IIS_2023_1/kochkareva_elizaveta_lab_7/main.py
2023-12-21 21:29:29 +04:00

65 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import tensorflow as tf
def recurrent_neural_network():
# Загрузка текстового файла и предварительная обработка данных
with open('V3001TH2.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
char_to_index = {char: index for index, char in enumerate(chars)}
index_to_char = {index: char for index, char in enumerate(chars)}
num_chars = len(chars)
text_length = len(text)
# Генерация тренировочных данных
seq_length = 100 # Длина входной последовательности
train_x = []
train_y = []
for i in range(0, text_length - seq_length, 1):
input_seq = text[i:i + seq_length]
output_seq = text[i + seq_length]
train_x.append([char_to_index[char] for char in input_seq])
train_y.append(char_to_index[output_seq])
train_x = np.reshape(train_x, (len(train_x), seq_length, 1))
train_x = train_x / float(num_chars)
train_y = tf.keras.utils.to_categorical(train_y)
model = tf.keras.Sequential([
tf.keras.layers.LSTM(128, input_shape=(train_x.shape[1], train_x.shape[2])),
tf.keras.layers.Dense(num_chars, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam')
# Обучение модели
model.fit(train_x, train_y, epochs=80, batch_size=128)
# Генерация текста
start_index = np.random.randint(0, len(train_x) - 1)
start_seq = train_x[start_index]
generated_text = ''
for _ in range(500):
x = np.reshape(start_seq, (1, len(start_seq), 1))
x = x / float(num_chars)
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
result = index_to_char[index]
generated_text += result
start_seq = np.append(start_seq, index)
start_seq = start_seq[1:]
with open('сгенерированный_текст.txt', 'w', encoding='utf-8') as f:
f.write(generated_text)
if __name__ == '__main__':
recurrent_neural_network()