IIS_2023_1/martysheva_tamara_lab_7/lab7.py

60 lines
2.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense, Dropout
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
#Подготовка текста, получение данных для тренировки модели
def tokenize(filename):
with open(filename, encoding='utf-8') as file:
text = file.read()
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
uniq_words_amount = len(tokenizer.word_index) + 1
sequences = []
list_token = tokenizer.texts_to_sequences([text])[0]
for i in range(1, len(list_token)):
sequences.append(list_token[:i + 1])
max_seq_length = max([len(x) for x in sequences])
sequences = pad_sequences(sequences, maxlen=max_seq_length)
x, y = sequences[:, :-1], sequences[:, -1]
y = to_categorical(y, num_classes=uniq_words_amount)
return max_seq_length, uniq_words_amount, tokenizer, x, y
#Создание и тренировка модели
def train_model(max_seq_length, uniq_words_amount, x, y, epochs):
model = Sequential()
model.add(Embedding(uniq_words_amount, 128, input_length=max_seq_length-1))
model.add(LSTM(152, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(uniq_words_amount, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x, y, epochs=epochs, verbose=1)
return model
#Генерация текста
def generate_text(text, tokenizer, model, max_seq_length):
i = 0
while(i < 100):
list_token = tokenizer.texts_to_sequences([text])[0]
token_list = pad_sequences([list_token], maxlen=max_seq_length-1, padding='pre')
predict = model.predict(token_list)
predict_index = np.argmax(predict, axis=-1)
word = tokenizer.index_word.get(predict_index[0])
text += " " + word
i = i+1
return text
msl, uwa, tokenizer, x, y = tokenize("text_rus.txt")
model = train_model(msl, uwa, x, y, 140)
print("Rus: ", generate_text("Кофе со специями", tokenizer, model, msl))
msl, uwa, tokenizer, x, y = tokenize("text_eng.txt")
model = train_model(msl, uwa, x, y, 140)
print("Eng: ", generate_text("The spiced coffee", tokenizer, model, msl))