IIS_2023_1/lipatov_ilya_lab_2/RandomizedLasso.py
2023-10-15 13:15:18 +04:00

45 lines
1.6 KiB
Python

from sklearn.utils import check_X_y, check_random_state
from sklearn.linear_model import Lasso
from scipy.sparse import issparse
from pandas._libs import sparse
def _rescale_data(x, weights):
if issparse(x):
size = weights.shape[0]
weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size))
x_rescaled = x * weight_dia
else:
x_rescaled = x * (1 - weights)
return x_rescaled
class RandomizedLasso(Lasso):
def __init__(self, weakness=0.5, alpha=1.0, fit_intercept=True, normalize=False,
precompute=False, copy_x=True, max_iter=1000,
tol=1e-4, warm_start=False, positive=False,
random_state=None, selection='cyclic'):
self.weakness = weakness
super(RandomizedLasso, self).__init__(
alpha=alpha, fit_intercept=fit_intercept,
normalize=normalize, precompute=precompute, copy_X=copy_x,
max_iter=max_iter, tol=tol, warm_start=warm_start,
positive=positive, random_state=random_state,
selection=selection)
def fit(self, x, y):
if not isinstance(self.weakness, float) or not (0.0 < self.weakness <= 1.0):
raise ValueError('weakness should be a float in (0, 1], got %s' % self.weakness)
x, y = check_X_y(x, y, accept_sparse=True)
n_features = x.shape[1]
weakness = 1. - self.weakness
random_state = check_random_state(self.random_state)
weights = weakness * random_state.randint(0, 1 + 1, size=(n_features,))
x_rescaled = _rescale_data(x, weights)
return super(RandomizedLasso, self).fit(x_rescaled, y)