distributed-computing/tasks/savitskiy-al/lab_6/README.md

109 lines
3.3 KiB
Markdown
Raw Normal View History

2023-12-16 15:58:30 +04:00
# Отчет по лабораторной работе №6
Выполнил студент гр. ИСЭбд-41 Савицкий А.В.
## Создание приложения
Выбрал язык C#, Консольное приложение.
Установил библиотеку BenchmarkDotNet для замера производительности.
Сам алгоритм.
``` cs
public double DeterminantOfMatrix(double[,] matrix, int threadCount)
{
int size = matrix.GetLength(0);
if (size == 1)
{
return matrix[0, 0];
}
else if (size == 2)
{
return matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0];
}
else
{
double determinant = 0;
Parallel.For(0, size, new ParallelOptions { MaxDegreeOfParallelism = threadCount },
(i) =>
{
double[,] subMatrix = GetSubMatrix(matrix, i);
double subDeterminant = matrix[0, i] * Determinant(subMatrix);
double value = Math.Pow(-1, i) * subDeterminant;
lock (lockObject)
{
determinant += value;
}
});
return determinant;
}
}
static double[,] GetSubMatrix(double[,] matrix, int columnIndex)
{
int size = matrix.GetLength(0);
double[,] subMatrix = new double[size - 1, size - 1];
for (int i = 1; i < size; i++)
{
for (int j = 0; j < size; j++)
{
if (j < columnIndex)
{
subMatrix[i - 1, j] = matrix[i, j];
}
else if (j > columnIndex)
{
subMatrix[i - 1, j - 1] = matrix[i, j];
}
}
}
return subMatrix;
}
static double Determinant(double[,] matrix)
{
int size = matrix.GetLength(0);
if (size == 1)
{
return matrix[0, 0];
}
else if (size == 2)
{
return matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0];
}
else
{
double determinant = 0;
for (int i = 0; i < size; i++)
{
double[,] subMatrix = GetSubMatrix(matrix, i);
determinant += (int)Math.Pow(-1, i) * matrix[0, i] * Determinant(subMatrix);
}
return determinant;
}
}
```
Проверка работы на матрице 3х3
![](pic/1.png)
## Бенчмарки
Протестируем обычный и параллельный алгоритм определение детерминанта на различной размерности матрицы.
В ходе экспериментов было установлено, что обработка матрицы размеров больше 12х12 занимает слишком много времени, поэтому для тестирования возьмем матрицы 5х5, 8х8 и 11х11.
Для тестирование запускаю алгоритм в 1 поток и в 12 потоков
![](pic/2.png)
Вывод: Параллельный алгоритм работает быстрее только при наличии большого количества операций. Если операций не так много, то обычный алгоритм справляется быстрее.