This commit is contained in:
Тукаева Альфия 2025-01-06 23:21:44 +04:00
parent 1439bb729b
commit 85e73a3053
8 changed files with 28467 additions and 1206 deletions

3
.vs/ProjectSettings.json Normal file
View File

@ -0,0 +1,3 @@
{
"CurrentProjectSetting": null
}

BIN
.vs/slnx.sqlite Normal file

Binary file not shown.

19228
data/car_price.csv Normal file

File diff suppressed because it is too large Load Diff

3300
data/house_data.csv Normal file

File diff suppressed because it is too large Load Diff

1355
data/phone_price.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

3088
lab2.ipynb Normal file

File diff suppressed because it is too large Load Diff

138
src/utils.py Normal file
View File

@ -0,0 +1,138 @@
import math
from typing import Dict, Tuple
import numpy as np
import pandas as pd
from pandas import DataFrame
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
def split_stratified_into_train_val_test(
df_input,
stratify_colname="y",
frac_train=0.6,
frac_val=0.15,
frac_test=0.25,
random_state=None,
) -> Tuple[DataFrame, DataFrame, DataFrame, DataFrame, DataFrame, DataFrame]:
"""
Splits a Pandas dataframe into three subsets (train, val, and test)
following fractional ratios provided by the user, where each subset is
stratified by the values in a specific column (that is, each subset has
the same relative frequency of the values in the column). It performs this
splitting by running train_test_split() twice.
Parameters
----------
df_input : Pandas dataframe
Input dataframe to be split.
stratify_colname : str
The name of the column that will be used for stratification. Usually
this column would be for the label.
frac_train : float
frac_val : float
frac_test : float
The ratios with which the dataframe will be split into train, val, and
test data. The values should be expressed as float fractions and should
sum to 1.0.
random_state : int, None, or RandomStateInstance
Value to be passed to train_test_split().
Returns
-------
df_train, df_val, df_test :
Dataframes containing the three splits.
"""
if frac_train + frac_val + frac_test != 1.0:
raise ValueError(
"fractions %f, %f, %f do not add up to 1.0"
% (frac_train, frac_val, frac_test)
)
if stratify_colname not in df_input.columns:
raise ValueError("%s is not a column in the dataframe" % (stratify_colname))
X = df_input # Contains all columns.
y = df_input[
[stratify_colname]
] # Dataframe of just the column on which to stratify.
# Split original dataframe into train and temp dataframes.
df_train, df_temp, y_train, y_temp = train_test_split(
X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state
)
if frac_val <= 0:
assert len(df_input) == len(df_train) + len(df_temp)
return df_train, pd.DataFrame(), df_temp, y_train, pd.DataFrame(), y_temp
# Split the temp dataframe into val and test dataframes.
relative_frac_test = frac_test / (frac_val + frac_test)
df_val, df_test, y_val, y_test = train_test_split(
df_temp,
y_temp,
stratify=y_temp,
test_size=relative_frac_test,
random_state=random_state,
)
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
return df_train, df_val, df_test, y_train, y_val, y_test
def run_classification(
model: Pipeline,
X_train: DataFrame,
X_test: DataFrame,
y_train: DataFrame,
y_test: DataFrame,
) -> Dict:
result = {}
y_train_predict = model.predict(X_train)
y_test_probs = model.predict_proba(X_test)[:, 1]
y_test_predict = np.where(y_test_probs > 0.5, 1, 0)
result["pipeline"] = model
result["probs"] = y_test_probs
result["preds"] = y_test_predict
result["Precision_train"] = metrics.precision_score(y_train, y_train_predict)
result["Precision_test"] = metrics.precision_score(y_test, y_test_predict)
result["Recall_train"] = metrics.recall_score(y_train, y_train_predict)
result["Recall_test"] = metrics.recall_score(y_test, y_test_predict)
result["Accuracy_train"] = metrics.accuracy_score(y_train, y_train_predict)
result["Accuracy_test"] = metrics.accuracy_score(y_test, y_test_predict)
result["ROC_AUC_test"] = metrics.roc_auc_score(y_test, y_test_probs)
result["F1_train"] = metrics.f1_score(y_train, y_train_predict)
result["F1_test"] = metrics.f1_score(y_test, y_test_predict)
result["MCC_test"] = metrics.matthews_corrcoef(y_test, y_test_predict)
result["Cohen_kappa_test"] = metrics.cohen_kappa_score(y_test, y_test_predict)
result["Confusion_matrix"] = metrics.confusion_matrix(y_test, y_test_predict)
return result
def run_regression(
model: Pipeline,
X_train: DataFrame,
X_test: DataFrame,
y_train: DataFrame,
y_test: DataFrame,
) -> Dict:
result = {}
y_train_pred = model.predict(X_train.values)
y_test_pred = model.predict(X_test.values)
result["fitted"] = model
result["train_preds"] = y_train_pred
result["preds"] = y_test_pred
result["RMSE_train"] = math.sqrt(metrics.mean_squared_error(y_train, y_train_pred))
result["RMSE_test"] = math.sqrt(metrics.mean_squared_error(y_test, y_test_pred))
result["RMAE_test"] = math.sqrt(metrics.mean_absolute_error(y_test, y_test_pred))
result["R2_test"] = metrics.r2_score(y_test, y_test_pred)
return result