IIS_2023_1/tsyppo_anton_lab_1/main.py
2023-12-06 14:49:34 +04:00

46 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
# Генерируем данные
rs = 42
X, y = make_moons(n_samples=1000, noise=0.3, random_state=rs)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rs)
def train_and_evaluate_model(model, X_train, y_train, X_test, y_test):
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy
# Построение моделей
perceptron_model = Perceptron(random_state=rs)
perceptron_accuracy = train_and_evaluate_model(perceptron_model, X_train, y_train, X_test, y_test)
mlp_model_10_neurons = MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)
mlp_10_neurons_accuracy = train_and_evaluate_model(mlp_model_10_neurons, X_train, y_train, X_test, y_test)
mlp_model_100_neurons = MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs)
mlp_100_neurons_accuracy = train_and_evaluate_model(mlp_model_100_neurons, X_train, y_train, X_test, y_test)
# Построение графиков
plt.figure(figsize=(12, 4))
plt.subplot(131)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.')
plt.title("Персептрон\nТочность: {:.2f}%".format(perceptron_accuracy * 100))
plt.subplot(132)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.')
plt.title("Многослойный персептрон\nс 10-ю нейронами в скрытом слое\nТочность: {:.2f}%".format(mlp_10_neurons_accuracy * 100))
plt.subplot(133)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='.')
plt.title("Многослойный персептрон\nс 100-а нейронами в скрытом слое\nТочность: {:.2f}%".format(mlp_100_neurons_accuracy * 100))
plt.tight_layout()
plt.savefig('models.png')
plt.show()