IIS_2023_1/mashkova_margarita_lab_5/main.py

57 lines
2.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
import matplotlib.pyplot as plt
filename = "mobiles.csv"
# Считываем данные из файла в DataFrame
data = pd.read_csv(filename, sep=',')
# Удаляем столбец с идентификатором
data.pop("Id")
# Приведение строковых значений признаков к численным при помощи векторайзера с суммированием
FEATURE_COLUMNS_TO_PROC = ['Name', 'Brand', 'Model', 'Operating system']
for column_name in FEATURE_COLUMNS_TO_PROC:
vectorizer = TfidfVectorizer()
train_text_feature_matrix = vectorizer.fit_transform(data[column_name]).toarray()
a = pd.DataFrame(train_text_feature_matrix)
data[column_name] = a[a.columns[1:]].apply(lambda x: sum(x.dropna().astype(float)), axis = 1)
# Приведение строковых значений к численным при помощи числового кодирования LabelEncoder
le = LabelEncoder()
data['Touchscreen'] = le.fit_transform(data['Touchscreen'])
data['Wi-Fi'] = le.fit_transform(data['Wi-Fi'])
data['Bluetooth'] = le.fit_transform(data['Bluetooth'])
data['GPS'] = le.fit_transform(data['GPS'])
data['3G'] = le.fit_transform(data['3G'])
data['4G/ LTE'] = le.fit_transform(data['4G/ LTE'])
# В Y помещаем целевой признак - цену
Y = data['Price']
# В X помещаем остальные признаки
X = data.drop(columns='Price')
# Разделение данных на обучающую (99%) и тестовую (1%) выборки
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.01, random_state=42)
# Гребневая регрессия
ridge = Ridge(alpha=1.0)
# Обучение модели
ridge.fit(X_train, y_train)
# Предсказание на тестовых данных
y_pred_ridge = ridge.predict(X_test)
# Оценка модели на тестовых данных (коэффициент детерминации)
ridge_score = ridge.score(X_test, y_test)
print("Оценка работы модели гребневой регрессии:")
print("Коэффициент детерминации: %f" % ridge_score)
plt.figure(1, figsize=(12, 7))
plt.title('Сравнение ожидаемых и фактических результатов предсказания цены телефона')
plt.scatter(x=[i for i in range(len(X_test))], y=y_test, c='green', s=8)
plt.scatter(x=[i for i in range(len(X_test))], y=y_pred_ridge, c='red', s=8)
plt.savefig('plot.png')
plt.show()