.. | ||
dendr.png | ||
lab4.py | ||
README.md | ||
sil.png | ||
smoking_drinking_dataset.csv |
Лабораторная работа №4, ПИбд-42 Тепечин Кирилл
Датасет:
Ссылка:
Smoking and Drinking Dataset with body signal
Подробности датасета
Столбец | Пояснение |
---|---|
sex | Пол(мужской, женский) |
age | Возраст(округлён) |
height | Рост(округлён) [см] |
weight | [кг] |
sight_left | зрение (левый) |
sight_left | зрение (правый) |
hear_left | слух (левое): 1 (нормальное), 2 (ненормальное) |
hear_right | слух (правое): 1 (нормальное), 2 (ненормальное) |
SBP | Систолическое артериальное давление [мм рт. ст.] |
DBP | Диастолическое артериальное давление [мм рт. ст.] |
BLDS | глюкоза в крови натощак [мг/дл] |
tot_chole | общий холестерин [мг/дл] |
HDL_chole | Холестерин ЛПВП [мг/дл] |
LDL_chole | Холестерин ЛПНП [мг/дл] |
triglyceride | триглицерид [мг/дл] |
hemoglobin | гемоглобин [г/дл] |
urine_protein | белок в моче, 1(-), 2(+/-), 3(+1), 4(+2), 5(+3), 6(+4) |
serum_creatinine | креатинин сыворотки (крови) [мг/дл] |
SGOT_AST | глутамат-оксалоацетат-трансаминаза / аспартат-трансаминаза [МЕ/л] |
SGOT_ALT | аланиновая трансаминаза [МЕ/л] |
gamma_GTP | γ-глутамилтранспептидаза [МЕ/л] |
SMK_stat_type_cd | Степень курения: 1 (никогда), 2 (бросил), 3 (курю) |
DRK_YN | Пьющий или нет |
Как запустить лабораторную работу:
Для запуска лабораторной работы необходимо запустить файл lab4.py
Используемые технологии:
- Python 3.12
- pandas
- scikit-learn
- matplotlib
Что делает лабораторная работа:
Эта лабораторная программа загружает данные из csv файла, выбирает признаки, нормализует данные, строит дендрограмму и оценивает качество кластеризации с помощью silhouette score.
Предварительная обработка данных:
Т.к датасет содержит слишком большое количество данных следует уменшить их размер
data = data.sample(frac=0.01, random_state=42)
Результат:
На основании этой дендрограмы можно выбрать количество кластеров, на которое разумно поделить данные (4)
Теперь используем метод иерархической кластеризации (AgglomerativeClustering) с 4 кластерами. Метки кластеров присваиваются данным, а затем вычисляется показатель silhouette score, который оценивает качество кластеризации.
Вывод:
Значение в районе 0.094 может быть интерпретировано как относительно низкое, что может указывать на то, что данные не разделены очень четко в кластеры, поэтому можно сделать вывод, что метод плохо подходит для решения задачи.