13 lines
509 B
Python
13 lines
509 B
Python
from sklearn.neural_network import MLPClassifier
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
def random_state_fit(i, x_train, y_train, x_test, y_test, func):
|
|
mlp = MLPClassifier(random_state=i, max_iter=4000, n_iter_no_change=10,
|
|
activation=func, alpha=0.01, hidden_layer_sizes=[100, 100])
|
|
mlp.fit(x_train, y_train)
|
|
predictions = mlp.predict(x_test)
|
|
acc_mlp = accuracy_score(y_test, predictions)
|
|
print(f"Func {func} with accuracy {acc_mlp} \n")
|
|
return acc_mlp
|