPnj2aO3euduzYoVdffVWffvrpKfsFBQWpf//++umnn/Tdd9/p4Ycf1i233KKYmBhJ0jPPPKMJEybo1Vdf1datW/XLL79o1qxZevnll8sVDwAAAM4OeSx5LAB4OorQALxGSEiIvv32W9WrV099+vRR8+bNNWjQIOXm5rp6lIwaNUr/93//p/79+yshIUFhYWG68cYbSz3u9OnTddNNN+mBBx5QfHy8Bg8erGPHjkmS6tSpo2eeeUaPP/64oqOj9eCDD0qS/vnPf2rMmDGaMGGCmjdvrquvvlqLFi1SXFycpOLx7T7++GMtWLBAF1xwgV5//XU9//zz5Xq9119/vUaMGKEHH3xQbdu21ffff68xY8acsl/jxo3Vp08fXXPNNbrqqqvUpk0bTZs2zbX9nnvu0YwZMzRr1iy1bt1aXbp00ezZs12xAvAQhtM+CwCgXMhjyWMBr2d1/koee84cRkmzFAAAAMDjZWZmKiIiQj3qPSA/n4obr/NsFTrz9PWeacrIyCjxlnIAAABAslcuSx57bugJDQAAAAAAAAAwDRMTAgAAeAPDKF6sZocYAAAA4FnskMtafX4PR09oAAAAAAAAAIBpKEIDAAAAAAAAAEzDcBwAAADewGlIssEthE4bxAAAAADPYodcljz2nNATGgAAAAAAAABgGnpCAwAAeAM7TOZyIg4AAACgPOyQy1p9fg9HT2gAAAAAAAAAgGkoQgMAAAAAAAAATMNwHAAAAN7AkD1uIbRBCAAAAPAwdshlyWPPCT2hAQAAAAAAAACmoQgNAAAAAAAAADANw3EAAAB4AzvMKH4iDgAAAKA87JDLWn1+D0dPaAAAAAAAAACAaShCAwAAAAAAAABMw3AcAAAA3sDplOS0Ooo/4wAAAADKwQ65LHnsOaEnNAAAAAAAAADANPSEBgAA8AZ2mMzlRBwAAABAedghl7X6/B6OntAAAAAAAAAAANNQhAYAAAAAAAAAmIbhOAAAALyBHW5hPBEHAAAAUB52yGWtPr+Hoyc0AAAAAAAAAMA0FKEBAAAAAAAAAKZhOA4AAABv4DQk2eAWQqcNYgAAAIBnsUMuSx57TugJDQAAAAAAAAAwDUVoAAAAAAAAAIBpGI4DAADACxiGU4bhtDoMW8QAAAAAz2KHXNbq83s6ekIDAAAAAAAAAExDT2gAAABvYBj2mEzFsEEMAAAA8Cx2yGXJY88JPaEBAAAAAAAAAKahCA0AAAAAAAAAMA3DcQAAAHgDw5Bkg1sIuY0RAAAA5WWHXJY89pzQExoAAAAAAAAAYBqK0AAAAAAAAAAA0zAcBwAAgDdwOiWH0+ooJMMGMQAAAMCz2CGXJY89J/SEBgAAAAAAAACYhiI0AAAAAAAAAMA0DMcBAADgDewwo7jErOIAAAAoPzvksuSx54Se0AAAAAAAAAAA09ATGgAAwAsYTqcMqydzkWQwoQsAAADKyQ65LHnsuaEnNAAAAAAAAADANBShAQAAAAAAAACmYTgOAAAAb2CHyVwkJnQBAABA+dkhlyWPPSf0hAYAAAAAAAAAmIYiNAAAAAAAAADANAzHAQAA4A2chuSwwS2E3MYIAACA8rJDLksee07oCQ0AAAAAAAAAMA1FaAAAAAAAAACAaRiOAwAAwBsYhiSn1VFwGyMAAADKzw65LHnsOaEnNAAAAAAAAADANBShAQAAAAAAAACmYTgOAAAAL2A4DRlWzyguyeA2RgAAAJSTHXJZ8thzQ09oAAAAAAAAAIBp6AkNAADgDQynLJ/MRfozDgAAAKAc7JDLkseeE3pCAwAAAAAAAABMQxEaAAAAAAAAAGAahuMAAADwAnaYzEViQhcAAACUnx1yWfLYc0NPaAAAANja1KlT1aBBAwUFBaljx4768ccfrQ4JAAAAKBNy2WIUoQEAAGBbH374oUaOHKmxY8dq/fr1uuCCC5SYmKgDBw5YHRoAAABQKnLZkyhCAwAAeAPDaZ+lHF5++WUNHjxYd999t1q0aKHXX39dISEh+s9//mNSQwEAAMB2rM5fzyKPlchl/4oiNAAAAGwpPz9f69atU48ePVzrfHx81KNHDyUlJVkYGQAAAFA6cll3TEwIAADgBQpVINlgLpVCFUiSMjMz3dYHBgYqMDDQbd2hQ4dUVFSk6Ohot/XR0dH67bffzA0UAAAAtmGHXLY8eaxELvt3FKEBAAAqsYCAAMXExGhV6mKrQ3EJDQ1VbGys27qxY8dq3Lhx1gQEAAAAW7JbLksee/YoQgMAAFRiQUFBSklJUX5+vtWhuBiGIYfD4bbudL1HqlevLl9fX6WlpbmtT0tLU0xMjKkxAgAAwHp2y2XLmsdK5LJ/RxEaAACgkgsKClJQUJDVYZRbQECAOnTooGXLlumGG26QJDmdTi1btkwPPvigtcEBAADgvCCXrRwoQgMAAMC2Ro4cqf79++vCCy/UxRdfrClTpujYsWO6++67rQ4NAAAAKBW57EkUoQEAAGBbt956qw4ePKinn35aqampatu2rb788stTJngBAAAA7IZc9iSHYRg2mCcdAAAAAAAAAFAZ+VgdAAAAAAAAAACg8qIIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAOD/2bvv8KjqtI3j96QnpAdIKKFJCVUkCkQ6ggERRFARURFRdllUipUVRWysCIKuSFEEeVdEsbCwNBEFQQJIU2mh15BQUyhpM+f9Izo6EhA0Z86Q+X6u61w6vzlzcs8hhJknzzwHAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAAAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAAAAAAAATEMRGgAAAAAAAABgGorQAAAAAAAAAADTUIQGAAAAAAAAAJiGIjQAAAAAAAAAwDQUoQEAAAAAAAAApqEIDQAAAAAAAAAwDUVoAAAAAAAAAIBpKEIDAAAAAAAAAExDERoAAAAAAAAAYBqK0AAAAAAAAAAA01CEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA1FaAAAAAAAAACAaShCAwAA5B/H7AAAtlZJREFUAAAAAABMQxEaAAAAAAAAAGAaitAAAAAAAAAAANNQhAYAAAAAAAAAmIYiNAAAAAAAAADANBShAQAAAAAAAACmoQgNAAAAlFLffvutunbtqooVK8pms2nu3Ll/+Jjly5erSZMmCgwMVM2aNTVjxgzTcwIAAKB0owgNAAAAlFJnz57Vtddeq4kTJ17W/vv27VOXLl3Url07bd68WUOGDNFDDz2kJUuWmJwUAAAApZnNMAzD6hAAAAAAzGWz2fTFF1+oe/fuF93n6aef1oIFC7Rlyxbn2t13363MzEwtXrzYDSkBAABQGvlZHQAAAADmys3NVX5+vtUxnAICAhQUFGR1DBQjJSVFHTp0cFlLTk7WkCFDLvqYvLw85eXlOW87HA6dOnVKMTExstlsZkUFAACASQzDUE5OjipWrCgfn5IZpEERGgAAoBTLzc1V9aqhSj9mtzqKU1xcnPbt20ch2gOlp6crNjbWZS02NlbZ2dk6f/68goODL3jM6NGjNWrUKHdFBAAAgJscOnRIlStXLpFjUYQGAAAoxfLz85V+zK4DG6opPMz6y4Fk5zhUNXG/8vPzKUKXEsOHD9ewYcOct7OyslSlShUdOnRI4eHhFiYDAADAn5Gdna34+HiFhYWV2DEpQgMAAHiB8DAfhYf5Wh0DHi4uLk4ZGRkuaxkZGQoPDy+2C1qSAgMDFRgYeMF6eHg4RWgAAICrWEmOVqMIDQAA4AUcMuSQw+oYcohrYnuypKQkLVy40GVt6dKlSkpKsigRAAAASgPrP5MJAAAAwBRnzpzR5s2btXnzZknSvn37tHnzZh08eFBS0SiN+++/37n/3//+d+3du1dPPfWUduzYoXfeeUeffPKJhg4dakV8AAAAlBJ0QgMAAHgBu+GQ3QOakO2G9d3Y3mT9+vVq166d8/Yvs5v79u2rGTNm6OjRo86CtCRVr15dCxYs0NChQ/Xmm2+qcuXKeu+995ScnOz27AAAACg9bIZheMDbEQAAAJghOztbEREROpZa1WMuTFi+zgFlZWUxL7iU+uV7jj9jAACAq5MZr+esfycCAAAAAAAAACi1GMcBAADgBYouTGj9B+A8IQMAAAAA96ITGgAAAAAAAABgGorQAAAAAAAAAADTMI4DAADACzjkkMPqEJKHpAAAAADgTnRCAwAAAAAAAABMQxEaAAAAAAAAAGAaxnEAAAB4AbthyG4YVsfwiAwAAAAA3ItOaAAAAAAAAACAaShCAwAAAAAAAABMwzgOAAAAL+CQIYesH4XhCRkAAAAAuBed0AAAAAAAAAAA09AJDQAA4AUcMmT3gC5kOqEBAAAA70MnNAAAAAAAAADANBShAQAAAAAAAACmYRwHAACAF+DChAAAAACsQic0AAAAAAAAAMA0FKEBAAAAAAAAAKZhHAcAAIAXsBuG7Ib1ozA8IQMAAAAA96ITGgAAAAAAAABgGorQAAAAAAAAAADTMI4DAADACzh+3qzmCRkAAAAAuBed0AAAAAAAAAAA09AJDQAA4AXsMmSX9RcF9IQMAAAAANyLTmgAAAAAAAAAgGkoQgMAAAAAAAAATMM4DgAAAC9gN4o2q3lCBgAAAADuRSc0AAAAAAAAAMA0FKEBAAAAAAAAAKZhHAcAAIAXcPy8Wc0TMgAAAABwLzqhAQAAAAAAAACmoQgNAAAAAAAAADAN4zgAAAC8gEM22WWzOoYcHpABAAAAgHvRCQ0AAAAAAAAAMA2d0AAAAF7AYRRtVvOEDAAAAADci05oAAAAAAAAAIBpKEIDAAAAAAAAAEzDOA4AAAAvYPeQCxN6QgYAAAAA7kUnNAAAAAAAAADANBShAQAAAAAAAACmYRwHAACAF2AcBwAAAACr0AkNAAAAAAAAADANRWgAAAAAAAAAgGkoQgMAAHgBh2HzmO1KHTlyRPfee69iYmIUHByshg0bav369c77DcPQ888/rwoVKig4OFgdOnTQrl27SvL0AQAAAPgLKEIDAADAY50+fVotWrSQv7+/Fi1apG3btmncuHGKiopy7jNmzBi99dZbmjx5stauXasyZcooOTlZubm5FiYHAAAA8AsuTAgAAACP9dprryk+Pl7Tp093rlWvXt35/4ZhaMKECRoxYoRuu+02SdLMmTMVGxuruXPn6u6773Z7ZgAAAACu6IQGAADwAnbZPGaTpOzsbJctLy+v2Nzz5s3T9ddfrzvvvFPly5fXddddp3fffdd5/759+5Senq4OHTo41yIiItSsWTOlpKSYe1IBAAAAXBaK0AAAAHC7+Ph4RUREOLfRo0cXu9/evXs1adIk1apVS0uWLNHAgQP12GOP6YMPPpAkpaenS5JiY2NdHhcbG+u8DwAAAIC1GMcBAADgBezykd0D+g/sP//30KFDCg8Pd64HBgYWu7/D4dD111+vV199VZJ03XXXacuWLZo8ebL69u1rdlwAAAAAJcD6dyIAAADwOuHh4S7bxYrQFSpUUL169VzW6tatq4MHD0qS4uLiJEkZGRku+2RkZDjvAwAAAGAtitAAAADwWC1atFBqaqrL2s6dO1W1alVJRRcpjIuL07Jly5z3Z2dna+3atUpKSnJrVgAAAADFYxwHAACAFzAMmxyGzeoYMq4ww9ChQ3XjjTfq1Vdf1V133aV169Zp6tSpmjp1qiTJZrNpyJAhevnll1WrVi1Vr15dzz33nCpWrKju3bub8AwAAAAAXCmK0AAAAPBYN9xwg7744gsNHz5cL774oqpXr64JEyaoT58+zn2eeuopnT17VgMGDFBmZqZatmypxYsXKygoyMLkAAAAAH5hMwzDsDoEAAAAzJGdna2IiAgt+6mKyoRZP4ntbI5DNzU8qKysLJcLE6L0+OV7jj9jAACAq5MZr+fohAYAAPACdtlkl/XjODwhAwAAAAD3sr4dBgAAAAAAAABQalGEBgAAAAAAAACYhnEcAAAAXsBu+MhuWN9/YOdqJAAAAIDXsf6dCAAAAAAAAACg1KITGgAAwAs4ZJPDA/oPHKIVGgAAAPA21r8TAQAAAAAAAACUWhShAQAAAAAAAACmYRwHAACAF7DLJrtsVsfwiAwAAAAA3ItOaAAAAAAAAACAaShCAwAAAAAAAABMwzgOAAAAL2A3fGQ3rO8/sBuG1REAAAAAuJn170QAAAAAAAAAAKUWRWgAAAAAAAAAgGkYxwEAAOAFHLLJIZvVMTwiAwAAAAD3ohMaAAAAAAAAAGAaOqEBAAC8gEM+sntA/4FDXJgQAAAA8DbWvxMBAAAAAAAAAJRaFKEBAAAAAAAAAKZhHAcAAIAXsBs+shvW9x/YDcZxAAAAAN7G+nciAAAAAAAAAIBSiyI0APxFM2bMkM1m0/r1613Ws7Ky1LRpUwUFBWnx4sV64YUXZLPZFBsbq3Pnzl1wnGrVqunWW291WbPZbLLZbBo3btxlf10AAAAAAABPQhEaAEyQnZ2tm2++WT/++KO++OILderUyXnfsWPHNGnSpCs63uuvv15s4RoALpdDPh6zAQAAAPAuvAsAgBKWk5Oj5ORkbd68WZ999pk6d+7scn/jxo31+uuv6/z585d1vMaNGysjI0OTJ082Iy4AAAAAAICpKEIDQAk6c+aMOnXqpI0bN+qzzz5Tly5dLtjn+eefV0ZGxmV3Q7do0ULt27fXmDFjLrtwDQAAAAAA4CkoQgNACTl79qw6d+6s77//XnPmzLlgvvMvWrVqdcVF5RdeeOGKCtcA8Ht2w+YxGwAAAADvQhEaAEpI3759tXbtWs2ZM0fdunW75L4jR468ohEbrVq1Urt27a5ojAcAAAAAAIAnoAgNACUkIyNDQUFBio+P/8N9W7durXbt2l1xN3R6ejqzoQH8KXb5eMwGAAAAwLvwLgAASsiUKVMUEBCgTp06KTU19Q/3v9Ki8p8pXAMAAAAAAFiNIjQAlJB69epp4cKFOn/+vDp27KhDhw5dcv/WrVurbdu2V1RUHjlypNLT0zVlypSSiAwAAAAAAGA6itAAUIKaNm2quXPn6tixY+rYsaOOHz9+yf1/6Ya+3KJymzZt1LZtW7322mt0QwO4Ig7Dx2M2AAAAAN6FdwEAUMJuuukmffTRR9q9e7c6deqk7Ozsi+7726Jybm7uZR3/l8L11KlTSyoyAAAAAACAaShCA4AJbr/9dr377rvauHGjunXrdskC8y8jNjIyMi7r2G3atFGbNm20efPmEkoLAAAAAABgHorQAGCSfv36aezYsVqxYoXuvPNOFRYWFrtf27Zt1aZNmys69gsvvFACCQF4E7t8PGYDAAAA4F1shmEYVocAAACAObKzsxUREaF3NyYqJMzX6jg6l2PXw002KCsrS+Hh4VbHgQl++Z7jzxgAAODqZMbrOVpRAAAAAAAAAACm8bM6AAAAAMznkGQ3bFbHkMPqAAAAAADcjk5oAAAAAAAAAIBpKEIDAAAAAAAAAEzDOA4AAAAv4JCPHB7Qf+AJGQAAAAC4F+8CAAAAAAAAAACmoRPaQzkcDqWlpSksLEw2m/UXEQIAAH+eYRjKyclRxYoV5eNjTQ+A3fCR3bC+/8ATMgAAAABwL4rQHiotLU3x8fFWxwAAACXo0KFDqly5stUxAAAAAMCtKEJ7qLCwMElSm4he8rMFWJzG89gzs62O4NF8y5a1OoJHM86dtTqCRzPyC6yO4LGMwkKrI+AqVagCrdJC57/vAAAAAOBNKEJ7qF9GcPjZAihCF8Nm87c6gkfz9eF75lIMG0XWSzGYAHRRBuOR8GcZRf+xcsSWQzY5ZP33sCdkAAAAAOBeDOUDAAAAAAAAAJiGIjQAAAAAAAAAwDSM4wAAAPACdsNHdsP6/gNPyAAAAADAvXgXAAAAAAAAAAAwDUVoAAAAAAAAAIBpGMcBAADgBezykd0D+g88IQMAAAAA9+JdAAAAAAAAAADANHRCAwAAeAGHYZPDsFkdwyMyAAAAAHAvOqEBAAAAAAAAAKahCA0AAAAAAAAAMA3jOAAAALyAw0MuTOjwgAwAAAAA3It3AQAAAAAAAAAA01CEBgAAAAAAAACYhnEcAAAAXsBh+MhhWN9/4AkZAAAAALgX7wIAAAAAAAAAAKahCA0AAAAAAAAAMA3jOAAAALyAXTbZZbM6hkdkAAAAAOBedEIDAAAAAAAAAExDJzQAAIAX4MKEAAAAAKzCuwAAAAAAAAAAgGkoQgMAAAAAAAAATMM4DgAAAC9gl2dcFNBudQAAAAAAbkcnNAAAAAAAAADANBShAQAAAAAAAACmYRwHAACAF3AYPnIY1vcfeEIGAAAAAO7FuwAAAAAAAAAAgGkoQgMAAAAAAAAATMM4DlzSLb3S1OXuo4qtlCtJOrA7RB9Nqqr1K6MtTuY5uj5wQncMPKbocoXauy1Y74yopNTNIVbH8jh3Prhf/Qbv1tz/xGvq63WsjmO5u/5+RC1uPqnKNc4rP89H2zaG6f0xVXVkX7DV0TxCg6Y5uuPvGarV8JxiYgs06qFrlPJlpNWxPAo/ey6N83Mhu+EjuweMwvCEDAAAAADcq1S/C6hWrZomTJhgdYyr2omMQE0fX12P3dlEg++8Tj+sjdRzb29VlZpnrY7mEdp0O60BI9P04RtxGpRcW3u3BemVWXsVEVNgdTSPUqt+ljrfcVh7U0OtjuIxGjbN0vz/xGnonQ31z7715Odn6JUZ2xQYbLc6mkcICnFo37ZgTRwRb3UUj8TPnkvj/AAAAACAZ7G0CN22bVsNGTLkgvUZM2YoMjLS7XkuV2pqqtq1a6fY2FgFBQWpRo0aGjFihAoKXN/czpkzRwkJCQoKClLDhg21cOFCixL/eeuWx2j9t9FKOxCsIwdCNPPN6so956uERtlWR/MIPQac0OJZ0fry42gd3BWkt56urLzzNiX3PmV1NI8RFFyop0Zv1Vuj6upMNh+++MVzD9bTV5+X18FdIdq3o4zeeLqmYivlq1YDfsEjSeuXR+iDsZW0ekmU1VE8Ej97Lo3zAwAAAACepVR3Qv9V+fn5xa77+/vr/vvv15dffqnU1FRNmDBB7777rkaOHOncZ/Xq1erdu7f69++vTZs2qXv37urevbu2bNnirvglzsfHUOvOxxQUbNf2H8KtjmM5P3+HajU6p40rw5xrhmHTppVhqpd4zsJknuUf/0zVum9jtHltjNVRPFpIWKEkKSeTQj0ujZ89l8b5uThDNjk8YDNks/pUAAAAAHCzq6II/cADD6h79+4aO3asKlSooJiYGA0aNMil8/jYsWPq2rWrgoODVb16dX344YcXHCczM1MPPfSQypUrp/DwcLVv314//PCD8/4XXnhBjRs31nvvvafq1asrKCio2Dw1atRQv379dO2116pq1arq1q2b+vTpo5UrVzr3efPNN9WpUyc9+eSTqlu3rl566SU1adJEb7/9dgmeGfeoVuusPlu/Sv/dvFKPjNyllx6rr0N7ylgdy3Lh0Xb5+kmZx12LhqdP+CmqXKFFqTxL607pqlk3WzPeqml1FI9msxn627P7tXV9mA7s8u6Ztfhj/Oy5NM4PcKGJEyeqWrVqCgoKUrNmzbRu3bpL7j9hwgTVqVNHwcHBio+P19ChQ5Wbm+umtAAAACiNrpqWu2+++UYVKlTQN998o927d6tXr15q3LixHn74YUlFheq0tDR988038vf312OPPaZjx465HOPOO+9UcHCwFi1apIiICE2ZMkU33XSTdu7cqejoogvt7d69W5999pk+//xz+fr6Xla23bt3a/HixerRo4dzLSUlRcOGDXPZLzk5WXPnzi32GHl5ecrLy3Pezs72nHEXh/cH65EeiSoTWqiWySf0+KupeqpvIwrRuKSysbn621M79ezfrlNB/uX9XfJWg17Yp2q1z+uJu+tbHQVAKcaFCb3Txx9/rGHDhmny5Mlq1qyZJkyYoOTkZKWmpqp8+fIX7D9r1iw988wzev/993XjjTdq586deuCBB2Sz2fTGG29Y8AwAAABQGlw1ReioqCi9/fbb8vX1VUJCgrp06aJly5bp4Ycf1s6dO7Vo0SKtW7dON9xwgyRp2rRpqlu3rvPxq1at0rp163Ts2DEFBgZKksaOHau5c+fq008/1YABAyQVjeCYOXOmypUr94eZbrzxRm3cuFF5eXkaMGCAXnzxRed96enpio2Nddk/NjZW6enpxR5r9OjRGjVq1JWdFDcpLPDR0YPBkqTd28JUq0GObrvviN5+obbFyayVfcpX9kIp8neddVFlC3X6+FXzV8s0teplKyomX/+e/Wu3la+foQaJmep692HddkN7ORx8JHvgyL1q2v60nuxdXyfSA62Og6sAP3sujfMDuHrjjTf08MMPq1+/fpKkyZMna8GCBXr//ff1zDPPXLD/6tWr1aJFC91zzz2Sii703bt3b61du9atuQEAAFC6XDWtKPXr13fpTK5QoYKz03n79u3y8/NTYmKi8/6EhASXixv+8MMPOnPmjGJiYhQaGurc9u3bpz179jj3q1q16mUVoKWizpKNGzdq1qxZWrBggcaOHfunn9/w4cOVlZXl3A4dOvSnj2U2H5shf3/D6hiWKyzw0a4fQ3Rdyxznms1mqHHLM9q2gZEKm9dGa2DP5nqkVzPntnNLuJYvjNMjvZpRgJahgSP36saOp/TMvfWUcbj48T/A7/Gz59I4P8Cv8vPztWHDBnXo0MG55uPjow4dOiglJaXYx9x4443asGGDc2TH3r17tXDhQt1yyy1uyQwAAIDSydKWoPDwcGVlZV2wnpmZqYiICJc1f39/l9s2m00Oh+Oyv9aZM2dUoUIFLV++/IL7flusLlPm8kdMxMfHS5Lq1asnu92uAQMG6PHHH5evr6/i4uKUkZHhsn9GRobi4uKKPVZgYKCzQ9uTPDB0n9Z/G6VjR4MUUsautrceU8OmWXru4SpWR/MIn08tqycmHNLOH0KUuilEtz98XEEhDn05O9rqaJY7f85PB3aHuqzlnvdRdqb/BeveaNCofWrb9YRe/HsdnT/rq6iyRRdCPZvjq/w8xpcEhdhVsdqvI4ri4vNUo9455WT66XhagIXJPAM/ey6N81M8h2GTw7D+F4CekMFbnDhxQna7vdhP5+3YsaPYx9xzzz06ceKEWrZsKcMwVFhYqL///e/65z//edGv48lj5QAAAOAZLC1C16lTR19++eUF6xs3blTt2pc/6iEhIUGFhYXasGGDcxxHamqqMjMznfs0adJE6enp8vPzU7Vq1f5q9As4HA4VFBTI4XDI19dXSUlJWrZsmYYMGeLcZ+nSpUpKSirxr22miOh8Pf6vVEWXy9fZHD/t21lGzz3cUJtSoqyO5hFWzItSRIxd9z+Zrqhyhdq7NVjP9qmuzBP+f/xgeLVb+xT9kmrMrG0u6+OeukZffX7hjE5vU7vROY35ZKfz9t9GHpYkLZ0To3GPV7MolefgZ8+lcX6AP2/58uV69dVX9c4776hZs2bavXu3Bg8erJdeeknPPfdcsY/x5LFyAAAA8AyWFqEHDhyot99+W4899pgeeughBQYGasGCBfroo480f/78yz5OnTp11KlTJ/3tb3/TpEmT5OfnpyFDhig4ONi5T4cOHZSUlKTu3btrzJgxql27ttLS0rRgwQLdfvvtuv766y/763344Yfy9/dXw4YNFRgYqPXr12v48OHq1auXs2N78ODBatOmjcaNG6cuXbpo9uzZWr9+vaZOnXr5J8gDvPlcHasjeLx508tq3vSyVse4Kjzz0OX/PSvtOte8un4h5W4/rglTpyqJf7yjF+Nnz6VxfgCpbNmy8vX1vaJP5z333HO677779NBDD0mSGjZsqLNnz2rAgAF69tln5eNz4TS/4cOHu1yQOzs72/mJQQAAAECyeCZ0jRo19O2332rHjh3q0KGDmjVrpk8++URz5sxRp06druhY06dPV8WKFdWmTRv16NFDAwYMcLnit81m08KFC9W6dWv169dPtWvX1t13360DBw5c8BHFP+Ln56fXXntNTZs2VaNGjTRq1Cg98sgjeu+995z73HjjjZo1a5amTp2qa6+9Vp9++qnmzp2rBg0aXNHXAgAAKAl2+XjMBvcICAhQYmKili1b5lxzOBxatmzZRT+dd+7cuQsKzb9cl8Uwir8mSGBgoMLDw102AAAA4LdsxsVeTcJS2dnZioiI0E2R98nPxvzT37NnXjhLHL/yvcyLa3or4+xZqyN4NCM/3+oIHssoLLQ6Aq5ShUaBluu/ysrKcnuB7pfXFEO+66bAUOtHkuSdKdCEFvMsORfe6OOPP1bfvn01ZcoUNW3aVBMmTNAnn3yiHTt2KDY2Vvfff78qVaqk0aNHS5JeeOEFvfHGG5o6dapzHMfAgQOVmJiojz/++LK+5i/fc/wZAwAAXJ3MeD1n6TgOAAAAAObp1auXjh8/rueff17p6elq3LixFi9e7Pwk4MGDB106n0eMGCGbzaYRI0boyJEjKleunLp27apXXnnFqqcAAACAUoAiNAAAgBdwGDY5DJvVMTwig7d55JFH9MgjjxR73/Lly11u+/n5aeTIkRo5cqQbkgEAAMBbMJQPAAAAAAAAAGAaOqEBAAC8gEM+cnhA/4EnZAAAAADgXrwLAAAAAAAAAACYhiI0AAAAAAAAAMA0jOMAAADwAnbDJrsHXBTQEzIAAAAAcC86oQEAAAAAAAAApqEIDQAAAAAAAAAwDeM4AAAAvIDDsMnhAaMwPCEDAAAAAPeiExoAAAAAAAAAYBqK0AAAAAAAAAAA0zCOAwAAwAsYho8chvX9B4YHZAAAAADgXrwLAAAAgMd64YUXZLPZXLaEhATn/bm5uRo0aJBiYmIUGhqqnj17KiMjw8LEAAAAAH6PTmgAAAAvYJdNdll/UcA/k6F+/fr66quvnLf9/H59CTt06FAtWLBAc+bMUUREhB555BH16NFD3333XYnkBQAAAPDXUYQGAACAR/Pz81NcXNwF61lZWZo2bZpmzZql9u3bS5KmT5+uunXras2aNWrevLm7owIAAAAoBuM4AAAA4HbZ2dkuW15e3kX33bVrlypWrKgaNWqoT58+OnjwoCRpw4YNKigoUIcOHZz7JiQkqEqVKkpJSTH9OQAAAAC4PBShAQAAvIDDkByGzQO2ojzx8fGKiIhwbqNHjy42d7NmzTRjxgwtXrxYkyZN0r59+9SqVSvl5OQoPT1dAQEBioyMdHlMbGys0tPTTT6jAAAAAC4X4zgAAADgdocOHVJ4eLjzdmBgYLH7de7c2fn/jRo1UrNmzVS1alV98sknCg4ONj0nAAAAgL+OTmgAAAC4XXh4uMt2sSL070VGRqp27dravXu34uLilJ+fr8zMTJd9MjIyip0hDQAAAMAaFKEBAAC8gMPw8Zjtrzhz5oz27NmjChUqKDExUf7+/lq2bJnz/tTUVB08eFBJSUl/9ZQBAAAAKCGM4wAAAIDHeuKJJ9S1a1dVrVpVaWlpGjlypHx9fdW7d29FRESof//+GjZsmKKjoxUeHq5HH31USUlJat68udXRAQAAAPyMIjQAAAA81uHDh9W7d2+dPHlS5cqVU8uWLbVmzRqVK1dOkjR+/Hj5+PioZ8+eysvLU3Jyst555x2LUwMAAAD4LYrQAAAAXsAhmxyyWR3jijPMnj37kvcHBQVp4sSJmjhx4l+JBQAAAMBEzIQGAAAAAAAAAJiGTmgAAAAvYDdsshvWd0J7QgYAAAAA7kUnNAAAAAAAAADANBShAQAAAAAAAACmYRwHAACAF3AYPnIY1vcfeEIGAAAAAO5FEdrT+QVIPgFWp/A4WX2aWx3Bo5U5WmB1BI/mn51ndQSP5nsi2+oIHst+OM3qCB7NKCy0OgIAAAAAwAPRigIAAAAAAAAAMA2d0AAAAF7AIZschs3qGHLI+gwAAAAA3ItOaAAAAAAAAACAaShCAwAAAAAAAABMwzgOAAAAL2DI5hGjMAwPyAAAAADAveiEBgAAAAAAAACYhiI0AAAAAAAAAMA0jOMAAADwAg7DJodh/SgMT8gAAAAAwL3ohAYAAAAAAAAAmIZOaAAAAC/gMHzkMKzvP/CEDAAAAADci3cBAAAAAAAAAADTUIQGAAAAAAAAAJiGcRwAAABegAsTAgAAALAKndAAAAAAAAAAANNQhAYAAAAAAAAAmIZxHAAAAF7AIZscsn4UhidkAAAAAOBedEIDAAAAAAAAAExDERoAAAAAAAAAYBrGcQAAAHgBh2GTw7B+FIYnZAAAAADgXnRCAwAAAAAAAABMQyc0AACAF6ATGgAAAIBV6IQGAAAAAAAAAJiGIjQAAAAAAAAAwDSM4wAAAPACjOMAAAAAYBU6oQEAAAAAAAAApqEIDQAAAAAAAAAwDeM4AAAAvADjOAAAAABYhU5oAAAAAAAAAIBpKEIDAAAAAAAAAEzDOA5ctjsf3K9+g3dr7n/iNfX1OlbHcbvG1dN0b9sfVKfSCZWLOKenZtysb7dWd94fHXpOg7qsVdNahxUWnK9N++L0xtyWOnQiwsLU7tOwTrp6dflJtaqfUNmo83p+/E36bkNV5/3399iods33qVz0WRXafbRzX4zen5OoHXvKW5jafRrUz9Adt29XrWtOKSbmvEa90lopa+N/s4eh++75UZ1v3q0yZQq0bXs5/XvSDUo7Gm5ZZivFlD2vfoO2K7H5MQUG2XX0cBmNf6Wxdu+ItDqaR2jQNEd3/D1DtRqeU0xsgUY9dI1Svoy0OpZH6frACd0x8JiiyxVq77ZgvTOiklI3h1gdy1KGJIesH4VhWB0AAAAAgNuV6k7oSZMmqVGjRgoPD1d4eLiSkpK0aNEi5/25ubkaNGiQYmJiFBoaqp49eyojI+Oyj797926FhYUpMjLygvvmzJmjhIQEBQUFqWHDhlq4cGFJPCXL1Kqfpc53HNbe1FCro1gmOKBQu9JiNHZuy2LuNfTaA0tUMTpbT81I1v0Teir9dJjeGvA/BfkXuD2rFYIDC7TnYLTe+iCp2PsPH43Qvz9oroeHd9fgF7so40SYXnt6iSLCzrs5qTWCAgu1b1+kJk65odj77+yxTbfdmqq3JjXVkCeTlZvnp1dGfSN/f7ubk1ovNCxfr0/5ToWFPho5rJkG3tNO7/27ns7k+FsdzWMEhTi0b1uwJo6I/+OdvVCbbqc1YGSaPnwjToOSa2vvtiC9MmuvImK84+cxAAAAAHiaUl2Erly5sv71r39pw4YNWr9+vdq3b6/bbrtNW7dulSQNHTpU8+fP15w5c7RixQqlpaWpR48el3XsgoIC9e7dW61atbrgvtWrV6t3797q37+/Nm3apO7du6t79+7asmVLiT4/dwkKLtRTo7fqrVF1dSbbe5vnU1KraMqSplqxpfoF98WXzVLDqsc05vNW2n64vA4ej9SYz1sp0L9QN1+324K07rfux3hN/zRR362vVuz9X6dco41bK+no8XAdOBKlSR82VWhIgWpUOe3eoBZZv7GSPviwsVavKa5oaOj2bjv00ScNtGZtvPbtj9Lr45MUE31ONzY/5PasVrvj3j06nhGsCa801s7tUco4GqJN68or/UgZq6N5jPXLI/TB2EpavSTK6igeqceAE1o8K1pffhytg7uC9NbTlZV33qbk3qesjmapXy5M6AkbAAAAAO9SqovQXbt21S233KJatWqpdu3aeuWVVxQaGqo1a9YoKytL06ZN0xtvvKH27dsrMTFR06dP1+rVq7VmzZo/PPaIESOUkJCgu+6664L73nzzTXXq1ElPPvmk6tatq5deeklNmjTR22+/bcbTNN0//pmqdd/GaPPaGKujeKwAv6Ju1fxCX+eaYdhUUOira6unWxXLY/n52tWlXarOnA3QngPRVsexXFzsGUVH52rTD3HOtXPnArRjZ1nVrXPCwmTWaNYyXbt3RGj4y+v14YIlemvGCiV3O2B1LFwl/PwdqtXonDauDHOuGYZNm1aGqV7iOQuTAQAAAID3KtVF6N+y2+2aPXu2zp49q6SkJG3YsEEFBQXq0KGDc5+EhARVqVJFKSkplzzW119/rTlz5mjixInF3p+SkuJyXElKTk7+w+N6otad0lWzbrZmvFXT6igebf+xSB09HaqBndcpLDhPfr523dd2s2IjzyomjKLHL5o3Pqj/vTdTi6Z/oDs6bdVTryUr+0yQ1bEsFxWVK0nKzAx2Wc/MDFJUlHeMK/mtuIrndMvtB3TkUBk9N7S5Fn5RTX8bukU3dfa+rnBcufBou3z9pMzjrp/cOX3CT1HlCi1KBQAAAADerdTPVvjpp5+UlJSk3NxchYaG6osvvlC9evW0efNmBQQEXDDPOTY2VunpF+9cPXnypB544AH95z//UXh48RcMS09PV2xs7BUdNy8vT3l5ec7b2dnZl/HszFU2Nld/e2qnnv3bdSrI9/3jB3gxu8NXz3xws569a4WWvjhDhXabvt9dSau3x8vGp46dNm+voAHPdldEaK66tEvVc498o0de6KrM7OA/fjC8hs3H0O4dkZo5pa4kae/OCFWtkaPOtx/QskXMQAb+LE8ZheEJGQAAAAC4V6kvQtepU0ebN29WVlaWPv30U/Xt21crVqy4rMfWr19fBw4UfQS8VatWWrRokR5++GHdc889at26dYnmHD16tEaNGlWix/yratXLVlRMvv49e51zzdfPUIPETHW9+7Buu6G9HA7eSP4i9Ug53T/+DpUJypO/r0OZZ4M17dEvtP1wWaujeYzcPH+lZfgrLSNc2/eU1wdjP1XnNjv10fxrrY5mqdOni7rBIyPP69TpXwvykZG52rvX+2b+nj4ZpIP7wlzWDu0P1Y1tj1qUCFeT7FO+shdKkb/reo4qW6jTx0v9yx4AAAAA8Eil/t1YQECAatYsGiWRmJio77//Xm+++aZ69eql/Px8ZWZmunRDZ2RkKC6uaC7rwoULVVBQIEkKDi4qDH399deaN2+exo4dK0kyDEMOh0N+fn6aOnWqHnzwQcXFxSkjI8Mlx2+PW5zhw4dr2LBhztvZ2dmKj7e242/z2mgN7NncZW3oqG06vD9Ec6ZXowB9EWdzAyUVXawwofJxTVlyvcWJPJePzZC/v93qGJZLzwjVqVNBanxthvbuK5qRHRJcoITaJ7RgUS2L07nfth+jVanKGZe1SvFndDydjnn8scICH+36MUTXtcxRyuIISZLNZqhxyzOaN4NrGwAAAACAFUp9Efr3HA6H8vLylJiYKH9/fy1btkw9e/aUJKWmpurgwYNKSkqSJFWtWvWCx6ekpMhu/7Vo9t///levvfaaVq9erUqVKkmSkpKStGzZMg0ZMsS539KlS53HLU5gYKACAwNL4imWmPPn/HRgd6jLWu55H2Vn+l+w7g2CAwpUuWyW83bF6BzVqnhC2ecClZEZpvaN9ijzTLDSM0N1TYVTGtbtO327tZrW7fSO8QFBgQWqFPvrGJm4cjm6pspJ5ZwNVPaZQPW57Qet3lBFJzNDFBGWq9s6blfZqHNasba6handJyioQBUr5Dhvx8WeUY3qp5STE6jjJ8roi3kJ6n3XFqWlhSk9o4zu7/OjTp4K0eo13vH981tzP66hsVNW6a77d2nlsoqqXe+0Ot12UP9+rZHV0TxGUIhdFav9OsIpLj5PNeqdU06mn46nBViYzDN8PrWsnphwSDt/CFHqphDd/vBxBYU49OVs774QKuM4AAAAAFilVBehhw8frs6dO6tKlSrKycnRrFmztHz5ci1ZskQRERHq37+/hg0bpujoaIWHh+vRRx9VUlKSmjdvftFj1q1b1+X2+vXr5ePjowYNGjjXBg8erDZt2mjcuHHq0qWLZs+erfXr12vq1KmmPVeYr27l43pn4Hzn7SHdii40uWB9bb30cTuVDTunwV1TFB16XidyQrRoQ229/1UTq+K6XZ0aJ/TGs4uct/9xb9EYlyXf1tT46TcqvkKWXhj8tcLDcpV9JlCpe8tpyMu36MAR7xg3UbvmKY159Svn7b89tFGStHRZDY17M0lzPq+noKBCPTZorULL5GvrtvIa8UI7FRR43zz2Xdsj9fIzN+iBgdvVu99OZRwN0dQ362v5l5WtjuYxajc6pzGf7HTe/tvIw5KkpXNiNO7xahal8hwr5kUpIsau+59MV1S5Qu3dGqxn+1RX5gl/q6MBAAAAgFeyGYZhWB3CLP3799eyZct09OhRRUREqFGjRnr66afVsWNHSVJubq4ef/xxffTRR8rLy1NycrLeeeedS47N+L0ZM2ZoyJAhyszMdFmfM2eORowYof3796tWrVoaM2aMbrnllss+bnZ2tiIiInRT2f7y86Gr7fdO3XyN1RE8WpmjBVZH8Gj+2Xl/vJMX8z1h/YVRPZX9cJrVETyaUVj4xzt5qUKjQMv1X2VlZV30wsZm+eU1Rev5/5BfGes/dVV4Nk/fdn3HknMB9/jle44/YwAAgKuTGa/nSnUR+mpGEfrSKEJfGkXoS6MIfWkUoS+OIvSlUYS+OE8oQrecN8hjitCruk2kQFmKUYQGAAC4upnxes6nRI4CAAAAAAAAAEAxKEIDAAAAAAAAAExTqi9MCAAAgCKGYZNh2KyO4REZAAAAALgXndAAAAAAAAAAANPQCQ0AAOAFHLLJIeu7kD0hAwAAAAD3ohMaAAAAAAAAAGAaitAAAAAAAAAAANMwjgMAAMALOAybHB5wUUBPyAAAAADAveiEBgAAAAAAAACYhiI0AAAAAAAAAMA0jOMAAADwAoZhk+EBozA8IQMAAAAA96ITGgAAAAAAAABgGorQAAAAAAAAAADTMI4DAADACzgMmxweMArDEzIAAAAAcC86oQEAAAAAAAAApqETGgAAwAtwYUIAAAAAVqETGgAAAAAAAABgGorQAAAAAAAAAADTMI4DAADACxgecmFCxnEAAAAA3odOaAAAAAAAAACAaShCAwAAAAAAAABMwzgOAAAAL2BIMgyrUxTlAAAAAOBd6IQGAAAAAAAAAJiGIjQAAAAAAAAAwDSM4wAAAPACDtlkk83qGHJ4QAYAAAAA7kUnNAAAAAAAAADANHRCAwAAeAHDsMkwrO9C9oQMAAAAANyLTmgAAAAAAAAAgGkoQgMAAAAAAAAATMM4Dk9XNlLyDbQ6hccJPlFodQSPtuw/06yO4NHqv/0PqyN4tHI/BFsdwWOVKeBnz6UUHkmzOgIuwWHYZPOAURgOD8gAAAAAwL3ohAYAAAAAAAAAmIYiNAAAAAAAAADANIzjAAAA8AKGUbRZzRMyAAAAAHAvOqEBAAAAAAAAAKahCA0AAAAAAAAAMA3jOAAAALyAYdhkGDarY3hEBgAAAADuRSc0AAAAAAAAAMA0FKEBAAAAAAAAAKZhHAcAAIAXYBwHAAAAAKvQCQ0AAAAAAAAAMA2d0AAAAF7AYdhk84AuZIcHZAAAAADgXnRCAwAAAAAAAABMQxEaAAAAAAAAAGAaxnEAAAB4AcMo2qzmCRkAAAAAuBed0AAAAAAAAAAA01CEBgAAAAAAAACYhnEcAAAAXqBoHIfN6hiM4wAAAAC8EJ3QAAAAAAAAAADTUIQGAAAAAAAAAJiGcRwAAABewDBsHjKOw/oMAAAAANyLTmgAAAAAAAAAgGkoQgMAAHgBw4O2P+tf//qXbDabhgwZ4lzLzc3VoEGDFBMTo9DQUPXs2VMZGRl/4asAAAAAKGkUoQEAAODxvv/+e02ZMkWNGjVyWR86dKjmz5+vOXPmaMWKFUpLS1OPHj0sSgkAAACgOBShAQAA4NHOnDmjPn366N1331VUVJRzPSsrS9OmTdMbb7yh9u3bKzExUdOnT9fq1au1Zs0aCxMDAAAA+C2K0AAAAF7glwsTesImSdnZ2S5bXl7eRbMPGjRIXbp0UYcOHVzWN2zYoIKCApf1hIQEValSRSkpKeacSAAAAABXjCI0AAAA3C4+Pl4RERHObfTo0cXuN3v2bG3cuLHY+9PT0xUQEKDIyEiX9djYWKWnp5sRGwAAAMCf4Gd1AAAAAHifQ4cOKTw83Hk7MDCw2H0GDx6spUuXKigoyJ3xAAAAAJQgOqEBAAC8geFBm6Tw8HCXrbgi9IYNG3Ts2DE1adJEfn5+8vPz04oVK/TWW2/Jz89PsbGxys/PV2ZmpsvjMjIyFBcX95dPGQAAAICSQSc0AAAAPNJNN92kn376yWWtX79+SkhI0NNPP634+Hj5+/tr2bJl6tmzpyQpNTVVBw8eVFJSkhWRAQAAABSDIjQAAAA8UlhYmBo0aOCyVqZMGcXExDjX+/fvr2HDhik6Olrh4eF69NFHlZSUpObNm1sRGQAAAEAxKELjknx8DPW5f6va3XRAUdG5OnUyWF8tqaaPPqwryWZ1PLdqVPuoenX+SbWrnlTZqHMa8dZN+m5TtWL3HXr/d+rWbofentVMny1tUOw+pdGJo/6a9koFff9NuPLO+6hitTw9Pv6gal97XpI0dkgVLf0k2uUxiW2z9eqsvVbEdZuHEjeqY429qh6VqdxCX21Oj9Mbq5trf2aUJKliWLaW9v2w2McOXXSzvtxzjTvjWqJRraO6O/nHor9fkec0YmIHrdpczXn/M/1WqNONu1wes25LZT31Zic3J7XePQ/vUp8Bu13WDu0vo7/f2dqiRJ6p6wMndMfAY4ouV6i924L1zohKSt0cYnUsaxk2GYYH/NtdwhnGjx8vHx8f9ezZU3l5eUpOTtY777xTol8DAAAAwF/jNUXof/3rXxo+fLgGDx6sCRMmSJJyc3P1+OOPa/bs2S5vWmJjYy96nP3796t69eoXrKekpLh03MyZM0fPPfec9u/fr1q1aum1117TLbfcUuLPy2x39NqhW7ru0RtjmurA/nDVqn1aQ5/8XmfP+mve3FpWx3OroMBC7TkUrUUra+ulR5dddL+WTfar3jXHdPy0dxU7cjJ9Ney2Wmp0Y45e/s9eRcYU6sjeQIVG2F32u75dth4ff9B52z/AcHdUt7uhYpo++qmBfjpWXn42hwYnrdW73f6nbrPu1vlCf6WfCVWb9/u6PObO+tvU77rNWnWwikWp3SsosFB7Dsdo4Xd19PI/vip2n7U/VdZrM34ttOYX+rornsfZvydUIwY1dd62F3pAYdGDtOl2WgNGpunfz1TWjo0huv3h43pl1l71b1VHWSf9rY6Hv2j58uUut4OCgjRx4kRNnDjRmkAAAAAA/pBXXJjw+++/15QpU9SoUSOX9aFDh2r+/PmaM2eOVqxYobS0NPXo0eOyjvnVV1/p6NGjzi0xMdF53+rVq9W7d2/1799fmzZtUvfu3dW9e3dt2bKlRJ+XO9Srf1JrVlfU92sr6FhGGX23srI2bYhV7YRTVkdzu3U/xev9z6/Xqo3VLrpP2cizeqxPil6Z0lZ2u1f89XL6ZGJ5la2YrycmHFLCdecUVyVfiW1zVLFavst+/gGGossXOrewSPtFjlh6/G3+rZq7I0F7TkUr9WRZPftVe1UMP6N65Y9LkhyGj06cC3HZbqqxT4t3X6NzBd5RMFu3JV7T5l6vVRf5dIEkFRT66lR2iHM7c+7Ci5h5C4fdptMnA51bdlaA1ZE8So8BJ7R4VrS+/DhaB3cF6a2nKyvvvE3Jvb3v367fMgzP2eBeEydOVLVq1RQUFKRmzZpp3bp1l9w/MzNTgwYNUoUKFRQYGKjatWtr4cKFbkoLAACA0qjUV8nOnDmjPn366N1331VUVJRzPSsrS9OmTdMbb7yh9u3bKzExUdOnT9fq1au1Zs2aPzxuTEyM4uLinJu//6+FojfffFOdOnXSk08+qbp16+qll15SkyZN9Pbbb5vyHM20bWuMGl93TJUq5UiSqtfIVL0GJ7R+HVec/z2bzdDwASv08eKG2p8W9ccPKGXWfBmh2tee08sDqumuhvX1j461tfDD6Av2+zElVHc1rK/+LRP01jOVlX3K+7pZwwKLCvNZucUXUeuVO6665U7o82113RnL4zWuc1RfjPuPZr40R0P7rFJ4mVyrI1mmYvw5zVz4tabNXa4nXtqscrHnrY7kMfz8HarV6Jw2rgxzrhmGTZtWhqle4jkLkwHW+PjjjzVs2DCNHDlSGzdu1LXXXqvk5GQdO3as2P3z8/PVsWNH7d+/X59++qlSU1P17rvvqlKlSm5ODgAAgNKk1I/jGDRokLp06aIOHTro5Zdfdq5v2LBBBQUF6tChg3MtISFBVapUuWC0RnG6deum3Nxc1a5dW0899ZS6devmvC8lJUXDhg1z2T85OVlz58696PHy8vKUl5fnvJ2dnX25T9FUc2YnKKRMgaZMXyyHwyYfH0MzpzfQ8q+rWh3N4/S+5UfZ7TZ9trS+1VEscfRggP43s6x6DDiuux/N0M4fQjTpucry9zfU8a7TkqTr22arRedMxVXJ19H9gZr+rwp69t4amjB/l3y9pBZtk6GnW32njWlx2n0qpth9etbbrj2norQ5nV/2/GLdlsr6dmM1HT0RpkrlsvXQ7ev12uAlGjS6qxxGqf99qovUrZEaP6qhDh8oo+iyebrn4d0a8+4a/ePuVjp/rtT/s/6HwqPt8vWTMo+7novTJ/wUXzPvIo8CSq833nhDDz/8sPr16ydJmjx5shYsWKD3339fzzzzzAX7v//++zp16pRWr17tbLKoVq2aOyMDAACgFCrV71Znz56tjRs36vvvv7/gvvT0dAUEBCgyMtJlPTY2Vunp6Rc9ZmhoqMaNG6cWLVrIx8dHn332mbp37665c+c6C9Hp6ekXzJX+o+OOHj1ao0aNuoJn5x6t2hxSu/YHNebVZjp4IEI1rsnUgH9s1skTwVq2tJrV8TxG7aon1LPjVg144TZ52wUbf2E4pFqNzuvB4UclSTUbntf+HUFa8H9lnUXott0znftXr5ur6vXO64Gkevpxdaiua3XGithuN6LNt6oVfUr3fda92PsDfQt1S+1dmvx9YrH3e6uvv//14oz7jkRrz+FofTT6EzWuc1Qbd3hXd96G1eWc/79/t5S6JVLT5y9Xqw5H9eW8eOuCweMZHnJhQk/I4C3y8/O1YcMGDR8+3Lnm4+OjDh06KCUlpdjHzJs3T0lJSRo0aJD++9//qly5crrnnnv09NNPy/civzH21GYKAAAAeI5SW4Q+dOiQBg8erKVLlyooKOhPHaN+/fo6cOCAJKlVq1ZatGiRypYt69LlfMMNNygtLU2vv/66Szf0lRo+fLjLcbOzsxUfb30xof+AHzVndoK+XV50cbT9+yJUPvas7uq9gyL0bzSsna7IsPP6eOzHzjVfX0MD716nO27eqt5P9rIwnXtEly9U1dqu4xHia+Vq1cKIiz6mQtV8RUQXKm1/oFcUoZ9tvVJtqh1Q38+7K+NsaLH73Fxzj4L9CjVvRx03p7u6HD0RrsycIFUqn+11RejfO3vGX0cOllGFeEZNSFL2KV/ZC6XIcoUu61FlC3X6eKl92QMU68SJE7Lb7cU2R+zYsaPYx+zdu1dff/21+vTpo4ULF2r37t36xz/+oYKCAo0cObLYx3hqMwUAAAA8R6l9N7ZhwwYdO3ZMTZo0ca7Z7XZ9++23evvtt7VkyRLl5+crMzPTpRs6IyNDcXFFH4FfuHChCgoKJEnBwcEX/VrNmjXT0qVLnbfj4uKUkZHhss9vj1ucwMBABQZ63kW2AoPscvyuY+mXsRz41dLVNbVhW0WXtTGPL9HS1TW1eFUti1K5V70bzurQHtfv4SN7A1W+UsFFH3M8zV/Zp30VXf7i+5QOhp5tvUo31dinB77opiM54Rfds0e9HfpmXzWdzr34zxxI5aLOKrxMrk5mhVgdxXJBwYWqUOmcvj5R8Y939gKFBT7a9WOIrmuZo5TFRb8Es9kMNW55RvNmFD8CB8CvHA6Hypcvr6lTp8rX11eJiYk6cuSIXn/99YsWoT21mQIAAACeo9QWoW+66Sb99NNPLmv9+vVTQkKCnn76acXHx8vf31/Lli1Tz549JUmpqak6ePCgkpKSJElVq17e3OPNmzerQoUKzttJSUlatmyZhgwZ4lxbunSp87hXk7UpFXT3Pdt1/FiIDuwP1zU1M3V7z536cnF1q6O5XVBggSqV//XjpRXKndE18SeVczZQx06FKvusa8e93e6jU1nBOpQe6eak1ugx4JiGdqutj94qr9ZdM5W6KUQL/xOjIa8fliSdP+uj/4yLU8sumYoqX6ij+wP03ssVVbF6nhLb5lic3lzPtVmpW2rv0qMLOutcQYDKhhR1rObkBSjP/uuP4SoRWbq+YpoGzu9iVVTLBP/u71dc2RzVjD+p7LOByjkbqL5dN+rbjdV1KitYFctl6293rNOR4+H6fmtlC1Nbo//gHVq7spyOHQ1WTLk89RmwSw6HtGJJhT9+sJf4fGpZPTHhkHb+EKLUTSG6/eHjCgpx6MvZF14s1asYtqLNap6QwUuULVtWvr6+V9QcUaFCBfn7+7uM3qhbt67S09OVn5+vgICACx7jqc0UAAAA8ByltggdFhamBg0auKyVKVNGMTExzvX+/ftr2LBhio6OVnh4uB599FElJSVd8qKEH3zwgQICAnTddddJkj7//HO9//77eu+995z7DB48WG3atNG4cePUpUsXzZ49W+vXr9fUqVNNeKbmmvz2dbrvga0a9NhGRUTm6tTJYC1acI1m/V89q6O5XZ1qJzThmYXO24N6r5UkLV5VS69Na21VLI9Rp/F5PT9tn6aPrqAPx8cpLj5ff3/xiNr3KJoH7eNjaN/2IC2dU11ns30VE1uoJm2y1fepdAUElu7O+rsbbpUkfdDjvy7rz37VTnN3JDhv3153uzLOhOq7g97XPVan6nFNePLXv1+P9Pr579fqWnrjPy1Uo/IpJSftUmhIvk5mhuj7bZX0/txEFRR6yRUtfyOmfK6eevkHhUfkK+t0gLb+EK1h/ZKUnUkB6Bcr5kUpIsau+59MV1S5Qu3dGqxn+1RX5gl/q6MBbhUQEKDExEQtW7ZM3bt3l1TU6bxs2TI98sgjxT6mRYsWmjVrlhwOh3x8ii78unPnTlWoUKHYAjQAAABwOWyGYZTu6s9vtG3bVo0bN9aECRMkSbm5uXr88cf10UcfKS8vT8nJyXrnnXcuOTbjgw8+0GuvvaYDBw7Iz89PCQkJevLJJ3XHHXe47DdnzhyNGDFC+/fvV61atTRmzBjdcsstl501OztbERERuinhcfn5Ulj4vfPxFx9nAOmb6e/98U5erP7b/7A6gkcr90NpH4/y55XZfMTqCB6t8Eia1RE8VqFRoOX6r7KyshQe7t5/w355TVFt2nPyCflz18koSY5zudrf/yVLzoU3+vjjj9W3b19NmTJFTZs21YQJE/TJJ59ox44dio2N1f33369KlSpp9OjRkoquq1K/fn317dtXjz76qHbt2qUHH3xQjz32mJ599tnL+pq/fM/xZwwAAHB1MuP1XKnthC7O8uXLXW4HBQVp4sSJmjhx4mUfo2/fvurbt+8f7nfnnXfqzjvvvNKIAAAApjCMos1qnpDBm/Tq1UvHjx/X888/r/T0dDVu3FiLFy92Xqzw4MGDzo5nSYqPj9eSJUs0dOhQNWrUSJUqVdLgwYP19NNPW/UUAAAAUAp4VREaAAAA8DaPPPLIRcdv/L5JQyq6vsmaNWtMTgUAAABvQhEaAADAGxg/b1bzhAwAAAAA3Mrnj3cBAAAAAAAAAODPoQgNAAAAAAAAADAN4zgAAAC8gGHYZBg2q2N4RAYAAAAA7kUnNAAAAAAAAADANBShAQAAAAAAAACmYRwHAACAtzCsDgAAAADAG9EJDQAAAAAAAAAwDUVoAAAAAAAAAIBpGMcBAADgBQzDJsOwWR3DIzIAAAAAcC86oQEAAAAAAAAApqEIDQAAAAAAAAAwDeM4AAAAvIHx82Y1T8gAAAAAwK3ohAYAAAAAAAAAmIZOaAAAAK9g+3mzmidkAAAAAOBOdEIDAAAAAAAAAExDERoAAAAAAAAAYBrGcQAAAHgDLkwIAAAAwCJ0QgMAAAAAAAAATEMRGgAAAAAAAABgGsZxAAAAeAPGcQAAAACwCJ3QAAAAAAAAAADTUIQGAAAAAAAAAJiGcRwAAADewLAVbVbzhAwAAAAA3IpOaAAAAAAAAACAaeiEBgAA8AKGUbRZzRMyAAAAAHAvOqEBAAAAAAAAAKahCA0AAAAAAAAAMA3jODyc4e8rw9fX6hi4yvQ72MrqCB6tz93LrI7g0WYGtbc6gseqlhFtdQTPdiTN6gS4FOPnzWqekAEAAACAW9EJDQAAAAAAAAAwDUVoAAAAAAAAAIBpGMcBAADgDQxb0WY1T8gAAAAAwK0uqwg9b968yz5gt27d/nQYAAAAAAAAAEDpcllF6O7du1/WwWw2m+x2+1/JAwAAAAAAAAAoRS6rCO1wOMzOAQAAABPZjKLNap6QAQAAAIB7/aULE+bm5pZUDgAAAAAAAABAKXTFRWi73a6XXnpJlSpVUmhoqPbu3StJeu655zRt2rQSDwgAAIASYHjQBgAAAMCrXHER+pVXXtGMGTM0ZswYBQQEONcbNGig9957r0TDAQAAAAAAAACubldchJ45c6amTp2qPn36yNfX17l+7bXXaseOHSUaDgAAAAAAAABwdbusCxP+1pEjR1SzZs0L1h0OhwoKCkokFAAAAEqYYSvarOYJGQAAAAC41RV3QterV08rV668YP3TTz/VddddVyKhAAAAAAAAAAClwxV3Qj///PPq27evjhw5IofDoc8//1ypqamaOXOm/ve//5mREQAAAAAAAABwlbriTujbbrtN8+fP11dffaUyZcro+eef1/bt2zV//nx17NjRjIwAAAD4qwwP2gAAAAB4lSvuhJakVq1aaenSpSWdBQAAAAAAAABQyvypIrQkrV+/Xtu3b5dUNCc6MTGxxEIBAAAAAAAAAEqHKy5CHz58WL1799Z3332nyMhISVJmZqZuvPFGzZ49W5UrVy7pjAAAAPirPGUUhidkAAAAAOBWVzwT+qGHHlJBQYG2b9+uU6dO6dSpU9q+fbscDoceeughMzICAAAAAAAAAK5SV9wJvWLFCq1evVp16tRxrtWpU0f//ve/1apVqxINBwAAAAAAAAC4ul1xETo+Pl4FBQUXrNvtdlWsWLFEQgEAAKCEMY4DAAAAgEWueBzH66+/rkcffVTr1693rq1fv16DBw/W2LFjSzQcAAAAAAAAAODqdlmd0FFRUbLZbM7bZ8+eVbNmzeTnV/TwwsJC+fn56cEHH1T37t1NCQoAAIC/wLAVbVbzhAwAAAAA3OqyitATJkwwOQYAAAAAAAAAoDS6rCJ03759zc4BAAAAAAAAACiFrvjChL+Vm5ur/Px8l7Xw8PC/FAgAAAAlz2YUbVbzhAwAAAAA3OuKL0x49uxZPfLIIypfvrzKlCmjqKgolw0AAAAAAAAAgF9ccRH6qaee0tdff61JkyYpMDBQ7733nkaNGqWKFStq5syZZmQEAAAAAAAAAFylrngcx/z58zVz5ky1bdtW/fr1U6tWrVSzZk1VrVpVH374ofr06WNGTgAAAPwVxs+b1TwhAwAAAAC3uuJO6FOnTqlGjRqSiuY/nzp1SpLUsmVLffvttyWbDgAAAAAAAABwVbviTugaNWpo3759qlKlihISEvTJJ5+oadOmmj9/viIjI02ICCsFBxfo/vt/UlLSYUVG5mnPnkhNmdJEO3fGWB3N7RrVPqpenX9S7aonVTbqnEa8dZO+21St2H2H3v+durXbobdnNdNnSxu4N6gHyJmZp5x38lWml78ihgZJkgoPO5T97zzl/2CXkW8oMMlPEcMC5Rtzxb8Lu+rsf8dPByb7u6wFV3Oo6bw8SdLOF/11eo2P8o/b5BsihV/rUI2hBQqp7h3tggOu3aiO1fapRkSmcu2+2pQRp3HfN9e+rEjnPvFhWXqqWYoSY9MV4GvXysPxejmlpU6eD7EuuJs0qJ+hO27frlrXnFJMzHmNeqW1UtbG/2YPQ/fd86M637xbZcoUaNv2cvr3pBuUdtS7LxTc9YETumPgMUWXK9TebcF6Z0QlpW4u/d8vAAAAAOCJrrj6069fP/3www+SpGeeeUYTJ05UUFCQhg4dqieffLLEA8Jagwev03XXpWvs2OYaOLCTNm6M06uvLldMzDmro7ldUGCh9hyK1pv/Sbrkfi2b7Fe9a47p+GnvLHbkb7Pr3BcF8qv5648Xx3lDJwcXfc/EvB2sslNDpALp1JPnZTi8o9Aaco1DSV+fd27XfZDnvC+0nkN1XizQDXPz1HBSnmRIP/4tQIbdwsBudEPcUc3aVl+95t2uBxfdKj8fh97r9D8F+xVIkoL9CjSt8wIZsumBhV11z/zu8vdxaFLHRbJ5wef6gwILtW9fpCZOuaHY++/ssU233ZqqtyY11ZAnk5Wb56dXRn0jf38v+QYqRptupzVgZJo+fCNOg5Jra++2IL0ya68iYgqsjgYAAAAAXumKi9BDhw7VY489Jknq0KGDduzYoVmzZmnTpk0aPHhwiQf8s1544QXZbDaXLSEhwXl/bm6uBg0apJiYGIWGhqpnz57KyMj4w+MahqGxY8eqdu3aCgwMVKVKlfTKK6+47LN8+XI1adJEgYGBqlmzpmbMmFHST88tAgIK1bLlYU2b1lhbtpTX0aNh+vDDhkpLC1WXLrutjud2636K1/ufX69VG6tddJ+ykWf1WJ8UvTKlrez20t/h+3uOc4ZOjzyvyOFB8gmzOdfzf7TLftRQ5PNB8q/pK/+avop8PkgF2x3KX+8dhTKbnxRQ9tfNP+rX+yreYVfk9Q4FVTIUVs9QtUcLlJfuo9w028UPWIo8vKSLvtiVoN2Z0Uo9VVbDv22nSmFnVL/scUlSk9h0VQrN0fAV7bTzdIx2no7RMyvaqUG542pe8YjF6c23fmMlffBhY61eE1/MvYZu77ZDH33SQGvWxmvf/ii9Pj5JMdHndGPzQ27P6il6DDihxbOi9eXH0Tq4K0hvPV1ZeedtSu59yupoAAAAAOCV/nKVrGrVqurRo4caNWpUEnlKVP369XX06FHntmrVKud9Q4cO1fz58zVnzhytWLFCaWlp6tGjxx8ec/DgwXrvvfc0duxY7dixQ/PmzVPTpk2d9+/bt09dunRRu3bttHnzZg0ZMkQPPfSQlixZYspzNJOvryFfX0MFBa7fJvn5vqpf/7hFqTyXzWZo+IAV+nhxQ+1Pi/rjB5RCWWNzFdTCT4FNfzfpJ1+STbL9ZiKFLUCSj5T3g3cUoc8fsCnlpiCt7Ryo7c/4K/do8QVm+zkpfa6fgio5FBhX+rt8ixMWkC9JysorGuUS4GuXISnf7uvcJ8/uJ4dhU2LcUSsieoy42DOKjs7Vph/inGvnzgVox86yqlvnhIXJrOPn71CtRue0cWWYc80wbNq0Mkz1Er3vUzy/ZZNkMzxgs/pEAAAAAHC7y5oJ/dZbb132AX/pkvYEfn5+iouLu2A9KytL06ZN06xZs9S+fXtJ0vTp01W3bl2tWbNGzZs3L/Z427dv16RJk7RlyxbVqVNHklS9enWXfSZPnqzq1atr3LhxkqS6detq1apVGj9+vJKTk0vy6Znu/Hl/bdsWo969t+rgwQhlZgaqTZuDSkg4qaNHQ62O53F63/Kj7HabPlta3+oolji/tEAFqQ6Ve//CMST+DXxkC5KyJ+YpbGCgZEg5E/Mku+Q4WfoLrWENHUp4OV/B1QzlH7fpwGQ/bX4gQNd/nie/MkX7HJntq73j/eU4b1NwNYcaTc2Xj/+lj1sa2WTon82/04b0OO06HS1J2nwsVucL/fVE0zUa/31T2WzS4zeslZ+PoXLB3l1UjIrKlSRlZga7rGdmBikq6rwVkSwXHm2Xr5+Uedz1Jc7pE36Kr5l3kUcBAAAAAMx0WUXo8ePHX9bBbDabRxWhd+3apYoVKyooKEhJSUkaPXq0qlSpog0bNqigoEAdOnRw7puQkKAqVaooJSXlokXo+fPnq0aNGvrf//6nTp06yTAMdejQQWPGjFF0dFGxJCUlxeW4kpScnKwhQ4ZcMmteXp7y8n59c5ydnf0nn3XJGju2uYYOXacPP/yv7Habdu+O0ooVVVSz5mmro3mU2lVPqGfHrRrwwm3yxh4ve4ZDWW/kKeatYNkCL3z+vlE+ino1WFljcnX2kwLJRwru6Cf/Oj5ecbpiWjl+vVHbUHjDfK3pFKTjS3xVoUdRJ3hsF7uikhzKP27T4Q/8tO2JAF03M08+gRaFtsjzLVaqVtQp3TO/u3PtdG6whizrqJEtVuq++j/JYdi0YE9NbT1RVg5v+AYCAAAAAOAqd1lF6H379pmdo8Q1a9ZMM2bMUJ06dXT06FGNGjVKrVq10pYtW5Senq6AgABFRka6PCY2Nlbp6ekXPebevXt14MABzZkzRzNnzpTdbtfQoUN1xx136Ouvv5YkpaenKzY29oLjZmdn6/z58woODi7u0Bo9erRGjRr11560CY4eDdNTT92kwMBChYQU6PTpYD3zzHdKTy9jdTSP0rB2uiLDzuvjsR8713x9DQ28e53uuHmrej/Zy8J05svfYZfjtKHjD/ymK9Uu5W+26+ynBarwbaiCmvkp6LNQ2TMdsvna5BNmU/otZxRcyftmZ/uFSyFVDZ0/9GsB1S9M8gszFFLVUPi1+fquRZBOLPNV+Vu8Y1yJJD2XtFJt4w/o3v/dpoxzrp+2+O5IvG7+5B5FBp6X3fBRTn6gVt7zgQ5lh1uU1jOcPl00siQy8rxOnf7135fIyFzt3eudY4GyT/nKXihFlit0WY8qW6jTxy/rZU/pZdiKNqt5QgYAAAAAblVq34117tzZ+f+NGjVSs2bNVLVqVX3yyScXLQT/Vv369XXgwAFJUqtWrbRo0SI5HA7l5eVp5syZql27tiRp2rRpSkxMVGpqqnNEx58xfPhwDRs2zHk7Oztb8fHFXYTKGnl5fsrL81NoaL4SE9P1/vvXWh3JoyxdXVMbtlV0WRvz+BItXV1Ti1fVsiiV+wRe76dyH7qO4ch8OVd+VX0Uel+AbL6/Fhx8I4uKznnrC+U4bSioVan9MXRR9nPS+UM2lb/1IqNIfl52FLgvk7UMPZe0Sh2q7dP9C7rpyJmLF5Yz84p+fjercEQxwef1zcFqbsromdIzQnXqVJAaX5uhvfuKPpETElyghNontGBR6f/ZU5zCAh/t+jFE17XMUcriCElFM/sbtzyjeTNiLE4HAAAAAN7Ja6o/kZGRql27tnbv3q2OHTsqPz9fmZmZLt3QGRkZzhnSCxcuVEFBUQXol6J1hQoV5Ofn5yxAS0UznyXp4MGDqlOnjuLi4pSRkeHytTMyMhQeHn7J4ndgYKACAz3vc/dNmhyVzSYdPhymihXPqH//zTp8OFxfflnD6mhuFxRYoErlfx2TUqHcGV0Tf1I5ZwN17FSoss8Guexvt/voVFawDqVHujmp+/mUscnnGl+XNVuQTT4RNvn/vH7ufwXyq+Yjn0ib8n+yK2t8rsrc7S+/qqW/E3rPWD/FtHUoqIKhvOM27X/HTzZfqXxnu84ftun4Yl9F3WiXf5SUl2HToWl+8gmUolt6Rxf08zeu1K3X7NagpZ10tiBAZX+e85yTH6A8e9E/Uz1q7dCezCidyg1S49gMPdv8O32wpZH2ZUVamNw9goIKVLFCjvN2XOwZ1ah+Sjk5gTp+ooy+mJeg3ndtUVpamNIzyuj+Pj/q5KkQrV7jOb/IdLfPp5bVExMOaecPIUrdFKLbHz6uoBCHvpwdbXU0AAAAAPBKXlOEPnPmjPbs2aP77rtPiYmJ8vf317Jly9SzZ09JUmpqqg4ePKikpCRJUtWqVS84RosWLVRYWKg9e/bommuukSTt3LnTZf+kpCQtXLjQ5XFLly51HvdqU6ZMgfr1+0Fly55XTk6AVq2K1wcfNJTdXvoLh79Xp9oJTXjm1z/bQb3XSpIWr6ql16a1tirWVaPwgEPZ7+TJkW3It4JNYQ8Eqkxv77jyXt4xm7Y/HaCCTMk/SopoYtd1/8lTQLSUV2goa6OPDv/HT4XZUkCMoYhEh66bmacAL2navKfeNknS/906z2V9+Iq2+mJXgiSpWmSmht6wVhGBeUo7E6bJm5toxpZG7o5qido1T2nMq185b//toY2SpKXLamjcm0ma83k9BQUV6rFBaxVaJl9bt5XXiBfaqaDA92KHLPVWzItSRIxd9z+Zrqhyhdq7NVjP9qmuzBPe8TPnogw5P2lhKU/IAAAAAMCtbIZhlMq3Ak888YS6du2qqlWrKi0tTSNHjtTmzZu1bds2lStXTgMHDtTChQs1Y8YMhYeH69FHH5UkrV69+qLHdDgcuuGGGxQaGqoJEybI4XBo0KBBCg8P15dffimpaH52gwYNNGjQID344IP6+uuv9dhjj2nBggVKTk6+7PzZ2dmKiIhQ+4ZPyc/X8zqkrZYbx0zqS6k2KtXqCB6tVsgxqyN4tJlz21sdwWNVm5fzxzt5MWP9FqsjeKxCo0DL9V9lZWUpPNy9s8x/eU1RdfQr8gkK+uMHmMyRm6sDw5+15FzAPX75nuPPGAAA4Opkxuu5UtvOevjwYfXu3Vt16tTRXXfdpZiYGK1Zs0blypWTJI0fP1633nqrevbsqdatWysuLk6ff/75JY/p4+Oj+fPnq2zZsmrdurW6dOmiunXravbs2c59qlevrgULFmjp0qW69tprNW7cOL333ntXVIAGAAAAAAAAgNLiT43jWLlypaZMmaI9e/bo008/VaVKlfR///d/ql69ulq2bFnSGf+U3xaGixMUFKSJEydq4sSJV3TcihUr6rPPPrvkPm3bttWmTZuu6LgAAACmYhwHAAAAAItccSf0Z599puTkZAUHB2vTpk3Ky8uTJGVlZenVV18t8YAAAAAAAAAAgKvXFRehX375ZU2ePFnvvvuu/P1/vcBPixYttHHjxhINBwAAgJJhMzxnAwAAAOBdrrgInZqaqtatW1+wHhERoczMzJLIBAAAAAAAAAAoJa64CB0XF6fdu3dfsL5q1SrVqFGjREIBAAAAAAAAAEqHKy5CP/zwwxo8eLDWrl0rm82mtLQ0ffjhh3riiSc0cOBAMzICAADgrzI8aAMAAADgVfyu9AHPPPOMHA6HbrrpJp07d06tW7dWYGCgnnjiCT366KNmZAQAAAAAAAAAXKWuuAhts9n07LPP6sknn9Tu3bt15swZ1atXT6GhoWbkAwAAAAAAAABcxa64CP2LgIAA1atXrySzAAAAwCyeMgrDEzIAAAAAcKsrLkK3a9dONpvtovd//fXXfykQAAAAAAAAAKD0uOIidOPGjV1uFxQUaPPmzdqyZYv69u1bUrkAAAAAAAAAAKXAFRehx48fX+z6Cy+8oDNnzvzlQAAAACh5NqNos5onZAAAAADgXj4ldaB7771X77//fkkdDgAAAAAAAABQCvzpCxP+XkpKioKCgkrqcAAAAChJhq1os5onZAAAAADgVldchO7Ro4fLbcMwdPToUa1fv17PPfdciQUDAAAAAAAAAFz9rrgIHRER4XLbx8dHderU0Ysvvqibb765xIIBAAAAAAAAAK5+V1SEttvt6tevnxo2bKioqCizMgEAAKCkGT9vVvOEDAAAAADc6oouTOjr66ubb75ZmZmZJsUBAAAAfjVp0iQ1atRI4eHhCg8PV1JSkhYtWuS8Pzc3V4MGDVJMTIxCQ0PVs2dPZWRkWJgYAAAAwO9dURFakho0aKC9e/eakQUAAABwUblyZf3rX//Shg0btH79erVv31633Xabtm7dKkkaOnSo5s+frzlz5mjFihVKS0u74BomAAAAAKx1xTOhX375ZT3xxBN66aWXlJiYqDJlyrjcHx4eXmLhAAAAUDJsRtFmtSvN0LVrV5fbr7zyiiZNmqQ1a9aocuXKmjZtmmbNmqX27dtLkqZPn666detqzZo1at68eUnFBgAAAPAXXHYR+sUXX9Tjjz+uW265RZLUrVs32Ww25/2GYchms8lut5d8SgAAAJQq2dnZLrcDAwMVGBh4ycfY7XbNmTNHZ8+eVVJSkjZs2KCCggJ16NDBuU9CQoKqVKmilJQUitAAAACAh7jsIvSoUaP097//Xd98842ZeQAAAOAF4uPjXW6PHDlSL7zwQrH7/vTTT0pKSlJubq5CQ0P1xRdfqF69etq8ebMCAgIUGRnpsn9sbKzS09NNSg4AAADgSl12Edowij472aZNG9PCAAAAwCTGz5vVfs5w6NAhlzFul+qCrlOnjjZv3qysrCx9+umn6tu3r1asWGF2UgAAAAAl5IpmQv92/AYAAADwZ4WHh1/2tUQCAgJUs2ZNSVJiYqK+//57vfnmm+rVq5fy8/OVmZnp0g2dkZGhuLg4M2IDAAAA+BOuqAhdu3btPyxEnzp16i8FAgAAAC7F4XAoLy9PiYmJ8vf317Jly9SzZ09JUmpqqg4ePKikpCSLUwIAAAD4xRUVoUeNGqWIiAizsgAAAMAshmTzoHEcl2v48OHq3LmzqlSpopycHM2aNUvLly/XkiVLFBERof79+2vYsGGKjo5WeHi4Hn30USUlJXFRQgAAAMCDXFER+u6771b58uXNygIAAAC4OHbsmO6//34dPXpUERERatSokZYsWaKOHTtKksaPHy8fHx/17NlTeXl5Sk5O1jvvvGNxagAAAAC/ddlFaOZBAwAAXMU87MKEl2vatGmXvD8oKEgTJ07UxIkT/0IoAAAAAGbyudwdDcMT3rUAAAAAAAAAAK4ml90J7XA4zMwBAAAAAAAAACiFrmgmNNzPVmCXzWG3OobHCT6UbXUEj7ZmYUOrI3i0DWetTuDZAgutTuC58mKCrI7g0QKsDoBLu0rHcQAAAAC4+l32OA4AAAAAAAAAAK4URWgAAAAAAAAAgGkYxwEAAOAFbEbRZjVPyAAAAADAveiEBgAAAAAAAACYhiI0AAAAAAAAAMA0FKEBAAAAAAAAAKahCA0AAAAAAAAAMA0XJgQAAPAGxs+b1TwhAwAAAAC3ohMaAAAAAAAAAGAaitAAAAAAAAAAANMwjgMAAMAL2IyizWqekAEAAACAe9EJDQAAAAAAAAAwDUVoAAAAAAAAAIBpGMcBAADgLRiFAQAAAMACdEIDAAAAAAAAAExDERoAAAAAAAAAYBrGcQAAAHgDQ54xjsMTMgAAAABwKzqhAQAAAAAAAACmoRMaAADAC9iMos1qnpABAAAAgHvRCQ0AAAAAAAAAMA1FaAAAAAAAAACAaRjHAQAA4A24MCEAAAAAi9AJDQAAAAAAAAAwDUVoAAAAAAAAAIBpGMcBAADgBWxG0WY1T8gAAAAAwL3ohAYAAAAAAAAAmIYiNAAAAAAAAADANIzjAAAA8AbGz5vVPCEDAAAAALeiExoAAAAAAAAAYBo6oXFJPj6G+ty/Ve1uOqCo6FydOhmsr5ZU00cf1pVkszqepTg3rh6+bqM6Vt+rGpGZyrX7alN6nMataa79WVHOfcoGn9OTSSlKqnxIZfwLtD8zUpM3NtHSfddYmNx8/Ztu1E219qp6dKbyCn21OS1OE75trv2nfz030+76r26IT3N53Cc/1NPLX7Vxd1y3e7D5Rt1U+zfn50icJqxorgOnoorZ29DEOxeoZY1DGvJ5J32zq7rb87pbo9pH1avzT6pd9aTKRp3TiLdu0nebqhW779D7v1O3djv09qxm+mxpA/cG9TBdHzihOwYeU3S5Qu3dFqx3RlRS6uYQq2MBAAAAgFeiExqXdEevHbql6x5NeruJ/vZgJ73/biP17JWqbt13Wx3NcpwbVzdUSNOsrQ109xc91P9/XeXv49C0W/+nYL8C5z7/ar9M1SIzNWhxZ932SS8t3VdD4zsuVd2Y4xYmN9/1ldM0e3MD3TurhwZ82lV+Pg5NvsP13EjSpz/WVbtJfZ3b+G+TLErsXtfHp+njjQ1033966G8fd5Wfr0OT7/qfgv0LLtj33ut/lGF41y95ggILtedQtN78z6W/H1o22a961xzT8dMUWtt0O60BI9P04RtxGpRcW3u3BemVWXsVEXPh95RXMTxog9tNnDhR1apVU1BQkJo1a6Z169Zd1uNmz54tm82m7t27mxsQAAAApVqpLkIfOXJE9957r2JiYhQcHKyGDRtq/fr1zvsNw9Dzzz+vChUqKDg4WB06dNCuXbsuecwZM2bIZrMVux07dsy53/Lly9WkSRMFBgaqZs2amjFjhllP01T16p/UmtUV9f3aCjqWUUbfraysTRtiVTvhlNXRLMe5cTVg4a2am5qg3aejlXqyrIZ/014Vw86ofrlfC8yN49L14U8N9NOxWB3OCdfkjYnKyQ9w2ac0Gvj5rZq3NUF7TkZr5/Gyem5xe1UMP6N6sa7PO7fATyfPhTi3s/kBFiV2r3/MuVXztiRoz4mi8/P8gvaqGHFGdX93fuqUP6H7m/6gkYvaWZTUGut+itf7n1+vVRurXXSfspFn9VifFL0ypa3s9lL9T/tl6THghBbPitaXH0fr4K4gvfV0ZeWdtym5t3f+fAY+/vhjDRs2TCNHjtTGjRt17bXXKjk52eW1a3H279+vJ554Qq1atXJTUgAAAJRWpfad6unTp9WiRQv5+/tr0aJF2rZtm8aNG6eoqF8/3j1mzBi99dZbmjx5stauXasyZcooOTlZubm5Fz1ur169dPToUZctOTlZbdq0Ufny5SVJ+/btU5cuXdSuXTtt3rxZQ4YM0UMPPaQlS5aY/rxL2ratMWp83TFVqpQjSapeI1P1GpzQ+nVxFiezHufm0sIC8iVJWbmBzrXN6XHqXHOPIgJzZZOhW67ZpQBfu9alVbIqpiVCAy88N5J0S91dWvGP6fq872w91nKNgvy8s2vzl/OT/ZvzE+RXoNFdv9KrX7bSybN0+v6WzWZo+IAV+nhxQ+1PK26EiXfx83eoVqNz2rgyzLlmGDZtWhmmeonnLExmPZvhORvc64033tDDDz+sfv36qV69epo8ebJCQkL0/vvvX/Qxdrtdffr00ahRo1SjRg03pgUAAEBpVGpnQr/22muKj4/X9OnTnWvVq/86O9QwDE2YMEEjRozQbbfdJkmaOXOmYmNjNXfuXN19993FHjc4OFjBwcHO28ePH9fXX3+tadOmOdcmT56s6tWra9y4cZKkunXratWqVRo/frySk5NL9Hmabc7sBIWUKdCU6YvlcNjk42No5vQGWv51VaujWY5zc3E2GRre4jttOBqnXadjnOtDl96sNzou1Zp+01Vg91FuoZ8eXdJJB7MjLEzrXjYZeqrtd9p4JE67T/56bhZur6Wj2aE6fraMapU9qaGt16hadKaGzetkYVr3s8nQUzd9p02H47T7xK/n58mbVuuHI7Favrv0z4C+Ur1v+VF2u02fLa1vdRSPEB5tl6+flHnc9SXO6RN+iq+ZZ1EqwDr5+fnasGGDhg8f7lzz8fFRhw4dlJKSctHHvfjiiypfvrz69++vlStXXvJr5OXlKS/v179f2dnZfz04AAAASpVSW4SeN2+ekpOTdeedd2rFihWqVKmS/vGPf+jhhx+WVNStnJ6erg4dOjgfExERoWbNmiklJeWiRejfmzlzpkJCQnTHHXc411JSUlyOK0nJyckaMmTIRY/jqS/eW7U5pHbtD2rMq8108ECEalyTqQH/2KyTJ4K1bGk1q+NZinNzcc+3+la1ok+pz9zuLuuP3bBOYQF56je/q07nBummavs0vuOXuve/3bXrVEzxBytlnr3pW9Use0oPzO7usv7ZT/Wc/7/rRIxOnA3Re3fNV+WILB3O8p4i/T9v/lbXlDulBz7s7lxrU3OfbqhyRL1m3GldMA9Vu+oJ9ey4VQNeuE3eeEFUAH/sxIkTstvtio2NdVmPjY3Vjh07in3MqlWrNG3aNG3evPmyvsbo0aM1atSovxoVAAAApVipLULv3btXkyZN0rBhw/TPf/5T33//vR577DEFBASob9++Sk9Pl6RiX5D/ct/lmDZtmu655x6X7uj09PRij5udna3z58+77PsLT33x3n/Aj5ozO0HfLq8iSdq/L0LlY8/qrt47vL7Qyrkp3oiWK9Wm6gHd99/uyjgb6lyPD8/SvQ23qOvHvbT7dLQkKfVkWV1f4ajuqb9Fo1a2sSqy2wxvv1KtrzmgfrO7K+NM6CX3/elo0c+QKpHeU4Qe3qHo/Dw4q7uO5fx6fppWPaL4qCytGjLNZf9x3Zdo4+EKeuij29wd1WM0rJ2uyLDz+njsx841X19DA+9epztu3qreT/ayMJ01sk/5yl4oRZYrdFmPKluo08dL7cuey+MpFwX0hAy4qJycHN1333169913VbZs2ct6zPDhwzVs2DDn7ezsbMXHx5sVEQAAAFehUvtuzOFw6Prrr9err74qSbruuuu0ZcsWTZ48WX379r2sY3Tu3Nn58cOqVatq69atLvenpKRo+/bt+r//+7+/nNdTX7wHBtnlMFy7634ZPeHtODe/Z2hEy1XqUH2f+s7rpiM54S73BvkVFYR+f87sho98Sv2AUEPD269S+5r71P+TbjqSHf6Hj6hT/oQk6fjZMmaH8wCGhndYpfa196n/R910JMv1/Ly/pom++KGuy9pn/T/R2K9v1Ird1dyY0/MsXV1TG7ZVdFkb8/gSLV1dU4tX1bIolbUKC3y068cQXdcyRymLi36BY7MZatzyjObN8I5PXAC/VbZsWfn6+iojI8NlPSMjQ3FxF17HYs+ePdq/f7+6du3qXHM4HJIkPz8/paam6pprrnF5TGBgoAIDXa9zAAAAAPxWqS1CV6hQQfXq1XNZq1u3rj777DNJcr7ozsjIUIUKFZz7ZGRkqHHjxpKk9957T+fPn5ck+fv7X/A13nvvPTVu3FiJiYku63FxccW+0A8PDy+2C1ry3Bfva1Mq6O57tuv4sRAd2B+ua2pm6vaeO/XlYuaycm5cPd9qpbrU3KVHFnfW2fwAlQ0uugBYTn6A8ux+2pcZqQNZERrVeoXGrElS5s/jOG6sfEgDF91icXpzPXvTSnVO2KXB/y06NzEhRefmTH6A8gr9VDkiS7fU3aWVe6sqKzdQtcud1JNtV2v9oQradaL0F83+2XGlOtfbpSGf/3x+yvx8fvKKzs/JsyHFXozwaHbYBQXr0igosECVyv86oqlCuTO6Jv6kcs4G6tipUGWfDXLZ32730amsYB1Kj3RzUs/x+dSyemLCIe38IUSpm0J0+8PHFRTi0Jezo62OBrhdQECAEhMTtWzZMnXv3l1SUVF52bJleuSRRy7YPyEhQT/99JPL2ogRI5STk6M333zTI5okAAAAcPUptUXoFi1aKDU11WVt586dqlq16KJx1atXV1xcnJYtW+YsOmdnZ2vt2rUaOHCgJKlSpUoXPf6ZM2f0ySefaPTo0Rfcl5SU9P/t3XlcVPX+x/H3sKMC7iCKSm6YqbiUYpZaJHnN9KplZolp2qKlUrmUaNnikpaZppkmetXrUsl1S3NJzZ/kTuXV3LdSUCtAUdlmfn8Qc5tABGQWmNfz8TiPh3POd858zvecgfHDZz5H69ats1i3ceNGhYWF3c4h2cXsGc30dL//avDL++VX/oZ+/81bX6+toyX/uvPWTy7lmBtLvRtlf1NgYdf/WKwf/W0HxR4JUabRVc+t+4eiWn2vTx7+WmXcM3Q22U+jtzyg7WdL980ce4Vmz838XpZzM2Z9B636b4gyjK5qXfMXPdX8R3m7ZyrhSjltOnaH5nzfIq/dlTq9mmfPz+dPWs5P9NoOWnUwxB4hOZQGtS9r2qj//U4Z3HuXJGn9jnqaNO9+e4Xl0LatqiC/Slnq+1qCKlTJ1Mn/euuNPsFKupz7D8pOhXYcTisqKkqRkZFq2bKl7rnnHk2bNk2pqal65plnJEl9+/ZV9erVNWHCBHl5eemuu+6yeH758uUlKdd6AAAAoKAMJpOpVP5XYM+ePWrTpo3eeustPf7449q9e7cGDhyoOXPmqE+fPpKkSZMmaeLEiVqwYIGCg4MVHR2tH3/8UYcOHZKXl1e++583b56GDBmiCxcumD+Y5zh16pTuuusuDR48WP3799eWLVv08ssva+3atYqIiChQ/CkpKfLz89ODIa/IzdXxKqTh2E71LFgPR2flnmrvCBybIfPWY5xVxZ/T7R2CQ/PYsNfeITisTFOGtuo/Sk5Olq+vbSv4cz5TNBj6nlw98/98YwtZaTd05KPX7TIXzmzGjBl6//33lZCQoNDQUE2fPl2tWrWSJLVv3161a9dWTExMns/t16+fkpKSFBsbW6DXyrnmOMcAAAAlkzU+z5XaSui7775bK1eu1OjRozV+/HgFBwdr2rRp5gS0JI0YMUKpqakaNGiQkpKS1LZtW61fv/6WCWgpOwndvXv3XAloKbvKeu3atRo+fLg++ugj1ahRQ3Pnzi1wAhoAAAAoTkOGDMmz/YYkbd26Nd/n3iw5DQAAABRUqU1CS9IjjzyiRx555KbbDQaDxo8fr/Hjxxd63zt37sx3e/v27XXgwIFC7xcAAMAaDKbsxd4cIQYAAAAAtuVi7wAAAAAAAAAAAKVXqa6EBgAAwJ+4MSEAAAAAO6ESGgAAAAAAAABgNSShAQAAAAAAAABWQzsOAAAAJ8CNCQEAAADYC5XQAAAAAAAAAACrIQkNAAAAAAAAALAa2nEAAAA4A9Ofi705QgwAAAAAbIpKaAAAAAAAAACA1ZCEBgAAAAAAAABYDe04AAAAnAHtOAAAAADYCZXQAAAAAAAAAACroRIaAADACRj+XOzNEWIAAAAAYFtUQgMAAAAAAAAArIYkNAAAAAAAAADAamjHAQAA4Ay4MSEAAAAAO6ESGgAAAAAAAABgNSShAQAAAAAAAABWQzsOAAAAJ2AwZS/25ggxAAAAALAtKqEBAAAAAAAAAFZDEhoAAAAAAAAAYDW04wAAAHAGpj8Xe3OEGAAAAADYFJXQAAAAAAAAAACroRIaAADAWVCFDAAAAMAOqIQGAAAAAAAAAFgNSWgAAAAAAAAAgNXQjgMAAMAJGEzZi705QgwAAAAAbItKaAAAAAAAAACA1VAJ7eCyfj4ug8Hd3mE4HNcqVewdgkOr/R9Xe4fg0JJD/OwdgkMrez7N3iE4LPeEZHuH4NCy7B0AAAAAAMAhkYQGAABwBqY/F3tzhBgAAAAA2BTtOAAAAAAAAAAAVkMSGgAAAAAAAABgNbTjAAAAcAIGU/Zib44QAwAAAADbohIaAAAAAAAAAGA1JKEBAAAAAAAAAFZDOw4AAABnYPpzsTdHiAEAAACATVEJDQAAAAAAAACwGiqhAQAAnAA3JgQAAABgL1RCAwAAAAAAAACshiQ0AAAAAAAAAMBqaMcBAADgDLgxIQAAAAA7oRIaAAAAAAAAAGA1JKEBAAAAAAAAAFZDOw4AAABnQDsOAAAAAHZCJTQAAAAAAAAAwGpIQgMAAAAAAAAArIZ2HAAAAE7AYMpe7M0RYgAAAABgW1RCAwAAAAAAAACshkpoAAAAZ8CNCQEAAADYCZXQAAAAAAAAAACrIQkNAAAAAAAAALAa2nEAAAA4AYPJJIPJ/r0wHCEGAAAAALZFJTQAAAAAAAAAwGpIQgMAAMBhTZgwQXfffbd8fHxUtWpVdevWTUeOHLEYc+PGDQ0ePFiVKlVSuXLl1KNHDyUmJtopYgAAAAB/RxIaAADAGZgcaCmEbdu2afDgwfr++++1ceNGZWRkqGPHjkpNTTWPGT58uFavXq0VK1Zo27ZtOn/+vLp37164FwIAAABgNfSEBgAAgMNav369xeOYmBhVrVpV+/bt0/3336/k5GTNmzdPS5Ys0QMPPCBJmj9/vho2bKjvv/9erVu3tkfYAAAAAP6CSmgAAADYXEpKisWSlpZWoOclJydLkipWrChJ2rdvnzIyMhQeHm4eExISopo1ayouLq74AwcAAABQaCShAQAAnIDB5DiLJAUFBcnPz8+8TJgw4ZbHYDQaNWzYMN1777266667JEkJCQny8PBQ+fLlLcb6+/srISGhuKcRAAAAQBHQjgMAAAA2d+7cOfn6+pofe3p63vI5gwcP1sGDB7Vjxw5rhgYAAACgmJGERoF06XdZPV+4qIpVMnXykLc+GVNdR+LL2Dssh/JY/9N6ZuhxxS4K0pz3G9g7HIfg7Z2hvn1/UljYLypfPk0nTpTXp58219Gjlewdms2F3nFeTz7wgxrUuKwqftc0al5HbT8YbN7u7ZGhFx7Zpfsbn5ZfmRs6/7uPVnzXWLE777Rj1LbTuGGCHutyUPWDf1Olitc17v0O2rm3liTJ1dWoZ3rt1z3NflFA1au6ds1d+w8Gat6SFvrtD+f7OTR/6Qb5V7uWa/2alcH6ZFqo7QNyUPzeykMRbgpoFX/G4Ovra5GEvpUhQ4ZozZo12r59u2rUqGFeHxAQoPT0dCUlJVlUQycmJiogIKC4ogYAAABwG0p1O47atWvLYDDkWgYPHixJunHjhgYPHqxKlSqpXLly6tGjhxITE2+53w0bNqh169by8fFRlSpV1KNHD50+fdpizNatW9W8eXN5enqqbt26iomJscIR2ka7R//QoHHntfiDAA2OqK+Th7z07pKT8quUYe/QHEa9Rsnq1PMXnTxSzt6hOJShQ3erWbMETZnSWi+88LD27w/Qe+9tVaVKuRNopZ2XR6aO/1pJU79sm+f2l7vtVOuQc3pr0QPqPbGXlm9vrKjuO9S20WnbBmonXp6ZOnmmoj7+PPcNxDw9MlU3+Dct+rKpXhzVRW990EE1qiVr/Gub7RCp/Q19rr36/LOTeXk96l5J0ndbq9s5MsfB763SxWQyaciQIVq5cqW2bNmi4OBgi+0tWrSQu7u7Nm/+38+EI0eO6OzZswoLC7N1uAAAAADyUKqT0Hv27NGFCxfMy8aNGyVJjz32mCRp+PDhWr16tVasWKFt27bp/Pnz6t69e777PHXqlLp27aoHHnhA8fHx2rBhgy5fvmzxvFOnTqlz587q0KGD4uPjNWzYMD377LPasGGD9Q7WiroPuqz1Syrqm2UVdfaYl6aPrKG06wZF9P7d3qE5BC/vTI2Y8F9Nf6uhrqbw5YIcHh6Zatv2F82bF6qDB6vqwgUfLV7cWOfPl1PnzsftHZ7Nff9zTc35+h5t/yk4z+2Naydq3Z76OnAiUAl/+Og/cXfq+PlKurPmRRtHah974msoZllz/d+eWrm2XbvuoVHvRmj798H65YKfDh+rqhnzW6t+nd9UpdJVO0RrXynJnvrjdy/zck9Ygs7/UlY/xVe2d2gOg99bpcvgwYO1aNEiLVmyRD4+PkpISFBCQoKuX78uSfLz89OAAQMUFRWlb7/9Vvv27dMzzzyjsLAwtW6d+w9bAAAAAGyvVCehq1SpooCAAPOyZs0a1alTR+3atVNycrLmzZunDz74QA888IBatGih+fPna+fOnfr+++9vus99+/YpKytL77zzjurUqaPmzZvr1VdfVXx8vDIysiusZs+ereDgYE2dOlUNGzbUkCFD1LNnT3344Ye2OvRi4+ZuVL0m17T/Ox/zOpPJoAPf+ejOFs5XzZqXF18/ot3bKyl+l/O1mMiPq6tJrq4mZWRY/phJT3dVo0aX7BSV4/rptL/uu+uMKvulSjKped1fFVQlWbuP1Ljlc51R2TLpMhql1Gse9g7FrtzcjOrw0Dl983UtSQZ7h+MQ+L11c/a+GeHfb0xYULNmzVJycrLat2+vatWqmZdly5aZx3z44Yd65JFH1KNHD91///0KCAjQV199VcwzCAAAAKCoSnUS+q/S09O1aNEi9e/fXwaDQfv27VNGRobCw8PNY0JCQlSzZk3FxcXddD8tWrSQi4uL5s+fr6ysLCUnJ+tf//qXwsPD5e7uLkmKi4uz2K8kRURE5LtfR+VbMUuublLSJcsK3z8uu6lClUw7ReU47n84QXUbpihmel17h+Jwrl9316FDldS7939VseJ1ubgY1aHDaYWE/KaKFW/YOzyH88GXbXUqsYJWvblI26fM1QfPrdPUL9sq/mSgvUNzOO7umXr2yX36ducdunbduZPQYfedV7lyGdr0dU17h+Iw+L1V+phMpjyXfv36mcd4eXlp5syZ+v3335WamqqvvvqKftAAAACAA3Ga3gGxsbFKSkoy/4clISFBHh4eFjewkSR/f38lJCTcdD/BwcH65ptv9Pjjj+u5555TVlaWwsLCtG7dOvOYhIQE+fv759pvSkqKrl+/Lm9v71z7TUtLU1pamvlxSkpKEY4StlTZ/4aeG3FUbzzXTBnprvYOxyFNmdJaw4fv1uLF/1FWlkHHj1fQtm01VbfuH/YOzeH0vO+gGtVK1GtzI5Twu49C61zQKz126HJKGe09SjV0DldXo6KHbZPBYNL0uXzNvuM/zmjvbn/9/lvu3ysAAAAAADgKp6mEnjdvnjp16qTAwIJXFTZq1EjlypVTuXLl1KlTJ0nZCeaBAwcqMjJSe/bs0bZt2+Th4aGePXvKZCr6LecnTJggPz8/8xIUFFTkfRWnlN9dlZUplf9b9ViFypn645LT/A0jT/XuTFGFSun6eOlurd63Wav3bVaTu5P06JPntHrfZrm4FP16KC0uXPDRiBEPqlu3nnr66Uc1bFhHuboalZBQ1t6hORQP90w933m3Pv5PmP7vv7V14kIlfbnjLm2Or6Mn2/9g7/AchqurUWOGbVXVKlc18p2OTl8FXdX/mkJbXNSGNbn7aDszfm/lw+RACwAAAACn4hT/Gztz5ow2bdpk0RswICBA6enpSkpKsqiGTkxMNH99c926deY+zznVyzNnzpSfn58mT55sfs6iRYsUFBSkXbt2qXXr1goICFBiYqJFDImJifL19c2zClqSRo8eraioKPPjlJQUh0hEZ2a46NiPZdSs7RXFrfeTJBkMJoW2vapVMc7dAzl+V0W90MOyEnP4W4f0y+kyWjG/toxG+rPmSEtzU1qam8qVS1eLFgn6/POm9g7Jobi5GOXuZsx1zRiNBrk4zZ8K85eTgK5eLUWvvfWwrlz1sndIdvdQpzNKTvLU7u9pOfBX/N4CAAAAAMfjFEno+fPnq2rVqurcubN5XYsWLeTu7q7NmzerR48ekqQjR47o7NmzCgsLkyTVqpW7uuzatWty+VtWyNU1uxWD0WiUpFztOSRp48aN5v3mxdPTU56enkU4Ouv7ak5lvTrtnI7+UEZHDpTRPwdeklcZo75ZWtHeodnV9WtuOnO8nMW6G9ddlJLknmu9s2re/IIMBumXX3wUGHhVAwbE65dffPXNN3fYOzSb8/bIUI3KyebH1SpdUb3Ay0q55qnEJB/tP15NQx79XmkZbkr4o5ya1bmgTi2Pavp/bv5zozTx8sxQ9YD/tSEKqHpVdWr9ppSrnvo9qYzGDv9WdYN/U/TkcLm4GFXBL/sGc1eueiozy/na4RgMJj3U6Yw2ra8pYxZ/qfg7fm8BAAAAgGMp9Uloo9Go+fPnKzIyUm5u/ztcPz8/DRgwQFFRUapYsaJ8fX310ksvKSwsTK1b37zPaOfOnfXhhx9q/Pjx6t27t65cuaLXX39dtWrVUrNmzSRJzz//vGbMmKERI0aof//+2rJli5YvX661a9da/XitYduqCvKrlKW+ryWoQpVMnfyvt97oE6yky+72Dg0OrmzZDD3zzA+qXPm6rlzx0I4dQVqwoLGynDBpFhJ0STOHrDY/Htot+0ala3fX17v/7qCxC8P1QuddevOpzfItk6aEP3z06bp7tHLnnfYK2abq17msqeM2mB+/ELlHkvTN1jpa+EWo2tx9TpL06eRVFs975a0I/Xiomu0CdRChLS6qasB1bVxHK4688HsrbwZT9mJvjhADAAAAANsymG6nkXEJ8M033ygiIkJHjhxR/fr1LbbduHFDr7zyiv79738rLS1NERER+uSTT255N/WlS5dq8uTJOnr0qMqUKaOwsDBNmjRJISEh5jFbt27V8OHDdejQIdWoUUPR0dEWd3G/lZSUFPn5+am9usrN4Nz/ac6La5Uq9g7BoZkCK9s7BIeWHOJn7xAcWtnzabce5KTcE5JvPciJZR07ae8QHFamKUNb9R8lJyfL19fXpq+d85miRa935eph/1Y2Wek3tG/ZG3aZC9hGzjXHOQYAACiZrPF5rtRXQnfs2PGmNwz08vLSzJkzNXPmzELt84knntATTzyR75j27dvrwIEDhdovAAAAAAAAAJQ2pT4JDQAAAEmmPxd7c4QYAAAAANiU8zVmBQAAAAAAAADYDJXQAAAAToKbAgIAAACwByqhAQAAAAAAAABWQxIaAAAAAAAAAGA1tOMAAABwBiZT9mJvjhADAAAAAJuiEhoAAAAAAAAAYDUkoQEAAAAAAAAAVkM7DgAAACdgMGUv9uYIMQAAAACwLSqhAQAAAAAAAABWQxIaAAAAAAAAAGA1tOMAAABwBqY/F3tzhBgAAAAA2BSV0AAAAAAAAAAAq6ESGgAAwAkYjNmLvTlCDAAAAABsi0poAAAAAAAAAIDVkIQGAAAAAAAAAFgN7TgAAACcATcmBAAAAGAnVEIDAAAAAAAAAKyGJDQAAAAAAAAAwGpoxwEAAOAEDKbsxd4cIQYAAAAAtkUlNAAAAAAAAADAakhCAwAAAAAAAACshnYcAAAAzsBkyl7szRFiAAAAAGBTVEIDAAAAAAAAAKyGSmgAAAAnwI0JAQAAANgLldAAAAAAAAAAAKshCQ0AAAAAAAAAsBracQAAADgD05+LvTlCDAAAAABsikpoAAAAAAAAAIDVUAnt4AxubjIYOE1/l3Xpkr1DcGzMT758/8t7Kj+mzEx7h+CwsuwdAAAAAAAAJRCZGAAAACdgMGUv9uYIMQAAAACwLdpxAAAAAAAAAACshiQ0AAAAAAAAAMBqaMcBAADgDEym7MXeHCEGAAAAADZFJTQAAAAAAAAAwGqohAYAAHAC3JgQAAAAgL1QCQ0AAAAAAAAAsBqS0AAAAAAAAAAAq6EdBwAAgDMw/bnYmyPEAAAAAMCmqIQGAAAAAAAAAFgNSWgAAAAAAAAAgNXQjgMAAMAJGEzZi705QgwAAAAAbItKaAAAAAAAAACA1ZCEBgAAAAAAAABYDe04AAAAnIHRlL3YmyPEAAAAAMCmqIQGAAAAAAAAAFgNSWgAAAAAAAAAgNXQjgMAAMAZmP5c7M0RYgAAAABgU1RCAwAAAAAAAACshkpoAAAAJ2CQZHCAKmSDvQMAAAAAYHNUQgMAAAAAAAAArIYkNAAAAAAAAADAamjHAQAA4AxMpuzF3hwhBgAAAAA2RSU0AAAAAAAAAMBqSEIDAAAAAAAAAKyGdhwAAABOwGDKXuzNEWIAAAAAYFtUQgMAAAAAAAAArIYkNAAAAAAAAADAakhCAwAAOAOTAy2wuZkzZ6p27dry8vJSq1attHv37puO/eyzz3TfffepQoUKqlChgsLDw/MdDwAAANwKSWjk6657rujNz49r8Z4ftf7sPoV1TLJ3SA6nS7/LWrDrkFaf/FEfrTmmBqHX7B2SQ2F+8sZ769a4dvLH/OSP+QH+Z9myZYqKitK4ceO0f/9+NW3aVBEREbp48WKe47du3arevXvr22+/VVxcnIKCgtSxY0f9+uuvNo4cAAAApQVJaOTLq4xRpw55a+aYIHuH4pDaPfqHBo07r8UfBGhwRH2dPOSld5eclF+lDHuH5hCYn5vjvZU/rp38MT/5Y37yZjCZHGaBbX3wwQcaOHCgnnnmGd15552aPXu2ypQpo88//zzP8YsXL9aLL76o0NBQhYSEaO7cuTIajdq8ebONIwcAAEBpQRJaUlZWlqKjoxUcHCxvb2/VqVNHb7/9tkx/+U+SyWTS2LFjVa1aNXl7eys8PFzHjh2zY9S2sXernxZMqa6dGyrYOxSH1H3QZa1fUlHfLKuos8e8NH1kDaVdNyii9+/2Ds0hMD83x3srf1w7+WN+8sf8AP+Tnp6uffv2KTw83LzOxcVF4eHhiouLK9A+rl27poyMDFWsWNFaYQIAAKCUIwktadKkSZo1a5ZmzJihw4cPa9KkSZo8ebI+/vhj85jJkydr+vTpmj17tnbt2qWyZcsqIiJCN27cyHOfp0+flsFgsNUhwA7c3I2q1+Sa9n/nY15nMhl04Dsf3dmCr30zPygqrp38MT/5Y34AS5cvX1ZWVpb8/f0t1vv7+yshIaFA+xg5cqQCAwMtEtl/lZaWppSUFIsFAAAA+CuS0JJ27typrl27qnPnzqpdu7Z69uypjh07mm/AYjKZNG3aNI0ZM0Zdu3ZVkyZNtHDhQp0/f16xsbH2DR5241sxS65uUtIlN4v1f1x2U4UqmXaKynEwPygqrp38MT/5Y37yYXSgBSXGxIkTtXTpUq1cuVJeXl55jpkwYYL8/PzMS1AQraYAAABgiSS0pDZt2mjz5s06evSoJOmHH37Qjh071KlTJ0nSqVOnlJCQYFH94efnp1atWhX4a4y3QgUJAAAAilvlypXl6uqqxMREi/WJiYkKCAjI97lTpkzRxIkT9c0336hJkyY3HTd69GglJyebl3PnzhVL7AAAACg9SEJLGjVqlJ544gmFhITI3d1dzZo107Bhw9SnTx9JMn9V8Xa+xngrVJCUPCm/uyorUyr/t8q6CpUz9cffKvCcEfODouLayR/zkz/mB7Dk4eGhFi1aWNxUMOcmg2FhYTd93uTJk/X2229r/fr1atmyZb6v4enpKV9fX4sFAAAA+CuS0JKWL1+uxYsXa8mSJdq/f78WLFigKVOmaMGCBYXaT6NGjVSuXDmVK1dOjRo1kiTz43Llypkrq/NCBUnJk5nhomM/llGztlfM6wwGk0LbXtWhfWXsGJljYH5QVFw7+WN+8sf83JzBZHKYBbYVFRWlzz77TAsWLNDhw4f1wgsvKDU1Vc8884wkqW/fvho9erR5/KRJkxQdHa3PP/9ctWvXVkJCghISEnT16lV7HQIAAABKOEqCJL322mvmamhJaty4sc6cOaMJEyYoMjLS/FXFxMREVatWzfy8xMREhYaGmh+vW7dOGRkZkqRff/1V7du3V3x8vHm7t7f3TWPw9PSUp6dnMR5V8fAqk6XA2mnmxwFBabrjzmu6kuSmS+c97BiZY/hqTmW9Ou2cjv5QRkcOlNE/B16SVxmjvlnK3eMl5ic/vLfyx7WTP+Ynf8wPYKlXr166dOmSxo4dq4SEBIWGhmr9+vXmb/mdPXtWLi7/q02ZNWuW0tPT1bNnT4v9jBs3Tm+++aYtQwcAAEApQRJa0rVr1yw+eEuSq6urjMbsO+cEBwcrICBAmzdvNiedU1JStGvXLr3wwgvm59SqVcv8bze37KmtW7eulaO3rvpNrmny8qPmx8+N+0WStHFFJU19pbadonIc21ZVkF+lLPV9LUEVqmTq5H+99UafYCVddrd3aA6B+bk53lv549rJH/OTP+YHyG3IkCEaMmRIntu2bt1q8fj06dPWDwgAAABOxWAy8Z3Ifv36adOmTfr000/VqFEjHThwQIMGDVL//v01adIkSdlfS5w4caIWLFig4OBgRUdH68cff9ShQ4fyvFP46dOnFRwcrKJOb0pKivz8/NTBrYfcDPyn+e9MmZm3HgTchMGNv7/lh/cXUPwyTRnaqv8oOTnZ5v1ycz5T3N92rNzccn9msbXMzBvavmO8XeYCtpFzzXGOAQAASiZrfJ4jEyPp448/VnR0tF588UVdvHhRgYGBeu655zR27FjzmBEjRig1NVWDBg1SUlKS2rZtq/Xr1+eZgAYAAAAAAAAAZKMS2kFRCZ0/KjVxO6iEzh/vL6D4OUQl9L3RjlMJ/X9vUyVbilEJDQAAULJZ4/Ocy62HAAAAAAAAAABQNCShAQAAAAAAAABWw3fSAQAAnIDBlL3YmyPEAAAAAMC2qIQGAAAAAAAAAFgNSWgAAAAAAAAAgNXQjgMAAMAZmEzZi705QgwAAAAAbIpKaAAAAAAAAACA1ZCEBgAAAAAAAABYDe04AAAAnIDBmL3YmyPEAAAAAMC2qIQGAAAAAAAAAFgNSWgAAAAAAAAAgNXQjgMAAMAZmEzZi705QgwAAAAAbIpKaAAAAAAAAACA1VAJDQAA4AxMfy725ggxAAAAALApKqEBAAAAAAAAAFZDEhoAAAAAAAAAYDW04wAAAHACBpNJBge4KaAjxAAAAADAtqiEBgAAAAAAAABYDUloAAAAAAAAAIDVkIQGAABwBiaT4yyFsH37dnXp0kWBgYEyGAyKjY3922GZNHbsWFWrVk3e3t4KDw/XsWPHinHiAAAAANwuktAAAABwWKmpqWratKlmzpyZ5/bJkydr+vTpmj17tnbt2qWyZcsqIiJCN27csHGkAAAAAG6GGxMCAADAYXXq1EmdOnXKc5vJZNK0adM0ZswYde3aVZK0cOFC+fv7KzY2Vk888YQtQwUAAABwE1RCAwAAOAOTJKMDLH9240hJSbFY0tLSCn1Ip06dUkJCgsLDw83r/Pz81KpVK8XFxRV6fwAAAACsgyQ0AAAAbC4oKEh+fn7mZcKECYXeR0JCgiTJ39/fYr2/v795GwAAAAD7ox0HAACAEzCYTDIU8qaA1opDks6dOydfX1/zek9PT3uFBAAAAMDKqIQGAACAzfn6+losRUlCBwQESJISExMt1icmJpq3AQAAALA/ktAAAAAokYKDgxUQEKDNmzeb16WkpGjXrl0KCwuzY2QAAAAA/op2HAAAAM7AJMkB2nGokCFcvXpVx48fNz8+deqU4uPjVbFiRdWsWVPDhg3TO++8o3r16ik4OFjR0dEKDAxUt27dijduAAAAAEVGEtpBmf78T2KmKcPOkTgmkynT3iGgBHOEnqiOjPcXUPwylf373MTPn0Lbu3evOnToYH4cFRUlSYqMjFRMTIxGjBih1NRUDRo0SElJSWrbtq3Wr18vLy8ve4UMAAAA4G9IQjuoK1euSJK+y1pl50iAUogcKwA7uXLlivz8/OwdRonSvn37fJP3BoNB48eP1/jx420YFQAAAIDCIAntoAIDA3Xu3Dn5+PjIYDDYOxylpKQoKCgo153skY35uTnmJn/MT/6Yn/wxPzfnaHNjMpl05coVBQYG2jMIB2nH4QAxAAAAALApktAOysXFRTVq1LB3GLnk3MEeeWN+bo65yR/zkz/mJ3/Mz8050txQAQ0AAADAWbnYOwAAAAAAAAAAQOlFJTQAAIAzMEqyf4ev7DgAAAAAOBUqoVEgnp6eGjdunDw9Pe0dikNifm6Ouckf85M/5id/zM/NMTcAAAAA4DgMpvxuNw4AAIASLSUlRX5+fnrwrhFyc7V/Uj4zK02bD05WcnKyw/TrRvHKueY4xwAAACWTNT7PUQkNAAAAAAAAALAaktAAAAAAAAAAAKvhxoQAAADOwGTKXuzNEWIAAAAAYFNUQsNC7dq1NW3aNHuHAQAAAAAAAKCUIAldwrRv317Dhg3LtT4mJkbly5e3eTwFdeTIEXXo0EH+/v7y8vLSHXfcoTFjxigjI8Ni3IoVKxQSEiIvLy81btxY69ats2pcs2bNUpMmTeTr6ytfX1+FhYXp66+/Nm+/ceOGBg8erEqVKqlcuXLq0aOHEhMTC7z/48ePy8fHJ89zY+tjvV0TJ06UwWCwuP6KMj+nT5+WwWDItXz//fcW4xx9ft58881cxxASEmLeXtRrx2QyacqUKapfv748PT1VvXp1vfvuuxZjtm7dqubNm8vT01N169ZVTExMcR9esfj111/11FNPqVKlSvL29lbjxo21d+9e83aTyaSxY8eqWrVq8vb2Vnh4uI4dO5bvPmNiYvK8fgwGgy5evGge5+hzVLt27TyPYfDgwZKKfv1s2LBBrVu3lo+Pj6pUqaIePXro9OnTFmMcfW5uJisrS9HR0QoODpa3t7fq1Kmjt99+W3+9v3JRrikAAAAAgPWRhEaxSk9Pz3O9u7u7+vbtq2+++UZHjhzRtGnT9Nlnn2ncuHHmMTt37lTv3r01YMAAHThwQN26dVO3bt108OBBq8Vbo0YNTZw4Ufv27dPevXv1wAMPqGvXrvrvf/8rSRo+fLhWr16tFStWaNu2bTp//ry6d+9eoH1nZGSod+/euu+++3Jts8ex3o49e/bo008/VZMmTSzW3878bNq0SRcuXDAvLVq0MG8rKfPTqFEji2PYsWOHeVtR52bo0KGaO3eupkyZop9//lmrVq3SPffcY95+6tQpde7cWR06dFB8fLyGDRumZ599Vhs2bLDKMRbVH3/8oXvvvVfu7u76+uuvdejQIU2dOlUVKlQwj5k8ebKmT5+u2bNna9euXSpbtqwiIiJ048aNm+63V69eFnN+4cIFRUREqF27dqpataqkkjFHe/bssTiGjRs3SpIee+wxSUW7fk6dOqWuXbvqgQceUHx8vDZs2KDLly9bPK8kzM3NTJo0SbNmzdKMGTN0+PBhTZo0SZMnT9bHH39sHlPYayrnj2JOI6cdhyMsAAAAAJyKwWTifwIlSfv27RUaGpqrZUZMTIyGDRumpKQkSVK/fv2UlJSktm3baurUqUpPT9cTTzyhadOmyd3dXZJ08eJFDRgwQJs2bVJAQIDeeecdvfHGGxo2bJi52jUpKUmvvvqq/vOf/ygtLU0tW7bUhx9+qKZNm0rKrgaNjY3VkCFD9O677+rMmTMyGo0FOpaoqCjt2bNH3333naTs5FJqaqrWrFljHtO6dWuFhoZq9uzZtzFrhVOxYkW9//776tmzp6pUqaIlS5aoZ8+ekqSff/5ZDRs2VFxcnFq3bp3vfkaOHKnz58/rwQcftDg3kuMca0FcvXpVzZs31yeffKJ33nnHfP0lJycXaX5Onz6t4OBgHThwQKGhoXmOKQnzk3Ptx8fH59pW1Lk5fPiwmjRpooMHD6pBgwZ5jhk5cqTWrl1rkZB/4oknlJSUpPXr19/+gRWTUaNG6f/+7//M7++/M5lMCgwM1CuvvKJXX31VUva8+fv7KyYmRk888USBXufSpUuqXr265s2bp6efflpSyZmjvxo2bJjWrFmjY8eOKSUlpUjXzxdffKHevXsrLS1NLi7Zf2NevXq1unbtqrS0NLm7u5fIucnxyCOPyN/fX/PmzTOv69Gjh7y9vbVo0aIiXVM5P49K+0ehlJQU+fn56cE7X5Wbq6e9w1FmVpo2H5qi5ORk+fr62jscWEHONcc5BgAAKJms8XmOSuhS7Ntvv9WJEyf07bffasGCBYqJibH42nW/fv107tw5ffvtt/riiy/0ySefWHydXcquyrt48aK+/vpr7du3T82bN9eDDz6o33//3Tzm+PHj+vLLL/XVV1/lmZDLy/Hjx7V+/Xq1a9fOvC4uLk7h4eEW4yIiIhQXF1f4gy+CrKwsLV26VKmpqQoLC9O+ffuUkZFhEVNISIhq1qx5y5i2bNmiFStWaObMmXlut/exFsbgwYPVuXPnXPHezvxI0qOPPqqqVauqbdu2WrVqlcW2kjI/x44dU2BgoO644w716dNHZ8+elVT0uVm9erXuuOMOrVmzRsHBwapdu7aeffZZi/dbSZmbVatWqWXLlnrsscdUtWpVNWvWTJ999pl5+6lTp5SQkGBxLH5+fmrVqlWhjmXhwoUqU6aMOVkrlZw5ypGenq5Fixapf//+MhgMRb5+WrRoIRcXF82fP19ZWVlKTk7Wv/71L4WHh5v/+FjS5uav2rRpo82bN+vo0aOSpB9++EE7duxQp06dJBXfNQUAAAAAKH5u9g4A1lOhQgXNmDFDrq6uCgkJUefOnbV582YNHDhQR48e1ddff63du3fr7rvvliTNmzdPDRs2ND9/x44d2r17ty5evChPz+zKqSlTpig2NlZffPGFBg0aJCk7gbJw4UJVqVLlljG1adNG+/fvV1pamgYNGqTx48ebtyUkJMjf399ivL+/vxISEm57LvLz008/KSwsTDdu3FC5cuW0cuVK3XnnnYqPj5eHh0eufs63ium3335Tv379tGjRopv+tchex1pYS5cu1f79+7Vnz55c2xISEoo0P+XKldPUqVN17733ysXFRV9++aW6deum2NhYPfroo+Z9O/r8tGrVSjExMWrQoIEuXLigt956S/fdd58OHjxY5Lk5efKkzpw5oxUrVmjhwoXKysrS8OHD1bNnT23ZskXSzecmJSVF169fl7e3d7Efa1GcPHlSs2bNUlRUlF5//XXt2bNHL7/8sjw8PBQZGWmeh9s9z/PmzdOTTz5pcdwlZY5yxMbGKikpSf369ZNU9PdWcHCwvvnmGz3++ON67rnnlJWVpbCwMIt+6iVtbv5q1KhRSklJUUhIiFxdXZWVlaV3331Xffr0kaRiu6ZKNUdpheEIMQAAAACwKSqhS7FGjRrJ1dXV/LhatWrmSufDhw/Lzc3Nog9vSEiIRdLjhx9+0NWrV803xspZTp06pRMnTpjH1apVq0AJaElatmyZ9u/fryVLlmjt2rWaMmXKbR7l7WvQoIHi4+O1a9cuvfDCC4qMjNShQ4cK9NxGjRqZ5yWnGm/gwIF68skndf/991szbKs7d+6chg4dqsWLF8vLy6tI+8hrfipXrqyoqCi1atVKd999tyZOnKinnnpK77//fnGGb3WdOnXSY489piZNmigiIkLr1q1TUlKSli9fXqDn5zU3RqNRaWlpWrhwoe677z61b99e8+bN07fffqsjR45Y83CKndFoVPPmzfXee++pWbNmGjRokAYOHFiodiqdOnUyz1GjRo1ybY+Li9Phw4c1YMCA4gzd5ubNm6dOnTopMDCwwM/J6/pJSEjQwIEDFRkZqT179mjbtm3y8PBQz549S0W7ieXLl2vx4sVasmSJ9u/frwULFmjKlClasGBBofbz17nLua7++jsuZz4BAAAAAMWHSugSxtfXV8nJybnWJyUlyc/Pz2JdztevcxgMhgL3a5ayewFXq1ZNW7duzbXtr8nqsmXLFnifQUFBkqQ777xTWVlZGjRokF555RW5uroqICBAiYmJFuMTExMVEBBQ4P0XhYeHh+rWrSsp++vse/bs0UcffaRevXopPT1dSUlJFsf715jWrVunjIwMSTJXEG7ZskWrVq0yJ9hNJpOMRqPc3Nw0Z84c9e/f327HWhj79u3TxYsX1bx5c/O6rKwsbd++XTNmzNCGDRuKND95adWqlfnGbJJKxPz8Xfny5VW/fn0dP35cDz30UJHmplq1anJzc1P9+vXNz8n5dsLZs2fVoEGDm86Nr6+vQ1WxVqtWTXfeeafFuoYNG+rLL7+UJPM8JCYmqlq1auYxiYmJ5l7hc+fO1fXr1yXl/nmWsz00NNTij2k5+y4JcyRJZ86c0aZNm/TVV1+Z1wUEBBTp+pk5c6b8/Pw0efJk83MWLVqkoKAg7dq1S61bty5Rc/N3r732mkaNGmXu7dy4cWOdOXNGEyZMUGRkZIGuKcly7n799Ve1b9/eopWUo88DAAAAAJREVEKXMA0aNND+/ftzrd+/f79F4upWQkJClJmZqX379pnXHTlyxOLmec2bN1dCQoLc3NxUt25di6Vy5cq3dRxSdqVkRkaGOTEeFhamzZs3W4zZuHGjwsLCbvu1ChtXWlqaWrRoIXd3d4uYjhw5orNnz5pjqlWrlnlOqlevLim7OjM+Pt68jB8/Xj4+PoqPj9c///lPSY5zrPl58MEH9dNPP1kcS8uWLdWnTx/zv4syP3mJj4+3SBqVhPn5u6tXr+rEiROqVq1aka+de++9V5mZmRbfNMjpf1urVi1JJWdu7r333lzV20ePHjUfR3BwsAICAiyOJSUlRbt27TIfS/Xq1c1zlPO8HFevXtXy5cvzrIIuKXMkSfPnz1fVqlXVuXNn87qiXj/Xrl0z35AwR863YRzt52xR3Oz4co6tINeUZDl3OdfVX3+/5fezqsQzOtACAAAAwKlQCV3CvPDCC5oxY4ZefvllPfvss/L09NTatWv173//W6tXry7wfho0aKCHH35Yzz33nGbNmiU3NzcNGzbMogIsPDxcYWFh6tatmyZPnqz69evr/PnzWrt2rf75z3+qZcuWBX69xYsXy93dXY0bN5anp6f27t2r0aNHq1evXuYKx6FDh6pdu3aaOnWqOnfurKVLl2rv3r2aM2dOwSeokEaPHq1OnTqpZs2aunLlipYsWaKtW7dqw4YN8vPz04ABAxQVFaWKFSvK19dXL730ksLCwtS6deub7vOvfbUlae/evXJxcdFdd91lXmePYy0sHx8fi5il7Kr3SpUqmdcXZX4WLFggDw8PNWvWTJL01Vdf6fPPP9fcuXPNY0rC/Lz66qvq0qWLatWqpfPnz2vcuHFydXVV7969i3zthIeHq3nz5urfv7+mTZsmo9GowYMH66GHHjL/ken555/XjBkzNGLECPXv319btmzR8uXLtXbtWlsdeoEMHz5cbdq00XvvvafHH39cu3fv1pw5c8zn0GAwaNiwYXrnnXdUr149BQcHKzo6WoGBgerWrdst979s2TJlZmbqqaeeyrWtpMyR0WjU/PnzFRkZKTe3//06Lur107lzZ3344YcaP368evfurStXruj1119XrVq1zO+3kjI3eenSpYveffdd1axZU40aNdKBAwf0wQcfqH///pJu/5oCAAAAAFgPSegS5o477tD27dv1xhtvKDw8XOnp6QoJCdGKFSv08MMPF2pf8+fP17PPPqt27drJ399f77zzjqKjo83bDQaD1q1bpzfeeEPPPPOMLl26pICAAN1///25bvx0K25ubpo0aZKOHj0qk8mkWrVqaciQIRo+fLh5TJs2bbRkyRKNGTNGr7/+uurVq6fY2NhcidDidPHiRfXt21cXLlyQn5+fmjRpog0bNuihhx6SJH344YdycXFRjx49lJaWpoiICH3yySe3/br2OFZrKOr8vP322zpz5ozc3NwUEhKiZcuWqWfPnubtJWF+fvnlF/Xu3Vu//fabqlSporZt2+r7778390cvyty4uLho9erVeumll3T//ferbNmy6tSpk6ZOnWoeExwcrLVr12r48OH66KOPVKNGDc2dO1cRERFWPd7Cuvvuu7Vy5UqNHj1a48ePV3BwsKZNm2a+iZwkjRgxQqmpqRo0aJCSkpLUtm1brV+/vkA9yOfNm6fu3bvnunmfVHLmaNOmTTp79qw5ifpXRbl+HnjgAS1ZskSTJ0/W5MmTVaZMGYWFhWn9+vXmPzCWlLnJy8cff6zo6Gi9+OKLunjxogIDA/Xcc89p7Nix5jG3c005A4PJJIMD9Ad3hBgAAAAA2JbBVBruVgQAAIA8paSkyM/PT+H1o+Tm6mnvcJSZlaZNRz9QcnKyfH197R0OrCDnmuMcAwAAlEzW+DxHT2gAAAAAAAAAgNXQjgMAAMAZmEzZi705QgwAAAAAbIpKaAAAAAAAAACA1ZCEBgAAAAAAAABYDe04AAAAnIHRJBkcoBWG0QFiAAAAAGBTVEIDAAAAAAAAAKyGJDQAAAAAAAAAwGpoxwEAAOAMTKbsxd4cIQYAAAAANkUlNADcQr9+/dStWzfz4/bt22vYsGE2j2Pr1q0yGAxKSkq66RiDwaDY2NgC7/PNN99UaGjobcV1+vRpGQwGxcfH39Z+AAAAAABA6UQSGkCJ1K9fPxkMBhkMBnl4eKhu3boaP368MjMzrf7aX331ld5+++0CjS1I4hgAbMP0v2poey6iEhoAAABwNrTjAFBiPfzww5o/f77S0tK0bt06DR48WO7u7ho9enSusenp6fLw8CiW161YsWKx7AcAAAAAAMAZUAkNoMTy9PRUQECAatWqpRdeeEHh4eFatWqVpP+10Hj33XcVGBioBg0aSJLOnTunxx9/XOXLl1fFihXVtWtXnT592rzPrKwsRUVFqXz58qpUqZJGjBgh09/6l/69HUdaWppGjhypoKAgeXp6qm7dupo3b55Onz6tDh06SJIqVKggg8Ggfv36SZKMRqMmTJig4OBgeXt7q2nTpvriiy8sXmfdunWqX7++vL291aFDB4s4C2rkyJGqX7++ypQpozvuuEPR0dHKyMjINe7TTz9VUFCQypQpo8cff1zJyckW2+fOnauGDRvKy8tLISEh+uSTTwodCwAAAAAAcE5UQgMoNby9vfXbb7+ZH2/evFm+vr7auHGjJCkjI0MREREKCwvTd999Jzc3N73zzjt6+OGH9eOPP8rDw0NTp05VTEyMPv/8czVs2FBTp07VypUr9cADD9z0dfv27au4uDhNnz5dTZs21alTp3T58mUFBQXpyy+/VI8ePXTkyBH5+vrK29tbkjRhwgQtWrRIs2fPVr169bR9+3Y99dRTqlKlitq1a6dz586pe/fuGjx4sAYNGqS9e/fqlVdeKfSc+Pj4KCYmRoGBgfrpp580cOBA+fj4aMSIEeYxx48f1/Lly7V69WqlpKRowIABevHFF7V48WJJ0uLFizV27FjNmDFDzZo104EDBzRw4ECVLVtWkZGRhY4JgJ1wY0IAAAAAdkISGkCJZzKZtHnzZm3YsEEvvfSSeX3ZsmU1d+5ccxuORYsWyWg0au7cuTIYDJKk+fPnq3z58tq6das6duyoadOmafTo0erevbskafbs2dqwYcNNX/vo0aNavny5Nm7cqPDwcEnSHXfcYd6e07qjatWqKl++vKTsyun33ntPmzZtUlhYmPk5O3bs0Keffqp27dpp1qxZqlOnjqZOnSpJatCggX766SdNmjSpUHMzZswY879r166tV199VUuXLrVIQt+4cUMLFy5U9erVJUkff/yxOnfurKlTpyogIEDjxo3T1KlTzXMSHBysQ4cO6dNPPyUJDQAAAAAAbokkNIASa82aNSpXrpwyMjJkNBr15JNP6s033zRvb9y4sUUf6B9++EHHjx+Xj4+PxX5u3LihEydOKDk5WRcuXFCrVq3M29zc3NSyZctcLTlyxMfHy9XVVe3atStw3MePH9e1a9f00EMPWaxPT09Xs2bNJEmHDx+2iEOSOWFdGMuWLdP06dN14sQJXb16VZmZmfL19bUYU7NmTXMCOud1jEajjhw5Ih8fH504cUIDBgzQwIEDzWMyMzPl5+dX6HgAAAAAAIDzIQkNoMTq0KGDZs2aJQ8PDwUGBsrNzfJHWtmyZS0eX716VS1atDC3mfirKlWqFCmGnPYahXH16lVJ0tq1ay2Sv1J2n+viEhcXpz59+uitt95SRESE/Pz8tHTpUnN1dWFi/eyzz3IlxV1dXYstVgA2YDRJcoBWGEYHiAEAAACATZGEBlBilS1bVnXr1i3w+ObNm2vZsmWqWrVqrmrgHNWqVdOuXbt0//33S8qu+N23b5+aN2+e5/jGjRvLaDRq27Zt5nYcf5VTiZ2VlWVed+edd8rT01Nnz569aQV1w4YNzTdZzPH999/f+iD/YufOnapVq5beeOMN87ozZ87kGnf27FmdP39egYGB5tdxcXFRgwYN5O/vr8DAQJ08eVJ9+vQp1OsDAAAAAABIkou9AwAAW+nTp48qV66srl276rvvvtOpU6e0detWvfzyy/rll18kSUOHDtXEiRMVGxurn3/+WS+++KKSkpJuus/atWsrMjJS/fv3V2xsrHmfy5cvlyTVqlVLBoNBa9as0aVLl3T16lX5+Pjo1Vdf1fDhw7VgwQKdOHFC+/fv18cff6wFCxZIkp5//nkdO3ZMr732mo4cOaIlS5YoJiamUMdbr149nT17VkuXLtWJEyc0ffp0rVy5Mtc4Ly8vRUZG6ocfftB3332nl19+WY8//rgCAgIkSW+99ZYmTJig6dOn6+jRo/rpp580f/58ffDBB4WKBwAAAAAAOCeS0ACcRpkyZbR9+3bVrFlT3bt3V8OGDTVgwADduHHDXBn9yiuv6Omnn1ZkZKTCwsLk4+Ojf/7zn/nud9asWerZs6defPFFhYSEaODAgUpNTZUkVa9eXW+99ZZGjRolf39/DRkyRJL09ttvKzo6WhMmTFDDhg318MMPa+3atQoODpaU3af5yy+/VGxsrJo2barZs2frvffeK9TxPvrooxo+fLiGDBmi0NBQ7dy5U9HR0bnG1a1bV927d9c//vEPdezYUU2aNNEnn3xi3v7ss89q7ty5mj9/vho3bqx27dopJibGHCuAEsJkdJwFAAAAgFMxmG52ty0AAACUeCkpKfLz81N4zRfl5lJ8feeLKtOYpk1nP1FycvJNWyOhZMu55jjHAAAAJZM1Ps/RExoAAMAZmEzZi705QgwAAAAAbIp2HAAAAAAAAAAAqyEJDQAAAAAAAACwGtpxAAAAOAOjSZIDtMIwOkAMAAAAAGyKSmgAAAAAAAAAgNWQhAYAAAAAAAAAWA3tOAAAAJyByZS92JsjxAAAAADApqiEBgAAAAAAAABYDUloAAAAAAAAAIDV0I4DAADAGZjkGK0wHCAEAAAAALZFJTQAAAAAAAAAwGqohAYAAHAG3JgQAAAAgJ1QCQ0AAAAAAAAAsBqS0AAAAAAAAAAAq6EdBwAAgDMwGiUZ7R3Fn3EAAAAAcCZUQgMAAAAAAAAArIYkNAAAAAAAAADAamjHAQAA4AxMpuzF3hwhBgAAAAA2RSU0AAAAAAAAAMBqSEIDAAAAAAAAAKyGdhwAAADOgHYcAAAAAOyESmgAAAAAAAAAgNWQhAYAAAAAAAAAWA3tOAAAAJyB0STJAVphGB0gBgAAAAA2RSU0AAAAAAAAAMBqqIQGAABwAiaTUSaT0d5hOEQMAAAAAGyLSmgAAAAAAAAAgNWQhAYAAAAAAAAAWA3tOAAAAJyByeQYNwU0OUAMAAAAAGyKSmgAAAAAAAAAgNWQhAYAAAAAAAAAWA3tOAAAAJyBySTJAVph0I4DAAAAcDpUQgMAAAAAAAAArIYkNAAAAAAAAADAamjHAQAA4AyMRslgtHcUkskBYgAAAABgU1RCAwAAAAAAAACshkpoAAAAZ8CNCQEAAADYCZXQAAAAAAAAAACrIQkNAAAAAAAAALAa2nEAAAA4AZPRKJMD3JjQxI0JAQAAAKdDJTQAAAAAAAAAwGpIQgMAAAAAAAAArIZ2HAAAAM7AZJJksncUf8YBAAAAwJlQCQ0AAAAAAAAAsBqS0AAAAAAAAAAAq6EdBwAAgDMwmiSDA7TCoB0HAAAA4HSohAYAAAAAAAAAWA2V0AAAAM7AZJJktHcUVEIDAAAATohKaAAAAAAAAACA1ZCEBgAAAAAAAABYDe04AAAAnIDJaJLJAW5MaKIdBwAAAOB0qIQGAAAAAAAAAFgNSWgAAAAAAAAAgNXQjgMAAMAZmIySjPaO4s84AAAAADgTKqEBAAAAAAAAAFZDEhoAAAAAAAAAYDW04wAAAHACJqNJJoPJ3mHIZLJ/DAAAAABsi0poAAAAOLSZM2eqdu3a8vLyUqtWrbR79257h1TiFHYOV6xYoZCQEHl5ealx48Zat26djSIFAABAaUQSGgAAAA5r2bJlioqK0rhx47R//341bdpUERERunjxor1DKzEKO4c7d+5U7969NWDAAB04cEDdunVTt27ddPDgQRtHDgAAgNLCYOI7kQAAAKVWSkqK/Pz81F5d5WZwt3c4yjRlaKv+o+TkZPn6+t5yfKtWrXT33XdrxowZkiSj0aigoCC99NJLGjVqlLXDLRUKO4e9evVSamqq1qxZY17XunVrhYaGavbs2bd8vZxrrqDnGAAAAI7FGp/n6AkNAADgBDKVITlA6UGmMiRlf7D9K09PT3l6elqsS09P1759+zR69GjzOhcXF4WHhysuLs76wZYCRZnDuLg4RUVFWayLiIhQbGxsnuPT0tKUlpZmfpycnCwp9zkGAABAyZDzOa44a5dJQgMAAJRiHh4eCggI0I4Ex+npW65cOQUFBVmsGzdunN58802LdZcvX1ZWVpb8/f0t1vv7++vnn3+2dpilQlHmMCEhIc/xCQkJeY6fMGGC3nrrrVzr/36OAQAAULL89ttv8vPzK5Z9kYQGAAAoxby8vHTq1Cmlp6fbOxQzk8kkg8Fgse7vVdAoOUaPHm1ROZ2UlKRatWrp7NmzxfafFji+lJQUBQUF6dy5c7RhcRKcc+fEeXc+nHPnlJycrJo1a6pixYrFtk+S0AAAAKWcl5eXvLy87B1GoVWuXFmurq5KTEy0WJ+YmKiAgAA7RVWyFGUOAwICCjU+r1YqkuTn58d/Vp2Qr68v593JcM6dE+fd+XDOnZOLi0vx7avY9gQAAAAUIw8PD7Vo0UKbN282rzMajdq8ebPCwsLsGFnJUZQ5DAsLsxgvSRs3bmTOAQAAUGRUQgMAAMBhRUVFKTIyUi1bttQ999yjadOmKTU1Vc8884y9QysxbjWHffv2VfXq1TVhwgRJ0tChQ9WuXTtNnTpVnTt31tKlS7V3717NmTPHnocBAACAEowkNAAAABxWr169dOnSJY0dO1YJCQkKDQ3V+vXrc904Dzd3qzk8e/asxVct27RpoyVLlmjMmDF6/fXXVa9ePcXGxuquu+4q0Ot5enpq3Lhx9Pl2Mpx358M5d06cd+fDOXdO1jjvBpPJZCq2vQEAAAAAAAAA8Bf0hAYAAAAAAAAAWA1JaAAAAAAAAACA1ZCEBgAAAAAAAABYDUloAAAAAAAAAIDVkIQGAAAAUCgzZ85U7dq15eXlpVatWmn37t35jl+xYoVCQkLk5eWlxo0ba926dTaKFMWpMOf9s88+03333acKFSqoQoUKCg8Pv+V1AsdT2Pd6jqVLl8pgMKhbt27WDRBWUdjznpSUpMGDB6tatWry9PRU/fr1+TlfwhT2nE+bNk0NGjSQt7e3goKCNHz4cN24ccNG0eJ2bd++XV26dFFgYKAMBoNiY2Nv+ZytW7eqefPm8vT0VN26dRUTE1Po1yUJDQAAAKDAli1bpqioKI0bN0779+9X06ZNFRERoYsXL+Y5fufOnerdu7cGDBigAwcOqFu3burWrZsOHjxo48hxOwp73rdu3arevXvr22+/VVxcnIKCgtSxY0f9+uuvNo4cRVXYc57j9OnTevXVV3XffffZKFIUp8Ke9/T0dD300EM6ffq0vvjiCx05ckSfffaZqlevbuPIUVSFPedLlizRqFGjNG7cOB0+fFjz5s3TsmXL9Prrr9s4chRVamqqmjZtqpkzZxZo/KlTp9S5c2d16NBB8fHxGjZsmJ599llt2LChUK9rMJlMpqIEDAAAAMD5tGrVSnfffbdmzJghSTIajQoKCtJLL72kUaNG5Rrfq1cvpaamas2aNeZ1rVu3VmhoqGbPnm2zuHF7Cnve/y4rK0sVKlTQjBkz1LdvX2uHi2JQlHOelZWl+++/X/3799d3332npKSkAlXYwXEU9rzPnj1b77//vn7++We5u7vbOlwUg8Ke8yFDhujw4cPavHmzed0rr7yiXbt2aceOHTaLG8XDYDBo5cqV+X5zZeTIkVq7dq1FAcETTzyhpKQkrV+/vsCvRSU0AAAAgAJJT0/Xvn37FB4ebl7n4uKi8PBwxcXF5fmcuLg4i/GSFBERcdPxcDxFOe9/d+3aNWVkZKhixYrWChPFqKjnfPz48apataoGDBhgizBRzIpy3letWqWwsDANHjxY/v7+uuuuu/Tee+8pKyvLVmHjNhTlnLdp00b79u0zt+w4efKk1q1bp3/84x82iRm2V1yf5dyKMygAAAAApdfly5eVlZUlf39/i/X+/v76+eef83xOQkJCnuMTEhKsFieKV1HO+9+NHDlSgYGBuf4TC8dUlHO+Y8cOzZs3T/Hx8TaIENZQlPN+8uRJbdmyRX369NG6det0/Phxvfjii8rIyNC4ceNsETZuQ1HO+ZNPPqnLly+rbdu2MplMyszM1PPPP087jlLsZp/lUlJSdP36dXl7exdoP1RCAwAAAACsZuLEiVq6dKlWrlwpLy8ve4cDK7hy5YqefvppffbZZ6pcubK9w4ENGY1GVa1aVXPmzFGLFi3Uq1cvvfHGG7RbKsW2bt2q9957T5988on279+vr776SmvXrtXbb79t79Dg4KiEBgAAAFAglStXlqurqxITEy3WJyYmKiAgIM/nBAQEFGo8HE9RznuOKVOmaOLEidq0aZOaNGlizTBRjAp7zk+cOKHTp0+rS5cu5nVGo1GS5ObmpiNHjqhOnTrWDRq3rSjv9WrVqsnd3V2urq7mdQ0bNlRCQoLS09Pl4eFh1Zhxe4pyzqOjo/X000/r2WeflSQ1btxYqampGjRokN544w25uFDvWtrc7LOcr69vgaugJSqhAQAAABSQh4eHWrRoYXEzIqPRqM2bNyssLCzP54SFhVmMl6SNGzfedDwcT1HOuyRNnjxZb7/9ttavX6+WLVvaIlQUk8Ke85CQEP3000+Kj483L48++qg6dOig+Ph4BQUF2TJ8FFFR3uv33nuvjh8/bv6jgyQdPXpU1apVIwFdAhTlnF+7di1XojnnjxAmk8l6wcJuiuuzHJXQAAAAAAosKipKkZGRatmype655x5NmzZNqampeuaZZyRJffv2VfXq1TVhwgRJ0tChQ9WuXTtNnTpVnTt31tKlS7V3717NmTPHnoeBQirseZ80aZLGjh2rJUuWqHbt2uYe4OXKlVO5cuXsdhwouMKccy8vL911110Wzy9fvrwk5VoPx1bY9/oLL7ygGTNmaOjQoXrppZd07Ngxvffee3r55ZfteRgohMKe8y5duuiDDz5Qs2bN1KpVKx0/flzR0dHq0qWLRUU8HNfVq1d1/Phx8+NTp04pPj5eFStWVM2aNTV69Gj9+uuvWrhwoSTp+eef14wZMzRixAj1799fW7Zs0fLly7V27dpCvS5JaAAAAAAF1qtXL126dEljx45VQkKCQkNDtX79evMNa86ePWtRIdWmTRstWbJEY8aM0euvv6569eopNjaWxFQJU9jzPmvWLKWnp6tnz54W+xk3bpzefPNNW4aOIirsOUfpUNjzHhQUpA0bNmj48OFq0qSJqlevrqFDh2rkyJH2OgQUUmHP+ZgxY2QwGDRmzBj9+uuvqlKlirp06aJ3333XXoeAQtq7d686dOhgfhwVFSVJioyMVExMjC5cuKCzZ8+atwcHB2vt2rUaPny4PvroI9WoUUNz585VREREoV7XYKJWHgAAAAAAAABgJfzZEgAAAAAAAABgNSShAQAAAAAAAABWQxIaAAAAAAAAAGA1JKEBAAAAAAAAAFZDEhoAAAAAAAAAYDUkoQEAAAAAAAAAVkMSGgAAAAAAAABgNSShAQAAAAAAAABWQxIaAAAAAAAAAGA1JKEBAAAAAAAAAFZDEhoAAAAAAAAAYDUkoQEAAAAAAAAAVvP/Bqyg4x2QiBkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import ConfusionMatrixDisplay\n",
+ "\n",
+ "\n",
+ "num_models = len(results_classification)\n",
+ "num_rows = (num_models // 2) + (num_models % 2) # Количество строк для подграфиков\n",
+ "_, ax = plt.subplots(num_rows, 2, figsize=(17, 17), sharex=False, sharey=False)\n",
+ "\n",
+ "for index, (name, metrics) in enumerate(results_classification.items()):\n",
+ " c_matrix = metrics[\"Confusion_matrix\"]\n",
+ " disp = ConfusionMatrixDisplay(\n",
+ " confusion_matrix=c_matrix, display_labels=[\"Under 30\", \"30-40\", \"40-50\", \"50-60\", \"60-70\", \"70-80\", \"80+\"]\n",
+ " ).plot(ax=ax.flat[index])\n",
+ " disp.ax_.set_title(name)\n",
+ "\n",
+ "# Корректировка расположения графиков\n",
+ "plt.subplots_adjust(top=1, bottom=0, hspace=0.4, wspace=0.1)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Вывод: возраст удалось предсказать чуть успешнее. Но всё же, датасет не имеет в себе необходимых данных для более точных предсказаний"
+ ]
}
],
"metadata": {