PredictiveAnalytics/lab1.ipynb

927 lines
150 KiB
Plaintext
Raw Normal View History

2025-01-05 18:38:57 +04:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"# загрузка данных\n",
"df = pd.read_csv(\"data/students_education.csv\")\n",
"# сохранение данных\n",
"df.to_csv(\"lab1.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 1205 entries, 0 to 1204\n",
"Data columns (total 11 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Education Level 1205 non-null object\n",
" 1 Institution Type 1205 non-null object\n",
" 2 Gender 1205 non-null object\n",
" 3 Age 1205 non-null int64 \n",
" 4 Device 1204 non-null object\n",
" 5 IT Student 1205 non-null object\n",
" 6 Location 1205 non-null object\n",
" 7 Financial Condition 1201 non-null object\n",
" 8 Internet Type 1204 non-null object\n",
" 9 Network Type 1205 non-null object\n",
" 10 Flexibility Level 1205 non-null object\n",
"dtypes: int64(1), object(10)\n",
"memory usage: 103.7+ KB\n"
]
}
],
"source": [
"# получение сведений о датафрейме\n",
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Education Level object\n",
"Institution Type object\n",
"Gender object\n",
"Age int64\n",
"Device object\n",
"IT Student object\n",
"Location object\n",
"Financial Condition object\n",
"Internet Type object\n",
"Network Type object\n",
"Flexibility Level object\n",
"dtype: object"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 University\n",
"1 University\n",
"2 College\n",
"3 School\n",
"4 School\n",
" ... \n",
"95 University\n",
"96 School\n",
"97 School\n",
"98 University\n",
"99 College\n",
"Name: Education Level, Length: 100, dtype: object\n"
]
}
],
"source": [
"# вывод первых 100 строк из столбца Education Level\n",
"education = df.iloc[0:100, 0]\n",
"print(education)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Education Level Institution Type Gender Age Device IT Student \\\n",
"54 School Private Male 9 Mobile No \n",
"55 School Private Female 9 Mobile No \n",
"1155 School Private Female 9 Mobile No \n",
"886 School Private Female 9 Mobile No \n",
"916 School Private Female 9 Mobile No \n",
"... ... ... ... ... ... ... \n",
"1157 University Public Male 27 Computer Yes \n",
"714 University Public Female 27 Mobile No \n",
"717 University Public Female 27 Mobile No \n",
"16 University Public Female 27 Computer Yes \n",
"1190 University Private Male 27 Mobile Yes \n",
"\n",
" Location Financial Condition Internet Type Network Type Flexibility Level \n",
"54 Town Poor Mobile Data 4G Low \n",
"55 Town Mid Mobile Data 4G Moderate \n",
"1155 Town Poor Mobile Data 4G Moderate \n",
"886 Town Poor Mobile Data 4G Moderate \n",
"916 Town Mid Mobile Data 4G Moderate \n",
"... ... ... ... ... ... \n",
"1157 Town Rich Wifi 4G High \n",
"714 Town Mid Wifi 4G Low \n",
"717 Town Mid Mobile Data 4G Low \n",
"16 Town Poor Mobile Data 4G Low \n",
"1190 Town Mid Wifi 3G Moderate \n",
"\n",
"[1205 rows x 11 columns]\n"
]
}
],
"source": [
"# сортировка датафрейма по возрасту\n",
"sorted_df = df.sort_values(by=\"Age\")\n",
"print(sorted_df)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Education Level Institution Type Gender Age Device IT Student \\\n",
"0 University Private Male 23 Tab No \n",
"1 University Private Female 23 Mobile No \n",
"2 College Public Female 18 Mobile No \n",
"4 School Private Female 18 Mobile No \n",
"8 College Public Male 18 Mobile No \n",
"... ... ... ... ... ... ... \n",
"1198 College Public Male 18 Mobile Yes \n",
"1199 University Private Male 23 Computer Yes \n",
"1200 College Private Female 18 Mobile No \n",
"1201 College Private Female 18 Mobile No \n",
"1203 College Private Female 18 Mobile No \n",
"\n",
" Location Financial Condition Internet Type Network Type Flexibility Level \n",
"0 Town Mid Wifi 4G Moderate \n",
"1 Town NaN Mobile Data 4G Moderate \n",
"2 Town Mid Wifi 4G Moderate \n",
"4 Town Poor NaN 3G Low \n",
"8 Town Mid Wifi 4G Low \n",
"... ... ... ... ... ... \n",
"1198 Rural Mid Mobile Data 4G Low \n",
"1199 Town Mid Wifi 4G Low \n",
"1200 Town Mid Wifi 4G Low \n",
"1201 Rural Mid Wifi 4G Moderate \n",
"1203 Rural Mid Wifi 4G Low \n",
"\n",
"[720 rows x 11 columns]\n"
]
}
],
"source": [
"# вывод студентов, которым 18 лет и больше\n",
"Age = df[df['Age'] >= 18]\n",
"print(Age)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Education Level</th>\n",
" <th>Institution Type</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Device</th>\n",
" <th>IT Student</th>\n",
" <th>Financial Condition</th>\n",
" <th>Internet Type</th>\n",
" <th>Network Type</th>\n",
" <th>Flexibility Level</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>University</td>\n",
" <td>Private</td>\n",
" <td>Male</td>\n",
" <td>23</td>\n",
" <td>Tab</td>\n",
" <td>No</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>University</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>23</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>NaN</td>\n",
" <td>Mobile Data</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>College</td>\n",
" <td>Public</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>School</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>11</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>NaN</td>\n",
" <td>Mobile Data</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>School</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Poor</td>\n",
" <td>NaN</td>\n",
" <td>3G</td>\n",
" <td>Low</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Education Level Institution Type Gender Age Device IT Student \\\n",
"0 University Private Male 23 Tab No \n",
"1 University Private Female 23 Mobile No \n",
"2 College Public Female 18 Mobile No \n",
"3 School Private Female 11 Mobile No \n",
"4 School Private Female 18 Mobile No \n",
"\n",
" Financial Condition Internet Type Network Type Flexibility Level \n",
"0 Mid Wifi 4G Moderate \n",
"1 NaN Mobile Data 4G Moderate \n",
"2 Mid Wifi 4G Moderate \n",
"3 NaN Mobile Data 4G Moderate \n",
"4 Poor NaN 3G Low "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.drop(['Location'], axis=1).head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Education Level</th>\n",
" <th>Institution Type</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Device</th>\n",
" <th>IT Student</th>\n",
" <th>Location</th>\n",
" <th>Financial Condition</th>\n",
" <th>Internet Type</th>\n",
" <th>Network Type</th>\n",
" <th>Flexibility Level</th>\n",
" <th>age_group</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>University</td>\n",
" <td>Private</td>\n",
" <td>Male</td>\n",
" <td>23</td>\n",
" <td>Tab</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>University</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>23</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>NaN</td>\n",
" <td>Mobile Data</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>College</td>\n",
" <td>Public</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>School</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>11</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>NaN</td>\n",
" <td>Mobile Data</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" <td>young</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>School</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>Poor</td>\n",
" <td>NaN</td>\n",
" <td>3G</td>\n",
" <td>Low</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1200</th>\n",
" <td>College</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Low</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1201</th>\n",
" <td>College</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Rural</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Moderate</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1202</th>\n",
" <td>School</td>\n",
" <td>Private</td>\n",
" <td>Male</td>\n",
" <td>11</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>Mid</td>\n",
" <td>Mobile Data</td>\n",
" <td>3G</td>\n",
" <td>Moderate</td>\n",
" <td>young</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1203</th>\n",
" <td>College</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>18</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Rural</td>\n",
" <td>Mid</td>\n",
" <td>Wifi</td>\n",
" <td>4G</td>\n",
" <td>Low</td>\n",
" <td>average</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1204</th>\n",
" <td>School</td>\n",
" <td>Private</td>\n",
" <td>Female</td>\n",
" <td>11</td>\n",
" <td>Mobile</td>\n",
" <td>No</td>\n",
" <td>Town</td>\n",
" <td>Poor</td>\n",
" <td>Mobile Data</td>\n",
" <td>3G</td>\n",
" <td>Moderate</td>\n",
" <td>young</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1205 rows × 12 columns</p>\n",
"</div>"
],
"text/plain": [
" Education Level Institution Type Gender Age Device IT Student \\\n",
"0 University Private Male 23 Tab No \n",
"1 University Private Female 23 Mobile No \n",
"2 College Public Female 18 Mobile No \n",
"3 School Private Female 11 Mobile No \n",
"4 School Private Female 18 Mobile No \n",
"... ... ... ... ... ... ... \n",
"1200 College Private Female 18 Mobile No \n",
"1201 College Private Female 18 Mobile No \n",
"1202 School Private Male 11 Mobile No \n",
"1203 College Private Female 18 Mobile No \n",
"1204 School Private Female 11 Mobile No \n",
"\n",
" Location Financial Condition Internet Type Network Type \\\n",
"0 Town Mid Wifi 4G \n",
"1 Town NaN Mobile Data 4G \n",
"2 Town Mid Wifi 4G \n",
"3 Town NaN Mobile Data 4G \n",
"4 Town Poor NaN 3G \n",
"... ... ... ... ... \n",
"1200 Town Mid Wifi 4G \n",
"1201 Rural Mid Wifi 4G \n",
"1202 Town Mid Mobile Data 3G \n",
"1203 Rural Mid Wifi 4G \n",
"1204 Town Poor Mobile Data 3G \n",
"\n",
" Flexibility Level age_group \n",
"0 Moderate average \n",
"1 Moderate average \n",
"2 Moderate average \n",
"3 Moderate young \n",
"4 Low average \n",
"... ... ... \n",
"1200 Low average \n",
"1201 Moderate average \n",
"1202 Moderate young \n",
"1203 Low average \n",
"1204 Moderate young \n",
"\n",
"[1205 rows x 12 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# добавление нового столбца Возрастная группа\n",
"def age_group(value):\n",
" if value < 18:\n",
" return \"young\"\n",
" else:\n",
" return \"average\"\n",
"\n",
"df['age_group'] = df['Age'].map(age_group)\n",
"display(df)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Education Level Institution Type Gender Age Device IT Student \\\n",
"0 University Private Male 23 Tab No \n",
"2 College Public Female 18 Mobile No \n",
"5 School Private Male 11 Mobile No \n",
"8 College Public Male 18 Mobile No \n",
"9 School Private Male 11 Mobile No \n",
"... ... ... ... ... ... ... \n",
"1200 College Private Female 18 Mobile No \n",
"1201 College Private Female 18 Mobile No \n",
"1202 School Private Male 11 Mobile No \n",
"1203 College Private Female 18 Mobile No \n",
"1204 School Private Female 11 Mobile No \n",
"\n",
" Location Financial Condition Internet Type Network Type \\\n",
"0 Town Mid Wifi 4G \n",
"2 Town Mid Wifi 4G \n",
"5 Town Poor Mobile Data 3G \n",
"8 Town Mid Wifi 4G \n",
"9 Town Mid Mobile Data 3G \n",
"... ... ... ... ... \n",
"1200 Town Mid Wifi 4G \n",
"1201 Rural Mid Wifi 4G \n",
"1202 Town Mid Mobile Data 3G \n",
"1203 Rural Mid Wifi 4G \n",
"1204 Town Poor Mobile Data 3G \n",
"\n",
" Flexibility Level age_group \n",
"0 Moderate average \n",
"2 Moderate average \n",
"5 Low young \n",
"8 Low average \n",
"9 Moderate young \n",
"... ... ... \n",
"1200 Low average \n",
"1201 Moderate average \n",
"1202 Moderate young \n",
"1203 Low average \n",
"1204 Moderate young \n",
"\n",
"[1199 rows x 12 columns]\n"
]
}
],
"source": [
"# удаление строк с пустыми значениями\n",
"df_cleaned = df.dropna()\n",
"print(df_cleaned)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Education Level Institution Type Gender Age Device IT Student \\\n",
"0 University Private Male 23 Tab No \n",
"1 University Private Female 23 Mobile No \n",
"2 College Public Female 18 Mobile No \n",
"3 School Private Female 11 Mobile No \n",
"4 School Private Female 18 Mobile No \n",
"... ... ... ... ... ... ... \n",
"1200 College Private Female 18 Mobile No \n",
"1201 College Private Female 18 Mobile No \n",
"1202 School Private Male 11 Mobile No \n",
"1203 College Private Female 18 Mobile No \n",
"1204 School Private Female 11 Mobile No \n",
"\n",
" Location Financial Condition Internet Type Network Type \\\n",
"0 Town Mid Wifi 4G \n",
"1 Town Mid Mobile Data 4G \n",
"2 Town Mid Wifi 4G \n",
"3 Town Mid Mobile Data 4G \n",
"4 Town Poor NaN 3G \n",
"... ... ... ... ... \n",
"1200 Town Mid Wifi 4G \n",
"1201 Rural Mid Wifi 4G \n",
"1202 Town Mid Mobile Data 3G \n",
"1203 Rural Mid Wifi 4G \n",
"1204 Town Poor Mobile Data 3G \n",
"\n",
" Flexibility Level age_group \n",
"0 Moderate average \n",
"1 Moderate average \n",
"2 Moderate average \n",
"3 Moderate young \n",
"4 Low average \n",
"... ... ... \n",
"1200 Low average \n",
"1201 Moderate average \n",
"1202 Moderate young \n",
"1203 Low average \n",
"1204 Moderate young \n",
"\n",
"[1205 rows x 12 columns]\n"
]
}
],
"source": [
"# Вычисление моды (наиболее часто встречающегося значения) для пустых значений\n",
"mode_Financial = df['Financial Condition'].mode()[0] \n",
"df.fillna({'Financial Condition':mode_Financial}, inplace=True)\n",
"print(df)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGdCAYAAADT1TPdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNaklEQVR4nO3deVxU9f7H8dcMy7CD4IqA+65gmnu5VKaVW4KaWWllamm73rTVVi3t3u7vZtoqWbZcNffUrFxKNLcA911BETeUVdY5vz9UbpamKHBm4P18POYPZs4c3ljDvDmfc75jMQzDQERERMRBWc0OICIiIvJ3VFZERETEoamsiIiIiENTWRERERGHprIiIiIiDk1lRURERByayoqIiIg4NJUVERERcWiuZgf4M7vdTlJSEr6+vlgsFrPjiIiIyFUwDIP09HSCg4OxWov3WIjDlZWkpCRCQ0PNjiEiIiLXIDExkZCQkGLdp8OVFV9fX+DcD+vn52dyGhEREbkaaWlphIaGFr6PFyeHKysXRj9+fn4qKyIiIk6mJE7h0Am2IiIi4tBUVkRERMShqayIiIiIQ1NZEREREYemsiIiIiIOTWVFREREHJrKioiIiDg0lRURERFxaCorIiIi4tBUVkRERMShqayIiIiIQ1NZEREREYemsiIiIlJOGIbBs/+N4+v1CRiGYXacq6ayIiIiUk4siEtizubDvDRvKwdOZpod56qprIiIiJQDx9OzeWXBNgAev6UetSv5mJzo6qmsiIiIlHGGYfDC3K2cycqjSbAfj3WpY3akIlFZERERKePmxR5h+fZjuLlYeLd/BG4uzvX271xpRUREpEiOpWXzyvxz458nb61Hw6p+JicqOpUVERGRMsowDMZ9t4W07HyaVfdnRCfnGv9coLIiIiJSRs3edJifdx7H3cXKu/0jcHWy8c8FzplaRERE/tbR1LO8tmg7AE93rU/9Kr4mJ7p2KisiIiJljGEYjJ2zhfTsfJqHBvDIzbXMjnRdVFZERETKmP9uTGTV7hO4u1qZ3M95xz8XOHd6ERERuciRM2d5fdEOAEbfXp+6lZ1n8bfLUVkREREpI86Nf+LJyMmnRVgAD99U2+xIxUJlRUREpIz4en0iv+w5ie38+MfFajE7UrFQWRERESkDElOyeHPxuat/xnRr4FSf/XMlKisiIiJOzm43eG5OPJm5BbSqWYEHOzj31T9/prIiIiLi5Gb+doiYfafwcLMyKarsjH8uUFkRERFxYgmnspiwZCcAY7s3pGZFb5MTFT+VFRERESdltxuMmR1HVm4BbWoF8kC7mmZHKhEqKyIiIk5qxtqD/HYgBS93FyZFRWAtY+OfC1RWREREnNDBk5lMXHpu/DPujoaEBXmZnKjkqKyIiIg4mQvjn+w8O+3rBDGoTQ2zI5UolRUREREnMz3mIBsOnsbb3YW3I8PL7PjnApUVERERJ7L/RAbvnB//PH9XI0IDy+745wKVFRERESdRYDcYPSuOnHw7N9WtyL2tw8yOVCpUVkRERJzEp7/uZ3PCGXxsrrwdFY7FUrbHPxeorIiIiDiBvcczmPzDbgBe6tGI6gGeJicqPSorIiIiDi6/wM6zs+LIzbfTqX4l+t8YanakUqWyIiIi4uA+/uUAcYln8PVwZWJks3Iz/rlAZUVERMSB7T6Wzr+Wnxv/vNyjMdX8y8/45wKVFREREQeVX2Bn9Kw4cgvs3NKwMlEtQ8yOZIoilZUJEybQqlUrfH19qVy5Mn369GHXrl2Fj6ekpPD444/ToEEDPD09CQsL44knniA1NbXYg4uIiJR1H67eT/zhVPw8XJnQt/yNfy4oUllZtWoVI0eOZN26dSxfvpy8vDxuv/12MjMzAUhKSiIpKYnJkyezdetWoqOjWbp0KQ8//HCJhBcRESmrdian8d6P58Y/43s1oYqfh8mJzGMxDMO41iefOHGCypUrs2rVKjp27HjJbWbNmsV9991HZmYmrq6uV9xnWloa/v7+pKam4ufnd63RREREnFZegZ0+U9awLSmN2xpV4eMHWjr8UZWSfP++cnv4GxfGO4GBgX+7jZ+f32WLSk5ODjk5OYVfp6WlXU8kERERpzd15T62JaUR4OXGW32bOnxRKWnXfIKt3W7nqaeeokOHDjRt2vSS25w8eZLXX3+dYcOGXXY/EyZMwN/fv/AWGlq+rh0XERH5o21JqfzfT3sAeLVXEyr7lt/xzwXXPAZ69NFHWbJkCb/++ishIX89OzktLY2uXbsSGBjIggULcHNzu+R+LnVkJTQ0VGMgEREpd3Lz7fSesoYdR9Po1qQK0+5z/PHPBQ43Bho1ahSLFi1i9erVlywq6enpdO/eHV9fX+bOnXvZogJgs9mw2WzXEkNERKRMeX/FXnYcTaOClxtv9Cm/V//8WZHGQIZhMGrUKObOncvPP/9MrVq1/rJNWloat99+O+7u7ixYsAAPDx2+EhERuZKtR1KZsmIvAK/3aUolX/0hf0GRjqyMHDmSr776ivnz5+Pr60tycjIA/v7+eHp6FhaVrKwsvvzyS9LS0gpPmK1UqRIuLi7F/xOIiIg4uZz8AkbPiqPAbnBXs2r0CA82O5JDKdI5K5c7HDV9+nSGDBnCypUr6dKlyyW3OXDgADVr1rzi99ClyyIiUt5MXraL91fsJcjbnR+e7kiQj/MdVXGYc1au1Gs6d+58xW1ERETkf+ISzzB11T4A3ujT1CmLSknTZwOJiIiYJDvvf+OfnhHB3NGsmtmRHJLKioiIiEn+/dMe9hzPoKKPjdd6NTE7jsNSWRERETHB7wmn+fD8+Oetu5tSwdvd5ESOS2VFRESklF0Y/9gN6NM8mNubVDU7kkNTWRERESll/1y+m30nMqnka2O8xj9XpLIiIiJSijYdSuHjX/YDMOHuZgR4afxzJSorIiIipeRsbgGjZ8VjGBDZIoTbGlcxO5JTUFkREREpJZN/2MWBk5lU8bPxcs/GZsdxGiorIiIipWD9gRQ+W3MAgImR4fh7Xv5DfuViKisiIiIlLCs3nzGz4zAM6H9jCF0aVDY7klNRWRERESlh7yzdxaFTWVTz9+DFHhr/FJXKioiISAlat/8U0TEHAXg7Mhw/D41/ikplRUREpIRk5pwb/wAMbB1Kx/qVTE7knFRWRERESsjEJTtJTDlL9QBPnr+zkdlxnJbKioiISAmI2XuSL9YdAs6Nf3w1/rlmKisiIiLFLCMnnzGz4wG4r20YN9WraHIi56ayIiIiUsze+n4HR86cJaSCJ+Pu0PjneqmsiIiIFKPVu0/w1W8JAEyKisDb5mpyIuensiIiIlJM0rLzGDvn3PhncLsatKsTZHKiskFlRUREpJi8tXgHSanZhAV68dwdDc2OU2aorIiIiBSDlbuO882GRCwWmNwvAi93jX+Ki8qKiIjIdUo9m8fYOVsAGNK+Jq1rBZqcqGxRWREREblOry/aTnJaNjWDvPhHN41/ipvKioiIyHX4eecxZm86XDj+8XR3MTtSmaOyIiIico1Ss/43/hl6Uy1urKnxT0lQWREREblGry7cxvH0HGpX8ubZ2xuYHafMUlkRERG5Bj9sS+a7349gPT/+8XDT+KekqKyIiIgU0enMXJ6fuxWARzrWpkVYBZMTlW0qKyIiIkU0fuE2TmbkULeyD0/fVt/sOGWeyoqIiEgRLN16lPmxSbhYLbyr8U+pUFkRERG5Sqcycnjh/PhneMfaRIQGmBuonFBZERERuUovL9jGqcxc6lfx4cnb6pkdp9xQWREREbkKi+OPsjj+6PnxT3Nsrhr/lBaVFRERkSs4mZHDS/PPjX9Gdq5DsxB/kxOVLyorIiIif8MwDF6at5WUzFwaVvVl1C0a/5Q2lRUREZG/sTD+KEu2JuNqtTC5XwTurnrrLG36FxcREbmM4+nZvHx+/DPqlro0ra7xjxlUVkRERC7BMAxemLuVM1l5NK7mx8gudc2OVG6prIiIiFzC/Ngklm8/hpuLhXf7R+DmordMs+hfXkRE5E+OpWXzyoJtADxxSz0aVfMzOVH5prIiIiLyB4Zh8Px3W0g9m0ez6v6M6Fz
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# линейная диаграмма (средний возраст по уровню образования)\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(df[[\"Education Level\", \"Age\"]].groupby(\"Education Level\").mean())\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: ylabel='Frequency'>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyJ0lEQVR4nO3de1xU9b7/8TcioKhAqNyOgOY1EqzMaE7atmQLyjFNehwtTWu7tdzYRbq42dvU7IJp2W2bdh4PFH2cTLOjlZaaV8xCTdNMLVI3hR5upltQTK7r90fH+TXKdZxhGNfr+Xisx8O11nd95/Ply9C7Nd+Z8TAMwxAAAICJtHB1AQAAAE2NAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEynpasLaA6qq6uVl5endu3aycPDw9XlAACABjAMQ+fOnVNYWJhatGjcPR0CkKS8vDyFh4e7ugwAAGCHEydOqFOnTo26hgAkqV27dpJ++wH6+fm5uBoAANAQJSUlCg8Pt/53vDEIQJL1ZS8/Pz8CEAAAbsae5SssggYAAKZDAAIAAKZDAAIAAKbDGiAAAJqYYRiqrKxUVVWVq0tp1jw9PdWyZUunfEQNAQgAgCZUXl6u/Px8XbhwwdWluAVfX1+FhobK29vbof0SgAAAaCLV1dXKycmRp6enwsLC5O3tzQfw1sIwDJWXl+vUqVPKyclR9+7dG/1hh3UhAAEA0ETKy8tVXV2t8PBw+fr6urqcZq9169by8vLSzz//rPLycrVq1cphfbMIGgCAJubIOxnXOmf9rJgBAABgOgQgAABgOqwBAgDAxTr/9dMmfbyf5iTadV1WVpb69++vhIQEffpp09bsaNwBAgAADZKenq7HHntMO3bsUF5enqvLuSoEIAAAUK/z589r5cqVmjx5shITE5WRkWFz/pNPPlH37t3VqlUr3XXXXVq6dKk8PDx09uxZa5udO3dqwIABat26tcLDw/X444+rtLS0aQfyfwhAAACgXh988IF69eqlnj17auzYsVq8eLEMw5Ak5eTk6L777tOIESP07bff6pFHHtHf//53m+uPHz+uhIQEJSUl6eDBg1q5cqV27typKVOmuGI4rAECAFxbalpPY++aF/x/6enpGjt2rCQpISFBxcXFyszM1MCBA/Xuu++qZ8+emjdvniSpZ8+eOnTokF566SXr9WlpaRozZoyefPJJSVL37t311ltv6Q9/+IMWLlzo0M/4aQjuAAEAgDplZ2drz549uv/++yVJLVu21KhRo5Senm49369fP5trbrvtNpv9b7/9VhkZGWrbtq11i4+Pt346dlPjDhAAAKhTenq6KisrFRYWZj1mGIZ8fHz0j3/8o0F9nD9/Xo888ogef/zxK85FREQ4rNaGIgABAIBaVVZWatmyZXrttdc0ePBgm3MjRozQ+++/r549e+qzzz6zOff111/b7N9yyy06cuSIunXr5vSaG4IABAAAarVu3Tr961//0oQJE+Tv729zLikpSenp6frggw80f/58TZs2TRMmTNCBAwes7xK79GWv06ZN0+23364pU6boz3/+s9q0aaMjR45o06ZNDb6L5EisAQIAALVKT09XXFzcFeFH+i0A7d27V+fOndOHH36o1atXKyYmRgsXLrS+C8zHx0eSFBMTo8zMTP34448aMGCAbr75Zs2YMcPmZbWmxB0gAABcrDm/S23t2rW1nrvtttusb4WPiYnRPffcYz330ksvqVOnTjbv7urXr58+//xz5xXbCAQgAABw1d555x3169dP7du315dffql58+a57DN+GoIABAAArtrRo0f14osv6syZM4qIiNBTTz2l1NRUV5dVKwIQAAC4aq+//rpef/11V5fRYCyCBgAApkMAAgAApkMAAgCgiV165xTq56yfFQEIAIAm4uXlJUm6cOGCiytxH5d+Vpd+do7CImgAAJqIp6enAgICVFRUJEny9fW1flIybBmGoQsXLqioqEgBAQHy9PR0aP8EIAAAmlBISIgkWUMQ6hYQEGD9mTkSAQgAgCbk4eGh0NBQBQUFqaKiwtXlNGteXl4Ov/NzCQEIAAAX8PT0dNp/3FE/FkEDAADTcWkAWrhwoWJiYuTn5yc/Pz9ZLBatX7/een7gwIHy8PCw2R599FGbPnJzc5WYmChfX18FBQXpmWeeUWVlZVMPBQAAuBGXvgTWqVMnzZkzR927d5dhGFq6dKmGDx+u/fv368Ybb5QkTZw4UbNnz7Ze4+vra/13VVWVEhMTFRISoq+++kr5+fkaN26cvLy89PLLLzf5eK4Vnf/6aY3Hm/O3FQMA0BguDUDDhg2z2X/ppZe0cOFC7dq1yxqAfH19a139/fnnn+vIkSPavHmzgoODddNNN+mFF17QtGnTNGvWLHl7ezt9DAAAwP00mzVAVVVVWrFihUpLS2WxWKzH33vvPXXo0EG9e/dWamqqzYdHZWVlKTo6WsHBwdZj8fHxKikp0eHDh2t9rLKyMpWUlNhsAADAPFz+LrDvvvtOFotFFy9eVNu2bbVmzRpFRUVJkh544AFFRkYqLCxMBw8e1LRp05Sdna3Vq1dLkgoKCmzCjyTrfkFBQa2PmZaWpueff95JIwIAAM2dywNQz549deDAARUXF+vDDz/U+PHjlZmZqaioKE2aNMnaLjo6WqGhoRo0aJCOHz+url272v2YqampSklJse6XlJQoPDz8qsYBAADch8tfAvP29la3bt3Ut29fpaWlqU+fPnrzzTdrbBsbGytJOnbsmKTfPk2zsLDQps2l/bo+NdLHx8f6zrNLGwAAMA+XB6DLVVdXq6ysrMZzBw4ckCSFhoZKkiwWi7777jubjxPftGmT/Pz8rC+jAQAAXM6lL4GlpqZqyJAhioiI0Llz57R8+XJt375dGzdu1PHjx7V8+XINHTpU7du318GDBzV16lTdeeediomJkSQNHjxYUVFRevDBBzV37lwVFBRo+vTpSk5Olo+PjyuHBgAAmjGXBqCioiKNGzdO+fn58vf3V0xMjDZu3Kg//vGPOnHihDZv3qw33nhDpaWlCg8PV1JSkqZPn2693tPTU+vWrdPkyZNlsVjUpk0bjR8/3uZzgwAAAC7n0gCUnp5e67nw8HBlZmbW20dkZKQ+++wzR5YFAACucc1uDRAAAICzEYAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpuDQALVy4UDExMfLz85Ofn58sFovWr19vPX/x4kUlJyerffv2atu2rZKSklRYWGjTR25urhITE+Xr66ugoCA988wzqqysbOqhAAAAN+LSANSpUyfNmTNH+/bt0969e3X33Xdr+PDhOnz4sCRp6tSpWrt2rVatWqXMzEzl5eVp5MiR1uurqqqUmJio8vJyffXVV1q6dKkyMjI0Y8YMVw0JAAC4AQ/DMAxXF/F7gYGBmjdvnu677z517NhRy5cv13333SdJ+uGHH3TDDTcoKytLt99+u9avX6//+I//UF5enoKDgyVJixYt0rRp03Tq1Cl5e3s36DFLSkrk7++v4uJi+fn5OW1s7qLzXz+t8fhPcxKbuBIAaLya/obx9+vadDX//W42a4Cqqqq0YsUKlZaWymKxaN++faqoqFBcXJy1Ta9evRQREaGsrCxJUlZWlqKjo63hR5Li4+NVUlJivYtUk7KyMpWUlNhsAADAPFwegL777ju1bdtWPj4+evTRR7VmzRpFRUWpoKBA3t7eCggIsGkfHBysgoICSVJBQYFN+Ll0/tK52qSlpcnf39+6hYeHO3ZQAACgWXN5AOrZs6cOHDig3bt3a/LkyRo
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# гистограмма\n",
"df.plot.hist(column=[\"Age\"], bins=80)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Age Axes(0.125,0.11;0.775x0.77)\n",
"dtype: object"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAKqCAYAAAD4/IURAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0CElEQVR4nO3df7RXdYHv/9cB9IDAwVR+jqggo0whlmbkSC4Ihh9jCP6otO4IjukdLzQ53H7RNZWsWNNPVxOj3ZaK3lCaZsRxbC6NoWAmWGBoTA2Xw4LE4KDgcI4cARE+3z/6eqYTP+TDr4O+H4+19pLP3u+993u3Wm6f7PPZp6ZSqVQCAABQmHZtPQEAAIC2IIYAAIAiiSEAAKBIYggAACiSGAIAAIokhgAAgCKJIQAAoEhiCAAAKJIYAgAAiiSGAACAIokhAI5qf//3f5+ampoMGTKkracCwFtMTaVSqbT1JABgby644IKsW7cua9asycqVKzNgwIC2nhIAbxGeDAFw1Fq9enWefPLJfOMb30j37t0ze/bstp4SAG8hYgiAo9bs2bPztre9LRdddFEuv/zyPcbQpk2b8hd/8Repq6vL8ccfn4kTJ+aZZ55JTU1NZs2a1Wrsf/zHf+Tyyy/PCSeckI4dO+bd7353HnrooSN0NQAcbcQQAEet2bNn59JLL82xxx6bK6+8MitXrszPf/7zlu27du3KuHHjcv/992fixIn50pe+lPXr12fixIm7Hevf//3f8973vje//vWv89nPfjZf//rX07lz50yYMCFz5849kpcFwFHCd4YAOCotXbo07373u/PII49k5MiRqVQqOeWUU3LZZZfltttuS5I88MADLZ8/8YlPJPldIP3Zn/1ZHn300dx9992ZNGlSkmTkyJF54YUX8vOf/zy1tbVJkkqlkqFDh+bFF1/M//t//68tLhOANuTJEABHpdmzZ6dnz54ZPnx4kqSmpiYf/vCHM2fOnOzcuTNJMm/evBxzzDG59tprW/Zr165dJk+e3OpYL730Uh599NF86EMfyssvv5yNGzdm48aN2bRpU0aPHp2VK1fmt7/97ZG7OACOCmIIgKPOzp07M2fOnAwfPjyrV69OfX196uvrM2TIkGzYsCHz589PkvzmN79J7969c9xxx7Xa/w/fOFdfX59KpZLPf/7z6d69e6vl5ptvTpK88MILR+biADhqdGjrCQDAH3r00Uezfv36zJkzJ3PmzNlt++zZszNq1Kj9Pt6uXbuSJJ/85CczevToPY7xym6A8oghAI46s2fPTo8ePTJz5szdtj3wwAOZO3du7rjjjpx66ql57LHH8sorr7R6OlRfX99qn/79+ydJjjnmmIwcOfLwTh6ANw0vUADgqLJ169b07NkzH/zgB3PnnXfutv3JJ5/MBRdckDlz5qRDhw65/PLL9+sFCsOHD8+zzz6b5cuXp3fv3q2O+eKLL6Z79+6H/doAOLp4MgTAUeWhhx7Kyy+/nIsvvniP29/73ve2/ALWuXPn5j3veU/+5//8n6mvr8/AgQPz0EMP5aWXXkryu5cuvG7mzJkZOnRozjrrrFx77bXp379/NmzYkEWLFuX555/PM888c0SuD4CjhxgC4Kgye/bsdOzYMX/2Z3+2x+3t2rXLRRddlNmzZ2fz5s354Q9/mE984hO555570q5du1xyySW5+eabc8EFF6Rjx44t+7397W/PkiVLMn369MyaNSubNm1Kjx498q53vSs33XTTkbo8AI4ifkwOgLecBx98MJdcckmeeOKJXHDBBW09HQCOUmIIgDe1rVu3plOnTi2fd+7cmVGjRmXJkiVpaGhotQ0Afp8fkwPgTe3jH/94tm7dmvPPPz/bt2/PAw88kCeffDJf/vKXhRAA++TJEABvavfdd1++/vWvp76+Ptu2bcuAAQNy/fXXZ8qUKW09NQCOcmIIAAAoUru2ngAAAEBbEEMAAECR3hIvUNi1a1fWrVuXrl27tvoFewAAQFkqlUpefvnl9OnTJ+3a7fvZz1sihtatW5e+ffu29TQAAICjxNq1a3PyySfvc8xbIoa6du2a5HcXXFdX18azAQAA2kpTU1P69u3b0gj78paIodd/NK6urk4MAQAA+/X1GS9QAAAAiiSGAACAIokhAACgSGIIAAAokhgCAACKVFUMzZgxI+edd166du2aHj16ZMKECVmxYkXL9jVr1qSmpmaPyw9+8IO9HnfSpEm7jR8zZsyBXxUAAMAbqCqGFi5cmMmTJ2fx4sV55JFHsmPHjowaNSrNzc1Jkr59+2b9+vWtlunTp6dLly4ZO3bsPo89ZsyYVvvdf//9B35VAAAAb6Cq3zM0b968Vp9nzZqVHj16ZOnSpbnwwgvTvn379OrVq9WYuXPn5kMf+lC6dOmyz2PX1tbuti8AAMDhclDfGWpsbEySnHDCCXvcvnTp0ixbtizXXHPNGx5rwYIF6dGjR84888xcf/312bRp08FMDQAAYJ9qKpVK5UB23LVrVy6++OJs3rw5TzzxxB7H/I//8T+yYMGC/OpXv9rnsebMmZPjjjsu/fr1y6pVq/K5z30uXbp0yaJFi9K+ffvdxm/fvj3bt29v+dzU1JS+ffumsbExdXV1B3I5AADAW0BTU1O6deu2X21Q1Y/J/b7Jkydn+fLlew2hrVu35r777svnP//5NzzWFVdc0fLns846K4MHD87pp5+eBQsWZMSIEbuNnzFjRqZPn36gUwcAADiwH5ObMmVKHn744Tz22GM5+eST9zjmH//xH/PKK6/kqquuqvr4/fv3z0knnZT6+vo9bp82bVoaGxtblrVr11Z9DgAAoGxVPRmqVCr5+Mc/nrlz52bBggXp16/fXsfeeeedufjii9O9e/eqJ/X8889n06ZN6d279x6319bWpra2turjAgAAvK6qJ0OTJ0/O9773vdx3333p2rVrGhoa0tDQkK1bt7YaV19fn8cffzwf+9jH9nicgQMHZu7cuUmSLVu25FOf+lQWL16cNWvWZP78+Rk/fnwGDBiQ0aNHH+BlAQAA7FtVMXT77bensbExw4YNS+/evVuW73//+63G3XXXXTn55JMzatSoPR5nxYoVLW+ia9++fZ599tlcfPHFOeOMM3LNNdfk3HPPzU9+8hNPfwAAgMPmgN8mdzSp5o0RAADAW1c1bXBQv2cIAADgzUoMAQAARRJDAABAkcQQAABQJDEEAAAUSQwBAABFEkMAAECRxBAAAFCkDm09AaC1ra/uzKoXt1S937YdO/P8f27NyW/rlI7HtD+gc5/evUs6HXtg+wJw6BzovSA5+PuBewElEUNwlFn14pZ84O+eaJNzP/zxoRn0R93a5NwA/Bf3AjgyaiqVSqWtJ3Gwmpqa0q1btzQ2Nqaurq6tpwMH5UD/NrD+hS254fvLctuH35kBPboc0Ln9bSDA0eFgngwd7P3AvYA3u2rawJMhOMp0Orb9Qf2N3IAeXfyNHsCb3MHeCxL3A9gfXqAAAAAUSQwBAABFEkMAAECRxBAAAFAkMQQAABRJDAEAAEUSQwAAQJHEEAAAUCQxBAAAFEkMAQAARRJDAABAkcQQAABQJDEEAAAUSQwBAABFEkMAAECRxBAAAFAkMQQAABRJDAEAAEUSQwAAQJHEEAAAUCQxBAAAFEkMAQAARRJDAABAkcQQAABQJDEEAAAUSQwBAABFEkMAAECRxBAAAFAkMQQAABRJDAEAAEUSQwAAQJHEEAAAUCQxBAAAFEkMAQAARRJDAABAkcQQAABQJDEEAAAUSQwBAABFEkMAAECRxBAAAFAkMQQAABRJDAEAAEUSQwAAQJHEEAAAUCQxBAAAFEkMAQAARRJDAABAkcQQAABQJDEEAAAUSQwBAABFEkMAAECRxBAAAFAkMQQAABRJDAEAAEUSQwAAQJGqiqEZM2bkvPPOS9euXdOjR49MmDAhK1asaDVm2LBhqampabX81V/91T6PW6lUctNNN6V3797p1KlTRo4cmZUrV1Z/NQAAAPupqhhauHBhJk+enMWLF+eRRx7Jjh07MmrUqDQ3N7cad+2112b9+vUty1e+8pV9Hvc
"text/plain": [
"<Figure size 1000x800 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ящик с усами\n",
"df.plot.box(column=\"Age\", by=\"Gender\", figsize=(10, 8))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Education Level'>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGwCAYAAABo5yU1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+FUlEQVR4nO3deVyU5f7/8fe4gRvgriSapZKWtp00NUtPJnbKtMxT5vkeK01PaZ6yxfy1aJ3U9jqlaXVM1DRttTKXFFcQF1RwQVERBRcWRXYYYOb6/VFOTZiJAnMPvJ6PxzwezXVvn3sS5s19Xfd92YwxRgAAABZVzdMFAAAAnAthBQAAWBphBQAAWBphBQAAWBphBQAAWBphBQAAWBphBQAAWFoNTxfwe06nU8ePH1f9+vVls9k8XQ4AADgPxhhlZ2crMDBQ1aqV7bUQy4WV48ePKygoyNNlAACAC5CUlKSWLVuW6T4tF1bq168v6eeT9fPz83A1AADgfGRlZSkoKMj1PV6WLBdWznT9+Pn5EVYAAPAy5TGEgwG2AADA0ggrAADA0ggrAADA0iw3ZuV8ORwOFRUVeboMS6tZs6aqV6/u6TIAALgoXhdWjDFKTk5WRkaGp0vxCgEBAWrevDnPrAEAeC2vCytngkrTpk1Vp04dvoT/gDFGeXl5Sk1NlSS1aNHCwxUBAHBhvCqsOBwOV1Bp1KiRp8uxvNq1a0uSUlNT1bRpU7qEAABeyasG2J4Zo1KnTh0PV+I9znxWjO8BAHgrrworZ9D1c/74rAAA3s4rwwoAAKg6vGrMyrkcy8jX6dzCCjteg7q1dElA7Qo7HgAAVVWlCCvHMvL117fWyl7srLBj+tSoptVP9yKwAABQzipFN9Dp3MIKDSqSZC92XtCVnMjISFWvXl133HFHOVQFAEDlUynCijeZNWuWHn/8ca1fv17Hjx/3dDkAgCrmy6gk7T6W6ekySoWwUoFycnK0aNEiPfroo7rjjjsUGhrqtvz7779Xu3bt5Ovrq969e2vOnDmy2WxuT+sNDw9Xz549Vbt2bQUFBWns2LHKzc2t2BMBAHidIodTk77fo2e+2ql/ztqijLyKG+d5sQgrFeiLL77QFVdcoeDgYP3jH//Qp59+KmOMJCkhIUH33nuvBg4cqJiYGI0aNUrPP/+82/bx8fHq16+fBg0apJ07d2rRokUKDw/XmDFjPHE6AAAvkZ5bqH/O2qLQjYclSafzCuXnW9OzRZUCYaUCzZo1S//4xz8kSf369VNmZqbWrVsnSfroo48UHBysN998U8HBwbr//vv14IMPum0/depUDR06VE888YTatWun7t276/3339fcuXNVUFBQ0acDAPACe45nqv8H4Yo8dMrVZiRVq+Y9z+EirFSQuLg4bdmyRUOGDJEk1ahRQ/fdd59mzZrlWn7DDTe4bdOlSxe39zExMQoNDVW9evVcr5CQEDmdTiUkJFTMiQAAvMYPMcc1aMZGHcvI93QpF6VS3LrsDWbNmqXi4mIFBga62owx8vHx0bRp085rHzk5ORo1apTGjh1bYlmrVq3KrFYAgHdzOI3eXBGnmeviPV1KmSCsVIDi4mLNnTtXb7/9tvr27eu2bODAgfr8888VHByspUuXui3bunWr2/vrrrtOsbGxatu2bbnXDADwTpn5Rfr3wh1aG5cmSbLp524fb0ZYqQBLlizR6dOnNXz4cPn7+7stGzRokGbNmqUvvvhC77zzjsaPH6/hw4crOjradbfQmfl9xo8frxtvvFFjxozRiBEjVLduXcXGxmrlypXnfXUGAFB5HUzN1iNztynh5M93iVaGoCJVkjErDerWkk+Nij0VnxrV1KBurfNad9asWerTp0+JoCL9HFaioqKUnZ2tr776St988406d+6sGTNmuO4G8vHxkSR17txZ69at0/79+9WzZ09de+21eumll9y6lgAAVdPK2BQNmB7hCipS5QgqkmQzZ+6dtYisrCz5+/srMzNTfn5+bssKCgqUkJCgNm3ayNfX121ZZZwbaPLkyZo5c6aSkpIueB/n+swAAN7P6TSatuag3lm5v1TbHX6tbJ+kfq7v74tVabqBLgmo7fXz9Hz44Ye64YYb1KhRI0VEROjNN9/kGSoAgD+Uay/WU1/EaPmeZEmVp9vn9ypNWKkMDhw4oFdffVXp6elq1aqVnnrqKU2YMMHTZQEALOjIqVyNnLtNcSnZkipvUJEIK5by7rvv6t133/V0GQAAi9twIE1jFuxQZn6Rq62yBhXJS8OKxYbZWBqfFQBUHsYY/W9DgqYu2ytnFfr17lVhpWbNn+cxyMvLU+3a3j0+paLk5eVJ+vWzAwB4p4IihyZ8s0vf7jgmqXJ3+/yeV4WV6tWrKyAgQKmpqZKkOnXquJ5BAnfGGOXl5Sk1NVUBAQGqXr26p0sCAFyg4xn5GjVvm3Ydy5Qk2WxSVbpw7lVhRZKaN28uSa7AgnMLCAhwfWYAAO+zJSFdj87fplM5vz6eoyoFFckLw4rNZlOLFi3UtGlTFRUV/fkGVVjNmjW5ogIAXuyzTUc06fs9Kq5KA1TOwuvCyhnVq1fnixgAUCkVFjs18fs9+nxLoqdLsQSvDSsAAFRGqdkFevSz7dp25LSkqjc+5WwIKwAAWERMUoZGzdum5KwCSb/c8VPFg4pEWAEAwBK+3nZUE77dpcJip6uNnPIzwgoAAB5U7HBqytJ9+jQiwdOlWBZhBQAADzmdW6jRC7ZrY/wpSVXrQW+lQVgBAMAD9p7I0sh5UUpKz5dEUDkXwgoAABVs6a4TeuqLGOUXOVxtBJU/RlgBAKCCOJ1Gb6+M0/Q18Z4uxasQVgAAqABZBUV6YmG0Vu/7eboYun3OH2EFAIByFp+Wo0fmRulQWq4kgkppEVYAAChHq/elaOzn0cqxF7vaCCqlQ1gBAKAcGGP04dp4vbUijnBykQgrAACUsVx7sZ75KkZLdyVLotvnYhFWAAAoQ0npeXpkbpT2JWdLYiLCskBYAQCgjEQcPKnR87crI7/I1UZQuXiEFQAALpIxRp9GHNaUH/fKQTopc4QVAAAuQkGRQ89/u1tfbz8qifEp5YGwAgDABTqRma9/zdummKOZkhifUl4IKwAAXIBtR9I1at42ncwpdLURVMoHYQUAgFL6fEuiXvxut4odpJOKQFgBAOA8FRY79cqSPfpsU6KnS6lSCCsAAJyHtGy7Rs/fri2H0yUxPqUiEVYAAPgTu45mauS8KJ3ILJD0yx0/BJUKQ1gBAOAcFu84pvFf75S92OlqI6dULMIKAABnUexw6vXl+/TJhgRPl1LlEVYAAPidjLxCPf75Dm04cFISD3rzNMIKAAC/EZecrUfmRikxPU8SQcUKCCsAAPxi+e4TGvdFjPIKHa42gornVSvNylOnTtUNN9yg+vXrq2nTpho4cKDi4uLc1ikoKNDo0aPVqFEj1atXT4MGDVJKSkqZFg0AQFlyOo3eWblf//psu1tQgTWUKqysW7dOo0eP1qZNm7Ry5UoVFRWpb9++ys3Nda3z5JNP6ocfftCXX36pdevW6fjx47rnnnvKvHAAAMpCdkGRRs7bpvfDDkj6udsH1mIz5sLvFE9LS1PTpk21bt063XzzzcrMzFSTJk20YMEC3XvvvZKkffv2qUOHDoqMjNSNN95YYh92u112u931PisrS0FBQcrMzJSfn9+FlgYAwJ86lJajkfO26WBqjqSqNT7l8Gt3lOn+srKy5O/vXy7f36W6svJ7mZk/zzLZsGFDSdK2bdtUVFSkPn36uNa54oor1KpVK0VGRp51H1OnTpW/v7/rFRQUdDElAQBwXtbEpWrA9AhXUJGqTlDxNhccVpxOp5544gn16NFDV111lSQpOTlZtWrVUkBAgNu6zZo1U3Jy8ln3M2HCBGVmZrpeSUlJF1oSAAB/yhijGWvj9fDsrcouKPZ0OTgPF3w30OjRo7V7926Fh4dfVAE+Pj7y8fG5qH0AAHA+8gsdevbrnfoh5rikqtXt480uKKyMGTNGS5Ys0fr169WyZUtXe/PmzVVYWKiMjAy3qyspKSlq3rz5RRcLAMCFSkr
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# диаграмма с областями \n",
"data = (df[[ \"Education Level\", \"Age\"]].groupby(['Education Level']).mean())\n",
"data.plot.area()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='Age', ylabel='Education Level'>"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAGwCAYAAAAUgTnsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwhUlEQVR4nO3dfXzP9f7H8efXxWZ26TJbNsYYc5nLEyGi6fAbkZAOftIlRyEHpaiTpqijUx065ydLF0I/SYlyLTsKZUbTQqtxhp0422xzMdvn94efb752+d323d7bHvfb7Xu7+Vy9v6/33vvu+/S5tFmWZQkAAADGqlbeBQAAAKBgBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADFejvAuAc3JycpSUlCRvb2/ZbLbyLgcAABSBZVk6f/68AgICVK2a8/vLCGwVTFJSkgIDA8u7DAAAUAwnTpxQ48aNnd6OwFbBeHt7S7o64D4+PuVcDQAAKIq0tDQFBgbav8edRWCrYK4dBvXx8SGwAQBQwRT3dCYuOgAAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBLR9RUVHy8/Nz+fuMHz9eQ4cOdfn7AACAiqtSP5rq3//+t5599llt2LBBZ86cUZ06ddShQwc9++yz6tmzZ3mXZ5ymszbY//3zgkG8B1DG+N0FkJ9KHdiGDx+uy5cv65133lGzZs105swZbd26VWfPni3v0oxy/ZfEjfNK60ujsrwH4ArBszbIumFe01kbVEPSMX53AagSHxJNSUnRV199pZdeekl9+/ZVkyZN1K1bN82ePVsRERH2dR5++GHddNNNqlWrltq2bavPPvvMoZ0vvvhCrVu3lpeXlwYOHKhTp07Zl+Xk5Oj5559X48aN5e7uro4dO2rTpk0O2x86dEj9+vWTh4eH6tWrp4ceekjp6emu/wEAqDBuDGvXXCnTKgCYrNIGNi8vL3l5eWndunW6dOlSruU5OTm66667FB0drffee09xcXFasGCBqlevbl8nMzNTixYt0rvvvqtdu3YpMTFRTz75pH35a6+9pldeeUWLFi1SbGyswsPDFRERoaNHj0qSMjIyFB4erjp16mjfvn1as2aNtmzZosmTJxe5H5cuXVJaWprDqzTltVfKmeVV6T0AV+B3F0BRVNrAVqNGDUVFRemdd96Rn5+fevbsqaeeekqxsbGSpC1btmjv3r1au3atBgwYoGbNmmnw4MG666677G1kZWVp6dKl6tKlizp16qTJkydr69at9uWLFi3SzJkzNWrUKIWGhuqll15Sx44dtXjxYknSBx98oIsXL2rFihVq27at+vXrpzfeeEPvvvuuzpw5U6R+REZGytfX1/4KDAwsvR8SAACoECptYJOunsOWlJSk9evXa+DAgdqxY4c6deqkqKgoxcTEqHHjxmrZsmW+29euXVvNmze3T/v7+ys5OVmSlJaWpqSkpFwXL/Ts2VNHjhyRJB05ckQdOnSQp6enw/KcnBzFx8cXqQ+zZ89Wamqq/XXixIki9x8AAFQOlTqwSVKtWrU0YMAAPfPMM/rnP/+p8ePHa+7cufLw8Ch025o1azpM22w2WVZ+Z5u4hru7u3x8fBxepamwk/FL42T9yvIegCvwuwugKCp9YLtRWFiYMjIy1L59e508eVI//vhjsdrx8fFRQECAoqOjHeZHR0crLCxMktS6dWsdPHhQGRkZDsurVaum0NDQ4ncCQKWS3+X6lfoyfgBOqbR/D86ePasRI0ZowoQJat++vby9vbV//369/PLLGjJkiPr06aPevXtr+PDhevXVVxUSEqIffvhBNptNAwcOLNJ7zJgxQ3PnzlXz5s3VsWNHLV++XDExMXr//fclSWPGjNHcuXM1btw4zZs3T//+97/1xz/+UX/4wx900003ubL7Trn2P3hX3gOqsrwH4ArH+N0FUIhKG9i8vLzUvXt3/eUvf9Hx48eVlZWlwMBAPfjgg3rqqackSf/7v/+rJ598UqNHj1ZGRoZCQkK0YMGCIr/HlClTlJqaqunTpys5OVlhYWFav369WrRoIenqOXBffPGFHn/8cXXt2lW1a9e2B0QTlcUXRGV5D8AV+N0FkB+bVdYnZaFE0tLS5Ovrq9TU1FI/nw0AALhGSb+/q9w5bAAAABUNgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADAcgQ0AAMBwBDYAAADDEdgAAAAMR2ADAAAwHIENAADAcAQ2AAAAwxHYAAAADEdgAwAAMByBDQAAwHAENgAAAMMR2AAAAAxHYAMAADBcjaKsVKdOHdlstiI1eO7cuRIVBAAAAEdFCmyLFy92cRkAAADIT5EC27hx41xdBwAAAPJRrHPYjh8/rjlz5mj06NFKTk6WJG3cuFHff/99qRYHAACAYgS2nTt3ql27dvrmm2+0du1apaenS5IOHjyouXPnlnqBAAAAVZ3TgW3WrFl64YUXtHnzZrm5udnn9+vXT19//XWpFgcAAIBiBLZDhw7p7rvvzjW/YcOG+vXXX0ulKAAAAPzG6cDm5+enU6dO5Zp/4MAB3XzzzaVSFAAAAH7jdGAbNWqUZs6cqdOnT8tmsyknJ0fR0dF68sknNXbsWFfUCAAAUKU5HdhefPFFtWrVSoGBgUpPT1dYWJh69+6tHj16aM6cOa6oEQAAoEqzWZZlFWfDxMREHT58WOnp6brlllvUokWL0q4NeUhLS5Ovr69SU1Pl4+NT3uUAAIAiKOn3d5FunHu93bt367bbblNQUJCCgoKcfkMAAAA4x+lDov369VNwcLCeeuopxcXFuaImAAAAXMfpwJaUlKTp06dr586datu2rTp27KiFCxfq5MmTrqgPAACgyiv2OWySlJCQoA8++EArV67UDz/8oN69e2vbtm2lWR9uwDlsAABUPCX9/i5RYJOk7Oxsbdy4Uc8884xiY2OVnZ1dkuZQCAIbAAAVT0m/v4v18HdJio6O1mOPPSZ/f3/dd999atu2rTZs2FDc5gAAAJAPp68SnT17tj788EMlJSVpwIABeu211zRkyBDVrl3bFfUBAABUeU4Htl27dmnGjBm69957Vb9+fVfUBAAAgOs4Hdiio6NdUQcAAADyUaxz2N5991317NlTAQEB+uWXXyRJixcv1ieffFKqxQEAAKAYgW3JkiWaNm2afv/73yslJcV+Vaifn58WL15c2vUBAABUeU4Httdff13/+Mc/9PTTT6t69er2+V26dNGhQ4dKtTgAAAAUI7AlJCT
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# диаграмма рассеяния \n",
"df.plot.scatter(x =\"Age\", y =\"Education Level\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: ylabel='Age'>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAGFCAYAAABg7I3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8bUlEQVR4nO3deXxU5aHG8d8kZCMrkE0gkR0SdkUp6K21lQJSFEFBiyKi1gVUquACKuAOiLVWpFZW71WgCm5FUIqiFcWArIVIAgQCGnZCyJ7MzP1jNBK2LLO8szzfz2c+ZGZOznkCIU/Oe5bXYrfb7YiIiPihINMBRERE3EUlJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifkslJyIifquB6QAi4h+sVisVFRWmY4gLhISEEBwcbDqGS6jkRMQpdrudAwcOkJ+fbzqKuFBcXBzJyclYLBbTUZyikhMRp/xccImJiTRs2NDnfygGOrvdTnFxMYcOHQLgggsuMJzIOSo5Eak3q9VaVXBNmjQxHUdcJCIiAoBDhw6RmJjo00OXOvFEROrt52NwDRs2NJxEXO3nf1NfP86qkhMRp2mI0v/4y7+pSk5ERPyWSk5ERPyWTjwREbdo8egyj21rzwsD6vV5Bw4c4Nlnn2XZsmX88MMPJCYm0q1bN8aOHcvvfvc7F6d0rfnz5zN27FhdulEDlZyIBKQ9e/Zw2WWXERcXx/Tp0+ncuTMVFRV88sknjB49mu+//950RI+wWq1YLBaCgvxzYM8/vyoRkRrce++9WCwWMjIyGDJkCO3ataNjx448+OCDrF27FoDc3FyuvfZaoqKiiImJYejQoRw8eLBqHZMnT6Zbt27MnTuX1NRUoqKiuPfee7FarUybNo3k5GQSExN59tlnq23bYrEwa9Ys+vfvT0REBK1ateLdd9+ten/16tVYLJZqe2mbNm3CYrGwZ88eVq9ezW233caJEyewWCxYLBYmT54MQFlZGePGjaNZs2ZERkbSs2dPVq9eXbWe+fPnExcXx4cffkh6ejphYWHk5ua6/i/YS6jkRCTgHDt2jBUrVjB69GgiIyPPeD8uLg6bzca1117LsWPH+OKLL1i5ciW7d+9m2LBh1ZbdtWsXy5cvZ8WKFSxcuJA5c+YwYMAA9u/fzxdffMHUqVN5/PHH+fbbb6t93hNPPMGQIUPYvHkzw4cP58YbbyQzM7NW+Xv37s3LL79MTEwMeXl55OXlMW7cOADGjBnDN998w6JFi9iyZQs33HAD/fr1Izs7u+rzi4uLmTp1KrNnz2bbtm0kJibW9a/QZ2i4UkQCzs6dO7Hb7XTo0OGcy6xatYqtW7eSk5NDSkoKAG+++SYdO3Zk3bp1XHLJJQDYbDbmzp1LdHQ06enpXHnllezYsYOPP/6YoKAg2rdvz9SpU/n888/p2bNn1fpvuOEG7rjjDgCefvppVq5cyd/+9jdee+21GvOHhoYSGxuLxWIhOTm56vXc3FzmzZtHbm4uTZs2BWDcuHGsWLGCefPm8dxzzwGOa99ee+01unbtWse/Od+jkhORgGO322tcJjMzk5SUlKqCA0hPTycuLo7MzMyqkmvRogXR0dFVyyQlJREcHFztGFdSUlLVbbJ+1qtXrzOeb9q0qT5fTpWtW7ditVpp165dtdfLysqq3ZEmNDSULl26OLUtX6GSE5GA07ZtWywWi0tOLgkJCan23GKxnPU1m81W63X+XJCnlnFt7jxSWFhIcHAw33333Rm34oqKiqr6OCIiwm8u9q6JjsmJSMBp3Lgxffv2ZebMmRQVFZ3xfn5+Pmlpaezbt499+/ZVvb59+3by8/NJT093OsPPJ7ec+jwtLQ2AhIQEAPLy8qreP30vLzQ0FKvVWu217t27Y7VaOXToEG3atKn2OHVYM5Co5EQkIM2cOROr1cqll17KkiVLyM7OJjMzk1deeYVevXpx1VVX0blzZ4YPH86GDRvIyMhgxIgRXHHFFfTo0cPp7b/zzjvMnTuXrKwsJk2aREZGBmPGjAGgTZs2pKSkMHnyZLKzs1m2bBkzZsyo9vktWrSgsLCQVatWceTIEYqLi2nXrh3Dhw9nxIgRLF26lJycHDIyMnj++edZtsxz1y16E5WciASkVq1asWHDBq688koeeughOnXqRJ8+fVi1ahWzZs3CYrHwwQcf0KhRI379619z1VVX0apVKxYvXuyS7U+ZMoVFixbRpUsX3nzzTRYuXFi1hxgSEsLChQv5/vvv6dKlC1OnTuWZZ56p9vm9e/fm7rvvZtiwYSQkJDBt2jQA5s2bx4gRI3jooYdo3749gwYNYt26daSmprokt6+x2GtzBFZE5CxKS0vJycmhZcuWhIeHm47jMywWC++99x6DBg0yHeWc/OXfVntyIiLit1RyIiLit3QJgYiIh+kokedoT05ERPyWSk5ERPyWSk5ERPyWSk5ERPyWSk5ERPyWSk5ERPyWSk5ExElnm8n7dD/PyP2zn2cVF/fSdXIi4h6TYz24rRN1/pSRI0eyYMEC7rrrLv7+979Xe2/06NG89tpr3HrrrcyfP98lEYcNG8bVV1/tknVJ7WlPTkQCVkpKCosWLaKkpKTqtdLSUt5++22X39A4IiKCxMREl65TaqY9OZGaWCuh8CCcPAAn8xwfV5SArRJsFWCzgrXip+enPKw/vWerhOAQCIt2PEKjICwKwmIgPBYaNoaGTRyPsOia84jLXHTRRezatYulS5cyfPhwAJYuXUpqaiotW7asWq6srIzx48ezaNEiCgoK6NGjB3/5y1+qZgf/2Zo1a3jsscfIysqiW7duzJ49m06dOgGO4cqxY8eed0hz9uzZzJgxg5ycHFq0aMH999/Pvffe6/ovPICo5CSwVZTC4e+h4AdHgZ08+NOfB6DwgOPP4qNgr/2szk5pEA4RjSGmKTRpDU3a/vRnG8cjtKFncgSQUaNGMW/evKqSmzt3LrfddhurV6+uWubhhx9myZIlLFiwgAsvvJBp06bRt29fdu7cSePGjauWGz9+PH/9619JTk5mwoQJDBw4kKysrDNmCj+bt956iyeffJJXX32V7t27s3HjRu68804iIyO59dZbXf51BwqVnASOkwfgwH/h4FbHnwe2wtGdYLfW/LmeUlkKJ390PH5Yf9qbFoi+4JfSi2/7S/k1agFBwSYS+7ybb76Zxx57jL179wKOvbFFixZVlVxRURGzZs1i/vz59O/fH4A33niDlStXMmfOHMaPH1+1rkmTJtGnTx8AFixYQPPmzXnvvfcYOnRojTkmTZrEjBkzGDx4MAAtW7Zk+/btvP766yo5J6jkxP9YK+HIjuqFdvC/UHTYdDIn2X8pwD3/qf5WaBQ07wGpvSD1V9D8EgiNNBPTxyQkJDBgwADmz5+P3W5nwIABxMfHV72/a9cuKioquOyyy6peCwkJ4dJLLyUzM7Paunr16lX1cePGjWnfvv0Zy5xNUVERu3bt4vbbb+fOO++ser2yspLYWA+ewOOHVHLi+2xW+HEj5HwBOV/CvgyoKDadyrPKC2H3ascDIKgBJHf+pfRSe0GUTno4l1GjRjFmzBgAZs6c6fHtFxYWAo49xJ49e1Z7LzhYe+jOUMmJbzqSDdkrHT/Uc7+BsgLTibyLrdJR/D9uhLWvOV5r3OqX0mv9O4htZjajF+nXrx/l5eVYLBb69u1b7b3WrVsTGhrKmjVruPDCCwGoqKhg3bp1jB07ttqya9eurTor8/jx42RlZZGWllbj9pOSkmjatCm7d++uOjYorqGSE99QXuzYS9u50lFu+XtNJ/I9x3Y7HpveAizQ7CJIuwbSr3EUYAALDg6uGlY8fc8pMjKSe+65h/Hjx9O4cWNSU1OZNm0axcXF3H777dWWfeqpp2jSpAlJSUlMnDiR+Ph4Bg0aVKsMU6ZM4f777yc2NpZ+/fpRVlbG+vXrOX78OA8++KBLvs5ApJIT71VRAjs+hi3/hF2fg7XMdCI/YocfvnM8/j0JkjpD2kBH4SXWvOfhj2J
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# круговая диаграмма \n",
"data = (df[[ \"Device\", \"Age\"]].groupby(['Device']).count())\n",
"data.plot.pie(x ='Device', y ='Age')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}