62 lines
2.3 KiB
Python
62 lines
2.3 KiB
Python
from sklearn.ensemble import RandomForestRegressor
|
||
from RandomizedLasso import RandomizedLasso
|
||
from sklearn.feature_selection import f_regression
|
||
from sklearn.preprocessing import MinMaxScaler
|
||
import numpy as np
|
||
|
||
names = ["x%s" % i for i in range(1, 15)]
|
||
def main():
|
||
x,y = generation_data()
|
||
# Сокращение признаков cлучайными деревьями (Random Forest Regressor)
|
||
rfr = RandomForestRegressor()
|
||
rfr.fit(x, y)
|
||
# Модель линейной корреляции
|
||
f, _ = f_regression(x, y, center=False)
|
||
# Случайное Лассо
|
||
randomized_lasso = RandomizedLasso(alpha=.01)
|
||
randomized_lasso.fit(x, y)
|
||
|
||
ranks = {"Random Forest Regressor": rank_to_dict(rfr.feature_importances_), 'f-Regression': rank_to_dict(f), "Randomize Lasso": rank_to_dict(randomized_lasso.coef_)}
|
||
|
||
get_estimation(ranks)
|
||
print_sorted_data(ranks)
|
||
def generation_data():
|
||
np.random.seed(0)
|
||
size = 750
|
||
X = np.random.uniform(0, 1, (size, 14))
|
||
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 +
|
||
10 * X[:, 3] + 5 * X[:, 4] ** 5 + np.random.normal(0, 1))
|
||
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
|
||
return X, Y
|
||
def rank_to_dict(ranks):
|
||
ranks = np.abs(ranks)
|
||
minmax = MinMaxScaler()
|
||
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
|
||
ranks = map(lambda x: round(x, 2), ranks)
|
||
return dict(zip(names, ranks))
|
||
def get_estimation(ranks: {}):
|
||
mean = {}
|
||
for key, value in ranks.items():
|
||
for item in value.items():
|
||
if(item[0] not in mean):
|
||
mean[item[0]] = 0
|
||
mean[item[0]] += item[1]
|
||
for key, value in mean.items():
|
||
res = value/len(ranks)
|
||
mean[key] = round(res, 2)
|
||
mean_sorted = sorted(mean.items(), key=lambda item: item[1], reverse=True)
|
||
print("Средние значения")
|
||
print(mean_sorted)
|
||
print("4 самых важных признака по среднему значению")
|
||
for item in mean_sorted[:4]:
|
||
print('{0} - {1}'.format(item[0], item[1]))
|
||
def print_sorted_data(ranks: {}):
|
||
print()
|
||
for key, value in ranks.items():
|
||
ranks[key] = sorted(value.items(), key=lambda item: item[1], reverse=True)
|
||
for key, value in ranks.items():
|
||
print(key)
|
||
print(value)
|
||
|
||
|
||
main() |