IIS_2023_1/madyshev_egor_lab_6
2023-11-02 19:08:29 +04:00
..
main.py madyshev_egor_lab_6 is ready 2023-11-02 19:08:29 +04:00
readme.md madyshev_egor_lab_6 is ready 2023-11-02 19:08:29 +04:00
StudentsPerformance.csv madyshev_egor_lab_6 is ready 2023-11-02 19:08:29 +04:00

Задание

Использовать нейронную сеть (четные варианты MLPRegressor, нечетные MLPClassifier) для данных из таблицы 1 по варианту, самостоятельно сформулировав задачу. Интерпретировать результаты и оценить, насколько хорошо она подходит для решения сформулированной вами задачи.

Задание по варианту

MLPRegressor

Решение

Запуск программы

Для запуска программы необходимо запустить файл main.py, содержащий код программы

Используемые технологии

Программа использует следующие библиотеки:

  • numpy - библиотека для работы с массивами и матрицами.
  • matplotlib - библиотека для создания графиков и визуализации данных.
  • sklearn - библиотека для машинного обучения и анализа данных.

Что делает программа

Программа читает данные из csv файла. Подготавливает их для работы модели, приводя текстовые параметры к числам. И пытается научиться предсказывать прохождение подготовительных курсов с помощью моделей нейронных сетей.

Тесты

Данные без подготовки:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
0 female group B bachelor's degree standard none 72 72 74
1 female group C some college standard completed 69 90 88
2 female group B master's degree standard none 90 95 93
3 male group A associate's degree free/reduced none 47 57 44
4 male group C some college standard none 76 78 75

Данные после подготовки:
gender race/ethnicity parental level of education lunch test preparation course math score reading score writing score
0 0 0 0 0 0 72 72 74
1 0 1 1 0 1 69 90 88
2 0 0 2 0 0 90 95 93
3 1 2 3 1 0 47 57 44
4 1 1 1 0 0 76 78 75

MLPRegressor: 0.1347847602324338
MLPClassifier: 0.65

Модель регрессии показала себя хуже чем модель классификации. Хотя модель классификации показала себя чуть лучше, результаты её работы всё равно не очень высоки.
Итоговый результат лежит в границах между 0 и 1, и в тестовых результатах является целым. Это значит, что угадывая произвольно модель в любом случае может достигнуть точности близкой к 0.5

Вывод: Модели нейронных сетей MLPRegressor и MLPClassifier не подходят для решения поставленной задачи, предсказания прохождения курсов по остальным данным. Или на практике не существует соответствующей зависимости в данных.