IIS_2023_1/sergeev_evgenii_lab_7/lab7.py
Евгений Сергеев 5225d8f15a lab 7 is done
2023-11-17 02:01:42 +04:00

61 lines
2.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from keras.preprocessing.text import Tokenizer
from keras.utils import pad_sequences
# Путь к файлу
file_path = 'vlastelin-kolec.txt'
# Замените 'your_text_file.txt' на путь к вашему файлу с художественным текстом
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in text.split('\n'):
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i+1]
input_sequences.append(n_gram_sequence)
max_sequence_length = max([len(x) for x in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')
X, y = input_sequences[:, :-1], input_sequences[:, -1]
y = tf.keras.utils.to_categorical(y, num_classes=total_words)
model = Sequential()
model.add(Embedding(total_words, 100, input_length=max_sequence_length-1))
model.add(LSTM(100))
model.add(Dense(total_words, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=100, verbose=1)
next_words = 100
while True:
seed_text = input('Введите текст: ')
if seed_text == "0":
break
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_sequence_length-1, padding='pre')
predicted = np.argmax(model.predict(token_list), axis=-1)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
print(seed_text)